1 /*-
2  * Copyright (c) 2010-2012 Michihiro NAKAJIMA
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR(S) BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25 
26 #include "archive_platform.h"
27 
28 #ifdef HAVE_ERRNO_H
29 #include <errno.h>
30 #endif
31 #ifdef HAVE_LIMITS_H
32 #include <limits.h>
33 #endif
34 #ifdef HAVE_STDLIB_H
35 #include <stdlib.h>
36 #endif
37 #ifdef HAVE_STRING_H
38 #include <string.h>
39 #endif
40 #ifdef HAVE_ZLIB_H
41 #include <zlib.h>
42 #endif
43 
44 #include "archive.h"
45 #include "archive_entry.h"
46 #include "archive_entry_locale.h"
47 #include "archive_private.h"
48 #include "archive_read_private.h"
49 #include "archive_endian.h"
50 
51 
52 struct lzx_dec {
53 	/* Decoding status. */
54 	int     		 state;
55 
56 	/*
57 	 * Window to see last decoded data, from 32KBi to 2MBi.
58 	 */
59 	int			 w_size;
60 	int			 w_mask;
61 	/* Window buffer, which is a loop buffer. */
62 	unsigned char		*w_buff;
63 	/* The insert position to the window. */
64 	int			 w_pos;
65 	/* The position where we can copy decoded code from the window. */
66 	int     		 copy_pos;
67 	/* The length how many bytes we can copy decoded code from
68 	 * the window. */
69 	int     		 copy_len;
70 	/* Translation reversal for x86 processor CALL byte sequence(E8).
71 	 * This is used for LZX only. */
72 	uint32_t		 translation_size;
73 	char			 translation;
74 	char			 block_type;
75 #define VERBATIM_BLOCK		1
76 #define ALIGNED_OFFSET_BLOCK	2
77 #define UNCOMPRESSED_BLOCK	3
78 	size_t			 block_size;
79 	size_t			 block_bytes_avail;
80 	/* Repeated offset. */
81 	int			 r0, r1, r2;
82 	unsigned char		 rbytes[4];
83 	int			 rbytes_avail;
84 	int			 length_header;
85 	int			 position_slot;
86 	int			 offset_bits;
87 
88 	struct lzx_pos_tbl {
89 		int		 base;
90 		int		 footer_bits;
91 	}			*pos_tbl;
92 	/*
93 	 * Bit stream reader.
94 	 */
95 	struct lzx_br {
96 #define CACHE_TYPE		uint64_t
97 #define CACHE_BITS		(8 * sizeof(CACHE_TYPE))
98 	 	/* Cache buffer. */
99 		CACHE_TYPE	 cache_buffer;
100 		/* Indicates how many bits avail in cache_buffer. */
101 		int		 cache_avail;
102 		unsigned char	 odd;
103 		char		 have_odd;
104 	} br;
105 
106 	/*
107 	 * Huffman coding.
108 	 */
109 	struct huffman {
110 		int		 len_size;
111 		int		 freq[17];
112 		unsigned char	*bitlen;
113 
114 		/*
115 		 * Use a index table. It's faster than searching a huffman
116 		 * coding tree, which is a binary tree. But a use of a large
117 		 * index table causes L1 cache read miss many times.
118 		 */
119 		int		 max_bits;
120 		int		 tbl_bits;
121 		int		 tree_used;
122 		/* Direct access table. */
123 		uint16_t	*tbl;
124 	}			 at, lt, mt, pt;
125 
126 	int			 loop;
127 	int			 error;
128 };
129 
130 static const int slots[] = {
131 	30, 32, 34, 36, 38, 42, 50, 66, 98, 162, 290
132 };
133 #define SLOT_BASE	15
134 #define SLOT_MAX	21/*->25*/
135 
136 struct lzx_stream {
137 	const unsigned char	*next_in;
138 	int64_t			 avail_in;
139 	int64_t			 total_in;
140 	unsigned char		*next_out;
141 	int64_t			 avail_out;
142 	int64_t			 total_out;
143 	struct lzx_dec		*ds;
144 };
145 
146 /*
147  * Cabinet file definitions.
148  */
149 /* CFHEADER offset */
150 #define CFHEADER_signature	0
151 #define CFHEADER_cbCabinet	8
152 #define CFHEADER_coffFiles	16
153 #define CFHEADER_versionMinor	24
154 #define CFHEADER_versionMajor	25
155 #define CFHEADER_cFolders	26
156 #define CFHEADER_cFiles		28
157 #define CFHEADER_flags		30
158 #define CFHEADER_setID		32
159 #define CFHEADER_iCabinet	34
160 #define CFHEADER_cbCFHeader	36
161 #define CFHEADER_cbCFFolder	38
162 #define CFHEADER_cbCFData	39
163 
164 /* CFFOLDER offset */
165 #define CFFOLDER_coffCabStart	0
166 #define CFFOLDER_cCFData	4
167 #define CFFOLDER_typeCompress	6
168 #define CFFOLDER_abReserve	8
169 
170 /* CFFILE offset */
171 #define CFFILE_cbFile		0
172 #define CFFILE_uoffFolderStart	4
173 #define CFFILE_iFolder		8
174 #define CFFILE_date_time	10
175 #define CFFILE_attribs		14
176 
177 /* CFDATA offset */
178 #define CFDATA_csum		0
179 #define CFDATA_cbData		4
180 #define CFDATA_cbUncomp		6
181 
182 static const char * const compression_name[] = {
183 	"NONE",
184 	"MSZIP",
185 	"Quantum",
186 	"LZX",
187 };
188 
189 struct cfdata {
190 	/* Sum value of this CFDATA. */
191 	uint32_t		 sum;
192 	uint16_t		 compressed_size;
193 	uint16_t		 compressed_bytes_remaining;
194 	uint16_t		 uncompressed_size;
195 	uint16_t		 uncompressed_bytes_remaining;
196 	/* To know how many bytes we have decompressed. */
197 	uint16_t		 uncompressed_avail;
198 	/* Offset from the beginning of compressed data of this CFDATA */
199 	uint16_t		 read_offset;
200 	int64_t			 unconsumed;
201 	/* To keep memory image of this CFDATA to compute the sum. */
202 	size_t			 memimage_size;
203 	unsigned char		*memimage;
204 	/* Result of calculation of sum. */
205 	uint32_t		 sum_calculated;
206 	unsigned char		 sum_extra[4];
207 	int			 sum_extra_avail;
208 	const void		*sum_ptr;
209 };
210 
211 struct cffolder {
212 	uint32_t		 cfdata_offset_in_cab;
213 	uint16_t		 cfdata_count;
214 	uint16_t		 comptype;
215 #define COMPTYPE_NONE		0x0000
216 #define COMPTYPE_MSZIP		0x0001
217 #define COMPTYPE_QUANTUM	0x0002
218 #define COMPTYPE_LZX		0x0003
219 	uint16_t		 compdata;
220 	const char		*compname;
221 	/* At the time reading CFDATA */
222 	struct cfdata		 cfdata;
223 	int			 cfdata_index;
224 	/* Flags to mark progress of decompression. */
225 	char			 decompress_init;
226 };
227 
228 struct cffile {
229 	uint32_t		 uncompressed_size;
230 	uint32_t		 offset;
231 	time_t			 mtime;
232 	uint16_t	 	 folder;
233 #define iFoldCONTINUED_FROM_PREV	0xFFFD
234 #define iFoldCONTINUED_TO_NEXT		0xFFFE
235 #define iFoldCONTINUED_PREV_AND_NEXT	0xFFFF
236 	unsigned char		 attr;
237 #define ATTR_RDONLY		0x01
238 #define ATTR_NAME_IS_UTF	0x80
239 	struct archive_string 	 pathname;
240 };
241 
242 struct cfheader {
243 	/* Total bytes of all file size in a Cabinet. */
244 	uint32_t		 total_bytes;
245 	uint32_t		 files_offset;
246 	uint16_t		 folder_count;
247 	uint16_t		 file_count;
248 	uint16_t		 flags;
249 #define PREV_CABINET	0x0001
250 #define NEXT_CABINET	0x0002
251 #define RESERVE_PRESENT	0x0004
252 	uint16_t		 setid;
253 	uint16_t		 cabinet;
254 	/* Version number. */
255 	unsigned char		 major;
256 	unsigned char		 minor;
257 	unsigned char		 cffolder;
258 	unsigned char		 cfdata;
259 	/* All folders in a cabinet. */
260 	struct cffolder		*folder_array;
261 	/* All files in a cabinet. */
262 	struct cffile		*file_array;
263 	int			 file_index;
264 };
265 
266 struct cab {
267 	/* entry_bytes_remaining is the number of bytes we expect.	    */
268 	int64_t			 entry_offset;
269 	int64_t			 entry_bytes_remaining;
270 	int64_t			 entry_unconsumed;
271 	int64_t			 entry_compressed_bytes_read;
272 	int64_t			 entry_uncompressed_bytes_read;
273 	struct cffolder		*entry_cffolder;
274 	struct cffile		*entry_cffile;
275 	struct cfdata		*entry_cfdata;
276 
277 	/* Offset from beginning of a cabinet file. */
278 	int64_t			 cab_offset;
279 	struct cfheader		 cfheader;
280 	struct archive_wstring	 ws;
281 
282 	/* Flag to mark progress that an archive was read their first header.*/
283 	char			 found_header;
284 	char			 end_of_archive;
285 	char			 end_of_entry;
286 	char			 end_of_entry_cleanup;
287 	char			 read_data_invoked;
288 	int64_t			 bytes_skipped;
289 
290 	unsigned char		*uncompressed_buffer;
291 	size_t			 uncompressed_buffer_size;
292 
293 	int			 init_default_conversion;
294 	struct archive_string_conv *sconv;
295 	struct archive_string_conv *sconv_default;
296 	struct archive_string_conv *sconv_utf8;
297 	char			 format_name[64];
298 
299 #ifdef HAVE_ZLIB_H
300 	z_stream		 stream;
301 	char			 stream_valid;
302 #endif
303 	struct lzx_stream	 xstrm;
304 };
305 
306 static int	archive_read_format_cab_bid(struct archive_read *, int);
307 static int	archive_read_format_cab_options(struct archive_read *,
308 		    const char *, const char *);
309 static int	archive_read_format_cab_read_header(struct archive_read *,
310 		    struct archive_entry *);
311 static int	archive_read_format_cab_read_data(struct archive_read *,
312 		    const void **, size_t *, int64_t *);
313 static int	archive_read_format_cab_read_data_skip(struct archive_read *);
314 static int	archive_read_format_cab_cleanup(struct archive_read *);
315 
316 static int	cab_skip_sfx(struct archive_read *);
317 static time_t	cab_dos_time(const unsigned char *);
318 static int	cab_read_data(struct archive_read *, const void **,
319 		    size_t *, int64_t *);
320 static int	cab_read_header(struct archive_read *);
321 static uint32_t cab_checksum_cfdata_4(const void *, size_t bytes, uint32_t);
322 static uint32_t cab_checksum_cfdata(const void *, size_t bytes, uint32_t);
323 static void	cab_checksum_update(struct archive_read *, size_t);
324 static int	cab_checksum_finish(struct archive_read *);
325 static int	cab_next_cfdata(struct archive_read *);
326 static const void *cab_read_ahead_cfdata(struct archive_read *, ssize_t *);
327 static const void *cab_read_ahead_cfdata_none(struct archive_read *, ssize_t *);
328 static const void *cab_read_ahead_cfdata_deflate(struct archive_read *,
329 		    ssize_t *);
330 static const void *cab_read_ahead_cfdata_lzx(struct archive_read *,
331 		    ssize_t *);
332 static int64_t	cab_consume_cfdata(struct archive_read *, int64_t);
333 static int64_t	cab_minimum_consume_cfdata(struct archive_read *, int64_t);
334 static int	lzx_decode_init(struct lzx_stream *, int);
335 static int	lzx_read_blocks(struct lzx_stream *, int);
336 static int	lzx_decode_blocks(struct lzx_stream *, int);
337 static void	lzx_decode_free(struct lzx_stream *);
338 static void	lzx_translation(struct lzx_stream *, void *, size_t, uint32_t);
339 static void	lzx_cleanup_bitstream(struct lzx_stream *);
340 static int	lzx_decode(struct lzx_stream *, int);
341 static int	lzx_read_pre_tree(struct lzx_stream *);
342 static int	lzx_read_bitlen(struct lzx_stream *, struct huffman *, int);
343 static int	lzx_huffman_init(struct huffman *, size_t, int);
344 static void	lzx_huffman_free(struct huffman *);
345 static int	lzx_make_huffman_table(struct huffman *);
346 static inline int lzx_decode_huffman(struct huffman *, unsigned);
347 
348 
349 int
350 archive_read_support_format_cab(struct archive *_a)
351 {
352 	struct archive_read *a = (struct archive_read *)_a;
353 	struct cab *cab;
354 	int r;
355 
356 	archive_check_magic(_a, ARCHIVE_READ_MAGIC,
357 	    ARCHIVE_STATE_NEW, "archive_read_support_format_cab");
358 
359 	cab = (struct cab *)calloc(1, sizeof(*cab));
360 	if (cab == NULL) {
361 		archive_set_error(&a->archive, ENOMEM,
362 		    "Can't allocate CAB data");
363 		return (ARCHIVE_FATAL);
364 	}
365 	archive_string_init(&cab->ws);
366 	archive_wstring_ensure(&cab->ws, 256);
367 
368 	r = __archive_read_register_format(a,
369 	    cab,
370 	    "cab",
371 	    archive_read_format_cab_bid,
372 	    archive_read_format_cab_options,
373 	    archive_read_format_cab_read_header,
374 	    archive_read_format_cab_read_data,
375 	    archive_read_format_cab_read_data_skip,
376 	    NULL,
377 	    archive_read_format_cab_cleanup,
378 	    NULL,
379 	    NULL);
380 
381 	if (r != ARCHIVE_OK)
382 		free(cab);
383 	return (ARCHIVE_OK);
384 }
385 
386 static int
387 find_cab_magic(const char *p)
388 {
389 	switch (p[4]) {
390 	case 0:
391 		/*
392 		 * Note: Self-Extraction program has 'MSCF' string in their
393 		 * program. If we were finding 'MSCF' string only, we got
394 		 * wrong place for Cabinet header, thus, we have to check
395 		 * following four bytes which are reserved and must be set
396 		 * to zero.
397 		 */
398 		if (memcmp(p, "MSCF\0\0\0\0", 8) == 0)
399 			return 0;
400 		return 5;
401 	case 'F': return 1;
402 	case 'C': return 2;
403 	case 'S': return 3;
404 	case 'M': return 4;
405 	default:  return 5;
406 	}
407 }
408 
409 static int
410 archive_read_format_cab_bid(struct archive_read *a, int best_bid)
411 {
412 	const char *p;
413 	ssize_t bytes_avail, offset, window;
414 
415 	/* If there's already a better bid than we can ever
416 	   make, don't bother testing. */
417 	if (best_bid > 64)
418 		return (-1);
419 
420 	if ((p = __archive_read_ahead(a, 8, NULL)) == NULL)
421 		return (-1);
422 
423 	if (memcmp(p, "MSCF\0\0\0\0", 8) == 0)
424 		return (64);
425 
426 	/*
427 	 * Attempt to handle self-extracting archives
428 	 * by noting a PE header and searching forward
429 	 * up to 128k for a 'MSCF' marker.
430 	 */
431 	if (p[0] == 'M' && p[1] == 'Z') {
432 		offset = 0;
433 		window = 4096;
434 		while (offset < (1024 * 128)) {
435 			const char *h = __archive_read_ahead(a, offset + window,
436 			    &bytes_avail);
437 			if (h == NULL) {
438 				/* Remaining bytes are less than window. */
439 				window >>= 1;
440 				if (window < 128)
441 					return (0);
442 				continue;
443 			}
444 			p = h + offset;
445 			while (p + 8 < h + bytes_avail) {
446 				int next;
447 				if ((next = find_cab_magic(p)) == 0)
448 					return (64);
449 				p += next;
450 			}
451 			offset = p - h;
452 		}
453 	}
454 	return (0);
455 }
456 
457 static int
458 archive_read_format_cab_options(struct archive_read *a,
459     const char *key, const char *val)
460 {
461 	struct cab *cab;
462 	int ret = ARCHIVE_FAILED;
463 
464 	cab = (struct cab *)(a->format->data);
465 	if (strcmp(key, "hdrcharset")  == 0) {
466 		if (val == NULL || val[0] == 0)
467 			archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
468 			    "cab: hdrcharset option needs a character-set name");
469 		else {
470 			cab->sconv = archive_string_conversion_from_charset(
471 			    &a->archive, val, 0);
472 			if (cab->sconv != NULL)
473 				ret = ARCHIVE_OK;
474 			else
475 				ret = ARCHIVE_FATAL;
476 		}
477 		return (ret);
478 	}
479 
480 	/* Note: The "warn" return is just to inform the options
481 	 * supervisor that we didn't handle it.  It will generate
482 	 * a suitable error if no one used this option. */
483 	return (ARCHIVE_WARN);
484 }
485 
486 static int
487 cab_skip_sfx(struct archive_read *a)
488 {
489 	const char *p, *q;
490 	size_t skip;
491 	ssize_t bytes, window;
492 
493 	window = 4096;
494 	for (;;) {
495 		const char *h = __archive_read_ahead(a, window, &bytes);
496 		if (h == NULL) {
497 			/* Remaining size are less than window. */
498 			window >>= 1;
499 			if (window < 128) {
500 				archive_set_error(&a->archive,
501 				    ARCHIVE_ERRNO_FILE_FORMAT,
502 				    "Couldn't find out CAB header");
503 				return (ARCHIVE_FATAL);
504 			}
505 			continue;
506 		}
507 		p = h;
508 		q = p + bytes;
509 
510 		/*
511 		 * Scan ahead until we find something that looks
512 		 * like the cab header.
513 		 */
514 		while (p + 8 < q) {
515 			int next;
516 			if ((next = find_cab_magic(p)) == 0) {
517 				skip = p - h;
518 				__archive_read_consume(a, skip);
519 				return (ARCHIVE_OK);
520 			}
521 			p += next;
522 		}
523 		skip = p - h;
524 		__archive_read_consume(a, skip);
525 	}
526 }
527 
528 static int
529 truncated_error(struct archive_read *a)
530 {
531 	archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
532 	    "Truncated CAB header");
533 	return (ARCHIVE_FATAL);
534 }
535 
536 static ssize_t
537 cab_strnlen(const unsigned char *p, size_t maxlen)
538 {
539 	size_t i;
540 
541 	for (i = 0; i <= maxlen; i++) {
542 		if (p[i] == 0)
543 			break;
544 	}
545 	if (i > maxlen)
546 		return (-1);/* invalid */
547 	return ((ssize_t)i);
548 }
549 
550 /* Read bytes as much as remaining. */
551 static const void *
552 cab_read_ahead_remaining(struct archive_read *a, size_t min, ssize_t *avail)
553 {
554 	const void *p;
555 
556 	while (min > 0) {
557 		p = __archive_read_ahead(a, min, avail);
558 		if (p != NULL)
559 			return (p);
560 		min--;
561 	}
562 	return (NULL);
563 }
564 
565 /* Convert a path separator '\' -> '/' */
566 static int
567 cab_convert_path_separator_1(struct archive_string *fn, unsigned char attr)
568 {
569 	size_t i;
570 	int mb;
571 
572 	/* Easy check if we have '\' in multi-byte string. */
573 	mb = 0;
574 	for (i = 0; i < archive_strlen(fn); i++) {
575 		if (fn->s[i] == '\\') {
576 			if (mb) {
577 				/* This may be second byte of multi-byte
578 				 * character. */
579 				break;
580 			}
581 			fn->s[i] = '/';
582 			mb = 0;
583 		} else if ((fn->s[i] & 0x80) && !(attr & ATTR_NAME_IS_UTF))
584 			mb = 1;
585 		else
586 			mb = 0;
587 	}
588 	if (i == archive_strlen(fn))
589 		return (0);
590 	return (-1);
591 }
592 
593 /*
594  * Replace a character '\' with '/' in wide character.
595  */
596 static void
597 cab_convert_path_separator_2(struct cab *cab, struct archive_entry *entry)
598 {
599 	const wchar_t *wp;
600 	size_t i;
601 
602 	/* If a conversion to wide character failed, force the replacement. */
603 	if ((wp = archive_entry_pathname_w(entry)) != NULL) {
604 		archive_wstrcpy(&(cab->ws), wp);
605 		for (i = 0; i < archive_strlen(&(cab->ws)); i++) {
606 			if (cab->ws.s[i] == L'\\')
607 				cab->ws.s[i] = L'/';
608 		}
609 		archive_entry_copy_pathname_w(entry, cab->ws.s);
610 	}
611 }
612 
613 /*
614  * Read CFHEADER, CFFOLDER and CFFILE.
615  */
616 static int
617 cab_read_header(struct archive_read *a)
618 {
619 	const unsigned char *p;
620 	struct cab *cab;
621 	struct cfheader *hd;
622 	size_t bytes, used;
623 	ssize_t len;
624 	int64_t skip;
625 	int err, i;
626 	int cur_folder, prev_folder;
627 	uint32_t offset32;
628 
629 	a->archive.archive_format = ARCHIVE_FORMAT_CAB;
630 	if (a->archive.archive_format_name == NULL)
631 		a->archive.archive_format_name = "CAB";
632 
633 	if ((p = __archive_read_ahead(a, 42, NULL)) == NULL)
634 		return (truncated_error(a));
635 
636 	cab = (struct cab *)(a->format->data);
637 	if (cab->found_header == 0 &&
638 	    p[0] == 'M' && p[1] == 'Z') {
639 		/* This is an executable?  Must be self-extracting... */
640 		err = cab_skip_sfx(a);
641 		if (err < ARCHIVE_WARN)
642 			return (err);
643 
644 		/* Re-read header after processing the SFX. */
645 		if ((p = __archive_read_ahead(a, 42, NULL)) == NULL)
646 			return (truncated_error(a));
647 	}
648 
649 	cab->cab_offset = 0;
650 	/*
651 	 * Read CFHEADER.
652 	 */
653 	hd = &cab->cfheader;
654 	if (p[CFHEADER_signature+0] != 'M' || p[CFHEADER_signature+1] != 'S' ||
655 	    p[CFHEADER_signature+2] != 'C' || p[CFHEADER_signature+3] != 'F') {
656 		archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
657 		    "Couldn't find out CAB header");
658 		return (ARCHIVE_FATAL);
659 	}
660 	hd->total_bytes = archive_le32dec(p + CFHEADER_cbCabinet);
661 	hd->files_offset = archive_le32dec(p + CFHEADER_coffFiles);
662 	hd->minor = p[CFHEADER_versionMinor];
663 	hd->major = p[CFHEADER_versionMajor];
664 	hd->folder_count = archive_le16dec(p + CFHEADER_cFolders);
665 	if (hd->folder_count == 0)
666 		goto invalid;
667 	hd->file_count = archive_le16dec(p + CFHEADER_cFiles);
668 	if (hd->file_count == 0)
669 		goto invalid;
670 	hd->flags = archive_le16dec(p + CFHEADER_flags);
671 	hd->setid = archive_le16dec(p + CFHEADER_setID);
672 	hd->cabinet = archive_le16dec(p + CFHEADER_iCabinet);
673 	used = CFHEADER_iCabinet + 2;
674 	if (hd->flags & RESERVE_PRESENT) {
675 		uint16_t cfheader;
676 		cfheader = archive_le16dec(p + CFHEADER_cbCFHeader);
677 		if (cfheader > 60000U)
678 			goto invalid;
679 		hd->cffolder = p[CFHEADER_cbCFFolder];
680 		hd->cfdata = p[CFHEADER_cbCFData];
681 		used += 4;/* cbCFHeader, cbCFFolder and cbCFData */
682 		used += cfheader;/* abReserve */
683 	} else
684 		hd->cffolder = 0;/* Avoid compiling warning. */
685 	if (hd->flags & PREV_CABINET) {
686 		/* How many bytes are used for szCabinetPrev. */
687 		if ((p = __archive_read_ahead(a, used+256, NULL)) == NULL)
688 			return (truncated_error(a));
689 		if ((len = cab_strnlen(p + used, 255)) <= 0)
690 			goto invalid;
691 		used += len + 1;
692 		/* How many bytes are used for szDiskPrev. */
693 		if ((p = __archive_read_ahead(a, used+256, NULL)) == NULL)
694 			return (truncated_error(a));
695 		if ((len = cab_strnlen(p + used, 255)) <= 0)
696 			goto invalid;
697 		used += len + 1;
698 	}
699 	if (hd->flags & NEXT_CABINET) {
700 		/* How many bytes are used for szCabinetNext. */
701 		if ((p = __archive_read_ahead(a, used+256, NULL)) == NULL)
702 			return (truncated_error(a));
703 		if ((len = cab_strnlen(p + used, 255)) <= 0)
704 			goto invalid;
705 		used += len + 1;
706 		/* How many bytes are used for szDiskNext. */
707 		if ((p = __archive_read_ahead(a, used+256, NULL)) == NULL)
708 			return (truncated_error(a));
709 		if ((len = cab_strnlen(p + used, 255)) <= 0)
710 			goto invalid;
711 		used += len + 1;
712 	}
713 	__archive_read_consume(a, used);
714 	cab->cab_offset += used;
715 	used = 0;
716 
717 	/*
718 	 * Read CFFOLDER.
719 	 */
720 	hd->folder_array = (struct cffolder *)calloc(
721 	    hd->folder_count, sizeof(struct cffolder));
722 	if (hd->folder_array == NULL)
723 		goto nomem;
724 
725 	bytes = 8;
726 	if (hd->flags & RESERVE_PRESENT)
727 		bytes += hd->cffolder;
728 	bytes *= hd->folder_count;
729 	if ((p = __archive_read_ahead(a, bytes, NULL)) == NULL)
730 		return (truncated_error(a));
731 	offset32 = 0;
732 	for (i = 0; i < hd->folder_count; i++) {
733 		struct cffolder *folder = &(hd->folder_array[i]);
734 		folder->cfdata_offset_in_cab =
735 		    archive_le32dec(p + CFFOLDER_coffCabStart);
736 		folder->cfdata_count = archive_le16dec(p+CFFOLDER_cCFData);
737 		folder->comptype =
738 		    archive_le16dec(p+CFFOLDER_typeCompress) & 0x0F;
739 		folder->compdata =
740 		    archive_le16dec(p+CFFOLDER_typeCompress) >> 8;
741 		/* Get a compression name. */
742 		if (folder->comptype <
743 		    sizeof(compression_name) / sizeof(compression_name[0]))
744 			folder->compname = compression_name[folder->comptype];
745 		else
746 			folder->compname = "UNKNOWN";
747 		p += 8;
748 		used += 8;
749 		if (hd->flags & RESERVE_PRESENT) {
750 			p += hd->cffolder;/* abReserve */
751 			used += hd->cffolder;
752 		}
753 		/*
754 		 * Sanity check if each data is acceptable.
755 		 */
756 		if (offset32 >= folder->cfdata_offset_in_cab)
757 			goto invalid;
758 		offset32 = folder->cfdata_offset_in_cab;
759 
760 		/* Set a request to initialize zlib for the CFDATA of
761 		 * this folder. */
762 		folder->decompress_init = 0;
763 	}
764 	__archive_read_consume(a, used);
765 	cab->cab_offset += used;
766 
767 	/*
768 	 * Read CFFILE.
769 	 */
770 	/* Seek read pointer to the offset of CFFILE if needed. */
771 	skip = (int64_t)hd->files_offset - cab->cab_offset;
772 	if (skip <  0) {
773 		archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
774 		    "Invalid offset of CFFILE %jd < %jd",
775 		    (intmax_t)hd->files_offset, (intmax_t)cab->cab_offset);
776 		return (ARCHIVE_FATAL);
777 	}
778 	if (skip) {
779 		__archive_read_consume(a, skip);
780 		cab->cab_offset += skip;
781 	}
782 	/* Allocate memory for CFDATA */
783 	hd->file_array = (struct cffile *)calloc(
784 	    hd->file_count, sizeof(struct cffile));
785 	if (hd->file_array == NULL)
786 		goto nomem;
787 
788 	prev_folder = -1;
789 	for (i = 0; i < hd->file_count; i++) {
790 		struct cffile *file = &(hd->file_array[i]);
791 		ssize_t avail;
792 
793 		if ((p = __archive_read_ahead(a, 16, NULL)) == NULL)
794 			return (truncated_error(a));
795 		file->uncompressed_size = archive_le32dec(p + CFFILE_cbFile);
796 		file->offset = archive_le32dec(p + CFFILE_uoffFolderStart);
797 		file->folder = archive_le16dec(p + CFFILE_iFolder);
798 		file->mtime = cab_dos_time(p + CFFILE_date_time);
799 		file->attr = (uint8_t)archive_le16dec(p + CFFILE_attribs);
800 		__archive_read_consume(a, 16);
801 
802 		cab->cab_offset += 16;
803 		if ((p = cab_read_ahead_remaining(a, 256, &avail)) == NULL)
804 			return (truncated_error(a));
805 		if ((len = cab_strnlen(p, avail-1)) <= 0)
806 			goto invalid;
807 
808 		/* Copy a pathname.  */
809 		archive_string_init(&(file->pathname));
810 		archive_strncpy(&(file->pathname), p, len);
811 		__archive_read_consume(a, len + 1);
812 		cab->cab_offset += len + 1;
813 
814 		/*
815 		 * Sanity check if each data is acceptable.
816 		 */
817 		if (file->uncompressed_size > 0x7FFF8000)
818 			goto invalid;/* Too large */
819 		if ((int64_t)file->offset + (int64_t)file->uncompressed_size
820 		    > ARCHIVE_LITERAL_LL(0x7FFF8000))
821 			goto invalid;/* Too large */
822 		switch (file->folder) {
823 		case iFoldCONTINUED_TO_NEXT:
824 			/* This must be last file in a folder. */
825 			if (i != hd->file_count -1)
826 				goto invalid;
827 			cur_folder = hd->folder_count -1;
828 			break;
829 		case iFoldCONTINUED_PREV_AND_NEXT:
830 			/* This must be only one file in a folder. */
831 			if (hd->file_count != 1)
832 				goto invalid;
833 			/* FALL THROUGH */
834 		case iFoldCONTINUED_FROM_PREV:
835 			/* This must be first file in a folder. */
836 			if (i != 0)
837 				goto invalid;
838 			prev_folder = cur_folder = 0;
839 			offset32 = file->offset;
840 			break;
841 		default:
842 			if (file->folder >= hd->folder_count)
843 				goto invalid;
844 			cur_folder = file->folder;
845 			break;
846 		}
847 		/* Dot not back track. */
848 		if (cur_folder < prev_folder)
849 			goto invalid;
850 		if (cur_folder != prev_folder)
851 			offset32 = 0;
852 		prev_folder = cur_folder;
853 
854 		/* Make sure there are not any blanks from last file
855 		 * contents. */
856 		if (offset32 != file->offset)
857 			goto invalid;
858 		offset32 += file->uncompressed_size;
859 
860 		/* CFDATA is available for file contents. */
861 		if (file->uncompressed_size > 0 &&
862 		    hd->folder_array[cur_folder].cfdata_count == 0)
863 			goto invalid;
864 	}
865 
866 	if (hd->cabinet != 0 || hd->flags & (PREV_CABINET | NEXT_CABINET)) {
867 		archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
868 		    "Multivolume cabinet file is unsupported");
869 		return (ARCHIVE_WARN);
870 	}
871 	return (ARCHIVE_OK);
872 invalid:
873 	archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
874 	    "Invalid CAB header");
875 	return (ARCHIVE_FATAL);
876 nomem:
877 	archive_set_error(&a->archive, ENOMEM,
878 	    "Can't allocate memory for CAB data");
879 	return (ARCHIVE_FATAL);
880 }
881 
882 static int
883 archive_read_format_cab_read_header(struct archive_read *a,
884     struct archive_entry *entry)
885 {
886 	struct cab *cab;
887 	struct cfheader *hd;
888 	struct cffolder *prev_folder;
889 	struct cffile *file;
890 	struct archive_string_conv *sconv;
891 	int err = ARCHIVE_OK, r;
892 
893 	cab = (struct cab *)(a->format->data);
894 	if (cab->found_header == 0) {
895 		err = cab_read_header(a);
896 		if (err < ARCHIVE_WARN)
897 			return (err);
898 		/* We've found the header. */
899 		cab->found_header = 1;
900 	}
901 	hd = &cab->cfheader;
902 
903 	if (hd->file_index >= hd->file_count) {
904 		cab->end_of_archive = 1;
905 		return (ARCHIVE_EOF);
906 	}
907 	file = &hd->file_array[hd->file_index++];
908 
909 	cab->end_of_entry = 0;
910 	cab->end_of_entry_cleanup = 0;
911 	cab->entry_compressed_bytes_read = 0;
912 	cab->entry_uncompressed_bytes_read = 0;
913 	cab->entry_unconsumed = 0;
914 	cab->entry_cffile = file;
915 
916 	/*
917 	 * Choose a proper folder.
918 	 */
919 	prev_folder = cab->entry_cffolder;
920 	switch (file->folder) {
921 	case iFoldCONTINUED_FROM_PREV:
922 	case iFoldCONTINUED_PREV_AND_NEXT:
923 		cab->entry_cffolder = &hd->folder_array[0];
924 		break;
925 	case iFoldCONTINUED_TO_NEXT:
926 		cab->entry_cffolder = &hd->folder_array[hd->folder_count-1];
927 		break;
928 	default:
929 		cab->entry_cffolder = &hd->folder_array[file->folder];
930 		break;
931 	}
932 	/* If a cffolder of this file is changed, reset a cfdata to read
933 	 * file contents from next cfdata. */
934 	if (prev_folder != cab->entry_cffolder)
935 		cab->entry_cfdata = NULL;
936 
937 	/* If a pathname is UTF-8, prepare a string conversion object
938 	 * for UTF-8 and use it. */
939 	if (file->attr & ATTR_NAME_IS_UTF) {
940 		if (cab->sconv_utf8 == NULL) {
941 			cab->sconv_utf8 =
942 			    archive_string_conversion_from_charset(
943 				&(a->archive), "UTF-8", 1);
944 			if (cab->sconv_utf8 == NULL)
945 				return (ARCHIVE_FATAL);
946 		}
947 		sconv = cab->sconv_utf8;
948 	} else if (cab->sconv != NULL) {
949 		/* Choose the conversion specified by the option. */
950 		sconv = cab->sconv;
951 	} else {
952 		/* Choose the default conversion. */
953 		if (!cab->init_default_conversion) {
954 			cab->sconv_default =
955 			    archive_string_default_conversion_for_read(
956 			      &(a->archive));
957 			cab->init_default_conversion = 1;
958 		}
959 		sconv = cab->sconv_default;
960 	}
961 
962 	/*
963 	 * Set a default value and common data
964 	 */
965 	r = cab_convert_path_separator_1(&(file->pathname), file->attr);
966 	if (archive_entry_copy_pathname_l(entry, file->pathname.s,
967 	    archive_strlen(&(file->pathname)), sconv) != 0) {
968 		if (errno == ENOMEM) {
969 			archive_set_error(&a->archive, ENOMEM,
970 			    "Can't allocate memory for Pathname");
971 			return (ARCHIVE_FATAL);
972 		}
973 		archive_set_error(&a->archive,
974 		    ARCHIVE_ERRNO_FILE_FORMAT,
975 		    "Pathname cannot be converted "
976 		    "from %s to current locale.",
977 		    archive_string_conversion_charset_name(sconv));
978 		err = ARCHIVE_WARN;
979 	}
980 	if (r < 0) {
981 		/* Convert a path separator '\' -> '/' */
982 		cab_convert_path_separator_2(cab, entry);
983 	}
984 
985 	archive_entry_set_size(entry, file->uncompressed_size);
986 	if (file->attr & ATTR_RDONLY)
987 		archive_entry_set_mode(entry, AE_IFREG | 0555);
988 	else
989 		archive_entry_set_mode(entry, AE_IFREG | 0666);
990 	archive_entry_set_mtime(entry, file->mtime, 0);
991 
992 	cab->entry_bytes_remaining = file->uncompressed_size;
993 	cab->entry_offset = 0;
994 	/* We don't need compress data. */
995 	if (file->uncompressed_size == 0)
996 		cab->end_of_entry_cleanup = cab->end_of_entry = 1;
997 
998 	/* Set up a more descriptive format name. */
999 	snprintf(cab->format_name, sizeof(cab->format_name), "CAB %d.%d (%s)",
1000 	    hd->major, hd->minor, cab->entry_cffolder->compname);
1001 	a->archive.archive_format_name = cab->format_name;
1002 
1003 	return (err);
1004 }
1005 
1006 static int
1007 archive_read_format_cab_read_data(struct archive_read *a,
1008     const void **buff, size_t *size, int64_t *offset)
1009 {
1010 	struct cab *cab = (struct cab *)(a->format->data);
1011 	int r;
1012 
1013 	switch (cab->entry_cffile->folder) {
1014 	case iFoldCONTINUED_FROM_PREV:
1015 	case iFoldCONTINUED_TO_NEXT:
1016 	case iFoldCONTINUED_PREV_AND_NEXT:
1017 		*buff = NULL;
1018 		*size = 0;
1019 		*offset = 0;
1020 		archive_clear_error(&a->archive);
1021 		archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
1022 		    "Cannot restore this file split in multivolume.");
1023 		return (ARCHIVE_FAILED);
1024 	default:
1025 		break;
1026 	}
1027 	if (cab->read_data_invoked == 0) {
1028 		if (cab->bytes_skipped) {
1029 			if (cab->entry_cfdata == NULL) {
1030 				r = cab_next_cfdata(a);
1031 				if (r < 0)
1032 					return (r);
1033 			}
1034 			if (cab_consume_cfdata(a, cab->bytes_skipped) < 0)
1035 				return (ARCHIVE_FATAL);
1036 			cab->bytes_skipped = 0;
1037 		}
1038 		cab->read_data_invoked = 1;
1039 	}
1040 	if (cab->entry_unconsumed) {
1041 		/* Consume as much as the compressor actually used. */
1042 		r = (int)cab_consume_cfdata(a, cab->entry_unconsumed);
1043 		cab->entry_unconsumed = 0;
1044 		if (r < 0)
1045 			return (r);
1046 	}
1047 	if (cab->end_of_archive || cab->end_of_entry) {
1048 		if (!cab->end_of_entry_cleanup) {
1049 			/* End-of-entry cleanup done. */
1050 			cab->end_of_entry_cleanup = 1;
1051 		}
1052 		*offset = cab->entry_offset;
1053 		*size = 0;
1054 		*buff = NULL;
1055 		return (ARCHIVE_EOF);
1056 	}
1057 
1058 	return (cab_read_data(a, buff, size, offset));
1059 }
1060 
1061 static uint32_t
1062 cab_checksum_cfdata_4(const void *p, size_t bytes, uint32_t seed)
1063 {
1064 	const unsigned char *b;
1065 	unsigned u32num;
1066 	uint32_t sum;
1067 
1068 	u32num = (unsigned)bytes / 4;
1069 	sum = seed;
1070 	b = p;
1071 	for (;u32num > 0; --u32num) {
1072 		sum ^= archive_le32dec(b);
1073 		b += 4;
1074 	}
1075 	return (sum);
1076 }
1077 
1078 static uint32_t
1079 cab_checksum_cfdata(const void *p, size_t bytes, uint32_t seed)
1080 {
1081 	const unsigned char *b;
1082 	uint32_t sum;
1083 	uint32_t t;
1084 
1085 	sum = cab_checksum_cfdata_4(p, bytes, seed);
1086 	b = p;
1087 	b += bytes & ~3;
1088 	t = 0;
1089 	switch (bytes & 3) {
1090 	case 3:
1091 		t |= ((uint32_t)(*b++)) << 16;
1092 		/* FALL THROUGH */
1093 	case 2:
1094 		t |= ((uint32_t)(*b++)) << 8;
1095 		/* FALL THROUGH */
1096 	case 1:
1097 		t |= *b;
1098 		/* FALL THROUGH */
1099 	default:
1100 		break;
1101 	}
1102 	sum ^= t;
1103 
1104 	return (sum);
1105 }
1106 
1107 static void
1108 cab_checksum_update(struct archive_read *a, size_t bytes)
1109 {
1110 	struct cab *cab = (struct cab *)(a->format->data);
1111 	struct cfdata *cfdata = cab->entry_cfdata;
1112 	const unsigned char *p;
1113 	size_t sumbytes;
1114 
1115 	if (cfdata->sum == 0 || cfdata->sum_ptr == NULL)
1116 		return;
1117 	/*
1118 	 * Calculate the sum of this CFDATA.
1119 	 * Make sure CFDATA must be calculated in four bytes.
1120 	 */
1121 	p = cfdata->sum_ptr;
1122 	sumbytes = bytes;
1123 	if (cfdata->sum_extra_avail) {
1124 		while (cfdata->sum_extra_avail < 4 && sumbytes > 0) {
1125 			cfdata->sum_extra[
1126 			    cfdata->sum_extra_avail++] = *p++;
1127 			sumbytes--;
1128 		}
1129 		if (cfdata->sum_extra_avail == 4) {
1130 			cfdata->sum_calculated = cab_checksum_cfdata_4(
1131 			    cfdata->sum_extra, 4, cfdata->sum_calculated);
1132 			cfdata->sum_extra_avail = 0;
1133 		}
1134 	}
1135 	if (sumbytes) {
1136 		int odd = sumbytes & 3;
1137 		if ((int)(sumbytes - odd) > 0)
1138 			cfdata->sum_calculated = cab_checksum_cfdata_4(
1139 			    p, sumbytes - odd, cfdata->sum_calculated);
1140 		if (odd)
1141 			memcpy(cfdata->sum_extra, p + sumbytes - odd, odd);
1142 		cfdata->sum_extra_avail = odd;
1143 	}
1144 	cfdata->sum_ptr = NULL;
1145 }
1146 
1147 static int
1148 cab_checksum_finish(struct archive_read *a)
1149 {
1150 	struct cab *cab = (struct cab *)(a->format->data);
1151 	struct cfdata *cfdata = cab->entry_cfdata;
1152 	int l;
1153 
1154 	/* Do not need to compute a sum. */
1155 	if (cfdata->sum == 0)
1156 		return (ARCHIVE_OK);
1157 
1158 	/*
1159 	 * Calculate the sum of remaining CFDATA.
1160 	 */
1161 	if (cfdata->sum_extra_avail) {
1162 		cfdata->sum_calculated =
1163 		    cab_checksum_cfdata(cfdata->sum_extra,
1164 		       cfdata->sum_extra_avail, cfdata->sum_calculated);
1165 		cfdata->sum_extra_avail = 0;
1166 	}
1167 
1168 	l = 4;
1169 	if (cab->cfheader.flags & RESERVE_PRESENT)
1170 		l += cab->cfheader.cfdata;
1171 	cfdata->sum_calculated = cab_checksum_cfdata(
1172 	    cfdata->memimage + CFDATA_cbData, l, cfdata->sum_calculated);
1173 	if (cfdata->sum_calculated != cfdata->sum) {
1174 #ifndef DONT_FAIL_ON_CRC_ERROR
1175 		archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
1176 		    "Checksum error CFDATA[%d] %" PRIx32 ":%" PRIx32 " in %d bytes",
1177 		    cab->entry_cffolder->cfdata_index -1,
1178 		    cfdata->sum, cfdata->sum_calculated,
1179 		    cfdata->compressed_size);
1180 		return (ARCHIVE_FAILED);
1181 #endif
1182 	}
1183 	return (ARCHIVE_OK);
1184 }
1185 
1186 /*
1187  * Read CFDATA if needed.
1188  */
1189 static int
1190 cab_next_cfdata(struct archive_read *a)
1191 {
1192 	struct cab *cab = (struct cab *)(a->format->data);
1193 	struct cfdata *cfdata = cab->entry_cfdata;
1194 
1195 	/* There are remaining bytes in current CFDATA, use it first. */
1196 	if (cfdata != NULL && cfdata->uncompressed_bytes_remaining > 0)
1197 		return (ARCHIVE_OK);
1198 
1199 	if (cfdata == NULL) {
1200 		int64_t skip;
1201 
1202 		cab->entry_cffolder->cfdata_index = 0;
1203 
1204 		/* Seek read pointer to the offset of CFDATA if needed. */
1205 		skip = cab->entry_cffolder->cfdata_offset_in_cab
1206 			- cab->cab_offset;
1207 		if (skip < 0) {
1208 			int folder_index;
1209 			switch (cab->entry_cffile->folder) {
1210 			case iFoldCONTINUED_FROM_PREV:
1211 			case iFoldCONTINUED_PREV_AND_NEXT:
1212 				folder_index = 0;
1213 				break;
1214 			case iFoldCONTINUED_TO_NEXT:
1215 				folder_index = cab->cfheader.folder_count-1;
1216 				break;
1217 			default:
1218 				folder_index = cab->entry_cffile->folder;
1219 				break;
1220 			}
1221 			archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
1222 			    "Invalid offset of CFDATA in folder(%d) %jd < %jd",
1223 			    folder_index,
1224 			    (intmax_t)cab->entry_cffolder->cfdata_offset_in_cab,
1225 			    (intmax_t)cab->cab_offset);
1226 			return (ARCHIVE_FATAL);
1227 		}
1228 		if (skip > 0) {
1229 			if (__archive_read_consume(a, skip) < 0)
1230 				return (ARCHIVE_FATAL);
1231 			cab->cab_offset =
1232 			    cab->entry_cffolder->cfdata_offset_in_cab;
1233 		}
1234 	}
1235 
1236 	/*
1237 	 * Read a CFDATA.
1238 	 */
1239 	if (cab->entry_cffolder->cfdata_index <
1240 	    cab->entry_cffolder->cfdata_count) {
1241 		const unsigned char *p;
1242 		int l;
1243 
1244 		cfdata = &(cab->entry_cffolder->cfdata);
1245 		cab->entry_cffolder->cfdata_index++;
1246 		cab->entry_cfdata = cfdata;
1247 		cfdata->sum_calculated = 0;
1248 		cfdata->sum_extra_avail = 0;
1249 		cfdata->sum_ptr = NULL;
1250 		l = 8;
1251 		if (cab->cfheader.flags & RESERVE_PRESENT)
1252 			l += cab->cfheader.cfdata;
1253 		if ((p = __archive_read_ahead(a, l, NULL)) == NULL)
1254 			return (truncated_error(a));
1255 		cfdata->sum = archive_le32dec(p + CFDATA_csum);
1256 		cfdata->compressed_size = archive_le16dec(p + CFDATA_cbData);
1257 		cfdata->compressed_bytes_remaining = cfdata->compressed_size;
1258 		cfdata->uncompressed_size =
1259 		    archive_le16dec(p + CFDATA_cbUncomp);
1260 		cfdata->uncompressed_bytes_remaining =
1261 		    cfdata->uncompressed_size;
1262 		cfdata->uncompressed_avail = 0;
1263 		cfdata->read_offset = 0;
1264 		cfdata->unconsumed = 0;
1265 
1266 		/*
1267 		 * Sanity check if data size is acceptable.
1268 		 */
1269 		if (cfdata->compressed_size == 0 ||
1270 		    cfdata->compressed_size > (0x8000+6144))
1271 			goto invalid;
1272 		if (cfdata->uncompressed_size > 0x8000)
1273 			goto invalid;
1274 		if (cfdata->uncompressed_size == 0) {
1275 			switch (cab->entry_cffile->folder) {
1276 			case iFoldCONTINUED_PREV_AND_NEXT:
1277 			case iFoldCONTINUED_TO_NEXT:
1278 				break;
1279 			case iFoldCONTINUED_FROM_PREV:
1280 			default:
1281 				goto invalid;
1282 			}
1283 		}
1284 		/* If CFDATA is not last in a folder, an uncompressed
1285 		 * size must be 0x8000(32KBi) */
1286 		if ((cab->entry_cffolder->cfdata_index <
1287 		     cab->entry_cffolder->cfdata_count) &&
1288 		       cfdata->uncompressed_size != 0x8000)
1289 			goto invalid;
1290 
1291 		/* A compressed data size and an uncompressed data size must
1292 		 * be the same in no compression mode. */
1293 		if (cab->entry_cffolder->comptype == COMPTYPE_NONE &&
1294 		    cfdata->compressed_size != cfdata->uncompressed_size)
1295 			goto invalid;
1296 
1297 		/*
1298 		 * Save CFDATA image for sum check.
1299 		 */
1300 		if (cfdata->memimage_size < (size_t)l) {
1301 			free(cfdata->memimage);
1302 			cfdata->memimage = malloc(l);
1303 			if (cfdata->memimage == NULL) {
1304 				archive_set_error(&a->archive, ENOMEM,
1305 				    "Can't allocate memory for CAB data");
1306 				return (ARCHIVE_FATAL);
1307 			}
1308 			cfdata->memimage_size = l;
1309 		}
1310 		memcpy(cfdata->memimage, p, l);
1311 
1312 		/* Consume bytes as much as we used. */
1313 		__archive_read_consume(a, l);
1314 		cab->cab_offset += l;
1315 	} else if (cab->entry_cffolder->cfdata_count > 0) {
1316 		/* Run out of all CFDATA in a folder. */
1317 		cfdata->compressed_size = 0;
1318 		cfdata->uncompressed_size = 0;
1319 		cfdata->compressed_bytes_remaining = 0;
1320 		cfdata->uncompressed_bytes_remaining = 0;
1321 	} else {
1322 		/* Current folder does not have any CFDATA. */
1323 		cfdata = &(cab->entry_cffolder->cfdata);
1324 		cab->entry_cfdata = cfdata;
1325 		memset(cfdata, 0, sizeof(*cfdata));
1326 	}
1327 	return (ARCHIVE_OK);
1328 invalid:
1329 	archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
1330 	    "Invalid CFDATA");
1331 	return (ARCHIVE_FATAL);
1332 }
1333 
1334 /*
1335  * Read ahead CFDATA.
1336  */
1337 static const void *
1338 cab_read_ahead_cfdata(struct archive_read *a, ssize_t *avail)
1339 {
1340 	struct cab *cab = (struct cab *)(a->format->data);
1341 	int err;
1342 
1343 	err = cab_next_cfdata(a);
1344 	if (err < ARCHIVE_OK) {
1345 		*avail = err;
1346 		return (NULL);
1347 	}
1348 
1349 	switch (cab->entry_cffolder->comptype) {
1350 	case COMPTYPE_NONE:
1351 		return (cab_read_ahead_cfdata_none(a, avail));
1352 	case COMPTYPE_MSZIP:
1353 		return (cab_read_ahead_cfdata_deflate(a, avail));
1354 	case COMPTYPE_LZX:
1355 		return (cab_read_ahead_cfdata_lzx(a, avail));
1356 	default: /* Unsupported compression. */
1357 		archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
1358 		    "Unsupported CAB compression : %s",
1359 		    cab->entry_cffolder->compname);
1360 		*avail = ARCHIVE_FAILED;
1361 		return (NULL);
1362 	}
1363 }
1364 
1365 /*
1366  * Read ahead CFDATA as uncompressed data.
1367  */
1368 static const void *
1369 cab_read_ahead_cfdata_none(struct archive_read *a, ssize_t *avail)
1370 {
1371 	struct cab *cab = (struct cab *)(a->format->data);
1372 	struct cfdata *cfdata;
1373 	const void *d;
1374 
1375 	cfdata = cab->entry_cfdata;
1376 
1377 	/*
1378 	 * Note: '1' here is a performance optimization.
1379 	 * Recall that the decompression layer returns a count of
1380 	 * available bytes; asking for more than that forces the
1381 	 * decompressor to combine reads by copying data.
1382 	 */
1383 	d = __archive_read_ahead(a, 1, avail);
1384 	if (*avail <= 0) {
1385 		*avail = truncated_error(a);
1386 		return (NULL);
1387 	}
1388 	if (*avail > cfdata->uncompressed_bytes_remaining)
1389 		*avail = cfdata->uncompressed_bytes_remaining;
1390 	cfdata->uncompressed_avail = cfdata->uncompressed_size;
1391 	cfdata->unconsumed = *avail;
1392 	cfdata->sum_ptr = d;
1393 	return (d);
1394 }
1395 
1396 /*
1397  * Read ahead CFDATA as deflate data.
1398  */
1399 #ifdef HAVE_ZLIB_H
1400 static const void *
1401 cab_read_ahead_cfdata_deflate(struct archive_read *a, ssize_t *avail)
1402 {
1403 	struct cab *cab = (struct cab *)(a->format->data);
1404 	struct cfdata *cfdata;
1405 	const void *d;
1406 	int r, mszip;
1407 	uint16_t uavail;
1408 	char eod = 0;
1409 
1410 	cfdata = cab->entry_cfdata;
1411 	/* If the buffer hasn't been allocated, allocate it now. */
1412 	if (cab->uncompressed_buffer == NULL) {
1413 		cab->uncompressed_buffer_size = 0x8000;
1414 		cab->uncompressed_buffer
1415 		    = (unsigned char *)malloc(cab->uncompressed_buffer_size);
1416 		if (cab->uncompressed_buffer == NULL) {
1417 			archive_set_error(&a->archive, ENOMEM,
1418 			    "No memory for CAB reader");
1419 			*avail = ARCHIVE_FATAL;
1420 			return (NULL);
1421 		}
1422 	}
1423 
1424 	uavail = cfdata->uncompressed_avail;
1425 	if (uavail == cfdata->uncompressed_size) {
1426 		d = cab->uncompressed_buffer + cfdata->read_offset;
1427 		*avail = uavail - cfdata->read_offset;
1428 		return (d);
1429 	}
1430 
1431 	if (!cab->entry_cffolder->decompress_init) {
1432 		cab->stream.next_in = NULL;
1433 		cab->stream.avail_in = 0;
1434 		cab->stream.total_in = 0;
1435 		cab->stream.next_out = NULL;
1436 		cab->stream.avail_out = 0;
1437 		cab->stream.total_out = 0;
1438 		if (cab->stream_valid)
1439 			r = inflateReset(&cab->stream);
1440 		else
1441 			r = inflateInit2(&cab->stream,
1442 			    -15 /* Don't check for zlib header */);
1443 		if (r != Z_OK) {
1444 			archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
1445 			    "Can't initialize deflate decompression.");
1446 			*avail = ARCHIVE_FATAL;
1447 			return (NULL);
1448 		}
1449 		/* Stream structure has been set up. */
1450 		cab->stream_valid = 1;
1451 		/* We've initialized decompression for this stream. */
1452 		cab->entry_cffolder->decompress_init = 1;
1453 	}
1454 
1455 	if (cfdata->compressed_bytes_remaining == cfdata->compressed_size)
1456 		mszip = 2;
1457 	else
1458 		mszip = 0;
1459 	eod = 0;
1460 	cab->stream.total_out = uavail;
1461 	/*
1462 	 * We always uncompress all data in current CFDATA.
1463 	 */
1464 	while (!eod && cab->stream.total_out < cfdata->uncompressed_size) {
1465 		ssize_t bytes_avail;
1466 
1467 		cab->stream.next_out =
1468 		    cab->uncompressed_buffer + cab->stream.total_out;
1469 		cab->stream.avail_out =
1470 		    cfdata->uncompressed_size - cab->stream.total_out;
1471 
1472 		d = __archive_read_ahead(a, 1, &bytes_avail);
1473 		if (bytes_avail <= 0) {
1474 			*avail = truncated_error(a);
1475 			return (NULL);
1476 		}
1477 		if (bytes_avail > cfdata->compressed_bytes_remaining)
1478 			bytes_avail = cfdata->compressed_bytes_remaining;
1479 		/*
1480 		 * A bug in zlib.h: stream.next_in should be marked 'const'
1481 		 * but isn't (the library never alters data through the
1482 		 * next_in pointer, only reads it).  The result: this ugly
1483 		 * cast to remove 'const'.
1484 		 */
1485 		cab->stream.next_in = (Bytef *)(uintptr_t)d;
1486 		cab->stream.avail_in = (uInt)bytes_avail;
1487 		cab->stream.total_in = 0;
1488 
1489 		/* Cut out a tow-byte MSZIP signature(0x43, 0x4b). */
1490 		if (mszip > 0) {
1491 			if (bytes_avail <= 0)
1492 				goto nomszip;
1493 			if (bytes_avail <= mszip) {
1494 				if (mszip == 2) {
1495 					if (cab->stream.next_in[0] != 0x43)
1496 						goto nomszip;
1497 					if (bytes_avail > 1 &&
1498 					    cab->stream.next_in[1] != 0x4b)
1499 						goto nomszip;
1500 				} else if (cab->stream.next_in[0] != 0x4b)
1501 					goto nomszip;
1502 				cfdata->unconsumed = bytes_avail;
1503 				cfdata->sum_ptr = d;
1504 				if (cab_minimum_consume_cfdata(
1505 				    a, cfdata->unconsumed) < 0) {
1506 					*avail = ARCHIVE_FATAL;
1507 					return (NULL);
1508 				}
1509 				mszip -= (int)bytes_avail;
1510 				continue;
1511 			}
1512 			if (mszip == 1 && cab->stream.next_in[0] != 0x4b)
1513 				goto nomszip;
1514 			else if (mszip == 2 && (cab->stream.next_in[0] != 0x43 ||
1515 			    cab->stream.next_in[1] != 0x4b))
1516 				goto nomszip;
1517 			cab->stream.next_in += mszip;
1518 			cab->stream.avail_in -= mszip;
1519 			cab->stream.total_in += mszip;
1520 			mszip = 0;
1521 		}
1522 
1523 		r = inflate(&cab->stream, 0);
1524 		switch (r) {
1525 		case Z_OK:
1526 			break;
1527 		case Z_STREAM_END:
1528 			eod = 1;
1529 			break;
1530 		default:
1531 			goto zlibfailed;
1532 		}
1533 		cfdata->unconsumed = cab->stream.total_in;
1534 		cfdata->sum_ptr = d;
1535 		if (cab_minimum_consume_cfdata(a, cfdata->unconsumed) < 0) {
1536 			*avail = ARCHIVE_FATAL;
1537 			return (NULL);
1538 		}
1539 	}
1540 	uavail = (uint16_t)cab->stream.total_out;
1541 
1542 	if (uavail < cfdata->uncompressed_size) {
1543 		archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
1544 		    "Invalid uncompressed size (%d < %d)",
1545 		    uavail, cfdata->uncompressed_size);
1546 		*avail = ARCHIVE_FATAL;
1547 		return (NULL);
1548 	}
1549 
1550 	/*
1551 	 * Note: I suspect there is a bug in makecab.exe because, in rare
1552 	 * case, compressed bytes are still remaining regardless we have
1553 	 * gotten all uncompressed bytes, which size is recorded in CFDATA,
1554 	 * as much as we need, and we have to use the garbage so as to
1555 	 * correctly compute the sum of CFDATA accordingly.
1556 	 */
1557 	if (cfdata->compressed_bytes_remaining > 0) {
1558 		ssize_t bytes_avail;
1559 
1560 		d = __archive_read_ahead(a, cfdata->compressed_bytes_remaining,
1561 		    &bytes_avail);
1562 		if (bytes_avail <= 0) {
1563 			*avail = truncated_error(a);
1564 			return (NULL);
1565 		}
1566 		cfdata->unconsumed = cfdata->compressed_bytes_remaining;
1567 		cfdata->sum_ptr = d;
1568 		if (cab_minimum_consume_cfdata(a, cfdata->unconsumed) < 0) {
1569 			*avail = ARCHIVE_FATAL;
1570 			return (NULL);
1571 		}
1572 	}
1573 
1574 	/*
1575 	 * Set dictionary data for decompressing of next CFDATA, which
1576 	 * in the same folder. This is why we always do decompress CFDATA
1577 	 * even if beginning CFDATA or some of CFDATA are not used in
1578 	 * skipping file data.
1579 	 */
1580 	if (cab->entry_cffolder->cfdata_index <
1581 	    cab->entry_cffolder->cfdata_count) {
1582 		r = inflateReset(&cab->stream);
1583 		if (r != Z_OK)
1584 			goto zlibfailed;
1585 		r = inflateSetDictionary(&cab->stream,
1586 		    cab->uncompressed_buffer, cfdata->uncompressed_size);
1587 		if (r != Z_OK)
1588 			goto zlibfailed;
1589 	}
1590 
1591 	d = cab->uncompressed_buffer + cfdata->read_offset;
1592 	*avail = uavail - cfdata->read_offset;
1593 	cfdata->uncompressed_avail = uavail;
1594 
1595 	return (d);
1596 
1597 zlibfailed:
1598 	switch (r) {
1599 	case Z_MEM_ERROR:
1600 		archive_set_error(&a->archive, ENOMEM,
1601 		    "Out of memory for deflate decompression");
1602 		break;
1603 	default:
1604 		archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
1605 		    "Deflate decompression failed (%d)", r);
1606 		break;
1607 	}
1608 	*avail = ARCHIVE_FATAL;
1609 	return (NULL);
1610 nomszip:
1611 	archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
1612 	    "CFDATA incorrect(no MSZIP signature)");
1613 	*avail = ARCHIVE_FATAL;
1614 	return (NULL);
1615 }
1616 
1617 #else /* HAVE_ZLIB_H */
1618 
1619 static const void *
1620 cab_read_ahead_cfdata_deflate(struct archive_read *a, ssize_t *avail)
1621 {
1622 	*avail = ARCHIVE_FATAL;
1623 	archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
1624 	    "libarchive compiled without deflate support (no libz)");
1625 	return (NULL);
1626 }
1627 
1628 #endif /* HAVE_ZLIB_H */
1629 
1630 static const void *
1631 cab_read_ahead_cfdata_lzx(struct archive_read *a, ssize_t *avail)
1632 {
1633 	struct cab *cab = (struct cab *)(a->format->data);
1634 	struct cfdata *cfdata;
1635 	const void *d;
1636 	int r;
1637 	uint16_t uavail;
1638 
1639 	cfdata = cab->entry_cfdata;
1640 	/* If the buffer hasn't been allocated, allocate it now. */
1641 	if (cab->uncompressed_buffer == NULL) {
1642 		cab->uncompressed_buffer_size = 0x8000;
1643 		cab->uncompressed_buffer
1644 		    = (unsigned char *)malloc(cab->uncompressed_buffer_size);
1645 		if (cab->uncompressed_buffer == NULL) {
1646 			archive_set_error(&a->archive, ENOMEM,
1647 			    "No memory for CAB reader");
1648 			*avail = ARCHIVE_FATAL;
1649 			return (NULL);
1650 		}
1651 	}
1652 
1653 	uavail = cfdata->uncompressed_avail;
1654 	if (uavail == cfdata->uncompressed_size) {
1655 		d = cab->uncompressed_buffer + cfdata->read_offset;
1656 		*avail = uavail - cfdata->read_offset;
1657 		return (d);
1658 	}
1659 
1660 	if (!cab->entry_cffolder->decompress_init) {
1661 		r = lzx_decode_init(&cab->xstrm,
1662 		    cab->entry_cffolder->compdata);
1663 		if (r != ARCHIVE_OK) {
1664 			archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
1665 			    "Can't initialize LZX decompression.");
1666 			*avail = ARCHIVE_FATAL;
1667 			return (NULL);
1668 		}
1669 		/* We've initialized decompression for this stream. */
1670 		cab->entry_cffolder->decompress_init = 1;
1671 	}
1672 
1673 	/* Clean up remaining bits of previous CFDATA. */
1674 	lzx_cleanup_bitstream(&cab->xstrm);
1675 	cab->xstrm.total_out = uavail;
1676 	while (cab->xstrm.total_out < cfdata->uncompressed_size) {
1677 		ssize_t bytes_avail;
1678 
1679 		cab->xstrm.next_out =
1680 		    cab->uncompressed_buffer + cab->xstrm.total_out;
1681 		cab->xstrm.avail_out =
1682 		    cfdata->uncompressed_size - cab->xstrm.total_out;
1683 
1684 		d = __archive_read_ahead(a, 1, &bytes_avail);
1685 		if (bytes_avail <= 0) {
1686 			archive_set_error(&a->archive,
1687 			    ARCHIVE_ERRNO_FILE_FORMAT,
1688 			    "Truncated CAB file data");
1689 			*avail = ARCHIVE_FATAL;
1690 			return (NULL);
1691 		}
1692 		if (bytes_avail > cfdata->compressed_bytes_remaining)
1693 			bytes_avail = cfdata->compressed_bytes_remaining;
1694 
1695 		cab->xstrm.next_in = d;
1696 		cab->xstrm.avail_in = bytes_avail;
1697 		cab->xstrm.total_in = 0;
1698 		r = lzx_decode(&cab->xstrm,
1699 		    cfdata->compressed_bytes_remaining == bytes_avail);
1700 		switch (r) {
1701 		case ARCHIVE_OK:
1702 		case ARCHIVE_EOF:
1703 			break;
1704 		default:
1705 			archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
1706 			    "LZX decompression failed (%d)", r);
1707 			*avail = ARCHIVE_FATAL;
1708 			return (NULL);
1709 		}
1710 		cfdata->unconsumed = cab->xstrm.total_in;
1711 		cfdata->sum_ptr = d;
1712 		if (cab_minimum_consume_cfdata(a, cfdata->unconsumed) < 0) {
1713 			*avail = ARCHIVE_FATAL;
1714 			return (NULL);
1715 		}
1716 	}
1717 
1718 	uavail = (uint16_t)cab->xstrm.total_out;
1719 	/*
1720 	 * Make sure a read pointer advances to next CFDATA.
1721 	 */
1722 	if (cfdata->compressed_bytes_remaining > 0) {
1723 		ssize_t bytes_avail;
1724 
1725 		d = __archive_read_ahead(a, cfdata->compressed_bytes_remaining,
1726 		    &bytes_avail);
1727 		if (bytes_avail <= 0) {
1728 			*avail = truncated_error(a);
1729 			return (NULL);
1730 		}
1731 		cfdata->unconsumed = cfdata->compressed_bytes_remaining;
1732 		cfdata->sum_ptr = d;
1733 		if (cab_minimum_consume_cfdata(a, cfdata->unconsumed) < 0) {
1734 			*avail = ARCHIVE_FATAL;
1735 			return (NULL);
1736 		}
1737 	}
1738 
1739 	/*
1740 	 * Translation reversal of x86 processor CALL byte sequence(E8).
1741 	 */
1742 	lzx_translation(&cab->xstrm, cab->uncompressed_buffer,
1743 	    cfdata->uncompressed_size,
1744 	    (cab->entry_cffolder->cfdata_index-1) * 0x8000);
1745 
1746 	d = cab->uncompressed_buffer + cfdata->read_offset;
1747 	*avail = uavail - cfdata->read_offset;
1748 	cfdata->uncompressed_avail = uavail;
1749 
1750 	return (d);
1751 }
1752 
1753 /*
1754  * Consume CFDATA.
1755  * We always decompress CFDATA to consume CFDATA as much as we need
1756  * in uncompressed bytes because all CFDATA in a folder are related
1757  * so we do not skip any CFDATA without decompressing.
1758  * Note: If the folder of a CFFILE is iFoldCONTINUED_PREV_AND_NEXT or
1759  * iFoldCONTINUED_FROM_PREV, we won't decompress because a CFDATA for
1760  * the CFFILE is remaining bytes of previous Multivolume CAB file.
1761  */
1762 static int64_t
1763 cab_consume_cfdata(struct archive_read *a, int64_t consumed_bytes)
1764 {
1765 	struct cab *cab = (struct cab *)(a->format->data);
1766 	struct cfdata *cfdata;
1767 	int64_t cbytes, rbytes;
1768 	int err;
1769 
1770 	rbytes = cab_minimum_consume_cfdata(a, consumed_bytes);
1771 	if (rbytes < 0)
1772 		return (ARCHIVE_FATAL);
1773 
1774 	cfdata = cab->entry_cfdata;
1775 	while (rbytes > 0) {
1776 		ssize_t avail;
1777 
1778 		if (cfdata->compressed_size == 0) {
1779 			archive_set_error(&a->archive,
1780 			    ARCHIVE_ERRNO_FILE_FORMAT,
1781 			    "Invalid CFDATA");
1782 			return (ARCHIVE_FATAL);
1783 		}
1784 		cbytes = cfdata->uncompressed_bytes_remaining;
1785 		if (cbytes > rbytes)
1786 			cbytes = rbytes;
1787 		rbytes -= cbytes;
1788 
1789 		if (cfdata->uncompressed_avail == 0 &&
1790 		   (cab->entry_cffile->folder == iFoldCONTINUED_PREV_AND_NEXT ||
1791 		    cab->entry_cffile->folder == iFoldCONTINUED_FROM_PREV)) {
1792 			/* We have not read any data yet. */
1793 			if (cbytes == cfdata->uncompressed_bytes_remaining) {
1794 				/* Skip whole current CFDATA. */
1795 				__archive_read_consume(a,
1796 				    cfdata->compressed_size);
1797 				cab->cab_offset += cfdata->compressed_size;
1798 				cfdata->compressed_bytes_remaining = 0;
1799 				cfdata->uncompressed_bytes_remaining = 0;
1800 				err = cab_next_cfdata(a);
1801 				if (err < 0)
1802 					return (err);
1803 				cfdata = cab->entry_cfdata;
1804 				if (cfdata->uncompressed_size == 0) {
1805 					switch (cab->entry_cffile->folder) {
1806 					case iFoldCONTINUED_PREV_AND_NEXT:
1807 					case iFoldCONTINUED_TO_NEXT:
1808 					case iFoldCONTINUED_FROM_PREV:
1809 						rbytes = 0;
1810 						break;
1811 					default:
1812 						break;
1813 					}
1814 				}
1815 				continue;
1816 			}
1817 			cfdata->read_offset += (uint16_t)cbytes;
1818 			cfdata->uncompressed_bytes_remaining -= (uint16_t)cbytes;
1819 			break;
1820 		} else if (cbytes == 0) {
1821 			err = cab_next_cfdata(a);
1822 			if (err < 0)
1823 				return (err);
1824 			cfdata = cab->entry_cfdata;
1825 			if (cfdata->uncompressed_size == 0) {
1826 				switch (cab->entry_cffile->folder) {
1827 				case iFoldCONTINUED_PREV_AND_NEXT:
1828 				case iFoldCONTINUED_TO_NEXT:
1829 				case iFoldCONTINUED_FROM_PREV:
1830 					return (ARCHIVE_FATAL);
1831 				default:
1832 					break;
1833 				}
1834 			}
1835 			continue;
1836 		}
1837 		while (cbytes > 0) {
1838 			(void)cab_read_ahead_cfdata(a, &avail);
1839 			if (avail <= 0)
1840 				return (ARCHIVE_FATAL);
1841 			if (avail > cbytes)
1842 				avail = (ssize_t)cbytes;
1843 			if (cab_minimum_consume_cfdata(a, avail) < 0)
1844 				return (ARCHIVE_FATAL);
1845 			cbytes -= avail;
1846 		}
1847 	}
1848 	return (consumed_bytes);
1849 }
1850 
1851 /*
1852  * Consume CFDATA as much as we have already gotten and
1853  * compute the sum of CFDATA.
1854  */
1855 static int64_t
1856 cab_minimum_consume_cfdata(struct archive_read *a, int64_t consumed_bytes)
1857 {
1858 	struct cab *cab = (struct cab *)(a->format->data);
1859 	struct cfdata *cfdata;
1860 	int64_t cbytes, rbytes;
1861 	int err;
1862 
1863 	cfdata = cab->entry_cfdata;
1864 	rbytes = consumed_bytes;
1865 	if (cab->entry_cffolder->comptype == COMPTYPE_NONE) {
1866 		if (consumed_bytes < cfdata->unconsumed)
1867 			cbytes = consumed_bytes;
1868 		else
1869 			cbytes = cfdata->unconsumed;
1870 		rbytes -= cbytes;
1871 		cfdata->read_offset += (uint16_t)cbytes;
1872 		cfdata->uncompressed_bytes_remaining -= (uint16_t)cbytes;
1873 		cfdata->unconsumed -= cbytes;
1874 	} else {
1875 		cbytes = cfdata->uncompressed_avail - cfdata->read_offset;
1876 		if (cbytes > 0) {
1877 			if (consumed_bytes < cbytes)
1878 				cbytes = consumed_bytes;
1879 			rbytes -= cbytes;
1880 			cfdata->read_offset += (uint16_t)cbytes;
1881 			cfdata->uncompressed_bytes_remaining -= (uint16_t)cbytes;
1882 		}
1883 
1884 		if (cfdata->unconsumed) {
1885 			cbytes = cfdata->unconsumed;
1886 			cfdata->unconsumed = 0;
1887 		} else
1888 			cbytes = 0;
1889 	}
1890 	if (cbytes) {
1891 		/* Compute the sum. */
1892 		cab_checksum_update(a, (size_t)cbytes);
1893 
1894 		/* Consume as much as the compressor actually used. */
1895 		__archive_read_consume(a, cbytes);
1896 		cab->cab_offset += cbytes;
1897 		cfdata->compressed_bytes_remaining -= (uint16_t)cbytes;
1898 		if (cfdata->compressed_bytes_remaining == 0) {
1899 			err = cab_checksum_finish(a);
1900 			if (err < 0)
1901 				return (err);
1902 		}
1903 	}
1904 	return (rbytes);
1905 }
1906 
1907 /*
1908  * Returns ARCHIVE_OK if successful, ARCHIVE_FATAL otherwise, sets
1909  * cab->end_of_entry if it consumes all of the data.
1910  */
1911 static int
1912 cab_read_data(struct archive_read *a, const void **buff,
1913     size_t *size, int64_t *offset)
1914 {
1915 	struct cab *cab = (struct cab *)(a->format->data);
1916 	ssize_t bytes_avail;
1917 
1918 	if (cab->entry_bytes_remaining == 0) {
1919 		*buff = NULL;
1920 		*size = 0;
1921 		*offset = cab->entry_offset;
1922 		cab->end_of_entry = 1;
1923 		return (ARCHIVE_OK);
1924 	}
1925 
1926 	*buff = cab_read_ahead_cfdata(a, &bytes_avail);
1927 	if (bytes_avail <= 0) {
1928 		*buff = NULL;
1929 		*size = 0;
1930 		*offset = 0;
1931 		if (bytes_avail == 0 &&
1932 		    cab->entry_cfdata->uncompressed_size == 0) {
1933 			/* All of CFDATA in a folder has been handled. */
1934 			archive_set_error(&a->archive,
1935 			    ARCHIVE_ERRNO_FILE_FORMAT, "Invalid CFDATA");
1936 			return (ARCHIVE_FATAL);
1937 		} else
1938 			return ((int)bytes_avail);
1939 	}
1940 	if (bytes_avail > cab->entry_bytes_remaining)
1941 		bytes_avail = (ssize_t)cab->entry_bytes_remaining;
1942 
1943 	*size = bytes_avail;
1944 	*offset = cab->entry_offset;
1945 	cab->entry_offset += bytes_avail;
1946 	cab->entry_bytes_remaining -= bytes_avail;
1947 	if (cab->entry_bytes_remaining == 0)
1948 		cab->end_of_entry = 1;
1949 	cab->entry_unconsumed = bytes_avail;
1950 	if (cab->entry_cffolder->comptype == COMPTYPE_NONE) {
1951 		/* Don't consume more than current entry used. */
1952 		if (cab->entry_cfdata->unconsumed > cab->entry_unconsumed)
1953 			cab->entry_cfdata->unconsumed = cab->entry_unconsumed;
1954 	}
1955 	return (ARCHIVE_OK);
1956 }
1957 
1958 static int
1959 archive_read_format_cab_read_data_skip(struct archive_read *a)
1960 {
1961 	struct cab *cab;
1962 	int64_t bytes_skipped;
1963 	int r;
1964 
1965 	cab = (struct cab *)(a->format->data);
1966 
1967 	if (cab->end_of_archive)
1968 		return (ARCHIVE_EOF);
1969 
1970 	if (!cab->read_data_invoked) {
1971 		cab->bytes_skipped += cab->entry_bytes_remaining;
1972 		cab->entry_bytes_remaining = 0;
1973 		/* This entry is finished and done. */
1974 		cab->end_of_entry_cleanup = cab->end_of_entry = 1;
1975 		return (ARCHIVE_OK);
1976 	}
1977 
1978 	if (cab->entry_unconsumed) {
1979 		/* Consume as much as the compressor actually used. */
1980 		r = (int)cab_consume_cfdata(a, cab->entry_unconsumed);
1981 		cab->entry_unconsumed = 0;
1982 		if (r < 0)
1983 			return (r);
1984 	} else if (cab->entry_cfdata == NULL) {
1985 		r = cab_next_cfdata(a);
1986 		if (r < 0)
1987 			return (r);
1988 	}
1989 
1990 	/* if we've already read to end of data, we're done. */
1991 	if (cab->end_of_entry_cleanup)
1992 		return (ARCHIVE_OK);
1993 
1994 	/*
1995 	 * If the length is at the beginning, we can skip the
1996 	 * compressed data much more quickly.
1997 	 */
1998 	bytes_skipped = cab_consume_cfdata(a, cab->entry_bytes_remaining);
1999 	if (bytes_skipped < 0)
2000 		return (ARCHIVE_FATAL);
2001 
2002 	/* If the compression type is none(uncompressed), we've already
2003 	 * consumed data as much as the current entry size. */
2004 	if (cab->entry_cffolder->comptype == COMPTYPE_NONE &&
2005 	    cab->entry_cfdata != NULL)
2006 		cab->entry_cfdata->unconsumed = 0;
2007 
2008 	/* This entry is finished and done. */
2009 	cab->end_of_entry_cleanup = cab->end_of_entry = 1;
2010 	return (ARCHIVE_OK);
2011 }
2012 
2013 static int
2014 archive_read_format_cab_cleanup(struct archive_read *a)
2015 {
2016 	struct cab *cab = (struct cab *)(a->format->data);
2017 	struct cfheader *hd = &cab->cfheader;
2018 	int i;
2019 
2020 	if (hd->folder_array != NULL) {
2021 		for (i = 0; i < hd->folder_count; i++)
2022 			free(hd->folder_array[i].cfdata.memimage);
2023 		free(hd->folder_array);
2024 	}
2025 	if (hd->file_array != NULL) {
2026 		for (i = 0; i < cab->cfheader.file_count; i++)
2027 			archive_string_free(&(hd->file_array[i].pathname));
2028 		free(hd->file_array);
2029 	}
2030 #ifdef HAVE_ZLIB_H
2031 	if (cab->stream_valid)
2032 		inflateEnd(&cab->stream);
2033 #endif
2034 	lzx_decode_free(&cab->xstrm);
2035 	archive_wstring_free(&cab->ws);
2036 	free(cab->uncompressed_buffer);
2037 	free(cab);
2038 	(a->format->data) = NULL;
2039 	return (ARCHIVE_OK);
2040 }
2041 
2042 /* Convert an MSDOS-style date/time into Unix-style time. */
2043 static time_t
2044 cab_dos_time(const unsigned char *p)
2045 {
2046 	int msTime, msDate;
2047 	struct tm ts;
2048 
2049 	msDate = archive_le16dec(p);
2050 	msTime = archive_le16dec(p+2);
2051 
2052 	memset(&ts, 0, sizeof(ts));
2053 	ts.tm_year = ((msDate >> 9) & 0x7f) + 80;   /* Years since 1900. */
2054 	ts.tm_mon = ((msDate >> 5) & 0x0f) - 1;     /* Month number.     */
2055 	ts.tm_mday = msDate & 0x1f;		    /* Day of month.     */
2056 	ts.tm_hour = (msTime >> 11) & 0x1f;
2057 	ts.tm_min = (msTime >> 5) & 0x3f;
2058 	ts.tm_sec = (msTime << 1) & 0x3e;
2059 	ts.tm_isdst = -1;
2060 	return (mktime(&ts));
2061 }
2062 
2063 /*****************************************************************
2064  *
2065  * LZX decompression code.
2066  *
2067  *****************************************************************/
2068 
2069 /*
2070  * Initialize LZX decoder.
2071  *
2072  * Returns ARCHIVE_OK if initialization was successful.
2073  * Returns ARCHIVE_FAILED if w_bits has unsupported value.
2074  * Returns ARCHIVE_FATAL if initialization failed; memory allocation
2075  * error occurred.
2076  */
2077 static int
2078 lzx_decode_init(struct lzx_stream *strm, int w_bits)
2079 {
2080 	struct lzx_dec *ds;
2081 	int slot, w_size, w_slot;
2082 	int base, footer;
2083 	int base_inc[18];
2084 
2085 	if (strm->ds == NULL) {
2086 		strm->ds = calloc(1, sizeof(*strm->ds));
2087 		if (strm->ds == NULL)
2088 			return (ARCHIVE_FATAL);
2089 	}
2090 	ds = strm->ds;
2091 	ds->error = ARCHIVE_FAILED;
2092 
2093 	/* Allow bits from 15(32KBi) up to 21(2MBi) */
2094 	if (w_bits < SLOT_BASE || w_bits > SLOT_MAX)
2095 		return (ARCHIVE_FAILED);
2096 
2097 	ds->error = ARCHIVE_FATAL;
2098 
2099 	/*
2100 	 * Alloc window
2101 	 */
2102 	w_size = ds->w_size;
2103 	w_slot = slots[w_bits - SLOT_BASE];
2104 	ds->w_size = 1U << w_bits;
2105 	ds->w_mask = ds->w_size -1;
2106 	if (ds->w_buff == NULL || w_size != ds->w_size) {
2107 		free(ds->w_buff);
2108 		ds->w_buff = malloc(ds->w_size);
2109 		if (ds->w_buff == NULL)
2110 			return (ARCHIVE_FATAL);
2111 		free(ds->pos_tbl);
2112 		ds->pos_tbl = malloc(sizeof(ds->pos_tbl[0]) * w_slot);
2113 		if (ds->pos_tbl == NULL)
2114 			return (ARCHIVE_FATAL);
2115 	}
2116 
2117 	for (footer = 0; footer < 18; footer++)
2118 		base_inc[footer] = 1 << footer;
2119 	base = footer = 0;
2120 	for (slot = 0; slot < w_slot; slot++) {
2121 		int n;
2122 		if (footer == 0)
2123 			base = slot;
2124 		else
2125 			base += base_inc[footer];
2126 		if (footer < 17) {
2127 			footer = -2;
2128 			for (n = base; n; n >>= 1)
2129 				footer++;
2130 			if (footer <= 0)
2131 				footer = 0;
2132 		}
2133 		ds->pos_tbl[slot].base = base;
2134 		ds->pos_tbl[slot].footer_bits = footer;
2135 	}
2136 
2137 	ds->w_pos = 0;
2138 	ds->state = 0;
2139 	ds->br.cache_buffer = 0;
2140 	ds->br.cache_avail = 0;
2141 	ds->r0 = ds->r1 = ds->r2 = 1;
2142 
2143 	/* Initialize aligned offset tree. */
2144 	if (lzx_huffman_init(&(ds->at), 8, 8) != ARCHIVE_OK)
2145 		return (ARCHIVE_FATAL);
2146 
2147 	/* Initialize pre-tree. */
2148 	if (lzx_huffman_init(&(ds->pt), 20, 10) != ARCHIVE_OK)
2149 		return (ARCHIVE_FATAL);
2150 
2151 	/* Initialize Main tree. */
2152 	if (lzx_huffman_init(&(ds->mt), 256+(w_slot<<3), 16)
2153 	    != ARCHIVE_OK)
2154 		return (ARCHIVE_FATAL);
2155 
2156 	/* Initialize Length tree. */
2157 	if (lzx_huffman_init(&(ds->lt), 249, 16) != ARCHIVE_OK)
2158 		return (ARCHIVE_FATAL);
2159 
2160 	ds->error = 0;
2161 
2162 	return (ARCHIVE_OK);
2163 }
2164 
2165 /*
2166  * Release LZX decoder.
2167  */
2168 static void
2169 lzx_decode_free(struct lzx_stream *strm)
2170 {
2171 
2172 	if (strm->ds == NULL)
2173 		return;
2174 	free(strm->ds->w_buff);
2175 	free(strm->ds->pos_tbl);
2176 	lzx_huffman_free(&(strm->ds->at));
2177 	lzx_huffman_free(&(strm->ds->pt));
2178 	lzx_huffman_free(&(strm->ds->mt));
2179 	lzx_huffman_free(&(strm->ds->lt));
2180 	free(strm->ds);
2181 	strm->ds = NULL;
2182 }
2183 
2184 /*
2185  * E8 Call Translation reversal.
2186  */
2187 static void
2188 lzx_translation(struct lzx_stream *strm, void *p, size_t size, uint32_t offset)
2189 {
2190 	struct lzx_dec *ds = strm->ds;
2191 	unsigned char *b, *end;
2192 
2193 	if (!ds->translation || size <= 10)
2194 		return;
2195 	b = p;
2196 	end = b + size - 10;
2197 	while (b < end && (b = memchr(b, 0xE8, end - b)) != NULL) {
2198 		size_t i = b - (unsigned char *)p;
2199 		int32_t cp, displacement, value;
2200 
2201 		cp = (int32_t)(offset + (uint32_t)i);
2202 		value = archive_le32dec(&b[1]);
2203 		if (value >= -cp && value < (int32_t)ds->translation_size) {
2204 			if (value >= 0)
2205 				displacement = value - cp;
2206 			else
2207 				displacement = value + ds->translation_size;
2208 			archive_le32enc(&b[1], (uint32_t)displacement);
2209 		}
2210 		b += 5;
2211 	}
2212 }
2213 
2214 /*
2215  * Bit stream reader.
2216  */
2217 /* Check that the cache buffer has enough bits. */
2218 #define lzx_br_has(br, n)	((br)->cache_avail >= n)
2219 /* Get compressed data by bit. */
2220 #define lzx_br_bits(br, n)				\
2221 	(((uint32_t)((br)->cache_buffer >>		\
2222 		((br)->cache_avail - (n)))) & cache_masks[n])
2223 #define lzx_br_bits_forced(br, n)			\
2224 	(((uint32_t)((br)->cache_buffer <<		\
2225 		((n) - (br)->cache_avail))) & cache_masks[n])
2226 /* Read ahead to make sure the cache buffer has enough compressed data we
2227  * will use.
2228  *  True  : completed, there is enough data in the cache buffer.
2229  *  False : we met that strm->next_in is empty, we have to get following
2230  *          bytes. */
2231 #define lzx_br_read_ahead_0(strm, br, n)	\
2232 	(lzx_br_has((br), (n)) || lzx_br_fillup(strm, br))
2233 /*  True  : the cache buffer has some bits as much as we need.
2234  *  False : there are no enough bits in the cache buffer to be used,
2235  *          we have to get following bytes if we could. */
2236 #define lzx_br_read_ahead(strm, br, n)	\
2237 	(lzx_br_read_ahead_0((strm), (br), (n)) || lzx_br_has((br), (n)))
2238 
2239 /* Notify how many bits we consumed. */
2240 #define lzx_br_consume(br, n)	((br)->cache_avail -= (n))
2241 #define lzx_br_consume_unaligned_bits(br) ((br)->cache_avail &= ~0x0f)
2242 
2243 #define lzx_br_is_unaligned(br)	((br)->cache_avail & 0x0f)
2244 
2245 static const uint32_t cache_masks[] = {
2246 	0x00000000, 0x00000001, 0x00000003, 0x00000007,
2247 	0x0000000F, 0x0000001F, 0x0000003F, 0x0000007F,
2248 	0x000000FF, 0x000001FF, 0x000003FF, 0x000007FF,
2249 	0x00000FFF, 0x00001FFF, 0x00003FFF, 0x00007FFF,
2250 	0x0000FFFF, 0x0001FFFF, 0x0003FFFF, 0x0007FFFF,
2251 	0x000FFFFF, 0x001FFFFF, 0x003FFFFF, 0x007FFFFF,
2252 	0x00FFFFFF, 0x01FFFFFF, 0x03FFFFFF, 0x07FFFFFF,
2253 	0x0FFFFFFF, 0x1FFFFFFF, 0x3FFFFFFF, 0x7FFFFFFF,
2254 	0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF
2255 };
2256 
2257 /*
2258  * Shift away used bits in the cache data and fill it up with following bits.
2259  * Call this when cache buffer does not have enough bits you need.
2260  *
2261  * Returns 1 if the cache buffer is full.
2262  * Returns 0 if the cache buffer is not full; input buffer is empty.
2263  */
2264 static int
2265 lzx_br_fillup(struct lzx_stream *strm, struct lzx_br *br)
2266 {
2267 /*
2268  * x86 processor family can read misaligned data without an access error.
2269  */
2270 	int n = CACHE_BITS - br->cache_avail;
2271 
2272 	for (;;) {
2273 		switch (n >> 4) {
2274 		case 4:
2275 			if (strm->avail_in >= 8) {
2276 				br->cache_buffer =
2277 				    ((uint64_t)strm->next_in[1]) << 56 |
2278 				    ((uint64_t)strm->next_in[0]) << 48 |
2279 				    ((uint64_t)strm->next_in[3]) << 40 |
2280 				    ((uint64_t)strm->next_in[2]) << 32 |
2281 				    ((uint32_t)strm->next_in[5]) << 24 |
2282 				    ((uint32_t)strm->next_in[4]) << 16 |
2283 				    ((uint32_t)strm->next_in[7]) << 8 |
2284 				     (uint32_t)strm->next_in[6];
2285 				strm->next_in += 8;
2286 				strm->avail_in -= 8;
2287 				br->cache_avail += 8 * 8;
2288 				return (1);
2289 			}
2290 			break;
2291 		case 3:
2292 			if (strm->avail_in >= 6) {
2293 				br->cache_buffer =
2294 		 		   (br->cache_buffer << 48) |
2295 				    ((uint64_t)strm->next_in[1]) << 40 |
2296 				    ((uint64_t)strm->next_in[0]) << 32 |
2297 				    ((uint32_t)strm->next_in[3]) << 24 |
2298 				    ((uint32_t)strm->next_in[2]) << 16 |
2299 				    ((uint32_t)strm->next_in[5]) << 8 |
2300 				     (uint32_t)strm->next_in[4];
2301 				strm->next_in += 6;
2302 				strm->avail_in -= 6;
2303 				br->cache_avail += 6 * 8;
2304 				return (1);
2305 			}
2306 			break;
2307 		case 0:
2308 			/* We have enough compressed data in
2309 			 * the cache buffer.*/
2310 			return (1);
2311 		default:
2312 			break;
2313 		}
2314 		if (strm->avail_in < 2) {
2315 			/* There is not enough compressed data to
2316 			 * fill up the cache buffer. */
2317 			if (strm->avail_in == 1) {
2318 				br->odd = *strm->next_in++;
2319 				strm->avail_in--;
2320 				br->have_odd = 1;
2321 			}
2322 			return (0);
2323 		}
2324 		br->cache_buffer =
2325 		   (br->cache_buffer << 16) |
2326 		    archive_le16dec(strm->next_in);
2327 		strm->next_in += 2;
2328 		strm->avail_in -= 2;
2329 		br->cache_avail += 16;
2330 		n -= 16;
2331 	}
2332 }
2333 
2334 static void
2335 lzx_br_fixup(struct lzx_stream *strm, struct lzx_br *br)
2336 {
2337 	int n = CACHE_BITS - br->cache_avail;
2338 
2339 	if (br->have_odd && n >= 16 && strm->avail_in > 0) {
2340 		br->cache_buffer =
2341 		   (br->cache_buffer << 16) |
2342 		   ((uint16_t)(*strm->next_in)) << 8 | br->odd;
2343 		strm->next_in++;
2344 		strm->avail_in--;
2345 		br->cache_avail += 16;
2346 		br->have_odd = 0;
2347 	}
2348 }
2349 
2350 static void
2351 lzx_cleanup_bitstream(struct lzx_stream *strm)
2352 {
2353 	strm->ds->br.cache_avail = 0;
2354 	strm->ds->br.have_odd = 0;
2355 }
2356 
2357 /*
2358  * Decode LZX.
2359  *
2360  * 1. Returns ARCHIVE_OK if output buffer or input buffer are empty.
2361  *    Please set available buffer and call this function again.
2362  * 2. Returns ARCHIVE_EOF if decompression has been completed.
2363  * 3. Returns ARCHIVE_FAILED if an error occurred; compressed data
2364  *    is broken or you do not set 'last' flag properly.
2365  */
2366 #define ST_RD_TRANSLATION	0
2367 #define ST_RD_TRANSLATION_SIZE	1
2368 #define ST_RD_BLOCK_TYPE	2
2369 #define ST_RD_BLOCK_SIZE	3
2370 #define ST_RD_ALIGNMENT		4
2371 #define ST_RD_R0		5
2372 #define ST_RD_R1		6
2373 #define ST_RD_R2		7
2374 #define ST_COPY_UNCOMP1		8
2375 #define ST_COPY_UNCOMP2		9
2376 #define ST_RD_ALIGNED_OFFSET	10
2377 #define ST_RD_VERBATIM		11
2378 #define ST_RD_PRE_MAIN_TREE_256	12
2379 #define ST_MAIN_TREE_256	13
2380 #define ST_RD_PRE_MAIN_TREE_REM	14
2381 #define ST_MAIN_TREE_REM	15
2382 #define ST_RD_PRE_LENGTH_TREE	16
2383 #define ST_LENGTH_TREE		17
2384 #define ST_MAIN			18
2385 #define ST_LENGTH		19
2386 #define ST_OFFSET		20
2387 #define ST_REAL_POS		21
2388 #define ST_COPY			22
2389 
2390 static int
2391 lzx_decode(struct lzx_stream *strm, int last)
2392 {
2393 	struct lzx_dec *ds = strm->ds;
2394 	int64_t avail_in;
2395 	int r;
2396 
2397 	if (ds->error)
2398 		return (ds->error);
2399 
2400 	avail_in = strm->avail_in;
2401 	lzx_br_fixup(strm, &(ds->br));
2402 	do {
2403 		if (ds->state < ST_MAIN)
2404 			r = lzx_read_blocks(strm, last);
2405 		else {
2406 			int64_t bytes_written = strm->avail_out;
2407 			r = lzx_decode_blocks(strm, last);
2408 			bytes_written -= strm->avail_out;
2409 			strm->next_out += bytes_written;
2410 			strm->total_out += bytes_written;
2411 		}
2412 	} while (r == 100);
2413 	strm->total_in += avail_in - strm->avail_in;
2414 	return (r);
2415 }
2416 
2417 static int
2418 lzx_read_blocks(struct lzx_stream *strm, int last)
2419 {
2420 	struct lzx_dec *ds = strm->ds;
2421 	struct lzx_br *br = &(ds->br);
2422 	int i, r;
2423 
2424 	for (;;) {
2425 		switch (ds->state) {
2426 		case ST_RD_TRANSLATION:
2427 			if (!lzx_br_read_ahead(strm, br, 1)) {
2428 				ds->state = ST_RD_TRANSLATION;
2429 				if (last)
2430 					goto failed;
2431 				return (ARCHIVE_OK);
2432 			}
2433 			ds->translation = lzx_br_bits(br, 1);
2434 			lzx_br_consume(br, 1);
2435 			/* FALL THROUGH */
2436 		case ST_RD_TRANSLATION_SIZE:
2437 			if (ds->translation) {
2438 				if (!lzx_br_read_ahead(strm, br, 32)) {
2439 					ds->state = ST_RD_TRANSLATION_SIZE;
2440 					if (last)
2441 						goto failed;
2442 					return (ARCHIVE_OK);
2443 				}
2444 				ds->translation_size = lzx_br_bits(br, 16);
2445 				lzx_br_consume(br, 16);
2446 				ds->translation_size <<= 16;
2447 				ds->translation_size |= lzx_br_bits(br, 16);
2448 				lzx_br_consume(br, 16);
2449 			}
2450 			/* FALL THROUGH */
2451 		case ST_RD_BLOCK_TYPE:
2452 			if (!lzx_br_read_ahead(strm, br, 3)) {
2453 				ds->state = ST_RD_BLOCK_TYPE;
2454 				if (last)
2455 					goto failed;
2456 				return (ARCHIVE_OK);
2457 			}
2458 			ds->block_type = lzx_br_bits(br, 3);
2459 			lzx_br_consume(br, 3);
2460 			/* Check a block type. */
2461 			switch (ds->block_type) {
2462 			case VERBATIM_BLOCK:
2463 			case ALIGNED_OFFSET_BLOCK:
2464 			case UNCOMPRESSED_BLOCK:
2465 				break;
2466 			default:
2467 				goto failed;/* Invalid */
2468 			}
2469 			/* FALL THROUGH */
2470 		case ST_RD_BLOCK_SIZE:
2471 			if (!lzx_br_read_ahead(strm, br, 24)) {
2472 				ds->state = ST_RD_BLOCK_SIZE;
2473 				if (last)
2474 					goto failed;
2475 				return (ARCHIVE_OK);
2476 			}
2477 			ds->block_size = lzx_br_bits(br, 8);
2478 			lzx_br_consume(br, 8);
2479 			ds->block_size <<= 16;
2480 			ds->block_size |= lzx_br_bits(br, 16);
2481 			lzx_br_consume(br, 16);
2482 			if (ds->block_size == 0)
2483 				goto failed;
2484 			ds->block_bytes_avail = ds->block_size;
2485 			if (ds->block_type != UNCOMPRESSED_BLOCK) {
2486 				if (ds->block_type == VERBATIM_BLOCK)
2487 					ds->state = ST_RD_VERBATIM;
2488 				else
2489 					ds->state = ST_RD_ALIGNED_OFFSET;
2490 				break;
2491 			}
2492 			/* FALL THROUGH */
2493 		case ST_RD_ALIGNMENT:
2494 			/*
2495 			 * Handle an Uncompressed Block.
2496 			 */
2497 			/* Skip padding to align following field on
2498 			 * 16-bit boundary. */
2499 			if (lzx_br_is_unaligned(br))
2500 				lzx_br_consume_unaligned_bits(br);
2501 			else {
2502 				if (lzx_br_read_ahead(strm, br, 16))
2503 					lzx_br_consume(br, 16);
2504 				else {
2505 					ds->state = ST_RD_ALIGNMENT;
2506 					if (last)
2507 						goto failed;
2508 					return (ARCHIVE_OK);
2509 				}
2510 			}
2511 			/* Preparation to read repeated offsets R0,R1 and R2. */
2512 			ds->rbytes_avail = 0;
2513 			ds->state = ST_RD_R0;
2514 			/* FALL THROUGH */
2515 		case ST_RD_R0:
2516 		case ST_RD_R1:
2517 		case ST_RD_R2:
2518 			do {
2519 				uint16_t u16;
2520 				/* Drain bits in the cache buffer of
2521 				 * bit-stream. */
2522 				if (lzx_br_has(br, 32)) {
2523 					u16 = lzx_br_bits(br, 16);
2524 					lzx_br_consume(br, 16);
2525 					archive_le16enc(ds->rbytes, u16);
2526 					u16 = lzx_br_bits(br, 16);
2527 					lzx_br_consume(br, 16);
2528 					archive_le16enc(ds->rbytes+2, u16);
2529 					ds->rbytes_avail = 4;
2530 				} else if (lzx_br_has(br, 16)) {
2531 					u16 = lzx_br_bits(br, 16);
2532 					lzx_br_consume(br, 16);
2533 					archive_le16enc(ds->rbytes, u16);
2534 					ds->rbytes_avail = 2;
2535 				}
2536 				if (ds->rbytes_avail < 4 && ds->br.have_odd) {
2537 					ds->rbytes[ds->rbytes_avail++] =
2538 					    ds->br.odd;
2539 					ds->br.have_odd = 0;
2540 				}
2541 				while (ds->rbytes_avail < 4) {
2542 					if (strm->avail_in <= 0) {
2543 						if (last)
2544 							goto failed;
2545 						return (ARCHIVE_OK);
2546 					}
2547 					ds->rbytes[ds->rbytes_avail++] =
2548 					    *strm->next_in++;
2549 					strm->avail_in--;
2550 				}
2551 				ds->rbytes_avail = 0;
2552 				if (ds->state == ST_RD_R0) {
2553 					ds->r0 = archive_le32dec(ds->rbytes);
2554 					if (ds->r0 < 0)
2555 						goto failed;
2556 					ds->state = ST_RD_R1;
2557 				} else if (ds->state == ST_RD_R1) {
2558 					ds->r1 = archive_le32dec(ds->rbytes);
2559 					if (ds->r1 < 0)
2560 						goto failed;
2561 					ds->state = ST_RD_R2;
2562 				} else if (ds->state == ST_RD_R2) {
2563 					ds->r2 = archive_le32dec(ds->rbytes);
2564 					if (ds->r2 < 0)
2565 						goto failed;
2566 					/* We've gotten all repeated offsets. */
2567 					ds->state = ST_COPY_UNCOMP1;
2568 				}
2569 			} while (ds->state != ST_COPY_UNCOMP1);
2570 			/* FALL THROUGH */
2571 		case ST_COPY_UNCOMP1:
2572 			/*
2573 			 * Copy bytes form next_in to next_out directly.
2574 			 */
2575 			while (ds->block_bytes_avail) {
2576 				int l;
2577 
2578 				if (strm->avail_out <= 0)
2579 					/* Output buffer is empty. */
2580 					return (ARCHIVE_OK);
2581 				if (strm->avail_in <= 0) {
2582 					/* Input buffer is empty. */
2583 					if (last)
2584 						goto failed;
2585 					return (ARCHIVE_OK);
2586 				}
2587 				l = (int)ds->block_bytes_avail;
2588 				if (l > ds->w_size - ds->w_pos)
2589 					l = ds->w_size - ds->w_pos;
2590 				if (l > strm->avail_out)
2591 					l = (int)strm->avail_out;
2592 				if (l > strm->avail_in)
2593 					l = (int)strm->avail_in;
2594 				memcpy(strm->next_out, strm->next_in, l);
2595 				memcpy(&(ds->w_buff[ds->w_pos]),
2596 				    strm->next_in, l);
2597 				strm->next_in += l;
2598 				strm->avail_in -= l;
2599 				strm->next_out += l;
2600 				strm->avail_out -= l;
2601 				strm->total_out += l;
2602 				ds->w_pos = (ds->w_pos + l) & ds->w_mask;
2603 				ds->block_bytes_avail -= l;
2604 			}
2605 			/* FALL THROUGH */
2606 		case ST_COPY_UNCOMP2:
2607 			/* Re-align; skip padding byte. */
2608 			if (ds->block_size & 1) {
2609 				if (strm->avail_in <= 0) {
2610 					/* Input buffer is empty. */
2611 					ds->state = ST_COPY_UNCOMP2;
2612 					if (last)
2613 						goto failed;
2614 					return (ARCHIVE_OK);
2615 				}
2616 				strm->next_in++;
2617 				strm->avail_in --;
2618 			}
2619 			/* This block ended. */
2620 			ds->state = ST_RD_BLOCK_TYPE;
2621 			return (ARCHIVE_EOF);
2622 			/********************/
2623 		case ST_RD_ALIGNED_OFFSET:
2624 			/*
2625 			 * Read Aligned offset tree.
2626 			 */
2627 			if (!lzx_br_read_ahead(strm, br, 3 * ds->at.len_size)) {
2628 				ds->state = ST_RD_ALIGNED_OFFSET;
2629 				if (last)
2630 					goto failed;
2631 				return (ARCHIVE_OK);
2632 			}
2633 			memset(ds->at.freq, 0, sizeof(ds->at.freq));
2634 			for (i = 0; i < ds->at.len_size; i++) {
2635 				ds->at.bitlen[i] = lzx_br_bits(br, 3);
2636 				ds->at.freq[ds->at.bitlen[i]]++;
2637 				lzx_br_consume(br, 3);
2638 			}
2639 			if (!lzx_make_huffman_table(&ds->at))
2640 				goto failed;
2641 			/* FALL THROUGH */
2642 		case ST_RD_VERBATIM:
2643 			ds->loop = 0;
2644 			/* FALL THROUGH */
2645 		case ST_RD_PRE_MAIN_TREE_256:
2646 			/*
2647 			 * Read Pre-tree for first 256 elements of main tree.
2648 			 */
2649 			if (!lzx_read_pre_tree(strm)) {
2650 				ds->state = ST_RD_PRE_MAIN_TREE_256;
2651 				if (last)
2652 					goto failed;
2653 				return (ARCHIVE_OK);
2654 			}
2655 			if (!lzx_make_huffman_table(&ds->pt))
2656 				goto failed;
2657 			ds->loop = 0;
2658 			/* FALL THROUGH */
2659 		case ST_MAIN_TREE_256:
2660 			/*
2661 			 * Get path lengths of first 256 elements of main tree.
2662 			 */
2663 			r = lzx_read_bitlen(strm, &ds->mt, 256);
2664 			if (r < 0)
2665 				goto failed;
2666 			else if (!r) {
2667 				ds->state = ST_MAIN_TREE_256;
2668 				if (last)
2669 					goto failed;
2670 				return (ARCHIVE_OK);
2671 			}
2672 			ds->loop = 0;
2673 			/* FALL THROUGH */
2674 		case ST_RD_PRE_MAIN_TREE_REM:
2675 			/*
2676 			 * Read Pre-tree for remaining elements of main tree.
2677 			 */
2678 			if (!lzx_read_pre_tree(strm)) {
2679 				ds->state = ST_RD_PRE_MAIN_TREE_REM;
2680 				if (last)
2681 					goto failed;
2682 				return (ARCHIVE_OK);
2683 			}
2684 			if (!lzx_make_huffman_table(&ds->pt))
2685 				goto failed;
2686 			ds->loop = 256;
2687 			/* FALL THROUGH */
2688 		case ST_MAIN_TREE_REM:
2689 			/*
2690 			 * Get path lengths of remaining elements of main tree.
2691 			 */
2692 			r = lzx_read_bitlen(strm, &ds->mt, -1);
2693 			if (r < 0)
2694 				goto failed;
2695 			else if (!r) {
2696 				ds->state = ST_MAIN_TREE_REM;
2697 				if (last)
2698 					goto failed;
2699 				return (ARCHIVE_OK);
2700 			}
2701 			if (!lzx_make_huffman_table(&ds->mt))
2702 				goto failed;
2703 			ds->loop = 0;
2704 			/* FALL THROUGH */
2705 		case ST_RD_PRE_LENGTH_TREE:
2706 			/*
2707 			 * Read Pre-tree for remaining elements of main tree.
2708 			 */
2709 			if (!lzx_read_pre_tree(strm)) {
2710 				ds->state = ST_RD_PRE_LENGTH_TREE;
2711 				if (last)
2712 					goto failed;
2713 				return (ARCHIVE_OK);
2714 			}
2715 			if (!lzx_make_huffman_table(&ds->pt))
2716 				goto failed;
2717 			ds->loop = 0;
2718 			/* FALL THROUGH */
2719 		case ST_LENGTH_TREE:
2720 			/*
2721 			 * Get path lengths of remaining elements of main tree.
2722 			 */
2723 			r = lzx_read_bitlen(strm, &ds->lt, -1);
2724 			if (r < 0)
2725 				goto failed;
2726 			else if (!r) {
2727 				ds->state = ST_LENGTH_TREE;
2728 				if (last)
2729 					goto failed;
2730 				return (ARCHIVE_OK);
2731 			}
2732 			if (!lzx_make_huffman_table(&ds->lt))
2733 				goto failed;
2734 			ds->state = ST_MAIN;
2735 			return (100);
2736 		}
2737 	}
2738 failed:
2739 	return (ds->error = ARCHIVE_FAILED);
2740 }
2741 
2742 static int
2743 lzx_decode_blocks(struct lzx_stream *strm, int last)
2744 {
2745 	struct lzx_dec *ds = strm->ds;
2746 	struct lzx_br bre = ds->br;
2747 	struct huffman *at = &(ds->at), *lt = &(ds->lt), *mt = &(ds->mt);
2748 	const struct lzx_pos_tbl *pos_tbl = ds->pos_tbl;
2749 	unsigned char *noutp = strm->next_out;
2750 	unsigned char *endp = noutp + strm->avail_out;
2751 	unsigned char *w_buff = ds->w_buff;
2752 	unsigned char *at_bitlen = at->bitlen;
2753 	unsigned char *lt_bitlen = lt->bitlen;
2754 	unsigned char *mt_bitlen = mt->bitlen;
2755 	size_t block_bytes_avail = ds->block_bytes_avail;
2756 	int at_max_bits = at->max_bits;
2757 	int lt_max_bits = lt->max_bits;
2758 	int mt_max_bits = mt->max_bits;
2759 	int c, copy_len = ds->copy_len, copy_pos = ds->copy_pos;
2760 	int w_pos = ds->w_pos, w_mask = ds->w_mask, w_size = ds->w_size;
2761 	int length_header = ds->length_header;
2762 	int offset_bits = ds->offset_bits;
2763 	int position_slot = ds->position_slot;
2764 	int r0 = ds->r0, r1 = ds->r1, r2 = ds->r2;
2765 	int state = ds->state;
2766 	char block_type = ds->block_type;
2767 
2768 	for (;;) {
2769 		switch (state) {
2770 		case ST_MAIN:
2771 			for (;;) {
2772 				if (block_bytes_avail == 0) {
2773 					/* This block ended. */
2774 					ds->state = ST_RD_BLOCK_TYPE;
2775 					ds->br = bre;
2776 					ds->block_bytes_avail =
2777 					    block_bytes_avail;
2778 					ds->copy_len = copy_len;
2779 					ds->copy_pos = copy_pos;
2780 					ds->length_header = length_header;
2781 					ds->position_slot = position_slot;
2782 					ds->r0 = r0; ds->r1 = r1; ds->r2 = r2;
2783 					ds->w_pos = w_pos;
2784 					strm->avail_out = endp - noutp;
2785 					return (ARCHIVE_EOF);
2786 				}
2787 				if (noutp >= endp)
2788 					/* Output buffer is empty. */
2789 					goto next_data;
2790 
2791 				if (!lzx_br_read_ahead(strm, &bre,
2792 				    mt_max_bits)) {
2793 					if (!last)
2794 						goto next_data;
2795 					/* Remaining bits are less than
2796 					 * maximum bits(mt.max_bits) but maybe
2797 					 * it still remains as much as we need,
2798 					 * so we should try to use it with
2799 					 * dummy bits. */
2800 					c = lzx_decode_huffman(mt,
2801 					      lzx_br_bits_forced(
2802 				 	        &bre, mt_max_bits));
2803 					lzx_br_consume(&bre, mt_bitlen[c]);
2804 					if (!lzx_br_has(&bre, 0))
2805 						goto failed;/* Over read. */
2806 				} else {
2807 					c = lzx_decode_huffman(mt,
2808 					      lzx_br_bits(&bre, mt_max_bits));
2809 					lzx_br_consume(&bre, mt_bitlen[c]);
2810 				}
2811 				if (c > UCHAR_MAX)
2812 					break;
2813 				/*
2814 				 * 'c' is exactly literal code.
2815 				 */
2816 				/* Save a decoded code to reference it
2817 				 * afterward. */
2818 				w_buff[w_pos] = c;
2819 				w_pos = (w_pos + 1) & w_mask;
2820 				/* Store the decoded code to output buffer. */
2821 				*noutp++ = c;
2822 				block_bytes_avail--;
2823 			}
2824 			/*
2825 			 * Get a match code, its length and offset.
2826 			 */
2827 			c -= UCHAR_MAX + 1;
2828 			length_header = c & 7;
2829 			position_slot = c >> 3;
2830 			/* FALL THROUGH */
2831 		case ST_LENGTH:
2832 			/*
2833 			 * Get a length.
2834 			 */
2835 			if (length_header == 7) {
2836 				if (!lzx_br_read_ahead(strm, &bre,
2837 				    lt_max_bits)) {
2838 					if (!last) {
2839 						state = ST_LENGTH;
2840 						goto next_data;
2841 					}
2842 					c = lzx_decode_huffman(lt,
2843 					      lzx_br_bits_forced(
2844 					        &bre, lt_max_bits));
2845 					lzx_br_consume(&bre, lt_bitlen[c]);
2846 					if (!lzx_br_has(&bre, 0))
2847 						goto failed;/* Over read. */
2848 				} else {
2849 					c = lzx_decode_huffman(lt,
2850 					    lzx_br_bits(&bre, lt_max_bits));
2851 					lzx_br_consume(&bre, lt_bitlen[c]);
2852 				}
2853 				copy_len = c + 7 + 2;
2854 			} else
2855 				copy_len = length_header + 2;
2856 			if ((size_t)copy_len > block_bytes_avail)
2857 				goto failed;
2858 			/*
2859 			 * Get an offset.
2860 			 */
2861 			switch (position_slot) {
2862 			case 0: /* Use repeated offset 0. */
2863 				copy_pos = r0;
2864 				state = ST_REAL_POS;
2865 				continue;
2866 			case 1: /* Use repeated offset 1. */
2867 				copy_pos = r1;
2868 				/* Swap repeated offset. */
2869 				r1 = r0;
2870 				r0 = copy_pos;
2871 				state = ST_REAL_POS;
2872 				continue;
2873 			case 2: /* Use repeated offset 2. */
2874 				copy_pos = r2;
2875 				/* Swap repeated offset. */
2876 				r2 = r0;
2877 				r0 = copy_pos;
2878 				state = ST_REAL_POS;
2879 				continue;
2880 			default:
2881 				offset_bits =
2882 				    pos_tbl[position_slot].footer_bits;
2883 				break;
2884 			}
2885 			/* FALL THROUGH */
2886 		case ST_OFFSET:
2887 			/*
2888 			 * Get the offset, which is a distance from
2889 			 * current window position.
2890 			 */
2891 			if (block_type == ALIGNED_OFFSET_BLOCK &&
2892 			    offset_bits >= 3) {
2893 				int offbits = offset_bits - 3;
2894 
2895 				if (!lzx_br_read_ahead(strm, &bre, offbits)) {
2896 					state = ST_OFFSET;
2897 					if (last)
2898 						goto failed;
2899 					goto next_data;
2900 				}
2901 				copy_pos = lzx_br_bits(&bre, offbits) << 3;
2902 
2903 				/* Get an aligned number. */
2904 				if (!lzx_br_read_ahead(strm, &bre,
2905 				    offbits + at_max_bits)) {
2906 					if (!last) {
2907 						state = ST_OFFSET;
2908 						goto next_data;
2909 					}
2910 					lzx_br_consume(&bre, offbits);
2911 					c = lzx_decode_huffman(at,
2912 					      lzx_br_bits_forced(&bre,
2913 					        at_max_bits));
2914 					lzx_br_consume(&bre, at_bitlen[c]);
2915 					if (!lzx_br_has(&bre, 0))
2916 						goto failed;/* Over read. */
2917 				} else {
2918 					lzx_br_consume(&bre, offbits);
2919 					c = lzx_decode_huffman(at,
2920 					      lzx_br_bits(&bre, at_max_bits));
2921 					lzx_br_consume(&bre, at_bitlen[c]);
2922 				}
2923 				/* Add an aligned number. */
2924 				copy_pos += c;
2925 			} else {
2926 				if (!lzx_br_read_ahead(strm, &bre,
2927 				    offset_bits)) {
2928 					state = ST_OFFSET;
2929 					if (last)
2930 						goto failed;
2931 					goto next_data;
2932 				}
2933 				copy_pos = lzx_br_bits(&bre, offset_bits);
2934 				lzx_br_consume(&bre, offset_bits);
2935 			}
2936 			copy_pos += pos_tbl[position_slot].base -2;
2937 
2938 			/* Update repeated offset LRU queue. */
2939 			r2 = r1;
2940 			r1 = r0;
2941 			r0 = copy_pos;
2942 			/* FALL THROUGH */
2943 		case ST_REAL_POS:
2944 			/*
2945 			 * Compute a real position in window.
2946 			 */
2947 			copy_pos = (w_pos - copy_pos) & w_mask;
2948 			/* FALL THROUGH */
2949 		case ST_COPY:
2950 			/*
2951 			 * Copy several bytes as extracted data from the window
2952 			 * into the output buffer.
2953 			 */
2954 			for (;;) {
2955 				const unsigned char *s;
2956 				int l;
2957 
2958 				l = copy_len;
2959 				if (copy_pos > w_pos) {
2960 					if (l > w_size - copy_pos)
2961 						l = w_size - copy_pos;
2962 				} else {
2963 					if (l > w_size - w_pos)
2964 						l = w_size - w_pos;
2965 				}
2966 				if (noutp + l >= endp)
2967 					l = (int)(endp - noutp);
2968 				s = w_buff + copy_pos;
2969 				if (l >= 8 && ((copy_pos + l < w_pos)
2970 				  || (w_pos + l < copy_pos))) {
2971 					memcpy(w_buff + w_pos, s, l);
2972 					memcpy(noutp, s, l);
2973 				} else {
2974 					unsigned char *d;
2975 					int li;
2976 
2977 					d = w_buff + w_pos;
2978 					for (li = 0; li < l; li++)
2979 						noutp[li] = d[li] = s[li];
2980 				}
2981 				noutp += l;
2982 				copy_pos = (copy_pos + l) & w_mask;
2983 				w_pos = (w_pos + l) & w_mask;
2984 				block_bytes_avail -= l;
2985 				if (copy_len <= l)
2986 					/* A copy of current pattern ended. */
2987 					break;
2988 				copy_len -= l;
2989 				if (noutp >= endp) {
2990 					/* Output buffer is empty. */
2991 					state = ST_COPY;
2992 					goto next_data;
2993 				}
2994 			}
2995 			state = ST_MAIN;
2996 			break;
2997 		}
2998 	}
2999 failed:
3000 	return (ds->error = ARCHIVE_FAILED);
3001 next_data:
3002 	ds->br = bre;
3003 	ds->block_bytes_avail = block_bytes_avail;
3004 	ds->copy_len = copy_len;
3005 	ds->copy_pos = copy_pos;
3006 	ds->length_header = length_header;
3007 	ds->offset_bits = offset_bits;
3008 	ds->position_slot = position_slot;
3009 	ds->r0 = r0; ds->r1 = r1; ds->r2 = r2;
3010 	ds->state = state;
3011 	ds->w_pos = w_pos;
3012 	strm->avail_out = endp - noutp;
3013 	return (ARCHIVE_OK);
3014 }
3015 
3016 static int
3017 lzx_read_pre_tree(struct lzx_stream *strm)
3018 {
3019 	struct lzx_dec *ds = strm->ds;
3020 	struct lzx_br *br = &(ds->br);
3021 	int i;
3022 
3023 	if (ds->loop == 0)
3024 		memset(ds->pt.freq, 0, sizeof(ds->pt.freq));
3025 	for (i = ds->loop; i < ds->pt.len_size; i++) {
3026 		if (!lzx_br_read_ahead(strm, br, 4)) {
3027 			ds->loop = i;
3028 			return (0);
3029 		}
3030 		ds->pt.bitlen[i] = lzx_br_bits(br, 4);
3031 		ds->pt.freq[ds->pt.bitlen[i]]++;
3032 		lzx_br_consume(br, 4);
3033 	}
3034 	ds->loop = i;
3035 	return (1);
3036 }
3037 
3038 /*
3039  * Read a bunch of bit-lengths from pre-tree.
3040  */
3041 static int
3042 lzx_read_bitlen(struct lzx_stream *strm, struct huffman *d, int end)
3043 {
3044 	struct lzx_dec *ds = strm->ds;
3045 	struct lzx_br *br = &(ds->br);
3046 	int c, i, j, ret, same;
3047 	unsigned rbits;
3048 
3049 	i = ds->loop;
3050 	if (i == 0)
3051 		memset(d->freq, 0, sizeof(d->freq));
3052 	ret = 0;
3053 	if (end < 0)
3054 		end = d->len_size;
3055 	while (i < end) {
3056 		ds->loop = i;
3057 		if (!lzx_br_read_ahead(strm, br, ds->pt.max_bits))
3058 			goto getdata;
3059 		rbits = lzx_br_bits(br, ds->pt.max_bits);
3060 		c = lzx_decode_huffman(&(ds->pt), rbits);
3061 		switch (c) {
3062 		case 17:/* several zero lengths, from 4 to 19. */
3063 			if (!lzx_br_read_ahead(strm, br, ds->pt.bitlen[c]+4))
3064 				goto getdata;
3065 			lzx_br_consume(br, ds->pt.bitlen[c]);
3066 			same = lzx_br_bits(br, 4) + 4;
3067 			if (i + same > end)
3068 				return (-1);/* Invalid */
3069 			lzx_br_consume(br, 4);
3070 			for (j = 0; j < same; j++)
3071 				d->bitlen[i++] = 0;
3072 			break;
3073 		case 18:/* many zero lengths, from 20 to 51. */
3074 			if (!lzx_br_read_ahead(strm, br, ds->pt.bitlen[c]+5))
3075 				goto getdata;
3076 			lzx_br_consume(br, ds->pt.bitlen[c]);
3077 			same = lzx_br_bits(br, 5) + 20;
3078 			if (i + same > end)
3079 				return (-1);/* Invalid */
3080 			lzx_br_consume(br, 5);
3081 			memset(d->bitlen + i, 0, same);
3082 			i += same;
3083 			break;
3084 		case 19:/* a few same lengths. */
3085 			if (!lzx_br_read_ahead(strm, br,
3086 			    ds->pt.bitlen[c]+1+ds->pt.max_bits))
3087 				goto getdata;
3088 			lzx_br_consume(br, ds->pt.bitlen[c]);
3089 			same = lzx_br_bits(br, 1) + 4;
3090 			if (i + same > end)
3091 				return (-1);
3092 			lzx_br_consume(br, 1);
3093 			rbits = lzx_br_bits(br, ds->pt.max_bits);
3094 			c = lzx_decode_huffman(&(ds->pt), rbits);
3095 			lzx_br_consume(br, ds->pt.bitlen[c]);
3096 			c = (d->bitlen[i] - c + 17) % 17;
3097 			if (c < 0)
3098 				return (-1);/* Invalid */
3099 			for (j = 0; j < same; j++)
3100 				d->bitlen[i++] = c;
3101 			d->freq[c] += same;
3102 			break;
3103 		default:
3104 			lzx_br_consume(br, ds->pt.bitlen[c]);
3105 			c = (d->bitlen[i] - c + 17) % 17;
3106 			if (c < 0)
3107 				return (-1);/* Invalid */
3108 			d->freq[c]++;
3109 			d->bitlen[i++] = c;
3110 			break;
3111 		}
3112 	}
3113 	ret = 1;
3114 getdata:
3115 	ds->loop = i;
3116 	return (ret);
3117 }
3118 
3119 static int
3120 lzx_huffman_init(struct huffman *hf, size_t len_size, int tbl_bits)
3121 {
3122 
3123 	if (hf->bitlen == NULL || hf->len_size != (int)len_size) {
3124 		free(hf->bitlen);
3125 		hf->bitlen = calloc(len_size,  sizeof(hf->bitlen[0]));
3126 		if (hf->bitlen == NULL)
3127 			return (ARCHIVE_FATAL);
3128 		hf->len_size = (int)len_size;
3129 	} else
3130 		memset(hf->bitlen, 0, len_size *  sizeof(hf->bitlen[0]));
3131 	if (hf->tbl == NULL) {
3132 		hf->tbl = malloc(((size_t)1 << tbl_bits) * sizeof(hf->tbl[0]));
3133 		if (hf->tbl == NULL)
3134 			return (ARCHIVE_FATAL);
3135 		hf->tbl_bits = tbl_bits;
3136 	}
3137 	return (ARCHIVE_OK);
3138 }
3139 
3140 static void
3141 lzx_huffman_free(struct huffman *hf)
3142 {
3143 	free(hf->bitlen);
3144 	free(hf->tbl);
3145 }
3146 
3147 /*
3148  * Make a huffman coding table.
3149  */
3150 static int
3151 lzx_make_huffman_table(struct huffman *hf)
3152 {
3153 	uint16_t *tbl;
3154 	const unsigned char *bitlen;
3155 	int bitptn[17], weight[17];
3156 	int i, maxbits = 0, ptn, tbl_size, w;
3157 	int len_avail;
3158 
3159 	/*
3160 	 * Initialize bit patterns.
3161 	 */
3162 	ptn = 0;
3163 	for (i = 1, w = 1 << 15; i <= 16; i++, w >>= 1) {
3164 		bitptn[i] = ptn;
3165 		weight[i] = w;
3166 		if (hf->freq[i]) {
3167 			ptn += hf->freq[i] * w;
3168 			maxbits = i;
3169 		}
3170 	}
3171 	if ((ptn & 0xffff) != 0 || maxbits > hf->tbl_bits)
3172 		return (0);/* Invalid */
3173 
3174 	hf->max_bits = maxbits;
3175 
3176 	/*
3177 	 * Cut out extra bits which we won't house in the table.
3178 	 * This preparation reduces the same calculation in the for-loop
3179 	 * making the table.
3180 	 */
3181 	if (maxbits < 16) {
3182 		int ebits = 16 - maxbits;
3183 		for (i = 1; i <= maxbits; i++) {
3184 			bitptn[i] >>= ebits;
3185 			weight[i] >>= ebits;
3186 		}
3187 	}
3188 
3189 	/*
3190 	 * Make the table.
3191 	 */
3192 	tbl_size = 1 << hf->tbl_bits;
3193 	tbl = hf->tbl;
3194 	bitlen = hf->bitlen;
3195 	len_avail = hf->len_size;
3196 	hf->tree_used = 0;
3197 	for (i = 0; i < len_avail; i++) {
3198 		uint16_t *p;
3199 		int len, cnt;
3200 
3201 		if (bitlen[i] == 0)
3202 			continue;
3203 		/* Get a bit pattern */
3204 		len = bitlen[i];
3205 		if (len > tbl_size)
3206 			return (0);
3207 		ptn = bitptn[len];
3208 		cnt = weight[len];
3209 		/* Calculate next bit pattern */
3210 		if ((bitptn[len] = ptn + cnt) > tbl_size)
3211 			return (0);/* Invalid */
3212 		/* Update the table */
3213 		p = &(tbl[ptn]);
3214 		while (--cnt >= 0)
3215 			p[cnt] = (uint16_t)i;
3216 	}
3217 	return (1);
3218 }
3219 
3220 static inline int
3221 lzx_decode_huffman(struct huffman *hf, unsigned rbits)
3222 {
3223 	int c;
3224 	c = hf->tbl[rbits];
3225 	if (c < hf->len_size)
3226 		return (c);
3227 	return (0);
3228 }
3229