1 //===- ASTContext.h - Context to hold long-lived AST nodes ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Defines the clang::ASTContext interface.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15 #define LLVM_CLANG_AST_ASTCONTEXT_H
16 
17 #include "clang/AST/ASTContextAllocate.h"
18 #include "clang/AST/ASTTypeTraits.h"
19 #include "clang/AST/CanonicalType.h"
20 #include "clang/AST/CommentCommandTraits.h"
21 #include "clang/AST/ComparisonCategories.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclBase.h"
24 #include "clang/AST/DeclarationName.h"
25 #include "clang/AST/ExternalASTSource.h"
26 #include "clang/AST/NestedNameSpecifier.h"
27 #include "clang/AST/PrettyPrinter.h"
28 #include "clang/AST/RawCommentList.h"
29 #include "clang/AST/TemplateBase.h"
30 #include "clang/AST/TemplateName.h"
31 #include "clang/AST/Type.h"
32 #include "clang/Basic/AddressSpaces.h"
33 #include "clang/Basic/AttrKinds.h"
34 #include "clang/Basic/IdentifierTable.h"
35 #include "clang/Basic/LLVM.h"
36 #include "clang/Basic/LangOptions.h"
37 #include "clang/Basic/Linkage.h"
38 #include "clang/Basic/OperatorKinds.h"
39 #include "clang/Basic/PartialDiagnostic.h"
40 #include "clang/Basic/SanitizerBlacklist.h"
41 #include "clang/Basic/SourceLocation.h"
42 #include "clang/Basic/Specifiers.h"
43 #include "clang/Basic/TargetInfo.h"
44 #include "clang/Basic/XRayLists.h"
45 #include "llvm/ADT/APSInt.h"
46 #include "llvm/ADT/ArrayRef.h"
47 #include "llvm/ADT/DenseMap.h"
48 #include "llvm/ADT/FoldingSet.h"
49 #include "llvm/ADT/IntrusiveRefCntPtr.h"
50 #include "llvm/ADT/MapVector.h"
51 #include "llvm/ADT/None.h"
52 #include "llvm/ADT/Optional.h"
53 #include "llvm/ADT/PointerIntPair.h"
54 #include "llvm/ADT/PointerUnion.h"
55 #include "llvm/ADT/SmallVector.h"
56 #include "llvm/ADT/StringMap.h"
57 #include "llvm/ADT/StringRef.h"
58 #include "llvm/ADT/TinyPtrVector.h"
59 #include "llvm/ADT/Triple.h"
60 #include "llvm/ADT/iterator_range.h"
61 #include "llvm/Support/AlignOf.h"
62 #include "llvm/Support/Allocator.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/Compiler.h"
65 #include <cassert>
66 #include <cstddef>
67 #include <cstdint>
68 #include <iterator>
69 #include <memory>
70 #include <string>
71 #include <type_traits>
72 #include <utility>
73 #include <vector>
74 
75 namespace llvm {
76 
77 struct fltSemantics;
78 
79 } // namespace llvm
80 
81 namespace clang {
82 
83 class APFixedPoint;
84 class APValue;
85 class ASTMutationListener;
86 class ASTRecordLayout;
87 class AtomicExpr;
88 class BlockExpr;
89 class BuiltinTemplateDecl;
90 class CharUnits;
91 class ConceptDecl;
92 class CXXABI;
93 class CXXConstructorDecl;
94 class CXXMethodDecl;
95 class CXXRecordDecl;
96 class DiagnosticsEngine;
97 class Expr;
98 class FixedPointSemantics;
99 class GlobalDecl;
100 class MangleContext;
101 class MangleNumberingContext;
102 class MaterializeTemporaryExpr;
103 class MemberSpecializationInfo;
104 class Module;
105 class ObjCCategoryDecl;
106 class ObjCCategoryImplDecl;
107 class ObjCContainerDecl;
108 class ObjCImplDecl;
109 class ObjCImplementationDecl;
110 class ObjCInterfaceDecl;
111 class ObjCIvarDecl;
112 class ObjCMethodDecl;
113 class ObjCPropertyDecl;
114 class ObjCPropertyImplDecl;
115 class ObjCProtocolDecl;
116 class ObjCTypeParamDecl;
117 struct ParsedTargetAttr;
118 class Preprocessor;
119 class Stmt;
120 class StoredDeclsMap;
121 class TargetAttr;
122 class TemplateDecl;
123 class TemplateParameterList;
124 class TemplateTemplateParmDecl;
125 class TemplateTypeParmDecl;
126 class UnresolvedSetIterator;
127 class UsingShadowDecl;
128 class VarTemplateDecl;
129 class VTableContextBase;
130 struct BlockVarCopyInit;
131 
132 namespace Builtin {
133 
134 class Context;
135 
136 } // namespace Builtin
137 
138 enum BuiltinTemplateKind : int;
139 
140 namespace comments {
141 
142 class FullComment;
143 
144 } // namespace comments
145 
146 namespace interp {
147 
148 class Context;
149 
150 } // namespace interp
151 
152 namespace serialization {
153 template <class> class AbstractTypeReader;
154 } // namespace serialization
155 
156 struct TypeInfo {
157   uint64_t Width = 0;
158   unsigned Align = 0;
159   bool AlignIsRequired : 1;
160 
161   TypeInfo() : AlignIsRequired(false) {}
162   TypeInfo(uint64_t Width, unsigned Align, bool AlignIsRequired)
163       : Width(Width), Align(Align), AlignIsRequired(AlignIsRequired) {}
164 };
165 
166 /// Holds long-lived AST nodes (such as types and decls) that can be
167 /// referred to throughout the semantic analysis of a file.
168 class ASTContext : public RefCountedBase<ASTContext> {
169   friend class NestedNameSpecifier;
170 
171   mutable SmallVector<Type *, 0> Types;
172   mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
173   mutable llvm::FoldingSet<ComplexType> ComplexTypes;
174   mutable llvm::FoldingSet<PointerType> PointerTypes;
175   mutable llvm::FoldingSet<AdjustedType> AdjustedTypes;
176   mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
177   mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
178   mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
179   mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
180   mutable llvm::ContextualFoldingSet<ConstantArrayType, ASTContext &>
181       ConstantArrayTypes;
182   mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
183   mutable std::vector<VariableArrayType*> VariableArrayTypes;
184   mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
185   mutable llvm::FoldingSet<DependentSizedExtVectorType>
186     DependentSizedExtVectorTypes;
187   mutable llvm::FoldingSet<DependentAddressSpaceType>
188       DependentAddressSpaceTypes;
189   mutable llvm::FoldingSet<VectorType> VectorTypes;
190   mutable llvm::FoldingSet<DependentVectorType> DependentVectorTypes;
191   mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
192   mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
193     FunctionProtoTypes;
194   mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
195   mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
196   mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
197   mutable llvm::FoldingSet<ObjCTypeParamType> ObjCTypeParamTypes;
198   mutable llvm::FoldingSet<SubstTemplateTypeParmType>
199     SubstTemplateTypeParmTypes;
200   mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
201     SubstTemplateTypeParmPackTypes;
202   mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
203     TemplateSpecializationTypes;
204   mutable llvm::FoldingSet<ParenType> ParenTypes;
205   mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
206   mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
207   mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
208                                      ASTContext&>
209     DependentTemplateSpecializationTypes;
210   llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
211   mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
212   mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
213   mutable llvm::FoldingSet<DependentUnaryTransformType>
214     DependentUnaryTransformTypes;
215   mutable llvm::ContextualFoldingSet<AutoType, ASTContext&> AutoTypes;
216   mutable llvm::FoldingSet<DeducedTemplateSpecializationType>
217     DeducedTemplateSpecializationTypes;
218   mutable llvm::FoldingSet<AtomicType> AtomicTypes;
219   llvm::FoldingSet<AttributedType> AttributedTypes;
220   mutable llvm::FoldingSet<PipeType> PipeTypes;
221 
222   mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
223   mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
224   mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
225     SubstTemplateTemplateParms;
226   mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
227                                      ASTContext&>
228     SubstTemplateTemplateParmPacks;
229 
230   /// The set of nested name specifiers.
231   ///
232   /// This set is managed by the NestedNameSpecifier class.
233   mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
234   mutable NestedNameSpecifier *GlobalNestedNameSpecifier = nullptr;
235 
236   /// A cache mapping from RecordDecls to ASTRecordLayouts.
237   ///
238   /// This is lazily created.  This is intentionally not serialized.
239   mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
240     ASTRecordLayouts;
241   mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
242     ObjCLayouts;
243 
244   /// A cache from types to size and alignment information.
245   using TypeInfoMap = llvm::DenseMap<const Type *, struct TypeInfo>;
246   mutable TypeInfoMap MemoizedTypeInfo;
247 
248   /// A cache from types to unadjusted alignment information. Only ARM and
249   /// AArch64 targets need this information, keeping it separate prevents
250   /// imposing overhead on TypeInfo size.
251   using UnadjustedAlignMap = llvm::DenseMap<const Type *, unsigned>;
252   mutable UnadjustedAlignMap MemoizedUnadjustedAlign;
253 
254   /// A cache mapping from CXXRecordDecls to key functions.
255   llvm::DenseMap<const CXXRecordDecl*, LazyDeclPtr> KeyFunctions;
256 
257   /// Mapping from ObjCContainers to their ObjCImplementations.
258   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
259 
260   /// Mapping from ObjCMethod to its duplicate declaration in the same
261   /// interface.
262   llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
263 
264   /// Mapping from __block VarDecls to BlockVarCopyInit.
265   llvm::DenseMap<const VarDecl *, BlockVarCopyInit> BlockVarCopyInits;
266 
267   /// Used to cleanups APValues stored in the AST.
268   mutable llvm::SmallVector<APValue *, 0> APValueCleanups;
269 
270   /// A cache mapping a string value to a StringLiteral object with the same
271   /// value.
272   ///
273   /// This is lazily created.  This is intentionally not serialized.
274   mutable llvm::StringMap<StringLiteral *> StringLiteralCache;
275 
276   /// Representation of a "canonical" template template parameter that
277   /// is used in canonical template names.
278   class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
279     TemplateTemplateParmDecl *Parm;
280 
281   public:
282     CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
283         : Parm(Parm) {}
284 
285     TemplateTemplateParmDecl *getParam() const { return Parm; }
286 
287     void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &C) {
288       Profile(ID, C, Parm);
289     }
290 
291     static void Profile(llvm::FoldingSetNodeID &ID,
292                         const ASTContext &C,
293                         TemplateTemplateParmDecl *Parm);
294   };
295   mutable llvm::ContextualFoldingSet<CanonicalTemplateTemplateParm,
296                                      const ASTContext&>
297     CanonTemplateTemplateParms;
298 
299   TemplateTemplateParmDecl *
300     getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
301 
302   /// The typedef for the __int128_t type.
303   mutable TypedefDecl *Int128Decl = nullptr;
304 
305   /// The typedef for the __uint128_t type.
306   mutable TypedefDecl *UInt128Decl = nullptr;
307 
308   /// The typedef for the target specific predefined
309   /// __builtin_va_list type.
310   mutable TypedefDecl *BuiltinVaListDecl = nullptr;
311 
312   /// The typedef for the predefined \c __builtin_ms_va_list type.
313   mutable TypedefDecl *BuiltinMSVaListDecl = nullptr;
314 
315   /// The typedef for the predefined \c id type.
316   mutable TypedefDecl *ObjCIdDecl = nullptr;
317 
318   /// The typedef for the predefined \c SEL type.
319   mutable TypedefDecl *ObjCSelDecl = nullptr;
320 
321   /// The typedef for the predefined \c Class type.
322   mutable TypedefDecl *ObjCClassDecl = nullptr;
323 
324   /// The typedef for the predefined \c Protocol class in Objective-C.
325   mutable ObjCInterfaceDecl *ObjCProtocolClassDecl = nullptr;
326 
327   /// The typedef for the predefined 'BOOL' type.
328   mutable TypedefDecl *BOOLDecl = nullptr;
329 
330   // Typedefs which may be provided defining the structure of Objective-C
331   // pseudo-builtins
332   QualType ObjCIdRedefinitionType;
333   QualType ObjCClassRedefinitionType;
334   QualType ObjCSelRedefinitionType;
335 
336   /// The identifier 'bool'.
337   mutable IdentifierInfo *BoolName = nullptr;
338 
339   /// The identifier 'NSObject'.
340   mutable IdentifierInfo *NSObjectName = nullptr;
341 
342   /// The identifier 'NSCopying'.
343   IdentifierInfo *NSCopyingName = nullptr;
344 
345   /// The identifier '__make_integer_seq'.
346   mutable IdentifierInfo *MakeIntegerSeqName = nullptr;
347 
348   /// The identifier '__type_pack_element'.
349   mutable IdentifierInfo *TypePackElementName = nullptr;
350 
351   QualType ObjCConstantStringType;
352   mutable RecordDecl *CFConstantStringTagDecl = nullptr;
353   mutable TypedefDecl *CFConstantStringTypeDecl = nullptr;
354 
355   mutable QualType ObjCSuperType;
356 
357   QualType ObjCNSStringType;
358 
359   /// The typedef declaration for the Objective-C "instancetype" type.
360   TypedefDecl *ObjCInstanceTypeDecl = nullptr;
361 
362   /// The type for the C FILE type.
363   TypeDecl *FILEDecl = nullptr;
364 
365   /// The type for the C jmp_buf type.
366   TypeDecl *jmp_bufDecl = nullptr;
367 
368   /// The type for the C sigjmp_buf type.
369   TypeDecl *sigjmp_bufDecl = nullptr;
370 
371   /// The type for the C ucontext_t type.
372   TypeDecl *ucontext_tDecl = nullptr;
373 
374   /// Type for the Block descriptor for Blocks CodeGen.
375   ///
376   /// Since this is only used for generation of debug info, it is not
377   /// serialized.
378   mutable RecordDecl *BlockDescriptorType = nullptr;
379 
380   /// Type for the Block descriptor for Blocks CodeGen.
381   ///
382   /// Since this is only used for generation of debug info, it is not
383   /// serialized.
384   mutable RecordDecl *BlockDescriptorExtendedType = nullptr;
385 
386   /// Declaration for the CUDA cudaConfigureCall function.
387   FunctionDecl *cudaConfigureCallDecl = nullptr;
388 
389   /// Keeps track of all declaration attributes.
390   ///
391   /// Since so few decls have attrs, we keep them in a hash map instead of
392   /// wasting space in the Decl class.
393   llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
394 
395   /// A mapping from non-redeclarable declarations in modules that were
396   /// merged with other declarations to the canonical declaration that they were
397   /// merged into.
398   llvm::DenseMap<Decl*, Decl*> MergedDecls;
399 
400   /// A mapping from a defining declaration to a list of modules (other
401   /// than the owning module of the declaration) that contain merged
402   /// definitions of that entity.
403   llvm::DenseMap<NamedDecl*, llvm::TinyPtrVector<Module*>> MergedDefModules;
404 
405   /// Initializers for a module, in order. Each Decl will be either
406   /// something that has a semantic effect on startup (such as a variable with
407   /// a non-constant initializer), or an ImportDecl (which recursively triggers
408   /// initialization of another module).
409   struct PerModuleInitializers {
410     llvm::SmallVector<Decl*, 4> Initializers;
411     llvm::SmallVector<uint32_t, 4> LazyInitializers;
412 
413     void resolve(ASTContext &Ctx);
414   };
415   llvm::DenseMap<Module*, PerModuleInitializers*> ModuleInitializers;
416 
417   ASTContext &this_() { return *this; }
418 
419 public:
420   /// A type synonym for the TemplateOrInstantiation mapping.
421   using TemplateOrSpecializationInfo =
422       llvm::PointerUnion<VarTemplateDecl *, MemberSpecializationInfo *>;
423 
424 private:
425   friend class ASTDeclReader;
426   friend class ASTReader;
427   friend class ASTWriter;
428   template <class> friend class serialization::AbstractTypeReader;
429   friend class CXXRecordDecl;
430 
431   /// A mapping to contain the template or declaration that
432   /// a variable declaration describes or was instantiated from,
433   /// respectively.
434   ///
435   /// For non-templates, this value will be NULL. For variable
436   /// declarations that describe a variable template, this will be a
437   /// pointer to a VarTemplateDecl. For static data members
438   /// of class template specializations, this will be the
439   /// MemberSpecializationInfo referring to the member variable that was
440   /// instantiated or specialized. Thus, the mapping will keep track of
441   /// the static data member templates from which static data members of
442   /// class template specializations were instantiated.
443   ///
444   /// Given the following example:
445   ///
446   /// \code
447   /// template<typename T>
448   /// struct X {
449   ///   static T value;
450   /// };
451   ///
452   /// template<typename T>
453   ///   T X<T>::value = T(17);
454   ///
455   /// int *x = &X<int>::value;
456   /// \endcode
457   ///
458   /// This mapping will contain an entry that maps from the VarDecl for
459   /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
460   /// class template X) and will be marked TSK_ImplicitInstantiation.
461   llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>
462   TemplateOrInstantiation;
463 
464   /// Keeps track of the declaration from which a using declaration was
465   /// created during instantiation.
466   ///
467   /// The source and target declarations are always a UsingDecl, an
468   /// UnresolvedUsingValueDecl, or an UnresolvedUsingTypenameDecl.
469   ///
470   /// For example:
471   /// \code
472   /// template<typename T>
473   /// struct A {
474   ///   void f();
475   /// };
476   ///
477   /// template<typename T>
478   /// struct B : A<T> {
479   ///   using A<T>::f;
480   /// };
481   ///
482   /// template struct B<int>;
483   /// \endcode
484   ///
485   /// This mapping will contain an entry that maps from the UsingDecl in
486   /// B<int> to the UnresolvedUsingDecl in B<T>.
487   llvm::DenseMap<NamedDecl *, NamedDecl *> InstantiatedFromUsingDecl;
488 
489   llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
490     InstantiatedFromUsingShadowDecl;
491 
492   llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
493 
494   /// Mapping that stores the methods overridden by a given C++
495   /// member function.
496   ///
497   /// Since most C++ member functions aren't virtual and therefore
498   /// don't override anything, we store the overridden functions in
499   /// this map on the side rather than within the CXXMethodDecl structure.
500   using CXXMethodVector = llvm::TinyPtrVector<const CXXMethodDecl *>;
501   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
502 
503   /// Mapping from each declaration context to its corresponding
504   /// mangling numbering context (used for constructs like lambdas which
505   /// need to be consistently numbered for the mangler).
506   llvm::DenseMap<const DeclContext *, std::unique_ptr<MangleNumberingContext>>
507       MangleNumberingContexts;
508   llvm::DenseMap<const Decl *, std::unique_ptr<MangleNumberingContext>>
509       ExtraMangleNumberingContexts;
510 
511   /// Side-table of mangling numbers for declarations which rarely
512   /// need them (like static local vars).
513   llvm::MapVector<const NamedDecl *, unsigned> MangleNumbers;
514   llvm::MapVector<const VarDecl *, unsigned> StaticLocalNumbers;
515 
516   /// Mapping that stores parameterIndex values for ParmVarDecls when
517   /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
518   using ParameterIndexTable = llvm::DenseMap<const VarDecl *, unsigned>;
519   ParameterIndexTable ParamIndices;
520 
521   ImportDecl *FirstLocalImport = nullptr;
522   ImportDecl *LastLocalImport = nullptr;
523 
524   TranslationUnitDecl *TUDecl;
525   mutable ExternCContextDecl *ExternCContext = nullptr;
526   mutable BuiltinTemplateDecl *MakeIntegerSeqDecl = nullptr;
527   mutable BuiltinTemplateDecl *TypePackElementDecl = nullptr;
528 
529   /// The associated SourceManager object.
530   SourceManager &SourceMgr;
531 
532   /// The language options used to create the AST associated with
533   ///  this ASTContext object.
534   LangOptions &LangOpts;
535 
536   /// Blacklist object that is used by sanitizers to decide which
537   /// entities should not be instrumented.
538   std::unique_ptr<SanitizerBlacklist> SanitizerBL;
539 
540   /// Function filtering mechanism to determine whether a given function
541   /// should be imbued with the XRay "always" or "never" attributes.
542   std::unique_ptr<XRayFunctionFilter> XRayFilter;
543 
544   /// The allocator used to create AST objects.
545   ///
546   /// AST objects are never destructed; rather, all memory associated with the
547   /// AST objects will be released when the ASTContext itself is destroyed.
548   mutable llvm::BumpPtrAllocator BumpAlloc;
549 
550   /// Allocator for partial diagnostics.
551   PartialDiagnostic::StorageAllocator DiagAllocator;
552 
553   /// The current C++ ABI.
554   std::unique_ptr<CXXABI> ABI;
555   CXXABI *createCXXABI(const TargetInfo &T);
556 
557   /// The logical -> physical address space map.
558   const LangASMap *AddrSpaceMap = nullptr;
559 
560   /// Address space map mangling must be used with language specific
561   /// address spaces (e.g. OpenCL/CUDA)
562   bool AddrSpaceMapMangling;
563 
564   const TargetInfo *Target = nullptr;
565   const TargetInfo *AuxTarget = nullptr;
566   clang::PrintingPolicy PrintingPolicy;
567   std::unique_ptr<interp::Context> InterpContext;
568 
569   ast_type_traits::TraversalKind Traversal = ast_type_traits::TK_AsIs;
570 
571 public:
572   ast_type_traits::TraversalKind getTraversalKind() const { return Traversal; }
573   void setTraversalKind(ast_type_traits::TraversalKind TK) { Traversal = TK; }
574 
575   const Expr *traverseIgnored(const Expr *E) const;
576   Expr *traverseIgnored(Expr *E) const;
577   ast_type_traits::DynTypedNode
578   traverseIgnored(const ast_type_traits::DynTypedNode &N) const;
579 
580   IdentifierTable &Idents;
581   SelectorTable &Selectors;
582   Builtin::Context &BuiltinInfo;
583   mutable DeclarationNameTable DeclarationNames;
584   IntrusiveRefCntPtr<ExternalASTSource> ExternalSource;
585   ASTMutationListener *Listener = nullptr;
586 
587   /// Returns the clang bytecode interpreter context.
588   interp::Context &getInterpContext();
589 
590   /// Container for either a single DynTypedNode or for an ArrayRef to
591   /// DynTypedNode. For use with ParentMap.
592   class DynTypedNodeList {
593     using DynTypedNode = ast_type_traits::DynTypedNode;
594 
595     llvm::AlignedCharArrayUnion<ast_type_traits::DynTypedNode,
596                                 ArrayRef<DynTypedNode>> Storage;
597     bool IsSingleNode;
598 
599   public:
600     DynTypedNodeList(const DynTypedNode &N) : IsSingleNode(true) {
601       new (Storage.buffer) DynTypedNode(N);
602     }
603 
604     DynTypedNodeList(ArrayRef<DynTypedNode> A) : IsSingleNode(false) {
605       new (Storage.buffer) ArrayRef<DynTypedNode>(A);
606     }
607 
608     const ast_type_traits::DynTypedNode *begin() const {
609       if (!IsSingleNode)
610         return reinterpret_cast<const ArrayRef<DynTypedNode> *>(Storage.buffer)
611             ->begin();
612       return reinterpret_cast<const DynTypedNode *>(Storage.buffer);
613     }
614 
615     const ast_type_traits::DynTypedNode *end() const {
616       if (!IsSingleNode)
617         return reinterpret_cast<const ArrayRef<DynTypedNode> *>(Storage.buffer)
618             ->end();
619       return reinterpret_cast<const DynTypedNode *>(Storage.buffer) + 1;
620     }
621 
622     size_t size() const { return end() - begin(); }
623     bool empty() const { return begin() == end(); }
624 
625     const DynTypedNode &operator[](size_t N) const {
626       assert(N < size() && "Out of bounds!");
627       return *(begin() + N);
628     }
629   };
630 
631   // A traversal scope limits the parts of the AST visible to certain analyses.
632   // RecursiveASTVisitor::TraverseAST will only visit reachable nodes, and
633   // getParents() will only observe reachable parent edges.
634   //
635   // The scope is defined by a set of "top-level" declarations.
636   // Initially, it is the entire TU: {getTranslationUnitDecl()}.
637   // Changing the scope clears the parent cache, which is expensive to rebuild.
638   std::vector<Decl *> getTraversalScope() const { return TraversalScope; }
639   void setTraversalScope(const std::vector<Decl *> &);
640 
641   /// Returns the parents of the given node (within the traversal scope).
642   ///
643   /// Note that this will lazily compute the parents of all nodes
644   /// and store them for later retrieval. Thus, the first call is O(n)
645   /// in the number of AST nodes.
646   ///
647   /// Caveats and FIXMEs:
648   /// Calculating the parent map over all AST nodes will need to load the
649   /// full AST. This can be undesirable in the case where the full AST is
650   /// expensive to create (for example, when using precompiled header
651   /// preambles). Thus, there are good opportunities for optimization here.
652   /// One idea is to walk the given node downwards, looking for references
653   /// to declaration contexts - once a declaration context is found, compute
654   /// the parent map for the declaration context; if that can satisfy the
655   /// request, loading the whole AST can be avoided. Note that this is made
656   /// more complex by statements in templates having multiple parents - those
657   /// problems can be solved by building closure over the templated parts of
658   /// the AST, which also avoids touching large parts of the AST.
659   /// Additionally, we will want to add an interface to already give a hint
660   /// where to search for the parents, for example when looking at a statement
661   /// inside a certain function.
662   ///
663   /// 'NodeT' can be one of Decl, Stmt, Type, TypeLoc,
664   /// NestedNameSpecifier or NestedNameSpecifierLoc.
665   template <typename NodeT> DynTypedNodeList getParents(const NodeT &Node) {
666     return getParents(ast_type_traits::DynTypedNode::create(Node));
667   }
668 
669   DynTypedNodeList getParents(const ast_type_traits::DynTypedNode &Node);
670 
671   const clang::PrintingPolicy &getPrintingPolicy() const {
672     return PrintingPolicy;
673   }
674 
675   void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
676     PrintingPolicy = Policy;
677   }
678 
679   SourceManager& getSourceManager() { return SourceMgr; }
680   const SourceManager& getSourceManager() const { return SourceMgr; }
681 
682   llvm::BumpPtrAllocator &getAllocator() const {
683     return BumpAlloc;
684   }
685 
686   void *Allocate(size_t Size, unsigned Align = 8) const {
687     return BumpAlloc.Allocate(Size, Align);
688   }
689   template <typename T> T *Allocate(size_t Num = 1) const {
690     return static_cast<T *>(Allocate(Num * sizeof(T), alignof(T)));
691   }
692   void Deallocate(void *Ptr) const {}
693 
694   /// Return the total amount of physical memory allocated for representing
695   /// AST nodes and type information.
696   size_t getASTAllocatedMemory() const {
697     return BumpAlloc.getTotalMemory();
698   }
699 
700   /// Return the total memory used for various side tables.
701   size_t getSideTableAllocatedMemory() const;
702 
703   PartialDiagnostic::StorageAllocator &getDiagAllocator() {
704     return DiagAllocator;
705   }
706 
707   const TargetInfo &getTargetInfo() const { return *Target; }
708   const TargetInfo *getAuxTargetInfo() const { return AuxTarget; }
709 
710   /// getIntTypeForBitwidth -
711   /// sets integer QualTy according to specified details:
712   /// bitwidth, signed/unsigned.
713   /// Returns empty type if there is no appropriate target types.
714   QualType getIntTypeForBitwidth(unsigned DestWidth,
715                                  unsigned Signed) const;
716 
717   /// getRealTypeForBitwidth -
718   /// sets floating point QualTy according to specified bitwidth.
719   /// Returns empty type if there is no appropriate target types.
720   QualType getRealTypeForBitwidth(unsigned DestWidth) const;
721 
722   bool AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const;
723 
724   const LangOptions& getLangOpts() const { return LangOpts; }
725 
726   const SanitizerBlacklist &getSanitizerBlacklist() const {
727     return *SanitizerBL;
728   }
729 
730   const XRayFunctionFilter &getXRayFilter() const {
731     return *XRayFilter;
732   }
733 
734   DiagnosticsEngine &getDiagnostics() const;
735 
736   FullSourceLoc getFullLoc(SourceLocation Loc) const {
737     return FullSourceLoc(Loc,SourceMgr);
738   }
739 
740   /// All comments in this translation unit.
741   RawCommentList Comments;
742 
743   /// True if comments are already loaded from ExternalASTSource.
744   mutable bool CommentsLoaded = false;
745 
746   /// Mapping from declaration to directly attached comment.
747   ///
748   /// Raw comments are owned by Comments list.  This mapping is populated
749   /// lazily.
750   mutable llvm::DenseMap<const Decl *, const RawComment *> DeclRawComments;
751 
752   /// Mapping from canonical declaration to the first redeclaration in chain
753   /// that has a comment attached.
754   ///
755   /// Raw comments are owned by Comments list.  This mapping is populated
756   /// lazily.
757   mutable llvm::DenseMap<const Decl *, const Decl *> RedeclChainComments;
758 
759   /// Keeps track of redeclaration chains that don't have any comment attached.
760   /// Mapping from canonical declaration to redeclaration chain that has no
761   /// comments attached to any redeclaration. Specifically it's mapping to
762   /// the last redeclaration we've checked.
763   ///
764   /// Shall not contain declarations that have comments attached to any
765   /// redeclaration in their chain.
766   mutable llvm::DenseMap<const Decl *, const Decl *> CommentlessRedeclChains;
767 
768   /// Mapping from declarations to parsed comments attached to any
769   /// redeclaration.
770   mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
771 
772   /// Attaches \p Comment to \p OriginalD and to its redeclaration chain
773   /// and removes the redeclaration chain from the set of commentless chains.
774   ///
775   /// Don't do anything if a comment has already been attached to \p OriginalD
776   /// or its redeclaration chain.
777   void cacheRawCommentForDecl(const Decl &OriginalD,
778                               const RawComment &Comment) const;
779 
780   /// \returns searches \p CommentsInFile for doc comment for \p D.
781   ///
782   /// \p RepresentativeLocForDecl is used as a location for searching doc
783   /// comments. \p CommentsInFile is a mapping offset -> comment of files in the
784   /// same file where \p RepresentativeLocForDecl is.
785   RawComment *getRawCommentForDeclNoCacheImpl(
786       const Decl *D, const SourceLocation RepresentativeLocForDecl,
787       const std::map<unsigned, RawComment *> &CommentsInFile) const;
788 
789   /// Return the documentation comment attached to a given declaration,
790   /// without looking into cache.
791   RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
792 
793 public:
794   RawCommentList &getRawCommentList() {
795     return Comments;
796   }
797 
798   void addComment(const RawComment &RC) {
799     assert(LangOpts.RetainCommentsFromSystemHeaders ||
800            !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
801     Comments.addComment(RC, LangOpts.CommentOpts, BumpAlloc);
802   }
803 
804   /// Return the documentation comment attached to a given declaration.
805   /// Returns nullptr if no comment is attached.
806   ///
807   /// \param OriginalDecl if not nullptr, is set to declaration AST node that
808   /// had the comment, if the comment we found comes from a redeclaration.
809   const RawComment *
810   getRawCommentForAnyRedecl(const Decl *D,
811                             const Decl **OriginalDecl = nullptr) const;
812 
813   /// Searches existing comments for doc comments that should be attached to \p
814   /// Decls. If any doc comment is found, it is parsed.
815   ///
816   /// Requirement: All \p Decls are in the same file.
817   ///
818   /// If the last comment in the file is already attached we assume
819   /// there are not comments left to be attached to \p Decls.
820   void attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
821                                        const Preprocessor *PP);
822 
823   /// Return parsed documentation comment attached to a given declaration.
824   /// Returns nullptr if no comment is attached.
825   ///
826   /// \param PP the Preprocessor used with this TU.  Could be nullptr if
827   /// preprocessor is not available.
828   comments::FullComment *getCommentForDecl(const Decl *D,
829                                            const Preprocessor *PP) const;
830 
831   /// Return parsed documentation comment attached to a given declaration.
832   /// Returns nullptr if no comment is attached. Does not look at any
833   /// redeclarations of the declaration.
834   comments::FullComment *getLocalCommentForDeclUncached(const Decl *D) const;
835 
836   comments::FullComment *cloneFullComment(comments::FullComment *FC,
837                                          const Decl *D) const;
838 
839 private:
840   mutable comments::CommandTraits CommentCommandTraits;
841 
842   /// Iterator that visits import declarations.
843   class import_iterator {
844     ImportDecl *Import = nullptr;
845 
846   public:
847     using value_type = ImportDecl *;
848     using reference = ImportDecl *;
849     using pointer = ImportDecl *;
850     using difference_type = int;
851     using iterator_category = std::forward_iterator_tag;
852 
853     import_iterator() = default;
854     explicit import_iterator(ImportDecl *Import) : Import(Import) {}
855 
856     reference operator*() const { return Import; }
857     pointer operator->() const { return Import; }
858 
859     import_iterator &operator++() {
860       Import = ASTContext::getNextLocalImport(Import);
861       return *this;
862     }
863 
864     import_iterator operator++(int) {
865       import_iterator Other(*this);
866       ++(*this);
867       return Other;
868     }
869 
870     friend bool operator==(import_iterator X, import_iterator Y) {
871       return X.Import == Y.Import;
872     }
873 
874     friend bool operator!=(import_iterator X, import_iterator Y) {
875       return X.Import != Y.Import;
876     }
877   };
878 
879 public:
880   comments::CommandTraits &getCommentCommandTraits() const {
881     return CommentCommandTraits;
882   }
883 
884   /// Retrieve the attributes for the given declaration.
885   AttrVec& getDeclAttrs(const Decl *D);
886 
887   /// Erase the attributes corresponding to the given declaration.
888   void eraseDeclAttrs(const Decl *D);
889 
890   /// If this variable is an instantiated static data member of a
891   /// class template specialization, returns the templated static data member
892   /// from which it was instantiated.
893   // FIXME: Remove ?
894   MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
895                                                            const VarDecl *Var);
896 
897   TemplateOrSpecializationInfo
898   getTemplateOrSpecializationInfo(const VarDecl *Var);
899 
900   /// Note that the static data member \p Inst is an instantiation of
901   /// the static data member template \p Tmpl of a class template.
902   void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
903                                            TemplateSpecializationKind TSK,
904                         SourceLocation PointOfInstantiation = SourceLocation());
905 
906   void setTemplateOrSpecializationInfo(VarDecl *Inst,
907                                        TemplateOrSpecializationInfo TSI);
908 
909   /// If the given using decl \p Inst is an instantiation of a
910   /// (possibly unresolved) using decl from a template instantiation,
911   /// return it.
912   NamedDecl *getInstantiatedFromUsingDecl(NamedDecl *Inst);
913 
914   /// Remember that the using decl \p Inst is an instantiation
915   /// of the using decl \p Pattern of a class template.
916   void setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern);
917 
918   void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
919                                           UsingShadowDecl *Pattern);
920   UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
921 
922   FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
923 
924   void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
925 
926   // Access to the set of methods overridden by the given C++ method.
927   using overridden_cxx_method_iterator = CXXMethodVector::const_iterator;
928   overridden_cxx_method_iterator
929   overridden_methods_begin(const CXXMethodDecl *Method) const;
930 
931   overridden_cxx_method_iterator
932   overridden_methods_end(const CXXMethodDecl *Method) const;
933 
934   unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
935 
936   using overridden_method_range =
937       llvm::iterator_range<overridden_cxx_method_iterator>;
938 
939   overridden_method_range overridden_methods(const CXXMethodDecl *Method) const;
940 
941   /// Note that the given C++ \p Method overrides the given \p
942   /// Overridden method.
943   void addOverriddenMethod(const CXXMethodDecl *Method,
944                            const CXXMethodDecl *Overridden);
945 
946   /// Return C++ or ObjC overridden methods for the given \p Method.
947   ///
948   /// An ObjC method is considered to override any method in the class's
949   /// base classes, its protocols, or its categories' protocols, that has
950   /// the same selector and is of the same kind (class or instance).
951   /// A method in an implementation is not considered as overriding the same
952   /// method in the interface or its categories.
953   void getOverriddenMethods(
954                         const NamedDecl *Method,
955                         SmallVectorImpl<const NamedDecl *> &Overridden) const;
956 
957   /// Notify the AST context that a new import declaration has been
958   /// parsed or implicitly created within this translation unit.
959   void addedLocalImportDecl(ImportDecl *Import);
960 
961   static ImportDecl *getNextLocalImport(ImportDecl *Import) {
962     return Import->NextLocalImport;
963   }
964 
965   using import_range = llvm::iterator_range<import_iterator>;
966 
967   import_range local_imports() const {
968     return import_range(import_iterator(FirstLocalImport), import_iterator());
969   }
970 
971   Decl *getPrimaryMergedDecl(Decl *D) {
972     Decl *Result = MergedDecls.lookup(D);
973     return Result ? Result : D;
974   }
975   void setPrimaryMergedDecl(Decl *D, Decl *Primary) {
976     MergedDecls[D] = Primary;
977   }
978 
979   /// Note that the definition \p ND has been merged into module \p M,
980   /// and should be visible whenever \p M is visible.
981   void mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
982                                  bool NotifyListeners = true);
983 
984   /// Clean up the merged definition list. Call this if you might have
985   /// added duplicates into the list.
986   void deduplicateMergedDefinitonsFor(NamedDecl *ND);
987 
988   /// Get the additional modules in which the definition \p Def has
989   /// been merged.
990   ArrayRef<Module*> getModulesWithMergedDefinition(const NamedDecl *Def) {
991     auto MergedIt =
992         MergedDefModules.find(cast<NamedDecl>(Def->getCanonicalDecl()));
993     if (MergedIt == MergedDefModules.end())
994       return None;
995     return MergedIt->second;
996   }
997 
998   /// Add a declaration to the list of declarations that are initialized
999   /// for a module. This will typically be a global variable (with internal
1000   /// linkage) that runs module initializers, such as the iostream initializer,
1001   /// or an ImportDecl nominating another module that has initializers.
1002   void addModuleInitializer(Module *M, Decl *Init);
1003 
1004   void addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs);
1005 
1006   /// Get the initializations to perform when importing a module, if any.
1007   ArrayRef<Decl*> getModuleInitializers(Module *M);
1008 
1009   TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
1010 
1011   ExternCContextDecl *getExternCContextDecl() const;
1012   BuiltinTemplateDecl *getMakeIntegerSeqDecl() const;
1013   BuiltinTemplateDecl *getTypePackElementDecl() const;
1014 
1015   // Builtin Types.
1016   CanQualType VoidTy;
1017   CanQualType BoolTy;
1018   CanQualType CharTy;
1019   CanQualType WCharTy;  // [C++ 3.9.1p5].
1020   CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
1021   CanQualType WIntTy;   // [C99 7.24.1], integer type unchanged by default promotions.
1022   CanQualType Char8Ty;  // [C++20 proposal]
1023   CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
1024   CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
1025   CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
1026   CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
1027   CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
1028   CanQualType FloatTy, DoubleTy, LongDoubleTy, Float128Ty;
1029   CanQualType ShortAccumTy, AccumTy,
1030       LongAccumTy;  // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1031   CanQualType UnsignedShortAccumTy, UnsignedAccumTy, UnsignedLongAccumTy;
1032   CanQualType ShortFractTy, FractTy, LongFractTy;
1033   CanQualType UnsignedShortFractTy, UnsignedFractTy, UnsignedLongFractTy;
1034   CanQualType SatShortAccumTy, SatAccumTy, SatLongAccumTy;
1035   CanQualType SatUnsignedShortAccumTy, SatUnsignedAccumTy,
1036       SatUnsignedLongAccumTy;
1037   CanQualType SatShortFractTy, SatFractTy, SatLongFractTy;
1038   CanQualType SatUnsignedShortFractTy, SatUnsignedFractTy,
1039       SatUnsignedLongFractTy;
1040   CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
1041   CanQualType Float16Ty; // C11 extension ISO/IEC TS 18661-3
1042   CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
1043   CanQualType Float128ComplexTy;
1044   CanQualType VoidPtrTy, NullPtrTy;
1045   CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
1046   CanQualType BuiltinFnTy;
1047   CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
1048   CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
1049   CanQualType ObjCBuiltinBoolTy;
1050 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1051   CanQualType SingletonId;
1052 #include "clang/Basic/OpenCLImageTypes.def"
1053   CanQualType OCLSamplerTy, OCLEventTy, OCLClkEventTy;
1054   CanQualType OCLQueueTy, OCLReserveIDTy;
1055   CanQualType OMPArraySectionTy;
1056 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1057   CanQualType Id##Ty;
1058 #include "clang/Basic/OpenCLExtensionTypes.def"
1059 #define SVE_TYPE(Name, Id, SingletonId) \
1060   CanQualType SingletonId;
1061 #include "clang/Basic/AArch64SVEACLETypes.def"
1062 
1063   // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
1064   mutable QualType AutoDeductTy;     // Deduction against 'auto'.
1065   mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
1066 
1067   // Decl used to help define __builtin_va_list for some targets.
1068   // The decl is built when constructing 'BuiltinVaListDecl'.
1069   mutable Decl *VaListTagDecl;
1070 
1071   ASTContext(LangOptions &LOpts, SourceManager &SM, IdentifierTable &idents,
1072              SelectorTable &sels, Builtin::Context &builtins);
1073   ASTContext(const ASTContext &) = delete;
1074   ASTContext &operator=(const ASTContext &) = delete;
1075   ~ASTContext();
1076 
1077   /// Attach an external AST source to the AST context.
1078   ///
1079   /// The external AST source provides the ability to load parts of
1080   /// the abstract syntax tree as needed from some external storage,
1081   /// e.g., a precompiled header.
1082   void setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source);
1083 
1084   /// Retrieve a pointer to the external AST source associated
1085   /// with this AST context, if any.
1086   ExternalASTSource *getExternalSource() const {
1087     return ExternalSource.get();
1088   }
1089 
1090   /// Attach an AST mutation listener to the AST context.
1091   ///
1092   /// The AST mutation listener provides the ability to track modifications to
1093   /// the abstract syntax tree entities committed after they were initially
1094   /// created.
1095   void setASTMutationListener(ASTMutationListener *Listener) {
1096     this->Listener = Listener;
1097   }
1098 
1099   /// Retrieve a pointer to the AST mutation listener associated
1100   /// with this AST context, if any.
1101   ASTMutationListener *getASTMutationListener() const { return Listener; }
1102 
1103   void PrintStats() const;
1104   const SmallVectorImpl<Type *>& getTypes() const { return Types; }
1105 
1106   BuiltinTemplateDecl *buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1107                                                 const IdentifierInfo *II) const;
1108 
1109   /// Create a new implicit TU-level CXXRecordDecl or RecordDecl
1110   /// declaration.
1111   RecordDecl *buildImplicitRecord(StringRef Name,
1112                                   RecordDecl::TagKind TK = TTK_Struct) const;
1113 
1114   /// Create a new implicit TU-level typedef declaration.
1115   TypedefDecl *buildImplicitTypedef(QualType T, StringRef Name) const;
1116 
1117   /// Retrieve the declaration for the 128-bit signed integer type.
1118   TypedefDecl *getInt128Decl() const;
1119 
1120   /// Retrieve the declaration for the 128-bit unsigned integer type.
1121   TypedefDecl *getUInt128Decl() const;
1122 
1123   //===--------------------------------------------------------------------===//
1124   //                           Type Constructors
1125   //===--------------------------------------------------------------------===//
1126 
1127 private:
1128   /// Return a type with extended qualifiers.
1129   QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
1130 
1131   QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
1132 
1133   QualType getPipeType(QualType T, bool ReadOnly) const;
1134 
1135 public:
1136   /// Return the uniqued reference to the type for an address space
1137   /// qualified type with the specified type and address space.
1138   ///
1139   /// The resulting type has a union of the qualifiers from T and the address
1140   /// space. If T already has an address space specifier, it is silently
1141   /// replaced.
1142   QualType getAddrSpaceQualType(QualType T, LangAS AddressSpace) const;
1143 
1144   /// Remove any existing address space on the type and returns the type
1145   /// with qualifiers intact (or that's the idea anyway)
1146   ///
1147   /// The return type should be T with all prior qualifiers minus the address
1148   /// space.
1149   QualType removeAddrSpaceQualType(QualType T) const;
1150 
1151   /// Apply Objective-C protocol qualifiers to the given type.
1152   /// \param allowOnPointerType specifies if we can apply protocol
1153   /// qualifiers on ObjCObjectPointerType. It can be set to true when
1154   /// constructing the canonical type of a Objective-C type parameter.
1155   QualType applyObjCProtocolQualifiers(QualType type,
1156       ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
1157       bool allowOnPointerType = false) const;
1158 
1159   /// Return the uniqued reference to the type for an Objective-C
1160   /// gc-qualified type.
1161   ///
1162   /// The resulting type has a union of the qualifiers from T and the gc
1163   /// attribute.
1164   QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
1165 
1166   /// Remove the existing address space on the type if it is a pointer size
1167   /// address space and return the type with qualifiers intact.
1168   QualType removePtrSizeAddrSpace(QualType T) const;
1169 
1170   /// Return the uniqued reference to the type for a \c restrict
1171   /// qualified type.
1172   ///
1173   /// The resulting type has a union of the qualifiers from \p T and
1174   /// \c restrict.
1175   QualType getRestrictType(QualType T) const {
1176     return T.withFastQualifiers(Qualifiers::Restrict);
1177   }
1178 
1179   /// Return the uniqued reference to the type for a \c volatile
1180   /// qualified type.
1181   ///
1182   /// The resulting type has a union of the qualifiers from \p T and
1183   /// \c volatile.
1184   QualType getVolatileType(QualType T) const {
1185     return T.withFastQualifiers(Qualifiers::Volatile);
1186   }
1187 
1188   /// Return the uniqued reference to the type for a \c const
1189   /// qualified type.
1190   ///
1191   /// The resulting type has a union of the qualifiers from \p T and \c const.
1192   ///
1193   /// It can be reasonably expected that this will always be equivalent to
1194   /// calling T.withConst().
1195   QualType getConstType(QualType T) const { return T.withConst(); }
1196 
1197   /// Change the ExtInfo on a function type.
1198   const FunctionType *adjustFunctionType(const FunctionType *Fn,
1199                                          FunctionType::ExtInfo EInfo);
1200 
1201   /// Adjust the given function result type.
1202   CanQualType getCanonicalFunctionResultType(QualType ResultType) const;
1203 
1204   /// Change the result type of a function type once it is deduced.
1205   void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType);
1206 
1207   /// Get a function type and produce the equivalent function type with the
1208   /// specified exception specification. Type sugar that can be present on a
1209   /// declaration of a function with an exception specification is permitted
1210   /// and preserved. Other type sugar (for instance, typedefs) is not.
1211   QualType getFunctionTypeWithExceptionSpec(
1212       QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI);
1213 
1214   /// Determine whether two function types are the same, ignoring
1215   /// exception specifications in cases where they're part of the type.
1216   bool hasSameFunctionTypeIgnoringExceptionSpec(QualType T, QualType U);
1217 
1218   /// Change the exception specification on a function once it is
1219   /// delay-parsed, instantiated, or computed.
1220   void adjustExceptionSpec(FunctionDecl *FD,
1221                            const FunctionProtoType::ExceptionSpecInfo &ESI,
1222                            bool AsWritten = false);
1223 
1224   /// Get a function type and produce the equivalent function type where
1225   /// pointer size address spaces in the return type and parameter tyeps are
1226   /// replaced with the default address space.
1227   QualType getFunctionTypeWithoutPtrSizes(QualType T);
1228 
1229   /// Determine whether two function types are the same, ignoring pointer sizes
1230   /// in the return type and parameter types.
1231   bool hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U);
1232 
1233   /// Return the uniqued reference to the type for a complex
1234   /// number with the specified element type.
1235   QualType getComplexType(QualType T) const;
1236   CanQualType getComplexType(CanQualType T) const {
1237     return CanQualType::CreateUnsafe(getComplexType((QualType) T));
1238   }
1239 
1240   /// Return the uniqued reference to the type for a pointer to
1241   /// the specified type.
1242   QualType getPointerType(QualType T) const;
1243   CanQualType getPointerType(CanQualType T) const {
1244     return CanQualType::CreateUnsafe(getPointerType((QualType) T));
1245   }
1246 
1247   /// Return the uniqued reference to a type adjusted from the original
1248   /// type to a new type.
1249   QualType getAdjustedType(QualType Orig, QualType New) const;
1250   CanQualType getAdjustedType(CanQualType Orig, CanQualType New) const {
1251     return CanQualType::CreateUnsafe(
1252         getAdjustedType((QualType)Orig, (QualType)New));
1253   }
1254 
1255   /// Return the uniqued reference to the decayed version of the given
1256   /// type.  Can only be called on array and function types which decay to
1257   /// pointer types.
1258   QualType getDecayedType(QualType T) const;
1259   CanQualType getDecayedType(CanQualType T) const {
1260     return CanQualType::CreateUnsafe(getDecayedType((QualType) T));
1261   }
1262 
1263   /// Return the uniqued reference to the atomic type for the specified
1264   /// type.
1265   QualType getAtomicType(QualType T) const;
1266 
1267   /// Return the uniqued reference to the type for a block of the
1268   /// specified type.
1269   QualType getBlockPointerType(QualType T) const;
1270 
1271   /// Gets the struct used to keep track of the descriptor for pointer to
1272   /// blocks.
1273   QualType getBlockDescriptorType() const;
1274 
1275   /// Return a read_only pipe type for the specified type.
1276   QualType getReadPipeType(QualType T) const;
1277 
1278   /// Return a write_only pipe type for the specified type.
1279   QualType getWritePipeType(QualType T) const;
1280 
1281   /// Gets the struct used to keep track of the extended descriptor for
1282   /// pointer to blocks.
1283   QualType getBlockDescriptorExtendedType() const;
1284 
1285   /// Map an AST Type to an OpenCLTypeKind enum value.
1286   TargetInfo::OpenCLTypeKind getOpenCLTypeKind(const Type *T) const;
1287 
1288   /// Get address space for OpenCL type.
1289   LangAS getOpenCLTypeAddrSpace(const Type *T) const;
1290 
1291   void setcudaConfigureCallDecl(FunctionDecl *FD) {
1292     cudaConfigureCallDecl = FD;
1293   }
1294 
1295   FunctionDecl *getcudaConfigureCallDecl() {
1296     return cudaConfigureCallDecl;
1297   }
1298 
1299   /// Returns true iff we need copy/dispose helpers for the given type.
1300   bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
1301 
1302   /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout
1303   /// is set to false in this case. If HasByrefExtendedLayout returns true,
1304   /// byref variable has extended lifetime.
1305   bool getByrefLifetime(QualType Ty,
1306                         Qualifiers::ObjCLifetime &Lifetime,
1307                         bool &HasByrefExtendedLayout) const;
1308 
1309   /// Return the uniqued reference to the type for an lvalue reference
1310   /// to the specified type.
1311   QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
1312     const;
1313 
1314   /// Return the uniqued reference to the type for an rvalue reference
1315   /// to the specified type.
1316   QualType getRValueReferenceType(QualType T) const;
1317 
1318   /// Return the uniqued reference to the type for a member pointer to
1319   /// the specified type in the specified class.
1320   ///
1321   /// The class \p Cls is a \c Type because it could be a dependent name.
1322   QualType getMemberPointerType(QualType T, const Type *Cls) const;
1323 
1324   /// Return a non-unique reference to the type for a variable array of
1325   /// the specified element type.
1326   QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
1327                                 ArrayType::ArraySizeModifier ASM,
1328                                 unsigned IndexTypeQuals,
1329                                 SourceRange Brackets) const;
1330 
1331   /// Return a non-unique reference to the type for a dependently-sized
1332   /// array of the specified element type.
1333   ///
1334   /// FIXME: We will need these to be uniqued, or at least comparable, at some
1335   /// point.
1336   QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
1337                                       ArrayType::ArraySizeModifier ASM,
1338                                       unsigned IndexTypeQuals,
1339                                       SourceRange Brackets) const;
1340 
1341   /// Return a unique reference to the type for an incomplete array of
1342   /// the specified element type.
1343   QualType getIncompleteArrayType(QualType EltTy,
1344                                   ArrayType::ArraySizeModifier ASM,
1345                                   unsigned IndexTypeQuals) const;
1346 
1347   /// Return the unique reference to the type for a constant array of
1348   /// the specified element type.
1349   QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
1350                                 const Expr *SizeExpr,
1351                                 ArrayType::ArraySizeModifier ASM,
1352                                 unsigned IndexTypeQuals) const;
1353 
1354   /// Return a type for a constant array for a string literal of the
1355   /// specified element type and length.
1356   QualType getStringLiteralArrayType(QualType EltTy, unsigned Length) const;
1357 
1358   /// Returns a vla type where known sizes are replaced with [*].
1359   QualType getVariableArrayDecayedType(QualType Ty) const;
1360 
1361   /// Return the unique reference to a vector type of the specified
1362   /// element type and size.
1363   ///
1364   /// \pre \p VectorType must be a built-in type.
1365   QualType getVectorType(QualType VectorType, unsigned NumElts,
1366                          VectorType::VectorKind VecKind) const;
1367   /// Return the unique reference to the type for a dependently sized vector of
1368   /// the specified element type.
1369   QualType getDependentVectorType(QualType VectorType, Expr *SizeExpr,
1370                                   SourceLocation AttrLoc,
1371                                   VectorType::VectorKind VecKind) const;
1372 
1373   /// Return the unique reference to an extended vector type
1374   /// of the specified element type and size.
1375   ///
1376   /// \pre \p VectorType must be a built-in type.
1377   QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
1378 
1379   /// \pre Return a non-unique reference to the type for a dependently-sized
1380   /// vector of the specified element type.
1381   ///
1382   /// FIXME: We will need these to be uniqued, or at least comparable, at some
1383   /// point.
1384   QualType getDependentSizedExtVectorType(QualType VectorType,
1385                                           Expr *SizeExpr,
1386                                           SourceLocation AttrLoc) const;
1387 
1388   QualType getDependentAddressSpaceType(QualType PointeeType,
1389                                         Expr *AddrSpaceExpr,
1390                                         SourceLocation AttrLoc) const;
1391 
1392   /// Return a K&R style C function type like 'int()'.
1393   QualType getFunctionNoProtoType(QualType ResultTy,
1394                                   const FunctionType::ExtInfo &Info) const;
1395 
1396   QualType getFunctionNoProtoType(QualType ResultTy) const {
1397     return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
1398   }
1399 
1400   /// Return a normal function type with a typed argument list.
1401   QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
1402                            const FunctionProtoType::ExtProtoInfo &EPI) const {
1403     return getFunctionTypeInternal(ResultTy, Args, EPI, false);
1404   }
1405 
1406   QualType adjustStringLiteralBaseType(QualType StrLTy) const;
1407 
1408 private:
1409   /// Return a normal function type with a typed argument list.
1410   QualType getFunctionTypeInternal(QualType ResultTy, ArrayRef<QualType> Args,
1411                                    const FunctionProtoType::ExtProtoInfo &EPI,
1412                                    bool OnlyWantCanonical) const;
1413 
1414 public:
1415   /// Return the unique reference to the type for the specified type
1416   /// declaration.
1417   QualType getTypeDeclType(const TypeDecl *Decl,
1418                            const TypeDecl *PrevDecl = nullptr) const {
1419     assert(Decl && "Passed null for Decl param");
1420     if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1421 
1422     if (PrevDecl) {
1423       assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
1424       Decl->TypeForDecl = PrevDecl->TypeForDecl;
1425       return QualType(PrevDecl->TypeForDecl, 0);
1426     }
1427 
1428     return getTypeDeclTypeSlow(Decl);
1429   }
1430 
1431   /// Return the unique reference to the type for the specified
1432   /// typedef-name decl.
1433   QualType getTypedefType(const TypedefNameDecl *Decl,
1434                           QualType Canon = QualType()) const;
1435 
1436   QualType getRecordType(const RecordDecl *Decl) const;
1437 
1438   QualType getEnumType(const EnumDecl *Decl) const;
1439 
1440   QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
1441 
1442   QualType getAttributedType(attr::Kind attrKind,
1443                              QualType modifiedType,
1444                              QualType equivalentType);
1445 
1446   QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
1447                                         QualType Replacement) const;
1448   QualType getSubstTemplateTypeParmPackType(
1449                                           const TemplateTypeParmType *Replaced,
1450                                             const TemplateArgument &ArgPack);
1451 
1452   QualType
1453   getTemplateTypeParmType(unsigned Depth, unsigned Index,
1454                           bool ParameterPack,
1455                           TemplateTypeParmDecl *ParmDecl = nullptr) const;
1456 
1457   QualType getTemplateSpecializationType(TemplateName T,
1458                                          ArrayRef<TemplateArgument> Args,
1459                                          QualType Canon = QualType()) const;
1460 
1461   QualType
1462   getCanonicalTemplateSpecializationType(TemplateName T,
1463                                          ArrayRef<TemplateArgument> Args) const;
1464 
1465   QualType getTemplateSpecializationType(TemplateName T,
1466                                          const TemplateArgumentListInfo &Args,
1467                                          QualType Canon = QualType()) const;
1468 
1469   TypeSourceInfo *
1470   getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
1471                                     const TemplateArgumentListInfo &Args,
1472                                     QualType Canon = QualType()) const;
1473 
1474   QualType getParenType(QualType NamedType) const;
1475 
1476   QualType getMacroQualifiedType(QualType UnderlyingTy,
1477                                  const IdentifierInfo *MacroII) const;
1478 
1479   QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
1480                              NestedNameSpecifier *NNS, QualType NamedType,
1481                              TagDecl *OwnedTagDecl = nullptr) const;
1482   QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
1483                                 NestedNameSpecifier *NNS,
1484                                 const IdentifierInfo *Name,
1485                                 QualType Canon = QualType()) const;
1486 
1487   QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1488                                                   NestedNameSpecifier *NNS,
1489                                                   const IdentifierInfo *Name,
1490                                     const TemplateArgumentListInfo &Args) const;
1491   QualType getDependentTemplateSpecializationType(
1492       ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
1493       const IdentifierInfo *Name, ArrayRef<TemplateArgument> Args) const;
1494 
1495   TemplateArgument getInjectedTemplateArg(NamedDecl *ParamDecl);
1496 
1497   /// Get a template argument list with one argument per template parameter
1498   /// in a template parameter list, such as for the injected class name of
1499   /// a class template.
1500   void getInjectedTemplateArgs(const TemplateParameterList *Params,
1501                                SmallVectorImpl<TemplateArgument> &Args);
1502 
1503   QualType getPackExpansionType(QualType Pattern,
1504                                 Optional<unsigned> NumExpansions);
1505 
1506   QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1507                                 ObjCInterfaceDecl *PrevDecl = nullptr) const;
1508 
1509   /// Legacy interface: cannot provide type arguments or __kindof.
1510   QualType getObjCObjectType(QualType Base,
1511                              ObjCProtocolDecl * const *Protocols,
1512                              unsigned NumProtocols) const;
1513 
1514   QualType getObjCObjectType(QualType Base,
1515                              ArrayRef<QualType> typeArgs,
1516                              ArrayRef<ObjCProtocolDecl *> protocols,
1517                              bool isKindOf) const;
1518 
1519   QualType getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
1520                                 ArrayRef<ObjCProtocolDecl *> protocols) const;
1521 
1522   bool ObjCObjectAdoptsQTypeProtocols(QualType QT, ObjCInterfaceDecl *Decl);
1523 
1524   /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
1525   /// QT's qualified-id protocol list adopt all protocols in IDecl's list
1526   /// of protocols.
1527   bool QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
1528                                             ObjCInterfaceDecl *IDecl);
1529 
1530   /// Return a ObjCObjectPointerType type for the given ObjCObjectType.
1531   QualType getObjCObjectPointerType(QualType OIT) const;
1532 
1533   /// GCC extension.
1534   QualType getTypeOfExprType(Expr *e) const;
1535   QualType getTypeOfType(QualType t) const;
1536 
1537   /// C++11 decltype.
1538   QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
1539 
1540   /// Unary type transforms
1541   QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
1542                                  UnaryTransformType::UTTKind UKind) const;
1543 
1544   /// C++11 deduced auto type.
1545   QualType getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
1546                        bool IsDependent, bool IsPack = false,
1547                        ConceptDecl *TypeConstraintConcept = nullptr,
1548                        ArrayRef<TemplateArgument> TypeConstraintArgs ={}) const;
1549 
1550   /// C++11 deduction pattern for 'auto' type.
1551   QualType getAutoDeductType() const;
1552 
1553   /// C++11 deduction pattern for 'auto &&' type.
1554   QualType getAutoRRefDeductType() const;
1555 
1556   /// C++17 deduced class template specialization type.
1557   QualType getDeducedTemplateSpecializationType(TemplateName Template,
1558                                                 QualType DeducedType,
1559                                                 bool IsDependent) const;
1560 
1561   /// Return the unique reference to the type for the specified TagDecl
1562   /// (struct/union/class/enum) decl.
1563   QualType getTagDeclType(const TagDecl *Decl) const;
1564 
1565   /// Return the unique type for "size_t" (C99 7.17), defined in
1566   /// <stddef.h>.
1567   ///
1568   /// The sizeof operator requires this (C99 6.5.3.4p4).
1569   CanQualType getSizeType() const;
1570 
1571   /// Return the unique signed counterpart of
1572   /// the integer type corresponding to size_t.
1573   CanQualType getSignedSizeType() const;
1574 
1575   /// Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
1576   /// <stdint.h>.
1577   CanQualType getIntMaxType() const;
1578 
1579   /// Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
1580   /// <stdint.h>.
1581   CanQualType getUIntMaxType() const;
1582 
1583   /// Return the unique wchar_t type available in C++ (and available as
1584   /// __wchar_t as a Microsoft extension).
1585   QualType getWCharType() const { return WCharTy; }
1586 
1587   /// Return the type of wide characters. In C++, this returns the
1588   /// unique wchar_t type. In C99, this returns a type compatible with the type
1589   /// defined in <stddef.h> as defined by the target.
1590   QualType getWideCharType() const { return WideCharTy; }
1591 
1592   /// Return the type of "signed wchar_t".
1593   ///
1594   /// Used when in C++, as a GCC extension.
1595   QualType getSignedWCharType() const;
1596 
1597   /// Return the type of "unsigned wchar_t".
1598   ///
1599   /// Used when in C++, as a GCC extension.
1600   QualType getUnsignedWCharType() const;
1601 
1602   /// In C99, this returns a type compatible with the type
1603   /// defined in <stddef.h> as defined by the target.
1604   QualType getWIntType() const { return WIntTy; }
1605 
1606   /// Return a type compatible with "intptr_t" (C99 7.18.1.4),
1607   /// as defined by the target.
1608   QualType getIntPtrType() const;
1609 
1610   /// Return a type compatible with "uintptr_t" (C99 7.18.1.4),
1611   /// as defined by the target.
1612   QualType getUIntPtrType() const;
1613 
1614   /// Return the unique type for "ptrdiff_t" (C99 7.17) defined in
1615   /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1616   QualType getPointerDiffType() const;
1617 
1618   /// Return the unique unsigned counterpart of "ptrdiff_t"
1619   /// integer type. The standard (C11 7.21.6.1p7) refers to this type
1620   /// in the definition of %tu format specifier.
1621   QualType getUnsignedPointerDiffType() const;
1622 
1623   /// Return the unique type for "pid_t" defined in
1624   /// <sys/types.h>. We need this to compute the correct type for vfork().
1625   QualType getProcessIDType() const;
1626 
1627   /// Return the C structure type used to represent constant CFStrings.
1628   QualType getCFConstantStringType() const;
1629 
1630   /// Returns the C struct type for objc_super
1631   QualType getObjCSuperType() const;
1632   void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
1633 
1634   /// Get the structure type used to representation CFStrings, or NULL
1635   /// if it hasn't yet been built.
1636   QualType getRawCFConstantStringType() const {
1637     if (CFConstantStringTypeDecl)
1638       return getTypedefType(CFConstantStringTypeDecl);
1639     return QualType();
1640   }
1641   void setCFConstantStringType(QualType T);
1642   TypedefDecl *getCFConstantStringDecl() const;
1643   RecordDecl *getCFConstantStringTagDecl() const;
1644 
1645   // This setter/getter represents the ObjC type for an NSConstantString.
1646   void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
1647   QualType getObjCConstantStringInterface() const {
1648     return ObjCConstantStringType;
1649   }
1650 
1651   QualType getObjCNSStringType() const {
1652     return ObjCNSStringType;
1653   }
1654 
1655   void setObjCNSStringType(QualType T) {
1656     ObjCNSStringType = T;
1657   }
1658 
1659   /// Retrieve the type that \c id has been defined to, which may be
1660   /// different from the built-in \c id if \c id has been typedef'd.
1661   QualType getObjCIdRedefinitionType() const {
1662     if (ObjCIdRedefinitionType.isNull())
1663       return getObjCIdType();
1664     return ObjCIdRedefinitionType;
1665   }
1666 
1667   /// Set the user-written type that redefines \c id.
1668   void setObjCIdRedefinitionType(QualType RedefType) {
1669     ObjCIdRedefinitionType = RedefType;
1670   }
1671 
1672   /// Retrieve the type that \c Class has been defined to, which may be
1673   /// different from the built-in \c Class if \c Class has been typedef'd.
1674   QualType getObjCClassRedefinitionType() const {
1675     if (ObjCClassRedefinitionType.isNull())
1676       return getObjCClassType();
1677     return ObjCClassRedefinitionType;
1678   }
1679 
1680   /// Set the user-written type that redefines 'SEL'.
1681   void setObjCClassRedefinitionType(QualType RedefType) {
1682     ObjCClassRedefinitionType = RedefType;
1683   }
1684 
1685   /// Retrieve the type that 'SEL' has been defined to, which may be
1686   /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
1687   QualType getObjCSelRedefinitionType() const {
1688     if (ObjCSelRedefinitionType.isNull())
1689       return getObjCSelType();
1690     return ObjCSelRedefinitionType;
1691   }
1692 
1693   /// Set the user-written type that redefines 'SEL'.
1694   void setObjCSelRedefinitionType(QualType RedefType) {
1695     ObjCSelRedefinitionType = RedefType;
1696   }
1697 
1698   /// Retrieve the identifier 'NSObject'.
1699   IdentifierInfo *getNSObjectName() const {
1700     if (!NSObjectName) {
1701       NSObjectName = &Idents.get("NSObject");
1702     }
1703 
1704     return NSObjectName;
1705   }
1706 
1707   /// Retrieve the identifier 'NSCopying'.
1708   IdentifierInfo *getNSCopyingName() {
1709     if (!NSCopyingName) {
1710       NSCopyingName = &Idents.get("NSCopying");
1711     }
1712 
1713     return NSCopyingName;
1714   }
1715 
1716   CanQualType getNSUIntegerType() const {
1717     assert(Target && "Expected target to be initialized");
1718     const llvm::Triple &T = Target->getTriple();
1719     // Windows is LLP64 rather than LP64
1720     if (T.isOSWindows() && T.isArch64Bit())
1721       return UnsignedLongLongTy;
1722     return UnsignedLongTy;
1723   }
1724 
1725   CanQualType getNSIntegerType() const {
1726     assert(Target && "Expected target to be initialized");
1727     const llvm::Triple &T = Target->getTriple();
1728     // Windows is LLP64 rather than LP64
1729     if (T.isOSWindows() && T.isArch64Bit())
1730       return LongLongTy;
1731     return LongTy;
1732   }
1733 
1734   /// Retrieve the identifier 'bool'.
1735   IdentifierInfo *getBoolName() const {
1736     if (!BoolName)
1737       BoolName = &Idents.get("bool");
1738     return BoolName;
1739   }
1740 
1741   IdentifierInfo *getMakeIntegerSeqName() const {
1742     if (!MakeIntegerSeqName)
1743       MakeIntegerSeqName = &Idents.get("__make_integer_seq");
1744     return MakeIntegerSeqName;
1745   }
1746 
1747   IdentifierInfo *getTypePackElementName() const {
1748     if (!TypePackElementName)
1749       TypePackElementName = &Idents.get("__type_pack_element");
1750     return TypePackElementName;
1751   }
1752 
1753   /// Retrieve the Objective-C "instancetype" type, if already known;
1754   /// otherwise, returns a NULL type;
1755   QualType getObjCInstanceType() {
1756     return getTypeDeclType(getObjCInstanceTypeDecl());
1757   }
1758 
1759   /// Retrieve the typedef declaration corresponding to the Objective-C
1760   /// "instancetype" type.
1761   TypedefDecl *getObjCInstanceTypeDecl();
1762 
1763   /// Set the type for the C FILE type.
1764   void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1765 
1766   /// Retrieve the C FILE type.
1767   QualType getFILEType() const {
1768     if (FILEDecl)
1769       return getTypeDeclType(FILEDecl);
1770     return QualType();
1771   }
1772 
1773   /// Set the type for the C jmp_buf type.
1774   void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1775     this->jmp_bufDecl = jmp_bufDecl;
1776   }
1777 
1778   /// Retrieve the C jmp_buf type.
1779   QualType getjmp_bufType() const {
1780     if (jmp_bufDecl)
1781       return getTypeDeclType(jmp_bufDecl);
1782     return QualType();
1783   }
1784 
1785   /// Set the type for the C sigjmp_buf type.
1786   void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1787     this->sigjmp_bufDecl = sigjmp_bufDecl;
1788   }
1789 
1790   /// Retrieve the C sigjmp_buf type.
1791   QualType getsigjmp_bufType() const {
1792     if (sigjmp_bufDecl)
1793       return getTypeDeclType(sigjmp_bufDecl);
1794     return QualType();
1795   }
1796 
1797   /// Set the type for the C ucontext_t type.
1798   void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1799     this->ucontext_tDecl = ucontext_tDecl;
1800   }
1801 
1802   /// Retrieve the C ucontext_t type.
1803   QualType getucontext_tType() const {
1804     if (ucontext_tDecl)
1805       return getTypeDeclType(ucontext_tDecl);
1806     return QualType();
1807   }
1808 
1809   /// The result type of logical operations, '<', '>', '!=', etc.
1810   QualType getLogicalOperationType() const {
1811     return getLangOpts().CPlusPlus ? BoolTy : IntTy;
1812   }
1813 
1814   /// Emit the Objective-CC type encoding for the given type \p T into
1815   /// \p S.
1816   ///
1817   /// If \p Field is specified then record field names are also encoded.
1818   void getObjCEncodingForType(QualType T, std::string &S,
1819                               const FieldDecl *Field=nullptr,
1820                               QualType *NotEncodedT=nullptr) const;
1821 
1822   /// Emit the Objective-C property type encoding for the given
1823   /// type \p T into \p S.
1824   void getObjCEncodingForPropertyType(QualType T, std::string &S) const;
1825 
1826   void getLegacyIntegralTypeEncoding(QualType &t) const;
1827 
1828   /// Put the string version of the type qualifiers \p QT into \p S.
1829   void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1830                                        std::string &S) const;
1831 
1832   /// Emit the encoded type for the function \p Decl into \p S.
1833   ///
1834   /// This is in the same format as Objective-C method encodings.
1835   ///
1836   /// \returns true if an error occurred (e.g., because one of the parameter
1837   /// types is incomplete), false otherwise.
1838   std::string getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const;
1839 
1840   /// Emit the encoded type for the method declaration \p Decl into
1841   /// \p S.
1842   std::string getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
1843                                            bool Extended = false) const;
1844 
1845   /// Return the encoded type for this block declaration.
1846   std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
1847 
1848   /// getObjCEncodingForPropertyDecl - Return the encoded type for
1849   /// this method declaration. If non-NULL, Container must be either
1850   /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
1851   /// only be NULL when getting encodings for protocol properties.
1852   std::string getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1853                                              const Decl *Container) const;
1854 
1855   bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
1856                                       ObjCProtocolDecl *rProto) const;
1857 
1858   ObjCPropertyImplDecl *getObjCPropertyImplDeclForPropertyDecl(
1859                                                   const ObjCPropertyDecl *PD,
1860                                                   const Decl *Container) const;
1861 
1862   /// Return the size of type \p T for Objective-C encoding purpose,
1863   /// in characters.
1864   CharUnits getObjCEncodingTypeSize(QualType T) const;
1865 
1866   /// Retrieve the typedef corresponding to the predefined \c id type
1867   /// in Objective-C.
1868   TypedefDecl *getObjCIdDecl() const;
1869 
1870   /// Represents the Objective-CC \c id type.
1871   ///
1872   /// This is set up lazily, by Sema.  \c id is always a (typedef for a)
1873   /// pointer type, a pointer to a struct.
1874   QualType getObjCIdType() const {
1875     return getTypeDeclType(getObjCIdDecl());
1876   }
1877 
1878   /// Retrieve the typedef corresponding to the predefined 'SEL' type
1879   /// in Objective-C.
1880   TypedefDecl *getObjCSelDecl() const;
1881 
1882   /// Retrieve the type that corresponds to the predefined Objective-C
1883   /// 'SEL' type.
1884   QualType getObjCSelType() const {
1885     return getTypeDeclType(getObjCSelDecl());
1886   }
1887 
1888   /// Retrieve the typedef declaration corresponding to the predefined
1889   /// Objective-C 'Class' type.
1890   TypedefDecl *getObjCClassDecl() const;
1891 
1892   /// Represents the Objective-C \c Class type.
1893   ///
1894   /// This is set up lazily, by Sema.  \c Class is always a (typedef for a)
1895   /// pointer type, a pointer to a struct.
1896   QualType getObjCClassType() const {
1897     return getTypeDeclType(getObjCClassDecl());
1898   }
1899 
1900   /// Retrieve the Objective-C class declaration corresponding to
1901   /// the predefined \c Protocol class.
1902   ObjCInterfaceDecl *getObjCProtocolDecl() const;
1903 
1904   /// Retrieve declaration of 'BOOL' typedef
1905   TypedefDecl *getBOOLDecl() const {
1906     return BOOLDecl;
1907   }
1908 
1909   /// Save declaration of 'BOOL' typedef
1910   void setBOOLDecl(TypedefDecl *TD) {
1911     BOOLDecl = TD;
1912   }
1913 
1914   /// type of 'BOOL' type.
1915   QualType getBOOLType() const {
1916     return getTypeDeclType(getBOOLDecl());
1917   }
1918 
1919   /// Retrieve the type of the Objective-C \c Protocol class.
1920   QualType getObjCProtoType() const {
1921     return getObjCInterfaceType(getObjCProtocolDecl());
1922   }
1923 
1924   /// Retrieve the C type declaration corresponding to the predefined
1925   /// \c __builtin_va_list type.
1926   TypedefDecl *getBuiltinVaListDecl() const;
1927 
1928   /// Retrieve the type of the \c __builtin_va_list type.
1929   QualType getBuiltinVaListType() const {
1930     return getTypeDeclType(getBuiltinVaListDecl());
1931   }
1932 
1933   /// Retrieve the C type declaration corresponding to the predefined
1934   /// \c __va_list_tag type used to help define the \c __builtin_va_list type
1935   /// for some targets.
1936   Decl *getVaListTagDecl() const;
1937 
1938   /// Retrieve the C type declaration corresponding to the predefined
1939   /// \c __builtin_ms_va_list type.
1940   TypedefDecl *getBuiltinMSVaListDecl() const;
1941 
1942   /// Retrieve the type of the \c __builtin_ms_va_list type.
1943   QualType getBuiltinMSVaListType() const {
1944     return getTypeDeclType(getBuiltinMSVaListDecl());
1945   }
1946 
1947   /// Return whether a declaration to a builtin is allowed to be
1948   /// overloaded/redeclared.
1949   bool canBuiltinBeRedeclared(const FunctionDecl *) const;
1950 
1951   /// Return a type with additional \c const, \c volatile, or
1952   /// \c restrict qualifiers.
1953   QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
1954     return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
1955   }
1956 
1957   /// Un-split a SplitQualType.
1958   QualType getQualifiedType(SplitQualType split) const {
1959     return getQualifiedType(split.Ty, split.Quals);
1960   }
1961 
1962   /// Return a type with additional qualifiers.
1963   QualType getQualifiedType(QualType T, Qualifiers Qs) const {
1964     if (!Qs.hasNonFastQualifiers())
1965       return T.withFastQualifiers(Qs.getFastQualifiers());
1966     QualifierCollector Qc(Qs);
1967     const Type *Ptr = Qc.strip(T);
1968     return getExtQualType(Ptr, Qc);
1969   }
1970 
1971   /// Return a type with additional qualifiers.
1972   QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
1973     if (!Qs.hasNonFastQualifiers())
1974       return QualType(T, Qs.getFastQualifiers());
1975     return getExtQualType(T, Qs);
1976   }
1977 
1978   /// Return a type with the given lifetime qualifier.
1979   ///
1980   /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
1981   QualType getLifetimeQualifiedType(QualType type,
1982                                     Qualifiers::ObjCLifetime lifetime) {
1983     assert(type.getObjCLifetime() == Qualifiers::OCL_None);
1984     assert(lifetime != Qualifiers::OCL_None);
1985 
1986     Qualifiers qs;
1987     qs.addObjCLifetime(lifetime);
1988     return getQualifiedType(type, qs);
1989   }
1990 
1991   /// getUnqualifiedObjCPointerType - Returns version of
1992   /// Objective-C pointer type with lifetime qualifier removed.
1993   QualType getUnqualifiedObjCPointerType(QualType type) const {
1994     if (!type.getTypePtr()->isObjCObjectPointerType() ||
1995         !type.getQualifiers().hasObjCLifetime())
1996       return type;
1997     Qualifiers Qs = type.getQualifiers();
1998     Qs.removeObjCLifetime();
1999     return getQualifiedType(type.getUnqualifiedType(), Qs);
2000   }
2001 
2002   unsigned char getFixedPointScale(QualType Ty) const;
2003   unsigned char getFixedPointIBits(QualType Ty) const;
2004   FixedPointSemantics getFixedPointSemantics(QualType Ty) const;
2005   APFixedPoint getFixedPointMax(QualType Ty) const;
2006   APFixedPoint getFixedPointMin(QualType Ty) const;
2007 
2008   DeclarationNameInfo getNameForTemplate(TemplateName Name,
2009                                          SourceLocation NameLoc) const;
2010 
2011   TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
2012                                          UnresolvedSetIterator End) const;
2013   TemplateName getAssumedTemplateName(DeclarationName Name) const;
2014 
2015   TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
2016                                         bool TemplateKeyword,
2017                                         TemplateDecl *Template) const;
2018 
2019   TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
2020                                         const IdentifierInfo *Name) const;
2021   TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
2022                                         OverloadedOperatorKind Operator) const;
2023   TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
2024                                             TemplateName replacement) const;
2025   TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
2026                                         const TemplateArgument &ArgPack) const;
2027 
2028   enum GetBuiltinTypeError {
2029     /// No error
2030     GE_None,
2031 
2032     /// Missing a type
2033     GE_Missing_type,
2034 
2035     /// Missing a type from <stdio.h>
2036     GE_Missing_stdio,
2037 
2038     /// Missing a type from <setjmp.h>
2039     GE_Missing_setjmp,
2040 
2041     /// Missing a type from <ucontext.h>
2042     GE_Missing_ucontext
2043   };
2044 
2045   /// Return the type for the specified builtin.
2046   ///
2047   /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
2048   /// arguments to the builtin that are required to be integer constant
2049   /// expressions.
2050   QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
2051                           unsigned *IntegerConstantArgs = nullptr) const;
2052 
2053   /// Types and expressions required to build C++2a three-way comparisons
2054   /// using operator<=>, including the values return by builtin <=> operators.
2055   ComparisonCategories CompCategories;
2056 
2057 private:
2058   CanQualType getFromTargetType(unsigned Type) const;
2059   TypeInfo getTypeInfoImpl(const Type *T) const;
2060 
2061   //===--------------------------------------------------------------------===//
2062   //                         Type Predicates.
2063   //===--------------------------------------------------------------------===//
2064 
2065 public:
2066   /// Return one of the GCNone, Weak or Strong Objective-C garbage
2067   /// collection attributes.
2068   Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
2069 
2070   /// Return true if the given vector types are of the same unqualified
2071   /// type or if they are equivalent to the same GCC vector type.
2072   ///
2073   /// \note This ignores whether they are target-specific (AltiVec or Neon)
2074   /// types.
2075   bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
2076 
2077   /// Return true if the type has been explicitly qualified with ObjC ownership.
2078   /// A type may be implicitly qualified with ownership under ObjC ARC, and in
2079   /// some cases the compiler treats these differently.
2080   bool hasDirectOwnershipQualifier(QualType Ty) const;
2081 
2082   /// Return true if this is an \c NSObject object with its \c NSObject
2083   /// attribute set.
2084   static bool isObjCNSObjectType(QualType Ty) {
2085     return Ty->isObjCNSObjectType();
2086   }
2087 
2088   //===--------------------------------------------------------------------===//
2089   //                         Type Sizing and Analysis
2090   //===--------------------------------------------------------------------===//
2091 
2092   /// Return the APFloat 'semantics' for the specified scalar floating
2093   /// point type.
2094   const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
2095 
2096   /// Get the size and alignment of the specified complete type in bits.
2097   TypeInfo getTypeInfo(const Type *T) const;
2098   TypeInfo getTypeInfo(QualType T) const { return getTypeInfo(T.getTypePtr()); }
2099 
2100   /// Get default simd alignment of the specified complete type in bits.
2101   unsigned getOpenMPDefaultSimdAlign(QualType T) const;
2102 
2103   /// Return the size of the specified (complete) type \p T, in bits.
2104   uint64_t getTypeSize(QualType T) const { return getTypeInfo(T).Width; }
2105   uint64_t getTypeSize(const Type *T) const { return getTypeInfo(T).Width; }
2106 
2107   /// Return the size of the character type, in bits.
2108   uint64_t getCharWidth() const {
2109     return getTypeSize(CharTy);
2110   }
2111 
2112   /// Convert a size in bits to a size in characters.
2113   CharUnits toCharUnitsFromBits(int64_t BitSize) const;
2114 
2115   /// Convert a size in characters to a size in bits.
2116   int64_t toBits(CharUnits CharSize) const;
2117 
2118   /// Return the size of the specified (complete) type \p T, in
2119   /// characters.
2120   CharUnits getTypeSizeInChars(QualType T) const;
2121   CharUnits getTypeSizeInChars(const Type *T) const;
2122 
2123   Optional<CharUnits> getTypeSizeInCharsIfKnown(QualType Ty) const {
2124     if (Ty->isIncompleteType() || Ty->isDependentType())
2125       return None;
2126     return getTypeSizeInChars(Ty);
2127   }
2128 
2129   Optional<CharUnits> getTypeSizeInCharsIfKnown(const Type *Ty) const {
2130     return getTypeSizeInCharsIfKnown(QualType(Ty, 0));
2131   }
2132 
2133   /// Return the ABI-specified alignment of a (complete) type \p T, in
2134   /// bits.
2135   unsigned getTypeAlign(QualType T) const { return getTypeInfo(T).Align; }
2136   unsigned getTypeAlign(const Type *T) const { return getTypeInfo(T).Align; }
2137 
2138   /// Return the ABI-specified natural alignment of a (complete) type \p T,
2139   /// before alignment adjustments, in bits.
2140   ///
2141   /// This alignment is curently used only by ARM and AArch64 when passing
2142   /// arguments of a composite type.
2143   unsigned getTypeUnadjustedAlign(QualType T) const {
2144     return getTypeUnadjustedAlign(T.getTypePtr());
2145   }
2146   unsigned getTypeUnadjustedAlign(const Type *T) const;
2147 
2148   /// Return the ABI-specified alignment of a type, in bits, or 0 if
2149   /// the type is incomplete and we cannot determine the alignment (for
2150   /// example, from alignment attributes).
2151   unsigned getTypeAlignIfKnown(QualType T) const;
2152 
2153   /// Return the ABI-specified alignment of a (complete) type \p T, in
2154   /// characters.
2155   CharUnits getTypeAlignInChars(QualType T) const;
2156   CharUnits getTypeAlignInChars(const Type *T) const;
2157 
2158   /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a type,
2159   /// in characters, before alignment adjustments. This method does not work on
2160   /// incomplete types.
2161   CharUnits getTypeUnadjustedAlignInChars(QualType T) const;
2162   CharUnits getTypeUnadjustedAlignInChars(const Type *T) const;
2163 
2164   // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
2165   // type is a record, its data size is returned.
2166   std::pair<CharUnits, CharUnits> getTypeInfoDataSizeInChars(QualType T) const;
2167 
2168   std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T) const;
2169   std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T) const;
2170 
2171   /// Determine if the alignment the type has was required using an
2172   /// alignment attribute.
2173   bool isAlignmentRequired(const Type *T) const;
2174   bool isAlignmentRequired(QualType T) const;
2175 
2176   /// Return the "preferred" alignment of the specified type \p T for
2177   /// the current target, in bits.
2178   ///
2179   /// This can be different than the ABI alignment in cases where it is
2180   /// beneficial for performance to overalign a data type.
2181   unsigned getPreferredTypeAlign(const Type *T) const;
2182 
2183   /// Return the default alignment for __attribute__((aligned)) on
2184   /// this target, to be used if no alignment value is specified.
2185   unsigned getTargetDefaultAlignForAttributeAligned() const;
2186 
2187   /// Return the alignment in bits that should be given to a
2188   /// global variable with type \p T.
2189   unsigned getAlignOfGlobalVar(QualType T) const;
2190 
2191   /// Return the alignment in characters that should be given to a
2192   /// global variable with type \p T.
2193   CharUnits getAlignOfGlobalVarInChars(QualType T) const;
2194 
2195   /// Return a conservative estimate of the alignment of the specified
2196   /// decl \p D.
2197   ///
2198   /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
2199   /// alignment.
2200   ///
2201   /// If \p ForAlignof, references are treated like their underlying type
2202   /// and  large arrays don't get any special treatment. If not \p ForAlignof
2203   /// it computes the value expected by CodeGen: references are treated like
2204   /// pointers and large arrays get extra alignment.
2205   CharUnits getDeclAlign(const Decl *D, bool ForAlignof = false) const;
2206 
2207   /// Return the alignment (in bytes) of the thrown exception object. This is
2208   /// only meaningful for targets that allocate C++ exceptions in a system
2209   /// runtime, such as those using the Itanium C++ ABI.
2210   CharUnits getExnObjectAlignment() const {
2211     return toCharUnitsFromBits(Target->getExnObjectAlignment());
2212   }
2213 
2214   /// Get or compute information about the layout of the specified
2215   /// record (struct/union/class) \p D, which indicates its size and field
2216   /// position information.
2217   const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
2218 
2219   /// Get or compute information about the layout of the specified
2220   /// Objective-C interface.
2221   const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
2222     const;
2223 
2224   void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
2225                         bool Simple = false) const;
2226 
2227   /// Get or compute information about the layout of the specified
2228   /// Objective-C implementation.
2229   ///
2230   /// This may differ from the interface if synthesized ivars are present.
2231   const ASTRecordLayout &
2232   getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
2233 
2234   /// Get our current best idea for the key function of the
2235   /// given record decl, or nullptr if there isn't one.
2236   ///
2237   /// The key function is, according to the Itanium C++ ABI section 5.2.3:
2238   ///   ...the first non-pure virtual function that is not inline at the
2239   ///   point of class definition.
2240   ///
2241   /// Other ABIs use the same idea.  However, the ARM C++ ABI ignores
2242   /// virtual functions that are defined 'inline', which means that
2243   /// the result of this computation can change.
2244   const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
2245 
2246   /// Observe that the given method cannot be a key function.
2247   /// Checks the key-function cache for the method's class and clears it
2248   /// if matches the given declaration.
2249   ///
2250   /// This is used in ABIs where out-of-line definitions marked
2251   /// inline are not considered to be key functions.
2252   ///
2253   /// \param method should be the declaration from the class definition
2254   void setNonKeyFunction(const CXXMethodDecl *method);
2255 
2256   /// Loading virtual member pointers using the virtual inheritance model
2257   /// always results in an adjustment using the vbtable even if the index is
2258   /// zero.
2259   ///
2260   /// This is usually OK because the first slot in the vbtable points
2261   /// backwards to the top of the MDC.  However, the MDC might be reusing a
2262   /// vbptr from an nv-base.  In this case, the first slot in the vbtable
2263   /// points to the start of the nv-base which introduced the vbptr and *not*
2264   /// the MDC.  Modify the NonVirtualBaseAdjustment to account for this.
2265   CharUnits getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const;
2266 
2267   /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
2268   uint64_t getFieldOffset(const ValueDecl *FD) const;
2269 
2270   /// Get the offset of an ObjCIvarDecl in bits.
2271   uint64_t lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
2272                                 const ObjCImplementationDecl *ID,
2273                                 const ObjCIvarDecl *Ivar) const;
2274 
2275   bool isNearlyEmpty(const CXXRecordDecl *RD) const;
2276 
2277   VTableContextBase *getVTableContext();
2278 
2279   /// If \p T is null pointer, assume the target in ASTContext.
2280   MangleContext *createMangleContext(const TargetInfo *T = nullptr);
2281 
2282   void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
2283                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
2284 
2285   unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
2286   void CollectInheritedProtocols(const Decl *CDecl,
2287                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
2288 
2289   /// Return true if the specified type has unique object representations
2290   /// according to (C++17 [meta.unary.prop]p9)
2291   bool hasUniqueObjectRepresentations(QualType Ty) const;
2292 
2293   //===--------------------------------------------------------------------===//
2294   //                            Type Operators
2295   //===--------------------------------------------------------------------===//
2296 
2297   /// Return the canonical (structural) type corresponding to the
2298   /// specified potentially non-canonical type \p T.
2299   ///
2300   /// The non-canonical version of a type may have many "decorated" versions of
2301   /// types.  Decorators can include typedefs, 'typeof' operators, etc. The
2302   /// returned type is guaranteed to be free of any of these, allowing two
2303   /// canonical types to be compared for exact equality with a simple pointer
2304   /// comparison.
2305   CanQualType getCanonicalType(QualType T) const {
2306     return CanQualType::CreateUnsafe(T.getCanonicalType());
2307   }
2308 
2309   const Type *getCanonicalType(const Type *T) const {
2310     return T->getCanonicalTypeInternal().getTypePtr();
2311   }
2312 
2313   /// Return the canonical parameter type corresponding to the specific
2314   /// potentially non-canonical one.
2315   ///
2316   /// Qualifiers are stripped off, functions are turned into function
2317   /// pointers, and arrays decay one level into pointers.
2318   CanQualType getCanonicalParamType(QualType T) const;
2319 
2320   /// Determine whether the given types \p T1 and \p T2 are equivalent.
2321   bool hasSameType(QualType T1, QualType T2) const {
2322     return getCanonicalType(T1) == getCanonicalType(T2);
2323   }
2324   bool hasSameType(const Type *T1, const Type *T2) const {
2325     return getCanonicalType(T1) == getCanonicalType(T2);
2326   }
2327 
2328   /// Return this type as a completely-unqualified array type,
2329   /// capturing the qualifiers in \p Quals.
2330   ///
2331   /// This will remove the minimal amount of sugaring from the types, similar
2332   /// to the behavior of QualType::getUnqualifiedType().
2333   ///
2334   /// \param T is the qualified type, which may be an ArrayType
2335   ///
2336   /// \param Quals will receive the full set of qualifiers that were
2337   /// applied to the array.
2338   ///
2339   /// \returns if this is an array type, the completely unqualified array type
2340   /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
2341   QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
2342 
2343   /// Determine whether the given types are equivalent after
2344   /// cvr-qualifiers have been removed.
2345   bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
2346     return getCanonicalType(T1).getTypePtr() ==
2347            getCanonicalType(T2).getTypePtr();
2348   }
2349 
2350   bool hasSameNullabilityTypeQualifier(QualType SubT, QualType SuperT,
2351                                        bool IsParam) const {
2352     auto SubTnullability = SubT->getNullability(*this);
2353     auto SuperTnullability = SuperT->getNullability(*this);
2354     if (SubTnullability.hasValue() == SuperTnullability.hasValue()) {
2355       // Neither has nullability; return true
2356       if (!SubTnullability)
2357         return true;
2358       // Both have nullability qualifier.
2359       if (*SubTnullability == *SuperTnullability ||
2360           *SubTnullability == NullabilityKind::Unspecified ||
2361           *SuperTnullability == NullabilityKind::Unspecified)
2362         return true;
2363 
2364       if (IsParam) {
2365         // Ok for the superclass method parameter to be "nonnull" and the subclass
2366         // method parameter to be "nullable"
2367         return (*SuperTnullability == NullabilityKind::NonNull &&
2368                 *SubTnullability == NullabilityKind::Nullable);
2369       }
2370       else {
2371         // For the return type, it's okay for the superclass method to specify
2372         // "nullable" and the subclass method specify "nonnull"
2373         return (*SuperTnullability == NullabilityKind::Nullable &&
2374                 *SubTnullability == NullabilityKind::NonNull);
2375       }
2376     }
2377     return true;
2378   }
2379 
2380   bool ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
2381                            const ObjCMethodDecl *MethodImp);
2382 
2383   bool UnwrapSimilarTypes(QualType &T1, QualType &T2);
2384   bool UnwrapSimilarArrayTypes(QualType &T1, QualType &T2);
2385 
2386   /// Determine if two types are similar, according to the C++ rules. That is,
2387   /// determine if they are the same other than qualifiers on the initial
2388   /// sequence of pointer / pointer-to-member / array (and in Clang, object
2389   /// pointer) types and their element types.
2390   ///
2391   /// Clang offers a number of qualifiers in addition to the C++ qualifiers;
2392   /// those qualifiers are also ignored in the 'similarity' check.
2393   bool hasSimilarType(QualType T1, QualType T2);
2394 
2395   /// Determine if two types are similar, ignoring only CVR qualifiers.
2396   bool hasCvrSimilarType(QualType T1, QualType T2);
2397 
2398   /// Retrieves the "canonical" nested name specifier for a
2399   /// given nested name specifier.
2400   ///
2401   /// The canonical nested name specifier is a nested name specifier
2402   /// that uniquely identifies a type or namespace within the type
2403   /// system. For example, given:
2404   ///
2405   /// \code
2406   /// namespace N {
2407   ///   struct S {
2408   ///     template<typename T> struct X { typename T* type; };
2409   ///   };
2410   /// }
2411   ///
2412   /// template<typename T> struct Y {
2413   ///   typename N::S::X<T>::type member;
2414   /// };
2415   /// \endcode
2416   ///
2417   /// Here, the nested-name-specifier for N::S::X<T>:: will be
2418   /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
2419   /// by declarations in the type system and the canonical type for
2420   /// the template type parameter 'T' is template-param-0-0.
2421   NestedNameSpecifier *
2422   getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
2423 
2424   /// Retrieves the default calling convention for the current target.
2425   CallingConv getDefaultCallingConvention(bool IsVariadic,
2426                                           bool IsCXXMethod,
2427                                           bool IsBuiltin = false) const;
2428 
2429   /// Retrieves the "canonical" template name that refers to a
2430   /// given template.
2431   ///
2432   /// The canonical template name is the simplest expression that can
2433   /// be used to refer to a given template. For most templates, this
2434   /// expression is just the template declaration itself. For example,
2435   /// the template std::vector can be referred to via a variety of
2436   /// names---std::vector, \::std::vector, vector (if vector is in
2437   /// scope), etc.---but all of these names map down to the same
2438   /// TemplateDecl, which is used to form the canonical template name.
2439   ///
2440   /// Dependent template names are more interesting. Here, the
2441   /// template name could be something like T::template apply or
2442   /// std::allocator<T>::template rebind, where the nested name
2443   /// specifier itself is dependent. In this case, the canonical
2444   /// template name uses the shortest form of the dependent
2445   /// nested-name-specifier, which itself contains all canonical
2446   /// types, values, and templates.
2447   TemplateName getCanonicalTemplateName(TemplateName Name) const;
2448 
2449   /// Determine whether the given template names refer to the same
2450   /// template.
2451   bool hasSameTemplateName(TemplateName X, TemplateName Y);
2452 
2453   /// Retrieve the "canonical" template argument.
2454   ///
2455   /// The canonical template argument is the simplest template argument
2456   /// (which may be a type, value, expression, or declaration) that
2457   /// expresses the value of the argument.
2458   TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
2459     const;
2460 
2461   /// Type Query functions.  If the type is an instance of the specified class,
2462   /// return the Type pointer for the underlying maximally pretty type.  This
2463   /// is a member of ASTContext because this may need to do some amount of
2464   /// canonicalization, e.g. to move type qualifiers into the element type.
2465   const ArrayType *getAsArrayType(QualType T) const;
2466   const ConstantArrayType *getAsConstantArrayType(QualType T) const {
2467     return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
2468   }
2469   const VariableArrayType *getAsVariableArrayType(QualType T) const {
2470     return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
2471   }
2472   const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
2473     return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
2474   }
2475   const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
2476     const {
2477     return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
2478   }
2479 
2480   /// Return the innermost element type of an array type.
2481   ///
2482   /// For example, will return "int" for int[m][n]
2483   QualType getBaseElementType(const ArrayType *VAT) const;
2484 
2485   /// Return the innermost element type of a type (which needn't
2486   /// actually be an array type).
2487   QualType getBaseElementType(QualType QT) const;
2488 
2489   /// Return number of constant array elements.
2490   uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
2491 
2492   /// Perform adjustment on the parameter type of a function.
2493   ///
2494   /// This routine adjusts the given parameter type @p T to the actual
2495   /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
2496   /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
2497   QualType getAdjustedParameterType(QualType T) const;
2498 
2499   /// Retrieve the parameter type as adjusted for use in the signature
2500   /// of a function, decaying array and function types and removing top-level
2501   /// cv-qualifiers.
2502   QualType getSignatureParameterType(QualType T) const;
2503 
2504   QualType getExceptionObjectType(QualType T) const;
2505 
2506   /// Return the properly qualified result of decaying the specified
2507   /// array type to a pointer.
2508   ///
2509   /// This operation is non-trivial when handling typedefs etc.  The canonical
2510   /// type of \p T must be an array type, this returns a pointer to a properly
2511   /// qualified element of the array.
2512   ///
2513   /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2514   QualType getArrayDecayedType(QualType T) const;
2515 
2516   /// Return the type that \p PromotableType will promote to: C99
2517   /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
2518   QualType getPromotedIntegerType(QualType PromotableType) const;
2519 
2520   /// Recurses in pointer/array types until it finds an Objective-C
2521   /// retainable type and returns its ownership.
2522   Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
2523 
2524   /// Whether this is a promotable bitfield reference according
2525   /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2526   ///
2527   /// \returns the type this bit-field will promote to, or NULL if no
2528   /// promotion occurs.
2529   QualType isPromotableBitField(Expr *E) const;
2530 
2531   /// Return the highest ranked integer type, see C99 6.3.1.8p1.
2532   ///
2533   /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
2534   /// \p LHS < \p RHS, return -1.
2535   int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
2536 
2537   /// Compare the rank of the two specified floating point types,
2538   /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
2539   ///
2540   /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
2541   /// \p LHS < \p RHS, return -1.
2542   int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
2543 
2544   /// Compare the rank of two floating point types as above, but compare equal
2545   /// if both types have the same floating-point semantics on the target (i.e.
2546   /// long double and double on AArch64 will return 0).
2547   int getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const;
2548 
2549   /// Return a real floating point or a complex type (based on
2550   /// \p typeDomain/\p typeSize).
2551   ///
2552   /// \param typeDomain a real floating point or complex type.
2553   /// \param typeSize a real floating point or complex type.
2554   QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
2555                                              QualType typeDomain) const;
2556 
2557   unsigned getTargetAddressSpace(QualType T) const {
2558     return getTargetAddressSpace(T.getQualifiers());
2559   }
2560 
2561   unsigned getTargetAddressSpace(Qualifiers Q) const {
2562     return getTargetAddressSpace(Q.getAddressSpace());
2563   }
2564 
2565   unsigned getTargetAddressSpace(LangAS AS) const;
2566 
2567   LangAS getLangASForBuiltinAddressSpace(unsigned AS) const;
2568 
2569   /// Get target-dependent integer value for null pointer which is used for
2570   /// constant folding.
2571   uint64_t getTargetNullPointerValue(QualType QT) const;
2572 
2573   bool addressSpaceMapManglingFor(LangAS AS) const {
2574     return AddrSpaceMapMangling || isTargetAddressSpace(AS);
2575   }
2576 
2577 private:
2578   // Helper for integer ordering
2579   unsigned getIntegerRank(const Type *T) const;
2580 
2581 public:
2582   //===--------------------------------------------------------------------===//
2583   //                    Type Compatibility Predicates
2584   //===--------------------------------------------------------------------===//
2585 
2586   /// Compatibility predicates used to check assignment expressions.
2587   bool typesAreCompatible(QualType T1, QualType T2,
2588                           bool CompareUnqualified = false); // C99 6.2.7p1
2589 
2590   bool propertyTypesAreCompatible(QualType, QualType);
2591   bool typesAreBlockPointerCompatible(QualType, QualType);
2592 
2593   bool isObjCIdType(QualType T) const {
2594     return T == getObjCIdType();
2595   }
2596 
2597   bool isObjCClassType(QualType T) const {
2598     return T == getObjCClassType();
2599   }
2600 
2601   bool isObjCSelType(QualType T) const {
2602     return T == getObjCSelType();
2603   }
2604 
2605   bool ObjCQualifiedIdTypesAreCompatible(const ObjCObjectPointerType *LHS,
2606                                          const ObjCObjectPointerType *RHS,
2607                                          bool ForCompare);
2608 
2609   bool ObjCQualifiedClassTypesAreCompatible(const ObjCObjectPointerType *LHS,
2610                                             const ObjCObjectPointerType *RHS);
2611 
2612   // Check the safety of assignment from LHS to RHS
2613   bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
2614                                const ObjCObjectPointerType *RHSOPT);
2615   bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
2616                                const ObjCObjectType *RHS);
2617   bool canAssignObjCInterfacesInBlockPointer(
2618                                           const ObjCObjectPointerType *LHSOPT,
2619                                           const ObjCObjectPointerType *RHSOPT,
2620                                           bool BlockReturnType);
2621   bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
2622   QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
2623                                    const ObjCObjectPointerType *RHSOPT);
2624   bool canBindObjCObjectType(QualType To, QualType From);
2625 
2626   // Functions for calculating composite types
2627   QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
2628                       bool Unqualified = false, bool BlockReturnType = false);
2629   QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
2630                               bool Unqualified = false);
2631   QualType mergeFunctionParameterTypes(QualType, QualType,
2632                                        bool OfBlockPointer = false,
2633                                        bool Unqualified = false);
2634   QualType mergeTransparentUnionType(QualType, QualType,
2635                                      bool OfBlockPointer=false,
2636                                      bool Unqualified = false);
2637 
2638   QualType mergeObjCGCQualifiers(QualType, QualType);
2639 
2640   /// This function merges the ExtParameterInfo lists of two functions. It
2641   /// returns true if the lists are compatible. The merged list is returned in
2642   /// NewParamInfos.
2643   ///
2644   /// \param FirstFnType The type of the first function.
2645   ///
2646   /// \param SecondFnType The type of the second function.
2647   ///
2648   /// \param CanUseFirst This flag is set to true if the first function's
2649   /// ExtParameterInfo list can be used as the composite list of
2650   /// ExtParameterInfo.
2651   ///
2652   /// \param CanUseSecond This flag is set to true if the second function's
2653   /// ExtParameterInfo list can be used as the composite list of
2654   /// ExtParameterInfo.
2655   ///
2656   /// \param NewParamInfos The composite list of ExtParameterInfo. The list is
2657   /// empty if none of the flags are set.
2658   ///
2659   bool mergeExtParameterInfo(
2660       const FunctionProtoType *FirstFnType,
2661       const FunctionProtoType *SecondFnType,
2662       bool &CanUseFirst, bool &CanUseSecond,
2663       SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos);
2664 
2665   void ResetObjCLayout(const ObjCContainerDecl *CD);
2666 
2667   //===--------------------------------------------------------------------===//
2668   //                    Integer Predicates
2669   //===--------------------------------------------------------------------===//
2670 
2671   // The width of an integer, as defined in C99 6.2.6.2. This is the number
2672   // of bits in an integer type excluding any padding bits.
2673   unsigned getIntWidth(QualType T) const;
2674 
2675   // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
2676   // unsigned integer type.  This method takes a signed type, and returns the
2677   // corresponding unsigned integer type.
2678   // With the introduction of fixed point types in ISO N1169, this method also
2679   // accepts fixed point types and returns the corresponding unsigned type for
2680   // a given fixed point type.
2681   QualType getCorrespondingUnsignedType(QualType T) const;
2682 
2683   // Per ISO N1169, this method accepts fixed point types and returns the
2684   // corresponding saturated type for a given fixed point type.
2685   QualType getCorrespondingSaturatedType(QualType Ty) const;
2686 
2687   // This method accepts fixed point types and returns the corresponding signed
2688   // type. Unlike getCorrespondingUnsignedType(), this only accepts unsigned
2689   // fixed point types because there are unsigned integer types like bool and
2690   // char8_t that don't have signed equivalents.
2691   QualType getCorrespondingSignedFixedPointType(QualType Ty) const;
2692 
2693   //===--------------------------------------------------------------------===//
2694   //                    Integer Values
2695   //===--------------------------------------------------------------------===//
2696 
2697   /// Make an APSInt of the appropriate width and signedness for the
2698   /// given \p Value and integer \p Type.
2699   llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
2700     // If Type is a signed integer type larger than 64 bits, we need to be sure
2701     // to sign extend Res appropriately.
2702     llvm::APSInt Res(64, !Type->isSignedIntegerOrEnumerationType());
2703     Res = Value;
2704     unsigned Width = getIntWidth(Type);
2705     if (Width != Res.getBitWidth())
2706       return Res.extOrTrunc(Width);
2707     return Res;
2708   }
2709 
2710   bool isSentinelNullExpr(const Expr *E);
2711 
2712   /// Get the implementation of the ObjCInterfaceDecl \p D, or nullptr if
2713   /// none exists.
2714   ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
2715 
2716   /// Get the implementation of the ObjCCategoryDecl \p D, or nullptr if
2717   /// none exists.
2718   ObjCCategoryImplDecl *getObjCImplementation(ObjCCategoryDecl *D);
2719 
2720   /// Return true if there is at least one \@implementation in the TU.
2721   bool AnyObjCImplementation() {
2722     return !ObjCImpls.empty();
2723   }
2724 
2725   /// Set the implementation of ObjCInterfaceDecl.
2726   void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2727                              ObjCImplementationDecl *ImplD);
2728 
2729   /// Set the implementation of ObjCCategoryDecl.
2730   void setObjCImplementation(ObjCCategoryDecl *CatD,
2731                              ObjCCategoryImplDecl *ImplD);
2732 
2733   /// Get the duplicate declaration of a ObjCMethod in the same
2734   /// interface, or null if none exists.
2735   const ObjCMethodDecl *
2736   getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const;
2737 
2738   void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2739                                   const ObjCMethodDecl *Redecl);
2740 
2741   /// Returns the Objective-C interface that \p ND belongs to if it is
2742   /// an Objective-C method/property/ivar etc. that is part of an interface,
2743   /// otherwise returns null.
2744   const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
2745 
2746   /// Set the copy initialization expression of a block var decl. \p CanThrow
2747   /// indicates whether the copy expression can throw or not.
2748   void setBlockVarCopyInit(const VarDecl* VD, Expr *CopyExpr, bool CanThrow);
2749 
2750   /// Get the copy initialization expression of the VarDecl \p VD, or
2751   /// nullptr if none exists.
2752   BlockVarCopyInit getBlockVarCopyInit(const VarDecl* VD) const;
2753 
2754   /// Allocate an uninitialized TypeSourceInfo.
2755   ///
2756   /// The caller should initialize the memory held by TypeSourceInfo using
2757   /// the TypeLoc wrappers.
2758   ///
2759   /// \param T the type that will be the basis for type source info. This type
2760   /// should refer to how the declarator was written in source code, not to
2761   /// what type semantic analysis resolved the declarator to.
2762   ///
2763   /// \param Size the size of the type info to create, or 0 if the size
2764   /// should be calculated based on the type.
2765   TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
2766 
2767   /// Allocate a TypeSourceInfo where all locations have been
2768   /// initialized to a given location, which defaults to the empty
2769   /// location.
2770   TypeSourceInfo *
2771   getTrivialTypeSourceInfo(QualType T,
2772                            SourceLocation Loc = SourceLocation()) const;
2773 
2774   /// Add a deallocation callback that will be invoked when the
2775   /// ASTContext is destroyed.
2776   ///
2777   /// \param Callback A callback function that will be invoked on destruction.
2778   ///
2779   /// \param Data Pointer data that will be provided to the callback function
2780   /// when it is called.
2781   void AddDeallocation(void (*Callback)(void *), void *Data) const;
2782 
2783   /// If T isn't trivially destructible, calls AddDeallocation to register it
2784   /// for destruction.
2785   template <typename T> void addDestruction(T *Ptr) const {
2786     if (!std::is_trivially_destructible<T>::value) {
2787       auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
2788       AddDeallocation(DestroyPtr, Ptr);
2789     }
2790   }
2791 
2792   GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD) const;
2793   GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
2794 
2795   /// Determines if the decl can be CodeGen'ed or deserialized from PCH
2796   /// lazily, only when used; this is only relevant for function or file scoped
2797   /// var definitions.
2798   ///
2799   /// \returns true if the function/var must be CodeGen'ed/deserialized even if
2800   /// it is not used.
2801   bool DeclMustBeEmitted(const Decl *D);
2802 
2803   /// Visits all versions of a multiversioned function with the passed
2804   /// predicate.
2805   void forEachMultiversionedFunctionVersion(
2806       const FunctionDecl *FD,
2807       llvm::function_ref<void(FunctionDecl *)> Pred) const;
2808 
2809   const CXXConstructorDecl *
2810   getCopyConstructorForExceptionObject(CXXRecordDecl *RD);
2811 
2812   void addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
2813                                             CXXConstructorDecl *CD);
2814 
2815   void addTypedefNameForUnnamedTagDecl(TagDecl *TD, TypedefNameDecl *TND);
2816 
2817   TypedefNameDecl *getTypedefNameForUnnamedTagDecl(const TagDecl *TD);
2818 
2819   void addDeclaratorForUnnamedTagDecl(TagDecl *TD, DeclaratorDecl *DD);
2820 
2821   DeclaratorDecl *getDeclaratorForUnnamedTagDecl(const TagDecl *TD);
2822 
2823   void setManglingNumber(const NamedDecl *ND, unsigned Number);
2824   unsigned getManglingNumber(const NamedDecl *ND) const;
2825 
2826   void setStaticLocalNumber(const VarDecl *VD, unsigned Number);
2827   unsigned getStaticLocalNumber(const VarDecl *VD) const;
2828 
2829   /// Retrieve the context for computing mangling numbers in the given
2830   /// DeclContext.
2831   MangleNumberingContext &getManglingNumberContext(const DeclContext *DC);
2832   enum NeedExtraManglingDecl_t { NeedExtraManglingDecl };
2833   MangleNumberingContext &getManglingNumberContext(NeedExtraManglingDecl_t,
2834                                                    const Decl *D);
2835 
2836   std::unique_ptr<MangleNumberingContext> createMangleNumberingContext() const;
2837 
2838   /// Used by ParmVarDecl to store on the side the
2839   /// index of the parameter when it exceeds the size of the normal bitfield.
2840   void setParameterIndex(const ParmVarDecl *D, unsigned index);
2841 
2842   /// Used by ParmVarDecl to retrieve on the side the
2843   /// index of the parameter when it exceeds the size of the normal bitfield.
2844   unsigned getParameterIndex(const ParmVarDecl *D) const;
2845 
2846   /// Return a string representing the human readable name for the specified
2847   /// function declaration or file name. Used by SourceLocExpr and
2848   /// PredefinedExpr to cache evaluated results.
2849   StringLiteral *getPredefinedStringLiteralFromCache(StringRef Key) const;
2850 
2851   /// Parses the target attributes passed in, and returns only the ones that are
2852   /// valid feature names.
2853   ParsedTargetAttr filterFunctionTargetAttrs(const TargetAttr *TD) const;
2854 
2855   void getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
2856                              const FunctionDecl *) const;
2857   void getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
2858                              GlobalDecl GD) const;
2859 
2860   //===--------------------------------------------------------------------===//
2861   //                    Statistics
2862   //===--------------------------------------------------------------------===//
2863 
2864   /// The number of implicitly-declared default constructors.
2865   unsigned NumImplicitDefaultConstructors = 0;
2866 
2867   /// The number of implicitly-declared default constructors for
2868   /// which declarations were built.
2869   unsigned NumImplicitDefaultConstructorsDeclared = 0;
2870 
2871   /// The number of implicitly-declared copy constructors.
2872   unsigned NumImplicitCopyConstructors = 0;
2873 
2874   /// The number of implicitly-declared copy constructors for
2875   /// which declarations were built.
2876   unsigned NumImplicitCopyConstructorsDeclared = 0;
2877 
2878   /// The number of implicitly-declared move constructors.
2879   unsigned NumImplicitMoveConstructors = 0;
2880 
2881   /// The number of implicitly-declared move constructors for
2882   /// which declarations were built.
2883   unsigned NumImplicitMoveConstructorsDeclared = 0;
2884 
2885   /// The number of implicitly-declared copy assignment operators.
2886   unsigned NumImplicitCopyAssignmentOperators = 0;
2887 
2888   /// The number of implicitly-declared copy assignment operators for
2889   /// which declarations were built.
2890   unsigned NumImplicitCopyAssignmentOperatorsDeclared = 0;
2891 
2892   /// The number of implicitly-declared move assignment operators.
2893   unsigned NumImplicitMoveAssignmentOperators = 0;
2894 
2895   /// The number of implicitly-declared move assignment operators for
2896   /// which declarations were built.
2897   unsigned NumImplicitMoveAssignmentOperatorsDeclared = 0;
2898 
2899   /// The number of implicitly-declared destructors.
2900   unsigned NumImplicitDestructors = 0;
2901 
2902   /// The number of implicitly-declared destructors for which
2903   /// declarations were built.
2904   unsigned NumImplicitDestructorsDeclared = 0;
2905 
2906 public:
2907   /// Initialize built-in types.
2908   ///
2909   /// This routine may only be invoked once for a given ASTContext object.
2910   /// It is normally invoked after ASTContext construction.
2911   ///
2912   /// \param Target The target
2913   void InitBuiltinTypes(const TargetInfo &Target,
2914                         const TargetInfo *AuxTarget = nullptr);
2915 
2916 private:
2917   void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
2918 
2919   class ObjCEncOptions {
2920     unsigned Bits;
2921 
2922     ObjCEncOptions(unsigned Bits) : Bits(Bits) {}
2923 
2924   public:
2925     ObjCEncOptions() : Bits(0) {}
2926     ObjCEncOptions(const ObjCEncOptions &RHS) : Bits(RHS.Bits) {}
2927 
2928 #define OPT_LIST(V)                                                            \
2929   V(ExpandPointedToStructures, 0)                                              \
2930   V(ExpandStructures, 1)                                                       \
2931   V(IsOutermostType, 2)                                                        \
2932   V(EncodingProperty, 3)                                                       \
2933   V(IsStructField, 4)                                                          \
2934   V(EncodeBlockParameters, 5)                                                  \
2935   V(EncodeClassNames, 6)                                                       \
2936 
2937 #define V(N,I) ObjCEncOptions& set##N() { Bits |= 1 << I; return *this; }
2938 OPT_LIST(V)
2939 #undef V
2940 
2941 #define V(N,I) bool N() const { return Bits & 1 << I; }
2942 OPT_LIST(V)
2943 #undef V
2944 
2945 #undef OPT_LIST
2946 
2947     LLVM_NODISCARD ObjCEncOptions keepingOnly(ObjCEncOptions Mask) const {
2948       return Bits & Mask.Bits;
2949     }
2950 
2951     LLVM_NODISCARD ObjCEncOptions forComponentType() const {
2952       ObjCEncOptions Mask = ObjCEncOptions()
2953                                 .setIsOutermostType()
2954                                 .setIsStructField();
2955       return Bits & ~Mask.Bits;
2956     }
2957   };
2958 
2959   // Return the Objective-C type encoding for a given type.
2960   void getObjCEncodingForTypeImpl(QualType t, std::string &S,
2961                                   ObjCEncOptions Options,
2962                                   const FieldDecl *Field,
2963                                   QualType *NotEncodedT = nullptr) const;
2964 
2965   // Adds the encoding of the structure's members.
2966   void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
2967                                        const FieldDecl *Field,
2968                                        bool includeVBases = true,
2969                                        QualType *NotEncodedT=nullptr) const;
2970 
2971 public:
2972   // Adds the encoding of a method parameter or return type.
2973   void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
2974                                          QualType T, std::string& S,
2975                                          bool Extended) const;
2976 
2977   /// Returns true if this is an inline-initialized static data member
2978   /// which is treated as a definition for MSVC compatibility.
2979   bool isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const;
2980 
2981   enum class InlineVariableDefinitionKind {
2982     /// Not an inline variable.
2983     None,
2984 
2985     /// Weak definition of inline variable.
2986     Weak,
2987 
2988     /// Weak for now, might become strong later in this TU.
2989     WeakUnknown,
2990 
2991     /// Strong definition.
2992     Strong
2993   };
2994 
2995   /// Determine whether a definition of this inline variable should
2996   /// be treated as a weak or strong definition. For compatibility with
2997   /// C++14 and before, for a constexpr static data member, if there is an
2998   /// out-of-line declaration of the member, we may promote it from weak to
2999   /// strong.
3000   InlineVariableDefinitionKind
3001   getInlineVariableDefinitionKind(const VarDecl *VD) const;
3002 
3003 private:
3004   friend class DeclarationNameTable;
3005   friend class DeclContext;
3006 
3007   const ASTRecordLayout &
3008   getObjCLayout(const ObjCInterfaceDecl *D,
3009                 const ObjCImplementationDecl *Impl) const;
3010 
3011   /// A set of deallocations that should be performed when the
3012   /// ASTContext is destroyed.
3013   // FIXME: We really should have a better mechanism in the ASTContext to
3014   // manage running destructors for types which do variable sized allocation
3015   // within the AST. In some places we thread the AST bump pointer allocator
3016   // into the datastructures which avoids this mess during deallocation but is
3017   // wasteful of memory, and here we require a lot of error prone book keeping
3018   // in order to track and run destructors while we're tearing things down.
3019   using DeallocationFunctionsAndArguments =
3020       llvm::SmallVector<std::pair<void (*)(void *), void *>, 16>;
3021   mutable DeallocationFunctionsAndArguments Deallocations;
3022 
3023   // FIXME: This currently contains the set of StoredDeclMaps used
3024   // by DeclContext objects.  This probably should not be in ASTContext,
3025   // but we include it here so that ASTContext can quickly deallocate them.
3026   llvm::PointerIntPair<StoredDeclsMap *, 1> LastSDM;
3027 
3028   std::vector<Decl *> TraversalScope;
3029   class ParentMap;
3030   std::map<ast_type_traits::TraversalKind, std::unique_ptr<ParentMap>> Parents;
3031 
3032   std::unique_ptr<VTableContextBase> VTContext;
3033 
3034   void ReleaseDeclContextMaps();
3035 
3036 public:
3037   enum PragmaSectionFlag : unsigned {
3038     PSF_None = 0,
3039     PSF_Read = 0x1,
3040     PSF_Write = 0x2,
3041     PSF_Execute = 0x4,
3042     PSF_Implicit = 0x8,
3043     PSF_Invalid = 0x80000000U,
3044   };
3045 
3046   struct SectionInfo {
3047     DeclaratorDecl *Decl;
3048     SourceLocation PragmaSectionLocation;
3049     int SectionFlags;
3050 
3051     SectionInfo() = default;
3052     SectionInfo(DeclaratorDecl *Decl,
3053                 SourceLocation PragmaSectionLocation,
3054                 int SectionFlags)
3055         : Decl(Decl), PragmaSectionLocation(PragmaSectionLocation),
3056           SectionFlags(SectionFlags) {}
3057   };
3058 
3059   llvm::StringMap<SectionInfo> SectionInfos;
3060 };
3061 
3062 /// Utility function for constructing a nullary selector.
3063 inline Selector GetNullarySelector(StringRef name, ASTContext &Ctx) {
3064   IdentifierInfo* II = &Ctx.Idents.get(name);
3065   return Ctx.Selectors.getSelector(0, &II);
3066 }
3067 
3068 /// Utility function for constructing an unary selector.
3069 inline Selector GetUnarySelector(StringRef name, ASTContext &Ctx) {
3070   IdentifierInfo* II = &Ctx.Idents.get(name);
3071   return Ctx.Selectors.getSelector(1, &II);
3072 }
3073 
3074 class TraversalKindScope {
3075   ASTContext &Ctx;
3076   ast_type_traits::TraversalKind TK = ast_type_traits::TK_AsIs;
3077 
3078 public:
3079   TraversalKindScope(ASTContext &Ctx,
3080                      llvm::Optional<ast_type_traits::TraversalKind> ScopeTK)
3081       : Ctx(Ctx) {
3082     TK = Ctx.getTraversalKind();
3083     if (ScopeTK)
3084       Ctx.setTraversalKind(*ScopeTK);
3085   }
3086 
3087   ~TraversalKindScope() { Ctx.setTraversalKind(TK); }
3088 };
3089 
3090 } // namespace clang
3091 
3092 // operator new and delete aren't allowed inside namespaces.
3093 
3094 /// Placement new for using the ASTContext's allocator.
3095 ///
3096 /// This placement form of operator new uses the ASTContext's allocator for
3097 /// obtaining memory.
3098 ///
3099 /// IMPORTANT: These are also declared in clang/AST/ASTContextAllocate.h!
3100 /// Any changes here need to also be made there.
3101 ///
3102 /// We intentionally avoid using a nothrow specification here so that the calls
3103 /// to this operator will not perform a null check on the result -- the
3104 /// underlying allocator never returns null pointers.
3105 ///
3106 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
3107 /// @code
3108 /// // Default alignment (8)
3109 /// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
3110 /// // Specific alignment
3111 /// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
3112 /// @endcode
3113 /// Memory allocated through this placement new operator does not need to be
3114 /// explicitly freed, as ASTContext will free all of this memory when it gets
3115 /// destroyed. Please note that you cannot use delete on the pointer.
3116 ///
3117 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
3118 /// @param C The ASTContext that provides the allocator.
3119 /// @param Alignment The alignment of the allocated memory (if the underlying
3120 ///                  allocator supports it).
3121 /// @return The allocated memory. Could be nullptr.
3122 inline void *operator new(size_t Bytes, const clang::ASTContext &C,
3123                           size_t Alignment /* = 8 */) {
3124   return C.Allocate(Bytes, Alignment);
3125 }
3126 
3127 /// Placement delete companion to the new above.
3128 ///
3129 /// This operator is just a companion to the new above. There is no way of
3130 /// invoking it directly; see the new operator for more details. This operator
3131 /// is called implicitly by the compiler if a placement new expression using
3132 /// the ASTContext throws in the object constructor.
3133 inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
3134   C.Deallocate(Ptr);
3135 }
3136 
3137 /// This placement form of operator new[] uses the ASTContext's allocator for
3138 /// obtaining memory.
3139 ///
3140 /// We intentionally avoid using a nothrow specification here so that the calls
3141 /// to this operator will not perform a null check on the result -- the
3142 /// underlying allocator never returns null pointers.
3143 ///
3144 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
3145 /// @code
3146 /// // Default alignment (8)
3147 /// char *data = new (Context) char[10];
3148 /// // Specific alignment
3149 /// char *data = new (Context, 4) char[10];
3150 /// @endcode
3151 /// Memory allocated through this placement new[] operator does not need to be
3152 /// explicitly freed, as ASTContext will free all of this memory when it gets
3153 /// destroyed. Please note that you cannot use delete on the pointer.
3154 ///
3155 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
3156 /// @param C The ASTContext that provides the allocator.
3157 /// @param Alignment The alignment of the allocated memory (if the underlying
3158 ///                  allocator supports it).
3159 /// @return The allocated memory. Could be nullptr.
3160 inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
3161                             size_t Alignment /* = 8 */) {
3162   return C.Allocate(Bytes, Alignment);
3163 }
3164 
3165 /// Placement delete[] companion to the new[] above.
3166 ///
3167 /// This operator is just a companion to the new[] above. There is no way of
3168 /// invoking it directly; see the new[] operator for more details. This operator
3169 /// is called implicitly by the compiler if a placement new[] expression using
3170 /// the ASTContext throws in the object constructor.
3171 inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
3172   C.Deallocate(Ptr);
3173 }
3174 
3175 /// Create the representation of a LazyGenerationalUpdatePtr.
3176 template <typename Owner, typename T,
3177           void (clang::ExternalASTSource::*Update)(Owner)>
3178 typename clang::LazyGenerationalUpdatePtr<Owner, T, Update>::ValueType
3179     clang::LazyGenerationalUpdatePtr<Owner, T, Update>::makeValue(
3180         const clang::ASTContext &Ctx, T Value) {
3181   // Note, this is implemented here so that ExternalASTSource.h doesn't need to
3182   // include ASTContext.h. We explicitly instantiate it for all relevant types
3183   // in ASTContext.cpp.
3184   if (auto *Source = Ctx.getExternalSource())
3185     return new (Ctx) LazyData(Source, Value);
3186   return Value;
3187 }
3188 
3189 #endif // LLVM_CLANG_AST_ASTCONTEXT_H
3190