1 //===- ASTContext.h - Context to hold long-lived AST nodes ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Defines the clang::ASTContext interface.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15 #define LLVM_CLANG_AST_ASTCONTEXT_H
16 
17 #include "clang/AST/ASTContextAllocate.h"
18 #include "clang/AST/ASTFwd.h"
19 #include "clang/AST/CanonicalType.h"
20 #include "clang/AST/CommentCommandTraits.h"
21 #include "clang/AST/ComparisonCategories.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclBase.h"
24 #include "clang/AST/DeclarationName.h"
25 #include "clang/AST/ExternalASTSource.h"
26 #include "clang/AST/NestedNameSpecifier.h"
27 #include "clang/AST/PrettyPrinter.h"
28 #include "clang/AST/RawCommentList.h"
29 #include "clang/AST/TemplateName.h"
30 #include "clang/AST/Type.h"
31 #include "clang/Basic/AddressSpaces.h"
32 #include "clang/Basic/AttrKinds.h"
33 #include "clang/Basic/IdentifierTable.h"
34 #include "clang/Basic/LLVM.h"
35 #include "clang/Basic/LangOptions.h"
36 #include "clang/Basic/Linkage.h"
37 #include "clang/Basic/NoSanitizeList.h"
38 #include "clang/Basic/OperatorKinds.h"
39 #include "clang/Basic/PartialDiagnostic.h"
40 #include "clang/Basic/ProfileList.h"
41 #include "clang/Basic/SourceLocation.h"
42 #include "clang/Basic/Specifiers.h"
43 #include "clang/Basic/TargetCXXABI.h"
44 #include "clang/Basic/XRayLists.h"
45 #include "llvm/ADT/APSInt.h"
46 #include "llvm/ADT/ArrayRef.h"
47 #include "llvm/ADT/DenseMap.h"
48 #include "llvm/ADT/DenseSet.h"
49 #include "llvm/ADT/FoldingSet.h"
50 #include "llvm/ADT/IntrusiveRefCntPtr.h"
51 #include "llvm/ADT/MapVector.h"
52 #include "llvm/ADT/None.h"
53 #include "llvm/ADT/Optional.h"
54 #include "llvm/ADT/PointerIntPair.h"
55 #include "llvm/ADT/PointerUnion.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/StringMap.h"
58 #include "llvm/ADT/StringRef.h"
59 #include "llvm/ADT/TinyPtrVector.h"
60 #include "llvm/ADT/Triple.h"
61 #include "llvm/ADT/iterator_range.h"
62 #include "llvm/Support/AlignOf.h"
63 #include "llvm/Support/Allocator.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/TypeSize.h"
67 #include <cassert>
68 #include <cstddef>
69 #include <cstdint>
70 #include <iterator>
71 #include <memory>
72 #include <string>
73 #include <type_traits>
74 #include <utility>
75 #include <vector>
76 
77 namespace llvm {
78 
79 class APFixedPoint;
80 class FixedPointSemantics;
81 struct fltSemantics;
82 template <typename T, unsigned N> class SmallPtrSet;
83 
84 } // namespace llvm
85 
86 namespace clang {
87 
88 class APValue;
89 class ASTMutationListener;
90 class ASTRecordLayout;
91 class AtomicExpr;
92 class BlockExpr;
93 class BuiltinTemplateDecl;
94 class CharUnits;
95 class ConceptDecl;
96 class CXXABI;
97 class CXXConstructorDecl;
98 class CXXMethodDecl;
99 class CXXRecordDecl;
100 class DiagnosticsEngine;
101 class ParentMapContext;
102 class DynTypedNodeList;
103 class Expr;
104 enum class FloatModeKind;
105 class GlobalDecl;
106 class MangleContext;
107 class MangleNumberingContext;
108 class MemberSpecializationInfo;
109 class Module;
110 struct MSGuidDeclParts;
111 class ObjCCategoryDecl;
112 class ObjCCategoryImplDecl;
113 class ObjCContainerDecl;
114 class ObjCImplDecl;
115 class ObjCImplementationDecl;
116 class ObjCInterfaceDecl;
117 class ObjCIvarDecl;
118 class ObjCMethodDecl;
119 class ObjCPropertyDecl;
120 class ObjCPropertyImplDecl;
121 class ObjCProtocolDecl;
122 class ObjCTypeParamDecl;
123 class OMPTraitInfo;
124 struct ParsedTargetAttr;
125 class Preprocessor;
126 class StoredDeclsMap;
127 class TargetAttr;
128 class TargetInfo;
129 class TemplateDecl;
130 class TemplateParameterList;
131 class TemplateTemplateParmDecl;
132 class TemplateTypeParmDecl;
133 class TypeConstraint;
134 class UnresolvedSetIterator;
135 class UsingShadowDecl;
136 class VarTemplateDecl;
137 class VTableContextBase;
138 struct BlockVarCopyInit;
139 
140 namespace Builtin {
141 
142 class Context;
143 
144 } // namespace Builtin
145 
146 enum BuiltinTemplateKind : int;
147 enum OpenCLTypeKind : uint8_t;
148 
149 namespace comments {
150 
151 class FullComment;
152 
153 } // namespace comments
154 
155 namespace interp {
156 
157 class Context;
158 
159 } // namespace interp
160 
161 namespace serialization {
162 template <class> class AbstractTypeReader;
163 } // namespace serialization
164 
165 enum class AlignRequirementKind {
166   /// The alignment was not explicit in code.
167   None,
168 
169   /// The alignment comes from an alignment attribute on a typedef.
170   RequiredByTypedef,
171 
172   /// The alignment comes from an alignment attribute on a record type.
173   RequiredByRecord,
174 
175   /// The alignment comes from an alignment attribute on a enum type.
176   RequiredByEnum,
177 };
178 
179 struct TypeInfo {
180   uint64_t Width = 0;
181   unsigned Align = 0;
182   AlignRequirementKind AlignRequirement;
183 
184   TypeInfo() : AlignRequirement(AlignRequirementKind::None) {}
185   TypeInfo(uint64_t Width, unsigned Align,
186            AlignRequirementKind AlignRequirement)
187       : Width(Width), Align(Align), AlignRequirement(AlignRequirement) {}
188   bool isAlignRequired() {
189     return AlignRequirement != AlignRequirementKind::None;
190   }
191 };
192 
193 struct TypeInfoChars {
194   CharUnits Width;
195   CharUnits Align;
196   AlignRequirementKind AlignRequirement;
197 
198   TypeInfoChars() : AlignRequirement(AlignRequirementKind::None) {}
199   TypeInfoChars(CharUnits Width, CharUnits Align,
200                 AlignRequirementKind AlignRequirement)
201       : Width(Width), Align(Align), AlignRequirement(AlignRequirement) {}
202   bool isAlignRequired() {
203     return AlignRequirement != AlignRequirementKind::None;
204   }
205 };
206 
207 /// Holds long-lived AST nodes (such as types and decls) that can be
208 /// referred to throughout the semantic analysis of a file.
209 class ASTContext : public RefCountedBase<ASTContext> {
210   friend class NestedNameSpecifier;
211 
212   mutable SmallVector<Type *, 0> Types;
213   mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
214   mutable llvm::FoldingSet<ComplexType> ComplexTypes;
215   mutable llvm::FoldingSet<PointerType> PointerTypes{GeneralTypesLog2InitSize};
216   mutable llvm::FoldingSet<AdjustedType> AdjustedTypes;
217   mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
218   mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
219   mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
220   mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
221   mutable llvm::ContextualFoldingSet<ConstantArrayType, ASTContext &>
222       ConstantArrayTypes;
223   mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
224   mutable std::vector<VariableArrayType*> VariableArrayTypes;
225   mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
226   mutable llvm::FoldingSet<DependentSizedExtVectorType>
227     DependentSizedExtVectorTypes;
228   mutable llvm::FoldingSet<DependentAddressSpaceType>
229       DependentAddressSpaceTypes;
230   mutable llvm::FoldingSet<VectorType> VectorTypes;
231   mutable llvm::FoldingSet<DependentVectorType> DependentVectorTypes;
232   mutable llvm::FoldingSet<ConstantMatrixType> MatrixTypes;
233   mutable llvm::FoldingSet<DependentSizedMatrixType> DependentSizedMatrixTypes;
234   mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
235   mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
236     FunctionProtoTypes;
237   mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
238   mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
239   mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
240   mutable llvm::FoldingSet<ObjCTypeParamType> ObjCTypeParamTypes;
241   mutable llvm::FoldingSet<SubstTemplateTypeParmType>
242     SubstTemplateTypeParmTypes;
243   mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
244     SubstTemplateTypeParmPackTypes;
245   mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
246     TemplateSpecializationTypes;
247   mutable llvm::FoldingSet<ParenType> ParenTypes{GeneralTypesLog2InitSize};
248   mutable llvm::FoldingSet<UsingType> UsingTypes;
249   mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes{
250       GeneralTypesLog2InitSize};
251   mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
252   mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
253                                      ASTContext&>
254     DependentTemplateSpecializationTypes;
255   llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
256   mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
257   mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
258   mutable llvm::FoldingSet<DependentUnaryTransformType>
259     DependentUnaryTransformTypes;
260   mutable llvm::ContextualFoldingSet<AutoType, ASTContext&> AutoTypes;
261   mutable llvm::FoldingSet<DeducedTemplateSpecializationType>
262     DeducedTemplateSpecializationTypes;
263   mutable llvm::FoldingSet<AtomicType> AtomicTypes;
264   mutable llvm::FoldingSet<AttributedType> AttributedTypes;
265   mutable llvm::FoldingSet<PipeType> PipeTypes;
266   mutable llvm::FoldingSet<BitIntType> BitIntTypes;
267   mutable llvm::FoldingSet<DependentBitIntType> DependentBitIntTypes;
268   llvm::FoldingSet<BTFTagAttributedType> BTFTagAttributedTypes;
269 
270   mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
271   mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
272   mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
273     SubstTemplateTemplateParms;
274   mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
275                                      ASTContext&>
276     SubstTemplateTemplateParmPacks;
277 
278   /// The set of nested name specifiers.
279   ///
280   /// This set is managed by the NestedNameSpecifier class.
281   mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
282   mutable NestedNameSpecifier *GlobalNestedNameSpecifier = nullptr;
283 
284   /// A cache mapping from RecordDecls to ASTRecordLayouts.
285   ///
286   /// This is lazily created.  This is intentionally not serialized.
287   mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
288     ASTRecordLayouts;
289   mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
290     ObjCLayouts;
291 
292   /// A cache from types to size and alignment information.
293   using TypeInfoMap = llvm::DenseMap<const Type *, struct TypeInfo>;
294   mutable TypeInfoMap MemoizedTypeInfo;
295 
296   /// A cache from types to unadjusted alignment information. Only ARM and
297   /// AArch64 targets need this information, keeping it separate prevents
298   /// imposing overhead on TypeInfo size.
299   using UnadjustedAlignMap = llvm::DenseMap<const Type *, unsigned>;
300   mutable UnadjustedAlignMap MemoizedUnadjustedAlign;
301 
302   /// A cache mapping from CXXRecordDecls to key functions.
303   llvm::DenseMap<const CXXRecordDecl*, LazyDeclPtr> KeyFunctions;
304 
305   /// Mapping from ObjCContainers to their ObjCImplementations.
306   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
307 
308   /// Mapping from ObjCMethod to its duplicate declaration in the same
309   /// interface.
310   llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
311 
312   /// Mapping from __block VarDecls to BlockVarCopyInit.
313   llvm::DenseMap<const VarDecl *, BlockVarCopyInit> BlockVarCopyInits;
314 
315   /// Mapping from GUIDs to the corresponding MSGuidDecl.
316   mutable llvm::FoldingSet<MSGuidDecl> MSGuidDecls;
317 
318   /// Mapping from APValues to the corresponding UnnamedGlobalConstantDecl.
319   mutable llvm::FoldingSet<UnnamedGlobalConstantDecl>
320       UnnamedGlobalConstantDecls;
321 
322   /// Mapping from APValues to the corresponding TemplateParamObjects.
323   mutable llvm::FoldingSet<TemplateParamObjectDecl> TemplateParamObjectDecls;
324 
325   /// A cache mapping a string value to a StringLiteral object with the same
326   /// value.
327   ///
328   /// This is lazily created.  This is intentionally not serialized.
329   mutable llvm::StringMap<StringLiteral *> StringLiteralCache;
330 
331   /// MD5 hash of CUID. It is calculated when first used and cached by this
332   /// data member.
333   mutable std::string CUIDHash;
334 
335   /// Representation of a "canonical" template template parameter that
336   /// is used in canonical template names.
337   class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
338     TemplateTemplateParmDecl *Parm;
339 
340   public:
341     CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
342         : Parm(Parm) {}
343 
344     TemplateTemplateParmDecl *getParam() const { return Parm; }
345 
346     void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &C) {
347       Profile(ID, C, Parm);
348     }
349 
350     static void Profile(llvm::FoldingSetNodeID &ID,
351                         const ASTContext &C,
352                         TemplateTemplateParmDecl *Parm);
353   };
354   mutable llvm::ContextualFoldingSet<CanonicalTemplateTemplateParm,
355                                      const ASTContext&>
356     CanonTemplateTemplateParms;
357 
358   TemplateTemplateParmDecl *
359     getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
360 
361   /// The typedef for the __int128_t type.
362   mutable TypedefDecl *Int128Decl = nullptr;
363 
364   /// The typedef for the __uint128_t type.
365   mutable TypedefDecl *UInt128Decl = nullptr;
366 
367   /// The typedef for the target specific predefined
368   /// __builtin_va_list type.
369   mutable TypedefDecl *BuiltinVaListDecl = nullptr;
370 
371   /// The typedef for the predefined \c __builtin_ms_va_list type.
372   mutable TypedefDecl *BuiltinMSVaListDecl = nullptr;
373 
374   /// The typedef for the predefined \c id type.
375   mutable TypedefDecl *ObjCIdDecl = nullptr;
376 
377   /// The typedef for the predefined \c SEL type.
378   mutable TypedefDecl *ObjCSelDecl = nullptr;
379 
380   /// The typedef for the predefined \c Class type.
381   mutable TypedefDecl *ObjCClassDecl = nullptr;
382 
383   /// The typedef for the predefined \c Protocol class in Objective-C.
384   mutable ObjCInterfaceDecl *ObjCProtocolClassDecl = nullptr;
385 
386   /// The typedef for the predefined 'BOOL' type.
387   mutable TypedefDecl *BOOLDecl = nullptr;
388 
389   // Typedefs which may be provided defining the structure of Objective-C
390   // pseudo-builtins
391   QualType ObjCIdRedefinitionType;
392   QualType ObjCClassRedefinitionType;
393   QualType ObjCSelRedefinitionType;
394 
395   /// The identifier 'bool'.
396   mutable IdentifierInfo *BoolName = nullptr;
397 
398   /// The identifier 'NSObject'.
399   mutable IdentifierInfo *NSObjectName = nullptr;
400 
401   /// The identifier 'NSCopying'.
402   IdentifierInfo *NSCopyingName = nullptr;
403 
404   /// The identifier '__make_integer_seq'.
405   mutable IdentifierInfo *MakeIntegerSeqName = nullptr;
406 
407   /// The identifier '__type_pack_element'.
408   mutable IdentifierInfo *TypePackElementName = nullptr;
409 
410   QualType ObjCConstantStringType;
411   mutable RecordDecl *CFConstantStringTagDecl = nullptr;
412   mutable TypedefDecl *CFConstantStringTypeDecl = nullptr;
413 
414   mutable QualType ObjCSuperType;
415 
416   QualType ObjCNSStringType;
417 
418   /// The typedef declaration for the Objective-C "instancetype" type.
419   TypedefDecl *ObjCInstanceTypeDecl = nullptr;
420 
421   /// The type for the C FILE type.
422   TypeDecl *FILEDecl = nullptr;
423 
424   /// The type for the C jmp_buf type.
425   TypeDecl *jmp_bufDecl = nullptr;
426 
427   /// The type for the C sigjmp_buf type.
428   TypeDecl *sigjmp_bufDecl = nullptr;
429 
430   /// The type for the C ucontext_t type.
431   TypeDecl *ucontext_tDecl = nullptr;
432 
433   /// Type for the Block descriptor for Blocks CodeGen.
434   ///
435   /// Since this is only used for generation of debug info, it is not
436   /// serialized.
437   mutable RecordDecl *BlockDescriptorType = nullptr;
438 
439   /// Type for the Block descriptor for Blocks CodeGen.
440   ///
441   /// Since this is only used for generation of debug info, it is not
442   /// serialized.
443   mutable RecordDecl *BlockDescriptorExtendedType = nullptr;
444 
445   /// Declaration for the CUDA cudaConfigureCall function.
446   FunctionDecl *cudaConfigureCallDecl = nullptr;
447 
448   /// Keeps track of all declaration attributes.
449   ///
450   /// Since so few decls have attrs, we keep them in a hash map instead of
451   /// wasting space in the Decl class.
452   llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
453 
454   /// A mapping from non-redeclarable declarations in modules that were
455   /// merged with other declarations to the canonical declaration that they were
456   /// merged into.
457   llvm::DenseMap<Decl*, Decl*> MergedDecls;
458 
459   /// A mapping from a defining declaration to a list of modules (other
460   /// than the owning module of the declaration) that contain merged
461   /// definitions of that entity.
462   llvm::DenseMap<NamedDecl*, llvm::TinyPtrVector<Module*>> MergedDefModules;
463 
464   /// Initializers for a module, in order. Each Decl will be either
465   /// something that has a semantic effect on startup (such as a variable with
466   /// a non-constant initializer), or an ImportDecl (which recursively triggers
467   /// initialization of another module).
468   struct PerModuleInitializers {
469     llvm::SmallVector<Decl*, 4> Initializers;
470     llvm::SmallVector<uint32_t, 4> LazyInitializers;
471 
472     void resolve(ASTContext &Ctx);
473   };
474   llvm::DenseMap<Module*, PerModuleInitializers*> ModuleInitializers;
475 
476   static constexpr unsigned ConstantArrayTypesLog2InitSize = 8;
477   static constexpr unsigned GeneralTypesLog2InitSize = 9;
478   static constexpr unsigned FunctionProtoTypesLog2InitSize = 12;
479 
480   ASTContext &this_() { return *this; }
481 
482 public:
483   /// A type synonym for the TemplateOrInstantiation mapping.
484   using TemplateOrSpecializationInfo =
485       llvm::PointerUnion<VarTemplateDecl *, MemberSpecializationInfo *>;
486 
487 private:
488   friend class ASTDeclReader;
489   friend class ASTReader;
490   friend class ASTWriter;
491   template <class> friend class serialization::AbstractTypeReader;
492   friend class CXXRecordDecl;
493   friend class IncrementalParser;
494 
495   /// A mapping to contain the template or declaration that
496   /// a variable declaration describes or was instantiated from,
497   /// respectively.
498   ///
499   /// For non-templates, this value will be NULL. For variable
500   /// declarations that describe a variable template, this will be a
501   /// pointer to a VarTemplateDecl. For static data members
502   /// of class template specializations, this will be the
503   /// MemberSpecializationInfo referring to the member variable that was
504   /// instantiated or specialized. Thus, the mapping will keep track of
505   /// the static data member templates from which static data members of
506   /// class template specializations were instantiated.
507   ///
508   /// Given the following example:
509   ///
510   /// \code
511   /// template<typename T>
512   /// struct X {
513   ///   static T value;
514   /// };
515   ///
516   /// template<typename T>
517   ///   T X<T>::value = T(17);
518   ///
519   /// int *x = &X<int>::value;
520   /// \endcode
521   ///
522   /// This mapping will contain an entry that maps from the VarDecl for
523   /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
524   /// class template X) and will be marked TSK_ImplicitInstantiation.
525   llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>
526   TemplateOrInstantiation;
527 
528   /// Keeps track of the declaration from which a using declaration was
529   /// created during instantiation.
530   ///
531   /// The source and target declarations are always a UsingDecl, an
532   /// UnresolvedUsingValueDecl, or an UnresolvedUsingTypenameDecl.
533   ///
534   /// For example:
535   /// \code
536   /// template<typename T>
537   /// struct A {
538   ///   void f();
539   /// };
540   ///
541   /// template<typename T>
542   /// struct B : A<T> {
543   ///   using A<T>::f;
544   /// };
545   ///
546   /// template struct B<int>;
547   /// \endcode
548   ///
549   /// This mapping will contain an entry that maps from the UsingDecl in
550   /// B<int> to the UnresolvedUsingDecl in B<T>.
551   llvm::DenseMap<NamedDecl *, NamedDecl *> InstantiatedFromUsingDecl;
552 
553   /// Like InstantiatedFromUsingDecl, but for using-enum-declarations. Maps
554   /// from the instantiated using-enum to the templated decl from whence it
555   /// came.
556   /// Note that using-enum-declarations cannot be dependent and
557   /// thus will never be instantiated from an "unresolved"
558   /// version thereof (as with using-declarations), so each mapping is from
559   /// a (resolved) UsingEnumDecl to a (resolved) UsingEnumDecl.
560   llvm::DenseMap<UsingEnumDecl *, UsingEnumDecl *>
561       InstantiatedFromUsingEnumDecl;
562 
563   /// Simlarly maps instantiated UsingShadowDecls to their origin.
564   llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
565     InstantiatedFromUsingShadowDecl;
566 
567   llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
568 
569   /// Mapping that stores the methods overridden by a given C++
570   /// member function.
571   ///
572   /// Since most C++ member functions aren't virtual and therefore
573   /// don't override anything, we store the overridden functions in
574   /// this map on the side rather than within the CXXMethodDecl structure.
575   using CXXMethodVector = llvm::TinyPtrVector<const CXXMethodDecl *>;
576   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
577 
578   /// Mapping from each declaration context to its corresponding
579   /// mangling numbering context (used for constructs like lambdas which
580   /// need to be consistently numbered for the mangler).
581   llvm::DenseMap<const DeclContext *, std::unique_ptr<MangleNumberingContext>>
582       MangleNumberingContexts;
583   llvm::DenseMap<const Decl *, std::unique_ptr<MangleNumberingContext>>
584       ExtraMangleNumberingContexts;
585 
586   /// Side-table of mangling numbers for declarations which rarely
587   /// need them (like static local vars).
588   llvm::MapVector<const NamedDecl *, unsigned> MangleNumbers;
589   llvm::MapVector<const VarDecl *, unsigned> StaticLocalNumbers;
590   /// Mapping the associated device lambda mangling number if present.
591   mutable llvm::DenseMap<const CXXRecordDecl *, unsigned>
592       DeviceLambdaManglingNumbers;
593 
594   /// Mapping that stores parameterIndex values for ParmVarDecls when
595   /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
596   using ParameterIndexTable = llvm::DenseMap<const VarDecl *, unsigned>;
597   ParameterIndexTable ParamIndices;
598 
599   ImportDecl *FirstLocalImport = nullptr;
600   ImportDecl *LastLocalImport = nullptr;
601 
602   TranslationUnitDecl *TUDecl = nullptr;
603   mutable ExternCContextDecl *ExternCContext = nullptr;
604   mutable BuiltinTemplateDecl *MakeIntegerSeqDecl = nullptr;
605   mutable BuiltinTemplateDecl *TypePackElementDecl = nullptr;
606 
607   /// The associated SourceManager object.
608   SourceManager &SourceMgr;
609 
610   /// The language options used to create the AST associated with
611   ///  this ASTContext object.
612   LangOptions &LangOpts;
613 
614   /// NoSanitizeList object that is used by sanitizers to decide which
615   /// entities should not be instrumented.
616   std::unique_ptr<NoSanitizeList> NoSanitizeL;
617 
618   /// Function filtering mechanism to determine whether a given function
619   /// should be imbued with the XRay "always" or "never" attributes.
620   std::unique_ptr<XRayFunctionFilter> XRayFilter;
621 
622   /// ProfileList object that is used by the profile instrumentation
623   /// to decide which entities should be instrumented.
624   std::unique_ptr<ProfileList> ProfList;
625 
626   /// The allocator used to create AST objects.
627   ///
628   /// AST objects are never destructed; rather, all memory associated with the
629   /// AST objects will be released when the ASTContext itself is destroyed.
630   mutable llvm::BumpPtrAllocator BumpAlloc;
631 
632   /// Allocator for partial diagnostics.
633   PartialDiagnostic::DiagStorageAllocator DiagAllocator;
634 
635   /// The current C++ ABI.
636   std::unique_ptr<CXXABI> ABI;
637   CXXABI *createCXXABI(const TargetInfo &T);
638 
639   /// The logical -> physical address space map.
640   const LangASMap *AddrSpaceMap = nullptr;
641 
642   /// Address space map mangling must be used with language specific
643   /// address spaces (e.g. OpenCL/CUDA)
644   bool AddrSpaceMapMangling;
645 
646   const TargetInfo *Target = nullptr;
647   const TargetInfo *AuxTarget = nullptr;
648   clang::PrintingPolicy PrintingPolicy;
649   std::unique_ptr<interp::Context> InterpContext;
650   std::unique_ptr<ParentMapContext> ParentMapCtx;
651 
652   /// Keeps track of the deallocated DeclListNodes for future reuse.
653   DeclListNode *ListNodeFreeList = nullptr;
654 
655 public:
656   IdentifierTable &Idents;
657   SelectorTable &Selectors;
658   Builtin::Context &BuiltinInfo;
659   const TranslationUnitKind TUKind;
660   mutable DeclarationNameTable DeclarationNames;
661   IntrusiveRefCntPtr<ExternalASTSource> ExternalSource;
662   ASTMutationListener *Listener = nullptr;
663 
664   /// Returns the clang bytecode interpreter context.
665   interp::Context &getInterpContext();
666 
667   struct CUDAConstantEvalContext {
668     /// Do not allow wrong-sided variables in constant expressions.
669     bool NoWrongSidedVars = false;
670   } CUDAConstantEvalCtx;
671   struct CUDAConstantEvalContextRAII {
672     ASTContext &Ctx;
673     CUDAConstantEvalContext SavedCtx;
674     CUDAConstantEvalContextRAII(ASTContext &Ctx_, bool NoWrongSidedVars)
675         : Ctx(Ctx_), SavedCtx(Ctx_.CUDAConstantEvalCtx) {
676       Ctx_.CUDAConstantEvalCtx.NoWrongSidedVars = NoWrongSidedVars;
677     }
678     ~CUDAConstantEvalContextRAII() { Ctx.CUDAConstantEvalCtx = SavedCtx; }
679   };
680 
681   /// Returns the dynamic AST node parent map context.
682   ParentMapContext &getParentMapContext();
683 
684   // A traversal scope limits the parts of the AST visible to certain analyses.
685   // RecursiveASTVisitor only visits specified children of TranslationUnitDecl.
686   // getParents() will only observe reachable parent edges.
687   //
688   // The scope is defined by a set of "top-level" declarations which will be
689   // visible under the TranslationUnitDecl.
690   // Initially, it is the entire TU, represented by {getTranslationUnitDecl()}.
691   //
692   // After setTraversalScope({foo, bar}), the exposed AST looks like:
693   // TranslationUnitDecl
694   //  - foo
695   //    - ...
696   //  - bar
697   //    - ...
698   // All other siblings of foo and bar are pruned from the tree.
699   // (However they are still accessible via TranslationUnitDecl->decls())
700   //
701   // Changing the scope clears the parent cache, which is expensive to rebuild.
702   std::vector<Decl *> getTraversalScope() const { return TraversalScope; }
703   void setTraversalScope(const std::vector<Decl *> &);
704 
705   /// Forwards to get node parents from the ParentMapContext. New callers should
706   /// use ParentMapContext::getParents() directly.
707   template <typename NodeT> DynTypedNodeList getParents(const NodeT &Node);
708 
709   const clang::PrintingPolicy &getPrintingPolicy() const {
710     return PrintingPolicy;
711   }
712 
713   void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
714     PrintingPolicy = Policy;
715   }
716 
717   SourceManager& getSourceManager() { return SourceMgr; }
718   const SourceManager& getSourceManager() const { return SourceMgr; }
719 
720   // Cleans up some of the data structures. This allows us to do cleanup
721   // normally done in the destructor earlier. Renders much of the ASTContext
722   // unusable, mostly the actual AST nodes, so should be called when we no
723   // longer need access to the AST.
724   void cleanup();
725 
726   llvm::BumpPtrAllocator &getAllocator() const {
727     return BumpAlloc;
728   }
729 
730   void *Allocate(size_t Size, unsigned Align = 8) const {
731     return BumpAlloc.Allocate(Size, Align);
732   }
733   template <typename T> T *Allocate(size_t Num = 1) const {
734     return static_cast<T *>(Allocate(Num * sizeof(T), alignof(T)));
735   }
736   void Deallocate(void *Ptr) const {}
737 
738   /// Allocates a \c DeclListNode or returns one from the \c ListNodeFreeList
739   /// pool.
740   DeclListNode *AllocateDeclListNode(clang::NamedDecl *ND) {
741     if (DeclListNode *Alloc = ListNodeFreeList) {
742       ListNodeFreeList = Alloc->Rest.dyn_cast<DeclListNode*>();
743       Alloc->D = ND;
744       Alloc->Rest = nullptr;
745       return Alloc;
746     }
747     return new (*this) DeclListNode(ND);
748   }
749   /// Deallcates a \c DeclListNode by returning it to the \c ListNodeFreeList
750   /// pool.
751   void DeallocateDeclListNode(DeclListNode *N) {
752     N->Rest = ListNodeFreeList;
753     ListNodeFreeList = N;
754   }
755 
756   /// Return the total amount of physical memory allocated for representing
757   /// AST nodes and type information.
758   size_t getASTAllocatedMemory() const {
759     return BumpAlloc.getTotalMemory();
760   }
761 
762   /// Return the total memory used for various side tables.
763   size_t getSideTableAllocatedMemory() const;
764 
765   PartialDiagnostic::DiagStorageAllocator &getDiagAllocator() {
766     return DiagAllocator;
767   }
768 
769   const TargetInfo &getTargetInfo() const { return *Target; }
770   const TargetInfo *getAuxTargetInfo() const { return AuxTarget; }
771 
772   /// getIntTypeForBitwidth -
773   /// sets integer QualTy according to specified details:
774   /// bitwidth, signed/unsigned.
775   /// Returns empty type if there is no appropriate target types.
776   QualType getIntTypeForBitwidth(unsigned DestWidth,
777                                  unsigned Signed) const;
778 
779   /// getRealTypeForBitwidth -
780   /// sets floating point QualTy according to specified bitwidth.
781   /// Returns empty type if there is no appropriate target types.
782   QualType getRealTypeForBitwidth(unsigned DestWidth,
783                                   FloatModeKind ExplicitType) const;
784 
785   bool AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const;
786 
787   const LangOptions& getLangOpts() const { return LangOpts; }
788 
789   // If this condition is false, typo correction must be performed eagerly
790   // rather than delayed in many places, as it makes use of dependent types.
791   // the condition is false for clang's C-only codepath, as it doesn't support
792   // dependent types yet.
793   bool isDependenceAllowed() const {
794     return LangOpts.CPlusPlus || LangOpts.RecoveryAST;
795   }
796 
797   const NoSanitizeList &getNoSanitizeList() const { return *NoSanitizeL; }
798 
799   const XRayFunctionFilter &getXRayFilter() const {
800     return *XRayFilter;
801   }
802 
803   const ProfileList &getProfileList() const { return *ProfList; }
804 
805   DiagnosticsEngine &getDiagnostics() const;
806 
807   FullSourceLoc getFullLoc(SourceLocation Loc) const {
808     return FullSourceLoc(Loc,SourceMgr);
809   }
810 
811   /// Return the C++ ABI kind that should be used. The C++ ABI can be overriden
812   /// at compile time with `-fc++-abi=`. If this is not provided, we instead use
813   /// the default ABI set by the target.
814   TargetCXXABI::Kind getCXXABIKind() const;
815 
816   /// All comments in this translation unit.
817   RawCommentList Comments;
818 
819   /// True if comments are already loaded from ExternalASTSource.
820   mutable bool CommentsLoaded = false;
821 
822   /// Mapping from declaration to directly attached comment.
823   ///
824   /// Raw comments are owned by Comments list.  This mapping is populated
825   /// lazily.
826   mutable llvm::DenseMap<const Decl *, const RawComment *> DeclRawComments;
827 
828   /// Mapping from canonical declaration to the first redeclaration in chain
829   /// that has a comment attached.
830   ///
831   /// Raw comments are owned by Comments list.  This mapping is populated
832   /// lazily.
833   mutable llvm::DenseMap<const Decl *, const Decl *> RedeclChainComments;
834 
835   /// Keeps track of redeclaration chains that don't have any comment attached.
836   /// Mapping from canonical declaration to redeclaration chain that has no
837   /// comments attached to any redeclaration. Specifically it's mapping to
838   /// the last redeclaration we've checked.
839   ///
840   /// Shall not contain declarations that have comments attached to any
841   /// redeclaration in their chain.
842   mutable llvm::DenseMap<const Decl *, const Decl *> CommentlessRedeclChains;
843 
844   /// Mapping from declarations to parsed comments attached to any
845   /// redeclaration.
846   mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
847 
848   /// Attaches \p Comment to \p OriginalD and to its redeclaration chain
849   /// and removes the redeclaration chain from the set of commentless chains.
850   ///
851   /// Don't do anything if a comment has already been attached to \p OriginalD
852   /// or its redeclaration chain.
853   void cacheRawCommentForDecl(const Decl &OriginalD,
854                               const RawComment &Comment) const;
855 
856   /// \returns searches \p CommentsInFile for doc comment for \p D.
857   ///
858   /// \p RepresentativeLocForDecl is used as a location for searching doc
859   /// comments. \p CommentsInFile is a mapping offset -> comment of files in the
860   /// same file where \p RepresentativeLocForDecl is.
861   RawComment *getRawCommentForDeclNoCacheImpl(
862       const Decl *D, const SourceLocation RepresentativeLocForDecl,
863       const std::map<unsigned, RawComment *> &CommentsInFile) const;
864 
865   /// Return the documentation comment attached to a given declaration,
866   /// without looking into cache.
867   RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
868 
869 public:
870   void addComment(const RawComment &RC);
871 
872   /// Return the documentation comment attached to a given declaration.
873   /// Returns nullptr if no comment is attached.
874   ///
875   /// \param OriginalDecl if not nullptr, is set to declaration AST node that
876   /// had the comment, if the comment we found comes from a redeclaration.
877   const RawComment *
878   getRawCommentForAnyRedecl(const Decl *D,
879                             const Decl **OriginalDecl = nullptr) const;
880 
881   /// Searches existing comments for doc comments that should be attached to \p
882   /// Decls. If any doc comment is found, it is parsed.
883   ///
884   /// Requirement: All \p Decls are in the same file.
885   ///
886   /// If the last comment in the file is already attached we assume
887   /// there are not comments left to be attached to \p Decls.
888   void attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
889                                        const Preprocessor *PP);
890 
891   /// Return parsed documentation comment attached to a given declaration.
892   /// Returns nullptr if no comment is attached.
893   ///
894   /// \param PP the Preprocessor used with this TU.  Could be nullptr if
895   /// preprocessor is not available.
896   comments::FullComment *getCommentForDecl(const Decl *D,
897                                            const Preprocessor *PP) const;
898 
899   /// Return parsed documentation comment attached to a given declaration.
900   /// Returns nullptr if no comment is attached. Does not look at any
901   /// redeclarations of the declaration.
902   comments::FullComment *getLocalCommentForDeclUncached(const Decl *D) const;
903 
904   comments::FullComment *cloneFullComment(comments::FullComment *FC,
905                                          const Decl *D) const;
906 
907 private:
908   mutable comments::CommandTraits CommentCommandTraits;
909 
910   /// Iterator that visits import declarations.
911   class import_iterator {
912     ImportDecl *Import = nullptr;
913 
914   public:
915     using value_type = ImportDecl *;
916     using reference = ImportDecl *;
917     using pointer = ImportDecl *;
918     using difference_type = int;
919     using iterator_category = std::forward_iterator_tag;
920 
921     import_iterator() = default;
922     explicit import_iterator(ImportDecl *Import) : Import(Import) {}
923 
924     reference operator*() const { return Import; }
925     pointer operator->() const { return Import; }
926 
927     import_iterator &operator++() {
928       Import = ASTContext::getNextLocalImport(Import);
929       return *this;
930     }
931 
932     import_iterator operator++(int) {
933       import_iterator Other(*this);
934       ++(*this);
935       return Other;
936     }
937 
938     friend bool operator==(import_iterator X, import_iterator Y) {
939       return X.Import == Y.Import;
940     }
941 
942     friend bool operator!=(import_iterator X, import_iterator Y) {
943       return X.Import != Y.Import;
944     }
945   };
946 
947 public:
948   comments::CommandTraits &getCommentCommandTraits() const {
949     return CommentCommandTraits;
950   }
951 
952   /// Retrieve the attributes for the given declaration.
953   AttrVec& getDeclAttrs(const Decl *D);
954 
955   /// Erase the attributes corresponding to the given declaration.
956   void eraseDeclAttrs(const Decl *D);
957 
958   /// If this variable is an instantiated static data member of a
959   /// class template specialization, returns the templated static data member
960   /// from which it was instantiated.
961   // FIXME: Remove ?
962   MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
963                                                            const VarDecl *Var);
964 
965   /// Note that the static data member \p Inst is an instantiation of
966   /// the static data member template \p Tmpl of a class template.
967   void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
968                                            TemplateSpecializationKind TSK,
969                         SourceLocation PointOfInstantiation = SourceLocation());
970 
971   TemplateOrSpecializationInfo
972   getTemplateOrSpecializationInfo(const VarDecl *Var);
973 
974   void setTemplateOrSpecializationInfo(VarDecl *Inst,
975                                        TemplateOrSpecializationInfo TSI);
976 
977   /// If the given using decl \p Inst is an instantiation of
978   /// another (possibly unresolved) using decl, return it.
979   NamedDecl *getInstantiatedFromUsingDecl(NamedDecl *Inst);
980 
981   /// Remember that the using decl \p Inst is an instantiation
982   /// of the using decl \p Pattern of a class template.
983   void setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern);
984 
985   /// If the given using-enum decl \p Inst is an instantiation of
986   /// another using-enum decl, return it.
987   UsingEnumDecl *getInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst);
988 
989   /// Remember that the using enum decl \p Inst is an instantiation
990   /// of the using enum decl \p Pattern of a class template.
991   void setInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst,
992                                         UsingEnumDecl *Pattern);
993 
994   UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
995   void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
996                                           UsingShadowDecl *Pattern);
997 
998   FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
999 
1000   void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
1001 
1002   // Access to the set of methods overridden by the given C++ method.
1003   using overridden_cxx_method_iterator = CXXMethodVector::const_iterator;
1004   overridden_cxx_method_iterator
1005   overridden_methods_begin(const CXXMethodDecl *Method) const;
1006 
1007   overridden_cxx_method_iterator
1008   overridden_methods_end(const CXXMethodDecl *Method) const;
1009 
1010   unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
1011 
1012   using overridden_method_range =
1013       llvm::iterator_range<overridden_cxx_method_iterator>;
1014 
1015   overridden_method_range overridden_methods(const CXXMethodDecl *Method) const;
1016 
1017   /// Note that the given C++ \p Method overrides the given \p
1018   /// Overridden method.
1019   void addOverriddenMethod(const CXXMethodDecl *Method,
1020                            const CXXMethodDecl *Overridden);
1021 
1022   /// Return C++ or ObjC overridden methods for the given \p Method.
1023   ///
1024   /// An ObjC method is considered to override any method in the class's
1025   /// base classes, its protocols, or its categories' protocols, that has
1026   /// the same selector and is of the same kind (class or instance).
1027   /// A method in an implementation is not considered as overriding the same
1028   /// method in the interface or its categories.
1029   void getOverriddenMethods(
1030                         const NamedDecl *Method,
1031                         SmallVectorImpl<const NamedDecl *> &Overridden) const;
1032 
1033   /// Notify the AST context that a new import declaration has been
1034   /// parsed or implicitly created within this translation unit.
1035   void addedLocalImportDecl(ImportDecl *Import);
1036 
1037   static ImportDecl *getNextLocalImport(ImportDecl *Import) {
1038     return Import->getNextLocalImport();
1039   }
1040 
1041   using import_range = llvm::iterator_range<import_iterator>;
1042 
1043   import_range local_imports() const {
1044     return import_range(import_iterator(FirstLocalImport), import_iterator());
1045   }
1046 
1047   Decl *getPrimaryMergedDecl(Decl *D) {
1048     Decl *Result = MergedDecls.lookup(D);
1049     return Result ? Result : D;
1050   }
1051   void setPrimaryMergedDecl(Decl *D, Decl *Primary) {
1052     MergedDecls[D] = Primary;
1053   }
1054 
1055   /// Note that the definition \p ND has been merged into module \p M,
1056   /// and should be visible whenever \p M is visible.
1057   void mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
1058                                  bool NotifyListeners = true);
1059 
1060   /// Clean up the merged definition list. Call this if you might have
1061   /// added duplicates into the list.
1062   void deduplicateMergedDefinitonsFor(NamedDecl *ND);
1063 
1064   /// Get the additional modules in which the definition \p Def has
1065   /// been merged.
1066   ArrayRef<Module*> getModulesWithMergedDefinition(const NamedDecl *Def);
1067 
1068   /// Add a declaration to the list of declarations that are initialized
1069   /// for a module. This will typically be a global variable (with internal
1070   /// linkage) that runs module initializers, such as the iostream initializer,
1071   /// or an ImportDecl nominating another module that has initializers.
1072   void addModuleInitializer(Module *M, Decl *Init);
1073 
1074   void addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs);
1075 
1076   /// Get the initializations to perform when importing a module, if any.
1077   ArrayRef<Decl*> getModuleInitializers(Module *M);
1078 
1079   TranslationUnitDecl *getTranslationUnitDecl() const {
1080     return TUDecl->getMostRecentDecl();
1081   }
1082   void addTranslationUnitDecl() {
1083     assert(!TUDecl || TUKind == TU_Incremental);
1084     TranslationUnitDecl *NewTUDecl = TranslationUnitDecl::Create(*this);
1085     if (TraversalScope.empty() || TraversalScope.back() == TUDecl)
1086       TraversalScope = {NewTUDecl};
1087     if (TUDecl)
1088       NewTUDecl->setPreviousDecl(TUDecl);
1089     TUDecl = NewTUDecl;
1090   }
1091 
1092   ExternCContextDecl *getExternCContextDecl() const;
1093   BuiltinTemplateDecl *getMakeIntegerSeqDecl() const;
1094   BuiltinTemplateDecl *getTypePackElementDecl() const;
1095 
1096   // Builtin Types.
1097   CanQualType VoidTy;
1098   CanQualType BoolTy;
1099   CanQualType CharTy;
1100   CanQualType WCharTy;  // [C++ 3.9.1p5].
1101   CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
1102   CanQualType WIntTy;   // [C99 7.24.1], integer type unchanged by default promotions.
1103   CanQualType Char8Ty;  // [C++20 proposal]
1104   CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
1105   CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
1106   CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
1107   CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
1108   CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
1109   CanQualType FloatTy, DoubleTy, LongDoubleTy, Float128Ty, Ibm128Ty;
1110   CanQualType ShortAccumTy, AccumTy,
1111       LongAccumTy;  // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1112   CanQualType UnsignedShortAccumTy, UnsignedAccumTy, UnsignedLongAccumTy;
1113   CanQualType ShortFractTy, FractTy, LongFractTy;
1114   CanQualType UnsignedShortFractTy, UnsignedFractTy, UnsignedLongFractTy;
1115   CanQualType SatShortAccumTy, SatAccumTy, SatLongAccumTy;
1116   CanQualType SatUnsignedShortAccumTy, SatUnsignedAccumTy,
1117       SatUnsignedLongAccumTy;
1118   CanQualType SatShortFractTy, SatFractTy, SatLongFractTy;
1119   CanQualType SatUnsignedShortFractTy, SatUnsignedFractTy,
1120       SatUnsignedLongFractTy;
1121   CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
1122   CanQualType BFloat16Ty;
1123   CanQualType Float16Ty; // C11 extension ISO/IEC TS 18661-3
1124   CanQualType VoidPtrTy, NullPtrTy;
1125   CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
1126   CanQualType BuiltinFnTy;
1127   CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
1128   CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
1129   CanQualType ObjCBuiltinBoolTy;
1130 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1131   CanQualType SingletonId;
1132 #include "clang/Basic/OpenCLImageTypes.def"
1133   CanQualType OCLSamplerTy, OCLEventTy, OCLClkEventTy;
1134   CanQualType OCLQueueTy, OCLReserveIDTy;
1135   CanQualType IncompleteMatrixIdxTy;
1136   CanQualType OMPArraySectionTy, OMPArrayShapingTy, OMPIteratorTy;
1137 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1138   CanQualType Id##Ty;
1139 #include "clang/Basic/OpenCLExtensionTypes.def"
1140 #define SVE_TYPE(Name, Id, SingletonId) \
1141   CanQualType SingletonId;
1142 #include "clang/Basic/AArch64SVEACLETypes.def"
1143 #define PPC_VECTOR_TYPE(Name, Id, Size) \
1144   CanQualType Id##Ty;
1145 #include "clang/Basic/PPCTypes.def"
1146 #define RVV_TYPE(Name, Id, SingletonId) \
1147   CanQualType SingletonId;
1148 #include "clang/Basic/RISCVVTypes.def"
1149 
1150   // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
1151   mutable QualType AutoDeductTy;     // Deduction against 'auto'.
1152   mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
1153 
1154   // Decl used to help define __builtin_va_list for some targets.
1155   // The decl is built when constructing 'BuiltinVaListDecl'.
1156   mutable Decl *VaListTagDecl = nullptr;
1157 
1158   // Implicitly-declared type 'struct _GUID'.
1159   mutable TagDecl *MSGuidTagDecl = nullptr;
1160 
1161   /// Keep track of CUDA/HIP device-side variables ODR-used by host code.
1162   llvm::DenseSet<const VarDecl *> CUDADeviceVarODRUsedByHost;
1163 
1164   /// Keep track of CUDA/HIP external kernels or device variables ODR-used by
1165   /// host code.
1166   llvm::DenseSet<const ValueDecl *> CUDAExternalDeviceDeclODRUsedByHost;
1167 
1168   ASTContext(LangOptions &LOpts, SourceManager &SM, IdentifierTable &idents,
1169              SelectorTable &sels, Builtin::Context &builtins,
1170              TranslationUnitKind TUKind);
1171   ASTContext(const ASTContext &) = delete;
1172   ASTContext &operator=(const ASTContext &) = delete;
1173   ~ASTContext();
1174 
1175   /// Attach an external AST source to the AST context.
1176   ///
1177   /// The external AST source provides the ability to load parts of
1178   /// the abstract syntax tree as needed from some external storage,
1179   /// e.g., a precompiled header.
1180   void setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source);
1181 
1182   /// Retrieve a pointer to the external AST source associated
1183   /// with this AST context, if any.
1184   ExternalASTSource *getExternalSource() const {
1185     return ExternalSource.get();
1186   }
1187 
1188   /// Attach an AST mutation listener to the AST context.
1189   ///
1190   /// The AST mutation listener provides the ability to track modifications to
1191   /// the abstract syntax tree entities committed after they were initially
1192   /// created.
1193   void setASTMutationListener(ASTMutationListener *Listener) {
1194     this->Listener = Listener;
1195   }
1196 
1197   /// Retrieve a pointer to the AST mutation listener associated
1198   /// with this AST context, if any.
1199   ASTMutationListener *getASTMutationListener() const { return Listener; }
1200 
1201   void PrintStats() const;
1202   const SmallVectorImpl<Type *>& getTypes() const { return Types; }
1203 
1204   BuiltinTemplateDecl *buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1205                                                 const IdentifierInfo *II) const;
1206 
1207   /// Create a new implicit TU-level CXXRecordDecl or RecordDecl
1208   /// declaration.
1209   RecordDecl *buildImplicitRecord(StringRef Name,
1210                                   RecordDecl::TagKind TK = TTK_Struct) const;
1211 
1212   /// Create a new implicit TU-level typedef declaration.
1213   TypedefDecl *buildImplicitTypedef(QualType T, StringRef Name) const;
1214 
1215   /// Retrieve the declaration for the 128-bit signed integer type.
1216   TypedefDecl *getInt128Decl() const;
1217 
1218   /// Retrieve the declaration for the 128-bit unsigned integer type.
1219   TypedefDecl *getUInt128Decl() const;
1220 
1221   //===--------------------------------------------------------------------===//
1222   //                           Type Constructors
1223   //===--------------------------------------------------------------------===//
1224 
1225 private:
1226   /// Return a type with extended qualifiers.
1227   QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
1228 
1229   QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
1230 
1231   QualType getPipeType(QualType T, bool ReadOnly) const;
1232 
1233 public:
1234   /// Return the uniqued reference to the type for an address space
1235   /// qualified type with the specified type and address space.
1236   ///
1237   /// The resulting type has a union of the qualifiers from T and the address
1238   /// space. If T already has an address space specifier, it is silently
1239   /// replaced.
1240   QualType getAddrSpaceQualType(QualType T, LangAS AddressSpace) const;
1241 
1242   /// Remove any existing address space on the type and returns the type
1243   /// with qualifiers intact (or that's the idea anyway)
1244   ///
1245   /// The return type should be T with all prior qualifiers minus the address
1246   /// space.
1247   QualType removeAddrSpaceQualType(QualType T) const;
1248 
1249   /// Apply Objective-C protocol qualifiers to the given type.
1250   /// \param allowOnPointerType specifies if we can apply protocol
1251   /// qualifiers on ObjCObjectPointerType. It can be set to true when
1252   /// constructing the canonical type of a Objective-C type parameter.
1253   QualType applyObjCProtocolQualifiers(QualType type,
1254       ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
1255       bool allowOnPointerType = false) const;
1256 
1257   /// Return the uniqued reference to the type for an Objective-C
1258   /// gc-qualified type.
1259   ///
1260   /// The resulting type has a union of the qualifiers from T and the gc
1261   /// attribute.
1262   QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
1263 
1264   /// Remove the existing address space on the type if it is a pointer size
1265   /// address space and return the type with qualifiers intact.
1266   QualType removePtrSizeAddrSpace(QualType T) const;
1267 
1268   /// Return the uniqued reference to the type for a \c restrict
1269   /// qualified type.
1270   ///
1271   /// The resulting type has a union of the qualifiers from \p T and
1272   /// \c restrict.
1273   QualType getRestrictType(QualType T) const {
1274     return T.withFastQualifiers(Qualifiers::Restrict);
1275   }
1276 
1277   /// Return the uniqued reference to the type for a \c volatile
1278   /// qualified type.
1279   ///
1280   /// The resulting type has a union of the qualifiers from \p T and
1281   /// \c volatile.
1282   QualType getVolatileType(QualType T) const {
1283     return T.withFastQualifiers(Qualifiers::Volatile);
1284   }
1285 
1286   /// Return the uniqued reference to the type for a \c const
1287   /// qualified type.
1288   ///
1289   /// The resulting type has a union of the qualifiers from \p T and \c const.
1290   ///
1291   /// It can be reasonably expected that this will always be equivalent to
1292   /// calling T.withConst().
1293   QualType getConstType(QualType T) const { return T.withConst(); }
1294 
1295   /// Change the ExtInfo on a function type.
1296   const FunctionType *adjustFunctionType(const FunctionType *Fn,
1297                                          FunctionType::ExtInfo EInfo);
1298 
1299   /// Adjust the given function result type.
1300   CanQualType getCanonicalFunctionResultType(QualType ResultType) const;
1301 
1302   /// Change the result type of a function type once it is deduced.
1303   void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType);
1304 
1305   /// Get a function type and produce the equivalent function type with the
1306   /// specified exception specification. Type sugar that can be present on a
1307   /// declaration of a function with an exception specification is permitted
1308   /// and preserved. Other type sugar (for instance, typedefs) is not.
1309   QualType getFunctionTypeWithExceptionSpec(
1310       QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) const;
1311 
1312   /// Determine whether two function types are the same, ignoring
1313   /// exception specifications in cases where they're part of the type.
1314   bool hasSameFunctionTypeIgnoringExceptionSpec(QualType T, QualType U) const;
1315 
1316   /// Change the exception specification on a function once it is
1317   /// delay-parsed, instantiated, or computed.
1318   void adjustExceptionSpec(FunctionDecl *FD,
1319                            const FunctionProtoType::ExceptionSpecInfo &ESI,
1320                            bool AsWritten = false);
1321 
1322   /// Get a function type and produce the equivalent function type where
1323   /// pointer size address spaces in the return type and parameter tyeps are
1324   /// replaced with the default address space.
1325   QualType getFunctionTypeWithoutPtrSizes(QualType T);
1326 
1327   /// Determine whether two function types are the same, ignoring pointer sizes
1328   /// in the return type and parameter types.
1329   bool hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U);
1330 
1331   /// Return the uniqued reference to the type for a complex
1332   /// number with the specified element type.
1333   QualType getComplexType(QualType T) const;
1334   CanQualType getComplexType(CanQualType T) const {
1335     return CanQualType::CreateUnsafe(getComplexType((QualType) T));
1336   }
1337 
1338   /// Return the uniqued reference to the type for a pointer to
1339   /// the specified type.
1340   QualType getPointerType(QualType T) const;
1341   CanQualType getPointerType(CanQualType T) const {
1342     return CanQualType::CreateUnsafe(getPointerType((QualType) T));
1343   }
1344 
1345   /// Return the uniqued reference to a type adjusted from the original
1346   /// type to a new type.
1347   QualType getAdjustedType(QualType Orig, QualType New) const;
1348   CanQualType getAdjustedType(CanQualType Orig, CanQualType New) const {
1349     return CanQualType::CreateUnsafe(
1350         getAdjustedType((QualType)Orig, (QualType)New));
1351   }
1352 
1353   /// Return the uniqued reference to the decayed version of the given
1354   /// type.  Can only be called on array and function types which decay to
1355   /// pointer types.
1356   QualType getDecayedType(QualType T) const;
1357   CanQualType getDecayedType(CanQualType T) const {
1358     return CanQualType::CreateUnsafe(getDecayedType((QualType) T));
1359   }
1360 
1361   /// Return the uniqued reference to the atomic type for the specified
1362   /// type.
1363   QualType getAtomicType(QualType T) const;
1364 
1365   /// Return the uniqued reference to the type for a block of the
1366   /// specified type.
1367   QualType getBlockPointerType(QualType T) const;
1368 
1369   /// Gets the struct used to keep track of the descriptor for pointer to
1370   /// blocks.
1371   QualType getBlockDescriptorType() const;
1372 
1373   /// Return a read_only pipe type for the specified type.
1374   QualType getReadPipeType(QualType T) const;
1375 
1376   /// Return a write_only pipe type for the specified type.
1377   QualType getWritePipeType(QualType T) const;
1378 
1379   /// Return a bit-precise integer type with the specified signedness and bit
1380   /// count.
1381   QualType getBitIntType(bool Unsigned, unsigned NumBits) const;
1382 
1383   /// Return a dependent bit-precise integer type with the specified signedness
1384   /// and bit count.
1385   QualType getDependentBitIntType(bool Unsigned, Expr *BitsExpr) const;
1386 
1387   /// Gets the struct used to keep track of the extended descriptor for
1388   /// pointer to blocks.
1389   QualType getBlockDescriptorExtendedType() const;
1390 
1391   /// Map an AST Type to an OpenCLTypeKind enum value.
1392   OpenCLTypeKind getOpenCLTypeKind(const Type *T) const;
1393 
1394   /// Get address space for OpenCL type.
1395   LangAS getOpenCLTypeAddrSpace(const Type *T) const;
1396 
1397   /// Returns default address space based on OpenCL version and enabled features
1398   inline LangAS getDefaultOpenCLPointeeAddrSpace() {
1399     return LangOpts.OpenCLGenericAddressSpace ? LangAS::opencl_generic
1400                                               : LangAS::opencl_private;
1401   }
1402 
1403   void setcudaConfigureCallDecl(FunctionDecl *FD) {
1404     cudaConfigureCallDecl = FD;
1405   }
1406 
1407   FunctionDecl *getcudaConfigureCallDecl() {
1408     return cudaConfigureCallDecl;
1409   }
1410 
1411   /// Returns true iff we need copy/dispose helpers for the given type.
1412   bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
1413 
1414   /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout
1415   /// is set to false in this case. If HasByrefExtendedLayout returns true,
1416   /// byref variable has extended lifetime.
1417   bool getByrefLifetime(QualType Ty,
1418                         Qualifiers::ObjCLifetime &Lifetime,
1419                         bool &HasByrefExtendedLayout) const;
1420 
1421   /// Return the uniqued reference to the type for an lvalue reference
1422   /// to the specified type.
1423   QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
1424     const;
1425 
1426   /// Return the uniqued reference to the type for an rvalue reference
1427   /// to the specified type.
1428   QualType getRValueReferenceType(QualType T) const;
1429 
1430   /// Return the uniqued reference to the type for a member pointer to
1431   /// the specified type in the specified class.
1432   ///
1433   /// The class \p Cls is a \c Type because it could be a dependent name.
1434   QualType getMemberPointerType(QualType T, const Type *Cls) const;
1435 
1436   /// Return a non-unique reference to the type for a variable array of
1437   /// the specified element type.
1438   QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
1439                                 ArrayType::ArraySizeModifier ASM,
1440                                 unsigned IndexTypeQuals,
1441                                 SourceRange Brackets) const;
1442 
1443   /// Return a non-unique reference to the type for a dependently-sized
1444   /// array of the specified element type.
1445   ///
1446   /// FIXME: We will need these to be uniqued, or at least comparable, at some
1447   /// point.
1448   QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
1449                                       ArrayType::ArraySizeModifier ASM,
1450                                       unsigned IndexTypeQuals,
1451                                       SourceRange Brackets) const;
1452 
1453   /// Return a unique reference to the type for an incomplete array of
1454   /// the specified element type.
1455   QualType getIncompleteArrayType(QualType EltTy,
1456                                   ArrayType::ArraySizeModifier ASM,
1457                                   unsigned IndexTypeQuals) const;
1458 
1459   /// Return the unique reference to the type for a constant array of
1460   /// the specified element type.
1461   QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
1462                                 const Expr *SizeExpr,
1463                                 ArrayType::ArraySizeModifier ASM,
1464                                 unsigned IndexTypeQuals) const;
1465 
1466   /// Return a type for a constant array for a string literal of the
1467   /// specified element type and length.
1468   QualType getStringLiteralArrayType(QualType EltTy, unsigned Length) const;
1469 
1470   /// Returns a vla type where known sizes are replaced with [*].
1471   QualType getVariableArrayDecayedType(QualType Ty) const;
1472 
1473   // Convenience struct to return information about a builtin vector type.
1474   struct BuiltinVectorTypeInfo {
1475     QualType ElementType;
1476     llvm::ElementCount EC;
1477     unsigned NumVectors;
1478     BuiltinVectorTypeInfo(QualType ElementType, llvm::ElementCount EC,
1479                           unsigned NumVectors)
1480         : ElementType(ElementType), EC(EC), NumVectors(NumVectors) {}
1481   };
1482 
1483   /// Returns the element type, element count and number of vectors
1484   /// (in case of tuple) for a builtin vector type.
1485   BuiltinVectorTypeInfo
1486   getBuiltinVectorTypeInfo(const BuiltinType *VecTy) const;
1487 
1488   /// Return the unique reference to a scalable vector type of the specified
1489   /// element type and scalable number of elements.
1490   ///
1491   /// \pre \p EltTy must be a built-in type.
1492   QualType getScalableVectorType(QualType EltTy, unsigned NumElts) const;
1493 
1494   /// Return the unique reference to a vector type of the specified
1495   /// element type and size.
1496   ///
1497   /// \pre \p VectorType must be a built-in type.
1498   QualType getVectorType(QualType VectorType, unsigned NumElts,
1499                          VectorType::VectorKind VecKind) const;
1500   /// Return the unique reference to the type for a dependently sized vector of
1501   /// the specified element type.
1502   QualType getDependentVectorType(QualType VectorType, Expr *SizeExpr,
1503                                   SourceLocation AttrLoc,
1504                                   VectorType::VectorKind VecKind) const;
1505 
1506   /// Return the unique reference to an extended vector type
1507   /// of the specified element type and size.
1508   ///
1509   /// \pre \p VectorType must be a built-in type.
1510   QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
1511 
1512   /// \pre Return a non-unique reference to the type for a dependently-sized
1513   /// vector of the specified element type.
1514   ///
1515   /// FIXME: We will need these to be uniqued, or at least comparable, at some
1516   /// point.
1517   QualType getDependentSizedExtVectorType(QualType VectorType,
1518                                           Expr *SizeExpr,
1519                                           SourceLocation AttrLoc) const;
1520 
1521   /// Return the unique reference to the matrix type of the specified element
1522   /// type and size
1523   ///
1524   /// \pre \p ElementType must be a valid matrix element type (see
1525   /// MatrixType::isValidElementType).
1526   QualType getConstantMatrixType(QualType ElementType, unsigned NumRows,
1527                                  unsigned NumColumns) const;
1528 
1529   /// Return the unique reference to the matrix type of the specified element
1530   /// type and size
1531   QualType getDependentSizedMatrixType(QualType ElementType, Expr *RowExpr,
1532                                        Expr *ColumnExpr,
1533                                        SourceLocation AttrLoc) const;
1534 
1535   QualType getDependentAddressSpaceType(QualType PointeeType,
1536                                         Expr *AddrSpaceExpr,
1537                                         SourceLocation AttrLoc) const;
1538 
1539   /// Return a K&R style C function type like 'int()'.
1540   QualType getFunctionNoProtoType(QualType ResultTy,
1541                                   const FunctionType::ExtInfo &Info) const;
1542 
1543   QualType getFunctionNoProtoType(QualType ResultTy) const {
1544     return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
1545   }
1546 
1547   /// Return a normal function type with a typed argument list.
1548   QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
1549                            const FunctionProtoType::ExtProtoInfo &EPI) const {
1550     return getFunctionTypeInternal(ResultTy, Args, EPI, false);
1551   }
1552 
1553   QualType adjustStringLiteralBaseType(QualType StrLTy) const;
1554 
1555 private:
1556   /// Return a normal function type with a typed argument list.
1557   QualType getFunctionTypeInternal(QualType ResultTy, ArrayRef<QualType> Args,
1558                                    const FunctionProtoType::ExtProtoInfo &EPI,
1559                                    bool OnlyWantCanonical) const;
1560   QualType
1561   getAutoTypeInternal(QualType DeducedType, AutoTypeKeyword Keyword,
1562                       bool IsDependent, bool IsPack = false,
1563                       ConceptDecl *TypeConstraintConcept = nullptr,
1564                       ArrayRef<TemplateArgument> TypeConstraintArgs = {},
1565                       bool IsCanon = false) const;
1566 
1567 public:
1568   /// Return the unique reference to the type for the specified type
1569   /// declaration.
1570   QualType getTypeDeclType(const TypeDecl *Decl,
1571                            const TypeDecl *PrevDecl = nullptr) const {
1572     assert(Decl && "Passed null for Decl param");
1573     if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1574 
1575     if (PrevDecl) {
1576       assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
1577       Decl->TypeForDecl = PrevDecl->TypeForDecl;
1578       return QualType(PrevDecl->TypeForDecl, 0);
1579     }
1580 
1581     return getTypeDeclTypeSlow(Decl);
1582   }
1583 
1584   QualType getUsingType(const UsingShadowDecl *Found,
1585                         QualType Underlying) const;
1586 
1587   /// Return the unique reference to the type for the specified
1588   /// typedef-name decl.
1589   QualType getTypedefType(const TypedefNameDecl *Decl,
1590                           QualType Underlying = QualType()) const;
1591 
1592   QualType getRecordType(const RecordDecl *Decl) const;
1593 
1594   QualType getEnumType(const EnumDecl *Decl) const;
1595 
1596   QualType
1597   getUnresolvedUsingType(const UnresolvedUsingTypenameDecl *Decl) const;
1598 
1599   QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
1600 
1601   QualType getAttributedType(attr::Kind attrKind, QualType modifiedType,
1602                              QualType equivalentType) const;
1603 
1604   QualType getBTFTagAttributedType(const BTFTypeTagAttr *BTFAttr,
1605                                    QualType Wrapped);
1606 
1607   QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
1608                                         QualType Replacement) const;
1609   QualType getSubstTemplateTypeParmPackType(
1610                                           const TemplateTypeParmType *Replaced,
1611                                             const TemplateArgument &ArgPack);
1612 
1613   QualType
1614   getTemplateTypeParmType(unsigned Depth, unsigned Index,
1615                           bool ParameterPack,
1616                           TemplateTypeParmDecl *ParmDecl = nullptr) const;
1617 
1618   QualType getTemplateSpecializationType(TemplateName T,
1619                                          ArrayRef<TemplateArgument> Args,
1620                                          QualType Canon = QualType()) const;
1621 
1622   QualType
1623   getCanonicalTemplateSpecializationType(TemplateName T,
1624                                          ArrayRef<TemplateArgument> Args) const;
1625 
1626   QualType getTemplateSpecializationType(TemplateName T,
1627                                          const TemplateArgumentListInfo &Args,
1628                                          QualType Canon = QualType()) const;
1629 
1630   TypeSourceInfo *
1631   getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
1632                                     const TemplateArgumentListInfo &Args,
1633                                     QualType Canon = QualType()) const;
1634 
1635   QualType getParenType(QualType NamedType) const;
1636 
1637   QualType getMacroQualifiedType(QualType UnderlyingTy,
1638                                  const IdentifierInfo *MacroII) const;
1639 
1640   QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
1641                              NestedNameSpecifier *NNS, QualType NamedType,
1642                              TagDecl *OwnedTagDecl = nullptr) const;
1643   QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
1644                                 NestedNameSpecifier *NNS,
1645                                 const IdentifierInfo *Name,
1646                                 QualType Canon = QualType()) const;
1647 
1648   QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1649                                                   NestedNameSpecifier *NNS,
1650                                                   const IdentifierInfo *Name,
1651                                     const TemplateArgumentListInfo &Args) const;
1652   QualType getDependentTemplateSpecializationType(
1653       ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
1654       const IdentifierInfo *Name, ArrayRef<TemplateArgument> Args) const;
1655 
1656   TemplateArgument getInjectedTemplateArg(NamedDecl *ParamDecl);
1657 
1658   /// Get a template argument list with one argument per template parameter
1659   /// in a template parameter list, such as for the injected class name of
1660   /// a class template.
1661   void getInjectedTemplateArgs(const TemplateParameterList *Params,
1662                                SmallVectorImpl<TemplateArgument> &Args);
1663 
1664   /// Form a pack expansion type with the given pattern.
1665   /// \param NumExpansions The number of expansions for the pack, if known.
1666   /// \param ExpectPackInType If \c false, we should not expect \p Pattern to
1667   ///        contain an unexpanded pack. This only makes sense if the pack
1668   ///        expansion is used in a context where the arity is inferred from
1669   ///        elsewhere, such as if the pattern contains a placeholder type or
1670   ///        if this is the canonical type of another pack expansion type.
1671   QualType getPackExpansionType(QualType Pattern,
1672                                 Optional<unsigned> NumExpansions,
1673                                 bool ExpectPackInType = true);
1674 
1675   QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1676                                 ObjCInterfaceDecl *PrevDecl = nullptr) const;
1677 
1678   /// Legacy interface: cannot provide type arguments or __kindof.
1679   QualType getObjCObjectType(QualType Base,
1680                              ObjCProtocolDecl * const *Protocols,
1681                              unsigned NumProtocols) const;
1682 
1683   QualType getObjCObjectType(QualType Base,
1684                              ArrayRef<QualType> typeArgs,
1685                              ArrayRef<ObjCProtocolDecl *> protocols,
1686                              bool isKindOf) const;
1687 
1688   QualType getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
1689                                 ArrayRef<ObjCProtocolDecl *> protocols) const;
1690   void adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig,
1691                                     ObjCTypeParamDecl *New) const;
1692 
1693   bool ObjCObjectAdoptsQTypeProtocols(QualType QT, ObjCInterfaceDecl *Decl);
1694 
1695   /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
1696   /// QT's qualified-id protocol list adopt all protocols in IDecl's list
1697   /// of protocols.
1698   bool QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
1699                                             ObjCInterfaceDecl *IDecl);
1700 
1701   /// Return a ObjCObjectPointerType type for the given ObjCObjectType.
1702   QualType getObjCObjectPointerType(QualType OIT) const;
1703 
1704   /// GCC extension.
1705   QualType getTypeOfExprType(Expr *e) const;
1706   QualType getTypeOfType(QualType t) const;
1707 
1708   QualType getReferenceQualifiedType(const Expr *e) const;
1709 
1710   /// C++11 decltype.
1711   QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
1712 
1713   /// Unary type transforms
1714   QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
1715                                  UnaryTransformType::UTTKind UKind) const;
1716 
1717   /// C++11 deduced auto type.
1718   QualType getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
1719                        bool IsDependent, bool IsPack = false,
1720                        ConceptDecl *TypeConstraintConcept = nullptr,
1721                        ArrayRef<TemplateArgument> TypeConstraintArgs ={}) const;
1722 
1723   /// C++11 deduction pattern for 'auto' type.
1724   QualType getAutoDeductType() const;
1725 
1726   /// C++11 deduction pattern for 'auto &&' type.
1727   QualType getAutoRRefDeductType() const;
1728 
1729   /// C++17 deduced class template specialization type.
1730   QualType getDeducedTemplateSpecializationType(TemplateName Template,
1731                                                 QualType DeducedType,
1732                                                 bool IsDependent) const;
1733 
1734   /// Return the unique reference to the type for the specified TagDecl
1735   /// (struct/union/class/enum) decl.
1736   QualType getTagDeclType(const TagDecl *Decl) const;
1737 
1738   /// Return the unique type for "size_t" (C99 7.17), defined in
1739   /// <stddef.h>.
1740   ///
1741   /// The sizeof operator requires this (C99 6.5.3.4p4).
1742   CanQualType getSizeType() const;
1743 
1744   /// Return the unique signed counterpart of
1745   /// the integer type corresponding to size_t.
1746   CanQualType getSignedSizeType() const;
1747 
1748   /// Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
1749   /// <stdint.h>.
1750   CanQualType getIntMaxType() const;
1751 
1752   /// Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
1753   /// <stdint.h>.
1754   CanQualType getUIntMaxType() const;
1755 
1756   /// Return the unique wchar_t type available in C++ (and available as
1757   /// __wchar_t as a Microsoft extension).
1758   QualType getWCharType() const { return WCharTy; }
1759 
1760   /// Return the type of wide characters. In C++, this returns the
1761   /// unique wchar_t type. In C99, this returns a type compatible with the type
1762   /// defined in <stddef.h> as defined by the target.
1763   QualType getWideCharType() const { return WideCharTy; }
1764 
1765   /// Return the type of "signed wchar_t".
1766   ///
1767   /// Used when in C++, as a GCC extension.
1768   QualType getSignedWCharType() const;
1769 
1770   /// Return the type of "unsigned wchar_t".
1771   ///
1772   /// Used when in C++, as a GCC extension.
1773   QualType getUnsignedWCharType() const;
1774 
1775   /// In C99, this returns a type compatible with the type
1776   /// defined in <stddef.h> as defined by the target.
1777   QualType getWIntType() const { return WIntTy; }
1778 
1779   /// Return a type compatible with "intptr_t" (C99 7.18.1.4),
1780   /// as defined by the target.
1781   QualType getIntPtrType() const;
1782 
1783   /// Return a type compatible with "uintptr_t" (C99 7.18.1.4),
1784   /// as defined by the target.
1785   QualType getUIntPtrType() const;
1786 
1787   /// Return the unique type for "ptrdiff_t" (C99 7.17) defined in
1788   /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1789   QualType getPointerDiffType() const;
1790 
1791   /// Return the unique unsigned counterpart of "ptrdiff_t"
1792   /// integer type. The standard (C11 7.21.6.1p7) refers to this type
1793   /// in the definition of %tu format specifier.
1794   QualType getUnsignedPointerDiffType() const;
1795 
1796   /// Return the unique type for "pid_t" defined in
1797   /// <sys/types.h>. We need this to compute the correct type for vfork().
1798   QualType getProcessIDType() const;
1799 
1800   /// Return the C structure type used to represent constant CFStrings.
1801   QualType getCFConstantStringType() const;
1802 
1803   /// Returns the C struct type for objc_super
1804   QualType getObjCSuperType() const;
1805   void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
1806 
1807   /// Get the structure type used to representation CFStrings, or NULL
1808   /// if it hasn't yet been built.
1809   QualType getRawCFConstantStringType() const {
1810     if (CFConstantStringTypeDecl)
1811       return getTypedefType(CFConstantStringTypeDecl);
1812     return QualType();
1813   }
1814   void setCFConstantStringType(QualType T);
1815   TypedefDecl *getCFConstantStringDecl() const;
1816   RecordDecl *getCFConstantStringTagDecl() const;
1817 
1818   // This setter/getter represents the ObjC type for an NSConstantString.
1819   void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
1820   QualType getObjCConstantStringInterface() const {
1821     return ObjCConstantStringType;
1822   }
1823 
1824   QualType getObjCNSStringType() const {
1825     return ObjCNSStringType;
1826   }
1827 
1828   void setObjCNSStringType(QualType T) {
1829     ObjCNSStringType = T;
1830   }
1831 
1832   /// Retrieve the type that \c id has been defined to, which may be
1833   /// different from the built-in \c id if \c id has been typedef'd.
1834   QualType getObjCIdRedefinitionType() const {
1835     if (ObjCIdRedefinitionType.isNull())
1836       return getObjCIdType();
1837     return ObjCIdRedefinitionType;
1838   }
1839 
1840   /// Set the user-written type that redefines \c id.
1841   void setObjCIdRedefinitionType(QualType RedefType) {
1842     ObjCIdRedefinitionType = RedefType;
1843   }
1844 
1845   /// Retrieve the type that \c Class has been defined to, which may be
1846   /// different from the built-in \c Class if \c Class has been typedef'd.
1847   QualType getObjCClassRedefinitionType() const {
1848     if (ObjCClassRedefinitionType.isNull())
1849       return getObjCClassType();
1850     return ObjCClassRedefinitionType;
1851   }
1852 
1853   /// Set the user-written type that redefines 'SEL'.
1854   void setObjCClassRedefinitionType(QualType RedefType) {
1855     ObjCClassRedefinitionType = RedefType;
1856   }
1857 
1858   /// Retrieve the type that 'SEL' has been defined to, which may be
1859   /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
1860   QualType getObjCSelRedefinitionType() const {
1861     if (ObjCSelRedefinitionType.isNull())
1862       return getObjCSelType();
1863     return ObjCSelRedefinitionType;
1864   }
1865 
1866   /// Set the user-written type that redefines 'SEL'.
1867   void setObjCSelRedefinitionType(QualType RedefType) {
1868     ObjCSelRedefinitionType = RedefType;
1869   }
1870 
1871   /// Retrieve the identifier 'NSObject'.
1872   IdentifierInfo *getNSObjectName() const {
1873     if (!NSObjectName) {
1874       NSObjectName = &Idents.get("NSObject");
1875     }
1876 
1877     return NSObjectName;
1878   }
1879 
1880   /// Retrieve the identifier 'NSCopying'.
1881   IdentifierInfo *getNSCopyingName() {
1882     if (!NSCopyingName) {
1883       NSCopyingName = &Idents.get("NSCopying");
1884     }
1885 
1886     return NSCopyingName;
1887   }
1888 
1889   CanQualType getNSUIntegerType() const;
1890 
1891   CanQualType getNSIntegerType() const;
1892 
1893   /// Retrieve the identifier 'bool'.
1894   IdentifierInfo *getBoolName() const {
1895     if (!BoolName)
1896       BoolName = &Idents.get("bool");
1897     return BoolName;
1898   }
1899 
1900   IdentifierInfo *getMakeIntegerSeqName() const {
1901     if (!MakeIntegerSeqName)
1902       MakeIntegerSeqName = &Idents.get("__make_integer_seq");
1903     return MakeIntegerSeqName;
1904   }
1905 
1906   IdentifierInfo *getTypePackElementName() const {
1907     if (!TypePackElementName)
1908       TypePackElementName = &Idents.get("__type_pack_element");
1909     return TypePackElementName;
1910   }
1911 
1912   /// Retrieve the Objective-C "instancetype" type, if already known;
1913   /// otherwise, returns a NULL type;
1914   QualType getObjCInstanceType() {
1915     return getTypeDeclType(getObjCInstanceTypeDecl());
1916   }
1917 
1918   /// Retrieve the typedef declaration corresponding to the Objective-C
1919   /// "instancetype" type.
1920   TypedefDecl *getObjCInstanceTypeDecl();
1921 
1922   /// Set the type for the C FILE type.
1923   void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1924 
1925   /// Retrieve the C FILE type.
1926   QualType getFILEType() const {
1927     if (FILEDecl)
1928       return getTypeDeclType(FILEDecl);
1929     return QualType();
1930   }
1931 
1932   /// Set the type for the C jmp_buf type.
1933   void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1934     this->jmp_bufDecl = jmp_bufDecl;
1935   }
1936 
1937   /// Retrieve the C jmp_buf type.
1938   QualType getjmp_bufType() const {
1939     if (jmp_bufDecl)
1940       return getTypeDeclType(jmp_bufDecl);
1941     return QualType();
1942   }
1943 
1944   /// Set the type for the C sigjmp_buf type.
1945   void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1946     this->sigjmp_bufDecl = sigjmp_bufDecl;
1947   }
1948 
1949   /// Retrieve the C sigjmp_buf type.
1950   QualType getsigjmp_bufType() const {
1951     if (sigjmp_bufDecl)
1952       return getTypeDeclType(sigjmp_bufDecl);
1953     return QualType();
1954   }
1955 
1956   /// Set the type for the C ucontext_t type.
1957   void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1958     this->ucontext_tDecl = ucontext_tDecl;
1959   }
1960 
1961   /// Retrieve the C ucontext_t type.
1962   QualType getucontext_tType() const {
1963     if (ucontext_tDecl)
1964       return getTypeDeclType(ucontext_tDecl);
1965     return QualType();
1966   }
1967 
1968   /// The result type of logical operations, '<', '>', '!=', etc.
1969   QualType getLogicalOperationType() const {
1970     return getLangOpts().CPlusPlus ? BoolTy : IntTy;
1971   }
1972 
1973   /// Emit the Objective-CC type encoding for the given type \p T into
1974   /// \p S.
1975   ///
1976   /// If \p Field is specified then record field names are also encoded.
1977   void getObjCEncodingForType(QualType T, std::string &S,
1978                               const FieldDecl *Field=nullptr,
1979                               QualType *NotEncodedT=nullptr) const;
1980 
1981   /// Emit the Objective-C property type encoding for the given
1982   /// type \p T into \p S.
1983   void getObjCEncodingForPropertyType(QualType T, std::string &S) const;
1984 
1985   void getLegacyIntegralTypeEncoding(QualType &t) const;
1986 
1987   /// Put the string version of the type qualifiers \p QT into \p S.
1988   void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1989                                        std::string &S) const;
1990 
1991   /// Emit the encoded type for the function \p Decl into \p S.
1992   ///
1993   /// This is in the same format as Objective-C method encodings.
1994   ///
1995   /// \returns true if an error occurred (e.g., because one of the parameter
1996   /// types is incomplete), false otherwise.
1997   std::string getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const;
1998 
1999   /// Emit the encoded type for the method declaration \p Decl into
2000   /// \p S.
2001   std::string getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
2002                                            bool Extended = false) const;
2003 
2004   /// Return the encoded type for this block declaration.
2005   std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
2006 
2007   /// getObjCEncodingForPropertyDecl - Return the encoded type for
2008   /// this method declaration. If non-NULL, Container must be either
2009   /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
2010   /// only be NULL when getting encodings for protocol properties.
2011   std::string getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
2012                                              const Decl *Container) const;
2013 
2014   bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
2015                                       ObjCProtocolDecl *rProto) const;
2016 
2017   ObjCPropertyImplDecl *getObjCPropertyImplDeclForPropertyDecl(
2018                                                   const ObjCPropertyDecl *PD,
2019                                                   const Decl *Container) const;
2020 
2021   /// Return the size of type \p T for Objective-C encoding purpose,
2022   /// in characters.
2023   CharUnits getObjCEncodingTypeSize(QualType T) const;
2024 
2025   /// Retrieve the typedef corresponding to the predefined \c id type
2026   /// in Objective-C.
2027   TypedefDecl *getObjCIdDecl() const;
2028 
2029   /// Represents the Objective-CC \c id type.
2030   ///
2031   /// This is set up lazily, by Sema.  \c id is always a (typedef for a)
2032   /// pointer type, a pointer to a struct.
2033   QualType getObjCIdType() const {
2034     return getTypeDeclType(getObjCIdDecl());
2035   }
2036 
2037   /// Retrieve the typedef corresponding to the predefined 'SEL' type
2038   /// in Objective-C.
2039   TypedefDecl *getObjCSelDecl() const;
2040 
2041   /// Retrieve the type that corresponds to the predefined Objective-C
2042   /// 'SEL' type.
2043   QualType getObjCSelType() const {
2044     return getTypeDeclType(getObjCSelDecl());
2045   }
2046 
2047   /// Retrieve the typedef declaration corresponding to the predefined
2048   /// Objective-C 'Class' type.
2049   TypedefDecl *getObjCClassDecl() const;
2050 
2051   /// Represents the Objective-C \c Class type.
2052   ///
2053   /// This is set up lazily, by Sema.  \c Class is always a (typedef for a)
2054   /// pointer type, a pointer to a struct.
2055   QualType getObjCClassType() const {
2056     return getTypeDeclType(getObjCClassDecl());
2057   }
2058 
2059   /// Retrieve the Objective-C class declaration corresponding to
2060   /// the predefined \c Protocol class.
2061   ObjCInterfaceDecl *getObjCProtocolDecl() const;
2062 
2063   /// Retrieve declaration of 'BOOL' typedef
2064   TypedefDecl *getBOOLDecl() const {
2065     return BOOLDecl;
2066   }
2067 
2068   /// Save declaration of 'BOOL' typedef
2069   void setBOOLDecl(TypedefDecl *TD) {
2070     BOOLDecl = TD;
2071   }
2072 
2073   /// type of 'BOOL' type.
2074   QualType getBOOLType() const {
2075     return getTypeDeclType(getBOOLDecl());
2076   }
2077 
2078   /// Retrieve the type of the Objective-C \c Protocol class.
2079   QualType getObjCProtoType() const {
2080     return getObjCInterfaceType(getObjCProtocolDecl());
2081   }
2082 
2083   /// Retrieve the C type declaration corresponding to the predefined
2084   /// \c __builtin_va_list type.
2085   TypedefDecl *getBuiltinVaListDecl() const;
2086 
2087   /// Retrieve the type of the \c __builtin_va_list type.
2088   QualType getBuiltinVaListType() const {
2089     return getTypeDeclType(getBuiltinVaListDecl());
2090   }
2091 
2092   /// Retrieve the C type declaration corresponding to the predefined
2093   /// \c __va_list_tag type used to help define the \c __builtin_va_list type
2094   /// for some targets.
2095   Decl *getVaListTagDecl() const;
2096 
2097   /// Retrieve the C type declaration corresponding to the predefined
2098   /// \c __builtin_ms_va_list type.
2099   TypedefDecl *getBuiltinMSVaListDecl() const;
2100 
2101   /// Retrieve the type of the \c __builtin_ms_va_list type.
2102   QualType getBuiltinMSVaListType() const {
2103     return getTypeDeclType(getBuiltinMSVaListDecl());
2104   }
2105 
2106   /// Retrieve the implicitly-predeclared 'struct _GUID' declaration.
2107   TagDecl *getMSGuidTagDecl() const { return MSGuidTagDecl; }
2108 
2109   /// Retrieve the implicitly-predeclared 'struct _GUID' type.
2110   QualType getMSGuidType() const {
2111     assert(MSGuidTagDecl && "asked for GUID type but MS extensions disabled");
2112     return getTagDeclType(MSGuidTagDecl);
2113   }
2114 
2115   /// Return whether a declaration to a builtin is allowed to be
2116   /// overloaded/redeclared.
2117   bool canBuiltinBeRedeclared(const FunctionDecl *) const;
2118 
2119   /// Return a type with additional \c const, \c volatile, or
2120   /// \c restrict qualifiers.
2121   QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
2122     return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
2123   }
2124 
2125   /// Un-split a SplitQualType.
2126   QualType getQualifiedType(SplitQualType split) const {
2127     return getQualifiedType(split.Ty, split.Quals);
2128   }
2129 
2130   /// Return a type with additional qualifiers.
2131   QualType getQualifiedType(QualType T, Qualifiers Qs) const {
2132     if (!Qs.hasNonFastQualifiers())
2133       return T.withFastQualifiers(Qs.getFastQualifiers());
2134     QualifierCollector Qc(Qs);
2135     const Type *Ptr = Qc.strip(T);
2136     return getExtQualType(Ptr, Qc);
2137   }
2138 
2139   /// Return a type with additional qualifiers.
2140   QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
2141     if (!Qs.hasNonFastQualifiers())
2142       return QualType(T, Qs.getFastQualifiers());
2143     return getExtQualType(T, Qs);
2144   }
2145 
2146   /// Return a type with the given lifetime qualifier.
2147   ///
2148   /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
2149   QualType getLifetimeQualifiedType(QualType type,
2150                                     Qualifiers::ObjCLifetime lifetime) {
2151     assert(type.getObjCLifetime() == Qualifiers::OCL_None);
2152     assert(lifetime != Qualifiers::OCL_None);
2153 
2154     Qualifiers qs;
2155     qs.addObjCLifetime(lifetime);
2156     return getQualifiedType(type, qs);
2157   }
2158 
2159   /// getUnqualifiedObjCPointerType - Returns version of
2160   /// Objective-C pointer type with lifetime qualifier removed.
2161   QualType getUnqualifiedObjCPointerType(QualType type) const {
2162     if (!type.getTypePtr()->isObjCObjectPointerType() ||
2163         !type.getQualifiers().hasObjCLifetime())
2164       return type;
2165     Qualifiers Qs = type.getQualifiers();
2166     Qs.removeObjCLifetime();
2167     return getQualifiedType(type.getUnqualifiedType(), Qs);
2168   }
2169 
2170   unsigned char getFixedPointScale(QualType Ty) const;
2171   unsigned char getFixedPointIBits(QualType Ty) const;
2172   llvm::FixedPointSemantics getFixedPointSemantics(QualType Ty) const;
2173   llvm::APFixedPoint getFixedPointMax(QualType Ty) const;
2174   llvm::APFixedPoint getFixedPointMin(QualType Ty) const;
2175 
2176   DeclarationNameInfo getNameForTemplate(TemplateName Name,
2177                                          SourceLocation NameLoc) const;
2178 
2179   TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
2180                                          UnresolvedSetIterator End) const;
2181   TemplateName getAssumedTemplateName(DeclarationName Name) const;
2182 
2183   TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
2184                                         bool TemplateKeyword,
2185                                         TemplateName Template) const;
2186 
2187   TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
2188                                         const IdentifierInfo *Name) const;
2189   TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
2190                                         OverloadedOperatorKind Operator) const;
2191   TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
2192                                             TemplateName replacement) const;
2193   TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
2194                                         const TemplateArgument &ArgPack) const;
2195 
2196   enum GetBuiltinTypeError {
2197     /// No error
2198     GE_None,
2199 
2200     /// Missing a type
2201     GE_Missing_type,
2202 
2203     /// Missing a type from <stdio.h>
2204     GE_Missing_stdio,
2205 
2206     /// Missing a type from <setjmp.h>
2207     GE_Missing_setjmp,
2208 
2209     /// Missing a type from <ucontext.h>
2210     GE_Missing_ucontext
2211   };
2212 
2213   QualType DecodeTypeStr(const char *&Str, const ASTContext &Context,
2214                          ASTContext::GetBuiltinTypeError &Error,
2215                          bool &RequireICE, bool AllowTypeModifiers) const;
2216 
2217   /// Return the type for the specified builtin.
2218   ///
2219   /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
2220   /// arguments to the builtin that are required to be integer constant
2221   /// expressions.
2222   QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
2223                           unsigned *IntegerConstantArgs = nullptr) const;
2224 
2225   /// Types and expressions required to build C++2a three-way comparisons
2226   /// using operator<=>, including the values return by builtin <=> operators.
2227   ComparisonCategories CompCategories;
2228 
2229 private:
2230   CanQualType getFromTargetType(unsigned Type) const;
2231   TypeInfo getTypeInfoImpl(const Type *T) const;
2232 
2233   //===--------------------------------------------------------------------===//
2234   //                         Type Predicates.
2235   //===--------------------------------------------------------------------===//
2236 
2237 public:
2238   /// Return one of the GCNone, Weak or Strong Objective-C garbage
2239   /// collection attributes.
2240   Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
2241 
2242   /// Return true if the given vector types are of the same unqualified
2243   /// type or if they are equivalent to the same GCC vector type.
2244   ///
2245   /// \note This ignores whether they are target-specific (AltiVec or Neon)
2246   /// types.
2247   bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
2248 
2249   /// Return true if the given types are an SVE builtin and a VectorType that
2250   /// is a fixed-length representation of the SVE builtin for a specific
2251   /// vector-length.
2252   bool areCompatibleSveTypes(QualType FirstType, QualType SecondType);
2253 
2254   /// Return true if the given vector types are lax-compatible SVE vector types,
2255   /// false otherwise.
2256   bool areLaxCompatibleSveTypes(QualType FirstType, QualType SecondType);
2257 
2258   /// Return true if the type has been explicitly qualified with ObjC ownership.
2259   /// A type may be implicitly qualified with ownership under ObjC ARC, and in
2260   /// some cases the compiler treats these differently.
2261   bool hasDirectOwnershipQualifier(QualType Ty) const;
2262 
2263   /// Return true if this is an \c NSObject object with its \c NSObject
2264   /// attribute set.
2265   static bool isObjCNSObjectType(QualType Ty) {
2266     return Ty->isObjCNSObjectType();
2267   }
2268 
2269   //===--------------------------------------------------------------------===//
2270   //                         Type Sizing and Analysis
2271   //===--------------------------------------------------------------------===//
2272 
2273   /// Return the APFloat 'semantics' for the specified scalar floating
2274   /// point type.
2275   const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
2276 
2277   /// Get the size and alignment of the specified complete type in bits.
2278   TypeInfo getTypeInfo(const Type *T) const;
2279   TypeInfo getTypeInfo(QualType T) const { return getTypeInfo(T.getTypePtr()); }
2280 
2281   /// Get default simd alignment of the specified complete type in bits.
2282   unsigned getOpenMPDefaultSimdAlign(QualType T) const;
2283 
2284   /// Return the size of the specified (complete) type \p T, in bits.
2285   uint64_t getTypeSize(QualType T) const { return getTypeInfo(T).Width; }
2286   uint64_t getTypeSize(const Type *T) const { return getTypeInfo(T).Width; }
2287 
2288   /// Return the size of the character type, in bits.
2289   uint64_t getCharWidth() const {
2290     return getTypeSize(CharTy);
2291   }
2292 
2293   /// Convert a size in bits to a size in characters.
2294   CharUnits toCharUnitsFromBits(int64_t BitSize) const;
2295 
2296   /// Convert a size in characters to a size in bits.
2297   int64_t toBits(CharUnits CharSize) const;
2298 
2299   /// Return the size of the specified (complete) type \p T, in
2300   /// characters.
2301   CharUnits getTypeSizeInChars(QualType T) const;
2302   CharUnits getTypeSizeInChars(const Type *T) const;
2303 
2304   Optional<CharUnits> getTypeSizeInCharsIfKnown(QualType Ty) const {
2305     if (Ty->isIncompleteType() || Ty->isDependentType())
2306       return None;
2307     return getTypeSizeInChars(Ty);
2308   }
2309 
2310   Optional<CharUnits> getTypeSizeInCharsIfKnown(const Type *Ty) const {
2311     return getTypeSizeInCharsIfKnown(QualType(Ty, 0));
2312   }
2313 
2314   /// Return the ABI-specified alignment of a (complete) type \p T, in
2315   /// bits.
2316   unsigned getTypeAlign(QualType T) const { return getTypeInfo(T).Align; }
2317   unsigned getTypeAlign(const Type *T) const { return getTypeInfo(T).Align; }
2318 
2319   /// Return the ABI-specified natural alignment of a (complete) type \p T,
2320   /// before alignment adjustments, in bits.
2321   ///
2322   /// This alignment is curently used only by ARM and AArch64 when passing
2323   /// arguments of a composite type.
2324   unsigned getTypeUnadjustedAlign(QualType T) const {
2325     return getTypeUnadjustedAlign(T.getTypePtr());
2326   }
2327   unsigned getTypeUnadjustedAlign(const Type *T) const;
2328 
2329   /// Return the alignment of a type, in bits, or 0 if
2330   /// the type is incomplete and we cannot determine the alignment (for
2331   /// example, from alignment attributes). The returned alignment is the
2332   /// Preferred alignment if NeedsPreferredAlignment is true, otherwise is the
2333   /// ABI alignment.
2334   unsigned getTypeAlignIfKnown(QualType T,
2335                                bool NeedsPreferredAlignment = false) const;
2336 
2337   /// Return the ABI-specified alignment of a (complete) type \p T, in
2338   /// characters.
2339   CharUnits getTypeAlignInChars(QualType T) const;
2340   CharUnits getTypeAlignInChars(const Type *T) const;
2341 
2342   /// Return the PreferredAlignment of a (complete) type \p T, in
2343   /// characters.
2344   CharUnits getPreferredTypeAlignInChars(QualType T) const {
2345     return toCharUnitsFromBits(getPreferredTypeAlign(T));
2346   }
2347 
2348   /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a type,
2349   /// in characters, before alignment adjustments. This method does not work on
2350   /// incomplete types.
2351   CharUnits getTypeUnadjustedAlignInChars(QualType T) const;
2352   CharUnits getTypeUnadjustedAlignInChars(const Type *T) const;
2353 
2354   // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
2355   // type is a record, its data size is returned.
2356   TypeInfoChars getTypeInfoDataSizeInChars(QualType T) const;
2357 
2358   TypeInfoChars getTypeInfoInChars(const Type *T) const;
2359   TypeInfoChars getTypeInfoInChars(QualType T) const;
2360 
2361   /// Determine if the alignment the type has was required using an
2362   /// alignment attribute.
2363   bool isAlignmentRequired(const Type *T) const;
2364   bool isAlignmentRequired(QualType T) const;
2365 
2366   /// Return the "preferred" alignment of the specified type \p T for
2367   /// the current target, in bits.
2368   ///
2369   /// This can be different than the ABI alignment in cases where it is
2370   /// beneficial for performance or backwards compatibility preserving to
2371   /// overalign a data type. (Note: despite the name, the preferred alignment
2372   /// is ABI-impacting, and not an optimization.)
2373   unsigned getPreferredTypeAlign(QualType T) const {
2374     return getPreferredTypeAlign(T.getTypePtr());
2375   }
2376   unsigned getPreferredTypeAlign(const Type *T) const;
2377 
2378   /// Return the default alignment for __attribute__((aligned)) on
2379   /// this target, to be used if no alignment value is specified.
2380   unsigned getTargetDefaultAlignForAttributeAligned() const;
2381 
2382   /// Return the alignment in bits that should be given to a
2383   /// global variable with type \p T.
2384   unsigned getAlignOfGlobalVar(QualType T) const;
2385 
2386   /// Return the alignment in characters that should be given to a
2387   /// global variable with type \p T.
2388   CharUnits getAlignOfGlobalVarInChars(QualType T) const;
2389 
2390   /// Return a conservative estimate of the alignment of the specified
2391   /// decl \p D.
2392   ///
2393   /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
2394   /// alignment.
2395   ///
2396   /// If \p ForAlignof, references are treated like their underlying type
2397   /// and  large arrays don't get any special treatment. If not \p ForAlignof
2398   /// it computes the value expected by CodeGen: references are treated like
2399   /// pointers and large arrays get extra alignment.
2400   CharUnits getDeclAlign(const Decl *D, bool ForAlignof = false) const;
2401 
2402   /// Return the alignment (in bytes) of the thrown exception object. This is
2403   /// only meaningful for targets that allocate C++ exceptions in a system
2404   /// runtime, such as those using the Itanium C++ ABI.
2405   CharUnits getExnObjectAlignment() const;
2406 
2407   /// Get or compute information about the layout of the specified
2408   /// record (struct/union/class) \p D, which indicates its size and field
2409   /// position information.
2410   const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
2411 
2412   /// Get or compute information about the layout of the specified
2413   /// Objective-C interface.
2414   const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
2415     const;
2416 
2417   void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
2418                         bool Simple = false) const;
2419 
2420   /// Get or compute information about the layout of the specified
2421   /// Objective-C implementation.
2422   ///
2423   /// This may differ from the interface if synthesized ivars are present.
2424   const ASTRecordLayout &
2425   getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
2426 
2427   /// Get our current best idea for the key function of the
2428   /// given record decl, or nullptr if there isn't one.
2429   ///
2430   /// The key function is, according to the Itanium C++ ABI section 5.2.3:
2431   ///   ...the first non-pure virtual function that is not inline at the
2432   ///   point of class definition.
2433   ///
2434   /// Other ABIs use the same idea.  However, the ARM C++ ABI ignores
2435   /// virtual functions that are defined 'inline', which means that
2436   /// the result of this computation can change.
2437   const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
2438 
2439   /// Observe that the given method cannot be a key function.
2440   /// Checks the key-function cache for the method's class and clears it
2441   /// if matches the given declaration.
2442   ///
2443   /// This is used in ABIs where out-of-line definitions marked
2444   /// inline are not considered to be key functions.
2445   ///
2446   /// \param method should be the declaration from the class definition
2447   void setNonKeyFunction(const CXXMethodDecl *method);
2448 
2449   /// Loading virtual member pointers using the virtual inheritance model
2450   /// always results in an adjustment using the vbtable even if the index is
2451   /// zero.
2452   ///
2453   /// This is usually OK because the first slot in the vbtable points
2454   /// backwards to the top of the MDC.  However, the MDC might be reusing a
2455   /// vbptr from an nv-base.  In this case, the first slot in the vbtable
2456   /// points to the start of the nv-base which introduced the vbptr and *not*
2457   /// the MDC.  Modify the NonVirtualBaseAdjustment to account for this.
2458   CharUnits getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const;
2459 
2460   /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
2461   uint64_t getFieldOffset(const ValueDecl *FD) const;
2462 
2463   /// Get the offset of an ObjCIvarDecl in bits.
2464   uint64_t lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
2465                                 const ObjCImplementationDecl *ID,
2466                                 const ObjCIvarDecl *Ivar) const;
2467 
2468   /// Find the 'this' offset for the member path in a pointer-to-member
2469   /// APValue.
2470   CharUnits getMemberPointerPathAdjustment(const APValue &MP) const;
2471 
2472   bool isNearlyEmpty(const CXXRecordDecl *RD) const;
2473 
2474   VTableContextBase *getVTableContext();
2475 
2476   /// If \p T is null pointer, assume the target in ASTContext.
2477   MangleContext *createMangleContext(const TargetInfo *T = nullptr);
2478 
2479   /// Creates a device mangle context to correctly mangle lambdas in a mixed
2480   /// architecture compile by setting the lambda mangling number source to the
2481   /// DeviceLambdaManglingNumber. Currently this asserts that the TargetInfo
2482   /// (from the AuxTargetInfo) is a an itanium target.
2483   MangleContext *createDeviceMangleContext(const TargetInfo &T);
2484 
2485   void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
2486                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
2487 
2488   unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
2489   void CollectInheritedProtocols(const Decl *CDecl,
2490                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
2491 
2492   /// Return true if the specified type has unique object representations
2493   /// according to (C++17 [meta.unary.prop]p9)
2494   bool hasUniqueObjectRepresentations(QualType Ty) const;
2495 
2496   //===--------------------------------------------------------------------===//
2497   //                            Type Operators
2498   //===--------------------------------------------------------------------===//
2499 
2500   /// Return the canonical (structural) type corresponding to the
2501   /// specified potentially non-canonical type \p T.
2502   ///
2503   /// The non-canonical version of a type may have many "decorated" versions of
2504   /// types.  Decorators can include typedefs, 'typeof' operators, etc. The
2505   /// returned type is guaranteed to be free of any of these, allowing two
2506   /// canonical types to be compared for exact equality with a simple pointer
2507   /// comparison.
2508   CanQualType getCanonicalType(QualType T) const {
2509     return CanQualType::CreateUnsafe(T.getCanonicalType());
2510   }
2511 
2512   const Type *getCanonicalType(const Type *T) const {
2513     return T->getCanonicalTypeInternal().getTypePtr();
2514   }
2515 
2516   /// Return the canonical parameter type corresponding to the specific
2517   /// potentially non-canonical one.
2518   ///
2519   /// Qualifiers are stripped off, functions are turned into function
2520   /// pointers, and arrays decay one level into pointers.
2521   CanQualType getCanonicalParamType(QualType T) const;
2522 
2523   /// Determine whether the given types \p T1 and \p T2 are equivalent.
2524   bool hasSameType(QualType T1, QualType T2) const {
2525     return getCanonicalType(T1) == getCanonicalType(T2);
2526   }
2527   bool hasSameType(const Type *T1, const Type *T2) const {
2528     return getCanonicalType(T1) == getCanonicalType(T2);
2529   }
2530 
2531   /// Return this type as a completely-unqualified array type,
2532   /// capturing the qualifiers in \p Quals.
2533   ///
2534   /// This will remove the minimal amount of sugaring from the types, similar
2535   /// to the behavior of QualType::getUnqualifiedType().
2536   ///
2537   /// \param T is the qualified type, which may be an ArrayType
2538   ///
2539   /// \param Quals will receive the full set of qualifiers that were
2540   /// applied to the array.
2541   ///
2542   /// \returns if this is an array type, the completely unqualified array type
2543   /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
2544   QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
2545 
2546   /// Determine whether the given types are equivalent after
2547   /// cvr-qualifiers have been removed.
2548   bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
2549     return getCanonicalType(T1).getTypePtr() ==
2550            getCanonicalType(T2).getTypePtr();
2551   }
2552 
2553   bool hasSameNullabilityTypeQualifier(QualType SubT, QualType SuperT,
2554                                        bool IsParam) const {
2555     auto SubTnullability = SubT->getNullability(*this);
2556     auto SuperTnullability = SuperT->getNullability(*this);
2557     if (SubTnullability.has_value() == SuperTnullability.has_value()) {
2558       // Neither has nullability; return true
2559       if (!SubTnullability)
2560         return true;
2561       // Both have nullability qualifier.
2562       if (*SubTnullability == *SuperTnullability ||
2563           *SubTnullability == NullabilityKind::Unspecified ||
2564           *SuperTnullability == NullabilityKind::Unspecified)
2565         return true;
2566 
2567       if (IsParam) {
2568         // Ok for the superclass method parameter to be "nonnull" and the subclass
2569         // method parameter to be "nullable"
2570         return (*SuperTnullability == NullabilityKind::NonNull &&
2571                 *SubTnullability == NullabilityKind::Nullable);
2572       }
2573       // For the return type, it's okay for the superclass method to specify
2574       // "nullable" and the subclass method specify "nonnull"
2575       return (*SuperTnullability == NullabilityKind::Nullable &&
2576               *SubTnullability == NullabilityKind::NonNull);
2577     }
2578     return true;
2579   }
2580 
2581   bool ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
2582                            const ObjCMethodDecl *MethodImp);
2583 
2584   bool UnwrapSimilarTypes(QualType &T1, QualType &T2,
2585                           bool AllowPiMismatch = true);
2586   void UnwrapSimilarArrayTypes(QualType &T1, QualType &T2,
2587                                bool AllowPiMismatch = true);
2588 
2589   /// Determine if two types are similar, according to the C++ rules. That is,
2590   /// determine if they are the same other than qualifiers on the initial
2591   /// sequence of pointer / pointer-to-member / array (and in Clang, object
2592   /// pointer) types and their element types.
2593   ///
2594   /// Clang offers a number of qualifiers in addition to the C++ qualifiers;
2595   /// those qualifiers are also ignored in the 'similarity' check.
2596   bool hasSimilarType(QualType T1, QualType T2);
2597 
2598   /// Determine if two types are similar, ignoring only CVR qualifiers.
2599   bool hasCvrSimilarType(QualType T1, QualType T2);
2600 
2601   /// Retrieves the "canonical" nested name specifier for a
2602   /// given nested name specifier.
2603   ///
2604   /// The canonical nested name specifier is a nested name specifier
2605   /// that uniquely identifies a type or namespace within the type
2606   /// system. For example, given:
2607   ///
2608   /// \code
2609   /// namespace N {
2610   ///   struct S {
2611   ///     template<typename T> struct X { typename T* type; };
2612   ///   };
2613   /// }
2614   ///
2615   /// template<typename T> struct Y {
2616   ///   typename N::S::X<T>::type member;
2617   /// };
2618   /// \endcode
2619   ///
2620   /// Here, the nested-name-specifier for N::S::X<T>:: will be
2621   /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
2622   /// by declarations in the type system and the canonical type for
2623   /// the template type parameter 'T' is template-param-0-0.
2624   NestedNameSpecifier *
2625   getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
2626 
2627   /// Retrieves the default calling convention for the current target.
2628   CallingConv getDefaultCallingConvention(bool IsVariadic,
2629                                           bool IsCXXMethod,
2630                                           bool IsBuiltin = false) const;
2631 
2632   /// Retrieves the "canonical" template name that refers to a
2633   /// given template.
2634   ///
2635   /// The canonical template name is the simplest expression that can
2636   /// be used to refer to a given template. For most templates, this
2637   /// expression is just the template declaration itself. For example,
2638   /// the template std::vector can be referred to via a variety of
2639   /// names---std::vector, \::std::vector, vector (if vector is in
2640   /// scope), etc.---but all of these names map down to the same
2641   /// TemplateDecl, which is used to form the canonical template name.
2642   ///
2643   /// Dependent template names are more interesting. Here, the
2644   /// template name could be something like T::template apply or
2645   /// std::allocator<T>::template rebind, where the nested name
2646   /// specifier itself is dependent. In this case, the canonical
2647   /// template name uses the shortest form of the dependent
2648   /// nested-name-specifier, which itself contains all canonical
2649   /// types, values, and templates.
2650   TemplateName getCanonicalTemplateName(const TemplateName &Name) const;
2651 
2652   /// Determine whether the given template names refer to the same
2653   /// template.
2654   bool hasSameTemplateName(const TemplateName &X, const TemplateName &Y) const;
2655 
2656   /// Determine whether the two declarations refer to the same entity.
2657   bool isSameEntity(const NamedDecl *X, const NamedDecl *Y) const;
2658 
2659   /// Determine whether two template parameter lists are similar enough
2660   /// that they may be used in declarations of the same template.
2661   bool isSameTemplateParameterList(const TemplateParameterList *X,
2662                                    const TemplateParameterList *Y) const;
2663 
2664   /// Determine whether two template parameters are similar enough
2665   /// that they may be used in declarations of the same template.
2666   bool isSameTemplateParameter(const NamedDecl *X, const NamedDecl *Y) const;
2667 
2668   /// Determine whether two 'requires' expressions are similar enough that they
2669   /// may be used in re-declarations.
2670   ///
2671   /// Use of 'requires' isn't mandatory, works with constraints expressed in
2672   /// other ways too.
2673   bool isSameConstraintExpr(const Expr *XCE, const Expr *YCE) const;
2674 
2675   /// Determine whether two type contraint are similar enough that they could
2676   /// used in declarations of the same template.
2677   bool isSameTypeConstraint(const TypeConstraint *XTC,
2678                             const TypeConstraint *YTC) const;
2679 
2680   /// Determine whether two default template arguments are similar enough
2681   /// that they may be used in declarations of the same template.
2682   bool isSameDefaultTemplateArgument(const NamedDecl *X,
2683                                      const NamedDecl *Y) const;
2684 
2685   /// Retrieve the "canonical" template argument.
2686   ///
2687   /// The canonical template argument is the simplest template argument
2688   /// (which may be a type, value, expression, or declaration) that
2689   /// expresses the value of the argument.
2690   TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
2691     const;
2692 
2693   /// Type Query functions.  If the type is an instance of the specified class,
2694   /// return the Type pointer for the underlying maximally pretty type.  This
2695   /// is a member of ASTContext because this may need to do some amount of
2696   /// canonicalization, e.g. to move type qualifiers into the element type.
2697   const ArrayType *getAsArrayType(QualType T) const;
2698   const ConstantArrayType *getAsConstantArrayType(QualType T) const {
2699     return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
2700   }
2701   const VariableArrayType *getAsVariableArrayType(QualType T) const {
2702     return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
2703   }
2704   const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
2705     return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
2706   }
2707   const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
2708     const {
2709     return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
2710   }
2711 
2712   /// Return the innermost element type of an array type.
2713   ///
2714   /// For example, will return "int" for int[m][n]
2715   QualType getBaseElementType(const ArrayType *VAT) const;
2716 
2717   /// Return the innermost element type of a type (which needn't
2718   /// actually be an array type).
2719   QualType getBaseElementType(QualType QT) const;
2720 
2721   /// Return number of constant array elements.
2722   uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
2723 
2724   /// Perform adjustment on the parameter type of a function.
2725   ///
2726   /// This routine adjusts the given parameter type @p T to the actual
2727   /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
2728   /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
2729   QualType getAdjustedParameterType(QualType T) const;
2730 
2731   /// Retrieve the parameter type as adjusted for use in the signature
2732   /// of a function, decaying array and function types and removing top-level
2733   /// cv-qualifiers.
2734   QualType getSignatureParameterType(QualType T) const;
2735 
2736   QualType getExceptionObjectType(QualType T) const;
2737 
2738   /// Return the properly qualified result of decaying the specified
2739   /// array type to a pointer.
2740   ///
2741   /// This operation is non-trivial when handling typedefs etc.  The canonical
2742   /// type of \p T must be an array type, this returns a pointer to a properly
2743   /// qualified element of the array.
2744   ///
2745   /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2746   QualType getArrayDecayedType(QualType T) const;
2747 
2748   /// Return the type that \p PromotableType will promote to: C99
2749   /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
2750   QualType getPromotedIntegerType(QualType PromotableType) const;
2751 
2752   /// Recurses in pointer/array types until it finds an Objective-C
2753   /// retainable type and returns its ownership.
2754   Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
2755 
2756   /// Whether this is a promotable bitfield reference according
2757   /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2758   ///
2759   /// \returns the type this bit-field will promote to, or NULL if no
2760   /// promotion occurs.
2761   QualType isPromotableBitField(Expr *E) const;
2762 
2763   /// Return the highest ranked integer type, see C99 6.3.1.8p1.
2764   ///
2765   /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
2766   /// \p LHS < \p RHS, return -1.
2767   int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
2768 
2769   /// Compare the rank of the two specified floating point types,
2770   /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
2771   ///
2772   /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
2773   /// \p LHS < \p RHS, return -1.
2774   int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
2775 
2776   /// Compare the rank of two floating point types as above, but compare equal
2777   /// if both types have the same floating-point semantics on the target (i.e.
2778   /// long double and double on AArch64 will return 0).
2779   int getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const;
2780 
2781   unsigned getTargetAddressSpace(QualType T) const;
2782 
2783   unsigned getTargetAddressSpace(Qualifiers Q) const;
2784 
2785   unsigned getTargetAddressSpace(LangAS AS) const;
2786 
2787   LangAS getLangASForBuiltinAddressSpace(unsigned AS) const;
2788 
2789   /// Get target-dependent integer value for null pointer which is used for
2790   /// constant folding.
2791   uint64_t getTargetNullPointerValue(QualType QT) const;
2792 
2793   bool addressSpaceMapManglingFor(LangAS AS) const {
2794     return AddrSpaceMapMangling || isTargetAddressSpace(AS);
2795   }
2796 
2797 private:
2798   // Helper for integer ordering
2799   unsigned getIntegerRank(const Type *T) const;
2800 
2801 public:
2802   //===--------------------------------------------------------------------===//
2803   //                    Type Compatibility Predicates
2804   //===--------------------------------------------------------------------===//
2805 
2806   /// Compatibility predicates used to check assignment expressions.
2807   bool typesAreCompatible(QualType T1, QualType T2,
2808                           bool CompareUnqualified = false); // C99 6.2.7p1
2809 
2810   bool propertyTypesAreCompatible(QualType, QualType);
2811   bool typesAreBlockPointerCompatible(QualType, QualType);
2812 
2813   bool isObjCIdType(QualType T) const {
2814     return T == getObjCIdType();
2815   }
2816 
2817   bool isObjCClassType(QualType T) const {
2818     return T == getObjCClassType();
2819   }
2820 
2821   bool isObjCSelType(QualType T) const {
2822     return T == getObjCSelType();
2823   }
2824 
2825   bool ObjCQualifiedIdTypesAreCompatible(const ObjCObjectPointerType *LHS,
2826                                          const ObjCObjectPointerType *RHS,
2827                                          bool ForCompare);
2828 
2829   bool ObjCQualifiedClassTypesAreCompatible(const ObjCObjectPointerType *LHS,
2830                                             const ObjCObjectPointerType *RHS);
2831 
2832   // Check the safety of assignment from LHS to RHS
2833   bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
2834                                const ObjCObjectPointerType *RHSOPT);
2835   bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
2836                                const ObjCObjectType *RHS);
2837   bool canAssignObjCInterfacesInBlockPointer(
2838                                           const ObjCObjectPointerType *LHSOPT,
2839                                           const ObjCObjectPointerType *RHSOPT,
2840                                           bool BlockReturnType);
2841   bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
2842   QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
2843                                    const ObjCObjectPointerType *RHSOPT);
2844   bool canBindObjCObjectType(QualType To, QualType From);
2845 
2846   // Functions for calculating composite types
2847   QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
2848                       bool Unqualified = false, bool BlockReturnType = false);
2849   QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
2850                               bool Unqualified = false, bool AllowCXX = false);
2851   QualType mergeFunctionParameterTypes(QualType, QualType,
2852                                        bool OfBlockPointer = false,
2853                                        bool Unqualified = false);
2854   QualType mergeTransparentUnionType(QualType, QualType,
2855                                      bool OfBlockPointer=false,
2856                                      bool Unqualified = false);
2857 
2858   QualType mergeObjCGCQualifiers(QualType, QualType);
2859 
2860   /// This function merges the ExtParameterInfo lists of two functions. It
2861   /// returns true if the lists are compatible. The merged list is returned in
2862   /// NewParamInfos.
2863   ///
2864   /// \param FirstFnType The type of the first function.
2865   ///
2866   /// \param SecondFnType The type of the second function.
2867   ///
2868   /// \param CanUseFirst This flag is set to true if the first function's
2869   /// ExtParameterInfo list can be used as the composite list of
2870   /// ExtParameterInfo.
2871   ///
2872   /// \param CanUseSecond This flag is set to true if the second function's
2873   /// ExtParameterInfo list can be used as the composite list of
2874   /// ExtParameterInfo.
2875   ///
2876   /// \param NewParamInfos The composite list of ExtParameterInfo. The list is
2877   /// empty if none of the flags are set.
2878   ///
2879   bool mergeExtParameterInfo(
2880       const FunctionProtoType *FirstFnType,
2881       const FunctionProtoType *SecondFnType,
2882       bool &CanUseFirst, bool &CanUseSecond,
2883       SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos);
2884 
2885   void ResetObjCLayout(const ObjCContainerDecl *CD);
2886 
2887   //===--------------------------------------------------------------------===//
2888   //                    Integer Predicates
2889   //===--------------------------------------------------------------------===//
2890 
2891   // The width of an integer, as defined in C99 6.2.6.2. This is the number
2892   // of bits in an integer type excluding any padding bits.
2893   unsigned getIntWidth(QualType T) const;
2894 
2895   // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
2896   // unsigned integer type.  This method takes a signed type, and returns the
2897   // corresponding unsigned integer type.
2898   // With the introduction of fixed point types in ISO N1169, this method also
2899   // accepts fixed point types and returns the corresponding unsigned type for
2900   // a given fixed point type.
2901   QualType getCorrespondingUnsignedType(QualType T) const;
2902 
2903   // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
2904   // unsigned integer type.  This method takes an unsigned type, and returns the
2905   // corresponding signed integer type.
2906   // With the introduction of fixed point types in ISO N1169, this method also
2907   // accepts fixed point types and returns the corresponding signed type for
2908   // a given fixed point type.
2909   QualType getCorrespondingSignedType(QualType T) const;
2910 
2911   // Per ISO N1169, this method accepts fixed point types and returns the
2912   // corresponding saturated type for a given fixed point type.
2913   QualType getCorrespondingSaturatedType(QualType Ty) const;
2914 
2915   // This method accepts fixed point types and returns the corresponding signed
2916   // type. Unlike getCorrespondingUnsignedType(), this only accepts unsigned
2917   // fixed point types because there are unsigned integer types like bool and
2918   // char8_t that don't have signed equivalents.
2919   QualType getCorrespondingSignedFixedPointType(QualType Ty) const;
2920 
2921   //===--------------------------------------------------------------------===//
2922   //                    Integer Values
2923   //===--------------------------------------------------------------------===//
2924 
2925   /// Make an APSInt of the appropriate width and signedness for the
2926   /// given \p Value and integer \p Type.
2927   llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
2928     // If Type is a signed integer type larger than 64 bits, we need to be sure
2929     // to sign extend Res appropriately.
2930     llvm::APSInt Res(64, !Type->isSignedIntegerOrEnumerationType());
2931     Res = Value;
2932     unsigned Width = getIntWidth(Type);
2933     if (Width != Res.getBitWidth())
2934       return Res.extOrTrunc(Width);
2935     return Res;
2936   }
2937 
2938   bool isSentinelNullExpr(const Expr *E);
2939 
2940   /// Get the implementation of the ObjCInterfaceDecl \p D, or nullptr if
2941   /// none exists.
2942   ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
2943 
2944   /// Get the implementation of the ObjCCategoryDecl \p D, or nullptr if
2945   /// none exists.
2946   ObjCCategoryImplDecl *getObjCImplementation(ObjCCategoryDecl *D);
2947 
2948   /// Return true if there is at least one \@implementation in the TU.
2949   bool AnyObjCImplementation() {
2950     return !ObjCImpls.empty();
2951   }
2952 
2953   /// Set the implementation of ObjCInterfaceDecl.
2954   void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2955                              ObjCImplementationDecl *ImplD);
2956 
2957   /// Set the implementation of ObjCCategoryDecl.
2958   void setObjCImplementation(ObjCCategoryDecl *CatD,
2959                              ObjCCategoryImplDecl *ImplD);
2960 
2961   /// Get the duplicate declaration of a ObjCMethod in the same
2962   /// interface, or null if none exists.
2963   const ObjCMethodDecl *
2964   getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const;
2965 
2966   void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2967                                   const ObjCMethodDecl *Redecl);
2968 
2969   /// Returns the Objective-C interface that \p ND belongs to if it is
2970   /// an Objective-C method/property/ivar etc. that is part of an interface,
2971   /// otherwise returns null.
2972   const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
2973 
2974   /// Set the copy initialization expression of a block var decl. \p CanThrow
2975   /// indicates whether the copy expression can throw or not.
2976   void setBlockVarCopyInit(const VarDecl* VD, Expr *CopyExpr, bool CanThrow);
2977 
2978   /// Get the copy initialization expression of the VarDecl \p VD, or
2979   /// nullptr if none exists.
2980   BlockVarCopyInit getBlockVarCopyInit(const VarDecl* VD) const;
2981 
2982   /// Allocate an uninitialized TypeSourceInfo.
2983   ///
2984   /// The caller should initialize the memory held by TypeSourceInfo using
2985   /// the TypeLoc wrappers.
2986   ///
2987   /// \param T the type that will be the basis for type source info. This type
2988   /// should refer to how the declarator was written in source code, not to
2989   /// what type semantic analysis resolved the declarator to.
2990   ///
2991   /// \param Size the size of the type info to create, or 0 if the size
2992   /// should be calculated based on the type.
2993   TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
2994 
2995   /// Allocate a TypeSourceInfo where all locations have been
2996   /// initialized to a given location, which defaults to the empty
2997   /// location.
2998   TypeSourceInfo *
2999   getTrivialTypeSourceInfo(QualType T,
3000                            SourceLocation Loc = SourceLocation()) const;
3001 
3002   /// Add a deallocation callback that will be invoked when the
3003   /// ASTContext is destroyed.
3004   ///
3005   /// \param Callback A callback function that will be invoked on destruction.
3006   ///
3007   /// \param Data Pointer data that will be provided to the callback function
3008   /// when it is called.
3009   void AddDeallocation(void (*Callback)(void *), void *Data) const;
3010 
3011   /// If T isn't trivially destructible, calls AddDeallocation to register it
3012   /// for destruction.
3013   template <typename T> void addDestruction(T *Ptr) const {
3014     if (!std::is_trivially_destructible<T>::value) {
3015       auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
3016       AddDeallocation(DestroyPtr, Ptr);
3017     }
3018   }
3019 
3020   GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD) const;
3021   GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
3022 
3023   /// Determines if the decl can be CodeGen'ed or deserialized from PCH
3024   /// lazily, only when used; this is only relevant for function or file scoped
3025   /// var definitions.
3026   ///
3027   /// \returns true if the function/var must be CodeGen'ed/deserialized even if
3028   /// it is not used.
3029   bool DeclMustBeEmitted(const Decl *D);
3030 
3031   /// Visits all versions of a multiversioned function with the passed
3032   /// predicate.
3033   void forEachMultiversionedFunctionVersion(
3034       const FunctionDecl *FD,
3035       llvm::function_ref<void(FunctionDecl *)> Pred) const;
3036 
3037   const CXXConstructorDecl *
3038   getCopyConstructorForExceptionObject(CXXRecordDecl *RD);
3039 
3040   void addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
3041                                             CXXConstructorDecl *CD);
3042 
3043   void addTypedefNameForUnnamedTagDecl(TagDecl *TD, TypedefNameDecl *TND);
3044 
3045   TypedefNameDecl *getTypedefNameForUnnamedTagDecl(const TagDecl *TD);
3046 
3047   void addDeclaratorForUnnamedTagDecl(TagDecl *TD, DeclaratorDecl *DD);
3048 
3049   DeclaratorDecl *getDeclaratorForUnnamedTagDecl(const TagDecl *TD);
3050 
3051   void setManglingNumber(const NamedDecl *ND, unsigned Number);
3052   unsigned getManglingNumber(const NamedDecl *ND,
3053                              bool ForAuxTarget = false) const;
3054 
3055   void setStaticLocalNumber(const VarDecl *VD, unsigned Number);
3056   unsigned getStaticLocalNumber(const VarDecl *VD) const;
3057 
3058   /// Retrieve the context for computing mangling numbers in the given
3059   /// DeclContext.
3060   MangleNumberingContext &getManglingNumberContext(const DeclContext *DC);
3061   enum NeedExtraManglingDecl_t { NeedExtraManglingDecl };
3062   MangleNumberingContext &getManglingNumberContext(NeedExtraManglingDecl_t,
3063                                                    const Decl *D);
3064 
3065   std::unique_ptr<MangleNumberingContext> createMangleNumberingContext() const;
3066 
3067   /// Used by ParmVarDecl to store on the side the
3068   /// index of the parameter when it exceeds the size of the normal bitfield.
3069   void setParameterIndex(const ParmVarDecl *D, unsigned index);
3070 
3071   /// Used by ParmVarDecl to retrieve on the side the
3072   /// index of the parameter when it exceeds the size of the normal bitfield.
3073   unsigned getParameterIndex(const ParmVarDecl *D) const;
3074 
3075   /// Return a string representing the human readable name for the specified
3076   /// function declaration or file name. Used by SourceLocExpr and
3077   /// PredefinedExpr to cache evaluated results.
3078   StringLiteral *getPredefinedStringLiteralFromCache(StringRef Key) const;
3079 
3080   /// Return a declaration for the global GUID object representing the given
3081   /// GUID value.
3082   MSGuidDecl *getMSGuidDecl(MSGuidDeclParts Parts) const;
3083 
3084   /// Return a declaration for a uniquified anonymous global constant
3085   /// corresponding to a given APValue.
3086   UnnamedGlobalConstantDecl *
3087   getUnnamedGlobalConstantDecl(QualType Ty, const APValue &Value) const;
3088 
3089   /// Return the template parameter object of the given type with the given
3090   /// value.
3091   TemplateParamObjectDecl *getTemplateParamObjectDecl(QualType T,
3092                                                       const APValue &V) const;
3093 
3094   /// Parses the target attributes passed in, and returns only the ones that are
3095   /// valid feature names.
3096   ParsedTargetAttr filterFunctionTargetAttrs(const TargetAttr *TD) const;
3097 
3098   void getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
3099                              const FunctionDecl *) const;
3100   void getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
3101                              GlobalDecl GD) const;
3102 
3103   //===--------------------------------------------------------------------===//
3104   //                    Statistics
3105   //===--------------------------------------------------------------------===//
3106 
3107   /// The number of implicitly-declared default constructors.
3108   unsigned NumImplicitDefaultConstructors = 0;
3109 
3110   /// The number of implicitly-declared default constructors for
3111   /// which declarations were built.
3112   unsigned NumImplicitDefaultConstructorsDeclared = 0;
3113 
3114   /// The number of implicitly-declared copy constructors.
3115   unsigned NumImplicitCopyConstructors = 0;
3116 
3117   /// The number of implicitly-declared copy constructors for
3118   /// which declarations were built.
3119   unsigned NumImplicitCopyConstructorsDeclared = 0;
3120 
3121   /// The number of implicitly-declared move constructors.
3122   unsigned NumImplicitMoveConstructors = 0;
3123 
3124   /// The number of implicitly-declared move constructors for
3125   /// which declarations were built.
3126   unsigned NumImplicitMoveConstructorsDeclared = 0;
3127 
3128   /// The number of implicitly-declared copy assignment operators.
3129   unsigned NumImplicitCopyAssignmentOperators = 0;
3130 
3131   /// The number of implicitly-declared copy assignment operators for
3132   /// which declarations were built.
3133   unsigned NumImplicitCopyAssignmentOperatorsDeclared = 0;
3134 
3135   /// The number of implicitly-declared move assignment operators.
3136   unsigned NumImplicitMoveAssignmentOperators = 0;
3137 
3138   /// The number of implicitly-declared move assignment operators for
3139   /// which declarations were built.
3140   unsigned NumImplicitMoveAssignmentOperatorsDeclared = 0;
3141 
3142   /// The number of implicitly-declared destructors.
3143   unsigned NumImplicitDestructors = 0;
3144 
3145   /// The number of implicitly-declared destructors for which
3146   /// declarations were built.
3147   unsigned NumImplicitDestructorsDeclared = 0;
3148 
3149 public:
3150   /// Initialize built-in types.
3151   ///
3152   /// This routine may only be invoked once for a given ASTContext object.
3153   /// It is normally invoked after ASTContext construction.
3154   ///
3155   /// \param Target The target
3156   void InitBuiltinTypes(const TargetInfo &Target,
3157                         const TargetInfo *AuxTarget = nullptr);
3158 
3159 private:
3160   void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
3161 
3162   class ObjCEncOptions {
3163     unsigned Bits;
3164 
3165     ObjCEncOptions(unsigned Bits) : Bits(Bits) {}
3166 
3167   public:
3168     ObjCEncOptions() : Bits(0) {}
3169     ObjCEncOptions(const ObjCEncOptions &RHS) : Bits(RHS.Bits) {}
3170 
3171 #define OPT_LIST(V)                                                            \
3172   V(ExpandPointedToStructures, 0)                                              \
3173   V(ExpandStructures, 1)                                                       \
3174   V(IsOutermostType, 2)                                                        \
3175   V(EncodingProperty, 3)                                                       \
3176   V(IsStructField, 4)                                                          \
3177   V(EncodeBlockParameters, 5)                                                  \
3178   V(EncodeClassNames, 6)                                                       \
3179 
3180 #define V(N,I) ObjCEncOptions& set##N() { Bits |= 1 << I; return *this; }
3181 OPT_LIST(V)
3182 #undef V
3183 
3184 #define V(N,I) bool N() const { return Bits & 1 << I; }
3185 OPT_LIST(V)
3186 #undef V
3187 
3188 #undef OPT_LIST
3189 
3190     LLVM_NODISCARD ObjCEncOptions keepingOnly(ObjCEncOptions Mask) const {
3191       return Bits & Mask.Bits;
3192     }
3193 
3194     LLVM_NODISCARD ObjCEncOptions forComponentType() const {
3195       ObjCEncOptions Mask = ObjCEncOptions()
3196                                 .setIsOutermostType()
3197                                 .setIsStructField();
3198       return Bits & ~Mask.Bits;
3199     }
3200   };
3201 
3202   // Return the Objective-C type encoding for a given type.
3203   void getObjCEncodingForTypeImpl(QualType t, std::string &S,
3204                                   ObjCEncOptions Options,
3205                                   const FieldDecl *Field,
3206                                   QualType *NotEncodedT = nullptr) const;
3207 
3208   // Adds the encoding of the structure's members.
3209   void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
3210                                        const FieldDecl *Field,
3211                                        bool includeVBases = true,
3212                                        QualType *NotEncodedT=nullptr) const;
3213 
3214 public:
3215   // Adds the encoding of a method parameter or return type.
3216   void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
3217                                          QualType T, std::string& S,
3218                                          bool Extended) const;
3219 
3220   /// Returns true if this is an inline-initialized static data member
3221   /// which is treated as a definition for MSVC compatibility.
3222   bool isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const;
3223 
3224   enum class InlineVariableDefinitionKind {
3225     /// Not an inline variable.
3226     None,
3227 
3228     /// Weak definition of inline variable.
3229     Weak,
3230 
3231     /// Weak for now, might become strong later in this TU.
3232     WeakUnknown,
3233 
3234     /// Strong definition.
3235     Strong
3236   };
3237 
3238   /// Determine whether a definition of this inline variable should
3239   /// be treated as a weak or strong definition. For compatibility with
3240   /// C++14 and before, for a constexpr static data member, if there is an
3241   /// out-of-line declaration of the member, we may promote it from weak to
3242   /// strong.
3243   InlineVariableDefinitionKind
3244   getInlineVariableDefinitionKind(const VarDecl *VD) const;
3245 
3246 private:
3247   friend class DeclarationNameTable;
3248   friend class DeclContext;
3249 
3250   const ASTRecordLayout &
3251   getObjCLayout(const ObjCInterfaceDecl *D,
3252                 const ObjCImplementationDecl *Impl) const;
3253 
3254   /// A set of deallocations that should be performed when the
3255   /// ASTContext is destroyed.
3256   // FIXME: We really should have a better mechanism in the ASTContext to
3257   // manage running destructors for types which do variable sized allocation
3258   // within the AST. In some places we thread the AST bump pointer allocator
3259   // into the datastructures which avoids this mess during deallocation but is
3260   // wasteful of memory, and here we require a lot of error prone book keeping
3261   // in order to track and run destructors while we're tearing things down.
3262   using DeallocationFunctionsAndArguments =
3263       llvm::SmallVector<std::pair<void (*)(void *), void *>, 16>;
3264   mutable DeallocationFunctionsAndArguments Deallocations;
3265 
3266   // FIXME: This currently contains the set of StoredDeclMaps used
3267   // by DeclContext objects.  This probably should not be in ASTContext,
3268   // but we include it here so that ASTContext can quickly deallocate them.
3269   llvm::PointerIntPair<StoredDeclsMap *, 1> LastSDM;
3270 
3271   std::vector<Decl *> TraversalScope;
3272 
3273   std::unique_ptr<VTableContextBase> VTContext;
3274 
3275   void ReleaseDeclContextMaps();
3276 
3277 public:
3278   enum PragmaSectionFlag : unsigned {
3279     PSF_None = 0,
3280     PSF_Read = 0x1,
3281     PSF_Write = 0x2,
3282     PSF_Execute = 0x4,
3283     PSF_Implicit = 0x8,
3284     PSF_ZeroInit = 0x10,
3285     PSF_Invalid = 0x80000000U,
3286   };
3287 
3288   struct SectionInfo {
3289     NamedDecl *Decl;
3290     SourceLocation PragmaSectionLocation;
3291     int SectionFlags;
3292 
3293     SectionInfo() = default;
3294     SectionInfo(NamedDecl *Decl, SourceLocation PragmaSectionLocation,
3295                 int SectionFlags)
3296         : Decl(Decl), PragmaSectionLocation(PragmaSectionLocation),
3297           SectionFlags(SectionFlags) {}
3298   };
3299 
3300   llvm::StringMap<SectionInfo> SectionInfos;
3301 
3302   /// Return a new OMPTraitInfo object owned by this context.
3303   OMPTraitInfo &getNewOMPTraitInfo();
3304 
3305   /// Whether a C++ static variable or CUDA/HIP kernel may be externalized.
3306   bool mayExternalize(const Decl *D) const;
3307 
3308   /// Whether a C++ static variable or CUDA/HIP kernel should be externalized.
3309   bool shouldExternalize(const Decl *D) const;
3310 
3311   StringRef getCUIDHash() const;
3312 
3313 private:
3314   /// All OMPTraitInfo objects live in this collection, one per
3315   /// `pragma omp [begin] declare variant` directive.
3316   SmallVector<std::unique_ptr<OMPTraitInfo>, 4> OMPTraitInfoVector;
3317 };
3318 
3319 /// Insertion operator for diagnostics.
3320 const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB,
3321                                       const ASTContext::SectionInfo &Section);
3322 
3323 /// Utility function for constructing a nullary selector.
3324 inline Selector GetNullarySelector(StringRef name, ASTContext &Ctx) {
3325   IdentifierInfo* II = &Ctx.Idents.get(name);
3326   return Ctx.Selectors.getSelector(0, &II);
3327 }
3328 
3329 /// Utility function for constructing an unary selector.
3330 inline Selector GetUnarySelector(StringRef name, ASTContext &Ctx) {
3331   IdentifierInfo* II = &Ctx.Idents.get(name);
3332   return Ctx.Selectors.getSelector(1, &II);
3333 }
3334 
3335 } // namespace clang
3336 
3337 // operator new and delete aren't allowed inside namespaces.
3338 
3339 /// Placement new for using the ASTContext's allocator.
3340 ///
3341 /// This placement form of operator new uses the ASTContext's allocator for
3342 /// obtaining memory.
3343 ///
3344 /// IMPORTANT: These are also declared in clang/AST/ASTContextAllocate.h!
3345 /// Any changes here need to also be made there.
3346 ///
3347 /// We intentionally avoid using a nothrow specification here so that the calls
3348 /// to this operator will not perform a null check on the result -- the
3349 /// underlying allocator never returns null pointers.
3350 ///
3351 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
3352 /// @code
3353 /// // Default alignment (8)
3354 /// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
3355 /// // Specific alignment
3356 /// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
3357 /// @endcode
3358 /// Memory allocated through this placement new operator does not need to be
3359 /// explicitly freed, as ASTContext will free all of this memory when it gets
3360 /// destroyed. Please note that you cannot use delete on the pointer.
3361 ///
3362 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
3363 /// @param C The ASTContext that provides the allocator.
3364 /// @param Alignment The alignment of the allocated memory (if the underlying
3365 ///                  allocator supports it).
3366 /// @return The allocated memory. Could be nullptr.
3367 inline void *operator new(size_t Bytes, const clang::ASTContext &C,
3368                           size_t Alignment /* = 8 */) {
3369   return C.Allocate(Bytes, Alignment);
3370 }
3371 
3372 /// Placement delete companion to the new above.
3373 ///
3374 /// This operator is just a companion to the new above. There is no way of
3375 /// invoking it directly; see the new operator for more details. This operator
3376 /// is called implicitly by the compiler if a placement new expression using
3377 /// the ASTContext throws in the object constructor.
3378 inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
3379   C.Deallocate(Ptr);
3380 }
3381 
3382 /// This placement form of operator new[] uses the ASTContext's allocator for
3383 /// obtaining memory.
3384 ///
3385 /// We intentionally avoid using a nothrow specification here so that the calls
3386 /// to this operator will not perform a null check on the result -- the
3387 /// underlying allocator never returns null pointers.
3388 ///
3389 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
3390 /// @code
3391 /// // Default alignment (8)
3392 /// char *data = new (Context) char[10];
3393 /// // Specific alignment
3394 /// char *data = new (Context, 4) char[10];
3395 /// @endcode
3396 /// Memory allocated through this placement new[] operator does not need to be
3397 /// explicitly freed, as ASTContext will free all of this memory when it gets
3398 /// destroyed. Please note that you cannot use delete on the pointer.
3399 ///
3400 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
3401 /// @param C The ASTContext that provides the allocator.
3402 /// @param Alignment The alignment of the allocated memory (if the underlying
3403 ///                  allocator supports it).
3404 /// @return The allocated memory. Could be nullptr.
3405 inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
3406                             size_t Alignment /* = 8 */) {
3407   return C.Allocate(Bytes, Alignment);
3408 }
3409 
3410 /// Placement delete[] companion to the new[] above.
3411 ///
3412 /// This operator is just a companion to the new[] above. There is no way of
3413 /// invoking it directly; see the new[] operator for more details. This operator
3414 /// is called implicitly by the compiler if a placement new[] expression using
3415 /// the ASTContext throws in the object constructor.
3416 inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
3417   C.Deallocate(Ptr);
3418 }
3419 
3420 /// Create the representation of a LazyGenerationalUpdatePtr.
3421 template <typename Owner, typename T,
3422           void (clang::ExternalASTSource::*Update)(Owner)>
3423 typename clang::LazyGenerationalUpdatePtr<Owner, T, Update>::ValueType
3424     clang::LazyGenerationalUpdatePtr<Owner, T, Update>::makeValue(
3425         const clang::ASTContext &Ctx, T Value) {
3426   // Note, this is implemented here so that ExternalASTSource.h doesn't need to
3427   // include ASTContext.h. We explicitly instantiate it for all relevant types
3428   // in ASTContext.cpp.
3429   if (auto *Source = Ctx.getExternalSource())
3430     return new (Ctx) LazyData(Source, Value);
3431   return Value;
3432 }
3433 
3434 #endif // LLVM_CLANG_AST_ASTCONTEXT_H
3435