1 //===- ASTContext.h - Context to hold long-lived AST nodes ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Defines the clang::ASTContext interface.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15 #define LLVM_CLANG_AST_ASTCONTEXT_H
16 
17 #include "clang/AST/ASTFwd.h"
18 #include "clang/AST/CanonicalType.h"
19 #include "clang/AST/CommentCommandTraits.h"
20 #include "clang/AST/ComparisonCategories.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclarationName.h"
23 #include "clang/AST/ExternalASTSource.h"
24 #include "clang/AST/NestedNameSpecifier.h"
25 #include "clang/AST/PrettyPrinter.h"
26 #include "clang/AST/RawCommentList.h"
27 #include "clang/AST/TemplateName.h"
28 #include "clang/Basic/IdentifierTable.h"
29 #include "clang/Basic/LLVM.h"
30 #include "clang/Basic/LangOptions.h"
31 #include "clang/Basic/NoSanitizeList.h"
32 #include "clang/Basic/PartialDiagnostic.h"
33 #include "clang/Basic/ProfileList.h"
34 #include "clang/Basic/SourceLocation.h"
35 #include "clang/Basic/XRayLists.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/DenseSet.h"
38 #include "llvm/ADT/FoldingSet.h"
39 #include "llvm/ADT/IntrusiveRefCntPtr.h"
40 #include "llvm/ADT/MapVector.h"
41 #include "llvm/ADT/PointerIntPair.h"
42 #include "llvm/ADT/PointerUnion.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/StringMap.h"
45 #include "llvm/ADT/StringRef.h"
46 #include "llvm/ADT/TinyPtrVector.h"
47 #include "llvm/Support/TypeSize.h"
48 #include <optional>
49 
50 namespace llvm {
51 
52 class APFixedPoint;
53 class FixedPointSemantics;
54 struct fltSemantics;
55 template <typename T, unsigned N> class SmallPtrSet;
56 
57 } // namespace llvm
58 
59 namespace clang {
60 
61 class APValue;
62 class ASTMutationListener;
63 class ASTRecordLayout;
64 class AtomicExpr;
65 class BlockExpr;
66 class BuiltinTemplateDecl;
67 class CharUnits;
68 class ConceptDecl;
69 class CXXABI;
70 class CXXConstructorDecl;
71 class CXXMethodDecl;
72 class CXXRecordDecl;
73 class DiagnosticsEngine;
74 class ParentMapContext;
75 class DynTypedNodeList;
76 class Expr;
77 enum class FloatModeKind;
78 class GlobalDecl;
79 class MangleContext;
80 class MangleNumberingContext;
81 class MemberSpecializationInfo;
82 class Module;
83 struct MSGuidDeclParts;
84 class ObjCCategoryDecl;
85 class ObjCCategoryImplDecl;
86 class ObjCContainerDecl;
87 class ObjCImplDecl;
88 class ObjCImplementationDecl;
89 class ObjCInterfaceDecl;
90 class ObjCIvarDecl;
91 class ObjCMethodDecl;
92 class ObjCPropertyDecl;
93 class ObjCPropertyImplDecl;
94 class ObjCProtocolDecl;
95 class ObjCTypeParamDecl;
96 class OMPTraitInfo;
97 struct ParsedTargetAttr;
98 class Preprocessor;
99 class StoredDeclsMap;
100 class TargetAttr;
101 class TargetInfo;
102 class TemplateDecl;
103 class TemplateParameterList;
104 class TemplateTemplateParmDecl;
105 class TemplateTypeParmDecl;
106 class TypeConstraint;
107 class UnresolvedSetIterator;
108 class UsingShadowDecl;
109 class VarTemplateDecl;
110 class VTableContextBase;
111 struct BlockVarCopyInit;
112 
113 namespace Builtin {
114 
115 class Context;
116 
117 } // namespace Builtin
118 
119 enum BuiltinTemplateKind : int;
120 enum OpenCLTypeKind : uint8_t;
121 
122 namespace comments {
123 
124 class FullComment;
125 
126 } // namespace comments
127 
128 namespace interp {
129 
130 class Context;
131 
132 } // namespace interp
133 
134 namespace serialization {
135 template <class> class AbstractTypeReader;
136 } // namespace serialization
137 
138 enum class AlignRequirementKind {
139   /// The alignment was not explicit in code.
140   None,
141 
142   /// The alignment comes from an alignment attribute on a typedef.
143   RequiredByTypedef,
144 
145   /// The alignment comes from an alignment attribute on a record type.
146   RequiredByRecord,
147 
148   /// The alignment comes from an alignment attribute on a enum type.
149   RequiredByEnum,
150 };
151 
152 struct TypeInfo {
153   uint64_t Width = 0;
154   unsigned Align = 0;
155   AlignRequirementKind AlignRequirement;
156 
157   TypeInfo() : AlignRequirement(AlignRequirementKind::None) {}
158   TypeInfo(uint64_t Width, unsigned Align,
159            AlignRequirementKind AlignRequirement)
160       : Width(Width), Align(Align), AlignRequirement(AlignRequirement) {}
161   bool isAlignRequired() {
162     return AlignRequirement != AlignRequirementKind::None;
163   }
164 };
165 
166 struct TypeInfoChars {
167   CharUnits Width;
168   CharUnits Align;
169   AlignRequirementKind AlignRequirement;
170 
171   TypeInfoChars() : AlignRequirement(AlignRequirementKind::None) {}
172   TypeInfoChars(CharUnits Width, CharUnits Align,
173                 AlignRequirementKind AlignRequirement)
174       : Width(Width), Align(Align), AlignRequirement(AlignRequirement) {}
175   bool isAlignRequired() {
176     return AlignRequirement != AlignRequirementKind::None;
177   }
178 };
179 
180 /// Holds long-lived AST nodes (such as types and decls) that can be
181 /// referred to throughout the semantic analysis of a file.
182 class ASTContext : public RefCountedBase<ASTContext> {
183   friend class NestedNameSpecifier;
184 
185   mutable SmallVector<Type *, 0> Types;
186   mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
187   mutable llvm::FoldingSet<ComplexType> ComplexTypes;
188   mutable llvm::FoldingSet<PointerType> PointerTypes{GeneralTypesLog2InitSize};
189   mutable llvm::FoldingSet<AdjustedType> AdjustedTypes;
190   mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
191   mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
192   mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
193   mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
194   mutable llvm::ContextualFoldingSet<ConstantArrayType, ASTContext &>
195       ConstantArrayTypes;
196   mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
197   mutable std::vector<VariableArrayType*> VariableArrayTypes;
198   mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
199   mutable llvm::FoldingSet<DependentSizedExtVectorType>
200     DependentSizedExtVectorTypes;
201   mutable llvm::FoldingSet<DependentAddressSpaceType>
202       DependentAddressSpaceTypes;
203   mutable llvm::FoldingSet<VectorType> VectorTypes;
204   mutable llvm::FoldingSet<DependentVectorType> DependentVectorTypes;
205   mutable llvm::FoldingSet<ConstantMatrixType> MatrixTypes;
206   mutable llvm::FoldingSet<DependentSizedMatrixType> DependentSizedMatrixTypes;
207   mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
208   mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
209     FunctionProtoTypes;
210   mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
211   mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
212   mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
213   mutable llvm::FoldingSet<ObjCTypeParamType> ObjCTypeParamTypes;
214   mutable llvm::FoldingSet<SubstTemplateTypeParmType>
215     SubstTemplateTypeParmTypes;
216   mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
217     SubstTemplateTypeParmPackTypes;
218   mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
219     TemplateSpecializationTypes;
220   mutable llvm::FoldingSet<ParenType> ParenTypes{GeneralTypesLog2InitSize};
221   mutable llvm::FoldingSet<UsingType> UsingTypes;
222   mutable llvm::FoldingSet<TypedefType> TypedefTypes;
223   mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes{
224       GeneralTypesLog2InitSize};
225   mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
226   mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
227                                      ASTContext&>
228     DependentTemplateSpecializationTypes;
229   llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
230   mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
231   mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
232   mutable llvm::FoldingSet<DependentUnaryTransformType>
233     DependentUnaryTransformTypes;
234   mutable llvm::ContextualFoldingSet<AutoType, ASTContext&> AutoTypes;
235   mutable llvm::FoldingSet<DeducedTemplateSpecializationType>
236     DeducedTemplateSpecializationTypes;
237   mutable llvm::FoldingSet<AtomicType> AtomicTypes;
238   mutable llvm::FoldingSet<AttributedType> AttributedTypes;
239   mutable llvm::FoldingSet<PipeType> PipeTypes;
240   mutable llvm::FoldingSet<BitIntType> BitIntTypes;
241   mutable llvm::FoldingSet<DependentBitIntType> DependentBitIntTypes;
242   llvm::FoldingSet<BTFTagAttributedType> BTFTagAttributedTypes;
243 
244   mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
245   mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
246   mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
247     SubstTemplateTemplateParms;
248   mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
249                                      ASTContext&>
250     SubstTemplateTemplateParmPacks;
251 
252   /// The set of nested name specifiers.
253   ///
254   /// This set is managed by the NestedNameSpecifier class.
255   mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
256   mutable NestedNameSpecifier *GlobalNestedNameSpecifier = nullptr;
257 
258   /// A cache mapping from RecordDecls to ASTRecordLayouts.
259   ///
260   /// This is lazily created.  This is intentionally not serialized.
261   mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
262     ASTRecordLayouts;
263   mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
264     ObjCLayouts;
265 
266   /// A cache from types to size and alignment information.
267   using TypeInfoMap = llvm::DenseMap<const Type *, struct TypeInfo>;
268   mutable TypeInfoMap MemoizedTypeInfo;
269 
270   /// A cache from types to unadjusted alignment information. Only ARM and
271   /// AArch64 targets need this information, keeping it separate prevents
272   /// imposing overhead on TypeInfo size.
273   using UnadjustedAlignMap = llvm::DenseMap<const Type *, unsigned>;
274   mutable UnadjustedAlignMap MemoizedUnadjustedAlign;
275 
276   /// A cache mapping from CXXRecordDecls to key functions.
277   llvm::DenseMap<const CXXRecordDecl*, LazyDeclPtr> KeyFunctions;
278 
279   /// Mapping from ObjCContainers to their ObjCImplementations.
280   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
281 
282   /// Mapping from ObjCMethod to its duplicate declaration in the same
283   /// interface.
284   llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
285 
286   /// Mapping from __block VarDecls to BlockVarCopyInit.
287   llvm::DenseMap<const VarDecl *, BlockVarCopyInit> BlockVarCopyInits;
288 
289   /// Mapping from GUIDs to the corresponding MSGuidDecl.
290   mutable llvm::FoldingSet<MSGuidDecl> MSGuidDecls;
291 
292   /// Mapping from APValues to the corresponding UnnamedGlobalConstantDecl.
293   mutable llvm::FoldingSet<UnnamedGlobalConstantDecl>
294       UnnamedGlobalConstantDecls;
295 
296   /// Mapping from APValues to the corresponding TemplateParamObjects.
297   mutable llvm::FoldingSet<TemplateParamObjectDecl> TemplateParamObjectDecls;
298 
299   /// A cache mapping a string value to a StringLiteral object with the same
300   /// value.
301   ///
302   /// This is lazily created.  This is intentionally not serialized.
303   mutable llvm::StringMap<StringLiteral *> StringLiteralCache;
304 
305   /// MD5 hash of CUID. It is calculated when first used and cached by this
306   /// data member.
307   mutable std::string CUIDHash;
308 
309   /// Representation of a "canonical" template template parameter that
310   /// is used in canonical template names.
311   class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
312     TemplateTemplateParmDecl *Parm;
313 
314   public:
315     CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
316         : Parm(Parm) {}
317 
318     TemplateTemplateParmDecl *getParam() const { return Parm; }
319 
320     void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &C) {
321       Profile(ID, C, Parm);
322     }
323 
324     static void Profile(llvm::FoldingSetNodeID &ID,
325                         const ASTContext &C,
326                         TemplateTemplateParmDecl *Parm);
327   };
328   mutable llvm::ContextualFoldingSet<CanonicalTemplateTemplateParm,
329                                      const ASTContext&>
330     CanonTemplateTemplateParms;
331 
332   TemplateTemplateParmDecl *
333     getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
334 
335   /// The typedef for the __int128_t type.
336   mutable TypedefDecl *Int128Decl = nullptr;
337 
338   /// The typedef for the __uint128_t type.
339   mutable TypedefDecl *UInt128Decl = nullptr;
340 
341   /// The typedef for the target specific predefined
342   /// __builtin_va_list type.
343   mutable TypedefDecl *BuiltinVaListDecl = nullptr;
344 
345   /// The typedef for the predefined \c __builtin_ms_va_list type.
346   mutable TypedefDecl *BuiltinMSVaListDecl = nullptr;
347 
348   /// The typedef for the predefined \c id type.
349   mutable TypedefDecl *ObjCIdDecl = nullptr;
350 
351   /// The typedef for the predefined \c SEL type.
352   mutable TypedefDecl *ObjCSelDecl = nullptr;
353 
354   /// The typedef for the predefined \c Class type.
355   mutable TypedefDecl *ObjCClassDecl = nullptr;
356 
357   /// The typedef for the predefined \c Protocol class in Objective-C.
358   mutable ObjCInterfaceDecl *ObjCProtocolClassDecl = nullptr;
359 
360   /// The typedef for the predefined 'BOOL' type.
361   mutable TypedefDecl *BOOLDecl = nullptr;
362 
363   // Typedefs which may be provided defining the structure of Objective-C
364   // pseudo-builtins
365   QualType ObjCIdRedefinitionType;
366   QualType ObjCClassRedefinitionType;
367   QualType ObjCSelRedefinitionType;
368 
369   /// The identifier 'bool'.
370   mutable IdentifierInfo *BoolName = nullptr;
371 
372   /// The identifier 'NSObject'.
373   mutable IdentifierInfo *NSObjectName = nullptr;
374 
375   /// The identifier 'NSCopying'.
376   IdentifierInfo *NSCopyingName = nullptr;
377 
378   /// The identifier '__make_integer_seq'.
379   mutable IdentifierInfo *MakeIntegerSeqName = nullptr;
380 
381   /// The identifier '__type_pack_element'.
382   mutable IdentifierInfo *TypePackElementName = nullptr;
383 
384   QualType ObjCConstantStringType;
385   mutable RecordDecl *CFConstantStringTagDecl = nullptr;
386   mutable TypedefDecl *CFConstantStringTypeDecl = nullptr;
387 
388   mutable QualType ObjCSuperType;
389 
390   QualType ObjCNSStringType;
391 
392   /// The typedef declaration for the Objective-C "instancetype" type.
393   TypedefDecl *ObjCInstanceTypeDecl = nullptr;
394 
395   /// The type for the C FILE type.
396   TypeDecl *FILEDecl = nullptr;
397 
398   /// The type for the C jmp_buf type.
399   TypeDecl *jmp_bufDecl = nullptr;
400 
401   /// The type for the C sigjmp_buf type.
402   TypeDecl *sigjmp_bufDecl = nullptr;
403 
404   /// The type for the C ucontext_t type.
405   TypeDecl *ucontext_tDecl = nullptr;
406 
407   /// Type for the Block descriptor for Blocks CodeGen.
408   ///
409   /// Since this is only used for generation of debug info, it is not
410   /// serialized.
411   mutable RecordDecl *BlockDescriptorType = nullptr;
412 
413   /// Type for the Block descriptor for Blocks CodeGen.
414   ///
415   /// Since this is only used for generation of debug info, it is not
416   /// serialized.
417   mutable RecordDecl *BlockDescriptorExtendedType = nullptr;
418 
419   /// Declaration for the CUDA cudaConfigureCall function.
420   FunctionDecl *cudaConfigureCallDecl = nullptr;
421 
422   /// Keeps track of all declaration attributes.
423   ///
424   /// Since so few decls have attrs, we keep them in a hash map instead of
425   /// wasting space in the Decl class.
426   llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
427 
428   /// A mapping from non-redeclarable declarations in modules that were
429   /// merged with other declarations to the canonical declaration that they were
430   /// merged into.
431   llvm::DenseMap<Decl*, Decl*> MergedDecls;
432 
433   /// A mapping from a defining declaration to a list of modules (other
434   /// than the owning module of the declaration) that contain merged
435   /// definitions of that entity.
436   llvm::DenseMap<NamedDecl*, llvm::TinyPtrVector<Module*>> MergedDefModules;
437 
438   /// Initializers for a module, in order. Each Decl will be either
439   /// something that has a semantic effect on startup (such as a variable with
440   /// a non-constant initializer), or an ImportDecl (which recursively triggers
441   /// initialization of another module).
442   struct PerModuleInitializers {
443     llvm::SmallVector<Decl*, 4> Initializers;
444     llvm::SmallVector<uint32_t, 4> LazyInitializers;
445 
446     void resolve(ASTContext &Ctx);
447   };
448   llvm::DenseMap<Module*, PerModuleInitializers*> ModuleInitializers;
449 
450   /// This is the top-level (C++20) Named module we are building.
451   Module *CurrentCXXNamedModule = nullptr;
452 
453   static constexpr unsigned ConstantArrayTypesLog2InitSize = 8;
454   static constexpr unsigned GeneralTypesLog2InitSize = 9;
455   static constexpr unsigned FunctionProtoTypesLog2InitSize = 12;
456 
457   ASTContext &this_() { return *this; }
458 
459 public:
460   /// A type synonym for the TemplateOrInstantiation mapping.
461   using TemplateOrSpecializationInfo =
462       llvm::PointerUnion<VarTemplateDecl *, MemberSpecializationInfo *>;
463 
464 private:
465   friend class ASTDeclReader;
466   friend class ASTReader;
467   friend class ASTWriter;
468   template <class> friend class serialization::AbstractTypeReader;
469   friend class CXXRecordDecl;
470   friend class IncrementalParser;
471 
472   /// A mapping to contain the template or declaration that
473   /// a variable declaration describes or was instantiated from,
474   /// respectively.
475   ///
476   /// For non-templates, this value will be NULL. For variable
477   /// declarations that describe a variable template, this will be a
478   /// pointer to a VarTemplateDecl. For static data members
479   /// of class template specializations, this will be the
480   /// MemberSpecializationInfo referring to the member variable that was
481   /// instantiated or specialized. Thus, the mapping will keep track of
482   /// the static data member templates from which static data members of
483   /// class template specializations were instantiated.
484   ///
485   /// Given the following example:
486   ///
487   /// \code
488   /// template<typename T>
489   /// struct X {
490   ///   static T value;
491   /// };
492   ///
493   /// template<typename T>
494   ///   T X<T>::value = T(17);
495   ///
496   /// int *x = &X<int>::value;
497   /// \endcode
498   ///
499   /// This mapping will contain an entry that maps from the VarDecl for
500   /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
501   /// class template X) and will be marked TSK_ImplicitInstantiation.
502   llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>
503   TemplateOrInstantiation;
504 
505   /// Keeps track of the declaration from which a using declaration was
506   /// created during instantiation.
507   ///
508   /// The source and target declarations are always a UsingDecl, an
509   /// UnresolvedUsingValueDecl, or an UnresolvedUsingTypenameDecl.
510   ///
511   /// For example:
512   /// \code
513   /// template<typename T>
514   /// struct A {
515   ///   void f();
516   /// };
517   ///
518   /// template<typename T>
519   /// struct B : A<T> {
520   ///   using A<T>::f;
521   /// };
522   ///
523   /// template struct B<int>;
524   /// \endcode
525   ///
526   /// This mapping will contain an entry that maps from the UsingDecl in
527   /// B<int> to the UnresolvedUsingDecl in B<T>.
528   llvm::DenseMap<NamedDecl *, NamedDecl *> InstantiatedFromUsingDecl;
529 
530   /// Like InstantiatedFromUsingDecl, but for using-enum-declarations. Maps
531   /// from the instantiated using-enum to the templated decl from whence it
532   /// came.
533   /// Note that using-enum-declarations cannot be dependent and
534   /// thus will never be instantiated from an "unresolved"
535   /// version thereof (as with using-declarations), so each mapping is from
536   /// a (resolved) UsingEnumDecl to a (resolved) UsingEnumDecl.
537   llvm::DenseMap<UsingEnumDecl *, UsingEnumDecl *>
538       InstantiatedFromUsingEnumDecl;
539 
540   /// Simlarly maps instantiated UsingShadowDecls to their origin.
541   llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
542     InstantiatedFromUsingShadowDecl;
543 
544   llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
545 
546   /// Mapping that stores the methods overridden by a given C++
547   /// member function.
548   ///
549   /// Since most C++ member functions aren't virtual and therefore
550   /// don't override anything, we store the overridden functions in
551   /// this map on the side rather than within the CXXMethodDecl structure.
552   using CXXMethodVector = llvm::TinyPtrVector<const CXXMethodDecl *>;
553   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
554 
555   /// Mapping from each declaration context to its corresponding
556   /// mangling numbering context (used for constructs like lambdas which
557   /// need to be consistently numbered for the mangler).
558   llvm::DenseMap<const DeclContext *, std::unique_ptr<MangleNumberingContext>>
559       MangleNumberingContexts;
560   llvm::DenseMap<const Decl *, std::unique_ptr<MangleNumberingContext>>
561       ExtraMangleNumberingContexts;
562 
563   /// Side-table of mangling numbers for declarations which rarely
564   /// need them (like static local vars).
565   llvm::MapVector<const NamedDecl *, unsigned> MangleNumbers;
566   llvm::MapVector<const VarDecl *, unsigned> StaticLocalNumbers;
567   /// Mapping the associated device lambda mangling number if present.
568   mutable llvm::DenseMap<const CXXRecordDecl *, unsigned>
569       DeviceLambdaManglingNumbers;
570 
571   /// Mapping that stores parameterIndex values for ParmVarDecls when
572   /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
573   using ParameterIndexTable = llvm::DenseMap<const VarDecl *, unsigned>;
574   ParameterIndexTable ParamIndices;
575 
576   ImportDecl *FirstLocalImport = nullptr;
577   ImportDecl *LastLocalImport = nullptr;
578 
579   TranslationUnitDecl *TUDecl = nullptr;
580   mutable ExternCContextDecl *ExternCContext = nullptr;
581   mutable BuiltinTemplateDecl *MakeIntegerSeqDecl = nullptr;
582   mutable BuiltinTemplateDecl *TypePackElementDecl = nullptr;
583 
584   /// The associated SourceManager object.
585   SourceManager &SourceMgr;
586 
587   /// The language options used to create the AST associated with
588   ///  this ASTContext object.
589   LangOptions &LangOpts;
590 
591   /// NoSanitizeList object that is used by sanitizers to decide which
592   /// entities should not be instrumented.
593   std::unique_ptr<NoSanitizeList> NoSanitizeL;
594 
595   /// Function filtering mechanism to determine whether a given function
596   /// should be imbued with the XRay "always" or "never" attributes.
597   std::unique_ptr<XRayFunctionFilter> XRayFilter;
598 
599   /// ProfileList object that is used by the profile instrumentation
600   /// to decide which entities should be instrumented.
601   std::unique_ptr<ProfileList> ProfList;
602 
603   /// The allocator used to create AST objects.
604   ///
605   /// AST objects are never destructed; rather, all memory associated with the
606   /// AST objects will be released when the ASTContext itself is destroyed.
607   mutable llvm::BumpPtrAllocator BumpAlloc;
608 
609   /// Allocator for partial diagnostics.
610   PartialDiagnostic::DiagStorageAllocator DiagAllocator;
611 
612   /// The current C++ ABI.
613   std::unique_ptr<CXXABI> ABI;
614   CXXABI *createCXXABI(const TargetInfo &T);
615 
616   /// Address space map mangling must be used with language specific
617   /// address spaces (e.g. OpenCL/CUDA)
618   bool AddrSpaceMapMangling;
619 
620   const TargetInfo *Target = nullptr;
621   const TargetInfo *AuxTarget = nullptr;
622   clang::PrintingPolicy PrintingPolicy;
623   std::unique_ptr<interp::Context> InterpContext;
624   std::unique_ptr<ParentMapContext> ParentMapCtx;
625 
626   /// Keeps track of the deallocated DeclListNodes for future reuse.
627   DeclListNode *ListNodeFreeList = nullptr;
628 
629 public:
630   IdentifierTable &Idents;
631   SelectorTable &Selectors;
632   Builtin::Context &BuiltinInfo;
633   const TranslationUnitKind TUKind;
634   mutable DeclarationNameTable DeclarationNames;
635   IntrusiveRefCntPtr<ExternalASTSource> ExternalSource;
636   ASTMutationListener *Listener = nullptr;
637 
638   /// Returns the clang bytecode interpreter context.
639   interp::Context &getInterpContext();
640 
641   struct CUDAConstantEvalContext {
642     /// Do not allow wrong-sided variables in constant expressions.
643     bool NoWrongSidedVars = false;
644   } CUDAConstantEvalCtx;
645   struct CUDAConstantEvalContextRAII {
646     ASTContext &Ctx;
647     CUDAConstantEvalContext SavedCtx;
648     CUDAConstantEvalContextRAII(ASTContext &Ctx_, bool NoWrongSidedVars)
649         : Ctx(Ctx_), SavedCtx(Ctx_.CUDAConstantEvalCtx) {
650       Ctx_.CUDAConstantEvalCtx.NoWrongSidedVars = NoWrongSidedVars;
651     }
652     ~CUDAConstantEvalContextRAII() { Ctx.CUDAConstantEvalCtx = SavedCtx; }
653   };
654 
655   /// Returns the dynamic AST node parent map context.
656   ParentMapContext &getParentMapContext();
657 
658   // A traversal scope limits the parts of the AST visible to certain analyses.
659   // RecursiveASTVisitor only visits specified children of TranslationUnitDecl.
660   // getParents() will only observe reachable parent edges.
661   //
662   // The scope is defined by a set of "top-level" declarations which will be
663   // visible under the TranslationUnitDecl.
664   // Initially, it is the entire TU, represented by {getTranslationUnitDecl()}.
665   //
666   // After setTraversalScope({foo, bar}), the exposed AST looks like:
667   // TranslationUnitDecl
668   //  - foo
669   //    - ...
670   //  - bar
671   //    - ...
672   // All other siblings of foo and bar are pruned from the tree.
673   // (However they are still accessible via TranslationUnitDecl->decls())
674   //
675   // Changing the scope clears the parent cache, which is expensive to rebuild.
676   std::vector<Decl *> getTraversalScope() const { return TraversalScope; }
677   void setTraversalScope(const std::vector<Decl *> &);
678 
679   /// Forwards to get node parents from the ParentMapContext. New callers should
680   /// use ParentMapContext::getParents() directly.
681   template <typename NodeT> DynTypedNodeList getParents(const NodeT &Node);
682 
683   const clang::PrintingPolicy &getPrintingPolicy() const {
684     return PrintingPolicy;
685   }
686 
687   void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
688     PrintingPolicy = Policy;
689   }
690 
691   SourceManager& getSourceManager() { return SourceMgr; }
692   const SourceManager& getSourceManager() const { return SourceMgr; }
693 
694   // Cleans up some of the data structures. This allows us to do cleanup
695   // normally done in the destructor earlier. Renders much of the ASTContext
696   // unusable, mostly the actual AST nodes, so should be called when we no
697   // longer need access to the AST.
698   void cleanup();
699 
700   llvm::BumpPtrAllocator &getAllocator() const {
701     return BumpAlloc;
702   }
703 
704   void *Allocate(size_t Size, unsigned Align = 8) const {
705     return BumpAlloc.Allocate(Size, Align);
706   }
707   template <typename T> T *Allocate(size_t Num = 1) const {
708     return static_cast<T *>(Allocate(Num * sizeof(T), alignof(T)));
709   }
710   void Deallocate(void *Ptr) const {}
711 
712   /// Allocates a \c DeclListNode or returns one from the \c ListNodeFreeList
713   /// pool.
714   DeclListNode *AllocateDeclListNode(clang::NamedDecl *ND) {
715     if (DeclListNode *Alloc = ListNodeFreeList) {
716       ListNodeFreeList = Alloc->Rest.dyn_cast<DeclListNode*>();
717       Alloc->D = ND;
718       Alloc->Rest = nullptr;
719       return Alloc;
720     }
721     return new (*this) DeclListNode(ND);
722   }
723   /// Deallcates a \c DeclListNode by returning it to the \c ListNodeFreeList
724   /// pool.
725   void DeallocateDeclListNode(DeclListNode *N) {
726     N->Rest = ListNodeFreeList;
727     ListNodeFreeList = N;
728   }
729 
730   /// Return the total amount of physical memory allocated for representing
731   /// AST nodes and type information.
732   size_t getASTAllocatedMemory() const {
733     return BumpAlloc.getTotalMemory();
734   }
735 
736   /// Return the total memory used for various side tables.
737   size_t getSideTableAllocatedMemory() const;
738 
739   PartialDiagnostic::DiagStorageAllocator &getDiagAllocator() {
740     return DiagAllocator;
741   }
742 
743   const TargetInfo &getTargetInfo() const { return *Target; }
744   const TargetInfo *getAuxTargetInfo() const { return AuxTarget; }
745 
746   /// getIntTypeForBitwidth -
747   /// sets integer QualTy according to specified details:
748   /// bitwidth, signed/unsigned.
749   /// Returns empty type if there is no appropriate target types.
750   QualType getIntTypeForBitwidth(unsigned DestWidth,
751                                  unsigned Signed) const;
752 
753   /// getRealTypeForBitwidth -
754   /// sets floating point QualTy according to specified bitwidth.
755   /// Returns empty type if there is no appropriate target types.
756   QualType getRealTypeForBitwidth(unsigned DestWidth,
757                                   FloatModeKind ExplicitType) const;
758 
759   bool AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const;
760 
761   const LangOptions& getLangOpts() const { return LangOpts; }
762 
763   // If this condition is false, typo correction must be performed eagerly
764   // rather than delayed in many places, as it makes use of dependent types.
765   // the condition is false for clang's C-only codepath, as it doesn't support
766   // dependent types yet.
767   bool isDependenceAllowed() const {
768     return LangOpts.CPlusPlus || LangOpts.RecoveryAST;
769   }
770 
771   const NoSanitizeList &getNoSanitizeList() const { return *NoSanitizeL; }
772 
773   const XRayFunctionFilter &getXRayFilter() const {
774     return *XRayFilter;
775   }
776 
777   const ProfileList &getProfileList() const { return *ProfList; }
778 
779   DiagnosticsEngine &getDiagnostics() const;
780 
781   FullSourceLoc getFullLoc(SourceLocation Loc) const {
782     return FullSourceLoc(Loc,SourceMgr);
783   }
784 
785   /// Return the C++ ABI kind that should be used. The C++ ABI can be overriden
786   /// at compile time with `-fc++-abi=`. If this is not provided, we instead use
787   /// the default ABI set by the target.
788   TargetCXXABI::Kind getCXXABIKind() const;
789 
790   /// All comments in this translation unit.
791   RawCommentList Comments;
792 
793   /// True if comments are already loaded from ExternalASTSource.
794   mutable bool CommentsLoaded = false;
795 
796   /// Mapping from declaration to directly attached comment.
797   ///
798   /// Raw comments are owned by Comments list.  This mapping is populated
799   /// lazily.
800   mutable llvm::DenseMap<const Decl *, const RawComment *> DeclRawComments;
801 
802   /// Mapping from canonical declaration to the first redeclaration in chain
803   /// that has a comment attached.
804   ///
805   /// Raw comments are owned by Comments list.  This mapping is populated
806   /// lazily.
807   mutable llvm::DenseMap<const Decl *, const Decl *> RedeclChainComments;
808 
809   /// Keeps track of redeclaration chains that don't have any comment attached.
810   /// Mapping from canonical declaration to redeclaration chain that has no
811   /// comments attached to any redeclaration. Specifically it's mapping to
812   /// the last redeclaration we've checked.
813   ///
814   /// Shall not contain declarations that have comments attached to any
815   /// redeclaration in their chain.
816   mutable llvm::DenseMap<const Decl *, const Decl *> CommentlessRedeclChains;
817 
818   /// Mapping from declarations to parsed comments attached to any
819   /// redeclaration.
820   mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
821 
822   /// Attaches \p Comment to \p OriginalD and to its redeclaration chain
823   /// and removes the redeclaration chain from the set of commentless chains.
824   ///
825   /// Don't do anything if a comment has already been attached to \p OriginalD
826   /// or its redeclaration chain.
827   void cacheRawCommentForDecl(const Decl &OriginalD,
828                               const RawComment &Comment) const;
829 
830   /// \returns searches \p CommentsInFile for doc comment for \p D.
831   ///
832   /// \p RepresentativeLocForDecl is used as a location for searching doc
833   /// comments. \p CommentsInFile is a mapping offset -> comment of files in the
834   /// same file where \p RepresentativeLocForDecl is.
835   RawComment *getRawCommentForDeclNoCacheImpl(
836       const Decl *D, const SourceLocation RepresentativeLocForDecl,
837       const std::map<unsigned, RawComment *> &CommentsInFile) const;
838 
839   /// Return the documentation comment attached to a given declaration,
840   /// without looking into cache.
841   RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
842 
843 public:
844   void addComment(const RawComment &RC);
845 
846   /// Return the documentation comment attached to a given declaration.
847   /// Returns nullptr if no comment is attached.
848   ///
849   /// \param OriginalDecl if not nullptr, is set to declaration AST node that
850   /// had the comment, if the comment we found comes from a redeclaration.
851   const RawComment *
852   getRawCommentForAnyRedecl(const Decl *D,
853                             const Decl **OriginalDecl = nullptr) const;
854 
855   /// Searches existing comments for doc comments that should be attached to \p
856   /// Decls. If any doc comment is found, it is parsed.
857   ///
858   /// Requirement: All \p Decls are in the same file.
859   ///
860   /// If the last comment in the file is already attached we assume
861   /// there are not comments left to be attached to \p Decls.
862   void attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
863                                        const Preprocessor *PP);
864 
865   /// Return parsed documentation comment attached to a given declaration.
866   /// Returns nullptr if no comment is attached.
867   ///
868   /// \param PP the Preprocessor used with this TU.  Could be nullptr if
869   /// preprocessor is not available.
870   comments::FullComment *getCommentForDecl(const Decl *D,
871                                            const Preprocessor *PP) const;
872 
873   /// Return parsed documentation comment attached to a given declaration.
874   /// Returns nullptr if no comment is attached. Does not look at any
875   /// redeclarations of the declaration.
876   comments::FullComment *getLocalCommentForDeclUncached(const Decl *D) const;
877 
878   comments::FullComment *cloneFullComment(comments::FullComment *FC,
879                                          const Decl *D) const;
880 
881 private:
882   mutable comments::CommandTraits CommentCommandTraits;
883 
884   /// Iterator that visits import declarations.
885   class import_iterator {
886     ImportDecl *Import = nullptr;
887 
888   public:
889     using value_type = ImportDecl *;
890     using reference = ImportDecl *;
891     using pointer = ImportDecl *;
892     using difference_type = int;
893     using iterator_category = std::forward_iterator_tag;
894 
895     import_iterator() = default;
896     explicit import_iterator(ImportDecl *Import) : Import(Import) {}
897 
898     reference operator*() const { return Import; }
899     pointer operator->() const { return Import; }
900 
901     import_iterator &operator++() {
902       Import = ASTContext::getNextLocalImport(Import);
903       return *this;
904     }
905 
906     import_iterator operator++(int) {
907       import_iterator Other(*this);
908       ++(*this);
909       return Other;
910     }
911 
912     friend bool operator==(import_iterator X, import_iterator Y) {
913       return X.Import == Y.Import;
914     }
915 
916     friend bool operator!=(import_iterator X, import_iterator Y) {
917       return X.Import != Y.Import;
918     }
919   };
920 
921 public:
922   comments::CommandTraits &getCommentCommandTraits() const {
923     return CommentCommandTraits;
924   }
925 
926   /// Retrieve the attributes for the given declaration.
927   AttrVec& getDeclAttrs(const Decl *D);
928 
929   /// Erase the attributes corresponding to the given declaration.
930   void eraseDeclAttrs(const Decl *D);
931 
932   /// If this variable is an instantiated static data member of a
933   /// class template specialization, returns the templated static data member
934   /// from which it was instantiated.
935   // FIXME: Remove ?
936   MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
937                                                            const VarDecl *Var);
938 
939   /// Note that the static data member \p Inst is an instantiation of
940   /// the static data member template \p Tmpl of a class template.
941   void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
942                                            TemplateSpecializationKind TSK,
943                         SourceLocation PointOfInstantiation = SourceLocation());
944 
945   TemplateOrSpecializationInfo
946   getTemplateOrSpecializationInfo(const VarDecl *Var);
947 
948   void setTemplateOrSpecializationInfo(VarDecl *Inst,
949                                        TemplateOrSpecializationInfo TSI);
950 
951   /// If the given using decl \p Inst is an instantiation of
952   /// another (possibly unresolved) using decl, return it.
953   NamedDecl *getInstantiatedFromUsingDecl(NamedDecl *Inst);
954 
955   /// Remember that the using decl \p Inst is an instantiation
956   /// of the using decl \p Pattern of a class template.
957   void setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern);
958 
959   /// If the given using-enum decl \p Inst is an instantiation of
960   /// another using-enum decl, return it.
961   UsingEnumDecl *getInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst);
962 
963   /// Remember that the using enum decl \p Inst is an instantiation
964   /// of the using enum decl \p Pattern of a class template.
965   void setInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst,
966                                         UsingEnumDecl *Pattern);
967 
968   UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
969   void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
970                                           UsingShadowDecl *Pattern);
971 
972   FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
973 
974   void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
975 
976   // Access to the set of methods overridden by the given C++ method.
977   using overridden_cxx_method_iterator = CXXMethodVector::const_iterator;
978   overridden_cxx_method_iterator
979   overridden_methods_begin(const CXXMethodDecl *Method) const;
980 
981   overridden_cxx_method_iterator
982   overridden_methods_end(const CXXMethodDecl *Method) const;
983 
984   unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
985 
986   using overridden_method_range =
987       llvm::iterator_range<overridden_cxx_method_iterator>;
988 
989   overridden_method_range overridden_methods(const CXXMethodDecl *Method) const;
990 
991   /// Note that the given C++ \p Method overrides the given \p
992   /// Overridden method.
993   void addOverriddenMethod(const CXXMethodDecl *Method,
994                            const CXXMethodDecl *Overridden);
995 
996   /// Return C++ or ObjC overridden methods for the given \p Method.
997   ///
998   /// An ObjC method is considered to override any method in the class's
999   /// base classes, its protocols, or its categories' protocols, that has
1000   /// the same selector and is of the same kind (class or instance).
1001   /// A method in an implementation is not considered as overriding the same
1002   /// method in the interface or its categories.
1003   void getOverriddenMethods(
1004                         const NamedDecl *Method,
1005                         SmallVectorImpl<const NamedDecl *> &Overridden) const;
1006 
1007   /// Notify the AST context that a new import declaration has been
1008   /// parsed or implicitly created within this translation unit.
1009   void addedLocalImportDecl(ImportDecl *Import);
1010 
1011   static ImportDecl *getNextLocalImport(ImportDecl *Import) {
1012     return Import->getNextLocalImport();
1013   }
1014 
1015   using import_range = llvm::iterator_range<import_iterator>;
1016 
1017   import_range local_imports() const {
1018     return import_range(import_iterator(FirstLocalImport), import_iterator());
1019   }
1020 
1021   Decl *getPrimaryMergedDecl(Decl *D) {
1022     Decl *Result = MergedDecls.lookup(D);
1023     return Result ? Result : D;
1024   }
1025   void setPrimaryMergedDecl(Decl *D, Decl *Primary) {
1026     MergedDecls[D] = Primary;
1027   }
1028 
1029   /// Note that the definition \p ND has been merged into module \p M,
1030   /// and should be visible whenever \p M is visible.
1031   void mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
1032                                  bool NotifyListeners = true);
1033 
1034   /// Clean up the merged definition list. Call this if you might have
1035   /// added duplicates into the list.
1036   void deduplicateMergedDefinitonsFor(NamedDecl *ND);
1037 
1038   /// Get the additional modules in which the definition \p Def has
1039   /// been merged.
1040   ArrayRef<Module*> getModulesWithMergedDefinition(const NamedDecl *Def);
1041 
1042   /// Add a declaration to the list of declarations that are initialized
1043   /// for a module. This will typically be a global variable (with internal
1044   /// linkage) that runs module initializers, such as the iostream initializer,
1045   /// or an ImportDecl nominating another module that has initializers.
1046   void addModuleInitializer(Module *M, Decl *Init);
1047 
1048   void addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs);
1049 
1050   /// Get the initializations to perform when importing a module, if any.
1051   ArrayRef<Decl*> getModuleInitializers(Module *M);
1052 
1053   /// Set the (C++20) module we are building.
1054   void setCurrentNamedModule(Module *M);
1055 
1056   /// Get module under construction, nullptr if this is not a C++20 module.
1057   Module *getCurrentNamedModule() const { return CurrentCXXNamedModule; }
1058 
1059   TranslationUnitDecl *getTranslationUnitDecl() const {
1060     return TUDecl->getMostRecentDecl();
1061   }
1062   void addTranslationUnitDecl() {
1063     assert(!TUDecl || TUKind == TU_Incremental);
1064     TranslationUnitDecl *NewTUDecl = TranslationUnitDecl::Create(*this);
1065     if (TraversalScope.empty() || TraversalScope.back() == TUDecl)
1066       TraversalScope = {NewTUDecl};
1067     if (TUDecl)
1068       NewTUDecl->setPreviousDecl(TUDecl);
1069     TUDecl = NewTUDecl;
1070   }
1071 
1072   ExternCContextDecl *getExternCContextDecl() const;
1073   BuiltinTemplateDecl *getMakeIntegerSeqDecl() const;
1074   BuiltinTemplateDecl *getTypePackElementDecl() const;
1075 
1076   // Builtin Types.
1077   CanQualType VoidTy;
1078   CanQualType BoolTy;
1079   CanQualType CharTy;
1080   CanQualType WCharTy;  // [C++ 3.9.1p5].
1081   CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
1082   CanQualType WIntTy;   // [C99 7.24.1], integer type unchanged by default promotions.
1083   CanQualType Char8Ty;  // [C++20 proposal]
1084   CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
1085   CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
1086   CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
1087   CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
1088   CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
1089   CanQualType FloatTy, DoubleTy, LongDoubleTy, Float128Ty, Ibm128Ty;
1090   CanQualType ShortAccumTy, AccumTy,
1091       LongAccumTy;  // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1092   CanQualType UnsignedShortAccumTy, UnsignedAccumTy, UnsignedLongAccumTy;
1093   CanQualType ShortFractTy, FractTy, LongFractTy;
1094   CanQualType UnsignedShortFractTy, UnsignedFractTy, UnsignedLongFractTy;
1095   CanQualType SatShortAccumTy, SatAccumTy, SatLongAccumTy;
1096   CanQualType SatUnsignedShortAccumTy, SatUnsignedAccumTy,
1097       SatUnsignedLongAccumTy;
1098   CanQualType SatShortFractTy, SatFractTy, SatLongFractTy;
1099   CanQualType SatUnsignedShortFractTy, SatUnsignedFractTy,
1100       SatUnsignedLongFractTy;
1101   CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
1102   CanQualType BFloat16Ty;
1103   CanQualType Float16Ty; // C11 extension ISO/IEC TS 18661-3
1104   CanQualType VoidPtrTy, NullPtrTy;
1105   CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
1106   CanQualType BuiltinFnTy;
1107   CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
1108   CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
1109   CanQualType ObjCBuiltinBoolTy;
1110 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1111   CanQualType SingletonId;
1112 #include "clang/Basic/OpenCLImageTypes.def"
1113   CanQualType OCLSamplerTy, OCLEventTy, OCLClkEventTy;
1114   CanQualType OCLQueueTy, OCLReserveIDTy;
1115   CanQualType IncompleteMatrixIdxTy;
1116   CanQualType OMPArraySectionTy, OMPArrayShapingTy, OMPIteratorTy;
1117 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1118   CanQualType Id##Ty;
1119 #include "clang/Basic/OpenCLExtensionTypes.def"
1120 #define SVE_TYPE(Name, Id, SingletonId) \
1121   CanQualType SingletonId;
1122 #include "clang/Basic/AArch64SVEACLETypes.def"
1123 #define PPC_VECTOR_TYPE(Name, Id, Size) \
1124   CanQualType Id##Ty;
1125 #include "clang/Basic/PPCTypes.def"
1126 #define RVV_TYPE(Name, Id, SingletonId) \
1127   CanQualType SingletonId;
1128 #include "clang/Basic/RISCVVTypes.def"
1129 #define WASM_TYPE(Name, Id, SingletonId) CanQualType SingletonId;
1130 #include "clang/Basic/WebAssemblyReferenceTypes.def"
1131 
1132   // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
1133   mutable QualType AutoDeductTy;     // Deduction against 'auto'.
1134   mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
1135 
1136   // Decl used to help define __builtin_va_list for some targets.
1137   // The decl is built when constructing 'BuiltinVaListDecl'.
1138   mutable Decl *VaListTagDecl = nullptr;
1139 
1140   // Implicitly-declared type 'struct _GUID'.
1141   mutable TagDecl *MSGuidTagDecl = nullptr;
1142 
1143   /// Keep track of CUDA/HIP device-side variables ODR-used by host code.
1144   llvm::DenseSet<const VarDecl *> CUDADeviceVarODRUsedByHost;
1145 
1146   /// Keep track of CUDA/HIP external kernels or device variables ODR-used by
1147   /// host code.
1148   llvm::DenseSet<const ValueDecl *> CUDAExternalDeviceDeclODRUsedByHost;
1149 
1150   ASTContext(LangOptions &LOpts, SourceManager &SM, IdentifierTable &idents,
1151              SelectorTable &sels, Builtin::Context &builtins,
1152              TranslationUnitKind TUKind);
1153   ASTContext(const ASTContext &) = delete;
1154   ASTContext &operator=(const ASTContext &) = delete;
1155   ~ASTContext();
1156 
1157   /// Attach an external AST source to the AST context.
1158   ///
1159   /// The external AST source provides the ability to load parts of
1160   /// the abstract syntax tree as needed from some external storage,
1161   /// e.g., a precompiled header.
1162   void setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source);
1163 
1164   /// Retrieve a pointer to the external AST source associated
1165   /// with this AST context, if any.
1166   ExternalASTSource *getExternalSource() const {
1167     return ExternalSource.get();
1168   }
1169 
1170   /// Attach an AST mutation listener to the AST context.
1171   ///
1172   /// The AST mutation listener provides the ability to track modifications to
1173   /// the abstract syntax tree entities committed after they were initially
1174   /// created.
1175   void setASTMutationListener(ASTMutationListener *Listener) {
1176     this->Listener = Listener;
1177   }
1178 
1179   /// Retrieve a pointer to the AST mutation listener associated
1180   /// with this AST context, if any.
1181   ASTMutationListener *getASTMutationListener() const { return Listener; }
1182 
1183   void PrintStats() const;
1184   const SmallVectorImpl<Type *>& getTypes() const { return Types; }
1185 
1186   BuiltinTemplateDecl *buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1187                                                 const IdentifierInfo *II) const;
1188 
1189   /// Create a new implicit TU-level CXXRecordDecl or RecordDecl
1190   /// declaration.
1191   RecordDecl *buildImplicitRecord(StringRef Name,
1192                                   RecordDecl::TagKind TK = TTK_Struct) const;
1193 
1194   /// Create a new implicit TU-level typedef declaration.
1195   TypedefDecl *buildImplicitTypedef(QualType T, StringRef Name) const;
1196 
1197   /// Retrieve the declaration for the 128-bit signed integer type.
1198   TypedefDecl *getInt128Decl() const;
1199 
1200   /// Retrieve the declaration for the 128-bit unsigned integer type.
1201   TypedefDecl *getUInt128Decl() const;
1202 
1203   //===--------------------------------------------------------------------===//
1204   //                           Type Constructors
1205   //===--------------------------------------------------------------------===//
1206 
1207 private:
1208   /// Return a type with extended qualifiers.
1209   QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
1210 
1211   QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
1212 
1213   QualType getPipeType(QualType T, bool ReadOnly) const;
1214 
1215 public:
1216   /// Return the uniqued reference to the type for an address space
1217   /// qualified type with the specified type and address space.
1218   ///
1219   /// The resulting type has a union of the qualifiers from T and the address
1220   /// space. If T already has an address space specifier, it is silently
1221   /// replaced.
1222   QualType getAddrSpaceQualType(QualType T, LangAS AddressSpace) const;
1223 
1224   /// Remove any existing address space on the type and returns the type
1225   /// with qualifiers intact (or that's the idea anyway)
1226   ///
1227   /// The return type should be T with all prior qualifiers minus the address
1228   /// space.
1229   QualType removeAddrSpaceQualType(QualType T) const;
1230 
1231   /// Apply Objective-C protocol qualifiers to the given type.
1232   /// \param allowOnPointerType specifies if we can apply protocol
1233   /// qualifiers on ObjCObjectPointerType. It can be set to true when
1234   /// constructing the canonical type of a Objective-C type parameter.
1235   QualType applyObjCProtocolQualifiers(QualType type,
1236       ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
1237       bool allowOnPointerType = false) const;
1238 
1239   /// Return the uniqued reference to the type for an Objective-C
1240   /// gc-qualified type.
1241   ///
1242   /// The resulting type has a union of the qualifiers from T and the gc
1243   /// attribute.
1244   QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
1245 
1246   /// Remove the existing address space on the type if it is a pointer size
1247   /// address space and return the type with qualifiers intact.
1248   QualType removePtrSizeAddrSpace(QualType T) const;
1249 
1250   /// Return the uniqued reference to the type for a \c restrict
1251   /// qualified type.
1252   ///
1253   /// The resulting type has a union of the qualifiers from \p T and
1254   /// \c restrict.
1255   QualType getRestrictType(QualType T) const {
1256     return T.withFastQualifiers(Qualifiers::Restrict);
1257   }
1258 
1259   /// Return the uniqued reference to the type for a \c volatile
1260   /// qualified type.
1261   ///
1262   /// The resulting type has a union of the qualifiers from \p T and
1263   /// \c volatile.
1264   QualType getVolatileType(QualType T) const {
1265     return T.withFastQualifiers(Qualifiers::Volatile);
1266   }
1267 
1268   /// Return the uniqued reference to the type for a \c const
1269   /// qualified type.
1270   ///
1271   /// The resulting type has a union of the qualifiers from \p T and \c const.
1272   ///
1273   /// It can be reasonably expected that this will always be equivalent to
1274   /// calling T.withConst().
1275   QualType getConstType(QualType T) const { return T.withConst(); }
1276 
1277   /// Change the ExtInfo on a function type.
1278   const FunctionType *adjustFunctionType(const FunctionType *Fn,
1279                                          FunctionType::ExtInfo EInfo);
1280 
1281   /// Adjust the given function result type.
1282   CanQualType getCanonicalFunctionResultType(QualType ResultType) const;
1283 
1284   /// Change the result type of a function type once it is deduced.
1285   void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType);
1286 
1287   /// Get a function type and produce the equivalent function type with the
1288   /// specified exception specification. Type sugar that can be present on a
1289   /// declaration of a function with an exception specification is permitted
1290   /// and preserved. Other type sugar (for instance, typedefs) is not.
1291   QualType getFunctionTypeWithExceptionSpec(
1292       QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) const;
1293 
1294   /// Determine whether two function types are the same, ignoring
1295   /// exception specifications in cases where they're part of the type.
1296   bool hasSameFunctionTypeIgnoringExceptionSpec(QualType T, QualType U) const;
1297 
1298   /// Change the exception specification on a function once it is
1299   /// delay-parsed, instantiated, or computed.
1300   void adjustExceptionSpec(FunctionDecl *FD,
1301                            const FunctionProtoType::ExceptionSpecInfo &ESI,
1302                            bool AsWritten = false);
1303 
1304   /// Get a function type and produce the equivalent function type where
1305   /// pointer size address spaces in the return type and parameter tyeps are
1306   /// replaced with the default address space.
1307   QualType getFunctionTypeWithoutPtrSizes(QualType T);
1308 
1309   /// Determine whether two function types are the same, ignoring pointer sizes
1310   /// in the return type and parameter types.
1311   bool hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U);
1312 
1313   /// Return the uniqued reference to the type for a complex
1314   /// number with the specified element type.
1315   QualType getComplexType(QualType T) const;
1316   CanQualType getComplexType(CanQualType T) const {
1317     return CanQualType::CreateUnsafe(getComplexType((QualType) T));
1318   }
1319 
1320   /// Return the uniqued reference to the type for a pointer to
1321   /// the specified type.
1322   QualType getPointerType(QualType T) const;
1323   CanQualType getPointerType(CanQualType T) const {
1324     return CanQualType::CreateUnsafe(getPointerType((QualType) T));
1325   }
1326 
1327   /// Return the uniqued reference to a type adjusted from the original
1328   /// type to a new type.
1329   QualType getAdjustedType(QualType Orig, QualType New) const;
1330   CanQualType getAdjustedType(CanQualType Orig, CanQualType New) const {
1331     return CanQualType::CreateUnsafe(
1332         getAdjustedType((QualType)Orig, (QualType)New));
1333   }
1334 
1335   /// Return the uniqued reference to the decayed version of the given
1336   /// type.  Can only be called on array and function types which decay to
1337   /// pointer types.
1338   QualType getDecayedType(QualType T) const;
1339   CanQualType getDecayedType(CanQualType T) const {
1340     return CanQualType::CreateUnsafe(getDecayedType((QualType) T));
1341   }
1342   /// Return the uniqued reference to a specified decay from the original
1343   /// type to the decayed type.
1344   QualType getDecayedType(QualType Orig, QualType Decayed) const;
1345 
1346   /// Return the uniqued reference to the atomic type for the specified
1347   /// type.
1348   QualType getAtomicType(QualType T) const;
1349 
1350   /// Return the uniqued reference to the type for a block of the
1351   /// specified type.
1352   QualType getBlockPointerType(QualType T) const;
1353 
1354   /// Gets the struct used to keep track of the descriptor for pointer to
1355   /// blocks.
1356   QualType getBlockDescriptorType() const;
1357 
1358   /// Return a read_only pipe type for the specified type.
1359   QualType getReadPipeType(QualType T) const;
1360 
1361   /// Return a write_only pipe type for the specified type.
1362   QualType getWritePipeType(QualType T) const;
1363 
1364   /// Return a bit-precise integer type with the specified signedness and bit
1365   /// count.
1366   QualType getBitIntType(bool Unsigned, unsigned NumBits) const;
1367 
1368   /// Return a dependent bit-precise integer type with the specified signedness
1369   /// and bit count.
1370   QualType getDependentBitIntType(bool Unsigned, Expr *BitsExpr) const;
1371 
1372   /// Gets the struct used to keep track of the extended descriptor for
1373   /// pointer to blocks.
1374   QualType getBlockDescriptorExtendedType() const;
1375 
1376   /// Map an AST Type to an OpenCLTypeKind enum value.
1377   OpenCLTypeKind getOpenCLTypeKind(const Type *T) const;
1378 
1379   /// Get address space for OpenCL type.
1380   LangAS getOpenCLTypeAddrSpace(const Type *T) const;
1381 
1382   /// Returns default address space based on OpenCL version and enabled features
1383   inline LangAS getDefaultOpenCLPointeeAddrSpace() {
1384     return LangOpts.OpenCLGenericAddressSpace ? LangAS::opencl_generic
1385                                               : LangAS::opencl_private;
1386   }
1387 
1388   void setcudaConfigureCallDecl(FunctionDecl *FD) {
1389     cudaConfigureCallDecl = FD;
1390   }
1391 
1392   FunctionDecl *getcudaConfigureCallDecl() {
1393     return cudaConfigureCallDecl;
1394   }
1395 
1396   /// Returns true iff we need copy/dispose helpers for the given type.
1397   bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
1398 
1399   /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout
1400   /// is set to false in this case. If HasByrefExtendedLayout returns true,
1401   /// byref variable has extended lifetime.
1402   bool getByrefLifetime(QualType Ty,
1403                         Qualifiers::ObjCLifetime &Lifetime,
1404                         bool &HasByrefExtendedLayout) const;
1405 
1406   /// Return the uniqued reference to the type for an lvalue reference
1407   /// to the specified type.
1408   QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
1409     const;
1410 
1411   /// Return the uniqued reference to the type for an rvalue reference
1412   /// to the specified type.
1413   QualType getRValueReferenceType(QualType T) const;
1414 
1415   /// Return the uniqued reference to the type for a member pointer to
1416   /// the specified type in the specified class.
1417   ///
1418   /// The class \p Cls is a \c Type because it could be a dependent name.
1419   QualType getMemberPointerType(QualType T, const Type *Cls) const;
1420 
1421   /// Return a non-unique reference to the type for a variable array of
1422   /// the specified element type.
1423   QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
1424                                 ArrayType::ArraySizeModifier ASM,
1425                                 unsigned IndexTypeQuals,
1426                                 SourceRange Brackets) const;
1427 
1428   /// Return a non-unique reference to the type for a dependently-sized
1429   /// array of the specified element type.
1430   ///
1431   /// FIXME: We will need these to be uniqued, or at least comparable, at some
1432   /// point.
1433   QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
1434                                       ArrayType::ArraySizeModifier ASM,
1435                                       unsigned IndexTypeQuals,
1436                                       SourceRange Brackets) const;
1437 
1438   /// Return a unique reference to the type for an incomplete array of
1439   /// the specified element type.
1440   QualType getIncompleteArrayType(QualType EltTy,
1441                                   ArrayType::ArraySizeModifier ASM,
1442                                   unsigned IndexTypeQuals) const;
1443 
1444   /// Return the unique reference to the type for a constant array of
1445   /// the specified element type.
1446   QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
1447                                 const Expr *SizeExpr,
1448                                 ArrayType::ArraySizeModifier ASM,
1449                                 unsigned IndexTypeQuals) const;
1450 
1451   /// Return a type for a constant array for a string literal of the
1452   /// specified element type and length.
1453   QualType getStringLiteralArrayType(QualType EltTy, unsigned Length) const;
1454 
1455   /// Returns a vla type where known sizes are replaced with [*].
1456   QualType getVariableArrayDecayedType(QualType Ty) const;
1457 
1458   // Convenience struct to return information about a builtin vector type.
1459   struct BuiltinVectorTypeInfo {
1460     QualType ElementType;
1461     llvm::ElementCount EC;
1462     unsigned NumVectors;
1463     BuiltinVectorTypeInfo(QualType ElementType, llvm::ElementCount EC,
1464                           unsigned NumVectors)
1465         : ElementType(ElementType), EC(EC), NumVectors(NumVectors) {}
1466   };
1467 
1468   /// Returns the element type, element count and number of vectors
1469   /// (in case of tuple) for a builtin vector type.
1470   BuiltinVectorTypeInfo
1471   getBuiltinVectorTypeInfo(const BuiltinType *VecTy) const;
1472 
1473   /// Return the unique reference to a scalable vector type of the specified
1474   /// element type and scalable number of elements.
1475   /// For RISC-V, number of fields is also provided when it fetching for
1476   /// tuple type.
1477   ///
1478   /// \pre \p EltTy must be a built-in type.
1479   QualType getScalableVectorType(QualType EltTy, unsigned NumElts,
1480                                  unsigned NumFields = 1) const;
1481 
1482   /// Return a WebAssembly externref type.
1483   QualType getWebAssemblyExternrefType() const;
1484 
1485   /// Return the unique reference to a vector type of the specified
1486   /// element type and size.
1487   ///
1488   /// \pre \p VectorType must be a built-in type.
1489   QualType getVectorType(QualType VectorType, unsigned NumElts,
1490                          VectorType::VectorKind VecKind) const;
1491   /// Return the unique reference to the type for a dependently sized vector of
1492   /// the specified element type.
1493   QualType getDependentVectorType(QualType VectorType, Expr *SizeExpr,
1494                                   SourceLocation AttrLoc,
1495                                   VectorType::VectorKind VecKind) const;
1496 
1497   /// Return the unique reference to an extended vector type
1498   /// of the specified element type and size.
1499   ///
1500   /// \pre \p VectorType must be a built-in type.
1501   QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
1502 
1503   /// \pre Return a non-unique reference to the type for a dependently-sized
1504   /// vector of the specified element type.
1505   ///
1506   /// FIXME: We will need these to be uniqued, or at least comparable, at some
1507   /// point.
1508   QualType getDependentSizedExtVectorType(QualType VectorType,
1509                                           Expr *SizeExpr,
1510                                           SourceLocation AttrLoc) const;
1511 
1512   /// Return the unique reference to the matrix type of the specified element
1513   /// type and size
1514   ///
1515   /// \pre \p ElementType must be a valid matrix element type (see
1516   /// MatrixType::isValidElementType).
1517   QualType getConstantMatrixType(QualType ElementType, unsigned NumRows,
1518                                  unsigned NumColumns) const;
1519 
1520   /// Return the unique reference to the matrix type of the specified element
1521   /// type and size
1522   QualType getDependentSizedMatrixType(QualType ElementType, Expr *RowExpr,
1523                                        Expr *ColumnExpr,
1524                                        SourceLocation AttrLoc) const;
1525 
1526   QualType getDependentAddressSpaceType(QualType PointeeType,
1527                                         Expr *AddrSpaceExpr,
1528                                         SourceLocation AttrLoc) const;
1529 
1530   /// Return a K&R style C function type like 'int()'.
1531   QualType getFunctionNoProtoType(QualType ResultTy,
1532                                   const FunctionType::ExtInfo &Info) const;
1533 
1534   QualType getFunctionNoProtoType(QualType ResultTy) const {
1535     return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
1536   }
1537 
1538   /// Return a normal function type with a typed argument list.
1539   QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
1540                            const FunctionProtoType::ExtProtoInfo &EPI) const {
1541     return getFunctionTypeInternal(ResultTy, Args, EPI, false);
1542   }
1543 
1544   QualType adjustStringLiteralBaseType(QualType StrLTy) const;
1545 
1546 private:
1547   /// Return a normal function type with a typed argument list.
1548   QualType getFunctionTypeInternal(QualType ResultTy, ArrayRef<QualType> Args,
1549                                    const FunctionProtoType::ExtProtoInfo &EPI,
1550                                    bool OnlyWantCanonical) const;
1551   QualType
1552   getAutoTypeInternal(QualType DeducedType, AutoTypeKeyword Keyword,
1553                       bool IsDependent, bool IsPack = false,
1554                       ConceptDecl *TypeConstraintConcept = nullptr,
1555                       ArrayRef<TemplateArgument> TypeConstraintArgs = {},
1556                       bool IsCanon = false) const;
1557 
1558 public:
1559   /// Return the unique reference to the type for the specified type
1560   /// declaration.
1561   QualType getTypeDeclType(const TypeDecl *Decl,
1562                            const TypeDecl *PrevDecl = nullptr) const {
1563     assert(Decl && "Passed null for Decl param");
1564     if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1565 
1566     if (PrevDecl) {
1567       assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
1568       Decl->TypeForDecl = PrevDecl->TypeForDecl;
1569       return QualType(PrevDecl->TypeForDecl, 0);
1570     }
1571 
1572     return getTypeDeclTypeSlow(Decl);
1573   }
1574 
1575   QualType getUsingType(const UsingShadowDecl *Found,
1576                         QualType Underlying) const;
1577 
1578   /// Return the unique reference to the type for the specified
1579   /// typedef-name decl.
1580   QualType getTypedefType(const TypedefNameDecl *Decl,
1581                           QualType Underlying = QualType()) const;
1582 
1583   QualType getRecordType(const RecordDecl *Decl) const;
1584 
1585   QualType getEnumType(const EnumDecl *Decl) const;
1586 
1587   QualType
1588   getUnresolvedUsingType(const UnresolvedUsingTypenameDecl *Decl) const;
1589 
1590   QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
1591 
1592   QualType getAttributedType(attr::Kind attrKind, QualType modifiedType,
1593                              QualType equivalentType) const;
1594 
1595   QualType getBTFTagAttributedType(const BTFTypeTagAttr *BTFAttr,
1596                                    QualType Wrapped);
1597 
1598   QualType
1599   getSubstTemplateTypeParmType(QualType Replacement, Decl *AssociatedDecl,
1600                                unsigned Index,
1601                                std::optional<unsigned> PackIndex) const;
1602   QualType getSubstTemplateTypeParmPackType(Decl *AssociatedDecl,
1603                                             unsigned Index, bool Final,
1604                                             const TemplateArgument &ArgPack);
1605 
1606   QualType
1607   getTemplateTypeParmType(unsigned Depth, unsigned Index,
1608                           bool ParameterPack,
1609                           TemplateTypeParmDecl *ParmDecl = nullptr) const;
1610 
1611   QualType getTemplateSpecializationType(TemplateName T,
1612                                          ArrayRef<TemplateArgument> Args,
1613                                          QualType Canon = QualType()) const;
1614 
1615   QualType
1616   getCanonicalTemplateSpecializationType(TemplateName T,
1617                                          ArrayRef<TemplateArgument> Args) const;
1618 
1619   QualType getTemplateSpecializationType(TemplateName T,
1620                                          ArrayRef<TemplateArgumentLoc> Args,
1621                                          QualType Canon = QualType()) const;
1622 
1623   TypeSourceInfo *
1624   getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
1625                                     const TemplateArgumentListInfo &Args,
1626                                     QualType Canon = QualType()) const;
1627 
1628   QualType getParenType(QualType NamedType) const;
1629 
1630   QualType getMacroQualifiedType(QualType UnderlyingTy,
1631                                  const IdentifierInfo *MacroII) const;
1632 
1633   QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
1634                              NestedNameSpecifier *NNS, QualType NamedType,
1635                              TagDecl *OwnedTagDecl = nullptr) const;
1636   QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
1637                                 NestedNameSpecifier *NNS,
1638                                 const IdentifierInfo *Name,
1639                                 QualType Canon = QualType()) const;
1640 
1641   QualType getDependentTemplateSpecializationType(
1642       ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
1643       const IdentifierInfo *Name, ArrayRef<TemplateArgumentLoc> Args) const;
1644   QualType getDependentTemplateSpecializationType(
1645       ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
1646       const IdentifierInfo *Name, ArrayRef<TemplateArgument> Args) const;
1647 
1648   TemplateArgument getInjectedTemplateArg(NamedDecl *ParamDecl);
1649 
1650   /// Get a template argument list with one argument per template parameter
1651   /// in a template parameter list, such as for the injected class name of
1652   /// a class template.
1653   void getInjectedTemplateArgs(const TemplateParameterList *Params,
1654                                SmallVectorImpl<TemplateArgument> &Args);
1655 
1656   /// Form a pack expansion type with the given pattern.
1657   /// \param NumExpansions The number of expansions for the pack, if known.
1658   /// \param ExpectPackInType If \c false, we should not expect \p Pattern to
1659   ///        contain an unexpanded pack. This only makes sense if the pack
1660   ///        expansion is used in a context where the arity is inferred from
1661   ///        elsewhere, such as if the pattern contains a placeholder type or
1662   ///        if this is the canonical type of another pack expansion type.
1663   QualType getPackExpansionType(QualType Pattern,
1664                                 std::optional<unsigned> NumExpansions,
1665                                 bool ExpectPackInType = true);
1666 
1667   QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1668                                 ObjCInterfaceDecl *PrevDecl = nullptr) const;
1669 
1670   /// Legacy interface: cannot provide type arguments or __kindof.
1671   QualType getObjCObjectType(QualType Base,
1672                              ObjCProtocolDecl * const *Protocols,
1673                              unsigned NumProtocols) const;
1674 
1675   QualType getObjCObjectType(QualType Base,
1676                              ArrayRef<QualType> typeArgs,
1677                              ArrayRef<ObjCProtocolDecl *> protocols,
1678                              bool isKindOf) const;
1679 
1680   QualType getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
1681                                 ArrayRef<ObjCProtocolDecl *> protocols) const;
1682   void adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig,
1683                                     ObjCTypeParamDecl *New) const;
1684 
1685   bool ObjCObjectAdoptsQTypeProtocols(QualType QT, ObjCInterfaceDecl *Decl);
1686 
1687   /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
1688   /// QT's qualified-id protocol list adopt all protocols in IDecl's list
1689   /// of protocols.
1690   bool QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
1691                                             ObjCInterfaceDecl *IDecl);
1692 
1693   /// Return a ObjCObjectPointerType type for the given ObjCObjectType.
1694   QualType getObjCObjectPointerType(QualType OIT) const;
1695 
1696   /// C2x feature and GCC extension.
1697   QualType getTypeOfExprType(Expr *E, TypeOfKind Kind) const;
1698   QualType getTypeOfType(QualType QT, TypeOfKind Kind) const;
1699 
1700   QualType getReferenceQualifiedType(const Expr *e) const;
1701 
1702   /// C++11 decltype.
1703   QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
1704 
1705   /// Unary type transforms
1706   QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
1707                                  UnaryTransformType::UTTKind UKind) const;
1708 
1709   /// C++11 deduced auto type.
1710   QualType getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
1711                        bool IsDependent, bool IsPack = false,
1712                        ConceptDecl *TypeConstraintConcept = nullptr,
1713                        ArrayRef<TemplateArgument> TypeConstraintArgs ={}) const;
1714 
1715   /// C++11 deduction pattern for 'auto' type.
1716   QualType getAutoDeductType() const;
1717 
1718   /// C++11 deduction pattern for 'auto &&' type.
1719   QualType getAutoRRefDeductType() const;
1720 
1721   /// Remove any type constraints from a template parameter type, for
1722   /// equivalence comparison of template parameters.
1723   QualType getUnconstrainedType(QualType T) const;
1724 
1725   /// C++17 deduced class template specialization type.
1726   QualType getDeducedTemplateSpecializationType(TemplateName Template,
1727                                                 QualType DeducedType,
1728                                                 bool IsDependent) const;
1729 
1730   /// Return the unique reference to the type for the specified TagDecl
1731   /// (struct/union/class/enum) decl.
1732   QualType getTagDeclType(const TagDecl *Decl) const;
1733 
1734   /// Return the unique type for "size_t" (C99 7.17), defined in
1735   /// <stddef.h>.
1736   ///
1737   /// The sizeof operator requires this (C99 6.5.3.4p4).
1738   CanQualType getSizeType() const;
1739 
1740   /// Return the unique signed counterpart of
1741   /// the integer type corresponding to size_t.
1742   CanQualType getSignedSizeType() const;
1743 
1744   /// Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
1745   /// <stdint.h>.
1746   CanQualType getIntMaxType() const;
1747 
1748   /// Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
1749   /// <stdint.h>.
1750   CanQualType getUIntMaxType() const;
1751 
1752   /// Return the unique wchar_t type available in C++ (and available as
1753   /// __wchar_t as a Microsoft extension).
1754   QualType getWCharType() const { return WCharTy; }
1755 
1756   /// Return the type of wide characters. In C++, this returns the
1757   /// unique wchar_t type. In C99, this returns a type compatible with the type
1758   /// defined in <stddef.h> as defined by the target.
1759   QualType getWideCharType() const { return WideCharTy; }
1760 
1761   /// Return the type of "signed wchar_t".
1762   ///
1763   /// Used when in C++, as a GCC extension.
1764   QualType getSignedWCharType() const;
1765 
1766   /// Return the type of "unsigned wchar_t".
1767   ///
1768   /// Used when in C++, as a GCC extension.
1769   QualType getUnsignedWCharType() const;
1770 
1771   /// In C99, this returns a type compatible with the type
1772   /// defined in <stddef.h> as defined by the target.
1773   QualType getWIntType() const { return WIntTy; }
1774 
1775   /// Return a type compatible with "intptr_t" (C99 7.18.1.4),
1776   /// as defined by the target.
1777   QualType getIntPtrType() const;
1778 
1779   /// Return a type compatible with "uintptr_t" (C99 7.18.1.4),
1780   /// as defined by the target.
1781   QualType getUIntPtrType() const;
1782 
1783   /// Return the unique type for "ptrdiff_t" (C99 7.17) defined in
1784   /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1785   QualType getPointerDiffType() const;
1786 
1787   /// Return the unique unsigned counterpart of "ptrdiff_t"
1788   /// integer type. The standard (C11 7.21.6.1p7) refers to this type
1789   /// in the definition of %tu format specifier.
1790   QualType getUnsignedPointerDiffType() const;
1791 
1792   /// Return the unique type for "pid_t" defined in
1793   /// <sys/types.h>. We need this to compute the correct type for vfork().
1794   QualType getProcessIDType() const;
1795 
1796   /// Return the C structure type used to represent constant CFStrings.
1797   QualType getCFConstantStringType() const;
1798 
1799   /// Returns the C struct type for objc_super
1800   QualType getObjCSuperType() const;
1801   void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
1802 
1803   /// Get the structure type used to representation CFStrings, or NULL
1804   /// if it hasn't yet been built.
1805   QualType getRawCFConstantStringType() const {
1806     if (CFConstantStringTypeDecl)
1807       return getTypedefType(CFConstantStringTypeDecl);
1808     return QualType();
1809   }
1810   void setCFConstantStringType(QualType T);
1811   TypedefDecl *getCFConstantStringDecl() const;
1812   RecordDecl *getCFConstantStringTagDecl() const;
1813 
1814   // This setter/getter represents the ObjC type for an NSConstantString.
1815   void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
1816   QualType getObjCConstantStringInterface() const {
1817     return ObjCConstantStringType;
1818   }
1819 
1820   QualType getObjCNSStringType() const {
1821     return ObjCNSStringType;
1822   }
1823 
1824   void setObjCNSStringType(QualType T) {
1825     ObjCNSStringType = T;
1826   }
1827 
1828   /// Retrieve the type that \c id has been defined to, which may be
1829   /// different from the built-in \c id if \c id has been typedef'd.
1830   QualType getObjCIdRedefinitionType() const {
1831     if (ObjCIdRedefinitionType.isNull())
1832       return getObjCIdType();
1833     return ObjCIdRedefinitionType;
1834   }
1835 
1836   /// Set the user-written type that redefines \c id.
1837   void setObjCIdRedefinitionType(QualType RedefType) {
1838     ObjCIdRedefinitionType = RedefType;
1839   }
1840 
1841   /// Retrieve the type that \c Class has been defined to, which may be
1842   /// different from the built-in \c Class if \c Class has been typedef'd.
1843   QualType getObjCClassRedefinitionType() const {
1844     if (ObjCClassRedefinitionType.isNull())
1845       return getObjCClassType();
1846     return ObjCClassRedefinitionType;
1847   }
1848 
1849   /// Set the user-written type that redefines 'SEL'.
1850   void setObjCClassRedefinitionType(QualType RedefType) {
1851     ObjCClassRedefinitionType = RedefType;
1852   }
1853 
1854   /// Retrieve the type that 'SEL' has been defined to, which may be
1855   /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
1856   QualType getObjCSelRedefinitionType() const {
1857     if (ObjCSelRedefinitionType.isNull())
1858       return getObjCSelType();
1859     return ObjCSelRedefinitionType;
1860   }
1861 
1862   /// Set the user-written type that redefines 'SEL'.
1863   void setObjCSelRedefinitionType(QualType RedefType) {
1864     ObjCSelRedefinitionType = RedefType;
1865   }
1866 
1867   /// Retrieve the identifier 'NSObject'.
1868   IdentifierInfo *getNSObjectName() const {
1869     if (!NSObjectName) {
1870       NSObjectName = &Idents.get("NSObject");
1871     }
1872 
1873     return NSObjectName;
1874   }
1875 
1876   /// Retrieve the identifier 'NSCopying'.
1877   IdentifierInfo *getNSCopyingName() {
1878     if (!NSCopyingName) {
1879       NSCopyingName = &Idents.get("NSCopying");
1880     }
1881 
1882     return NSCopyingName;
1883   }
1884 
1885   CanQualType getNSUIntegerType() const;
1886 
1887   CanQualType getNSIntegerType() const;
1888 
1889   /// Retrieve the identifier 'bool'.
1890   IdentifierInfo *getBoolName() const {
1891     if (!BoolName)
1892       BoolName = &Idents.get("bool");
1893     return BoolName;
1894   }
1895 
1896   IdentifierInfo *getMakeIntegerSeqName() const {
1897     if (!MakeIntegerSeqName)
1898       MakeIntegerSeqName = &Idents.get("__make_integer_seq");
1899     return MakeIntegerSeqName;
1900   }
1901 
1902   IdentifierInfo *getTypePackElementName() const {
1903     if (!TypePackElementName)
1904       TypePackElementName = &Idents.get("__type_pack_element");
1905     return TypePackElementName;
1906   }
1907 
1908   /// Retrieve the Objective-C "instancetype" type, if already known;
1909   /// otherwise, returns a NULL type;
1910   QualType getObjCInstanceType() {
1911     return getTypeDeclType(getObjCInstanceTypeDecl());
1912   }
1913 
1914   /// Retrieve the typedef declaration corresponding to the Objective-C
1915   /// "instancetype" type.
1916   TypedefDecl *getObjCInstanceTypeDecl();
1917 
1918   /// Set the type for the C FILE type.
1919   void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1920 
1921   /// Retrieve the C FILE type.
1922   QualType getFILEType() const {
1923     if (FILEDecl)
1924       return getTypeDeclType(FILEDecl);
1925     return QualType();
1926   }
1927 
1928   /// Set the type for the C jmp_buf type.
1929   void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1930     this->jmp_bufDecl = jmp_bufDecl;
1931   }
1932 
1933   /// Retrieve the C jmp_buf type.
1934   QualType getjmp_bufType() const {
1935     if (jmp_bufDecl)
1936       return getTypeDeclType(jmp_bufDecl);
1937     return QualType();
1938   }
1939 
1940   /// Set the type for the C sigjmp_buf type.
1941   void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1942     this->sigjmp_bufDecl = sigjmp_bufDecl;
1943   }
1944 
1945   /// Retrieve the C sigjmp_buf type.
1946   QualType getsigjmp_bufType() const {
1947     if (sigjmp_bufDecl)
1948       return getTypeDeclType(sigjmp_bufDecl);
1949     return QualType();
1950   }
1951 
1952   /// Set the type for the C ucontext_t type.
1953   void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1954     this->ucontext_tDecl = ucontext_tDecl;
1955   }
1956 
1957   /// Retrieve the C ucontext_t type.
1958   QualType getucontext_tType() const {
1959     if (ucontext_tDecl)
1960       return getTypeDeclType(ucontext_tDecl);
1961     return QualType();
1962   }
1963 
1964   /// The result type of logical operations, '<', '>', '!=', etc.
1965   QualType getLogicalOperationType() const {
1966     return getLangOpts().CPlusPlus ? BoolTy : IntTy;
1967   }
1968 
1969   /// Emit the Objective-CC type encoding for the given type \p T into
1970   /// \p S.
1971   ///
1972   /// If \p Field is specified then record field names are also encoded.
1973   void getObjCEncodingForType(QualType T, std::string &S,
1974                               const FieldDecl *Field=nullptr,
1975                               QualType *NotEncodedT=nullptr) const;
1976 
1977   /// Emit the Objective-C property type encoding for the given
1978   /// type \p T into \p S.
1979   void getObjCEncodingForPropertyType(QualType T, std::string &S) const;
1980 
1981   void getLegacyIntegralTypeEncoding(QualType &t) const;
1982 
1983   /// Put the string version of the type qualifiers \p QT into \p S.
1984   void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1985                                        std::string &S) const;
1986 
1987   /// Emit the encoded type for the function \p Decl into \p S.
1988   ///
1989   /// This is in the same format as Objective-C method encodings.
1990   ///
1991   /// \returns true if an error occurred (e.g., because one of the parameter
1992   /// types is incomplete), false otherwise.
1993   std::string getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const;
1994 
1995   /// Emit the encoded type for the method declaration \p Decl into
1996   /// \p S.
1997   std::string getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
1998                                            bool Extended = false) const;
1999 
2000   /// Return the encoded type for this block declaration.
2001   std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
2002 
2003   /// getObjCEncodingForPropertyDecl - Return the encoded type for
2004   /// this method declaration. If non-NULL, Container must be either
2005   /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
2006   /// only be NULL when getting encodings for protocol properties.
2007   std::string getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
2008                                              const Decl *Container) const;
2009 
2010   bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
2011                                       ObjCProtocolDecl *rProto) const;
2012 
2013   ObjCPropertyImplDecl *getObjCPropertyImplDeclForPropertyDecl(
2014                                                   const ObjCPropertyDecl *PD,
2015                                                   const Decl *Container) const;
2016 
2017   /// Return the size of type \p T for Objective-C encoding purpose,
2018   /// in characters.
2019   CharUnits getObjCEncodingTypeSize(QualType T) const;
2020 
2021   /// Retrieve the typedef corresponding to the predefined \c id type
2022   /// in Objective-C.
2023   TypedefDecl *getObjCIdDecl() const;
2024 
2025   /// Represents the Objective-CC \c id type.
2026   ///
2027   /// This is set up lazily, by Sema.  \c id is always a (typedef for a)
2028   /// pointer type, a pointer to a struct.
2029   QualType getObjCIdType() const {
2030     return getTypeDeclType(getObjCIdDecl());
2031   }
2032 
2033   /// Retrieve the typedef corresponding to the predefined 'SEL' type
2034   /// in Objective-C.
2035   TypedefDecl *getObjCSelDecl() const;
2036 
2037   /// Retrieve the type that corresponds to the predefined Objective-C
2038   /// 'SEL' type.
2039   QualType getObjCSelType() const {
2040     return getTypeDeclType(getObjCSelDecl());
2041   }
2042 
2043   /// Retrieve the typedef declaration corresponding to the predefined
2044   /// Objective-C 'Class' type.
2045   TypedefDecl *getObjCClassDecl() const;
2046 
2047   /// Represents the Objective-C \c Class type.
2048   ///
2049   /// This is set up lazily, by Sema.  \c Class is always a (typedef for a)
2050   /// pointer type, a pointer to a struct.
2051   QualType getObjCClassType() const {
2052     return getTypeDeclType(getObjCClassDecl());
2053   }
2054 
2055   /// Retrieve the Objective-C class declaration corresponding to
2056   /// the predefined \c Protocol class.
2057   ObjCInterfaceDecl *getObjCProtocolDecl() const;
2058 
2059   /// Retrieve declaration of 'BOOL' typedef
2060   TypedefDecl *getBOOLDecl() const {
2061     return BOOLDecl;
2062   }
2063 
2064   /// Save declaration of 'BOOL' typedef
2065   void setBOOLDecl(TypedefDecl *TD) {
2066     BOOLDecl = TD;
2067   }
2068 
2069   /// type of 'BOOL' type.
2070   QualType getBOOLType() const {
2071     return getTypeDeclType(getBOOLDecl());
2072   }
2073 
2074   /// Retrieve the type of the Objective-C \c Protocol class.
2075   QualType getObjCProtoType() const {
2076     return getObjCInterfaceType(getObjCProtocolDecl());
2077   }
2078 
2079   /// Retrieve the C type declaration corresponding to the predefined
2080   /// \c __builtin_va_list type.
2081   TypedefDecl *getBuiltinVaListDecl() const;
2082 
2083   /// Retrieve the type of the \c __builtin_va_list type.
2084   QualType getBuiltinVaListType() const {
2085     return getTypeDeclType(getBuiltinVaListDecl());
2086   }
2087 
2088   /// Retrieve the C type declaration corresponding to the predefined
2089   /// \c __va_list_tag type used to help define the \c __builtin_va_list type
2090   /// for some targets.
2091   Decl *getVaListTagDecl() const;
2092 
2093   /// Retrieve the C type declaration corresponding to the predefined
2094   /// \c __builtin_ms_va_list type.
2095   TypedefDecl *getBuiltinMSVaListDecl() const;
2096 
2097   /// Retrieve the type of the \c __builtin_ms_va_list type.
2098   QualType getBuiltinMSVaListType() const {
2099     return getTypeDeclType(getBuiltinMSVaListDecl());
2100   }
2101 
2102   /// Retrieve the implicitly-predeclared 'struct _GUID' declaration.
2103   TagDecl *getMSGuidTagDecl() const { return MSGuidTagDecl; }
2104 
2105   /// Retrieve the implicitly-predeclared 'struct _GUID' type.
2106   QualType getMSGuidType() const {
2107     assert(MSGuidTagDecl && "asked for GUID type but MS extensions disabled");
2108     return getTagDeclType(MSGuidTagDecl);
2109   }
2110 
2111   /// Return whether a declaration to a builtin is allowed to be
2112   /// overloaded/redeclared.
2113   bool canBuiltinBeRedeclared(const FunctionDecl *) const;
2114 
2115   /// Return a type with additional \c const, \c volatile, or
2116   /// \c restrict qualifiers.
2117   QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
2118     return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
2119   }
2120 
2121   /// Un-split a SplitQualType.
2122   QualType getQualifiedType(SplitQualType split) const {
2123     return getQualifiedType(split.Ty, split.Quals);
2124   }
2125 
2126   /// Return a type with additional qualifiers.
2127   QualType getQualifiedType(QualType T, Qualifiers Qs) const {
2128     if (!Qs.hasNonFastQualifiers())
2129       return T.withFastQualifiers(Qs.getFastQualifiers());
2130     QualifierCollector Qc(Qs);
2131     const Type *Ptr = Qc.strip(T);
2132     return getExtQualType(Ptr, Qc);
2133   }
2134 
2135   /// Return a type with additional qualifiers.
2136   QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
2137     if (!Qs.hasNonFastQualifiers())
2138       return QualType(T, Qs.getFastQualifiers());
2139     return getExtQualType(T, Qs);
2140   }
2141 
2142   /// Return a type with the given lifetime qualifier.
2143   ///
2144   /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
2145   QualType getLifetimeQualifiedType(QualType type,
2146                                     Qualifiers::ObjCLifetime lifetime) {
2147     assert(type.getObjCLifetime() == Qualifiers::OCL_None);
2148     assert(lifetime != Qualifiers::OCL_None);
2149 
2150     Qualifiers qs;
2151     qs.addObjCLifetime(lifetime);
2152     return getQualifiedType(type, qs);
2153   }
2154 
2155   /// getUnqualifiedObjCPointerType - Returns version of
2156   /// Objective-C pointer type with lifetime qualifier removed.
2157   QualType getUnqualifiedObjCPointerType(QualType type) const {
2158     if (!type.getTypePtr()->isObjCObjectPointerType() ||
2159         !type.getQualifiers().hasObjCLifetime())
2160       return type;
2161     Qualifiers Qs = type.getQualifiers();
2162     Qs.removeObjCLifetime();
2163     return getQualifiedType(type.getUnqualifiedType(), Qs);
2164   }
2165 
2166   unsigned char getFixedPointScale(QualType Ty) const;
2167   unsigned char getFixedPointIBits(QualType Ty) const;
2168   llvm::FixedPointSemantics getFixedPointSemantics(QualType Ty) const;
2169   llvm::APFixedPoint getFixedPointMax(QualType Ty) const;
2170   llvm::APFixedPoint getFixedPointMin(QualType Ty) const;
2171 
2172   DeclarationNameInfo getNameForTemplate(TemplateName Name,
2173                                          SourceLocation NameLoc) const;
2174 
2175   TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
2176                                          UnresolvedSetIterator End) const;
2177   TemplateName getAssumedTemplateName(DeclarationName Name) const;
2178 
2179   TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
2180                                         bool TemplateKeyword,
2181                                         TemplateName Template) const;
2182 
2183   TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
2184                                         const IdentifierInfo *Name) const;
2185   TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
2186                                         OverloadedOperatorKind Operator) const;
2187   TemplateName
2188   getSubstTemplateTemplateParm(TemplateName replacement, Decl *AssociatedDecl,
2189                                unsigned Index,
2190                                std::optional<unsigned> PackIndex) const;
2191   TemplateName getSubstTemplateTemplateParmPack(const TemplateArgument &ArgPack,
2192                                                 Decl *AssociatedDecl,
2193                                                 unsigned Index,
2194                                                 bool Final) const;
2195 
2196   enum GetBuiltinTypeError {
2197     /// No error
2198     GE_None,
2199 
2200     /// Missing a type
2201     GE_Missing_type,
2202 
2203     /// Missing a type from <stdio.h>
2204     GE_Missing_stdio,
2205 
2206     /// Missing a type from <setjmp.h>
2207     GE_Missing_setjmp,
2208 
2209     /// Missing a type from <ucontext.h>
2210     GE_Missing_ucontext
2211   };
2212 
2213   QualType DecodeTypeStr(const char *&Str, const ASTContext &Context,
2214                          ASTContext::GetBuiltinTypeError &Error,
2215                          bool &RequireICE, bool AllowTypeModifiers) const;
2216 
2217   /// Return the type for the specified builtin.
2218   ///
2219   /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
2220   /// arguments to the builtin that are required to be integer constant
2221   /// expressions.
2222   QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
2223                           unsigned *IntegerConstantArgs = nullptr) const;
2224 
2225   /// Types and expressions required to build C++2a three-way comparisons
2226   /// using operator<=>, including the values return by builtin <=> operators.
2227   ComparisonCategories CompCategories;
2228 
2229 private:
2230   CanQualType getFromTargetType(unsigned Type) const;
2231   TypeInfo getTypeInfoImpl(const Type *T) const;
2232 
2233   //===--------------------------------------------------------------------===//
2234   //                         Type Predicates.
2235   //===--------------------------------------------------------------------===//
2236 
2237 public:
2238   /// Return one of the GCNone, Weak or Strong Objective-C garbage
2239   /// collection attributes.
2240   Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
2241 
2242   /// Return true if the given vector types are of the same unqualified
2243   /// type or if they are equivalent to the same GCC vector type.
2244   ///
2245   /// \note This ignores whether they are target-specific (AltiVec or Neon)
2246   /// types.
2247   bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
2248 
2249   /// Return true if the given types are an SVE builtin and a VectorType that
2250   /// is a fixed-length representation of the SVE builtin for a specific
2251   /// vector-length.
2252   bool areCompatibleSveTypes(QualType FirstType, QualType SecondType);
2253 
2254   /// Return true if the given vector types are lax-compatible SVE vector types,
2255   /// false otherwise.
2256   bool areLaxCompatibleSveTypes(QualType FirstType, QualType SecondType);
2257 
2258   /// Return true if the given types are an RISC-V vector builtin type and a
2259   /// VectorType that is a fixed-length representation of the RISC-V vector
2260   /// builtin type for a specific vector-length.
2261   bool areCompatibleRVVTypes(QualType FirstType, QualType SecondType);
2262 
2263   /// Return true if the given vector types are lax-compatible RISC-V vector
2264   /// types as defined by -flax-vector-conversions=, which permits implicit
2265   /// conversions between vectors with different number of elements and/or
2266   /// incompatible element types, false otherwise.
2267   bool areLaxCompatibleRVVTypes(QualType FirstType, QualType SecondType);
2268 
2269   /// Return true if the type has been explicitly qualified with ObjC ownership.
2270   /// A type may be implicitly qualified with ownership under ObjC ARC, and in
2271   /// some cases the compiler treats these differently.
2272   bool hasDirectOwnershipQualifier(QualType Ty) const;
2273 
2274   /// Return true if this is an \c NSObject object with its \c NSObject
2275   /// attribute set.
2276   static bool isObjCNSObjectType(QualType Ty) {
2277     return Ty->isObjCNSObjectType();
2278   }
2279 
2280   //===--------------------------------------------------------------------===//
2281   //                         Type Sizing and Analysis
2282   //===--------------------------------------------------------------------===//
2283 
2284   /// Return the APFloat 'semantics' for the specified scalar floating
2285   /// point type.
2286   const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
2287 
2288   /// Get the size and alignment of the specified complete type in bits.
2289   TypeInfo getTypeInfo(const Type *T) const;
2290   TypeInfo getTypeInfo(QualType T) const { return getTypeInfo(T.getTypePtr()); }
2291 
2292   /// Get default simd alignment of the specified complete type in bits.
2293   unsigned getOpenMPDefaultSimdAlign(QualType T) const;
2294 
2295   /// Return the size of the specified (complete) type \p T, in bits.
2296   uint64_t getTypeSize(QualType T) const { return getTypeInfo(T).Width; }
2297   uint64_t getTypeSize(const Type *T) const { return getTypeInfo(T).Width; }
2298 
2299   /// Return the size of the character type, in bits.
2300   uint64_t getCharWidth() const {
2301     return getTypeSize(CharTy);
2302   }
2303 
2304   /// Convert a size in bits to a size in characters.
2305   CharUnits toCharUnitsFromBits(int64_t BitSize) const;
2306 
2307   /// Convert a size in characters to a size in bits.
2308   int64_t toBits(CharUnits CharSize) const;
2309 
2310   /// Return the size of the specified (complete) type \p T, in
2311   /// characters.
2312   CharUnits getTypeSizeInChars(QualType T) const;
2313   CharUnits getTypeSizeInChars(const Type *T) const;
2314 
2315   std::optional<CharUnits> getTypeSizeInCharsIfKnown(QualType Ty) const {
2316     if (Ty->isIncompleteType() || Ty->isDependentType())
2317       return std::nullopt;
2318     return getTypeSizeInChars(Ty);
2319   }
2320 
2321   std::optional<CharUnits> getTypeSizeInCharsIfKnown(const Type *Ty) const {
2322     return getTypeSizeInCharsIfKnown(QualType(Ty, 0));
2323   }
2324 
2325   /// Return the ABI-specified alignment of a (complete) type \p T, in
2326   /// bits.
2327   unsigned getTypeAlign(QualType T) const { return getTypeInfo(T).Align; }
2328   unsigned getTypeAlign(const Type *T) const { return getTypeInfo(T).Align; }
2329 
2330   /// Return the ABI-specified natural alignment of a (complete) type \p T,
2331   /// before alignment adjustments, in bits.
2332   ///
2333   /// This alignment is curently used only by ARM and AArch64 when passing
2334   /// arguments of a composite type.
2335   unsigned getTypeUnadjustedAlign(QualType T) const {
2336     return getTypeUnadjustedAlign(T.getTypePtr());
2337   }
2338   unsigned getTypeUnadjustedAlign(const Type *T) const;
2339 
2340   /// Return the alignment of a type, in bits, or 0 if
2341   /// the type is incomplete and we cannot determine the alignment (for
2342   /// example, from alignment attributes). The returned alignment is the
2343   /// Preferred alignment if NeedsPreferredAlignment is true, otherwise is the
2344   /// ABI alignment.
2345   unsigned getTypeAlignIfKnown(QualType T,
2346                                bool NeedsPreferredAlignment = false) const;
2347 
2348   /// Return the ABI-specified alignment of a (complete) type \p T, in
2349   /// characters.
2350   CharUnits getTypeAlignInChars(QualType T) const;
2351   CharUnits getTypeAlignInChars(const Type *T) const;
2352 
2353   /// Return the PreferredAlignment of a (complete) type \p T, in
2354   /// characters.
2355   CharUnits getPreferredTypeAlignInChars(QualType T) const {
2356     return toCharUnitsFromBits(getPreferredTypeAlign(T));
2357   }
2358 
2359   /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a type,
2360   /// in characters, before alignment adjustments. This method does not work on
2361   /// incomplete types.
2362   CharUnits getTypeUnadjustedAlignInChars(QualType T) const;
2363   CharUnits getTypeUnadjustedAlignInChars(const Type *T) const;
2364 
2365   // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
2366   // type is a record, its data size is returned.
2367   TypeInfoChars getTypeInfoDataSizeInChars(QualType T) const;
2368 
2369   TypeInfoChars getTypeInfoInChars(const Type *T) const;
2370   TypeInfoChars getTypeInfoInChars(QualType T) const;
2371 
2372   /// Determine if the alignment the type has was required using an
2373   /// alignment attribute.
2374   bool isAlignmentRequired(const Type *T) const;
2375   bool isAlignmentRequired(QualType T) const;
2376 
2377   /// More type predicates useful for type checking/promotion
2378   bool isPromotableIntegerType(QualType T) const; // C99 6.3.1.1p2
2379 
2380   /// Return the "preferred" alignment of the specified type \p T for
2381   /// the current target, in bits.
2382   ///
2383   /// This can be different than the ABI alignment in cases where it is
2384   /// beneficial for performance or backwards compatibility preserving to
2385   /// overalign a data type. (Note: despite the name, the preferred alignment
2386   /// is ABI-impacting, and not an optimization.)
2387   unsigned getPreferredTypeAlign(QualType T) const {
2388     return getPreferredTypeAlign(T.getTypePtr());
2389   }
2390   unsigned getPreferredTypeAlign(const Type *T) const;
2391 
2392   /// Return the default alignment for __attribute__((aligned)) on
2393   /// this target, to be used if no alignment value is specified.
2394   unsigned getTargetDefaultAlignForAttributeAligned() const;
2395 
2396   /// Return the alignment in bits that should be given to a
2397   /// global variable with type \p T.
2398   unsigned getAlignOfGlobalVar(QualType T) const;
2399 
2400   /// Return the alignment in characters that should be given to a
2401   /// global variable with type \p T.
2402   CharUnits getAlignOfGlobalVarInChars(QualType T) const;
2403 
2404   /// Return a conservative estimate of the alignment of the specified
2405   /// decl \p D.
2406   ///
2407   /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
2408   /// alignment.
2409   ///
2410   /// If \p ForAlignof, references are treated like their underlying type
2411   /// and  large arrays don't get any special treatment. If not \p ForAlignof
2412   /// it computes the value expected by CodeGen: references are treated like
2413   /// pointers and large arrays get extra alignment.
2414   CharUnits getDeclAlign(const Decl *D, bool ForAlignof = false) const;
2415 
2416   /// Return the alignment (in bytes) of the thrown exception object. This is
2417   /// only meaningful for targets that allocate C++ exceptions in a system
2418   /// runtime, such as those using the Itanium C++ ABI.
2419   CharUnits getExnObjectAlignment() const;
2420 
2421   /// Get or compute information about the layout of the specified
2422   /// record (struct/union/class) \p D, which indicates its size and field
2423   /// position information.
2424   const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
2425 
2426   /// Get or compute information about the layout of the specified
2427   /// Objective-C interface.
2428   const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
2429     const;
2430 
2431   void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
2432                         bool Simple = false) const;
2433 
2434   /// Get or compute information about the layout of the specified
2435   /// Objective-C implementation.
2436   ///
2437   /// This may differ from the interface if synthesized ivars are present.
2438   const ASTRecordLayout &
2439   getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
2440 
2441   /// Get our current best idea for the key function of the
2442   /// given record decl, or nullptr if there isn't one.
2443   ///
2444   /// The key function is, according to the Itanium C++ ABI section 5.2.3:
2445   ///   ...the first non-pure virtual function that is not inline at the
2446   ///   point of class definition.
2447   ///
2448   /// Other ABIs use the same idea.  However, the ARM C++ ABI ignores
2449   /// virtual functions that are defined 'inline', which means that
2450   /// the result of this computation can change.
2451   const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
2452 
2453   /// Observe that the given method cannot be a key function.
2454   /// Checks the key-function cache for the method's class and clears it
2455   /// if matches the given declaration.
2456   ///
2457   /// This is used in ABIs where out-of-line definitions marked
2458   /// inline are not considered to be key functions.
2459   ///
2460   /// \param method should be the declaration from the class definition
2461   void setNonKeyFunction(const CXXMethodDecl *method);
2462 
2463   /// Loading virtual member pointers using the virtual inheritance model
2464   /// always results in an adjustment using the vbtable even if the index is
2465   /// zero.
2466   ///
2467   /// This is usually OK because the first slot in the vbtable points
2468   /// backwards to the top of the MDC.  However, the MDC might be reusing a
2469   /// vbptr from an nv-base.  In this case, the first slot in the vbtable
2470   /// points to the start of the nv-base which introduced the vbptr and *not*
2471   /// the MDC.  Modify the NonVirtualBaseAdjustment to account for this.
2472   CharUnits getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const;
2473 
2474   /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
2475   uint64_t getFieldOffset(const ValueDecl *FD) const;
2476 
2477   /// Get the offset of an ObjCIvarDecl in bits.
2478   uint64_t lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
2479                                 const ObjCImplementationDecl *ID,
2480                                 const ObjCIvarDecl *Ivar) const;
2481 
2482   /// Find the 'this' offset for the member path in a pointer-to-member
2483   /// APValue.
2484   CharUnits getMemberPointerPathAdjustment(const APValue &MP) const;
2485 
2486   bool isNearlyEmpty(const CXXRecordDecl *RD) const;
2487 
2488   VTableContextBase *getVTableContext();
2489 
2490   /// If \p T is null pointer, assume the target in ASTContext.
2491   MangleContext *createMangleContext(const TargetInfo *T = nullptr);
2492 
2493   /// Creates a device mangle context to correctly mangle lambdas in a mixed
2494   /// architecture compile by setting the lambda mangling number source to the
2495   /// DeviceLambdaManglingNumber. Currently this asserts that the TargetInfo
2496   /// (from the AuxTargetInfo) is a an itanium target.
2497   MangleContext *createDeviceMangleContext(const TargetInfo &T);
2498 
2499   void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
2500                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
2501 
2502   unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
2503   void CollectInheritedProtocols(const Decl *CDecl,
2504                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
2505 
2506   /// Return true if the specified type has unique object representations
2507   /// according to (C++17 [meta.unary.prop]p9)
2508   bool
2509   hasUniqueObjectRepresentations(QualType Ty,
2510                                  bool CheckIfTriviallyCopyable = true) const;
2511 
2512   //===--------------------------------------------------------------------===//
2513   //                            Type Operators
2514   //===--------------------------------------------------------------------===//
2515 
2516   /// Return the canonical (structural) type corresponding to the
2517   /// specified potentially non-canonical type \p T.
2518   ///
2519   /// The non-canonical version of a type may have many "decorated" versions of
2520   /// types.  Decorators can include typedefs, 'typeof' operators, etc. The
2521   /// returned type is guaranteed to be free of any of these, allowing two
2522   /// canonical types to be compared for exact equality with a simple pointer
2523   /// comparison.
2524   CanQualType getCanonicalType(QualType T) const {
2525     return CanQualType::CreateUnsafe(T.getCanonicalType());
2526   }
2527 
2528   const Type *getCanonicalType(const Type *T) const {
2529     return T->getCanonicalTypeInternal().getTypePtr();
2530   }
2531 
2532   /// Return the canonical parameter type corresponding to the specific
2533   /// potentially non-canonical one.
2534   ///
2535   /// Qualifiers are stripped off, functions are turned into function
2536   /// pointers, and arrays decay one level into pointers.
2537   CanQualType getCanonicalParamType(QualType T) const;
2538 
2539   /// Determine whether the given types \p T1 and \p T2 are equivalent.
2540   bool hasSameType(QualType T1, QualType T2) const {
2541     return getCanonicalType(T1) == getCanonicalType(T2);
2542   }
2543   bool hasSameType(const Type *T1, const Type *T2) const {
2544     return getCanonicalType(T1) == getCanonicalType(T2);
2545   }
2546 
2547   /// Determine whether the given expressions \p X and \p Y are equivalent.
2548   bool hasSameExpr(const Expr *X, const Expr *Y) const;
2549 
2550   /// Return this type as a completely-unqualified array type,
2551   /// capturing the qualifiers in \p Quals.
2552   ///
2553   /// This will remove the minimal amount of sugaring from the types, similar
2554   /// to the behavior of QualType::getUnqualifiedType().
2555   ///
2556   /// \param T is the qualified type, which may be an ArrayType
2557   ///
2558   /// \param Quals will receive the full set of qualifiers that were
2559   /// applied to the array.
2560   ///
2561   /// \returns if this is an array type, the completely unqualified array type
2562   /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
2563   QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
2564 
2565   /// Determine whether the given types are equivalent after
2566   /// cvr-qualifiers have been removed.
2567   bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
2568     return getCanonicalType(T1).getTypePtr() ==
2569            getCanonicalType(T2).getTypePtr();
2570   }
2571 
2572   bool hasSameNullabilityTypeQualifier(QualType SubT, QualType SuperT,
2573                                        bool IsParam) const {
2574     auto SubTnullability = SubT->getNullability();
2575     auto SuperTnullability = SuperT->getNullability();
2576     if (SubTnullability.has_value() == SuperTnullability.has_value()) {
2577       // Neither has nullability; return true
2578       if (!SubTnullability)
2579         return true;
2580       // Both have nullability qualifier.
2581       if (*SubTnullability == *SuperTnullability ||
2582           *SubTnullability == NullabilityKind::Unspecified ||
2583           *SuperTnullability == NullabilityKind::Unspecified)
2584         return true;
2585 
2586       if (IsParam) {
2587         // Ok for the superclass method parameter to be "nonnull" and the subclass
2588         // method parameter to be "nullable"
2589         return (*SuperTnullability == NullabilityKind::NonNull &&
2590                 *SubTnullability == NullabilityKind::Nullable);
2591       }
2592       // For the return type, it's okay for the superclass method to specify
2593       // "nullable" and the subclass method specify "nonnull"
2594       return (*SuperTnullability == NullabilityKind::Nullable &&
2595               *SubTnullability == NullabilityKind::NonNull);
2596     }
2597     return true;
2598   }
2599 
2600   bool ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
2601                            const ObjCMethodDecl *MethodImp);
2602 
2603   bool UnwrapSimilarTypes(QualType &T1, QualType &T2,
2604                           bool AllowPiMismatch = true);
2605   void UnwrapSimilarArrayTypes(QualType &T1, QualType &T2,
2606                                bool AllowPiMismatch = true);
2607 
2608   /// Determine if two types are similar, according to the C++ rules. That is,
2609   /// determine if they are the same other than qualifiers on the initial
2610   /// sequence of pointer / pointer-to-member / array (and in Clang, object
2611   /// pointer) types and their element types.
2612   ///
2613   /// Clang offers a number of qualifiers in addition to the C++ qualifiers;
2614   /// those qualifiers are also ignored in the 'similarity' check.
2615   bool hasSimilarType(QualType T1, QualType T2);
2616 
2617   /// Determine if two types are similar, ignoring only CVR qualifiers.
2618   bool hasCvrSimilarType(QualType T1, QualType T2);
2619 
2620   /// Retrieves the "canonical" nested name specifier for a
2621   /// given nested name specifier.
2622   ///
2623   /// The canonical nested name specifier is a nested name specifier
2624   /// that uniquely identifies a type or namespace within the type
2625   /// system. For example, given:
2626   ///
2627   /// \code
2628   /// namespace N {
2629   ///   struct S {
2630   ///     template<typename T> struct X { typename T* type; };
2631   ///   };
2632   /// }
2633   ///
2634   /// template<typename T> struct Y {
2635   ///   typename N::S::X<T>::type member;
2636   /// };
2637   /// \endcode
2638   ///
2639   /// Here, the nested-name-specifier for N::S::X<T>:: will be
2640   /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
2641   /// by declarations in the type system and the canonical type for
2642   /// the template type parameter 'T' is template-param-0-0.
2643   NestedNameSpecifier *
2644   getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
2645 
2646   /// Retrieves the default calling convention for the current target.
2647   CallingConv getDefaultCallingConvention(bool IsVariadic,
2648                                           bool IsCXXMethod,
2649                                           bool IsBuiltin = false) const;
2650 
2651   /// Retrieves the "canonical" template name that refers to a
2652   /// given template.
2653   ///
2654   /// The canonical template name is the simplest expression that can
2655   /// be used to refer to a given template. For most templates, this
2656   /// expression is just the template declaration itself. For example,
2657   /// the template std::vector can be referred to via a variety of
2658   /// names---std::vector, \::std::vector, vector (if vector is in
2659   /// scope), etc.---but all of these names map down to the same
2660   /// TemplateDecl, which is used to form the canonical template name.
2661   ///
2662   /// Dependent template names are more interesting. Here, the
2663   /// template name could be something like T::template apply or
2664   /// std::allocator<T>::template rebind, where the nested name
2665   /// specifier itself is dependent. In this case, the canonical
2666   /// template name uses the shortest form of the dependent
2667   /// nested-name-specifier, which itself contains all canonical
2668   /// types, values, and templates.
2669   TemplateName getCanonicalTemplateName(const TemplateName &Name) const;
2670 
2671   /// Determine whether the given template names refer to the same
2672   /// template.
2673   bool hasSameTemplateName(const TemplateName &X, const TemplateName &Y) const;
2674 
2675   /// Determine whether the two declarations refer to the same entity.
2676   bool isSameEntity(const NamedDecl *X, const NamedDecl *Y) const;
2677 
2678   /// Determine whether two template parameter lists are similar enough
2679   /// that they may be used in declarations of the same template.
2680   bool isSameTemplateParameterList(const TemplateParameterList *X,
2681                                    const TemplateParameterList *Y) const;
2682 
2683   /// Determine whether two template parameters are similar enough
2684   /// that they may be used in declarations of the same template.
2685   bool isSameTemplateParameter(const NamedDecl *X, const NamedDecl *Y) const;
2686 
2687   /// Determine whether two 'requires' expressions are similar enough that they
2688   /// may be used in re-declarations.
2689   ///
2690   /// Use of 'requires' isn't mandatory, works with constraints expressed in
2691   /// other ways too.
2692   bool isSameConstraintExpr(const Expr *XCE, const Expr *YCE) const;
2693 
2694   /// Determine whether two type contraint are similar enough that they could
2695   /// used in declarations of the same template.
2696   bool isSameTypeConstraint(const TypeConstraint *XTC,
2697                             const TypeConstraint *YTC) const;
2698 
2699   /// Determine whether two default template arguments are similar enough
2700   /// that they may be used in declarations of the same template.
2701   bool isSameDefaultTemplateArgument(const NamedDecl *X,
2702                                      const NamedDecl *Y) const;
2703 
2704   /// Retrieve the "canonical" template argument.
2705   ///
2706   /// The canonical template argument is the simplest template argument
2707   /// (which may be a type, value, expression, or declaration) that
2708   /// expresses the value of the argument.
2709   TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
2710     const;
2711 
2712   /// Type Query functions.  If the type is an instance of the specified class,
2713   /// return the Type pointer for the underlying maximally pretty type.  This
2714   /// is a member of ASTContext because this may need to do some amount of
2715   /// canonicalization, e.g. to move type qualifiers into the element type.
2716   const ArrayType *getAsArrayType(QualType T) const;
2717   const ConstantArrayType *getAsConstantArrayType(QualType T) const {
2718     return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
2719   }
2720   const VariableArrayType *getAsVariableArrayType(QualType T) const {
2721     return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
2722   }
2723   const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
2724     return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
2725   }
2726   const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
2727     const {
2728     return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
2729   }
2730 
2731   /// Return the innermost element type of an array type.
2732   ///
2733   /// For example, will return "int" for int[m][n]
2734   QualType getBaseElementType(const ArrayType *VAT) const;
2735 
2736   /// Return the innermost element type of a type (which needn't
2737   /// actually be an array type).
2738   QualType getBaseElementType(QualType QT) const;
2739 
2740   /// Return number of constant array elements.
2741   uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
2742 
2743   /// Return number of elements initialized in an ArrayInitLoopExpr.
2744   uint64_t
2745   getArrayInitLoopExprElementCount(const ArrayInitLoopExpr *AILE) const;
2746 
2747   /// Perform adjustment on the parameter type of a function.
2748   ///
2749   /// This routine adjusts the given parameter type @p T to the actual
2750   /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
2751   /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
2752   QualType getAdjustedParameterType(QualType T) const;
2753 
2754   /// Retrieve the parameter type as adjusted for use in the signature
2755   /// of a function, decaying array and function types and removing top-level
2756   /// cv-qualifiers.
2757   QualType getSignatureParameterType(QualType T) const;
2758 
2759   QualType getExceptionObjectType(QualType T) const;
2760 
2761   /// Return the properly qualified result of decaying the specified
2762   /// array type to a pointer.
2763   ///
2764   /// This operation is non-trivial when handling typedefs etc.  The canonical
2765   /// type of \p T must be an array type, this returns a pointer to a properly
2766   /// qualified element of the array.
2767   ///
2768   /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2769   QualType getArrayDecayedType(QualType T) const;
2770 
2771   /// Return the type that \p PromotableType will promote to: C99
2772   /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
2773   QualType getPromotedIntegerType(QualType PromotableType) const;
2774 
2775   /// Recurses in pointer/array types until it finds an Objective-C
2776   /// retainable type and returns its ownership.
2777   Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
2778 
2779   /// Whether this is a promotable bitfield reference according
2780   /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2781   ///
2782   /// \returns the type this bit-field will promote to, or NULL if no
2783   /// promotion occurs.
2784   QualType isPromotableBitField(Expr *E) const;
2785 
2786   /// Return the highest ranked integer type, see C99 6.3.1.8p1.
2787   ///
2788   /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
2789   /// \p LHS < \p RHS, return -1.
2790   int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
2791 
2792   /// Compare the rank of the two specified floating point types,
2793   /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
2794   ///
2795   /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
2796   /// \p LHS < \p RHS, return -1.
2797   int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
2798 
2799   /// Compare the rank of two floating point types as above, but compare equal
2800   /// if both types have the same floating-point semantics on the target (i.e.
2801   /// long double and double on AArch64 will return 0).
2802   int getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const;
2803 
2804   unsigned getTargetAddressSpace(LangAS AS) const;
2805 
2806   LangAS getLangASForBuiltinAddressSpace(unsigned AS) const;
2807 
2808   /// Get target-dependent integer value for null pointer which is used for
2809   /// constant folding.
2810   uint64_t getTargetNullPointerValue(QualType QT) const;
2811 
2812   bool addressSpaceMapManglingFor(LangAS AS) const {
2813     return AddrSpaceMapMangling || isTargetAddressSpace(AS);
2814   }
2815 
2816   // Merges two exception specifications, such that the resulting
2817   // exception spec is the union of both. For example, if either
2818   // of them can throw something, the result can throw it as well.
2819   FunctionProtoType::ExceptionSpecInfo
2820   mergeExceptionSpecs(FunctionProtoType::ExceptionSpecInfo ESI1,
2821                       FunctionProtoType::ExceptionSpecInfo ESI2,
2822                       SmallVectorImpl<QualType> &ExceptionTypeStorage,
2823                       bool AcceptDependent);
2824 
2825   // For two "same" types, return a type which has
2826   // the common sugar between them. If Unqualified is true,
2827   // both types need only be the same unqualified type.
2828   // The result will drop the qualifiers which do not occur
2829   // in both types.
2830   QualType getCommonSugaredType(QualType X, QualType Y,
2831                                 bool Unqualified = false);
2832 
2833 private:
2834   // Helper for integer ordering
2835   unsigned getIntegerRank(const Type *T) const;
2836 
2837 public:
2838   //===--------------------------------------------------------------------===//
2839   //                    Type Compatibility Predicates
2840   //===--------------------------------------------------------------------===//
2841 
2842   /// Compatibility predicates used to check assignment expressions.
2843   bool typesAreCompatible(QualType T1, QualType T2,
2844                           bool CompareUnqualified = false); // C99 6.2.7p1
2845 
2846   bool propertyTypesAreCompatible(QualType, QualType);
2847   bool typesAreBlockPointerCompatible(QualType, QualType);
2848 
2849   bool isObjCIdType(QualType T) const {
2850     if (const auto *ET = dyn_cast<ElaboratedType>(T))
2851       T = ET->getNamedType();
2852     return T == getObjCIdType();
2853   }
2854 
2855   bool isObjCClassType(QualType T) const {
2856     if (const auto *ET = dyn_cast<ElaboratedType>(T))
2857       T = ET->getNamedType();
2858     return T == getObjCClassType();
2859   }
2860 
2861   bool isObjCSelType(QualType T) const {
2862     if (const auto *ET = dyn_cast<ElaboratedType>(T))
2863       T = ET->getNamedType();
2864     return T == getObjCSelType();
2865   }
2866 
2867   bool ObjCQualifiedIdTypesAreCompatible(const ObjCObjectPointerType *LHS,
2868                                          const ObjCObjectPointerType *RHS,
2869                                          bool ForCompare);
2870 
2871   bool ObjCQualifiedClassTypesAreCompatible(const ObjCObjectPointerType *LHS,
2872                                             const ObjCObjectPointerType *RHS);
2873 
2874   // Check the safety of assignment from LHS to RHS
2875   bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
2876                                const ObjCObjectPointerType *RHSOPT);
2877   bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
2878                                const ObjCObjectType *RHS);
2879   bool canAssignObjCInterfacesInBlockPointer(
2880                                           const ObjCObjectPointerType *LHSOPT,
2881                                           const ObjCObjectPointerType *RHSOPT,
2882                                           bool BlockReturnType);
2883   bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
2884   QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
2885                                    const ObjCObjectPointerType *RHSOPT);
2886   bool canBindObjCObjectType(QualType To, QualType From);
2887 
2888   // Functions for calculating composite types
2889   QualType mergeTypes(QualType, QualType, bool OfBlockPointer = false,
2890                       bool Unqualified = false, bool BlockReturnType = false,
2891                       bool IsConditionalOperator = false);
2892   QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer = false,
2893                               bool Unqualified = false, bool AllowCXX = false,
2894                               bool IsConditionalOperator = false);
2895   QualType mergeFunctionParameterTypes(QualType, QualType,
2896                                        bool OfBlockPointer = false,
2897                                        bool Unqualified = false);
2898   QualType mergeTransparentUnionType(QualType, QualType,
2899                                      bool OfBlockPointer=false,
2900                                      bool Unqualified = false);
2901 
2902   QualType mergeObjCGCQualifiers(QualType, QualType);
2903 
2904   /// This function merges the ExtParameterInfo lists of two functions. It
2905   /// returns true if the lists are compatible. The merged list is returned in
2906   /// NewParamInfos.
2907   ///
2908   /// \param FirstFnType The type of the first function.
2909   ///
2910   /// \param SecondFnType The type of the second function.
2911   ///
2912   /// \param CanUseFirst This flag is set to true if the first function's
2913   /// ExtParameterInfo list can be used as the composite list of
2914   /// ExtParameterInfo.
2915   ///
2916   /// \param CanUseSecond This flag is set to true if the second function's
2917   /// ExtParameterInfo list can be used as the composite list of
2918   /// ExtParameterInfo.
2919   ///
2920   /// \param NewParamInfos The composite list of ExtParameterInfo. The list is
2921   /// empty if none of the flags are set.
2922   ///
2923   bool mergeExtParameterInfo(
2924       const FunctionProtoType *FirstFnType,
2925       const FunctionProtoType *SecondFnType,
2926       bool &CanUseFirst, bool &CanUseSecond,
2927       SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos);
2928 
2929   void ResetObjCLayout(const ObjCContainerDecl *CD);
2930 
2931   //===--------------------------------------------------------------------===//
2932   //                    Integer Predicates
2933   //===--------------------------------------------------------------------===//
2934 
2935   // The width of an integer, as defined in C99 6.2.6.2. This is the number
2936   // of bits in an integer type excluding any padding bits.
2937   unsigned getIntWidth(QualType T) const;
2938 
2939   // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
2940   // unsigned integer type.  This method takes a signed type, and returns the
2941   // corresponding unsigned integer type.
2942   // With the introduction of fixed point types in ISO N1169, this method also
2943   // accepts fixed point types and returns the corresponding unsigned type for
2944   // a given fixed point type.
2945   QualType getCorrespondingUnsignedType(QualType T) const;
2946 
2947   // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
2948   // unsigned integer type.  This method takes an unsigned type, and returns the
2949   // corresponding signed integer type.
2950   // With the introduction of fixed point types in ISO N1169, this method also
2951   // accepts fixed point types and returns the corresponding signed type for
2952   // a given fixed point type.
2953   QualType getCorrespondingSignedType(QualType T) const;
2954 
2955   // Per ISO N1169, this method accepts fixed point types and returns the
2956   // corresponding saturated type for a given fixed point type.
2957   QualType getCorrespondingSaturatedType(QualType Ty) const;
2958 
2959   // This method accepts fixed point types and returns the corresponding signed
2960   // type. Unlike getCorrespondingUnsignedType(), this only accepts unsigned
2961   // fixed point types because there are unsigned integer types like bool and
2962   // char8_t that don't have signed equivalents.
2963   QualType getCorrespondingSignedFixedPointType(QualType Ty) const;
2964 
2965   //===--------------------------------------------------------------------===//
2966   //                    Integer Values
2967   //===--------------------------------------------------------------------===//
2968 
2969   /// Make an APSInt of the appropriate width and signedness for the
2970   /// given \p Value and integer \p Type.
2971   llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
2972     // If Type is a signed integer type larger than 64 bits, we need to be sure
2973     // to sign extend Res appropriately.
2974     llvm::APSInt Res(64, !Type->isSignedIntegerOrEnumerationType());
2975     Res = Value;
2976     unsigned Width = getIntWidth(Type);
2977     if (Width != Res.getBitWidth())
2978       return Res.extOrTrunc(Width);
2979     return Res;
2980   }
2981 
2982   bool isSentinelNullExpr(const Expr *E);
2983 
2984   /// Get the implementation of the ObjCInterfaceDecl \p D, or nullptr if
2985   /// none exists.
2986   ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
2987 
2988   /// Get the implementation of the ObjCCategoryDecl \p D, or nullptr if
2989   /// none exists.
2990   ObjCCategoryImplDecl *getObjCImplementation(ObjCCategoryDecl *D);
2991 
2992   /// Return true if there is at least one \@implementation in the TU.
2993   bool AnyObjCImplementation() {
2994     return !ObjCImpls.empty();
2995   }
2996 
2997   /// Set the implementation of ObjCInterfaceDecl.
2998   void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2999                              ObjCImplementationDecl *ImplD);
3000 
3001   /// Set the implementation of ObjCCategoryDecl.
3002   void setObjCImplementation(ObjCCategoryDecl *CatD,
3003                              ObjCCategoryImplDecl *ImplD);
3004 
3005   /// Get the duplicate declaration of a ObjCMethod in the same
3006   /// interface, or null if none exists.
3007   const ObjCMethodDecl *
3008   getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const;
3009 
3010   void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
3011                                   const ObjCMethodDecl *Redecl);
3012 
3013   /// Returns the Objective-C interface that \p ND belongs to if it is
3014   /// an Objective-C method/property/ivar etc. that is part of an interface,
3015   /// otherwise returns null.
3016   const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
3017 
3018   /// Set the copy initialization expression of a block var decl. \p CanThrow
3019   /// indicates whether the copy expression can throw or not.
3020   void setBlockVarCopyInit(const VarDecl* VD, Expr *CopyExpr, bool CanThrow);
3021 
3022   /// Get the copy initialization expression of the VarDecl \p VD, or
3023   /// nullptr if none exists.
3024   BlockVarCopyInit getBlockVarCopyInit(const VarDecl* VD) const;
3025 
3026   /// Allocate an uninitialized TypeSourceInfo.
3027   ///
3028   /// The caller should initialize the memory held by TypeSourceInfo using
3029   /// the TypeLoc wrappers.
3030   ///
3031   /// \param T the type that will be the basis for type source info. This type
3032   /// should refer to how the declarator was written in source code, not to
3033   /// what type semantic analysis resolved the declarator to.
3034   ///
3035   /// \param Size the size of the type info to create, or 0 if the size
3036   /// should be calculated based on the type.
3037   TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
3038 
3039   /// Allocate a TypeSourceInfo where all locations have been
3040   /// initialized to a given location, which defaults to the empty
3041   /// location.
3042   TypeSourceInfo *
3043   getTrivialTypeSourceInfo(QualType T,
3044                            SourceLocation Loc = SourceLocation()) const;
3045 
3046   /// Add a deallocation callback that will be invoked when the
3047   /// ASTContext is destroyed.
3048   ///
3049   /// \param Callback A callback function that will be invoked on destruction.
3050   ///
3051   /// \param Data Pointer data that will be provided to the callback function
3052   /// when it is called.
3053   void AddDeallocation(void (*Callback)(void *), void *Data) const;
3054 
3055   /// If T isn't trivially destructible, calls AddDeallocation to register it
3056   /// for destruction.
3057   template <typename T> void addDestruction(T *Ptr) const {
3058     if (!std::is_trivially_destructible<T>::value) {
3059       auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
3060       AddDeallocation(DestroyPtr, Ptr);
3061     }
3062   }
3063 
3064   GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD) const;
3065   GVALinkage GetGVALinkageForVariable(const VarDecl *VD) const;
3066 
3067   /// Determines if the decl can be CodeGen'ed or deserialized from PCH
3068   /// lazily, only when used; this is only relevant for function or file scoped
3069   /// var definitions.
3070   ///
3071   /// \returns true if the function/var must be CodeGen'ed/deserialized even if
3072   /// it is not used.
3073   bool DeclMustBeEmitted(const Decl *D);
3074 
3075   /// Visits all versions of a multiversioned function with the passed
3076   /// predicate.
3077   void forEachMultiversionedFunctionVersion(
3078       const FunctionDecl *FD,
3079       llvm::function_ref<void(FunctionDecl *)> Pred) const;
3080 
3081   const CXXConstructorDecl *
3082   getCopyConstructorForExceptionObject(CXXRecordDecl *RD);
3083 
3084   void addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
3085                                             CXXConstructorDecl *CD);
3086 
3087   void addTypedefNameForUnnamedTagDecl(TagDecl *TD, TypedefNameDecl *TND);
3088 
3089   TypedefNameDecl *getTypedefNameForUnnamedTagDecl(const TagDecl *TD);
3090 
3091   void addDeclaratorForUnnamedTagDecl(TagDecl *TD, DeclaratorDecl *DD);
3092 
3093   DeclaratorDecl *getDeclaratorForUnnamedTagDecl(const TagDecl *TD);
3094 
3095   void setManglingNumber(const NamedDecl *ND, unsigned Number);
3096   unsigned getManglingNumber(const NamedDecl *ND,
3097                              bool ForAuxTarget = false) const;
3098 
3099   void setStaticLocalNumber(const VarDecl *VD, unsigned Number);
3100   unsigned getStaticLocalNumber(const VarDecl *VD) const;
3101 
3102   /// Retrieve the context for computing mangling numbers in the given
3103   /// DeclContext.
3104   MangleNumberingContext &getManglingNumberContext(const DeclContext *DC);
3105   enum NeedExtraManglingDecl_t { NeedExtraManglingDecl };
3106   MangleNumberingContext &getManglingNumberContext(NeedExtraManglingDecl_t,
3107                                                    const Decl *D);
3108 
3109   std::unique_ptr<MangleNumberingContext> createMangleNumberingContext() const;
3110 
3111   /// Used by ParmVarDecl to store on the side the
3112   /// index of the parameter when it exceeds the size of the normal bitfield.
3113   void setParameterIndex(const ParmVarDecl *D, unsigned index);
3114 
3115   /// Used by ParmVarDecl to retrieve on the side the
3116   /// index of the parameter when it exceeds the size of the normal bitfield.
3117   unsigned getParameterIndex(const ParmVarDecl *D) const;
3118 
3119   /// Return a string representing the human readable name for the specified
3120   /// function declaration or file name. Used by SourceLocExpr and
3121   /// PredefinedExpr to cache evaluated results.
3122   StringLiteral *getPredefinedStringLiteralFromCache(StringRef Key) const;
3123 
3124   /// Return a declaration for the global GUID object representing the given
3125   /// GUID value.
3126   MSGuidDecl *getMSGuidDecl(MSGuidDeclParts Parts) const;
3127 
3128   /// Return a declaration for a uniquified anonymous global constant
3129   /// corresponding to a given APValue.
3130   UnnamedGlobalConstantDecl *
3131   getUnnamedGlobalConstantDecl(QualType Ty, const APValue &Value) const;
3132 
3133   /// Return the template parameter object of the given type with the given
3134   /// value.
3135   TemplateParamObjectDecl *getTemplateParamObjectDecl(QualType T,
3136                                                       const APValue &V) const;
3137 
3138   /// Parses the target attributes passed in, and returns only the ones that are
3139   /// valid feature names.
3140   ParsedTargetAttr filterFunctionTargetAttrs(const TargetAttr *TD) const;
3141 
3142   std::vector<std::string>
3143   filterFunctionTargetVersionAttrs(const TargetVersionAttr *TV) const;
3144 
3145   void getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
3146                              const FunctionDecl *) const;
3147   void getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
3148                              GlobalDecl GD) const;
3149 
3150   //===--------------------------------------------------------------------===//
3151   //                    Statistics
3152   //===--------------------------------------------------------------------===//
3153 
3154   /// The number of implicitly-declared default constructors.
3155   unsigned NumImplicitDefaultConstructors = 0;
3156 
3157   /// The number of implicitly-declared default constructors for
3158   /// which declarations were built.
3159   unsigned NumImplicitDefaultConstructorsDeclared = 0;
3160 
3161   /// The number of implicitly-declared copy constructors.
3162   unsigned NumImplicitCopyConstructors = 0;
3163 
3164   /// The number of implicitly-declared copy constructors for
3165   /// which declarations were built.
3166   unsigned NumImplicitCopyConstructorsDeclared = 0;
3167 
3168   /// The number of implicitly-declared move constructors.
3169   unsigned NumImplicitMoveConstructors = 0;
3170 
3171   /// The number of implicitly-declared move constructors for
3172   /// which declarations were built.
3173   unsigned NumImplicitMoveConstructorsDeclared = 0;
3174 
3175   /// The number of implicitly-declared copy assignment operators.
3176   unsigned NumImplicitCopyAssignmentOperators = 0;
3177 
3178   /// The number of implicitly-declared copy assignment operators for
3179   /// which declarations were built.
3180   unsigned NumImplicitCopyAssignmentOperatorsDeclared = 0;
3181 
3182   /// The number of implicitly-declared move assignment operators.
3183   unsigned NumImplicitMoveAssignmentOperators = 0;
3184 
3185   /// The number of implicitly-declared move assignment operators for
3186   /// which declarations were built.
3187   unsigned NumImplicitMoveAssignmentOperatorsDeclared = 0;
3188 
3189   /// The number of implicitly-declared destructors.
3190   unsigned NumImplicitDestructors = 0;
3191 
3192   /// The number of implicitly-declared destructors for which
3193   /// declarations were built.
3194   unsigned NumImplicitDestructorsDeclared = 0;
3195 
3196 public:
3197   /// Initialize built-in types.
3198   ///
3199   /// This routine may only be invoked once for a given ASTContext object.
3200   /// It is normally invoked after ASTContext construction.
3201   ///
3202   /// \param Target The target
3203   void InitBuiltinTypes(const TargetInfo &Target,
3204                         const TargetInfo *AuxTarget = nullptr);
3205 
3206 private:
3207   void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
3208 
3209   class ObjCEncOptions {
3210     unsigned Bits;
3211 
3212     ObjCEncOptions(unsigned Bits) : Bits(Bits) {}
3213 
3214   public:
3215     ObjCEncOptions() : Bits(0) {}
3216 
3217 #define OPT_LIST(V)                                                            \
3218   V(ExpandPointedToStructures, 0)                                              \
3219   V(ExpandStructures, 1)                                                       \
3220   V(IsOutermostType, 2)                                                        \
3221   V(EncodingProperty, 3)                                                       \
3222   V(IsStructField, 4)                                                          \
3223   V(EncodeBlockParameters, 5)                                                  \
3224   V(EncodeClassNames, 6)                                                       \
3225 
3226 #define V(N,I) ObjCEncOptions& set##N() { Bits |= 1 << I; return *this; }
3227 OPT_LIST(V)
3228 #undef V
3229 
3230 #define V(N,I) bool N() const { return Bits & 1 << I; }
3231 OPT_LIST(V)
3232 #undef V
3233 
3234 #undef OPT_LIST
3235 
3236     [[nodiscard]] ObjCEncOptions keepingOnly(ObjCEncOptions Mask) const {
3237       return Bits & Mask.Bits;
3238     }
3239 
3240     [[nodiscard]] ObjCEncOptions forComponentType() const {
3241       ObjCEncOptions Mask = ObjCEncOptions()
3242                                 .setIsOutermostType()
3243                                 .setIsStructField();
3244       return Bits & ~Mask.Bits;
3245     }
3246   };
3247 
3248   // Return the Objective-C type encoding for a given type.
3249   void getObjCEncodingForTypeImpl(QualType t, std::string &S,
3250                                   ObjCEncOptions Options,
3251                                   const FieldDecl *Field,
3252                                   QualType *NotEncodedT = nullptr) const;
3253 
3254   // Adds the encoding of the structure's members.
3255   void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
3256                                        const FieldDecl *Field,
3257                                        bool includeVBases = true,
3258                                        QualType *NotEncodedT=nullptr) const;
3259 
3260 public:
3261   // Adds the encoding of a method parameter or return type.
3262   void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
3263                                          QualType T, std::string& S,
3264                                          bool Extended) const;
3265 
3266   /// Returns true if this is an inline-initialized static data member
3267   /// which is treated as a definition for MSVC compatibility.
3268   bool isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const;
3269 
3270   enum class InlineVariableDefinitionKind {
3271     /// Not an inline variable.
3272     None,
3273 
3274     /// Weak definition of inline variable.
3275     Weak,
3276 
3277     /// Weak for now, might become strong later in this TU.
3278     WeakUnknown,
3279 
3280     /// Strong definition.
3281     Strong
3282   };
3283 
3284   /// Determine whether a definition of this inline variable should
3285   /// be treated as a weak or strong definition. For compatibility with
3286   /// C++14 and before, for a constexpr static data member, if there is an
3287   /// out-of-line declaration of the member, we may promote it from weak to
3288   /// strong.
3289   InlineVariableDefinitionKind
3290   getInlineVariableDefinitionKind(const VarDecl *VD) const;
3291 
3292 private:
3293   friend class DeclarationNameTable;
3294   friend class DeclContext;
3295 
3296   const ASTRecordLayout &
3297   getObjCLayout(const ObjCInterfaceDecl *D,
3298                 const ObjCImplementationDecl *Impl) const;
3299 
3300   /// A set of deallocations that should be performed when the
3301   /// ASTContext is destroyed.
3302   // FIXME: We really should have a better mechanism in the ASTContext to
3303   // manage running destructors for types which do variable sized allocation
3304   // within the AST. In some places we thread the AST bump pointer allocator
3305   // into the datastructures which avoids this mess during deallocation but is
3306   // wasteful of memory, and here we require a lot of error prone book keeping
3307   // in order to track and run destructors while we're tearing things down.
3308   using DeallocationFunctionsAndArguments =
3309       llvm::SmallVector<std::pair<void (*)(void *), void *>, 16>;
3310   mutable DeallocationFunctionsAndArguments Deallocations;
3311 
3312   // FIXME: This currently contains the set of StoredDeclMaps used
3313   // by DeclContext objects.  This probably should not be in ASTContext,
3314   // but we include it here so that ASTContext can quickly deallocate them.
3315   llvm::PointerIntPair<StoredDeclsMap *, 1> LastSDM;
3316 
3317   std::vector<Decl *> TraversalScope;
3318 
3319   std::unique_ptr<VTableContextBase> VTContext;
3320 
3321   void ReleaseDeclContextMaps();
3322 
3323 public:
3324   enum PragmaSectionFlag : unsigned {
3325     PSF_None = 0,
3326     PSF_Read = 0x1,
3327     PSF_Write = 0x2,
3328     PSF_Execute = 0x4,
3329     PSF_Implicit = 0x8,
3330     PSF_ZeroInit = 0x10,
3331     PSF_Invalid = 0x80000000U,
3332   };
3333 
3334   struct SectionInfo {
3335     NamedDecl *Decl;
3336     SourceLocation PragmaSectionLocation;
3337     int SectionFlags;
3338 
3339     SectionInfo() = default;
3340     SectionInfo(NamedDecl *Decl, SourceLocation PragmaSectionLocation,
3341                 int SectionFlags)
3342         : Decl(Decl), PragmaSectionLocation(PragmaSectionLocation),
3343           SectionFlags(SectionFlags) {}
3344   };
3345 
3346   llvm::StringMap<SectionInfo> SectionInfos;
3347 
3348   /// Return a new OMPTraitInfo object owned by this context.
3349   OMPTraitInfo &getNewOMPTraitInfo();
3350 
3351   /// Whether a C++ static variable or CUDA/HIP kernel may be externalized.
3352   bool mayExternalize(const Decl *D) const;
3353 
3354   /// Whether a C++ static variable or CUDA/HIP kernel should be externalized.
3355   bool shouldExternalize(const Decl *D) const;
3356 
3357   StringRef getCUIDHash() const;
3358 
3359 private:
3360   /// All OMPTraitInfo objects live in this collection, one per
3361   /// `pragma omp [begin] declare variant` directive.
3362   SmallVector<std::unique_ptr<OMPTraitInfo>, 4> OMPTraitInfoVector;
3363 };
3364 
3365 /// Insertion operator for diagnostics.
3366 const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB,
3367                                       const ASTContext::SectionInfo &Section);
3368 
3369 /// Utility function for constructing a nullary selector.
3370 inline Selector GetNullarySelector(StringRef name, ASTContext &Ctx) {
3371   IdentifierInfo* II = &Ctx.Idents.get(name);
3372   return Ctx.Selectors.getSelector(0, &II);
3373 }
3374 
3375 /// Utility function for constructing an unary selector.
3376 inline Selector GetUnarySelector(StringRef name, ASTContext &Ctx) {
3377   IdentifierInfo* II = &Ctx.Idents.get(name);
3378   return Ctx.Selectors.getSelector(1, &II);
3379 }
3380 
3381 } // namespace clang
3382 
3383 // operator new and delete aren't allowed inside namespaces.
3384 
3385 /// Placement new for using the ASTContext's allocator.
3386 ///
3387 /// This placement form of operator new uses the ASTContext's allocator for
3388 /// obtaining memory.
3389 ///
3390 /// IMPORTANT: These are also declared in clang/AST/ASTContextAllocate.h!
3391 /// Any changes here need to also be made there.
3392 ///
3393 /// We intentionally avoid using a nothrow specification here so that the calls
3394 /// to this operator will not perform a null check on the result -- the
3395 /// underlying allocator never returns null pointers.
3396 ///
3397 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
3398 /// @code
3399 /// // Default alignment (8)
3400 /// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
3401 /// // Specific alignment
3402 /// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
3403 /// @endcode
3404 /// Memory allocated through this placement new operator does not need to be
3405 /// explicitly freed, as ASTContext will free all of this memory when it gets
3406 /// destroyed. Please note that you cannot use delete on the pointer.
3407 ///
3408 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
3409 /// @param C The ASTContext that provides the allocator.
3410 /// @param Alignment The alignment of the allocated memory (if the underlying
3411 ///                  allocator supports it).
3412 /// @return The allocated memory. Could be nullptr.
3413 inline void *operator new(size_t Bytes, const clang::ASTContext &C,
3414                           size_t Alignment /* = 8 */) {
3415   return C.Allocate(Bytes, Alignment);
3416 }
3417 
3418 /// Placement delete companion to the new above.
3419 ///
3420 /// This operator is just a companion to the new above. There is no way of
3421 /// invoking it directly; see the new operator for more details. This operator
3422 /// is called implicitly by the compiler if a placement new expression using
3423 /// the ASTContext throws in the object constructor.
3424 inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
3425   C.Deallocate(Ptr);
3426 }
3427 
3428 /// This placement form of operator new[] uses the ASTContext's allocator for
3429 /// obtaining memory.
3430 ///
3431 /// We intentionally avoid using a nothrow specification here so that the calls
3432 /// to this operator will not perform a null check on the result -- the
3433 /// underlying allocator never returns null pointers.
3434 ///
3435 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
3436 /// @code
3437 /// // Default alignment (8)
3438 /// char *data = new (Context) char[10];
3439 /// // Specific alignment
3440 /// char *data = new (Context, 4) char[10];
3441 /// @endcode
3442 /// Memory allocated through this placement new[] operator does not need to be
3443 /// explicitly freed, as ASTContext will free all of this memory when it gets
3444 /// destroyed. Please note that you cannot use delete on the pointer.
3445 ///
3446 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
3447 /// @param C The ASTContext that provides the allocator.
3448 /// @param Alignment The alignment of the allocated memory (if the underlying
3449 ///                  allocator supports it).
3450 /// @return The allocated memory. Could be nullptr.
3451 inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
3452                             size_t Alignment /* = 8 */) {
3453   return C.Allocate(Bytes, Alignment);
3454 }
3455 
3456 /// Placement delete[] companion to the new[] above.
3457 ///
3458 /// This operator is just a companion to the new[] above. There is no way of
3459 /// invoking it directly; see the new[] operator for more details. This operator
3460 /// is called implicitly by the compiler if a placement new[] expression using
3461 /// the ASTContext throws in the object constructor.
3462 inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
3463   C.Deallocate(Ptr);
3464 }
3465 
3466 /// Create the representation of a LazyGenerationalUpdatePtr.
3467 template <typename Owner, typename T,
3468           void (clang::ExternalASTSource::*Update)(Owner)>
3469 typename clang::LazyGenerationalUpdatePtr<Owner, T, Update>::ValueType
3470     clang::LazyGenerationalUpdatePtr<Owner, T, Update>::makeValue(
3471         const clang::ASTContext &Ctx, T Value) {
3472   // Note, this is implemented here so that ExternalASTSource.h doesn't need to
3473   // include ASTContext.h. We explicitly instantiate it for all relevant types
3474   // in ASTContext.cpp.
3475   if (auto *Source = Ctx.getExternalSource())
3476     return new (Ctx) LazyData(Source, Value);
3477   return Value;
3478 }
3479 
3480 #endif // LLVM_CLANG_AST_ASTCONTEXT_H
3481