1 //===- CXXInheritance.h - C++ Inheritance -----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides routines that help analyzing C++ inheritance hierarchies.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_AST_CXXINHERITANCE_H
14 #define LLVM_CLANG_AST_CXXINHERITANCE_H
15 
16 #include "clang/AST/DeclBase.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclarationName.h"
19 #include "clang/AST/Type.h"
20 #include "clang/AST/TypeOrdering.h"
21 #include "clang/Basic/Specifiers.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/DenseSet.h"
24 #include "llvm/ADT/MapVector.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include <list>
29 #include <memory>
30 #include <utility>
31 
32 namespace clang {
33 
34 class ASTContext;
35 class NamedDecl;
36 
37 /// Represents an element in a path from a derived class to a
38 /// base class.
39 ///
40 /// Each step in the path references the link from a
41 /// derived class to one of its direct base classes, along with a
42 /// base "number" that identifies which base subobject of the
43 /// original derived class we are referencing.
44 struct CXXBasePathElement {
45   /// The base specifier that states the link from a derived
46   /// class to a base class, which will be followed by this base
47   /// path element.
48   const CXXBaseSpecifier *Base;
49 
50   /// The record decl of the class that the base is a base of.
51   const CXXRecordDecl *Class;
52 
53   /// Identifies which base class subobject (of type
54   /// \c Base->getType()) this base path element refers to.
55   ///
56   /// This value is only valid if \c !Base->isVirtual(), because there
57   /// is no base numbering for the zero or one virtual bases of a
58   /// given type.
59   int SubobjectNumber;
60 };
61 
62 /// Represents a path from a specific derived class
63 /// (which is not represented as part of the path) to a particular
64 /// (direct or indirect) base class subobject.
65 ///
66 /// Individual elements in the path are described by the \c CXXBasePathElement
67 /// structure, which captures both the link from a derived class to one of its
68 /// direct bases and identification describing which base class
69 /// subobject is being used.
70 class CXXBasePath : public SmallVector<CXXBasePathElement, 4> {
71 public:
72   /// The access along this inheritance path.  This is only
73   /// calculated when recording paths.  AS_none is a special value
74   /// used to indicate a path which permits no legal access.
75   AccessSpecifier Access = AS_public;
76 
77   CXXBasePath() = default;
78 
79   /// The set of declarations found inside this base class
80   /// subobject.
81   DeclContext::lookup_result Decls;
82 
83   void clear() {
84     SmallVectorImpl<CXXBasePathElement>::clear();
85     Access = AS_public;
86   }
87 };
88 
89 /// BasePaths - Represents the set of paths from a derived class to
90 /// one of its (direct or indirect) bases. For example, given the
91 /// following class hierarchy:
92 ///
93 /// @code
94 /// class A { };
95 /// class B : public A { };
96 /// class C : public A { };
97 /// class D : public B, public C{ };
98 /// @endcode
99 ///
100 /// There are two potential BasePaths to represent paths from D to a
101 /// base subobject of type A. One path is (D,0) -> (B,0) -> (A,0)
102 /// and another is (D,0)->(C,0)->(A,1). These two paths actually
103 /// refer to two different base class subobjects of the same type,
104 /// so the BasePaths object refers to an ambiguous path. On the
105 /// other hand, consider the following class hierarchy:
106 ///
107 /// @code
108 /// class A { };
109 /// class B : public virtual A { };
110 /// class C : public virtual A { };
111 /// class D : public B, public C{ };
112 /// @endcode
113 ///
114 /// Here, there are two potential BasePaths again, (D, 0) -> (B, 0)
115 /// -> (A,v) and (D, 0) -> (C, 0) -> (A, v), but since both of them
116 /// refer to the same base class subobject of type A (the virtual
117 /// one), there is no ambiguity.
118 class CXXBasePaths {
119   friend class CXXRecordDecl;
120 
121   /// The type from which this search originated.
122   const CXXRecordDecl *Origin = nullptr;
123 
124   /// Paths - The actual set of paths that can be taken from the
125   /// derived class to the same base class.
126   std::list<CXXBasePath> Paths;
127 
128   /// ClassSubobjects - Records the class subobjects for each class
129   /// type that we've seen. The first element IsVirtBase says
130   /// whether we found a path to a virtual base for that class type,
131   /// while NumberOfNonVirtBases contains the number of non-virtual base
132   /// class subobjects for that class type. The key of the map is
133   /// the cv-unqualified canonical type of the base class subobject.
134   struct IsVirtBaseAndNumberNonVirtBases {
135     unsigned IsVirtBase : 1;
136     unsigned NumberOfNonVirtBases : 31;
137   };
138   llvm::SmallDenseMap<QualType, IsVirtBaseAndNumberNonVirtBases, 8>
139       ClassSubobjects;
140 
141   /// VisitedDependentRecords - Records the dependent records that have been
142   /// already visited.
143   llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedDependentRecords;
144 
145   /// DetectedVirtual - The base class that is virtual.
146   const RecordType *DetectedVirtual = nullptr;
147 
148   /// ScratchPath - A BasePath that is used by Sema::lookupInBases
149   /// to help build the set of paths.
150   CXXBasePath ScratchPath;
151 
152   /// FindAmbiguities - Whether Sema::IsDerivedFrom should try find
153   /// ambiguous paths while it is looking for a path from a derived
154   /// type to a base type.
155   bool FindAmbiguities;
156 
157   /// RecordPaths - Whether Sema::IsDerivedFrom should record paths
158   /// while it is determining whether there are paths from a derived
159   /// type to a base type.
160   bool RecordPaths;
161 
162   /// DetectVirtual - Whether Sema::IsDerivedFrom should abort the search
163   /// if it finds a path that goes across a virtual base. The virtual class
164   /// is also recorded.
165   bool DetectVirtual;
166 
167   bool lookupInBases(ASTContext &Context, const CXXRecordDecl *Record,
168                      CXXRecordDecl::BaseMatchesCallback BaseMatches,
169                      bool LookupInDependent = false);
170 
171 public:
172   using paths_iterator = std::list<CXXBasePath>::iterator;
173   using const_paths_iterator = std::list<CXXBasePath>::const_iterator;
174   using decl_iterator = NamedDecl **;
175 
176   /// BasePaths - Construct a new BasePaths structure to record the
177   /// paths for a derived-to-base search.
178   explicit CXXBasePaths(bool FindAmbiguities = true, bool RecordPaths = true,
179                         bool DetectVirtual = true)
180       : FindAmbiguities(FindAmbiguities), RecordPaths(RecordPaths),
181         DetectVirtual(DetectVirtual) {}
182 
183   paths_iterator begin() { return Paths.begin(); }
184   paths_iterator end()   { return Paths.end(); }
185   const_paths_iterator begin() const { return Paths.begin(); }
186   const_paths_iterator end()   const { return Paths.end(); }
187 
188   CXXBasePath&       front()       { return Paths.front(); }
189   const CXXBasePath& front() const { return Paths.front(); }
190 
191   using decl_range = llvm::iterator_range<decl_iterator>;
192 
193   /// Determine whether the path from the most-derived type to the
194   /// given base type is ambiguous (i.e., it refers to multiple subobjects of
195   /// the same base type).
196   bool isAmbiguous(CanQualType BaseType);
197 
198   /// Whether we are finding multiple paths to detect ambiguities.
199   bool isFindingAmbiguities() const { return FindAmbiguities; }
200 
201   /// Whether we are recording paths.
202   bool isRecordingPaths() const { return RecordPaths; }
203 
204   /// Specify whether we should be recording paths or not.
205   void setRecordingPaths(bool RP) { RecordPaths = RP; }
206 
207   /// Whether we are detecting virtual bases.
208   bool isDetectingVirtual() const { return DetectVirtual; }
209 
210   /// The virtual base discovered on the path (if we are merely
211   /// detecting virtuals).
212   const RecordType* getDetectedVirtual() const {
213     return DetectedVirtual;
214   }
215 
216   /// Retrieve the type from which this base-paths search
217   /// began
218   const CXXRecordDecl *getOrigin() const { return Origin; }
219   void setOrigin(const CXXRecordDecl *Rec) { Origin = Rec; }
220 
221   /// Clear the base-paths results.
222   void clear();
223 
224   /// Swap this data structure's contents with another CXXBasePaths
225   /// object.
226   void swap(CXXBasePaths &Other);
227 };
228 
229 /// Uniquely identifies a virtual method within a class
230 /// hierarchy by the method itself and a class subobject number.
231 struct UniqueVirtualMethod {
232   /// The overriding virtual method.
233   CXXMethodDecl *Method = nullptr;
234 
235   /// The subobject in which the overriding virtual method
236   /// resides.
237   unsigned Subobject = 0;
238 
239   /// The virtual base class subobject of which this overridden
240   /// virtual method is a part. Note that this records the closest
241   /// derived virtual base class subobject.
242   const CXXRecordDecl *InVirtualSubobject = nullptr;
243 
244   UniqueVirtualMethod() = default;
245 
246   UniqueVirtualMethod(CXXMethodDecl *Method, unsigned Subobject,
247                       const CXXRecordDecl *InVirtualSubobject)
248       : Method(Method), Subobject(Subobject),
249         InVirtualSubobject(InVirtualSubobject) {}
250 
251   friend bool operator==(const UniqueVirtualMethod &X,
252                          const UniqueVirtualMethod &Y) {
253     return X.Method == Y.Method && X.Subobject == Y.Subobject &&
254       X.InVirtualSubobject == Y.InVirtualSubobject;
255   }
256 
257   friend bool operator!=(const UniqueVirtualMethod &X,
258                          const UniqueVirtualMethod &Y) {
259     return !(X == Y);
260   }
261 };
262 
263 /// The set of methods that override a given virtual method in
264 /// each subobject where it occurs.
265 ///
266 /// The first part of the pair is the subobject in which the
267 /// overridden virtual function occurs, while the second part of the
268 /// pair is the virtual method that overrides it (including the
269 /// subobject in which that virtual function occurs).
270 class OverridingMethods {
271   using ValuesT = SmallVector<UniqueVirtualMethod, 4>;
272   using MapType = llvm::MapVector<unsigned, ValuesT>;
273 
274   MapType Overrides;
275 
276 public:
277   // Iterate over the set of subobjects that have overriding methods.
278   using iterator = MapType::iterator;
279   using const_iterator = MapType::const_iterator;
280 
281   iterator begin() { return Overrides.begin(); }
282   const_iterator begin() const { return Overrides.begin(); }
283   iterator end() { return Overrides.end(); }
284   const_iterator end() const { return Overrides.end(); }
285   unsigned size() const { return Overrides.size(); }
286 
287   // Iterate over the set of overriding virtual methods in a given
288   // subobject.
289   using overriding_iterator =
290       SmallVectorImpl<UniqueVirtualMethod>::iterator;
291   using overriding_const_iterator =
292       SmallVectorImpl<UniqueVirtualMethod>::const_iterator;
293 
294   // Add a new overriding method for a particular subobject.
295   void add(unsigned OverriddenSubobject, UniqueVirtualMethod Overriding);
296 
297   // Add all of the overriding methods from "other" into overrides for
298   // this method. Used when merging the overrides from multiple base
299   // class subobjects.
300   void add(const OverridingMethods &Other);
301 
302   // Replace all overriding virtual methods in all subobjects with the
303   // given virtual method.
304   void replaceAll(UniqueVirtualMethod Overriding);
305 };
306 
307 /// A mapping from each virtual member function to its set of
308 /// final overriders.
309 ///
310 /// Within a class hierarchy for a given derived class, each virtual
311 /// member function in that hierarchy has one or more "final
312 /// overriders" (C++ [class.virtual]p2). A final overrider for a
313 /// virtual function "f" is the virtual function that will actually be
314 /// invoked when dispatching a call to "f" through the
315 /// vtable. Well-formed classes have a single final overrider for each
316 /// virtual function; in abstract classes, the final overrider for at
317 /// least one virtual function is a pure virtual function. Due to
318 /// multiple, virtual inheritance, it is possible for a class to have
319 /// more than one final overrider. Athough this is an error (per C++
320 /// [class.virtual]p2), it is not considered an error here: the final
321 /// overrider map can represent multiple final overriders for a
322 /// method, and it is up to the client to determine whether they are
323 /// problem. For example, the following class \c D has two final
324 /// overriders for the virtual function \c A::f(), one in \c C and one
325 /// in \c D:
326 ///
327 /// \code
328 ///   struct A { virtual void f(); };
329 ///   struct B : virtual A { virtual void f(); };
330 ///   struct C : virtual A { virtual void f(); };
331 ///   struct D : B, C { };
332 /// \endcode
333 ///
334 /// This data structure contains a mapping from every virtual
335 /// function *that does not override an existing virtual function* and
336 /// in every subobject where that virtual function occurs to the set
337 /// of virtual functions that override it. Thus, the same virtual
338 /// function \c A::f can actually occur in multiple subobjects of type
339 /// \c A due to multiple inheritance, and may be overridden by
340 /// different virtual functions in each, as in the following example:
341 ///
342 /// \code
343 ///   struct A { virtual void f(); };
344 ///   struct B : A { virtual void f(); };
345 ///   struct C : A { virtual void f(); };
346 ///   struct D : B, C { };
347 /// \endcode
348 ///
349 /// Unlike in the previous example, where the virtual functions \c
350 /// B::f and \c C::f both overrode \c A::f in the same subobject of
351 /// type \c A, in this example the two virtual functions both override
352 /// \c A::f but in *different* subobjects of type A. This is
353 /// represented by numbering the subobjects in which the overridden
354 /// and the overriding virtual member functions are located. Subobject
355 /// 0 represents the virtual base class subobject of that type, while
356 /// subobject numbers greater than 0 refer to non-virtual base class
357 /// subobjects of that type.
358 class CXXFinalOverriderMap
359   : public llvm::MapVector<const CXXMethodDecl *, OverridingMethods> {};
360 
361 /// A set of all the primary bases for a class.
362 class CXXIndirectPrimaryBaseSet
363   : public llvm::SmallSet<const CXXRecordDecl*, 32> {};
364 
365 inline bool
366 inheritanceModelHasVBPtrOffsetField(MSInheritanceModel Inheritance) {
367   return Inheritance == MSInheritanceModel::Unspecified;
368 }
369 
370 // Only member pointers to functions need a this adjustment, since it can be
371 // combined with the field offset for data pointers.
372 inline bool inheritanceModelHasNVOffsetField(bool IsMemberFunction,
373                                              MSInheritanceModel Inheritance) {
374   return IsMemberFunction && Inheritance >= MSInheritanceModel::Multiple;
375 }
376 
377 inline bool
378 inheritanceModelHasVBTableOffsetField(MSInheritanceModel Inheritance) {
379   return Inheritance >= MSInheritanceModel::Virtual;
380 }
381 
382 inline bool inheritanceModelHasOnlyOneField(bool IsMemberFunction,
383                                             MSInheritanceModel Inheritance) {
384   if (IsMemberFunction)
385     return Inheritance <= MSInheritanceModel::Single;
386   return Inheritance <= MSInheritanceModel::Multiple;
387 }
388 
389 } // namespace clang
390 
391 #endif // LLVM_CLANG_AST_CXXINHERITANCE_H
392