1 //===- Decl.h - Classes for representing declarations -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the Decl subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_AST_DECL_H
14 #define LLVM_CLANG_AST_DECL_H
15 
16 #include "clang/AST/APValue.h"
17 #include "clang/AST/ASTContextAllocate.h"
18 #include "clang/AST/DeclAccessPair.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclarationName.h"
21 #include "clang/AST/ExternalASTSource.h"
22 #include "clang/AST/NestedNameSpecifier.h"
23 #include "clang/AST/Redeclarable.h"
24 #include "clang/AST/Type.h"
25 #include "clang/Basic/AddressSpaces.h"
26 #include "clang/Basic/Diagnostic.h"
27 #include "clang/Basic/IdentifierTable.h"
28 #include "clang/Basic/LLVM.h"
29 #include "clang/Basic/Linkage.h"
30 #include "clang/Basic/OperatorKinds.h"
31 #include "clang/Basic/PartialDiagnostic.h"
32 #include "clang/Basic/PragmaKinds.h"
33 #include "clang/Basic/SourceLocation.h"
34 #include "clang/Basic/Specifiers.h"
35 #include "clang/Basic/Visibility.h"
36 #include "llvm/ADT/APSInt.h"
37 #include "llvm/ADT/ArrayRef.h"
38 #include "llvm/ADT/PointerIntPair.h"
39 #include "llvm/ADT/PointerUnion.h"
40 #include "llvm/ADT/StringRef.h"
41 #include "llvm/ADT/iterator_range.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/Compiler.h"
44 #include "llvm/Support/TrailingObjects.h"
45 #include <cassert>
46 #include <cstddef>
47 #include <cstdint>
48 #include <optional>
49 #include <string>
50 #include <utility>
51 
52 namespace clang {
53 
54 class ASTContext;
55 struct ASTTemplateArgumentListInfo;
56 class CompoundStmt;
57 class DependentFunctionTemplateSpecializationInfo;
58 class EnumDecl;
59 class Expr;
60 class FunctionTemplateDecl;
61 class FunctionTemplateSpecializationInfo;
62 class FunctionTypeLoc;
63 class LabelStmt;
64 class MemberSpecializationInfo;
65 class Module;
66 class NamespaceDecl;
67 class ParmVarDecl;
68 class RecordDecl;
69 class Stmt;
70 class StringLiteral;
71 class TagDecl;
72 class TemplateArgumentList;
73 class TemplateArgumentListInfo;
74 class TemplateParameterList;
75 class TypeAliasTemplateDecl;
76 class UnresolvedSetImpl;
77 class VarTemplateDecl;
78 
79 /// The top declaration context.
80 class TranslationUnitDecl : public Decl,
81                             public DeclContext,
82                             public Redeclarable<TranslationUnitDecl> {
83   using redeclarable_base = Redeclarable<TranslationUnitDecl>;
84 
85   TranslationUnitDecl *getNextRedeclarationImpl() override {
86     return getNextRedeclaration();
87   }
88 
89   TranslationUnitDecl *getPreviousDeclImpl() override {
90     return getPreviousDecl();
91   }
92 
93   TranslationUnitDecl *getMostRecentDeclImpl() override {
94     return getMostRecentDecl();
95   }
96 
97   ASTContext &Ctx;
98 
99   /// The (most recently entered) anonymous namespace for this
100   /// translation unit, if one has been created.
101   NamespaceDecl *AnonymousNamespace = nullptr;
102 
103   explicit TranslationUnitDecl(ASTContext &ctx);
104 
105   virtual void anchor();
106 
107 public:
108   using redecl_range = redeclarable_base::redecl_range;
109   using redecl_iterator = redeclarable_base::redecl_iterator;
110 
111   using redeclarable_base::getMostRecentDecl;
112   using redeclarable_base::getPreviousDecl;
113   using redeclarable_base::isFirstDecl;
114   using redeclarable_base::redecls;
115   using redeclarable_base::redecls_begin;
116   using redeclarable_base::redecls_end;
117 
118   ASTContext &getASTContext() const { return Ctx; }
119 
120   NamespaceDecl *getAnonymousNamespace() const { return AnonymousNamespace; }
121   void setAnonymousNamespace(NamespaceDecl *D) { AnonymousNamespace = D; }
122 
123   static TranslationUnitDecl *Create(ASTContext &C);
124 
125   // Implement isa/cast/dyncast/etc.
126   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
127   static bool classofKind(Kind K) { return K == TranslationUnit; }
128   static DeclContext *castToDeclContext(const TranslationUnitDecl *D) {
129     return static_cast<DeclContext *>(const_cast<TranslationUnitDecl*>(D));
130   }
131   static TranslationUnitDecl *castFromDeclContext(const DeclContext *DC) {
132     return static_cast<TranslationUnitDecl *>(const_cast<DeclContext*>(DC));
133   }
134 };
135 
136 /// Represents a `#pragma comment` line. Always a child of
137 /// TranslationUnitDecl.
138 class PragmaCommentDecl final
139     : public Decl,
140       private llvm::TrailingObjects<PragmaCommentDecl, char> {
141   friend class ASTDeclReader;
142   friend class ASTDeclWriter;
143   friend TrailingObjects;
144 
145   PragmaMSCommentKind CommentKind;
146 
147   PragmaCommentDecl(TranslationUnitDecl *TU, SourceLocation CommentLoc,
148                     PragmaMSCommentKind CommentKind)
149       : Decl(PragmaComment, TU, CommentLoc), CommentKind(CommentKind) {}
150 
151   virtual void anchor();
152 
153 public:
154   static PragmaCommentDecl *Create(const ASTContext &C, TranslationUnitDecl *DC,
155                                    SourceLocation CommentLoc,
156                                    PragmaMSCommentKind CommentKind,
157                                    StringRef Arg);
158   static PragmaCommentDecl *CreateDeserialized(ASTContext &C, unsigned ID,
159                                                unsigned ArgSize);
160 
161   PragmaMSCommentKind getCommentKind() const { return CommentKind; }
162 
163   StringRef getArg() const { return getTrailingObjects<char>(); }
164 
165   // Implement isa/cast/dyncast/etc.
166   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
167   static bool classofKind(Kind K) { return K == PragmaComment; }
168 };
169 
170 /// Represents a `#pragma detect_mismatch` line. Always a child of
171 /// TranslationUnitDecl.
172 class PragmaDetectMismatchDecl final
173     : public Decl,
174       private llvm::TrailingObjects<PragmaDetectMismatchDecl, char> {
175   friend class ASTDeclReader;
176   friend class ASTDeclWriter;
177   friend TrailingObjects;
178 
179   size_t ValueStart;
180 
181   PragmaDetectMismatchDecl(TranslationUnitDecl *TU, SourceLocation Loc,
182                            size_t ValueStart)
183       : Decl(PragmaDetectMismatch, TU, Loc), ValueStart(ValueStart) {}
184 
185   virtual void anchor();
186 
187 public:
188   static PragmaDetectMismatchDecl *Create(const ASTContext &C,
189                                           TranslationUnitDecl *DC,
190                                           SourceLocation Loc, StringRef Name,
191                                           StringRef Value);
192   static PragmaDetectMismatchDecl *
193   CreateDeserialized(ASTContext &C, unsigned ID, unsigned NameValueSize);
194 
195   StringRef getName() const { return getTrailingObjects<char>(); }
196   StringRef getValue() const { return getTrailingObjects<char>() + ValueStart; }
197 
198   // Implement isa/cast/dyncast/etc.
199   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
200   static bool classofKind(Kind K) { return K == PragmaDetectMismatch; }
201 };
202 
203 /// Declaration context for names declared as extern "C" in C++. This
204 /// is neither the semantic nor lexical context for such declarations, but is
205 /// used to check for conflicts with other extern "C" declarations. Example:
206 ///
207 /// \code
208 ///   namespace N { extern "C" void f(); } // #1
209 ///   void N::f() {}                       // #2
210 ///   namespace M { extern "C" void f(); } // #3
211 /// \endcode
212 ///
213 /// The semantic context of #1 is namespace N and its lexical context is the
214 /// LinkageSpecDecl; the semantic context of #2 is namespace N and its lexical
215 /// context is the TU. However, both declarations are also visible in the
216 /// extern "C" context.
217 ///
218 /// The declaration at #3 finds it is a redeclaration of \c N::f through
219 /// lookup in the extern "C" context.
220 class ExternCContextDecl : public Decl, public DeclContext {
221   explicit ExternCContextDecl(TranslationUnitDecl *TU)
222     : Decl(ExternCContext, TU, SourceLocation()),
223       DeclContext(ExternCContext) {}
224 
225   virtual void anchor();
226 
227 public:
228   static ExternCContextDecl *Create(const ASTContext &C,
229                                     TranslationUnitDecl *TU);
230 
231   // Implement isa/cast/dyncast/etc.
232   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
233   static bool classofKind(Kind K) { return K == ExternCContext; }
234   static DeclContext *castToDeclContext(const ExternCContextDecl *D) {
235     return static_cast<DeclContext *>(const_cast<ExternCContextDecl*>(D));
236   }
237   static ExternCContextDecl *castFromDeclContext(const DeclContext *DC) {
238     return static_cast<ExternCContextDecl *>(const_cast<DeclContext*>(DC));
239   }
240 };
241 
242 /// This represents a decl that may have a name.  Many decls have names such
243 /// as ObjCMethodDecl, but not \@class, etc.
244 ///
245 /// Note that not every NamedDecl is actually named (e.g., a struct might
246 /// be anonymous), and not every name is an identifier.
247 class NamedDecl : public Decl {
248   /// The name of this declaration, which is typically a normal
249   /// identifier but may also be a special kind of name (C++
250   /// constructor, Objective-C selector, etc.)
251   DeclarationName Name;
252 
253   virtual void anchor();
254 
255 private:
256   NamedDecl *getUnderlyingDeclImpl() LLVM_READONLY;
257 
258 protected:
259   NamedDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
260       : Decl(DK, DC, L), Name(N) {}
261 
262 public:
263   /// Get the identifier that names this declaration, if there is one.
264   ///
265   /// This will return NULL if this declaration has no name (e.g., for
266   /// an unnamed class) or if the name is a special name (C++ constructor,
267   /// Objective-C selector, etc.).
268   IdentifierInfo *getIdentifier() const { return Name.getAsIdentifierInfo(); }
269 
270   /// Get the name of identifier for this declaration as a StringRef.
271   ///
272   /// This requires that the declaration have a name and that it be a simple
273   /// identifier.
274   StringRef getName() const {
275     assert(Name.isIdentifier() && "Name is not a simple identifier");
276     return getIdentifier() ? getIdentifier()->getName() : "";
277   }
278 
279   /// Get a human-readable name for the declaration, even if it is one of the
280   /// special kinds of names (C++ constructor, Objective-C selector, etc).
281   ///
282   /// Creating this name requires expensive string manipulation, so it should
283   /// be called only when performance doesn't matter. For simple declarations,
284   /// getNameAsCString() should suffice.
285   //
286   // FIXME: This function should be renamed to indicate that it is not just an
287   // alternate form of getName(), and clients should move as appropriate.
288   //
289   // FIXME: Deprecated, move clients to getName().
290   std::string getNameAsString() const { return Name.getAsString(); }
291 
292   /// Pretty-print the unqualified name of this declaration. Can be overloaded
293   /// by derived classes to provide a more user-friendly name when appropriate.
294   virtual void printName(raw_ostream &OS, const PrintingPolicy &Policy) const;
295   /// Calls printName() with the ASTContext printing policy from the decl.
296   void printName(raw_ostream &OS) const;
297 
298   /// Get the actual, stored name of the declaration, which may be a special
299   /// name.
300   ///
301   /// Note that generally in diagnostics, the non-null \p NamedDecl* itself
302   /// should be sent into the diagnostic instead of using the result of
303   /// \p getDeclName().
304   ///
305   /// A \p DeclarationName in a diagnostic will just be streamed to the output,
306   /// which will directly result in a call to \p DeclarationName::print.
307   ///
308   /// A \p NamedDecl* in a diagnostic will also ultimately result in a call to
309   /// \p DeclarationName::print, but with two customisation points along the
310   /// way (\p getNameForDiagnostic and \p printName). These are used to print
311   /// the template arguments if any, and to provide a user-friendly name for
312   /// some entities (such as unnamed variables and anonymous records).
313   DeclarationName getDeclName() const { return Name; }
314 
315   /// Set the name of this declaration.
316   void setDeclName(DeclarationName N) { Name = N; }
317 
318   /// Returns a human-readable qualified name for this declaration, like
319   /// A::B::i, for i being member of namespace A::B.
320   ///
321   /// If the declaration is not a member of context which can be named (record,
322   /// namespace), it will return the same result as printName().
323   ///
324   /// Creating this name is expensive, so it should be called only when
325   /// performance doesn't matter.
326   void printQualifiedName(raw_ostream &OS) const;
327   void printQualifiedName(raw_ostream &OS, const PrintingPolicy &Policy) const;
328 
329   /// Print only the nested name specifier part of a fully-qualified name,
330   /// including the '::' at the end. E.g.
331   ///    when `printQualifiedName(D)` prints "A::B::i",
332   ///    this function prints "A::B::".
333   void printNestedNameSpecifier(raw_ostream &OS) const;
334   void printNestedNameSpecifier(raw_ostream &OS,
335                                 const PrintingPolicy &Policy) const;
336 
337   // FIXME: Remove string version.
338   std::string getQualifiedNameAsString() const;
339 
340   /// Appends a human-readable name for this declaration into the given stream.
341   ///
342   /// This is the method invoked by Sema when displaying a NamedDecl
343   /// in a diagnostic.  It does not necessarily produce the same
344   /// result as printName(); for example, class template
345   /// specializations are printed with their template arguments.
346   virtual void getNameForDiagnostic(raw_ostream &OS,
347                                     const PrintingPolicy &Policy,
348                                     bool Qualified) const;
349 
350   /// Determine whether this declaration, if known to be well-formed within
351   /// its context, will replace the declaration OldD if introduced into scope.
352   ///
353   /// A declaration will replace another declaration if, for example, it is
354   /// a redeclaration of the same variable or function, but not if it is a
355   /// declaration of a different kind (function vs. class) or an overloaded
356   /// function.
357   ///
358   /// \param IsKnownNewer \c true if this declaration is known to be newer
359   /// than \p OldD (for instance, if this declaration is newly-created).
360   bool declarationReplaces(NamedDecl *OldD, bool IsKnownNewer = true) const;
361 
362   /// Determine whether this declaration has linkage.
363   bool hasLinkage() const;
364 
365   using Decl::isModulePrivate;
366   using Decl::setModulePrivate;
367 
368   /// Determine whether this declaration is a C++ class member.
369   bool isCXXClassMember() const {
370     const DeclContext *DC = getDeclContext();
371 
372     // C++0x [class.mem]p1:
373     //   The enumerators of an unscoped enumeration defined in
374     //   the class are members of the class.
375     if (isa<EnumDecl>(DC))
376       DC = DC->getRedeclContext();
377 
378     return DC->isRecord();
379   }
380 
381   /// Determine whether the given declaration is an instance member of
382   /// a C++ class.
383   bool isCXXInstanceMember() const;
384 
385   /// Determine if the declaration obeys the reserved identifier rules of the
386   /// given language.
387   ReservedIdentifierStatus isReserved(const LangOptions &LangOpts) const;
388 
389   /// Determine what kind of linkage this entity has.
390   ///
391   /// This is not the linkage as defined by the standard or the codegen notion
392   /// of linkage. It is just an implementation detail that is used to compute
393   /// those.
394   Linkage getLinkageInternal() const;
395 
396   /// Get the linkage from a semantic point of view. Entities in
397   /// anonymous namespaces are external (in c++98).
398   Linkage getFormalLinkage() const;
399 
400   /// True if this decl has external linkage.
401   bool hasExternalFormalLinkage() const {
402     return isExternalFormalLinkage(getLinkageInternal());
403   }
404 
405   bool isExternallyVisible() const {
406     return clang::isExternallyVisible(getLinkageInternal());
407   }
408 
409   /// Determine whether this declaration can be redeclared in a
410   /// different translation unit.
411   bool isExternallyDeclarable() const {
412     return isExternallyVisible() && !getOwningModuleForLinkage();
413   }
414 
415   /// Determines the visibility of this entity.
416   Visibility getVisibility() const {
417     return getLinkageAndVisibility().getVisibility();
418   }
419 
420   /// Determines the linkage and visibility of this entity.
421   LinkageInfo getLinkageAndVisibility() const;
422 
423   /// Kinds of explicit visibility.
424   enum ExplicitVisibilityKind {
425     /// Do an LV computation for, ultimately, a type.
426     /// Visibility may be restricted by type visibility settings and
427     /// the visibility of template arguments.
428     VisibilityForType,
429 
430     /// Do an LV computation for, ultimately, a non-type declaration.
431     /// Visibility may be restricted by value visibility settings and
432     /// the visibility of template arguments.
433     VisibilityForValue
434   };
435 
436   /// If visibility was explicitly specified for this
437   /// declaration, return that visibility.
438   std::optional<Visibility>
439   getExplicitVisibility(ExplicitVisibilityKind kind) const;
440 
441   /// True if the computed linkage is valid. Used for consistency
442   /// checking. Should always return true.
443   bool isLinkageValid() const;
444 
445   /// True if something has required us to compute the linkage
446   /// of this declaration.
447   ///
448   /// Language features which can retroactively change linkage (like a
449   /// typedef name for linkage purposes) may need to consider this,
450   /// but hopefully only in transitory ways during parsing.
451   bool hasLinkageBeenComputed() const {
452     return hasCachedLinkage();
453   }
454 
455   /// Looks through UsingDecls and ObjCCompatibleAliasDecls for
456   /// the underlying named decl.
457   NamedDecl *getUnderlyingDecl() {
458     // Fast-path the common case.
459     if (this->getKind() != UsingShadow &&
460         this->getKind() != ConstructorUsingShadow &&
461         this->getKind() != ObjCCompatibleAlias &&
462         this->getKind() != NamespaceAlias)
463       return this;
464 
465     return getUnderlyingDeclImpl();
466   }
467   const NamedDecl *getUnderlyingDecl() const {
468     return const_cast<NamedDecl*>(this)->getUnderlyingDecl();
469   }
470 
471   NamedDecl *getMostRecentDecl() {
472     return cast<NamedDecl>(static_cast<Decl *>(this)->getMostRecentDecl());
473   }
474   const NamedDecl *getMostRecentDecl() const {
475     return const_cast<NamedDecl*>(this)->getMostRecentDecl();
476   }
477 
478   ObjCStringFormatFamily getObjCFStringFormattingFamily() const;
479 
480   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
481   static bool classofKind(Kind K) { return K >= firstNamed && K <= lastNamed; }
482 };
483 
484 inline raw_ostream &operator<<(raw_ostream &OS, const NamedDecl &ND) {
485   ND.printName(OS);
486   return OS;
487 }
488 
489 /// Represents the declaration of a label.  Labels also have a
490 /// corresponding LabelStmt, which indicates the position that the label was
491 /// defined at.  For normal labels, the location of the decl is the same as the
492 /// location of the statement.  For GNU local labels (__label__), the decl
493 /// location is where the __label__ is.
494 class LabelDecl : public NamedDecl {
495   LabelStmt *TheStmt;
496   StringRef MSAsmName;
497   bool MSAsmNameResolved = false;
498 
499   /// For normal labels, this is the same as the main declaration
500   /// label, i.e., the location of the identifier; for GNU local labels,
501   /// this is the location of the __label__ keyword.
502   SourceLocation LocStart;
503 
504   LabelDecl(DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II,
505             LabelStmt *S, SourceLocation StartL)
506       : NamedDecl(Label, DC, IdentL, II), TheStmt(S), LocStart(StartL) {}
507 
508   void anchor() override;
509 
510 public:
511   static LabelDecl *Create(ASTContext &C, DeclContext *DC,
512                            SourceLocation IdentL, IdentifierInfo *II);
513   static LabelDecl *Create(ASTContext &C, DeclContext *DC,
514                            SourceLocation IdentL, IdentifierInfo *II,
515                            SourceLocation GnuLabelL);
516   static LabelDecl *CreateDeserialized(ASTContext &C, unsigned ID);
517 
518   LabelStmt *getStmt() const { return TheStmt; }
519   void setStmt(LabelStmt *T) { TheStmt = T; }
520 
521   bool isGnuLocal() const { return LocStart != getLocation(); }
522   void setLocStart(SourceLocation L) { LocStart = L; }
523 
524   SourceRange getSourceRange() const override LLVM_READONLY {
525     return SourceRange(LocStart, getLocation());
526   }
527 
528   bool isMSAsmLabel() const { return !MSAsmName.empty(); }
529   bool isResolvedMSAsmLabel() const { return isMSAsmLabel() && MSAsmNameResolved; }
530   void setMSAsmLabel(StringRef Name);
531   StringRef getMSAsmLabel() const { return MSAsmName; }
532   void setMSAsmLabelResolved() { MSAsmNameResolved = true; }
533 
534   // Implement isa/cast/dyncast/etc.
535   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
536   static bool classofKind(Kind K) { return K == Label; }
537 };
538 
539 /// Represent a C++ namespace.
540 class NamespaceDecl : public NamedDecl, public DeclContext,
541                       public Redeclarable<NamespaceDecl>
542 {
543 
544   enum Flags : unsigned { F_Inline = 1 << 0, F_Nested = 1 << 1 };
545 
546   /// The starting location of the source range, pointing
547   /// to either the namespace or the inline keyword.
548   SourceLocation LocStart;
549 
550   /// The ending location of the source range.
551   SourceLocation RBraceLoc;
552 
553   /// A pointer to either the anonymous namespace that lives just inside
554   /// this namespace or to the first namespace in the chain (the latter case
555   /// only when this is not the first in the chain), along with a
556   /// boolean value indicating whether this is an inline namespace.
557   llvm::PointerIntPair<NamespaceDecl *, 2, unsigned>
558       AnonOrFirstNamespaceAndFlags;
559 
560   NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
561                 SourceLocation StartLoc, SourceLocation IdLoc,
562                 IdentifierInfo *Id, NamespaceDecl *PrevDecl, bool Nested);
563 
564   using redeclarable_base = Redeclarable<NamespaceDecl>;
565 
566   NamespaceDecl *getNextRedeclarationImpl() override;
567   NamespaceDecl *getPreviousDeclImpl() override;
568   NamespaceDecl *getMostRecentDeclImpl() override;
569 
570 public:
571   friend class ASTDeclReader;
572   friend class ASTDeclWriter;
573 
574   static NamespaceDecl *Create(ASTContext &C, DeclContext *DC, bool Inline,
575                                SourceLocation StartLoc, SourceLocation IdLoc,
576                                IdentifierInfo *Id, NamespaceDecl *PrevDecl,
577                                bool Nested);
578 
579   static NamespaceDecl *CreateDeserialized(ASTContext &C, unsigned ID);
580 
581   using redecl_range = redeclarable_base::redecl_range;
582   using redecl_iterator = redeclarable_base::redecl_iterator;
583 
584   using redeclarable_base::redecls_begin;
585   using redeclarable_base::redecls_end;
586   using redeclarable_base::redecls;
587   using redeclarable_base::getPreviousDecl;
588   using redeclarable_base::getMostRecentDecl;
589   using redeclarable_base::isFirstDecl;
590 
591   /// Returns true if this is an anonymous namespace declaration.
592   ///
593   /// For example:
594   /// \code
595   ///   namespace {
596   ///     ...
597   ///   };
598   /// \endcode
599   /// q.v. C++ [namespace.unnamed]
600   bool isAnonymousNamespace() const {
601     return !getIdentifier();
602   }
603 
604   /// Returns true if this is an inline namespace declaration.
605   bool isInline() const {
606     return AnonOrFirstNamespaceAndFlags.getInt() & F_Inline;
607   }
608 
609   /// Set whether this is an inline namespace declaration.
610   void setInline(bool Inline) {
611     unsigned F = AnonOrFirstNamespaceAndFlags.getInt();
612     if (Inline)
613       AnonOrFirstNamespaceAndFlags.setInt(F | F_Inline);
614     else
615       AnonOrFirstNamespaceAndFlags.setInt(F & ~F_Inline);
616   }
617 
618   /// Returns true if this is a nested namespace declaration.
619   /// \code
620   /// namespace outer::nested { }
621   /// \endcode
622   bool isNested() const {
623     return AnonOrFirstNamespaceAndFlags.getInt() & F_Nested;
624   }
625 
626   /// Set whether this is a nested namespace declaration.
627   void setNested(bool Nested) {
628     unsigned F = AnonOrFirstNamespaceAndFlags.getInt();
629     if (Nested)
630       AnonOrFirstNamespaceAndFlags.setInt(F | F_Nested);
631     else
632       AnonOrFirstNamespaceAndFlags.setInt(F & ~F_Nested);
633   }
634 
635   /// Returns true if the inline qualifier for \c Name is redundant.
636   bool isRedundantInlineQualifierFor(DeclarationName Name) const {
637     if (!isInline())
638       return false;
639     auto X = lookup(Name);
640     // We should not perform a lookup within a transparent context, so find a
641     // non-transparent parent context.
642     auto Y = getParent()->getNonTransparentContext()->lookup(Name);
643     return std::distance(X.begin(), X.end()) ==
644       std::distance(Y.begin(), Y.end());
645   }
646 
647   /// Get the original (first) namespace declaration.
648   NamespaceDecl *getOriginalNamespace();
649 
650   /// Get the original (first) namespace declaration.
651   const NamespaceDecl *getOriginalNamespace() const;
652 
653   /// Return true if this declaration is an original (first) declaration
654   /// of the namespace. This is false for non-original (subsequent) namespace
655   /// declarations and anonymous namespaces.
656   bool isOriginalNamespace() const;
657 
658   /// Retrieve the anonymous namespace nested inside this namespace,
659   /// if any.
660   NamespaceDecl *getAnonymousNamespace() const {
661     return getOriginalNamespace()->AnonOrFirstNamespaceAndFlags.getPointer();
662   }
663 
664   void setAnonymousNamespace(NamespaceDecl *D) {
665     getOriginalNamespace()->AnonOrFirstNamespaceAndFlags.setPointer(D);
666   }
667 
668   /// Retrieves the canonical declaration of this namespace.
669   NamespaceDecl *getCanonicalDecl() override {
670     return getOriginalNamespace();
671   }
672   const NamespaceDecl *getCanonicalDecl() const {
673     return getOriginalNamespace();
674   }
675 
676   SourceRange getSourceRange() const override LLVM_READONLY {
677     return SourceRange(LocStart, RBraceLoc);
678   }
679 
680   SourceLocation getBeginLoc() const LLVM_READONLY { return LocStart; }
681   SourceLocation getRBraceLoc() const { return RBraceLoc; }
682   void setLocStart(SourceLocation L) { LocStart = L; }
683   void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
684 
685   // Implement isa/cast/dyncast/etc.
686   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
687   static bool classofKind(Kind K) { return K == Namespace; }
688   static DeclContext *castToDeclContext(const NamespaceDecl *D) {
689     return static_cast<DeclContext *>(const_cast<NamespaceDecl*>(D));
690   }
691   static NamespaceDecl *castFromDeclContext(const DeclContext *DC) {
692     return static_cast<NamespaceDecl *>(const_cast<DeclContext*>(DC));
693   }
694 };
695 
696 class VarDecl;
697 
698 /// Represent the declaration of a variable (in which case it is
699 /// an lvalue) a function (in which case it is a function designator) or
700 /// an enum constant.
701 class ValueDecl : public NamedDecl {
702   QualType DeclType;
703 
704   void anchor() override;
705 
706 protected:
707   ValueDecl(Kind DK, DeclContext *DC, SourceLocation L,
708             DeclarationName N, QualType T)
709     : NamedDecl(DK, DC, L, N), DeclType(T) {}
710 
711 public:
712   QualType getType() const { return DeclType; }
713   void setType(QualType newType) { DeclType = newType; }
714 
715   /// Determine whether this symbol is weakly-imported,
716   ///        or declared with the weak or weak-ref attr.
717   bool isWeak() const;
718 
719   /// Whether this variable is the implicit variable for a lambda init-capture.
720   /// Only VarDecl can be init captures, but both VarDecl and BindingDecl
721   /// can be captured.
722   bool isInitCapture() const;
723 
724   // If this is a VarDecl, or a BindindDecl with an
725   // associated decomposed VarDecl, return that VarDecl.
726   VarDecl *getPotentiallyDecomposedVarDecl();
727   const VarDecl *getPotentiallyDecomposedVarDecl() const {
728     return const_cast<ValueDecl *>(this)->getPotentiallyDecomposedVarDecl();
729   }
730 
731   // Implement isa/cast/dyncast/etc.
732   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
733   static bool classofKind(Kind K) { return K >= firstValue && K <= lastValue; }
734 };
735 
736 /// A struct with extended info about a syntactic
737 /// name qualifier, to be used for the case of out-of-line declarations.
738 struct QualifierInfo {
739   NestedNameSpecifierLoc QualifierLoc;
740 
741   /// The number of "outer" template parameter lists.
742   /// The count includes all of the template parameter lists that were matched
743   /// against the template-ids occurring into the NNS and possibly (in the
744   /// case of an explicit specialization) a final "template <>".
745   unsigned NumTemplParamLists = 0;
746 
747   /// A new-allocated array of size NumTemplParamLists,
748   /// containing pointers to the "outer" template parameter lists.
749   /// It includes all of the template parameter lists that were matched
750   /// against the template-ids occurring into the NNS and possibly (in the
751   /// case of an explicit specialization) a final "template <>".
752   TemplateParameterList** TemplParamLists = nullptr;
753 
754   QualifierInfo() = default;
755   QualifierInfo(const QualifierInfo &) = delete;
756   QualifierInfo& operator=(const QualifierInfo &) = delete;
757 
758   /// Sets info about "outer" template parameter lists.
759   void setTemplateParameterListsInfo(ASTContext &Context,
760                                      ArrayRef<TemplateParameterList *> TPLists);
761 };
762 
763 /// Represents a ValueDecl that came out of a declarator.
764 /// Contains type source information through TypeSourceInfo.
765 class DeclaratorDecl : public ValueDecl {
766   // A struct representing a TInfo, a trailing requires-clause and a syntactic
767   // qualifier, to be used for the (uncommon) case of out-of-line declarations
768   // and constrained function decls.
769   struct ExtInfo : public QualifierInfo {
770     TypeSourceInfo *TInfo;
771     Expr *TrailingRequiresClause = nullptr;
772   };
773 
774   llvm::PointerUnion<TypeSourceInfo *, ExtInfo *> DeclInfo;
775 
776   /// The start of the source range for this declaration,
777   /// ignoring outer template declarations.
778   SourceLocation InnerLocStart;
779 
780   bool hasExtInfo() const { return DeclInfo.is<ExtInfo*>(); }
781   ExtInfo *getExtInfo() { return DeclInfo.get<ExtInfo*>(); }
782   const ExtInfo *getExtInfo() const { return DeclInfo.get<ExtInfo*>(); }
783 
784 protected:
785   DeclaratorDecl(Kind DK, DeclContext *DC, SourceLocation L,
786                  DeclarationName N, QualType T, TypeSourceInfo *TInfo,
787                  SourceLocation StartL)
788       : ValueDecl(DK, DC, L, N, T), DeclInfo(TInfo), InnerLocStart(StartL) {}
789 
790 public:
791   friend class ASTDeclReader;
792   friend class ASTDeclWriter;
793 
794   TypeSourceInfo *getTypeSourceInfo() const {
795     return hasExtInfo()
796       ? getExtInfo()->TInfo
797       : DeclInfo.get<TypeSourceInfo*>();
798   }
799 
800   void setTypeSourceInfo(TypeSourceInfo *TI) {
801     if (hasExtInfo())
802       getExtInfo()->TInfo = TI;
803     else
804       DeclInfo = TI;
805   }
806 
807   /// Return start of source range ignoring outer template declarations.
808   SourceLocation getInnerLocStart() const { return InnerLocStart; }
809   void setInnerLocStart(SourceLocation L) { InnerLocStart = L; }
810 
811   /// Return start of source range taking into account any outer template
812   /// declarations.
813   SourceLocation getOuterLocStart() const;
814 
815   SourceRange getSourceRange() const override LLVM_READONLY;
816 
817   SourceLocation getBeginLoc() const LLVM_READONLY {
818     return getOuterLocStart();
819   }
820 
821   /// Retrieve the nested-name-specifier that qualifies the name of this
822   /// declaration, if it was present in the source.
823   NestedNameSpecifier *getQualifier() const {
824     return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
825                         : nullptr;
826   }
827 
828   /// Retrieve the nested-name-specifier (with source-location
829   /// information) that qualifies the name of this declaration, if it was
830   /// present in the source.
831   NestedNameSpecifierLoc getQualifierLoc() const {
832     return hasExtInfo() ? getExtInfo()->QualifierLoc
833                         : NestedNameSpecifierLoc();
834   }
835 
836   void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
837 
838   /// \brief Get the constraint-expression introduced by the trailing
839   /// requires-clause in the function/member declaration, or null if no
840   /// requires-clause was provided.
841   Expr *getTrailingRequiresClause() {
842     return hasExtInfo() ? getExtInfo()->TrailingRequiresClause
843                         : nullptr;
844   }
845 
846   const Expr *getTrailingRequiresClause() const {
847     return hasExtInfo() ? getExtInfo()->TrailingRequiresClause
848                         : nullptr;
849   }
850 
851   void setTrailingRequiresClause(Expr *TrailingRequiresClause);
852 
853   unsigned getNumTemplateParameterLists() const {
854     return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
855   }
856 
857   TemplateParameterList *getTemplateParameterList(unsigned index) const {
858     assert(index < getNumTemplateParameterLists());
859     return getExtInfo()->TemplParamLists[index];
860   }
861 
862   void setTemplateParameterListsInfo(ASTContext &Context,
863                                      ArrayRef<TemplateParameterList *> TPLists);
864 
865   SourceLocation getTypeSpecStartLoc() const;
866   SourceLocation getTypeSpecEndLoc() const;
867 
868   // Implement isa/cast/dyncast/etc.
869   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
870   static bool classofKind(Kind K) {
871     return K >= firstDeclarator && K <= lastDeclarator;
872   }
873 };
874 
875 /// Structure used to store a statement, the constant value to
876 /// which it was evaluated (if any), and whether or not the statement
877 /// is an integral constant expression (if known).
878 struct EvaluatedStmt {
879   /// Whether this statement was already evaluated.
880   bool WasEvaluated : 1;
881 
882   /// Whether this statement is being evaluated.
883   bool IsEvaluating : 1;
884 
885   /// Whether this variable is known to have constant initialization. This is
886   /// currently only computed in C++, for static / thread storage duration
887   /// variables that might have constant initialization and for variables that
888   /// are usable in constant expressions.
889   bool HasConstantInitialization : 1;
890 
891   /// Whether this variable is known to have constant destruction. That is,
892   /// whether running the destructor on the initial value is a side-effect
893   /// (and doesn't inspect any state that might have changed during program
894   /// execution). This is currently only computed if the destructor is
895   /// non-trivial.
896   bool HasConstantDestruction : 1;
897 
898   /// In C++98, whether the initializer is an ICE. This affects whether the
899   /// variable is usable in constant expressions.
900   bool HasICEInit : 1;
901   bool CheckedForICEInit : 1;
902 
903   LazyDeclStmtPtr Value;
904   APValue Evaluated;
905 
906   EvaluatedStmt()
907       : WasEvaluated(false), IsEvaluating(false),
908         HasConstantInitialization(false), HasConstantDestruction(false),
909         HasICEInit(false), CheckedForICEInit(false) {}
910 };
911 
912 /// Represents a variable declaration or definition.
913 class VarDecl : public DeclaratorDecl, public Redeclarable<VarDecl> {
914 public:
915   /// Initialization styles.
916   enum InitializationStyle {
917     /// C-style initialization with assignment
918     CInit,
919 
920     /// Call-style initialization (C++98)
921     CallInit,
922 
923     /// Direct list-initialization (C++11)
924     ListInit,
925 
926     /// Parenthesized list-initialization (C++20)
927     ParenListInit
928   };
929 
930   /// Kinds of thread-local storage.
931   enum TLSKind {
932     /// Not a TLS variable.
933     TLS_None,
934 
935     /// TLS with a known-constant initializer.
936     TLS_Static,
937 
938     /// TLS with a dynamic initializer.
939     TLS_Dynamic
940   };
941 
942   /// Return the string used to specify the storage class \p SC.
943   ///
944   /// It is illegal to call this function with SC == None.
945   static const char *getStorageClassSpecifierString(StorageClass SC);
946 
947 protected:
948   // A pointer union of Stmt * and EvaluatedStmt *. When an EvaluatedStmt, we
949   // have allocated the auxiliary struct of information there.
950   //
951   // TODO: It is a bit unfortunate to use a PointerUnion inside the VarDecl for
952   // this as *many* VarDecls are ParmVarDecls that don't have default
953   // arguments. We could save some space by moving this pointer union to be
954   // allocated in trailing space when necessary.
955   using InitType = llvm::PointerUnion<Stmt *, EvaluatedStmt *>;
956 
957   /// The initializer for this variable or, for a ParmVarDecl, the
958   /// C++ default argument.
959   mutable InitType Init;
960 
961 private:
962   friend class ASTDeclReader;
963   friend class ASTNodeImporter;
964   friend class StmtIteratorBase;
965 
966   class VarDeclBitfields {
967     friend class ASTDeclReader;
968     friend class VarDecl;
969 
970     unsigned SClass : 3;
971     unsigned TSCSpec : 2;
972     unsigned InitStyle : 2;
973 
974     /// Whether this variable is an ARC pseudo-__strong variable; see
975     /// isARCPseudoStrong() for details.
976     unsigned ARCPseudoStrong : 1;
977   };
978   enum { NumVarDeclBits = 8 };
979 
980 protected:
981   enum { NumParameterIndexBits = 8 };
982 
983   enum DefaultArgKind {
984     DAK_None,
985     DAK_Unparsed,
986     DAK_Uninstantiated,
987     DAK_Normal
988   };
989 
990   enum { NumScopeDepthOrObjCQualsBits = 7 };
991 
992   class ParmVarDeclBitfields {
993     friend class ASTDeclReader;
994     friend class ParmVarDecl;
995 
996     unsigned : NumVarDeclBits;
997 
998     /// Whether this parameter inherits a default argument from a
999     /// prior declaration.
1000     unsigned HasInheritedDefaultArg : 1;
1001 
1002     /// Describes the kind of default argument for this parameter. By default
1003     /// this is none. If this is normal, then the default argument is stored in
1004     /// the \c VarDecl initializer expression unless we were unable to parse
1005     /// (even an invalid) expression for the default argument.
1006     unsigned DefaultArgKind : 2;
1007 
1008     /// Whether this parameter undergoes K&R argument promotion.
1009     unsigned IsKNRPromoted : 1;
1010 
1011     /// Whether this parameter is an ObjC method parameter or not.
1012     unsigned IsObjCMethodParam : 1;
1013 
1014     /// If IsObjCMethodParam, a Decl::ObjCDeclQualifier.
1015     /// Otherwise, the number of function parameter scopes enclosing
1016     /// the function parameter scope in which this parameter was
1017     /// declared.
1018     unsigned ScopeDepthOrObjCQuals : NumScopeDepthOrObjCQualsBits;
1019 
1020     /// The number of parameters preceding this parameter in the
1021     /// function parameter scope in which it was declared.
1022     unsigned ParameterIndex : NumParameterIndexBits;
1023   };
1024 
1025   class NonParmVarDeclBitfields {
1026     friend class ASTDeclReader;
1027     friend class ImplicitParamDecl;
1028     friend class VarDecl;
1029 
1030     unsigned : NumVarDeclBits;
1031 
1032     // FIXME: We need something similar to CXXRecordDecl::DefinitionData.
1033     /// Whether this variable is a definition which was demoted due to
1034     /// module merge.
1035     unsigned IsThisDeclarationADemotedDefinition : 1;
1036 
1037     /// Whether this variable is the exception variable in a C++ catch
1038     /// or an Objective-C @catch statement.
1039     unsigned ExceptionVar : 1;
1040 
1041     /// Whether this local variable could be allocated in the return
1042     /// slot of its function, enabling the named return value optimization
1043     /// (NRVO).
1044     unsigned NRVOVariable : 1;
1045 
1046     /// Whether this variable is the for-range-declaration in a C++0x
1047     /// for-range statement.
1048     unsigned CXXForRangeDecl : 1;
1049 
1050     /// Whether this variable is the for-in loop declaration in Objective-C.
1051     unsigned ObjCForDecl : 1;
1052 
1053     /// Whether this variable is (C++1z) inline.
1054     unsigned IsInline : 1;
1055 
1056     /// Whether this variable has (C++1z) inline explicitly specified.
1057     unsigned IsInlineSpecified : 1;
1058 
1059     /// Whether this variable is (C++0x) constexpr.
1060     unsigned IsConstexpr : 1;
1061 
1062     /// Whether this variable is the implicit variable for a lambda
1063     /// init-capture.
1064     unsigned IsInitCapture : 1;
1065 
1066     /// Whether this local extern variable's previous declaration was
1067     /// declared in the same block scope. This controls whether we should merge
1068     /// the type of this declaration with its previous declaration.
1069     unsigned PreviousDeclInSameBlockScope : 1;
1070 
1071     /// Defines kind of the ImplicitParamDecl: 'this', 'self', 'vtt', '_cmd' or
1072     /// something else.
1073     unsigned ImplicitParamKind : 3;
1074 
1075     unsigned EscapingByref : 1;
1076   };
1077 
1078   union {
1079     unsigned AllBits;
1080     VarDeclBitfields VarDeclBits;
1081     ParmVarDeclBitfields ParmVarDeclBits;
1082     NonParmVarDeclBitfields NonParmVarDeclBits;
1083   };
1084 
1085   VarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1086           SourceLocation IdLoc, const IdentifierInfo *Id, QualType T,
1087           TypeSourceInfo *TInfo, StorageClass SC);
1088 
1089   using redeclarable_base = Redeclarable<VarDecl>;
1090 
1091   VarDecl *getNextRedeclarationImpl() override {
1092     return getNextRedeclaration();
1093   }
1094 
1095   VarDecl *getPreviousDeclImpl() override {
1096     return getPreviousDecl();
1097   }
1098 
1099   VarDecl *getMostRecentDeclImpl() override {
1100     return getMostRecentDecl();
1101   }
1102 
1103 public:
1104   using redecl_range = redeclarable_base::redecl_range;
1105   using redecl_iterator = redeclarable_base::redecl_iterator;
1106 
1107   using redeclarable_base::redecls_begin;
1108   using redeclarable_base::redecls_end;
1109   using redeclarable_base::redecls;
1110   using redeclarable_base::getPreviousDecl;
1111   using redeclarable_base::getMostRecentDecl;
1112   using redeclarable_base::isFirstDecl;
1113 
1114   static VarDecl *Create(ASTContext &C, DeclContext *DC,
1115                          SourceLocation StartLoc, SourceLocation IdLoc,
1116                          const IdentifierInfo *Id, QualType T,
1117                          TypeSourceInfo *TInfo, StorageClass S);
1118 
1119   static VarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1120 
1121   SourceRange getSourceRange() const override LLVM_READONLY;
1122 
1123   /// Returns the storage class as written in the source. For the
1124   /// computed linkage of symbol, see getLinkage.
1125   StorageClass getStorageClass() const {
1126     return (StorageClass) VarDeclBits.SClass;
1127   }
1128   void setStorageClass(StorageClass SC);
1129 
1130   void setTSCSpec(ThreadStorageClassSpecifier TSC) {
1131     VarDeclBits.TSCSpec = TSC;
1132     assert(VarDeclBits.TSCSpec == TSC && "truncation");
1133   }
1134   ThreadStorageClassSpecifier getTSCSpec() const {
1135     return static_cast<ThreadStorageClassSpecifier>(VarDeclBits.TSCSpec);
1136   }
1137   TLSKind getTLSKind() const;
1138 
1139   /// Returns true if a variable with function scope is a non-static local
1140   /// variable.
1141   bool hasLocalStorage() const {
1142     if (getStorageClass() == SC_None) {
1143       // OpenCL v1.2 s6.5.3: The __constant or constant address space name is
1144       // used to describe variables allocated in global memory and which are
1145       // accessed inside a kernel(s) as read-only variables. As such, variables
1146       // in constant address space cannot have local storage.
1147       if (getType().getAddressSpace() == LangAS::opencl_constant)
1148         return false;
1149       // Second check is for C++11 [dcl.stc]p4.
1150       return !isFileVarDecl() && getTSCSpec() == TSCS_unspecified;
1151     }
1152 
1153     // Global Named Register (GNU extension)
1154     if (getStorageClass() == SC_Register && !isLocalVarDeclOrParm())
1155       return false;
1156 
1157     // Return true for:  Auto, Register.
1158     // Return false for: Extern, Static, PrivateExtern, OpenCLWorkGroupLocal.
1159 
1160     return getStorageClass() >= SC_Auto;
1161   }
1162 
1163   /// Returns true if a variable with function scope is a static local
1164   /// variable.
1165   bool isStaticLocal() const {
1166     return (getStorageClass() == SC_Static ||
1167             // C++11 [dcl.stc]p4
1168             (getStorageClass() == SC_None && getTSCSpec() == TSCS_thread_local))
1169       && !isFileVarDecl();
1170   }
1171 
1172   /// Returns true if a variable has extern or __private_extern__
1173   /// storage.
1174   bool hasExternalStorage() const {
1175     return getStorageClass() == SC_Extern ||
1176            getStorageClass() == SC_PrivateExtern;
1177   }
1178 
1179   /// Returns true for all variables that do not have local storage.
1180   ///
1181   /// This includes all global variables as well as static variables declared
1182   /// within a function.
1183   bool hasGlobalStorage() const { return !hasLocalStorage(); }
1184 
1185   /// Get the storage duration of this variable, per C++ [basic.stc].
1186   StorageDuration getStorageDuration() const {
1187     return hasLocalStorage() ? SD_Automatic :
1188            getTSCSpec() ? SD_Thread : SD_Static;
1189   }
1190 
1191   /// Compute the language linkage.
1192   LanguageLinkage getLanguageLinkage() const;
1193 
1194   /// Determines whether this variable is a variable with external, C linkage.
1195   bool isExternC() const;
1196 
1197   /// Determines whether this variable's context is, or is nested within,
1198   /// a C++ extern "C" linkage spec.
1199   bool isInExternCContext() const;
1200 
1201   /// Determines whether this variable's context is, or is nested within,
1202   /// a C++ extern "C++" linkage spec.
1203   bool isInExternCXXContext() const;
1204 
1205   /// Returns true for local variable declarations other than parameters.
1206   /// Note that this includes static variables inside of functions. It also
1207   /// includes variables inside blocks.
1208   ///
1209   ///   void foo() { int x; static int y; extern int z; }
1210   bool isLocalVarDecl() const {
1211     if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
1212       return false;
1213     if (const DeclContext *DC = getLexicalDeclContext())
1214       return DC->getRedeclContext()->isFunctionOrMethod();
1215     return false;
1216   }
1217 
1218   /// Similar to isLocalVarDecl but also includes parameters.
1219   bool isLocalVarDeclOrParm() const {
1220     return isLocalVarDecl() || getKind() == Decl::ParmVar;
1221   }
1222 
1223   /// Similar to isLocalVarDecl, but excludes variables declared in blocks.
1224   bool isFunctionOrMethodVarDecl() const {
1225     if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
1226       return false;
1227     const DeclContext *DC = getLexicalDeclContext()->getRedeclContext();
1228     return DC->isFunctionOrMethod() && DC->getDeclKind() != Decl::Block;
1229   }
1230 
1231   /// Determines whether this is a static data member.
1232   ///
1233   /// This will only be true in C++, and applies to, e.g., the
1234   /// variable 'x' in:
1235   /// \code
1236   /// struct S {
1237   ///   static int x;
1238   /// };
1239   /// \endcode
1240   bool isStaticDataMember() const {
1241     // If it wasn't static, it would be a FieldDecl.
1242     return getKind() != Decl::ParmVar && getDeclContext()->isRecord();
1243   }
1244 
1245   VarDecl *getCanonicalDecl() override;
1246   const VarDecl *getCanonicalDecl() const {
1247     return const_cast<VarDecl*>(this)->getCanonicalDecl();
1248   }
1249 
1250   enum DefinitionKind {
1251     /// This declaration is only a declaration.
1252     DeclarationOnly,
1253 
1254     /// This declaration is a tentative definition.
1255     TentativeDefinition,
1256 
1257     /// This declaration is definitely a definition.
1258     Definition
1259   };
1260 
1261   /// Check whether this declaration is a definition. If this could be
1262   /// a tentative definition (in C), don't check whether there's an overriding
1263   /// definition.
1264   DefinitionKind isThisDeclarationADefinition(ASTContext &) const;
1265   DefinitionKind isThisDeclarationADefinition() const {
1266     return isThisDeclarationADefinition(getASTContext());
1267   }
1268 
1269   /// Check whether this variable is defined in this translation unit.
1270   DefinitionKind hasDefinition(ASTContext &) const;
1271   DefinitionKind hasDefinition() const {
1272     return hasDefinition(getASTContext());
1273   }
1274 
1275   /// Get the tentative definition that acts as the real definition in a TU.
1276   /// Returns null if there is a proper definition available.
1277   VarDecl *getActingDefinition();
1278   const VarDecl *getActingDefinition() const {
1279     return const_cast<VarDecl*>(this)->getActingDefinition();
1280   }
1281 
1282   /// Get the real (not just tentative) definition for this declaration.
1283   VarDecl *getDefinition(ASTContext &);
1284   const VarDecl *getDefinition(ASTContext &C) const {
1285     return const_cast<VarDecl*>(this)->getDefinition(C);
1286   }
1287   VarDecl *getDefinition() {
1288     return getDefinition(getASTContext());
1289   }
1290   const VarDecl *getDefinition() const {
1291     return const_cast<VarDecl*>(this)->getDefinition();
1292   }
1293 
1294   /// Determine whether this is or was instantiated from an out-of-line
1295   /// definition of a static data member.
1296   bool isOutOfLine() const override;
1297 
1298   /// Returns true for file scoped variable declaration.
1299   bool isFileVarDecl() const {
1300     Kind K = getKind();
1301     if (K == ParmVar || K == ImplicitParam)
1302       return false;
1303 
1304     if (getLexicalDeclContext()->getRedeclContext()->isFileContext())
1305       return true;
1306 
1307     if (isStaticDataMember())
1308       return true;
1309 
1310     return false;
1311   }
1312 
1313   /// Get the initializer for this variable, no matter which
1314   /// declaration it is attached to.
1315   const Expr *getAnyInitializer() const {
1316     const VarDecl *D;
1317     return getAnyInitializer(D);
1318   }
1319 
1320   /// Get the initializer for this variable, no matter which
1321   /// declaration it is attached to. Also get that declaration.
1322   const Expr *getAnyInitializer(const VarDecl *&D) const;
1323 
1324   bool hasInit() const;
1325   const Expr *getInit() const {
1326     return const_cast<VarDecl *>(this)->getInit();
1327   }
1328   Expr *getInit();
1329 
1330   /// Retrieve the address of the initializer expression.
1331   Stmt **getInitAddress();
1332 
1333   void setInit(Expr *I);
1334 
1335   /// Get the initializing declaration of this variable, if any. This is
1336   /// usually the definition, except that for a static data member it can be
1337   /// the in-class declaration.
1338   VarDecl *getInitializingDeclaration();
1339   const VarDecl *getInitializingDeclaration() const {
1340     return const_cast<VarDecl *>(this)->getInitializingDeclaration();
1341   }
1342 
1343   /// Determine whether this variable's value might be usable in a
1344   /// constant expression, according to the relevant language standard.
1345   /// This only checks properties of the declaration, and does not check
1346   /// whether the initializer is in fact a constant expression.
1347   ///
1348   /// This corresponds to C++20 [expr.const]p3's notion of a
1349   /// "potentially-constant" variable.
1350   bool mightBeUsableInConstantExpressions(const ASTContext &C) const;
1351 
1352   /// Determine whether this variable's value can be used in a
1353   /// constant expression, according to the relevant language standard,
1354   /// including checking whether it was initialized by a constant expression.
1355   bool isUsableInConstantExpressions(const ASTContext &C) const;
1356 
1357   EvaluatedStmt *ensureEvaluatedStmt() const;
1358   EvaluatedStmt *getEvaluatedStmt() const;
1359 
1360   /// Attempt to evaluate the value of the initializer attached to this
1361   /// declaration, and produce notes explaining why it cannot be evaluated.
1362   /// Returns a pointer to the value if evaluation succeeded, 0 otherwise.
1363   APValue *evaluateValue() const;
1364 
1365 private:
1366   APValue *evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> &Notes,
1367                              bool IsConstantInitialization) const;
1368 
1369 public:
1370   /// Return the already-evaluated value of this variable's
1371   /// initializer, or NULL if the value is not yet known. Returns pointer
1372   /// to untyped APValue if the value could not be evaluated.
1373   APValue *getEvaluatedValue() const;
1374 
1375   /// Evaluate the destruction of this variable to determine if it constitutes
1376   /// constant destruction.
1377   ///
1378   /// \pre hasConstantInitialization()
1379   /// \return \c true if this variable has constant destruction, \c false if
1380   ///         not.
1381   bool evaluateDestruction(SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
1382 
1383   /// Determine whether this variable has constant initialization.
1384   ///
1385   /// This is only set in two cases: when the language semantics require
1386   /// constant initialization (globals in C and some globals in C++), and when
1387   /// the variable is usable in constant expressions (constexpr, const int, and
1388   /// reference variables in C++).
1389   bool hasConstantInitialization() const;
1390 
1391   /// Determine whether the initializer of this variable is an integer constant
1392   /// expression. For use in C++98, where this affects whether the variable is
1393   /// usable in constant expressions.
1394   bool hasICEInitializer(const ASTContext &Context) const;
1395 
1396   /// Evaluate the initializer of this variable to determine whether it's a
1397   /// constant initializer. Should only be called once, after completing the
1398   /// definition of the variable.
1399   bool checkForConstantInitialization(
1400       SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
1401 
1402   void setInitStyle(InitializationStyle Style) {
1403     VarDeclBits.InitStyle = Style;
1404   }
1405 
1406   /// The style of initialization for this declaration.
1407   ///
1408   /// C-style initialization is "int x = 1;". Call-style initialization is
1409   /// a C++98 direct-initializer, e.g. "int x(1);". The Init expression will be
1410   /// the expression inside the parens or a "ClassType(a,b,c)" class constructor
1411   /// expression for class types. List-style initialization is C++11 syntax,
1412   /// e.g. "int x{1};". Clients can distinguish between different forms of
1413   /// initialization by checking this value. In particular, "int x = {1};" is
1414   /// C-style, "int x({1})" is call-style, and "int x{1};" is list-style; the
1415   /// Init expression in all three cases is an InitListExpr.
1416   InitializationStyle getInitStyle() const {
1417     return static_cast<InitializationStyle>(VarDeclBits.InitStyle);
1418   }
1419 
1420   /// Whether the initializer is a direct-initializer (list or call).
1421   bool isDirectInit() const {
1422     return getInitStyle() != CInit;
1423   }
1424 
1425   /// If this definition should pretend to be a declaration.
1426   bool isThisDeclarationADemotedDefinition() const {
1427     return isa<ParmVarDecl>(this) ? false :
1428       NonParmVarDeclBits.IsThisDeclarationADemotedDefinition;
1429   }
1430 
1431   /// This is a definition which should be demoted to a declaration.
1432   ///
1433   /// In some cases (mostly module merging) we can end up with two visible
1434   /// definitions one of which needs to be demoted to a declaration to keep
1435   /// the AST invariants.
1436   void demoteThisDefinitionToDeclaration() {
1437     assert(isThisDeclarationADefinition() && "Not a definition!");
1438     assert(!isa<ParmVarDecl>(this) && "Cannot demote ParmVarDecls!");
1439     NonParmVarDeclBits.IsThisDeclarationADemotedDefinition = 1;
1440   }
1441 
1442   /// Determine whether this variable is the exception variable in a
1443   /// C++ catch statememt or an Objective-C \@catch statement.
1444   bool isExceptionVariable() const {
1445     return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.ExceptionVar;
1446   }
1447   void setExceptionVariable(bool EV) {
1448     assert(!isa<ParmVarDecl>(this));
1449     NonParmVarDeclBits.ExceptionVar = EV;
1450   }
1451 
1452   /// Determine whether this local variable can be used with the named
1453   /// return value optimization (NRVO).
1454   ///
1455   /// The named return value optimization (NRVO) works by marking certain
1456   /// non-volatile local variables of class type as NRVO objects. These
1457   /// locals can be allocated within the return slot of their containing
1458   /// function, in which case there is no need to copy the object to the
1459   /// return slot when returning from the function. Within the function body,
1460   /// each return that returns the NRVO object will have this variable as its
1461   /// NRVO candidate.
1462   bool isNRVOVariable() const {
1463     return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.NRVOVariable;
1464   }
1465   void setNRVOVariable(bool NRVO) {
1466     assert(!isa<ParmVarDecl>(this));
1467     NonParmVarDeclBits.NRVOVariable = NRVO;
1468   }
1469 
1470   /// Determine whether this variable is the for-range-declaration in
1471   /// a C++0x for-range statement.
1472   bool isCXXForRangeDecl() const {
1473     return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.CXXForRangeDecl;
1474   }
1475   void setCXXForRangeDecl(bool FRD) {
1476     assert(!isa<ParmVarDecl>(this));
1477     NonParmVarDeclBits.CXXForRangeDecl = FRD;
1478   }
1479 
1480   /// Determine whether this variable is a for-loop declaration for a
1481   /// for-in statement in Objective-C.
1482   bool isObjCForDecl() const {
1483     return NonParmVarDeclBits.ObjCForDecl;
1484   }
1485 
1486   void setObjCForDecl(bool FRD) {
1487     NonParmVarDeclBits.ObjCForDecl = FRD;
1488   }
1489 
1490   /// Determine whether this variable is an ARC pseudo-__strong variable. A
1491   /// pseudo-__strong variable has a __strong-qualified type but does not
1492   /// actually retain the object written into it. Generally such variables are
1493   /// also 'const' for safety. There are 3 cases where this will be set, 1) if
1494   /// the variable is annotated with the objc_externally_retained attribute, 2)
1495   /// if its 'self' in a non-init method, or 3) if its the variable in an for-in
1496   /// loop.
1497   bool isARCPseudoStrong() const { return VarDeclBits.ARCPseudoStrong; }
1498   void setARCPseudoStrong(bool PS) { VarDeclBits.ARCPseudoStrong = PS; }
1499 
1500   /// Whether this variable is (C++1z) inline.
1501   bool isInline() const {
1502     return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInline;
1503   }
1504   bool isInlineSpecified() const {
1505     return isa<ParmVarDecl>(this) ? false
1506                                   : NonParmVarDeclBits.IsInlineSpecified;
1507   }
1508   void setInlineSpecified() {
1509     assert(!isa<ParmVarDecl>(this));
1510     NonParmVarDeclBits.IsInline = true;
1511     NonParmVarDeclBits.IsInlineSpecified = true;
1512   }
1513   void setImplicitlyInline() {
1514     assert(!isa<ParmVarDecl>(this));
1515     NonParmVarDeclBits.IsInline = true;
1516   }
1517 
1518   /// Whether this variable is (C++11) constexpr.
1519   bool isConstexpr() const {
1520     return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsConstexpr;
1521   }
1522   void setConstexpr(bool IC) {
1523     assert(!isa<ParmVarDecl>(this));
1524     NonParmVarDeclBits.IsConstexpr = IC;
1525   }
1526 
1527   /// Whether this variable is the implicit variable for a lambda init-capture.
1528   bool isInitCapture() const {
1529     return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInitCapture;
1530   }
1531   void setInitCapture(bool IC) {
1532     assert(!isa<ParmVarDecl>(this));
1533     NonParmVarDeclBits.IsInitCapture = IC;
1534   }
1535 
1536   /// Determine whether this variable is actually a function parameter pack or
1537   /// init-capture pack.
1538   bool isParameterPack() const;
1539 
1540   /// Whether this local extern variable declaration's previous declaration
1541   /// was declared in the same block scope. Only correct in C++.
1542   bool isPreviousDeclInSameBlockScope() const {
1543     return isa<ParmVarDecl>(this)
1544                ? false
1545                : NonParmVarDeclBits.PreviousDeclInSameBlockScope;
1546   }
1547   void setPreviousDeclInSameBlockScope(bool Same) {
1548     assert(!isa<ParmVarDecl>(this));
1549     NonParmVarDeclBits.PreviousDeclInSameBlockScope = Same;
1550   }
1551 
1552   /// Indicates the capture is a __block variable that is captured by a block
1553   /// that can potentially escape (a block for which BlockDecl::doesNotEscape
1554   /// returns false).
1555   bool isEscapingByref() const;
1556 
1557   /// Indicates the capture is a __block variable that is never captured by an
1558   /// escaping block.
1559   bool isNonEscapingByref() const;
1560 
1561   void setEscapingByref() {
1562     NonParmVarDeclBits.EscapingByref = true;
1563   }
1564 
1565   /// Determines if this variable's alignment is dependent.
1566   bool hasDependentAlignment() const;
1567 
1568   /// Retrieve the variable declaration from which this variable could
1569   /// be instantiated, if it is an instantiation (rather than a non-template).
1570   VarDecl *getTemplateInstantiationPattern() const;
1571 
1572   /// If this variable is an instantiated static data member of a
1573   /// class template specialization, returns the templated static data member
1574   /// from which it was instantiated.
1575   VarDecl *getInstantiatedFromStaticDataMember() const;
1576 
1577   /// If this variable is an instantiation of a variable template or a
1578   /// static data member of a class template, determine what kind of
1579   /// template specialization or instantiation this is.
1580   TemplateSpecializationKind getTemplateSpecializationKind() const;
1581 
1582   /// Get the template specialization kind of this variable for the purposes of
1583   /// template instantiation. This differs from getTemplateSpecializationKind()
1584   /// for an instantiation of a class-scope explicit specialization.
1585   TemplateSpecializationKind
1586   getTemplateSpecializationKindForInstantiation() const;
1587 
1588   /// If this variable is an instantiation of a variable template or a
1589   /// static data member of a class template, determine its point of
1590   /// instantiation.
1591   SourceLocation getPointOfInstantiation() const;
1592 
1593   /// If this variable is an instantiation of a static data member of a
1594   /// class template specialization, retrieves the member specialization
1595   /// information.
1596   MemberSpecializationInfo *getMemberSpecializationInfo() const;
1597 
1598   /// For a static data member that was instantiated from a static
1599   /// data member of a class template, set the template specialiation kind.
1600   void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
1601                         SourceLocation PointOfInstantiation = SourceLocation());
1602 
1603   /// Specify that this variable is an instantiation of the
1604   /// static data member VD.
1605   void setInstantiationOfStaticDataMember(VarDecl *VD,
1606                                           TemplateSpecializationKind TSK);
1607 
1608   /// Retrieves the variable template that is described by this
1609   /// variable declaration.
1610   ///
1611   /// Every variable template is represented as a VarTemplateDecl and a
1612   /// VarDecl. The former contains template properties (such as
1613   /// the template parameter lists) while the latter contains the
1614   /// actual description of the template's
1615   /// contents. VarTemplateDecl::getTemplatedDecl() retrieves the
1616   /// VarDecl that from a VarTemplateDecl, while
1617   /// getDescribedVarTemplate() retrieves the VarTemplateDecl from
1618   /// a VarDecl.
1619   VarTemplateDecl *getDescribedVarTemplate() const;
1620 
1621   void setDescribedVarTemplate(VarTemplateDecl *Template);
1622 
1623   // Is this variable known to have a definition somewhere in the complete
1624   // program? This may be true even if the declaration has internal linkage and
1625   // has no definition within this source file.
1626   bool isKnownToBeDefined() const;
1627 
1628   /// Is destruction of this variable entirely suppressed? If so, the variable
1629   /// need not have a usable destructor at all.
1630   bool isNoDestroy(const ASTContext &) const;
1631 
1632   /// Would the destruction of this variable have any effect, and if so, what
1633   /// kind?
1634   QualType::DestructionKind needsDestruction(const ASTContext &Ctx) const;
1635 
1636   /// Whether this variable has a flexible array member initialized with one
1637   /// or more elements. This can only be called for declarations where
1638   /// hasInit() is true.
1639   ///
1640   /// (The standard doesn't allow initializing flexible array members; this is
1641   /// a gcc/msvc extension.)
1642   bool hasFlexibleArrayInit(const ASTContext &Ctx) const;
1643 
1644   /// If hasFlexibleArrayInit is true, compute the number of additional bytes
1645   /// necessary to store those elements. Otherwise, returns zero.
1646   ///
1647   /// This can only be called for declarations where hasInit() is true.
1648   CharUnits getFlexibleArrayInitChars(const ASTContext &Ctx) const;
1649 
1650   // Implement isa/cast/dyncast/etc.
1651   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1652   static bool classofKind(Kind K) { return K >= firstVar && K <= lastVar; }
1653 };
1654 
1655 class ImplicitParamDecl : public VarDecl {
1656   void anchor() override;
1657 
1658 public:
1659   /// Defines the kind of the implicit parameter: is this an implicit parameter
1660   /// with pointer to 'this', 'self', '_cmd', virtual table pointers, captured
1661   /// context or something else.
1662   enum ImplicitParamKind : unsigned {
1663     /// Parameter for Objective-C 'self' argument
1664     ObjCSelf,
1665 
1666     /// Parameter for Objective-C '_cmd' argument
1667     ObjCCmd,
1668 
1669     /// Parameter for C++ 'this' argument
1670     CXXThis,
1671 
1672     /// Parameter for C++ virtual table pointers
1673     CXXVTT,
1674 
1675     /// Parameter for captured context
1676     CapturedContext,
1677 
1678     /// Parameter for Thread private variable
1679     ThreadPrivateVar,
1680 
1681     /// Other implicit parameter
1682     Other,
1683   };
1684 
1685   /// Create implicit parameter.
1686   static ImplicitParamDecl *Create(ASTContext &C, DeclContext *DC,
1687                                    SourceLocation IdLoc, IdentifierInfo *Id,
1688                                    QualType T, ImplicitParamKind ParamKind);
1689   static ImplicitParamDecl *Create(ASTContext &C, QualType T,
1690                                    ImplicitParamKind ParamKind);
1691 
1692   static ImplicitParamDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1693 
1694   ImplicitParamDecl(ASTContext &C, DeclContext *DC, SourceLocation IdLoc,
1695                     IdentifierInfo *Id, QualType Type,
1696                     ImplicitParamKind ParamKind)
1697       : VarDecl(ImplicitParam, C, DC, IdLoc, IdLoc, Id, Type,
1698                 /*TInfo=*/nullptr, SC_None) {
1699     NonParmVarDeclBits.ImplicitParamKind = ParamKind;
1700     setImplicit();
1701   }
1702 
1703   ImplicitParamDecl(ASTContext &C, QualType Type, ImplicitParamKind ParamKind)
1704       : VarDecl(ImplicitParam, C, /*DC=*/nullptr, SourceLocation(),
1705                 SourceLocation(), /*Id=*/nullptr, Type,
1706                 /*TInfo=*/nullptr, SC_None) {
1707     NonParmVarDeclBits.ImplicitParamKind = ParamKind;
1708     setImplicit();
1709   }
1710 
1711   /// Returns the implicit parameter kind.
1712   ImplicitParamKind getParameterKind() const {
1713     return static_cast<ImplicitParamKind>(NonParmVarDeclBits.ImplicitParamKind);
1714   }
1715 
1716   // Implement isa/cast/dyncast/etc.
1717   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1718   static bool classofKind(Kind K) { return K == ImplicitParam; }
1719 };
1720 
1721 /// Represents a parameter to a function.
1722 class ParmVarDecl : public VarDecl {
1723 public:
1724   enum { MaxFunctionScopeDepth = 255 };
1725   enum { MaxFunctionScopeIndex = 255 };
1726 
1727 protected:
1728   ParmVarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1729               SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
1730               TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
1731       : VarDecl(DK, C, DC, StartLoc, IdLoc, Id, T, TInfo, S) {
1732     assert(ParmVarDeclBits.HasInheritedDefaultArg == false);
1733     assert(ParmVarDeclBits.DefaultArgKind == DAK_None);
1734     assert(ParmVarDeclBits.IsKNRPromoted == false);
1735     assert(ParmVarDeclBits.IsObjCMethodParam == false);
1736     setDefaultArg(DefArg);
1737   }
1738 
1739 public:
1740   static ParmVarDecl *Create(ASTContext &C, DeclContext *DC,
1741                              SourceLocation StartLoc,
1742                              SourceLocation IdLoc, IdentifierInfo *Id,
1743                              QualType T, TypeSourceInfo *TInfo,
1744                              StorageClass S, Expr *DefArg);
1745 
1746   static ParmVarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1747 
1748   SourceRange getSourceRange() const override LLVM_READONLY;
1749 
1750   void setObjCMethodScopeInfo(unsigned parameterIndex) {
1751     ParmVarDeclBits.IsObjCMethodParam = true;
1752     setParameterIndex(parameterIndex);
1753   }
1754 
1755   void setScopeInfo(unsigned scopeDepth, unsigned parameterIndex) {
1756     assert(!ParmVarDeclBits.IsObjCMethodParam);
1757 
1758     ParmVarDeclBits.ScopeDepthOrObjCQuals = scopeDepth;
1759     assert(ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth
1760            && "truncation!");
1761 
1762     setParameterIndex(parameterIndex);
1763   }
1764 
1765   bool isObjCMethodParameter() const {
1766     return ParmVarDeclBits.IsObjCMethodParam;
1767   }
1768 
1769   /// Determines whether this parameter is destroyed in the callee function.
1770   bool isDestroyedInCallee() const;
1771 
1772   unsigned getFunctionScopeDepth() const {
1773     if (ParmVarDeclBits.IsObjCMethodParam) return 0;
1774     return ParmVarDeclBits.ScopeDepthOrObjCQuals;
1775   }
1776 
1777   static constexpr unsigned getMaxFunctionScopeDepth() {
1778     return (1u << NumScopeDepthOrObjCQualsBits) - 1;
1779   }
1780 
1781   /// Returns the index of this parameter in its prototype or method scope.
1782   unsigned getFunctionScopeIndex() const {
1783     return getParameterIndex();
1784   }
1785 
1786   ObjCDeclQualifier getObjCDeclQualifier() const {
1787     if (!ParmVarDeclBits.IsObjCMethodParam) return OBJC_TQ_None;
1788     return ObjCDeclQualifier(ParmVarDeclBits.ScopeDepthOrObjCQuals);
1789   }
1790   void setObjCDeclQualifier(ObjCDeclQualifier QTVal) {
1791     assert(ParmVarDeclBits.IsObjCMethodParam);
1792     ParmVarDeclBits.ScopeDepthOrObjCQuals = QTVal;
1793   }
1794 
1795   /// True if the value passed to this parameter must undergo
1796   /// K&R-style default argument promotion:
1797   ///
1798   /// C99 6.5.2.2.
1799   ///   If the expression that denotes the called function has a type
1800   ///   that does not include a prototype, the integer promotions are
1801   ///   performed on each argument, and arguments that have type float
1802   ///   are promoted to double.
1803   bool isKNRPromoted() const {
1804     return ParmVarDeclBits.IsKNRPromoted;
1805   }
1806   void setKNRPromoted(bool promoted) {
1807     ParmVarDeclBits.IsKNRPromoted = promoted;
1808   }
1809 
1810   Expr *getDefaultArg();
1811   const Expr *getDefaultArg() const {
1812     return const_cast<ParmVarDecl *>(this)->getDefaultArg();
1813   }
1814 
1815   void setDefaultArg(Expr *defarg);
1816 
1817   /// Retrieve the source range that covers the entire default
1818   /// argument.
1819   SourceRange getDefaultArgRange() const;
1820   void setUninstantiatedDefaultArg(Expr *arg);
1821   Expr *getUninstantiatedDefaultArg();
1822   const Expr *getUninstantiatedDefaultArg() const {
1823     return const_cast<ParmVarDecl *>(this)->getUninstantiatedDefaultArg();
1824   }
1825 
1826   /// Determines whether this parameter has a default argument,
1827   /// either parsed or not.
1828   bool hasDefaultArg() const;
1829 
1830   /// Determines whether this parameter has a default argument that has not
1831   /// yet been parsed. This will occur during the processing of a C++ class
1832   /// whose member functions have default arguments, e.g.,
1833   /// @code
1834   ///   class X {
1835   ///   public:
1836   ///     void f(int x = 17); // x has an unparsed default argument now
1837   ///   }; // x has a regular default argument now
1838   /// @endcode
1839   bool hasUnparsedDefaultArg() const {
1840     return ParmVarDeclBits.DefaultArgKind == DAK_Unparsed;
1841   }
1842 
1843   bool hasUninstantiatedDefaultArg() const {
1844     return ParmVarDeclBits.DefaultArgKind == DAK_Uninstantiated;
1845   }
1846 
1847   /// Specify that this parameter has an unparsed default argument.
1848   /// The argument will be replaced with a real default argument via
1849   /// setDefaultArg when the class definition enclosing the function
1850   /// declaration that owns this default argument is completed.
1851   void setUnparsedDefaultArg() {
1852     ParmVarDeclBits.DefaultArgKind = DAK_Unparsed;
1853   }
1854 
1855   bool hasInheritedDefaultArg() const {
1856     return ParmVarDeclBits.HasInheritedDefaultArg;
1857   }
1858 
1859   void setHasInheritedDefaultArg(bool I = true) {
1860     ParmVarDeclBits.HasInheritedDefaultArg = I;
1861   }
1862 
1863   QualType getOriginalType() const;
1864 
1865   /// Sets the function declaration that owns this
1866   /// ParmVarDecl. Since ParmVarDecls are often created before the
1867   /// FunctionDecls that own them, this routine is required to update
1868   /// the DeclContext appropriately.
1869   void setOwningFunction(DeclContext *FD) { setDeclContext(FD); }
1870 
1871   // Implement isa/cast/dyncast/etc.
1872   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1873   static bool classofKind(Kind K) { return K == ParmVar; }
1874 
1875 private:
1876   enum { ParameterIndexSentinel = (1 << NumParameterIndexBits) - 1 };
1877 
1878   void setParameterIndex(unsigned parameterIndex) {
1879     if (parameterIndex >= ParameterIndexSentinel) {
1880       setParameterIndexLarge(parameterIndex);
1881       return;
1882     }
1883 
1884     ParmVarDeclBits.ParameterIndex = parameterIndex;
1885     assert(ParmVarDeclBits.ParameterIndex == parameterIndex && "truncation!");
1886   }
1887   unsigned getParameterIndex() const {
1888     unsigned d = ParmVarDeclBits.ParameterIndex;
1889     return d == ParameterIndexSentinel ? getParameterIndexLarge() : d;
1890   }
1891 
1892   void setParameterIndexLarge(unsigned parameterIndex);
1893   unsigned getParameterIndexLarge() const;
1894 };
1895 
1896 enum class MultiVersionKind {
1897   None,
1898   Target,
1899   CPUSpecific,
1900   CPUDispatch,
1901   TargetClones,
1902   TargetVersion
1903 };
1904 
1905 /// Represents a function declaration or definition.
1906 ///
1907 /// Since a given function can be declared several times in a program,
1908 /// there may be several FunctionDecls that correspond to that
1909 /// function. Only one of those FunctionDecls will be found when
1910 /// traversing the list of declarations in the context of the
1911 /// FunctionDecl (e.g., the translation unit); this FunctionDecl
1912 /// contains all of the information known about the function. Other,
1913 /// previous declarations of the function are available via the
1914 /// getPreviousDecl() chain.
1915 class FunctionDecl : public DeclaratorDecl,
1916                      public DeclContext,
1917                      public Redeclarable<FunctionDecl> {
1918   // This class stores some data in DeclContext::FunctionDeclBits
1919   // to save some space. Use the provided accessors to access it.
1920 public:
1921   /// The kind of templated function a FunctionDecl can be.
1922   enum TemplatedKind {
1923     // Not templated.
1924     TK_NonTemplate,
1925     // The pattern in a function template declaration.
1926     TK_FunctionTemplate,
1927     // A non-template function that is an instantiation or explicit
1928     // specialization of a member of a templated class.
1929     TK_MemberSpecialization,
1930     // An instantiation or explicit specialization of a function template.
1931     // Note: this might have been instantiated from a templated class if it
1932     // is a class-scope explicit specialization.
1933     TK_FunctionTemplateSpecialization,
1934     // A function template specialization that hasn't yet been resolved to a
1935     // particular specialized function template.
1936     TK_DependentFunctionTemplateSpecialization,
1937     // A non-template function which is in a dependent scope.
1938     TK_DependentNonTemplate
1939 
1940   };
1941 
1942   /// Stashed information about a defaulted function definition whose body has
1943   /// not yet been lazily generated.
1944   class DefaultedFunctionInfo final
1945       : llvm::TrailingObjects<DefaultedFunctionInfo, DeclAccessPair> {
1946     friend TrailingObjects;
1947     unsigned NumLookups;
1948 
1949   public:
1950     static DefaultedFunctionInfo *Create(ASTContext &Context,
1951                                          ArrayRef<DeclAccessPair> Lookups);
1952     /// Get the unqualified lookup results that should be used in this
1953     /// defaulted function definition.
1954     ArrayRef<DeclAccessPair> getUnqualifiedLookups() const {
1955       return {getTrailingObjects<DeclAccessPair>(), NumLookups};
1956     }
1957   };
1958 
1959 private:
1960   /// A new[]'d array of pointers to VarDecls for the formal
1961   /// parameters of this function.  This is null if a prototype or if there are
1962   /// no formals.
1963   ParmVarDecl **ParamInfo = nullptr;
1964 
1965   /// The active member of this union is determined by
1966   /// FunctionDeclBits.HasDefaultedFunctionInfo.
1967   union {
1968     /// The body of the function.
1969     LazyDeclStmtPtr Body;
1970     /// Information about a future defaulted function definition.
1971     DefaultedFunctionInfo *DefaultedInfo;
1972   };
1973 
1974   unsigned ODRHash;
1975 
1976   /// End part of this FunctionDecl's source range.
1977   ///
1978   /// We could compute the full range in getSourceRange(). However, when we're
1979   /// dealing with a function definition deserialized from a PCH/AST file,
1980   /// we can only compute the full range once the function body has been
1981   /// de-serialized, so it's far better to have the (sometimes-redundant)
1982   /// EndRangeLoc.
1983   SourceLocation EndRangeLoc;
1984 
1985   SourceLocation DefaultKWLoc;
1986 
1987   /// The template or declaration that this declaration
1988   /// describes or was instantiated from, respectively.
1989   ///
1990   /// For non-templates this value will be NULL, unless this declaration was
1991   /// declared directly inside of a function template, in which case it will
1992   /// have a pointer to a FunctionDecl, stored in the NamedDecl. For function
1993   /// declarations that describe a function template, this will be a pointer to
1994   /// a FunctionTemplateDecl, stored in the NamedDecl. For member functions of
1995   /// class template specializations, this will be a MemberSpecializationInfo
1996   /// pointer containing information about the specialization.
1997   /// For function template specializations, this will be a
1998   /// FunctionTemplateSpecializationInfo, which contains information about
1999   /// the template being specialized and the template arguments involved in
2000   /// that specialization.
2001   llvm::PointerUnion<NamedDecl *, MemberSpecializationInfo *,
2002                      FunctionTemplateSpecializationInfo *,
2003                      DependentFunctionTemplateSpecializationInfo *>
2004       TemplateOrSpecialization;
2005 
2006   /// Provides source/type location info for the declaration name embedded in
2007   /// the DeclaratorDecl base class.
2008   DeclarationNameLoc DNLoc;
2009 
2010   /// Specify that this function declaration is actually a function
2011   /// template specialization.
2012   ///
2013   /// \param C the ASTContext.
2014   ///
2015   /// \param Template the function template that this function template
2016   /// specialization specializes.
2017   ///
2018   /// \param TemplateArgs the template arguments that produced this
2019   /// function template specialization from the template.
2020   ///
2021   /// \param InsertPos If non-NULL, the position in the function template
2022   /// specialization set where the function template specialization data will
2023   /// be inserted.
2024   ///
2025   /// \param TSK the kind of template specialization this is.
2026   ///
2027   /// \param TemplateArgsAsWritten location info of template arguments.
2028   ///
2029   /// \param PointOfInstantiation point at which the function template
2030   /// specialization was first instantiated.
2031   void setFunctionTemplateSpecialization(ASTContext &C,
2032                                          FunctionTemplateDecl *Template,
2033                                        const TemplateArgumentList *TemplateArgs,
2034                                          void *InsertPos,
2035                                          TemplateSpecializationKind TSK,
2036                           const TemplateArgumentListInfo *TemplateArgsAsWritten,
2037                                          SourceLocation PointOfInstantiation);
2038 
2039   /// Specify that this record is an instantiation of the
2040   /// member function FD.
2041   void setInstantiationOfMemberFunction(ASTContext &C, FunctionDecl *FD,
2042                                         TemplateSpecializationKind TSK);
2043 
2044   void setParams(ASTContext &C, ArrayRef<ParmVarDecl *> NewParamInfo);
2045 
2046   // This is unfortunately needed because ASTDeclWriter::VisitFunctionDecl
2047   // need to access this bit but we want to avoid making ASTDeclWriter
2048   // a friend of FunctionDeclBitfields just for this.
2049   bool isDeletedBit() const { return FunctionDeclBits.IsDeleted; }
2050 
2051   /// Whether an ODRHash has been stored.
2052   bool hasODRHash() const { return FunctionDeclBits.HasODRHash; }
2053 
2054   /// State that an ODRHash has been stored.
2055   void setHasODRHash(bool B = true) { FunctionDeclBits.HasODRHash = B; }
2056 
2057 protected:
2058   FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
2059                const DeclarationNameInfo &NameInfo, QualType T,
2060                TypeSourceInfo *TInfo, StorageClass S, bool UsesFPIntrin,
2061                bool isInlineSpecified, ConstexprSpecKind ConstexprKind,
2062                Expr *TrailingRequiresClause = nullptr);
2063 
2064   using redeclarable_base = Redeclarable<FunctionDecl>;
2065 
2066   FunctionDecl *getNextRedeclarationImpl() override {
2067     return getNextRedeclaration();
2068   }
2069 
2070   FunctionDecl *getPreviousDeclImpl() override {
2071     return getPreviousDecl();
2072   }
2073 
2074   FunctionDecl *getMostRecentDeclImpl() override {
2075     return getMostRecentDecl();
2076   }
2077 
2078 public:
2079   friend class ASTDeclReader;
2080   friend class ASTDeclWriter;
2081 
2082   using redecl_range = redeclarable_base::redecl_range;
2083   using redecl_iterator = redeclarable_base::redecl_iterator;
2084 
2085   using redeclarable_base::redecls_begin;
2086   using redeclarable_base::redecls_end;
2087   using redeclarable_base::redecls;
2088   using redeclarable_base::getPreviousDecl;
2089   using redeclarable_base::getMostRecentDecl;
2090   using redeclarable_base::isFirstDecl;
2091 
2092   static FunctionDecl *
2093   Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
2094          SourceLocation NLoc, DeclarationName N, QualType T,
2095          TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin = false,
2096          bool isInlineSpecified = false, bool hasWrittenPrototype = true,
2097          ConstexprSpecKind ConstexprKind = ConstexprSpecKind::Unspecified,
2098          Expr *TrailingRequiresClause = nullptr) {
2099     DeclarationNameInfo NameInfo(N, NLoc);
2100     return FunctionDecl::Create(C, DC, StartLoc, NameInfo, T, TInfo, SC,
2101                                 UsesFPIntrin, isInlineSpecified,
2102                                 hasWrittenPrototype, ConstexprKind,
2103                                 TrailingRequiresClause);
2104   }
2105 
2106   static FunctionDecl *
2107   Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
2108          const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2109          StorageClass SC, bool UsesFPIntrin, bool isInlineSpecified,
2110          bool hasWrittenPrototype, ConstexprSpecKind ConstexprKind,
2111          Expr *TrailingRequiresClause);
2112 
2113   static FunctionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2114 
2115   DeclarationNameInfo getNameInfo() const {
2116     return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
2117   }
2118 
2119   void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy,
2120                             bool Qualified) const override;
2121 
2122   void setRangeEnd(SourceLocation E) { EndRangeLoc = E; }
2123 
2124   /// Returns the location of the ellipsis of a variadic function.
2125   SourceLocation getEllipsisLoc() const {
2126     const auto *FPT = getType()->getAs<FunctionProtoType>();
2127     if (FPT && FPT->isVariadic())
2128       return FPT->getEllipsisLoc();
2129     return SourceLocation();
2130   }
2131 
2132   SourceRange getSourceRange() const override LLVM_READONLY;
2133 
2134   // Function definitions.
2135   //
2136   // A function declaration may be:
2137   // - a non defining declaration,
2138   // - a definition. A function may be defined because:
2139   //   - it has a body, or will have it in the case of late parsing.
2140   //   - it has an uninstantiated body. The body does not exist because the
2141   //     function is not used yet, but the declaration is considered a
2142   //     definition and does not allow other definition of this function.
2143   //   - it does not have a user specified body, but it does not allow
2144   //     redefinition, because it is deleted/defaulted or is defined through
2145   //     some other mechanism (alias, ifunc).
2146 
2147   /// Returns true if the function has a body.
2148   ///
2149   /// The function body might be in any of the (re-)declarations of this
2150   /// function. The variant that accepts a FunctionDecl pointer will set that
2151   /// function declaration to the actual declaration containing the body (if
2152   /// there is one).
2153   bool hasBody(const FunctionDecl *&Definition) const;
2154 
2155   bool hasBody() const override {
2156     const FunctionDecl* Definition;
2157     return hasBody(Definition);
2158   }
2159 
2160   /// Returns whether the function has a trivial body that does not require any
2161   /// specific codegen.
2162   bool hasTrivialBody() const;
2163 
2164   /// Returns true if the function has a definition that does not need to be
2165   /// instantiated.
2166   ///
2167   /// The variant that accepts a FunctionDecl pointer will set that function
2168   /// declaration to the declaration that is a definition (if there is one).
2169   ///
2170   /// \param CheckForPendingFriendDefinition If \c true, also check for friend
2171   ///        declarations that were instantiated from function definitions.
2172   ///        Such a declaration behaves as if it is a definition for the
2173   ///        purpose of redefinition checking, but isn't actually a "real"
2174   ///        definition until its body is instantiated.
2175   bool isDefined(const FunctionDecl *&Definition,
2176                  bool CheckForPendingFriendDefinition = false) const;
2177 
2178   bool isDefined() const {
2179     const FunctionDecl* Definition;
2180     return isDefined(Definition);
2181   }
2182 
2183   /// Get the definition for this declaration.
2184   FunctionDecl *getDefinition() {
2185     const FunctionDecl *Definition;
2186     if (isDefined(Definition))
2187       return const_cast<FunctionDecl *>(Definition);
2188     return nullptr;
2189   }
2190   const FunctionDecl *getDefinition() const {
2191     return const_cast<FunctionDecl *>(this)->getDefinition();
2192   }
2193 
2194   /// Retrieve the body (definition) of the function. The function body might be
2195   /// in any of the (re-)declarations of this function. The variant that accepts
2196   /// a FunctionDecl pointer will set that function declaration to the actual
2197   /// declaration containing the body (if there is one).
2198   /// NOTE: For checking if there is a body, use hasBody() instead, to avoid
2199   /// unnecessary AST de-serialization of the body.
2200   Stmt *getBody(const FunctionDecl *&Definition) const;
2201 
2202   Stmt *getBody() const override {
2203     const FunctionDecl* Definition;
2204     return getBody(Definition);
2205   }
2206 
2207   /// Returns whether this specific declaration of the function is also a
2208   /// definition that does not contain uninstantiated body.
2209   ///
2210   /// This does not determine whether the function has been defined (e.g., in a
2211   /// previous definition); for that information, use isDefined.
2212   ///
2213   /// Note: the function declaration does not become a definition until the
2214   /// parser reaches the definition, if called before, this function will return
2215   /// `false`.
2216   bool isThisDeclarationADefinition() const {
2217     return isDeletedAsWritten() || isDefaulted() ||
2218            doesThisDeclarationHaveABody() || hasSkippedBody() ||
2219            willHaveBody() || hasDefiningAttr();
2220   }
2221 
2222   /// Determine whether this specific declaration of the function is a friend
2223   /// declaration that was instantiated from a function definition. Such
2224   /// declarations behave like definitions in some contexts.
2225   bool isThisDeclarationInstantiatedFromAFriendDefinition() const;
2226 
2227   /// Returns whether this specific declaration of the function has a body.
2228   bool doesThisDeclarationHaveABody() const {
2229     return (!FunctionDeclBits.HasDefaultedFunctionInfo && Body) ||
2230            isLateTemplateParsed();
2231   }
2232 
2233   void setBody(Stmt *B);
2234   void setLazyBody(uint64_t Offset) {
2235     FunctionDeclBits.HasDefaultedFunctionInfo = false;
2236     Body = LazyDeclStmtPtr(Offset);
2237   }
2238 
2239   void setDefaultedFunctionInfo(DefaultedFunctionInfo *Info);
2240   DefaultedFunctionInfo *getDefaultedFunctionInfo() const;
2241 
2242   /// Whether this function is variadic.
2243   bool isVariadic() const;
2244 
2245   /// Whether this function is marked as virtual explicitly.
2246   bool isVirtualAsWritten() const {
2247     return FunctionDeclBits.IsVirtualAsWritten;
2248   }
2249 
2250   /// State that this function is marked as virtual explicitly.
2251   void setVirtualAsWritten(bool V) { FunctionDeclBits.IsVirtualAsWritten = V; }
2252 
2253   /// Whether this virtual function is pure, i.e. makes the containing class
2254   /// abstract.
2255   bool isPure() const { return FunctionDeclBits.IsPure; }
2256   void setPure(bool P = true);
2257 
2258   /// Whether this templated function will be late parsed.
2259   bool isLateTemplateParsed() const {
2260     return FunctionDeclBits.IsLateTemplateParsed;
2261   }
2262 
2263   /// State that this templated function will be late parsed.
2264   void setLateTemplateParsed(bool ILT = true) {
2265     FunctionDeclBits.IsLateTemplateParsed = ILT;
2266   }
2267 
2268   /// Whether this function is "trivial" in some specialized C++ senses.
2269   /// Can only be true for default constructors, copy constructors,
2270   /// copy assignment operators, and destructors.  Not meaningful until
2271   /// the class has been fully built by Sema.
2272   bool isTrivial() const { return FunctionDeclBits.IsTrivial; }
2273   void setTrivial(bool IT) { FunctionDeclBits.IsTrivial = IT; }
2274 
2275   bool isTrivialForCall() const { return FunctionDeclBits.IsTrivialForCall; }
2276   void setTrivialForCall(bool IT) { FunctionDeclBits.IsTrivialForCall = IT; }
2277 
2278   /// Whether this function is defaulted. Valid for e.g.
2279   /// special member functions, defaulted comparisions (not methods!).
2280   bool isDefaulted() const { return FunctionDeclBits.IsDefaulted; }
2281   void setDefaulted(bool D = true) { FunctionDeclBits.IsDefaulted = D; }
2282 
2283   /// Whether this function is explicitly defaulted.
2284   bool isExplicitlyDefaulted() const {
2285     return FunctionDeclBits.IsExplicitlyDefaulted;
2286   }
2287 
2288   /// State that this function is explicitly defaulted.
2289   void setExplicitlyDefaulted(bool ED = true) {
2290     FunctionDeclBits.IsExplicitlyDefaulted = ED;
2291   }
2292 
2293   SourceLocation getDefaultLoc() const {
2294     return isExplicitlyDefaulted() ? DefaultKWLoc : SourceLocation();
2295   }
2296 
2297   void setDefaultLoc(SourceLocation NewLoc) {
2298     assert((NewLoc.isInvalid() || isExplicitlyDefaulted()) &&
2299            "Can't set default loc is function isn't explicitly defaulted");
2300     DefaultKWLoc = NewLoc;
2301   }
2302 
2303   /// True if this method is user-declared and was not
2304   /// deleted or defaulted on its first declaration.
2305   bool isUserProvided() const {
2306     auto *DeclAsWritten = this;
2307     if (FunctionDecl *Pattern = getTemplateInstantiationPattern())
2308       DeclAsWritten = Pattern;
2309     return !(DeclAsWritten->isDeleted() ||
2310              DeclAsWritten->getCanonicalDecl()->isDefaulted());
2311   }
2312 
2313   bool isIneligibleOrNotSelected() const {
2314     return FunctionDeclBits.IsIneligibleOrNotSelected;
2315   }
2316   void setIneligibleOrNotSelected(bool II) {
2317     FunctionDeclBits.IsIneligibleOrNotSelected = II;
2318   }
2319 
2320   /// Whether falling off this function implicitly returns null/zero.
2321   /// If a more specific implicit return value is required, front-ends
2322   /// should synthesize the appropriate return statements.
2323   bool hasImplicitReturnZero() const {
2324     return FunctionDeclBits.HasImplicitReturnZero;
2325   }
2326 
2327   /// State that falling off this function implicitly returns null/zero.
2328   /// If a more specific implicit return value is required, front-ends
2329   /// should synthesize the appropriate return statements.
2330   void setHasImplicitReturnZero(bool IRZ) {
2331     FunctionDeclBits.HasImplicitReturnZero = IRZ;
2332   }
2333 
2334   /// Whether this function has a prototype, either because one
2335   /// was explicitly written or because it was "inherited" by merging
2336   /// a declaration without a prototype with a declaration that has a
2337   /// prototype.
2338   bool hasPrototype() const {
2339     return hasWrittenPrototype() || hasInheritedPrototype();
2340   }
2341 
2342   /// Whether this function has a written prototype.
2343   bool hasWrittenPrototype() const {
2344     return FunctionDeclBits.HasWrittenPrototype;
2345   }
2346 
2347   /// State that this function has a written prototype.
2348   void setHasWrittenPrototype(bool P = true) {
2349     FunctionDeclBits.HasWrittenPrototype = P;
2350   }
2351 
2352   /// Whether this function inherited its prototype from a
2353   /// previous declaration.
2354   bool hasInheritedPrototype() const {
2355     return FunctionDeclBits.HasInheritedPrototype;
2356   }
2357 
2358   /// State that this function inherited its prototype from a
2359   /// previous declaration.
2360   void setHasInheritedPrototype(bool P = true) {
2361     FunctionDeclBits.HasInheritedPrototype = P;
2362   }
2363 
2364   /// Whether this is a (C++11) constexpr function or constexpr constructor.
2365   bool isConstexpr() const {
2366     return getConstexprKind() != ConstexprSpecKind::Unspecified;
2367   }
2368   void setConstexprKind(ConstexprSpecKind CSK) {
2369     FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(CSK);
2370   }
2371   ConstexprSpecKind getConstexprKind() const {
2372     return static_cast<ConstexprSpecKind>(FunctionDeclBits.ConstexprKind);
2373   }
2374   bool isConstexprSpecified() const {
2375     return getConstexprKind() == ConstexprSpecKind::Constexpr;
2376   }
2377   bool isConsteval() const {
2378     return getConstexprKind() == ConstexprSpecKind::Consteval;
2379   }
2380 
2381   void setBodyContainsImmediateEscalatingExpressions(bool Set) {
2382     FunctionDeclBits.BodyContainsImmediateEscalatingExpression = Set;
2383   }
2384 
2385   bool BodyContainsImmediateEscalatingExpressions() const {
2386     return FunctionDeclBits.BodyContainsImmediateEscalatingExpression;
2387   }
2388 
2389   bool isImmediateEscalating() const;
2390 
2391   // The function is a C++ immediate function.
2392   // This can be either a consteval function, or an immediate escalating
2393   // function containing an immediate escalating expression.
2394   bool isImmediateFunction() const;
2395 
2396   /// Whether the instantiation of this function is pending.
2397   /// This bit is set when the decision to instantiate this function is made
2398   /// and unset if and when the function body is created. That leaves out
2399   /// cases where instantiation did not happen because the template definition
2400   /// was not seen in this TU. This bit remains set in those cases, under the
2401   /// assumption that the instantiation will happen in some other TU.
2402   bool instantiationIsPending() const {
2403     return FunctionDeclBits.InstantiationIsPending;
2404   }
2405 
2406   /// State that the instantiation of this function is pending.
2407   /// (see instantiationIsPending)
2408   void setInstantiationIsPending(bool IC) {
2409     FunctionDeclBits.InstantiationIsPending = IC;
2410   }
2411 
2412   /// Indicates the function uses __try.
2413   bool usesSEHTry() const { return FunctionDeclBits.UsesSEHTry; }
2414   void setUsesSEHTry(bool UST) { FunctionDeclBits.UsesSEHTry = UST; }
2415 
2416   /// Whether this function has been deleted.
2417   ///
2418   /// A function that is "deleted" (via the C++0x "= delete" syntax)
2419   /// acts like a normal function, except that it cannot actually be
2420   /// called or have its address taken. Deleted functions are
2421   /// typically used in C++ overload resolution to attract arguments
2422   /// whose type or lvalue/rvalue-ness would permit the use of a
2423   /// different overload that would behave incorrectly. For example,
2424   /// one might use deleted functions to ban implicit conversion from
2425   /// a floating-point number to an Integer type:
2426   ///
2427   /// @code
2428   /// struct Integer {
2429   ///   Integer(long); // construct from a long
2430   ///   Integer(double) = delete; // no construction from float or double
2431   ///   Integer(long double) = delete; // no construction from long double
2432   /// };
2433   /// @endcode
2434   // If a function is deleted, its first declaration must be.
2435   bool isDeleted() const {
2436     return getCanonicalDecl()->FunctionDeclBits.IsDeleted;
2437   }
2438 
2439   bool isDeletedAsWritten() const {
2440     return FunctionDeclBits.IsDeleted && !isDefaulted();
2441   }
2442 
2443   void setDeletedAsWritten(bool D = true) { FunctionDeclBits.IsDeleted = D; }
2444 
2445   /// Determines whether this function is "main", which is the
2446   /// entry point into an executable program.
2447   bool isMain() const;
2448 
2449   /// Determines whether this function is a MSVCRT user defined entry
2450   /// point.
2451   bool isMSVCRTEntryPoint() const;
2452 
2453   /// Determines whether this operator new or delete is one
2454   /// of the reserved global placement operators:
2455   ///    void *operator new(size_t, void *);
2456   ///    void *operator new[](size_t, void *);
2457   ///    void operator delete(void *, void *);
2458   ///    void operator delete[](void *, void *);
2459   /// These functions have special behavior under [new.delete.placement]:
2460   ///    These functions are reserved, a C++ program may not define
2461   ///    functions that displace the versions in the Standard C++ library.
2462   ///    The provisions of [basic.stc.dynamic] do not apply to these
2463   ///    reserved placement forms of operator new and operator delete.
2464   ///
2465   /// This function must be an allocation or deallocation function.
2466   bool isReservedGlobalPlacementOperator() const;
2467 
2468   /// Determines whether this function is one of the replaceable
2469   /// global allocation functions:
2470   ///    void *operator new(size_t);
2471   ///    void *operator new(size_t, const std::nothrow_t &) noexcept;
2472   ///    void *operator new[](size_t);
2473   ///    void *operator new[](size_t, const std::nothrow_t &) noexcept;
2474   ///    void operator delete(void *) noexcept;
2475   ///    void operator delete(void *, std::size_t) noexcept;      [C++1y]
2476   ///    void operator delete(void *, const std::nothrow_t &) noexcept;
2477   ///    void operator delete[](void *) noexcept;
2478   ///    void operator delete[](void *, std::size_t) noexcept;    [C++1y]
2479   ///    void operator delete[](void *, const std::nothrow_t &) noexcept;
2480   /// These functions have special behavior under C++1y [expr.new]:
2481   ///    An implementation is allowed to omit a call to a replaceable global
2482   ///    allocation function. [...]
2483   ///
2484   /// If this function is an aligned allocation/deallocation function, return
2485   /// the parameter number of the requested alignment through AlignmentParam.
2486   ///
2487   /// If this function is an allocation/deallocation function that takes
2488   /// the `std::nothrow_t` tag, return true through IsNothrow,
2489   bool isReplaceableGlobalAllocationFunction(
2490       std::optional<unsigned> *AlignmentParam = nullptr,
2491       bool *IsNothrow = nullptr) const;
2492 
2493   /// Determine if this function provides an inline implementation of a builtin.
2494   bool isInlineBuiltinDeclaration() const;
2495 
2496   /// Determine whether this is a destroying operator delete.
2497   bool isDestroyingOperatorDelete() const;
2498 
2499   /// Compute the language linkage.
2500   LanguageLinkage getLanguageLinkage() const;
2501 
2502   /// Determines whether this function is a function with
2503   /// external, C linkage.
2504   bool isExternC() const;
2505 
2506   /// Determines whether this function's context is, or is nested within,
2507   /// a C++ extern "C" linkage spec.
2508   bool isInExternCContext() const;
2509 
2510   /// Determines whether this function's context is, or is nested within,
2511   /// a C++ extern "C++" linkage spec.
2512   bool isInExternCXXContext() const;
2513 
2514   /// Determines whether this is a global function.
2515   bool isGlobal() const;
2516 
2517   /// Determines whether this function is known to be 'noreturn', through
2518   /// an attribute on its declaration or its type.
2519   bool isNoReturn() const;
2520 
2521   /// True if the function was a definition but its body was skipped.
2522   bool hasSkippedBody() const { return FunctionDeclBits.HasSkippedBody; }
2523   void setHasSkippedBody(bool Skipped = true) {
2524     FunctionDeclBits.HasSkippedBody = Skipped;
2525   }
2526 
2527   /// True if this function will eventually have a body, once it's fully parsed.
2528   bool willHaveBody() const { return FunctionDeclBits.WillHaveBody; }
2529   void setWillHaveBody(bool V = true) { FunctionDeclBits.WillHaveBody = V; }
2530 
2531   /// True if this function is considered a multiversioned function.
2532   bool isMultiVersion() const {
2533     return getCanonicalDecl()->FunctionDeclBits.IsMultiVersion;
2534   }
2535 
2536   /// Sets the multiversion state for this declaration and all of its
2537   /// redeclarations.
2538   void setIsMultiVersion(bool V = true) {
2539     getCanonicalDecl()->FunctionDeclBits.IsMultiVersion = V;
2540   }
2541 
2542   // Sets that this is a constrained friend where the constraint refers to an
2543   // enclosing template.
2544   void setFriendConstraintRefersToEnclosingTemplate(bool V = true) {
2545     getCanonicalDecl()
2546         ->FunctionDeclBits.FriendConstraintRefersToEnclosingTemplate = V;
2547   }
2548   // Indicates this function is a constrained friend, where the constraint
2549   // refers to an enclosing template for hte purposes of [temp.friend]p9.
2550   bool FriendConstraintRefersToEnclosingTemplate() const {
2551     return getCanonicalDecl()
2552         ->FunctionDeclBits.FriendConstraintRefersToEnclosingTemplate;
2553   }
2554 
2555   /// Determine whether a function is a friend function that cannot be
2556   /// redeclared outside of its class, per C++ [temp.friend]p9.
2557   bool isMemberLikeConstrainedFriend() const;
2558 
2559   /// Gets the kind of multiversioning attribute this declaration has. Note that
2560   /// this can return a value even if the function is not multiversion, such as
2561   /// the case of 'target'.
2562   MultiVersionKind getMultiVersionKind() const;
2563 
2564 
2565   /// True if this function is a multiversioned dispatch function as a part of
2566   /// the cpu_specific/cpu_dispatch functionality.
2567   bool isCPUDispatchMultiVersion() const;
2568   /// True if this function is a multiversioned processor specific function as a
2569   /// part of the cpu_specific/cpu_dispatch functionality.
2570   bool isCPUSpecificMultiVersion() const;
2571 
2572   /// True if this function is a multiversioned dispatch function as a part of
2573   /// the target functionality.
2574   bool isTargetMultiVersion() const;
2575 
2576   /// True if this function is a multiversioned dispatch function as a part of
2577   /// the target-clones functionality.
2578   bool isTargetClonesMultiVersion() const;
2579 
2580   /// \brief Get the associated-constraints of this function declaration.
2581   /// Currently, this will either be a vector of size 1 containing the
2582   /// trailing-requires-clause or an empty vector.
2583   ///
2584   /// Use this instead of getTrailingRequiresClause for concepts APIs that
2585   /// accept an ArrayRef of constraint expressions.
2586   void getAssociatedConstraints(SmallVectorImpl<const Expr *> &AC) const {
2587     if (auto *TRC = getTrailingRequiresClause())
2588       AC.push_back(TRC);
2589   }
2590 
2591   void setPreviousDeclaration(FunctionDecl * PrevDecl);
2592 
2593   FunctionDecl *getCanonicalDecl() override;
2594   const FunctionDecl *getCanonicalDecl() const {
2595     return const_cast<FunctionDecl*>(this)->getCanonicalDecl();
2596   }
2597 
2598   unsigned getBuiltinID(bool ConsiderWrapperFunctions = false) const;
2599 
2600   // ArrayRef interface to parameters.
2601   ArrayRef<ParmVarDecl *> parameters() const {
2602     return {ParamInfo, getNumParams()};
2603   }
2604   MutableArrayRef<ParmVarDecl *> parameters() {
2605     return {ParamInfo, getNumParams()};
2606   }
2607 
2608   // Iterator access to formal parameters.
2609   using param_iterator = MutableArrayRef<ParmVarDecl *>::iterator;
2610   using param_const_iterator = ArrayRef<ParmVarDecl *>::const_iterator;
2611 
2612   bool param_empty() const { return parameters().empty(); }
2613   param_iterator param_begin() { return parameters().begin(); }
2614   param_iterator param_end() { return parameters().end(); }
2615   param_const_iterator param_begin() const { return parameters().begin(); }
2616   param_const_iterator param_end() const { return parameters().end(); }
2617   size_t param_size() const { return parameters().size(); }
2618 
2619   /// Return the number of parameters this function must have based on its
2620   /// FunctionType.  This is the length of the ParamInfo array after it has been
2621   /// created.
2622   unsigned getNumParams() const;
2623 
2624   const ParmVarDecl *getParamDecl(unsigned i) const {
2625     assert(i < getNumParams() && "Illegal param #");
2626     return ParamInfo[i];
2627   }
2628   ParmVarDecl *getParamDecl(unsigned i) {
2629     assert(i < getNumParams() && "Illegal param #");
2630     return ParamInfo[i];
2631   }
2632   void setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
2633     setParams(getASTContext(), NewParamInfo);
2634   }
2635 
2636   /// Returns the minimum number of arguments needed to call this function. This
2637   /// may be fewer than the number of function parameters, if some of the
2638   /// parameters have default arguments (in C++).
2639   unsigned getMinRequiredArguments() const;
2640 
2641   /// Determine whether this function has a single parameter, or multiple
2642   /// parameters where all but the first have default arguments.
2643   ///
2644   /// This notion is used in the definition of copy/move constructors and
2645   /// initializer list constructors. Note that, unlike getMinRequiredArguments,
2646   /// parameter packs are not treated specially here.
2647   bool hasOneParamOrDefaultArgs() const;
2648 
2649   /// Find the source location information for how the type of this function
2650   /// was written. May be absent (for example if the function was declared via
2651   /// a typedef) and may contain a different type from that of the function
2652   /// (for example if the function type was adjusted by an attribute).
2653   FunctionTypeLoc getFunctionTypeLoc() const;
2654 
2655   QualType getReturnType() const {
2656     return getType()->castAs<FunctionType>()->getReturnType();
2657   }
2658 
2659   /// Attempt to compute an informative source range covering the
2660   /// function return type. This may omit qualifiers and other information with
2661   /// limited representation in the AST.
2662   SourceRange getReturnTypeSourceRange() const;
2663 
2664   /// Attempt to compute an informative source range covering the
2665   /// function parameters, including the ellipsis of a variadic function.
2666   /// The source range excludes the parentheses, and is invalid if there are
2667   /// no parameters and no ellipsis.
2668   SourceRange getParametersSourceRange() const;
2669 
2670   /// Get the declared return type, which may differ from the actual return
2671   /// type if the return type is deduced.
2672   QualType getDeclaredReturnType() const {
2673     auto *TSI = getTypeSourceInfo();
2674     QualType T = TSI ? TSI->getType() : getType();
2675     return T->castAs<FunctionType>()->getReturnType();
2676   }
2677 
2678   /// Gets the ExceptionSpecificationType as declared.
2679   ExceptionSpecificationType getExceptionSpecType() const {
2680     auto *TSI = getTypeSourceInfo();
2681     QualType T = TSI ? TSI->getType() : getType();
2682     const auto *FPT = T->getAs<FunctionProtoType>();
2683     return FPT ? FPT->getExceptionSpecType() : EST_None;
2684   }
2685 
2686   /// Attempt to compute an informative source range covering the
2687   /// function exception specification, if any.
2688   SourceRange getExceptionSpecSourceRange() const;
2689 
2690   /// Determine the type of an expression that calls this function.
2691   QualType getCallResultType() const {
2692     return getType()->castAs<FunctionType>()->getCallResultType(
2693         getASTContext());
2694   }
2695 
2696   /// Returns the storage class as written in the source. For the
2697   /// computed linkage of symbol, see getLinkage.
2698   StorageClass getStorageClass() const {
2699     return static_cast<StorageClass>(FunctionDeclBits.SClass);
2700   }
2701 
2702   /// Sets the storage class as written in the source.
2703   void setStorageClass(StorageClass SClass) {
2704     FunctionDeclBits.SClass = SClass;
2705   }
2706 
2707   /// Determine whether the "inline" keyword was specified for this
2708   /// function.
2709   bool isInlineSpecified() const { return FunctionDeclBits.IsInlineSpecified; }
2710 
2711   /// Set whether the "inline" keyword was specified for this function.
2712   void setInlineSpecified(bool I) {
2713     FunctionDeclBits.IsInlineSpecified = I;
2714     FunctionDeclBits.IsInline = I;
2715   }
2716 
2717   /// Determine whether the function was declared in source context
2718   /// that requires constrained FP intrinsics
2719   bool UsesFPIntrin() const { return FunctionDeclBits.UsesFPIntrin; }
2720 
2721   /// Set whether the function was declared in source context
2722   /// that requires constrained FP intrinsics
2723   void setUsesFPIntrin(bool I) { FunctionDeclBits.UsesFPIntrin = I; }
2724 
2725   /// Flag that this function is implicitly inline.
2726   void setImplicitlyInline(bool I = true) { FunctionDeclBits.IsInline = I; }
2727 
2728   /// Determine whether this function should be inlined, because it is
2729   /// either marked "inline" or "constexpr" or is a member function of a class
2730   /// that was defined in the class body.
2731   bool isInlined() const { return FunctionDeclBits.IsInline; }
2732 
2733   bool isInlineDefinitionExternallyVisible() const;
2734 
2735   bool isMSExternInline() const;
2736 
2737   bool doesDeclarationForceExternallyVisibleDefinition() const;
2738 
2739   bool isStatic() const { return getStorageClass() == SC_Static; }
2740 
2741   /// Whether this function declaration represents an C++ overloaded
2742   /// operator, e.g., "operator+".
2743   bool isOverloadedOperator() const {
2744     return getOverloadedOperator() != OO_None;
2745   }
2746 
2747   OverloadedOperatorKind getOverloadedOperator() const;
2748 
2749   const IdentifierInfo *getLiteralIdentifier() const;
2750 
2751   /// If this function is an instantiation of a member function
2752   /// of a class template specialization, retrieves the function from
2753   /// which it was instantiated.
2754   ///
2755   /// This routine will return non-NULL for (non-templated) member
2756   /// functions of class templates and for instantiations of function
2757   /// templates. For example, given:
2758   ///
2759   /// \code
2760   /// template<typename T>
2761   /// struct X {
2762   ///   void f(T);
2763   /// };
2764   /// \endcode
2765   ///
2766   /// The declaration for X<int>::f is a (non-templated) FunctionDecl
2767   /// whose parent is the class template specialization X<int>. For
2768   /// this declaration, getInstantiatedFromFunction() will return
2769   /// the FunctionDecl X<T>::A. When a complete definition of
2770   /// X<int>::A is required, it will be instantiated from the
2771   /// declaration returned by getInstantiatedFromMemberFunction().
2772   FunctionDecl *getInstantiatedFromMemberFunction() const;
2773 
2774   /// What kind of templated function this is.
2775   TemplatedKind getTemplatedKind() const;
2776 
2777   /// If this function is an instantiation of a member function of a
2778   /// class template specialization, retrieves the member specialization
2779   /// information.
2780   MemberSpecializationInfo *getMemberSpecializationInfo() const;
2781 
2782   /// Specify that this record is an instantiation of the
2783   /// member function FD.
2784   void setInstantiationOfMemberFunction(FunctionDecl *FD,
2785                                         TemplateSpecializationKind TSK) {
2786     setInstantiationOfMemberFunction(getASTContext(), FD, TSK);
2787   }
2788 
2789   /// Specify that this function declaration was instantiated from a
2790   /// FunctionDecl FD. This is only used if this is a function declaration
2791   /// declared locally inside of a function template.
2792   void setInstantiatedFromDecl(FunctionDecl *FD);
2793 
2794   FunctionDecl *getInstantiatedFromDecl() const;
2795 
2796   /// Retrieves the function template that is described by this
2797   /// function declaration.
2798   ///
2799   /// Every function template is represented as a FunctionTemplateDecl
2800   /// and a FunctionDecl (or something derived from FunctionDecl). The
2801   /// former contains template properties (such as the template
2802   /// parameter lists) while the latter contains the actual
2803   /// description of the template's
2804   /// contents. FunctionTemplateDecl::getTemplatedDecl() retrieves the
2805   /// FunctionDecl that describes the function template,
2806   /// getDescribedFunctionTemplate() retrieves the
2807   /// FunctionTemplateDecl from a FunctionDecl.
2808   FunctionTemplateDecl *getDescribedFunctionTemplate() const;
2809 
2810   void setDescribedFunctionTemplate(FunctionTemplateDecl *Template);
2811 
2812   /// Determine whether this function is a function template
2813   /// specialization.
2814   bool isFunctionTemplateSpecialization() const {
2815     return getPrimaryTemplate() != nullptr;
2816   }
2817 
2818   /// If this function is actually a function template specialization,
2819   /// retrieve information about this function template specialization.
2820   /// Otherwise, returns NULL.
2821   FunctionTemplateSpecializationInfo *getTemplateSpecializationInfo() const;
2822 
2823   /// Determines whether this function is a function template
2824   /// specialization or a member of a class template specialization that can
2825   /// be implicitly instantiated.
2826   bool isImplicitlyInstantiable() const;
2827 
2828   /// Determines if the given function was instantiated from a
2829   /// function template.
2830   bool isTemplateInstantiation() const;
2831 
2832   /// Retrieve the function declaration from which this function could
2833   /// be instantiated, if it is an instantiation (rather than a non-template
2834   /// or a specialization, for example).
2835   ///
2836   /// If \p ForDefinition is \c false, explicit specializations will be treated
2837   /// as if they were implicit instantiations. This will then find the pattern
2838   /// corresponding to non-definition portions of the declaration, such as
2839   /// default arguments and the exception specification.
2840   FunctionDecl *
2841   getTemplateInstantiationPattern(bool ForDefinition = true) const;
2842 
2843   /// Retrieve the primary template that this function template
2844   /// specialization either specializes or was instantiated from.
2845   ///
2846   /// If this function declaration is not a function template specialization,
2847   /// returns NULL.
2848   FunctionTemplateDecl *getPrimaryTemplate() const;
2849 
2850   /// Retrieve the template arguments used to produce this function
2851   /// template specialization from the primary template.
2852   ///
2853   /// If this function declaration is not a function template specialization,
2854   /// returns NULL.
2855   const TemplateArgumentList *getTemplateSpecializationArgs() const;
2856 
2857   /// Retrieve the template argument list as written in the sources,
2858   /// if any.
2859   ///
2860   /// If this function declaration is not a function template specialization
2861   /// or if it had no explicit template argument list, returns NULL.
2862   /// Note that it an explicit template argument list may be written empty,
2863   /// e.g., template<> void foo<>(char* s);
2864   const ASTTemplateArgumentListInfo*
2865   getTemplateSpecializationArgsAsWritten() const;
2866 
2867   /// Specify that this function declaration is actually a function
2868   /// template specialization.
2869   ///
2870   /// \param Template the function template that this function template
2871   /// specialization specializes.
2872   ///
2873   /// \param TemplateArgs the template arguments that produced this
2874   /// function template specialization from the template.
2875   ///
2876   /// \param InsertPos If non-NULL, the position in the function template
2877   /// specialization set where the function template specialization data will
2878   /// be inserted.
2879   ///
2880   /// \param TSK the kind of template specialization this is.
2881   ///
2882   /// \param TemplateArgsAsWritten location info of template arguments.
2883   ///
2884   /// \param PointOfInstantiation point at which the function template
2885   /// specialization was first instantiated.
2886   void setFunctionTemplateSpecialization(FunctionTemplateDecl *Template,
2887                 const TemplateArgumentList *TemplateArgs,
2888                 void *InsertPos,
2889                 TemplateSpecializationKind TSK = TSK_ImplicitInstantiation,
2890                 const TemplateArgumentListInfo *TemplateArgsAsWritten = nullptr,
2891                 SourceLocation PointOfInstantiation = SourceLocation()) {
2892     setFunctionTemplateSpecialization(getASTContext(), Template, TemplateArgs,
2893                                       InsertPos, TSK, TemplateArgsAsWritten,
2894                                       PointOfInstantiation);
2895   }
2896 
2897   /// Specifies that this function declaration is actually a
2898   /// dependent function template specialization.
2899   void setDependentTemplateSpecialization(ASTContext &Context,
2900                              const UnresolvedSetImpl &Templates,
2901                       const TemplateArgumentListInfo &TemplateArgs);
2902 
2903   DependentFunctionTemplateSpecializationInfo *
2904   getDependentSpecializationInfo() const;
2905 
2906   /// Determine what kind of template instantiation this function
2907   /// represents.
2908   TemplateSpecializationKind getTemplateSpecializationKind() const;
2909 
2910   /// Determine the kind of template specialization this function represents
2911   /// for the purpose of template instantiation.
2912   TemplateSpecializationKind
2913   getTemplateSpecializationKindForInstantiation() const;
2914 
2915   /// Determine what kind of template instantiation this function
2916   /// represents.
2917   void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2918                         SourceLocation PointOfInstantiation = SourceLocation());
2919 
2920   /// Retrieve the (first) point of instantiation of a function template
2921   /// specialization or a member of a class template specialization.
2922   ///
2923   /// \returns the first point of instantiation, if this function was
2924   /// instantiated from a template; otherwise, returns an invalid source
2925   /// location.
2926   SourceLocation getPointOfInstantiation() const;
2927 
2928   /// Determine whether this is or was instantiated from an out-of-line
2929   /// definition of a member function.
2930   bool isOutOfLine() const override;
2931 
2932   /// Identify a memory copying or setting function.
2933   /// If the given function is a memory copy or setting function, returns
2934   /// the corresponding Builtin ID. If the function is not a memory function,
2935   /// returns 0.
2936   unsigned getMemoryFunctionKind() const;
2937 
2938   /// Returns ODRHash of the function.  This value is calculated and
2939   /// stored on first call, then the stored value returned on the other calls.
2940   unsigned getODRHash();
2941 
2942   /// Returns cached ODRHash of the function.  This must have been previously
2943   /// computed and stored.
2944   unsigned getODRHash() const;
2945 
2946   // Implement isa/cast/dyncast/etc.
2947   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2948   static bool classofKind(Kind K) {
2949     return K >= firstFunction && K <= lastFunction;
2950   }
2951   static DeclContext *castToDeclContext(const FunctionDecl *D) {
2952     return static_cast<DeclContext *>(const_cast<FunctionDecl*>(D));
2953   }
2954   static FunctionDecl *castFromDeclContext(const DeclContext *DC) {
2955     return static_cast<FunctionDecl *>(const_cast<DeclContext*>(DC));
2956   }
2957 };
2958 
2959 /// Represents a member of a struct/union/class.
2960 class FieldDecl : public DeclaratorDecl, public Mergeable<FieldDecl> {
2961   /// The kinds of value we can store in StorageKind.
2962   ///
2963   /// Note that this is compatible with InClassInitStyle except for
2964   /// ISK_CapturedVLAType.
2965   enum InitStorageKind {
2966     /// If the pointer is null, there's nothing special.  Otherwise,
2967     /// this is a bitfield and the pointer is the Expr* storing the
2968     /// bit-width.
2969     ISK_NoInit = (unsigned) ICIS_NoInit,
2970 
2971     /// The pointer is an (optional due to delayed parsing) Expr*
2972     /// holding the copy-initializer.
2973     ISK_InClassCopyInit = (unsigned) ICIS_CopyInit,
2974 
2975     /// The pointer is an (optional due to delayed parsing) Expr*
2976     /// holding the list-initializer.
2977     ISK_InClassListInit = (unsigned) ICIS_ListInit,
2978 
2979     /// The pointer is a VariableArrayType* that's been captured;
2980     /// the enclosing context is a lambda or captured statement.
2981     ISK_CapturedVLAType,
2982   };
2983 
2984   unsigned BitField : 1;
2985   unsigned Mutable : 1;
2986   unsigned StorageKind : 2;
2987   mutable unsigned CachedFieldIndex : 28;
2988 
2989   /// If this is a bitfield with a default member initializer, this
2990   /// structure is used to represent the two expressions.
2991   struct InitAndBitWidthStorage {
2992     LazyDeclStmtPtr Init;
2993     Expr *BitWidth;
2994   };
2995 
2996   /// Storage for either the bit-width, the in-class initializer, or
2997   /// both (via InitAndBitWidth), or the captured variable length array bound.
2998   ///
2999   /// If the storage kind is ISK_InClassCopyInit or
3000   /// ISK_InClassListInit, but the initializer is null, then this
3001   /// field has an in-class initializer that has not yet been parsed
3002   /// and attached.
3003   // FIXME: Tail-allocate this to reduce the size of FieldDecl in the
3004   // overwhelmingly common case that we have none of these things.
3005   union {
3006     // Active member if ISK is not ISK_CapturedVLAType and BitField is false.
3007     LazyDeclStmtPtr Init;
3008     // Active member if ISK is ISK_NoInit and BitField is true.
3009     Expr *BitWidth;
3010     // Active member if ISK is ISK_InClass*Init and BitField is true.
3011     InitAndBitWidthStorage *InitAndBitWidth;
3012     // Active member if ISK is ISK_CapturedVLAType.
3013     const VariableArrayType *CapturedVLAType;
3014   };
3015 
3016 protected:
3017   FieldDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
3018             SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
3019             TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
3020             InClassInitStyle InitStyle)
3021       : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), BitField(false),
3022         Mutable(Mutable), StorageKind((InitStorageKind)InitStyle),
3023         CachedFieldIndex(0), Init() {
3024     if (BW)
3025       setBitWidth(BW);
3026   }
3027 
3028 public:
3029   friend class ASTDeclReader;
3030   friend class ASTDeclWriter;
3031 
3032   static FieldDecl *Create(const ASTContext &C, DeclContext *DC,
3033                            SourceLocation StartLoc, SourceLocation IdLoc,
3034                            IdentifierInfo *Id, QualType T,
3035                            TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
3036                            InClassInitStyle InitStyle);
3037 
3038   static FieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3039 
3040   /// Returns the index of this field within its record,
3041   /// as appropriate for passing to ASTRecordLayout::getFieldOffset.
3042   unsigned getFieldIndex() const;
3043 
3044   /// Determines whether this field is mutable (C++ only).
3045   bool isMutable() const { return Mutable; }
3046 
3047   /// Determines whether this field is a bitfield.
3048   bool isBitField() const { return BitField; }
3049 
3050   /// Determines whether this is an unnamed bitfield.
3051   bool isUnnamedBitfield() const { return isBitField() && !getDeclName(); }
3052 
3053   /// Determines whether this field is a
3054   /// representative for an anonymous struct or union. Such fields are
3055   /// unnamed and are implicitly generated by the implementation to
3056   /// store the data for the anonymous union or struct.
3057   bool isAnonymousStructOrUnion() const;
3058 
3059   Expr *getBitWidth() const {
3060     if (!BitField)
3061       return nullptr;
3062     return hasInClassInitializer() ? InitAndBitWidth->BitWidth : BitWidth;
3063   }
3064 
3065   unsigned getBitWidthValue(const ASTContext &Ctx) const;
3066 
3067   /// Set the bit-field width for this member.
3068   // Note: used by some clients (i.e., do not remove it).
3069   void setBitWidth(Expr *Width) {
3070     assert(!hasCapturedVLAType() && !BitField &&
3071            "bit width or captured type already set");
3072     assert(Width && "no bit width specified");
3073     if (hasInClassInitializer())
3074       InitAndBitWidth =
3075           new (getASTContext()) InitAndBitWidthStorage{Init, Width};
3076     else
3077       BitWidth = Width;
3078     BitField = true;
3079   }
3080 
3081   /// Remove the bit-field width from this member.
3082   // Note: used by some clients (i.e., do not remove it).
3083   void removeBitWidth() {
3084     assert(isBitField() && "no bitfield width to remove");
3085     if (hasInClassInitializer()) {
3086       // Read the old initializer before we change the active union member.
3087       auto ExistingInit = InitAndBitWidth->Init;
3088       Init = ExistingInit;
3089     }
3090     BitField = false;
3091   }
3092 
3093   /// Is this a zero-length bit-field? Such bit-fields aren't really bit-fields
3094   /// at all and instead act as a separator between contiguous runs of other
3095   /// bit-fields.
3096   bool isZeroLengthBitField(const ASTContext &Ctx) const;
3097 
3098   /// Determine if this field is a subobject of zero size, that is, either a
3099   /// zero-length bit-field or a field of empty class type with the
3100   /// [[no_unique_address]] attribute.
3101   bool isZeroSize(const ASTContext &Ctx) const;
3102 
3103   /// Determine if this field is of potentially-overlapping class type, that
3104   /// is, subobject with the [[no_unique_address]] attribute
3105   bool isPotentiallyOverlapping() const;
3106 
3107   /// Get the kind of (C++11) default member initializer that this field has.
3108   InClassInitStyle getInClassInitStyle() const {
3109     return (StorageKind == ISK_CapturedVLAType ? ICIS_NoInit
3110                                                : (InClassInitStyle)StorageKind);
3111   }
3112 
3113   /// Determine whether this member has a C++11 default member initializer.
3114   bool hasInClassInitializer() const {
3115     return getInClassInitStyle() != ICIS_NoInit;
3116   }
3117 
3118   /// Determine whether getInClassInitializer() would return a non-null pointer
3119   /// without deserializing the initializer.
3120   bool hasNonNullInClassInitializer() const {
3121     return hasInClassInitializer() && (BitField ? InitAndBitWidth->Init : Init);
3122   }
3123 
3124   /// Get the C++11 default member initializer for this member, or null if one
3125   /// has not been set. If a valid declaration has a default member initializer,
3126   /// but this returns null, then we have not parsed and attached it yet.
3127   Expr *getInClassInitializer() const;
3128 
3129   /// Set the C++11 in-class initializer for this member.
3130   void setInClassInitializer(Expr *NewInit);
3131 
3132 private:
3133   void setLazyInClassInitializer(LazyDeclStmtPtr NewInit);
3134 
3135 public:
3136   /// Remove the C++11 in-class initializer from this member.
3137   void removeInClassInitializer() {
3138     assert(hasInClassInitializer() && "no initializer to remove");
3139     StorageKind = ISK_NoInit;
3140     if (BitField) {
3141       // Read the bit width before we change the active union member.
3142       Expr *ExistingBitWidth = InitAndBitWidth->BitWidth;
3143       BitWidth = ExistingBitWidth;
3144     }
3145   }
3146 
3147   /// Determine whether this member captures the variable length array
3148   /// type.
3149   bool hasCapturedVLAType() const {
3150     return StorageKind == ISK_CapturedVLAType;
3151   }
3152 
3153   /// Get the captured variable length array type.
3154   const VariableArrayType *getCapturedVLAType() const {
3155     return hasCapturedVLAType() ? CapturedVLAType : nullptr;
3156   }
3157 
3158   /// Set the captured variable length array type for this field.
3159   void setCapturedVLAType(const VariableArrayType *VLAType);
3160 
3161   /// Returns the parent of this field declaration, which
3162   /// is the struct in which this field is defined.
3163   ///
3164   /// Returns null if this is not a normal class/struct field declaration, e.g.
3165   /// ObjCAtDefsFieldDecl, ObjCIvarDecl.
3166   const RecordDecl *getParent() const {
3167     return dyn_cast<RecordDecl>(getDeclContext());
3168   }
3169 
3170   RecordDecl *getParent() {
3171     return dyn_cast<RecordDecl>(getDeclContext());
3172   }
3173 
3174   SourceRange getSourceRange() const override LLVM_READONLY;
3175 
3176   /// Retrieves the canonical declaration of this field.
3177   FieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
3178   const FieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
3179 
3180   // Implement isa/cast/dyncast/etc.
3181   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3182   static bool classofKind(Kind K) { return K >= firstField && K <= lastField; }
3183 };
3184 
3185 /// An instance of this object exists for each enum constant
3186 /// that is defined.  For example, in "enum X {a,b}", each of a/b are
3187 /// EnumConstantDecl's, X is an instance of EnumDecl, and the type of a/b is a
3188 /// TagType for the X EnumDecl.
3189 class EnumConstantDecl : public ValueDecl, public Mergeable<EnumConstantDecl> {
3190   Stmt *Init; // an integer constant expression
3191   llvm::APSInt Val; // The value.
3192 
3193 protected:
3194   EnumConstantDecl(DeclContext *DC, SourceLocation L,
3195                    IdentifierInfo *Id, QualType T, Expr *E,
3196                    const llvm::APSInt &V)
3197     : ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt*)E), Val(V) {}
3198 
3199 public:
3200   friend class StmtIteratorBase;
3201 
3202   static EnumConstantDecl *Create(ASTContext &C, EnumDecl *DC,
3203                                   SourceLocation L, IdentifierInfo *Id,
3204                                   QualType T, Expr *E,
3205                                   const llvm::APSInt &V);
3206   static EnumConstantDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3207 
3208   const Expr *getInitExpr() const { return (const Expr*) Init; }
3209   Expr *getInitExpr() { return (Expr*) Init; }
3210   const llvm::APSInt &getInitVal() const { return Val; }
3211 
3212   void setInitExpr(Expr *E) { Init = (Stmt*) E; }
3213   void setInitVal(const llvm::APSInt &V) { Val = V; }
3214 
3215   SourceRange getSourceRange() const override LLVM_READONLY;
3216 
3217   /// Retrieves the canonical declaration of this enumerator.
3218   EnumConstantDecl *getCanonicalDecl() override { return getFirstDecl(); }
3219   const EnumConstantDecl *getCanonicalDecl() const { return getFirstDecl(); }
3220 
3221   // Implement isa/cast/dyncast/etc.
3222   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3223   static bool classofKind(Kind K) { return K == EnumConstant; }
3224 };
3225 
3226 /// Represents a field injected from an anonymous union/struct into the parent
3227 /// scope. These are always implicit.
3228 class IndirectFieldDecl : public ValueDecl,
3229                           public Mergeable<IndirectFieldDecl> {
3230   NamedDecl **Chaining;
3231   unsigned ChainingSize;
3232 
3233   IndirectFieldDecl(ASTContext &C, DeclContext *DC, SourceLocation L,
3234                     DeclarationName N, QualType T,
3235                     MutableArrayRef<NamedDecl *> CH);
3236 
3237   void anchor() override;
3238 
3239 public:
3240   friend class ASTDeclReader;
3241 
3242   static IndirectFieldDecl *Create(ASTContext &C, DeclContext *DC,
3243                                    SourceLocation L, IdentifierInfo *Id,
3244                                    QualType T, llvm::MutableArrayRef<NamedDecl *> CH);
3245 
3246   static IndirectFieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3247 
3248   using chain_iterator = ArrayRef<NamedDecl *>::const_iterator;
3249 
3250   ArrayRef<NamedDecl *> chain() const {
3251     return llvm::ArrayRef(Chaining, ChainingSize);
3252   }
3253   chain_iterator chain_begin() const { return chain().begin(); }
3254   chain_iterator chain_end() const { return chain().end(); }
3255 
3256   unsigned getChainingSize() const { return ChainingSize; }
3257 
3258   FieldDecl *getAnonField() const {
3259     assert(chain().size() >= 2);
3260     return cast<FieldDecl>(chain().back());
3261   }
3262 
3263   VarDecl *getVarDecl() const {
3264     assert(chain().size() >= 2);
3265     return dyn_cast<VarDecl>(chain().front());
3266   }
3267 
3268   IndirectFieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
3269   const IndirectFieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
3270 
3271   // Implement isa/cast/dyncast/etc.
3272   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3273   static bool classofKind(Kind K) { return K == IndirectField; }
3274 };
3275 
3276 /// Represents a declaration of a type.
3277 class TypeDecl : public NamedDecl {
3278   friend class ASTContext;
3279 
3280   /// This indicates the Type object that represents
3281   /// this TypeDecl.  It is a cache maintained by
3282   /// ASTContext::getTypedefType, ASTContext::getTagDeclType, and
3283   /// ASTContext::getTemplateTypeParmType, and TemplateTypeParmDecl.
3284   mutable const Type *TypeForDecl = nullptr;
3285 
3286   /// The start of the source range for this declaration.
3287   SourceLocation LocStart;
3288 
3289   void anchor() override;
3290 
3291 protected:
3292   TypeDecl(Kind DK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id,
3293            SourceLocation StartL = SourceLocation())
3294     : NamedDecl(DK, DC, L, Id), LocStart(StartL) {}
3295 
3296 public:
3297   // Low-level accessor. If you just want the type defined by this node,
3298   // check out ASTContext::getTypeDeclType or one of
3299   // ASTContext::getTypedefType, ASTContext::getRecordType, etc. if you
3300   // already know the specific kind of node this is.
3301   const Type *getTypeForDecl() const { return TypeForDecl; }
3302   void setTypeForDecl(const Type *TD) { TypeForDecl = TD; }
3303 
3304   SourceLocation getBeginLoc() const LLVM_READONLY { return LocStart; }
3305   void setLocStart(SourceLocation L) { LocStart = L; }
3306   SourceRange getSourceRange() const override LLVM_READONLY {
3307     if (LocStart.isValid())
3308       return SourceRange(LocStart, getLocation());
3309     else
3310       return SourceRange(getLocation());
3311   }
3312 
3313   // Implement isa/cast/dyncast/etc.
3314   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3315   static bool classofKind(Kind K) { return K >= firstType && K <= lastType; }
3316 };
3317 
3318 /// Base class for declarations which introduce a typedef-name.
3319 class TypedefNameDecl : public TypeDecl, public Redeclarable<TypedefNameDecl> {
3320   struct alignas(8) ModedTInfo {
3321     TypeSourceInfo *first;
3322     QualType second;
3323   };
3324 
3325   /// If int part is 0, we have not computed IsTransparentTag.
3326   /// Otherwise, IsTransparentTag is (getInt() >> 1).
3327   mutable llvm::PointerIntPair<
3328       llvm::PointerUnion<TypeSourceInfo *, ModedTInfo *>, 2>
3329       MaybeModedTInfo;
3330 
3331   void anchor() override;
3332 
3333 protected:
3334   TypedefNameDecl(Kind DK, ASTContext &C, DeclContext *DC,
3335                   SourceLocation StartLoc, SourceLocation IdLoc,
3336                   IdentifierInfo *Id, TypeSourceInfo *TInfo)
3337       : TypeDecl(DK, DC, IdLoc, Id, StartLoc), redeclarable_base(C),
3338         MaybeModedTInfo(TInfo, 0) {}
3339 
3340   using redeclarable_base = Redeclarable<TypedefNameDecl>;
3341 
3342   TypedefNameDecl *getNextRedeclarationImpl() override {
3343     return getNextRedeclaration();
3344   }
3345 
3346   TypedefNameDecl *getPreviousDeclImpl() override {
3347     return getPreviousDecl();
3348   }
3349 
3350   TypedefNameDecl *getMostRecentDeclImpl() override {
3351     return getMostRecentDecl();
3352   }
3353 
3354 public:
3355   using redecl_range = redeclarable_base::redecl_range;
3356   using redecl_iterator = redeclarable_base::redecl_iterator;
3357 
3358   using redeclarable_base::redecls_begin;
3359   using redeclarable_base::redecls_end;
3360   using redeclarable_base::redecls;
3361   using redeclarable_base::getPreviousDecl;
3362   using redeclarable_base::getMostRecentDecl;
3363   using redeclarable_base::isFirstDecl;
3364 
3365   bool isModed() const {
3366     return MaybeModedTInfo.getPointer().is<ModedTInfo *>();
3367   }
3368 
3369   TypeSourceInfo *getTypeSourceInfo() const {
3370     return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->first
3371                      : MaybeModedTInfo.getPointer().get<TypeSourceInfo *>();
3372   }
3373 
3374   QualType getUnderlyingType() const {
3375     return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->second
3376                      : MaybeModedTInfo.getPointer()
3377                            .get<TypeSourceInfo *>()
3378                            ->getType();
3379   }
3380 
3381   void setTypeSourceInfo(TypeSourceInfo *newType) {
3382     MaybeModedTInfo.setPointer(newType);
3383   }
3384 
3385   void setModedTypeSourceInfo(TypeSourceInfo *unmodedTSI, QualType modedTy) {
3386     MaybeModedTInfo.setPointer(new (getASTContext(), 8)
3387                                    ModedTInfo({unmodedTSI, modedTy}));
3388   }
3389 
3390   /// Retrieves the canonical declaration of this typedef-name.
3391   TypedefNameDecl *getCanonicalDecl() override { return getFirstDecl(); }
3392   const TypedefNameDecl *getCanonicalDecl() const { return getFirstDecl(); }
3393 
3394   /// Retrieves the tag declaration for which this is the typedef name for
3395   /// linkage purposes, if any.
3396   ///
3397   /// \param AnyRedecl Look for the tag declaration in any redeclaration of
3398   /// this typedef declaration.
3399   TagDecl *getAnonDeclWithTypedefName(bool AnyRedecl = false) const;
3400 
3401   /// Determines if this typedef shares a name and spelling location with its
3402   /// underlying tag type, as is the case with the NS_ENUM macro.
3403   bool isTransparentTag() const {
3404     if (MaybeModedTInfo.getInt())
3405       return MaybeModedTInfo.getInt() & 0x2;
3406     return isTransparentTagSlow();
3407   }
3408 
3409   // Implement isa/cast/dyncast/etc.
3410   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3411   static bool classofKind(Kind K) {
3412     return K >= firstTypedefName && K <= lastTypedefName;
3413   }
3414 
3415 private:
3416   bool isTransparentTagSlow() const;
3417 };
3418 
3419 /// Represents the declaration of a typedef-name via the 'typedef'
3420 /// type specifier.
3421 class TypedefDecl : public TypedefNameDecl {
3422   TypedefDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3423               SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
3424       : TypedefNameDecl(Typedef, C, DC, StartLoc, IdLoc, Id, TInfo) {}
3425 
3426 public:
3427   static TypedefDecl *Create(ASTContext &C, DeclContext *DC,
3428                              SourceLocation StartLoc, SourceLocation IdLoc,
3429                              IdentifierInfo *Id, TypeSourceInfo *TInfo);
3430   static TypedefDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3431 
3432   SourceRange getSourceRange() const override LLVM_READONLY;
3433 
3434   // Implement isa/cast/dyncast/etc.
3435   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3436   static bool classofKind(Kind K) { return K == Typedef; }
3437 };
3438 
3439 /// Represents the declaration of a typedef-name via a C++11
3440 /// alias-declaration.
3441 class TypeAliasDecl : public TypedefNameDecl {
3442   /// The template for which this is the pattern, if any.
3443   TypeAliasTemplateDecl *Template;
3444 
3445   TypeAliasDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3446                 SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
3447       : TypedefNameDecl(TypeAlias, C, DC, StartLoc, IdLoc, Id, TInfo),
3448         Template(nullptr) {}
3449 
3450 public:
3451   static TypeAliasDecl *Create(ASTContext &C, DeclContext *DC,
3452                                SourceLocation StartLoc, SourceLocation IdLoc,
3453                                IdentifierInfo *Id, TypeSourceInfo *TInfo);
3454   static TypeAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3455 
3456   SourceRange getSourceRange() const override LLVM_READONLY;
3457 
3458   TypeAliasTemplateDecl *getDescribedAliasTemplate() const { return Template; }
3459   void setDescribedAliasTemplate(TypeAliasTemplateDecl *TAT) { Template = TAT; }
3460 
3461   // Implement isa/cast/dyncast/etc.
3462   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3463   static bool classofKind(Kind K) { return K == TypeAlias; }
3464 };
3465 
3466 /// Represents the declaration of a struct/union/class/enum.
3467 class TagDecl : public TypeDecl,
3468                 public DeclContext,
3469                 public Redeclarable<TagDecl> {
3470   // This class stores some data in DeclContext::TagDeclBits
3471   // to save some space. Use the provided accessors to access it.
3472 public:
3473   // This is really ugly.
3474   using TagKind = TagTypeKind;
3475 
3476 private:
3477   SourceRange BraceRange;
3478 
3479   // A struct representing syntactic qualifier info,
3480   // to be used for the (uncommon) case of out-of-line declarations.
3481   using ExtInfo = QualifierInfo;
3482 
3483   /// If the (out-of-line) tag declaration name
3484   /// is qualified, it points to the qualifier info (nns and range);
3485   /// otherwise, if the tag declaration is anonymous and it is part of
3486   /// a typedef or alias, it points to the TypedefNameDecl (used for mangling);
3487   /// otherwise, if the tag declaration is anonymous and it is used as a
3488   /// declaration specifier for variables, it points to the first VarDecl (used
3489   /// for mangling);
3490   /// otherwise, it is a null (TypedefNameDecl) pointer.
3491   llvm::PointerUnion<TypedefNameDecl *, ExtInfo *> TypedefNameDeclOrQualifier;
3492 
3493   bool hasExtInfo() const { return TypedefNameDeclOrQualifier.is<ExtInfo *>(); }
3494   ExtInfo *getExtInfo() { return TypedefNameDeclOrQualifier.get<ExtInfo *>(); }
3495   const ExtInfo *getExtInfo() const {
3496     return TypedefNameDeclOrQualifier.get<ExtInfo *>();
3497   }
3498 
3499 protected:
3500   TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
3501           SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
3502           SourceLocation StartL);
3503 
3504   using redeclarable_base = Redeclarable<TagDecl>;
3505 
3506   TagDecl *getNextRedeclarationImpl() override {
3507     return getNextRedeclaration();
3508   }
3509 
3510   TagDecl *getPreviousDeclImpl() override {
3511     return getPreviousDecl();
3512   }
3513 
3514   TagDecl *getMostRecentDeclImpl() override {
3515     return getMostRecentDecl();
3516   }
3517 
3518   /// Completes the definition of this tag declaration.
3519   ///
3520   /// This is a helper function for derived classes.
3521   void completeDefinition();
3522 
3523   /// True if this decl is currently being defined.
3524   void setBeingDefined(bool V = true) { TagDeclBits.IsBeingDefined = V; }
3525 
3526   /// Indicates whether it is possible for declarations of this kind
3527   /// to have an out-of-date definition.
3528   ///
3529   /// This option is only enabled when modules are enabled.
3530   void setMayHaveOutOfDateDef(bool V = true) {
3531     TagDeclBits.MayHaveOutOfDateDef = V;
3532   }
3533 
3534 public:
3535   friend class ASTDeclReader;
3536   friend class ASTDeclWriter;
3537 
3538   using redecl_range = redeclarable_base::redecl_range;
3539   using redecl_iterator = redeclarable_base::redecl_iterator;
3540 
3541   using redeclarable_base::redecls_begin;
3542   using redeclarable_base::redecls_end;
3543   using redeclarable_base::redecls;
3544   using redeclarable_base::getPreviousDecl;
3545   using redeclarable_base::getMostRecentDecl;
3546   using redeclarable_base::isFirstDecl;
3547 
3548   SourceRange getBraceRange() const { return BraceRange; }
3549   void setBraceRange(SourceRange R) { BraceRange = R; }
3550 
3551   /// Return SourceLocation representing start of source
3552   /// range ignoring outer template declarations.
3553   SourceLocation getInnerLocStart() const { return getBeginLoc(); }
3554 
3555   /// Return SourceLocation representing start of source
3556   /// range taking into account any outer template declarations.
3557   SourceLocation getOuterLocStart() const;
3558   SourceRange getSourceRange() const override LLVM_READONLY;
3559 
3560   TagDecl *getCanonicalDecl() override;
3561   const TagDecl *getCanonicalDecl() const {
3562     return const_cast<TagDecl*>(this)->getCanonicalDecl();
3563   }
3564 
3565   /// Return true if this declaration is a completion definition of the type.
3566   /// Provided for consistency.
3567   bool isThisDeclarationADefinition() const {
3568     return isCompleteDefinition();
3569   }
3570 
3571   /// Return true if this decl has its body fully specified.
3572   bool isCompleteDefinition() const { return TagDeclBits.IsCompleteDefinition; }
3573 
3574   /// True if this decl has its body fully specified.
3575   void setCompleteDefinition(bool V = true) {
3576     TagDeclBits.IsCompleteDefinition = V;
3577   }
3578 
3579   /// Return true if this complete decl is
3580   /// required to be complete for some existing use.
3581   bool isCompleteDefinitionRequired() const {
3582     return TagDeclBits.IsCompleteDefinitionRequired;
3583   }
3584 
3585   /// True if this complete decl is
3586   /// required to be complete for some existing use.
3587   void setCompleteDefinitionRequired(bool V = true) {
3588     TagDeclBits.IsCompleteDefinitionRequired = V;
3589   }
3590 
3591   /// Return true if this decl is currently being defined.
3592   bool isBeingDefined() const { return TagDeclBits.IsBeingDefined; }
3593 
3594   /// True if this tag declaration is "embedded" (i.e., defined or declared
3595   /// for the very first time) in the syntax of a declarator.
3596   bool isEmbeddedInDeclarator() const {
3597     return TagDeclBits.IsEmbeddedInDeclarator;
3598   }
3599 
3600   /// True if this tag declaration is "embedded" (i.e., defined or declared
3601   /// for the very first time) in the syntax of a declarator.
3602   void setEmbeddedInDeclarator(bool isInDeclarator) {
3603     TagDeclBits.IsEmbeddedInDeclarator = isInDeclarator;
3604   }
3605 
3606   /// True if this tag is free standing, e.g. "struct foo;".
3607   bool isFreeStanding() const { return TagDeclBits.IsFreeStanding; }
3608 
3609   /// True if this tag is free standing, e.g. "struct foo;".
3610   void setFreeStanding(bool isFreeStanding = true) {
3611     TagDeclBits.IsFreeStanding = isFreeStanding;
3612   }
3613 
3614   /// Indicates whether it is possible for declarations of this kind
3615   /// to have an out-of-date definition.
3616   ///
3617   /// This option is only enabled when modules are enabled.
3618   bool mayHaveOutOfDateDef() const { return TagDeclBits.MayHaveOutOfDateDef; }
3619 
3620   /// Whether this declaration declares a type that is
3621   /// dependent, i.e., a type that somehow depends on template
3622   /// parameters.
3623   bool isDependentType() const { return isDependentContext(); }
3624 
3625   /// Whether this declaration was a definition in some module but was forced
3626   /// to be a declaration.
3627   ///
3628   /// Useful for clients checking if a module has a definition of a specific
3629   /// symbol and not interested in the final AST with deduplicated definitions.
3630   bool isThisDeclarationADemotedDefinition() const {
3631     return TagDeclBits.IsThisDeclarationADemotedDefinition;
3632   }
3633 
3634   /// Mark a definition as a declaration and maintain information it _was_
3635   /// a definition.
3636   void demoteThisDefinitionToDeclaration() {
3637     assert(isCompleteDefinition() &&
3638            "Should demote definitions only, not forward declarations");
3639     setCompleteDefinition(false);
3640     TagDeclBits.IsThisDeclarationADemotedDefinition = true;
3641   }
3642 
3643   /// Starts the definition of this tag declaration.
3644   ///
3645   /// This method should be invoked at the beginning of the definition
3646   /// of this tag declaration. It will set the tag type into a state
3647   /// where it is in the process of being defined.
3648   void startDefinition();
3649 
3650   /// Returns the TagDecl that actually defines this
3651   ///  struct/union/class/enum.  When determining whether or not a
3652   ///  struct/union/class/enum has a definition, one should use this
3653   ///  method as opposed to 'isDefinition'.  'isDefinition' indicates
3654   ///  whether or not a specific TagDecl is defining declaration, not
3655   ///  whether or not the struct/union/class/enum type is defined.
3656   ///  This method returns NULL if there is no TagDecl that defines
3657   ///  the struct/union/class/enum.
3658   TagDecl *getDefinition() const;
3659 
3660   StringRef getKindName() const {
3661     return TypeWithKeyword::getTagTypeKindName(getTagKind());
3662   }
3663 
3664   TagKind getTagKind() const {
3665     return static_cast<TagKind>(TagDeclBits.TagDeclKind);
3666   }
3667 
3668   void setTagKind(TagKind TK) { TagDeclBits.TagDeclKind = TK; }
3669 
3670   bool isStruct() const { return getTagKind() == TTK_Struct; }
3671   bool isInterface() const { return getTagKind() == TTK_Interface; }
3672   bool isClass()  const { return getTagKind() == TTK_Class; }
3673   bool isUnion()  const { return getTagKind() == TTK_Union; }
3674   bool isEnum()   const { return getTagKind() == TTK_Enum; }
3675 
3676   /// Is this tag type named, either directly or via being defined in
3677   /// a typedef of this type?
3678   ///
3679   /// C++11 [basic.link]p8:
3680   ///   A type is said to have linkage if and only if:
3681   ///     - it is a class or enumeration type that is named (or has a
3682   ///       name for linkage purposes) and the name has linkage; ...
3683   /// C++11 [dcl.typedef]p9:
3684   ///   If the typedef declaration defines an unnamed class (or enum),
3685   ///   the first typedef-name declared by the declaration to be that
3686   ///   class type (or enum type) is used to denote the class type (or
3687   ///   enum type) for linkage purposes only.
3688   ///
3689   /// C does not have an analogous rule, but the same concept is
3690   /// nonetheless useful in some places.
3691   bool hasNameForLinkage() const {
3692     return (getDeclName() || getTypedefNameForAnonDecl());
3693   }
3694 
3695   TypedefNameDecl *getTypedefNameForAnonDecl() const {
3696     return hasExtInfo() ? nullptr
3697                         : TypedefNameDeclOrQualifier.get<TypedefNameDecl *>();
3698   }
3699 
3700   void setTypedefNameForAnonDecl(TypedefNameDecl *TDD);
3701 
3702   /// Retrieve the nested-name-specifier that qualifies the name of this
3703   /// declaration, if it was present in the source.
3704   NestedNameSpecifier *getQualifier() const {
3705     return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
3706                         : nullptr;
3707   }
3708 
3709   /// Retrieve the nested-name-specifier (with source-location
3710   /// information) that qualifies the name of this declaration, if it was
3711   /// present in the source.
3712   NestedNameSpecifierLoc getQualifierLoc() const {
3713     return hasExtInfo() ? getExtInfo()->QualifierLoc
3714                         : NestedNameSpecifierLoc();
3715   }
3716 
3717   void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
3718 
3719   unsigned getNumTemplateParameterLists() const {
3720     return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
3721   }
3722 
3723   TemplateParameterList *getTemplateParameterList(unsigned i) const {
3724     assert(i < getNumTemplateParameterLists());
3725     return getExtInfo()->TemplParamLists[i];
3726   }
3727 
3728   using TypeDecl::printName;
3729   void printName(raw_ostream &OS, const PrintingPolicy &Policy) const override;
3730 
3731   void setTemplateParameterListsInfo(ASTContext &Context,
3732                                      ArrayRef<TemplateParameterList *> TPLists);
3733 
3734   // Implement isa/cast/dyncast/etc.
3735   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3736   static bool classofKind(Kind K) { return K >= firstTag && K <= lastTag; }
3737 
3738   static DeclContext *castToDeclContext(const TagDecl *D) {
3739     return static_cast<DeclContext *>(const_cast<TagDecl*>(D));
3740   }
3741 
3742   static TagDecl *castFromDeclContext(const DeclContext *DC) {
3743     return static_cast<TagDecl *>(const_cast<DeclContext*>(DC));
3744   }
3745 };
3746 
3747 /// Represents an enum.  In C++11, enums can be forward-declared
3748 /// with a fixed underlying type, and in C we allow them to be forward-declared
3749 /// with no underlying type as an extension.
3750 class EnumDecl : public TagDecl {
3751   // This class stores some data in DeclContext::EnumDeclBits
3752   // to save some space. Use the provided accessors to access it.
3753 
3754   /// This represent the integer type that the enum corresponds
3755   /// to for code generation purposes.  Note that the enumerator constants may
3756   /// have a different type than this does.
3757   ///
3758   /// If the underlying integer type was explicitly stated in the source
3759   /// code, this is a TypeSourceInfo* for that type. Otherwise this type
3760   /// was automatically deduced somehow, and this is a Type*.
3761   ///
3762   /// Normally if IsFixed(), this would contain a TypeSourceInfo*, but in
3763   /// some cases it won't.
3764   ///
3765   /// The underlying type of an enumeration never has any qualifiers, so
3766   /// we can get away with just storing a raw Type*, and thus save an
3767   /// extra pointer when TypeSourceInfo is needed.
3768   llvm::PointerUnion<const Type *, TypeSourceInfo *> IntegerType;
3769 
3770   /// The integer type that values of this type should
3771   /// promote to.  In C, enumerators are generally of an integer type
3772   /// directly, but gcc-style large enumerators (and all enumerators
3773   /// in C++) are of the enum type instead.
3774   QualType PromotionType;
3775 
3776   /// If this enumeration is an instantiation of a member enumeration
3777   /// of a class template specialization, this is the member specialization
3778   /// information.
3779   MemberSpecializationInfo *SpecializationInfo = nullptr;
3780 
3781   /// Store the ODRHash after first calculation.
3782   /// The corresponding flag HasODRHash is in EnumDeclBits
3783   /// and can be accessed with the provided accessors.
3784   unsigned ODRHash;
3785 
3786   EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3787            SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
3788            bool Scoped, bool ScopedUsingClassTag, bool Fixed);
3789 
3790   void anchor() override;
3791 
3792   void setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
3793                                     TemplateSpecializationKind TSK);
3794 
3795   /// Sets the width in bits required to store all the
3796   /// non-negative enumerators of this enum.
3797   void setNumPositiveBits(unsigned Num) {
3798     EnumDeclBits.NumPositiveBits = Num;
3799     assert(EnumDeclBits.NumPositiveBits == Num && "can't store this bitcount");
3800   }
3801 
3802   /// Returns the width in bits required to store all the
3803   /// negative enumerators of this enum. (see getNumNegativeBits)
3804   void setNumNegativeBits(unsigned Num) { EnumDeclBits.NumNegativeBits = Num; }
3805 
3806 public:
3807   /// True if this tag declaration is a scoped enumeration. Only
3808   /// possible in C++11 mode.
3809   void setScoped(bool Scoped = true) { EnumDeclBits.IsScoped = Scoped; }
3810 
3811   /// If this tag declaration is a scoped enum,
3812   /// then this is true if the scoped enum was declared using the class
3813   /// tag, false if it was declared with the struct tag. No meaning is
3814   /// associated if this tag declaration is not a scoped enum.
3815   void setScopedUsingClassTag(bool ScopedUCT = true) {
3816     EnumDeclBits.IsScopedUsingClassTag = ScopedUCT;
3817   }
3818 
3819   /// True if this is an Objective-C, C++11, or
3820   /// Microsoft-style enumeration with a fixed underlying type.
3821   void setFixed(bool Fixed = true) { EnumDeclBits.IsFixed = Fixed; }
3822 
3823 private:
3824   /// True if a valid hash is stored in ODRHash.
3825   bool hasODRHash() const { return EnumDeclBits.HasODRHash; }
3826   void setHasODRHash(bool Hash = true) { EnumDeclBits.HasODRHash = Hash; }
3827 
3828 public:
3829   friend class ASTDeclReader;
3830 
3831   EnumDecl *getCanonicalDecl() override {
3832     return cast<EnumDecl>(TagDecl::getCanonicalDecl());
3833   }
3834   const EnumDecl *getCanonicalDecl() const {
3835     return const_cast<EnumDecl*>(this)->getCanonicalDecl();
3836   }
3837 
3838   EnumDecl *getPreviousDecl() {
3839     return cast_or_null<EnumDecl>(
3840             static_cast<TagDecl *>(this)->getPreviousDecl());
3841   }
3842   const EnumDecl *getPreviousDecl() const {
3843     return const_cast<EnumDecl*>(this)->getPreviousDecl();
3844   }
3845 
3846   EnumDecl *getMostRecentDecl() {
3847     return cast<EnumDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
3848   }
3849   const EnumDecl *getMostRecentDecl() const {
3850     return const_cast<EnumDecl*>(this)->getMostRecentDecl();
3851   }
3852 
3853   EnumDecl *getDefinition() const {
3854     return cast_or_null<EnumDecl>(TagDecl::getDefinition());
3855   }
3856 
3857   static EnumDecl *Create(ASTContext &C, DeclContext *DC,
3858                           SourceLocation StartLoc, SourceLocation IdLoc,
3859                           IdentifierInfo *Id, EnumDecl *PrevDecl,
3860                           bool IsScoped, bool IsScopedUsingClassTag,
3861                           bool IsFixed);
3862   static EnumDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3863 
3864   /// Overrides to provide correct range when there's an enum-base specifier
3865   /// with forward declarations.
3866   SourceRange getSourceRange() const override LLVM_READONLY;
3867 
3868   /// When created, the EnumDecl corresponds to a
3869   /// forward-declared enum. This method is used to mark the
3870   /// declaration as being defined; its enumerators have already been
3871   /// added (via DeclContext::addDecl). NewType is the new underlying
3872   /// type of the enumeration type.
3873   void completeDefinition(QualType NewType,
3874                           QualType PromotionType,
3875                           unsigned NumPositiveBits,
3876                           unsigned NumNegativeBits);
3877 
3878   // Iterates through the enumerators of this enumeration.
3879   using enumerator_iterator = specific_decl_iterator<EnumConstantDecl>;
3880   using enumerator_range =
3881       llvm::iterator_range<specific_decl_iterator<EnumConstantDecl>>;
3882 
3883   enumerator_range enumerators() const {
3884     return enumerator_range(enumerator_begin(), enumerator_end());
3885   }
3886 
3887   enumerator_iterator enumerator_begin() const {
3888     const EnumDecl *E = getDefinition();
3889     if (!E)
3890       E = this;
3891     return enumerator_iterator(E->decls_begin());
3892   }
3893 
3894   enumerator_iterator enumerator_end() const {
3895     const EnumDecl *E = getDefinition();
3896     if (!E)
3897       E = this;
3898     return enumerator_iterator(E->decls_end());
3899   }
3900 
3901   /// Return the integer type that enumerators should promote to.
3902   QualType getPromotionType() const { return PromotionType; }
3903 
3904   /// Set the promotion type.
3905   void setPromotionType(QualType T) { PromotionType = T; }
3906 
3907   /// Return the integer type this enum decl corresponds to.
3908   /// This returns a null QualType for an enum forward definition with no fixed
3909   /// underlying type.
3910   QualType getIntegerType() const {
3911     if (!IntegerType)
3912       return QualType();
3913     if (const Type *T = IntegerType.dyn_cast<const Type*>())
3914       return QualType(T, 0);
3915     return IntegerType.get<TypeSourceInfo*>()->getType().getUnqualifiedType();
3916   }
3917 
3918   /// Set the underlying integer type.
3919   void setIntegerType(QualType T) { IntegerType = T.getTypePtrOrNull(); }
3920 
3921   /// Set the underlying integer type source info.
3922   void setIntegerTypeSourceInfo(TypeSourceInfo *TInfo) { IntegerType = TInfo; }
3923 
3924   /// Return the type source info for the underlying integer type,
3925   /// if no type source info exists, return 0.
3926   TypeSourceInfo *getIntegerTypeSourceInfo() const {
3927     return IntegerType.dyn_cast<TypeSourceInfo*>();
3928   }
3929 
3930   /// Retrieve the source range that covers the underlying type if
3931   /// specified.
3932   SourceRange getIntegerTypeRange() const LLVM_READONLY;
3933 
3934   /// Returns the width in bits required to store all the
3935   /// non-negative enumerators of this enum.
3936   unsigned getNumPositiveBits() const { return EnumDeclBits.NumPositiveBits; }
3937 
3938   /// Returns the width in bits required to store all the
3939   /// negative enumerators of this enum.  These widths include
3940   /// the rightmost leading 1;  that is:
3941   ///
3942   /// MOST NEGATIVE ENUMERATOR     PATTERN     NUM NEGATIVE BITS
3943   /// ------------------------     -------     -----------------
3944   ///                       -1     1111111                     1
3945   ///                      -10     1110110                     5
3946   ///                     -101     1001011                     8
3947   unsigned getNumNegativeBits() const { return EnumDeclBits.NumNegativeBits; }
3948 
3949   /// Calculates the [Min,Max) values the enum can store based on the
3950   /// NumPositiveBits and NumNegativeBits. This matters for enums that do not
3951   /// have a fixed underlying type.
3952   void getValueRange(llvm::APInt &Max, llvm::APInt &Min) const;
3953 
3954   /// Returns true if this is a C++11 scoped enumeration.
3955   bool isScoped() const { return EnumDeclBits.IsScoped; }
3956 
3957   /// Returns true if this is a C++11 scoped enumeration.
3958   bool isScopedUsingClassTag() const {
3959     return EnumDeclBits.IsScopedUsingClassTag;
3960   }
3961 
3962   /// Returns true if this is an Objective-C, C++11, or
3963   /// Microsoft-style enumeration with a fixed underlying type.
3964   bool isFixed() const { return EnumDeclBits.IsFixed; }
3965 
3966   unsigned getODRHash();
3967 
3968   /// Returns true if this can be considered a complete type.
3969   bool isComplete() const {
3970     // IntegerType is set for fixed type enums and non-fixed but implicitly
3971     // int-sized Microsoft enums.
3972     return isCompleteDefinition() || IntegerType;
3973   }
3974 
3975   /// Returns true if this enum is either annotated with
3976   /// enum_extensibility(closed) or isn't annotated with enum_extensibility.
3977   bool isClosed() const;
3978 
3979   /// Returns true if this enum is annotated with flag_enum and isn't annotated
3980   /// with enum_extensibility(open).
3981   bool isClosedFlag() const;
3982 
3983   /// Returns true if this enum is annotated with neither flag_enum nor
3984   /// enum_extensibility(open).
3985   bool isClosedNonFlag() const;
3986 
3987   /// Retrieve the enum definition from which this enumeration could
3988   /// be instantiated, if it is an instantiation (rather than a non-template).
3989   EnumDecl *getTemplateInstantiationPattern() const;
3990 
3991   /// Returns the enumeration (declared within the template)
3992   /// from which this enumeration type was instantiated, or NULL if
3993   /// this enumeration was not instantiated from any template.
3994   EnumDecl *getInstantiatedFromMemberEnum() const;
3995 
3996   /// If this enumeration is a member of a specialization of a
3997   /// templated class, determine what kind of template specialization
3998   /// or instantiation this is.
3999   TemplateSpecializationKind getTemplateSpecializationKind() const;
4000 
4001   /// For an enumeration member that was instantiated from a member
4002   /// enumeration of a templated class, set the template specialiation kind.
4003   void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4004                         SourceLocation PointOfInstantiation = SourceLocation());
4005 
4006   /// If this enumeration is an instantiation of a member enumeration of
4007   /// a class template specialization, retrieves the member specialization
4008   /// information.
4009   MemberSpecializationInfo *getMemberSpecializationInfo() const {
4010     return SpecializationInfo;
4011   }
4012 
4013   /// Specify that this enumeration is an instantiation of the
4014   /// member enumeration ED.
4015   void setInstantiationOfMemberEnum(EnumDecl *ED,
4016                                     TemplateSpecializationKind TSK) {
4017     setInstantiationOfMemberEnum(getASTContext(), ED, TSK);
4018   }
4019 
4020   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4021   static bool classofKind(Kind K) { return K == Enum; }
4022 };
4023 
4024 /// Represents a struct/union/class.  For example:
4025 ///   struct X;                  // Forward declaration, no "body".
4026 ///   union Y { int A, B; };     // Has body with members A and B (FieldDecls).
4027 /// This decl will be marked invalid if *any* members are invalid.
4028 class RecordDecl : public TagDecl {
4029   // This class stores some data in DeclContext::RecordDeclBits
4030   // to save some space. Use the provided accessors to access it.
4031 public:
4032   friend class DeclContext;
4033   friend class ASTDeclReader;
4034   /// Enum that represents the different ways arguments are passed to and
4035   /// returned from function calls. This takes into account the target-specific
4036   /// and version-specific rules along with the rules determined by the
4037   /// language.
4038   enum ArgPassingKind : unsigned {
4039     /// The argument of this type can be passed directly in registers.
4040     APK_CanPassInRegs,
4041 
4042     /// The argument of this type cannot be passed directly in registers.
4043     /// Records containing this type as a subobject are not forced to be passed
4044     /// indirectly. This value is used only in C++. This value is required by
4045     /// C++ because, in uncommon situations, it is possible for a class to have
4046     /// only trivial copy/move constructors even when one of its subobjects has
4047     /// a non-trivial copy/move constructor (if e.g. the corresponding copy/move
4048     /// constructor in the derived class is deleted).
4049     APK_CannotPassInRegs,
4050 
4051     /// The argument of this type cannot be passed directly in registers.
4052     /// Records containing this type as a subobject are forced to be passed
4053     /// indirectly.
4054     APK_CanNeverPassInRegs
4055   };
4056 
4057 protected:
4058   RecordDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
4059              SourceLocation StartLoc, SourceLocation IdLoc,
4060              IdentifierInfo *Id, RecordDecl *PrevDecl);
4061 
4062 public:
4063   static RecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
4064                             SourceLocation StartLoc, SourceLocation IdLoc,
4065                             IdentifierInfo *Id, RecordDecl* PrevDecl = nullptr);
4066   static RecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
4067 
4068   RecordDecl *getPreviousDecl() {
4069     return cast_or_null<RecordDecl>(
4070             static_cast<TagDecl *>(this)->getPreviousDecl());
4071   }
4072   const RecordDecl *getPreviousDecl() const {
4073     return const_cast<RecordDecl*>(this)->getPreviousDecl();
4074   }
4075 
4076   RecordDecl *getMostRecentDecl() {
4077     return cast<RecordDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
4078   }
4079   const RecordDecl *getMostRecentDecl() const {
4080     return const_cast<RecordDecl*>(this)->getMostRecentDecl();
4081   }
4082 
4083   bool hasFlexibleArrayMember() const {
4084     return RecordDeclBits.HasFlexibleArrayMember;
4085   }
4086 
4087   void setHasFlexibleArrayMember(bool V) {
4088     RecordDeclBits.HasFlexibleArrayMember = V;
4089   }
4090 
4091   /// Whether this is an anonymous struct or union. To be an anonymous
4092   /// struct or union, it must have been declared without a name and
4093   /// there must be no objects of this type declared, e.g.,
4094   /// @code
4095   ///   union { int i; float f; };
4096   /// @endcode
4097   /// is an anonymous union but neither of the following are:
4098   /// @code
4099   ///  union X { int i; float f; };
4100   ///  union { int i; float f; } obj;
4101   /// @endcode
4102   bool isAnonymousStructOrUnion() const {
4103     return RecordDeclBits.AnonymousStructOrUnion;
4104   }
4105 
4106   void setAnonymousStructOrUnion(bool Anon) {
4107     RecordDeclBits.AnonymousStructOrUnion = Anon;
4108   }
4109 
4110   bool hasObjectMember() const { return RecordDeclBits.HasObjectMember; }
4111   void setHasObjectMember(bool val) { RecordDeclBits.HasObjectMember = val; }
4112 
4113   bool hasVolatileMember() const { return RecordDeclBits.HasVolatileMember; }
4114 
4115   void setHasVolatileMember(bool val) {
4116     RecordDeclBits.HasVolatileMember = val;
4117   }
4118 
4119   bool hasLoadedFieldsFromExternalStorage() const {
4120     return RecordDeclBits.LoadedFieldsFromExternalStorage;
4121   }
4122 
4123   void setHasLoadedFieldsFromExternalStorage(bool val) const {
4124     RecordDeclBits.LoadedFieldsFromExternalStorage = val;
4125   }
4126 
4127   /// Functions to query basic properties of non-trivial C structs.
4128   bool isNonTrivialToPrimitiveDefaultInitialize() const {
4129     return RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize;
4130   }
4131 
4132   void setNonTrivialToPrimitiveDefaultInitialize(bool V) {
4133     RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize = V;
4134   }
4135 
4136   bool isNonTrivialToPrimitiveCopy() const {
4137     return RecordDeclBits.NonTrivialToPrimitiveCopy;
4138   }
4139 
4140   void setNonTrivialToPrimitiveCopy(bool V) {
4141     RecordDeclBits.NonTrivialToPrimitiveCopy = V;
4142   }
4143 
4144   bool isNonTrivialToPrimitiveDestroy() const {
4145     return RecordDeclBits.NonTrivialToPrimitiveDestroy;
4146   }
4147 
4148   void setNonTrivialToPrimitiveDestroy(bool V) {
4149     RecordDeclBits.NonTrivialToPrimitiveDestroy = V;
4150   }
4151 
4152   bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const {
4153     return RecordDeclBits.HasNonTrivialToPrimitiveDefaultInitializeCUnion;
4154   }
4155 
4156   void setHasNonTrivialToPrimitiveDefaultInitializeCUnion(bool V) {
4157     RecordDeclBits.HasNonTrivialToPrimitiveDefaultInitializeCUnion = V;
4158   }
4159 
4160   bool hasNonTrivialToPrimitiveDestructCUnion() const {
4161     return RecordDeclBits.HasNonTrivialToPrimitiveDestructCUnion;
4162   }
4163 
4164   void setHasNonTrivialToPrimitiveDestructCUnion(bool V) {
4165     RecordDeclBits.HasNonTrivialToPrimitiveDestructCUnion = V;
4166   }
4167 
4168   bool hasNonTrivialToPrimitiveCopyCUnion() const {
4169     return RecordDeclBits.HasNonTrivialToPrimitiveCopyCUnion;
4170   }
4171 
4172   void setHasNonTrivialToPrimitiveCopyCUnion(bool V) {
4173     RecordDeclBits.HasNonTrivialToPrimitiveCopyCUnion = V;
4174   }
4175 
4176   /// Determine whether this class can be passed in registers. In C++ mode,
4177   /// it must have at least one trivial, non-deleted copy or move constructor.
4178   /// FIXME: This should be set as part of completeDefinition.
4179   bool canPassInRegisters() const {
4180     return getArgPassingRestrictions() == APK_CanPassInRegs;
4181   }
4182 
4183   ArgPassingKind getArgPassingRestrictions() const {
4184     return static_cast<ArgPassingKind>(RecordDeclBits.ArgPassingRestrictions);
4185   }
4186 
4187   void setArgPassingRestrictions(ArgPassingKind Kind) {
4188     RecordDeclBits.ArgPassingRestrictions = Kind;
4189   }
4190 
4191   bool isParamDestroyedInCallee() const {
4192     return RecordDeclBits.ParamDestroyedInCallee;
4193   }
4194 
4195   void setParamDestroyedInCallee(bool V) {
4196     RecordDeclBits.ParamDestroyedInCallee = V;
4197   }
4198 
4199   bool isRandomized() const { return RecordDeclBits.IsRandomized; }
4200 
4201   void setIsRandomized(bool V) { RecordDeclBits.IsRandomized = V; }
4202 
4203   void reorderDecls(const SmallVectorImpl<Decl *> &Decls);
4204 
4205   /// Determines whether this declaration represents the
4206   /// injected class name.
4207   ///
4208   /// The injected class name in C++ is the name of the class that
4209   /// appears inside the class itself. For example:
4210   ///
4211   /// \code
4212   /// struct C {
4213   ///   // C is implicitly declared here as a synonym for the class name.
4214   /// };
4215   ///
4216   /// C::C c; // same as "C c;"
4217   /// \endcode
4218   bool isInjectedClassName() const;
4219 
4220   /// Determine whether this record is a class describing a lambda
4221   /// function object.
4222   bool isLambda() const;
4223 
4224   /// Determine whether this record is a record for captured variables in
4225   /// CapturedStmt construct.
4226   bool isCapturedRecord() const;
4227 
4228   /// Mark the record as a record for captured variables in CapturedStmt
4229   /// construct.
4230   void setCapturedRecord();
4231 
4232   /// Returns the RecordDecl that actually defines
4233   ///  this struct/union/class.  When determining whether or not a
4234   ///  struct/union/class is completely defined, one should use this
4235   ///  method as opposed to 'isCompleteDefinition'.
4236   ///  'isCompleteDefinition' indicates whether or not a specific
4237   ///  RecordDecl is a completed definition, not whether or not the
4238   ///  record type is defined.  This method returns NULL if there is
4239   ///  no RecordDecl that defines the struct/union/tag.
4240   RecordDecl *getDefinition() const {
4241     return cast_or_null<RecordDecl>(TagDecl::getDefinition());
4242   }
4243 
4244   /// Returns whether this record is a union, or contains (at any nesting level)
4245   /// a union member. This is used by CMSE to warn about possible information
4246   /// leaks.
4247   bool isOrContainsUnion() const;
4248 
4249   // Iterator access to field members. The field iterator only visits
4250   // the non-static data members of this class, ignoring any static
4251   // data members, functions, constructors, destructors, etc.
4252   using field_iterator = specific_decl_iterator<FieldDecl>;
4253   using field_range = llvm::iterator_range<specific_decl_iterator<FieldDecl>>;
4254 
4255   field_range fields() const { return field_range(field_begin(), field_end()); }
4256   field_iterator field_begin() const;
4257 
4258   field_iterator field_end() const {
4259     return field_iterator(decl_iterator());
4260   }
4261 
4262   // Whether there are any fields (non-static data members) in this record.
4263   bool field_empty() const {
4264     return field_begin() == field_end();
4265   }
4266 
4267   /// Note that the definition of this type is now complete.
4268   virtual void completeDefinition();
4269 
4270   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4271   static bool classofKind(Kind K) {
4272     return K >= firstRecord && K <= lastRecord;
4273   }
4274 
4275   /// Get whether or not this is an ms_struct which can
4276   /// be turned on with an attribute, pragma, or -mms-bitfields
4277   /// commandline option.
4278   bool isMsStruct(const ASTContext &C) const;
4279 
4280   /// Whether we are allowed to insert extra padding between fields.
4281   /// These padding are added to help AddressSanitizer detect
4282   /// intra-object-overflow bugs.
4283   bool mayInsertExtraPadding(bool EmitRemark = false) const;
4284 
4285   /// Finds the first data member which has a name.
4286   /// nullptr is returned if no named data member exists.
4287   const FieldDecl *findFirstNamedDataMember() const;
4288 
4289   /// Get precomputed ODRHash or add a new one.
4290   unsigned getODRHash();
4291 
4292 private:
4293   /// Deserialize just the fields.
4294   void LoadFieldsFromExternalStorage() const;
4295 
4296   /// True if a valid hash is stored in ODRHash.
4297   bool hasODRHash() const { return RecordDeclBits.ODRHash; }
4298   void setODRHash(unsigned Hash) { RecordDeclBits.ODRHash = Hash; }
4299 };
4300 
4301 class FileScopeAsmDecl : public Decl {
4302   StringLiteral *AsmString;
4303   SourceLocation RParenLoc;
4304 
4305   FileScopeAsmDecl(DeclContext *DC, StringLiteral *asmstring,
4306                    SourceLocation StartL, SourceLocation EndL)
4307     : Decl(FileScopeAsm, DC, StartL), AsmString(asmstring), RParenLoc(EndL) {}
4308 
4309   virtual void anchor();
4310 
4311 public:
4312   static FileScopeAsmDecl *Create(ASTContext &C, DeclContext *DC,
4313                                   StringLiteral *Str, SourceLocation AsmLoc,
4314                                   SourceLocation RParenLoc);
4315 
4316   static FileScopeAsmDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4317 
4318   SourceLocation getAsmLoc() const { return getLocation(); }
4319   SourceLocation getRParenLoc() const { return RParenLoc; }
4320   void setRParenLoc(SourceLocation L) { RParenLoc = L; }
4321   SourceRange getSourceRange() const override LLVM_READONLY {
4322     return SourceRange(getAsmLoc(), getRParenLoc());
4323   }
4324 
4325   const StringLiteral *getAsmString() const { return AsmString; }
4326   StringLiteral *getAsmString() { return AsmString; }
4327   void setAsmString(StringLiteral *Asm) { AsmString = Asm; }
4328 
4329   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4330   static bool classofKind(Kind K) { return K == FileScopeAsm; }
4331 };
4332 
4333 /// A declaration that models statements at global scope. This declaration
4334 /// supports incremental and interactive C/C++.
4335 ///
4336 /// \note This is used in libInterpreter, clang -cc1 -fincremental-extensions
4337 /// and in tools such as clang-repl.
4338 class TopLevelStmtDecl : public Decl {
4339   friend class ASTDeclReader;
4340   friend class ASTDeclWriter;
4341 
4342   Stmt *Statement = nullptr;
4343   bool IsSemiMissing = false;
4344 
4345   TopLevelStmtDecl(DeclContext *DC, SourceLocation L, Stmt *S)
4346       : Decl(TopLevelStmt, DC, L), Statement(S) {}
4347 
4348   virtual void anchor();
4349 
4350 public:
4351   static TopLevelStmtDecl *Create(ASTContext &C, Stmt *Statement);
4352   static TopLevelStmtDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4353 
4354   SourceRange getSourceRange() const override LLVM_READONLY;
4355   Stmt *getStmt() { return Statement; }
4356   const Stmt *getStmt() const { return Statement; }
4357   void setStmt(Stmt *S) {
4358     assert(IsSemiMissing && "Operation supported for printing values only!");
4359     Statement = S;
4360   }
4361   bool isSemiMissing() const { return IsSemiMissing; }
4362   void setSemiMissing(bool Missing = true) { IsSemiMissing = Missing; }
4363 
4364   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4365   static bool classofKind(Kind K) { return K == TopLevelStmt; }
4366 };
4367 
4368 /// Represents a block literal declaration, which is like an
4369 /// unnamed FunctionDecl.  For example:
4370 /// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
4371 class BlockDecl : public Decl, public DeclContext {
4372   // This class stores some data in DeclContext::BlockDeclBits
4373   // to save some space. Use the provided accessors to access it.
4374 public:
4375   /// A class which contains all the information about a particular
4376   /// captured value.
4377   class Capture {
4378     enum {
4379       flag_isByRef = 0x1,
4380       flag_isNested = 0x2
4381     };
4382 
4383     /// The variable being captured.
4384     llvm::PointerIntPair<VarDecl*, 2> VariableAndFlags;
4385 
4386     /// The copy expression, expressed in terms of a DeclRef (or
4387     /// BlockDeclRef) to the captured variable.  Only required if the
4388     /// variable has a C++ class type.
4389     Expr *CopyExpr;
4390 
4391   public:
4392     Capture(VarDecl *variable, bool byRef, bool nested, Expr *copy)
4393       : VariableAndFlags(variable,
4394                   (byRef ? flag_isByRef : 0) | (nested ? flag_isNested : 0)),
4395         CopyExpr(copy) {}
4396 
4397     /// The variable being captured.
4398     VarDecl *getVariable() const { return VariableAndFlags.getPointer(); }
4399 
4400     /// Whether this is a "by ref" capture, i.e. a capture of a __block
4401     /// variable.
4402     bool isByRef() const { return VariableAndFlags.getInt() & flag_isByRef; }
4403 
4404     bool isEscapingByref() const {
4405       return getVariable()->isEscapingByref();
4406     }
4407 
4408     bool isNonEscapingByref() const {
4409       return getVariable()->isNonEscapingByref();
4410     }
4411 
4412     /// Whether this is a nested capture, i.e. the variable captured
4413     /// is not from outside the immediately enclosing function/block.
4414     bool isNested() const { return VariableAndFlags.getInt() & flag_isNested; }
4415 
4416     bool hasCopyExpr() const { return CopyExpr != nullptr; }
4417     Expr *getCopyExpr() const { return CopyExpr; }
4418     void setCopyExpr(Expr *e) { CopyExpr = e; }
4419   };
4420 
4421 private:
4422   /// A new[]'d array of pointers to ParmVarDecls for the formal
4423   /// parameters of this function.  This is null if a prototype or if there are
4424   /// no formals.
4425   ParmVarDecl **ParamInfo = nullptr;
4426   unsigned NumParams = 0;
4427 
4428   Stmt *Body = nullptr;
4429   TypeSourceInfo *SignatureAsWritten = nullptr;
4430 
4431   const Capture *Captures = nullptr;
4432   unsigned NumCaptures = 0;
4433 
4434   unsigned ManglingNumber = 0;
4435   Decl *ManglingContextDecl = nullptr;
4436 
4437 protected:
4438   BlockDecl(DeclContext *DC, SourceLocation CaretLoc);
4439 
4440 public:
4441   static BlockDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L);
4442   static BlockDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4443 
4444   SourceLocation getCaretLocation() const { return getLocation(); }
4445 
4446   bool isVariadic() const { return BlockDeclBits.IsVariadic; }
4447   void setIsVariadic(bool value) { BlockDeclBits.IsVariadic = value; }
4448 
4449   CompoundStmt *getCompoundBody() const { return (CompoundStmt*) Body; }
4450   Stmt *getBody() const override { return (Stmt*) Body; }
4451   void setBody(CompoundStmt *B) { Body = (Stmt*) B; }
4452 
4453   void setSignatureAsWritten(TypeSourceInfo *Sig) { SignatureAsWritten = Sig; }
4454   TypeSourceInfo *getSignatureAsWritten() const { return SignatureAsWritten; }
4455 
4456   // ArrayRef access to formal parameters.
4457   ArrayRef<ParmVarDecl *> parameters() const {
4458     return {ParamInfo, getNumParams()};
4459   }
4460   MutableArrayRef<ParmVarDecl *> parameters() {
4461     return {ParamInfo, getNumParams()};
4462   }
4463 
4464   // Iterator access to formal parameters.
4465   using param_iterator = MutableArrayRef<ParmVarDecl *>::iterator;
4466   using param_const_iterator = ArrayRef<ParmVarDecl *>::const_iterator;
4467 
4468   bool param_empty() const { return parameters().empty(); }
4469   param_iterator param_begin() { return parameters().begin(); }
4470   param_iterator param_end() { return parameters().end(); }
4471   param_const_iterator param_begin() const { return parameters().begin(); }
4472   param_const_iterator param_end() const { return parameters().end(); }
4473   size_t param_size() const { return parameters().size(); }
4474 
4475   unsigned getNumParams() const { return NumParams; }
4476 
4477   const ParmVarDecl *getParamDecl(unsigned i) const {
4478     assert(i < getNumParams() && "Illegal param #");
4479     return ParamInfo[i];
4480   }
4481   ParmVarDecl *getParamDecl(unsigned i) {
4482     assert(i < getNumParams() && "Illegal param #");
4483     return ParamInfo[i];
4484   }
4485 
4486   void setParams(ArrayRef<ParmVarDecl *> NewParamInfo);
4487 
4488   /// True if this block (or its nested blocks) captures
4489   /// anything of local storage from its enclosing scopes.
4490   bool hasCaptures() const { return NumCaptures || capturesCXXThis(); }
4491 
4492   /// Returns the number of captured variables.
4493   /// Does not include an entry for 'this'.
4494   unsigned getNumCaptures() const { return NumCaptures; }
4495 
4496   using capture_const_iterator = ArrayRef<Capture>::const_iterator;
4497 
4498   ArrayRef<Capture> captures() const { return {Captures, NumCaptures}; }
4499 
4500   capture_const_iterator capture_begin() const { return captures().begin(); }
4501   capture_const_iterator capture_end() const { return captures().end(); }
4502 
4503   bool capturesCXXThis() const { return BlockDeclBits.CapturesCXXThis; }
4504   void setCapturesCXXThis(bool B = true) { BlockDeclBits.CapturesCXXThis = B; }
4505 
4506   bool blockMissingReturnType() const {
4507     return BlockDeclBits.BlockMissingReturnType;
4508   }
4509 
4510   void setBlockMissingReturnType(bool val = true) {
4511     BlockDeclBits.BlockMissingReturnType = val;
4512   }
4513 
4514   bool isConversionFromLambda() const {
4515     return BlockDeclBits.IsConversionFromLambda;
4516   }
4517 
4518   void setIsConversionFromLambda(bool val = true) {
4519     BlockDeclBits.IsConversionFromLambda = val;
4520   }
4521 
4522   bool doesNotEscape() const { return BlockDeclBits.DoesNotEscape; }
4523   void setDoesNotEscape(bool B = true) { BlockDeclBits.DoesNotEscape = B; }
4524 
4525   bool canAvoidCopyToHeap() const {
4526     return BlockDeclBits.CanAvoidCopyToHeap;
4527   }
4528   void setCanAvoidCopyToHeap(bool B = true) {
4529     BlockDeclBits.CanAvoidCopyToHeap = B;
4530   }
4531 
4532   bool capturesVariable(const VarDecl *var) const;
4533 
4534   void setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
4535                    bool CapturesCXXThis);
4536 
4537   unsigned getBlockManglingNumber() const { return ManglingNumber; }
4538 
4539   Decl *getBlockManglingContextDecl() const { return ManglingContextDecl; }
4540 
4541   void setBlockMangling(unsigned Number, Decl *Ctx) {
4542     ManglingNumber = Number;
4543     ManglingContextDecl = Ctx;
4544   }
4545 
4546   SourceRange getSourceRange() const override LLVM_READONLY;
4547 
4548   // Implement isa/cast/dyncast/etc.
4549   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4550   static bool classofKind(Kind K) { return K == Block; }
4551   static DeclContext *castToDeclContext(const BlockDecl *D) {
4552     return static_cast<DeclContext *>(const_cast<BlockDecl*>(D));
4553   }
4554   static BlockDecl *castFromDeclContext(const DeclContext *DC) {
4555     return static_cast<BlockDecl *>(const_cast<DeclContext*>(DC));
4556   }
4557 };
4558 
4559 /// Represents the body of a CapturedStmt, and serves as its DeclContext.
4560 class CapturedDecl final
4561     : public Decl,
4562       public DeclContext,
4563       private llvm::TrailingObjects<CapturedDecl, ImplicitParamDecl *> {
4564 protected:
4565   size_t numTrailingObjects(OverloadToken<ImplicitParamDecl>) {
4566     return NumParams;
4567   }
4568 
4569 private:
4570   /// The number of parameters to the outlined function.
4571   unsigned NumParams;
4572 
4573   /// The position of context parameter in list of parameters.
4574   unsigned ContextParam;
4575 
4576   /// The body of the outlined function.
4577   llvm::PointerIntPair<Stmt *, 1, bool> BodyAndNothrow;
4578 
4579   explicit CapturedDecl(DeclContext *DC, unsigned NumParams);
4580 
4581   ImplicitParamDecl *const *getParams() const {
4582     return getTrailingObjects<ImplicitParamDecl *>();
4583   }
4584 
4585   ImplicitParamDecl **getParams() {
4586     return getTrailingObjects<ImplicitParamDecl *>();
4587   }
4588 
4589 public:
4590   friend class ASTDeclReader;
4591   friend class ASTDeclWriter;
4592   friend TrailingObjects;
4593 
4594   static CapturedDecl *Create(ASTContext &C, DeclContext *DC,
4595                               unsigned NumParams);
4596   static CapturedDecl *CreateDeserialized(ASTContext &C, unsigned ID,
4597                                           unsigned NumParams);
4598 
4599   Stmt *getBody() const override;
4600   void setBody(Stmt *B);
4601 
4602   bool isNothrow() const;
4603   void setNothrow(bool Nothrow = true);
4604 
4605   unsigned getNumParams() const { return NumParams; }
4606 
4607   ImplicitParamDecl *getParam(unsigned i) const {
4608     assert(i < NumParams);
4609     return getParams()[i];
4610   }
4611   void setParam(unsigned i, ImplicitParamDecl *P) {
4612     assert(i < NumParams);
4613     getParams()[i] = P;
4614   }
4615 
4616   // ArrayRef interface to parameters.
4617   ArrayRef<ImplicitParamDecl *> parameters() const {
4618     return {getParams(), getNumParams()};
4619   }
4620   MutableArrayRef<ImplicitParamDecl *> parameters() {
4621     return {getParams(), getNumParams()};
4622   }
4623 
4624   /// Retrieve the parameter containing captured variables.
4625   ImplicitParamDecl *getContextParam() const {
4626     assert(ContextParam < NumParams);
4627     return getParam(ContextParam);
4628   }
4629   void setContextParam(unsigned i, ImplicitParamDecl *P) {
4630     assert(i < NumParams);
4631     ContextParam = i;
4632     setParam(i, P);
4633   }
4634   unsigned getContextParamPosition() const { return ContextParam; }
4635 
4636   using param_iterator = ImplicitParamDecl *const *;
4637   using param_range = llvm::iterator_range<param_iterator>;
4638 
4639   /// Retrieve an iterator pointing to the first parameter decl.
4640   param_iterator param_begin() const { return getParams(); }
4641   /// Retrieve an iterator one past the last parameter decl.
4642   param_iterator param_end() const { return getParams() + NumParams; }
4643 
4644   // Implement isa/cast/dyncast/etc.
4645   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4646   static bool classofKind(Kind K) { return K == Captured; }
4647   static DeclContext *castToDeclContext(const CapturedDecl *D) {
4648     return static_cast<DeclContext *>(const_cast<CapturedDecl *>(D));
4649   }
4650   static CapturedDecl *castFromDeclContext(const DeclContext *DC) {
4651     return static_cast<CapturedDecl *>(const_cast<DeclContext *>(DC));
4652   }
4653 };
4654 
4655 /// Describes a module import declaration, which makes the contents
4656 /// of the named module visible in the current translation unit.
4657 ///
4658 /// An import declaration imports the named module (or submodule). For example:
4659 /// \code
4660 ///   @import std.vector;
4661 /// \endcode
4662 ///
4663 /// A C++20 module import declaration imports the named module or partition.
4664 /// Periods are permitted in C++20 module names, but have no semantic meaning.
4665 /// For example:
4666 /// \code
4667 ///   import NamedModule;
4668 ///   import :SomePartition; // Must be a partition of the current module.
4669 ///   import Names.Like.this; // Allowed.
4670 ///   import :and.Also.Partition.names;
4671 /// \endcode
4672 ///
4673 /// Import declarations can also be implicitly generated from
4674 /// \#include/\#import directives.
4675 class ImportDecl final : public Decl,
4676                          llvm::TrailingObjects<ImportDecl, SourceLocation> {
4677   friend class ASTContext;
4678   friend class ASTDeclReader;
4679   friend class ASTReader;
4680   friend TrailingObjects;
4681 
4682   /// The imported module.
4683   Module *ImportedModule = nullptr;
4684 
4685   /// The next import in the list of imports local to the translation
4686   /// unit being parsed (not loaded from an AST file).
4687   ///
4688   /// Includes a bit that indicates whether we have source-location information
4689   /// for each identifier in the module name.
4690   ///
4691   /// When the bit is false, we only have a single source location for the
4692   /// end of the import declaration.
4693   llvm::PointerIntPair<ImportDecl *, 1, bool> NextLocalImportAndComplete;
4694 
4695   ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
4696              ArrayRef<SourceLocation> IdentifierLocs);
4697 
4698   ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
4699              SourceLocation EndLoc);
4700 
4701   ImportDecl(EmptyShell Empty) : Decl(Import, Empty) {}
4702 
4703   bool isImportComplete() const { return NextLocalImportAndComplete.getInt(); }
4704 
4705   void setImportComplete(bool C) { NextLocalImportAndComplete.setInt(C); }
4706 
4707   /// The next import in the list of imports local to the translation
4708   /// unit being parsed (not loaded from an AST file).
4709   ImportDecl *getNextLocalImport() const {
4710     return NextLocalImportAndComplete.getPointer();
4711   }
4712 
4713   void setNextLocalImport(ImportDecl *Import) {
4714     NextLocalImportAndComplete.setPointer(Import);
4715   }
4716 
4717 public:
4718   /// Create a new module import declaration.
4719   static ImportDecl *Create(ASTContext &C, DeclContext *DC,
4720                             SourceLocation StartLoc, Module *Imported,
4721                             ArrayRef<SourceLocation> IdentifierLocs);
4722 
4723   /// Create a new module import declaration for an implicitly-generated
4724   /// import.
4725   static ImportDecl *CreateImplicit(ASTContext &C, DeclContext *DC,
4726                                     SourceLocation StartLoc, Module *Imported,
4727                                     SourceLocation EndLoc);
4728 
4729   /// Create a new, deserialized module import declaration.
4730   static ImportDecl *CreateDeserialized(ASTContext &C, unsigned ID,
4731                                         unsigned NumLocations);
4732 
4733   /// Retrieve the module that was imported by the import declaration.
4734   Module *getImportedModule() const { return ImportedModule; }
4735 
4736   /// Retrieves the locations of each of the identifiers that make up
4737   /// the complete module name in the import declaration.
4738   ///
4739   /// This will return an empty array if the locations of the individual
4740   /// identifiers aren't available.
4741   ArrayRef<SourceLocation> getIdentifierLocs() const;
4742 
4743   SourceRange getSourceRange() const override LLVM_READONLY;
4744 
4745   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4746   static bool classofKind(Kind K) { return K == Import; }
4747 };
4748 
4749 /// Represents a standard C++ module export declaration.
4750 ///
4751 /// For example:
4752 /// \code
4753 ///   export void foo();
4754 /// \endcode
4755 class ExportDecl final : public Decl, public DeclContext {
4756   virtual void anchor();
4757 
4758 private:
4759   friend class ASTDeclReader;
4760 
4761   /// The source location for the right brace (if valid).
4762   SourceLocation RBraceLoc;
4763 
4764   ExportDecl(DeclContext *DC, SourceLocation ExportLoc)
4765       : Decl(Export, DC, ExportLoc), DeclContext(Export),
4766         RBraceLoc(SourceLocation()) {}
4767 
4768 public:
4769   static ExportDecl *Create(ASTContext &C, DeclContext *DC,
4770                             SourceLocation ExportLoc);
4771   static ExportDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4772 
4773   SourceLocation getExportLoc() const { return getLocation(); }
4774   SourceLocation getRBraceLoc() const { return RBraceLoc; }
4775   void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
4776 
4777   bool hasBraces() const { return RBraceLoc.isValid(); }
4778 
4779   SourceLocation getEndLoc() const LLVM_READONLY {
4780     if (hasBraces())
4781       return RBraceLoc;
4782     // No braces: get the end location of the (only) declaration in context
4783     // (if present).
4784     return decls_empty() ? getLocation() : decls_begin()->getEndLoc();
4785   }
4786 
4787   SourceRange getSourceRange() const override LLVM_READONLY {
4788     return SourceRange(getLocation(), getEndLoc());
4789   }
4790 
4791   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4792   static bool classofKind(Kind K) { return K == Export; }
4793   static DeclContext *castToDeclContext(const ExportDecl *D) {
4794     return static_cast<DeclContext *>(const_cast<ExportDecl*>(D));
4795   }
4796   static ExportDecl *castFromDeclContext(const DeclContext *DC) {
4797     return static_cast<ExportDecl *>(const_cast<DeclContext*>(DC));
4798   }
4799 };
4800 
4801 /// Represents an empty-declaration.
4802 class EmptyDecl : public Decl {
4803   EmptyDecl(DeclContext *DC, SourceLocation L) : Decl(Empty, DC, L) {}
4804 
4805   virtual void anchor();
4806 
4807 public:
4808   static EmptyDecl *Create(ASTContext &C, DeclContext *DC,
4809                            SourceLocation L);
4810   static EmptyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4811 
4812   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4813   static bool classofKind(Kind K) { return K == Empty; }
4814 };
4815 
4816 /// HLSLBufferDecl - Represent a cbuffer or tbuffer declaration.
4817 class HLSLBufferDecl final : public NamedDecl, public DeclContext {
4818   /// LBraceLoc - The ending location of the source range.
4819   SourceLocation LBraceLoc;
4820   /// RBraceLoc - The ending location of the source range.
4821   SourceLocation RBraceLoc;
4822   /// KwLoc - The location of the cbuffer or tbuffer keyword.
4823   SourceLocation KwLoc;
4824   /// IsCBuffer - Whether the buffer is a cbuffer (and not a tbuffer).
4825   bool IsCBuffer;
4826 
4827   HLSLBufferDecl(DeclContext *DC, bool CBuffer, SourceLocation KwLoc,
4828                  IdentifierInfo *ID, SourceLocation IDLoc,
4829                  SourceLocation LBrace);
4830 
4831 public:
4832   static HLSLBufferDecl *Create(ASTContext &C, DeclContext *LexicalParent,
4833                                 bool CBuffer, SourceLocation KwLoc,
4834                                 IdentifierInfo *ID, SourceLocation IDLoc,
4835                                 SourceLocation LBrace);
4836   static HLSLBufferDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4837 
4838   SourceRange getSourceRange() const override LLVM_READONLY {
4839     return SourceRange(getLocStart(), RBraceLoc);
4840   }
4841   SourceLocation getLocStart() const LLVM_READONLY { return KwLoc; }
4842   SourceLocation getLBraceLoc() const { return LBraceLoc; }
4843   SourceLocation getRBraceLoc() const { return RBraceLoc; }
4844   void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
4845   bool isCBuffer() const { return IsCBuffer; }
4846 
4847   // Implement isa/cast/dyncast/etc.
4848   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4849   static bool classofKind(Kind K) { return K == HLSLBuffer; }
4850   static DeclContext *castToDeclContext(const HLSLBufferDecl *D) {
4851     return static_cast<DeclContext *>(const_cast<HLSLBufferDecl *>(D));
4852   }
4853   static HLSLBufferDecl *castFromDeclContext(const DeclContext *DC) {
4854     return static_cast<HLSLBufferDecl *>(const_cast<DeclContext *>(DC));
4855   }
4856 
4857   friend class ASTDeclReader;
4858   friend class ASTDeclWriter;
4859 };
4860 
4861 /// Insertion operator for diagnostics.  This allows sending NamedDecl's
4862 /// into a diagnostic with <<.
4863 inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
4864                                              const NamedDecl *ND) {
4865   PD.AddTaggedVal(reinterpret_cast<uint64_t>(ND),
4866                   DiagnosticsEngine::ak_nameddecl);
4867   return PD;
4868 }
4869 
4870 template<typename decl_type>
4871 void Redeclarable<decl_type>::setPreviousDecl(decl_type *PrevDecl) {
4872   // Note: This routine is implemented here because we need both NamedDecl
4873   // and Redeclarable to be defined.
4874   assert(RedeclLink.isFirst() &&
4875          "setPreviousDecl on a decl already in a redeclaration chain");
4876 
4877   if (PrevDecl) {
4878     // Point to previous. Make sure that this is actually the most recent
4879     // redeclaration, or we can build invalid chains. If the most recent
4880     // redeclaration is invalid, it won't be PrevDecl, but we want it anyway.
4881     First = PrevDecl->getFirstDecl();
4882     assert(First->RedeclLink.isFirst() && "Expected first");
4883     decl_type *MostRecent = First->getNextRedeclaration();
4884     RedeclLink = PreviousDeclLink(cast<decl_type>(MostRecent));
4885 
4886     // If the declaration was previously visible, a redeclaration of it remains
4887     // visible even if it wouldn't be visible by itself.
4888     static_cast<decl_type*>(this)->IdentifierNamespace |=
4889       MostRecent->getIdentifierNamespace() &
4890       (Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Type);
4891   } else {
4892     // Make this first.
4893     First = static_cast<decl_type*>(this);
4894   }
4895 
4896   // First one will point to this one as latest.
4897   First->RedeclLink.setLatest(static_cast<decl_type*>(this));
4898 
4899   assert(!isa<NamedDecl>(static_cast<decl_type*>(this)) ||
4900          cast<NamedDecl>(static_cast<decl_type*>(this))->isLinkageValid());
4901 }
4902 
4903 // Inline function definitions.
4904 
4905 /// Check if the given decl is complete.
4906 ///
4907 /// We use this function to break a cycle between the inline definitions in
4908 /// Type.h and Decl.h.
4909 inline bool IsEnumDeclComplete(EnumDecl *ED) {
4910   return ED->isComplete();
4911 }
4912 
4913 /// Check if the given decl is scoped.
4914 ///
4915 /// We use this function to break a cycle between the inline definitions in
4916 /// Type.h and Decl.h.
4917 inline bool IsEnumDeclScoped(EnumDecl *ED) {
4918   return ED->isScoped();
4919 }
4920 
4921 /// OpenMP variants are mangled early based on their OpenMP context selector.
4922 /// The new name looks likes this:
4923 ///  <name> + OpenMPVariantManglingSeparatorStr + <mangled OpenMP context>
4924 static constexpr StringRef getOpenMPVariantManglingSeparatorStr() {
4925   return "$ompvariant";
4926 }
4927 
4928 } // namespace clang
4929 
4930 #endif // LLVM_CLANG_AST_DECL_H
4931