1 //===- DeclCXX.h - Classes for representing C++ declarations --*- C++ -*-=====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Defines the C++ Decl subclasses, other than those for templates
11 /// (found in DeclTemplate.h) and friends (in DeclFriend.h).
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CLANG_AST_DECLCXX_H
16 #define LLVM_CLANG_AST_DECLCXX_H
17 
18 #include "clang/AST/ASTUnresolvedSet.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclarationName.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExternalASTSource.h"
24 #include "clang/AST/LambdaCapture.h"
25 #include "clang/AST/NestedNameSpecifier.h"
26 #include "clang/AST/Redeclarable.h"
27 #include "clang/AST/Stmt.h"
28 #include "clang/AST/Type.h"
29 #include "clang/AST/TypeLoc.h"
30 #include "clang/AST/UnresolvedSet.h"
31 #include "clang/Basic/LLVM.h"
32 #include "clang/Basic/Lambda.h"
33 #include "clang/Basic/LangOptions.h"
34 #include "clang/Basic/OperatorKinds.h"
35 #include "clang/Basic/SourceLocation.h"
36 #include "clang/Basic/Specifiers.h"
37 #include "llvm/ADT/ArrayRef.h"
38 #include "llvm/ADT/DenseMap.h"
39 #include "llvm/ADT/PointerIntPair.h"
40 #include "llvm/ADT/PointerUnion.h"
41 #include "llvm/ADT/STLExtras.h"
42 #include "llvm/ADT/TinyPtrVector.h"
43 #include "llvm/ADT/iterator_range.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/PointerLikeTypeTraits.h"
47 #include "llvm/Support/TrailingObjects.h"
48 #include <cassert>
49 #include <cstddef>
50 #include <iterator>
51 #include <memory>
52 #include <vector>
53 
54 namespace clang {
55 
56 class ASTContext;
57 class ClassTemplateDecl;
58 class ConstructorUsingShadowDecl;
59 class CXXBasePath;
60 class CXXBasePaths;
61 class CXXConstructorDecl;
62 class CXXDestructorDecl;
63 class CXXFinalOverriderMap;
64 class CXXIndirectPrimaryBaseSet;
65 class CXXMethodDecl;
66 class DecompositionDecl;
67 class FriendDecl;
68 class FunctionTemplateDecl;
69 class IdentifierInfo;
70 class MemberSpecializationInfo;
71 class BaseUsingDecl;
72 class TemplateDecl;
73 class TemplateParameterList;
74 class UsingDecl;
75 
76 /// Represents an access specifier followed by colon ':'.
77 ///
78 /// An objects of this class represents sugar for the syntactic occurrence
79 /// of an access specifier followed by a colon in the list of member
80 /// specifiers of a C++ class definition.
81 ///
82 /// Note that they do not represent other uses of access specifiers,
83 /// such as those occurring in a list of base specifiers.
84 /// Also note that this class has nothing to do with so-called
85 /// "access declarations" (C++98 11.3 [class.access.dcl]).
86 class AccessSpecDecl : public Decl {
87   /// The location of the ':'.
88   SourceLocation ColonLoc;
89 
90   AccessSpecDecl(AccessSpecifier AS, DeclContext *DC,
91                  SourceLocation ASLoc, SourceLocation ColonLoc)
92     : Decl(AccessSpec, DC, ASLoc), ColonLoc(ColonLoc) {
93     setAccess(AS);
94   }
95 
96   AccessSpecDecl(EmptyShell Empty) : Decl(AccessSpec, Empty) {}
97 
98   virtual void anchor();
99 
100 public:
101   /// The location of the access specifier.
102   SourceLocation getAccessSpecifierLoc() const { return getLocation(); }
103 
104   /// Sets the location of the access specifier.
105   void setAccessSpecifierLoc(SourceLocation ASLoc) { setLocation(ASLoc); }
106 
107   /// The location of the colon following the access specifier.
108   SourceLocation getColonLoc() const { return ColonLoc; }
109 
110   /// Sets the location of the colon.
111   void setColonLoc(SourceLocation CLoc) { ColonLoc = CLoc; }
112 
113   SourceRange getSourceRange() const override LLVM_READONLY {
114     return SourceRange(getAccessSpecifierLoc(), getColonLoc());
115   }
116 
117   static AccessSpecDecl *Create(ASTContext &C, AccessSpecifier AS,
118                                 DeclContext *DC, SourceLocation ASLoc,
119                                 SourceLocation ColonLoc) {
120     return new (C, DC) AccessSpecDecl(AS, DC, ASLoc, ColonLoc);
121   }
122 
123   static AccessSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
124 
125   // Implement isa/cast/dyncast/etc.
126   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
127   static bool classofKind(Kind K) { return K == AccessSpec; }
128 };
129 
130 /// Represents a base class of a C++ class.
131 ///
132 /// Each CXXBaseSpecifier represents a single, direct base class (or
133 /// struct) of a C++ class (or struct). It specifies the type of that
134 /// base class, whether it is a virtual or non-virtual base, and what
135 /// level of access (public, protected, private) is used for the
136 /// derivation. For example:
137 ///
138 /// \code
139 ///   class A { };
140 ///   class B { };
141 ///   class C : public virtual A, protected B { };
142 /// \endcode
143 ///
144 /// In this code, C will have two CXXBaseSpecifiers, one for "public
145 /// virtual A" and the other for "protected B".
146 class CXXBaseSpecifier {
147   /// The source code range that covers the full base
148   /// specifier, including the "virtual" (if present) and access
149   /// specifier (if present).
150   SourceRange Range;
151 
152   /// The source location of the ellipsis, if this is a pack
153   /// expansion.
154   SourceLocation EllipsisLoc;
155 
156   /// Whether this is a virtual base class or not.
157   unsigned Virtual : 1;
158 
159   /// Whether this is the base of a class (true) or of a struct (false).
160   ///
161   /// This determines the mapping from the access specifier as written in the
162   /// source code to the access specifier used for semantic analysis.
163   unsigned BaseOfClass : 1;
164 
165   /// Access specifier as written in the source code (may be AS_none).
166   ///
167   /// The actual type of data stored here is an AccessSpecifier, but we use
168   /// "unsigned" here to work around a VC++ bug.
169   unsigned Access : 2;
170 
171   /// Whether the class contains a using declaration
172   /// to inherit the named class's constructors.
173   unsigned InheritConstructors : 1;
174 
175   /// The type of the base class.
176   ///
177   /// This will be a class or struct (or a typedef of such). The source code
178   /// range does not include the \c virtual or the access specifier.
179   TypeSourceInfo *BaseTypeInfo;
180 
181 public:
182   CXXBaseSpecifier() = default;
183   CXXBaseSpecifier(SourceRange R, bool V, bool BC, AccessSpecifier A,
184                    TypeSourceInfo *TInfo, SourceLocation EllipsisLoc)
185     : Range(R), EllipsisLoc(EllipsisLoc), Virtual(V), BaseOfClass(BC),
186       Access(A), InheritConstructors(false), BaseTypeInfo(TInfo) {}
187 
188   /// Retrieves the source range that contains the entire base specifier.
189   SourceRange getSourceRange() const LLVM_READONLY { return Range; }
190   SourceLocation getBeginLoc() const LLVM_READONLY { return Range.getBegin(); }
191   SourceLocation getEndLoc() const LLVM_READONLY { return Range.getEnd(); }
192 
193   /// Get the location at which the base class type was written.
194   SourceLocation getBaseTypeLoc() const LLVM_READONLY {
195     return BaseTypeInfo->getTypeLoc().getBeginLoc();
196   }
197 
198   /// Determines whether the base class is a virtual base class (or not).
199   bool isVirtual() const { return Virtual; }
200 
201   /// Determine whether this base class is a base of a class declared
202   /// with the 'class' keyword (vs. one declared with the 'struct' keyword).
203   bool isBaseOfClass() const { return BaseOfClass; }
204 
205   /// Determine whether this base specifier is a pack expansion.
206   bool isPackExpansion() const { return EllipsisLoc.isValid(); }
207 
208   /// Determine whether this base class's constructors get inherited.
209   bool getInheritConstructors() const { return InheritConstructors; }
210 
211   /// Set that this base class's constructors should be inherited.
212   void setInheritConstructors(bool Inherit = true) {
213     InheritConstructors = Inherit;
214   }
215 
216   /// For a pack expansion, determine the location of the ellipsis.
217   SourceLocation getEllipsisLoc() const {
218     return EllipsisLoc;
219   }
220 
221   /// Returns the access specifier for this base specifier.
222   ///
223   /// This is the actual base specifier as used for semantic analysis, so
224   /// the result can never be AS_none. To retrieve the access specifier as
225   /// written in the source code, use getAccessSpecifierAsWritten().
226   AccessSpecifier getAccessSpecifier() const {
227     if ((AccessSpecifier)Access == AS_none)
228       return BaseOfClass? AS_private : AS_public;
229     else
230       return (AccessSpecifier)Access;
231   }
232 
233   /// Retrieves the access specifier as written in the source code
234   /// (which may mean that no access specifier was explicitly written).
235   ///
236   /// Use getAccessSpecifier() to retrieve the access specifier for use in
237   /// semantic analysis.
238   AccessSpecifier getAccessSpecifierAsWritten() const {
239     return (AccessSpecifier)Access;
240   }
241 
242   /// Retrieves the type of the base class.
243   ///
244   /// This type will always be an unqualified class type.
245   QualType getType() const {
246     return BaseTypeInfo->getType().getUnqualifiedType();
247   }
248 
249   /// Retrieves the type and source location of the base class.
250   TypeSourceInfo *getTypeSourceInfo() const { return BaseTypeInfo; }
251 };
252 
253 /// Represents a C++ struct/union/class.
254 class CXXRecordDecl : public RecordDecl {
255   friend class ASTDeclReader;
256   friend class ASTDeclWriter;
257   friend class ASTNodeImporter;
258   friend class ASTReader;
259   friend class ASTRecordWriter;
260   friend class ASTWriter;
261   friend class DeclContext;
262   friend class LambdaExpr;
263 
264   friend void FunctionDecl::setPure(bool);
265   friend void TagDecl::startDefinition();
266 
267   /// Values used in DefinitionData fields to represent special members.
268   enum SpecialMemberFlags {
269     SMF_DefaultConstructor = 0x1,
270     SMF_CopyConstructor = 0x2,
271     SMF_MoveConstructor = 0x4,
272     SMF_CopyAssignment = 0x8,
273     SMF_MoveAssignment = 0x10,
274     SMF_Destructor = 0x20,
275     SMF_All = 0x3f
276   };
277 
278   struct DefinitionData {
279     #define FIELD(Name, Width, Merge) \
280     unsigned Name : Width;
281     #include "CXXRecordDeclDefinitionBits.def"
282 
283     /// Whether this class describes a C++ lambda.
284     unsigned IsLambda : 1;
285 
286     /// Whether we are currently parsing base specifiers.
287     unsigned IsParsingBaseSpecifiers : 1;
288 
289     /// True when visible conversion functions are already computed
290     /// and are available.
291     unsigned ComputedVisibleConversions : 1;
292 
293     unsigned HasODRHash : 1;
294 
295     /// A hash of parts of the class to help in ODR checking.
296     unsigned ODRHash = 0;
297 
298     /// The number of base class specifiers in Bases.
299     unsigned NumBases = 0;
300 
301     /// The number of virtual base class specifiers in VBases.
302     unsigned NumVBases = 0;
303 
304     /// Base classes of this class.
305     ///
306     /// FIXME: This is wasted space for a union.
307     LazyCXXBaseSpecifiersPtr Bases;
308 
309     /// direct and indirect virtual base classes of this class.
310     LazyCXXBaseSpecifiersPtr VBases;
311 
312     /// The conversion functions of this C++ class (but not its
313     /// inherited conversion functions).
314     ///
315     /// Each of the entries in this overload set is a CXXConversionDecl.
316     LazyASTUnresolvedSet Conversions;
317 
318     /// The conversion functions of this C++ class and all those
319     /// inherited conversion functions that are visible in this class.
320     ///
321     /// Each of the entries in this overload set is a CXXConversionDecl or a
322     /// FunctionTemplateDecl.
323     LazyASTUnresolvedSet VisibleConversions;
324 
325     /// The declaration which defines this record.
326     CXXRecordDecl *Definition;
327 
328     /// The first friend declaration in this class, or null if there
329     /// aren't any.
330     ///
331     /// This is actually currently stored in reverse order.
332     LazyDeclPtr FirstFriend;
333 
334     DefinitionData(CXXRecordDecl *D);
335 
336     /// Retrieve the set of direct base classes.
337     CXXBaseSpecifier *getBases() const {
338       if (!Bases.isOffset())
339         return Bases.get(nullptr);
340       return getBasesSlowCase();
341     }
342 
343     /// Retrieve the set of virtual base classes.
344     CXXBaseSpecifier *getVBases() const {
345       if (!VBases.isOffset())
346         return VBases.get(nullptr);
347       return getVBasesSlowCase();
348     }
349 
350     ArrayRef<CXXBaseSpecifier> bases() const {
351       return llvm::makeArrayRef(getBases(), NumBases);
352     }
353 
354     ArrayRef<CXXBaseSpecifier> vbases() const {
355       return llvm::makeArrayRef(getVBases(), NumVBases);
356     }
357 
358   private:
359     CXXBaseSpecifier *getBasesSlowCase() const;
360     CXXBaseSpecifier *getVBasesSlowCase() const;
361   };
362 
363   struct DefinitionData *DefinitionData;
364 
365   /// Describes a C++ closure type (generated by a lambda expression).
366   struct LambdaDefinitionData : public DefinitionData {
367     using Capture = LambdaCapture;
368 
369     /// Whether this lambda is known to be dependent, even if its
370     /// context isn't dependent.
371     ///
372     /// A lambda with a non-dependent context can be dependent if it occurs
373     /// within the default argument of a function template, because the
374     /// lambda will have been created with the enclosing context as its
375     /// declaration context, rather than function. This is an unfortunate
376     /// artifact of having to parse the default arguments before.
377     unsigned Dependent : 1;
378 
379     /// Whether this lambda is a generic lambda.
380     unsigned IsGenericLambda : 1;
381 
382     /// The Default Capture.
383     unsigned CaptureDefault : 2;
384 
385     /// The number of captures in this lambda is limited 2^NumCaptures.
386     unsigned NumCaptures : 15;
387 
388     /// The number of explicit captures in this lambda.
389     unsigned NumExplicitCaptures : 13;
390 
391     /// Has known `internal` linkage.
392     unsigned HasKnownInternalLinkage : 1;
393 
394     /// The number used to indicate this lambda expression for name
395     /// mangling in the Itanium C++ ABI.
396     unsigned ManglingNumber : 31;
397 
398     /// The declaration that provides context for this lambda, if the
399     /// actual DeclContext does not suffice. This is used for lambdas that
400     /// occur within default arguments of function parameters within the class
401     /// or within a data member initializer.
402     LazyDeclPtr ContextDecl;
403 
404     /// The list of captures, both explicit and implicit, for this
405     /// lambda.
406     Capture *Captures = nullptr;
407 
408     /// The type of the call method.
409     TypeSourceInfo *MethodTyInfo;
410 
411     LambdaDefinitionData(CXXRecordDecl *D, TypeSourceInfo *Info, bool Dependent,
412                          bool IsGeneric, LambdaCaptureDefault CaptureDefault)
413         : DefinitionData(D), Dependent(Dependent), IsGenericLambda(IsGeneric),
414           CaptureDefault(CaptureDefault), NumCaptures(0),
415           NumExplicitCaptures(0), HasKnownInternalLinkage(0), ManglingNumber(0),
416           MethodTyInfo(Info) {
417       IsLambda = true;
418 
419       // C++1z [expr.prim.lambda]p4:
420       //   This class type is not an aggregate type.
421       Aggregate = false;
422       PlainOldData = false;
423     }
424   };
425 
426   struct DefinitionData *dataPtr() const {
427     // Complete the redecl chain (if necessary).
428     getMostRecentDecl();
429     return DefinitionData;
430   }
431 
432   struct DefinitionData &data() const {
433     auto *DD = dataPtr();
434     assert(DD && "queried property of class with no definition");
435     return *DD;
436   }
437 
438   struct LambdaDefinitionData &getLambdaData() const {
439     // No update required: a merged definition cannot change any lambda
440     // properties.
441     auto *DD = DefinitionData;
442     assert(DD && DD->IsLambda && "queried lambda property of non-lambda class");
443     return static_cast<LambdaDefinitionData&>(*DD);
444   }
445 
446   /// The template or declaration that this declaration
447   /// describes or was instantiated from, respectively.
448   ///
449   /// For non-templates, this value will be null. For record
450   /// declarations that describe a class template, this will be a
451   /// pointer to a ClassTemplateDecl. For member
452   /// classes of class template specializations, this will be the
453   /// MemberSpecializationInfo referring to the member class that was
454   /// instantiated or specialized.
455   llvm::PointerUnion<ClassTemplateDecl *, MemberSpecializationInfo *>
456       TemplateOrInstantiation;
457 
458   /// Called from setBases and addedMember to notify the class that a
459   /// direct or virtual base class or a member of class type has been added.
460   void addedClassSubobject(CXXRecordDecl *Base);
461 
462   /// Notify the class that member has been added.
463   ///
464   /// This routine helps maintain information about the class based on which
465   /// members have been added. It will be invoked by DeclContext::addDecl()
466   /// whenever a member is added to this record.
467   void addedMember(Decl *D);
468 
469   void markedVirtualFunctionPure();
470 
471   /// Get the head of our list of friend declarations, possibly
472   /// deserializing the friends from an external AST source.
473   FriendDecl *getFirstFriend() const;
474 
475   /// Determine whether this class has an empty base class subobject of type X
476   /// or of one of the types that might be at offset 0 within X (per the C++
477   /// "standard layout" rules).
478   bool hasSubobjectAtOffsetZeroOfEmptyBaseType(ASTContext &Ctx,
479                                                const CXXRecordDecl *X);
480 
481 protected:
482   CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C, DeclContext *DC,
483                 SourceLocation StartLoc, SourceLocation IdLoc,
484                 IdentifierInfo *Id, CXXRecordDecl *PrevDecl);
485 
486 public:
487   /// Iterator that traverses the base classes of a class.
488   using base_class_iterator = CXXBaseSpecifier *;
489 
490   /// Iterator that traverses the base classes of a class.
491   using base_class_const_iterator = const CXXBaseSpecifier *;
492 
493   CXXRecordDecl *getCanonicalDecl() override {
494     return cast<CXXRecordDecl>(RecordDecl::getCanonicalDecl());
495   }
496 
497   const CXXRecordDecl *getCanonicalDecl() const {
498     return const_cast<CXXRecordDecl*>(this)->getCanonicalDecl();
499   }
500 
501   CXXRecordDecl *getPreviousDecl() {
502     return cast_or_null<CXXRecordDecl>(
503             static_cast<RecordDecl *>(this)->getPreviousDecl());
504   }
505 
506   const CXXRecordDecl *getPreviousDecl() const {
507     return const_cast<CXXRecordDecl*>(this)->getPreviousDecl();
508   }
509 
510   CXXRecordDecl *getMostRecentDecl() {
511     return cast<CXXRecordDecl>(
512             static_cast<RecordDecl *>(this)->getMostRecentDecl());
513   }
514 
515   const CXXRecordDecl *getMostRecentDecl() const {
516     return const_cast<CXXRecordDecl*>(this)->getMostRecentDecl();
517   }
518 
519   CXXRecordDecl *getMostRecentNonInjectedDecl() {
520     CXXRecordDecl *Recent =
521         static_cast<CXXRecordDecl *>(this)->getMostRecentDecl();
522     while (Recent->isInjectedClassName()) {
523       // FIXME: Does injected class name need to be in the redeclarations chain?
524       assert(Recent->getPreviousDecl());
525       Recent = Recent->getPreviousDecl();
526     }
527     return Recent;
528   }
529 
530   const CXXRecordDecl *getMostRecentNonInjectedDecl() const {
531     return const_cast<CXXRecordDecl*>(this)->getMostRecentNonInjectedDecl();
532   }
533 
534   CXXRecordDecl *getDefinition() const {
535     // We only need an update if we don't already know which
536     // declaration is the definition.
537     auto *DD = DefinitionData ? DefinitionData : dataPtr();
538     return DD ? DD->Definition : nullptr;
539   }
540 
541   bool hasDefinition() const { return DefinitionData || dataPtr(); }
542 
543   static CXXRecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
544                                SourceLocation StartLoc, SourceLocation IdLoc,
545                                IdentifierInfo *Id,
546                                CXXRecordDecl *PrevDecl = nullptr,
547                                bool DelayTypeCreation = false);
548   static CXXRecordDecl *CreateLambda(const ASTContext &C, DeclContext *DC,
549                                      TypeSourceInfo *Info, SourceLocation Loc,
550                                      bool DependentLambda, bool IsGeneric,
551                                      LambdaCaptureDefault CaptureDefault);
552   static CXXRecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
553 
554   bool isDynamicClass() const {
555     return data().Polymorphic || data().NumVBases != 0;
556   }
557 
558   /// @returns true if class is dynamic or might be dynamic because the
559   /// definition is incomplete of dependent.
560   bool mayBeDynamicClass() const {
561     return !hasDefinition() || isDynamicClass() || hasAnyDependentBases();
562   }
563 
564   /// @returns true if class is non dynamic or might be non dynamic because the
565   /// definition is incomplete of dependent.
566   bool mayBeNonDynamicClass() const {
567     return !hasDefinition() || !isDynamicClass() || hasAnyDependentBases();
568   }
569 
570   void setIsParsingBaseSpecifiers() { data().IsParsingBaseSpecifiers = true; }
571 
572   bool isParsingBaseSpecifiers() const {
573     return data().IsParsingBaseSpecifiers;
574   }
575 
576   unsigned getODRHash() const;
577 
578   /// Sets the base classes of this struct or class.
579   void setBases(CXXBaseSpecifier const * const *Bases, unsigned NumBases);
580 
581   /// Retrieves the number of base classes of this class.
582   unsigned getNumBases() const { return data().NumBases; }
583 
584   using base_class_range = llvm::iterator_range<base_class_iterator>;
585   using base_class_const_range =
586       llvm::iterator_range<base_class_const_iterator>;
587 
588   base_class_range bases() {
589     return base_class_range(bases_begin(), bases_end());
590   }
591   base_class_const_range bases() const {
592     return base_class_const_range(bases_begin(), bases_end());
593   }
594 
595   base_class_iterator bases_begin() { return data().getBases(); }
596   base_class_const_iterator bases_begin() const { return data().getBases(); }
597   base_class_iterator bases_end() { return bases_begin() + data().NumBases; }
598   base_class_const_iterator bases_end() const {
599     return bases_begin() + data().NumBases;
600   }
601 
602   /// Retrieves the number of virtual base classes of this class.
603   unsigned getNumVBases() const { return data().NumVBases; }
604 
605   base_class_range vbases() {
606     return base_class_range(vbases_begin(), vbases_end());
607   }
608   base_class_const_range vbases() const {
609     return base_class_const_range(vbases_begin(), vbases_end());
610   }
611 
612   base_class_iterator vbases_begin() { return data().getVBases(); }
613   base_class_const_iterator vbases_begin() const { return data().getVBases(); }
614   base_class_iterator vbases_end() { return vbases_begin() + data().NumVBases; }
615   base_class_const_iterator vbases_end() const {
616     return vbases_begin() + data().NumVBases;
617   }
618 
619   /// Determine whether this class has any dependent base classes which
620   /// are not the current instantiation.
621   bool hasAnyDependentBases() const;
622 
623   /// Iterator access to method members.  The method iterator visits
624   /// all method members of the class, including non-instance methods,
625   /// special methods, etc.
626   using method_iterator = specific_decl_iterator<CXXMethodDecl>;
627   using method_range =
628       llvm::iterator_range<specific_decl_iterator<CXXMethodDecl>>;
629 
630   method_range methods() const {
631     return method_range(method_begin(), method_end());
632   }
633 
634   /// Method begin iterator.  Iterates in the order the methods
635   /// were declared.
636   method_iterator method_begin() const {
637     return method_iterator(decls_begin());
638   }
639 
640   /// Method past-the-end iterator.
641   method_iterator method_end() const {
642     return method_iterator(decls_end());
643   }
644 
645   /// Iterator access to constructor members.
646   using ctor_iterator = specific_decl_iterator<CXXConstructorDecl>;
647   using ctor_range =
648       llvm::iterator_range<specific_decl_iterator<CXXConstructorDecl>>;
649 
650   ctor_range ctors() const { return ctor_range(ctor_begin(), ctor_end()); }
651 
652   ctor_iterator ctor_begin() const {
653     return ctor_iterator(decls_begin());
654   }
655 
656   ctor_iterator ctor_end() const {
657     return ctor_iterator(decls_end());
658   }
659 
660   /// An iterator over friend declarations.  All of these are defined
661   /// in DeclFriend.h.
662   class friend_iterator;
663   using friend_range = llvm::iterator_range<friend_iterator>;
664 
665   friend_range friends() const;
666   friend_iterator friend_begin() const;
667   friend_iterator friend_end() const;
668   void pushFriendDecl(FriendDecl *FD);
669 
670   /// Determines whether this record has any friends.
671   bool hasFriends() const {
672     return data().FirstFriend.isValid();
673   }
674 
675   /// \c true if a defaulted copy constructor for this class would be
676   /// deleted.
677   bool defaultedCopyConstructorIsDeleted() const {
678     assert((!needsOverloadResolutionForCopyConstructor() ||
679             (data().DeclaredSpecialMembers & SMF_CopyConstructor)) &&
680            "this property has not yet been computed by Sema");
681     return data().DefaultedCopyConstructorIsDeleted;
682   }
683 
684   /// \c true if a defaulted move constructor for this class would be
685   /// deleted.
686   bool defaultedMoveConstructorIsDeleted() const {
687     assert((!needsOverloadResolutionForMoveConstructor() ||
688             (data().DeclaredSpecialMembers & SMF_MoveConstructor)) &&
689            "this property has not yet been computed by Sema");
690     return data().DefaultedMoveConstructorIsDeleted;
691   }
692 
693   /// \c true if a defaulted destructor for this class would be deleted.
694   bool defaultedDestructorIsDeleted() const {
695     assert((!needsOverloadResolutionForDestructor() ||
696             (data().DeclaredSpecialMembers & SMF_Destructor)) &&
697            "this property has not yet been computed by Sema");
698     return data().DefaultedDestructorIsDeleted;
699   }
700 
701   /// \c true if we know for sure that this class has a single,
702   /// accessible, unambiguous copy constructor that is not deleted.
703   bool hasSimpleCopyConstructor() const {
704     return !hasUserDeclaredCopyConstructor() &&
705            !data().DefaultedCopyConstructorIsDeleted;
706   }
707 
708   /// \c true if we know for sure that this class has a single,
709   /// accessible, unambiguous move constructor that is not deleted.
710   bool hasSimpleMoveConstructor() const {
711     return !hasUserDeclaredMoveConstructor() && hasMoveConstructor() &&
712            !data().DefaultedMoveConstructorIsDeleted;
713   }
714 
715   /// \c true if we know for sure that this class has a single,
716   /// accessible, unambiguous copy assignment operator that is not deleted.
717   bool hasSimpleCopyAssignment() const {
718     return !hasUserDeclaredCopyAssignment() &&
719            !data().DefaultedCopyAssignmentIsDeleted;
720   }
721 
722   /// \c true if we know for sure that this class has a single,
723   /// accessible, unambiguous move assignment operator that is not deleted.
724   bool hasSimpleMoveAssignment() const {
725     return !hasUserDeclaredMoveAssignment() && hasMoveAssignment() &&
726            !data().DefaultedMoveAssignmentIsDeleted;
727   }
728 
729   /// \c true if we know for sure that this class has an accessible
730   /// destructor that is not deleted.
731   bool hasSimpleDestructor() const {
732     return !hasUserDeclaredDestructor() &&
733            !data().DefaultedDestructorIsDeleted;
734   }
735 
736   /// Determine whether this class has any default constructors.
737   bool hasDefaultConstructor() const {
738     return (data().DeclaredSpecialMembers & SMF_DefaultConstructor) ||
739            needsImplicitDefaultConstructor();
740   }
741 
742   /// Determine if we need to declare a default constructor for
743   /// this class.
744   ///
745   /// This value is used for lazy creation of default constructors.
746   bool needsImplicitDefaultConstructor() const {
747     return (!data().UserDeclaredConstructor &&
748             !(data().DeclaredSpecialMembers & SMF_DefaultConstructor) &&
749             (!isLambda() || lambdaIsDefaultConstructibleAndAssignable())) ||
750            // FIXME: Proposed fix to core wording issue: if a class inherits
751            // a default constructor and doesn't explicitly declare one, one
752            // is declared implicitly.
753            (data().HasInheritedDefaultConstructor &&
754             !(data().DeclaredSpecialMembers & SMF_DefaultConstructor));
755   }
756 
757   /// Determine whether this class has any user-declared constructors.
758   ///
759   /// When true, a default constructor will not be implicitly declared.
760   bool hasUserDeclaredConstructor() const {
761     return data().UserDeclaredConstructor;
762   }
763 
764   /// Whether this class has a user-provided default constructor
765   /// per C++11.
766   bool hasUserProvidedDefaultConstructor() const {
767     return data().UserProvidedDefaultConstructor;
768   }
769 
770   /// Determine whether this class has a user-declared copy constructor.
771   ///
772   /// When false, a copy constructor will be implicitly declared.
773   bool hasUserDeclaredCopyConstructor() const {
774     return data().UserDeclaredSpecialMembers & SMF_CopyConstructor;
775   }
776 
777   /// Determine whether this class needs an implicit copy
778   /// constructor to be lazily declared.
779   bool needsImplicitCopyConstructor() const {
780     return !(data().DeclaredSpecialMembers & SMF_CopyConstructor);
781   }
782 
783   /// Determine whether we need to eagerly declare a defaulted copy
784   /// constructor for this class.
785   bool needsOverloadResolutionForCopyConstructor() const {
786     // C++17 [class.copy.ctor]p6:
787     //   If the class definition declares a move constructor or move assignment
788     //   operator, the implicitly declared copy constructor is defined as
789     //   deleted.
790     // In MSVC mode, sometimes a declared move assignment does not delete an
791     // implicit copy constructor, so defer this choice to Sema.
792     if (data().UserDeclaredSpecialMembers &
793         (SMF_MoveConstructor | SMF_MoveAssignment))
794       return true;
795     return data().NeedOverloadResolutionForCopyConstructor;
796   }
797 
798   /// Determine whether an implicit copy constructor for this type
799   /// would have a parameter with a const-qualified reference type.
800   bool implicitCopyConstructorHasConstParam() const {
801     return data().ImplicitCopyConstructorCanHaveConstParamForNonVBase &&
802            (isAbstract() ||
803             data().ImplicitCopyConstructorCanHaveConstParamForVBase);
804   }
805 
806   /// Determine whether this class has a copy constructor with
807   /// a parameter type which is a reference to a const-qualified type.
808   bool hasCopyConstructorWithConstParam() const {
809     return data().HasDeclaredCopyConstructorWithConstParam ||
810            (needsImplicitCopyConstructor() &&
811             implicitCopyConstructorHasConstParam());
812   }
813 
814   /// Whether this class has a user-declared move constructor or
815   /// assignment operator.
816   ///
817   /// When false, a move constructor and assignment operator may be
818   /// implicitly declared.
819   bool hasUserDeclaredMoveOperation() const {
820     return data().UserDeclaredSpecialMembers &
821              (SMF_MoveConstructor | SMF_MoveAssignment);
822   }
823 
824   /// Determine whether this class has had a move constructor
825   /// declared by the user.
826   bool hasUserDeclaredMoveConstructor() const {
827     return data().UserDeclaredSpecialMembers & SMF_MoveConstructor;
828   }
829 
830   /// Determine whether this class has a move constructor.
831   bool hasMoveConstructor() const {
832     return (data().DeclaredSpecialMembers & SMF_MoveConstructor) ||
833            needsImplicitMoveConstructor();
834   }
835 
836   /// Set that we attempted to declare an implicit copy
837   /// constructor, but overload resolution failed so we deleted it.
838   void setImplicitCopyConstructorIsDeleted() {
839     assert((data().DefaultedCopyConstructorIsDeleted ||
840             needsOverloadResolutionForCopyConstructor()) &&
841            "Copy constructor should not be deleted");
842     data().DefaultedCopyConstructorIsDeleted = true;
843   }
844 
845   /// Set that we attempted to declare an implicit move
846   /// constructor, but overload resolution failed so we deleted it.
847   void setImplicitMoveConstructorIsDeleted() {
848     assert((data().DefaultedMoveConstructorIsDeleted ||
849             needsOverloadResolutionForMoveConstructor()) &&
850            "move constructor should not be deleted");
851     data().DefaultedMoveConstructorIsDeleted = true;
852   }
853 
854   /// Set that we attempted to declare an implicit destructor,
855   /// but overload resolution failed so we deleted it.
856   void setImplicitDestructorIsDeleted() {
857     assert((data().DefaultedDestructorIsDeleted ||
858             needsOverloadResolutionForDestructor()) &&
859            "destructor should not be deleted");
860     data().DefaultedDestructorIsDeleted = true;
861   }
862 
863   /// Determine whether this class should get an implicit move
864   /// constructor or if any existing special member function inhibits this.
865   bool needsImplicitMoveConstructor() const {
866     return !(data().DeclaredSpecialMembers & SMF_MoveConstructor) &&
867            !hasUserDeclaredCopyConstructor() &&
868            !hasUserDeclaredCopyAssignment() &&
869            !hasUserDeclaredMoveAssignment() &&
870            !hasUserDeclaredDestructor();
871   }
872 
873   /// Determine whether we need to eagerly declare a defaulted move
874   /// constructor for this class.
875   bool needsOverloadResolutionForMoveConstructor() const {
876     return data().NeedOverloadResolutionForMoveConstructor;
877   }
878 
879   /// Determine whether this class has a user-declared copy assignment
880   /// operator.
881   ///
882   /// When false, a copy assignment operator will be implicitly declared.
883   bool hasUserDeclaredCopyAssignment() const {
884     return data().UserDeclaredSpecialMembers & SMF_CopyAssignment;
885   }
886 
887   /// Set that we attempted to declare an implicit copy assignment
888   /// operator, but overload resolution failed so we deleted it.
889   void setImplicitCopyAssignmentIsDeleted() {
890     assert((data().DefaultedCopyAssignmentIsDeleted ||
891             needsOverloadResolutionForCopyAssignment()) &&
892            "copy assignment should not be deleted");
893     data().DefaultedCopyAssignmentIsDeleted = true;
894   }
895 
896   /// Determine whether this class needs an implicit copy
897   /// assignment operator to be lazily declared.
898   bool needsImplicitCopyAssignment() const {
899     return !(data().DeclaredSpecialMembers & SMF_CopyAssignment);
900   }
901 
902   /// Determine whether we need to eagerly declare a defaulted copy
903   /// assignment operator for this class.
904   bool needsOverloadResolutionForCopyAssignment() const {
905     // C++20 [class.copy.assign]p2:
906     //   If the class definition declares a move constructor or move assignment
907     //   operator, the implicitly declared copy assignment operator is defined
908     //   as deleted.
909     // In MSVC mode, sometimes a declared move constructor does not delete an
910     // implicit copy assignment, so defer this choice to Sema.
911     if (data().UserDeclaredSpecialMembers &
912         (SMF_MoveConstructor | SMF_MoveAssignment))
913       return true;
914     return data().NeedOverloadResolutionForCopyAssignment;
915   }
916 
917   /// Determine whether an implicit copy assignment operator for this
918   /// type would have a parameter with a const-qualified reference type.
919   bool implicitCopyAssignmentHasConstParam() const {
920     return data().ImplicitCopyAssignmentHasConstParam;
921   }
922 
923   /// Determine whether this class has a copy assignment operator with
924   /// a parameter type which is a reference to a const-qualified type or is not
925   /// a reference.
926   bool hasCopyAssignmentWithConstParam() const {
927     return data().HasDeclaredCopyAssignmentWithConstParam ||
928            (needsImplicitCopyAssignment() &&
929             implicitCopyAssignmentHasConstParam());
930   }
931 
932   /// Determine whether this class has had a move assignment
933   /// declared by the user.
934   bool hasUserDeclaredMoveAssignment() const {
935     return data().UserDeclaredSpecialMembers & SMF_MoveAssignment;
936   }
937 
938   /// Determine whether this class has a move assignment operator.
939   bool hasMoveAssignment() const {
940     return (data().DeclaredSpecialMembers & SMF_MoveAssignment) ||
941            needsImplicitMoveAssignment();
942   }
943 
944   /// Set that we attempted to declare an implicit move assignment
945   /// operator, but overload resolution failed so we deleted it.
946   void setImplicitMoveAssignmentIsDeleted() {
947     assert((data().DefaultedMoveAssignmentIsDeleted ||
948             needsOverloadResolutionForMoveAssignment()) &&
949            "move assignment should not be deleted");
950     data().DefaultedMoveAssignmentIsDeleted = true;
951   }
952 
953   /// Determine whether this class should get an implicit move
954   /// assignment operator or if any existing special member function inhibits
955   /// this.
956   bool needsImplicitMoveAssignment() const {
957     return !(data().DeclaredSpecialMembers & SMF_MoveAssignment) &&
958            !hasUserDeclaredCopyConstructor() &&
959            !hasUserDeclaredCopyAssignment() &&
960            !hasUserDeclaredMoveConstructor() &&
961            !hasUserDeclaredDestructor() &&
962            (!isLambda() || lambdaIsDefaultConstructibleAndAssignable());
963   }
964 
965   /// Determine whether we need to eagerly declare a move assignment
966   /// operator for this class.
967   bool needsOverloadResolutionForMoveAssignment() const {
968     return data().NeedOverloadResolutionForMoveAssignment;
969   }
970 
971   /// Determine whether this class has a user-declared destructor.
972   ///
973   /// When false, a destructor will be implicitly declared.
974   bool hasUserDeclaredDestructor() const {
975     return data().UserDeclaredSpecialMembers & SMF_Destructor;
976   }
977 
978   /// Determine whether this class needs an implicit destructor to
979   /// be lazily declared.
980   bool needsImplicitDestructor() const {
981     return !(data().DeclaredSpecialMembers & SMF_Destructor);
982   }
983 
984   /// Determine whether we need to eagerly declare a destructor for this
985   /// class.
986   bool needsOverloadResolutionForDestructor() const {
987     return data().NeedOverloadResolutionForDestructor;
988   }
989 
990   /// Determine whether this class describes a lambda function object.
991   bool isLambda() const {
992     // An update record can't turn a non-lambda into a lambda.
993     auto *DD = DefinitionData;
994     return DD && DD->IsLambda;
995   }
996 
997   /// Determine whether this class describes a generic
998   /// lambda function object (i.e. function call operator is
999   /// a template).
1000   bool isGenericLambda() const;
1001 
1002   /// Determine whether this lambda should have an implicit default constructor
1003   /// and copy and move assignment operators.
1004   bool lambdaIsDefaultConstructibleAndAssignable() const;
1005 
1006   /// Retrieve the lambda call operator of the closure type
1007   /// if this is a closure type.
1008   CXXMethodDecl *getLambdaCallOperator() const;
1009 
1010   /// Retrieve the dependent lambda call operator of the closure type
1011   /// if this is a templated closure type.
1012   FunctionTemplateDecl *getDependentLambdaCallOperator() const;
1013 
1014   /// Retrieve the lambda static invoker, the address of which
1015   /// is returned by the conversion operator, and the body of which
1016   /// is forwarded to the lambda call operator. The version that does not
1017   /// take a calling convention uses the 'default' calling convention for free
1018   /// functions if the Lambda's calling convention was not modified via
1019   /// attribute. Otherwise, it will return the calling convention specified for
1020   /// the lambda.
1021   CXXMethodDecl *getLambdaStaticInvoker() const;
1022   CXXMethodDecl *getLambdaStaticInvoker(CallingConv CC) const;
1023 
1024   /// Retrieve the generic lambda's template parameter list.
1025   /// Returns null if the class does not represent a lambda or a generic
1026   /// lambda.
1027   TemplateParameterList *getGenericLambdaTemplateParameterList() const;
1028 
1029   /// Retrieve the lambda template parameters that were specified explicitly.
1030   ArrayRef<NamedDecl *> getLambdaExplicitTemplateParameters() const;
1031 
1032   LambdaCaptureDefault getLambdaCaptureDefault() const {
1033     assert(isLambda());
1034     return static_cast<LambdaCaptureDefault>(getLambdaData().CaptureDefault);
1035   }
1036 
1037   /// Set the captures for this lambda closure type.
1038   void setCaptures(ASTContext &Context, ArrayRef<LambdaCapture> Captures);
1039 
1040   /// For a closure type, retrieve the mapping from captured
1041   /// variables and \c this to the non-static data members that store the
1042   /// values or references of the captures.
1043   ///
1044   /// \param Captures Will be populated with the mapping from captured
1045   /// variables to the corresponding fields.
1046   ///
1047   /// \param ThisCapture Will be set to the field declaration for the
1048   /// \c this capture.
1049   ///
1050   /// \note No entries will be added for init-captures, as they do not capture
1051   /// variables.
1052   void getCaptureFields(llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
1053                         FieldDecl *&ThisCapture) const;
1054 
1055   using capture_const_iterator = const LambdaCapture *;
1056   using capture_const_range = llvm::iterator_range<capture_const_iterator>;
1057 
1058   capture_const_range captures() const {
1059     return capture_const_range(captures_begin(), captures_end());
1060   }
1061 
1062   capture_const_iterator captures_begin() const {
1063     return isLambda() ? getLambdaData().Captures : nullptr;
1064   }
1065 
1066   capture_const_iterator captures_end() const {
1067     return isLambda() ? captures_begin() + getLambdaData().NumCaptures
1068                       : nullptr;
1069   }
1070 
1071   unsigned capture_size() const { return getLambdaData().NumCaptures; }
1072 
1073   using conversion_iterator = UnresolvedSetIterator;
1074 
1075   conversion_iterator conversion_begin() const {
1076     return data().Conversions.get(getASTContext()).begin();
1077   }
1078 
1079   conversion_iterator conversion_end() const {
1080     return data().Conversions.get(getASTContext()).end();
1081   }
1082 
1083   /// Removes a conversion function from this class.  The conversion
1084   /// function must currently be a member of this class.  Furthermore,
1085   /// this class must currently be in the process of being defined.
1086   void removeConversion(const NamedDecl *Old);
1087 
1088   /// Get all conversion functions visible in current class,
1089   /// including conversion function templates.
1090   llvm::iterator_range<conversion_iterator>
1091   getVisibleConversionFunctions() const;
1092 
1093   /// Determine whether this class is an aggregate (C++ [dcl.init.aggr]),
1094   /// which is a class with no user-declared constructors, no private
1095   /// or protected non-static data members, no base classes, and no virtual
1096   /// functions (C++ [dcl.init.aggr]p1).
1097   bool isAggregate() const { return data().Aggregate; }
1098 
1099   /// Whether this class has any in-class initializers
1100   /// for non-static data members (including those in anonymous unions or
1101   /// structs).
1102   bool hasInClassInitializer() const { return data().HasInClassInitializer; }
1103 
1104   /// Whether this class or any of its subobjects has any members of
1105   /// reference type which would make value-initialization ill-formed.
1106   ///
1107   /// Per C++03 [dcl.init]p5:
1108   ///  - if T is a non-union class type without a user-declared constructor,
1109   ///    then every non-static data member and base-class component of T is
1110   ///    value-initialized [...] A program that calls for [...]
1111   ///    value-initialization of an entity of reference type is ill-formed.
1112   bool hasUninitializedReferenceMember() const {
1113     return !isUnion() && !hasUserDeclaredConstructor() &&
1114            data().HasUninitializedReferenceMember;
1115   }
1116 
1117   /// Whether this class is a POD-type (C++ [class]p4)
1118   ///
1119   /// For purposes of this function a class is POD if it is an aggregate
1120   /// that has no non-static non-POD data members, no reference data
1121   /// members, no user-defined copy assignment operator and no
1122   /// user-defined destructor.
1123   ///
1124   /// Note that this is the C++ TR1 definition of POD.
1125   bool isPOD() const { return data().PlainOldData; }
1126 
1127   /// True if this class is C-like, without C++-specific features, e.g.
1128   /// it contains only public fields, no bases, tag kind is not 'class', etc.
1129   bool isCLike() const;
1130 
1131   /// Determine whether this is an empty class in the sense of
1132   /// (C++11 [meta.unary.prop]).
1133   ///
1134   /// The CXXRecordDecl is a class type, but not a union type,
1135   /// with no non-static data members other than bit-fields of length 0,
1136   /// no virtual member functions, no virtual base classes,
1137   /// and no base class B for which is_empty<B>::value is false.
1138   ///
1139   /// \note This does NOT include a check for union-ness.
1140   bool isEmpty() const { return data().Empty; }
1141 
1142   void setInitMethod(bool Val) { data().HasInitMethod = Val; }
1143   bool hasInitMethod() const { return data().HasInitMethod; }
1144 
1145   bool hasPrivateFields() const {
1146     return data().HasPrivateFields;
1147   }
1148 
1149   bool hasProtectedFields() const {
1150     return data().HasProtectedFields;
1151   }
1152 
1153   /// Determine whether this class has direct non-static data members.
1154   bool hasDirectFields() const {
1155     auto &D = data();
1156     return D.HasPublicFields || D.HasProtectedFields || D.HasPrivateFields;
1157   }
1158 
1159   /// Whether this class is polymorphic (C++ [class.virtual]),
1160   /// which means that the class contains or inherits a virtual function.
1161   bool isPolymorphic() const { return data().Polymorphic; }
1162 
1163   /// Determine whether this class has a pure virtual function.
1164   ///
1165   /// The class is is abstract per (C++ [class.abstract]p2) if it declares
1166   /// a pure virtual function or inherits a pure virtual function that is
1167   /// not overridden.
1168   bool isAbstract() const { return data().Abstract; }
1169 
1170   /// Determine whether this class is standard-layout per
1171   /// C++ [class]p7.
1172   bool isStandardLayout() const { return data().IsStandardLayout; }
1173 
1174   /// Determine whether this class was standard-layout per
1175   /// C++11 [class]p7, specifically using the C++11 rules without any DRs.
1176   bool isCXX11StandardLayout() const { return data().IsCXX11StandardLayout; }
1177 
1178   /// Determine whether this class, or any of its class subobjects,
1179   /// contains a mutable field.
1180   bool hasMutableFields() const { return data().HasMutableFields; }
1181 
1182   /// Determine whether this class has any variant members.
1183   bool hasVariantMembers() const { return data().HasVariantMembers; }
1184 
1185   /// Determine whether this class has a trivial default constructor
1186   /// (C++11 [class.ctor]p5).
1187   bool hasTrivialDefaultConstructor() const {
1188     return hasDefaultConstructor() &&
1189            (data().HasTrivialSpecialMembers & SMF_DefaultConstructor);
1190   }
1191 
1192   /// Determine whether this class has a non-trivial default constructor
1193   /// (C++11 [class.ctor]p5).
1194   bool hasNonTrivialDefaultConstructor() const {
1195     return (data().DeclaredNonTrivialSpecialMembers & SMF_DefaultConstructor) ||
1196            (needsImplicitDefaultConstructor() &&
1197             !(data().HasTrivialSpecialMembers & SMF_DefaultConstructor));
1198   }
1199 
1200   /// Determine whether this class has at least one constexpr constructor
1201   /// other than the copy or move constructors.
1202   bool hasConstexprNonCopyMoveConstructor() const {
1203     return data().HasConstexprNonCopyMoveConstructor ||
1204            (needsImplicitDefaultConstructor() &&
1205             defaultedDefaultConstructorIsConstexpr());
1206   }
1207 
1208   /// Determine whether a defaulted default constructor for this class
1209   /// would be constexpr.
1210   bool defaultedDefaultConstructorIsConstexpr() const {
1211     return data().DefaultedDefaultConstructorIsConstexpr &&
1212            (!isUnion() || hasInClassInitializer() || !hasVariantMembers() ||
1213             getLangOpts().CPlusPlus20);
1214   }
1215 
1216   /// Determine whether this class has a constexpr default constructor.
1217   bool hasConstexprDefaultConstructor() const {
1218     return data().HasConstexprDefaultConstructor ||
1219            (needsImplicitDefaultConstructor() &&
1220             defaultedDefaultConstructorIsConstexpr());
1221   }
1222 
1223   /// Determine whether this class has a trivial copy constructor
1224   /// (C++ [class.copy]p6, C++11 [class.copy]p12)
1225   bool hasTrivialCopyConstructor() const {
1226     return data().HasTrivialSpecialMembers & SMF_CopyConstructor;
1227   }
1228 
1229   bool hasTrivialCopyConstructorForCall() const {
1230     return data().HasTrivialSpecialMembersForCall & SMF_CopyConstructor;
1231   }
1232 
1233   /// Determine whether this class has a non-trivial copy constructor
1234   /// (C++ [class.copy]p6, C++11 [class.copy]p12)
1235   bool hasNonTrivialCopyConstructor() const {
1236     return data().DeclaredNonTrivialSpecialMembers & SMF_CopyConstructor ||
1237            !hasTrivialCopyConstructor();
1238   }
1239 
1240   bool hasNonTrivialCopyConstructorForCall() const {
1241     return (data().DeclaredNonTrivialSpecialMembersForCall &
1242             SMF_CopyConstructor) ||
1243            !hasTrivialCopyConstructorForCall();
1244   }
1245 
1246   /// Determine whether this class has a trivial move constructor
1247   /// (C++11 [class.copy]p12)
1248   bool hasTrivialMoveConstructor() const {
1249     return hasMoveConstructor() &&
1250            (data().HasTrivialSpecialMembers & SMF_MoveConstructor);
1251   }
1252 
1253   bool hasTrivialMoveConstructorForCall() const {
1254     return hasMoveConstructor() &&
1255            (data().HasTrivialSpecialMembersForCall & SMF_MoveConstructor);
1256   }
1257 
1258   /// Determine whether this class has a non-trivial move constructor
1259   /// (C++11 [class.copy]p12)
1260   bool hasNonTrivialMoveConstructor() const {
1261     return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveConstructor) ||
1262            (needsImplicitMoveConstructor() &&
1263             !(data().HasTrivialSpecialMembers & SMF_MoveConstructor));
1264   }
1265 
1266   bool hasNonTrivialMoveConstructorForCall() const {
1267     return (data().DeclaredNonTrivialSpecialMembersForCall &
1268             SMF_MoveConstructor) ||
1269            (needsImplicitMoveConstructor() &&
1270             !(data().HasTrivialSpecialMembersForCall & SMF_MoveConstructor));
1271   }
1272 
1273   /// Determine whether this class has a trivial copy assignment operator
1274   /// (C++ [class.copy]p11, C++11 [class.copy]p25)
1275   bool hasTrivialCopyAssignment() const {
1276     return data().HasTrivialSpecialMembers & SMF_CopyAssignment;
1277   }
1278 
1279   /// Determine whether this class has a non-trivial copy assignment
1280   /// operator (C++ [class.copy]p11, C++11 [class.copy]p25)
1281   bool hasNonTrivialCopyAssignment() const {
1282     return data().DeclaredNonTrivialSpecialMembers & SMF_CopyAssignment ||
1283            !hasTrivialCopyAssignment();
1284   }
1285 
1286   /// Determine whether this class has a trivial move assignment operator
1287   /// (C++11 [class.copy]p25)
1288   bool hasTrivialMoveAssignment() const {
1289     return hasMoveAssignment() &&
1290            (data().HasTrivialSpecialMembers & SMF_MoveAssignment);
1291   }
1292 
1293   /// Determine whether this class has a non-trivial move assignment
1294   /// operator (C++11 [class.copy]p25)
1295   bool hasNonTrivialMoveAssignment() const {
1296     return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveAssignment) ||
1297            (needsImplicitMoveAssignment() &&
1298             !(data().HasTrivialSpecialMembers & SMF_MoveAssignment));
1299   }
1300 
1301   /// Determine whether a defaulted default constructor for this class
1302   /// would be constexpr.
1303   bool defaultedDestructorIsConstexpr() const {
1304     return data().DefaultedDestructorIsConstexpr &&
1305            getLangOpts().CPlusPlus20;
1306   }
1307 
1308   /// Determine whether this class has a constexpr destructor.
1309   bool hasConstexprDestructor() const;
1310 
1311   /// Determine whether this class has a trivial destructor
1312   /// (C++ [class.dtor]p3)
1313   bool hasTrivialDestructor() const {
1314     return data().HasTrivialSpecialMembers & SMF_Destructor;
1315   }
1316 
1317   bool hasTrivialDestructorForCall() const {
1318     return data().HasTrivialSpecialMembersForCall & SMF_Destructor;
1319   }
1320 
1321   /// Determine whether this class has a non-trivial destructor
1322   /// (C++ [class.dtor]p3)
1323   bool hasNonTrivialDestructor() const {
1324     return !(data().HasTrivialSpecialMembers & SMF_Destructor);
1325   }
1326 
1327   bool hasNonTrivialDestructorForCall() const {
1328     return !(data().HasTrivialSpecialMembersForCall & SMF_Destructor);
1329   }
1330 
1331   void setHasTrivialSpecialMemberForCall() {
1332     data().HasTrivialSpecialMembersForCall =
1333         (SMF_CopyConstructor | SMF_MoveConstructor | SMF_Destructor);
1334   }
1335 
1336   /// Determine whether declaring a const variable with this type is ok
1337   /// per core issue 253.
1338   bool allowConstDefaultInit() const {
1339     return !data().HasUninitializedFields ||
1340            !(data().HasDefaultedDefaultConstructor ||
1341              needsImplicitDefaultConstructor());
1342   }
1343 
1344   /// Determine whether this class has a destructor which has no
1345   /// semantic effect.
1346   ///
1347   /// Any such destructor will be trivial, public, defaulted and not deleted,
1348   /// and will call only irrelevant destructors.
1349   bool hasIrrelevantDestructor() const {
1350     return data().HasIrrelevantDestructor;
1351   }
1352 
1353   /// Determine whether this class has a non-literal or/ volatile type
1354   /// non-static data member or base class.
1355   bool hasNonLiteralTypeFieldsOrBases() const {
1356     return data().HasNonLiteralTypeFieldsOrBases;
1357   }
1358 
1359   /// Determine whether this class has a using-declaration that names
1360   /// a user-declared base class constructor.
1361   bool hasInheritedConstructor() const {
1362     return data().HasInheritedConstructor;
1363   }
1364 
1365   /// Determine whether this class has a using-declaration that names
1366   /// a base class assignment operator.
1367   bool hasInheritedAssignment() const {
1368     return data().HasInheritedAssignment;
1369   }
1370 
1371   /// Determine whether this class is considered trivially copyable per
1372   /// (C++11 [class]p6).
1373   bool isTriviallyCopyable() const;
1374 
1375   /// Determine whether this class is considered trivial.
1376   ///
1377   /// C++11 [class]p6:
1378   ///    "A trivial class is a class that has a trivial default constructor and
1379   ///    is trivially copyable."
1380   bool isTrivial() const {
1381     return isTriviallyCopyable() && hasTrivialDefaultConstructor();
1382   }
1383 
1384   /// Determine whether this class is a literal type.
1385   ///
1386   /// C++11 [basic.types]p10:
1387   ///   A class type that has all the following properties:
1388   ///     - it has a trivial destructor
1389   ///     - every constructor call and full-expression in the
1390   ///       brace-or-equal-intializers for non-static data members (if any) is
1391   ///       a constant expression.
1392   ///     - it is an aggregate type or has at least one constexpr constructor
1393   ///       or constructor template that is not a copy or move constructor, and
1394   ///     - all of its non-static data members and base classes are of literal
1395   ///       types
1396   ///
1397   /// We resolve DR1361 by ignoring the second bullet. We resolve DR1452 by
1398   /// treating types with trivial default constructors as literal types.
1399   ///
1400   /// Only in C++17 and beyond, are lambdas literal types.
1401   bool isLiteral() const {
1402     const LangOptions &LangOpts = getLangOpts();
1403     return (LangOpts.CPlusPlus20 ? hasConstexprDestructor()
1404                                           : hasTrivialDestructor()) &&
1405            (!isLambda() || LangOpts.CPlusPlus17) &&
1406            !hasNonLiteralTypeFieldsOrBases() &&
1407            (isAggregate() || isLambda() ||
1408             hasConstexprNonCopyMoveConstructor() ||
1409             hasTrivialDefaultConstructor());
1410   }
1411 
1412   /// Determine whether this is a structural type.
1413   bool isStructural() const {
1414     return isLiteral() && data().StructuralIfLiteral;
1415   }
1416 
1417   /// If this record is an instantiation of a member class,
1418   /// retrieves the member class from which it was instantiated.
1419   ///
1420   /// This routine will return non-null for (non-templated) member
1421   /// classes of class templates. For example, given:
1422   ///
1423   /// \code
1424   /// template<typename T>
1425   /// struct X {
1426   ///   struct A { };
1427   /// };
1428   /// \endcode
1429   ///
1430   /// The declaration for X<int>::A is a (non-templated) CXXRecordDecl
1431   /// whose parent is the class template specialization X<int>. For
1432   /// this declaration, getInstantiatedFromMemberClass() will return
1433   /// the CXXRecordDecl X<T>::A. When a complete definition of
1434   /// X<int>::A is required, it will be instantiated from the
1435   /// declaration returned by getInstantiatedFromMemberClass().
1436   CXXRecordDecl *getInstantiatedFromMemberClass() const;
1437 
1438   /// If this class is an instantiation of a member class of a
1439   /// class template specialization, retrieves the member specialization
1440   /// information.
1441   MemberSpecializationInfo *getMemberSpecializationInfo() const;
1442 
1443   /// Specify that this record is an instantiation of the
1444   /// member class \p RD.
1445   void setInstantiationOfMemberClass(CXXRecordDecl *RD,
1446                                      TemplateSpecializationKind TSK);
1447 
1448   /// Retrieves the class template that is described by this
1449   /// class declaration.
1450   ///
1451   /// Every class template is represented as a ClassTemplateDecl and a
1452   /// CXXRecordDecl. The former contains template properties (such as
1453   /// the template parameter lists) while the latter contains the
1454   /// actual description of the template's
1455   /// contents. ClassTemplateDecl::getTemplatedDecl() retrieves the
1456   /// CXXRecordDecl that from a ClassTemplateDecl, while
1457   /// getDescribedClassTemplate() retrieves the ClassTemplateDecl from
1458   /// a CXXRecordDecl.
1459   ClassTemplateDecl *getDescribedClassTemplate() const;
1460 
1461   void setDescribedClassTemplate(ClassTemplateDecl *Template);
1462 
1463   /// Determine whether this particular class is a specialization or
1464   /// instantiation of a class template or member class of a class template,
1465   /// and how it was instantiated or specialized.
1466   TemplateSpecializationKind getTemplateSpecializationKind() const;
1467 
1468   /// Set the kind of specialization or template instantiation this is.
1469   void setTemplateSpecializationKind(TemplateSpecializationKind TSK);
1470 
1471   /// Retrieve the record declaration from which this record could be
1472   /// instantiated. Returns null if this class is not a template instantiation.
1473   const CXXRecordDecl *getTemplateInstantiationPattern() const;
1474 
1475   CXXRecordDecl *getTemplateInstantiationPattern() {
1476     return const_cast<CXXRecordDecl *>(const_cast<const CXXRecordDecl *>(this)
1477                                            ->getTemplateInstantiationPattern());
1478   }
1479 
1480   /// Returns the destructor decl for this class.
1481   CXXDestructorDecl *getDestructor() const;
1482 
1483   /// Returns true if the class destructor, or any implicitly invoked
1484   /// destructors are marked noreturn.
1485   bool isAnyDestructorNoReturn() const { return data().IsAnyDestructorNoReturn; }
1486 
1487   /// If the class is a local class [class.local], returns
1488   /// the enclosing function declaration.
1489   const FunctionDecl *isLocalClass() const {
1490     if (const auto *RD = dyn_cast<CXXRecordDecl>(getDeclContext()))
1491       return RD->isLocalClass();
1492 
1493     return dyn_cast<FunctionDecl>(getDeclContext());
1494   }
1495 
1496   FunctionDecl *isLocalClass() {
1497     return const_cast<FunctionDecl*>(
1498         const_cast<const CXXRecordDecl*>(this)->isLocalClass());
1499   }
1500 
1501   /// Determine whether this dependent class is a current instantiation,
1502   /// when viewed from within the given context.
1503   bool isCurrentInstantiation(const DeclContext *CurContext) const;
1504 
1505   /// Determine whether this class is derived from the class \p Base.
1506   ///
1507   /// This routine only determines whether this class is derived from \p Base,
1508   /// but does not account for factors that may make a Derived -> Base class
1509   /// ill-formed, such as private/protected inheritance or multiple, ambiguous
1510   /// base class subobjects.
1511   ///
1512   /// \param Base the base class we are searching for.
1513   ///
1514   /// \returns true if this class is derived from Base, false otherwise.
1515   bool isDerivedFrom(const CXXRecordDecl *Base) const;
1516 
1517   /// Determine whether this class is derived from the type \p Base.
1518   ///
1519   /// This routine only determines whether this class is derived from \p Base,
1520   /// but does not account for factors that may make a Derived -> Base class
1521   /// ill-formed, such as private/protected inheritance or multiple, ambiguous
1522   /// base class subobjects.
1523   ///
1524   /// \param Base the base class we are searching for.
1525   ///
1526   /// \param Paths will contain the paths taken from the current class to the
1527   /// given \p Base class.
1528   ///
1529   /// \returns true if this class is derived from \p Base, false otherwise.
1530   ///
1531   /// \todo add a separate parameter to configure IsDerivedFrom, rather than
1532   /// tangling input and output in \p Paths
1533   bool isDerivedFrom(const CXXRecordDecl *Base, CXXBasePaths &Paths) const;
1534 
1535   /// Determine whether this class is virtually derived from
1536   /// the class \p Base.
1537   ///
1538   /// This routine only determines whether this class is virtually
1539   /// derived from \p Base, but does not account for factors that may
1540   /// make a Derived -> Base class ill-formed, such as
1541   /// private/protected inheritance or multiple, ambiguous base class
1542   /// subobjects.
1543   ///
1544   /// \param Base the base class we are searching for.
1545   ///
1546   /// \returns true if this class is virtually derived from Base,
1547   /// false otherwise.
1548   bool isVirtuallyDerivedFrom(const CXXRecordDecl *Base) const;
1549 
1550   /// Determine whether this class is provably not derived from
1551   /// the type \p Base.
1552   bool isProvablyNotDerivedFrom(const CXXRecordDecl *Base) const;
1553 
1554   /// Function type used by forallBases() as a callback.
1555   ///
1556   /// \param BaseDefinition the definition of the base class
1557   ///
1558   /// \returns true if this base matched the search criteria
1559   using ForallBasesCallback =
1560       llvm::function_ref<bool(const CXXRecordDecl *BaseDefinition)>;
1561 
1562   /// Determines if the given callback holds for all the direct
1563   /// or indirect base classes of this type.
1564   ///
1565   /// The class itself does not count as a base class.  This routine
1566   /// returns false if the class has non-computable base classes.
1567   ///
1568   /// \param BaseMatches Callback invoked for each (direct or indirect) base
1569   /// class of this type until a call returns false.
1570   bool forallBases(ForallBasesCallback BaseMatches) const;
1571 
1572   /// Function type used by lookupInBases() to determine whether a
1573   /// specific base class subobject matches the lookup criteria.
1574   ///
1575   /// \param Specifier the base-class specifier that describes the inheritance
1576   /// from the base class we are trying to match.
1577   ///
1578   /// \param Path the current path, from the most-derived class down to the
1579   /// base named by the \p Specifier.
1580   ///
1581   /// \returns true if this base matched the search criteria, false otherwise.
1582   using BaseMatchesCallback =
1583       llvm::function_ref<bool(const CXXBaseSpecifier *Specifier,
1584                               CXXBasePath &Path)>;
1585 
1586   /// Look for entities within the base classes of this C++ class,
1587   /// transitively searching all base class subobjects.
1588   ///
1589   /// This routine uses the callback function \p BaseMatches to find base
1590   /// classes meeting some search criteria, walking all base class subobjects
1591   /// and populating the given \p Paths structure with the paths through the
1592   /// inheritance hierarchy that resulted in a match. On a successful search,
1593   /// the \p Paths structure can be queried to retrieve the matching paths and
1594   /// to determine if there were any ambiguities.
1595   ///
1596   /// \param BaseMatches callback function used to determine whether a given
1597   /// base matches the user-defined search criteria.
1598   ///
1599   /// \param Paths used to record the paths from this class to its base class
1600   /// subobjects that match the search criteria.
1601   ///
1602   /// \param LookupInDependent can be set to true to extend the search to
1603   /// dependent base classes.
1604   ///
1605   /// \returns true if there exists any path from this class to a base class
1606   /// subobject that matches the search criteria.
1607   bool lookupInBases(BaseMatchesCallback BaseMatches, CXXBasePaths &Paths,
1608                      bool LookupInDependent = false) const;
1609 
1610   /// Base-class lookup callback that determines whether the given
1611   /// base class specifier refers to a specific class declaration.
1612   ///
1613   /// This callback can be used with \c lookupInBases() to determine whether
1614   /// a given derived class has is a base class subobject of a particular type.
1615   /// The base record pointer should refer to the canonical CXXRecordDecl of the
1616   /// base class that we are searching for.
1617   static bool FindBaseClass(const CXXBaseSpecifier *Specifier,
1618                             CXXBasePath &Path, const CXXRecordDecl *BaseRecord);
1619 
1620   /// Base-class lookup callback that determines whether the
1621   /// given base class specifier refers to a specific class
1622   /// declaration and describes virtual derivation.
1623   ///
1624   /// This callback can be used with \c lookupInBases() to determine
1625   /// whether a given derived class has is a virtual base class
1626   /// subobject of a particular type.  The base record pointer should
1627   /// refer to the canonical CXXRecordDecl of the base class that we
1628   /// are searching for.
1629   static bool FindVirtualBaseClass(const CXXBaseSpecifier *Specifier,
1630                                    CXXBasePath &Path,
1631                                    const CXXRecordDecl *BaseRecord);
1632 
1633   /// Retrieve the final overriders for each virtual member
1634   /// function in the class hierarchy where this class is the
1635   /// most-derived class in the class hierarchy.
1636   void getFinalOverriders(CXXFinalOverriderMap &FinaOverriders) const;
1637 
1638   /// Get the indirect primary bases for this class.
1639   void getIndirectPrimaryBases(CXXIndirectPrimaryBaseSet& Bases) const;
1640 
1641   /// Determine whether this class has a member with the given name, possibly
1642   /// in a non-dependent base class.
1643   ///
1644   /// No check for ambiguity is performed, so this should never be used when
1645   /// implementing language semantics, but it may be appropriate for warnings,
1646   /// static analysis, or similar.
1647   bool hasMemberName(DeclarationName N) const;
1648 
1649   /// Performs an imprecise lookup of a dependent name in this class.
1650   ///
1651   /// This function does not follow strict semantic rules and should be used
1652   /// only when lookup rules can be relaxed, e.g. indexing.
1653   std::vector<const NamedDecl *>
1654   lookupDependentName(DeclarationName Name,
1655                       llvm::function_ref<bool(const NamedDecl *ND)> Filter);
1656 
1657   /// Renders and displays an inheritance diagram
1658   /// for this C++ class and all of its base classes (transitively) using
1659   /// GraphViz.
1660   void viewInheritance(ASTContext& Context) const;
1661 
1662   /// Calculates the access of a decl that is reached
1663   /// along a path.
1664   static AccessSpecifier MergeAccess(AccessSpecifier PathAccess,
1665                                      AccessSpecifier DeclAccess) {
1666     assert(DeclAccess != AS_none);
1667     if (DeclAccess == AS_private) return AS_none;
1668     return (PathAccess > DeclAccess ? PathAccess : DeclAccess);
1669   }
1670 
1671   /// Indicates that the declaration of a defaulted or deleted special
1672   /// member function is now complete.
1673   void finishedDefaultedOrDeletedMember(CXXMethodDecl *MD);
1674 
1675   void setTrivialForCallFlags(CXXMethodDecl *MD);
1676 
1677   /// Indicates that the definition of this class is now complete.
1678   void completeDefinition() override;
1679 
1680   /// Indicates that the definition of this class is now complete,
1681   /// and provides a final overrider map to help determine
1682   ///
1683   /// \param FinalOverriders The final overrider map for this class, which can
1684   /// be provided as an optimization for abstract-class checking. If NULL,
1685   /// final overriders will be computed if they are needed to complete the
1686   /// definition.
1687   void completeDefinition(CXXFinalOverriderMap *FinalOverriders);
1688 
1689   /// Determine whether this class may end up being abstract, even though
1690   /// it is not yet known to be abstract.
1691   ///
1692   /// \returns true if this class is not known to be abstract but has any
1693   /// base classes that are abstract. In this case, \c completeDefinition()
1694   /// will need to compute final overriders to determine whether the class is
1695   /// actually abstract.
1696   bool mayBeAbstract() const;
1697 
1698   /// Determine whether it's impossible for a class to be derived from this
1699   /// class. This is best-effort, and may conservatively return false.
1700   bool isEffectivelyFinal() const;
1701 
1702   /// If this is the closure type of a lambda expression, retrieve the
1703   /// number to be used for name mangling in the Itanium C++ ABI.
1704   ///
1705   /// Zero indicates that this closure type has internal linkage, so the
1706   /// mangling number does not matter, while a non-zero value indicates which
1707   /// lambda expression this is in this particular context.
1708   unsigned getLambdaManglingNumber() const {
1709     assert(isLambda() && "Not a lambda closure type!");
1710     return getLambdaData().ManglingNumber;
1711   }
1712 
1713   /// The lambda is known to has internal linkage no matter whether it has name
1714   /// mangling number.
1715   bool hasKnownLambdaInternalLinkage() const {
1716     assert(isLambda() && "Not a lambda closure type!");
1717     return getLambdaData().HasKnownInternalLinkage;
1718   }
1719 
1720   /// Retrieve the declaration that provides additional context for a
1721   /// lambda, when the normal declaration context is not specific enough.
1722   ///
1723   /// Certain contexts (default arguments of in-class function parameters and
1724   /// the initializers of data members) have separate name mangling rules for
1725   /// lambdas within the Itanium C++ ABI. For these cases, this routine provides
1726   /// the declaration in which the lambda occurs, e.g., the function parameter
1727   /// or the non-static data member. Otherwise, it returns NULL to imply that
1728   /// the declaration context suffices.
1729   Decl *getLambdaContextDecl() const;
1730 
1731   /// Set the mangling number and context declaration for a lambda
1732   /// class.
1733   void setLambdaMangling(unsigned ManglingNumber, Decl *ContextDecl,
1734                          bool HasKnownInternalLinkage = false) {
1735     assert(isLambda() && "Not a lambda closure type!");
1736     getLambdaData().ManglingNumber = ManglingNumber;
1737     getLambdaData().ContextDecl = ContextDecl;
1738     getLambdaData().HasKnownInternalLinkage = HasKnownInternalLinkage;
1739   }
1740 
1741   /// Set the device side mangling number.
1742   void setDeviceLambdaManglingNumber(unsigned Num) const;
1743 
1744   /// Retrieve the device side mangling number.
1745   unsigned getDeviceLambdaManglingNumber() const;
1746 
1747   /// Returns the inheritance model used for this record.
1748   MSInheritanceModel getMSInheritanceModel() const;
1749 
1750   /// Calculate what the inheritance model would be for this class.
1751   MSInheritanceModel calculateInheritanceModel() const;
1752 
1753   /// In the Microsoft C++ ABI, use zero for the field offset of a null data
1754   /// member pointer if we can guarantee that zero is not a valid field offset,
1755   /// or if the member pointer has multiple fields.  Polymorphic classes have a
1756   /// vfptr at offset zero, so we can use zero for null.  If there are multiple
1757   /// fields, we can use zero even if it is a valid field offset because
1758   /// null-ness testing will check the other fields.
1759   bool nullFieldOffsetIsZero() const;
1760 
1761   /// Controls when vtordisps will be emitted if this record is used as a
1762   /// virtual base.
1763   MSVtorDispMode getMSVtorDispMode() const;
1764 
1765   /// Determine whether this lambda expression was known to be dependent
1766   /// at the time it was created, even if its context does not appear to be
1767   /// dependent.
1768   ///
1769   /// This flag is a workaround for an issue with parsing, where default
1770   /// arguments are parsed before their enclosing function declarations have
1771   /// been created. This means that any lambda expressions within those
1772   /// default arguments will have as their DeclContext the context enclosing
1773   /// the function declaration, which may be non-dependent even when the
1774   /// function declaration itself is dependent. This flag indicates when we
1775   /// know that the lambda is dependent despite that.
1776   bool isDependentLambda() const {
1777     return isLambda() && getLambdaData().Dependent;
1778   }
1779 
1780   TypeSourceInfo *getLambdaTypeInfo() const {
1781     return getLambdaData().MethodTyInfo;
1782   }
1783 
1784   // Determine whether this type is an Interface Like type for
1785   // __interface inheritance purposes.
1786   bool isInterfaceLike() const;
1787 
1788   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1789   static bool classofKind(Kind K) {
1790     return K >= firstCXXRecord && K <= lastCXXRecord;
1791   }
1792   void markAbstract() { data().Abstract = true; }
1793 };
1794 
1795 /// Store information needed for an explicit specifier.
1796 /// Used by CXXDeductionGuideDecl, CXXConstructorDecl and CXXConversionDecl.
1797 class ExplicitSpecifier {
1798   llvm::PointerIntPair<Expr *, 2, ExplicitSpecKind> ExplicitSpec{
1799       nullptr, ExplicitSpecKind::ResolvedFalse};
1800 
1801 public:
1802   ExplicitSpecifier() = default;
1803   ExplicitSpecifier(Expr *Expression, ExplicitSpecKind Kind)
1804       : ExplicitSpec(Expression, Kind) {}
1805   ExplicitSpecKind getKind() const { return ExplicitSpec.getInt(); }
1806   const Expr *getExpr() const { return ExplicitSpec.getPointer(); }
1807   Expr *getExpr() { return ExplicitSpec.getPointer(); }
1808 
1809   /// Determine if the declaration had an explicit specifier of any kind.
1810   bool isSpecified() const {
1811     return ExplicitSpec.getInt() != ExplicitSpecKind::ResolvedFalse ||
1812            ExplicitSpec.getPointer();
1813   }
1814 
1815   /// Check for equivalence of explicit specifiers.
1816   /// \return true if the explicit specifier are equivalent, false otherwise.
1817   bool isEquivalent(const ExplicitSpecifier Other) const;
1818   /// Determine whether this specifier is known to correspond to an explicit
1819   /// declaration. Returns false if the specifier is absent or has an
1820   /// expression that is value-dependent or evaluates to false.
1821   bool isExplicit() const {
1822     return ExplicitSpec.getInt() == ExplicitSpecKind::ResolvedTrue;
1823   }
1824   /// Determine if the explicit specifier is invalid.
1825   /// This state occurs after a substitution failures.
1826   bool isInvalid() const {
1827     return ExplicitSpec.getInt() == ExplicitSpecKind::Unresolved &&
1828            !ExplicitSpec.getPointer();
1829   }
1830   void setKind(ExplicitSpecKind Kind) { ExplicitSpec.setInt(Kind); }
1831   void setExpr(Expr *E) { ExplicitSpec.setPointer(E); }
1832   // Retrieve the explicit specifier in the given declaration, if any.
1833   static ExplicitSpecifier getFromDecl(FunctionDecl *Function);
1834   static const ExplicitSpecifier getFromDecl(const FunctionDecl *Function) {
1835     return getFromDecl(const_cast<FunctionDecl *>(Function));
1836   }
1837   static ExplicitSpecifier Invalid() {
1838     return ExplicitSpecifier(nullptr, ExplicitSpecKind::Unresolved);
1839   }
1840 };
1841 
1842 /// Represents a C++ deduction guide declaration.
1843 ///
1844 /// \code
1845 /// template<typename T> struct A { A(); A(T); };
1846 /// A() -> A<int>;
1847 /// \endcode
1848 ///
1849 /// In this example, there will be an explicit deduction guide from the
1850 /// second line, and implicit deduction guide templates synthesized from
1851 /// the constructors of \c A.
1852 class CXXDeductionGuideDecl : public FunctionDecl {
1853   void anchor() override;
1854 
1855 private:
1856   CXXDeductionGuideDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1857                         ExplicitSpecifier ES,
1858                         const DeclarationNameInfo &NameInfo, QualType T,
1859                         TypeSourceInfo *TInfo, SourceLocation EndLocation,
1860                         CXXConstructorDecl *Ctor)
1861       : FunctionDecl(CXXDeductionGuide, C, DC, StartLoc, NameInfo, T, TInfo,
1862                      SC_None, false, false, ConstexprSpecKind::Unspecified),
1863         Ctor(Ctor), ExplicitSpec(ES) {
1864     if (EndLocation.isValid())
1865       setRangeEnd(EndLocation);
1866     setIsCopyDeductionCandidate(false);
1867   }
1868 
1869   CXXConstructorDecl *Ctor;
1870   ExplicitSpecifier ExplicitSpec;
1871   void setExplicitSpecifier(ExplicitSpecifier ES) { ExplicitSpec = ES; }
1872 
1873 public:
1874   friend class ASTDeclReader;
1875   friend class ASTDeclWriter;
1876 
1877   static CXXDeductionGuideDecl *
1878   Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1879          ExplicitSpecifier ES, const DeclarationNameInfo &NameInfo, QualType T,
1880          TypeSourceInfo *TInfo, SourceLocation EndLocation,
1881          CXXConstructorDecl *Ctor = nullptr);
1882 
1883   static CXXDeductionGuideDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1884 
1885   ExplicitSpecifier getExplicitSpecifier() { return ExplicitSpec; }
1886   const ExplicitSpecifier getExplicitSpecifier() const { return ExplicitSpec; }
1887 
1888   /// Return true if the declartion is already resolved to be explicit.
1889   bool isExplicit() const { return ExplicitSpec.isExplicit(); }
1890 
1891   /// Get the template for which this guide performs deduction.
1892   TemplateDecl *getDeducedTemplate() const {
1893     return getDeclName().getCXXDeductionGuideTemplate();
1894   }
1895 
1896   /// Get the constructor from which this deduction guide was generated, if
1897   /// this is an implicit deduction guide.
1898   CXXConstructorDecl *getCorrespondingConstructor() const {
1899     return Ctor;
1900   }
1901 
1902   void setIsCopyDeductionCandidate(bool isCDC = true) {
1903     FunctionDeclBits.IsCopyDeductionCandidate = isCDC;
1904   }
1905 
1906   bool isCopyDeductionCandidate() const {
1907     return FunctionDeclBits.IsCopyDeductionCandidate;
1908   }
1909 
1910   // Implement isa/cast/dyncast/etc.
1911   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1912   static bool classofKind(Kind K) { return K == CXXDeductionGuide; }
1913 };
1914 
1915 /// \brief Represents the body of a requires-expression.
1916 ///
1917 /// This decl exists merely to serve as the DeclContext for the local
1918 /// parameters of the requires expression as well as other declarations inside
1919 /// it.
1920 ///
1921 /// \code
1922 /// template<typename T> requires requires (T t) { {t++} -> regular; }
1923 /// \endcode
1924 ///
1925 /// In this example, a RequiresExpr object will be generated for the expression,
1926 /// and a RequiresExprBodyDecl will be created to hold the parameter t and the
1927 /// template argument list imposed by the compound requirement.
1928 class RequiresExprBodyDecl : public Decl, public DeclContext {
1929   RequiresExprBodyDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc)
1930       : Decl(RequiresExprBody, DC, StartLoc), DeclContext(RequiresExprBody) {}
1931 
1932 public:
1933   friend class ASTDeclReader;
1934   friend class ASTDeclWriter;
1935 
1936   static RequiresExprBodyDecl *Create(ASTContext &C, DeclContext *DC,
1937                                       SourceLocation StartLoc);
1938 
1939   static RequiresExprBodyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1940 
1941   // Implement isa/cast/dyncast/etc.
1942   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1943   static bool classofKind(Kind K) { return K == RequiresExprBody; }
1944 };
1945 
1946 /// Represents a static or instance method of a struct/union/class.
1947 ///
1948 /// In the terminology of the C++ Standard, these are the (static and
1949 /// non-static) member functions, whether virtual or not.
1950 class CXXMethodDecl : public FunctionDecl {
1951   void anchor() override;
1952 
1953 protected:
1954   CXXMethodDecl(Kind DK, ASTContext &C, CXXRecordDecl *RD,
1955                 SourceLocation StartLoc, const DeclarationNameInfo &NameInfo,
1956                 QualType T, TypeSourceInfo *TInfo, StorageClass SC,
1957                 bool UsesFPIntrin, bool isInline,
1958                 ConstexprSpecKind ConstexprKind, SourceLocation EndLocation,
1959                 Expr *TrailingRequiresClause = nullptr)
1960       : FunctionDecl(DK, C, RD, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin,
1961                      isInline, ConstexprKind, TrailingRequiresClause) {
1962     if (EndLocation.isValid())
1963       setRangeEnd(EndLocation);
1964   }
1965 
1966 public:
1967   static CXXMethodDecl *
1968   Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
1969          const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
1970          StorageClass SC, bool UsesFPIntrin, bool isInline,
1971          ConstexprSpecKind ConstexprKind, SourceLocation EndLocation,
1972          Expr *TrailingRequiresClause = nullptr);
1973 
1974   static CXXMethodDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1975 
1976   bool isStatic() const;
1977   bool isInstance() const { return !isStatic(); }
1978 
1979   /// Returns true if the given operator is implicitly static in a record
1980   /// context.
1981   static bool isStaticOverloadedOperator(OverloadedOperatorKind OOK) {
1982     // [class.free]p1:
1983     // Any allocation function for a class T is a static member
1984     // (even if not explicitly declared static).
1985     // [class.free]p6 Any deallocation function for a class X is a static member
1986     // (even if not explicitly declared static).
1987     return OOK == OO_New || OOK == OO_Array_New || OOK == OO_Delete ||
1988            OOK == OO_Array_Delete;
1989   }
1990 
1991   bool isConst() const { return getType()->castAs<FunctionType>()->isConst(); }
1992   bool isVolatile() const { return getType()->castAs<FunctionType>()->isVolatile(); }
1993 
1994   bool isVirtual() const {
1995     CXXMethodDecl *CD = const_cast<CXXMethodDecl*>(this)->getCanonicalDecl();
1996 
1997     // Member function is virtual if it is marked explicitly so, or if it is
1998     // declared in __interface -- then it is automatically pure virtual.
1999     if (CD->isVirtualAsWritten() || CD->isPure())
2000       return true;
2001 
2002     return CD->size_overridden_methods() != 0;
2003   }
2004 
2005   /// If it's possible to devirtualize a call to this method, return the called
2006   /// function. Otherwise, return null.
2007 
2008   /// \param Base The object on which this virtual function is called.
2009   /// \param IsAppleKext True if we are compiling for Apple kext.
2010   CXXMethodDecl *getDevirtualizedMethod(const Expr *Base, bool IsAppleKext);
2011 
2012   const CXXMethodDecl *getDevirtualizedMethod(const Expr *Base,
2013                                               bool IsAppleKext) const {
2014     return const_cast<CXXMethodDecl *>(this)->getDevirtualizedMethod(
2015         Base, IsAppleKext);
2016   }
2017 
2018   /// Determine whether this is a usual deallocation function (C++
2019   /// [basic.stc.dynamic.deallocation]p2), which is an overloaded delete or
2020   /// delete[] operator with a particular signature. Populates \p PreventedBy
2021   /// with the declarations of the functions of the same kind if they were the
2022   /// reason for this function returning false. This is used by
2023   /// Sema::isUsualDeallocationFunction to reconsider the answer based on the
2024   /// context.
2025   bool isUsualDeallocationFunction(
2026       SmallVectorImpl<const FunctionDecl *> &PreventedBy) const;
2027 
2028   /// Determine whether this is a copy-assignment operator, regardless
2029   /// of whether it was declared implicitly or explicitly.
2030   bool isCopyAssignmentOperator() const;
2031 
2032   /// Determine whether this is a move assignment operator.
2033   bool isMoveAssignmentOperator() const;
2034 
2035   CXXMethodDecl *getCanonicalDecl() override {
2036     return cast<CXXMethodDecl>(FunctionDecl::getCanonicalDecl());
2037   }
2038   const CXXMethodDecl *getCanonicalDecl() const {
2039     return const_cast<CXXMethodDecl*>(this)->getCanonicalDecl();
2040   }
2041 
2042   CXXMethodDecl *getMostRecentDecl() {
2043     return cast<CXXMethodDecl>(
2044             static_cast<FunctionDecl *>(this)->getMostRecentDecl());
2045   }
2046   const CXXMethodDecl *getMostRecentDecl() const {
2047     return const_cast<CXXMethodDecl*>(this)->getMostRecentDecl();
2048   }
2049 
2050   void addOverriddenMethod(const CXXMethodDecl *MD);
2051 
2052   using method_iterator = const CXXMethodDecl *const *;
2053 
2054   method_iterator begin_overridden_methods() const;
2055   method_iterator end_overridden_methods() const;
2056   unsigned size_overridden_methods() const;
2057 
2058   using overridden_method_range = llvm::iterator_range<
2059       llvm::TinyPtrVector<const CXXMethodDecl *>::const_iterator>;
2060 
2061   overridden_method_range overridden_methods() const;
2062 
2063   /// Return the parent of this method declaration, which
2064   /// is the class in which this method is defined.
2065   const CXXRecordDecl *getParent() const {
2066     return cast<CXXRecordDecl>(FunctionDecl::getParent());
2067   }
2068 
2069   /// Return the parent of this method declaration, which
2070   /// is the class in which this method is defined.
2071   CXXRecordDecl *getParent() {
2072     return const_cast<CXXRecordDecl *>(
2073              cast<CXXRecordDecl>(FunctionDecl::getParent()));
2074   }
2075 
2076   /// Return the type of the \c this pointer.
2077   ///
2078   /// Should only be called for instance (i.e., non-static) methods. Note
2079   /// that for the call operator of a lambda closure type, this returns the
2080   /// desugared 'this' type (a pointer to the closure type), not the captured
2081   /// 'this' type.
2082   QualType getThisType() const;
2083 
2084   /// Return the type of the object pointed by \c this.
2085   ///
2086   /// See getThisType() for usage restriction.
2087   QualType getThisObjectType() const;
2088 
2089   static QualType getThisType(const FunctionProtoType *FPT,
2090                               const CXXRecordDecl *Decl);
2091 
2092   static QualType getThisObjectType(const FunctionProtoType *FPT,
2093                                     const CXXRecordDecl *Decl);
2094 
2095   Qualifiers getMethodQualifiers() const {
2096     return getType()->castAs<FunctionProtoType>()->getMethodQuals();
2097   }
2098 
2099   /// Retrieve the ref-qualifier associated with this method.
2100   ///
2101   /// In the following example, \c f() has an lvalue ref-qualifier, \c g()
2102   /// has an rvalue ref-qualifier, and \c h() has no ref-qualifier.
2103   /// @code
2104   /// struct X {
2105   ///   void f() &;
2106   ///   void g() &&;
2107   ///   void h();
2108   /// };
2109   /// @endcode
2110   RefQualifierKind getRefQualifier() const {
2111     return getType()->castAs<FunctionProtoType>()->getRefQualifier();
2112   }
2113 
2114   bool hasInlineBody() const;
2115 
2116   /// Determine whether this is a lambda closure type's static member
2117   /// function that is used for the result of the lambda's conversion to
2118   /// function pointer (for a lambda with no captures).
2119   ///
2120   /// The function itself, if used, will have a placeholder body that will be
2121   /// supplied by IR generation to either forward to the function call operator
2122   /// or clone the function call operator.
2123   bool isLambdaStaticInvoker() const;
2124 
2125   /// Find the method in \p RD that corresponds to this one.
2126   ///
2127   /// Find if \p RD or one of the classes it inherits from override this method.
2128   /// If so, return it. \p RD is assumed to be a subclass of the class defining
2129   /// this method (or be the class itself), unless \p MayBeBase is set to true.
2130   CXXMethodDecl *
2131   getCorrespondingMethodInClass(const CXXRecordDecl *RD,
2132                                 bool MayBeBase = false);
2133 
2134   const CXXMethodDecl *
2135   getCorrespondingMethodInClass(const CXXRecordDecl *RD,
2136                                 bool MayBeBase = false) const {
2137     return const_cast<CXXMethodDecl *>(this)
2138               ->getCorrespondingMethodInClass(RD, MayBeBase);
2139   }
2140 
2141   /// Find if \p RD declares a function that overrides this function, and if so,
2142   /// return it. Does not search base classes.
2143   CXXMethodDecl *getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD,
2144                                                        bool MayBeBase = false);
2145   const CXXMethodDecl *
2146   getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD,
2147                                         bool MayBeBase = false) const {
2148     return const_cast<CXXMethodDecl *>(this)
2149         ->getCorrespondingMethodDeclaredInClass(RD, MayBeBase);
2150   }
2151 
2152   // Implement isa/cast/dyncast/etc.
2153   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2154   static bool classofKind(Kind K) {
2155     return K >= firstCXXMethod && K <= lastCXXMethod;
2156   }
2157 };
2158 
2159 /// Represents a C++ base or member initializer.
2160 ///
2161 /// This is part of a constructor initializer that
2162 /// initializes one non-static member variable or one base class. For
2163 /// example, in the following, both 'A(a)' and 'f(3.14159)' are member
2164 /// initializers:
2165 ///
2166 /// \code
2167 /// class A { };
2168 /// class B : public A {
2169 ///   float f;
2170 /// public:
2171 ///   B(A& a) : A(a), f(3.14159) { }
2172 /// };
2173 /// \endcode
2174 class CXXCtorInitializer final {
2175   /// Either the base class name/delegating constructor type (stored as
2176   /// a TypeSourceInfo*), an normal field (FieldDecl), or an anonymous field
2177   /// (IndirectFieldDecl*) being initialized.
2178   llvm::PointerUnion<TypeSourceInfo *, FieldDecl *, IndirectFieldDecl *>
2179       Initializee;
2180 
2181   /// The argument used to initialize the base or member, which may
2182   /// end up constructing an object (when multiple arguments are involved).
2183   Stmt *Init;
2184 
2185   /// The source location for the field name or, for a base initializer
2186   /// pack expansion, the location of the ellipsis.
2187   ///
2188   /// In the case of a delegating
2189   /// constructor, it will still include the type's source location as the
2190   /// Initializee points to the CXXConstructorDecl (to allow loop detection).
2191   SourceLocation MemberOrEllipsisLocation;
2192 
2193   /// Location of the left paren of the ctor-initializer.
2194   SourceLocation LParenLoc;
2195 
2196   /// Location of the right paren of the ctor-initializer.
2197   SourceLocation RParenLoc;
2198 
2199   /// If the initializee is a type, whether that type makes this
2200   /// a delegating initialization.
2201   unsigned IsDelegating : 1;
2202 
2203   /// If the initializer is a base initializer, this keeps track
2204   /// of whether the base is virtual or not.
2205   unsigned IsVirtual : 1;
2206 
2207   /// Whether or not the initializer is explicitly written
2208   /// in the sources.
2209   unsigned IsWritten : 1;
2210 
2211   /// If IsWritten is true, then this number keeps track of the textual order
2212   /// of this initializer in the original sources, counting from 0.
2213   unsigned SourceOrder : 13;
2214 
2215 public:
2216   /// Creates a new base-class initializer.
2217   explicit
2218   CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo, bool IsVirtual,
2219                      SourceLocation L, Expr *Init, SourceLocation R,
2220                      SourceLocation EllipsisLoc);
2221 
2222   /// Creates a new member initializer.
2223   explicit
2224   CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
2225                      SourceLocation MemberLoc, SourceLocation L, Expr *Init,
2226                      SourceLocation R);
2227 
2228   /// Creates a new anonymous field initializer.
2229   explicit
2230   CXXCtorInitializer(ASTContext &Context, IndirectFieldDecl *Member,
2231                      SourceLocation MemberLoc, SourceLocation L, Expr *Init,
2232                      SourceLocation R);
2233 
2234   /// Creates a new delegating initializer.
2235   explicit
2236   CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo,
2237                      SourceLocation L, Expr *Init, SourceLocation R);
2238 
2239   /// \return Unique reproducible object identifier.
2240   int64_t getID(const ASTContext &Context) const;
2241 
2242   /// Determine whether this initializer is initializing a base class.
2243   bool isBaseInitializer() const {
2244     return Initializee.is<TypeSourceInfo*>() && !IsDelegating;
2245   }
2246 
2247   /// Determine whether this initializer is initializing a non-static
2248   /// data member.
2249   bool isMemberInitializer() const { return Initializee.is<FieldDecl*>(); }
2250 
2251   bool isAnyMemberInitializer() const {
2252     return isMemberInitializer() || isIndirectMemberInitializer();
2253   }
2254 
2255   bool isIndirectMemberInitializer() const {
2256     return Initializee.is<IndirectFieldDecl*>();
2257   }
2258 
2259   /// Determine whether this initializer is an implicit initializer
2260   /// generated for a field with an initializer defined on the member
2261   /// declaration.
2262   ///
2263   /// In-class member initializers (also known as "non-static data member
2264   /// initializations", NSDMIs) were introduced in C++11.
2265   bool isInClassMemberInitializer() const {
2266     return Init->getStmtClass() == Stmt::CXXDefaultInitExprClass;
2267   }
2268 
2269   /// Determine whether this initializer is creating a delegating
2270   /// constructor.
2271   bool isDelegatingInitializer() const {
2272     return Initializee.is<TypeSourceInfo*>() && IsDelegating;
2273   }
2274 
2275   /// Determine whether this initializer is a pack expansion.
2276   bool isPackExpansion() const {
2277     return isBaseInitializer() && MemberOrEllipsisLocation.isValid();
2278   }
2279 
2280   // For a pack expansion, returns the location of the ellipsis.
2281   SourceLocation getEllipsisLoc() const {
2282     if (!isPackExpansion())
2283       return {};
2284     return MemberOrEllipsisLocation;
2285   }
2286 
2287   /// If this is a base class initializer, returns the type of the
2288   /// base class with location information. Otherwise, returns an NULL
2289   /// type location.
2290   TypeLoc getBaseClassLoc() const;
2291 
2292   /// If this is a base class initializer, returns the type of the base class.
2293   /// Otherwise, returns null.
2294   const Type *getBaseClass() const;
2295 
2296   /// Returns whether the base is virtual or not.
2297   bool isBaseVirtual() const {
2298     assert(isBaseInitializer() && "Must call this on base initializer!");
2299 
2300     return IsVirtual;
2301   }
2302 
2303   /// Returns the declarator information for a base class or delegating
2304   /// initializer.
2305   TypeSourceInfo *getTypeSourceInfo() const {
2306     return Initializee.dyn_cast<TypeSourceInfo *>();
2307   }
2308 
2309   /// If this is a member initializer, returns the declaration of the
2310   /// non-static data member being initialized. Otherwise, returns null.
2311   FieldDecl *getMember() const {
2312     if (isMemberInitializer())
2313       return Initializee.get<FieldDecl*>();
2314     return nullptr;
2315   }
2316 
2317   FieldDecl *getAnyMember() const {
2318     if (isMemberInitializer())
2319       return Initializee.get<FieldDecl*>();
2320     if (isIndirectMemberInitializer())
2321       return Initializee.get<IndirectFieldDecl*>()->getAnonField();
2322     return nullptr;
2323   }
2324 
2325   IndirectFieldDecl *getIndirectMember() const {
2326     if (isIndirectMemberInitializer())
2327       return Initializee.get<IndirectFieldDecl*>();
2328     return nullptr;
2329   }
2330 
2331   SourceLocation getMemberLocation() const {
2332     return MemberOrEllipsisLocation;
2333   }
2334 
2335   /// Determine the source location of the initializer.
2336   SourceLocation getSourceLocation() const;
2337 
2338   /// Determine the source range covering the entire initializer.
2339   SourceRange getSourceRange() const LLVM_READONLY;
2340 
2341   /// Determine whether this initializer is explicitly written
2342   /// in the source code.
2343   bool isWritten() const { return IsWritten; }
2344 
2345   /// Return the source position of the initializer, counting from 0.
2346   /// If the initializer was implicit, -1 is returned.
2347   int getSourceOrder() const {
2348     return IsWritten ? static_cast<int>(SourceOrder) : -1;
2349   }
2350 
2351   /// Set the source order of this initializer.
2352   ///
2353   /// This can only be called once for each initializer; it cannot be called
2354   /// on an initializer having a positive number of (implicit) array indices.
2355   ///
2356   /// This assumes that the initializer was written in the source code, and
2357   /// ensures that isWritten() returns true.
2358   void setSourceOrder(int Pos) {
2359     assert(!IsWritten &&
2360            "setSourceOrder() used on implicit initializer");
2361     assert(SourceOrder == 0 &&
2362            "calling twice setSourceOrder() on the same initializer");
2363     assert(Pos >= 0 &&
2364            "setSourceOrder() used to make an initializer implicit");
2365     IsWritten = true;
2366     SourceOrder = static_cast<unsigned>(Pos);
2367   }
2368 
2369   SourceLocation getLParenLoc() const { return LParenLoc; }
2370   SourceLocation getRParenLoc() const { return RParenLoc; }
2371 
2372   /// Get the initializer.
2373   Expr *getInit() const { return static_cast<Expr *>(Init); }
2374 };
2375 
2376 /// Description of a constructor that was inherited from a base class.
2377 class InheritedConstructor {
2378   ConstructorUsingShadowDecl *Shadow = nullptr;
2379   CXXConstructorDecl *BaseCtor = nullptr;
2380 
2381 public:
2382   InheritedConstructor() = default;
2383   InheritedConstructor(ConstructorUsingShadowDecl *Shadow,
2384                        CXXConstructorDecl *BaseCtor)
2385       : Shadow(Shadow), BaseCtor(BaseCtor) {}
2386 
2387   explicit operator bool() const { return Shadow; }
2388 
2389   ConstructorUsingShadowDecl *getShadowDecl() const { return Shadow; }
2390   CXXConstructorDecl *getConstructor() const { return BaseCtor; }
2391 };
2392 
2393 /// Represents a C++ constructor within a class.
2394 ///
2395 /// For example:
2396 ///
2397 /// \code
2398 /// class X {
2399 /// public:
2400 ///   explicit X(int); // represented by a CXXConstructorDecl.
2401 /// };
2402 /// \endcode
2403 class CXXConstructorDecl final
2404     : public CXXMethodDecl,
2405       private llvm::TrailingObjects<CXXConstructorDecl, InheritedConstructor,
2406                                     ExplicitSpecifier> {
2407   // This class stores some data in DeclContext::CXXConstructorDeclBits
2408   // to save some space. Use the provided accessors to access it.
2409 
2410   /// \name Support for base and member initializers.
2411   /// \{
2412   /// The arguments used to initialize the base or member.
2413   LazyCXXCtorInitializersPtr CtorInitializers;
2414 
2415   CXXConstructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2416                      const DeclarationNameInfo &NameInfo, QualType T,
2417                      TypeSourceInfo *TInfo, ExplicitSpecifier ES,
2418                      bool UsesFPIntrin, bool isInline,
2419                      bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2420                      InheritedConstructor Inherited,
2421                      Expr *TrailingRequiresClause);
2422 
2423   void anchor() override;
2424 
2425   size_t numTrailingObjects(OverloadToken<InheritedConstructor>) const {
2426     return CXXConstructorDeclBits.IsInheritingConstructor;
2427   }
2428   size_t numTrailingObjects(OverloadToken<ExplicitSpecifier>) const {
2429     return CXXConstructorDeclBits.HasTrailingExplicitSpecifier;
2430   }
2431 
2432   ExplicitSpecifier getExplicitSpecifierInternal() const {
2433     if (CXXConstructorDeclBits.HasTrailingExplicitSpecifier)
2434       return *getTrailingObjects<ExplicitSpecifier>();
2435     return ExplicitSpecifier(
2436         nullptr, CXXConstructorDeclBits.IsSimpleExplicit
2437                      ? ExplicitSpecKind::ResolvedTrue
2438                      : ExplicitSpecKind::ResolvedFalse);
2439   }
2440 
2441   enum TrailingAllocKind {
2442     TAKInheritsConstructor = 1,
2443     TAKHasTailExplicit = 1 << 1,
2444   };
2445 
2446   uint64_t getTrailingAllocKind() const {
2447     return numTrailingObjects(OverloadToken<InheritedConstructor>()) |
2448            (numTrailingObjects(OverloadToken<ExplicitSpecifier>()) << 1);
2449   }
2450 
2451 public:
2452   friend class ASTDeclReader;
2453   friend class ASTDeclWriter;
2454   friend TrailingObjects;
2455 
2456   static CXXConstructorDecl *CreateDeserialized(ASTContext &C, unsigned ID,
2457                                                 uint64_t AllocKind);
2458   static CXXConstructorDecl *
2459   Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2460          const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2461          ExplicitSpecifier ES, bool UsesFPIntrin, bool isInline,
2462          bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2463          InheritedConstructor Inherited = InheritedConstructor(),
2464          Expr *TrailingRequiresClause = nullptr);
2465 
2466   void setExplicitSpecifier(ExplicitSpecifier ES) {
2467     assert((!ES.getExpr() ||
2468             CXXConstructorDeclBits.HasTrailingExplicitSpecifier) &&
2469            "cannot set this explicit specifier. no trail-allocated space for "
2470            "explicit");
2471     if (ES.getExpr())
2472       *getCanonicalDecl()->getTrailingObjects<ExplicitSpecifier>() = ES;
2473     else
2474       CXXConstructorDeclBits.IsSimpleExplicit = ES.isExplicit();
2475   }
2476 
2477   ExplicitSpecifier getExplicitSpecifier() {
2478     return getCanonicalDecl()->getExplicitSpecifierInternal();
2479   }
2480   const ExplicitSpecifier getExplicitSpecifier() const {
2481     return getCanonicalDecl()->getExplicitSpecifierInternal();
2482   }
2483 
2484   /// Return true if the declartion is already resolved to be explicit.
2485   bool isExplicit() const { return getExplicitSpecifier().isExplicit(); }
2486 
2487   /// Iterates through the member/base initializer list.
2488   using init_iterator = CXXCtorInitializer **;
2489 
2490   /// Iterates through the member/base initializer list.
2491   using init_const_iterator = CXXCtorInitializer *const *;
2492 
2493   using init_range = llvm::iterator_range<init_iterator>;
2494   using init_const_range = llvm::iterator_range<init_const_iterator>;
2495 
2496   init_range inits() { return init_range(init_begin(), init_end()); }
2497   init_const_range inits() const {
2498     return init_const_range(init_begin(), init_end());
2499   }
2500 
2501   /// Retrieve an iterator to the first initializer.
2502   init_iterator init_begin() {
2503     const auto *ConstThis = this;
2504     return const_cast<init_iterator>(ConstThis->init_begin());
2505   }
2506 
2507   /// Retrieve an iterator to the first initializer.
2508   init_const_iterator init_begin() const;
2509 
2510   /// Retrieve an iterator past the last initializer.
2511   init_iterator       init_end()       {
2512     return init_begin() + getNumCtorInitializers();
2513   }
2514 
2515   /// Retrieve an iterator past the last initializer.
2516   init_const_iterator init_end() const {
2517     return init_begin() + getNumCtorInitializers();
2518   }
2519 
2520   using init_reverse_iterator = std::reverse_iterator<init_iterator>;
2521   using init_const_reverse_iterator =
2522       std::reverse_iterator<init_const_iterator>;
2523 
2524   init_reverse_iterator init_rbegin() {
2525     return init_reverse_iterator(init_end());
2526   }
2527   init_const_reverse_iterator init_rbegin() const {
2528     return init_const_reverse_iterator(init_end());
2529   }
2530 
2531   init_reverse_iterator init_rend() {
2532     return init_reverse_iterator(init_begin());
2533   }
2534   init_const_reverse_iterator init_rend() const {
2535     return init_const_reverse_iterator(init_begin());
2536   }
2537 
2538   /// Determine the number of arguments used to initialize the member
2539   /// or base.
2540   unsigned getNumCtorInitializers() const {
2541       return CXXConstructorDeclBits.NumCtorInitializers;
2542   }
2543 
2544   void setNumCtorInitializers(unsigned numCtorInitializers) {
2545     CXXConstructorDeclBits.NumCtorInitializers = numCtorInitializers;
2546     // This assert added because NumCtorInitializers is stored
2547     // in CXXConstructorDeclBits as a bitfield and its width has
2548     // been shrunk from 32 bits to fit into CXXConstructorDeclBitfields.
2549     assert(CXXConstructorDeclBits.NumCtorInitializers ==
2550            numCtorInitializers && "NumCtorInitializers overflow!");
2551   }
2552 
2553   void setCtorInitializers(CXXCtorInitializer **Initializers) {
2554     CtorInitializers = Initializers;
2555   }
2556 
2557   /// Determine whether this constructor is a delegating constructor.
2558   bool isDelegatingConstructor() const {
2559     return (getNumCtorInitializers() == 1) &&
2560            init_begin()[0]->isDelegatingInitializer();
2561   }
2562 
2563   /// When this constructor delegates to another, retrieve the target.
2564   CXXConstructorDecl *getTargetConstructor() const;
2565 
2566   /// Whether this constructor is a default
2567   /// constructor (C++ [class.ctor]p5), which can be used to
2568   /// default-initialize a class of this type.
2569   bool isDefaultConstructor() const;
2570 
2571   /// Whether this constructor is a copy constructor (C++ [class.copy]p2,
2572   /// which can be used to copy the class.
2573   ///
2574   /// \p TypeQuals will be set to the qualifiers on the
2575   /// argument type. For example, \p TypeQuals would be set to \c
2576   /// Qualifiers::Const for the following copy constructor:
2577   ///
2578   /// \code
2579   /// class X {
2580   /// public:
2581   ///   X(const X&);
2582   /// };
2583   /// \endcode
2584   bool isCopyConstructor(unsigned &TypeQuals) const;
2585 
2586   /// Whether this constructor is a copy
2587   /// constructor (C++ [class.copy]p2, which can be used to copy the
2588   /// class.
2589   bool isCopyConstructor() const {
2590     unsigned TypeQuals = 0;
2591     return isCopyConstructor(TypeQuals);
2592   }
2593 
2594   /// Determine whether this constructor is a move constructor
2595   /// (C++11 [class.copy]p3), which can be used to move values of the class.
2596   ///
2597   /// \param TypeQuals If this constructor is a move constructor, will be set
2598   /// to the type qualifiers on the referent of the first parameter's type.
2599   bool isMoveConstructor(unsigned &TypeQuals) const;
2600 
2601   /// Determine whether this constructor is a move constructor
2602   /// (C++11 [class.copy]p3), which can be used to move values of the class.
2603   bool isMoveConstructor() const {
2604     unsigned TypeQuals = 0;
2605     return isMoveConstructor(TypeQuals);
2606   }
2607 
2608   /// Determine whether this is a copy or move constructor.
2609   ///
2610   /// \param TypeQuals Will be set to the type qualifiers on the reference
2611   /// parameter, if in fact this is a copy or move constructor.
2612   bool isCopyOrMoveConstructor(unsigned &TypeQuals) const;
2613 
2614   /// Determine whether this a copy or move constructor.
2615   bool isCopyOrMoveConstructor() const {
2616     unsigned Quals;
2617     return isCopyOrMoveConstructor(Quals);
2618   }
2619 
2620   /// Whether this constructor is a
2621   /// converting constructor (C++ [class.conv.ctor]), which can be
2622   /// used for user-defined conversions.
2623   bool isConvertingConstructor(bool AllowExplicit) const;
2624 
2625   /// Determine whether this is a member template specialization that
2626   /// would copy the object to itself. Such constructors are never used to copy
2627   /// an object.
2628   bool isSpecializationCopyingObject() const;
2629 
2630   /// Determine whether this is an implicit constructor synthesized to
2631   /// model a call to a constructor inherited from a base class.
2632   bool isInheritingConstructor() const {
2633     return CXXConstructorDeclBits.IsInheritingConstructor;
2634   }
2635 
2636   /// State that this is an implicit constructor synthesized to
2637   /// model a call to a constructor inherited from a base class.
2638   void setInheritingConstructor(bool isIC = true) {
2639     CXXConstructorDeclBits.IsInheritingConstructor = isIC;
2640   }
2641 
2642   /// Get the constructor that this inheriting constructor is based on.
2643   InheritedConstructor getInheritedConstructor() const {
2644     return isInheritingConstructor() ?
2645       *getTrailingObjects<InheritedConstructor>() : InheritedConstructor();
2646   }
2647 
2648   CXXConstructorDecl *getCanonicalDecl() override {
2649     return cast<CXXConstructorDecl>(FunctionDecl::getCanonicalDecl());
2650   }
2651   const CXXConstructorDecl *getCanonicalDecl() const {
2652     return const_cast<CXXConstructorDecl*>(this)->getCanonicalDecl();
2653   }
2654 
2655   // Implement isa/cast/dyncast/etc.
2656   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2657   static bool classofKind(Kind K) { return K == CXXConstructor; }
2658 };
2659 
2660 /// Represents a C++ destructor within a class.
2661 ///
2662 /// For example:
2663 ///
2664 /// \code
2665 /// class X {
2666 /// public:
2667 ///   ~X(); // represented by a CXXDestructorDecl.
2668 /// };
2669 /// \endcode
2670 class CXXDestructorDecl : public CXXMethodDecl {
2671   friend class ASTDeclReader;
2672   friend class ASTDeclWriter;
2673 
2674   // FIXME: Don't allocate storage for these except in the first declaration
2675   // of a virtual destructor.
2676   FunctionDecl *OperatorDelete = nullptr;
2677   Expr *OperatorDeleteThisArg = nullptr;
2678 
2679   CXXDestructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2680                     const DeclarationNameInfo &NameInfo, QualType T,
2681                     TypeSourceInfo *TInfo, bool UsesFPIntrin, bool isInline,
2682                     bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2683                     Expr *TrailingRequiresClause = nullptr)
2684       : CXXMethodDecl(CXXDestructor, C, RD, StartLoc, NameInfo, T, TInfo,
2685                       SC_None, UsesFPIntrin, isInline, ConstexprKind,
2686                       SourceLocation(), TrailingRequiresClause) {
2687     setImplicit(isImplicitlyDeclared);
2688   }
2689 
2690   void anchor() override;
2691 
2692 public:
2693   static CXXDestructorDecl *
2694   Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2695          const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2696          bool UsesFPIntrin, bool isInline, bool isImplicitlyDeclared,
2697          ConstexprSpecKind ConstexprKind,
2698          Expr *TrailingRequiresClause = nullptr);
2699   static CXXDestructorDecl *CreateDeserialized(ASTContext & C, unsigned ID);
2700 
2701   void setOperatorDelete(FunctionDecl *OD, Expr *ThisArg);
2702 
2703   const FunctionDecl *getOperatorDelete() const {
2704     return getCanonicalDecl()->OperatorDelete;
2705   }
2706 
2707   Expr *getOperatorDeleteThisArg() const {
2708     return getCanonicalDecl()->OperatorDeleteThisArg;
2709   }
2710 
2711   CXXDestructorDecl *getCanonicalDecl() override {
2712     return cast<CXXDestructorDecl>(FunctionDecl::getCanonicalDecl());
2713   }
2714   const CXXDestructorDecl *getCanonicalDecl() const {
2715     return const_cast<CXXDestructorDecl*>(this)->getCanonicalDecl();
2716   }
2717 
2718   // Implement isa/cast/dyncast/etc.
2719   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2720   static bool classofKind(Kind K) { return K == CXXDestructor; }
2721 };
2722 
2723 /// Represents a C++ conversion function within a class.
2724 ///
2725 /// For example:
2726 ///
2727 /// \code
2728 /// class X {
2729 /// public:
2730 ///   operator bool();
2731 /// };
2732 /// \endcode
2733 class CXXConversionDecl : public CXXMethodDecl {
2734   CXXConversionDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2735                     const DeclarationNameInfo &NameInfo, QualType T,
2736                     TypeSourceInfo *TInfo, bool UsesFPIntrin, bool isInline,
2737                     ExplicitSpecifier ES, ConstexprSpecKind ConstexprKind,
2738                     SourceLocation EndLocation,
2739                     Expr *TrailingRequiresClause = nullptr)
2740       : CXXMethodDecl(CXXConversion, C, RD, StartLoc, NameInfo, T, TInfo,
2741                       SC_None, UsesFPIntrin, isInline, ConstexprKind,
2742                       EndLocation, TrailingRequiresClause),
2743         ExplicitSpec(ES) {}
2744   void anchor() override;
2745 
2746   ExplicitSpecifier ExplicitSpec;
2747 
2748 public:
2749   friend class ASTDeclReader;
2750   friend class ASTDeclWriter;
2751 
2752   static CXXConversionDecl *
2753   Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2754          const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2755          bool UsesFPIntrin, bool isInline, ExplicitSpecifier ES,
2756          ConstexprSpecKind ConstexprKind, SourceLocation EndLocation,
2757          Expr *TrailingRequiresClause = nullptr);
2758   static CXXConversionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2759 
2760   ExplicitSpecifier getExplicitSpecifier() {
2761     return getCanonicalDecl()->ExplicitSpec;
2762   }
2763 
2764   const ExplicitSpecifier getExplicitSpecifier() const {
2765     return getCanonicalDecl()->ExplicitSpec;
2766   }
2767 
2768   /// Return true if the declartion is already resolved to be explicit.
2769   bool isExplicit() const { return getExplicitSpecifier().isExplicit(); }
2770   void setExplicitSpecifier(ExplicitSpecifier ES) { ExplicitSpec = ES; }
2771 
2772   /// Returns the type that this conversion function is converting to.
2773   QualType getConversionType() const {
2774     return getType()->castAs<FunctionType>()->getReturnType();
2775   }
2776 
2777   /// Determine whether this conversion function is a conversion from
2778   /// a lambda closure type to a block pointer.
2779   bool isLambdaToBlockPointerConversion() const;
2780 
2781   CXXConversionDecl *getCanonicalDecl() override {
2782     return cast<CXXConversionDecl>(FunctionDecl::getCanonicalDecl());
2783   }
2784   const CXXConversionDecl *getCanonicalDecl() const {
2785     return const_cast<CXXConversionDecl*>(this)->getCanonicalDecl();
2786   }
2787 
2788   // Implement isa/cast/dyncast/etc.
2789   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2790   static bool classofKind(Kind K) { return K == CXXConversion; }
2791 };
2792 
2793 /// Represents a linkage specification.
2794 ///
2795 /// For example:
2796 /// \code
2797 ///   extern "C" void foo();
2798 /// \endcode
2799 class LinkageSpecDecl : public Decl, public DeclContext {
2800   virtual void anchor();
2801   // This class stores some data in DeclContext::LinkageSpecDeclBits to save
2802   // some space. Use the provided accessors to access it.
2803 public:
2804   /// Represents the language in a linkage specification.
2805   ///
2806   /// The values are part of the serialization ABI for
2807   /// ASTs and cannot be changed without altering that ABI.
2808   enum LanguageIDs { lang_c = 1, lang_cxx = 2 };
2809 
2810 private:
2811   /// The source location for the extern keyword.
2812   SourceLocation ExternLoc;
2813 
2814   /// The source location for the right brace (if valid).
2815   SourceLocation RBraceLoc;
2816 
2817   LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc,
2818                   SourceLocation LangLoc, LanguageIDs lang, bool HasBraces);
2819 
2820 public:
2821   static LinkageSpecDecl *Create(ASTContext &C, DeclContext *DC,
2822                                  SourceLocation ExternLoc,
2823                                  SourceLocation LangLoc, LanguageIDs Lang,
2824                                  bool HasBraces);
2825   static LinkageSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2826 
2827   /// Return the language specified by this linkage specification.
2828   LanguageIDs getLanguage() const {
2829     return static_cast<LanguageIDs>(LinkageSpecDeclBits.Language);
2830   }
2831 
2832   /// Set the language specified by this linkage specification.
2833   void setLanguage(LanguageIDs L) { LinkageSpecDeclBits.Language = L; }
2834 
2835   /// Determines whether this linkage specification had braces in
2836   /// its syntactic form.
2837   bool hasBraces() const {
2838     assert(!RBraceLoc.isValid() || LinkageSpecDeclBits.HasBraces);
2839     return LinkageSpecDeclBits.HasBraces;
2840   }
2841 
2842   SourceLocation getExternLoc() const { return ExternLoc; }
2843   SourceLocation getRBraceLoc() const { return RBraceLoc; }
2844   void setExternLoc(SourceLocation L) { ExternLoc = L; }
2845   void setRBraceLoc(SourceLocation L) {
2846     RBraceLoc = L;
2847     LinkageSpecDeclBits.HasBraces = RBraceLoc.isValid();
2848   }
2849 
2850   SourceLocation getEndLoc() const LLVM_READONLY {
2851     if (hasBraces())
2852       return getRBraceLoc();
2853     // No braces: get the end location of the (only) declaration in context
2854     // (if present).
2855     return decls_empty() ? getLocation() : decls_begin()->getEndLoc();
2856   }
2857 
2858   SourceRange getSourceRange() const override LLVM_READONLY {
2859     return SourceRange(ExternLoc, getEndLoc());
2860   }
2861 
2862   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2863   static bool classofKind(Kind K) { return K == LinkageSpec; }
2864 
2865   static DeclContext *castToDeclContext(const LinkageSpecDecl *D) {
2866     return static_cast<DeclContext *>(const_cast<LinkageSpecDecl*>(D));
2867   }
2868 
2869   static LinkageSpecDecl *castFromDeclContext(const DeclContext *DC) {
2870     return static_cast<LinkageSpecDecl *>(const_cast<DeclContext*>(DC));
2871   }
2872 };
2873 
2874 /// Represents C++ using-directive.
2875 ///
2876 /// For example:
2877 /// \code
2878 ///    using namespace std;
2879 /// \endcode
2880 ///
2881 /// \note UsingDirectiveDecl should be Decl not NamedDecl, but we provide
2882 /// artificial names for all using-directives in order to store
2883 /// them in DeclContext effectively.
2884 class UsingDirectiveDecl : public NamedDecl {
2885   /// The location of the \c using keyword.
2886   SourceLocation UsingLoc;
2887 
2888   /// The location of the \c namespace keyword.
2889   SourceLocation NamespaceLoc;
2890 
2891   /// The nested-name-specifier that precedes the namespace.
2892   NestedNameSpecifierLoc QualifierLoc;
2893 
2894   /// The namespace nominated by this using-directive.
2895   NamedDecl *NominatedNamespace;
2896 
2897   /// Enclosing context containing both using-directive and nominated
2898   /// namespace.
2899   DeclContext *CommonAncestor;
2900 
2901   UsingDirectiveDecl(DeclContext *DC, SourceLocation UsingLoc,
2902                      SourceLocation NamespcLoc,
2903                      NestedNameSpecifierLoc QualifierLoc,
2904                      SourceLocation IdentLoc,
2905                      NamedDecl *Nominated,
2906                      DeclContext *CommonAncestor)
2907       : NamedDecl(UsingDirective, DC, IdentLoc, getName()), UsingLoc(UsingLoc),
2908         NamespaceLoc(NamespcLoc), QualifierLoc(QualifierLoc),
2909         NominatedNamespace(Nominated), CommonAncestor(CommonAncestor) {}
2910 
2911   /// Returns special DeclarationName used by using-directives.
2912   ///
2913   /// This is only used by DeclContext for storing UsingDirectiveDecls in
2914   /// its lookup structure.
2915   static DeclarationName getName() {
2916     return DeclarationName::getUsingDirectiveName();
2917   }
2918 
2919   void anchor() override;
2920 
2921 public:
2922   friend class ASTDeclReader;
2923 
2924   // Friend for getUsingDirectiveName.
2925   friend class DeclContext;
2926 
2927   /// Retrieve the nested-name-specifier that qualifies the
2928   /// name of the namespace, with source-location information.
2929   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2930 
2931   /// Retrieve the nested-name-specifier that qualifies the
2932   /// name of the namespace.
2933   NestedNameSpecifier *getQualifier() const {
2934     return QualifierLoc.getNestedNameSpecifier();
2935   }
2936 
2937   NamedDecl *getNominatedNamespaceAsWritten() { return NominatedNamespace; }
2938   const NamedDecl *getNominatedNamespaceAsWritten() const {
2939     return NominatedNamespace;
2940   }
2941 
2942   /// Returns the namespace nominated by this using-directive.
2943   NamespaceDecl *getNominatedNamespace();
2944 
2945   const NamespaceDecl *getNominatedNamespace() const {
2946     return const_cast<UsingDirectiveDecl*>(this)->getNominatedNamespace();
2947   }
2948 
2949   /// Returns the common ancestor context of this using-directive and
2950   /// its nominated namespace.
2951   DeclContext *getCommonAncestor() { return CommonAncestor; }
2952   const DeclContext *getCommonAncestor() const { return CommonAncestor; }
2953 
2954   /// Return the location of the \c using keyword.
2955   SourceLocation getUsingLoc() const { return UsingLoc; }
2956 
2957   // FIXME: Could omit 'Key' in name.
2958   /// Returns the location of the \c namespace keyword.
2959   SourceLocation getNamespaceKeyLocation() const { return NamespaceLoc; }
2960 
2961   /// Returns the location of this using declaration's identifier.
2962   SourceLocation getIdentLocation() const { return getLocation(); }
2963 
2964   static UsingDirectiveDecl *Create(ASTContext &C, DeclContext *DC,
2965                                     SourceLocation UsingLoc,
2966                                     SourceLocation NamespaceLoc,
2967                                     NestedNameSpecifierLoc QualifierLoc,
2968                                     SourceLocation IdentLoc,
2969                                     NamedDecl *Nominated,
2970                                     DeclContext *CommonAncestor);
2971   static UsingDirectiveDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2972 
2973   SourceRange getSourceRange() const override LLVM_READONLY {
2974     return SourceRange(UsingLoc, getLocation());
2975   }
2976 
2977   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2978   static bool classofKind(Kind K) { return K == UsingDirective; }
2979 };
2980 
2981 /// Represents a C++ namespace alias.
2982 ///
2983 /// For example:
2984 ///
2985 /// \code
2986 /// namespace Foo = Bar;
2987 /// \endcode
2988 class NamespaceAliasDecl : public NamedDecl,
2989                            public Redeclarable<NamespaceAliasDecl> {
2990   friend class ASTDeclReader;
2991 
2992   /// The location of the \c namespace keyword.
2993   SourceLocation NamespaceLoc;
2994 
2995   /// The location of the namespace's identifier.
2996   ///
2997   /// This is accessed by TargetNameLoc.
2998   SourceLocation IdentLoc;
2999 
3000   /// The nested-name-specifier that precedes the namespace.
3001   NestedNameSpecifierLoc QualifierLoc;
3002 
3003   /// The Decl that this alias points to, either a NamespaceDecl or
3004   /// a NamespaceAliasDecl.
3005   NamedDecl *Namespace;
3006 
3007   NamespaceAliasDecl(ASTContext &C, DeclContext *DC,
3008                      SourceLocation NamespaceLoc, SourceLocation AliasLoc,
3009                      IdentifierInfo *Alias, NestedNameSpecifierLoc QualifierLoc,
3010                      SourceLocation IdentLoc, NamedDecl *Namespace)
3011       : NamedDecl(NamespaceAlias, DC, AliasLoc, Alias), redeclarable_base(C),
3012         NamespaceLoc(NamespaceLoc), IdentLoc(IdentLoc),
3013         QualifierLoc(QualifierLoc), Namespace(Namespace) {}
3014 
3015   void anchor() override;
3016 
3017   using redeclarable_base = Redeclarable<NamespaceAliasDecl>;
3018 
3019   NamespaceAliasDecl *getNextRedeclarationImpl() override;
3020   NamespaceAliasDecl *getPreviousDeclImpl() override;
3021   NamespaceAliasDecl *getMostRecentDeclImpl() override;
3022 
3023 public:
3024   static NamespaceAliasDecl *Create(ASTContext &C, DeclContext *DC,
3025                                     SourceLocation NamespaceLoc,
3026                                     SourceLocation AliasLoc,
3027                                     IdentifierInfo *Alias,
3028                                     NestedNameSpecifierLoc QualifierLoc,
3029                                     SourceLocation IdentLoc,
3030                                     NamedDecl *Namespace);
3031 
3032   static NamespaceAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3033 
3034   using redecl_range = redeclarable_base::redecl_range;
3035   using redecl_iterator = redeclarable_base::redecl_iterator;
3036 
3037   using redeclarable_base::redecls_begin;
3038   using redeclarable_base::redecls_end;
3039   using redeclarable_base::redecls;
3040   using redeclarable_base::getPreviousDecl;
3041   using redeclarable_base::getMostRecentDecl;
3042 
3043   NamespaceAliasDecl *getCanonicalDecl() override {
3044     return getFirstDecl();
3045   }
3046   const NamespaceAliasDecl *getCanonicalDecl() const {
3047     return getFirstDecl();
3048   }
3049 
3050   /// Retrieve the nested-name-specifier that qualifies the
3051   /// name of the namespace, with source-location information.
3052   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3053 
3054   /// Retrieve the nested-name-specifier that qualifies the
3055   /// name of the namespace.
3056   NestedNameSpecifier *getQualifier() const {
3057     return QualifierLoc.getNestedNameSpecifier();
3058   }
3059 
3060   /// Retrieve the namespace declaration aliased by this directive.
3061   NamespaceDecl *getNamespace() {
3062     if (auto *AD = dyn_cast<NamespaceAliasDecl>(Namespace))
3063       return AD->getNamespace();
3064 
3065     return cast<NamespaceDecl>(Namespace);
3066   }
3067 
3068   const NamespaceDecl *getNamespace() const {
3069     return const_cast<NamespaceAliasDecl *>(this)->getNamespace();
3070   }
3071 
3072   /// Returns the location of the alias name, i.e. 'foo' in
3073   /// "namespace foo = ns::bar;".
3074   SourceLocation getAliasLoc() const { return getLocation(); }
3075 
3076   /// Returns the location of the \c namespace keyword.
3077   SourceLocation getNamespaceLoc() const { return NamespaceLoc; }
3078 
3079   /// Returns the location of the identifier in the named namespace.
3080   SourceLocation getTargetNameLoc() const { return IdentLoc; }
3081 
3082   /// Retrieve the namespace that this alias refers to, which
3083   /// may either be a NamespaceDecl or a NamespaceAliasDecl.
3084   NamedDecl *getAliasedNamespace() const { return Namespace; }
3085 
3086   SourceRange getSourceRange() const override LLVM_READONLY {
3087     return SourceRange(NamespaceLoc, IdentLoc);
3088   }
3089 
3090   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3091   static bool classofKind(Kind K) { return K == NamespaceAlias; }
3092 };
3093 
3094 /// Implicit declaration of a temporary that was materialized by
3095 /// a MaterializeTemporaryExpr and lifetime-extended by a declaration
3096 class LifetimeExtendedTemporaryDecl final
3097     : public Decl,
3098       public Mergeable<LifetimeExtendedTemporaryDecl> {
3099   friend class MaterializeTemporaryExpr;
3100   friend class ASTDeclReader;
3101 
3102   Stmt *ExprWithTemporary = nullptr;
3103 
3104   /// The declaration which lifetime-extended this reference, if any.
3105   /// Either a VarDecl, or (for a ctor-initializer) a FieldDecl.
3106   ValueDecl *ExtendingDecl = nullptr;
3107   unsigned ManglingNumber;
3108 
3109   mutable APValue *Value = nullptr;
3110 
3111   virtual void anchor();
3112 
3113   LifetimeExtendedTemporaryDecl(Expr *Temp, ValueDecl *EDecl, unsigned Mangling)
3114       : Decl(Decl::LifetimeExtendedTemporary, EDecl->getDeclContext(),
3115              EDecl->getLocation()),
3116         ExprWithTemporary(Temp), ExtendingDecl(EDecl),
3117         ManglingNumber(Mangling) {}
3118 
3119   LifetimeExtendedTemporaryDecl(EmptyShell)
3120       : Decl(Decl::LifetimeExtendedTemporary, EmptyShell{}) {}
3121 
3122 public:
3123   static LifetimeExtendedTemporaryDecl *Create(Expr *Temp, ValueDecl *EDec,
3124                                                unsigned Mangling) {
3125     return new (EDec->getASTContext(), EDec->getDeclContext())
3126         LifetimeExtendedTemporaryDecl(Temp, EDec, Mangling);
3127   }
3128   static LifetimeExtendedTemporaryDecl *CreateDeserialized(ASTContext &C,
3129                                                            unsigned ID) {
3130     return new (C, ID) LifetimeExtendedTemporaryDecl(EmptyShell{});
3131   }
3132 
3133   ValueDecl *getExtendingDecl() { return ExtendingDecl; }
3134   const ValueDecl *getExtendingDecl() const { return ExtendingDecl; }
3135 
3136   /// Retrieve the storage duration for the materialized temporary.
3137   StorageDuration getStorageDuration() const;
3138 
3139   /// Retrieve the expression to which the temporary materialization conversion
3140   /// was applied. This isn't necessarily the initializer of the temporary due
3141   /// to the C++98 delayed materialization rules, but
3142   /// skipRValueSubobjectAdjustments can be used to find said initializer within
3143   /// the subexpression.
3144   Expr *getTemporaryExpr() { return cast<Expr>(ExprWithTemporary); }
3145   const Expr *getTemporaryExpr() const { return cast<Expr>(ExprWithTemporary); }
3146 
3147   unsigned getManglingNumber() const { return ManglingNumber; }
3148 
3149   /// Get the storage for the constant value of a materialized temporary
3150   /// of static storage duration.
3151   APValue *getOrCreateValue(bool MayCreate) const;
3152 
3153   APValue *getValue() const { return Value; }
3154 
3155   // Iterators
3156   Stmt::child_range childrenExpr() {
3157     return Stmt::child_range(&ExprWithTemporary, &ExprWithTemporary + 1);
3158   }
3159 
3160   Stmt::const_child_range childrenExpr() const {
3161     return Stmt::const_child_range(&ExprWithTemporary, &ExprWithTemporary + 1);
3162   }
3163 
3164   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3165   static bool classofKind(Kind K) {
3166     return K == Decl::LifetimeExtendedTemporary;
3167   }
3168 };
3169 
3170 /// Represents a shadow declaration implicitly introduced into a scope by a
3171 /// (resolved) using-declaration or using-enum-declaration to achieve
3172 /// the desired lookup semantics.
3173 ///
3174 /// For example:
3175 /// \code
3176 /// namespace A {
3177 ///   void foo();
3178 ///   void foo(int);
3179 ///   struct foo {};
3180 ///   enum bar { bar1, bar2 };
3181 /// }
3182 /// namespace B {
3183 ///   // add a UsingDecl and three UsingShadowDecls (named foo) to B.
3184 ///   using A::foo;
3185 ///   // adds UsingEnumDecl and two UsingShadowDecls (named bar1 and bar2) to B.
3186 ///   using enum A::bar;
3187 /// }
3188 /// \endcode
3189 class UsingShadowDecl : public NamedDecl, public Redeclarable<UsingShadowDecl> {
3190   friend class BaseUsingDecl;
3191 
3192   /// The referenced declaration.
3193   NamedDecl *Underlying = nullptr;
3194 
3195   /// The using declaration which introduced this decl or the next using
3196   /// shadow declaration contained in the aforementioned using declaration.
3197   NamedDecl *UsingOrNextShadow = nullptr;
3198 
3199   void anchor() override;
3200 
3201   using redeclarable_base = Redeclarable<UsingShadowDecl>;
3202 
3203   UsingShadowDecl *getNextRedeclarationImpl() override {
3204     return getNextRedeclaration();
3205   }
3206 
3207   UsingShadowDecl *getPreviousDeclImpl() override {
3208     return getPreviousDecl();
3209   }
3210 
3211   UsingShadowDecl *getMostRecentDeclImpl() override {
3212     return getMostRecentDecl();
3213   }
3214 
3215 protected:
3216   UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC, SourceLocation Loc,
3217                   DeclarationName Name, BaseUsingDecl *Introducer,
3218                   NamedDecl *Target);
3219   UsingShadowDecl(Kind K, ASTContext &C, EmptyShell);
3220 
3221 public:
3222   friend class ASTDeclReader;
3223   friend class ASTDeclWriter;
3224 
3225   static UsingShadowDecl *Create(ASTContext &C, DeclContext *DC,
3226                                  SourceLocation Loc, DeclarationName Name,
3227                                  BaseUsingDecl *Introducer, NamedDecl *Target) {
3228     return new (C, DC)
3229         UsingShadowDecl(UsingShadow, C, DC, Loc, Name, Introducer, Target);
3230   }
3231 
3232   static UsingShadowDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3233 
3234   using redecl_range = redeclarable_base::redecl_range;
3235   using redecl_iterator = redeclarable_base::redecl_iterator;
3236 
3237   using redeclarable_base::redecls_begin;
3238   using redeclarable_base::redecls_end;
3239   using redeclarable_base::redecls;
3240   using redeclarable_base::getPreviousDecl;
3241   using redeclarable_base::getMostRecentDecl;
3242   using redeclarable_base::isFirstDecl;
3243 
3244   UsingShadowDecl *getCanonicalDecl() override {
3245     return getFirstDecl();
3246   }
3247   const UsingShadowDecl *getCanonicalDecl() const {
3248     return getFirstDecl();
3249   }
3250 
3251   /// Gets the underlying declaration which has been brought into the
3252   /// local scope.
3253   NamedDecl *getTargetDecl() const { return Underlying; }
3254 
3255   /// Sets the underlying declaration which has been brought into the
3256   /// local scope.
3257   void setTargetDecl(NamedDecl *ND) {
3258     assert(ND && "Target decl is null!");
3259     Underlying = ND;
3260     // A UsingShadowDecl is never a friend or local extern declaration, even
3261     // if it is a shadow declaration for one.
3262     IdentifierNamespace =
3263         ND->getIdentifierNamespace() &
3264         ~(IDNS_OrdinaryFriend | IDNS_TagFriend | IDNS_LocalExtern);
3265   }
3266 
3267   /// Gets the (written or instantiated) using declaration that introduced this
3268   /// declaration.
3269   BaseUsingDecl *getIntroducer() const;
3270 
3271   /// The next using shadow declaration contained in the shadow decl
3272   /// chain of the using declaration which introduced this decl.
3273   UsingShadowDecl *getNextUsingShadowDecl() const {
3274     return dyn_cast_or_null<UsingShadowDecl>(UsingOrNextShadow);
3275   }
3276 
3277   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3278   static bool classofKind(Kind K) {
3279     return K == Decl::UsingShadow || K == Decl::ConstructorUsingShadow;
3280   }
3281 };
3282 
3283 /// Represents a C++ declaration that introduces decls from somewhere else. It
3284 /// provides a set of the shadow decls so introduced.
3285 
3286 class BaseUsingDecl : public NamedDecl {
3287   /// The first shadow declaration of the shadow decl chain associated
3288   /// with this using declaration.
3289   ///
3290   /// The bool member of the pair is a bool flag a derived type may use
3291   /// (UsingDecl makes use of it).
3292   llvm::PointerIntPair<UsingShadowDecl *, 1, bool> FirstUsingShadow;
3293 
3294 protected:
3295   BaseUsingDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
3296       : NamedDecl(DK, DC, L, N), FirstUsingShadow(nullptr, false) {}
3297 
3298 private:
3299   void anchor() override;
3300 
3301 protected:
3302   /// A bool flag for use by a derived type
3303   bool getShadowFlag() const { return FirstUsingShadow.getInt(); }
3304 
3305   /// A bool flag a derived type may set
3306   void setShadowFlag(bool V) { FirstUsingShadow.setInt(V); }
3307 
3308 public:
3309   friend class ASTDeclReader;
3310   friend class ASTDeclWriter;
3311 
3312   /// Iterates through the using shadow declarations associated with
3313   /// this using declaration.
3314   class shadow_iterator {
3315     /// The current using shadow declaration.
3316     UsingShadowDecl *Current = nullptr;
3317 
3318   public:
3319     using value_type = UsingShadowDecl *;
3320     using reference = UsingShadowDecl *;
3321     using pointer = UsingShadowDecl *;
3322     using iterator_category = std::forward_iterator_tag;
3323     using difference_type = std::ptrdiff_t;
3324 
3325     shadow_iterator() = default;
3326     explicit shadow_iterator(UsingShadowDecl *C) : Current(C) {}
3327 
3328     reference operator*() const { return Current; }
3329     pointer operator->() const { return Current; }
3330 
3331     shadow_iterator &operator++() {
3332       Current = Current->getNextUsingShadowDecl();
3333       return *this;
3334     }
3335 
3336     shadow_iterator operator++(int) {
3337       shadow_iterator tmp(*this);
3338       ++(*this);
3339       return tmp;
3340     }
3341 
3342     friend bool operator==(shadow_iterator x, shadow_iterator y) {
3343       return x.Current == y.Current;
3344     }
3345     friend bool operator!=(shadow_iterator x, shadow_iterator y) {
3346       return x.Current != y.Current;
3347     }
3348   };
3349 
3350   using shadow_range = llvm::iterator_range<shadow_iterator>;
3351 
3352   shadow_range shadows() const {
3353     return shadow_range(shadow_begin(), shadow_end());
3354   }
3355 
3356   shadow_iterator shadow_begin() const {
3357     return shadow_iterator(FirstUsingShadow.getPointer());
3358   }
3359 
3360   shadow_iterator shadow_end() const { return shadow_iterator(); }
3361 
3362   /// Return the number of shadowed declarations associated with this
3363   /// using declaration.
3364   unsigned shadow_size() const {
3365     return std::distance(shadow_begin(), shadow_end());
3366   }
3367 
3368   void addShadowDecl(UsingShadowDecl *S);
3369   void removeShadowDecl(UsingShadowDecl *S);
3370 
3371   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3372   static bool classofKind(Kind K) { return K == Using || K == UsingEnum; }
3373 };
3374 
3375 /// Represents a C++ using-declaration.
3376 ///
3377 /// For example:
3378 /// \code
3379 ///    using someNameSpace::someIdentifier;
3380 /// \endcode
3381 class UsingDecl : public BaseUsingDecl, public Mergeable<UsingDecl> {
3382   /// The source location of the 'using' keyword itself.
3383   SourceLocation UsingLocation;
3384 
3385   /// The nested-name-specifier that precedes the name.
3386   NestedNameSpecifierLoc QualifierLoc;
3387 
3388   /// Provides source/type location info for the declaration name
3389   /// embedded in the ValueDecl base class.
3390   DeclarationNameLoc DNLoc;
3391 
3392   UsingDecl(DeclContext *DC, SourceLocation UL,
3393             NestedNameSpecifierLoc QualifierLoc,
3394             const DeclarationNameInfo &NameInfo, bool HasTypenameKeyword)
3395       : BaseUsingDecl(Using, DC, NameInfo.getLoc(), NameInfo.getName()),
3396         UsingLocation(UL), QualifierLoc(QualifierLoc),
3397         DNLoc(NameInfo.getInfo()) {
3398     setShadowFlag(HasTypenameKeyword);
3399   }
3400 
3401   void anchor() override;
3402 
3403 public:
3404   friend class ASTDeclReader;
3405   friend class ASTDeclWriter;
3406 
3407   /// Return the source location of the 'using' keyword.
3408   SourceLocation getUsingLoc() const { return UsingLocation; }
3409 
3410   /// Set the source location of the 'using' keyword.
3411   void setUsingLoc(SourceLocation L) { UsingLocation = L; }
3412 
3413   /// Retrieve the nested-name-specifier that qualifies the name,
3414   /// with source-location information.
3415   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3416 
3417   /// Retrieve the nested-name-specifier that qualifies the name.
3418   NestedNameSpecifier *getQualifier() const {
3419     return QualifierLoc.getNestedNameSpecifier();
3420   }
3421 
3422   DeclarationNameInfo getNameInfo() const {
3423     return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
3424   }
3425 
3426   /// Return true if it is a C++03 access declaration (no 'using').
3427   bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
3428 
3429   /// Return true if the using declaration has 'typename'.
3430   bool hasTypename() const { return getShadowFlag(); }
3431 
3432   /// Sets whether the using declaration has 'typename'.
3433   void setTypename(bool TN) { setShadowFlag(TN); }
3434 
3435   static UsingDecl *Create(ASTContext &C, DeclContext *DC,
3436                            SourceLocation UsingL,
3437                            NestedNameSpecifierLoc QualifierLoc,
3438                            const DeclarationNameInfo &NameInfo,
3439                            bool HasTypenameKeyword);
3440 
3441   static UsingDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3442 
3443   SourceRange getSourceRange() const override LLVM_READONLY;
3444 
3445   /// Retrieves the canonical declaration of this declaration.
3446   UsingDecl *getCanonicalDecl() override {
3447     return cast<UsingDecl>(getFirstDecl());
3448   }
3449   const UsingDecl *getCanonicalDecl() const {
3450     return cast<UsingDecl>(getFirstDecl());
3451   }
3452 
3453   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3454   static bool classofKind(Kind K) { return K == Using; }
3455 };
3456 
3457 /// Represents a shadow constructor declaration introduced into a
3458 /// class by a C++11 using-declaration that names a constructor.
3459 ///
3460 /// For example:
3461 /// \code
3462 /// struct Base { Base(int); };
3463 /// struct Derived {
3464 ///    using Base::Base; // creates a UsingDecl and a ConstructorUsingShadowDecl
3465 /// };
3466 /// \endcode
3467 class ConstructorUsingShadowDecl final : public UsingShadowDecl {
3468   /// If this constructor using declaration inherted the constructor
3469   /// from an indirect base class, this is the ConstructorUsingShadowDecl
3470   /// in the named direct base class from which the declaration was inherited.
3471   ConstructorUsingShadowDecl *NominatedBaseClassShadowDecl = nullptr;
3472 
3473   /// If this constructor using declaration inherted the constructor
3474   /// from an indirect base class, this is the ConstructorUsingShadowDecl
3475   /// that will be used to construct the unique direct or virtual base class
3476   /// that receives the constructor arguments.
3477   ConstructorUsingShadowDecl *ConstructedBaseClassShadowDecl = nullptr;
3478 
3479   /// \c true if the constructor ultimately named by this using shadow
3480   /// declaration is within a virtual base class subobject of the class that
3481   /// contains this declaration.
3482   unsigned IsVirtual : 1;
3483 
3484   ConstructorUsingShadowDecl(ASTContext &C, DeclContext *DC, SourceLocation Loc,
3485                              UsingDecl *Using, NamedDecl *Target,
3486                              bool TargetInVirtualBase)
3487       : UsingShadowDecl(ConstructorUsingShadow, C, DC, Loc,
3488                         Using->getDeclName(), Using,
3489                         Target->getUnderlyingDecl()),
3490         NominatedBaseClassShadowDecl(
3491             dyn_cast<ConstructorUsingShadowDecl>(Target)),
3492         ConstructedBaseClassShadowDecl(NominatedBaseClassShadowDecl),
3493         IsVirtual(TargetInVirtualBase) {
3494     // If we found a constructor that chains to a constructor for a virtual
3495     // base, we should directly call that virtual base constructor instead.
3496     // FIXME: This logic belongs in Sema.
3497     if (NominatedBaseClassShadowDecl &&
3498         NominatedBaseClassShadowDecl->constructsVirtualBase()) {
3499       ConstructedBaseClassShadowDecl =
3500           NominatedBaseClassShadowDecl->ConstructedBaseClassShadowDecl;
3501       IsVirtual = true;
3502     }
3503   }
3504 
3505   ConstructorUsingShadowDecl(ASTContext &C, EmptyShell Empty)
3506       : UsingShadowDecl(ConstructorUsingShadow, C, Empty), IsVirtual(false) {}
3507 
3508   void anchor() override;
3509 
3510 public:
3511   friend class ASTDeclReader;
3512   friend class ASTDeclWriter;
3513 
3514   static ConstructorUsingShadowDecl *Create(ASTContext &C, DeclContext *DC,
3515                                             SourceLocation Loc,
3516                                             UsingDecl *Using, NamedDecl *Target,
3517                                             bool IsVirtual);
3518   static ConstructorUsingShadowDecl *CreateDeserialized(ASTContext &C,
3519                                                         unsigned ID);
3520 
3521   /// Override the UsingShadowDecl's getIntroducer, returning the UsingDecl that
3522   /// introduced this.
3523   UsingDecl *getIntroducer() const {
3524     return cast<UsingDecl>(UsingShadowDecl::getIntroducer());
3525   }
3526 
3527   /// Returns the parent of this using shadow declaration, which
3528   /// is the class in which this is declared.
3529   //@{
3530   const CXXRecordDecl *getParent() const {
3531     return cast<CXXRecordDecl>(getDeclContext());
3532   }
3533   CXXRecordDecl *getParent() {
3534     return cast<CXXRecordDecl>(getDeclContext());
3535   }
3536   //@}
3537 
3538   /// Get the inheriting constructor declaration for the direct base
3539   /// class from which this using shadow declaration was inherited, if there is
3540   /// one. This can be different for each redeclaration of the same shadow decl.
3541   ConstructorUsingShadowDecl *getNominatedBaseClassShadowDecl() const {
3542     return NominatedBaseClassShadowDecl;
3543   }
3544 
3545   /// Get the inheriting constructor declaration for the base class
3546   /// for which we don't have an explicit initializer, if there is one.
3547   ConstructorUsingShadowDecl *getConstructedBaseClassShadowDecl() const {
3548     return ConstructedBaseClassShadowDecl;
3549   }
3550 
3551   /// Get the base class that was named in the using declaration. This
3552   /// can be different for each redeclaration of this same shadow decl.
3553   CXXRecordDecl *getNominatedBaseClass() const;
3554 
3555   /// Get the base class whose constructor or constructor shadow
3556   /// declaration is passed the constructor arguments.
3557   CXXRecordDecl *getConstructedBaseClass() const {
3558     return cast<CXXRecordDecl>((ConstructedBaseClassShadowDecl
3559                                     ? ConstructedBaseClassShadowDecl
3560                                     : getTargetDecl())
3561                                    ->getDeclContext());
3562   }
3563 
3564   /// Returns \c true if the constructed base class is a virtual base
3565   /// class subobject of this declaration's class.
3566   bool constructsVirtualBase() const {
3567     return IsVirtual;
3568   }
3569 
3570   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3571   static bool classofKind(Kind K) { return K == ConstructorUsingShadow; }
3572 };
3573 
3574 /// Represents a C++ using-enum-declaration.
3575 ///
3576 /// For example:
3577 /// \code
3578 ///    using enum SomeEnumTag ;
3579 /// \endcode
3580 
3581 class UsingEnumDecl : public BaseUsingDecl, public Mergeable<UsingEnumDecl> {
3582   /// The source location of the 'using' keyword itself.
3583   SourceLocation UsingLocation;
3584 
3585   /// Location of the 'enum' keyword.
3586   SourceLocation EnumLocation;
3587 
3588   /// The enum
3589   EnumDecl *Enum;
3590 
3591   UsingEnumDecl(DeclContext *DC, DeclarationName DN, SourceLocation UL,
3592                 SourceLocation EL, SourceLocation NL, EnumDecl *ED)
3593       : BaseUsingDecl(UsingEnum, DC, NL, DN), UsingLocation(UL),
3594         EnumLocation(EL), Enum(ED) {}
3595 
3596   void anchor() override;
3597 
3598 public:
3599   friend class ASTDeclReader;
3600   friend class ASTDeclWriter;
3601 
3602   /// The source location of the 'using' keyword.
3603   SourceLocation getUsingLoc() const { return UsingLocation; }
3604   void setUsingLoc(SourceLocation L) { UsingLocation = L; }
3605 
3606   /// The source location of the 'enum' keyword.
3607   SourceLocation getEnumLoc() const { return EnumLocation; }
3608   void setEnumLoc(SourceLocation L) { EnumLocation = L; }
3609 
3610 public:
3611   EnumDecl *getEnumDecl() const { return Enum; }
3612 
3613   static UsingEnumDecl *Create(ASTContext &C, DeclContext *DC,
3614                                SourceLocation UsingL, SourceLocation EnumL,
3615                                SourceLocation NameL, EnumDecl *ED);
3616 
3617   static UsingEnumDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3618 
3619   SourceRange getSourceRange() const override LLVM_READONLY;
3620 
3621   /// Retrieves the canonical declaration of this declaration.
3622   UsingEnumDecl *getCanonicalDecl() override {
3623     return cast<UsingEnumDecl>(getFirstDecl());
3624   }
3625   const UsingEnumDecl *getCanonicalDecl() const {
3626     return cast<UsingEnumDecl>(getFirstDecl());
3627   }
3628 
3629   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3630   static bool classofKind(Kind K) { return K == UsingEnum; }
3631 };
3632 
3633 /// Represents a pack of using declarations that a single
3634 /// using-declarator pack-expanded into.
3635 ///
3636 /// \code
3637 /// template<typename ...T> struct X : T... {
3638 ///   using T::operator()...;
3639 ///   using T::operator T...;
3640 /// };
3641 /// \endcode
3642 ///
3643 /// In the second case above, the UsingPackDecl will have the name
3644 /// 'operator T' (which contains an unexpanded pack), but the individual
3645 /// UsingDecls and UsingShadowDecls will have more reasonable names.
3646 class UsingPackDecl final
3647     : public NamedDecl, public Mergeable<UsingPackDecl>,
3648       private llvm::TrailingObjects<UsingPackDecl, NamedDecl *> {
3649   /// The UnresolvedUsingValueDecl or UnresolvedUsingTypenameDecl from
3650   /// which this waas instantiated.
3651   NamedDecl *InstantiatedFrom;
3652 
3653   /// The number of using-declarations created by this pack expansion.
3654   unsigned NumExpansions;
3655 
3656   UsingPackDecl(DeclContext *DC, NamedDecl *InstantiatedFrom,
3657                 ArrayRef<NamedDecl *> UsingDecls)
3658       : NamedDecl(UsingPack, DC,
3659                   InstantiatedFrom ? InstantiatedFrom->getLocation()
3660                                    : SourceLocation(),
3661                   InstantiatedFrom ? InstantiatedFrom->getDeclName()
3662                                    : DeclarationName()),
3663         InstantiatedFrom(InstantiatedFrom), NumExpansions(UsingDecls.size()) {
3664     std::uninitialized_copy(UsingDecls.begin(), UsingDecls.end(),
3665                             getTrailingObjects<NamedDecl *>());
3666   }
3667 
3668   void anchor() override;
3669 
3670 public:
3671   friend class ASTDeclReader;
3672   friend class ASTDeclWriter;
3673   friend TrailingObjects;
3674 
3675   /// Get the using declaration from which this was instantiated. This will
3676   /// always be an UnresolvedUsingValueDecl or an UnresolvedUsingTypenameDecl
3677   /// that is a pack expansion.
3678   NamedDecl *getInstantiatedFromUsingDecl() const { return InstantiatedFrom; }
3679 
3680   /// Get the set of using declarations that this pack expanded into. Note that
3681   /// some of these may still be unresolved.
3682   ArrayRef<NamedDecl *> expansions() const {
3683     return llvm::makeArrayRef(getTrailingObjects<NamedDecl *>(), NumExpansions);
3684   }
3685 
3686   static UsingPackDecl *Create(ASTContext &C, DeclContext *DC,
3687                                NamedDecl *InstantiatedFrom,
3688                                ArrayRef<NamedDecl *> UsingDecls);
3689 
3690   static UsingPackDecl *CreateDeserialized(ASTContext &C, unsigned ID,
3691                                            unsigned NumExpansions);
3692 
3693   SourceRange getSourceRange() const override LLVM_READONLY {
3694     return InstantiatedFrom->getSourceRange();
3695   }
3696 
3697   UsingPackDecl *getCanonicalDecl() override { return getFirstDecl(); }
3698   const UsingPackDecl *getCanonicalDecl() const { return getFirstDecl(); }
3699 
3700   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3701   static bool classofKind(Kind K) { return K == UsingPack; }
3702 };
3703 
3704 /// Represents a dependent using declaration which was not marked with
3705 /// \c typename.
3706 ///
3707 /// Unlike non-dependent using declarations, these *only* bring through
3708 /// non-types; otherwise they would break two-phase lookup.
3709 ///
3710 /// \code
3711 /// template \<class T> class A : public Base<T> {
3712 ///   using Base<T>::foo;
3713 /// };
3714 /// \endcode
3715 class UnresolvedUsingValueDecl : public ValueDecl,
3716                                  public Mergeable<UnresolvedUsingValueDecl> {
3717   /// The source location of the 'using' keyword
3718   SourceLocation UsingLocation;
3719 
3720   /// If this is a pack expansion, the location of the '...'.
3721   SourceLocation EllipsisLoc;
3722 
3723   /// The nested-name-specifier that precedes the name.
3724   NestedNameSpecifierLoc QualifierLoc;
3725 
3726   /// Provides source/type location info for the declaration name
3727   /// embedded in the ValueDecl base class.
3728   DeclarationNameLoc DNLoc;
3729 
3730   UnresolvedUsingValueDecl(DeclContext *DC, QualType Ty,
3731                            SourceLocation UsingLoc,
3732                            NestedNameSpecifierLoc QualifierLoc,
3733                            const DeclarationNameInfo &NameInfo,
3734                            SourceLocation EllipsisLoc)
3735       : ValueDecl(UnresolvedUsingValue, DC,
3736                   NameInfo.getLoc(), NameInfo.getName(), Ty),
3737         UsingLocation(UsingLoc), EllipsisLoc(EllipsisLoc),
3738         QualifierLoc(QualifierLoc), DNLoc(NameInfo.getInfo()) {}
3739 
3740   void anchor() override;
3741 
3742 public:
3743   friend class ASTDeclReader;
3744   friend class ASTDeclWriter;
3745 
3746   /// Returns the source location of the 'using' keyword.
3747   SourceLocation getUsingLoc() const { return UsingLocation; }
3748 
3749   /// Set the source location of the 'using' keyword.
3750   void setUsingLoc(SourceLocation L) { UsingLocation = L; }
3751 
3752   /// Return true if it is a C++03 access declaration (no 'using').
3753   bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
3754 
3755   /// Retrieve the nested-name-specifier that qualifies the name,
3756   /// with source-location information.
3757   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3758 
3759   /// Retrieve the nested-name-specifier that qualifies the name.
3760   NestedNameSpecifier *getQualifier() const {
3761     return QualifierLoc.getNestedNameSpecifier();
3762   }
3763 
3764   DeclarationNameInfo getNameInfo() const {
3765     return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
3766   }
3767 
3768   /// Determine whether this is a pack expansion.
3769   bool isPackExpansion() const {
3770     return EllipsisLoc.isValid();
3771   }
3772 
3773   /// Get the location of the ellipsis if this is a pack expansion.
3774   SourceLocation getEllipsisLoc() const {
3775     return EllipsisLoc;
3776   }
3777 
3778   static UnresolvedUsingValueDecl *
3779     Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
3780            NestedNameSpecifierLoc QualifierLoc,
3781            const DeclarationNameInfo &NameInfo, SourceLocation EllipsisLoc);
3782 
3783   static UnresolvedUsingValueDecl *
3784   CreateDeserialized(ASTContext &C, unsigned ID);
3785 
3786   SourceRange getSourceRange() const override LLVM_READONLY;
3787 
3788   /// Retrieves the canonical declaration of this declaration.
3789   UnresolvedUsingValueDecl *getCanonicalDecl() override {
3790     return getFirstDecl();
3791   }
3792   const UnresolvedUsingValueDecl *getCanonicalDecl() const {
3793     return getFirstDecl();
3794   }
3795 
3796   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3797   static bool classofKind(Kind K) { return K == UnresolvedUsingValue; }
3798 };
3799 
3800 /// Represents a dependent using declaration which was marked with
3801 /// \c typename.
3802 ///
3803 /// \code
3804 /// template \<class T> class A : public Base<T> {
3805 ///   using typename Base<T>::foo;
3806 /// };
3807 /// \endcode
3808 ///
3809 /// The type associated with an unresolved using typename decl is
3810 /// currently always a typename type.
3811 class UnresolvedUsingTypenameDecl
3812     : public TypeDecl,
3813       public Mergeable<UnresolvedUsingTypenameDecl> {
3814   friend class ASTDeclReader;
3815 
3816   /// The source location of the 'typename' keyword
3817   SourceLocation TypenameLocation;
3818 
3819   /// If this is a pack expansion, the location of the '...'.
3820   SourceLocation EllipsisLoc;
3821 
3822   /// The nested-name-specifier that precedes the name.
3823   NestedNameSpecifierLoc QualifierLoc;
3824 
3825   UnresolvedUsingTypenameDecl(DeclContext *DC, SourceLocation UsingLoc,
3826                               SourceLocation TypenameLoc,
3827                               NestedNameSpecifierLoc QualifierLoc,
3828                               SourceLocation TargetNameLoc,
3829                               IdentifierInfo *TargetName,
3830                               SourceLocation EllipsisLoc)
3831     : TypeDecl(UnresolvedUsingTypename, DC, TargetNameLoc, TargetName,
3832                UsingLoc),
3833       TypenameLocation(TypenameLoc), EllipsisLoc(EllipsisLoc),
3834       QualifierLoc(QualifierLoc) {}
3835 
3836   void anchor() override;
3837 
3838 public:
3839   /// Returns the source location of the 'using' keyword.
3840   SourceLocation getUsingLoc() const { return getBeginLoc(); }
3841 
3842   /// Returns the source location of the 'typename' keyword.
3843   SourceLocation getTypenameLoc() const { return TypenameLocation; }
3844 
3845   /// Retrieve the nested-name-specifier that qualifies the name,
3846   /// with source-location information.
3847   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3848 
3849   /// Retrieve the nested-name-specifier that qualifies the name.
3850   NestedNameSpecifier *getQualifier() const {
3851     return QualifierLoc.getNestedNameSpecifier();
3852   }
3853 
3854   DeclarationNameInfo getNameInfo() const {
3855     return DeclarationNameInfo(getDeclName(), getLocation());
3856   }
3857 
3858   /// Determine whether this is a pack expansion.
3859   bool isPackExpansion() const {
3860     return EllipsisLoc.isValid();
3861   }
3862 
3863   /// Get the location of the ellipsis if this is a pack expansion.
3864   SourceLocation getEllipsisLoc() const {
3865     return EllipsisLoc;
3866   }
3867 
3868   static UnresolvedUsingTypenameDecl *
3869     Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
3870            SourceLocation TypenameLoc, NestedNameSpecifierLoc QualifierLoc,
3871            SourceLocation TargetNameLoc, DeclarationName TargetName,
3872            SourceLocation EllipsisLoc);
3873 
3874   static UnresolvedUsingTypenameDecl *
3875   CreateDeserialized(ASTContext &C, unsigned ID);
3876 
3877   /// Retrieves the canonical declaration of this declaration.
3878   UnresolvedUsingTypenameDecl *getCanonicalDecl() override {
3879     return getFirstDecl();
3880   }
3881   const UnresolvedUsingTypenameDecl *getCanonicalDecl() const {
3882     return getFirstDecl();
3883   }
3884 
3885   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3886   static bool classofKind(Kind K) { return K == UnresolvedUsingTypename; }
3887 };
3888 
3889 /// This node is generated when a using-declaration that was annotated with
3890 /// __attribute__((using_if_exists)) failed to resolve to a known declaration.
3891 /// In that case, Sema builds a UsingShadowDecl whose target is an instance of
3892 /// this declaration, adding it to the current scope. Referring to this
3893 /// declaration in any way is an error.
3894 class UnresolvedUsingIfExistsDecl final : public NamedDecl {
3895   UnresolvedUsingIfExistsDecl(DeclContext *DC, SourceLocation Loc,
3896                               DeclarationName Name);
3897 
3898   void anchor() override;
3899 
3900 public:
3901   static UnresolvedUsingIfExistsDecl *Create(ASTContext &Ctx, DeclContext *DC,
3902                                              SourceLocation Loc,
3903                                              DeclarationName Name);
3904   static UnresolvedUsingIfExistsDecl *CreateDeserialized(ASTContext &Ctx,
3905                                                          unsigned ID);
3906 
3907   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3908   static bool classofKind(Kind K) { return K == Decl::UnresolvedUsingIfExists; }
3909 };
3910 
3911 /// Represents a C++11 static_assert declaration.
3912 class StaticAssertDecl : public Decl {
3913   llvm::PointerIntPair<Expr *, 1, bool> AssertExprAndFailed;
3914   StringLiteral *Message;
3915   SourceLocation RParenLoc;
3916 
3917   StaticAssertDecl(DeclContext *DC, SourceLocation StaticAssertLoc,
3918                    Expr *AssertExpr, StringLiteral *Message,
3919                    SourceLocation RParenLoc, bool Failed)
3920       : Decl(StaticAssert, DC, StaticAssertLoc),
3921         AssertExprAndFailed(AssertExpr, Failed), Message(Message),
3922         RParenLoc(RParenLoc) {}
3923 
3924   virtual void anchor();
3925 
3926 public:
3927   friend class ASTDeclReader;
3928 
3929   static StaticAssertDecl *Create(ASTContext &C, DeclContext *DC,
3930                                   SourceLocation StaticAssertLoc,
3931                                   Expr *AssertExpr, StringLiteral *Message,
3932                                   SourceLocation RParenLoc, bool Failed);
3933   static StaticAssertDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3934 
3935   Expr *getAssertExpr() { return AssertExprAndFailed.getPointer(); }
3936   const Expr *getAssertExpr() const { return AssertExprAndFailed.getPointer(); }
3937 
3938   StringLiteral *getMessage() { return Message; }
3939   const StringLiteral *getMessage() const { return Message; }
3940 
3941   bool isFailed() const { return AssertExprAndFailed.getInt(); }
3942 
3943   SourceLocation getRParenLoc() const { return RParenLoc; }
3944 
3945   SourceRange getSourceRange() const override LLVM_READONLY {
3946     return SourceRange(getLocation(), getRParenLoc());
3947   }
3948 
3949   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3950   static bool classofKind(Kind K) { return K == StaticAssert; }
3951 };
3952 
3953 /// A binding in a decomposition declaration. For instance, given:
3954 ///
3955 ///   int n[3];
3956 ///   auto &[a, b, c] = n;
3957 ///
3958 /// a, b, and c are BindingDecls, whose bindings are the expressions
3959 /// x[0], x[1], and x[2] respectively, where x is the implicit
3960 /// DecompositionDecl of type 'int (&)[3]'.
3961 class BindingDecl : public ValueDecl {
3962   /// The declaration that this binding binds to part of.
3963   ValueDecl *Decomp;
3964   /// The binding represented by this declaration. References to this
3965   /// declaration are effectively equivalent to this expression (except
3966   /// that it is only evaluated once at the point of declaration of the
3967   /// binding).
3968   Expr *Binding = nullptr;
3969 
3970   BindingDecl(DeclContext *DC, SourceLocation IdLoc, IdentifierInfo *Id)
3971       : ValueDecl(Decl::Binding, DC, IdLoc, Id, QualType()) {}
3972 
3973   void anchor() override;
3974 
3975 public:
3976   friend class ASTDeclReader;
3977 
3978   static BindingDecl *Create(ASTContext &C, DeclContext *DC,
3979                              SourceLocation IdLoc, IdentifierInfo *Id);
3980   static BindingDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3981 
3982   /// Get the expression to which this declaration is bound. This may be null
3983   /// in two different cases: while parsing the initializer for the
3984   /// decomposition declaration, and when the initializer is type-dependent.
3985   Expr *getBinding() const { return Binding; }
3986 
3987   /// Get the decomposition declaration that this binding represents a
3988   /// decomposition of.
3989   ValueDecl *getDecomposedDecl() const { return Decomp; }
3990 
3991   /// Get the variable (if any) that holds the value of evaluating the binding.
3992   /// Only present for user-defined bindings for tuple-like types.
3993   VarDecl *getHoldingVar() const;
3994 
3995   /// Set the binding for this BindingDecl, along with its declared type (which
3996   /// should be a possibly-cv-qualified form of the type of the binding, or a
3997   /// reference to such a type).
3998   void setBinding(QualType DeclaredType, Expr *Binding) {
3999     setType(DeclaredType);
4000     this->Binding = Binding;
4001   }
4002 
4003   /// Set the decomposed variable for this BindingDecl.
4004   void setDecomposedDecl(ValueDecl *Decomposed) { Decomp = Decomposed; }
4005 
4006   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4007   static bool classofKind(Kind K) { return K == Decl::Binding; }
4008 };
4009 
4010 /// A decomposition declaration. For instance, given:
4011 ///
4012 ///   int n[3];
4013 ///   auto &[a, b, c] = n;
4014 ///
4015 /// the second line declares a DecompositionDecl of type 'int (&)[3]', and
4016 /// three BindingDecls (named a, b, and c). An instance of this class is always
4017 /// unnamed, but behaves in almost all other respects like a VarDecl.
4018 class DecompositionDecl final
4019     : public VarDecl,
4020       private llvm::TrailingObjects<DecompositionDecl, BindingDecl *> {
4021   /// The number of BindingDecl*s following this object.
4022   unsigned NumBindings;
4023 
4024   DecompositionDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4025                     SourceLocation LSquareLoc, QualType T,
4026                     TypeSourceInfo *TInfo, StorageClass SC,
4027                     ArrayRef<BindingDecl *> Bindings)
4028       : VarDecl(Decomposition, C, DC, StartLoc, LSquareLoc, nullptr, T, TInfo,
4029                 SC),
4030         NumBindings(Bindings.size()) {
4031     std::uninitialized_copy(Bindings.begin(), Bindings.end(),
4032                             getTrailingObjects<BindingDecl *>());
4033     for (auto *B : Bindings)
4034       B->setDecomposedDecl(this);
4035   }
4036 
4037   void anchor() override;
4038 
4039 public:
4040   friend class ASTDeclReader;
4041   friend TrailingObjects;
4042 
4043   static DecompositionDecl *Create(ASTContext &C, DeclContext *DC,
4044                                    SourceLocation StartLoc,
4045                                    SourceLocation LSquareLoc,
4046                                    QualType T, TypeSourceInfo *TInfo,
4047                                    StorageClass S,
4048                                    ArrayRef<BindingDecl *> Bindings);
4049   static DecompositionDecl *CreateDeserialized(ASTContext &C, unsigned ID,
4050                                                unsigned NumBindings);
4051 
4052   ArrayRef<BindingDecl *> bindings() const {
4053     return llvm::makeArrayRef(getTrailingObjects<BindingDecl *>(), NumBindings);
4054   }
4055 
4056   void printName(raw_ostream &os) const override;
4057 
4058   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4059   static bool classofKind(Kind K) { return K == Decomposition; }
4060 };
4061 
4062 /// An instance of this class represents the declaration of a property
4063 /// member.  This is a Microsoft extension to C++, first introduced in
4064 /// Visual Studio .NET 2003 as a parallel to similar features in C#
4065 /// and Managed C++.
4066 ///
4067 /// A property must always be a non-static class member.
4068 ///
4069 /// A property member superficially resembles a non-static data
4070 /// member, except preceded by a property attribute:
4071 ///   __declspec(property(get=GetX, put=PutX)) int x;
4072 /// Either (but not both) of the 'get' and 'put' names may be omitted.
4073 ///
4074 /// A reference to a property is always an lvalue.  If the lvalue
4075 /// undergoes lvalue-to-rvalue conversion, then a getter name is
4076 /// required, and that member is called with no arguments.
4077 /// If the lvalue is assigned into, then a setter name is required,
4078 /// and that member is called with one argument, the value assigned.
4079 /// Both operations are potentially overloaded.  Compound assignments
4080 /// are permitted, as are the increment and decrement operators.
4081 ///
4082 /// The getter and putter methods are permitted to be overloaded,
4083 /// although their return and parameter types are subject to certain
4084 /// restrictions according to the type of the property.
4085 ///
4086 /// A property declared using an incomplete array type may
4087 /// additionally be subscripted, adding extra parameters to the getter
4088 /// and putter methods.
4089 class MSPropertyDecl : public DeclaratorDecl {
4090   IdentifierInfo *GetterId, *SetterId;
4091 
4092   MSPropertyDecl(DeclContext *DC, SourceLocation L, DeclarationName N,
4093                  QualType T, TypeSourceInfo *TInfo, SourceLocation StartL,
4094                  IdentifierInfo *Getter, IdentifierInfo *Setter)
4095       : DeclaratorDecl(MSProperty, DC, L, N, T, TInfo, StartL),
4096         GetterId(Getter), SetterId(Setter) {}
4097 
4098   void anchor() override;
4099 public:
4100   friend class ASTDeclReader;
4101 
4102   static MSPropertyDecl *Create(ASTContext &C, DeclContext *DC,
4103                                 SourceLocation L, DeclarationName N, QualType T,
4104                                 TypeSourceInfo *TInfo, SourceLocation StartL,
4105                                 IdentifierInfo *Getter, IdentifierInfo *Setter);
4106   static MSPropertyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4107 
4108   static bool classof(const Decl *D) { return D->getKind() == MSProperty; }
4109 
4110   bool hasGetter() const { return GetterId != nullptr; }
4111   IdentifierInfo* getGetterId() const { return GetterId; }
4112   bool hasSetter() const { return SetterId != nullptr; }
4113   IdentifierInfo* getSetterId() const { return SetterId; }
4114 };
4115 
4116 /// Parts of a decomposed MSGuidDecl. Factored out to avoid unnecessary
4117 /// dependencies on DeclCXX.h.
4118 struct MSGuidDeclParts {
4119   /// {01234567-...
4120   uint32_t Part1;
4121   /// ...-89ab-...
4122   uint16_t Part2;
4123   /// ...-cdef-...
4124   uint16_t Part3;
4125   /// ...-0123-456789abcdef}
4126   uint8_t Part4And5[8];
4127 
4128   uint64_t getPart4And5AsUint64() const {
4129     uint64_t Val;
4130     memcpy(&Val, &Part4And5, sizeof(Part4And5));
4131     return Val;
4132   }
4133 };
4134 
4135 /// A global _GUID constant. These are implicitly created by UuidAttrs.
4136 ///
4137 ///   struct _declspec(uuid("01234567-89ab-cdef-0123-456789abcdef")) X{};
4138 ///
4139 /// X is a CXXRecordDecl that contains a UuidAttr that references the (unique)
4140 /// MSGuidDecl for the specified UUID.
4141 class MSGuidDecl : public ValueDecl,
4142                    public Mergeable<MSGuidDecl>,
4143                    public llvm::FoldingSetNode {
4144 public:
4145   using Parts = MSGuidDeclParts;
4146 
4147 private:
4148   /// The decomposed form of the UUID.
4149   Parts PartVal;
4150 
4151   /// The resolved value of the UUID as an APValue. Computed on demand and
4152   /// cached.
4153   mutable APValue APVal;
4154 
4155   void anchor() override;
4156 
4157   MSGuidDecl(DeclContext *DC, QualType T, Parts P);
4158 
4159   static MSGuidDecl *Create(const ASTContext &C, QualType T, Parts P);
4160   static MSGuidDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4161 
4162   // Only ASTContext::getMSGuidDecl and deserialization create these.
4163   friend class ASTContext;
4164   friend class ASTReader;
4165   friend class ASTDeclReader;
4166 
4167 public:
4168   /// Print this UUID in a human-readable format.
4169   void printName(llvm::raw_ostream &OS) const override;
4170 
4171   /// Get the decomposed parts of this declaration.
4172   Parts getParts() const { return PartVal; }
4173 
4174   /// Get the value of this MSGuidDecl as an APValue. This may fail and return
4175   /// an absent APValue if the type of the declaration is not of the expected
4176   /// shape.
4177   APValue &getAsAPValue() const;
4178 
4179   static void Profile(llvm::FoldingSetNodeID &ID, Parts P) {
4180     ID.AddInteger(P.Part1);
4181     ID.AddInteger(P.Part2);
4182     ID.AddInteger(P.Part3);
4183     ID.AddInteger(P.getPart4And5AsUint64());
4184   }
4185   void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, PartVal); }
4186 
4187   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4188   static bool classofKind(Kind K) { return K == Decl::MSGuid; }
4189 };
4190 
4191 /// Insertion operator for diagnostics.  This allows sending an AccessSpecifier
4192 /// into a diagnostic with <<.
4193 const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB,
4194                                       AccessSpecifier AS);
4195 
4196 } // namespace clang
4197 
4198 #endif // LLVM_CLANG_AST_DECLCXX_H
4199