1 //===--- VTableBuilder.h - C++ vtable layout builder --------------*- C++ -*-=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with generation of the layout of virtual tables.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_AST_VTABLEBUILDER_H
14 #define LLVM_CLANG_AST_VTABLEBUILDER_H
15 
16 #include "clang/AST/BaseSubobject.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/GlobalDecl.h"
19 #include "clang/AST/RecordLayout.h"
20 #include "clang/Basic/ABI.h"
21 #include "clang/Basic/Thunk.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include <memory>
24 #include <utility>
25 
26 namespace clang {
27   class CXXRecordDecl;
28 
29 /// Represents a single component in a vtable.
30 class VTableComponent {
31 public:
32   enum Kind {
33     CK_VCallOffset,
34     CK_VBaseOffset,
35     CK_OffsetToTop,
36     CK_RTTI,
37     CK_FunctionPointer,
38 
39     /// A pointer to the complete destructor.
40     CK_CompleteDtorPointer,
41 
42     /// A pointer to the deleting destructor.
43     CK_DeletingDtorPointer,
44 
45     /// An entry that is never used.
46     ///
47     /// In some cases, a vtable function pointer will end up never being
48     /// called. Such vtable function pointers are represented as a
49     /// CK_UnusedFunctionPointer.
50     CK_UnusedFunctionPointer
51   };
52 
53   VTableComponent() = default;
54 
55   static VTableComponent MakeVCallOffset(CharUnits Offset) {
56     return VTableComponent(CK_VCallOffset, Offset);
57   }
58 
59   static VTableComponent MakeVBaseOffset(CharUnits Offset) {
60     return VTableComponent(CK_VBaseOffset, Offset);
61   }
62 
63   static VTableComponent MakeOffsetToTop(CharUnits Offset) {
64     return VTableComponent(CK_OffsetToTop, Offset);
65   }
66 
67   static VTableComponent MakeRTTI(const CXXRecordDecl *RD) {
68     return VTableComponent(CK_RTTI, reinterpret_cast<uintptr_t>(RD));
69   }
70 
71   static VTableComponent MakeFunction(const CXXMethodDecl *MD) {
72     assert(!isa<CXXDestructorDecl>(MD) &&
73            "Don't use MakeFunction with destructors!");
74 
75     return VTableComponent(CK_FunctionPointer,
76                            reinterpret_cast<uintptr_t>(MD));
77   }
78 
79   static VTableComponent MakeCompleteDtor(const CXXDestructorDecl *DD) {
80     return VTableComponent(CK_CompleteDtorPointer,
81                            reinterpret_cast<uintptr_t>(DD));
82   }
83 
84   static VTableComponent MakeDeletingDtor(const CXXDestructorDecl *DD) {
85     return VTableComponent(CK_DeletingDtorPointer,
86                            reinterpret_cast<uintptr_t>(DD));
87   }
88 
89   static VTableComponent MakeUnusedFunction(const CXXMethodDecl *MD) {
90     assert(!isa<CXXDestructorDecl>(MD) &&
91            "Don't use MakeUnusedFunction with destructors!");
92     return VTableComponent(CK_UnusedFunctionPointer,
93                            reinterpret_cast<uintptr_t>(MD));
94   }
95 
96   /// Get the kind of this vtable component.
97   Kind getKind() const {
98     return (Kind)(Value & 0x7);
99   }
100 
101   CharUnits getVCallOffset() const {
102     assert(getKind() == CK_VCallOffset && "Invalid component kind!");
103 
104     return getOffset();
105   }
106 
107   CharUnits getVBaseOffset() const {
108     assert(getKind() == CK_VBaseOffset && "Invalid component kind!");
109 
110     return getOffset();
111   }
112 
113   CharUnits getOffsetToTop() const {
114     assert(getKind() == CK_OffsetToTop && "Invalid component kind!");
115 
116     return getOffset();
117   }
118 
119   const CXXRecordDecl *getRTTIDecl() const {
120     assert(isRTTIKind() && "Invalid component kind!");
121     return reinterpret_cast<CXXRecordDecl *>(getPointer());
122   }
123 
124   const CXXMethodDecl *getFunctionDecl() const {
125     assert(isFunctionPointerKind() && "Invalid component kind!");
126     if (isDestructorKind())
127       return getDestructorDecl();
128     return reinterpret_cast<CXXMethodDecl *>(getPointer());
129   }
130 
131   const CXXDestructorDecl *getDestructorDecl() const {
132     assert(isDestructorKind() && "Invalid component kind!");
133     return reinterpret_cast<CXXDestructorDecl *>(getPointer());
134   }
135 
136   const CXXMethodDecl *getUnusedFunctionDecl() const {
137     assert(getKind() == CK_UnusedFunctionPointer && "Invalid component kind!");
138     return reinterpret_cast<CXXMethodDecl *>(getPointer());
139   }
140 
141   bool isDestructorKind() const { return isDestructorKind(getKind()); }
142 
143   bool isUsedFunctionPointerKind() const {
144     return isUsedFunctionPointerKind(getKind());
145   }
146 
147   bool isFunctionPointerKind() const {
148     return isFunctionPointerKind(getKind());
149   }
150 
151   bool isRTTIKind() const { return isRTTIKind(getKind()); }
152 
153   GlobalDecl getGlobalDecl() const {
154     assert(isUsedFunctionPointerKind() &&
155            "GlobalDecl can be created only from virtual function");
156 
157     auto *DtorDecl = dyn_cast<CXXDestructorDecl>(getFunctionDecl());
158     switch (getKind()) {
159     case CK_FunctionPointer:
160       return GlobalDecl(getFunctionDecl());
161     case CK_CompleteDtorPointer:
162       return GlobalDecl(DtorDecl, CXXDtorType::Dtor_Complete);
163     case CK_DeletingDtorPointer:
164       return GlobalDecl(DtorDecl, CXXDtorType::Dtor_Deleting);
165     case CK_VCallOffset:
166     case CK_VBaseOffset:
167     case CK_OffsetToTop:
168     case CK_RTTI:
169     case CK_UnusedFunctionPointer:
170       llvm_unreachable("Only function pointers kinds");
171     }
172     llvm_unreachable("Should already return");
173   }
174 
175 private:
176   static bool isFunctionPointerKind(Kind ComponentKind) {
177     return isUsedFunctionPointerKind(ComponentKind) ||
178            ComponentKind == CK_UnusedFunctionPointer;
179   }
180   static bool isUsedFunctionPointerKind(Kind ComponentKind) {
181     return ComponentKind == CK_FunctionPointer ||
182            isDestructorKind(ComponentKind);
183   }
184   static bool isDestructorKind(Kind ComponentKind) {
185     return ComponentKind == CK_CompleteDtorPointer ||
186            ComponentKind == CK_DeletingDtorPointer;
187   }
188   static bool isRTTIKind(Kind ComponentKind) {
189     return ComponentKind == CK_RTTI;
190   }
191 
192   VTableComponent(Kind ComponentKind, CharUnits Offset) {
193     assert((ComponentKind == CK_VCallOffset ||
194             ComponentKind == CK_VBaseOffset ||
195             ComponentKind == CK_OffsetToTop) && "Invalid component kind!");
196     assert(Offset.getQuantity() < (1LL << 56) && "Offset is too big!");
197     assert(Offset.getQuantity() >= -(1LL << 56) && "Offset is too small!");
198 
199     Value = (uint64_t(Offset.getQuantity()) << 3) | ComponentKind;
200   }
201 
202   VTableComponent(Kind ComponentKind, uintptr_t Ptr) {
203     assert((isRTTIKind(ComponentKind) || isFunctionPointerKind(ComponentKind)) &&
204            "Invalid component kind!");
205 
206     assert((Ptr & 7) == 0 && "Pointer not sufficiently aligned!");
207 
208     Value = Ptr | ComponentKind;
209   }
210 
211   CharUnits getOffset() const {
212     assert((getKind() == CK_VCallOffset || getKind() == CK_VBaseOffset ||
213             getKind() == CK_OffsetToTop) && "Invalid component kind!");
214 
215     return CharUnits::fromQuantity(Value >> 3);
216   }
217 
218   uintptr_t getPointer() const {
219     assert((getKind() == CK_RTTI || isFunctionPointerKind()) &&
220            "Invalid component kind!");
221 
222     return static_cast<uintptr_t>(Value & ~7ULL);
223   }
224 
225   /// The kind is stored in the lower 3 bits of the value. For offsets, we
226   /// make use of the facts that classes can't be larger than 2^55 bytes,
227   /// so we store the offset in the lower part of the 61 bits that remain.
228   /// (The reason that we're not simply using a PointerIntPair here is that we
229   /// need the offsets to be 64-bit, even when on a 32-bit machine).
230   int64_t Value;
231 };
232 
233 class VTableLayout {
234 public:
235   typedef std::pair<uint64_t, ThunkInfo> VTableThunkTy;
236   struct AddressPointLocation {
237     unsigned VTableIndex, AddressPointIndex;
238   };
239   typedef llvm::DenseMap<BaseSubobject, AddressPointLocation>
240       AddressPointsMapTy;
241 
242   // Mapping between the VTable index and address point index. This is useful
243   // when you don't care about the base subobjects and only want the address
244   // point for a given vtable index.
245   typedef llvm::SmallVector<unsigned, 4> AddressPointsIndexMapTy;
246 
247 private:
248   // Stores the component indices of the first component of each virtual table in
249   // the virtual table group. To save a little memory in the common case where
250   // the vtable group contains a single vtable, an empty vector here represents
251   // the vector {0}.
252   OwningArrayRef<size_t> VTableIndices;
253 
254   OwningArrayRef<VTableComponent> VTableComponents;
255 
256   /// Contains thunks needed by vtables, sorted by indices.
257   OwningArrayRef<VTableThunkTy> VTableThunks;
258 
259   /// Address points for all vtables.
260   AddressPointsMapTy AddressPoints;
261 
262   /// Address points for all vtable indices.
263   AddressPointsIndexMapTy AddressPointIndices;
264 
265 public:
266   VTableLayout(ArrayRef<size_t> VTableIndices,
267                ArrayRef<VTableComponent> VTableComponents,
268                ArrayRef<VTableThunkTy> VTableThunks,
269                const AddressPointsMapTy &AddressPoints);
270   ~VTableLayout();
271 
272   ArrayRef<VTableComponent> vtable_components() const {
273     return VTableComponents;
274   }
275 
276   ArrayRef<VTableThunkTy> vtable_thunks() const {
277     return VTableThunks;
278   }
279 
280   AddressPointLocation getAddressPoint(BaseSubobject Base) const {
281     assert(AddressPoints.count(Base) && "Did not find address point!");
282     return AddressPoints.find(Base)->second;
283   }
284 
285   const AddressPointsMapTy &getAddressPoints() const {
286     return AddressPoints;
287   }
288 
289   const AddressPointsIndexMapTy &getAddressPointIndices() const {
290     return AddressPointIndices;
291   }
292 
293   size_t getNumVTables() const {
294     if (VTableIndices.empty())
295       return 1;
296     return VTableIndices.size();
297   }
298 
299   size_t getVTableOffset(size_t i) const {
300     if (VTableIndices.empty()) {
301       assert(i == 0);
302       return 0;
303     }
304     return VTableIndices[i];
305   }
306 
307   size_t getVTableSize(size_t i) const {
308     if (VTableIndices.empty()) {
309       assert(i == 0);
310       return vtable_components().size();
311     }
312 
313     size_t thisIndex = VTableIndices[i];
314     size_t nextIndex = (i + 1 == VTableIndices.size())
315                            ? vtable_components().size()
316                            : VTableIndices[i + 1];
317     return nextIndex - thisIndex;
318   }
319 };
320 
321 class VTableContextBase {
322 public:
323   typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
324 
325   bool isMicrosoft() const { return IsMicrosoftABI; }
326 
327   virtual ~VTableContextBase() {}
328 
329 protected:
330   typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
331 
332   /// Contains all thunks that a given method decl will need.
333   ThunksMapTy Thunks;
334 
335   /// Compute and store all vtable related information (vtable layout, vbase
336   /// offset offsets, thunks etc) for the given record decl.
337   virtual void computeVTableRelatedInformation(const CXXRecordDecl *RD) = 0;
338 
339   VTableContextBase(bool MS) : IsMicrosoftABI(MS) {}
340 
341 public:
342   virtual const ThunkInfoVectorTy *getThunkInfo(GlobalDecl GD) {
343     const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()->getCanonicalDecl());
344     computeVTableRelatedInformation(MD->getParent());
345 
346     // This assumes that all the destructors present in the vtable
347     // use exactly the same set of thunks.
348     ThunksMapTy::const_iterator I = Thunks.find(MD);
349     if (I == Thunks.end()) {
350       // We did not find a thunk for this method.
351       return nullptr;
352     }
353 
354     return &I->second;
355   }
356 
357   bool IsMicrosoftABI;
358 
359   /// Determine whether this function should be assigned a vtable slot.
360   static bool hasVtableSlot(const CXXMethodDecl *MD);
361 };
362 
363 class ItaniumVTableContext : public VTableContextBase {
364 private:
365 
366   /// Contains the index (relative to the vtable address point)
367   /// where the function pointer for a virtual function is stored.
368   typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy;
369   MethodVTableIndicesTy MethodVTableIndices;
370 
371   typedef llvm::DenseMap<const CXXRecordDecl *,
372                          std::unique_ptr<const VTableLayout>>
373       VTableLayoutMapTy;
374   VTableLayoutMapTy VTableLayouts;
375 
376   typedef std::pair<const CXXRecordDecl *,
377                     const CXXRecordDecl *> ClassPairTy;
378 
379   /// vtable offsets for offsets of virtual bases of a class.
380   ///
381   /// Contains the vtable offset (relative to the address point) in chars
382   /// where the offsets for virtual bases of a class are stored.
383   typedef llvm::DenseMap<ClassPairTy, CharUnits>
384     VirtualBaseClassOffsetOffsetsMapTy;
385   VirtualBaseClassOffsetOffsetsMapTy VirtualBaseClassOffsetOffsets;
386 
387   void computeVTableRelatedInformation(const CXXRecordDecl *RD) override;
388 
389 public:
390   enum VTableComponentLayout {
391     /// Components in the vtable are pointers to other structs/functions.
392     Pointer,
393 
394     /// Components in the vtable are relative offsets between the vtable and the
395     /// other structs/functions.
396     Relative,
397   };
398 
399   ItaniumVTableContext(ASTContext &Context,
400                        VTableComponentLayout ComponentLayout = Pointer);
401   ~ItaniumVTableContext() override;
402 
403   const VTableLayout &getVTableLayout(const CXXRecordDecl *RD) {
404     computeVTableRelatedInformation(RD);
405     assert(VTableLayouts.count(RD) && "No layout for this record decl!");
406 
407     return *VTableLayouts[RD];
408   }
409 
410   std::unique_ptr<VTableLayout> createConstructionVTableLayout(
411       const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset,
412       bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass);
413 
414   /// Locate a virtual function in the vtable.
415   ///
416   /// Return the index (relative to the vtable address point) where the
417   /// function pointer for the given virtual function is stored.
418   uint64_t getMethodVTableIndex(GlobalDecl GD);
419 
420   /// Return the offset in chars (relative to the vtable address point) where
421   /// the offset of the virtual base that contains the given base is stored,
422   /// otherwise, if no virtual base contains the given class, return 0.
423   ///
424   /// Base must be a virtual base class or an unambiguous base.
425   CharUnits getVirtualBaseOffsetOffset(const CXXRecordDecl *RD,
426                                        const CXXRecordDecl *VBase);
427 
428   static bool classof(const VTableContextBase *VT) {
429     return !VT->isMicrosoft();
430   }
431 
432   VTableComponentLayout getVTableComponentLayout() const {
433     return ComponentLayout;
434   }
435 
436   bool isPointerLayout() const { return ComponentLayout == Pointer; }
437   bool isRelativeLayout() const { return ComponentLayout == Relative; }
438 
439 private:
440   VTableComponentLayout ComponentLayout;
441 };
442 
443 /// Holds information about the inheritance path to a virtual base or function
444 /// table pointer.  A record may contain as many vfptrs or vbptrs as there are
445 /// base subobjects.
446 struct VPtrInfo {
447   typedef SmallVector<const CXXRecordDecl *, 1> BasePath;
448 
449   VPtrInfo(const CXXRecordDecl *RD)
450       : ObjectWithVPtr(RD), IntroducingObject(RD), NextBaseToMangle(RD) {}
451 
452   /// This is the most derived class that has this vptr at offset zero. When
453   /// single inheritance is used, this is always the most derived class. If
454   /// multiple inheritance is used, it may be any direct or indirect base.
455   const CXXRecordDecl *ObjectWithVPtr;
456 
457   /// This is the class that introduced the vptr by declaring new virtual
458   /// methods or virtual bases.
459   const CXXRecordDecl *IntroducingObject;
460 
461   /// IntroducingObject is at this offset from its containing complete object or
462   /// virtual base.
463   CharUnits NonVirtualOffset;
464 
465   /// The bases from the inheritance path that got used to mangle the vbtable
466   /// name.  This is not really a full path like a CXXBasePath.  It holds the
467   /// subset of records that need to be mangled into the vbtable symbol name in
468   /// order to get a unique name.
469   BasePath MangledPath;
470 
471   /// The next base to push onto the mangled path if this path is ambiguous in a
472   /// derived class.  If it's null, then it's already been pushed onto the path.
473   const CXXRecordDecl *NextBaseToMangle;
474 
475   /// The set of possibly indirect vbases that contain this vbtable.  When a
476   /// derived class indirectly inherits from the same vbase twice, we only keep
477   /// vtables and their paths from the first instance.
478   BasePath ContainingVBases;
479 
480   /// This holds the base classes path from the complete type to the first base
481   /// with the given vfptr offset, in the base-to-derived order.  Only used for
482   /// vftables.
483   BasePath PathToIntroducingObject;
484 
485   /// Static offset from the top of the most derived class to this vfptr,
486   /// including any virtual base offset.  Only used for vftables.
487   CharUnits FullOffsetInMDC;
488 
489   /// The vptr is stored inside the non-virtual component of this virtual base.
490   const CXXRecordDecl *getVBaseWithVPtr() const {
491     return ContainingVBases.empty() ? nullptr : ContainingVBases.front();
492   }
493 };
494 
495 typedef SmallVector<std::unique_ptr<VPtrInfo>, 2> VPtrInfoVector;
496 
497 /// All virtual base related information about a given record decl.  Includes
498 /// information on all virtual base tables and the path components that are used
499 /// to mangle them.
500 struct VirtualBaseInfo {
501   /// A map from virtual base to vbtable index for doing a conversion from the
502   /// the derived class to the a base.
503   llvm::DenseMap<const CXXRecordDecl *, unsigned> VBTableIndices;
504 
505   /// Information on all virtual base tables used when this record is the most
506   /// derived class.
507   VPtrInfoVector VBPtrPaths;
508 };
509 
510 struct MethodVFTableLocation {
511   /// If nonzero, holds the vbtable index of the virtual base with the vfptr.
512   uint64_t VBTableIndex;
513 
514   /// If nonnull, holds the last vbase which contains the vfptr that the
515   /// method definition is adjusted to.
516   const CXXRecordDecl *VBase;
517 
518   /// This is the offset of the vfptr from the start of the last vbase, or the
519   /// complete type if there are no virtual bases.
520   CharUnits VFPtrOffset;
521 
522   /// Method's index in the vftable.
523   uint64_t Index;
524 
525   MethodVFTableLocation()
526       : VBTableIndex(0), VBase(nullptr), VFPtrOffset(CharUnits::Zero()),
527         Index(0) {}
528 
529   MethodVFTableLocation(uint64_t VBTableIndex, const CXXRecordDecl *VBase,
530                         CharUnits VFPtrOffset, uint64_t Index)
531       : VBTableIndex(VBTableIndex), VBase(VBase), VFPtrOffset(VFPtrOffset),
532         Index(Index) {}
533 
534   bool operator<(const MethodVFTableLocation &other) const {
535     if (VBTableIndex != other.VBTableIndex) {
536       assert(VBase != other.VBase);
537       return VBTableIndex < other.VBTableIndex;
538     }
539     return std::tie(VFPtrOffset, Index) <
540            std::tie(other.VFPtrOffset, other.Index);
541   }
542 };
543 
544 class MicrosoftVTableContext : public VTableContextBase {
545 public:
546 
547 private:
548   ASTContext &Context;
549 
550   typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation>
551     MethodVFTableLocationsTy;
552   MethodVFTableLocationsTy MethodVFTableLocations;
553 
554   typedef llvm::DenseMap<const CXXRecordDecl *, std::unique_ptr<VPtrInfoVector>>
555       VFPtrLocationsMapTy;
556   VFPtrLocationsMapTy VFPtrLocations;
557 
558   typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy;
559   typedef llvm::DenseMap<VFTableIdTy, std::unique_ptr<const VTableLayout>>
560       VFTableLayoutMapTy;
561   VFTableLayoutMapTy VFTableLayouts;
562 
563   llvm::DenseMap<const CXXRecordDecl *, std::unique_ptr<VirtualBaseInfo>>
564       VBaseInfo;
565 
566   void computeVTableRelatedInformation(const CXXRecordDecl *RD) override;
567 
568   void dumpMethodLocations(const CXXRecordDecl *RD,
569                            const MethodVFTableLocationsTy &NewMethods,
570                            raw_ostream &);
571 
572   const VirtualBaseInfo &
573   computeVBTableRelatedInformation(const CXXRecordDecl *RD);
574 
575   void computeVTablePaths(bool ForVBTables, const CXXRecordDecl *RD,
576                           VPtrInfoVector &Paths);
577 
578 public:
579   MicrosoftVTableContext(ASTContext &Context)
580       : VTableContextBase(/*MS=*/true), Context(Context) {}
581 
582   ~MicrosoftVTableContext() override;
583 
584   const VPtrInfoVector &getVFPtrOffsets(const CXXRecordDecl *RD);
585 
586   const VTableLayout &getVFTableLayout(const CXXRecordDecl *RD,
587                                        CharUnits VFPtrOffset);
588 
589   MethodVFTableLocation getMethodVFTableLocation(GlobalDecl GD);
590 
591   const ThunkInfoVectorTy *getThunkInfo(GlobalDecl GD) override {
592     // Complete destructors don't have a slot in a vftable, so no thunks needed.
593     if (isa<CXXDestructorDecl>(GD.getDecl()) &&
594         GD.getDtorType() == Dtor_Complete)
595       return nullptr;
596     return VTableContextBase::getThunkInfo(GD);
597   }
598 
599   /// Returns the index of VBase in the vbtable of Derived.
600   /// VBase must be a morally virtual base of Derived.
601   /// The vbtable is an array of i32 offsets.  The first entry is a self entry,
602   /// and the rest are offsets from the vbptr to virtual bases.
603   unsigned getVBTableIndex(const CXXRecordDecl *Derived,
604                            const CXXRecordDecl *VBase);
605 
606   const VPtrInfoVector &enumerateVBTables(const CXXRecordDecl *RD);
607 
608   static bool classof(const VTableContextBase *VT) { return VT->isMicrosoft(); }
609 };
610 
611 } // namespace clang
612 
613 #endif
614