1 //===- ThreadSafetyTIL.h ----------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a simple Typed Intermediate Language, or TIL, that is used
10 // by the thread safety analysis (See ThreadSafety.cpp).  The TIL is intended
11 // to be largely independent of clang, in the hope that the analysis can be
12 // reused for other non-C++ languages.  All dependencies on clang/llvm should
13 // go in ThreadSafetyUtil.h.
14 //
15 // Thread safety analysis works by comparing mutex expressions, e.g.
16 //
17 // class A { Mutex mu; int dat GUARDED_BY(this->mu); }
18 // class B { A a; }
19 //
20 // void foo(B* b) {
21 //   (*b).a.mu.lock();     // locks (*b).a.mu
22 //   b->a.dat = 0;         // substitute &b->a for 'this';
23 //                         // requires lock on (&b->a)->mu
24 //   (b->a.mu).unlock();   // unlocks (b->a.mu)
25 // }
26 //
27 // As illustrated by the above example, clang Exprs are not well-suited to
28 // represent mutex expressions directly, since there is no easy way to compare
29 // Exprs for equivalence.  The thread safety analysis thus lowers clang Exprs
30 // into a simple intermediate language (IL).  The IL supports:
31 //
32 // (1) comparisons for semantic equality of expressions
33 // (2) SSA renaming of variables
34 // (3) wildcards and pattern matching over expressions
35 // (4) hash-based expression lookup
36 //
37 // The TIL is currently very experimental, is intended only for use within
38 // the thread safety analysis, and is subject to change without notice.
39 // After the API stabilizes and matures, it may be appropriate to make this
40 // more generally available to other analyses.
41 //
42 // UNDER CONSTRUCTION.  USE AT YOUR OWN RISK.
43 //
44 //===----------------------------------------------------------------------===//
45 
46 #ifndef LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYTIL_H
47 #define LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYTIL_H
48 
49 #include "clang/AST/Decl.h"
50 #include "clang/Analysis/Analyses/ThreadSafetyUtil.h"
51 #include "clang/Basic/LLVM.h"
52 #include "llvm/ADT/ArrayRef.h"
53 #include "llvm/ADT/None.h"
54 #include "llvm/ADT/Optional.h"
55 #include "llvm/ADT/StringRef.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cstddef>
61 #include <cstdint>
62 #include <iterator>
63 #include <string>
64 #include <utility>
65 
66 namespace clang {
67 
68 class CallExpr;
69 class Expr;
70 class Stmt;
71 
72 namespace threadSafety {
73 namespace til {
74 
75 class BasicBlock;
76 
77 /// Enum for the different distinct classes of SExpr
78 enum TIL_Opcode : unsigned char {
79 #define TIL_OPCODE_DEF(X) COP_##X,
80 #include "ThreadSafetyOps.def"
81 #undef TIL_OPCODE_DEF
82 };
83 
84 /// Opcode for unary arithmetic operations.
85 enum TIL_UnaryOpcode : unsigned char {
86   UOP_Minus,        //  -
87   UOP_BitNot,       //  ~
88   UOP_LogicNot      //  !
89 };
90 
91 /// Opcode for binary arithmetic operations.
92 enum TIL_BinaryOpcode : unsigned char {
93   BOP_Add,          //  +
94   BOP_Sub,          //  -
95   BOP_Mul,          //  *
96   BOP_Div,          //  /
97   BOP_Rem,          //  %
98   BOP_Shl,          //  <<
99   BOP_Shr,          //  >>
100   BOP_BitAnd,       //  &
101   BOP_BitXor,       //  ^
102   BOP_BitOr,        //  |
103   BOP_Eq,           //  ==
104   BOP_Neq,          //  !=
105   BOP_Lt,           //  <
106   BOP_Leq,          //  <=
107   BOP_Cmp,          //  <=>
108   BOP_LogicAnd,     //  &&  (no short-circuit)
109   BOP_LogicOr       //  ||  (no short-circuit)
110 };
111 
112 /// Opcode for cast operations.
113 enum TIL_CastOpcode : unsigned char {
114   CAST_none = 0,
115 
116   // Extend precision of numeric type
117   CAST_extendNum,
118 
119   // Truncate precision of numeric type
120   CAST_truncNum,
121 
122   // Convert to floating point type
123   CAST_toFloat,
124 
125   // Convert to integer type
126   CAST_toInt,
127 
128   // Convert smart pointer to pointer (C++ only)
129   CAST_objToPtr
130 };
131 
132 const TIL_Opcode       COP_Min  = COP_Future;
133 const TIL_Opcode       COP_Max  = COP_Branch;
134 const TIL_UnaryOpcode  UOP_Min  = UOP_Minus;
135 const TIL_UnaryOpcode  UOP_Max  = UOP_LogicNot;
136 const TIL_BinaryOpcode BOP_Min  = BOP_Add;
137 const TIL_BinaryOpcode BOP_Max  = BOP_LogicOr;
138 const TIL_CastOpcode   CAST_Min = CAST_none;
139 const TIL_CastOpcode   CAST_Max = CAST_toInt;
140 
141 /// Return the name of a unary opcode.
142 StringRef getUnaryOpcodeString(TIL_UnaryOpcode Op);
143 
144 /// Return the name of a binary opcode.
145 StringRef getBinaryOpcodeString(TIL_BinaryOpcode Op);
146 
147 /// ValueTypes are data types that can actually be held in registers.
148 /// All variables and expressions must have a value type.
149 /// Pointer types are further subdivided into the various heap-allocated
150 /// types, such as functions, records, etc.
151 /// Structured types that are passed by value (e.g. complex numbers)
152 /// require special handling; they use BT_ValueRef, and size ST_0.
153 struct ValueType {
154   enum BaseType : unsigned char {
155     BT_Void = 0,
156     BT_Bool,
157     BT_Int,
158     BT_Float,
159     BT_String,    // String literals
160     BT_Pointer,
161     BT_ValueRef
162   };
163 
164   enum SizeType : unsigned char {
165     ST_0 = 0,
166     ST_1,
167     ST_8,
168     ST_16,
169     ST_32,
170     ST_64,
171     ST_128
172   };
173 
174   ValueType(BaseType B, SizeType Sz, bool S, unsigned char VS)
175       : Base(B), Size(Sz), Signed(S), VectSize(VS) {}
176 
177   inline static SizeType getSizeType(unsigned nbytes);
178 
179   template <class T>
180   inline static ValueType getValueType();
181 
182   BaseType Base;
183   SizeType Size;
184   bool Signed;
185 
186   // 0 for scalar, otherwise num elements in vector
187   unsigned char VectSize;
188 };
189 
190 inline ValueType::SizeType ValueType::getSizeType(unsigned nbytes) {
191   switch (nbytes) {
192     case 1: return ST_8;
193     case 2: return ST_16;
194     case 4: return ST_32;
195     case 8: return ST_64;
196     case 16: return ST_128;
197     default: return ST_0;
198   }
199 }
200 
201 template<>
202 inline ValueType ValueType::getValueType<void>() {
203   return ValueType(BT_Void, ST_0, false, 0);
204 }
205 
206 template<>
207 inline ValueType ValueType::getValueType<bool>() {
208   return ValueType(BT_Bool, ST_1, false, 0);
209 }
210 
211 template<>
212 inline ValueType ValueType::getValueType<int8_t>() {
213   return ValueType(BT_Int, ST_8, true, 0);
214 }
215 
216 template<>
217 inline ValueType ValueType::getValueType<uint8_t>() {
218   return ValueType(BT_Int, ST_8, false, 0);
219 }
220 
221 template<>
222 inline ValueType ValueType::getValueType<int16_t>() {
223   return ValueType(BT_Int, ST_16, true, 0);
224 }
225 
226 template<>
227 inline ValueType ValueType::getValueType<uint16_t>() {
228   return ValueType(BT_Int, ST_16, false, 0);
229 }
230 
231 template<>
232 inline ValueType ValueType::getValueType<int32_t>() {
233   return ValueType(BT_Int, ST_32, true, 0);
234 }
235 
236 template<>
237 inline ValueType ValueType::getValueType<uint32_t>() {
238   return ValueType(BT_Int, ST_32, false, 0);
239 }
240 
241 template<>
242 inline ValueType ValueType::getValueType<int64_t>() {
243   return ValueType(BT_Int, ST_64, true, 0);
244 }
245 
246 template<>
247 inline ValueType ValueType::getValueType<uint64_t>() {
248   return ValueType(BT_Int, ST_64, false, 0);
249 }
250 
251 template<>
252 inline ValueType ValueType::getValueType<float>() {
253   return ValueType(BT_Float, ST_32, true, 0);
254 }
255 
256 template<>
257 inline ValueType ValueType::getValueType<double>() {
258   return ValueType(BT_Float, ST_64, true, 0);
259 }
260 
261 template<>
262 inline ValueType ValueType::getValueType<long double>() {
263   return ValueType(BT_Float, ST_128, true, 0);
264 }
265 
266 template<>
267 inline ValueType ValueType::getValueType<StringRef>() {
268   return ValueType(BT_String, getSizeType(sizeof(StringRef)), false, 0);
269 }
270 
271 template<>
272 inline ValueType ValueType::getValueType<void*>() {
273   return ValueType(BT_Pointer, getSizeType(sizeof(void*)), false, 0);
274 }
275 
276 /// Base class for AST nodes in the typed intermediate language.
277 class SExpr {
278 public:
279   SExpr() = delete;
280 
281   TIL_Opcode opcode() const { return Opcode; }
282 
283   // Subclasses of SExpr must define the following:
284   //
285   // This(const This& E, ...) {
286   //   copy constructor: construct copy of E, with some additional arguments.
287   // }
288   //
289   // template <class V>
290   // typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
291   //   traverse all subexpressions, following the traversal/rewriter interface.
292   // }
293   //
294   // template <class C> typename C::CType compare(CType* E, C& Cmp) {
295   //   compare all subexpressions, following the comparator interface
296   // }
297   void *operator new(size_t S, MemRegionRef &R) {
298     return ::operator new(S, R);
299   }
300 
301   /// SExpr objects must be created in an arena.
302   void *operator new(size_t) = delete;
303 
304   /// SExpr objects cannot be deleted.
305   // This declaration is public to workaround a gcc bug that breaks building
306   // with REQUIRES_EH=1.
307   void operator delete(void *) = delete;
308 
309   /// Returns the instruction ID for this expression.
310   /// All basic block instructions have a unique ID (i.e. virtual register).
311   unsigned id() const { return SExprID; }
312 
313   /// Returns the block, if this is an instruction in a basic block,
314   /// otherwise returns null.
315   BasicBlock *block() const { return Block; }
316 
317   /// Set the basic block and instruction ID for this expression.
318   void setID(BasicBlock *B, unsigned id) { Block = B; SExprID = id; }
319 
320 protected:
321   SExpr(TIL_Opcode Op) : Opcode(Op) {}
322   SExpr(const SExpr &E) : Opcode(E.Opcode), Flags(E.Flags) {}
323 
324   const TIL_Opcode Opcode;
325   unsigned char Reserved = 0;
326   unsigned short Flags = 0;
327   unsigned SExprID = 0;
328   BasicBlock *Block = nullptr;
329 };
330 
331 // Contains various helper functions for SExprs.
332 namespace ThreadSafetyTIL {
333 
334 inline bool isTrivial(const SExpr *E) {
335   TIL_Opcode Op = E->opcode();
336   return Op == COP_Variable || Op == COP_Literal || Op == COP_LiteralPtr;
337 }
338 
339 } // namespace ThreadSafetyTIL
340 
341 // Nodes which declare variables
342 
343 /// A named variable, e.g. "x".
344 ///
345 /// There are two distinct places in which a Variable can appear in the AST.
346 /// A variable declaration introduces a new variable, and can occur in 3 places:
347 ///   Let-expressions:           (Let (x = t) u)
348 ///   Functions:                 (Function (x : t) u)
349 ///   Self-applicable functions  (SFunction (x) t)
350 ///
351 /// If a variable occurs in any other location, it is a reference to an existing
352 /// variable declaration -- e.g. 'x' in (x * y + z). To save space, we don't
353 /// allocate a separate AST node for variable references; a reference is just a
354 /// pointer to the original declaration.
355 class Variable : public SExpr {
356 public:
357   enum VariableKind {
358     /// Let-variable
359     VK_Let,
360 
361     /// Function parameter
362     VK_Fun,
363 
364     /// SFunction (self) parameter
365     VK_SFun
366   };
367 
368   Variable(StringRef s, SExpr *D = nullptr)
369       : SExpr(COP_Variable), Name(s), Definition(D) {
370     Flags = VK_Let;
371   }
372 
373   Variable(SExpr *D, const ValueDecl *Cvd = nullptr)
374       : SExpr(COP_Variable), Name(Cvd ? Cvd->getName() : "_x"),
375         Definition(D), Cvdecl(Cvd) {
376     Flags = VK_Let;
377   }
378 
379   Variable(const Variable &Vd, SExpr *D)  // rewrite constructor
380       : SExpr(Vd), Name(Vd.Name), Definition(D), Cvdecl(Vd.Cvdecl) {
381     Flags = Vd.kind();
382   }
383 
384   static bool classof(const SExpr *E) { return E->opcode() == COP_Variable; }
385 
386   /// Return the kind of variable (let, function param, or self)
387   VariableKind kind() const { return static_cast<VariableKind>(Flags); }
388 
389   /// Return the name of the variable, if any.
390   StringRef name() const { return Name; }
391 
392   /// Return the clang declaration for this variable, if any.
393   const ValueDecl *clangDecl() const { return Cvdecl; }
394 
395   /// Return the definition of the variable.
396   /// For let-vars, this is the setting expression.
397   /// For function and self parameters, it is the type of the variable.
398   SExpr *definition() { return Definition; }
399   const SExpr *definition() const { return Definition; }
400 
401   void setName(StringRef S)    { Name = S;  }
402   void setKind(VariableKind K) { Flags = K; }
403   void setDefinition(SExpr *E) { Definition = E; }
404   void setClangDecl(const ValueDecl *VD) { Cvdecl = VD; }
405 
406   template <class V>
407   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
408     // This routine is only called for variable references.
409     return Vs.reduceVariableRef(this);
410   }
411 
412   template <class C>
413   typename C::CType compare(const Variable* E, C& Cmp) const {
414     return Cmp.compareVariableRefs(this, E);
415   }
416 
417 private:
418   friend class BasicBlock;
419   friend class Function;
420   friend class Let;
421   friend class SFunction;
422 
423   // The name of the variable.
424   StringRef Name;
425 
426   // The TIL type or definition.
427   SExpr *Definition;
428 
429   // The clang declaration for this variable.
430   const ValueDecl *Cvdecl = nullptr;
431 };
432 
433 /// Placeholder for an expression that has not yet been created.
434 /// Used to implement lazy copy and rewriting strategies.
435 class Future : public SExpr {
436 public:
437   enum FutureStatus {
438     FS_pending,
439     FS_evaluating,
440     FS_done
441   };
442 
443   Future() : SExpr(COP_Future) {}
444   virtual ~Future() = delete;
445 
446   static bool classof(const SExpr *E) { return E->opcode() == COP_Future; }
447 
448   // A lazy rewriting strategy should subclass Future and override this method.
449   virtual SExpr *compute() { return nullptr; }
450 
451   // Return the result of this future if it exists, otherwise return null.
452   SExpr *maybeGetResult() const { return Result; }
453 
454   // Return the result of this future; forcing it if necessary.
455   SExpr *result() {
456     switch (Status) {
457     case FS_pending:
458       return force();
459     case FS_evaluating:
460       return nullptr; // infinite loop; illegal recursion.
461     case FS_done:
462       return Result;
463     }
464   }
465 
466   template <class V>
467   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
468     assert(Result && "Cannot traverse Future that has not been forced.");
469     return Vs.traverse(Result, Ctx);
470   }
471 
472   template <class C>
473   typename C::CType compare(const Future* E, C& Cmp) const {
474     if (!Result || !E->Result)
475       return Cmp.comparePointers(this, E);
476     return Cmp.compare(Result, E->Result);
477   }
478 
479 private:
480   SExpr* force();
481 
482   FutureStatus Status = FS_pending;
483   SExpr *Result = nullptr;
484 };
485 
486 /// Placeholder for expressions that cannot be represented in the TIL.
487 class Undefined : public SExpr {
488 public:
489   Undefined(const Stmt *S = nullptr) : SExpr(COP_Undefined), Cstmt(S) {}
490   Undefined(const Undefined &U) : SExpr(U), Cstmt(U.Cstmt) {}
491 
492   static bool classof(const SExpr *E) { return E->opcode() == COP_Undefined; }
493 
494   template <class V>
495   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
496     return Vs.reduceUndefined(*this);
497   }
498 
499   template <class C>
500   typename C::CType compare(const Undefined* E, C& Cmp) const {
501     return Cmp.trueResult();
502   }
503 
504 private:
505   const Stmt *Cstmt;
506 };
507 
508 /// Placeholder for a wildcard that matches any other expression.
509 class Wildcard : public SExpr {
510 public:
511   Wildcard() : SExpr(COP_Wildcard) {}
512   Wildcard(const Wildcard &) = default;
513 
514   static bool classof(const SExpr *E) { return E->opcode() == COP_Wildcard; }
515 
516   template <class V> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
517     return Vs.reduceWildcard(*this);
518   }
519 
520   template <class C>
521   typename C::CType compare(const Wildcard* E, C& Cmp) const {
522     return Cmp.trueResult();
523   }
524 };
525 
526 template <class T> class LiteralT;
527 
528 // Base class for literal values.
529 class Literal : public SExpr {
530 public:
531   Literal(const Expr *C)
532      : SExpr(COP_Literal), ValType(ValueType::getValueType<void>()), Cexpr(C) {}
533   Literal(ValueType VT) : SExpr(COP_Literal), ValType(VT) {}
534   Literal(const Literal &) = default;
535 
536   static bool classof(const SExpr *E) { return E->opcode() == COP_Literal; }
537 
538   // The clang expression for this literal.
539   const Expr *clangExpr() const { return Cexpr; }
540 
541   ValueType valueType() const { return ValType; }
542 
543   template<class T> const LiteralT<T>& as() const {
544     return *static_cast<const LiteralT<T>*>(this);
545   }
546   template<class T> LiteralT<T>& as() {
547     return *static_cast<LiteralT<T>*>(this);
548   }
549 
550   template <class V> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx);
551 
552   template <class C>
553   typename C::CType compare(const Literal* E, C& Cmp) const {
554     // TODO: defer actual comparison to LiteralT
555     return Cmp.trueResult();
556   }
557 
558 private:
559   const ValueType ValType;
560   const Expr *Cexpr = nullptr;
561 };
562 
563 // Derived class for literal values, which stores the actual value.
564 template<class T>
565 class LiteralT : public Literal {
566 public:
567   LiteralT(T Dat) : Literal(ValueType::getValueType<T>()), Val(Dat) {}
568   LiteralT(const LiteralT<T> &L) : Literal(L), Val(L.Val) {}
569 
570   T value() const { return Val;}
571   T& value() { return Val; }
572 
573 private:
574   T Val;
575 };
576 
577 template <class V>
578 typename V::R_SExpr Literal::traverse(V &Vs, typename V::R_Ctx Ctx) {
579   if (Cexpr)
580     return Vs.reduceLiteral(*this);
581 
582   switch (ValType.Base) {
583   case ValueType::BT_Void:
584     break;
585   case ValueType::BT_Bool:
586     return Vs.reduceLiteralT(as<bool>());
587   case ValueType::BT_Int: {
588     switch (ValType.Size) {
589     case ValueType::ST_8:
590       if (ValType.Signed)
591         return Vs.reduceLiteralT(as<int8_t>());
592       else
593         return Vs.reduceLiteralT(as<uint8_t>());
594     case ValueType::ST_16:
595       if (ValType.Signed)
596         return Vs.reduceLiteralT(as<int16_t>());
597       else
598         return Vs.reduceLiteralT(as<uint16_t>());
599     case ValueType::ST_32:
600       if (ValType.Signed)
601         return Vs.reduceLiteralT(as<int32_t>());
602       else
603         return Vs.reduceLiteralT(as<uint32_t>());
604     case ValueType::ST_64:
605       if (ValType.Signed)
606         return Vs.reduceLiteralT(as<int64_t>());
607       else
608         return Vs.reduceLiteralT(as<uint64_t>());
609     default:
610       break;
611     }
612   }
613   case ValueType::BT_Float: {
614     switch (ValType.Size) {
615     case ValueType::ST_32:
616       return Vs.reduceLiteralT(as<float>());
617     case ValueType::ST_64:
618       return Vs.reduceLiteralT(as<double>());
619     default:
620       break;
621     }
622   }
623   case ValueType::BT_String:
624     return Vs.reduceLiteralT(as<StringRef>());
625   case ValueType::BT_Pointer:
626     return Vs.reduceLiteralT(as<void*>());
627   case ValueType::BT_ValueRef:
628     break;
629   }
630   return Vs.reduceLiteral(*this);
631 }
632 
633 /// A Literal pointer to an object allocated in memory.
634 /// At compile time, pointer literals are represented by symbolic names.
635 class LiteralPtr : public SExpr {
636 public:
637   LiteralPtr(const ValueDecl *D) : SExpr(COP_LiteralPtr), Cvdecl(D) {
638     assert(D && "ValueDecl must not be null");
639   }
640   LiteralPtr(const LiteralPtr &) = default;
641 
642   static bool classof(const SExpr *E) { return E->opcode() == COP_LiteralPtr; }
643 
644   // The clang declaration for the value that this pointer points to.
645   const ValueDecl *clangDecl() const { return Cvdecl; }
646 
647   template <class V>
648   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
649     return Vs.reduceLiteralPtr(*this);
650   }
651 
652   template <class C>
653   typename C::CType compare(const LiteralPtr* E, C& Cmp) const {
654     return Cmp.comparePointers(Cvdecl, E->Cvdecl);
655   }
656 
657 private:
658   const ValueDecl *Cvdecl;
659 };
660 
661 /// A function -- a.k.a. lambda abstraction.
662 /// Functions with multiple arguments are created by currying,
663 /// e.g. (Function (x: Int) (Function (y: Int) (Code { return x + y })))
664 class Function : public SExpr {
665 public:
666   Function(Variable *Vd, SExpr *Bd)
667       : SExpr(COP_Function), VarDecl(Vd), Body(Bd) {
668     Vd->setKind(Variable::VK_Fun);
669   }
670 
671   Function(const Function &F, Variable *Vd, SExpr *Bd) // rewrite constructor
672       : SExpr(F), VarDecl(Vd), Body(Bd) {
673     Vd->setKind(Variable::VK_Fun);
674   }
675 
676   static bool classof(const SExpr *E) { return E->opcode() == COP_Function; }
677 
678   Variable *variableDecl()  { return VarDecl; }
679   const Variable *variableDecl() const { return VarDecl; }
680 
681   SExpr *body() { return Body; }
682   const SExpr *body() const { return Body; }
683 
684   template <class V>
685   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
686     // This is a variable declaration, so traverse the definition.
687     auto E0 = Vs.traverse(VarDecl->Definition, Vs.typeCtx(Ctx));
688     // Tell the rewriter to enter the scope of the function.
689     Variable *Nvd = Vs.enterScope(*VarDecl, E0);
690     auto E1 = Vs.traverse(Body, Vs.declCtx(Ctx));
691     Vs.exitScope(*VarDecl);
692     return Vs.reduceFunction(*this, Nvd, E1);
693   }
694 
695   template <class C>
696   typename C::CType compare(const Function* E, C& Cmp) const {
697     typename C::CType Ct =
698       Cmp.compare(VarDecl->definition(), E->VarDecl->definition());
699     if (Cmp.notTrue(Ct))
700       return Ct;
701     Cmp.enterScope(variableDecl(), E->variableDecl());
702     Ct = Cmp.compare(body(), E->body());
703     Cmp.leaveScope();
704     return Ct;
705   }
706 
707 private:
708   Variable *VarDecl;
709   SExpr* Body;
710 };
711 
712 /// A self-applicable function.
713 /// A self-applicable function can be applied to itself.  It's useful for
714 /// implementing objects and late binding.
715 class SFunction : public SExpr {
716 public:
717   SFunction(Variable *Vd, SExpr *B)
718       : SExpr(COP_SFunction), VarDecl(Vd), Body(B) {
719     assert(Vd->Definition == nullptr);
720     Vd->setKind(Variable::VK_SFun);
721     Vd->Definition = this;
722   }
723 
724   SFunction(const SFunction &F, Variable *Vd, SExpr *B) // rewrite constructor
725       : SExpr(F), VarDecl(Vd), Body(B) {
726     assert(Vd->Definition == nullptr);
727     Vd->setKind(Variable::VK_SFun);
728     Vd->Definition = this;
729   }
730 
731   static bool classof(const SExpr *E) { return E->opcode() == COP_SFunction; }
732 
733   Variable *variableDecl() { return VarDecl; }
734   const Variable *variableDecl() const { return VarDecl; }
735 
736   SExpr *body() { return Body; }
737   const SExpr *body() const { return Body; }
738 
739   template <class V>
740   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
741     // A self-variable points to the SFunction itself.
742     // A rewrite must introduce the variable with a null definition, and update
743     // it after 'this' has been rewritten.
744     Variable *Nvd = Vs.enterScope(*VarDecl, nullptr);
745     auto E1 = Vs.traverse(Body, Vs.declCtx(Ctx));
746     Vs.exitScope(*VarDecl);
747     // A rewrite operation will call SFun constructor to set Vvd->Definition.
748     return Vs.reduceSFunction(*this, Nvd, E1);
749   }
750 
751   template <class C>
752   typename C::CType compare(const SFunction* E, C& Cmp) const {
753     Cmp.enterScope(variableDecl(), E->variableDecl());
754     typename C::CType Ct = Cmp.compare(body(), E->body());
755     Cmp.leaveScope();
756     return Ct;
757   }
758 
759 private:
760   Variable *VarDecl;
761   SExpr* Body;
762 };
763 
764 /// A block of code -- e.g. the body of a function.
765 class Code : public SExpr {
766 public:
767   Code(SExpr *T, SExpr *B) : SExpr(COP_Code), ReturnType(T), Body(B) {}
768   Code(const Code &C, SExpr *T, SExpr *B) // rewrite constructor
769       : SExpr(C), ReturnType(T), Body(B) {}
770 
771   static bool classof(const SExpr *E) { return E->opcode() == COP_Code; }
772 
773   SExpr *returnType() { return ReturnType; }
774   const SExpr *returnType() const { return ReturnType; }
775 
776   SExpr *body() { return Body; }
777   const SExpr *body() const { return Body; }
778 
779   template <class V>
780   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
781     auto Nt = Vs.traverse(ReturnType, Vs.typeCtx(Ctx));
782     auto Nb = Vs.traverse(Body,       Vs.lazyCtx(Ctx));
783     return Vs.reduceCode(*this, Nt, Nb);
784   }
785 
786   template <class C>
787   typename C::CType compare(const Code* E, C& Cmp) const {
788     typename C::CType Ct = Cmp.compare(returnType(), E->returnType());
789     if (Cmp.notTrue(Ct))
790       return Ct;
791     return Cmp.compare(body(), E->body());
792   }
793 
794 private:
795   SExpr* ReturnType;
796   SExpr* Body;
797 };
798 
799 /// A typed, writable location in memory
800 class Field : public SExpr {
801 public:
802   Field(SExpr *R, SExpr *B) : SExpr(COP_Field), Range(R), Body(B) {}
803   Field(const Field &C, SExpr *R, SExpr *B) // rewrite constructor
804       : SExpr(C), Range(R), Body(B) {}
805 
806   static bool classof(const SExpr *E) { return E->opcode() == COP_Field; }
807 
808   SExpr *range() { return Range; }
809   const SExpr *range() const { return Range; }
810 
811   SExpr *body() { return Body; }
812   const SExpr *body() const { return Body; }
813 
814   template <class V>
815   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
816     auto Nr = Vs.traverse(Range, Vs.typeCtx(Ctx));
817     auto Nb = Vs.traverse(Body,  Vs.lazyCtx(Ctx));
818     return Vs.reduceField(*this, Nr, Nb);
819   }
820 
821   template <class C>
822   typename C::CType compare(const Field* E, C& Cmp) const {
823     typename C::CType Ct = Cmp.compare(range(), E->range());
824     if (Cmp.notTrue(Ct))
825       return Ct;
826     return Cmp.compare(body(), E->body());
827   }
828 
829 private:
830   SExpr* Range;
831   SExpr* Body;
832 };
833 
834 /// Apply an argument to a function.
835 /// Note that this does not actually call the function.  Functions are curried,
836 /// so this returns a closure in which the first parameter has been applied.
837 /// Once all parameters have been applied, Call can be used to invoke the
838 /// function.
839 class Apply : public SExpr {
840 public:
841   Apply(SExpr *F, SExpr *A) : SExpr(COP_Apply), Fun(F), Arg(A) {}
842   Apply(const Apply &A, SExpr *F, SExpr *Ar)  // rewrite constructor
843       : SExpr(A), Fun(F), Arg(Ar) {}
844 
845   static bool classof(const SExpr *E) { return E->opcode() == COP_Apply; }
846 
847   SExpr *fun() { return Fun; }
848   const SExpr *fun() const { return Fun; }
849 
850   SExpr *arg() { return Arg; }
851   const SExpr *arg() const { return Arg; }
852 
853   template <class V>
854   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
855     auto Nf = Vs.traverse(Fun, Vs.subExprCtx(Ctx));
856     auto Na = Vs.traverse(Arg, Vs.subExprCtx(Ctx));
857     return Vs.reduceApply(*this, Nf, Na);
858   }
859 
860   template <class C>
861   typename C::CType compare(const Apply* E, C& Cmp) const {
862     typename C::CType Ct = Cmp.compare(fun(), E->fun());
863     if (Cmp.notTrue(Ct))
864       return Ct;
865     return Cmp.compare(arg(), E->arg());
866   }
867 
868 private:
869   SExpr* Fun;
870   SExpr* Arg;
871 };
872 
873 /// Apply a self-argument to a self-applicable function.
874 class SApply : public SExpr {
875 public:
876   SApply(SExpr *Sf, SExpr *A = nullptr) : SExpr(COP_SApply), Sfun(Sf), Arg(A) {}
877   SApply(SApply &A, SExpr *Sf, SExpr *Ar = nullptr) // rewrite constructor
878       : SExpr(A), Sfun(Sf), Arg(Ar) {}
879 
880   static bool classof(const SExpr *E) { return E->opcode() == COP_SApply; }
881 
882   SExpr *sfun() { return Sfun; }
883   const SExpr *sfun() const { return Sfun; }
884 
885   SExpr *arg() { return Arg ? Arg : Sfun; }
886   const SExpr *arg() const { return Arg ? Arg : Sfun; }
887 
888   bool isDelegation() const { return Arg != nullptr; }
889 
890   template <class V>
891   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
892     auto Nf = Vs.traverse(Sfun, Vs.subExprCtx(Ctx));
893     typename V::R_SExpr Na = Arg ? Vs.traverse(Arg, Vs.subExprCtx(Ctx))
894                                        : nullptr;
895     return Vs.reduceSApply(*this, Nf, Na);
896   }
897 
898   template <class C>
899   typename C::CType compare(const SApply* E, C& Cmp) const {
900     typename C::CType Ct = Cmp.compare(sfun(), E->sfun());
901     if (Cmp.notTrue(Ct) || (!arg() && !E->arg()))
902       return Ct;
903     return Cmp.compare(arg(), E->arg());
904   }
905 
906 private:
907   SExpr* Sfun;
908   SExpr* Arg;
909 };
910 
911 /// Project a named slot from a C++ struct or class.
912 class Project : public SExpr {
913 public:
914   Project(SExpr *R, const ValueDecl *Cvd)
915       : SExpr(COP_Project), Rec(R), Cvdecl(Cvd) {
916     assert(Cvd && "ValueDecl must not be null");
917   }
918 
919   static bool classof(const SExpr *E) { return E->opcode() == COP_Project; }
920 
921   SExpr *record() { return Rec; }
922   const SExpr *record() const { return Rec; }
923 
924   const ValueDecl *clangDecl() const { return Cvdecl; }
925 
926   bool isArrow() const { return (Flags & 0x01) != 0; }
927 
928   void setArrow(bool b) {
929     if (b) Flags |= 0x01;
930     else Flags &= 0xFFFE;
931   }
932 
933   StringRef slotName() const {
934     if (Cvdecl->getDeclName().isIdentifier())
935       return Cvdecl->getName();
936     if (!SlotName) {
937       SlotName = "";
938       llvm::raw_string_ostream OS(*SlotName);
939       Cvdecl->printName(OS);
940     }
941     return *SlotName;
942   }
943 
944   template <class V>
945   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
946     auto Nr = Vs.traverse(Rec, Vs.subExprCtx(Ctx));
947     return Vs.reduceProject(*this, Nr);
948   }
949 
950   template <class C>
951   typename C::CType compare(const Project* E, C& Cmp) const {
952     typename C::CType Ct = Cmp.compare(record(), E->record());
953     if (Cmp.notTrue(Ct))
954       return Ct;
955     return Cmp.comparePointers(Cvdecl, E->Cvdecl);
956   }
957 
958 private:
959   SExpr* Rec;
960   mutable llvm::Optional<std::string> SlotName;
961   const ValueDecl *Cvdecl;
962 };
963 
964 /// Call a function (after all arguments have been applied).
965 class Call : public SExpr {
966 public:
967   Call(SExpr *T, const CallExpr *Ce = nullptr)
968       : SExpr(COP_Call), Target(T), Cexpr(Ce) {}
969   Call(const Call &C, SExpr *T) : SExpr(C), Target(T), Cexpr(C.Cexpr) {}
970 
971   static bool classof(const SExpr *E) { return E->opcode() == COP_Call; }
972 
973   SExpr *target() { return Target; }
974   const SExpr *target() const { return Target; }
975 
976   const CallExpr *clangCallExpr() const { return Cexpr; }
977 
978   template <class V>
979   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
980     auto Nt = Vs.traverse(Target, Vs.subExprCtx(Ctx));
981     return Vs.reduceCall(*this, Nt);
982   }
983 
984   template <class C>
985   typename C::CType compare(const Call* E, C& Cmp) const {
986     return Cmp.compare(target(), E->target());
987   }
988 
989 private:
990   SExpr* Target;
991   const CallExpr *Cexpr;
992 };
993 
994 /// Allocate memory for a new value on the heap or stack.
995 class Alloc : public SExpr {
996 public:
997   enum AllocKind {
998     AK_Stack,
999     AK_Heap
1000   };
1001 
1002   Alloc(SExpr *D, AllocKind K) : SExpr(COP_Alloc), Dtype(D) { Flags = K; }
1003   Alloc(const Alloc &A, SExpr *Dt) : SExpr(A), Dtype(Dt) { Flags = A.kind(); }
1004 
1005   static bool classof(const SExpr *E) { return E->opcode() == COP_Call; }
1006 
1007   AllocKind kind() const { return static_cast<AllocKind>(Flags); }
1008 
1009   SExpr *dataType() { return Dtype; }
1010   const SExpr *dataType() const { return Dtype; }
1011 
1012   template <class V>
1013   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1014     auto Nd = Vs.traverse(Dtype, Vs.declCtx(Ctx));
1015     return Vs.reduceAlloc(*this, Nd);
1016   }
1017 
1018   template <class C>
1019   typename C::CType compare(const Alloc* E, C& Cmp) const {
1020     typename C::CType Ct = Cmp.compareIntegers(kind(), E->kind());
1021     if (Cmp.notTrue(Ct))
1022       return Ct;
1023     return Cmp.compare(dataType(), E->dataType());
1024   }
1025 
1026 private:
1027   SExpr* Dtype;
1028 };
1029 
1030 /// Load a value from memory.
1031 class Load : public SExpr {
1032 public:
1033   Load(SExpr *P) : SExpr(COP_Load), Ptr(P) {}
1034   Load(const Load &L, SExpr *P) : SExpr(L), Ptr(P) {}
1035 
1036   static bool classof(const SExpr *E) { return E->opcode() == COP_Load; }
1037 
1038   SExpr *pointer() { return Ptr; }
1039   const SExpr *pointer() const { return Ptr; }
1040 
1041   template <class V>
1042   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1043     auto Np = Vs.traverse(Ptr, Vs.subExprCtx(Ctx));
1044     return Vs.reduceLoad(*this, Np);
1045   }
1046 
1047   template <class C>
1048   typename C::CType compare(const Load* E, C& Cmp) const {
1049     return Cmp.compare(pointer(), E->pointer());
1050   }
1051 
1052 private:
1053   SExpr* Ptr;
1054 };
1055 
1056 /// Store a value to memory.
1057 /// The destination is a pointer to a field, the source is the value to store.
1058 class Store : public SExpr {
1059 public:
1060   Store(SExpr *P, SExpr *V) : SExpr(COP_Store), Dest(P), Source(V) {}
1061   Store(const Store &S, SExpr *P, SExpr *V) : SExpr(S), Dest(P), Source(V) {}
1062 
1063   static bool classof(const SExpr *E) { return E->opcode() == COP_Store; }
1064 
1065   SExpr *destination() { return Dest; }  // Address to store to
1066   const SExpr *destination() const { return Dest; }
1067 
1068   SExpr *source() { return Source; }     // Value to store
1069   const SExpr *source() const { return Source; }
1070 
1071   template <class V>
1072   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1073     auto Np = Vs.traverse(Dest,   Vs.subExprCtx(Ctx));
1074     auto Nv = Vs.traverse(Source, Vs.subExprCtx(Ctx));
1075     return Vs.reduceStore(*this, Np, Nv);
1076   }
1077 
1078   template <class C>
1079   typename C::CType compare(const Store* E, C& Cmp) const {
1080     typename C::CType Ct = Cmp.compare(destination(), E->destination());
1081     if (Cmp.notTrue(Ct))
1082       return Ct;
1083     return Cmp.compare(source(), E->source());
1084   }
1085 
1086 private:
1087   SExpr* Dest;
1088   SExpr* Source;
1089 };
1090 
1091 /// If p is a reference to an array, then p[i] is a reference to the i'th
1092 /// element of the array.
1093 class ArrayIndex : public SExpr {
1094 public:
1095   ArrayIndex(SExpr *A, SExpr *N) : SExpr(COP_ArrayIndex), Array(A), Index(N) {}
1096   ArrayIndex(const ArrayIndex &E, SExpr *A, SExpr *N)
1097       : SExpr(E), Array(A), Index(N) {}
1098 
1099   static bool classof(const SExpr *E) { return E->opcode() == COP_ArrayIndex; }
1100 
1101   SExpr *array() { return Array; }
1102   const SExpr *array() const { return Array; }
1103 
1104   SExpr *index() { return Index; }
1105   const SExpr *index() const { return Index; }
1106 
1107   template <class V>
1108   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1109     auto Na = Vs.traverse(Array, Vs.subExprCtx(Ctx));
1110     auto Ni = Vs.traverse(Index, Vs.subExprCtx(Ctx));
1111     return Vs.reduceArrayIndex(*this, Na, Ni);
1112   }
1113 
1114   template <class C>
1115   typename C::CType compare(const ArrayIndex* E, C& Cmp) const {
1116     typename C::CType Ct = Cmp.compare(array(), E->array());
1117     if (Cmp.notTrue(Ct))
1118       return Ct;
1119     return Cmp.compare(index(), E->index());
1120   }
1121 
1122 private:
1123   SExpr* Array;
1124   SExpr* Index;
1125 };
1126 
1127 /// Pointer arithmetic, restricted to arrays only.
1128 /// If p is a reference to an array, then p + n, where n is an integer, is
1129 /// a reference to a subarray.
1130 class ArrayAdd : public SExpr {
1131 public:
1132   ArrayAdd(SExpr *A, SExpr *N) : SExpr(COP_ArrayAdd), Array(A), Index(N) {}
1133   ArrayAdd(const ArrayAdd &E, SExpr *A, SExpr *N)
1134       : SExpr(E), Array(A), Index(N) {}
1135 
1136   static bool classof(const SExpr *E) { return E->opcode() == COP_ArrayAdd; }
1137 
1138   SExpr *array() { return Array; }
1139   const SExpr *array() const { return Array; }
1140 
1141   SExpr *index() { return Index; }
1142   const SExpr *index() const { return Index; }
1143 
1144   template <class V>
1145   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1146     auto Na = Vs.traverse(Array, Vs.subExprCtx(Ctx));
1147     auto Ni = Vs.traverse(Index, Vs.subExprCtx(Ctx));
1148     return Vs.reduceArrayAdd(*this, Na, Ni);
1149   }
1150 
1151   template <class C>
1152   typename C::CType compare(const ArrayAdd* E, C& Cmp) const {
1153     typename C::CType Ct = Cmp.compare(array(), E->array());
1154     if (Cmp.notTrue(Ct))
1155       return Ct;
1156     return Cmp.compare(index(), E->index());
1157   }
1158 
1159 private:
1160   SExpr* Array;
1161   SExpr* Index;
1162 };
1163 
1164 /// Simple arithmetic unary operations, e.g. negate and not.
1165 /// These operations have no side-effects.
1166 class UnaryOp : public SExpr {
1167 public:
1168   UnaryOp(TIL_UnaryOpcode Op, SExpr *E) : SExpr(COP_UnaryOp), Expr0(E) {
1169     Flags = Op;
1170   }
1171 
1172   UnaryOp(const UnaryOp &U, SExpr *E) : SExpr(U), Expr0(E) { Flags = U.Flags; }
1173 
1174   static bool classof(const SExpr *E) { return E->opcode() == COP_UnaryOp; }
1175 
1176   TIL_UnaryOpcode unaryOpcode() const {
1177     return static_cast<TIL_UnaryOpcode>(Flags);
1178   }
1179 
1180   SExpr *expr() { return Expr0; }
1181   const SExpr *expr() const { return Expr0; }
1182 
1183   template <class V>
1184   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1185     auto Ne = Vs.traverse(Expr0, Vs.subExprCtx(Ctx));
1186     return Vs.reduceUnaryOp(*this, Ne);
1187   }
1188 
1189   template <class C>
1190   typename C::CType compare(const UnaryOp* E, C& Cmp) const {
1191     typename C::CType Ct =
1192       Cmp.compareIntegers(unaryOpcode(), E->unaryOpcode());
1193     if (Cmp.notTrue(Ct))
1194       return Ct;
1195     return Cmp.compare(expr(), E->expr());
1196   }
1197 
1198 private:
1199   SExpr* Expr0;
1200 };
1201 
1202 /// Simple arithmetic binary operations, e.g. +, -, etc.
1203 /// These operations have no side effects.
1204 class BinaryOp : public SExpr {
1205 public:
1206   BinaryOp(TIL_BinaryOpcode Op, SExpr *E0, SExpr *E1)
1207       : SExpr(COP_BinaryOp), Expr0(E0), Expr1(E1) {
1208     Flags = Op;
1209   }
1210 
1211   BinaryOp(const BinaryOp &B, SExpr *E0, SExpr *E1)
1212       : SExpr(B), Expr0(E0), Expr1(E1) {
1213     Flags = B.Flags;
1214   }
1215 
1216   static bool classof(const SExpr *E) { return E->opcode() == COP_BinaryOp; }
1217 
1218   TIL_BinaryOpcode binaryOpcode() const {
1219     return static_cast<TIL_BinaryOpcode>(Flags);
1220   }
1221 
1222   SExpr *expr0() { return Expr0; }
1223   const SExpr *expr0() const { return Expr0; }
1224 
1225   SExpr *expr1() { return Expr1; }
1226   const SExpr *expr1() const { return Expr1; }
1227 
1228   template <class V>
1229   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1230     auto Ne0 = Vs.traverse(Expr0, Vs.subExprCtx(Ctx));
1231     auto Ne1 = Vs.traverse(Expr1, Vs.subExprCtx(Ctx));
1232     return Vs.reduceBinaryOp(*this, Ne0, Ne1);
1233   }
1234 
1235   template <class C>
1236   typename C::CType compare(const BinaryOp* E, C& Cmp) const {
1237     typename C::CType Ct =
1238       Cmp.compareIntegers(binaryOpcode(), E->binaryOpcode());
1239     if (Cmp.notTrue(Ct))
1240       return Ct;
1241     Ct = Cmp.compare(expr0(), E->expr0());
1242     if (Cmp.notTrue(Ct))
1243       return Ct;
1244     return Cmp.compare(expr1(), E->expr1());
1245   }
1246 
1247 private:
1248   SExpr* Expr0;
1249   SExpr* Expr1;
1250 };
1251 
1252 /// Cast expressions.
1253 /// Cast expressions are essentially unary operations, but we treat them
1254 /// as a distinct AST node because they only change the type of the result.
1255 class Cast : public SExpr {
1256 public:
1257   Cast(TIL_CastOpcode Op, SExpr *E) : SExpr(COP_Cast), Expr0(E) { Flags = Op; }
1258   Cast(const Cast &C, SExpr *E) : SExpr(C), Expr0(E) { Flags = C.Flags; }
1259 
1260   static bool classof(const SExpr *E) { return E->opcode() == COP_Cast; }
1261 
1262   TIL_CastOpcode castOpcode() const {
1263     return static_cast<TIL_CastOpcode>(Flags);
1264   }
1265 
1266   SExpr *expr() { return Expr0; }
1267   const SExpr *expr() const { return Expr0; }
1268 
1269   template <class V>
1270   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1271     auto Ne = Vs.traverse(Expr0, Vs.subExprCtx(Ctx));
1272     return Vs.reduceCast(*this, Ne);
1273   }
1274 
1275   template <class C>
1276   typename C::CType compare(const Cast* E, C& Cmp) const {
1277     typename C::CType Ct =
1278       Cmp.compareIntegers(castOpcode(), E->castOpcode());
1279     if (Cmp.notTrue(Ct))
1280       return Ct;
1281     return Cmp.compare(expr(), E->expr());
1282   }
1283 
1284 private:
1285   SExpr* Expr0;
1286 };
1287 
1288 class SCFG;
1289 
1290 /// Phi Node, for code in SSA form.
1291 /// Each Phi node has an array of possible values that it can take,
1292 /// depending on where control flow comes from.
1293 class Phi : public SExpr {
1294 public:
1295   using ValArray = SimpleArray<SExpr *>;
1296 
1297   // In minimal SSA form, all Phi nodes are MultiVal.
1298   // During conversion to SSA, incomplete Phi nodes may be introduced, which
1299   // are later determined to be SingleVal, and are thus redundant.
1300   enum Status {
1301     PH_MultiVal = 0, // Phi node has multiple distinct values.  (Normal)
1302     PH_SingleVal,    // Phi node has one distinct value, and can be eliminated
1303     PH_Incomplete    // Phi node is incomplete
1304   };
1305 
1306   Phi() : SExpr(COP_Phi) {}
1307   Phi(MemRegionRef A, unsigned Nvals) : SExpr(COP_Phi), Values(A, Nvals)  {}
1308   Phi(const Phi &P, ValArray &&Vs) : SExpr(P), Values(std::move(Vs)) {}
1309 
1310   static bool classof(const SExpr *E) { return E->opcode() == COP_Phi; }
1311 
1312   const ValArray &values() const { return Values; }
1313   ValArray &values() { return Values; }
1314 
1315   Status status() const { return static_cast<Status>(Flags); }
1316   void setStatus(Status s) { Flags = s; }
1317 
1318   /// Return the clang declaration of the variable for this Phi node, if any.
1319   const ValueDecl *clangDecl() const { return Cvdecl; }
1320 
1321   /// Set the clang variable associated with this Phi node.
1322   void setClangDecl(const ValueDecl *Cvd) { Cvdecl = Cvd; }
1323 
1324   template <class V>
1325   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1326     typename V::template Container<typename V::R_SExpr>
1327       Nvs(Vs, Values.size());
1328 
1329     for (const auto *Val : Values)
1330       Nvs.push_back( Vs.traverse(Val, Vs.subExprCtx(Ctx)) );
1331     return Vs.reducePhi(*this, Nvs);
1332   }
1333 
1334   template <class C>
1335   typename C::CType compare(const Phi *E, C &Cmp) const {
1336     // TODO: implement CFG comparisons
1337     return Cmp.comparePointers(this, E);
1338   }
1339 
1340 private:
1341   ValArray Values;
1342   const ValueDecl* Cvdecl = nullptr;
1343 };
1344 
1345 /// Base class for basic block terminators:  Branch, Goto, and Return.
1346 class Terminator : public SExpr {
1347 protected:
1348   Terminator(TIL_Opcode Op) : SExpr(Op) {}
1349   Terminator(const SExpr &E) : SExpr(E) {}
1350 
1351 public:
1352   static bool classof(const SExpr *E) {
1353     return E->opcode() >= COP_Goto && E->opcode() <= COP_Return;
1354   }
1355 
1356   /// Return the list of basic blocks that this terminator can branch to.
1357   ArrayRef<BasicBlock *> successors();
1358 
1359   ArrayRef<BasicBlock *> successors() const {
1360     return const_cast<Terminator*>(this)->successors();
1361   }
1362 };
1363 
1364 /// Jump to another basic block.
1365 /// A goto instruction is essentially a tail-recursive call into another
1366 /// block.  In addition to the block pointer, it specifies an index into the
1367 /// phi nodes of that block.  The index can be used to retrieve the "arguments"
1368 /// of the call.
1369 class Goto : public Terminator {
1370 public:
1371   Goto(BasicBlock *B, unsigned I)
1372       : Terminator(COP_Goto), TargetBlock(B), Index(I) {}
1373   Goto(const Goto &G, BasicBlock *B, unsigned I)
1374       : Terminator(COP_Goto), TargetBlock(B), Index(I) {}
1375 
1376   static bool classof(const SExpr *E) { return E->opcode() == COP_Goto; }
1377 
1378   const BasicBlock *targetBlock() const { return TargetBlock; }
1379   BasicBlock *targetBlock() { return TargetBlock; }
1380 
1381   /// Returns the index into the
1382   unsigned index() const { return Index; }
1383 
1384   /// Return the list of basic blocks that this terminator can branch to.
1385   ArrayRef<BasicBlock *> successors() { return TargetBlock; }
1386 
1387   template <class V>
1388   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1389     BasicBlock *Ntb = Vs.reduceBasicBlockRef(TargetBlock);
1390     return Vs.reduceGoto(*this, Ntb);
1391   }
1392 
1393   template <class C>
1394   typename C::CType compare(const Goto *E, C &Cmp) const {
1395     // TODO: implement CFG comparisons
1396     return Cmp.comparePointers(this, E);
1397   }
1398 
1399 private:
1400   BasicBlock *TargetBlock;
1401   unsigned Index;
1402 };
1403 
1404 /// A conditional branch to two other blocks.
1405 /// Note that unlike Goto, Branch does not have an index.  The target blocks
1406 /// must be child-blocks, and cannot have Phi nodes.
1407 class Branch : public Terminator {
1408 public:
1409   Branch(SExpr *C, BasicBlock *T, BasicBlock *E)
1410       : Terminator(COP_Branch), Condition(C) {
1411     Branches[0] = T;
1412     Branches[1] = E;
1413   }
1414 
1415   Branch(const Branch &Br, SExpr *C, BasicBlock *T, BasicBlock *E)
1416       : Terminator(Br), Condition(C) {
1417     Branches[0] = T;
1418     Branches[1] = E;
1419   }
1420 
1421   static bool classof(const SExpr *E) { return E->opcode() == COP_Branch; }
1422 
1423   const SExpr *condition() const { return Condition; }
1424   SExpr *condition() { return Condition; }
1425 
1426   const BasicBlock *thenBlock() const { return Branches[0]; }
1427   BasicBlock *thenBlock() { return Branches[0]; }
1428 
1429   const BasicBlock *elseBlock() const { return Branches[1]; }
1430   BasicBlock *elseBlock() { return Branches[1]; }
1431 
1432   /// Return the list of basic blocks that this terminator can branch to.
1433   ArrayRef<BasicBlock*> successors() {
1434     return llvm::makeArrayRef(Branches);
1435   }
1436 
1437   template <class V>
1438   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1439     auto Nc = Vs.traverse(Condition, Vs.subExprCtx(Ctx));
1440     BasicBlock *Ntb = Vs.reduceBasicBlockRef(Branches[0]);
1441     BasicBlock *Nte = Vs.reduceBasicBlockRef(Branches[1]);
1442     return Vs.reduceBranch(*this, Nc, Ntb, Nte);
1443   }
1444 
1445   template <class C>
1446   typename C::CType compare(const Branch *E, C &Cmp) const {
1447     // TODO: implement CFG comparisons
1448     return Cmp.comparePointers(this, E);
1449   }
1450 
1451 private:
1452   SExpr *Condition;
1453   BasicBlock *Branches[2];
1454 };
1455 
1456 /// Return from the enclosing function, passing the return value to the caller.
1457 /// Only the exit block should end with a return statement.
1458 class Return : public Terminator {
1459 public:
1460   Return(SExpr* Rval) : Terminator(COP_Return), Retval(Rval) {}
1461   Return(const Return &R, SExpr* Rval) : Terminator(R), Retval(Rval) {}
1462 
1463   static bool classof(const SExpr *E) { return E->opcode() == COP_Return; }
1464 
1465   /// Return an empty list.
1466   ArrayRef<BasicBlock *> successors() { return None; }
1467 
1468   SExpr *returnValue() { return Retval; }
1469   const SExpr *returnValue() const { return Retval; }
1470 
1471   template <class V>
1472   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1473     auto Ne = Vs.traverse(Retval, Vs.subExprCtx(Ctx));
1474     return Vs.reduceReturn(*this, Ne);
1475   }
1476 
1477   template <class C>
1478   typename C::CType compare(const Return *E, C &Cmp) const {
1479     return Cmp.compare(Retval, E->Retval);
1480   }
1481 
1482 private:
1483   SExpr* Retval;
1484 };
1485 
1486 inline ArrayRef<BasicBlock*> Terminator::successors() {
1487   switch (opcode()) {
1488     case COP_Goto:   return cast<Goto>(this)->successors();
1489     case COP_Branch: return cast<Branch>(this)->successors();
1490     case COP_Return: return cast<Return>(this)->successors();
1491     default:
1492       return None;
1493   }
1494 }
1495 
1496 /// A basic block is part of an SCFG.  It can be treated as a function in
1497 /// continuation passing style.  A block consists of a sequence of phi nodes,
1498 /// which are "arguments" to the function, followed by a sequence of
1499 /// instructions.  It ends with a Terminator, which is a Branch or Goto to
1500 /// another basic block in the same SCFG.
1501 class BasicBlock : public SExpr {
1502 public:
1503   using InstrArray = SimpleArray<SExpr *>;
1504   using BlockArray = SimpleArray<BasicBlock *>;
1505 
1506   // TopologyNodes are used to overlay tree structures on top of the CFG,
1507   // such as dominator and postdominator trees.  Each block is assigned an
1508   // ID in the tree according to a depth-first search.  Tree traversals are
1509   // always up, towards the parents.
1510   struct TopologyNode {
1511     int NodeID = 0;
1512 
1513     // Includes this node, so must be > 1.
1514     int SizeOfSubTree = 0;
1515 
1516     // Pointer to parent.
1517     BasicBlock *Parent = nullptr;
1518 
1519     TopologyNode() = default;
1520 
1521     bool isParentOf(const TopologyNode& OtherNode) {
1522       return OtherNode.NodeID > NodeID &&
1523              OtherNode.NodeID < NodeID + SizeOfSubTree;
1524     }
1525 
1526     bool isParentOfOrEqual(const TopologyNode& OtherNode) {
1527       return OtherNode.NodeID >= NodeID &&
1528              OtherNode.NodeID < NodeID + SizeOfSubTree;
1529     }
1530   };
1531 
1532   explicit BasicBlock(MemRegionRef A)
1533       : SExpr(COP_BasicBlock), Arena(A), BlockID(0), Visited(false) {}
1534   BasicBlock(BasicBlock &B, MemRegionRef A, InstrArray &&As, InstrArray &&Is,
1535              Terminator *T)
1536       : SExpr(COP_BasicBlock), Arena(A), BlockID(0), Visited(false),
1537         Args(std::move(As)), Instrs(std::move(Is)), TermInstr(T) {}
1538 
1539   static bool classof(const SExpr *E) { return E->opcode() == COP_BasicBlock; }
1540 
1541   /// Returns the block ID.  Every block has a unique ID in the CFG.
1542   int blockID() const { return BlockID; }
1543 
1544   /// Returns the number of predecessors.
1545   size_t numPredecessors() const { return Predecessors.size(); }
1546   size_t numSuccessors() const { return successors().size(); }
1547 
1548   const SCFG* cfg() const { return CFGPtr; }
1549   SCFG* cfg() { return CFGPtr; }
1550 
1551   const BasicBlock *parent() const { return DominatorNode.Parent; }
1552   BasicBlock *parent() { return DominatorNode.Parent; }
1553 
1554   const InstrArray &arguments() const { return Args; }
1555   InstrArray &arguments() { return Args; }
1556 
1557   InstrArray &instructions() { return Instrs; }
1558   const InstrArray &instructions() const { return Instrs; }
1559 
1560   /// Returns a list of predecessors.
1561   /// The order of predecessors in the list is important; each phi node has
1562   /// exactly one argument for each precessor, in the same order.
1563   BlockArray &predecessors() { return Predecessors; }
1564   const BlockArray &predecessors() const { return Predecessors; }
1565 
1566   ArrayRef<BasicBlock*> successors() { return TermInstr->successors(); }
1567   ArrayRef<BasicBlock*> successors() const { return TermInstr->successors(); }
1568 
1569   const Terminator *terminator() const { return TermInstr; }
1570   Terminator *terminator() { return TermInstr; }
1571 
1572   void setTerminator(Terminator *E) { TermInstr = E; }
1573 
1574   bool Dominates(const BasicBlock &Other) {
1575     return DominatorNode.isParentOfOrEqual(Other.DominatorNode);
1576   }
1577 
1578   bool PostDominates(const BasicBlock &Other) {
1579     return PostDominatorNode.isParentOfOrEqual(Other.PostDominatorNode);
1580   }
1581 
1582   /// Add a new argument.
1583   void addArgument(Phi *V) {
1584     Args.reserveCheck(1, Arena);
1585     Args.push_back(V);
1586   }
1587 
1588   /// Add a new instruction.
1589   void addInstruction(SExpr *V) {
1590     Instrs.reserveCheck(1, Arena);
1591     Instrs.push_back(V);
1592   }
1593 
1594   // Add a new predecessor, and return the phi-node index for it.
1595   // Will add an argument to all phi-nodes, initialized to nullptr.
1596   unsigned addPredecessor(BasicBlock *Pred);
1597 
1598   // Reserve space for Nargs arguments.
1599   void reserveArguments(unsigned Nargs)   { Args.reserve(Nargs, Arena); }
1600 
1601   // Reserve space for Nins instructions.
1602   void reserveInstructions(unsigned Nins) { Instrs.reserve(Nins, Arena); }
1603 
1604   // Reserve space for NumPreds predecessors, including space in phi nodes.
1605   void reservePredecessors(unsigned NumPreds);
1606 
1607   /// Return the index of BB, or Predecessors.size if BB is not a predecessor.
1608   unsigned findPredecessorIndex(const BasicBlock *BB) const {
1609     auto I = llvm::find(Predecessors, BB);
1610     return std::distance(Predecessors.cbegin(), I);
1611   }
1612 
1613   template <class V>
1614   typename V::R_BasicBlock traverse(V &Vs, typename V::R_Ctx Ctx) {
1615     typename V::template Container<SExpr*> Nas(Vs, Args.size());
1616     typename V::template Container<SExpr*> Nis(Vs, Instrs.size());
1617 
1618     // Entering the basic block should do any scope initialization.
1619     Vs.enterBasicBlock(*this);
1620 
1621     for (const auto *E : Args) {
1622       auto Ne = Vs.traverse(E, Vs.subExprCtx(Ctx));
1623       Nas.push_back(Ne);
1624     }
1625     for (const auto *E : Instrs) {
1626       auto Ne = Vs.traverse(E, Vs.subExprCtx(Ctx));
1627       Nis.push_back(Ne);
1628     }
1629     auto Nt = Vs.traverse(TermInstr, Ctx);
1630 
1631     // Exiting the basic block should handle any scope cleanup.
1632     Vs.exitBasicBlock(*this);
1633 
1634     return Vs.reduceBasicBlock(*this, Nas, Nis, Nt);
1635   }
1636 
1637   template <class C>
1638   typename C::CType compare(const BasicBlock *E, C &Cmp) const {
1639     // TODO: implement CFG comparisons
1640     return Cmp.comparePointers(this, E);
1641   }
1642 
1643 private:
1644   friend class SCFG;
1645 
1646   // assign unique ids to all instructions
1647   unsigned renumberInstrs(unsigned id);
1648 
1649   unsigned topologicalSort(SimpleArray<BasicBlock *> &Blocks, unsigned ID);
1650   unsigned topologicalFinalSort(SimpleArray<BasicBlock *> &Blocks, unsigned ID);
1651   void computeDominator();
1652   void computePostDominator();
1653 
1654   // The arena used to allocate this block.
1655   MemRegionRef Arena;
1656 
1657   // The CFG that contains this block.
1658   SCFG *CFGPtr = nullptr;
1659 
1660   // Unique ID for this BB in the containing CFG. IDs are in topological order.
1661   unsigned BlockID : 31;
1662 
1663   // Bit to determine if a block has been visited during a traversal.
1664   bool Visited : 1;
1665 
1666   // Predecessor blocks in the CFG.
1667   BlockArray Predecessors;
1668 
1669   // Phi nodes. One argument per predecessor.
1670   InstrArray Args;
1671 
1672   // Instructions.
1673   InstrArray Instrs;
1674 
1675   // Terminating instruction.
1676   Terminator *TermInstr = nullptr;
1677 
1678   // The dominator tree.
1679   TopologyNode DominatorNode;
1680 
1681   // The post-dominator tree.
1682   TopologyNode PostDominatorNode;
1683 };
1684 
1685 /// An SCFG is a control-flow graph.  It consists of a set of basic blocks,
1686 /// each of which terminates in a branch to another basic block.  There is one
1687 /// entry point, and one exit point.
1688 class SCFG : public SExpr {
1689 public:
1690   using BlockArray = SimpleArray<BasicBlock *>;
1691   using iterator = BlockArray::iterator;
1692   using const_iterator = BlockArray::const_iterator;
1693 
1694   SCFG(MemRegionRef A, unsigned Nblocks)
1695       : SExpr(COP_SCFG), Arena(A), Blocks(A, Nblocks) {
1696     Entry = new (A) BasicBlock(A);
1697     Exit  = new (A) BasicBlock(A);
1698     auto *V = new (A) Phi();
1699     Exit->addArgument(V);
1700     Exit->setTerminator(new (A) Return(V));
1701     add(Entry);
1702     add(Exit);
1703   }
1704 
1705   SCFG(const SCFG &Cfg, BlockArray &&Ba) // steals memory from Ba
1706       : SExpr(COP_SCFG), Arena(Cfg.Arena), Blocks(std::move(Ba)) {
1707     // TODO: set entry and exit!
1708   }
1709 
1710   static bool classof(const SExpr *E) { return E->opcode() == COP_SCFG; }
1711 
1712   /// Return true if this CFG is valid.
1713   bool valid() const { return Entry && Exit && Blocks.size() > 0; }
1714 
1715   /// Return true if this CFG has been normalized.
1716   /// After normalization, blocks are in topological order, and block and
1717   /// instruction IDs have been assigned.
1718   bool normal() const { return Normal; }
1719 
1720   iterator begin() { return Blocks.begin(); }
1721   iterator end() { return Blocks.end(); }
1722 
1723   const_iterator begin() const { return cbegin(); }
1724   const_iterator end() const { return cend(); }
1725 
1726   const_iterator cbegin() const { return Blocks.cbegin(); }
1727   const_iterator cend() const { return Blocks.cend(); }
1728 
1729   const BasicBlock *entry() const { return Entry; }
1730   BasicBlock *entry() { return Entry; }
1731   const BasicBlock *exit() const { return Exit; }
1732   BasicBlock *exit() { return Exit; }
1733 
1734   /// Return the number of blocks in the CFG.
1735   /// Block::blockID() will return a number less than numBlocks();
1736   size_t numBlocks() const { return Blocks.size(); }
1737 
1738   /// Return the total number of instructions in the CFG.
1739   /// This is useful for building instruction side-tables;
1740   /// A call to SExpr::id() will return a number less than numInstructions().
1741   unsigned numInstructions() { return NumInstructions; }
1742 
1743   inline void add(BasicBlock *BB) {
1744     assert(BB->CFGPtr == nullptr);
1745     BB->CFGPtr = this;
1746     Blocks.reserveCheck(1, Arena);
1747     Blocks.push_back(BB);
1748   }
1749 
1750   void setEntry(BasicBlock *BB) { Entry = BB; }
1751   void setExit(BasicBlock *BB)  { Exit = BB;  }
1752 
1753   void computeNormalForm();
1754 
1755   template <class V>
1756   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1757     Vs.enterCFG(*this);
1758     typename V::template Container<BasicBlock *> Bbs(Vs, Blocks.size());
1759 
1760     for (const auto *B : Blocks) {
1761       Bbs.push_back( B->traverse(Vs, Vs.subExprCtx(Ctx)) );
1762     }
1763     Vs.exitCFG(*this);
1764     return Vs.reduceSCFG(*this, Bbs);
1765   }
1766 
1767   template <class C>
1768   typename C::CType compare(const SCFG *E, C &Cmp) const {
1769     // TODO: implement CFG comparisons
1770     return Cmp.comparePointers(this, E);
1771   }
1772 
1773 private:
1774   // assign unique ids to all instructions
1775   void renumberInstrs();
1776 
1777   MemRegionRef Arena;
1778   BlockArray Blocks;
1779   BasicBlock *Entry = nullptr;
1780   BasicBlock *Exit = nullptr;
1781   unsigned NumInstructions = 0;
1782   bool Normal = false;
1783 };
1784 
1785 /// An identifier, e.g. 'foo' or 'x'.
1786 /// This is a pseduo-term; it will be lowered to a variable or projection.
1787 class Identifier : public SExpr {
1788 public:
1789   Identifier(StringRef Id): SExpr(COP_Identifier), Name(Id) {}
1790   Identifier(const Identifier &) = default;
1791 
1792   static bool classof(const SExpr *E) { return E->opcode() == COP_Identifier; }
1793 
1794   StringRef name() const { return Name; }
1795 
1796   template <class V>
1797   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1798     return Vs.reduceIdentifier(*this);
1799   }
1800 
1801   template <class C>
1802   typename C::CType compare(const Identifier* E, C& Cmp) const {
1803     return Cmp.compareStrings(name(), E->name());
1804   }
1805 
1806 private:
1807   StringRef Name;
1808 };
1809 
1810 /// An if-then-else expression.
1811 /// This is a pseduo-term; it will be lowered to a branch in a CFG.
1812 class IfThenElse : public SExpr {
1813 public:
1814   IfThenElse(SExpr *C, SExpr *T, SExpr *E)
1815       : SExpr(COP_IfThenElse), Condition(C), ThenExpr(T), ElseExpr(E) {}
1816   IfThenElse(const IfThenElse &I, SExpr *C, SExpr *T, SExpr *E)
1817       : SExpr(I), Condition(C), ThenExpr(T), ElseExpr(E) {}
1818 
1819   static bool classof(const SExpr *E) { return E->opcode() == COP_IfThenElse; }
1820 
1821   SExpr *condition() { return Condition; }   // Address to store to
1822   const SExpr *condition() const { return Condition; }
1823 
1824   SExpr *thenExpr() { return ThenExpr; }     // Value to store
1825   const SExpr *thenExpr() const { return ThenExpr; }
1826 
1827   SExpr *elseExpr() { return ElseExpr; }     // Value to store
1828   const SExpr *elseExpr() const { return ElseExpr; }
1829 
1830   template <class V>
1831   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1832     auto Nc = Vs.traverse(Condition, Vs.subExprCtx(Ctx));
1833     auto Nt = Vs.traverse(ThenExpr,  Vs.subExprCtx(Ctx));
1834     auto Ne = Vs.traverse(ElseExpr,  Vs.subExprCtx(Ctx));
1835     return Vs.reduceIfThenElse(*this, Nc, Nt, Ne);
1836   }
1837 
1838   template <class C>
1839   typename C::CType compare(const IfThenElse* E, C& Cmp) const {
1840     typename C::CType Ct = Cmp.compare(condition(), E->condition());
1841     if (Cmp.notTrue(Ct))
1842       return Ct;
1843     Ct = Cmp.compare(thenExpr(), E->thenExpr());
1844     if (Cmp.notTrue(Ct))
1845       return Ct;
1846     return Cmp.compare(elseExpr(), E->elseExpr());
1847   }
1848 
1849 private:
1850   SExpr* Condition;
1851   SExpr* ThenExpr;
1852   SExpr* ElseExpr;
1853 };
1854 
1855 /// A let-expression,  e.g.  let x=t; u.
1856 /// This is a pseduo-term; it will be lowered to instructions in a CFG.
1857 class Let : public SExpr {
1858 public:
1859   Let(Variable *Vd, SExpr *Bd) : SExpr(COP_Let), VarDecl(Vd), Body(Bd) {
1860     Vd->setKind(Variable::VK_Let);
1861   }
1862 
1863   Let(const Let &L, Variable *Vd, SExpr *Bd) : SExpr(L), VarDecl(Vd), Body(Bd) {
1864     Vd->setKind(Variable::VK_Let);
1865   }
1866 
1867   static bool classof(const SExpr *E) { return E->opcode() == COP_Let; }
1868 
1869   Variable *variableDecl()  { return VarDecl; }
1870   const Variable *variableDecl() const { return VarDecl; }
1871 
1872   SExpr *body() { return Body; }
1873   const SExpr *body() const { return Body; }
1874 
1875   template <class V>
1876   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1877     // This is a variable declaration, so traverse the definition.
1878     auto E0 = Vs.traverse(VarDecl->Definition, Vs.subExprCtx(Ctx));
1879     // Tell the rewriter to enter the scope of the let variable.
1880     Variable *Nvd = Vs.enterScope(*VarDecl, E0);
1881     auto E1 = Vs.traverse(Body, Ctx);
1882     Vs.exitScope(*VarDecl);
1883     return Vs.reduceLet(*this, Nvd, E1);
1884   }
1885 
1886   template <class C>
1887   typename C::CType compare(const Let* E, C& Cmp) const {
1888     typename C::CType Ct =
1889       Cmp.compare(VarDecl->definition(), E->VarDecl->definition());
1890     if (Cmp.notTrue(Ct))
1891       return Ct;
1892     Cmp.enterScope(variableDecl(), E->variableDecl());
1893     Ct = Cmp.compare(body(), E->body());
1894     Cmp.leaveScope();
1895     return Ct;
1896   }
1897 
1898 private:
1899   Variable *VarDecl;
1900   SExpr* Body;
1901 };
1902 
1903 const SExpr *getCanonicalVal(const SExpr *E);
1904 SExpr* simplifyToCanonicalVal(SExpr *E);
1905 void simplifyIncompleteArg(til::Phi *Ph);
1906 
1907 } // namespace til
1908 } // namespace threadSafety
1909 
1910 } // namespace clang
1911 
1912 #endif // LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYTIL_H
1913