1 //===- ThreadSafetyTIL.h ----------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a simple Typed Intermediate Language, or TIL, that is used
10 // by the thread safety analysis (See ThreadSafety.cpp).  The TIL is intended
11 // to be largely independent of clang, in the hope that the analysis can be
12 // reused for other non-C++ languages.  All dependencies on clang/llvm should
13 // go in ThreadSafetyUtil.h.
14 //
15 // Thread safety analysis works by comparing mutex expressions, e.g.
16 //
17 // class A { Mutex mu; int dat GUARDED_BY(this->mu); }
18 // class B { A a; }
19 //
20 // void foo(B* b) {
21 //   (*b).a.mu.lock();     // locks (*b).a.mu
22 //   b->a.dat = 0;         // substitute &b->a for 'this';
23 //                         // requires lock on (&b->a)->mu
24 //   (b->a.mu).unlock();   // unlocks (b->a.mu)
25 // }
26 //
27 // As illustrated by the above example, clang Exprs are not well-suited to
28 // represent mutex expressions directly, since there is no easy way to compare
29 // Exprs for equivalence.  The thread safety analysis thus lowers clang Exprs
30 // into a simple intermediate language (IL).  The IL supports:
31 //
32 // (1) comparisons for semantic equality of expressions
33 // (2) SSA renaming of variables
34 // (3) wildcards and pattern matching over expressions
35 // (4) hash-based expression lookup
36 //
37 // The TIL is currently very experimental, is intended only for use within
38 // the thread safety analysis, and is subject to change without notice.
39 // After the API stabilizes and matures, it may be appropriate to make this
40 // more generally available to other analyses.
41 //
42 // UNDER CONSTRUCTION.  USE AT YOUR OWN RISK.
43 //
44 //===----------------------------------------------------------------------===//
45 
46 #ifndef LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYTIL_H
47 #define LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYTIL_H
48 
49 #include "clang/AST/Decl.h"
50 #include "clang/Analysis/Analyses/ThreadSafetyUtil.h"
51 #include "clang/Basic/LLVM.h"
52 #include "llvm/ADT/ArrayRef.h"
53 #include "llvm/ADT/StringRef.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <cstddef>
59 #include <cstdint>
60 #include <iterator>
61 #include <optional>
62 #include <string>
63 #include <utility>
64 
65 namespace clang {
66 
67 class CallExpr;
68 class Expr;
69 class Stmt;
70 
71 namespace threadSafety {
72 namespace til {
73 
74 class BasicBlock;
75 
76 /// Enum for the different distinct classes of SExpr
77 enum TIL_Opcode : unsigned char {
78 #define TIL_OPCODE_DEF(X) COP_##X,
79 #include "ThreadSafetyOps.def"
80 #undef TIL_OPCODE_DEF
81 };
82 
83 /// Opcode for unary arithmetic operations.
84 enum TIL_UnaryOpcode : unsigned char {
85   UOP_Minus,        //  -
86   UOP_BitNot,       //  ~
87   UOP_LogicNot      //  !
88 };
89 
90 /// Opcode for binary arithmetic operations.
91 enum TIL_BinaryOpcode : unsigned char {
92   BOP_Add,          //  +
93   BOP_Sub,          //  -
94   BOP_Mul,          //  *
95   BOP_Div,          //  /
96   BOP_Rem,          //  %
97   BOP_Shl,          //  <<
98   BOP_Shr,          //  >>
99   BOP_BitAnd,       //  &
100   BOP_BitXor,       //  ^
101   BOP_BitOr,        //  |
102   BOP_Eq,           //  ==
103   BOP_Neq,          //  !=
104   BOP_Lt,           //  <
105   BOP_Leq,          //  <=
106   BOP_Cmp,          //  <=>
107   BOP_LogicAnd,     //  &&  (no short-circuit)
108   BOP_LogicOr       //  ||  (no short-circuit)
109 };
110 
111 /// Opcode for cast operations.
112 enum TIL_CastOpcode : unsigned char {
113   CAST_none = 0,
114 
115   // Extend precision of numeric type
116   CAST_extendNum,
117 
118   // Truncate precision of numeric type
119   CAST_truncNum,
120 
121   // Convert to floating point type
122   CAST_toFloat,
123 
124   // Convert to integer type
125   CAST_toInt,
126 
127   // Convert smart pointer to pointer (C++ only)
128   CAST_objToPtr
129 };
130 
131 const TIL_Opcode       COP_Min  = COP_Future;
132 const TIL_Opcode       COP_Max  = COP_Branch;
133 const TIL_UnaryOpcode  UOP_Min  = UOP_Minus;
134 const TIL_UnaryOpcode  UOP_Max  = UOP_LogicNot;
135 const TIL_BinaryOpcode BOP_Min  = BOP_Add;
136 const TIL_BinaryOpcode BOP_Max  = BOP_LogicOr;
137 const TIL_CastOpcode   CAST_Min = CAST_none;
138 const TIL_CastOpcode   CAST_Max = CAST_toInt;
139 
140 /// Return the name of a unary opcode.
141 StringRef getUnaryOpcodeString(TIL_UnaryOpcode Op);
142 
143 /// Return the name of a binary opcode.
144 StringRef getBinaryOpcodeString(TIL_BinaryOpcode Op);
145 
146 /// ValueTypes are data types that can actually be held in registers.
147 /// All variables and expressions must have a value type.
148 /// Pointer types are further subdivided into the various heap-allocated
149 /// types, such as functions, records, etc.
150 /// Structured types that are passed by value (e.g. complex numbers)
151 /// require special handling; they use BT_ValueRef, and size ST_0.
152 struct ValueType {
153   enum BaseType : unsigned char {
154     BT_Void = 0,
155     BT_Bool,
156     BT_Int,
157     BT_Float,
158     BT_String,    // String literals
159     BT_Pointer,
160     BT_ValueRef
161   };
162 
163   enum SizeType : unsigned char {
164     ST_0 = 0,
165     ST_1,
166     ST_8,
167     ST_16,
168     ST_32,
169     ST_64,
170     ST_128
171   };
172 
173   ValueType(BaseType B, SizeType Sz, bool S, unsigned char VS)
174       : Base(B), Size(Sz), Signed(S), VectSize(VS) {}
175 
176   inline static SizeType getSizeType(unsigned nbytes);
177 
178   template <class T>
179   inline static ValueType getValueType();
180 
181   BaseType Base;
182   SizeType Size;
183   bool Signed;
184 
185   // 0 for scalar, otherwise num elements in vector
186   unsigned char VectSize;
187 };
188 
189 inline ValueType::SizeType ValueType::getSizeType(unsigned nbytes) {
190   switch (nbytes) {
191     case 1: return ST_8;
192     case 2: return ST_16;
193     case 4: return ST_32;
194     case 8: return ST_64;
195     case 16: return ST_128;
196     default: return ST_0;
197   }
198 }
199 
200 template<>
201 inline ValueType ValueType::getValueType<void>() {
202   return ValueType(BT_Void, ST_0, false, 0);
203 }
204 
205 template<>
206 inline ValueType ValueType::getValueType<bool>() {
207   return ValueType(BT_Bool, ST_1, false, 0);
208 }
209 
210 template<>
211 inline ValueType ValueType::getValueType<int8_t>() {
212   return ValueType(BT_Int, ST_8, true, 0);
213 }
214 
215 template<>
216 inline ValueType ValueType::getValueType<uint8_t>() {
217   return ValueType(BT_Int, ST_8, false, 0);
218 }
219 
220 template<>
221 inline ValueType ValueType::getValueType<int16_t>() {
222   return ValueType(BT_Int, ST_16, true, 0);
223 }
224 
225 template<>
226 inline ValueType ValueType::getValueType<uint16_t>() {
227   return ValueType(BT_Int, ST_16, false, 0);
228 }
229 
230 template<>
231 inline ValueType ValueType::getValueType<int32_t>() {
232   return ValueType(BT_Int, ST_32, true, 0);
233 }
234 
235 template<>
236 inline ValueType ValueType::getValueType<uint32_t>() {
237   return ValueType(BT_Int, ST_32, false, 0);
238 }
239 
240 template<>
241 inline ValueType ValueType::getValueType<int64_t>() {
242   return ValueType(BT_Int, ST_64, true, 0);
243 }
244 
245 template<>
246 inline ValueType ValueType::getValueType<uint64_t>() {
247   return ValueType(BT_Int, ST_64, false, 0);
248 }
249 
250 template<>
251 inline ValueType ValueType::getValueType<float>() {
252   return ValueType(BT_Float, ST_32, true, 0);
253 }
254 
255 template<>
256 inline ValueType ValueType::getValueType<double>() {
257   return ValueType(BT_Float, ST_64, true, 0);
258 }
259 
260 template<>
261 inline ValueType ValueType::getValueType<long double>() {
262   return ValueType(BT_Float, ST_128, true, 0);
263 }
264 
265 template<>
266 inline ValueType ValueType::getValueType<StringRef>() {
267   return ValueType(BT_String, getSizeType(sizeof(StringRef)), false, 0);
268 }
269 
270 template<>
271 inline ValueType ValueType::getValueType<void*>() {
272   return ValueType(BT_Pointer, getSizeType(sizeof(void*)), false, 0);
273 }
274 
275 /// Base class for AST nodes in the typed intermediate language.
276 class SExpr {
277 public:
278   SExpr() = delete;
279 
280   TIL_Opcode opcode() const { return Opcode; }
281 
282   // Subclasses of SExpr must define the following:
283   //
284   // This(const This& E, ...) {
285   //   copy constructor: construct copy of E, with some additional arguments.
286   // }
287   //
288   // template <class V>
289   // typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
290   //   traverse all subexpressions, following the traversal/rewriter interface.
291   // }
292   //
293   // template <class C> typename C::CType compare(CType* E, C& Cmp) {
294   //   compare all subexpressions, following the comparator interface
295   // }
296   void *operator new(size_t S, MemRegionRef &R) {
297     return ::operator new(S, R);
298   }
299 
300   /// SExpr objects must be created in an arena.
301   void *operator new(size_t) = delete;
302 
303   /// SExpr objects cannot be deleted.
304   // This declaration is public to workaround a gcc bug that breaks building
305   // with REQUIRES_EH=1.
306   void operator delete(void *) = delete;
307 
308   /// Returns the instruction ID for this expression.
309   /// All basic block instructions have a unique ID (i.e. virtual register).
310   unsigned id() const { return SExprID; }
311 
312   /// Returns the block, if this is an instruction in a basic block,
313   /// otherwise returns null.
314   BasicBlock *block() const { return Block; }
315 
316   /// Set the basic block and instruction ID for this expression.
317   void setID(BasicBlock *B, unsigned id) { Block = B; SExprID = id; }
318 
319 protected:
320   SExpr(TIL_Opcode Op) : Opcode(Op) {}
321   SExpr(const SExpr &E) : Opcode(E.Opcode), Flags(E.Flags) {}
322 
323   const TIL_Opcode Opcode;
324   unsigned char Reserved = 0;
325   unsigned short Flags = 0;
326   unsigned SExprID = 0;
327   BasicBlock *Block = nullptr;
328 };
329 
330 // Contains various helper functions for SExprs.
331 namespace ThreadSafetyTIL {
332 
333 inline bool isTrivial(const SExpr *E) {
334   TIL_Opcode Op = E->opcode();
335   return Op == COP_Variable || Op == COP_Literal || Op == COP_LiteralPtr;
336 }
337 
338 } // namespace ThreadSafetyTIL
339 
340 // Nodes which declare variables
341 
342 /// A named variable, e.g. "x".
343 ///
344 /// There are two distinct places in which a Variable can appear in the AST.
345 /// A variable declaration introduces a new variable, and can occur in 3 places:
346 ///   Let-expressions:           (Let (x = t) u)
347 ///   Functions:                 (Function (x : t) u)
348 ///   Self-applicable functions  (SFunction (x) t)
349 ///
350 /// If a variable occurs in any other location, it is a reference to an existing
351 /// variable declaration -- e.g. 'x' in (x * y + z). To save space, we don't
352 /// allocate a separate AST node for variable references; a reference is just a
353 /// pointer to the original declaration.
354 class Variable : public SExpr {
355 public:
356   enum VariableKind {
357     /// Let-variable
358     VK_Let,
359 
360     /// Function parameter
361     VK_Fun,
362 
363     /// SFunction (self) parameter
364     VK_SFun
365   };
366 
367   Variable(StringRef s, SExpr *D = nullptr)
368       : SExpr(COP_Variable), Name(s), Definition(D) {
369     Flags = VK_Let;
370   }
371 
372   Variable(SExpr *D, const ValueDecl *Cvd = nullptr)
373       : SExpr(COP_Variable), Name(Cvd ? Cvd->getName() : "_x"),
374         Definition(D), Cvdecl(Cvd) {
375     Flags = VK_Let;
376   }
377 
378   Variable(const Variable &Vd, SExpr *D)  // rewrite constructor
379       : SExpr(Vd), Name(Vd.Name), Definition(D), Cvdecl(Vd.Cvdecl) {
380     Flags = Vd.kind();
381   }
382 
383   static bool classof(const SExpr *E) { return E->opcode() == COP_Variable; }
384 
385   /// Return the kind of variable (let, function param, or self)
386   VariableKind kind() const { return static_cast<VariableKind>(Flags); }
387 
388   /// Return the name of the variable, if any.
389   StringRef name() const { return Name; }
390 
391   /// Return the clang declaration for this variable, if any.
392   const ValueDecl *clangDecl() const { return Cvdecl; }
393 
394   /// Return the definition of the variable.
395   /// For let-vars, this is the setting expression.
396   /// For function and self parameters, it is the type of the variable.
397   SExpr *definition() { return Definition; }
398   const SExpr *definition() const { return Definition; }
399 
400   void setName(StringRef S)    { Name = S;  }
401   void setKind(VariableKind K) { Flags = K; }
402   void setDefinition(SExpr *E) { Definition = E; }
403   void setClangDecl(const ValueDecl *VD) { Cvdecl = VD; }
404 
405   template <class V>
406   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
407     // This routine is only called for variable references.
408     return Vs.reduceVariableRef(this);
409   }
410 
411   template <class C>
412   typename C::CType compare(const Variable* E, C& Cmp) const {
413     return Cmp.compareVariableRefs(this, E);
414   }
415 
416 private:
417   friend class BasicBlock;
418   friend class Function;
419   friend class Let;
420   friend class SFunction;
421 
422   // The name of the variable.
423   StringRef Name;
424 
425   // The TIL type or definition.
426   SExpr *Definition;
427 
428   // The clang declaration for this variable.
429   const ValueDecl *Cvdecl = nullptr;
430 };
431 
432 /// Placeholder for an expression that has not yet been created.
433 /// Used to implement lazy copy and rewriting strategies.
434 class Future : public SExpr {
435 public:
436   enum FutureStatus {
437     FS_pending,
438     FS_evaluating,
439     FS_done
440   };
441 
442   Future() : SExpr(COP_Future) {}
443   virtual ~Future() = delete;
444 
445   static bool classof(const SExpr *E) { return E->opcode() == COP_Future; }
446 
447   // A lazy rewriting strategy should subclass Future and override this method.
448   virtual SExpr *compute() { return nullptr; }
449 
450   // Return the result of this future if it exists, otherwise return null.
451   SExpr *maybeGetResult() const { return Result; }
452 
453   // Return the result of this future; forcing it if necessary.
454   SExpr *result() {
455     switch (Status) {
456     case FS_pending:
457       return force();
458     case FS_evaluating:
459       return nullptr; // infinite loop; illegal recursion.
460     case FS_done:
461       return Result;
462     }
463   }
464 
465   template <class V>
466   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
467     assert(Result && "Cannot traverse Future that has not been forced.");
468     return Vs.traverse(Result, Ctx);
469   }
470 
471   template <class C>
472   typename C::CType compare(const Future* E, C& Cmp) const {
473     if (!Result || !E->Result)
474       return Cmp.comparePointers(this, E);
475     return Cmp.compare(Result, E->Result);
476   }
477 
478 private:
479   SExpr* force();
480 
481   FutureStatus Status = FS_pending;
482   SExpr *Result = nullptr;
483 };
484 
485 /// Placeholder for expressions that cannot be represented in the TIL.
486 class Undefined : public SExpr {
487 public:
488   Undefined(const Stmt *S = nullptr) : SExpr(COP_Undefined), Cstmt(S) {}
489   Undefined(const Undefined &U) : SExpr(U), Cstmt(U.Cstmt) {}
490 
491   static bool classof(const SExpr *E) { return E->opcode() == COP_Undefined; }
492 
493   template <class V>
494   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
495     return Vs.reduceUndefined(*this);
496   }
497 
498   template <class C>
499   typename C::CType compare(const Undefined* E, C& Cmp) const {
500     return Cmp.trueResult();
501   }
502 
503 private:
504   const Stmt *Cstmt;
505 };
506 
507 /// Placeholder for a wildcard that matches any other expression.
508 class Wildcard : public SExpr {
509 public:
510   Wildcard() : SExpr(COP_Wildcard) {}
511   Wildcard(const Wildcard &) = default;
512 
513   static bool classof(const SExpr *E) { return E->opcode() == COP_Wildcard; }
514 
515   template <class V> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
516     return Vs.reduceWildcard(*this);
517   }
518 
519   template <class C>
520   typename C::CType compare(const Wildcard* E, C& Cmp) const {
521     return Cmp.trueResult();
522   }
523 };
524 
525 template <class T> class LiteralT;
526 
527 // Base class for literal values.
528 class Literal : public SExpr {
529 public:
530   Literal(const Expr *C)
531      : SExpr(COP_Literal), ValType(ValueType::getValueType<void>()), Cexpr(C) {}
532   Literal(ValueType VT) : SExpr(COP_Literal), ValType(VT) {}
533   Literal(const Literal &) = default;
534 
535   static bool classof(const SExpr *E) { return E->opcode() == COP_Literal; }
536 
537   // The clang expression for this literal.
538   const Expr *clangExpr() const { return Cexpr; }
539 
540   ValueType valueType() const { return ValType; }
541 
542   template<class T> const LiteralT<T>& as() const {
543     return *static_cast<const LiteralT<T>*>(this);
544   }
545   template<class T> LiteralT<T>& as() {
546     return *static_cast<LiteralT<T>*>(this);
547   }
548 
549   template <class V> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx);
550 
551   template <class C>
552   typename C::CType compare(const Literal* E, C& Cmp) const {
553     // TODO: defer actual comparison to LiteralT
554     return Cmp.trueResult();
555   }
556 
557 private:
558   const ValueType ValType;
559   const Expr *Cexpr = nullptr;
560 };
561 
562 // Derived class for literal values, which stores the actual value.
563 template<class T>
564 class LiteralT : public Literal {
565 public:
566   LiteralT(T Dat) : Literal(ValueType::getValueType<T>()), Val(Dat) {}
567   LiteralT(const LiteralT<T> &L) : Literal(L), Val(L.Val) {}
568 
569   T value() const { return Val;}
570   T& value() { return Val; }
571 
572 private:
573   T Val;
574 };
575 
576 template <class V>
577 typename V::R_SExpr Literal::traverse(V &Vs, typename V::R_Ctx Ctx) {
578   if (Cexpr)
579     return Vs.reduceLiteral(*this);
580 
581   switch (ValType.Base) {
582   case ValueType::BT_Void:
583     break;
584   case ValueType::BT_Bool:
585     return Vs.reduceLiteralT(as<bool>());
586   case ValueType::BT_Int: {
587     switch (ValType.Size) {
588     case ValueType::ST_8:
589       if (ValType.Signed)
590         return Vs.reduceLiteralT(as<int8_t>());
591       else
592         return Vs.reduceLiteralT(as<uint8_t>());
593     case ValueType::ST_16:
594       if (ValType.Signed)
595         return Vs.reduceLiteralT(as<int16_t>());
596       else
597         return Vs.reduceLiteralT(as<uint16_t>());
598     case ValueType::ST_32:
599       if (ValType.Signed)
600         return Vs.reduceLiteralT(as<int32_t>());
601       else
602         return Vs.reduceLiteralT(as<uint32_t>());
603     case ValueType::ST_64:
604       if (ValType.Signed)
605         return Vs.reduceLiteralT(as<int64_t>());
606       else
607         return Vs.reduceLiteralT(as<uint64_t>());
608     default:
609       break;
610     }
611   }
612   case ValueType::BT_Float: {
613     switch (ValType.Size) {
614     case ValueType::ST_32:
615       return Vs.reduceLiteralT(as<float>());
616     case ValueType::ST_64:
617       return Vs.reduceLiteralT(as<double>());
618     default:
619       break;
620     }
621   }
622   case ValueType::BT_String:
623     return Vs.reduceLiteralT(as<StringRef>());
624   case ValueType::BT_Pointer:
625     return Vs.reduceLiteralT(as<void*>());
626   case ValueType::BT_ValueRef:
627     break;
628   }
629   return Vs.reduceLiteral(*this);
630 }
631 
632 /// A Literal pointer to an object allocated in memory.
633 /// At compile time, pointer literals are represented by symbolic names.
634 class LiteralPtr : public SExpr {
635 public:
636   LiteralPtr(const ValueDecl *D) : SExpr(COP_LiteralPtr), Cvdecl(D) {}
637   LiteralPtr(const LiteralPtr &) = default;
638 
639   static bool classof(const SExpr *E) { return E->opcode() == COP_LiteralPtr; }
640 
641   // The clang declaration for the value that this pointer points to.
642   const ValueDecl *clangDecl() const { return Cvdecl; }
643   void setClangDecl(const ValueDecl *VD) { Cvdecl = VD; }
644 
645   template <class V>
646   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
647     return Vs.reduceLiteralPtr(*this);
648   }
649 
650   template <class C>
651   typename C::CType compare(const LiteralPtr* E, C& Cmp) const {
652     if (!Cvdecl || !E->Cvdecl)
653       return Cmp.comparePointers(this, E);
654     return Cmp.comparePointers(Cvdecl, E->Cvdecl);
655   }
656 
657 private:
658   const ValueDecl *Cvdecl;
659 };
660 
661 /// A function -- a.k.a. lambda abstraction.
662 /// Functions with multiple arguments are created by currying,
663 /// e.g. (Function (x: Int) (Function (y: Int) (Code { return x + y })))
664 class Function : public SExpr {
665 public:
666   Function(Variable *Vd, SExpr *Bd)
667       : SExpr(COP_Function), VarDecl(Vd), Body(Bd) {
668     Vd->setKind(Variable::VK_Fun);
669   }
670 
671   Function(const Function &F, Variable *Vd, SExpr *Bd) // rewrite constructor
672       : SExpr(F), VarDecl(Vd), Body(Bd) {
673     Vd->setKind(Variable::VK_Fun);
674   }
675 
676   static bool classof(const SExpr *E) { return E->opcode() == COP_Function; }
677 
678   Variable *variableDecl()  { return VarDecl; }
679   const Variable *variableDecl() const { return VarDecl; }
680 
681   SExpr *body() { return Body; }
682   const SExpr *body() const { return Body; }
683 
684   template <class V>
685   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
686     // This is a variable declaration, so traverse the definition.
687     auto E0 = Vs.traverse(VarDecl->Definition, Vs.typeCtx(Ctx));
688     // Tell the rewriter to enter the scope of the function.
689     Variable *Nvd = Vs.enterScope(*VarDecl, E0);
690     auto E1 = Vs.traverse(Body, Vs.declCtx(Ctx));
691     Vs.exitScope(*VarDecl);
692     return Vs.reduceFunction(*this, Nvd, E1);
693   }
694 
695   template <class C>
696   typename C::CType compare(const Function* E, C& Cmp) const {
697     typename C::CType Ct =
698       Cmp.compare(VarDecl->definition(), E->VarDecl->definition());
699     if (Cmp.notTrue(Ct))
700       return Ct;
701     Cmp.enterScope(variableDecl(), E->variableDecl());
702     Ct = Cmp.compare(body(), E->body());
703     Cmp.leaveScope();
704     return Ct;
705   }
706 
707 private:
708   Variable *VarDecl;
709   SExpr* Body;
710 };
711 
712 /// A self-applicable function.
713 /// A self-applicable function can be applied to itself.  It's useful for
714 /// implementing objects and late binding.
715 class SFunction : public SExpr {
716 public:
717   SFunction(Variable *Vd, SExpr *B)
718       : SExpr(COP_SFunction), VarDecl(Vd), Body(B) {
719     assert(Vd->Definition == nullptr);
720     Vd->setKind(Variable::VK_SFun);
721     Vd->Definition = this;
722   }
723 
724   SFunction(const SFunction &F, Variable *Vd, SExpr *B) // rewrite constructor
725       : SExpr(F), VarDecl(Vd), Body(B) {
726     assert(Vd->Definition == nullptr);
727     Vd->setKind(Variable::VK_SFun);
728     Vd->Definition = this;
729   }
730 
731   static bool classof(const SExpr *E) { return E->opcode() == COP_SFunction; }
732 
733   Variable *variableDecl() { return VarDecl; }
734   const Variable *variableDecl() const { return VarDecl; }
735 
736   SExpr *body() { return Body; }
737   const SExpr *body() const { return Body; }
738 
739   template <class V>
740   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
741     // A self-variable points to the SFunction itself.
742     // A rewrite must introduce the variable with a null definition, and update
743     // it after 'this' has been rewritten.
744     Variable *Nvd = Vs.enterScope(*VarDecl, nullptr);
745     auto E1 = Vs.traverse(Body, Vs.declCtx(Ctx));
746     Vs.exitScope(*VarDecl);
747     // A rewrite operation will call SFun constructor to set Vvd->Definition.
748     return Vs.reduceSFunction(*this, Nvd, E1);
749   }
750 
751   template <class C>
752   typename C::CType compare(const SFunction* E, C& Cmp) const {
753     Cmp.enterScope(variableDecl(), E->variableDecl());
754     typename C::CType Ct = Cmp.compare(body(), E->body());
755     Cmp.leaveScope();
756     return Ct;
757   }
758 
759 private:
760   Variable *VarDecl;
761   SExpr* Body;
762 };
763 
764 /// A block of code -- e.g. the body of a function.
765 class Code : public SExpr {
766 public:
767   Code(SExpr *T, SExpr *B) : SExpr(COP_Code), ReturnType(T), Body(B) {}
768   Code(const Code &C, SExpr *T, SExpr *B) // rewrite constructor
769       : SExpr(C), ReturnType(T), Body(B) {}
770 
771   static bool classof(const SExpr *E) { return E->opcode() == COP_Code; }
772 
773   SExpr *returnType() { return ReturnType; }
774   const SExpr *returnType() const { return ReturnType; }
775 
776   SExpr *body() { return Body; }
777   const SExpr *body() const { return Body; }
778 
779   template <class V>
780   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
781     auto Nt = Vs.traverse(ReturnType, Vs.typeCtx(Ctx));
782     auto Nb = Vs.traverse(Body,       Vs.lazyCtx(Ctx));
783     return Vs.reduceCode(*this, Nt, Nb);
784   }
785 
786   template <class C>
787   typename C::CType compare(const Code* E, C& Cmp) const {
788     typename C::CType Ct = Cmp.compare(returnType(), E->returnType());
789     if (Cmp.notTrue(Ct))
790       return Ct;
791     return Cmp.compare(body(), E->body());
792   }
793 
794 private:
795   SExpr* ReturnType;
796   SExpr* Body;
797 };
798 
799 /// A typed, writable location in memory
800 class Field : public SExpr {
801 public:
802   Field(SExpr *R, SExpr *B) : SExpr(COP_Field), Range(R), Body(B) {}
803   Field(const Field &C, SExpr *R, SExpr *B) // rewrite constructor
804       : SExpr(C), Range(R), Body(B) {}
805 
806   static bool classof(const SExpr *E) { return E->opcode() == COP_Field; }
807 
808   SExpr *range() { return Range; }
809   const SExpr *range() const { return Range; }
810 
811   SExpr *body() { return Body; }
812   const SExpr *body() const { return Body; }
813 
814   template <class V>
815   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
816     auto Nr = Vs.traverse(Range, Vs.typeCtx(Ctx));
817     auto Nb = Vs.traverse(Body,  Vs.lazyCtx(Ctx));
818     return Vs.reduceField(*this, Nr, Nb);
819   }
820 
821   template <class C>
822   typename C::CType compare(const Field* E, C& Cmp) const {
823     typename C::CType Ct = Cmp.compare(range(), E->range());
824     if (Cmp.notTrue(Ct))
825       return Ct;
826     return Cmp.compare(body(), E->body());
827   }
828 
829 private:
830   SExpr* Range;
831   SExpr* Body;
832 };
833 
834 /// Apply an argument to a function.
835 /// Note that this does not actually call the function.  Functions are curried,
836 /// so this returns a closure in which the first parameter has been applied.
837 /// Once all parameters have been applied, Call can be used to invoke the
838 /// function.
839 class Apply : public SExpr {
840 public:
841   Apply(SExpr *F, SExpr *A) : SExpr(COP_Apply), Fun(F), Arg(A) {}
842   Apply(const Apply &A, SExpr *F, SExpr *Ar)  // rewrite constructor
843       : SExpr(A), Fun(F), Arg(Ar) {}
844 
845   static bool classof(const SExpr *E) { return E->opcode() == COP_Apply; }
846 
847   SExpr *fun() { return Fun; }
848   const SExpr *fun() const { return Fun; }
849 
850   SExpr *arg() { return Arg; }
851   const SExpr *arg() const { return Arg; }
852 
853   template <class V>
854   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
855     auto Nf = Vs.traverse(Fun, Vs.subExprCtx(Ctx));
856     auto Na = Vs.traverse(Arg, Vs.subExprCtx(Ctx));
857     return Vs.reduceApply(*this, Nf, Na);
858   }
859 
860   template <class C>
861   typename C::CType compare(const Apply* E, C& Cmp) const {
862     typename C::CType Ct = Cmp.compare(fun(), E->fun());
863     if (Cmp.notTrue(Ct))
864       return Ct;
865     return Cmp.compare(arg(), E->arg());
866   }
867 
868 private:
869   SExpr* Fun;
870   SExpr* Arg;
871 };
872 
873 /// Apply a self-argument to a self-applicable function.
874 class SApply : public SExpr {
875 public:
876   SApply(SExpr *Sf, SExpr *A = nullptr) : SExpr(COP_SApply), Sfun(Sf), Arg(A) {}
877   SApply(SApply &A, SExpr *Sf, SExpr *Ar = nullptr) // rewrite constructor
878       : SExpr(A), Sfun(Sf), Arg(Ar) {}
879 
880   static bool classof(const SExpr *E) { return E->opcode() == COP_SApply; }
881 
882   SExpr *sfun() { return Sfun; }
883   const SExpr *sfun() const { return Sfun; }
884 
885   SExpr *arg() { return Arg ? Arg : Sfun; }
886   const SExpr *arg() const { return Arg ? Arg : Sfun; }
887 
888   bool isDelegation() const { return Arg != nullptr; }
889 
890   template <class V>
891   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
892     auto Nf = Vs.traverse(Sfun, Vs.subExprCtx(Ctx));
893     typename V::R_SExpr Na = Arg ? Vs.traverse(Arg, Vs.subExprCtx(Ctx))
894                                        : nullptr;
895     return Vs.reduceSApply(*this, Nf, Na);
896   }
897 
898   template <class C>
899   typename C::CType compare(const SApply* E, C& Cmp) const {
900     typename C::CType Ct = Cmp.compare(sfun(), E->sfun());
901     if (Cmp.notTrue(Ct) || (!arg() && !E->arg()))
902       return Ct;
903     return Cmp.compare(arg(), E->arg());
904   }
905 
906 private:
907   SExpr* Sfun;
908   SExpr* Arg;
909 };
910 
911 /// Project a named slot from a C++ struct or class.
912 class Project : public SExpr {
913 public:
914   Project(SExpr *R, const ValueDecl *Cvd)
915       : SExpr(COP_Project), Rec(R), Cvdecl(Cvd) {
916     assert(Cvd && "ValueDecl must not be null");
917   }
918 
919   static bool classof(const SExpr *E) { return E->opcode() == COP_Project; }
920 
921   SExpr *record() { return Rec; }
922   const SExpr *record() const { return Rec; }
923 
924   const ValueDecl *clangDecl() const { return Cvdecl; }
925 
926   bool isArrow() const { return (Flags & 0x01) != 0; }
927 
928   void setArrow(bool b) {
929     if (b) Flags |= 0x01;
930     else Flags &= 0xFFFE;
931   }
932 
933   StringRef slotName() const {
934     if (Cvdecl->getDeclName().isIdentifier())
935       return Cvdecl->getName();
936     if (!SlotName) {
937       SlotName = "";
938       llvm::raw_string_ostream OS(*SlotName);
939       Cvdecl->printName(OS);
940     }
941     return *SlotName;
942   }
943 
944   template <class V>
945   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
946     auto Nr = Vs.traverse(Rec, Vs.subExprCtx(Ctx));
947     return Vs.reduceProject(*this, Nr);
948   }
949 
950   template <class C>
951   typename C::CType compare(const Project* E, C& Cmp) const {
952     typename C::CType Ct = Cmp.compare(record(), E->record());
953     if (Cmp.notTrue(Ct))
954       return Ct;
955     return Cmp.comparePointers(Cvdecl, E->Cvdecl);
956   }
957 
958 private:
959   SExpr* Rec;
960   mutable std::optional<std::string> SlotName;
961   const ValueDecl *Cvdecl;
962 };
963 
964 /// Call a function (after all arguments have been applied).
965 class Call : public SExpr {
966 public:
967   Call(SExpr *T, const CallExpr *Ce = nullptr)
968       : SExpr(COP_Call), Target(T), Cexpr(Ce) {}
969   Call(const Call &C, SExpr *T) : SExpr(C), Target(T), Cexpr(C.Cexpr) {}
970 
971   static bool classof(const SExpr *E) { return E->opcode() == COP_Call; }
972 
973   SExpr *target() { return Target; }
974   const SExpr *target() const { return Target; }
975 
976   const CallExpr *clangCallExpr() const { return Cexpr; }
977 
978   template <class V>
979   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
980     auto Nt = Vs.traverse(Target, Vs.subExprCtx(Ctx));
981     return Vs.reduceCall(*this, Nt);
982   }
983 
984   template <class C>
985   typename C::CType compare(const Call* E, C& Cmp) const {
986     return Cmp.compare(target(), E->target());
987   }
988 
989 private:
990   SExpr* Target;
991   const CallExpr *Cexpr;
992 };
993 
994 /// Allocate memory for a new value on the heap or stack.
995 class Alloc : public SExpr {
996 public:
997   enum AllocKind {
998     AK_Stack,
999     AK_Heap
1000   };
1001 
1002   Alloc(SExpr *D, AllocKind K) : SExpr(COP_Alloc), Dtype(D) { Flags = K; }
1003   Alloc(const Alloc &A, SExpr *Dt) : SExpr(A), Dtype(Dt) { Flags = A.kind(); }
1004 
1005   static bool classof(const SExpr *E) { return E->opcode() == COP_Call; }
1006 
1007   AllocKind kind() const { return static_cast<AllocKind>(Flags); }
1008 
1009   SExpr *dataType() { return Dtype; }
1010   const SExpr *dataType() const { return Dtype; }
1011 
1012   template <class V>
1013   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1014     auto Nd = Vs.traverse(Dtype, Vs.declCtx(Ctx));
1015     return Vs.reduceAlloc(*this, Nd);
1016   }
1017 
1018   template <class C>
1019   typename C::CType compare(const Alloc* E, C& Cmp) const {
1020     typename C::CType Ct = Cmp.compareIntegers(kind(), E->kind());
1021     if (Cmp.notTrue(Ct))
1022       return Ct;
1023     return Cmp.compare(dataType(), E->dataType());
1024   }
1025 
1026 private:
1027   SExpr* Dtype;
1028 };
1029 
1030 /// Load a value from memory.
1031 class Load : public SExpr {
1032 public:
1033   Load(SExpr *P) : SExpr(COP_Load), Ptr(P) {}
1034   Load(const Load &L, SExpr *P) : SExpr(L), Ptr(P) {}
1035 
1036   static bool classof(const SExpr *E) { return E->opcode() == COP_Load; }
1037 
1038   SExpr *pointer() { return Ptr; }
1039   const SExpr *pointer() const { return Ptr; }
1040 
1041   template <class V>
1042   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1043     auto Np = Vs.traverse(Ptr, Vs.subExprCtx(Ctx));
1044     return Vs.reduceLoad(*this, Np);
1045   }
1046 
1047   template <class C>
1048   typename C::CType compare(const Load* E, C& Cmp) const {
1049     return Cmp.compare(pointer(), E->pointer());
1050   }
1051 
1052 private:
1053   SExpr* Ptr;
1054 };
1055 
1056 /// Store a value to memory.
1057 /// The destination is a pointer to a field, the source is the value to store.
1058 class Store : public SExpr {
1059 public:
1060   Store(SExpr *P, SExpr *V) : SExpr(COP_Store), Dest(P), Source(V) {}
1061   Store(const Store &S, SExpr *P, SExpr *V) : SExpr(S), Dest(P), Source(V) {}
1062 
1063   static bool classof(const SExpr *E) { return E->opcode() == COP_Store; }
1064 
1065   SExpr *destination() { return Dest; }  // Address to store to
1066   const SExpr *destination() const { return Dest; }
1067 
1068   SExpr *source() { return Source; }     // Value to store
1069   const SExpr *source() const { return Source; }
1070 
1071   template <class V>
1072   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1073     auto Np = Vs.traverse(Dest,   Vs.subExprCtx(Ctx));
1074     auto Nv = Vs.traverse(Source, Vs.subExprCtx(Ctx));
1075     return Vs.reduceStore(*this, Np, Nv);
1076   }
1077 
1078   template <class C>
1079   typename C::CType compare(const Store* E, C& Cmp) const {
1080     typename C::CType Ct = Cmp.compare(destination(), E->destination());
1081     if (Cmp.notTrue(Ct))
1082       return Ct;
1083     return Cmp.compare(source(), E->source());
1084   }
1085 
1086 private:
1087   SExpr* Dest;
1088   SExpr* Source;
1089 };
1090 
1091 /// If p is a reference to an array, then p[i] is a reference to the i'th
1092 /// element of the array.
1093 class ArrayIndex : public SExpr {
1094 public:
1095   ArrayIndex(SExpr *A, SExpr *N) : SExpr(COP_ArrayIndex), Array(A), Index(N) {}
1096   ArrayIndex(const ArrayIndex &E, SExpr *A, SExpr *N)
1097       : SExpr(E), Array(A), Index(N) {}
1098 
1099   static bool classof(const SExpr *E) { return E->opcode() == COP_ArrayIndex; }
1100 
1101   SExpr *array() { return Array; }
1102   const SExpr *array() const { return Array; }
1103 
1104   SExpr *index() { return Index; }
1105   const SExpr *index() const { return Index; }
1106 
1107   template <class V>
1108   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1109     auto Na = Vs.traverse(Array, Vs.subExprCtx(Ctx));
1110     auto Ni = Vs.traverse(Index, Vs.subExprCtx(Ctx));
1111     return Vs.reduceArrayIndex(*this, Na, Ni);
1112   }
1113 
1114   template <class C>
1115   typename C::CType compare(const ArrayIndex* E, C& Cmp) const {
1116     typename C::CType Ct = Cmp.compare(array(), E->array());
1117     if (Cmp.notTrue(Ct))
1118       return Ct;
1119     return Cmp.compare(index(), E->index());
1120   }
1121 
1122 private:
1123   SExpr* Array;
1124   SExpr* Index;
1125 };
1126 
1127 /// Pointer arithmetic, restricted to arrays only.
1128 /// If p is a reference to an array, then p + n, where n is an integer, is
1129 /// a reference to a subarray.
1130 class ArrayAdd : public SExpr {
1131 public:
1132   ArrayAdd(SExpr *A, SExpr *N) : SExpr(COP_ArrayAdd), Array(A), Index(N) {}
1133   ArrayAdd(const ArrayAdd &E, SExpr *A, SExpr *N)
1134       : SExpr(E), Array(A), Index(N) {}
1135 
1136   static bool classof(const SExpr *E) { return E->opcode() == COP_ArrayAdd; }
1137 
1138   SExpr *array() { return Array; }
1139   const SExpr *array() const { return Array; }
1140 
1141   SExpr *index() { return Index; }
1142   const SExpr *index() const { return Index; }
1143 
1144   template <class V>
1145   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1146     auto Na = Vs.traverse(Array, Vs.subExprCtx(Ctx));
1147     auto Ni = Vs.traverse(Index, Vs.subExprCtx(Ctx));
1148     return Vs.reduceArrayAdd(*this, Na, Ni);
1149   }
1150 
1151   template <class C>
1152   typename C::CType compare(const ArrayAdd* E, C& Cmp) const {
1153     typename C::CType Ct = Cmp.compare(array(), E->array());
1154     if (Cmp.notTrue(Ct))
1155       return Ct;
1156     return Cmp.compare(index(), E->index());
1157   }
1158 
1159 private:
1160   SExpr* Array;
1161   SExpr* Index;
1162 };
1163 
1164 /// Simple arithmetic unary operations, e.g. negate and not.
1165 /// These operations have no side-effects.
1166 class UnaryOp : public SExpr {
1167 public:
1168   UnaryOp(TIL_UnaryOpcode Op, SExpr *E) : SExpr(COP_UnaryOp), Expr0(E) {
1169     Flags = Op;
1170   }
1171 
1172   UnaryOp(const UnaryOp &U, SExpr *E) : SExpr(U), Expr0(E) { Flags = U.Flags; }
1173 
1174   static bool classof(const SExpr *E) { return E->opcode() == COP_UnaryOp; }
1175 
1176   TIL_UnaryOpcode unaryOpcode() const {
1177     return static_cast<TIL_UnaryOpcode>(Flags);
1178   }
1179 
1180   SExpr *expr() { return Expr0; }
1181   const SExpr *expr() const { return Expr0; }
1182 
1183   template <class V>
1184   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1185     auto Ne = Vs.traverse(Expr0, Vs.subExprCtx(Ctx));
1186     return Vs.reduceUnaryOp(*this, Ne);
1187   }
1188 
1189   template <class C>
1190   typename C::CType compare(const UnaryOp* E, C& Cmp) const {
1191     typename C::CType Ct =
1192       Cmp.compareIntegers(unaryOpcode(), E->unaryOpcode());
1193     if (Cmp.notTrue(Ct))
1194       return Ct;
1195     return Cmp.compare(expr(), E->expr());
1196   }
1197 
1198 private:
1199   SExpr* Expr0;
1200 };
1201 
1202 /// Simple arithmetic binary operations, e.g. +, -, etc.
1203 /// These operations have no side effects.
1204 class BinaryOp : public SExpr {
1205 public:
1206   BinaryOp(TIL_BinaryOpcode Op, SExpr *E0, SExpr *E1)
1207       : SExpr(COP_BinaryOp), Expr0(E0), Expr1(E1) {
1208     Flags = Op;
1209   }
1210 
1211   BinaryOp(const BinaryOp &B, SExpr *E0, SExpr *E1)
1212       : SExpr(B), Expr0(E0), Expr1(E1) {
1213     Flags = B.Flags;
1214   }
1215 
1216   static bool classof(const SExpr *E) { return E->opcode() == COP_BinaryOp; }
1217 
1218   TIL_BinaryOpcode binaryOpcode() const {
1219     return static_cast<TIL_BinaryOpcode>(Flags);
1220   }
1221 
1222   SExpr *expr0() { return Expr0; }
1223   const SExpr *expr0() const { return Expr0; }
1224 
1225   SExpr *expr1() { return Expr1; }
1226   const SExpr *expr1() const { return Expr1; }
1227 
1228   template <class V>
1229   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1230     auto Ne0 = Vs.traverse(Expr0, Vs.subExprCtx(Ctx));
1231     auto Ne1 = Vs.traverse(Expr1, Vs.subExprCtx(Ctx));
1232     return Vs.reduceBinaryOp(*this, Ne0, Ne1);
1233   }
1234 
1235   template <class C>
1236   typename C::CType compare(const BinaryOp* E, C& Cmp) const {
1237     typename C::CType Ct =
1238       Cmp.compareIntegers(binaryOpcode(), E->binaryOpcode());
1239     if (Cmp.notTrue(Ct))
1240       return Ct;
1241     Ct = Cmp.compare(expr0(), E->expr0());
1242     if (Cmp.notTrue(Ct))
1243       return Ct;
1244     return Cmp.compare(expr1(), E->expr1());
1245   }
1246 
1247 private:
1248   SExpr* Expr0;
1249   SExpr* Expr1;
1250 };
1251 
1252 /// Cast expressions.
1253 /// Cast expressions are essentially unary operations, but we treat them
1254 /// as a distinct AST node because they only change the type of the result.
1255 class Cast : public SExpr {
1256 public:
1257   Cast(TIL_CastOpcode Op, SExpr *E) : SExpr(COP_Cast), Expr0(E) { Flags = Op; }
1258   Cast(const Cast &C, SExpr *E) : SExpr(C), Expr0(E) { Flags = C.Flags; }
1259 
1260   static bool classof(const SExpr *E) { return E->opcode() == COP_Cast; }
1261 
1262   TIL_CastOpcode castOpcode() const {
1263     return static_cast<TIL_CastOpcode>(Flags);
1264   }
1265 
1266   SExpr *expr() { return Expr0; }
1267   const SExpr *expr() const { return Expr0; }
1268 
1269   template <class V>
1270   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1271     auto Ne = Vs.traverse(Expr0, Vs.subExprCtx(Ctx));
1272     return Vs.reduceCast(*this, Ne);
1273   }
1274 
1275   template <class C>
1276   typename C::CType compare(const Cast* E, C& Cmp) const {
1277     typename C::CType Ct =
1278       Cmp.compareIntegers(castOpcode(), E->castOpcode());
1279     if (Cmp.notTrue(Ct))
1280       return Ct;
1281     return Cmp.compare(expr(), E->expr());
1282   }
1283 
1284 private:
1285   SExpr* Expr0;
1286 };
1287 
1288 class SCFG;
1289 
1290 /// Phi Node, for code in SSA form.
1291 /// Each Phi node has an array of possible values that it can take,
1292 /// depending on where control flow comes from.
1293 class Phi : public SExpr {
1294 public:
1295   using ValArray = SimpleArray<SExpr *>;
1296 
1297   // In minimal SSA form, all Phi nodes are MultiVal.
1298   // During conversion to SSA, incomplete Phi nodes may be introduced, which
1299   // are later determined to be SingleVal, and are thus redundant.
1300   enum Status {
1301     PH_MultiVal = 0, // Phi node has multiple distinct values.  (Normal)
1302     PH_SingleVal,    // Phi node has one distinct value, and can be eliminated
1303     PH_Incomplete    // Phi node is incomplete
1304   };
1305 
1306   Phi() : SExpr(COP_Phi) {}
1307   Phi(MemRegionRef A, unsigned Nvals) : SExpr(COP_Phi), Values(A, Nvals)  {}
1308   Phi(const Phi &P, ValArray &&Vs) : SExpr(P), Values(std::move(Vs)) {}
1309 
1310   static bool classof(const SExpr *E) { return E->opcode() == COP_Phi; }
1311 
1312   const ValArray &values() const { return Values; }
1313   ValArray &values() { return Values; }
1314 
1315   Status status() const { return static_cast<Status>(Flags); }
1316   void setStatus(Status s) { Flags = s; }
1317 
1318   /// Return the clang declaration of the variable for this Phi node, if any.
1319   const ValueDecl *clangDecl() const { return Cvdecl; }
1320 
1321   /// Set the clang variable associated with this Phi node.
1322   void setClangDecl(const ValueDecl *Cvd) { Cvdecl = Cvd; }
1323 
1324   template <class V>
1325   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1326     typename V::template Container<typename V::R_SExpr>
1327       Nvs(Vs, Values.size());
1328 
1329     for (const auto *Val : Values)
1330       Nvs.push_back( Vs.traverse(Val, Vs.subExprCtx(Ctx)) );
1331     return Vs.reducePhi(*this, Nvs);
1332   }
1333 
1334   template <class C>
1335   typename C::CType compare(const Phi *E, C &Cmp) const {
1336     // TODO: implement CFG comparisons
1337     return Cmp.comparePointers(this, E);
1338   }
1339 
1340 private:
1341   ValArray Values;
1342   const ValueDecl* Cvdecl = nullptr;
1343 };
1344 
1345 /// Base class for basic block terminators:  Branch, Goto, and Return.
1346 class Terminator : public SExpr {
1347 protected:
1348   Terminator(TIL_Opcode Op) : SExpr(Op) {}
1349   Terminator(const SExpr &E) : SExpr(E) {}
1350 
1351 public:
1352   static bool classof(const SExpr *E) {
1353     return E->opcode() >= COP_Goto && E->opcode() <= COP_Return;
1354   }
1355 
1356   /// Return the list of basic blocks that this terminator can branch to.
1357   ArrayRef<BasicBlock *> successors();
1358 
1359   ArrayRef<BasicBlock *> successors() const {
1360     return const_cast<Terminator*>(this)->successors();
1361   }
1362 };
1363 
1364 /// Jump to another basic block.
1365 /// A goto instruction is essentially a tail-recursive call into another
1366 /// block.  In addition to the block pointer, it specifies an index into the
1367 /// phi nodes of that block.  The index can be used to retrieve the "arguments"
1368 /// of the call.
1369 class Goto : public Terminator {
1370 public:
1371   Goto(BasicBlock *B, unsigned I)
1372       : Terminator(COP_Goto), TargetBlock(B), Index(I) {}
1373   Goto(const Goto &G, BasicBlock *B, unsigned I)
1374       : Terminator(COP_Goto), TargetBlock(B), Index(I) {}
1375 
1376   static bool classof(const SExpr *E) { return E->opcode() == COP_Goto; }
1377 
1378   const BasicBlock *targetBlock() const { return TargetBlock; }
1379   BasicBlock *targetBlock() { return TargetBlock; }
1380 
1381   /// Returns the index into the
1382   unsigned index() const { return Index; }
1383 
1384   /// Return the list of basic blocks that this terminator can branch to.
1385   ArrayRef<BasicBlock *> successors() { return TargetBlock; }
1386 
1387   template <class V>
1388   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1389     BasicBlock *Ntb = Vs.reduceBasicBlockRef(TargetBlock);
1390     return Vs.reduceGoto(*this, Ntb);
1391   }
1392 
1393   template <class C>
1394   typename C::CType compare(const Goto *E, C &Cmp) const {
1395     // TODO: implement CFG comparisons
1396     return Cmp.comparePointers(this, E);
1397   }
1398 
1399 private:
1400   BasicBlock *TargetBlock;
1401   unsigned Index;
1402 };
1403 
1404 /// A conditional branch to two other blocks.
1405 /// Note that unlike Goto, Branch does not have an index.  The target blocks
1406 /// must be child-blocks, and cannot have Phi nodes.
1407 class Branch : public Terminator {
1408 public:
1409   Branch(SExpr *C, BasicBlock *T, BasicBlock *E)
1410       : Terminator(COP_Branch), Condition(C) {
1411     Branches[0] = T;
1412     Branches[1] = E;
1413   }
1414 
1415   Branch(const Branch &Br, SExpr *C, BasicBlock *T, BasicBlock *E)
1416       : Terminator(Br), Condition(C) {
1417     Branches[0] = T;
1418     Branches[1] = E;
1419   }
1420 
1421   static bool classof(const SExpr *E) { return E->opcode() == COP_Branch; }
1422 
1423   const SExpr *condition() const { return Condition; }
1424   SExpr *condition() { return Condition; }
1425 
1426   const BasicBlock *thenBlock() const { return Branches[0]; }
1427   BasicBlock *thenBlock() { return Branches[0]; }
1428 
1429   const BasicBlock *elseBlock() const { return Branches[1]; }
1430   BasicBlock *elseBlock() { return Branches[1]; }
1431 
1432   /// Return the list of basic blocks that this terminator can branch to.
1433   ArrayRef<BasicBlock *> successors() { return llvm::ArrayRef(Branches); }
1434 
1435   template <class V>
1436   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1437     auto Nc = Vs.traverse(Condition, Vs.subExprCtx(Ctx));
1438     BasicBlock *Ntb = Vs.reduceBasicBlockRef(Branches[0]);
1439     BasicBlock *Nte = Vs.reduceBasicBlockRef(Branches[1]);
1440     return Vs.reduceBranch(*this, Nc, Ntb, Nte);
1441   }
1442 
1443   template <class C>
1444   typename C::CType compare(const Branch *E, C &Cmp) const {
1445     // TODO: implement CFG comparisons
1446     return Cmp.comparePointers(this, E);
1447   }
1448 
1449 private:
1450   SExpr *Condition;
1451   BasicBlock *Branches[2];
1452 };
1453 
1454 /// Return from the enclosing function, passing the return value to the caller.
1455 /// Only the exit block should end with a return statement.
1456 class Return : public Terminator {
1457 public:
1458   Return(SExpr* Rval) : Terminator(COP_Return), Retval(Rval) {}
1459   Return(const Return &R, SExpr* Rval) : Terminator(R), Retval(Rval) {}
1460 
1461   static bool classof(const SExpr *E) { return E->opcode() == COP_Return; }
1462 
1463   /// Return an empty list.
1464   ArrayRef<BasicBlock *> successors() { return std::nullopt; }
1465 
1466   SExpr *returnValue() { return Retval; }
1467   const SExpr *returnValue() const { return Retval; }
1468 
1469   template <class V>
1470   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1471     auto Ne = Vs.traverse(Retval, Vs.subExprCtx(Ctx));
1472     return Vs.reduceReturn(*this, Ne);
1473   }
1474 
1475   template <class C>
1476   typename C::CType compare(const Return *E, C &Cmp) const {
1477     return Cmp.compare(Retval, E->Retval);
1478   }
1479 
1480 private:
1481   SExpr* Retval;
1482 };
1483 
1484 inline ArrayRef<BasicBlock*> Terminator::successors() {
1485   switch (opcode()) {
1486     case COP_Goto:   return cast<Goto>(this)->successors();
1487     case COP_Branch: return cast<Branch>(this)->successors();
1488     case COP_Return: return cast<Return>(this)->successors();
1489     default:
1490       return std::nullopt;
1491   }
1492 }
1493 
1494 /// A basic block is part of an SCFG.  It can be treated as a function in
1495 /// continuation passing style.  A block consists of a sequence of phi nodes,
1496 /// which are "arguments" to the function, followed by a sequence of
1497 /// instructions.  It ends with a Terminator, which is a Branch or Goto to
1498 /// another basic block in the same SCFG.
1499 class BasicBlock : public SExpr {
1500 public:
1501   using InstrArray = SimpleArray<SExpr *>;
1502   using BlockArray = SimpleArray<BasicBlock *>;
1503 
1504   // TopologyNodes are used to overlay tree structures on top of the CFG,
1505   // such as dominator and postdominator trees.  Each block is assigned an
1506   // ID in the tree according to a depth-first search.  Tree traversals are
1507   // always up, towards the parents.
1508   struct TopologyNode {
1509     int NodeID = 0;
1510 
1511     // Includes this node, so must be > 1.
1512     int SizeOfSubTree = 0;
1513 
1514     // Pointer to parent.
1515     BasicBlock *Parent = nullptr;
1516 
1517     TopologyNode() = default;
1518 
1519     bool isParentOf(const TopologyNode& OtherNode) {
1520       return OtherNode.NodeID > NodeID &&
1521              OtherNode.NodeID < NodeID + SizeOfSubTree;
1522     }
1523 
1524     bool isParentOfOrEqual(const TopologyNode& OtherNode) {
1525       return OtherNode.NodeID >= NodeID &&
1526              OtherNode.NodeID < NodeID + SizeOfSubTree;
1527     }
1528   };
1529 
1530   explicit BasicBlock(MemRegionRef A)
1531       : SExpr(COP_BasicBlock), Arena(A), BlockID(0), Visited(false) {}
1532   BasicBlock(BasicBlock &B, MemRegionRef A, InstrArray &&As, InstrArray &&Is,
1533              Terminator *T)
1534       : SExpr(COP_BasicBlock), Arena(A), BlockID(0), Visited(false),
1535         Args(std::move(As)), Instrs(std::move(Is)), TermInstr(T) {}
1536 
1537   static bool classof(const SExpr *E) { return E->opcode() == COP_BasicBlock; }
1538 
1539   /// Returns the block ID.  Every block has a unique ID in the CFG.
1540   int blockID() const { return BlockID; }
1541 
1542   /// Returns the number of predecessors.
1543   size_t numPredecessors() const { return Predecessors.size(); }
1544   size_t numSuccessors() const { return successors().size(); }
1545 
1546   const SCFG* cfg() const { return CFGPtr; }
1547   SCFG* cfg() { return CFGPtr; }
1548 
1549   const BasicBlock *parent() const { return DominatorNode.Parent; }
1550   BasicBlock *parent() { return DominatorNode.Parent; }
1551 
1552   const InstrArray &arguments() const { return Args; }
1553   InstrArray &arguments() { return Args; }
1554 
1555   InstrArray &instructions() { return Instrs; }
1556   const InstrArray &instructions() const { return Instrs; }
1557 
1558   /// Returns a list of predecessors.
1559   /// The order of predecessors in the list is important; each phi node has
1560   /// exactly one argument for each precessor, in the same order.
1561   BlockArray &predecessors() { return Predecessors; }
1562   const BlockArray &predecessors() const { return Predecessors; }
1563 
1564   ArrayRef<BasicBlock*> successors() { return TermInstr->successors(); }
1565   ArrayRef<BasicBlock*> successors() const { return TermInstr->successors(); }
1566 
1567   const Terminator *terminator() const { return TermInstr; }
1568   Terminator *terminator() { return TermInstr; }
1569 
1570   void setTerminator(Terminator *E) { TermInstr = E; }
1571 
1572   bool Dominates(const BasicBlock &Other) {
1573     return DominatorNode.isParentOfOrEqual(Other.DominatorNode);
1574   }
1575 
1576   bool PostDominates(const BasicBlock &Other) {
1577     return PostDominatorNode.isParentOfOrEqual(Other.PostDominatorNode);
1578   }
1579 
1580   /// Add a new argument.
1581   void addArgument(Phi *V) {
1582     Args.reserveCheck(1, Arena);
1583     Args.push_back(V);
1584   }
1585 
1586   /// Add a new instruction.
1587   void addInstruction(SExpr *V) {
1588     Instrs.reserveCheck(1, Arena);
1589     Instrs.push_back(V);
1590   }
1591 
1592   // Add a new predecessor, and return the phi-node index for it.
1593   // Will add an argument to all phi-nodes, initialized to nullptr.
1594   unsigned addPredecessor(BasicBlock *Pred);
1595 
1596   // Reserve space for Nargs arguments.
1597   void reserveArguments(unsigned Nargs)   { Args.reserve(Nargs, Arena); }
1598 
1599   // Reserve space for Nins instructions.
1600   void reserveInstructions(unsigned Nins) { Instrs.reserve(Nins, Arena); }
1601 
1602   // Reserve space for NumPreds predecessors, including space in phi nodes.
1603   void reservePredecessors(unsigned NumPreds);
1604 
1605   /// Return the index of BB, or Predecessors.size if BB is not a predecessor.
1606   unsigned findPredecessorIndex(const BasicBlock *BB) const {
1607     auto I = llvm::find(Predecessors, BB);
1608     return std::distance(Predecessors.cbegin(), I);
1609   }
1610 
1611   template <class V>
1612   typename V::R_BasicBlock traverse(V &Vs, typename V::R_Ctx Ctx) {
1613     typename V::template Container<SExpr*> Nas(Vs, Args.size());
1614     typename V::template Container<SExpr*> Nis(Vs, Instrs.size());
1615 
1616     // Entering the basic block should do any scope initialization.
1617     Vs.enterBasicBlock(*this);
1618 
1619     for (const auto *E : Args) {
1620       auto Ne = Vs.traverse(E, Vs.subExprCtx(Ctx));
1621       Nas.push_back(Ne);
1622     }
1623     for (const auto *E : Instrs) {
1624       auto Ne = Vs.traverse(E, Vs.subExprCtx(Ctx));
1625       Nis.push_back(Ne);
1626     }
1627     auto Nt = Vs.traverse(TermInstr, Ctx);
1628 
1629     // Exiting the basic block should handle any scope cleanup.
1630     Vs.exitBasicBlock(*this);
1631 
1632     return Vs.reduceBasicBlock(*this, Nas, Nis, Nt);
1633   }
1634 
1635   template <class C>
1636   typename C::CType compare(const BasicBlock *E, C &Cmp) const {
1637     // TODO: implement CFG comparisons
1638     return Cmp.comparePointers(this, E);
1639   }
1640 
1641 private:
1642   friend class SCFG;
1643 
1644   // assign unique ids to all instructions
1645   unsigned renumberInstrs(unsigned id);
1646 
1647   unsigned topologicalSort(SimpleArray<BasicBlock *> &Blocks, unsigned ID);
1648   unsigned topologicalFinalSort(SimpleArray<BasicBlock *> &Blocks, unsigned ID);
1649   void computeDominator();
1650   void computePostDominator();
1651 
1652   // The arena used to allocate this block.
1653   MemRegionRef Arena;
1654 
1655   // The CFG that contains this block.
1656   SCFG *CFGPtr = nullptr;
1657 
1658   // Unique ID for this BB in the containing CFG. IDs are in topological order.
1659   unsigned BlockID : 31;
1660 
1661   // Bit to determine if a block has been visited during a traversal.
1662   bool Visited : 1;
1663 
1664   // Predecessor blocks in the CFG.
1665   BlockArray Predecessors;
1666 
1667   // Phi nodes. One argument per predecessor.
1668   InstrArray Args;
1669 
1670   // Instructions.
1671   InstrArray Instrs;
1672 
1673   // Terminating instruction.
1674   Terminator *TermInstr = nullptr;
1675 
1676   // The dominator tree.
1677   TopologyNode DominatorNode;
1678 
1679   // The post-dominator tree.
1680   TopologyNode PostDominatorNode;
1681 };
1682 
1683 /// An SCFG is a control-flow graph.  It consists of a set of basic blocks,
1684 /// each of which terminates in a branch to another basic block.  There is one
1685 /// entry point, and one exit point.
1686 class SCFG : public SExpr {
1687 public:
1688   using BlockArray = SimpleArray<BasicBlock *>;
1689   using iterator = BlockArray::iterator;
1690   using const_iterator = BlockArray::const_iterator;
1691 
1692   SCFG(MemRegionRef A, unsigned Nblocks)
1693       : SExpr(COP_SCFG), Arena(A), Blocks(A, Nblocks) {
1694     Entry = new (A) BasicBlock(A);
1695     Exit  = new (A) BasicBlock(A);
1696     auto *V = new (A) Phi();
1697     Exit->addArgument(V);
1698     Exit->setTerminator(new (A) Return(V));
1699     add(Entry);
1700     add(Exit);
1701   }
1702 
1703   SCFG(const SCFG &Cfg, BlockArray &&Ba) // steals memory from Ba
1704       : SExpr(COP_SCFG), Arena(Cfg.Arena), Blocks(std::move(Ba)) {
1705     // TODO: set entry and exit!
1706   }
1707 
1708   static bool classof(const SExpr *E) { return E->opcode() == COP_SCFG; }
1709 
1710   /// Return true if this CFG is valid.
1711   bool valid() const { return Entry && Exit && Blocks.size() > 0; }
1712 
1713   /// Return true if this CFG has been normalized.
1714   /// After normalization, blocks are in topological order, and block and
1715   /// instruction IDs have been assigned.
1716   bool normal() const { return Normal; }
1717 
1718   iterator begin() { return Blocks.begin(); }
1719   iterator end() { return Blocks.end(); }
1720 
1721   const_iterator begin() const { return cbegin(); }
1722   const_iterator end() const { return cend(); }
1723 
1724   const_iterator cbegin() const { return Blocks.cbegin(); }
1725   const_iterator cend() const { return Blocks.cend(); }
1726 
1727   const BasicBlock *entry() const { return Entry; }
1728   BasicBlock *entry() { return Entry; }
1729   const BasicBlock *exit() const { return Exit; }
1730   BasicBlock *exit() { return Exit; }
1731 
1732   /// Return the number of blocks in the CFG.
1733   /// Block::blockID() will return a number less than numBlocks();
1734   size_t numBlocks() const { return Blocks.size(); }
1735 
1736   /// Return the total number of instructions in the CFG.
1737   /// This is useful for building instruction side-tables;
1738   /// A call to SExpr::id() will return a number less than numInstructions().
1739   unsigned numInstructions() { return NumInstructions; }
1740 
1741   inline void add(BasicBlock *BB) {
1742     assert(BB->CFGPtr == nullptr);
1743     BB->CFGPtr = this;
1744     Blocks.reserveCheck(1, Arena);
1745     Blocks.push_back(BB);
1746   }
1747 
1748   void setEntry(BasicBlock *BB) { Entry = BB; }
1749   void setExit(BasicBlock *BB)  { Exit = BB;  }
1750 
1751   void computeNormalForm();
1752 
1753   template <class V>
1754   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1755     Vs.enterCFG(*this);
1756     typename V::template Container<BasicBlock *> Bbs(Vs, Blocks.size());
1757 
1758     for (const auto *B : Blocks) {
1759       Bbs.push_back( B->traverse(Vs, Vs.subExprCtx(Ctx)) );
1760     }
1761     Vs.exitCFG(*this);
1762     return Vs.reduceSCFG(*this, Bbs);
1763   }
1764 
1765   template <class C>
1766   typename C::CType compare(const SCFG *E, C &Cmp) const {
1767     // TODO: implement CFG comparisons
1768     return Cmp.comparePointers(this, E);
1769   }
1770 
1771 private:
1772   // assign unique ids to all instructions
1773   void renumberInstrs();
1774 
1775   MemRegionRef Arena;
1776   BlockArray Blocks;
1777   BasicBlock *Entry = nullptr;
1778   BasicBlock *Exit = nullptr;
1779   unsigned NumInstructions = 0;
1780   bool Normal = false;
1781 };
1782 
1783 /// An identifier, e.g. 'foo' or 'x'.
1784 /// This is a pseduo-term; it will be lowered to a variable or projection.
1785 class Identifier : public SExpr {
1786 public:
1787   Identifier(StringRef Id): SExpr(COP_Identifier), Name(Id) {}
1788   Identifier(const Identifier &) = default;
1789 
1790   static bool classof(const SExpr *E) { return E->opcode() == COP_Identifier; }
1791 
1792   StringRef name() const { return Name; }
1793 
1794   template <class V>
1795   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1796     return Vs.reduceIdentifier(*this);
1797   }
1798 
1799   template <class C>
1800   typename C::CType compare(const Identifier* E, C& Cmp) const {
1801     return Cmp.compareStrings(name(), E->name());
1802   }
1803 
1804 private:
1805   StringRef Name;
1806 };
1807 
1808 /// An if-then-else expression.
1809 /// This is a pseduo-term; it will be lowered to a branch in a CFG.
1810 class IfThenElse : public SExpr {
1811 public:
1812   IfThenElse(SExpr *C, SExpr *T, SExpr *E)
1813       : SExpr(COP_IfThenElse), Condition(C), ThenExpr(T), ElseExpr(E) {}
1814   IfThenElse(const IfThenElse &I, SExpr *C, SExpr *T, SExpr *E)
1815       : SExpr(I), Condition(C), ThenExpr(T), ElseExpr(E) {}
1816 
1817   static bool classof(const SExpr *E) { return E->opcode() == COP_IfThenElse; }
1818 
1819   SExpr *condition() { return Condition; }   // Address to store to
1820   const SExpr *condition() const { return Condition; }
1821 
1822   SExpr *thenExpr() { return ThenExpr; }     // Value to store
1823   const SExpr *thenExpr() const { return ThenExpr; }
1824 
1825   SExpr *elseExpr() { return ElseExpr; }     // Value to store
1826   const SExpr *elseExpr() const { return ElseExpr; }
1827 
1828   template <class V>
1829   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1830     auto Nc = Vs.traverse(Condition, Vs.subExprCtx(Ctx));
1831     auto Nt = Vs.traverse(ThenExpr,  Vs.subExprCtx(Ctx));
1832     auto Ne = Vs.traverse(ElseExpr,  Vs.subExprCtx(Ctx));
1833     return Vs.reduceIfThenElse(*this, Nc, Nt, Ne);
1834   }
1835 
1836   template <class C>
1837   typename C::CType compare(const IfThenElse* E, C& Cmp) const {
1838     typename C::CType Ct = Cmp.compare(condition(), E->condition());
1839     if (Cmp.notTrue(Ct))
1840       return Ct;
1841     Ct = Cmp.compare(thenExpr(), E->thenExpr());
1842     if (Cmp.notTrue(Ct))
1843       return Ct;
1844     return Cmp.compare(elseExpr(), E->elseExpr());
1845   }
1846 
1847 private:
1848   SExpr* Condition;
1849   SExpr* ThenExpr;
1850   SExpr* ElseExpr;
1851 };
1852 
1853 /// A let-expression,  e.g.  let x=t; u.
1854 /// This is a pseduo-term; it will be lowered to instructions in a CFG.
1855 class Let : public SExpr {
1856 public:
1857   Let(Variable *Vd, SExpr *Bd) : SExpr(COP_Let), VarDecl(Vd), Body(Bd) {
1858     Vd->setKind(Variable::VK_Let);
1859   }
1860 
1861   Let(const Let &L, Variable *Vd, SExpr *Bd) : SExpr(L), VarDecl(Vd), Body(Bd) {
1862     Vd->setKind(Variable::VK_Let);
1863   }
1864 
1865   static bool classof(const SExpr *E) { return E->opcode() == COP_Let; }
1866 
1867   Variable *variableDecl()  { return VarDecl; }
1868   const Variable *variableDecl() const { return VarDecl; }
1869 
1870   SExpr *body() { return Body; }
1871   const SExpr *body() const { return Body; }
1872 
1873   template <class V>
1874   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1875     // This is a variable declaration, so traverse the definition.
1876     auto E0 = Vs.traverse(VarDecl->Definition, Vs.subExprCtx(Ctx));
1877     // Tell the rewriter to enter the scope of the let variable.
1878     Variable *Nvd = Vs.enterScope(*VarDecl, E0);
1879     auto E1 = Vs.traverse(Body, Ctx);
1880     Vs.exitScope(*VarDecl);
1881     return Vs.reduceLet(*this, Nvd, E1);
1882   }
1883 
1884   template <class C>
1885   typename C::CType compare(const Let* E, C& Cmp) const {
1886     typename C::CType Ct =
1887       Cmp.compare(VarDecl->definition(), E->VarDecl->definition());
1888     if (Cmp.notTrue(Ct))
1889       return Ct;
1890     Cmp.enterScope(variableDecl(), E->variableDecl());
1891     Ct = Cmp.compare(body(), E->body());
1892     Cmp.leaveScope();
1893     return Ct;
1894   }
1895 
1896 private:
1897   Variable *VarDecl;
1898   SExpr* Body;
1899 };
1900 
1901 const SExpr *getCanonicalVal(const SExpr *E);
1902 SExpr* simplifyToCanonicalVal(SExpr *E);
1903 void simplifyIncompleteArg(til::Phi *Ph);
1904 
1905 } // namespace til
1906 } // namespace threadSafety
1907 
1908 } // namespace clang
1909 
1910 #endif // LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYTIL_H
1911