1 //===-- DataflowEnvironment.h -----------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines an Environment class that is used by dataflow analyses
10 //  that run over Control-Flow Graphs (CFGs) to keep track of the state of the
11 //  program at given program points.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CLANG_ANALYSIS_FLOWSENSITIVE_DATAFLOWENVIRONMENT_H
16 #define LLVM_CLANG_ANALYSIS_FLOWSENSITIVE_DATAFLOWENVIRONMENT_H
17 
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/Type.h"
22 #include "clang/Analysis/FlowSensitive/ControlFlowContext.h"
23 #include "clang/Analysis/FlowSensitive/DataflowAnalysisContext.h"
24 #include "clang/Analysis/FlowSensitive/DataflowLattice.h"
25 #include "clang/Analysis/FlowSensitive/Formula.h"
26 #include "clang/Analysis/FlowSensitive/Logger.h"
27 #include "clang/Analysis/FlowSensitive/StorageLocation.h"
28 #include "clang/Analysis/FlowSensitive/Value.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/DenseSet.h"
31 #include "llvm/ADT/MapVector.h"
32 #include "llvm/Support/Compiler.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include <memory>
35 #include <type_traits>
36 #include <utility>
37 
38 namespace clang {
39 namespace dataflow {
40 
41 /// Indicates the result of a tentative comparison.
42 enum class ComparisonResult {
43   Same,
44   Different,
45   Unknown,
46 };
47 
48 /// Holds the state of the program (store and heap) at a given program point.
49 ///
50 /// WARNING: Symbolic values that are created by the environment for static
51 /// local and global variables are not currently invalidated on function calls.
52 /// This is unsound and should be taken into account when designing dataflow
53 /// analyses.
54 class Environment {
55 public:
56   /// Supplements `Environment` with non-standard comparison and join
57   /// operations.
58   class ValueModel {
59   public:
60     virtual ~ValueModel() = default;
61 
62     /// Returns:
63     ///   `Same`: `Val1` is equivalent to `Val2`, according to the model.
64     ///   `Different`: `Val1` is distinct from `Val2`, according to the model.
65     ///   `Unknown`: The model can't determine a relationship between `Val1` and
66     ///    `Val2`.
67     ///
68     /// Requirements:
69     ///
70     ///  `Val1` and `Val2` must be distinct.
71     ///
72     ///  `Val1` and `Val2` must model values of type `Type`.
73     ///
74     ///  `Val1` and `Val2` must be assigned to the same storage location in
75     ///  `Env1` and `Env2` respectively.
76     virtual ComparisonResult compare(QualType Type, const Value &Val1,
77                                      const Environment &Env1, const Value &Val2,
78                                      const Environment &Env2) {
79       // FIXME: Consider adding QualType to RecordValue and removing the Type
80       // argument here.
81       return ComparisonResult::Unknown;
82     }
83 
84     /// Modifies `MergedVal` to approximate both `Val1` and `Val2`. This could
85     /// be a strict lattice join or a more general widening operation.
86     ///
87     /// If this function returns true, `MergedVal` will be assigned to a storage
88     /// location of type `Type` in `MergedEnv`.
89     ///
90     /// `Env1` and `Env2` can be used to query child values and path condition
91     /// implications of `Val1` and `Val2` respectively.
92     ///
93     /// Requirements:
94     ///
95     ///  `Val1` and `Val2` must be distinct.
96     ///
97     ///  `Val1`, `Val2`, and `MergedVal` must model values of type `Type`.
98     ///
99     ///  `Val1` and `Val2` must be assigned to the same storage location in
100     ///  `Env1` and `Env2` respectively.
101     virtual bool merge(QualType Type, const Value &Val1,
102                        const Environment &Env1, const Value &Val2,
103                        const Environment &Env2, Value &MergedVal,
104                        Environment &MergedEnv) {
105       return true;
106     }
107 
108     /// This function may widen the current value -- replace it with an
109     /// approximation that can reach a fixed point more quickly than iterated
110     /// application of the transfer function alone. The previous value is
111     /// provided to inform the choice of widened value. The function must also
112     /// serve as a comparison operation, by indicating whether the widened value
113     /// is equivalent to the previous value.
114     ///
115     /// Returns either:
116     ///
117     ///   `nullptr`, if this value is not of interest to the model, or
118     ///
119     ///   `&Prev`, if the widened value is equivalent to `Prev`, or
120     ///
121     ///   A non-null value that approximates `Current`. `Prev` is available to
122     ///   inform the chosen approximation.
123     ///
124     /// `PrevEnv` and `CurrentEnv` can be used to query child values and path
125     /// condition implications of `Prev` and `Current`, respectively.
126     ///
127     /// Requirements:
128     ///
129     ///  `Prev` and `Current` must model values of type `Type`.
130     ///
131     ///  `Prev` and `Current` must be assigned to the same storage location in
132     ///  `PrevEnv` and `CurrentEnv`, respectively.
133     virtual Value *widen(QualType Type, Value &Prev, const Environment &PrevEnv,
134                          Value &Current, Environment &CurrentEnv) {
135       // The default implementation reduces to just comparison, since comparison
136       // is required by the API, even if no widening is performed.
137       switch (compare(Type, Prev, PrevEnv, Current, CurrentEnv)) {
138         case ComparisonResult::Same:
139           return &Prev;
140         case ComparisonResult::Different:
141           return &Current;
142         case ComparisonResult::Unknown:
143           return nullptr;
144       }
145       llvm_unreachable("all cases in switch covered");
146     }
147   };
148 
149   /// Creates an environment that uses `DACtx` to store objects that encompass
150   /// the state of a program.
151   explicit Environment(DataflowAnalysisContext &DACtx);
152 
153   // Copy-constructor is private, Environments should not be copied. See fork().
154   Environment &operator=(const Environment &Other) = delete;
155 
156   Environment(Environment &&Other) = default;
157   Environment &operator=(Environment &&Other) = default;
158 
159   /// Creates an environment that uses `DACtx` to store objects that encompass
160   /// the state of a program.
161   ///
162   /// If `DeclCtx` is a function, initializes the environment with symbolic
163   /// representations of the function parameters.
164   ///
165   /// If `DeclCtx` is a non-static member function, initializes the environment
166   /// with a symbolic representation of the `this` pointee.
167   Environment(DataflowAnalysisContext &DACtx, const DeclContext &DeclCtx);
168 
169   /// Assigns storage locations and values to all parameters, captures, global
170   /// variables, fields and functions referenced in the function currently being
171   /// analyzed.
172   ///
173   /// Requirements:
174   ///
175   ///  The function must have a body.
176   void initialize();
177 
178   /// Returns a new environment that is a copy of this one.
179   ///
180   /// The state of the program is initially the same, but can be mutated without
181   /// affecting the original.
182   ///
183   /// However the original should not be further mutated, as this may interfere
184   /// with the fork. (In practice, values are stored independently, but the
185   /// forked flow condition references the original).
186   Environment fork() const;
187 
188   /// Creates and returns an environment to use for an inline analysis  of the
189   /// callee. Uses the storage location from each argument in the `Call` as the
190   /// storage location for the corresponding parameter in the callee.
191   ///
192   /// Requirements:
193   ///
194   ///  The callee of `Call` must be a `FunctionDecl`.
195   ///
196   ///  The body of the callee must not reference globals.
197   ///
198   ///  The arguments of `Call` must map 1:1 to the callee's parameters.
199   Environment pushCall(const CallExpr *Call) const;
200   Environment pushCall(const CXXConstructExpr *Call) const;
201 
202   /// Moves gathered information back into `this` from a `CalleeEnv` created via
203   /// `pushCall`.
204   void popCall(const CallExpr *Call, const Environment &CalleeEnv);
205   void popCall(const CXXConstructExpr *Call, const Environment &CalleeEnv);
206 
207   /// Returns true if and only if the environment is equivalent to `Other`, i.e
208   /// the two environments:
209   ///  - have the same mappings from declarations to storage locations,
210   ///  - have the same mappings from expressions to storage locations,
211   ///  - have the same or equivalent (according to `Model`) values assigned to
212   ///    the same storage locations.
213   ///
214   /// Requirements:
215   ///
216   ///  `Other` and `this` must use the same `DataflowAnalysisContext`.
217   bool equivalentTo(const Environment &Other,
218                     Environment::ValueModel &Model) const;
219 
220   /// Joins two environments by taking the intersection of storage locations and
221   /// values that are stored in them. Distinct values that are assigned to the
222   /// same storage locations in `EnvA` and `EnvB` are merged using `Model`.
223   ///
224   /// Requirements:
225   ///
226   ///  `EnvA` and `EnvB` must use the same `DataflowAnalysisContext`.
227   static Environment join(const Environment &EnvA, const Environment &EnvB,
228                           Environment::ValueModel &Model);
229 
230   /// Widens the environment point-wise, using `PrevEnv` as needed to inform the
231   /// approximation.
232   ///
233   /// Requirements:
234   ///
235   ///  `PrevEnv` must be the immediate previous version of the environment.
236   ///  `PrevEnv` and `this` must use the same `DataflowAnalysisContext`.
237   LatticeJoinEffect widen(const Environment &PrevEnv,
238                           Environment::ValueModel &Model);
239 
240   // FIXME: Rename `createOrGetStorageLocation` to `getOrCreateStorageLocation`,
241   // `getStableStorageLocation`, or something more appropriate.
242 
243   /// Creates a storage location appropriate for `Type`. Does not assign a value
244   /// to the returned storage location in the environment.
245   ///
246   /// Requirements:
247   ///
248   ///  `Type` must not be null.
249   StorageLocation &createStorageLocation(QualType Type);
250 
251   /// Creates a storage location for `D`. Does not assign the returned storage
252   /// location to `D` in the environment. Does not assign a value to the
253   /// returned storage location in the environment.
254   StorageLocation &createStorageLocation(const ValueDecl &D);
255 
256   /// Creates a storage location for `E`. Does not assign the returned storage
257   /// location to `E` in the environment. Does not assign a value to the
258   /// returned storage location in the environment.
259   StorageLocation &createStorageLocation(const Expr &E);
260 
261   /// Assigns `Loc` as the storage location of `D` in the environment.
262   ///
263   /// Requirements:
264   ///
265   ///  `D` must not already have a storage location in the environment.
266   void setStorageLocation(const ValueDecl &D, StorageLocation &Loc);
267 
268   /// Returns the storage location assigned to `D` in the environment, or null
269   /// if `D` isn't assigned a storage location in the environment.
270   StorageLocation *getStorageLocation(const ValueDecl &D) const;
271 
272   /// Removes the location assigned to `D` in the environment (if any).
273   void removeDecl(const ValueDecl &D);
274 
275   /// Assigns `Loc` as the storage location of the glvalue `E` in the
276   /// environment.
277   ///
278   /// Requirements:
279   ///
280   ///  `E` must not be assigned a storage location in the environment.
281   ///  `E` must be a glvalue or a `BuiltinType::BuiltinFn`
282   void setStorageLocation(const Expr &E, StorageLocation &Loc);
283 
284   /// Returns the storage location assigned to the glvalue `E` in the
285   /// environment, or null if `E` isn't assigned a storage location in the
286   /// environment.
287   ///
288   /// Requirements:
289   ///  `E` must be a glvalue or a `BuiltinType::BuiltinFn`
290   StorageLocation *getStorageLocation(const Expr &E) const;
291 
292   /// Returns the storage location assigned to the `this` pointee in the
293   /// environment or null if the `this` pointee has no assigned storage location
294   /// in the environment.
295   RecordStorageLocation *getThisPointeeStorageLocation() const {
296     return ThisPointeeLoc;
297   }
298 
299   /// Sets the storage location assigned to the `this` pointee in the
300   /// environment.
301   void setThisPointeeStorageLocation(RecordStorageLocation &Loc) {
302     ThisPointeeLoc = &Loc;
303   }
304 
305   /// Returns the location of the result object for a record-type prvalue.
306   ///
307   /// In C++, prvalues of record type serve only a limited purpose: They can
308   /// only be used to initialize a result object (e.g. a variable or a
309   /// temporary). This function returns the location of that result object.
310   ///
311   /// When creating a prvalue of record type, we already need the storage
312   /// location of the result object to pass in `this`, even though prvalues are
313   /// otherwise not associated with storage locations.
314   ///
315   /// FIXME: Currently, this simply returns a stable storage location for `E`,
316   /// but this doesn't do the right thing in scenarios like the following:
317   /// ```
318   /// MyClass c = some_condition()? MyClass(foo) : MyClass(bar);
319   /// ```
320   /// Here, `MyClass(foo)` and `MyClass(bar)` will have two different storage
321   /// locations, when in fact their storage locations should be the same.
322   /// Eventually, we want to propagate storage locations from result objects
323   /// down to the prvalues that initialize them, similar to the way that this is
324   /// done in Clang's CodeGen.
325   ///
326   /// Requirements:
327   ///  `E` must be a prvalue of record type.
328   RecordStorageLocation &getResultObjectLocation(const Expr &RecordPRValue);
329 
330   /// Returns the return value of the current function. This can be null if:
331   /// - The function has a void return type
332   /// - No return value could be determined for the function, for example
333   ///   because it calls a function without a body.
334   ///
335   /// Requirements:
336   ///  The current function must have a non-reference return type.
337   Value *getReturnValue() const {
338     assert(getCurrentFunc() != nullptr &&
339            !getCurrentFunc()->getReturnType()->isReferenceType());
340     return ReturnVal;
341   }
342 
343   /// Returns the storage location for the reference returned by the current
344   /// function. This can be null if function doesn't return a single consistent
345   /// reference.
346   ///
347   /// Requirements:
348   ///  The current function must have a reference return type.
349   StorageLocation *getReturnStorageLocation() const {
350     assert(getCurrentFunc() != nullptr &&
351            getCurrentFunc()->getReturnType()->isReferenceType());
352     return ReturnLoc;
353   }
354 
355   /// Sets the return value of the current function.
356   ///
357   /// Requirements:
358   ///  The current function must have a non-reference return type.
359   void setReturnValue(Value *Val) {
360     assert(getCurrentFunc() != nullptr &&
361            !getCurrentFunc()->getReturnType()->isReferenceType());
362     ReturnVal = Val;
363   }
364 
365   /// Sets the storage location for the reference returned by the current
366   /// function.
367   ///
368   /// Requirements:
369   ///  The current function must have a reference return type.
370   void setReturnStorageLocation(StorageLocation *Loc) {
371     assert(getCurrentFunc() != nullptr &&
372            getCurrentFunc()->getReturnType()->isReferenceType());
373     ReturnLoc = Loc;
374   }
375 
376   /// Returns a pointer value that represents a null pointer. Calls with
377   /// `PointeeType` that are canonically equivalent will return the same result.
378   PointerValue &getOrCreateNullPointerValue(QualType PointeeType);
379 
380   /// Creates a value appropriate for `Type`, if `Type` is supported, otherwise
381   /// returns null.
382   ///
383   /// If `Type` is a pointer or reference type, creates all the necessary
384   /// storage locations and values for indirections until it finds a
385   /// non-pointer/non-reference type.
386   ///
387   /// If `Type` is a class, struct, or union type, creates values for all
388   /// modeled fields (including synthetic fields) and calls `setValue()` to
389   /// associate the `RecordValue` with its storage location
390   /// (`RecordValue::getLoc()`).
391   ///
392   /// If `Type` is one of the following types, this function will always return
393   /// a non-null pointer:
394   /// - `bool`
395   /// - Any integer type
396   /// - Any class, struct, or union type
397   ///
398   /// Requirements:
399   ///
400   ///  `Type` must not be null.
401   Value *createValue(QualType Type);
402 
403   /// Creates an object (i.e. a storage location with an associated value) of
404   /// type `Ty`. If `InitExpr` is non-null and has a value associated with it,
405   /// initializes the object with this value. Otherwise, initializes the object
406   /// with a value created using `createValue()`.
407   StorageLocation &createObject(QualType Ty, const Expr *InitExpr = nullptr) {
408     return createObjectInternal(nullptr, Ty, InitExpr);
409   }
410 
411   /// Creates an object for the variable declaration `D`. If `D` has an
412   /// initializer and this initializer is associated with a value, initializes
413   /// the object with this value.  Otherwise, initializes the object with a
414   /// value created using `createValue()`. Uses the storage location returned by
415   /// `DataflowAnalysisContext::getStableStorageLocation(D)`.
416   StorageLocation &createObject(const VarDecl &D) {
417     return createObjectInternal(&D, D.getType(), D.getInit());
418   }
419 
420   /// Creates an object for the variable declaration `D`. If `InitExpr` is
421   /// non-null and has a value associated with it, initializes the object with
422   /// this value. Otherwise, initializes the object with a value created using
423   /// `createValue()`.  Uses the storage location returned by
424   /// `DataflowAnalysisContext::getStableStorageLocation(D)`.
425   StorageLocation &createObject(const ValueDecl &D, const Expr *InitExpr) {
426     return createObjectInternal(&D, D.getType(), InitExpr);
427   }
428 
429   /// Assigns `Val` as the value of `Loc` in the environment.
430   void setValue(const StorageLocation &Loc, Value &Val);
431 
432   /// Clears any association between `Loc` and a value in the environment.
433   void clearValue(const StorageLocation &Loc) { LocToVal.erase(&Loc); }
434 
435   /// Assigns `Val` as the value of the prvalue `E` in the environment.
436   ///
437   /// If `E` is not yet associated with a storage location, associates it with
438   /// a newly created storage location. In any case, associates the storage
439   /// location of `E` with `Val`.
440   ///
441   /// Once the migration to strict handling of value categories is complete
442   /// (see https://discourse.llvm.org/t/70086), this function will be renamed to
443   /// `setValue()`. At this point, prvalue expressions will be associated
444   /// directly with `Value`s, and the legacy behavior of associating prvalue
445   /// expressions with storage locations (as described above) will be
446   /// eliminated.
447   ///
448   /// Requirements:
449   ///
450   ///  `E` must be a prvalue
451   ///  If `Val` is a `RecordValue`, its `RecordStorageLocation` must be the
452   ///  same as that of any `RecordValue` that has already been associated with
453   ///  `E`. This is to guarantee that the result object initialized by a prvalue
454   ///  `RecordValue` has a durable storage location.
455   void setValue(const Expr &E, Value &Val);
456 
457   /// Returns the value assigned to `Loc` in the environment or null if `Loc`
458   /// isn't assigned a value in the environment.
459   Value *getValue(const StorageLocation &Loc) const;
460 
461   /// Equivalent to `getValue(getStorageLocation(D))` if `D` is assigned a
462   /// storage location in the environment, otherwise returns null.
463   Value *getValue(const ValueDecl &D) const;
464 
465   /// Equivalent to `getValue(getStorageLocation(E, SP))` if `E` is assigned a
466   /// storage location in the environment, otherwise returns null.
467   Value *getValue(const Expr &E) const;
468 
469   // FIXME: should we deprecate the following & call arena().create() directly?
470 
471   /// Creates a `T` (some subclass of `Value`), forwarding `args` to the
472   /// constructor, and returns a reference to it.
473   ///
474   /// The analysis context takes ownership of the created object. The object
475   /// will be destroyed when the analysis context is destroyed.
476   template <typename T, typename... Args>
477   std::enable_if_t<std::is_base_of<Value, T>::value, T &>
478   create(Args &&...args) {
479     return arena().create<T>(std::forward<Args>(args)...);
480   }
481 
482   /// Returns a symbolic integer value that models an integer literal equal to
483   /// `Value`
484   IntegerValue &getIntLiteralValue(llvm::APInt Value) const {
485     return arena().makeIntLiteral(Value);
486   }
487 
488   /// Returns a symbolic boolean value that models a boolean literal equal to
489   /// `Value`
490   BoolValue &getBoolLiteralValue(bool Value) const {
491     return arena().makeBoolValue(arena().makeLiteral(Value));
492   }
493 
494   /// Returns an atomic boolean value.
495   BoolValue &makeAtomicBoolValue() const {
496     return arena().makeAtomValue();
497   }
498 
499   /// Returns a unique instance of boolean Top.
500   BoolValue &makeTopBoolValue() const {
501     return arena().makeTopValue();
502   }
503 
504   /// Returns a boolean value that represents the conjunction of `LHS` and
505   /// `RHS`. Subsequent calls with the same arguments, regardless of their
506   /// order, will return the same result. If the given boolean values represent
507   /// the same value, the result will be the value itself.
508   BoolValue &makeAnd(BoolValue &LHS, BoolValue &RHS) const {
509     return arena().makeBoolValue(
510         arena().makeAnd(LHS.formula(), RHS.formula()));
511   }
512 
513   /// Returns a boolean value that represents the disjunction of `LHS` and
514   /// `RHS`. Subsequent calls with the same arguments, regardless of their
515   /// order, will return the same result. If the given boolean values represent
516   /// the same value, the result will be the value itself.
517   BoolValue &makeOr(BoolValue &LHS, BoolValue &RHS) const {
518     return arena().makeBoolValue(
519         arena().makeOr(LHS.formula(), RHS.formula()));
520   }
521 
522   /// Returns a boolean value that represents the negation of `Val`. Subsequent
523   /// calls with the same argument will return the same result.
524   BoolValue &makeNot(BoolValue &Val) const {
525     return arena().makeBoolValue(arena().makeNot(Val.formula()));
526   }
527 
528   /// Returns a boolean value represents `LHS` => `RHS`. Subsequent calls with
529   /// the same arguments, will return the same result. If the given boolean
530   /// values represent the same value, the result will be a value that
531   /// represents the true boolean literal.
532   BoolValue &makeImplication(BoolValue &LHS, BoolValue &RHS) const {
533     return arena().makeBoolValue(
534         arena().makeImplies(LHS.formula(), RHS.formula()));
535   }
536 
537   /// Returns a boolean value represents `LHS` <=> `RHS`. Subsequent calls with
538   /// the same arguments, regardless of their order, will return the same
539   /// result. If the given boolean values represent the same value, the result
540   /// will be a value that represents the true boolean literal.
541   BoolValue &makeIff(BoolValue &LHS, BoolValue &RHS) const {
542     return arena().makeBoolValue(
543         arena().makeEquals(LHS.formula(), RHS.formula()));
544   }
545 
546   /// Returns a boolean variable that identifies the flow condition (FC).
547   ///
548   /// The flow condition is a set of facts that are necessarily true when the
549   /// program reaches the current point, expressed as boolean formulas.
550   /// The flow condition token is equivalent to the AND of these facts.
551   ///
552   /// These may e.g. constrain the value of certain variables. A pointer
553   /// variable may have a consistent modeled PointerValue throughout, but at a
554   /// given point the Environment may tell us that the value must be non-null.
555   ///
556   /// The FC is necessary but not sufficient for this point to be reachable.
557   /// In particular, where the FC token appears in flow conditions of successor
558   /// environments, it means "point X may have been reached", not
559   /// "point X was reached".
560   Atom getFlowConditionToken() const { return FlowConditionToken; }
561 
562   /// Record a fact that must be true if this point in the program is reached.
563   void assume(const Formula &);
564 
565   /// Returns true if the formula is always true when this point is reached.
566   /// Returns false if the formula may be false (or the flow condition isn't
567   /// sufficiently precise to prove that it is true) or if the solver times out.
568   ///
569   /// Note that there is an asymmetry between this function and `allows()` in
570   /// that they both return false if the solver times out. The assumption is
571   /// that if `proves()` or `allows()` returns true, this will result in a
572   /// diagnostic, and we want to bias towards false negatives in the case where
573   /// the solver times out.
574   bool proves(const Formula &) const;
575 
576   /// Returns true if the formula may be true when this point is reached.
577   /// Returns false if the formula is always false when this point is reached
578   /// (or the flow condition is overly constraining) or if the solver times out.
579   bool allows(const Formula &) const;
580 
581   /// Returns the `DeclContext` of the block being analysed, if any. Otherwise,
582   /// returns null.
583   const DeclContext *getDeclCtx() const { return CallStack.back(); }
584 
585   /// Returns the function currently being analyzed, or null if the code being
586   /// analyzed isn't part of a function.
587   const FunctionDecl *getCurrentFunc() const {
588     return dyn_cast<FunctionDecl>(getDeclCtx());
589   }
590 
591   /// Returns the size of the call stack.
592   size_t callStackSize() const { return CallStack.size(); }
593 
594   /// Returns whether this `Environment` can be extended to analyze the given
595   /// `Callee` (i.e. if `pushCall` can be used), with recursion disallowed and a
596   /// given `MaxDepth`.
597   bool canDescend(unsigned MaxDepth, const DeclContext *Callee) const;
598 
599   /// Returns the `DataflowAnalysisContext` used by the environment.
600   DataflowAnalysisContext &getDataflowAnalysisContext() const { return *DACtx; }
601 
602   Arena &arena() const { return DACtx->arena(); }
603 
604   LLVM_DUMP_METHOD void dump() const;
605   LLVM_DUMP_METHOD void dump(raw_ostream &OS) const;
606 
607 private:
608   // The copy-constructor is for use in fork() only.
609   Environment(const Environment &) = default;
610 
611   /// Internal version of `setStorageLocation()` that doesn't check if the
612   /// expression is a prvalue.
613   void setStorageLocationInternal(const Expr &E, StorageLocation &Loc);
614 
615   /// Internal version of `getStorageLocation()` that doesn't check if the
616   /// expression is a prvalue.
617   StorageLocation *getStorageLocationInternal(const Expr &E) const;
618 
619   /// Creates a value appropriate for `Type`, if `Type` is supported, otherwise
620   /// return null.
621   ///
622   /// Recursively initializes storage locations and values until it sees a
623   /// self-referential pointer or reference type. `Visited` is used to track
624   /// which types appeared in the reference/pointer chain in order to avoid
625   /// creating a cyclic dependency with self-referential pointers/references.
626   ///
627   /// Requirements:
628   ///
629   ///  `Type` must not be null.
630   Value *createValueUnlessSelfReferential(QualType Type,
631                                           llvm::DenseSet<QualType> &Visited,
632                                           int Depth, int &CreatedValuesCount);
633 
634   /// Creates a storage location for `Ty`. Also creates and associates a value
635   /// with the storage location, unless values of this type are not supported or
636   /// we hit one of the limits at which we stop producing values (controlled by
637   /// `Visited`, `Depth`, and `CreatedValuesCount`).
638   StorageLocation &createLocAndMaybeValue(QualType Ty,
639                                           llvm::DenseSet<QualType> &Visited,
640                                           int Depth, int &CreatedValuesCount);
641 
642   /// Shared implementation of `createObject()` overloads.
643   /// `D` and `InitExpr` may be null.
644   StorageLocation &createObjectInternal(const ValueDecl *D, QualType Ty,
645                                         const Expr *InitExpr);
646 
647   /// Shared implementation of `pushCall` overloads. Note that unlike
648   /// `pushCall`, this member is invoked on the environment of the callee, not
649   /// of the caller.
650   void pushCallInternal(const FunctionDecl *FuncDecl,
651                         ArrayRef<const Expr *> Args);
652 
653   /// Assigns storage locations and values to all global variables, fields
654   /// and functions referenced in `FuncDecl`. `FuncDecl` must have a body.
655   void initFieldsGlobalsAndFuncs(const FunctionDecl *FuncDecl);
656 
657   // `DACtx` is not null and not owned by this object.
658   DataflowAnalysisContext *DACtx;
659 
660   // FIXME: move the fields `CallStack`, `ReturnVal`, `ReturnLoc` and
661   // `ThisPointeeLoc` into a separate call-context object, shared between
662   // environments in the same call.
663   // https://github.com/llvm/llvm-project/issues/59005
664 
665   // `DeclContext` of the block being analysed if provided.
666   std::vector<const DeclContext *> CallStack;
667 
668   // Value returned by the function (if it has non-reference return type).
669   Value *ReturnVal = nullptr;
670   // Storage location of the reference returned by the function (if it has
671   // reference return type).
672   StorageLocation *ReturnLoc = nullptr;
673   // The storage location of the `this` pointee. Should only be null if the
674   // function being analyzed is only a function and not a method.
675   RecordStorageLocation *ThisPointeeLoc = nullptr;
676 
677   // Maps from declarations and glvalue expression to storage locations that are
678   // assigned to them. Unlike the maps in `DataflowAnalysisContext`, these
679   // include only storage locations that are in scope for a particular basic
680   // block.
681   llvm::DenseMap<const ValueDecl *, StorageLocation *> DeclToLoc;
682   llvm::DenseMap<const Expr *, StorageLocation *> ExprToLoc;
683   // Maps from prvalue expressions and storage locations to the values that
684   // are assigned to them.
685   // We preserve insertion order so that join/widen process values in
686   // deterministic sequence. This in turn produces deterministic SAT formulas.
687   llvm::MapVector<const Expr *, Value *> ExprToVal;
688   llvm::MapVector<const StorageLocation *, Value *> LocToVal;
689 
690   Atom FlowConditionToken;
691 };
692 
693 /// Returns the storage location for the implicit object of a
694 /// `CXXMemberCallExpr`, or null if none is defined in the environment.
695 /// Dereferences the pointer if the member call expression was written using
696 /// `->`.
697 RecordStorageLocation *getImplicitObjectLocation(const CXXMemberCallExpr &MCE,
698                                                  const Environment &Env);
699 
700 /// Returns the storage location for the base object of a `MemberExpr`, or null
701 /// if none is defined in the environment. Dereferences the pointer if the
702 /// member expression was written using `->`.
703 RecordStorageLocation *getBaseObjectLocation(const MemberExpr &ME,
704                                              const Environment &Env);
705 
706 /// Returns the fields of `RD` that are initialized by an `InitListExpr`, in the
707 /// order in which they appear in `InitListExpr::inits()`.
708 std::vector<FieldDecl *> getFieldsForInitListExpr(const RecordDecl *RD);
709 
710 /// Associates a new `RecordValue` with `Loc` and returns the new value.
711 /// It is not defined whether the field values remain the same or not.
712 ///
713 /// This function is primarily intended for use by checks that set custom
714 /// properties on `RecordValue`s to model the state of these values. Such checks
715 /// should avoid modifying the properties of an existing `RecordValue` because
716 /// these changes would be visible to other `Environment`s that share the same
717 /// `RecordValue`. Instead, call `refreshRecordValue()`, then set the properties
718 /// on the new `RecordValue` that it returns. Typical usage:
719 ///
720 ///   refreshRecordValue(Loc, Env).setProperty("my_prop", MyPropValue);
721 RecordValue &refreshRecordValue(RecordStorageLocation &Loc, Environment &Env);
722 
723 /// Associates a new `RecordValue` with `Expr` and returns the new value.
724 /// See also documentation for the overload above.
725 RecordValue &refreshRecordValue(const Expr &Expr, Environment &Env);
726 
727 } // namespace dataflow
728 } // namespace clang
729 
730 #endif // LLVM_CLANG_ANALYSIS_FLOWSENSITIVE_DATAFLOWENVIRONMENT_H
731