1 //===- Preprocessor.h - C Language Family Preprocessor ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Defines the clang::Preprocessor interface.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LEX_PREPROCESSOR_H
15 #define LLVM_CLANG_LEX_PREPROCESSOR_H
16 
17 #include "clang/Basic/Diagnostic.h"
18 #include "clang/Basic/DiagnosticIDs.h"
19 #include "clang/Basic/IdentifierTable.h"
20 #include "clang/Basic/LLVM.h"
21 #include "clang/Basic/LangOptions.h"
22 #include "clang/Basic/Module.h"
23 #include "clang/Basic/SourceLocation.h"
24 #include "clang/Basic/SourceManager.h"
25 #include "clang/Basic/TokenKinds.h"
26 #include "clang/Lex/HeaderSearch.h"
27 #include "clang/Lex/Lexer.h"
28 #include "clang/Lex/MacroInfo.h"
29 #include "clang/Lex/ModuleLoader.h"
30 #include "clang/Lex/ModuleMap.h"
31 #include "clang/Lex/PPCallbacks.h"
32 #include "clang/Lex/Token.h"
33 #include "clang/Lex/TokenLexer.h"
34 #include "llvm/ADT/ArrayRef.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/FoldingSet.h"
37 #include "llvm/ADT/FunctionExtras.h"
38 #include "llvm/ADT/None.h"
39 #include "llvm/ADT/Optional.h"
40 #include "llvm/ADT/PointerUnion.h"
41 #include "llvm/ADT/STLExtras.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/StringRef.h"
45 #include "llvm/ADT/TinyPtrVector.h"
46 #include "llvm/ADT/iterator_range.h"
47 #include "llvm/Support/Allocator.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/Registry.h"
50 #include <cassert>
51 #include <cstddef>
52 #include <cstdint>
53 #include <map>
54 #include <memory>
55 #include <string>
56 #include <utility>
57 #include <vector>
58 
59 namespace llvm {
60 
61 template<unsigned InternalLen> class SmallString;
62 
63 } // namespace llvm
64 
65 namespace clang {
66 
67 class CodeCompletionHandler;
68 class CommentHandler;
69 class DirectoryEntry;
70 class DirectoryLookup;
71 class EmptylineHandler;
72 class ExternalPreprocessorSource;
73 class FileEntry;
74 class FileManager;
75 class HeaderSearch;
76 class MacroArgs;
77 class PragmaHandler;
78 class PragmaNamespace;
79 class PreprocessingRecord;
80 class PreprocessorLexer;
81 class PreprocessorOptions;
82 class ScratchBuffer;
83 class TargetInfo;
84 
85 namespace Builtin {
86 class Context;
87 }
88 
89 /// Stores token information for comparing actual tokens with
90 /// predefined values.  Only handles simple tokens and identifiers.
91 class TokenValue {
92   tok::TokenKind Kind;
93   IdentifierInfo *II;
94 
95 public:
96   TokenValue(tok::TokenKind Kind) : Kind(Kind), II(nullptr) {
97     assert(Kind != tok::raw_identifier && "Raw identifiers are not supported.");
98     assert(Kind != tok::identifier &&
99            "Identifiers should be created by TokenValue(IdentifierInfo *)");
100     assert(!tok::isLiteral(Kind) && "Literals are not supported.");
101     assert(!tok::isAnnotation(Kind) && "Annotations are not supported.");
102   }
103 
104   TokenValue(IdentifierInfo *II) : Kind(tok::identifier), II(II) {}
105 
106   bool operator==(const Token &Tok) const {
107     return Tok.getKind() == Kind &&
108         (!II || II == Tok.getIdentifierInfo());
109   }
110 };
111 
112 /// Context in which macro name is used.
113 enum MacroUse {
114   // other than #define or #undef
115   MU_Other  = 0,
116 
117   // macro name specified in #define
118   MU_Define = 1,
119 
120   // macro name specified in #undef
121   MU_Undef  = 2
122 };
123 
124 /// Engages in a tight little dance with the lexer to efficiently
125 /// preprocess tokens.
126 ///
127 /// Lexers know only about tokens within a single source file, and don't
128 /// know anything about preprocessor-level issues like the \#include stack,
129 /// token expansion, etc.
130 class Preprocessor {
131   friend class VAOptDefinitionContext;
132   friend class VariadicMacroScopeGuard;
133 
134   llvm::unique_function<void(const clang::Token &)> OnToken;
135   std::shared_ptr<PreprocessorOptions> PPOpts;
136   DiagnosticsEngine        *Diags;
137   LangOptions       &LangOpts;
138   const TargetInfo *Target = nullptr;
139   const TargetInfo *AuxTarget = nullptr;
140   FileManager       &FileMgr;
141   SourceManager     &SourceMgr;
142   std::unique_ptr<ScratchBuffer> ScratchBuf;
143   HeaderSearch      &HeaderInfo;
144   ModuleLoader      &TheModuleLoader;
145 
146   /// External source of macros.
147   ExternalPreprocessorSource *ExternalSource;
148 
149   /// A BumpPtrAllocator object used to quickly allocate and release
150   /// objects internal to the Preprocessor.
151   llvm::BumpPtrAllocator BP;
152 
153   /// Identifiers for builtin macros and other builtins.
154   IdentifierInfo *Ident__LINE__, *Ident__FILE__;   // __LINE__, __FILE__
155   IdentifierInfo *Ident__DATE__, *Ident__TIME__;   // __DATE__, __TIME__
156   IdentifierInfo *Ident__INCLUDE_LEVEL__;          // __INCLUDE_LEVEL__
157   IdentifierInfo *Ident__BASE_FILE__;              // __BASE_FILE__
158   IdentifierInfo *Ident__FILE_NAME__;              // __FILE_NAME__
159   IdentifierInfo *Ident__TIMESTAMP__;              // __TIMESTAMP__
160   IdentifierInfo *Ident__COUNTER__;                // __COUNTER__
161   IdentifierInfo *Ident_Pragma, *Ident__pragma;    // _Pragma, __pragma
162   IdentifierInfo *Ident__identifier;               // __identifier
163   IdentifierInfo *Ident__VA_ARGS__;                // __VA_ARGS__
164   IdentifierInfo *Ident__VA_OPT__;                 // __VA_OPT__
165   IdentifierInfo *Ident__has_feature;              // __has_feature
166   IdentifierInfo *Ident__has_extension;            // __has_extension
167   IdentifierInfo *Ident__has_builtin;              // __has_builtin
168   IdentifierInfo *Ident__has_attribute;            // __has_attribute
169   IdentifierInfo *Ident__has_include;              // __has_include
170   IdentifierInfo *Ident__has_include_next;         // __has_include_next
171   IdentifierInfo *Ident__has_warning;              // __has_warning
172   IdentifierInfo *Ident__is_identifier;            // __is_identifier
173   IdentifierInfo *Ident__building_module;          // __building_module
174   IdentifierInfo *Ident__MODULE__;                 // __MODULE__
175   IdentifierInfo *Ident__has_cpp_attribute;        // __has_cpp_attribute
176   IdentifierInfo *Ident__has_c_attribute;          // __has_c_attribute
177   IdentifierInfo *Ident__has_declspec;             // __has_declspec_attribute
178   IdentifierInfo *Ident__is_target_arch;           // __is_target_arch
179   IdentifierInfo *Ident__is_target_vendor;         // __is_target_vendor
180   IdentifierInfo *Ident__is_target_os;             // __is_target_os
181   IdentifierInfo *Ident__is_target_environment;    // __is_target_environment
182   IdentifierInfo *Ident__FLT_EVAL_METHOD__;        // __FLT_EVAL_METHOD
183 
184   // Weak, only valid (and set) while InMacroArgs is true.
185   Token* ArgMacro;
186 
187   SourceLocation DATELoc, TIMELoc;
188 
189   // FEM_UnsetOnCommandLine means that an explicit evaluation method was
190   // not specified on the command line. The target is queried to set the
191   // default evaluation method.
192   LangOptions::FPEvalMethodKind CurrentFPEvalMethod =
193       LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine;
194 
195   // Keeps the value of the last evaluation method before a
196   // `pragma float_control (precise,off) is applied.
197   LangOptions::FPEvalMethodKind LastFPEvalMethod =
198       LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine;
199 
200   // The most recent pragma location where the floating point evaluation
201   // method was modified. This is used to determine whether the
202   // 'pragma clang fp eval_method' was used whithin the current scope.
203   SourceLocation LastFPEvalPragmaLocation;
204 
205   LangOptions::FPEvalMethodKind TUFPEvalMethod =
206       LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine;
207 
208   // Next __COUNTER__ value, starts at 0.
209   unsigned CounterValue = 0;
210 
211   enum {
212     /// Maximum depth of \#includes.
213     MaxAllowedIncludeStackDepth = 200
214   };
215 
216   // State that is set before the preprocessor begins.
217   bool KeepComments : 1;
218   bool KeepMacroComments : 1;
219   bool SuppressIncludeNotFoundError : 1;
220 
221   // State that changes while the preprocessor runs:
222   bool InMacroArgs : 1;            // True if parsing fn macro invocation args.
223 
224   /// Whether the preprocessor owns the header search object.
225   bool OwnsHeaderSearch : 1;
226 
227   /// True if macro expansion is disabled.
228   bool DisableMacroExpansion : 1;
229 
230   /// Temporarily disables DisableMacroExpansion (i.e. enables expansion)
231   /// when parsing preprocessor directives.
232   bool MacroExpansionInDirectivesOverride : 1;
233 
234   class ResetMacroExpansionHelper;
235 
236   /// Whether we have already loaded macros from the external source.
237   mutable bool ReadMacrosFromExternalSource : 1;
238 
239   /// True if pragmas are enabled.
240   bool PragmasEnabled : 1;
241 
242   /// True if the current build action is a preprocessing action.
243   bool PreprocessedOutput : 1;
244 
245   /// True if we are currently preprocessing a #if or #elif directive
246   bool ParsingIfOrElifDirective;
247 
248   /// True if we are pre-expanding macro arguments.
249   bool InMacroArgPreExpansion;
250 
251   /// Mapping/lookup information for all identifiers in
252   /// the program, including program keywords.
253   mutable IdentifierTable Identifiers;
254 
255   /// This table contains all the selectors in the program.
256   ///
257   /// Unlike IdentifierTable above, this table *isn't* populated by the
258   /// preprocessor. It is declared/expanded here because its role/lifetime is
259   /// conceptually similar to the IdentifierTable. In addition, the current
260   /// control flow (in clang::ParseAST()), make it convenient to put here.
261   ///
262   /// FIXME: Make sure the lifetime of Identifiers/Selectors *isn't* tied to
263   /// the lifetime of the preprocessor.
264   SelectorTable Selectors;
265 
266   /// Information about builtins.
267   std::unique_ptr<Builtin::Context> BuiltinInfo;
268 
269   /// Tracks all of the pragmas that the client registered
270   /// with this preprocessor.
271   std::unique_ptr<PragmaNamespace> PragmaHandlers;
272 
273   /// Pragma handlers of the original source is stored here during the
274   /// parsing of a model file.
275   std::unique_ptr<PragmaNamespace> PragmaHandlersBackup;
276 
277   /// Tracks all of the comment handlers that the client registered
278   /// with this preprocessor.
279   std::vector<CommentHandler *> CommentHandlers;
280 
281   /// Empty line handler.
282   EmptylineHandler *Emptyline = nullptr;
283 
284   /// True if we want to ignore EOF token and continue later on (thus
285   /// avoid tearing the Lexer and etc. down).
286   bool IncrementalProcessing = false;
287 
288 public:
289   /// The kind of translation unit we are processing.
290   const TranslationUnitKind TUKind;
291 
292 private:
293   /// The code-completion handler.
294   CodeCompletionHandler *CodeComplete = nullptr;
295 
296   /// The file that we're performing code-completion for, if any.
297   const FileEntry *CodeCompletionFile = nullptr;
298 
299   /// The offset in file for the code-completion point.
300   unsigned CodeCompletionOffset = 0;
301 
302   /// The location for the code-completion point. This gets instantiated
303   /// when the CodeCompletionFile gets \#include'ed for preprocessing.
304   SourceLocation CodeCompletionLoc;
305 
306   /// The start location for the file of the code-completion point.
307   ///
308   /// This gets instantiated when the CodeCompletionFile gets \#include'ed
309   /// for preprocessing.
310   SourceLocation CodeCompletionFileLoc;
311 
312   /// The source location of the \c import contextual keyword we just
313   /// lexed, if any.
314   SourceLocation ModuleImportLoc;
315 
316   /// The module import path that we're currently processing.
317   SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> ModuleImportPath;
318 
319   /// Whether the last token we lexed was an '@'.
320   bool LastTokenWasAt = false;
321 
322   /// A position within a C++20 import-seq.
323   class ImportSeq {
324   public:
325     enum State : int {
326       // Positive values represent a number of unclosed brackets.
327       AtTopLevel = 0,
328       AfterTopLevelTokenSeq = -1,
329       AfterExport = -2,
330       AfterImportSeq = -3,
331     };
332 
333     ImportSeq(State S) : S(S) {}
334 
335     /// Saw any kind of open bracket.
336     void handleOpenBracket() {
337       S = static_cast<State>(std::max<int>(S, 0) + 1);
338     }
339     /// Saw any kind of close bracket other than '}'.
340     void handleCloseBracket() {
341       S = static_cast<State>(std::max<int>(S, 1) - 1);
342     }
343     /// Saw a close brace.
344     void handleCloseBrace() {
345       handleCloseBracket();
346       if (S == AtTopLevel && !AfterHeaderName)
347         S = AfterTopLevelTokenSeq;
348     }
349     /// Saw a semicolon.
350     void handleSemi() {
351       if (atTopLevel()) {
352         S = AfterTopLevelTokenSeq;
353         AfterHeaderName = false;
354       }
355     }
356 
357     /// Saw an 'export' identifier.
358     void handleExport() {
359       if (S == AfterTopLevelTokenSeq)
360         S = AfterExport;
361       else if (S <= 0)
362         S = AtTopLevel;
363     }
364     /// Saw an 'import' identifier.
365     void handleImport() {
366       if (S == AfterTopLevelTokenSeq || S == AfterExport)
367         S = AfterImportSeq;
368       else if (S <= 0)
369         S = AtTopLevel;
370     }
371 
372     /// Saw a 'header-name' token; do not recognize any more 'import' tokens
373     /// until we reach a top-level semicolon.
374     void handleHeaderName() {
375       if (S == AfterImportSeq)
376         AfterHeaderName = true;
377       handleMisc();
378     }
379 
380     /// Saw any other token.
381     void handleMisc() {
382       if (S <= 0)
383         S = AtTopLevel;
384     }
385 
386     bool atTopLevel() { return S <= 0; }
387     bool afterImportSeq() { return S == AfterImportSeq; }
388 
389   private:
390     State S;
391     /// Whether we're in the pp-import-suffix following the header-name in a
392     /// pp-import. If so, a close-brace is not sufficient to end the
393     /// top-level-token-seq of an import-seq.
394     bool AfterHeaderName = false;
395   };
396 
397   /// Our current position within a C++20 import-seq.
398   ImportSeq ImportSeqState = ImportSeq::AfterTopLevelTokenSeq;
399 
400   /// Whether the module import expects an identifier next. Otherwise,
401   /// it expects a '.' or ';'.
402   bool ModuleImportExpectsIdentifier = false;
403 
404   /// The identifier and source location of the currently-active
405   /// \#pragma clang arc_cf_code_audited begin.
406   std::pair<IdentifierInfo *, SourceLocation> PragmaARCCFCodeAuditedInfo;
407 
408   /// The source location of the currently-active
409   /// \#pragma clang assume_nonnull begin.
410   SourceLocation PragmaAssumeNonNullLoc;
411 
412   /// Set only for preambles which end with an active
413   /// \#pragma clang assume_nonnull begin.
414   ///
415   /// When the preamble is loaded into the main file,
416   /// `PragmaAssumeNonNullLoc` will be set to this to
417   /// replay the unterminated assume_nonnull.
418   SourceLocation PreambleRecordedPragmaAssumeNonNullLoc;
419 
420   /// True if we hit the code-completion point.
421   bool CodeCompletionReached = false;
422 
423   /// The code completion token containing the information
424   /// on the stem that is to be code completed.
425   IdentifierInfo *CodeCompletionII = nullptr;
426 
427   /// Range for the code completion token.
428   SourceRange CodeCompletionTokenRange;
429 
430   /// The directory that the main file should be considered to occupy,
431   /// if it does not correspond to a real file (as happens when building a
432   /// module).
433   const DirectoryEntry *MainFileDir = nullptr;
434 
435   /// The number of bytes that we will initially skip when entering the
436   /// main file, along with a flag that indicates whether skipping this number
437   /// of bytes will place the lexer at the start of a line.
438   ///
439   /// This is used when loading a precompiled preamble.
440   std::pair<int, bool> SkipMainFilePreamble;
441 
442   /// Whether we hit an error due to reaching max allowed include depth. Allows
443   /// to avoid hitting the same error over and over again.
444   bool HasReachedMaxIncludeDepth = false;
445 
446   /// The number of currently-active calls to Lex.
447   ///
448   /// Lex is reentrant, and asking for an (end-of-phase-4) token can often
449   /// require asking for multiple additional tokens. This counter makes it
450   /// possible for Lex to detect whether it's producing a token for the end
451   /// of phase 4 of translation or for some other situation.
452   unsigned LexLevel = 0;
453 
454   /// The number of (LexLevel 0) preprocessor tokens.
455   unsigned TokenCount = 0;
456 
457   /// Preprocess every token regardless of LexLevel.
458   bool PreprocessToken = false;
459 
460   /// The maximum number of (LexLevel 0) tokens before issuing a -Wmax-tokens
461   /// warning, or zero for unlimited.
462   unsigned MaxTokens = 0;
463   SourceLocation MaxTokensOverrideLoc;
464 
465 public:
466   struct PreambleSkipInfo {
467     SourceLocation HashTokenLoc;
468     SourceLocation IfTokenLoc;
469     bool FoundNonSkipPortion;
470     bool FoundElse;
471     SourceLocation ElseLoc;
472 
473     PreambleSkipInfo(SourceLocation HashTokenLoc, SourceLocation IfTokenLoc,
474                      bool FoundNonSkipPortion, bool FoundElse,
475                      SourceLocation ElseLoc)
476         : HashTokenLoc(HashTokenLoc), IfTokenLoc(IfTokenLoc),
477           FoundNonSkipPortion(FoundNonSkipPortion), FoundElse(FoundElse),
478           ElseLoc(ElseLoc) {}
479   };
480 
481   using IncludedFilesSet = llvm::DenseSet<const FileEntry *>;
482 
483 private:
484   friend class ASTReader;
485   friend class MacroArgs;
486 
487   class PreambleConditionalStackStore {
488     enum State {
489       Off = 0,
490       Recording = 1,
491       Replaying = 2,
492     };
493 
494   public:
495     PreambleConditionalStackStore() = default;
496 
497     void startRecording() { ConditionalStackState = Recording; }
498     void startReplaying() { ConditionalStackState = Replaying; }
499     bool isRecording() const { return ConditionalStackState == Recording; }
500     bool isReplaying() const { return ConditionalStackState == Replaying; }
501 
502     ArrayRef<PPConditionalInfo> getStack() const {
503       return ConditionalStack;
504     }
505 
506     void doneReplaying() {
507       ConditionalStack.clear();
508       ConditionalStackState = Off;
509     }
510 
511     void setStack(ArrayRef<PPConditionalInfo> s) {
512       if (!isRecording() && !isReplaying())
513         return;
514       ConditionalStack.clear();
515       ConditionalStack.append(s.begin(), s.end());
516     }
517 
518     bool hasRecordedPreamble() const { return !ConditionalStack.empty(); }
519 
520     bool reachedEOFWhileSkipping() const { return SkipInfo.has_value(); }
521 
522     void clearSkipInfo() { SkipInfo.reset(); }
523 
524     llvm::Optional<PreambleSkipInfo> SkipInfo;
525 
526   private:
527     SmallVector<PPConditionalInfo, 4> ConditionalStack;
528     State ConditionalStackState = Off;
529   } PreambleConditionalStack;
530 
531   /// The current top of the stack that we're lexing from if
532   /// not expanding a macro and we are lexing directly from source code.
533   ///
534   /// Only one of CurLexer, or CurTokenLexer will be non-null.
535   std::unique_ptr<Lexer> CurLexer;
536 
537   /// The current top of the stack what we're lexing from
538   /// if not expanding a macro.
539   ///
540   /// This is an alias for CurLexer.
541   PreprocessorLexer *CurPPLexer = nullptr;
542 
543   /// Used to find the current FileEntry, if CurLexer is non-null
544   /// and if applicable.
545   ///
546   /// This allows us to implement \#include_next and find directory-specific
547   /// properties.
548   ConstSearchDirIterator CurDirLookup = nullptr;
549 
550   /// The current macro we are expanding, if we are expanding a macro.
551   ///
552   /// One of CurLexer and CurTokenLexer must be null.
553   std::unique_ptr<TokenLexer> CurTokenLexer;
554 
555   /// The kind of lexer we're currently working with.
556   enum CurLexerKind {
557     CLK_Lexer,
558     CLK_TokenLexer,
559     CLK_CachingLexer,
560     CLK_DependencyDirectivesLexer,
561     CLK_LexAfterModuleImport
562   } CurLexerKind = CLK_Lexer;
563 
564   /// If the current lexer is for a submodule that is being built, this
565   /// is that submodule.
566   Module *CurLexerSubmodule = nullptr;
567 
568   /// Keeps track of the stack of files currently
569   /// \#included, and macros currently being expanded from, not counting
570   /// CurLexer/CurTokenLexer.
571   struct IncludeStackInfo {
572     enum CurLexerKind           CurLexerKind;
573     Module                     *TheSubmodule;
574     std::unique_ptr<Lexer>      TheLexer;
575     PreprocessorLexer          *ThePPLexer;
576     std::unique_ptr<TokenLexer> TheTokenLexer;
577     ConstSearchDirIterator      TheDirLookup;
578 
579     // The following constructors are completely useless copies of the default
580     // versions, only needed to pacify MSVC.
581     IncludeStackInfo(enum CurLexerKind CurLexerKind, Module *TheSubmodule,
582                      std::unique_ptr<Lexer> &&TheLexer,
583                      PreprocessorLexer *ThePPLexer,
584                      std::unique_ptr<TokenLexer> &&TheTokenLexer,
585                      ConstSearchDirIterator TheDirLookup)
586         : CurLexerKind(std::move(CurLexerKind)),
587           TheSubmodule(std::move(TheSubmodule)), TheLexer(std::move(TheLexer)),
588           ThePPLexer(std::move(ThePPLexer)),
589           TheTokenLexer(std::move(TheTokenLexer)),
590           TheDirLookup(std::move(TheDirLookup)) {}
591   };
592   std::vector<IncludeStackInfo> IncludeMacroStack;
593 
594   /// Actions invoked when some preprocessor activity is
595   /// encountered (e.g. a file is \#included, etc).
596   std::unique_ptr<PPCallbacks> Callbacks;
597 
598   struct MacroExpandsInfo {
599     Token Tok;
600     MacroDefinition MD;
601     SourceRange Range;
602 
603     MacroExpandsInfo(Token Tok, MacroDefinition MD, SourceRange Range)
604         : Tok(Tok), MD(MD), Range(Range) {}
605   };
606   SmallVector<MacroExpandsInfo, 2> DelayedMacroExpandsCallbacks;
607 
608   /// Information about a name that has been used to define a module macro.
609   struct ModuleMacroInfo {
610     /// The most recent macro directive for this identifier.
611     MacroDirective *MD;
612 
613     /// The active module macros for this identifier.
614     llvm::TinyPtrVector<ModuleMacro *> ActiveModuleMacros;
615 
616     /// The generation number at which we last updated ActiveModuleMacros.
617     /// \see Preprocessor::VisibleModules.
618     unsigned ActiveModuleMacrosGeneration = 0;
619 
620     /// Whether this macro name is ambiguous.
621     bool IsAmbiguous = false;
622 
623     /// The module macros that are overridden by this macro.
624     llvm::TinyPtrVector<ModuleMacro *> OverriddenMacros;
625 
626     ModuleMacroInfo(MacroDirective *MD) : MD(MD) {}
627   };
628 
629   /// The state of a macro for an identifier.
630   class MacroState {
631     mutable llvm::PointerUnion<MacroDirective *, ModuleMacroInfo *> State;
632 
633     ModuleMacroInfo *getModuleInfo(Preprocessor &PP,
634                                    const IdentifierInfo *II) const {
635       if (II->isOutOfDate())
636         PP.updateOutOfDateIdentifier(const_cast<IdentifierInfo&>(*II));
637       // FIXME: Find a spare bit on IdentifierInfo and store a
638       //        HasModuleMacros flag.
639       if (!II->hasMacroDefinition() ||
640           (!PP.getLangOpts().Modules &&
641            !PP.getLangOpts().ModulesLocalVisibility) ||
642           !PP.CurSubmoduleState->VisibleModules.getGeneration())
643         return nullptr;
644 
645       auto *Info = State.dyn_cast<ModuleMacroInfo*>();
646       if (!Info) {
647         Info = new (PP.getPreprocessorAllocator())
648             ModuleMacroInfo(State.get<MacroDirective *>());
649         State = Info;
650       }
651 
652       if (PP.CurSubmoduleState->VisibleModules.getGeneration() !=
653           Info->ActiveModuleMacrosGeneration)
654         PP.updateModuleMacroInfo(II, *Info);
655       return Info;
656     }
657 
658   public:
659     MacroState() : MacroState(nullptr) {}
660     MacroState(MacroDirective *MD) : State(MD) {}
661 
662     MacroState(MacroState &&O) noexcept : State(O.State) {
663       O.State = (MacroDirective *)nullptr;
664     }
665 
666     MacroState &operator=(MacroState &&O) noexcept {
667       auto S = O.State;
668       O.State = (MacroDirective *)nullptr;
669       State = S;
670       return *this;
671     }
672 
673     ~MacroState() {
674       if (auto *Info = State.dyn_cast<ModuleMacroInfo*>())
675         Info->~ModuleMacroInfo();
676     }
677 
678     MacroDirective *getLatest() const {
679       if (auto *Info = State.dyn_cast<ModuleMacroInfo*>())
680         return Info->MD;
681       return State.get<MacroDirective*>();
682     }
683 
684     void setLatest(MacroDirective *MD) {
685       if (auto *Info = State.dyn_cast<ModuleMacroInfo*>())
686         Info->MD = MD;
687       else
688         State = MD;
689     }
690 
691     bool isAmbiguous(Preprocessor &PP, const IdentifierInfo *II) const {
692       auto *Info = getModuleInfo(PP, II);
693       return Info ? Info->IsAmbiguous : false;
694     }
695 
696     ArrayRef<ModuleMacro *>
697     getActiveModuleMacros(Preprocessor &PP, const IdentifierInfo *II) const {
698       if (auto *Info = getModuleInfo(PP, II))
699         return Info->ActiveModuleMacros;
700       return None;
701     }
702 
703     MacroDirective::DefInfo findDirectiveAtLoc(SourceLocation Loc,
704                                                SourceManager &SourceMgr) const {
705       // FIXME: Incorporate module macros into the result of this.
706       if (auto *Latest = getLatest())
707         return Latest->findDirectiveAtLoc(Loc, SourceMgr);
708       return {};
709     }
710 
711     void overrideActiveModuleMacros(Preprocessor &PP, IdentifierInfo *II) {
712       if (auto *Info = getModuleInfo(PP, II)) {
713         Info->OverriddenMacros.insert(Info->OverriddenMacros.end(),
714                                       Info->ActiveModuleMacros.begin(),
715                                       Info->ActiveModuleMacros.end());
716         Info->ActiveModuleMacros.clear();
717         Info->IsAmbiguous = false;
718       }
719     }
720 
721     ArrayRef<ModuleMacro*> getOverriddenMacros() const {
722       if (auto *Info = State.dyn_cast<ModuleMacroInfo*>())
723         return Info->OverriddenMacros;
724       return None;
725     }
726 
727     void setOverriddenMacros(Preprocessor &PP,
728                              ArrayRef<ModuleMacro *> Overrides) {
729       auto *Info = State.dyn_cast<ModuleMacroInfo*>();
730       if (!Info) {
731         if (Overrides.empty())
732           return;
733         Info = new (PP.getPreprocessorAllocator())
734             ModuleMacroInfo(State.get<MacroDirective *>());
735         State = Info;
736       }
737       Info->OverriddenMacros.clear();
738       Info->OverriddenMacros.insert(Info->OverriddenMacros.end(),
739                                     Overrides.begin(), Overrides.end());
740       Info->ActiveModuleMacrosGeneration = 0;
741     }
742   };
743 
744   /// For each IdentifierInfo that was associated with a macro, we
745   /// keep a mapping to the history of all macro definitions and #undefs in
746   /// the reverse order (the latest one is in the head of the list).
747   ///
748   /// This mapping lives within the \p CurSubmoduleState.
749   using MacroMap = llvm::DenseMap<const IdentifierInfo *, MacroState>;
750 
751   struct SubmoduleState;
752 
753   /// Information about a submodule that we're currently building.
754   struct BuildingSubmoduleInfo {
755     /// The module that we are building.
756     Module *M;
757 
758     /// The location at which the module was included.
759     SourceLocation ImportLoc;
760 
761     /// Whether we entered this submodule via a pragma.
762     bool IsPragma;
763 
764     /// The previous SubmoduleState.
765     SubmoduleState *OuterSubmoduleState;
766 
767     /// The number of pending module macro names when we started building this.
768     unsigned OuterPendingModuleMacroNames;
769 
770     BuildingSubmoduleInfo(Module *M, SourceLocation ImportLoc, bool IsPragma,
771                           SubmoduleState *OuterSubmoduleState,
772                           unsigned OuterPendingModuleMacroNames)
773         : M(M), ImportLoc(ImportLoc), IsPragma(IsPragma),
774           OuterSubmoduleState(OuterSubmoduleState),
775           OuterPendingModuleMacroNames(OuterPendingModuleMacroNames) {}
776   };
777   SmallVector<BuildingSubmoduleInfo, 8> BuildingSubmoduleStack;
778 
779   /// Information about a submodule's preprocessor state.
780   struct SubmoduleState {
781     /// The macros for the submodule.
782     MacroMap Macros;
783 
784     /// The set of modules that are visible within the submodule.
785     VisibleModuleSet VisibleModules;
786 
787     // FIXME: CounterValue?
788     // FIXME: PragmaPushMacroInfo?
789   };
790   std::map<Module *, SubmoduleState> Submodules;
791 
792   /// The preprocessor state for preprocessing outside of any submodule.
793   SubmoduleState NullSubmoduleState;
794 
795   /// The current submodule state. Will be \p NullSubmoduleState if we're not
796   /// in a submodule.
797   SubmoduleState *CurSubmoduleState;
798 
799   /// The files that have been included.
800   IncludedFilesSet IncludedFiles;
801 
802   /// The set of known macros exported from modules.
803   llvm::FoldingSet<ModuleMacro> ModuleMacros;
804 
805   /// The names of potential module macros that we've not yet processed.
806   llvm::SmallVector<const IdentifierInfo *, 32> PendingModuleMacroNames;
807 
808   /// The list of module macros, for each identifier, that are not overridden by
809   /// any other module macro.
810   llvm::DenseMap<const IdentifierInfo *, llvm::TinyPtrVector<ModuleMacro *>>
811       LeafModuleMacros;
812 
813   /// Macros that we want to warn because they are not used at the end
814   /// of the translation unit.
815   ///
816   /// We store just their SourceLocations instead of
817   /// something like MacroInfo*. The benefit of this is that when we are
818   /// deserializing from PCH, we don't need to deserialize identifier & macros
819   /// just so that we can report that they are unused, we just warn using
820   /// the SourceLocations of this set (that will be filled by the ASTReader).
821   using WarnUnusedMacroLocsTy = llvm::SmallDenseSet<SourceLocation, 32>;
822   WarnUnusedMacroLocsTy WarnUnusedMacroLocs;
823 
824   /// This is a pair of an optional message and source location used for pragmas
825   /// that annotate macros like pragma clang restrict_expansion and pragma clang
826   /// deprecated. This pair stores the optional message and the location of the
827   /// annotation pragma for use producing diagnostics and notes.
828   using MsgLocationPair = std::pair<std::string, SourceLocation>;
829 
830   struct MacroAnnotationInfo {
831     SourceLocation Location;
832     std::string Message;
833   };
834 
835   struct MacroAnnotations {
836     llvm::Optional<MacroAnnotationInfo> DeprecationInfo;
837     llvm::Optional<MacroAnnotationInfo> RestrictExpansionInfo;
838     llvm::Optional<SourceLocation> FinalAnnotationLoc;
839 
840     static MacroAnnotations makeDeprecation(SourceLocation Loc,
841                                             std::string Msg) {
842       return MacroAnnotations{MacroAnnotationInfo{Loc, std::move(Msg)},
843                               llvm::None, llvm::None};
844     }
845 
846     static MacroAnnotations makeRestrictExpansion(SourceLocation Loc,
847                                                   std::string Msg) {
848       return MacroAnnotations{
849           llvm::None, MacroAnnotationInfo{Loc, std::move(Msg)}, llvm::None};
850     }
851 
852     static MacroAnnotations makeFinal(SourceLocation Loc) {
853       return MacroAnnotations{llvm::None, llvm::None, Loc};
854     }
855   };
856 
857   /// Warning information for macro annotations.
858   llvm::DenseMap<const IdentifierInfo *, MacroAnnotations> AnnotationInfos;
859 
860   /// A "freelist" of MacroArg objects that can be
861   /// reused for quick allocation.
862   MacroArgs *MacroArgCache = nullptr;
863 
864   /// For each IdentifierInfo used in a \#pragma push_macro directive,
865   /// we keep a MacroInfo stack used to restore the previous macro value.
866   llvm::DenseMap<IdentifierInfo *, std::vector<MacroInfo *>>
867       PragmaPushMacroInfo;
868 
869   // Various statistics we track for performance analysis.
870   unsigned NumDirectives = 0;
871   unsigned NumDefined = 0;
872   unsigned NumUndefined = 0;
873   unsigned NumPragma = 0;
874   unsigned NumIf = 0;
875   unsigned NumElse = 0;
876   unsigned NumEndif = 0;
877   unsigned NumEnteredSourceFiles = 0;
878   unsigned MaxIncludeStackDepth = 0;
879   unsigned NumMacroExpanded = 0;
880   unsigned NumFnMacroExpanded = 0;
881   unsigned NumBuiltinMacroExpanded = 0;
882   unsigned NumFastMacroExpanded = 0;
883   unsigned NumTokenPaste = 0;
884   unsigned NumFastTokenPaste = 0;
885   unsigned NumSkipped = 0;
886 
887   /// The predefined macros that preprocessor should use from the
888   /// command line etc.
889   std::string Predefines;
890 
891   /// The file ID for the preprocessor predefines.
892   FileID PredefinesFileID;
893 
894   /// The file ID for the PCH through header.
895   FileID PCHThroughHeaderFileID;
896 
897   /// Whether tokens are being skipped until a #pragma hdrstop is seen.
898   bool SkippingUntilPragmaHdrStop = false;
899 
900   /// Whether tokens are being skipped until the through header is seen.
901   bool SkippingUntilPCHThroughHeader = false;
902 
903   /// \{
904   /// Cache of macro expanders to reduce malloc traffic.
905   enum { TokenLexerCacheSize = 8 };
906   unsigned NumCachedTokenLexers;
907   std::unique_ptr<TokenLexer> TokenLexerCache[TokenLexerCacheSize];
908   /// \}
909 
910   /// Keeps macro expanded tokens for TokenLexers.
911   //
912   /// Works like a stack; a TokenLexer adds the macro expanded tokens that is
913   /// going to lex in the cache and when it finishes the tokens are removed
914   /// from the end of the cache.
915   SmallVector<Token, 16> MacroExpandedTokens;
916   std::vector<std::pair<TokenLexer *, size_t>> MacroExpandingLexersStack;
917 
918   /// A record of the macro definitions and expansions that
919   /// occurred during preprocessing.
920   ///
921   /// This is an optional side structure that can be enabled with
922   /// \c createPreprocessingRecord() prior to preprocessing.
923   PreprocessingRecord *Record = nullptr;
924 
925   /// Cached tokens state.
926   using CachedTokensTy = SmallVector<Token, 1>;
927 
928   /// Cached tokens are stored here when we do backtracking or
929   /// lookahead. They are "lexed" by the CachingLex() method.
930   CachedTokensTy CachedTokens;
931 
932   /// The position of the cached token that CachingLex() should
933   /// "lex" next.
934   ///
935   /// If it points beyond the CachedTokens vector, it means that a normal
936   /// Lex() should be invoked.
937   CachedTokensTy::size_type CachedLexPos = 0;
938 
939   /// Stack of backtrack positions, allowing nested backtracks.
940   ///
941   /// The EnableBacktrackAtThisPos() method pushes a position to
942   /// indicate where CachedLexPos should be set when the BackTrack() method is
943   /// invoked (at which point the last position is popped).
944   std::vector<CachedTokensTy::size_type> BacktrackPositions;
945 
946   struct MacroInfoChain {
947     MacroInfo MI;
948     MacroInfoChain *Next;
949   };
950 
951   /// MacroInfos are managed as a chain for easy disposal.  This is the head
952   /// of that list.
953   MacroInfoChain *MIChainHead = nullptr;
954 
955   /// True if \p Preprocessor::SkipExcludedConditionalBlock() is running.
956   /// This is used to guard against calling this function recursively.
957   ///
958   /// See comments at the use-site for more context about why it is needed.
959   bool SkippingExcludedConditionalBlock = false;
960 
961   /// Keeps track of skipped range mappings that were recorded while skipping
962   /// excluded conditional directives. It maps the source buffer pointer at
963   /// the beginning of a skipped block, to the number of bytes that should be
964   /// skipped.
965   llvm::DenseMap<const char *, unsigned> RecordedSkippedRanges;
966 
967   void updateOutOfDateIdentifier(IdentifierInfo &II) const;
968 
969 public:
970   Preprocessor(std::shared_ptr<PreprocessorOptions> PPOpts,
971                DiagnosticsEngine &diags, LangOptions &opts, SourceManager &SM,
972                HeaderSearch &Headers, ModuleLoader &TheModuleLoader,
973                IdentifierInfoLookup *IILookup = nullptr,
974                bool OwnsHeaderSearch = false,
975                TranslationUnitKind TUKind = TU_Complete);
976 
977   ~Preprocessor();
978 
979   /// Initialize the preprocessor using information about the target.
980   ///
981   /// \param Target is owned by the caller and must remain valid for the
982   /// lifetime of the preprocessor.
983   /// \param AuxTarget is owned by the caller and must remain valid for
984   /// the lifetime of the preprocessor.
985   void Initialize(const TargetInfo &Target,
986                   const TargetInfo *AuxTarget = nullptr);
987 
988   /// Initialize the preprocessor to parse a model file
989   ///
990   /// To parse model files the preprocessor of the original source is reused to
991   /// preserver the identifier table. However to avoid some duplicate
992   /// information in the preprocessor some cleanup is needed before it is used
993   /// to parse model files. This method does that cleanup.
994   void InitializeForModelFile();
995 
996   /// Cleanup after model file parsing
997   void FinalizeForModelFile();
998 
999   /// Retrieve the preprocessor options used to initialize this
1000   /// preprocessor.
1001   PreprocessorOptions &getPreprocessorOpts() const { return *PPOpts; }
1002 
1003   DiagnosticsEngine &getDiagnostics() const { return *Diags; }
1004   void setDiagnostics(DiagnosticsEngine &D) { Diags = &D; }
1005 
1006   const LangOptions &getLangOpts() const { return LangOpts; }
1007   const TargetInfo &getTargetInfo() const { return *Target; }
1008   const TargetInfo *getAuxTargetInfo() const { return AuxTarget; }
1009   FileManager &getFileManager() const { return FileMgr; }
1010   SourceManager &getSourceManager() const { return SourceMgr; }
1011   HeaderSearch &getHeaderSearchInfo() const { return HeaderInfo; }
1012 
1013   IdentifierTable &getIdentifierTable() { return Identifiers; }
1014   const IdentifierTable &getIdentifierTable() const { return Identifiers; }
1015   SelectorTable &getSelectorTable() { return Selectors; }
1016   Builtin::Context &getBuiltinInfo() { return *BuiltinInfo; }
1017   llvm::BumpPtrAllocator &getPreprocessorAllocator() { return BP; }
1018 
1019   void setExternalSource(ExternalPreprocessorSource *Source) {
1020     ExternalSource = Source;
1021   }
1022 
1023   ExternalPreprocessorSource *getExternalSource() const {
1024     return ExternalSource;
1025   }
1026 
1027   /// Retrieve the module loader associated with this preprocessor.
1028   ModuleLoader &getModuleLoader() const { return TheModuleLoader; }
1029 
1030   bool hadModuleLoaderFatalFailure() const {
1031     return TheModuleLoader.HadFatalFailure;
1032   }
1033 
1034   /// Retrieve the number of Directives that have been processed by the
1035   /// Preprocessor.
1036   unsigned getNumDirectives() const {
1037     return NumDirectives;
1038   }
1039 
1040   /// True if we are currently preprocessing a #if or #elif directive
1041   bool isParsingIfOrElifDirective() const {
1042     return ParsingIfOrElifDirective;
1043   }
1044 
1045   /// Control whether the preprocessor retains comments in output.
1046   void SetCommentRetentionState(bool KeepComments, bool KeepMacroComments) {
1047     this->KeepComments = KeepComments | KeepMacroComments;
1048     this->KeepMacroComments = KeepMacroComments;
1049   }
1050 
1051   bool getCommentRetentionState() const { return KeepComments; }
1052 
1053   void setPragmasEnabled(bool Enabled) { PragmasEnabled = Enabled; }
1054   bool getPragmasEnabled() const { return PragmasEnabled; }
1055 
1056   void SetSuppressIncludeNotFoundError(bool Suppress) {
1057     SuppressIncludeNotFoundError = Suppress;
1058   }
1059 
1060   bool GetSuppressIncludeNotFoundError() {
1061     return SuppressIncludeNotFoundError;
1062   }
1063 
1064   /// Sets whether the preprocessor is responsible for producing output or if
1065   /// it is producing tokens to be consumed by Parse and Sema.
1066   void setPreprocessedOutput(bool IsPreprocessedOutput) {
1067     PreprocessedOutput = IsPreprocessedOutput;
1068   }
1069 
1070   /// Returns true if the preprocessor is responsible for generating output,
1071   /// false if it is producing tokens to be consumed by Parse and Sema.
1072   bool isPreprocessedOutput() const { return PreprocessedOutput; }
1073 
1074   /// Return true if we are lexing directly from the specified lexer.
1075   bool isCurrentLexer(const PreprocessorLexer *L) const {
1076     return CurPPLexer == L;
1077   }
1078 
1079   /// Return the current lexer being lexed from.
1080   ///
1081   /// Note that this ignores any potentially active macro expansions and _Pragma
1082   /// expansions going on at the time.
1083   PreprocessorLexer *getCurrentLexer() const { return CurPPLexer; }
1084 
1085   /// Return the current file lexer being lexed from.
1086   ///
1087   /// Note that this ignores any potentially active macro expansions and _Pragma
1088   /// expansions going on at the time.
1089   PreprocessorLexer *getCurrentFileLexer() const;
1090 
1091   /// Return the submodule owning the file being lexed. This may not be
1092   /// the current module if we have changed modules since entering the file.
1093   Module *getCurrentLexerSubmodule() const { return CurLexerSubmodule; }
1094 
1095   /// Returns the FileID for the preprocessor predefines.
1096   FileID getPredefinesFileID() const { return PredefinesFileID; }
1097 
1098   /// \{
1099   /// Accessors for preprocessor callbacks.
1100   ///
1101   /// Note that this class takes ownership of any PPCallbacks object given to
1102   /// it.
1103   PPCallbacks *getPPCallbacks() const { return Callbacks.get(); }
1104   void addPPCallbacks(std::unique_ptr<PPCallbacks> C) {
1105     if (Callbacks)
1106       C = std::make_unique<PPChainedCallbacks>(std::move(C),
1107                                                 std::move(Callbacks));
1108     Callbacks = std::move(C);
1109   }
1110   /// \}
1111 
1112   /// Get the number of tokens processed so far.
1113   unsigned getTokenCount() const { return TokenCount; }
1114 
1115   /// Get the max number of tokens before issuing a -Wmax-tokens warning.
1116   unsigned getMaxTokens() const { return MaxTokens; }
1117 
1118   void overrideMaxTokens(unsigned Value, SourceLocation Loc) {
1119     MaxTokens = Value;
1120     MaxTokensOverrideLoc = Loc;
1121   };
1122 
1123   SourceLocation getMaxTokensOverrideLoc() const { return MaxTokensOverrideLoc; }
1124 
1125   /// Register a function that would be called on each token in the final
1126   /// expanded token stream.
1127   /// This also reports annotation tokens produced by the parser.
1128   void setTokenWatcher(llvm::unique_function<void(const clang::Token &)> F) {
1129     OnToken = std::move(F);
1130   }
1131 
1132   void setPreprocessToken(bool Preprocess) { PreprocessToken = Preprocess; }
1133 
1134   bool isMacroDefined(StringRef Id) {
1135     return isMacroDefined(&Identifiers.get(Id));
1136   }
1137   bool isMacroDefined(const IdentifierInfo *II) {
1138     return II->hasMacroDefinition() &&
1139            (!getLangOpts().Modules || (bool)getMacroDefinition(II));
1140   }
1141 
1142   /// Determine whether II is defined as a macro within the module M,
1143   /// if that is a module that we've already preprocessed. Does not check for
1144   /// macros imported into M.
1145   bool isMacroDefinedInLocalModule(const IdentifierInfo *II, Module *M) {
1146     if (!II->hasMacroDefinition())
1147       return false;
1148     auto I = Submodules.find(M);
1149     if (I == Submodules.end())
1150       return false;
1151     auto J = I->second.Macros.find(II);
1152     if (J == I->second.Macros.end())
1153       return false;
1154     auto *MD = J->second.getLatest();
1155     return MD && MD->isDefined();
1156   }
1157 
1158   MacroDefinition getMacroDefinition(const IdentifierInfo *II) {
1159     if (!II->hasMacroDefinition())
1160       return {};
1161 
1162     MacroState &S = CurSubmoduleState->Macros[II];
1163     auto *MD = S.getLatest();
1164     while (MD && isa<VisibilityMacroDirective>(MD))
1165       MD = MD->getPrevious();
1166     return MacroDefinition(dyn_cast_or_null<DefMacroDirective>(MD),
1167                            S.getActiveModuleMacros(*this, II),
1168                            S.isAmbiguous(*this, II));
1169   }
1170 
1171   MacroDefinition getMacroDefinitionAtLoc(const IdentifierInfo *II,
1172                                           SourceLocation Loc) {
1173     if (!II->hadMacroDefinition())
1174       return {};
1175 
1176     MacroState &S = CurSubmoduleState->Macros[II];
1177     MacroDirective::DefInfo DI;
1178     if (auto *MD = S.getLatest())
1179       DI = MD->findDirectiveAtLoc(Loc, getSourceManager());
1180     // FIXME: Compute the set of active module macros at the specified location.
1181     return MacroDefinition(DI.getDirective(),
1182                            S.getActiveModuleMacros(*this, II),
1183                            S.isAmbiguous(*this, II));
1184   }
1185 
1186   /// Given an identifier, return its latest non-imported MacroDirective
1187   /// if it is \#define'd and not \#undef'd, or null if it isn't \#define'd.
1188   MacroDirective *getLocalMacroDirective(const IdentifierInfo *II) const {
1189     if (!II->hasMacroDefinition())
1190       return nullptr;
1191 
1192     auto *MD = getLocalMacroDirectiveHistory(II);
1193     if (!MD || MD->getDefinition().isUndefined())
1194       return nullptr;
1195 
1196     return MD;
1197   }
1198 
1199   const MacroInfo *getMacroInfo(const IdentifierInfo *II) const {
1200     return const_cast<Preprocessor*>(this)->getMacroInfo(II);
1201   }
1202 
1203   MacroInfo *getMacroInfo(const IdentifierInfo *II) {
1204     if (!II->hasMacroDefinition())
1205       return nullptr;
1206     if (auto MD = getMacroDefinition(II))
1207       return MD.getMacroInfo();
1208     return nullptr;
1209   }
1210 
1211   /// Given an identifier, return the latest non-imported macro
1212   /// directive for that identifier.
1213   ///
1214   /// One can iterate over all previous macro directives from the most recent
1215   /// one.
1216   MacroDirective *getLocalMacroDirectiveHistory(const IdentifierInfo *II) const;
1217 
1218   /// Add a directive to the macro directive history for this identifier.
1219   void appendMacroDirective(IdentifierInfo *II, MacroDirective *MD);
1220   DefMacroDirective *appendDefMacroDirective(IdentifierInfo *II, MacroInfo *MI,
1221                                              SourceLocation Loc) {
1222     DefMacroDirective *MD = AllocateDefMacroDirective(MI, Loc);
1223     appendMacroDirective(II, MD);
1224     return MD;
1225   }
1226   DefMacroDirective *appendDefMacroDirective(IdentifierInfo *II,
1227                                              MacroInfo *MI) {
1228     return appendDefMacroDirective(II, MI, MI->getDefinitionLoc());
1229   }
1230 
1231   /// Set a MacroDirective that was loaded from a PCH file.
1232   void setLoadedMacroDirective(IdentifierInfo *II, MacroDirective *ED,
1233                                MacroDirective *MD);
1234 
1235   /// Register an exported macro for a module and identifier.
1236   ModuleMacro *addModuleMacro(Module *Mod, IdentifierInfo *II, MacroInfo *Macro,
1237                               ArrayRef<ModuleMacro *> Overrides, bool &IsNew);
1238   ModuleMacro *getModuleMacro(Module *Mod, const IdentifierInfo *II);
1239 
1240   /// Get the list of leaf (non-overridden) module macros for a name.
1241   ArrayRef<ModuleMacro*> getLeafModuleMacros(const IdentifierInfo *II) const {
1242     if (II->isOutOfDate())
1243       updateOutOfDateIdentifier(const_cast<IdentifierInfo&>(*II));
1244     auto I = LeafModuleMacros.find(II);
1245     if (I != LeafModuleMacros.end())
1246       return I->second;
1247     return None;
1248   }
1249 
1250   /// Get the list of submodules that we're currently building.
1251   ArrayRef<BuildingSubmoduleInfo> getBuildingSubmodules() const {
1252     return BuildingSubmoduleStack;
1253   }
1254 
1255   /// \{
1256   /// Iterators for the macro history table. Currently defined macros have
1257   /// IdentifierInfo::hasMacroDefinition() set and an empty
1258   /// MacroInfo::getUndefLoc() at the head of the list.
1259   using macro_iterator = MacroMap::const_iterator;
1260 
1261   macro_iterator macro_begin(bool IncludeExternalMacros = true) const;
1262   macro_iterator macro_end(bool IncludeExternalMacros = true) const;
1263 
1264   llvm::iterator_range<macro_iterator>
1265   macros(bool IncludeExternalMacros = true) const {
1266     macro_iterator begin = macro_begin(IncludeExternalMacros);
1267     macro_iterator end = macro_end(IncludeExternalMacros);
1268     return llvm::make_range(begin, end);
1269   }
1270 
1271   /// \}
1272 
1273   /// Mark the file as included.
1274   /// Returns true if this is the first time the file was included.
1275   bool markIncluded(const FileEntry *File) {
1276     HeaderInfo.getFileInfo(File);
1277     return IncludedFiles.insert(File).second;
1278   }
1279 
1280   /// Return true if this header has already been included.
1281   bool alreadyIncluded(const FileEntry *File) const {
1282     return IncludedFiles.count(File);
1283   }
1284 
1285   /// Get the set of included files.
1286   IncludedFilesSet &getIncludedFiles() { return IncludedFiles; }
1287   const IncludedFilesSet &getIncludedFiles() const { return IncludedFiles; }
1288 
1289   /// Return the name of the macro defined before \p Loc that has
1290   /// spelling \p Tokens.  If there are multiple macros with same spelling,
1291   /// return the last one defined.
1292   StringRef getLastMacroWithSpelling(SourceLocation Loc,
1293                                      ArrayRef<TokenValue> Tokens) const;
1294 
1295   /// Set the predefines for this Preprocessor.
1296   ///
1297   /// These predefines are automatically injected when parsing the main file.
1298   void setPredefines(std::string P) { Predefines = std::move(P); }
1299 
1300   /// Return information about the specified preprocessor
1301   /// identifier token.
1302   IdentifierInfo *getIdentifierInfo(StringRef Name) const {
1303     return &Identifiers.get(Name);
1304   }
1305 
1306   /// Add the specified pragma handler to this preprocessor.
1307   ///
1308   /// If \p Namespace is non-null, then it is a token required to exist on the
1309   /// pragma line before the pragma string starts, e.g. "STDC" or "GCC".
1310   void AddPragmaHandler(StringRef Namespace, PragmaHandler *Handler);
1311   void AddPragmaHandler(PragmaHandler *Handler) {
1312     AddPragmaHandler(StringRef(), Handler);
1313   }
1314 
1315   /// Remove the specific pragma handler from this preprocessor.
1316   ///
1317   /// If \p Namespace is non-null, then it should be the namespace that
1318   /// \p Handler was added to. It is an error to remove a handler that
1319   /// has not been registered.
1320   void RemovePragmaHandler(StringRef Namespace, PragmaHandler *Handler);
1321   void RemovePragmaHandler(PragmaHandler *Handler) {
1322     RemovePragmaHandler(StringRef(), Handler);
1323   }
1324 
1325   /// Install empty handlers for all pragmas (making them ignored).
1326   void IgnorePragmas();
1327 
1328   /// Set empty line handler.
1329   void setEmptylineHandler(EmptylineHandler *Handler) { Emptyline = Handler; }
1330 
1331   EmptylineHandler *getEmptylineHandler() const { return Emptyline; }
1332 
1333   /// Add the specified comment handler to the preprocessor.
1334   void addCommentHandler(CommentHandler *Handler);
1335 
1336   /// Remove the specified comment handler.
1337   ///
1338   /// It is an error to remove a handler that has not been registered.
1339   void removeCommentHandler(CommentHandler *Handler);
1340 
1341   /// Set the code completion handler to the given object.
1342   void setCodeCompletionHandler(CodeCompletionHandler &Handler) {
1343     CodeComplete = &Handler;
1344   }
1345 
1346   /// Retrieve the current code-completion handler.
1347   CodeCompletionHandler *getCodeCompletionHandler() const {
1348     return CodeComplete;
1349   }
1350 
1351   /// Clear out the code completion handler.
1352   void clearCodeCompletionHandler() {
1353     CodeComplete = nullptr;
1354   }
1355 
1356   /// Hook used by the lexer to invoke the "included file" code
1357   /// completion point.
1358   void CodeCompleteIncludedFile(llvm::StringRef Dir, bool IsAngled);
1359 
1360   /// Hook used by the lexer to invoke the "natural language" code
1361   /// completion point.
1362   void CodeCompleteNaturalLanguage();
1363 
1364   /// Set the code completion token for filtering purposes.
1365   void setCodeCompletionIdentifierInfo(IdentifierInfo *Filter) {
1366     CodeCompletionII = Filter;
1367   }
1368 
1369   /// Set the code completion token range for detecting replacement range later
1370   /// on.
1371   void setCodeCompletionTokenRange(const SourceLocation Start,
1372                                    const SourceLocation End) {
1373     CodeCompletionTokenRange = {Start, End};
1374   }
1375   SourceRange getCodeCompletionTokenRange() const {
1376     return CodeCompletionTokenRange;
1377   }
1378 
1379   /// Get the code completion token for filtering purposes.
1380   StringRef getCodeCompletionFilter() {
1381     if (CodeCompletionII)
1382       return CodeCompletionII->getName();
1383     return {};
1384   }
1385 
1386   /// Retrieve the preprocessing record, or NULL if there is no
1387   /// preprocessing record.
1388   PreprocessingRecord *getPreprocessingRecord() const { return Record; }
1389 
1390   /// Create a new preprocessing record, which will keep track of
1391   /// all macro expansions, macro definitions, etc.
1392   void createPreprocessingRecord();
1393 
1394   /// Returns true if the FileEntry is the PCH through header.
1395   bool isPCHThroughHeader(const FileEntry *FE);
1396 
1397   /// True if creating a PCH with a through header.
1398   bool creatingPCHWithThroughHeader();
1399 
1400   /// True if using a PCH with a through header.
1401   bool usingPCHWithThroughHeader();
1402 
1403   /// True if creating a PCH with a #pragma hdrstop.
1404   bool creatingPCHWithPragmaHdrStop();
1405 
1406   /// True if using a PCH with a #pragma hdrstop.
1407   bool usingPCHWithPragmaHdrStop();
1408 
1409   /// Skip tokens until after the #include of the through header or
1410   /// until after a #pragma hdrstop.
1411   void SkipTokensWhileUsingPCH();
1412 
1413   /// Process directives while skipping until the through header or
1414   /// #pragma hdrstop is found.
1415   void HandleSkippedDirectiveWhileUsingPCH(Token &Result,
1416                                            SourceLocation HashLoc);
1417 
1418   /// Enter the specified FileID as the main source file,
1419   /// which implicitly adds the builtin defines etc.
1420   void EnterMainSourceFile();
1421 
1422   /// Inform the preprocessor callbacks that processing is complete.
1423   void EndSourceFile();
1424 
1425   /// Add a source file to the top of the include stack and
1426   /// start lexing tokens from it instead of the current buffer.
1427   ///
1428   /// Emits a diagnostic, doesn't enter the file, and returns true on error.
1429   bool EnterSourceFile(FileID FID, ConstSearchDirIterator Dir,
1430                        SourceLocation Loc, bool IsFirstIncludeOfFile = true);
1431 
1432   /// Add a Macro to the top of the include stack and start lexing
1433   /// tokens from it instead of the current buffer.
1434   ///
1435   /// \param Args specifies the tokens input to a function-like macro.
1436   /// \param ILEnd specifies the location of the ')' for a function-like macro
1437   /// or the identifier for an object-like macro.
1438   void EnterMacro(Token &Tok, SourceLocation ILEnd, MacroInfo *Macro,
1439                   MacroArgs *Args);
1440 
1441 private:
1442   /// Add a "macro" context to the top of the include stack,
1443   /// which will cause the lexer to start returning the specified tokens.
1444   ///
1445   /// If \p DisableMacroExpansion is true, tokens lexed from the token stream
1446   /// will not be subject to further macro expansion. Otherwise, these tokens
1447   /// will be re-macro-expanded when/if expansion is enabled.
1448   ///
1449   /// If \p OwnsTokens is false, this method assumes that the specified stream
1450   /// of tokens has a permanent owner somewhere, so they do not need to be
1451   /// copied. If it is true, it assumes the array of tokens is allocated with
1452   /// \c new[] and the Preprocessor will delete[] it.
1453   ///
1454   /// If \p IsReinject the resulting tokens will have Token::IsReinjected flag
1455   /// set, see the flag documentation for details.
1456   void EnterTokenStream(const Token *Toks, unsigned NumToks,
1457                         bool DisableMacroExpansion, bool OwnsTokens,
1458                         bool IsReinject);
1459 
1460 public:
1461   void EnterTokenStream(std::unique_ptr<Token[]> Toks, unsigned NumToks,
1462                         bool DisableMacroExpansion, bool IsReinject) {
1463     EnterTokenStream(Toks.release(), NumToks, DisableMacroExpansion, true,
1464                      IsReinject);
1465   }
1466 
1467   void EnterTokenStream(ArrayRef<Token> Toks, bool DisableMacroExpansion,
1468                         bool IsReinject) {
1469     EnterTokenStream(Toks.data(), Toks.size(), DisableMacroExpansion, false,
1470                      IsReinject);
1471   }
1472 
1473   /// Pop the current lexer/macro exp off the top of the lexer stack.
1474   ///
1475   /// This should only be used in situations where the current state of the
1476   /// top-of-stack lexer is known.
1477   void RemoveTopOfLexerStack();
1478 
1479   /// From the point that this method is called, and until
1480   /// CommitBacktrackedTokens() or Backtrack() is called, the Preprocessor
1481   /// keeps track of the lexed tokens so that a subsequent Backtrack() call will
1482   /// make the Preprocessor re-lex the same tokens.
1483   ///
1484   /// Nested backtracks are allowed, meaning that EnableBacktrackAtThisPos can
1485   /// be called multiple times and CommitBacktrackedTokens/Backtrack calls will
1486   /// be combined with the EnableBacktrackAtThisPos calls in reverse order.
1487   ///
1488   /// NOTE: *DO NOT* forget to call either CommitBacktrackedTokens or Backtrack
1489   /// at some point after EnableBacktrackAtThisPos. If you don't, caching of
1490   /// tokens will continue indefinitely.
1491   ///
1492   void EnableBacktrackAtThisPos();
1493 
1494   /// Disable the last EnableBacktrackAtThisPos call.
1495   void CommitBacktrackedTokens();
1496 
1497   /// Make Preprocessor re-lex the tokens that were lexed since
1498   /// EnableBacktrackAtThisPos() was previously called.
1499   void Backtrack();
1500 
1501   /// True if EnableBacktrackAtThisPos() was called and
1502   /// caching of tokens is on.
1503   bool isBacktrackEnabled() const { return !BacktrackPositions.empty(); }
1504 
1505   /// Lex the next token for this preprocessor.
1506   void Lex(Token &Result);
1507 
1508   /// Lex a token, forming a header-name token if possible.
1509   bool LexHeaderName(Token &Result, bool AllowMacroExpansion = true);
1510 
1511   bool LexAfterModuleImport(Token &Result);
1512   void CollectPpImportSuffix(SmallVectorImpl<Token> &Toks);
1513 
1514   void makeModuleVisible(Module *M, SourceLocation Loc);
1515 
1516   SourceLocation getModuleImportLoc(Module *M) const {
1517     return CurSubmoduleState->VisibleModules.getImportLoc(M);
1518   }
1519 
1520   /// Lex a string literal, which may be the concatenation of multiple
1521   /// string literals and may even come from macro expansion.
1522   /// \returns true on success, false if a error diagnostic has been generated.
1523   bool LexStringLiteral(Token &Result, std::string &String,
1524                         const char *DiagnosticTag, bool AllowMacroExpansion) {
1525     if (AllowMacroExpansion)
1526       Lex(Result);
1527     else
1528       LexUnexpandedToken(Result);
1529     return FinishLexStringLiteral(Result, String, DiagnosticTag,
1530                                   AllowMacroExpansion);
1531   }
1532 
1533   /// Complete the lexing of a string literal where the first token has
1534   /// already been lexed (see LexStringLiteral).
1535   bool FinishLexStringLiteral(Token &Result, std::string &String,
1536                               const char *DiagnosticTag,
1537                               bool AllowMacroExpansion);
1538 
1539   /// Lex a token.  If it's a comment, keep lexing until we get
1540   /// something not a comment.
1541   ///
1542   /// This is useful in -E -C mode where comments would foul up preprocessor
1543   /// directive handling.
1544   void LexNonComment(Token &Result) {
1545     do
1546       Lex(Result);
1547     while (Result.getKind() == tok::comment);
1548   }
1549 
1550   /// Just like Lex, but disables macro expansion of identifier tokens.
1551   void LexUnexpandedToken(Token &Result) {
1552     // Disable macro expansion.
1553     bool OldVal = DisableMacroExpansion;
1554     DisableMacroExpansion = true;
1555     // Lex the token.
1556     Lex(Result);
1557 
1558     // Reenable it.
1559     DisableMacroExpansion = OldVal;
1560   }
1561 
1562   /// Like LexNonComment, but this disables macro expansion of
1563   /// identifier tokens.
1564   void LexUnexpandedNonComment(Token &Result) {
1565     do
1566       LexUnexpandedToken(Result);
1567     while (Result.getKind() == tok::comment);
1568   }
1569 
1570   /// Parses a simple integer literal to get its numeric value.  Floating
1571   /// point literals and user defined literals are rejected.  Used primarily to
1572   /// handle pragmas that accept integer arguments.
1573   bool parseSimpleIntegerLiteral(Token &Tok, uint64_t &Value);
1574 
1575   /// Disables macro expansion everywhere except for preprocessor directives.
1576   void SetMacroExpansionOnlyInDirectives() {
1577     DisableMacroExpansion = true;
1578     MacroExpansionInDirectivesOverride = true;
1579   }
1580 
1581   /// Peeks ahead N tokens and returns that token without consuming any
1582   /// tokens.
1583   ///
1584   /// LookAhead(0) returns the next token that would be returned by Lex(),
1585   /// LookAhead(1) returns the token after it, etc.  This returns normal
1586   /// tokens after phase 5.  As such, it is equivalent to using
1587   /// 'Lex', not 'LexUnexpandedToken'.
1588   const Token &LookAhead(unsigned N) {
1589     assert(LexLevel == 0 && "cannot use lookahead while lexing");
1590     if (CachedLexPos + N < CachedTokens.size())
1591       return CachedTokens[CachedLexPos+N];
1592     else
1593       return PeekAhead(N+1);
1594   }
1595 
1596   /// When backtracking is enabled and tokens are cached,
1597   /// this allows to revert a specific number of tokens.
1598   ///
1599   /// Note that the number of tokens being reverted should be up to the last
1600   /// backtrack position, not more.
1601   void RevertCachedTokens(unsigned N) {
1602     assert(isBacktrackEnabled() &&
1603            "Should only be called when tokens are cached for backtracking");
1604     assert(signed(CachedLexPos) - signed(N) >= signed(BacktrackPositions.back())
1605          && "Should revert tokens up to the last backtrack position, not more");
1606     assert(signed(CachedLexPos) - signed(N) >= 0 &&
1607            "Corrupted backtrack positions ?");
1608     CachedLexPos -= N;
1609   }
1610 
1611   /// Enters a token in the token stream to be lexed next.
1612   ///
1613   /// If BackTrack() is called afterwards, the token will remain at the
1614   /// insertion point.
1615   /// If \p IsReinject is true, resulting token will have Token::IsReinjected
1616   /// flag set. See the flag documentation for details.
1617   void EnterToken(const Token &Tok, bool IsReinject) {
1618     if (LexLevel) {
1619       // It's not correct in general to enter caching lex mode while in the
1620       // middle of a nested lexing action.
1621       auto TokCopy = std::make_unique<Token[]>(1);
1622       TokCopy[0] = Tok;
1623       EnterTokenStream(std::move(TokCopy), 1, true, IsReinject);
1624     } else {
1625       EnterCachingLexMode();
1626       assert(IsReinject && "new tokens in the middle of cached stream");
1627       CachedTokens.insert(CachedTokens.begin()+CachedLexPos, Tok);
1628     }
1629   }
1630 
1631   /// We notify the Preprocessor that if it is caching tokens (because
1632   /// backtrack is enabled) it should replace the most recent cached tokens
1633   /// with the given annotation token. This function has no effect if
1634   /// backtracking is not enabled.
1635   ///
1636   /// Note that the use of this function is just for optimization, so that the
1637   /// cached tokens doesn't get re-parsed and re-resolved after a backtrack is
1638   /// invoked.
1639   void AnnotateCachedTokens(const Token &Tok) {
1640     assert(Tok.isAnnotation() && "Expected annotation token");
1641     if (CachedLexPos != 0 && isBacktrackEnabled())
1642       AnnotatePreviousCachedTokens(Tok);
1643   }
1644 
1645   /// Get the location of the last cached token, suitable for setting the end
1646   /// location of an annotation token.
1647   SourceLocation getLastCachedTokenLocation() const {
1648     assert(CachedLexPos != 0);
1649     return CachedTokens[CachedLexPos-1].getLastLoc();
1650   }
1651 
1652   /// Whether \p Tok is the most recent token (`CachedLexPos - 1`) in
1653   /// CachedTokens.
1654   bool IsPreviousCachedToken(const Token &Tok) const;
1655 
1656   /// Replace token in `CachedLexPos - 1` in CachedTokens by the tokens
1657   /// in \p NewToks.
1658   ///
1659   /// Useful when a token needs to be split in smaller ones and CachedTokens
1660   /// most recent token must to be updated to reflect that.
1661   void ReplacePreviousCachedToken(ArrayRef<Token> NewToks);
1662 
1663   /// Replace the last token with an annotation token.
1664   ///
1665   /// Like AnnotateCachedTokens(), this routine replaces an
1666   /// already-parsed (and resolved) token with an annotation
1667   /// token. However, this routine only replaces the last token with
1668   /// the annotation token; it does not affect any other cached
1669   /// tokens. This function has no effect if backtracking is not
1670   /// enabled.
1671   void ReplaceLastTokenWithAnnotation(const Token &Tok) {
1672     assert(Tok.isAnnotation() && "Expected annotation token");
1673     if (CachedLexPos != 0 && isBacktrackEnabled())
1674       CachedTokens[CachedLexPos-1] = Tok;
1675   }
1676 
1677   /// Enter an annotation token into the token stream.
1678   void EnterAnnotationToken(SourceRange Range, tok::TokenKind Kind,
1679                             void *AnnotationVal);
1680 
1681   /// Determine whether it's possible for a future call to Lex to produce an
1682   /// annotation token created by a previous call to EnterAnnotationToken.
1683   bool mightHavePendingAnnotationTokens() {
1684     return CurLexerKind != CLK_Lexer;
1685   }
1686 
1687   /// Update the current token to represent the provided
1688   /// identifier, in order to cache an action performed by typo correction.
1689   void TypoCorrectToken(const Token &Tok) {
1690     assert(Tok.getIdentifierInfo() && "Expected identifier token");
1691     if (CachedLexPos != 0 && isBacktrackEnabled())
1692       CachedTokens[CachedLexPos-1] = Tok;
1693   }
1694 
1695   /// Recompute the current lexer kind based on the CurLexer/
1696   /// CurTokenLexer pointers.
1697   void recomputeCurLexerKind();
1698 
1699   /// Returns true if incremental processing is enabled
1700   bool isIncrementalProcessingEnabled() const { return IncrementalProcessing; }
1701 
1702   /// Enables the incremental processing
1703   void enableIncrementalProcessing(bool value = true) {
1704     IncrementalProcessing = value;
1705   }
1706 
1707   /// Specify the point at which code-completion will be performed.
1708   ///
1709   /// \param File the file in which code completion should occur. If
1710   /// this file is included multiple times, code-completion will
1711   /// perform completion the first time it is included. If NULL, this
1712   /// function clears out the code-completion point.
1713   ///
1714   /// \param Line the line at which code completion should occur
1715   /// (1-based).
1716   ///
1717   /// \param Column the column at which code completion should occur
1718   /// (1-based).
1719   ///
1720   /// \returns true if an error occurred, false otherwise.
1721   bool SetCodeCompletionPoint(const FileEntry *File,
1722                               unsigned Line, unsigned Column);
1723 
1724   /// Determine if we are performing code completion.
1725   bool isCodeCompletionEnabled() const { return CodeCompletionFile != nullptr; }
1726 
1727   /// Returns the location of the code-completion point.
1728   ///
1729   /// Returns an invalid location if code-completion is not enabled or the file
1730   /// containing the code-completion point has not been lexed yet.
1731   SourceLocation getCodeCompletionLoc() const { return CodeCompletionLoc; }
1732 
1733   /// Returns the start location of the file of code-completion point.
1734   ///
1735   /// Returns an invalid location if code-completion is not enabled or the file
1736   /// containing the code-completion point has not been lexed yet.
1737   SourceLocation getCodeCompletionFileLoc() const {
1738     return CodeCompletionFileLoc;
1739   }
1740 
1741   /// Returns true if code-completion is enabled and we have hit the
1742   /// code-completion point.
1743   bool isCodeCompletionReached() const { return CodeCompletionReached; }
1744 
1745   /// Note that we hit the code-completion point.
1746   void setCodeCompletionReached() {
1747     assert(isCodeCompletionEnabled() && "Code-completion not enabled!");
1748     CodeCompletionReached = true;
1749     // Silence any diagnostics that occur after we hit the code-completion.
1750     getDiagnostics().setSuppressAllDiagnostics(true);
1751   }
1752 
1753   /// The location of the currently-active \#pragma clang
1754   /// arc_cf_code_audited begin.
1755   ///
1756   /// Returns an invalid location if there is no such pragma active.
1757   std::pair<IdentifierInfo *, SourceLocation>
1758   getPragmaARCCFCodeAuditedInfo() const {
1759     return PragmaARCCFCodeAuditedInfo;
1760   }
1761 
1762   /// Set the location of the currently-active \#pragma clang
1763   /// arc_cf_code_audited begin.  An invalid location ends the pragma.
1764   void setPragmaARCCFCodeAuditedInfo(IdentifierInfo *Ident,
1765                                      SourceLocation Loc) {
1766     PragmaARCCFCodeAuditedInfo = {Ident, Loc};
1767   }
1768 
1769   /// The location of the currently-active \#pragma clang
1770   /// assume_nonnull begin.
1771   ///
1772   /// Returns an invalid location if there is no such pragma active.
1773   SourceLocation getPragmaAssumeNonNullLoc() const {
1774     return PragmaAssumeNonNullLoc;
1775   }
1776 
1777   /// Set the location of the currently-active \#pragma clang
1778   /// assume_nonnull begin.  An invalid location ends the pragma.
1779   void setPragmaAssumeNonNullLoc(SourceLocation Loc) {
1780     PragmaAssumeNonNullLoc = Loc;
1781   }
1782 
1783   /// Get the location of the recorded unterminated \#pragma clang
1784   /// assume_nonnull begin in the preamble, if one exists.
1785   ///
1786   /// Returns an invalid location if the premable did not end with
1787   /// such a pragma active or if there is no recorded preamble.
1788   SourceLocation getPreambleRecordedPragmaAssumeNonNullLoc() const {
1789     return PreambleRecordedPragmaAssumeNonNullLoc;
1790   }
1791 
1792   /// Record the location of the unterminated \#pragma clang
1793   /// assume_nonnull begin in the preamble.
1794   void setPreambleRecordedPragmaAssumeNonNullLoc(SourceLocation Loc) {
1795     PreambleRecordedPragmaAssumeNonNullLoc = Loc;
1796   }
1797 
1798   /// Set the directory in which the main file should be considered
1799   /// to have been found, if it is not a real file.
1800   void setMainFileDir(const DirectoryEntry *Dir) {
1801     MainFileDir = Dir;
1802   }
1803 
1804   /// Instruct the preprocessor to skip part of the main source file.
1805   ///
1806   /// \param Bytes The number of bytes in the preamble to skip.
1807   ///
1808   /// \param StartOfLine Whether skipping these bytes puts the lexer at the
1809   /// start of a line.
1810   void setSkipMainFilePreamble(unsigned Bytes, bool StartOfLine) {
1811     SkipMainFilePreamble.first = Bytes;
1812     SkipMainFilePreamble.second = StartOfLine;
1813   }
1814 
1815   /// Forwarding function for diagnostics.  This emits a diagnostic at
1816   /// the specified Token's location, translating the token's start
1817   /// position in the current buffer into a SourcePosition object for rendering.
1818   DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID) const {
1819     return Diags->Report(Loc, DiagID);
1820   }
1821 
1822   DiagnosticBuilder Diag(const Token &Tok, unsigned DiagID) const {
1823     return Diags->Report(Tok.getLocation(), DiagID);
1824   }
1825 
1826   /// Return the 'spelling' of the token at the given
1827   /// location; does not go up to the spelling location or down to the
1828   /// expansion location.
1829   ///
1830   /// \param buffer A buffer which will be used only if the token requires
1831   ///   "cleaning", e.g. if it contains trigraphs or escaped newlines
1832   /// \param invalid If non-null, will be set \c true if an error occurs.
1833   StringRef getSpelling(SourceLocation loc,
1834                         SmallVectorImpl<char> &buffer,
1835                         bool *invalid = nullptr) const {
1836     return Lexer::getSpelling(loc, buffer, SourceMgr, LangOpts, invalid);
1837   }
1838 
1839   /// Return the 'spelling' of the Tok token.
1840   ///
1841   /// The spelling of a token is the characters used to represent the token in
1842   /// the source file after trigraph expansion and escaped-newline folding.  In
1843   /// particular, this wants to get the true, uncanonicalized, spelling of
1844   /// things like digraphs, UCNs, etc.
1845   ///
1846   /// \param Invalid If non-null, will be set \c true if an error occurs.
1847   std::string getSpelling(const Token &Tok, bool *Invalid = nullptr) const {
1848     return Lexer::getSpelling(Tok, SourceMgr, LangOpts, Invalid);
1849   }
1850 
1851   /// Get the spelling of a token into a preallocated buffer, instead
1852   /// of as an std::string.
1853   ///
1854   /// The caller is required to allocate enough space for the token, which is
1855   /// guaranteed to be at least Tok.getLength() bytes long. The length of the
1856   /// actual result is returned.
1857   ///
1858   /// Note that this method may do two possible things: it may either fill in
1859   /// the buffer specified with characters, or it may *change the input pointer*
1860   /// to point to a constant buffer with the data already in it (avoiding a
1861   /// copy).  The caller is not allowed to modify the returned buffer pointer
1862   /// if an internal buffer is returned.
1863   unsigned getSpelling(const Token &Tok, const char *&Buffer,
1864                        bool *Invalid = nullptr) const {
1865     return Lexer::getSpelling(Tok, Buffer, SourceMgr, LangOpts, Invalid);
1866   }
1867 
1868   /// Get the spelling of a token into a SmallVector.
1869   ///
1870   /// Note that the returned StringRef may not point to the
1871   /// supplied buffer if a copy can be avoided.
1872   StringRef getSpelling(const Token &Tok,
1873                         SmallVectorImpl<char> &Buffer,
1874                         bool *Invalid = nullptr) const;
1875 
1876   /// Relex the token at the specified location.
1877   /// \returns true if there was a failure, false on success.
1878   bool getRawToken(SourceLocation Loc, Token &Result,
1879                    bool IgnoreWhiteSpace = false) {
1880     return Lexer::getRawToken(Loc, Result, SourceMgr, LangOpts, IgnoreWhiteSpace);
1881   }
1882 
1883   /// Given a Token \p Tok that is a numeric constant with length 1,
1884   /// return the character.
1885   char
1886   getSpellingOfSingleCharacterNumericConstant(const Token &Tok,
1887                                               bool *Invalid = nullptr) const {
1888     assert(Tok.is(tok::numeric_constant) &&
1889            Tok.getLength() == 1 && "Called on unsupported token");
1890     assert(!Tok.needsCleaning() && "Token can't need cleaning with length 1");
1891 
1892     // If the token is carrying a literal data pointer, just use it.
1893     if (const char *D = Tok.getLiteralData())
1894       return *D;
1895 
1896     // Otherwise, fall back on getCharacterData, which is slower, but always
1897     // works.
1898     return *SourceMgr.getCharacterData(Tok.getLocation(), Invalid);
1899   }
1900 
1901   /// Retrieve the name of the immediate macro expansion.
1902   ///
1903   /// This routine starts from a source location, and finds the name of the
1904   /// macro responsible for its immediate expansion. It looks through any
1905   /// intervening macro argument expansions to compute this. It returns a
1906   /// StringRef that refers to the SourceManager-owned buffer of the source
1907   /// where that macro name is spelled. Thus, the result shouldn't out-live
1908   /// the SourceManager.
1909   StringRef getImmediateMacroName(SourceLocation Loc) {
1910     return Lexer::getImmediateMacroName(Loc, SourceMgr, getLangOpts());
1911   }
1912 
1913   /// Plop the specified string into a scratch buffer and set the
1914   /// specified token's location and length to it.
1915   ///
1916   /// If specified, the source location provides a location of the expansion
1917   /// point of the token.
1918   void CreateString(StringRef Str, Token &Tok,
1919                     SourceLocation ExpansionLocStart = SourceLocation(),
1920                     SourceLocation ExpansionLocEnd = SourceLocation());
1921 
1922   /// Split the first Length characters out of the token starting at TokLoc
1923   /// and return a location pointing to the split token. Re-lexing from the
1924   /// split token will return the split token rather than the original.
1925   SourceLocation SplitToken(SourceLocation TokLoc, unsigned Length);
1926 
1927   /// Computes the source location just past the end of the
1928   /// token at this source location.
1929   ///
1930   /// This routine can be used to produce a source location that
1931   /// points just past the end of the token referenced by \p Loc, and
1932   /// is generally used when a diagnostic needs to point just after a
1933   /// token where it expected something different that it received. If
1934   /// the returned source location would not be meaningful (e.g., if
1935   /// it points into a macro), this routine returns an invalid
1936   /// source location.
1937   ///
1938   /// \param Offset an offset from the end of the token, where the source
1939   /// location should refer to. The default offset (0) produces a source
1940   /// location pointing just past the end of the token; an offset of 1 produces
1941   /// a source location pointing to the last character in the token, etc.
1942   SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset = 0) {
1943     return Lexer::getLocForEndOfToken(Loc, Offset, SourceMgr, LangOpts);
1944   }
1945 
1946   /// Returns true if the given MacroID location points at the first
1947   /// token of the macro expansion.
1948   ///
1949   /// \param MacroBegin If non-null and function returns true, it is set to
1950   /// begin location of the macro.
1951   bool isAtStartOfMacroExpansion(SourceLocation loc,
1952                                  SourceLocation *MacroBegin = nullptr) const {
1953     return Lexer::isAtStartOfMacroExpansion(loc, SourceMgr, LangOpts,
1954                                             MacroBegin);
1955   }
1956 
1957   /// Returns true if the given MacroID location points at the last
1958   /// token of the macro expansion.
1959   ///
1960   /// \param MacroEnd If non-null and function returns true, it is set to
1961   /// end location of the macro.
1962   bool isAtEndOfMacroExpansion(SourceLocation loc,
1963                                SourceLocation *MacroEnd = nullptr) const {
1964     return Lexer::isAtEndOfMacroExpansion(loc, SourceMgr, LangOpts, MacroEnd);
1965   }
1966 
1967   /// Print the token to stderr, used for debugging.
1968   void DumpToken(const Token &Tok, bool DumpFlags = false) const;
1969   void DumpLocation(SourceLocation Loc) const;
1970   void DumpMacro(const MacroInfo &MI) const;
1971   void dumpMacroInfo(const IdentifierInfo *II);
1972 
1973   /// Given a location that specifies the start of a
1974   /// token, return a new location that specifies a character within the token.
1975   SourceLocation AdvanceToTokenCharacter(SourceLocation TokStart,
1976                                          unsigned Char) const {
1977     return Lexer::AdvanceToTokenCharacter(TokStart, Char, SourceMgr, LangOpts);
1978   }
1979 
1980   /// Increment the counters for the number of token paste operations
1981   /// performed.
1982   ///
1983   /// If fast was specified, this is a 'fast paste' case we handled.
1984   void IncrementPasteCounter(bool isFast) {
1985     if (isFast)
1986       ++NumFastTokenPaste;
1987     else
1988       ++NumTokenPaste;
1989   }
1990 
1991   void PrintStats();
1992 
1993   size_t getTotalMemory() const;
1994 
1995   /// When the macro expander pastes together a comment (/##/) in Microsoft
1996   /// mode, this method handles updating the current state, returning the
1997   /// token on the next source line.
1998   void HandleMicrosoftCommentPaste(Token &Tok);
1999 
2000   //===--------------------------------------------------------------------===//
2001   // Preprocessor callback methods.  These are invoked by a lexer as various
2002   // directives and events are found.
2003 
2004   /// Given a tok::raw_identifier token, look up the
2005   /// identifier information for the token and install it into the token,
2006   /// updating the token kind accordingly.
2007   IdentifierInfo *LookUpIdentifierInfo(Token &Identifier) const;
2008 
2009 private:
2010   llvm::DenseMap<IdentifierInfo*,unsigned> PoisonReasons;
2011 
2012 public:
2013   /// Specifies the reason for poisoning an identifier.
2014   ///
2015   /// If that identifier is accessed while poisoned, then this reason will be
2016   /// used instead of the default "poisoned" diagnostic.
2017   void SetPoisonReason(IdentifierInfo *II, unsigned DiagID);
2018 
2019   /// Display reason for poisoned identifier.
2020   void HandlePoisonedIdentifier(Token & Identifier);
2021 
2022   void MaybeHandlePoisonedIdentifier(Token & Identifier) {
2023     if(IdentifierInfo * II = Identifier.getIdentifierInfo()) {
2024       if(II->isPoisoned()) {
2025         HandlePoisonedIdentifier(Identifier);
2026       }
2027     }
2028   }
2029 
2030 private:
2031   /// Identifiers used for SEH handling in Borland. These are only
2032   /// allowed in particular circumstances
2033   // __except block
2034   IdentifierInfo *Ident__exception_code,
2035                  *Ident___exception_code,
2036                  *Ident_GetExceptionCode;
2037   // __except filter expression
2038   IdentifierInfo *Ident__exception_info,
2039                  *Ident___exception_info,
2040                  *Ident_GetExceptionInfo;
2041   // __finally
2042   IdentifierInfo *Ident__abnormal_termination,
2043                  *Ident___abnormal_termination,
2044                  *Ident_AbnormalTermination;
2045 
2046   const char *getCurLexerEndPos();
2047   void diagnoseMissingHeaderInUmbrellaDir(const Module &Mod);
2048 
2049 public:
2050   void PoisonSEHIdentifiers(bool Poison = true); // Borland
2051 
2052   /// Callback invoked when the lexer reads an identifier and has
2053   /// filled in the tokens IdentifierInfo member.
2054   ///
2055   /// This callback potentially macro expands it or turns it into a named
2056   /// token (like 'for').
2057   ///
2058   /// \returns true if we actually computed a token, false if we need to
2059   /// lex again.
2060   bool HandleIdentifier(Token &Identifier);
2061 
2062   /// Callback invoked when the lexer hits the end of the current file.
2063   ///
2064   /// This either returns the EOF token and returns true, or
2065   /// pops a level off the include stack and returns false, at which point the
2066   /// client should call lex again.
2067   bool HandleEndOfFile(Token &Result, bool isEndOfMacro = false);
2068 
2069   /// Callback invoked when the current TokenLexer hits the end of its
2070   /// token stream.
2071   bool HandleEndOfTokenLexer(Token &Result);
2072 
2073   /// Callback invoked when the lexer sees a # token at the start of a
2074   /// line.
2075   ///
2076   /// This consumes the directive, modifies the lexer/preprocessor state, and
2077   /// advances the lexer(s) so that the next token read is the correct one.
2078   void HandleDirective(Token &Result);
2079 
2080   /// Ensure that the next token is a tok::eod token.
2081   ///
2082   /// If not, emit a diagnostic and consume up until the eod.
2083   /// If \p EnableMacros is true, then we consider macros that expand to zero
2084   /// tokens as being ok.
2085   ///
2086   /// \return The location of the end of the directive (the terminating
2087   /// newline).
2088   SourceLocation CheckEndOfDirective(const char *DirType,
2089                                      bool EnableMacros = false);
2090 
2091   /// Read and discard all tokens remaining on the current line until
2092   /// the tok::eod token is found. Returns the range of the skipped tokens.
2093   SourceRange DiscardUntilEndOfDirective();
2094 
2095   /// Returns true if the preprocessor has seen a use of
2096   /// __DATE__ or __TIME__ in the file so far.
2097   bool SawDateOrTime() const {
2098     return DATELoc != SourceLocation() || TIMELoc != SourceLocation();
2099   }
2100   unsigned getCounterValue() const { return CounterValue; }
2101   void setCounterValue(unsigned V) { CounterValue = V; }
2102 
2103   LangOptions::FPEvalMethodKind getCurrentFPEvalMethod() const {
2104     assert(CurrentFPEvalMethod != LangOptions::FEM_UnsetOnCommandLine &&
2105            "FPEvalMethod should be set either from command line or from the "
2106            "target info");
2107     return CurrentFPEvalMethod;
2108   }
2109 
2110   LangOptions::FPEvalMethodKind getTUFPEvalMethod() const {
2111     return TUFPEvalMethod;
2112   }
2113 
2114   SourceLocation getLastFPEvalPragmaLocation() const {
2115     return LastFPEvalPragmaLocation;
2116   }
2117 
2118   LangOptions::FPEvalMethodKind getLastFPEvalMethod() const {
2119     return LastFPEvalMethod;
2120   }
2121 
2122   void setLastFPEvalMethod(LangOptions::FPEvalMethodKind Val) {
2123     LastFPEvalMethod = Val;
2124   }
2125 
2126   void setCurrentFPEvalMethod(SourceLocation PragmaLoc,
2127                               LangOptions::FPEvalMethodKind Val) {
2128     assert(Val != LangOptions::FEM_UnsetOnCommandLine &&
2129            "FPEvalMethod should never be set to FEM_UnsetOnCommandLine");
2130     // This is the location of the '#pragma float_control" where the
2131     // execution state is modifed.
2132     LastFPEvalPragmaLocation = PragmaLoc;
2133     CurrentFPEvalMethod = Val;
2134     TUFPEvalMethod = Val;
2135   }
2136 
2137   void setTUFPEvalMethod(LangOptions::FPEvalMethodKind Val) {
2138     assert(Val != LangOptions::FEM_UnsetOnCommandLine &&
2139            "TUPEvalMethod should never be set to FEM_UnsetOnCommandLine");
2140     TUFPEvalMethod = Val;
2141   }
2142 
2143   /// Retrieves the module that we're currently building, if any.
2144   Module *getCurrentModule();
2145 
2146   /// Allocate a new MacroInfo object with the provided SourceLocation.
2147   MacroInfo *AllocateMacroInfo(SourceLocation L);
2148 
2149   /// Turn the specified lexer token into a fully checked and spelled
2150   /// filename, e.g. as an operand of \#include.
2151   ///
2152   /// The caller is expected to provide a buffer that is large enough to hold
2153   /// the spelling of the filename, but is also expected to handle the case
2154   /// when this method decides to use a different buffer.
2155   ///
2156   /// \returns true if the input filename was in <>'s or false if it was
2157   /// in ""'s.
2158   bool GetIncludeFilenameSpelling(SourceLocation Loc,StringRef &Buffer);
2159 
2160   /// Given a "foo" or \<foo> reference, look up the indicated file.
2161   ///
2162   /// Returns None on failure.  \p isAngled indicates whether the file
2163   /// reference is for system \#include's or not (i.e. using <> instead of "").
2164   Optional<FileEntryRef>
2165   LookupFile(SourceLocation FilenameLoc, StringRef Filename, bool isAngled,
2166              ConstSearchDirIterator FromDir, const FileEntry *FromFile,
2167              ConstSearchDirIterator *CurDir, SmallVectorImpl<char> *SearchPath,
2168              SmallVectorImpl<char> *RelativePath,
2169              ModuleMap::KnownHeader *SuggestedModule, bool *IsMapped,
2170              bool *IsFrameworkFound, bool SkipCache = false);
2171 
2172   /// Return true if we're in the top-level file, not in a \#include.
2173   bool isInPrimaryFile() const;
2174 
2175   /// Lex an on-off-switch (C99 6.10.6p2) and verify that it is
2176   /// followed by EOD.  Return true if the token is not a valid on-off-switch.
2177   bool LexOnOffSwitch(tok::OnOffSwitch &Result);
2178 
2179   bool CheckMacroName(Token &MacroNameTok, MacroUse isDefineUndef,
2180                       bool *ShadowFlag = nullptr);
2181 
2182   void EnterSubmodule(Module *M, SourceLocation ImportLoc, bool ForPragma);
2183   Module *LeaveSubmodule(bool ForPragma);
2184 
2185 private:
2186   friend void TokenLexer::ExpandFunctionArguments();
2187 
2188   void PushIncludeMacroStack() {
2189     assert(CurLexerKind != CLK_CachingLexer && "cannot push a caching lexer");
2190     IncludeMacroStack.emplace_back(CurLexerKind, CurLexerSubmodule,
2191                                    std::move(CurLexer), CurPPLexer,
2192                                    std::move(CurTokenLexer), CurDirLookup);
2193     CurPPLexer = nullptr;
2194   }
2195 
2196   void PopIncludeMacroStack() {
2197     CurLexer = std::move(IncludeMacroStack.back().TheLexer);
2198     CurPPLexer = IncludeMacroStack.back().ThePPLexer;
2199     CurTokenLexer = std::move(IncludeMacroStack.back().TheTokenLexer);
2200     CurDirLookup  = IncludeMacroStack.back().TheDirLookup;
2201     CurLexerSubmodule = IncludeMacroStack.back().TheSubmodule;
2202     CurLexerKind = IncludeMacroStack.back().CurLexerKind;
2203     IncludeMacroStack.pop_back();
2204   }
2205 
2206   void PropagateLineStartLeadingSpaceInfo(Token &Result);
2207 
2208   /// Determine whether we need to create module macros for #defines in the
2209   /// current context.
2210   bool needModuleMacros() const;
2211 
2212   /// Update the set of active module macros and ambiguity flag for a module
2213   /// macro name.
2214   void updateModuleMacroInfo(const IdentifierInfo *II, ModuleMacroInfo &Info);
2215 
2216   DefMacroDirective *AllocateDefMacroDirective(MacroInfo *MI,
2217                                                SourceLocation Loc);
2218   UndefMacroDirective *AllocateUndefMacroDirective(SourceLocation UndefLoc);
2219   VisibilityMacroDirective *AllocateVisibilityMacroDirective(SourceLocation Loc,
2220                                                              bool isPublic);
2221 
2222   /// Lex and validate a macro name, which occurs after a
2223   /// \#define or \#undef.
2224   ///
2225   /// \param MacroNameTok Token that represents the name defined or undefined.
2226   /// \param IsDefineUndef Kind if preprocessor directive.
2227   /// \param ShadowFlag Points to flag that is set if macro name shadows
2228   ///                   a keyword.
2229   ///
2230   /// This emits a diagnostic, sets the token kind to eod,
2231   /// and discards the rest of the macro line if the macro name is invalid.
2232   void ReadMacroName(Token &MacroNameTok, MacroUse IsDefineUndef = MU_Other,
2233                      bool *ShadowFlag = nullptr);
2234 
2235   /// ReadOptionalMacroParameterListAndBody - This consumes all (i.e. the
2236   /// entire line) of the macro's tokens and adds them to MacroInfo, and while
2237   /// doing so performs certain validity checks including (but not limited to):
2238   ///   - # (stringization) is followed by a macro parameter
2239   /// \param MacroNameTok - Token that represents the macro name
2240   /// \param ImmediatelyAfterHeaderGuard - Macro follows an #ifdef header guard
2241   ///
2242   ///  Either returns a pointer to a MacroInfo object OR emits a diagnostic and
2243   ///  returns a nullptr if an invalid sequence of tokens is encountered.
2244   MacroInfo *ReadOptionalMacroParameterListAndBody(
2245       const Token &MacroNameTok, bool ImmediatelyAfterHeaderGuard);
2246 
2247   /// The ( starting an argument list of a macro definition has just been read.
2248   /// Lex the rest of the parameters and the closing ), updating \p MI with
2249   /// what we learn and saving in \p LastTok the last token read.
2250   /// Return true if an error occurs parsing the arg list.
2251   bool ReadMacroParameterList(MacroInfo *MI, Token& LastTok);
2252 
2253   /// Provide a suggestion for a typoed directive. If there is no typo, then
2254   /// just skip suggesting.
2255   ///
2256   /// \param Tok - Token that represents the directive
2257   /// \param Directive - String reference for the directive name
2258   void SuggestTypoedDirective(const Token &Tok, StringRef Directive) const;
2259 
2260   /// We just read a \#if or related directive and decided that the
2261   /// subsequent tokens are in the \#if'd out portion of the
2262   /// file.  Lex the rest of the file, until we see an \#endif.  If \p
2263   /// FoundNonSkipPortion is true, then we have already emitted code for part of
2264   /// this \#if directive, so \#else/\#elif blocks should never be entered. If
2265   /// \p FoundElse is false, then \#else directives are ok, if not, then we have
2266   /// already seen one so a \#else directive is a duplicate.  When this returns,
2267   /// the caller can lex the first valid token.
2268   void SkipExcludedConditionalBlock(SourceLocation HashTokenLoc,
2269                                     SourceLocation IfTokenLoc,
2270                                     bool FoundNonSkipPortion, bool FoundElse,
2271                                     SourceLocation ElseLoc = SourceLocation());
2272 
2273   /// Information about the result for evaluating an expression for a
2274   /// preprocessor directive.
2275   struct DirectiveEvalResult {
2276     /// Whether the expression was evaluated as true or not.
2277     bool Conditional;
2278 
2279     /// True if the expression contained identifiers that were undefined.
2280     bool IncludedUndefinedIds;
2281 
2282     /// The source range for the expression.
2283     SourceRange ExprRange;
2284   };
2285 
2286   /// Evaluate an integer constant expression that may occur after a
2287   /// \#if or \#elif directive and return a \p DirectiveEvalResult object.
2288   ///
2289   /// If the expression is equivalent to "!defined(X)" return X in IfNDefMacro.
2290   DirectiveEvalResult EvaluateDirectiveExpression(IdentifierInfo *&IfNDefMacro);
2291 
2292   /// Process a '__has_include("path")' expression.
2293   ///
2294   /// Returns true if successful.
2295   bool EvaluateHasInclude(Token &Tok, IdentifierInfo *II);
2296 
2297   /// Process '__has_include_next("path")' expression.
2298   ///
2299   /// Returns true if successful.
2300   bool EvaluateHasIncludeNext(Token &Tok, IdentifierInfo *II);
2301 
2302   /// Get the directory and file from which to start \#include_next lookup.
2303   std::pair<ConstSearchDirIterator, const FileEntry *>
2304   getIncludeNextStart(const Token &IncludeNextTok) const;
2305 
2306   /// Install the standard preprocessor pragmas:
2307   /// \#pragma GCC poison/system_header/dependency and \#pragma once.
2308   void RegisterBuiltinPragmas();
2309 
2310   /// Register builtin macros such as __LINE__ with the identifier table.
2311   void RegisterBuiltinMacros();
2312 
2313   /// If an identifier token is read that is to be expanded as a macro, handle
2314   /// it and return the next token as 'Tok'.  If we lexed a token, return true;
2315   /// otherwise the caller should lex again.
2316   bool HandleMacroExpandedIdentifier(Token &Identifier, const MacroDefinition &MD);
2317 
2318   /// Cache macro expanded tokens for TokenLexers.
2319   //
2320   /// Works like a stack; a TokenLexer adds the macro expanded tokens that is
2321   /// going to lex in the cache and when it finishes the tokens are removed
2322   /// from the end of the cache.
2323   Token *cacheMacroExpandedTokens(TokenLexer *tokLexer,
2324                                   ArrayRef<Token> tokens);
2325 
2326   void removeCachedMacroExpandedTokensOfLastLexer();
2327 
2328   /// Determine whether the next preprocessor token to be
2329   /// lexed is a '('.  If so, consume the token and return true, if not, this
2330   /// method should have no observable side-effect on the lexed tokens.
2331   bool isNextPPTokenLParen();
2332 
2333   /// After reading "MACRO(", this method is invoked to read all of the formal
2334   /// arguments specified for the macro invocation.  Returns null on error.
2335   MacroArgs *ReadMacroCallArgumentList(Token &MacroName, MacroInfo *MI,
2336                                        SourceLocation &MacroEnd);
2337 
2338   /// If an identifier token is read that is to be expanded
2339   /// as a builtin macro, handle it and return the next token as 'Tok'.
2340   void ExpandBuiltinMacro(Token &Tok);
2341 
2342   /// Read a \c _Pragma directive, slice it up, process it, then
2343   /// return the first token after the directive.
2344   /// This assumes that the \c _Pragma token has just been read into \p Tok.
2345   void Handle_Pragma(Token &Tok);
2346 
2347   /// Like Handle_Pragma except the pragma text is not enclosed within
2348   /// a string literal.
2349   void HandleMicrosoft__pragma(Token &Tok);
2350 
2351   /// Add a lexer to the top of the include stack and
2352   /// start lexing tokens from it instead of the current buffer.
2353   void EnterSourceFileWithLexer(Lexer *TheLexer, ConstSearchDirIterator Dir);
2354 
2355   /// Set the FileID for the preprocessor predefines.
2356   void setPredefinesFileID(FileID FID) {
2357     assert(PredefinesFileID.isInvalid() && "PredefinesFileID already set!");
2358     PredefinesFileID = FID;
2359   }
2360 
2361   /// Set the FileID for the PCH through header.
2362   void setPCHThroughHeaderFileID(FileID FID);
2363 
2364   /// Returns true if we are lexing from a file and not a
2365   /// pragma or a macro.
2366   static bool IsFileLexer(const Lexer* L, const PreprocessorLexer* P) {
2367     return L ? !L->isPragmaLexer() : P != nullptr;
2368   }
2369 
2370   static bool IsFileLexer(const IncludeStackInfo& I) {
2371     return IsFileLexer(I.TheLexer.get(), I.ThePPLexer);
2372   }
2373 
2374   bool IsFileLexer() const {
2375     return IsFileLexer(CurLexer.get(), CurPPLexer);
2376   }
2377 
2378   //===--------------------------------------------------------------------===//
2379   // Caching stuff.
2380   void CachingLex(Token &Result);
2381 
2382   bool InCachingLexMode() const {
2383     // If the Lexer pointers are 0 and IncludeMacroStack is empty, it means
2384     // that we are past EOF, not that we are in CachingLex mode.
2385     return !CurPPLexer && !CurTokenLexer && !IncludeMacroStack.empty();
2386   }
2387 
2388   void EnterCachingLexMode();
2389   void EnterCachingLexModeUnchecked();
2390 
2391   void ExitCachingLexMode() {
2392     if (InCachingLexMode())
2393       RemoveTopOfLexerStack();
2394   }
2395 
2396   const Token &PeekAhead(unsigned N);
2397   void AnnotatePreviousCachedTokens(const Token &Tok);
2398 
2399   //===--------------------------------------------------------------------===//
2400   /// Handle*Directive - implement the various preprocessor directives.  These
2401   /// should side-effect the current preprocessor object so that the next call
2402   /// to Lex() will return the appropriate token next.
2403   void HandleLineDirective();
2404   void HandleDigitDirective(Token &Tok);
2405   void HandleUserDiagnosticDirective(Token &Tok, bool isWarning);
2406   void HandleIdentSCCSDirective(Token &Tok);
2407   void HandleMacroPublicDirective(Token &Tok);
2408   void HandleMacroPrivateDirective();
2409 
2410   /// An additional notification that can be produced by a header inclusion or
2411   /// import to tell the parser what happened.
2412   struct ImportAction {
2413     enum ActionKind {
2414       None,
2415       ModuleBegin,
2416       ModuleImport,
2417       SkippedModuleImport,
2418       Failure,
2419     } Kind;
2420     Module *ModuleForHeader = nullptr;
2421 
2422     ImportAction(ActionKind AK, Module *Mod = nullptr)
2423         : Kind(AK), ModuleForHeader(Mod) {
2424       assert((AK == None || Mod || AK == Failure) &&
2425              "no module for module action");
2426     }
2427   };
2428 
2429   Optional<FileEntryRef> LookupHeaderIncludeOrImport(
2430       ConstSearchDirIterator *CurDir, StringRef &Filename,
2431       SourceLocation FilenameLoc, CharSourceRange FilenameRange,
2432       const Token &FilenameTok, bool &IsFrameworkFound, bool IsImportDecl,
2433       bool &IsMapped, ConstSearchDirIterator LookupFrom,
2434       const FileEntry *LookupFromFile, StringRef &LookupFilename,
2435       SmallVectorImpl<char> &RelativePath, SmallVectorImpl<char> &SearchPath,
2436       ModuleMap::KnownHeader &SuggestedModule, bool isAngled);
2437 
2438   // File inclusion.
2439   void HandleIncludeDirective(SourceLocation HashLoc, Token &Tok,
2440                               ConstSearchDirIterator LookupFrom = nullptr,
2441                               const FileEntry *LookupFromFile = nullptr);
2442   ImportAction
2443   HandleHeaderIncludeOrImport(SourceLocation HashLoc, Token &IncludeTok,
2444                               Token &FilenameTok, SourceLocation EndLoc,
2445                               ConstSearchDirIterator LookupFrom = nullptr,
2446                               const FileEntry *LookupFromFile = nullptr);
2447   void HandleIncludeNextDirective(SourceLocation HashLoc, Token &Tok);
2448   void HandleIncludeMacrosDirective(SourceLocation HashLoc, Token &Tok);
2449   void HandleImportDirective(SourceLocation HashLoc, Token &Tok);
2450   void HandleMicrosoftImportDirective(Token &Tok);
2451 
2452 public:
2453   /// Check that the given module is available, producing a diagnostic if not.
2454   /// \return \c true if the check failed (because the module is not available).
2455   ///         \c false if the module appears to be usable.
2456   static bool checkModuleIsAvailable(const LangOptions &LangOpts,
2457                                      const TargetInfo &TargetInfo,
2458                                      DiagnosticsEngine &Diags, Module *M);
2459 
2460   // Module inclusion testing.
2461   /// Find the module that owns the source or header file that
2462   /// \p Loc points to. If the location is in a file that was included
2463   /// into a module, or is outside any module, returns nullptr.
2464   Module *getModuleForLocation(SourceLocation Loc);
2465 
2466   /// We want to produce a diagnostic at location IncLoc concerning an
2467   /// unreachable effect at location MLoc (eg, where a desired entity was
2468   /// declared or defined). Determine whether the right way to make MLoc
2469   /// reachable is by #include, and if so, what header should be included.
2470   ///
2471   /// This is not necessarily fast, and might load unexpected module maps, so
2472   /// should only be called by code that intends to produce an error.
2473   ///
2474   /// \param IncLoc The location at which the missing effect was detected.
2475   /// \param MLoc A location within an unimported module at which the desired
2476   ///        effect occurred.
2477   /// \return A file that can be #included to provide the desired effect. Null
2478   ///         if no such file could be determined or if a #include is not
2479   ///         appropriate (eg, if a module should be imported instead).
2480   const FileEntry *getHeaderToIncludeForDiagnostics(SourceLocation IncLoc,
2481                                                     SourceLocation MLoc);
2482 
2483   bool isRecordingPreamble() const {
2484     return PreambleConditionalStack.isRecording();
2485   }
2486 
2487   bool hasRecordedPreamble() const {
2488     return PreambleConditionalStack.hasRecordedPreamble();
2489   }
2490 
2491   ArrayRef<PPConditionalInfo> getPreambleConditionalStack() const {
2492       return PreambleConditionalStack.getStack();
2493   }
2494 
2495   void setRecordedPreambleConditionalStack(ArrayRef<PPConditionalInfo> s) {
2496     PreambleConditionalStack.setStack(s);
2497   }
2498 
2499   void setReplayablePreambleConditionalStack(ArrayRef<PPConditionalInfo> s,
2500                                              llvm::Optional<PreambleSkipInfo> SkipInfo) {
2501     PreambleConditionalStack.startReplaying();
2502     PreambleConditionalStack.setStack(s);
2503     PreambleConditionalStack.SkipInfo = SkipInfo;
2504   }
2505 
2506   llvm::Optional<PreambleSkipInfo> getPreambleSkipInfo() const {
2507     return PreambleConditionalStack.SkipInfo;
2508   }
2509 
2510 private:
2511   /// After processing predefined file, initialize the conditional stack from
2512   /// the preamble.
2513   void replayPreambleConditionalStack();
2514 
2515   // Macro handling.
2516   void HandleDefineDirective(Token &Tok, bool ImmediatelyAfterHeaderGuard);
2517   void HandleUndefDirective();
2518 
2519   // Conditional Inclusion.
2520   void HandleIfdefDirective(Token &Result, const Token &HashToken,
2521                             bool isIfndef, bool ReadAnyTokensBeforeDirective);
2522   void HandleIfDirective(Token &IfToken, const Token &HashToken,
2523                          bool ReadAnyTokensBeforeDirective);
2524   void HandleEndifDirective(Token &EndifToken);
2525   void HandleElseDirective(Token &Result, const Token &HashToken);
2526   void HandleElifFamilyDirective(Token &ElifToken, const Token &HashToken,
2527                                  tok::PPKeywordKind Kind);
2528 
2529   // Pragmas.
2530   void HandlePragmaDirective(PragmaIntroducer Introducer);
2531 
2532 public:
2533   void HandlePragmaOnce(Token &OnceTok);
2534   void HandlePragmaMark(Token &MarkTok);
2535   void HandlePragmaPoison();
2536   void HandlePragmaSystemHeader(Token &SysHeaderTok);
2537   void HandlePragmaDependency(Token &DependencyTok);
2538   void HandlePragmaPushMacro(Token &Tok);
2539   void HandlePragmaPopMacro(Token &Tok);
2540   void HandlePragmaIncludeAlias(Token &Tok);
2541   void HandlePragmaModuleBuild(Token &Tok);
2542   void HandlePragmaHdrstop(Token &Tok);
2543   IdentifierInfo *ParsePragmaPushOrPopMacro(Token &Tok);
2544 
2545   // Return true and store the first token only if any CommentHandler
2546   // has inserted some tokens and getCommentRetentionState() is false.
2547   bool HandleComment(Token &result, SourceRange Comment);
2548 
2549   /// A macro is used, update information about macros that need unused
2550   /// warnings.
2551   void markMacroAsUsed(MacroInfo *MI);
2552 
2553   void addMacroDeprecationMsg(const IdentifierInfo *II, std::string Msg,
2554                               SourceLocation AnnotationLoc) {
2555     auto Annotations = AnnotationInfos.find(II);
2556     if (Annotations == AnnotationInfos.end())
2557       AnnotationInfos.insert(std::make_pair(
2558           II,
2559           MacroAnnotations::makeDeprecation(AnnotationLoc, std::move(Msg))));
2560     else
2561       Annotations->second.DeprecationInfo =
2562           MacroAnnotationInfo{AnnotationLoc, std::move(Msg)};
2563   }
2564 
2565   void addRestrictExpansionMsg(const IdentifierInfo *II, std::string Msg,
2566                                SourceLocation AnnotationLoc) {
2567     auto Annotations = AnnotationInfos.find(II);
2568     if (Annotations == AnnotationInfos.end())
2569       AnnotationInfos.insert(
2570           std::make_pair(II, MacroAnnotations::makeRestrictExpansion(
2571                                  AnnotationLoc, std::move(Msg))));
2572     else
2573       Annotations->second.RestrictExpansionInfo =
2574           MacroAnnotationInfo{AnnotationLoc, std::move(Msg)};
2575   }
2576 
2577   void addFinalLoc(const IdentifierInfo *II, SourceLocation AnnotationLoc) {
2578     auto Annotations = AnnotationInfos.find(II);
2579     if (Annotations == AnnotationInfos.end())
2580       AnnotationInfos.insert(
2581           std::make_pair(II, MacroAnnotations::makeFinal(AnnotationLoc)));
2582     else
2583       Annotations->second.FinalAnnotationLoc = AnnotationLoc;
2584   }
2585 
2586   const MacroAnnotations &getMacroAnnotations(const IdentifierInfo *II) const {
2587     return AnnotationInfos.find(II)->second;
2588   }
2589 
2590   void emitMacroExpansionWarnings(const Token &Identifier) const {
2591     if (Identifier.getIdentifierInfo()->isDeprecatedMacro())
2592       emitMacroDeprecationWarning(Identifier);
2593 
2594     if (Identifier.getIdentifierInfo()->isRestrictExpansion() &&
2595         !SourceMgr.isInMainFile(Identifier.getLocation()))
2596       emitRestrictExpansionWarning(Identifier);
2597   }
2598 
2599   static void processPathForFileMacro(SmallVectorImpl<char> &Path,
2600                                       const LangOptions &LangOpts,
2601                                       const TargetInfo &TI);
2602 
2603 private:
2604   void emitMacroDeprecationWarning(const Token &Identifier) const;
2605   void emitRestrictExpansionWarning(const Token &Identifier) const;
2606   void emitFinalMacroWarning(const Token &Identifier, bool IsUndef) const;
2607 };
2608 
2609 /// Abstract base class that describes a handler that will receive
2610 /// source ranges for each of the comments encountered in the source file.
2611 class CommentHandler {
2612 public:
2613   virtual ~CommentHandler();
2614 
2615   // The handler shall return true if it has pushed any tokens
2616   // to be read using e.g. EnterToken or EnterTokenStream.
2617   virtual bool HandleComment(Preprocessor &PP, SourceRange Comment) = 0;
2618 };
2619 
2620 /// Abstract base class that describes a handler that will receive
2621 /// source ranges for empty lines encountered in the source file.
2622 class EmptylineHandler {
2623 public:
2624   virtual ~EmptylineHandler();
2625 
2626   // The handler handles empty lines.
2627   virtual void HandleEmptyline(SourceRange Range) = 0;
2628 };
2629 
2630 /// Registry of pragma handlers added by plugins
2631 using PragmaHandlerRegistry = llvm::Registry<PragmaHandler>;
2632 
2633 } // namespace clang
2634 
2635 #endif // LLVM_CLANG_LEX_PREPROCESSOR_H
2636