1 //===- ScopeInfo.h - Information about a semantic context -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines FunctionScopeInfo and its subclasses, which contain
10 // information about a single function, block, lambda, or method body.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_SEMA_SCOPEINFO_H
15 #define LLVM_CLANG_SEMA_SCOPEINFO_H
16 
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/Type.h"
20 #include "clang/Basic/CapturedStmt.h"
21 #include "clang/Basic/LLVM.h"
22 #include "clang/Basic/PartialDiagnostic.h"
23 #include "clang/Basic/SourceLocation.h"
24 #include "clang/Sema/CleanupInfo.h"
25 #include "clang/Sema/DeclSpec.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DenseMapInfo.h"
28 #include "llvm/ADT/MapVector.h"
29 #include "llvm/ADT/PointerIntPair.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/StringRef.h"
34 #include "llvm/ADT/StringSwitch.h"
35 #include "llvm/ADT/TinyPtrVector.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include <algorithm>
39 #include <cassert>
40 #include <utility>
41 
42 namespace clang {
43 
44 class BlockDecl;
45 class CapturedDecl;
46 class CXXMethodDecl;
47 class CXXRecordDecl;
48 class ImplicitParamDecl;
49 class NamedDecl;
50 class ObjCIvarRefExpr;
51 class ObjCMessageExpr;
52 class ObjCPropertyDecl;
53 class ObjCPropertyRefExpr;
54 class ParmVarDecl;
55 class RecordDecl;
56 class ReturnStmt;
57 class Scope;
58 class Stmt;
59 class SwitchStmt;
60 class TemplateParameterList;
61 class TemplateTypeParmDecl;
62 class VarDecl;
63 
64 namespace sema {
65 
66 /// Contains information about the compound statement currently being
67 /// parsed.
68 class CompoundScopeInfo {
69 public:
70   /// Whether this compound stamement contains `for' or `while' loops
71   /// with empty bodies.
72   bool HasEmptyLoopBodies = false;
73 
74   /// Whether this compound statement corresponds to a GNU statement
75   /// expression.
76   bool IsStmtExpr;
77 
78   CompoundScopeInfo(bool IsStmtExpr) : IsStmtExpr(IsStmtExpr) {}
79 
80   void setHasEmptyLoopBodies() {
81     HasEmptyLoopBodies = true;
82   }
83 };
84 
85 class PossiblyUnreachableDiag {
86 public:
87   PartialDiagnostic PD;
88   SourceLocation Loc;
89   llvm::TinyPtrVector<const Stmt*> Stmts;
90 
91   PossiblyUnreachableDiag(const PartialDiagnostic &PD, SourceLocation Loc,
92                           ArrayRef<const Stmt *> Stmts)
93       : PD(PD), Loc(Loc), Stmts(Stmts) {}
94 };
95 
96 /// Retains information about a function, method, or block that is
97 /// currently being parsed.
98 class FunctionScopeInfo {
99 protected:
100   enum ScopeKind {
101     SK_Function,
102     SK_Block,
103     SK_Lambda,
104     SK_CapturedRegion
105   };
106 
107 public:
108   /// What kind of scope we are describing.
109   ScopeKind Kind : 3;
110 
111   /// Whether this function contains a VLA, \@try, try, C++
112   /// initializer, or anything else that can't be jumped past.
113   bool HasBranchProtectedScope : 1;
114 
115   /// Whether this function contains any switches or direct gotos.
116   bool HasBranchIntoScope : 1;
117 
118   /// Whether this function contains any indirect gotos.
119   bool HasIndirectGoto : 1;
120 
121   /// Whether a statement was dropped because it was invalid.
122   bool HasDroppedStmt : 1;
123 
124   /// True if current scope is for OpenMP declare reduction combiner.
125   bool HasOMPDeclareReductionCombiner : 1;
126 
127   /// Whether there is a fallthrough statement in this function.
128   bool HasFallthroughStmt : 1;
129 
130   /// Whether this function uses constrained floating point intrinsics
131   bool UsesFPIntrin : 1;
132 
133   /// Whether we make reference to a declaration that could be
134   /// unavailable.
135   bool HasPotentialAvailabilityViolations : 1;
136 
137   /// A flag that is set when parsing a method that must call super's
138   /// implementation, such as \c -dealloc, \c -finalize, or any method marked
139   /// with \c __attribute__((objc_requires_super)).
140   bool ObjCShouldCallSuper : 1;
141 
142   /// True when this is a method marked as a designated initializer.
143   bool ObjCIsDesignatedInit : 1;
144 
145   /// This starts true for a method marked as designated initializer and will
146   /// be set to false if there is an invocation to a designated initializer of
147   /// the super class.
148   bool ObjCWarnForNoDesignatedInitChain : 1;
149 
150   /// True when this is an initializer method not marked as a designated
151   /// initializer within a class that has at least one initializer marked as a
152   /// designated initializer.
153   bool ObjCIsSecondaryInit : 1;
154 
155   /// This starts true for a secondary initializer method and will be set to
156   /// false if there is an invocation of an initializer on 'self'.
157   bool ObjCWarnForNoInitDelegation : 1;
158 
159   /// True only when this function has not already built, or attempted
160   /// to build, the initial and final coroutine suspend points
161   bool NeedsCoroutineSuspends : 1;
162 
163   /// An enumeration represeting the kind of the first coroutine statement
164   /// in the function. One of co_return, co_await, or co_yield.
165   unsigned char FirstCoroutineStmtKind : 2;
166 
167   /// First coroutine statement in the current function.
168   /// (ex co_return, co_await, co_yield)
169   SourceLocation FirstCoroutineStmtLoc;
170 
171   /// First 'return' statement in the current function.
172   SourceLocation FirstReturnLoc;
173 
174   /// First C++ 'try' statement in the current function.
175   SourceLocation FirstCXXTryLoc;
176 
177   /// First SEH '__try' statement in the current function.
178   SourceLocation FirstSEHTryLoc;
179 
180 private:
181   /// Used to determine if errors occurred in this function or block.
182   DiagnosticErrorTrap ErrorTrap;
183 
184 public:
185   /// A SwitchStmt, along with a flag indicating if its list of case statements
186   /// is incomplete (because we dropped an invalid one while parsing).
187   using SwitchInfo = llvm::PointerIntPair<SwitchStmt*, 1, bool>;
188 
189   /// SwitchStack - This is the current set of active switch statements in the
190   /// block.
191   SmallVector<SwitchInfo, 8> SwitchStack;
192 
193   /// The list of return statements that occur within the function or
194   /// block, if there is any chance of applying the named return value
195   /// optimization, or if we need to infer a return type.
196   SmallVector<ReturnStmt*, 4> Returns;
197 
198   /// The promise object for this coroutine, if any.
199   VarDecl *CoroutinePromise = nullptr;
200 
201   /// A mapping between the coroutine function parameters that were moved
202   /// to the coroutine frame, and their move statements.
203   llvm::SmallMapVector<ParmVarDecl *, Stmt *, 4> CoroutineParameterMoves;
204 
205   /// The initial and final coroutine suspend points.
206   std::pair<Stmt *, Stmt *> CoroutineSuspends;
207 
208   /// The stack of currently active compound stamement scopes in the
209   /// function.
210   SmallVector<CompoundScopeInfo, 4> CompoundScopes;
211 
212   /// The set of blocks that are introduced in this function.
213   llvm::SmallPtrSet<const BlockDecl *, 1> Blocks;
214 
215   /// The set of __block variables that are introduced in this function.
216   llvm::TinyPtrVector<VarDecl *> ByrefBlockVars;
217 
218   /// A list of PartialDiagnostics created but delayed within the
219   /// current function scope.  These diagnostics are vetted for reachability
220   /// prior to being emitted.
221   SmallVector<PossiblyUnreachableDiag, 4> PossiblyUnreachableDiags;
222 
223   /// A list of parameters which have the nonnull attribute and are
224   /// modified in the function.
225   llvm::SmallPtrSet<const ParmVarDecl *, 8> ModifiedNonNullParams;
226 
227 public:
228   /// Represents a simple identification of a weak object.
229   ///
230   /// Part of the implementation of -Wrepeated-use-of-weak.
231   ///
232   /// This is used to determine if two weak accesses refer to the same object.
233   /// Here are some examples of how various accesses are "profiled":
234   ///
235   /// Access Expression |     "Base" Decl     |          "Property" Decl
236   /// :---------------: | :-----------------: | :------------------------------:
237   /// self.property     | self (VarDecl)      | property (ObjCPropertyDecl)
238   /// self.implicitProp | self (VarDecl)      | -implicitProp (ObjCMethodDecl)
239   /// self->ivar.prop   | ivar (ObjCIvarDecl) | prop (ObjCPropertyDecl)
240   /// cxxObj.obj.prop   | obj (FieldDecl)     | prop (ObjCPropertyDecl)
241   /// [self foo].prop   | 0 (unknown)         | prop (ObjCPropertyDecl)
242   /// self.prop1.prop2  | prop1 (ObjCPropertyDecl)    | prop2 (ObjCPropertyDecl)
243   /// MyClass.prop      | MyClass (ObjCInterfaceDecl) | -prop (ObjCMethodDecl)
244   /// MyClass.foo.prop  | +foo (ObjCMethodDecl)       | -prop (ObjCPropertyDecl)
245   /// weakVar           | 0 (known)           | weakVar (VarDecl)
246   /// self->weakIvar    | self (VarDecl)      | weakIvar (ObjCIvarDecl)
247   ///
248   /// Objects are identified with only two Decls to make it reasonably fast to
249   /// compare them.
250   class WeakObjectProfileTy {
251     /// The base object decl, as described in the class documentation.
252     ///
253     /// The extra flag is "true" if the Base and Property are enough to uniquely
254     /// identify the object in memory.
255     ///
256     /// \sa isExactProfile()
257     using BaseInfoTy = llvm::PointerIntPair<const NamedDecl *, 1, bool>;
258     BaseInfoTy Base;
259 
260     /// The "property" decl, as described in the class documentation.
261     ///
262     /// Note that this may not actually be an ObjCPropertyDecl, e.g. in the
263     /// case of "implicit" properties (regular methods accessed via dot syntax).
264     const NamedDecl *Property = nullptr;
265 
266     /// Used to find the proper base profile for a given base expression.
267     static BaseInfoTy getBaseInfo(const Expr *BaseE);
268 
269     inline WeakObjectProfileTy();
270     static inline WeakObjectProfileTy getSentinel();
271 
272   public:
273     WeakObjectProfileTy(const ObjCPropertyRefExpr *RE);
274     WeakObjectProfileTy(const Expr *Base, const ObjCPropertyDecl *Property);
275     WeakObjectProfileTy(const DeclRefExpr *RE);
276     WeakObjectProfileTy(const ObjCIvarRefExpr *RE);
277 
278     const NamedDecl *getBase() const { return Base.getPointer(); }
279     const NamedDecl *getProperty() const { return Property; }
280 
281     /// Returns true if the object base specifies a known object in memory,
282     /// rather than, say, an instance variable or property of another object.
283     ///
284     /// Note that this ignores the effects of aliasing; that is, \c foo.bar is
285     /// considered an exact profile if \c foo is a local variable, even if
286     /// another variable \c foo2 refers to the same object as \c foo.
287     ///
288     /// For increased precision, accesses with base variables that are
289     /// properties or ivars of 'self' (e.g. self.prop1.prop2) are considered to
290     /// be exact, though this is not true for arbitrary variables
291     /// (foo.prop1.prop2).
292     bool isExactProfile() const {
293       return Base.getInt();
294     }
295 
296     bool operator==(const WeakObjectProfileTy &Other) const {
297       return Base == Other.Base && Property == Other.Property;
298     }
299 
300     // For use in DenseMap.
301     // We can't specialize the usual llvm::DenseMapInfo at the end of the file
302     // because by that point the DenseMap in FunctionScopeInfo has already been
303     // instantiated.
304     class DenseMapInfo {
305     public:
306       static inline WeakObjectProfileTy getEmptyKey() {
307         return WeakObjectProfileTy();
308       }
309 
310       static inline WeakObjectProfileTy getTombstoneKey() {
311         return WeakObjectProfileTy::getSentinel();
312       }
313 
314       static unsigned getHashValue(const WeakObjectProfileTy &Val) {
315         using Pair = std::pair<BaseInfoTy, const NamedDecl *>;
316 
317         return llvm::DenseMapInfo<Pair>::getHashValue(Pair(Val.Base,
318                                                            Val.Property));
319       }
320 
321       static bool isEqual(const WeakObjectProfileTy &LHS,
322                           const WeakObjectProfileTy &RHS) {
323         return LHS == RHS;
324       }
325     };
326   };
327 
328   /// Represents a single use of a weak object.
329   ///
330   /// Stores both the expression and whether the access is potentially unsafe
331   /// (i.e. it could potentially be warned about).
332   ///
333   /// Part of the implementation of -Wrepeated-use-of-weak.
334   class WeakUseTy {
335     llvm::PointerIntPair<const Expr *, 1, bool> Rep;
336 
337   public:
338     WeakUseTy(const Expr *Use, bool IsRead) : Rep(Use, IsRead) {}
339 
340     const Expr *getUseExpr() const { return Rep.getPointer(); }
341     bool isUnsafe() const { return Rep.getInt(); }
342     void markSafe() { Rep.setInt(false); }
343 
344     bool operator==(const WeakUseTy &Other) const {
345       return Rep == Other.Rep;
346     }
347   };
348 
349   /// Used to collect uses of a particular weak object in a function body.
350   ///
351   /// Part of the implementation of -Wrepeated-use-of-weak.
352   using WeakUseVector = SmallVector<WeakUseTy, 4>;
353 
354   /// Used to collect all uses of weak objects in a function body.
355   ///
356   /// Part of the implementation of -Wrepeated-use-of-weak.
357   using WeakObjectUseMap =
358       llvm::SmallDenseMap<WeakObjectProfileTy, WeakUseVector, 8,
359                           WeakObjectProfileTy::DenseMapInfo>;
360 
361 private:
362   /// Used to collect all uses of weak objects in this function body.
363   ///
364   /// Part of the implementation of -Wrepeated-use-of-weak.
365   WeakObjectUseMap WeakObjectUses;
366 
367 protected:
368   FunctionScopeInfo(const FunctionScopeInfo&) = default;
369 
370 public:
371   FunctionScopeInfo(DiagnosticsEngine &Diag)
372       : Kind(SK_Function), HasBranchProtectedScope(false),
373         HasBranchIntoScope(false), HasIndirectGoto(false),
374         HasDroppedStmt(false), HasOMPDeclareReductionCombiner(false),
375         HasFallthroughStmt(false), UsesFPIntrin(false),
376         HasPotentialAvailabilityViolations(false),
377         ObjCShouldCallSuper(false), ObjCIsDesignatedInit(false),
378         ObjCWarnForNoDesignatedInitChain(false), ObjCIsSecondaryInit(false),
379         ObjCWarnForNoInitDelegation(false), NeedsCoroutineSuspends(true),
380         ErrorTrap(Diag) {}
381 
382   virtual ~FunctionScopeInfo();
383 
384   /// Determine whether an unrecoverable error has occurred within this
385   /// function. Note that this may return false even if the function body is
386   /// invalid, because the errors may be suppressed if they're caused by prior
387   /// invalid declarations.
388   ///
389   /// FIXME: Migrate the caller of this to use containsErrors() instead once
390   /// it's ready.
391   bool hasUnrecoverableErrorOccurred() const {
392     return ErrorTrap.hasUnrecoverableErrorOccurred();
393   }
394 
395   /// Record that a weak object was accessed.
396   ///
397   /// Part of the implementation of -Wrepeated-use-of-weak.
398   template <typename ExprT>
399   inline void recordUseOfWeak(const ExprT *E, bool IsRead = true);
400 
401   void recordUseOfWeak(const ObjCMessageExpr *Msg,
402                        const ObjCPropertyDecl *Prop);
403 
404   /// Record that a given expression is a "safe" access of a weak object (e.g.
405   /// assigning it to a strong variable.)
406   ///
407   /// Part of the implementation of -Wrepeated-use-of-weak.
408   void markSafeWeakUse(const Expr *E);
409 
410   const WeakObjectUseMap &getWeakObjectUses() const {
411     return WeakObjectUses;
412   }
413 
414   void setHasBranchIntoScope() {
415     HasBranchIntoScope = true;
416   }
417 
418   void setHasBranchProtectedScope() {
419     HasBranchProtectedScope = true;
420   }
421 
422   void setHasIndirectGoto() {
423     HasIndirectGoto = true;
424   }
425 
426   void setHasDroppedStmt() {
427     HasDroppedStmt = true;
428   }
429 
430   void setHasOMPDeclareReductionCombiner() {
431     HasOMPDeclareReductionCombiner = true;
432   }
433 
434   void setHasFallthroughStmt() {
435     HasFallthroughStmt = true;
436   }
437 
438   void setUsesFPIntrin() {
439     UsesFPIntrin = true;
440   }
441 
442   void setHasCXXTry(SourceLocation TryLoc) {
443     setHasBranchProtectedScope();
444     FirstCXXTryLoc = TryLoc;
445   }
446 
447   void setHasSEHTry(SourceLocation TryLoc) {
448     setHasBranchProtectedScope();
449     FirstSEHTryLoc = TryLoc;
450   }
451 
452   bool NeedsScopeChecking() const {
453     return !HasDroppedStmt &&
454         (HasIndirectGoto ||
455           (HasBranchProtectedScope && HasBranchIntoScope));
456   }
457 
458   // Add a block introduced in this function.
459   void addBlock(const BlockDecl *BD) {
460     Blocks.insert(BD);
461   }
462 
463   // Add a __block variable introduced in this function.
464   void addByrefBlockVar(VarDecl *VD) {
465     ByrefBlockVars.push_back(VD);
466   }
467 
468   bool isCoroutine() const { return !FirstCoroutineStmtLoc.isInvalid(); }
469 
470   void setFirstCoroutineStmt(SourceLocation Loc, StringRef Keyword) {
471     assert(FirstCoroutineStmtLoc.isInvalid() &&
472                    "first coroutine statement location already set");
473     FirstCoroutineStmtLoc = Loc;
474     FirstCoroutineStmtKind = llvm::StringSwitch<unsigned char>(Keyword)
475             .Case("co_return", 0)
476             .Case("co_await", 1)
477             .Case("co_yield", 2);
478   }
479 
480   StringRef getFirstCoroutineStmtKeyword() const {
481     assert(FirstCoroutineStmtLoc.isValid()
482                    && "no coroutine statement available");
483     switch (FirstCoroutineStmtKind) {
484     case 0: return "co_return";
485     case 1: return "co_await";
486     case 2: return "co_yield";
487     default:
488       llvm_unreachable("FirstCoroutineStmtKind has an invalid value");
489     };
490   }
491 
492   void setNeedsCoroutineSuspends(bool value = true) {
493     assert((!value || CoroutineSuspends.first == nullptr) &&
494             "we already have valid suspend points");
495     NeedsCoroutineSuspends = value;
496   }
497 
498   bool hasInvalidCoroutineSuspends() const {
499     return !NeedsCoroutineSuspends && CoroutineSuspends.first == nullptr;
500   }
501 
502   void setCoroutineSuspends(Stmt *Initial, Stmt *Final) {
503     assert(Initial && Final && "suspend points cannot be null");
504     assert(CoroutineSuspends.first == nullptr && "suspend points already set");
505     NeedsCoroutineSuspends = false;
506     CoroutineSuspends.first = Initial;
507     CoroutineSuspends.second = Final;
508   }
509 
510   /// Clear out the information in this function scope, making it
511   /// suitable for reuse.
512   void Clear();
513 
514   bool isPlainFunction() const { return Kind == SK_Function; }
515 };
516 
517 class Capture {
518   // There are three categories of capture: capturing 'this', capturing
519   // local variables, and C++1y initialized captures (which can have an
520   // arbitrary initializer, and don't really capture in the traditional
521   // sense at all).
522   //
523   // There are three ways to capture a local variable:
524   //  - capture by copy in the C++11 sense,
525   //  - capture by reference in the C++11 sense, and
526   //  - __block capture.
527   // Lambdas explicitly specify capture by copy or capture by reference.
528   // For blocks, __block capture applies to variables with that annotation,
529   // variables of reference type are captured by reference, and other
530   // variables are captured by copy.
531   enum CaptureKind {
532     Cap_ByCopy, Cap_ByRef, Cap_Block, Cap_VLA
533   };
534 
535   union {
536     /// If Kind == Cap_VLA, the captured type.
537     const VariableArrayType *CapturedVLA;
538 
539     /// Otherwise, the captured variable (if any).
540     VarDecl *CapturedVar;
541   };
542 
543   /// The source location at which the first capture occurred.
544   SourceLocation Loc;
545 
546   /// The location of the ellipsis that expands a parameter pack.
547   SourceLocation EllipsisLoc;
548 
549   /// The type as it was captured, which is the type of the non-static data
550   /// member that would hold the capture.
551   QualType CaptureType;
552 
553   /// The CaptureKind of this capture.
554   unsigned Kind : 2;
555 
556   /// Whether this is a nested capture (a capture of an enclosing capturing
557   /// scope's capture).
558   unsigned Nested : 1;
559 
560   /// Whether this is a capture of '*this'.
561   unsigned CapturesThis : 1;
562 
563   /// Whether an explicit capture has been odr-used in the body of the
564   /// lambda.
565   unsigned ODRUsed : 1;
566 
567   /// Whether an explicit capture has been non-odr-used in the body of
568   /// the lambda.
569   unsigned NonODRUsed : 1;
570 
571   /// Whether the capture is invalid (a capture was required but the entity is
572   /// non-capturable).
573   unsigned Invalid : 1;
574 
575 public:
576   Capture(VarDecl *Var, bool Block, bool ByRef, bool IsNested,
577           SourceLocation Loc, SourceLocation EllipsisLoc, QualType CaptureType,
578           bool Invalid)
579       : CapturedVar(Var), Loc(Loc), EllipsisLoc(EllipsisLoc),
580         CaptureType(CaptureType),
581         Kind(Block ? Cap_Block : ByRef ? Cap_ByRef : Cap_ByCopy),
582         Nested(IsNested), CapturesThis(false), ODRUsed(false),
583         NonODRUsed(false), Invalid(Invalid) {}
584 
585   enum IsThisCapture { ThisCapture };
586   Capture(IsThisCapture, bool IsNested, SourceLocation Loc,
587           QualType CaptureType, const bool ByCopy, bool Invalid)
588       : Loc(Loc), CaptureType(CaptureType),
589         Kind(ByCopy ? Cap_ByCopy : Cap_ByRef), Nested(IsNested),
590         CapturesThis(true), ODRUsed(false), NonODRUsed(false),
591         Invalid(Invalid) {}
592 
593   enum IsVLACapture { VLACapture };
594   Capture(IsVLACapture, const VariableArrayType *VLA, bool IsNested,
595           SourceLocation Loc, QualType CaptureType)
596       : CapturedVLA(VLA), Loc(Loc), CaptureType(CaptureType), Kind(Cap_VLA),
597         Nested(IsNested), CapturesThis(false), ODRUsed(false),
598         NonODRUsed(false), Invalid(false) {}
599 
600   bool isThisCapture() const { return CapturesThis; }
601   bool isVariableCapture() const {
602     return !isThisCapture() && !isVLATypeCapture();
603   }
604 
605   bool isCopyCapture() const { return Kind == Cap_ByCopy; }
606   bool isReferenceCapture() const { return Kind == Cap_ByRef; }
607   bool isBlockCapture() const { return Kind == Cap_Block; }
608   bool isVLATypeCapture() const { return Kind == Cap_VLA; }
609 
610   bool isNested() const { return Nested; }
611 
612   bool isInvalid() const { return Invalid; }
613 
614   /// Determine whether this capture is an init-capture.
615   bool isInitCapture() const;
616 
617   bool isODRUsed() const { return ODRUsed; }
618   bool isNonODRUsed() const { return NonODRUsed; }
619   void markUsed(bool IsODRUse) {
620     if (IsODRUse)
621       ODRUsed = true;
622     else
623       NonODRUsed = true;
624   }
625 
626   VarDecl *getVariable() const {
627     assert(isVariableCapture());
628     return CapturedVar;
629   }
630 
631   const VariableArrayType *getCapturedVLAType() const {
632     assert(isVLATypeCapture());
633     return CapturedVLA;
634   }
635 
636   /// Retrieve the location at which this variable was captured.
637   SourceLocation getLocation() const { return Loc; }
638 
639   /// Retrieve the source location of the ellipsis, whose presence
640   /// indicates that the capture is a pack expansion.
641   SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
642 
643   /// Retrieve the capture type for this capture, which is effectively
644   /// the type of the non-static data member in the lambda/block structure
645   /// that would store this capture.
646   QualType getCaptureType() const { return CaptureType; }
647 };
648 
649 class CapturingScopeInfo : public FunctionScopeInfo {
650 protected:
651   CapturingScopeInfo(const CapturingScopeInfo&) = default;
652 
653 public:
654   enum ImplicitCaptureStyle {
655     ImpCap_None, ImpCap_LambdaByval, ImpCap_LambdaByref, ImpCap_Block,
656     ImpCap_CapturedRegion
657   };
658 
659   ImplicitCaptureStyle ImpCaptureStyle;
660 
661   CapturingScopeInfo(DiagnosticsEngine &Diag, ImplicitCaptureStyle Style)
662       : FunctionScopeInfo(Diag), ImpCaptureStyle(Style) {}
663 
664   /// CaptureMap - A map of captured variables to (index+1) into Captures.
665   llvm::DenseMap<VarDecl*, unsigned> CaptureMap;
666 
667   /// CXXThisCaptureIndex - The (index+1) of the capture of 'this';
668   /// zero if 'this' is not captured.
669   unsigned CXXThisCaptureIndex = 0;
670 
671   /// Captures - The captures.
672   SmallVector<Capture, 4> Captures;
673 
674   /// - Whether the target type of return statements in this context
675   /// is deduced (e.g. a lambda or block with omitted return type).
676   bool HasImplicitReturnType = false;
677 
678   /// ReturnType - The target type of return statements in this context,
679   /// or null if unknown.
680   QualType ReturnType;
681 
682   void addCapture(VarDecl *Var, bool isBlock, bool isByref, bool isNested,
683                   SourceLocation Loc, SourceLocation EllipsisLoc,
684                   QualType CaptureType, bool Invalid) {
685     Captures.push_back(Capture(Var, isBlock, isByref, isNested, Loc,
686                                EllipsisLoc, CaptureType, Invalid));
687     CaptureMap[Var] = Captures.size();
688   }
689 
690   void addVLATypeCapture(SourceLocation Loc, const VariableArrayType *VLAType,
691                          QualType CaptureType) {
692     Captures.push_back(Capture(Capture::VLACapture, VLAType,
693                                /*FIXME: IsNested*/ false, Loc, CaptureType));
694   }
695 
696   void addThisCapture(bool isNested, SourceLocation Loc, QualType CaptureType,
697                       bool ByCopy);
698 
699   /// Determine whether the C++ 'this' is captured.
700   bool isCXXThisCaptured() const { return CXXThisCaptureIndex != 0; }
701 
702   /// Retrieve the capture of C++ 'this', if it has been captured.
703   Capture &getCXXThisCapture() {
704     assert(isCXXThisCaptured() && "this has not been captured");
705     return Captures[CXXThisCaptureIndex - 1];
706   }
707 
708   /// Determine whether the given variable has been captured.
709   bool isCaptured(VarDecl *Var) const {
710     return CaptureMap.count(Var);
711   }
712 
713   /// Determine whether the given variable-array type has been captured.
714   bool isVLATypeCaptured(const VariableArrayType *VAT) const;
715 
716   /// Retrieve the capture of the given variable, if it has been
717   /// captured already.
718   Capture &getCapture(VarDecl *Var) {
719     assert(isCaptured(Var) && "Variable has not been captured");
720     return Captures[CaptureMap[Var] - 1];
721   }
722 
723   const Capture &getCapture(VarDecl *Var) const {
724     llvm::DenseMap<VarDecl*, unsigned>::const_iterator Known
725       = CaptureMap.find(Var);
726     assert(Known != CaptureMap.end() && "Variable has not been captured");
727     return Captures[Known->second - 1];
728   }
729 
730   static bool classof(const FunctionScopeInfo *FSI) {
731     return FSI->Kind == SK_Block || FSI->Kind == SK_Lambda
732                                  || FSI->Kind == SK_CapturedRegion;
733   }
734 };
735 
736 /// Retains information about a block that is currently being parsed.
737 class BlockScopeInfo final : public CapturingScopeInfo {
738 public:
739   BlockDecl *TheDecl;
740 
741   /// TheScope - This is the scope for the block itself, which contains
742   /// arguments etc.
743   Scope *TheScope;
744 
745   /// BlockType - The function type of the block, if one was given.
746   /// Its return type may be BuiltinType::Dependent.
747   QualType FunctionType;
748 
749   BlockScopeInfo(DiagnosticsEngine &Diag, Scope *BlockScope, BlockDecl *Block)
750       : CapturingScopeInfo(Diag, ImpCap_Block), TheDecl(Block),
751         TheScope(BlockScope) {
752     Kind = SK_Block;
753   }
754 
755   ~BlockScopeInfo() override;
756 
757   static bool classof(const FunctionScopeInfo *FSI) {
758     return FSI->Kind == SK_Block;
759   }
760 };
761 
762 /// Retains information about a captured region.
763 class CapturedRegionScopeInfo final : public CapturingScopeInfo {
764 public:
765   /// The CapturedDecl for this statement.
766   CapturedDecl *TheCapturedDecl;
767 
768   /// The captured record type.
769   RecordDecl *TheRecordDecl;
770 
771   /// This is the enclosing scope of the captured region.
772   Scope *TheScope;
773 
774   /// The implicit parameter for the captured variables.
775   ImplicitParamDecl *ContextParam;
776 
777   /// The kind of captured region.
778   unsigned short CapRegionKind;
779 
780   unsigned short OpenMPLevel;
781   unsigned short OpenMPCaptureLevel;
782 
783   CapturedRegionScopeInfo(DiagnosticsEngine &Diag, Scope *S, CapturedDecl *CD,
784                           RecordDecl *RD, ImplicitParamDecl *Context,
785                           CapturedRegionKind K, unsigned OpenMPLevel,
786                           unsigned OpenMPCaptureLevel)
787       : CapturingScopeInfo(Diag, ImpCap_CapturedRegion),
788         TheCapturedDecl(CD), TheRecordDecl(RD), TheScope(S),
789         ContextParam(Context), CapRegionKind(K), OpenMPLevel(OpenMPLevel),
790         OpenMPCaptureLevel(OpenMPCaptureLevel) {
791     Kind = SK_CapturedRegion;
792   }
793 
794   ~CapturedRegionScopeInfo() override;
795 
796   /// A descriptive name for the kind of captured region this is.
797   StringRef getRegionName() const {
798     switch (CapRegionKind) {
799     case CR_Default:
800       return "default captured statement";
801     case CR_ObjCAtFinally:
802       return "Objective-C @finally statement";
803     case CR_OpenMP:
804       return "OpenMP region";
805     }
806     llvm_unreachable("Invalid captured region kind!");
807   }
808 
809   static bool classof(const FunctionScopeInfo *FSI) {
810     return FSI->Kind == SK_CapturedRegion;
811   }
812 };
813 
814 class LambdaScopeInfo final :
815     public CapturingScopeInfo, public InventedTemplateParameterInfo {
816 public:
817   /// The class that describes the lambda.
818   CXXRecordDecl *Lambda = nullptr;
819 
820   /// The lambda's compiler-generated \c operator().
821   CXXMethodDecl *CallOperator = nullptr;
822 
823   /// Source range covering the lambda introducer [...].
824   SourceRange IntroducerRange;
825 
826   /// Source location of the '&' or '=' specifying the default capture
827   /// type, if any.
828   SourceLocation CaptureDefaultLoc;
829 
830   /// The number of captures in the \c Captures list that are
831   /// explicit captures.
832   unsigned NumExplicitCaptures = 0;
833 
834   /// Whether this is a mutable lambda.
835   bool Mutable = false;
836 
837   /// Whether the (empty) parameter list is explicit.
838   bool ExplicitParams = false;
839 
840   /// Whether any of the capture expressions requires cleanups.
841   CleanupInfo Cleanup;
842 
843   /// Whether the lambda contains an unexpanded parameter pack.
844   bool ContainsUnexpandedParameterPack = false;
845 
846   /// Packs introduced by this lambda, if any.
847   SmallVector<NamedDecl*, 4> LocalPacks;
848 
849   /// Source range covering the explicit template parameter list (if it exists).
850   SourceRange ExplicitTemplateParamsRange;
851 
852   /// The requires-clause immediately following the explicit template parameter
853   /// list, if any. (Note that there may be another requires-clause included as
854   /// part of the lambda-declarator.)
855   ExprResult RequiresClause;
856 
857   /// If this is a generic lambda, and the template parameter
858   /// list has been created (from the TemplateParams) then store
859   /// a reference to it (cache it to avoid reconstructing it).
860   TemplateParameterList *GLTemplateParameterList = nullptr;
861 
862   /// Contains all variable-referring-expressions (i.e. DeclRefExprs
863   ///  or MemberExprs) that refer to local variables in a generic lambda
864   ///  or a lambda in a potentially-evaluated-if-used context.
865   ///
866   ///  Potentially capturable variables of a nested lambda that might need
867   ///   to be captured by the lambda are housed here.
868   ///  This is specifically useful for generic lambdas or
869   ///  lambdas within a potentially evaluated-if-used context.
870   ///  If an enclosing variable is named in an expression of a lambda nested
871   ///  within a generic lambda, we don't always know know whether the variable
872   ///  will truly be odr-used (i.e. need to be captured) by that nested lambda,
873   ///  until its instantiation. But we still need to capture it in the
874   ///  enclosing lambda if all intervening lambdas can capture the variable.
875   llvm::SmallVector<Expr*, 4> PotentiallyCapturingExprs;
876 
877   /// Contains all variable-referring-expressions that refer
878   ///  to local variables that are usable as constant expressions and
879   ///  do not involve an odr-use (they may still need to be captured
880   ///  if the enclosing full-expression is instantiation dependent).
881   llvm::SmallSet<Expr *, 8> NonODRUsedCapturingExprs;
882 
883   /// A map of explicit capture indices to their introducer source ranges.
884   llvm::DenseMap<unsigned, SourceRange> ExplicitCaptureRanges;
885 
886   /// Contains all of the variables defined in this lambda that shadow variables
887   /// that were defined in parent contexts. Used to avoid warnings when the
888   /// shadowed variables are uncaptured by this lambda.
889   struct ShadowedOuterDecl {
890     const VarDecl *VD;
891     const VarDecl *ShadowedDecl;
892   };
893   llvm::SmallVector<ShadowedOuterDecl, 4> ShadowingDecls;
894 
895   SourceLocation PotentialThisCaptureLocation;
896 
897   LambdaScopeInfo(DiagnosticsEngine &Diag)
898       : CapturingScopeInfo(Diag, ImpCap_None) {
899     Kind = SK_Lambda;
900   }
901 
902   /// Note when all explicit captures have been added.
903   void finishedExplicitCaptures() {
904     NumExplicitCaptures = Captures.size();
905   }
906 
907   static bool classof(const FunctionScopeInfo *FSI) {
908     return FSI->Kind == SK_Lambda;
909   }
910 
911   /// Is this scope known to be for a generic lambda? (This will be false until
912   /// we parse a template parameter list or the first 'auto'-typed parameter).
913   bool isGenericLambda() const {
914     return !TemplateParams.empty() || GLTemplateParameterList;
915   }
916 
917   /// Add a variable that might potentially be captured by the
918   /// lambda and therefore the enclosing lambdas.
919   ///
920   /// This is also used by enclosing lambda's to speculatively capture
921   /// variables that nested lambda's - depending on their enclosing
922   /// specialization - might need to capture.
923   /// Consider:
924   /// void f(int, int); <-- don't capture
925   /// void f(const int&, double); <-- capture
926   /// void foo() {
927   ///   const int x = 10;
928   ///   auto L = [=](auto a) { // capture 'x'
929   ///      return [=](auto b) {
930   ///        f(x, a);  // we may or may not need to capture 'x'
931   ///      };
932   ///   };
933   /// }
934   void addPotentialCapture(Expr *VarExpr) {
935     assert(isa<DeclRefExpr>(VarExpr) || isa<MemberExpr>(VarExpr) ||
936            isa<FunctionParmPackExpr>(VarExpr));
937     PotentiallyCapturingExprs.push_back(VarExpr);
938   }
939 
940   void addPotentialThisCapture(SourceLocation Loc) {
941     PotentialThisCaptureLocation = Loc;
942   }
943 
944   bool hasPotentialThisCapture() const {
945     return PotentialThisCaptureLocation.isValid();
946   }
947 
948   /// Mark a variable's reference in a lambda as non-odr using.
949   ///
950   /// For generic lambdas, if a variable is named in a potentially evaluated
951   /// expression, where the enclosing full expression is dependent then we
952   /// must capture the variable (given a default capture).
953   /// This is accomplished by recording all references to variables
954   /// (DeclRefExprs or MemberExprs) within said nested lambda in its array of
955   /// PotentialCaptures. All such variables have to be captured by that lambda,
956   /// except for as described below.
957   /// If that variable is usable as a constant expression and is named in a
958   /// manner that does not involve its odr-use (e.g. undergoes
959   /// lvalue-to-rvalue conversion, or discarded) record that it is so. Upon the
960   /// act of analyzing the enclosing full expression (ActOnFinishFullExpr)
961   /// if we can determine that the full expression is not instantiation-
962   /// dependent, then we can entirely avoid its capture.
963   ///
964   ///   const int n = 0;
965   ///   [&] (auto x) {
966   ///     (void)+n + x;
967   ///   };
968   /// Interestingly, this strategy would involve a capture of n, even though
969   /// it's obviously not odr-used here, because the full-expression is
970   /// instantiation-dependent.  It could be useful to avoid capturing such
971   /// variables, even when they are referred to in an instantiation-dependent
972   /// expression, if we can unambiguously determine that they shall never be
973   /// odr-used.  This would involve removal of the variable-referring-expression
974   /// from the array of PotentialCaptures during the lvalue-to-rvalue
975   /// conversions.  But per the working draft N3797, (post-chicago 2013) we must
976   /// capture such variables.
977   /// Before anyone is tempted to implement a strategy for not-capturing 'n',
978   /// consider the insightful warning in:
979   ///    /cfe-commits/Week-of-Mon-20131104/092596.html
980   /// "The problem is that the set of captures for a lambda is part of the ABI
981   ///  (since lambda layout can be made visible through inline functions and the
982   ///  like), and there are no guarantees as to which cases we'll manage to build
983   ///  an lvalue-to-rvalue conversion in, when parsing a template -- some
984   ///  seemingly harmless change elsewhere in Sema could cause us to start or stop
985   ///  building such a node. So we need a rule that anyone can implement and get
986   ///  exactly the same result".
987   void markVariableExprAsNonODRUsed(Expr *CapturingVarExpr) {
988     assert(isa<DeclRefExpr>(CapturingVarExpr) ||
989            isa<MemberExpr>(CapturingVarExpr) ||
990            isa<FunctionParmPackExpr>(CapturingVarExpr));
991     NonODRUsedCapturingExprs.insert(CapturingVarExpr);
992   }
993   bool isVariableExprMarkedAsNonODRUsed(Expr *CapturingVarExpr) const {
994     assert(isa<DeclRefExpr>(CapturingVarExpr) ||
995            isa<MemberExpr>(CapturingVarExpr) ||
996            isa<FunctionParmPackExpr>(CapturingVarExpr));
997     return NonODRUsedCapturingExprs.count(CapturingVarExpr);
998   }
999   void removePotentialCapture(Expr *E) {
1000     PotentiallyCapturingExprs.erase(
1001         std::remove(PotentiallyCapturingExprs.begin(),
1002             PotentiallyCapturingExprs.end(), E),
1003         PotentiallyCapturingExprs.end());
1004   }
1005   void clearPotentialCaptures() {
1006     PotentiallyCapturingExprs.clear();
1007     PotentialThisCaptureLocation = SourceLocation();
1008   }
1009   unsigned getNumPotentialVariableCaptures() const {
1010     return PotentiallyCapturingExprs.size();
1011   }
1012 
1013   bool hasPotentialCaptures() const {
1014     return getNumPotentialVariableCaptures() ||
1015                                   PotentialThisCaptureLocation.isValid();
1016   }
1017 
1018   void visitPotentialCaptures(
1019       llvm::function_ref<void(VarDecl *, Expr *)> Callback) const;
1020 };
1021 
1022 FunctionScopeInfo::WeakObjectProfileTy::WeakObjectProfileTy()
1023     : Base(nullptr, false) {}
1024 
1025 FunctionScopeInfo::WeakObjectProfileTy
1026 FunctionScopeInfo::WeakObjectProfileTy::getSentinel() {
1027   FunctionScopeInfo::WeakObjectProfileTy Result;
1028   Result.Base.setInt(true);
1029   return Result;
1030 }
1031 
1032 template <typename ExprT>
1033 void FunctionScopeInfo::recordUseOfWeak(const ExprT *E, bool IsRead) {
1034   assert(E);
1035   WeakUseVector &Uses = WeakObjectUses[WeakObjectProfileTy(E)];
1036   Uses.push_back(WeakUseTy(E, IsRead));
1037 }
1038 
1039 inline void CapturingScopeInfo::addThisCapture(bool isNested,
1040                                                SourceLocation Loc,
1041                                                QualType CaptureType,
1042                                                bool ByCopy) {
1043   Captures.push_back(Capture(Capture::ThisCapture, isNested, Loc, CaptureType,
1044                              ByCopy, /*Invalid*/ false));
1045   CXXThisCaptureIndex = Captures.size();
1046 }
1047 
1048 } // namespace sema
1049 
1050 } // namespace clang
1051 
1052 #endif // LLVM_CLANG_SEMA_SCOPEINFO_H
1053