1 //===- ScopeInfo.h - Information about a semantic context -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines FunctionScopeInfo and its subclasses, which contain
10 // information about a single function, block, lambda, or method body.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_SEMA_SCOPEINFO_H
15 #define LLVM_CLANG_SEMA_SCOPEINFO_H
16 
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/Type.h"
20 #include "clang/Basic/CapturedStmt.h"
21 #include "clang/Basic/LLVM.h"
22 #include "clang/Basic/PartialDiagnostic.h"
23 #include "clang/Basic/SourceLocation.h"
24 #include "clang/Sema/CleanupInfo.h"
25 #include "clang/Sema/DeclSpec.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DenseMapInfo.h"
28 #include "llvm/ADT/MapVector.h"
29 #include "llvm/ADT/PointerIntPair.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/StringRef.h"
34 #include "llvm/ADT/StringSwitch.h"
35 #include "llvm/ADT/TinyPtrVector.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include <algorithm>
39 #include <cassert>
40 #include <utility>
41 
42 namespace clang {
43 
44 class BlockDecl;
45 class CapturedDecl;
46 class CXXMethodDecl;
47 class CXXRecordDecl;
48 class ImplicitParamDecl;
49 class NamedDecl;
50 class ObjCIvarRefExpr;
51 class ObjCMessageExpr;
52 class ObjCPropertyDecl;
53 class ObjCPropertyRefExpr;
54 class ParmVarDecl;
55 class RecordDecl;
56 class ReturnStmt;
57 class Scope;
58 class Stmt;
59 class SwitchStmt;
60 class TemplateParameterList;
61 class TemplateTypeParmDecl;
62 class VarDecl;
63 
64 namespace sema {
65 
66 /// Contains information about the compound statement currently being
67 /// parsed.
68 class CompoundScopeInfo {
69 public:
70   /// Whether this compound stamement contains `for' or `while' loops
71   /// with empty bodies.
72   bool HasEmptyLoopBodies = false;
73 
74   /// Whether this compound statement corresponds to a GNU statement
75   /// expression.
76   bool IsStmtExpr;
77 
78   CompoundScopeInfo(bool IsStmtExpr) : IsStmtExpr(IsStmtExpr) {}
79 
80   void setHasEmptyLoopBodies() {
81     HasEmptyLoopBodies = true;
82   }
83 };
84 
85 class PossiblyUnreachableDiag {
86 public:
87   PartialDiagnostic PD;
88   SourceLocation Loc;
89   llvm::TinyPtrVector<const Stmt*> Stmts;
90 
91   PossiblyUnreachableDiag(const PartialDiagnostic &PD, SourceLocation Loc,
92                           ArrayRef<const Stmt *> Stmts)
93       : PD(PD), Loc(Loc), Stmts(Stmts) {}
94 };
95 
96 /// Retains information about a function, method, or block that is
97 /// currently being parsed.
98 class FunctionScopeInfo {
99 protected:
100   enum ScopeKind {
101     SK_Function,
102     SK_Block,
103     SK_Lambda,
104     SK_CapturedRegion
105   };
106 
107 public:
108   /// What kind of scope we are describing.
109   ScopeKind Kind : 3;
110 
111   /// Whether this function contains a VLA, \@try, try, C++
112   /// initializer, or anything else that can't be jumped past.
113   bool HasBranchProtectedScope : 1;
114 
115   /// Whether this function contains any switches or direct gotos.
116   bool HasBranchIntoScope : 1;
117 
118   /// Whether this function contains any indirect gotos.
119   bool HasIndirectGoto : 1;
120 
121   /// Whether this function contains any statement marked with
122   /// \c [[clang::musttail]].
123   bool HasMustTail : 1;
124 
125   /// Whether a statement was dropped because it was invalid.
126   bool HasDroppedStmt : 1;
127 
128   /// True if current scope is for OpenMP declare reduction combiner.
129   bool HasOMPDeclareReductionCombiner : 1;
130 
131   /// Whether there is a fallthrough statement in this function.
132   bool HasFallthroughStmt : 1;
133 
134   /// Whether this function uses constrained floating point intrinsics
135   bool UsesFPIntrin : 1;
136 
137   /// Whether we make reference to a declaration that could be
138   /// unavailable.
139   bool HasPotentialAvailabilityViolations : 1;
140 
141   /// A flag that is set when parsing a method that must call super's
142   /// implementation, such as \c -dealloc, \c -finalize, or any method marked
143   /// with \c __attribute__((objc_requires_super)).
144   bool ObjCShouldCallSuper : 1;
145 
146   /// True when this is a method marked as a designated initializer.
147   bool ObjCIsDesignatedInit : 1;
148 
149   /// This starts true for a method marked as designated initializer and will
150   /// be set to false if there is an invocation to a designated initializer of
151   /// the super class.
152   bool ObjCWarnForNoDesignatedInitChain : 1;
153 
154   /// True when this is an initializer method not marked as a designated
155   /// initializer within a class that has at least one initializer marked as a
156   /// designated initializer.
157   bool ObjCIsSecondaryInit : 1;
158 
159   /// This starts true for a secondary initializer method and will be set to
160   /// false if there is an invocation of an initializer on 'self'.
161   bool ObjCWarnForNoInitDelegation : 1;
162 
163   /// True only when this function has not already built, or attempted
164   /// to build, the initial and final coroutine suspend points
165   bool NeedsCoroutineSuspends : 1;
166 
167   /// An enumeration represeting the kind of the first coroutine statement
168   /// in the function. One of co_return, co_await, or co_yield.
169   unsigned char FirstCoroutineStmtKind : 2;
170 
171   /// First coroutine statement in the current function.
172   /// (ex co_return, co_await, co_yield)
173   SourceLocation FirstCoroutineStmtLoc;
174 
175   /// First 'return' statement in the current function.
176   SourceLocation FirstReturnLoc;
177 
178   /// First C++ 'try' statement in the current function.
179   SourceLocation FirstCXXTryLoc;
180 
181   /// First SEH '__try' statement in the current function.
182   SourceLocation FirstSEHTryLoc;
183 
184 private:
185   /// Used to determine if errors occurred in this function or block.
186   DiagnosticErrorTrap ErrorTrap;
187 
188 public:
189   /// A SwitchStmt, along with a flag indicating if its list of case statements
190   /// is incomplete (because we dropped an invalid one while parsing).
191   using SwitchInfo = llvm::PointerIntPair<SwitchStmt*, 1, bool>;
192 
193   /// SwitchStack - This is the current set of active switch statements in the
194   /// block.
195   SmallVector<SwitchInfo, 8> SwitchStack;
196 
197   /// The list of return statements that occur within the function or
198   /// block, if there is any chance of applying the named return value
199   /// optimization, or if we need to infer a return type.
200   SmallVector<ReturnStmt*, 4> Returns;
201 
202   /// The promise object for this coroutine, if any.
203   VarDecl *CoroutinePromise = nullptr;
204 
205   /// A mapping between the coroutine function parameters that were moved
206   /// to the coroutine frame, and their move statements.
207   llvm::SmallMapVector<ParmVarDecl *, Stmt *, 4> CoroutineParameterMoves;
208 
209   /// The initial and final coroutine suspend points.
210   std::pair<Stmt *, Stmt *> CoroutineSuspends;
211 
212   /// The stack of currently active compound stamement scopes in the
213   /// function.
214   SmallVector<CompoundScopeInfo, 4> CompoundScopes;
215 
216   /// The set of blocks that are introduced in this function.
217   llvm::SmallPtrSet<const BlockDecl *, 1> Blocks;
218 
219   /// The set of __block variables that are introduced in this function.
220   llvm::TinyPtrVector<VarDecl *> ByrefBlockVars;
221 
222   /// A list of PartialDiagnostics created but delayed within the
223   /// current function scope.  These diagnostics are vetted for reachability
224   /// prior to being emitted.
225   SmallVector<PossiblyUnreachableDiag, 4> PossiblyUnreachableDiags;
226 
227   /// A list of parameters which have the nonnull attribute and are
228   /// modified in the function.
229   llvm::SmallPtrSet<const ParmVarDecl *, 8> ModifiedNonNullParams;
230 
231 public:
232   /// Represents a simple identification of a weak object.
233   ///
234   /// Part of the implementation of -Wrepeated-use-of-weak.
235   ///
236   /// This is used to determine if two weak accesses refer to the same object.
237   /// Here are some examples of how various accesses are "profiled":
238   ///
239   /// Access Expression |     "Base" Decl     |          "Property" Decl
240   /// :---------------: | :-----------------: | :------------------------------:
241   /// self.property     | self (VarDecl)      | property (ObjCPropertyDecl)
242   /// self.implicitProp | self (VarDecl)      | -implicitProp (ObjCMethodDecl)
243   /// self->ivar.prop   | ivar (ObjCIvarDecl) | prop (ObjCPropertyDecl)
244   /// cxxObj.obj.prop   | obj (FieldDecl)     | prop (ObjCPropertyDecl)
245   /// [self foo].prop   | 0 (unknown)         | prop (ObjCPropertyDecl)
246   /// self.prop1.prop2  | prop1 (ObjCPropertyDecl)    | prop2 (ObjCPropertyDecl)
247   /// MyClass.prop      | MyClass (ObjCInterfaceDecl) | -prop (ObjCMethodDecl)
248   /// MyClass.foo.prop  | +foo (ObjCMethodDecl)       | -prop (ObjCPropertyDecl)
249   /// weakVar           | 0 (known)           | weakVar (VarDecl)
250   /// self->weakIvar    | self (VarDecl)      | weakIvar (ObjCIvarDecl)
251   ///
252   /// Objects are identified with only two Decls to make it reasonably fast to
253   /// compare them.
254   class WeakObjectProfileTy {
255     /// The base object decl, as described in the class documentation.
256     ///
257     /// The extra flag is "true" if the Base and Property are enough to uniquely
258     /// identify the object in memory.
259     ///
260     /// \sa isExactProfile()
261     using BaseInfoTy = llvm::PointerIntPair<const NamedDecl *, 1, bool>;
262     BaseInfoTy Base;
263 
264     /// The "property" decl, as described in the class documentation.
265     ///
266     /// Note that this may not actually be an ObjCPropertyDecl, e.g. in the
267     /// case of "implicit" properties (regular methods accessed via dot syntax).
268     const NamedDecl *Property = nullptr;
269 
270     /// Used to find the proper base profile for a given base expression.
271     static BaseInfoTy getBaseInfo(const Expr *BaseE);
272 
273     inline WeakObjectProfileTy();
274     static inline WeakObjectProfileTy getSentinel();
275 
276   public:
277     WeakObjectProfileTy(const ObjCPropertyRefExpr *RE);
278     WeakObjectProfileTy(const Expr *Base, const ObjCPropertyDecl *Property);
279     WeakObjectProfileTy(const DeclRefExpr *RE);
280     WeakObjectProfileTy(const ObjCIvarRefExpr *RE);
281 
282     const NamedDecl *getBase() const { return Base.getPointer(); }
283     const NamedDecl *getProperty() const { return Property; }
284 
285     /// Returns true if the object base specifies a known object in memory,
286     /// rather than, say, an instance variable or property of another object.
287     ///
288     /// Note that this ignores the effects of aliasing; that is, \c foo.bar is
289     /// considered an exact profile if \c foo is a local variable, even if
290     /// another variable \c foo2 refers to the same object as \c foo.
291     ///
292     /// For increased precision, accesses with base variables that are
293     /// properties or ivars of 'self' (e.g. self.prop1.prop2) are considered to
294     /// be exact, though this is not true for arbitrary variables
295     /// (foo.prop1.prop2).
296     bool isExactProfile() const {
297       return Base.getInt();
298     }
299 
300     bool operator==(const WeakObjectProfileTy &Other) const {
301       return Base == Other.Base && Property == Other.Property;
302     }
303 
304     // For use in DenseMap.
305     // We can't specialize the usual llvm::DenseMapInfo at the end of the file
306     // because by that point the DenseMap in FunctionScopeInfo has already been
307     // instantiated.
308     class DenseMapInfo {
309     public:
310       static inline WeakObjectProfileTy getEmptyKey() {
311         return WeakObjectProfileTy();
312       }
313 
314       static inline WeakObjectProfileTy getTombstoneKey() {
315         return WeakObjectProfileTy::getSentinel();
316       }
317 
318       static unsigned getHashValue(const WeakObjectProfileTy &Val) {
319         using Pair = std::pair<BaseInfoTy, const NamedDecl *>;
320 
321         return llvm::DenseMapInfo<Pair>::getHashValue(Pair(Val.Base,
322                                                            Val.Property));
323       }
324 
325       static bool isEqual(const WeakObjectProfileTy &LHS,
326                           const WeakObjectProfileTy &RHS) {
327         return LHS == RHS;
328       }
329     };
330   };
331 
332   /// Represents a single use of a weak object.
333   ///
334   /// Stores both the expression and whether the access is potentially unsafe
335   /// (i.e. it could potentially be warned about).
336   ///
337   /// Part of the implementation of -Wrepeated-use-of-weak.
338   class WeakUseTy {
339     llvm::PointerIntPair<const Expr *, 1, bool> Rep;
340 
341   public:
342     WeakUseTy(const Expr *Use, bool IsRead) : Rep(Use, IsRead) {}
343 
344     const Expr *getUseExpr() const { return Rep.getPointer(); }
345     bool isUnsafe() const { return Rep.getInt(); }
346     void markSafe() { Rep.setInt(false); }
347 
348     bool operator==(const WeakUseTy &Other) const {
349       return Rep == Other.Rep;
350     }
351   };
352 
353   /// Used to collect uses of a particular weak object in a function body.
354   ///
355   /// Part of the implementation of -Wrepeated-use-of-weak.
356   using WeakUseVector = SmallVector<WeakUseTy, 4>;
357 
358   /// Used to collect all uses of weak objects in a function body.
359   ///
360   /// Part of the implementation of -Wrepeated-use-of-weak.
361   using WeakObjectUseMap =
362       llvm::SmallDenseMap<WeakObjectProfileTy, WeakUseVector, 8,
363                           WeakObjectProfileTy::DenseMapInfo>;
364 
365 private:
366   /// Used to collect all uses of weak objects in this function body.
367   ///
368   /// Part of the implementation of -Wrepeated-use-of-weak.
369   WeakObjectUseMap WeakObjectUses;
370 
371 protected:
372   FunctionScopeInfo(const FunctionScopeInfo&) = default;
373 
374 public:
375   FunctionScopeInfo(DiagnosticsEngine &Diag)
376       : Kind(SK_Function), HasBranchProtectedScope(false),
377         HasBranchIntoScope(false), HasIndirectGoto(false), HasMustTail(false),
378         HasDroppedStmt(false), HasOMPDeclareReductionCombiner(false),
379         HasFallthroughStmt(false), UsesFPIntrin(false),
380         HasPotentialAvailabilityViolations(false), ObjCShouldCallSuper(false),
381         ObjCIsDesignatedInit(false), ObjCWarnForNoDesignatedInitChain(false),
382         ObjCIsSecondaryInit(false), ObjCWarnForNoInitDelegation(false),
383         NeedsCoroutineSuspends(true), ErrorTrap(Diag) {}
384 
385   virtual ~FunctionScopeInfo();
386 
387   /// Determine whether an unrecoverable error has occurred within this
388   /// function. Note that this may return false even if the function body is
389   /// invalid, because the errors may be suppressed if they're caused by prior
390   /// invalid declarations.
391   ///
392   /// FIXME: Migrate the caller of this to use containsErrors() instead once
393   /// it's ready.
394   bool hasUnrecoverableErrorOccurred() const {
395     return ErrorTrap.hasUnrecoverableErrorOccurred();
396   }
397 
398   /// Record that a weak object was accessed.
399   ///
400   /// Part of the implementation of -Wrepeated-use-of-weak.
401   template <typename ExprT>
402   inline void recordUseOfWeak(const ExprT *E, bool IsRead = true);
403 
404   void recordUseOfWeak(const ObjCMessageExpr *Msg,
405                        const ObjCPropertyDecl *Prop);
406 
407   /// Record that a given expression is a "safe" access of a weak object (e.g.
408   /// assigning it to a strong variable.)
409   ///
410   /// Part of the implementation of -Wrepeated-use-of-weak.
411   void markSafeWeakUse(const Expr *E);
412 
413   const WeakObjectUseMap &getWeakObjectUses() const {
414     return WeakObjectUses;
415   }
416 
417   void setHasBranchIntoScope() {
418     HasBranchIntoScope = true;
419   }
420 
421   void setHasBranchProtectedScope() {
422     HasBranchProtectedScope = true;
423   }
424 
425   void setHasIndirectGoto() {
426     HasIndirectGoto = true;
427   }
428 
429   void setHasMustTail() { HasMustTail = true; }
430 
431   void setHasDroppedStmt() {
432     HasDroppedStmt = true;
433   }
434 
435   void setHasOMPDeclareReductionCombiner() {
436     HasOMPDeclareReductionCombiner = true;
437   }
438 
439   void setHasFallthroughStmt() {
440     HasFallthroughStmt = true;
441   }
442 
443   void setUsesFPIntrin() {
444     UsesFPIntrin = true;
445   }
446 
447   void setHasCXXTry(SourceLocation TryLoc) {
448     setHasBranchProtectedScope();
449     FirstCXXTryLoc = TryLoc;
450   }
451 
452   void setHasSEHTry(SourceLocation TryLoc) {
453     setHasBranchProtectedScope();
454     FirstSEHTryLoc = TryLoc;
455   }
456 
457   bool NeedsScopeChecking() const {
458     return !HasDroppedStmt && (HasIndirectGoto || HasMustTail ||
459                                (HasBranchProtectedScope && HasBranchIntoScope));
460   }
461 
462   // Add a block introduced in this function.
463   void addBlock(const BlockDecl *BD) {
464     Blocks.insert(BD);
465   }
466 
467   // Add a __block variable introduced in this function.
468   void addByrefBlockVar(VarDecl *VD) {
469     ByrefBlockVars.push_back(VD);
470   }
471 
472   bool isCoroutine() const { return !FirstCoroutineStmtLoc.isInvalid(); }
473 
474   void setFirstCoroutineStmt(SourceLocation Loc, StringRef Keyword) {
475     assert(FirstCoroutineStmtLoc.isInvalid() &&
476                    "first coroutine statement location already set");
477     FirstCoroutineStmtLoc = Loc;
478     FirstCoroutineStmtKind = llvm::StringSwitch<unsigned char>(Keyword)
479             .Case("co_return", 0)
480             .Case("co_await", 1)
481             .Case("co_yield", 2);
482   }
483 
484   StringRef getFirstCoroutineStmtKeyword() const {
485     assert(FirstCoroutineStmtLoc.isValid()
486                    && "no coroutine statement available");
487     switch (FirstCoroutineStmtKind) {
488     case 0: return "co_return";
489     case 1: return "co_await";
490     case 2: return "co_yield";
491     default:
492       llvm_unreachable("FirstCoroutineStmtKind has an invalid value");
493     };
494   }
495 
496   void setNeedsCoroutineSuspends(bool value = true) {
497     assert((!value || CoroutineSuspends.first == nullptr) &&
498             "we already have valid suspend points");
499     NeedsCoroutineSuspends = value;
500   }
501 
502   bool hasInvalidCoroutineSuspends() const {
503     return !NeedsCoroutineSuspends && CoroutineSuspends.first == nullptr;
504   }
505 
506   void setCoroutineSuspends(Stmt *Initial, Stmt *Final) {
507     assert(Initial && Final && "suspend points cannot be null");
508     assert(CoroutineSuspends.first == nullptr && "suspend points already set");
509     NeedsCoroutineSuspends = false;
510     CoroutineSuspends.first = Initial;
511     CoroutineSuspends.second = Final;
512   }
513 
514   /// Clear out the information in this function scope, making it
515   /// suitable for reuse.
516   void Clear();
517 
518   bool isPlainFunction() const { return Kind == SK_Function; }
519 };
520 
521 class Capture {
522   // There are three categories of capture: capturing 'this', capturing
523   // local variables, and C++1y initialized captures (which can have an
524   // arbitrary initializer, and don't really capture in the traditional
525   // sense at all).
526   //
527   // There are three ways to capture a local variable:
528   //  - capture by copy in the C++11 sense,
529   //  - capture by reference in the C++11 sense, and
530   //  - __block capture.
531   // Lambdas explicitly specify capture by copy or capture by reference.
532   // For blocks, __block capture applies to variables with that annotation,
533   // variables of reference type are captured by reference, and other
534   // variables are captured by copy.
535   enum CaptureKind {
536     Cap_ByCopy, Cap_ByRef, Cap_Block, Cap_VLA
537   };
538 
539   union {
540     /// If Kind == Cap_VLA, the captured type.
541     const VariableArrayType *CapturedVLA;
542 
543     /// Otherwise, the captured variable (if any).
544     VarDecl *CapturedVar;
545   };
546 
547   /// The source location at which the first capture occurred.
548   SourceLocation Loc;
549 
550   /// The location of the ellipsis that expands a parameter pack.
551   SourceLocation EllipsisLoc;
552 
553   /// The type as it was captured, which is the type of the non-static data
554   /// member that would hold the capture.
555   QualType CaptureType;
556 
557   /// The CaptureKind of this capture.
558   unsigned Kind : 2;
559 
560   /// Whether this is a nested capture (a capture of an enclosing capturing
561   /// scope's capture).
562   unsigned Nested : 1;
563 
564   /// Whether this is a capture of '*this'.
565   unsigned CapturesThis : 1;
566 
567   /// Whether an explicit capture has been odr-used in the body of the
568   /// lambda.
569   unsigned ODRUsed : 1;
570 
571   /// Whether an explicit capture has been non-odr-used in the body of
572   /// the lambda.
573   unsigned NonODRUsed : 1;
574 
575   /// Whether the capture is invalid (a capture was required but the entity is
576   /// non-capturable).
577   unsigned Invalid : 1;
578 
579 public:
580   Capture(VarDecl *Var, bool Block, bool ByRef, bool IsNested,
581           SourceLocation Loc, SourceLocation EllipsisLoc, QualType CaptureType,
582           bool Invalid)
583       : CapturedVar(Var), Loc(Loc), EllipsisLoc(EllipsisLoc),
584         CaptureType(CaptureType),
585         Kind(Block ? Cap_Block : ByRef ? Cap_ByRef : Cap_ByCopy),
586         Nested(IsNested), CapturesThis(false), ODRUsed(false),
587         NonODRUsed(false), Invalid(Invalid) {}
588 
589   enum IsThisCapture { ThisCapture };
590   Capture(IsThisCapture, bool IsNested, SourceLocation Loc,
591           QualType CaptureType, const bool ByCopy, bool Invalid)
592       : Loc(Loc), CaptureType(CaptureType),
593         Kind(ByCopy ? Cap_ByCopy : Cap_ByRef), Nested(IsNested),
594         CapturesThis(true), ODRUsed(false), NonODRUsed(false),
595         Invalid(Invalid) {}
596 
597   enum IsVLACapture { VLACapture };
598   Capture(IsVLACapture, const VariableArrayType *VLA, bool IsNested,
599           SourceLocation Loc, QualType CaptureType)
600       : CapturedVLA(VLA), Loc(Loc), CaptureType(CaptureType), Kind(Cap_VLA),
601         Nested(IsNested), CapturesThis(false), ODRUsed(false),
602         NonODRUsed(false), Invalid(false) {}
603 
604   bool isThisCapture() const { return CapturesThis; }
605   bool isVariableCapture() const {
606     return !isThisCapture() && !isVLATypeCapture();
607   }
608 
609   bool isCopyCapture() const { return Kind == Cap_ByCopy; }
610   bool isReferenceCapture() const { return Kind == Cap_ByRef; }
611   bool isBlockCapture() const { return Kind == Cap_Block; }
612   bool isVLATypeCapture() const { return Kind == Cap_VLA; }
613 
614   bool isNested() const { return Nested; }
615 
616   bool isInvalid() const { return Invalid; }
617 
618   /// Determine whether this capture is an init-capture.
619   bool isInitCapture() const;
620 
621   bool isODRUsed() const { return ODRUsed; }
622   bool isNonODRUsed() const { return NonODRUsed; }
623   void markUsed(bool IsODRUse) {
624     if (IsODRUse)
625       ODRUsed = true;
626     else
627       NonODRUsed = true;
628   }
629 
630   VarDecl *getVariable() const {
631     assert(isVariableCapture());
632     return CapturedVar;
633   }
634 
635   const VariableArrayType *getCapturedVLAType() const {
636     assert(isVLATypeCapture());
637     return CapturedVLA;
638   }
639 
640   /// Retrieve the location at which this variable was captured.
641   SourceLocation getLocation() const { return Loc; }
642 
643   /// Retrieve the source location of the ellipsis, whose presence
644   /// indicates that the capture is a pack expansion.
645   SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
646 
647   /// Retrieve the capture type for this capture, which is effectively
648   /// the type of the non-static data member in the lambda/block structure
649   /// that would store this capture.
650   QualType getCaptureType() const { return CaptureType; }
651 };
652 
653 class CapturingScopeInfo : public FunctionScopeInfo {
654 protected:
655   CapturingScopeInfo(const CapturingScopeInfo&) = default;
656 
657 public:
658   enum ImplicitCaptureStyle {
659     ImpCap_None, ImpCap_LambdaByval, ImpCap_LambdaByref, ImpCap_Block,
660     ImpCap_CapturedRegion
661   };
662 
663   ImplicitCaptureStyle ImpCaptureStyle;
664 
665   CapturingScopeInfo(DiagnosticsEngine &Diag, ImplicitCaptureStyle Style)
666       : FunctionScopeInfo(Diag), ImpCaptureStyle(Style) {}
667 
668   /// CaptureMap - A map of captured variables to (index+1) into Captures.
669   llvm::DenseMap<VarDecl*, unsigned> CaptureMap;
670 
671   /// CXXThisCaptureIndex - The (index+1) of the capture of 'this';
672   /// zero if 'this' is not captured.
673   unsigned CXXThisCaptureIndex = 0;
674 
675   /// Captures - The captures.
676   SmallVector<Capture, 4> Captures;
677 
678   /// - Whether the target type of return statements in this context
679   /// is deduced (e.g. a lambda or block with omitted return type).
680   bool HasImplicitReturnType = false;
681 
682   /// ReturnType - The target type of return statements in this context,
683   /// or null if unknown.
684   QualType ReturnType;
685 
686   void addCapture(VarDecl *Var, bool isBlock, bool isByref, bool isNested,
687                   SourceLocation Loc, SourceLocation EllipsisLoc,
688                   QualType CaptureType, bool Invalid) {
689     Captures.push_back(Capture(Var, isBlock, isByref, isNested, Loc,
690                                EllipsisLoc, CaptureType, Invalid));
691     CaptureMap[Var] = Captures.size();
692   }
693 
694   void addVLATypeCapture(SourceLocation Loc, const VariableArrayType *VLAType,
695                          QualType CaptureType) {
696     Captures.push_back(Capture(Capture::VLACapture, VLAType,
697                                /*FIXME: IsNested*/ false, Loc, CaptureType));
698   }
699 
700   void addThisCapture(bool isNested, SourceLocation Loc, QualType CaptureType,
701                       bool ByCopy);
702 
703   /// Determine whether the C++ 'this' is captured.
704   bool isCXXThisCaptured() const { return CXXThisCaptureIndex != 0; }
705 
706   /// Retrieve the capture of C++ 'this', if it has been captured.
707   Capture &getCXXThisCapture() {
708     assert(isCXXThisCaptured() && "this has not been captured");
709     return Captures[CXXThisCaptureIndex - 1];
710   }
711 
712   /// Determine whether the given variable has been captured.
713   bool isCaptured(VarDecl *Var) const {
714     return CaptureMap.count(Var);
715   }
716 
717   /// Determine whether the given variable-array type has been captured.
718   bool isVLATypeCaptured(const VariableArrayType *VAT) const;
719 
720   /// Retrieve the capture of the given variable, if it has been
721   /// captured already.
722   Capture &getCapture(VarDecl *Var) {
723     assert(isCaptured(Var) && "Variable has not been captured");
724     return Captures[CaptureMap[Var] - 1];
725   }
726 
727   const Capture &getCapture(VarDecl *Var) const {
728     llvm::DenseMap<VarDecl*, unsigned>::const_iterator Known
729       = CaptureMap.find(Var);
730     assert(Known != CaptureMap.end() && "Variable has not been captured");
731     return Captures[Known->second - 1];
732   }
733 
734   static bool classof(const FunctionScopeInfo *FSI) {
735     return FSI->Kind == SK_Block || FSI->Kind == SK_Lambda
736                                  || FSI->Kind == SK_CapturedRegion;
737   }
738 };
739 
740 /// Retains information about a block that is currently being parsed.
741 class BlockScopeInfo final : public CapturingScopeInfo {
742 public:
743   BlockDecl *TheDecl;
744 
745   /// TheScope - This is the scope for the block itself, which contains
746   /// arguments etc.
747   Scope *TheScope;
748 
749   /// BlockType - The function type of the block, if one was given.
750   /// Its return type may be BuiltinType::Dependent.
751   QualType FunctionType;
752 
753   BlockScopeInfo(DiagnosticsEngine &Diag, Scope *BlockScope, BlockDecl *Block)
754       : CapturingScopeInfo(Diag, ImpCap_Block), TheDecl(Block),
755         TheScope(BlockScope) {
756     Kind = SK_Block;
757   }
758 
759   ~BlockScopeInfo() override;
760 
761   static bool classof(const FunctionScopeInfo *FSI) {
762     return FSI->Kind == SK_Block;
763   }
764 };
765 
766 /// Retains information about a captured region.
767 class CapturedRegionScopeInfo final : public CapturingScopeInfo {
768 public:
769   /// The CapturedDecl for this statement.
770   CapturedDecl *TheCapturedDecl;
771 
772   /// The captured record type.
773   RecordDecl *TheRecordDecl;
774 
775   /// This is the enclosing scope of the captured region.
776   Scope *TheScope;
777 
778   /// The implicit parameter for the captured variables.
779   ImplicitParamDecl *ContextParam;
780 
781   /// The kind of captured region.
782   unsigned short CapRegionKind;
783 
784   unsigned short OpenMPLevel;
785   unsigned short OpenMPCaptureLevel;
786 
787   CapturedRegionScopeInfo(DiagnosticsEngine &Diag, Scope *S, CapturedDecl *CD,
788                           RecordDecl *RD, ImplicitParamDecl *Context,
789                           CapturedRegionKind K, unsigned OpenMPLevel,
790                           unsigned OpenMPCaptureLevel)
791       : CapturingScopeInfo(Diag, ImpCap_CapturedRegion),
792         TheCapturedDecl(CD), TheRecordDecl(RD), TheScope(S),
793         ContextParam(Context), CapRegionKind(K), OpenMPLevel(OpenMPLevel),
794         OpenMPCaptureLevel(OpenMPCaptureLevel) {
795     Kind = SK_CapturedRegion;
796   }
797 
798   ~CapturedRegionScopeInfo() override;
799 
800   /// A descriptive name for the kind of captured region this is.
801   StringRef getRegionName() const {
802     switch (CapRegionKind) {
803     case CR_Default:
804       return "default captured statement";
805     case CR_ObjCAtFinally:
806       return "Objective-C @finally statement";
807     case CR_OpenMP:
808       return "OpenMP region";
809     }
810     llvm_unreachable("Invalid captured region kind!");
811   }
812 
813   static bool classof(const FunctionScopeInfo *FSI) {
814     return FSI->Kind == SK_CapturedRegion;
815   }
816 };
817 
818 class LambdaScopeInfo final :
819     public CapturingScopeInfo, public InventedTemplateParameterInfo {
820 public:
821   /// The class that describes the lambda.
822   CXXRecordDecl *Lambda = nullptr;
823 
824   /// The lambda's compiler-generated \c operator().
825   CXXMethodDecl *CallOperator = nullptr;
826 
827   /// Source range covering the lambda introducer [...].
828   SourceRange IntroducerRange;
829 
830   /// Source location of the '&' or '=' specifying the default capture
831   /// type, if any.
832   SourceLocation CaptureDefaultLoc;
833 
834   /// The number of captures in the \c Captures list that are
835   /// explicit captures.
836   unsigned NumExplicitCaptures = 0;
837 
838   /// Whether this is a mutable lambda.
839   bool Mutable = false;
840 
841   /// Whether the (empty) parameter list is explicit.
842   bool ExplicitParams = false;
843 
844   /// Whether any of the capture expressions requires cleanups.
845   CleanupInfo Cleanup;
846 
847   /// Whether the lambda contains an unexpanded parameter pack.
848   bool ContainsUnexpandedParameterPack = false;
849 
850   /// Packs introduced by this lambda, if any.
851   SmallVector<NamedDecl*, 4> LocalPacks;
852 
853   /// Source range covering the explicit template parameter list (if it exists).
854   SourceRange ExplicitTemplateParamsRange;
855 
856   /// The requires-clause immediately following the explicit template parameter
857   /// list, if any. (Note that there may be another requires-clause included as
858   /// part of the lambda-declarator.)
859   ExprResult RequiresClause;
860 
861   /// If this is a generic lambda, and the template parameter
862   /// list has been created (from the TemplateParams) then store
863   /// a reference to it (cache it to avoid reconstructing it).
864   TemplateParameterList *GLTemplateParameterList = nullptr;
865 
866   /// Contains all variable-referring-expressions (i.e. DeclRefExprs
867   ///  or MemberExprs) that refer to local variables in a generic lambda
868   ///  or a lambda in a potentially-evaluated-if-used context.
869   ///
870   ///  Potentially capturable variables of a nested lambda that might need
871   ///   to be captured by the lambda are housed here.
872   ///  This is specifically useful for generic lambdas or
873   ///  lambdas within a potentially evaluated-if-used context.
874   ///  If an enclosing variable is named in an expression of a lambda nested
875   ///  within a generic lambda, we don't always know know whether the variable
876   ///  will truly be odr-used (i.e. need to be captured) by that nested lambda,
877   ///  until its instantiation. But we still need to capture it in the
878   ///  enclosing lambda if all intervening lambdas can capture the variable.
879   llvm::SmallVector<Expr*, 4> PotentiallyCapturingExprs;
880 
881   /// Contains all variable-referring-expressions that refer
882   ///  to local variables that are usable as constant expressions and
883   ///  do not involve an odr-use (they may still need to be captured
884   ///  if the enclosing full-expression is instantiation dependent).
885   llvm::SmallSet<Expr *, 8> NonODRUsedCapturingExprs;
886 
887   /// A map of explicit capture indices to their introducer source ranges.
888   llvm::DenseMap<unsigned, SourceRange> ExplicitCaptureRanges;
889 
890   /// Contains all of the variables defined in this lambda that shadow variables
891   /// that were defined in parent contexts. Used to avoid warnings when the
892   /// shadowed variables are uncaptured by this lambda.
893   struct ShadowedOuterDecl {
894     const VarDecl *VD;
895     const VarDecl *ShadowedDecl;
896   };
897   llvm::SmallVector<ShadowedOuterDecl, 4> ShadowingDecls;
898 
899   SourceLocation PotentialThisCaptureLocation;
900 
901   LambdaScopeInfo(DiagnosticsEngine &Diag)
902       : CapturingScopeInfo(Diag, ImpCap_None) {
903     Kind = SK_Lambda;
904   }
905 
906   /// Note when all explicit captures have been added.
907   void finishedExplicitCaptures() {
908     NumExplicitCaptures = Captures.size();
909   }
910 
911   static bool classof(const FunctionScopeInfo *FSI) {
912     return FSI->Kind == SK_Lambda;
913   }
914 
915   /// Is this scope known to be for a generic lambda? (This will be false until
916   /// we parse a template parameter list or the first 'auto'-typed parameter).
917   bool isGenericLambda() const {
918     return !TemplateParams.empty() || GLTemplateParameterList;
919   }
920 
921   /// Add a variable that might potentially be captured by the
922   /// lambda and therefore the enclosing lambdas.
923   ///
924   /// This is also used by enclosing lambda's to speculatively capture
925   /// variables that nested lambda's - depending on their enclosing
926   /// specialization - might need to capture.
927   /// Consider:
928   /// void f(int, int); <-- don't capture
929   /// void f(const int&, double); <-- capture
930   /// void foo() {
931   ///   const int x = 10;
932   ///   auto L = [=](auto a) { // capture 'x'
933   ///      return [=](auto b) {
934   ///        f(x, a);  // we may or may not need to capture 'x'
935   ///      };
936   ///   };
937   /// }
938   void addPotentialCapture(Expr *VarExpr) {
939     assert(isa<DeclRefExpr>(VarExpr) || isa<MemberExpr>(VarExpr) ||
940            isa<FunctionParmPackExpr>(VarExpr));
941     PotentiallyCapturingExprs.push_back(VarExpr);
942   }
943 
944   void addPotentialThisCapture(SourceLocation Loc) {
945     PotentialThisCaptureLocation = Loc;
946   }
947 
948   bool hasPotentialThisCapture() const {
949     return PotentialThisCaptureLocation.isValid();
950   }
951 
952   /// Mark a variable's reference in a lambda as non-odr using.
953   ///
954   /// For generic lambdas, if a variable is named in a potentially evaluated
955   /// expression, where the enclosing full expression is dependent then we
956   /// must capture the variable (given a default capture).
957   /// This is accomplished by recording all references to variables
958   /// (DeclRefExprs or MemberExprs) within said nested lambda in its array of
959   /// PotentialCaptures. All such variables have to be captured by that lambda,
960   /// except for as described below.
961   /// If that variable is usable as a constant expression and is named in a
962   /// manner that does not involve its odr-use (e.g. undergoes
963   /// lvalue-to-rvalue conversion, or discarded) record that it is so. Upon the
964   /// act of analyzing the enclosing full expression (ActOnFinishFullExpr)
965   /// if we can determine that the full expression is not instantiation-
966   /// dependent, then we can entirely avoid its capture.
967   ///
968   ///   const int n = 0;
969   ///   [&] (auto x) {
970   ///     (void)+n + x;
971   ///   };
972   /// Interestingly, this strategy would involve a capture of n, even though
973   /// it's obviously not odr-used here, because the full-expression is
974   /// instantiation-dependent.  It could be useful to avoid capturing such
975   /// variables, even when they are referred to in an instantiation-dependent
976   /// expression, if we can unambiguously determine that they shall never be
977   /// odr-used.  This would involve removal of the variable-referring-expression
978   /// from the array of PotentialCaptures during the lvalue-to-rvalue
979   /// conversions.  But per the working draft N3797, (post-chicago 2013) we must
980   /// capture such variables.
981   /// Before anyone is tempted to implement a strategy for not-capturing 'n',
982   /// consider the insightful warning in:
983   ///    /cfe-commits/Week-of-Mon-20131104/092596.html
984   /// "The problem is that the set of captures for a lambda is part of the ABI
985   ///  (since lambda layout can be made visible through inline functions and the
986   ///  like), and there are no guarantees as to which cases we'll manage to build
987   ///  an lvalue-to-rvalue conversion in, when parsing a template -- some
988   ///  seemingly harmless change elsewhere in Sema could cause us to start or stop
989   ///  building such a node. So we need a rule that anyone can implement and get
990   ///  exactly the same result".
991   void markVariableExprAsNonODRUsed(Expr *CapturingVarExpr) {
992     assert(isa<DeclRefExpr>(CapturingVarExpr) ||
993            isa<MemberExpr>(CapturingVarExpr) ||
994            isa<FunctionParmPackExpr>(CapturingVarExpr));
995     NonODRUsedCapturingExprs.insert(CapturingVarExpr);
996   }
997   bool isVariableExprMarkedAsNonODRUsed(Expr *CapturingVarExpr) const {
998     assert(isa<DeclRefExpr>(CapturingVarExpr) ||
999            isa<MemberExpr>(CapturingVarExpr) ||
1000            isa<FunctionParmPackExpr>(CapturingVarExpr));
1001     return NonODRUsedCapturingExprs.count(CapturingVarExpr);
1002   }
1003   void removePotentialCapture(Expr *E) {
1004     PotentiallyCapturingExprs.erase(
1005         std::remove(PotentiallyCapturingExprs.begin(),
1006             PotentiallyCapturingExprs.end(), E),
1007         PotentiallyCapturingExprs.end());
1008   }
1009   void clearPotentialCaptures() {
1010     PotentiallyCapturingExprs.clear();
1011     PotentialThisCaptureLocation = SourceLocation();
1012   }
1013   unsigned getNumPotentialVariableCaptures() const {
1014     return PotentiallyCapturingExprs.size();
1015   }
1016 
1017   bool hasPotentialCaptures() const {
1018     return getNumPotentialVariableCaptures() ||
1019                                   PotentialThisCaptureLocation.isValid();
1020   }
1021 
1022   void visitPotentialCaptures(
1023       llvm::function_ref<void(VarDecl *, Expr *)> Callback) const;
1024 };
1025 
1026 FunctionScopeInfo::WeakObjectProfileTy::WeakObjectProfileTy()
1027     : Base(nullptr, false) {}
1028 
1029 FunctionScopeInfo::WeakObjectProfileTy
1030 FunctionScopeInfo::WeakObjectProfileTy::getSentinel() {
1031   FunctionScopeInfo::WeakObjectProfileTy Result;
1032   Result.Base.setInt(true);
1033   return Result;
1034 }
1035 
1036 template <typename ExprT>
1037 void FunctionScopeInfo::recordUseOfWeak(const ExprT *E, bool IsRead) {
1038   assert(E);
1039   WeakUseVector &Uses = WeakObjectUses[WeakObjectProfileTy(E)];
1040   Uses.push_back(WeakUseTy(E, IsRead));
1041 }
1042 
1043 inline void CapturingScopeInfo::addThisCapture(bool isNested,
1044                                                SourceLocation Loc,
1045                                                QualType CaptureType,
1046                                                bool ByCopy) {
1047   Captures.push_back(Capture(Capture::ThisCapture, isNested, Loc, CaptureType,
1048                              ByCopy, /*Invalid*/ false));
1049   CXXThisCaptureIndex = Captures.size();
1050 }
1051 
1052 } // namespace sema
1053 
1054 } // namespace clang
1055 
1056 #endif // LLVM_CLANG_SEMA_SCOPEINFO_H
1057