1 //===- ScopeInfo.h - Information about a semantic context -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines FunctionScopeInfo and its subclasses, which contain
10 // information about a single function, block, lambda, or method body.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_SEMA_SCOPEINFO_H
15 #define LLVM_CLANG_SEMA_SCOPEINFO_H
16 
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/Type.h"
20 #include "clang/Basic/CapturedStmt.h"
21 #include "clang/Basic/LLVM.h"
22 #include "clang/Basic/PartialDiagnostic.h"
23 #include "clang/Basic/SourceLocation.h"
24 #include "clang/Sema/CleanupInfo.h"
25 #include "clang/Sema/DeclSpec.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DenseMapInfo.h"
28 #include "llvm/ADT/MapVector.h"
29 #include "llvm/ADT/PointerIntPair.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/StringRef.h"
34 #include "llvm/ADT/StringSwitch.h"
35 #include "llvm/ADT/TinyPtrVector.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include <algorithm>
39 #include <cassert>
40 #include <utility>
41 
42 namespace clang {
43 
44 class BlockDecl;
45 class CapturedDecl;
46 class CXXMethodDecl;
47 class CXXRecordDecl;
48 class ImplicitParamDecl;
49 class NamedDecl;
50 class ObjCIvarRefExpr;
51 class ObjCMessageExpr;
52 class ObjCPropertyDecl;
53 class ObjCPropertyRefExpr;
54 class ParmVarDecl;
55 class RecordDecl;
56 class ReturnStmt;
57 class Scope;
58 class Stmt;
59 class SwitchStmt;
60 class TemplateParameterList;
61 class VarDecl;
62 
63 namespace sema {
64 
65 /// Contains information about the compound statement currently being
66 /// parsed.
67 class CompoundScopeInfo {
68 public:
69   /// Whether this compound stamement contains `for' or `while' loops
70   /// with empty bodies.
71   bool HasEmptyLoopBodies = false;
72 
73   /// Whether this compound statement corresponds to a GNU statement
74   /// expression.
75   bool IsStmtExpr;
76 
77   CompoundScopeInfo(bool IsStmtExpr) : IsStmtExpr(IsStmtExpr) {}
78 
79   void setHasEmptyLoopBodies() {
80     HasEmptyLoopBodies = true;
81   }
82 };
83 
84 class PossiblyUnreachableDiag {
85 public:
86   PartialDiagnostic PD;
87   SourceLocation Loc;
88   llvm::TinyPtrVector<const Stmt*> Stmts;
89 
90   PossiblyUnreachableDiag(const PartialDiagnostic &PD, SourceLocation Loc,
91                           ArrayRef<const Stmt *> Stmts)
92       : PD(PD), Loc(Loc), Stmts(Stmts) {}
93 };
94 
95 /// Retains information about a function, method, or block that is
96 /// currently being parsed.
97 class FunctionScopeInfo {
98 protected:
99   enum ScopeKind {
100     SK_Function,
101     SK_Block,
102     SK_Lambda,
103     SK_CapturedRegion
104   };
105 
106 public:
107   /// What kind of scope we are describing.
108   ScopeKind Kind : 3;
109 
110   /// Whether this function contains a VLA, \@try, try, C++
111   /// initializer, or anything else that can't be jumped past.
112   bool HasBranchProtectedScope : 1;
113 
114   /// Whether this function contains any switches or direct gotos.
115   bool HasBranchIntoScope : 1;
116 
117   /// Whether this function contains any indirect gotos.
118   bool HasIndirectGoto : 1;
119 
120   /// Whether this function contains any statement marked with
121   /// \c [[clang::musttail]].
122   bool HasMustTail : 1;
123 
124   /// Whether a statement was dropped because it was invalid.
125   bool HasDroppedStmt : 1;
126 
127   /// True if current scope is for OpenMP declare reduction combiner.
128   bool HasOMPDeclareReductionCombiner : 1;
129 
130   /// Whether there is a fallthrough statement in this function.
131   bool HasFallthroughStmt : 1;
132 
133   /// Whether this function uses constrained floating point intrinsics
134   bool UsesFPIntrin : 1;
135 
136   /// Whether we make reference to a declaration that could be
137   /// unavailable.
138   bool HasPotentialAvailabilityViolations : 1;
139 
140   /// A flag that is set when parsing a method that must call super's
141   /// implementation, such as \c -dealloc, \c -finalize, or any method marked
142   /// with \c __attribute__((objc_requires_super)).
143   bool ObjCShouldCallSuper : 1;
144 
145   /// True when this is a method marked as a designated initializer.
146   bool ObjCIsDesignatedInit : 1;
147 
148   /// This starts true for a method marked as designated initializer and will
149   /// be set to false if there is an invocation to a designated initializer of
150   /// the super class.
151   bool ObjCWarnForNoDesignatedInitChain : 1;
152 
153   /// True when this is an initializer method not marked as a designated
154   /// initializer within a class that has at least one initializer marked as a
155   /// designated initializer.
156   bool ObjCIsSecondaryInit : 1;
157 
158   /// This starts true for a secondary initializer method and will be set to
159   /// false if there is an invocation of an initializer on 'self'.
160   bool ObjCWarnForNoInitDelegation : 1;
161 
162   /// True only when this function has not already built, or attempted
163   /// to build, the initial and final coroutine suspend points
164   bool NeedsCoroutineSuspends : 1;
165 
166   /// An enumeration represeting the kind of the first coroutine statement
167   /// in the function. One of co_return, co_await, or co_yield.
168   unsigned char FirstCoroutineStmtKind : 2;
169 
170   /// First coroutine statement in the current function.
171   /// (ex co_return, co_await, co_yield)
172   SourceLocation FirstCoroutineStmtLoc;
173 
174   /// First 'return' statement in the current function.
175   SourceLocation FirstReturnLoc;
176 
177   /// First C++ 'try' or ObjC @try statement in the current function.
178   SourceLocation FirstCXXOrObjCTryLoc;
179   enum { TryLocIsCXX, TryLocIsObjC, Unknown } FirstTryType = Unknown;
180 
181   /// First SEH '__try' statement in the current function.
182   SourceLocation FirstSEHTryLoc;
183 
184 private:
185   /// Used to determine if errors occurred in this function or block.
186   DiagnosticErrorTrap ErrorTrap;
187 
188 public:
189   /// A SwitchStmt, along with a flag indicating if its list of case statements
190   /// is incomplete (because we dropped an invalid one while parsing).
191   using SwitchInfo = llvm::PointerIntPair<SwitchStmt*, 1, bool>;
192 
193   /// SwitchStack - This is the current set of active switch statements in the
194   /// block.
195   SmallVector<SwitchInfo, 8> SwitchStack;
196 
197   /// The list of return statements that occur within the function or
198   /// block, if there is any chance of applying the named return value
199   /// optimization, or if we need to infer a return type.
200   SmallVector<ReturnStmt*, 4> Returns;
201 
202   /// The promise object for this coroutine, if any.
203   VarDecl *CoroutinePromise = nullptr;
204 
205   /// A mapping between the coroutine function parameters that were moved
206   /// to the coroutine frame, and their move statements.
207   llvm::SmallMapVector<ParmVarDecl *, Stmt *, 4> CoroutineParameterMoves;
208 
209   /// The initial and final coroutine suspend points.
210   std::pair<Stmt *, Stmt *> CoroutineSuspends;
211 
212   /// The stack of currently active compound stamement scopes in the
213   /// function.
214   SmallVector<CompoundScopeInfo, 4> CompoundScopes;
215 
216   /// The set of blocks that are introduced in this function.
217   llvm::SmallPtrSet<const BlockDecl *, 1> Blocks;
218 
219   /// The set of __block variables that are introduced in this function.
220   llvm::TinyPtrVector<VarDecl *> ByrefBlockVars;
221 
222   /// A list of PartialDiagnostics created but delayed within the
223   /// current function scope.  These diagnostics are vetted for reachability
224   /// prior to being emitted.
225   SmallVector<PossiblyUnreachableDiag, 4> PossiblyUnreachableDiags;
226 
227   /// A list of parameters which have the nonnull attribute and are
228   /// modified in the function.
229   llvm::SmallPtrSet<const ParmVarDecl *, 8> ModifiedNonNullParams;
230 
231 public:
232   /// Represents a simple identification of a weak object.
233   ///
234   /// Part of the implementation of -Wrepeated-use-of-weak.
235   ///
236   /// This is used to determine if two weak accesses refer to the same object.
237   /// Here are some examples of how various accesses are "profiled":
238   ///
239   /// Access Expression |     "Base" Decl     |          "Property" Decl
240   /// :---------------: | :-----------------: | :------------------------------:
241   /// self.property     | self (VarDecl)      | property (ObjCPropertyDecl)
242   /// self.implicitProp | self (VarDecl)      | -implicitProp (ObjCMethodDecl)
243   /// self->ivar.prop   | ivar (ObjCIvarDecl) | prop (ObjCPropertyDecl)
244   /// cxxObj.obj.prop   | obj (FieldDecl)     | prop (ObjCPropertyDecl)
245   /// [self foo].prop   | 0 (unknown)         | prop (ObjCPropertyDecl)
246   /// self.prop1.prop2  | prop1 (ObjCPropertyDecl)    | prop2 (ObjCPropertyDecl)
247   /// MyClass.prop      | MyClass (ObjCInterfaceDecl) | -prop (ObjCMethodDecl)
248   /// MyClass.foo.prop  | +foo (ObjCMethodDecl)       | -prop (ObjCPropertyDecl)
249   /// weakVar           | 0 (known)           | weakVar (VarDecl)
250   /// self->weakIvar    | self (VarDecl)      | weakIvar (ObjCIvarDecl)
251   ///
252   /// Objects are identified with only two Decls to make it reasonably fast to
253   /// compare them.
254   class WeakObjectProfileTy {
255     /// The base object decl, as described in the class documentation.
256     ///
257     /// The extra flag is "true" if the Base and Property are enough to uniquely
258     /// identify the object in memory.
259     ///
260     /// \sa isExactProfile()
261     using BaseInfoTy = llvm::PointerIntPair<const NamedDecl *, 1, bool>;
262     BaseInfoTy Base;
263 
264     /// The "property" decl, as described in the class documentation.
265     ///
266     /// Note that this may not actually be an ObjCPropertyDecl, e.g. in the
267     /// case of "implicit" properties (regular methods accessed via dot syntax).
268     const NamedDecl *Property = nullptr;
269 
270     /// Used to find the proper base profile for a given base expression.
271     static BaseInfoTy getBaseInfo(const Expr *BaseE);
272 
273     inline WeakObjectProfileTy();
274     static inline WeakObjectProfileTy getSentinel();
275 
276   public:
277     WeakObjectProfileTy(const ObjCPropertyRefExpr *RE);
278     WeakObjectProfileTy(const Expr *Base, const ObjCPropertyDecl *Property);
279     WeakObjectProfileTy(const DeclRefExpr *RE);
280     WeakObjectProfileTy(const ObjCIvarRefExpr *RE);
281 
282     const NamedDecl *getBase() const { return Base.getPointer(); }
283     const NamedDecl *getProperty() const { return Property; }
284 
285     /// Returns true if the object base specifies a known object in memory,
286     /// rather than, say, an instance variable or property of another object.
287     ///
288     /// Note that this ignores the effects of aliasing; that is, \c foo.bar is
289     /// considered an exact profile if \c foo is a local variable, even if
290     /// another variable \c foo2 refers to the same object as \c foo.
291     ///
292     /// For increased precision, accesses with base variables that are
293     /// properties or ivars of 'self' (e.g. self.prop1.prop2) are considered to
294     /// be exact, though this is not true for arbitrary variables
295     /// (foo.prop1.prop2).
296     bool isExactProfile() const {
297       return Base.getInt();
298     }
299 
300     bool operator==(const WeakObjectProfileTy &Other) const {
301       return Base == Other.Base && Property == Other.Property;
302     }
303 
304     // For use in DenseMap.
305     // We can't specialize the usual llvm::DenseMapInfo at the end of the file
306     // because by that point the DenseMap in FunctionScopeInfo has already been
307     // instantiated.
308     class DenseMapInfo {
309     public:
310       static inline WeakObjectProfileTy getEmptyKey() {
311         return WeakObjectProfileTy();
312       }
313 
314       static inline WeakObjectProfileTy getTombstoneKey() {
315         return WeakObjectProfileTy::getSentinel();
316       }
317 
318       static unsigned getHashValue(const WeakObjectProfileTy &Val) {
319         using Pair = std::pair<BaseInfoTy, const NamedDecl *>;
320 
321         return llvm::DenseMapInfo<Pair>::getHashValue(Pair(Val.Base,
322                                                            Val.Property));
323       }
324 
325       static bool isEqual(const WeakObjectProfileTy &LHS,
326                           const WeakObjectProfileTy &RHS) {
327         return LHS == RHS;
328       }
329     };
330   };
331 
332   /// Represents a single use of a weak object.
333   ///
334   /// Stores both the expression and whether the access is potentially unsafe
335   /// (i.e. it could potentially be warned about).
336   ///
337   /// Part of the implementation of -Wrepeated-use-of-weak.
338   class WeakUseTy {
339     llvm::PointerIntPair<const Expr *, 1, bool> Rep;
340 
341   public:
342     WeakUseTy(const Expr *Use, bool IsRead) : Rep(Use, IsRead) {}
343 
344     const Expr *getUseExpr() const { return Rep.getPointer(); }
345     bool isUnsafe() const { return Rep.getInt(); }
346     void markSafe() { Rep.setInt(false); }
347 
348     bool operator==(const WeakUseTy &Other) const {
349       return Rep == Other.Rep;
350     }
351   };
352 
353   /// Used to collect uses of a particular weak object in a function body.
354   ///
355   /// Part of the implementation of -Wrepeated-use-of-weak.
356   using WeakUseVector = SmallVector<WeakUseTy, 4>;
357 
358   /// Used to collect all uses of weak objects in a function body.
359   ///
360   /// Part of the implementation of -Wrepeated-use-of-weak.
361   using WeakObjectUseMap =
362       llvm::SmallDenseMap<WeakObjectProfileTy, WeakUseVector, 8,
363                           WeakObjectProfileTy::DenseMapInfo>;
364 
365 private:
366   /// Used to collect all uses of weak objects in this function body.
367   ///
368   /// Part of the implementation of -Wrepeated-use-of-weak.
369   WeakObjectUseMap WeakObjectUses;
370 
371 protected:
372   FunctionScopeInfo(const FunctionScopeInfo&) = default;
373 
374 public:
375   FunctionScopeInfo(DiagnosticsEngine &Diag)
376       : Kind(SK_Function), HasBranchProtectedScope(false),
377         HasBranchIntoScope(false), HasIndirectGoto(false), HasMustTail(false),
378         HasDroppedStmt(false), HasOMPDeclareReductionCombiner(false),
379         HasFallthroughStmt(false), UsesFPIntrin(false),
380         HasPotentialAvailabilityViolations(false), ObjCShouldCallSuper(false),
381         ObjCIsDesignatedInit(false), ObjCWarnForNoDesignatedInitChain(false),
382         ObjCIsSecondaryInit(false), ObjCWarnForNoInitDelegation(false),
383         NeedsCoroutineSuspends(true), ErrorTrap(Diag) {}
384 
385   virtual ~FunctionScopeInfo();
386 
387   /// Determine whether an unrecoverable error has occurred within this
388   /// function. Note that this may return false even if the function body is
389   /// invalid, because the errors may be suppressed if they're caused by prior
390   /// invalid declarations.
391   ///
392   /// FIXME: Migrate the caller of this to use containsErrors() instead once
393   /// it's ready.
394   bool hasUnrecoverableErrorOccurred() const {
395     return ErrorTrap.hasUnrecoverableErrorOccurred();
396   }
397 
398   /// Record that a weak object was accessed.
399   ///
400   /// Part of the implementation of -Wrepeated-use-of-weak.
401   template <typename ExprT>
402   inline void recordUseOfWeak(const ExprT *E, bool IsRead = true);
403 
404   void recordUseOfWeak(const ObjCMessageExpr *Msg,
405                        const ObjCPropertyDecl *Prop);
406 
407   /// Record that a given expression is a "safe" access of a weak object (e.g.
408   /// assigning it to a strong variable.)
409   ///
410   /// Part of the implementation of -Wrepeated-use-of-weak.
411   void markSafeWeakUse(const Expr *E);
412 
413   const WeakObjectUseMap &getWeakObjectUses() const {
414     return WeakObjectUses;
415   }
416 
417   void setHasBranchIntoScope() {
418     HasBranchIntoScope = true;
419   }
420 
421   void setHasBranchProtectedScope() {
422     HasBranchProtectedScope = true;
423   }
424 
425   void setHasIndirectGoto() {
426     HasIndirectGoto = true;
427   }
428 
429   void setHasMustTail() { HasMustTail = true; }
430 
431   void setHasDroppedStmt() {
432     HasDroppedStmt = true;
433   }
434 
435   void setHasOMPDeclareReductionCombiner() {
436     HasOMPDeclareReductionCombiner = true;
437   }
438 
439   void setHasFallthroughStmt() {
440     HasFallthroughStmt = true;
441   }
442 
443   void setUsesFPIntrin() {
444     UsesFPIntrin = true;
445   }
446 
447   void setHasCXXTry(SourceLocation TryLoc) {
448     setHasBranchProtectedScope();
449     FirstCXXOrObjCTryLoc = TryLoc;
450     FirstTryType = TryLocIsCXX;
451   }
452 
453   void setHasObjCTry(SourceLocation TryLoc) {
454     setHasBranchProtectedScope();
455     FirstCXXOrObjCTryLoc = TryLoc;
456     FirstTryType = TryLocIsObjC;
457   }
458 
459   void setHasSEHTry(SourceLocation TryLoc) {
460     setHasBranchProtectedScope();
461     FirstSEHTryLoc = TryLoc;
462   }
463 
464   bool NeedsScopeChecking() const {
465     return !HasDroppedStmt && (HasIndirectGoto || HasMustTail ||
466                                (HasBranchProtectedScope && HasBranchIntoScope));
467   }
468 
469   // Add a block introduced in this function.
470   void addBlock(const BlockDecl *BD) {
471     Blocks.insert(BD);
472   }
473 
474   // Add a __block variable introduced in this function.
475   void addByrefBlockVar(VarDecl *VD) {
476     ByrefBlockVars.push_back(VD);
477   }
478 
479   bool isCoroutine() const { return !FirstCoroutineStmtLoc.isInvalid(); }
480 
481   void setFirstCoroutineStmt(SourceLocation Loc, StringRef Keyword) {
482     assert(FirstCoroutineStmtLoc.isInvalid() &&
483                    "first coroutine statement location already set");
484     FirstCoroutineStmtLoc = Loc;
485     FirstCoroutineStmtKind = llvm::StringSwitch<unsigned char>(Keyword)
486             .Case("co_return", 0)
487             .Case("co_await", 1)
488             .Case("co_yield", 2);
489   }
490 
491   StringRef getFirstCoroutineStmtKeyword() const {
492     assert(FirstCoroutineStmtLoc.isValid()
493                    && "no coroutine statement available");
494     switch (FirstCoroutineStmtKind) {
495     case 0: return "co_return";
496     case 1: return "co_await";
497     case 2: return "co_yield";
498     default:
499       llvm_unreachable("FirstCoroutineStmtKind has an invalid value");
500     };
501   }
502 
503   void setNeedsCoroutineSuspends(bool value = true) {
504     assert((!value || CoroutineSuspends.first == nullptr) &&
505             "we already have valid suspend points");
506     NeedsCoroutineSuspends = value;
507   }
508 
509   bool hasInvalidCoroutineSuspends() const {
510     return !NeedsCoroutineSuspends && CoroutineSuspends.first == nullptr;
511   }
512 
513   void setCoroutineSuspends(Stmt *Initial, Stmt *Final) {
514     assert(Initial && Final && "suspend points cannot be null");
515     assert(CoroutineSuspends.first == nullptr && "suspend points already set");
516     NeedsCoroutineSuspends = false;
517     CoroutineSuspends.first = Initial;
518     CoroutineSuspends.second = Final;
519   }
520 
521   /// Clear out the information in this function scope, making it
522   /// suitable for reuse.
523   void Clear();
524 
525   bool isPlainFunction() const { return Kind == SK_Function; }
526 };
527 
528 class Capture {
529   // There are three categories of capture: capturing 'this', capturing
530   // local variables, and C++1y initialized captures (which can have an
531   // arbitrary initializer, and don't really capture in the traditional
532   // sense at all).
533   //
534   // There are three ways to capture a local variable:
535   //  - capture by copy in the C++11 sense,
536   //  - capture by reference in the C++11 sense, and
537   //  - __block capture.
538   // Lambdas explicitly specify capture by copy or capture by reference.
539   // For blocks, __block capture applies to variables with that annotation,
540   // variables of reference type are captured by reference, and other
541   // variables are captured by copy.
542   enum CaptureKind {
543     Cap_ByCopy, Cap_ByRef, Cap_Block, Cap_VLA
544   };
545 
546   union {
547     /// If Kind == Cap_VLA, the captured type.
548     const VariableArrayType *CapturedVLA;
549 
550     /// Otherwise, the captured variable (if any).
551     VarDecl *CapturedVar;
552   };
553 
554   /// The source location at which the first capture occurred.
555   SourceLocation Loc;
556 
557   /// The location of the ellipsis that expands a parameter pack.
558   SourceLocation EllipsisLoc;
559 
560   /// The type as it was captured, which is the type of the non-static data
561   /// member that would hold the capture.
562   QualType CaptureType;
563 
564   /// The CaptureKind of this capture.
565   unsigned Kind : 2;
566 
567   /// Whether this is a nested capture (a capture of an enclosing capturing
568   /// scope's capture).
569   unsigned Nested : 1;
570 
571   /// Whether this is a capture of '*this'.
572   unsigned CapturesThis : 1;
573 
574   /// Whether an explicit capture has been odr-used in the body of the
575   /// lambda.
576   unsigned ODRUsed : 1;
577 
578   /// Whether an explicit capture has been non-odr-used in the body of
579   /// the lambda.
580   unsigned NonODRUsed : 1;
581 
582   /// Whether the capture is invalid (a capture was required but the entity is
583   /// non-capturable).
584   unsigned Invalid : 1;
585 
586 public:
587   Capture(VarDecl *Var, bool Block, bool ByRef, bool IsNested,
588           SourceLocation Loc, SourceLocation EllipsisLoc, QualType CaptureType,
589           bool Invalid)
590       : CapturedVar(Var), Loc(Loc), EllipsisLoc(EllipsisLoc),
591         CaptureType(CaptureType),
592         Kind(Block ? Cap_Block : ByRef ? Cap_ByRef : Cap_ByCopy),
593         Nested(IsNested), CapturesThis(false), ODRUsed(false),
594         NonODRUsed(false), Invalid(Invalid) {}
595 
596   enum IsThisCapture { ThisCapture };
597   Capture(IsThisCapture, bool IsNested, SourceLocation Loc,
598           QualType CaptureType, const bool ByCopy, bool Invalid)
599       : Loc(Loc), CaptureType(CaptureType),
600         Kind(ByCopy ? Cap_ByCopy : Cap_ByRef), Nested(IsNested),
601         CapturesThis(true), ODRUsed(false), NonODRUsed(false),
602         Invalid(Invalid) {}
603 
604   enum IsVLACapture { VLACapture };
605   Capture(IsVLACapture, const VariableArrayType *VLA, bool IsNested,
606           SourceLocation Loc, QualType CaptureType)
607       : CapturedVLA(VLA), Loc(Loc), CaptureType(CaptureType), Kind(Cap_VLA),
608         Nested(IsNested), CapturesThis(false), ODRUsed(false),
609         NonODRUsed(false), Invalid(false) {}
610 
611   bool isThisCapture() const { return CapturesThis; }
612   bool isVariableCapture() const {
613     return !isThisCapture() && !isVLATypeCapture();
614   }
615 
616   bool isCopyCapture() const { return Kind == Cap_ByCopy; }
617   bool isReferenceCapture() const { return Kind == Cap_ByRef; }
618   bool isBlockCapture() const { return Kind == Cap_Block; }
619   bool isVLATypeCapture() const { return Kind == Cap_VLA; }
620 
621   bool isNested() const { return Nested; }
622 
623   bool isInvalid() const { return Invalid; }
624 
625   /// Determine whether this capture is an init-capture.
626   bool isInitCapture() const;
627 
628   bool isODRUsed() const { return ODRUsed; }
629   bool isNonODRUsed() const { return NonODRUsed; }
630   void markUsed(bool IsODRUse) {
631     if (IsODRUse)
632       ODRUsed = true;
633     else
634       NonODRUsed = true;
635   }
636 
637   VarDecl *getVariable() const {
638     assert(isVariableCapture());
639     return CapturedVar;
640   }
641 
642   const VariableArrayType *getCapturedVLAType() const {
643     assert(isVLATypeCapture());
644     return CapturedVLA;
645   }
646 
647   /// Retrieve the location at which this variable was captured.
648   SourceLocation getLocation() const { return Loc; }
649 
650   /// Retrieve the source location of the ellipsis, whose presence
651   /// indicates that the capture is a pack expansion.
652   SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
653 
654   /// Retrieve the capture type for this capture, which is effectively
655   /// the type of the non-static data member in the lambda/block structure
656   /// that would store this capture.
657   QualType getCaptureType() const { return CaptureType; }
658 };
659 
660 class CapturingScopeInfo : public FunctionScopeInfo {
661 protected:
662   CapturingScopeInfo(const CapturingScopeInfo&) = default;
663 
664 public:
665   enum ImplicitCaptureStyle {
666     ImpCap_None, ImpCap_LambdaByval, ImpCap_LambdaByref, ImpCap_Block,
667     ImpCap_CapturedRegion
668   };
669 
670   ImplicitCaptureStyle ImpCaptureStyle;
671 
672   CapturingScopeInfo(DiagnosticsEngine &Diag, ImplicitCaptureStyle Style)
673       : FunctionScopeInfo(Diag), ImpCaptureStyle(Style) {}
674 
675   /// CaptureMap - A map of captured variables to (index+1) into Captures.
676   llvm::DenseMap<VarDecl*, unsigned> CaptureMap;
677 
678   /// CXXThisCaptureIndex - The (index+1) of the capture of 'this';
679   /// zero if 'this' is not captured.
680   unsigned CXXThisCaptureIndex = 0;
681 
682   /// Captures - The captures.
683   SmallVector<Capture, 4> Captures;
684 
685   /// - Whether the target type of return statements in this context
686   /// is deduced (e.g. a lambda or block with omitted return type).
687   bool HasImplicitReturnType = false;
688 
689   /// ReturnType - The target type of return statements in this context,
690   /// or null if unknown.
691   QualType ReturnType;
692 
693   void addCapture(VarDecl *Var, bool isBlock, bool isByref, bool isNested,
694                   SourceLocation Loc, SourceLocation EllipsisLoc,
695                   QualType CaptureType, bool Invalid) {
696     Captures.push_back(Capture(Var, isBlock, isByref, isNested, Loc,
697                                EllipsisLoc, CaptureType, Invalid));
698     CaptureMap[Var] = Captures.size();
699   }
700 
701   void addVLATypeCapture(SourceLocation Loc, const VariableArrayType *VLAType,
702                          QualType CaptureType) {
703     Captures.push_back(Capture(Capture::VLACapture, VLAType,
704                                /*FIXME: IsNested*/ false, Loc, CaptureType));
705   }
706 
707   void addThisCapture(bool isNested, SourceLocation Loc, QualType CaptureType,
708                       bool ByCopy);
709 
710   /// Determine whether the C++ 'this' is captured.
711   bool isCXXThisCaptured() const { return CXXThisCaptureIndex != 0; }
712 
713   /// Retrieve the capture of C++ 'this', if it has been captured.
714   Capture &getCXXThisCapture() {
715     assert(isCXXThisCaptured() && "this has not been captured");
716     return Captures[CXXThisCaptureIndex - 1];
717   }
718 
719   /// Determine whether the given variable has been captured.
720   bool isCaptured(VarDecl *Var) const {
721     return CaptureMap.count(Var);
722   }
723 
724   /// Determine whether the given variable-array type has been captured.
725   bool isVLATypeCaptured(const VariableArrayType *VAT) const;
726 
727   /// Retrieve the capture of the given variable, if it has been
728   /// captured already.
729   Capture &getCapture(VarDecl *Var) {
730     assert(isCaptured(Var) && "Variable has not been captured");
731     return Captures[CaptureMap[Var] - 1];
732   }
733 
734   const Capture &getCapture(VarDecl *Var) const {
735     llvm::DenseMap<VarDecl*, unsigned>::const_iterator Known
736       = CaptureMap.find(Var);
737     assert(Known != CaptureMap.end() && "Variable has not been captured");
738     return Captures[Known->second - 1];
739   }
740 
741   static bool classof(const FunctionScopeInfo *FSI) {
742     return FSI->Kind == SK_Block || FSI->Kind == SK_Lambda
743                                  || FSI->Kind == SK_CapturedRegion;
744   }
745 };
746 
747 /// Retains information about a block that is currently being parsed.
748 class BlockScopeInfo final : public CapturingScopeInfo {
749 public:
750   BlockDecl *TheDecl;
751 
752   /// TheScope - This is the scope for the block itself, which contains
753   /// arguments etc.
754   Scope *TheScope;
755 
756   /// BlockType - The function type of the block, if one was given.
757   /// Its return type may be BuiltinType::Dependent.
758   QualType FunctionType;
759 
760   BlockScopeInfo(DiagnosticsEngine &Diag, Scope *BlockScope, BlockDecl *Block)
761       : CapturingScopeInfo(Diag, ImpCap_Block), TheDecl(Block),
762         TheScope(BlockScope) {
763     Kind = SK_Block;
764   }
765 
766   ~BlockScopeInfo() override;
767 
768   static bool classof(const FunctionScopeInfo *FSI) {
769     return FSI->Kind == SK_Block;
770   }
771 };
772 
773 /// Retains information about a captured region.
774 class CapturedRegionScopeInfo final : public CapturingScopeInfo {
775 public:
776   /// The CapturedDecl for this statement.
777   CapturedDecl *TheCapturedDecl;
778 
779   /// The captured record type.
780   RecordDecl *TheRecordDecl;
781 
782   /// This is the enclosing scope of the captured region.
783   Scope *TheScope;
784 
785   /// The implicit parameter for the captured variables.
786   ImplicitParamDecl *ContextParam;
787 
788   /// The kind of captured region.
789   unsigned short CapRegionKind;
790 
791   unsigned short OpenMPLevel;
792   unsigned short OpenMPCaptureLevel;
793 
794   CapturedRegionScopeInfo(DiagnosticsEngine &Diag, Scope *S, CapturedDecl *CD,
795                           RecordDecl *RD, ImplicitParamDecl *Context,
796                           CapturedRegionKind K, unsigned OpenMPLevel,
797                           unsigned OpenMPCaptureLevel)
798       : CapturingScopeInfo(Diag, ImpCap_CapturedRegion),
799         TheCapturedDecl(CD), TheRecordDecl(RD), TheScope(S),
800         ContextParam(Context), CapRegionKind(K), OpenMPLevel(OpenMPLevel),
801         OpenMPCaptureLevel(OpenMPCaptureLevel) {
802     Kind = SK_CapturedRegion;
803   }
804 
805   ~CapturedRegionScopeInfo() override;
806 
807   /// A descriptive name for the kind of captured region this is.
808   StringRef getRegionName() const {
809     switch (CapRegionKind) {
810     case CR_Default:
811       return "default captured statement";
812     case CR_ObjCAtFinally:
813       return "Objective-C @finally statement";
814     case CR_OpenMP:
815       return "OpenMP region";
816     }
817     llvm_unreachable("Invalid captured region kind!");
818   }
819 
820   static bool classof(const FunctionScopeInfo *FSI) {
821     return FSI->Kind == SK_CapturedRegion;
822   }
823 };
824 
825 class LambdaScopeInfo final :
826     public CapturingScopeInfo, public InventedTemplateParameterInfo {
827 public:
828   /// The class that describes the lambda.
829   CXXRecordDecl *Lambda = nullptr;
830 
831   /// The lambda's compiler-generated \c operator().
832   CXXMethodDecl *CallOperator = nullptr;
833 
834   /// Source range covering the lambda introducer [...].
835   SourceRange IntroducerRange;
836 
837   /// Source location of the '&' or '=' specifying the default capture
838   /// type, if any.
839   SourceLocation CaptureDefaultLoc;
840 
841   /// The number of captures in the \c Captures list that are
842   /// explicit captures.
843   unsigned NumExplicitCaptures = 0;
844 
845   /// Whether this is a mutable lambda.
846   bool Mutable = false;
847 
848   /// Whether the (empty) parameter list is explicit.
849   bool ExplicitParams = false;
850 
851   /// Whether any of the capture expressions requires cleanups.
852   CleanupInfo Cleanup;
853 
854   /// Whether the lambda contains an unexpanded parameter pack.
855   bool ContainsUnexpandedParameterPack = false;
856 
857   /// Packs introduced by this lambda, if any.
858   SmallVector<NamedDecl*, 4> LocalPacks;
859 
860   /// Source range covering the explicit template parameter list (if it exists).
861   SourceRange ExplicitTemplateParamsRange;
862 
863   /// The requires-clause immediately following the explicit template parameter
864   /// list, if any. (Note that there may be another requires-clause included as
865   /// part of the lambda-declarator.)
866   ExprResult RequiresClause;
867 
868   /// If this is a generic lambda, and the template parameter
869   /// list has been created (from the TemplateParams) then store
870   /// a reference to it (cache it to avoid reconstructing it).
871   TemplateParameterList *GLTemplateParameterList = nullptr;
872 
873   /// Contains all variable-referring-expressions (i.e. DeclRefExprs
874   ///  or MemberExprs) that refer to local variables in a generic lambda
875   ///  or a lambda in a potentially-evaluated-if-used context.
876   ///
877   ///  Potentially capturable variables of a nested lambda that might need
878   ///   to be captured by the lambda are housed here.
879   ///  This is specifically useful for generic lambdas or
880   ///  lambdas within a potentially evaluated-if-used context.
881   ///  If an enclosing variable is named in an expression of a lambda nested
882   ///  within a generic lambda, we don't always know know whether the variable
883   ///  will truly be odr-used (i.e. need to be captured) by that nested lambda,
884   ///  until its instantiation. But we still need to capture it in the
885   ///  enclosing lambda if all intervening lambdas can capture the variable.
886   llvm::SmallVector<Expr*, 4> PotentiallyCapturingExprs;
887 
888   /// Contains all variable-referring-expressions that refer
889   ///  to local variables that are usable as constant expressions and
890   ///  do not involve an odr-use (they may still need to be captured
891   ///  if the enclosing full-expression is instantiation dependent).
892   llvm::SmallSet<Expr *, 8> NonODRUsedCapturingExprs;
893 
894   /// A map of explicit capture indices to their introducer source ranges.
895   llvm::DenseMap<unsigned, SourceRange> ExplicitCaptureRanges;
896 
897   /// Contains all of the variables defined in this lambda that shadow variables
898   /// that were defined in parent contexts. Used to avoid warnings when the
899   /// shadowed variables are uncaptured by this lambda.
900   struct ShadowedOuterDecl {
901     const VarDecl *VD;
902     const VarDecl *ShadowedDecl;
903   };
904   llvm::SmallVector<ShadowedOuterDecl, 4> ShadowingDecls;
905 
906   SourceLocation PotentialThisCaptureLocation;
907 
908   LambdaScopeInfo(DiagnosticsEngine &Diag)
909       : CapturingScopeInfo(Diag, ImpCap_None) {
910     Kind = SK_Lambda;
911   }
912 
913   /// Note when all explicit captures have been added.
914   void finishedExplicitCaptures() {
915     NumExplicitCaptures = Captures.size();
916   }
917 
918   static bool classof(const FunctionScopeInfo *FSI) {
919     return FSI->Kind == SK_Lambda;
920   }
921 
922   /// Is this scope known to be for a generic lambda? (This will be false until
923   /// we parse a template parameter list or the first 'auto'-typed parameter).
924   bool isGenericLambda() const {
925     return !TemplateParams.empty() || GLTemplateParameterList;
926   }
927 
928   /// Add a variable that might potentially be captured by the
929   /// lambda and therefore the enclosing lambdas.
930   ///
931   /// This is also used by enclosing lambda's to speculatively capture
932   /// variables that nested lambda's - depending on their enclosing
933   /// specialization - might need to capture.
934   /// Consider:
935   /// void f(int, int); <-- don't capture
936   /// void f(const int&, double); <-- capture
937   /// void foo() {
938   ///   const int x = 10;
939   ///   auto L = [=](auto a) { // capture 'x'
940   ///      return [=](auto b) {
941   ///        f(x, a);  // we may or may not need to capture 'x'
942   ///      };
943   ///   };
944   /// }
945   void addPotentialCapture(Expr *VarExpr) {
946     assert(isa<DeclRefExpr>(VarExpr) || isa<MemberExpr>(VarExpr) ||
947            isa<FunctionParmPackExpr>(VarExpr));
948     PotentiallyCapturingExprs.push_back(VarExpr);
949   }
950 
951   void addPotentialThisCapture(SourceLocation Loc) {
952     PotentialThisCaptureLocation = Loc;
953   }
954 
955   bool hasPotentialThisCapture() const {
956     return PotentialThisCaptureLocation.isValid();
957   }
958 
959   /// Mark a variable's reference in a lambda as non-odr using.
960   ///
961   /// For generic lambdas, if a variable is named in a potentially evaluated
962   /// expression, where the enclosing full expression is dependent then we
963   /// must capture the variable (given a default capture).
964   /// This is accomplished by recording all references to variables
965   /// (DeclRefExprs or MemberExprs) within said nested lambda in its array of
966   /// PotentialCaptures. All such variables have to be captured by that lambda,
967   /// except for as described below.
968   /// If that variable is usable as a constant expression and is named in a
969   /// manner that does not involve its odr-use (e.g. undergoes
970   /// lvalue-to-rvalue conversion, or discarded) record that it is so. Upon the
971   /// act of analyzing the enclosing full expression (ActOnFinishFullExpr)
972   /// if we can determine that the full expression is not instantiation-
973   /// dependent, then we can entirely avoid its capture.
974   ///
975   ///   const int n = 0;
976   ///   [&] (auto x) {
977   ///     (void)+n + x;
978   ///   };
979   /// Interestingly, this strategy would involve a capture of n, even though
980   /// it's obviously not odr-used here, because the full-expression is
981   /// instantiation-dependent.  It could be useful to avoid capturing such
982   /// variables, even when they are referred to in an instantiation-dependent
983   /// expression, if we can unambiguously determine that they shall never be
984   /// odr-used.  This would involve removal of the variable-referring-expression
985   /// from the array of PotentialCaptures during the lvalue-to-rvalue
986   /// conversions.  But per the working draft N3797, (post-chicago 2013) we must
987   /// capture such variables.
988   /// Before anyone is tempted to implement a strategy for not-capturing 'n',
989   /// consider the insightful warning in:
990   ///    /cfe-commits/Week-of-Mon-20131104/092596.html
991   /// "The problem is that the set of captures for a lambda is part of the ABI
992   ///  (since lambda layout can be made visible through inline functions and the
993   ///  like), and there are no guarantees as to which cases we'll manage to build
994   ///  an lvalue-to-rvalue conversion in, when parsing a template -- some
995   ///  seemingly harmless change elsewhere in Sema could cause us to start or stop
996   ///  building such a node. So we need a rule that anyone can implement and get
997   ///  exactly the same result".
998   void markVariableExprAsNonODRUsed(Expr *CapturingVarExpr) {
999     assert(isa<DeclRefExpr>(CapturingVarExpr) ||
1000            isa<MemberExpr>(CapturingVarExpr) ||
1001            isa<FunctionParmPackExpr>(CapturingVarExpr));
1002     NonODRUsedCapturingExprs.insert(CapturingVarExpr);
1003   }
1004   bool isVariableExprMarkedAsNonODRUsed(Expr *CapturingVarExpr) const {
1005     assert(isa<DeclRefExpr>(CapturingVarExpr) ||
1006            isa<MemberExpr>(CapturingVarExpr) ||
1007            isa<FunctionParmPackExpr>(CapturingVarExpr));
1008     return NonODRUsedCapturingExprs.count(CapturingVarExpr);
1009   }
1010   void removePotentialCapture(Expr *E) {
1011     llvm::erase_value(PotentiallyCapturingExprs, E);
1012   }
1013   void clearPotentialCaptures() {
1014     PotentiallyCapturingExprs.clear();
1015     PotentialThisCaptureLocation = SourceLocation();
1016   }
1017   unsigned getNumPotentialVariableCaptures() const {
1018     return PotentiallyCapturingExprs.size();
1019   }
1020 
1021   bool hasPotentialCaptures() const {
1022     return getNumPotentialVariableCaptures() ||
1023                                   PotentialThisCaptureLocation.isValid();
1024   }
1025 
1026   void visitPotentialCaptures(
1027       llvm::function_ref<void(VarDecl *, Expr *)> Callback) const;
1028 };
1029 
1030 FunctionScopeInfo::WeakObjectProfileTy::WeakObjectProfileTy()
1031     : Base(nullptr, false) {}
1032 
1033 FunctionScopeInfo::WeakObjectProfileTy
1034 FunctionScopeInfo::WeakObjectProfileTy::getSentinel() {
1035   FunctionScopeInfo::WeakObjectProfileTy Result;
1036   Result.Base.setInt(true);
1037   return Result;
1038 }
1039 
1040 template <typename ExprT>
1041 void FunctionScopeInfo::recordUseOfWeak(const ExprT *E, bool IsRead) {
1042   assert(E);
1043   WeakUseVector &Uses = WeakObjectUses[WeakObjectProfileTy(E)];
1044   Uses.push_back(WeakUseTy(E, IsRead));
1045 }
1046 
1047 inline void CapturingScopeInfo::addThisCapture(bool isNested,
1048                                                SourceLocation Loc,
1049                                                QualType CaptureType,
1050                                                bool ByCopy) {
1051   Captures.push_back(Capture(Capture::ThisCapture, isNested, Loc, CaptureType,
1052                              ByCopy, /*Invalid*/ false));
1053   CXXThisCaptureIndex = Captures.size();
1054 }
1055 
1056 } // namespace sema
1057 
1058 } // namespace clang
1059 
1060 #endif // LLVM_CLANG_SEMA_SCOPEINFO_H
1061