1 //===- CallEvent.h - Wrapper for all function and method calls --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file defines CallEvent and its subclasses, which represent path-
10 /// sensitive instances of different kinds of function and method calls
11 /// (C, C++, and Objective-C).
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_CALLEVENT_H
16 #define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_CALLEVENT_H
17 
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/AST/Type.h"
27 #include "clang/Basic/IdentifierTable.h"
28 #include "clang/Basic/LLVM.h"
29 #include "clang/Basic/SourceLocation.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
32 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
33 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
34 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/IntrusiveRefCntPtr.h"
37 #include "llvm/ADT/PointerIntPair.h"
38 #include "llvm/ADT/PointerUnion.h"
39 #include "llvm/ADT/STLExtras.h"
40 #include "llvm/ADT/SmallVector.h"
41 #include "llvm/ADT/StringRef.h"
42 #include "llvm/Support/Allocator.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include <cassert>
46 #include <limits>
47 #include <utility>
48 
49 namespace clang {
50 
51 class LocationContext;
52 class ProgramPoint;
53 class ProgramPointTag;
54 class StackFrameContext;
55 
56 namespace ento {
57 
58 enum CallEventKind {
59   CE_Function,
60   CE_CXXMember,
61   CE_CXXMemberOperator,
62   CE_CXXDestructor,
63   CE_BEG_CXX_INSTANCE_CALLS = CE_CXXMember,
64   CE_END_CXX_INSTANCE_CALLS = CE_CXXDestructor,
65   CE_CXXConstructor,
66   CE_CXXAllocator,
67   CE_BEG_FUNCTION_CALLS = CE_Function,
68   CE_END_FUNCTION_CALLS = CE_CXXAllocator,
69   CE_Block,
70   CE_ObjCMessage
71 };
72 
73 class CallEvent;
74 class CallDescription;
75 
76 template<typename T = CallEvent>
77 class CallEventRef : public IntrusiveRefCntPtr<const T> {
78 public:
79   CallEventRef(const T *Call) : IntrusiveRefCntPtr<const T>(Call) {}
80   CallEventRef(const CallEventRef &Orig) : IntrusiveRefCntPtr<const T>(Orig) {}
81 
82   CallEventRef<T> cloneWithState(ProgramStateRef State) const {
83     return this->get()->template cloneWithState<T>(State);
84   }
85 
86   // Allow implicit conversions to a superclass type, since CallEventRef
87   // behaves like a pointer-to-const.
88   template <typename SuperT>
89   operator CallEventRef<SuperT> () const {
90     return this->get();
91   }
92 };
93 
94 /// \class RuntimeDefinition
95 /// Defines the runtime definition of the called function.
96 ///
97 /// Encapsulates the information we have about which Decl will be used
98 /// when the call is executed on the given path. When dealing with dynamic
99 /// dispatch, the information is based on DynamicTypeInfo and might not be
100 /// precise.
101 class RuntimeDefinition {
102   /// The Declaration of the function which could be called at runtime.
103   /// NULL if not available.
104   const Decl *D = nullptr;
105 
106   /// The region representing an object (ObjC/C++) on which the method is
107   /// called. With dynamic dispatch, the method definition depends on the
108   /// runtime type of this object. NULL when the DynamicTypeInfo is
109   /// precise.
110   const MemRegion *R = nullptr;
111 
112 public:
113   RuntimeDefinition() = default;
114   RuntimeDefinition(const Decl *InD): D(InD) {}
115   RuntimeDefinition(const Decl *InD, const MemRegion *InR): D(InD), R(InR) {}
116 
117   const Decl *getDecl() { return D; }
118 
119   /// Check if the definition we have is precise.
120   /// If not, it is possible that the call dispatches to another definition at
121   /// execution time.
122   bool mayHaveOtherDefinitions() { return R != nullptr; }
123 
124   /// When other definitions are possible, returns the region whose runtime type
125   /// determines the method definition.
126   const MemRegion *getDispatchRegion() { return R; }
127 };
128 
129 /// Represents an abstract call to a function or method along a
130 /// particular path.
131 ///
132 /// CallEvents are created through the factory methods of CallEventManager.
133 ///
134 /// CallEvents should always be cheap to create and destroy. In order for
135 /// CallEventManager to be able to re-use CallEvent-sized memory blocks,
136 /// subclasses of CallEvent may not add any data members to the base class.
137 /// Use the "Data" and "Location" fields instead.
138 class CallEvent {
139 public:
140   using Kind = CallEventKind;
141 
142 private:
143   ProgramStateRef State;
144   const LocationContext *LCtx;
145   llvm::PointerUnion<const Expr *, const Decl *> Origin;
146 
147 protected:
148   // This is user data for subclasses.
149   const void *Data;
150 
151   // This is user data for subclasses.
152   // This should come right before RefCount, so that the two fields can be
153   // packed together on LP64 platforms.
154   SourceLocation Location;
155 
156 private:
157   template <typename T> friend struct llvm::IntrusiveRefCntPtrInfo;
158 
159   mutable unsigned RefCount = 0;
160 
161   void Retain() const { ++RefCount; }
162   void Release() const;
163 
164 protected:
165   friend class CallEventManager;
166 
167   CallEvent(const Expr *E, ProgramStateRef state, const LocationContext *lctx)
168       : State(std::move(state)), LCtx(lctx), Origin(E) {}
169 
170   CallEvent(const Decl *D, ProgramStateRef state, const LocationContext *lctx)
171       : State(std::move(state)), LCtx(lctx), Origin(D) {}
172 
173   // DO NOT MAKE PUBLIC
174   CallEvent(const CallEvent &Original)
175       : State(Original.State), LCtx(Original.LCtx), Origin(Original.Origin),
176         Data(Original.Data), Location(Original.Location) {}
177 
178   /// Copies this CallEvent, with vtable intact, into a new block of memory.
179   virtual void cloneTo(void *Dest) const = 0;
180 
181   /// Get the value of arbitrary expressions at this point in the path.
182   SVal getSVal(const Stmt *S) const {
183     return getState()->getSVal(S, getLocationContext());
184   }
185 
186   using ValueList = SmallVectorImpl<SVal>;
187 
188   /// Used to specify non-argument regions that will be invalidated as a
189   /// result of this call.
190   virtual void getExtraInvalidatedValues(ValueList &Values,
191                  RegionAndSymbolInvalidationTraits *ETraits) const {}
192 
193 public:
194   CallEvent &operator=(const CallEvent &) = delete;
195   virtual ~CallEvent() = default;
196 
197   /// Returns the kind of call this is.
198   virtual Kind getKind() const = 0;
199 
200   /// Returns the declaration of the function or method that will be
201   /// called. May be null.
202   virtual const Decl *getDecl() const {
203     return Origin.dyn_cast<const Decl *>();
204   }
205 
206   /// The state in which the call is being evaluated.
207   const ProgramStateRef &getState() const {
208     return State;
209   }
210 
211   /// The context in which the call is being evaluated.
212   const LocationContext *getLocationContext() const {
213     return LCtx;
214   }
215 
216   /// Returns the definition of the function or method that will be
217   /// called.
218   virtual RuntimeDefinition getRuntimeDefinition() const = 0;
219 
220   /// Returns the expression whose value will be the result of this call.
221   /// May be null.
222   const Expr *getOriginExpr() const {
223     return Origin.dyn_cast<const Expr *>();
224   }
225 
226   /// Returns the number of arguments (explicit and implicit).
227   ///
228   /// Note that this may be greater than the number of parameters in the
229   /// callee's declaration, and that it may include arguments not written in
230   /// the source.
231   virtual unsigned getNumArgs() const = 0;
232 
233   /// Returns true if the callee is known to be from a system header.
234   bool isInSystemHeader() const {
235     const Decl *D = getDecl();
236     if (!D)
237       return false;
238 
239     SourceLocation Loc = D->getLocation();
240     if (Loc.isValid()) {
241       const SourceManager &SM =
242         getState()->getStateManager().getContext().getSourceManager();
243       return SM.isInSystemHeader(D->getLocation());
244     }
245 
246     // Special case for implicitly-declared global operator new/delete.
247     // These should be considered system functions.
248     if (const auto *FD = dyn_cast<FunctionDecl>(D))
249       return FD->isOverloadedOperator() && FD->isImplicit() && FD->isGlobal();
250 
251     return false;
252   }
253 
254   /// Returns true if the CallEvent is a call to a function that matches
255   /// the CallDescription.
256   ///
257   /// Note that this function is not intended to be used to match Obj-C method
258   /// calls.
259   bool isCalled(const CallDescription &CD) const;
260 
261   /// Returns a source range for the entire call, suitable for
262   /// outputting in diagnostics.
263   virtual SourceRange getSourceRange() const {
264     return getOriginExpr()->getSourceRange();
265   }
266 
267   /// Returns the value of a given argument at the time of the call.
268   virtual SVal getArgSVal(unsigned Index) const;
269 
270   /// Returns the expression associated with a given argument.
271   /// May be null if this expression does not appear in the source.
272   virtual const Expr *getArgExpr(unsigned Index) const { return nullptr; }
273 
274   /// Returns the source range for errors associated with this argument.
275   ///
276   /// May be invalid if the argument is not written in the source.
277   virtual SourceRange getArgSourceRange(unsigned Index) const;
278 
279   /// Returns the result type, adjusted for references.
280   QualType getResultType() const;
281 
282   /// Returns the return value of the call.
283   ///
284   /// This should only be called if the CallEvent was created using a state in
285   /// which the return value has already been bound to the origin expression.
286   SVal getReturnValue() const;
287 
288   /// Returns true if the type of any of the non-null arguments satisfies
289   /// the condition.
290   bool hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const;
291 
292   /// Returns true if any of the arguments appear to represent callbacks.
293   bool hasNonZeroCallbackArg() const;
294 
295   /// Returns true if any of the arguments is void*.
296   bool hasVoidPointerToNonConstArg() const;
297 
298   /// Returns true if any of the arguments are known to escape to long-
299   /// term storage, even if this method will not modify them.
300   // NOTE: The exact semantics of this are still being defined!
301   // We don't really want a list of hardcoded exceptions in the long run,
302   // but we don't want duplicated lists of known APIs in the short term either.
303   virtual bool argumentsMayEscape() const {
304     return hasNonZeroCallbackArg();
305   }
306 
307   /// Returns true if the callee is an externally-visible function in the
308   /// top-level namespace, such as \c malloc.
309   ///
310   /// You can use this call to determine that a particular function really is
311   /// a library function and not, say, a C++ member function with the same name.
312   ///
313   /// If a name is provided, the function must additionally match the given
314   /// name.
315   ///
316   /// Note that this deliberately excludes C++ library functions in the \c std
317   /// namespace, but will include C library functions accessed through the
318   /// \c std namespace. This also does not check if the function is declared
319   /// as 'extern "C"', or if it uses C++ name mangling.
320   // FIXME: Add a helper for checking namespaces.
321   // FIXME: Move this down to AnyFunctionCall once checkers have more
322   // precise callbacks.
323   bool isGlobalCFunction(StringRef SpecificName = StringRef()) const;
324 
325   /// Returns the name of the callee, if its name is a simple identifier.
326   ///
327   /// Note that this will fail for Objective-C methods, blocks, and C++
328   /// overloaded operators. The former is named by a Selector rather than a
329   /// simple identifier, and the latter two do not have names.
330   // FIXME: Move this down to AnyFunctionCall once checkers have more
331   // precise callbacks.
332   const IdentifierInfo *getCalleeIdentifier() const {
333     const auto *ND = dyn_cast_or_null<NamedDecl>(getDecl());
334     if (!ND)
335       return nullptr;
336     return ND->getIdentifier();
337   }
338 
339   /// Returns an appropriate ProgramPoint for this call.
340   ProgramPoint getProgramPoint(bool IsPreVisit = false,
341                                const ProgramPointTag *Tag = nullptr) const;
342 
343   /// Returns a new state with all argument regions invalidated.
344   ///
345   /// This accepts an alternate state in case some processing has already
346   /// occurred.
347   ProgramStateRef invalidateRegions(unsigned BlockCount,
348                                     ProgramStateRef Orig = nullptr) const;
349 
350   using FrameBindingTy = std::pair<SVal, SVal>;
351   using BindingsTy = SmallVectorImpl<FrameBindingTy>;
352 
353   /// Populates the given SmallVector with the bindings in the callee's stack
354   /// frame at the start of this call.
355   virtual void getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
356                                             BindingsTy &Bindings) const = 0;
357 
358   /// Returns a copy of this CallEvent, but using the given state.
359   template <typename T>
360   CallEventRef<T> cloneWithState(ProgramStateRef NewState) const;
361 
362   /// Returns a copy of this CallEvent, but using the given state.
363   CallEventRef<> cloneWithState(ProgramStateRef NewState) const {
364     return cloneWithState<CallEvent>(NewState);
365   }
366 
367   /// Returns true if this is a statement is a function or method call
368   /// of some kind.
369   static bool isCallStmt(const Stmt *S);
370 
371   /// Returns the result type of a function or method declaration.
372   ///
373   /// This will return a null QualType if the result type cannot be determined.
374   static QualType getDeclaredResultType(const Decl *D);
375 
376   /// Returns true if the given decl is known to be variadic.
377   ///
378   /// \p D must not be null.
379   static bool isVariadic(const Decl *D);
380 
381   /// Returns AnalysisDeclContext for the callee stack frame.
382   /// Currently may fail; returns null on failure.
383   AnalysisDeclContext *getCalleeAnalysisDeclContext() const;
384 
385   /// Returns the callee stack frame. That stack frame will only be entered
386   /// during analysis if the call is inlined, but it may still be useful
387   /// in intermediate calculations even if the call isn't inlined.
388   /// May fail; returns null on failure.
389   const StackFrameContext *getCalleeStackFrame(unsigned BlockCount) const;
390 
391   /// Returns memory location for a parameter variable within the callee stack
392   /// frame. May fail; returns null on failure.
393   const VarRegion *getParameterLocation(unsigned Index,
394                                         unsigned BlockCount) const;
395 
396   /// Returns true if on the current path, the argument was constructed by
397   /// calling a C++ constructor over it. This is an internal detail of the
398   /// analysis which doesn't necessarily represent the program semantics:
399   /// if we are supposed to construct an argument directly, we may still
400   /// not do that because we don't know how (i.e., construction context is
401   /// unavailable in the CFG or not supported by the analyzer).
402   bool isArgumentConstructedDirectly(unsigned Index) const {
403     // This assumes that the object was not yet removed from the state.
404     return ExprEngine::getObjectUnderConstruction(
405         getState(), {getOriginExpr(), Index}, getLocationContext()).hasValue();
406   }
407 
408   /// Some calls have parameter numbering mismatched from argument numbering.
409   /// This function converts an argument index to the corresponding
410   /// parameter index. Returns None is the argument doesn't correspond
411   /// to any parameter variable.
412   virtual Optional<unsigned>
413   getAdjustedParameterIndex(unsigned ASTArgumentIndex) const {
414     return ASTArgumentIndex;
415   }
416 
417   /// Some call event sub-classes conveniently adjust mismatching AST indices
418   /// to match parameter indices. This function converts an argument index
419   /// as understood by CallEvent to the argument index as understood by the AST.
420   virtual unsigned getASTArgumentIndex(unsigned CallArgumentIndex) const {
421     return CallArgumentIndex;
422   }
423 
424   // Iterator access to formal parameters and their types.
425 private:
426   struct GetTypeFn {
427     QualType operator()(ParmVarDecl *PD) const { return PD->getType(); }
428   };
429 
430 public:
431   /// Return call's formal parameters.
432   ///
433   /// Remember that the number of formal parameters may not match the number
434   /// of arguments for all calls. However, the first parameter will always
435   /// correspond with the argument value returned by \c getArgSVal(0).
436   virtual ArrayRef<ParmVarDecl *> parameters() const = 0;
437 
438   using param_type_iterator =
439       llvm::mapped_iterator<ArrayRef<ParmVarDecl *>::iterator, GetTypeFn>;
440 
441   /// Returns an iterator over the types of the call's formal parameters.
442   ///
443   /// This uses the callee decl found by default name lookup rather than the
444   /// definition because it represents a public interface, and probably has
445   /// more annotations.
446   param_type_iterator param_type_begin() const {
447     return llvm::map_iterator(parameters().begin(), GetTypeFn());
448   }
449   /// \sa param_type_begin()
450   param_type_iterator param_type_end() const {
451     return llvm::map_iterator(parameters().end(), GetTypeFn());
452   }
453 
454   // For debugging purposes only
455   void dump(raw_ostream &Out) const;
456   void dump() const;
457 };
458 
459 /// Represents a call to any sort of function that might have a
460 /// FunctionDecl.
461 class AnyFunctionCall : public CallEvent {
462 protected:
463   AnyFunctionCall(const Expr *E, ProgramStateRef St,
464                   const LocationContext *LCtx)
465       : CallEvent(E, St, LCtx) {}
466   AnyFunctionCall(const Decl *D, ProgramStateRef St,
467                   const LocationContext *LCtx)
468       : CallEvent(D, St, LCtx) {}
469   AnyFunctionCall(const AnyFunctionCall &Other) = default;
470 
471 public:
472   // This function is overridden by subclasses, but they must return
473   // a FunctionDecl.
474   const FunctionDecl *getDecl() const override {
475     return cast<FunctionDecl>(CallEvent::getDecl());
476   }
477 
478   RuntimeDefinition getRuntimeDefinition() const override;
479 
480   bool argumentsMayEscape() const override;
481 
482   void getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
483                                     BindingsTy &Bindings) const override;
484 
485   ArrayRef<ParmVarDecl *> parameters() const override;
486 
487   static bool classof(const CallEvent *CA) {
488     return CA->getKind() >= CE_BEG_FUNCTION_CALLS &&
489            CA->getKind() <= CE_END_FUNCTION_CALLS;
490   }
491 };
492 
493 /// Represents a C function or static C++ member function call.
494 ///
495 /// Example: \c fun()
496 class SimpleFunctionCall : public AnyFunctionCall {
497   friend class CallEventManager;
498 
499 protected:
500   SimpleFunctionCall(const CallExpr *CE, ProgramStateRef St,
501                      const LocationContext *LCtx)
502       : AnyFunctionCall(CE, St, LCtx) {}
503   SimpleFunctionCall(const SimpleFunctionCall &Other) = default;
504 
505   void cloneTo(void *Dest) const override {
506     new (Dest) SimpleFunctionCall(*this);
507   }
508 
509 public:
510   virtual const CallExpr *getOriginExpr() const {
511     return cast<CallExpr>(AnyFunctionCall::getOriginExpr());
512   }
513 
514   const FunctionDecl *getDecl() const override;
515 
516   unsigned getNumArgs() const override { return getOriginExpr()->getNumArgs(); }
517 
518   const Expr *getArgExpr(unsigned Index) const override {
519     return getOriginExpr()->getArg(Index);
520   }
521 
522   Kind getKind() const override { return CE_Function; }
523 
524   static bool classof(const CallEvent *CA) {
525     return CA->getKind() == CE_Function;
526   }
527 };
528 
529 /// Represents a call to a block.
530 ///
531 /// Example: <tt>^{ /* ... */ }()</tt>
532 class BlockCall : public CallEvent {
533   friend class CallEventManager;
534 
535 protected:
536   BlockCall(const CallExpr *CE, ProgramStateRef St,
537             const LocationContext *LCtx)
538       : CallEvent(CE, St, LCtx) {}
539   BlockCall(const BlockCall &Other) = default;
540 
541   void cloneTo(void *Dest) const override { new (Dest) BlockCall(*this); }
542 
543   void getExtraInvalidatedValues(ValueList &Values,
544          RegionAndSymbolInvalidationTraits *ETraits) const override;
545 
546 public:
547   virtual const CallExpr *getOriginExpr() const {
548     return cast<CallExpr>(CallEvent::getOriginExpr());
549   }
550 
551   unsigned getNumArgs() const override { return getOriginExpr()->getNumArgs(); }
552 
553   const Expr *getArgExpr(unsigned Index) const override {
554     return getOriginExpr()->getArg(Index);
555   }
556 
557   /// Returns the region associated with this instance of the block.
558   ///
559   /// This may be NULL if the block's origin is unknown.
560   const BlockDataRegion *getBlockRegion() const;
561 
562   const BlockDecl *getDecl() const override {
563     const BlockDataRegion *BR = getBlockRegion();
564     if (!BR)
565       return nullptr;
566     return BR->getDecl();
567   }
568 
569   bool isConversionFromLambda() const {
570     const BlockDecl *BD = getDecl();
571     if (!BD)
572       return false;
573 
574     return BD->isConversionFromLambda();
575   }
576 
577   /// For a block converted from a C++ lambda, returns the block
578   /// VarRegion for the variable holding the captured C++ lambda record.
579   const VarRegion *getRegionStoringCapturedLambda() const {
580     assert(isConversionFromLambda());
581     const BlockDataRegion *BR = getBlockRegion();
582     assert(BR && "Block converted from lambda must have a block region");
583 
584     auto I = BR->referenced_vars_begin();
585     assert(I != BR->referenced_vars_end());
586 
587     return I.getCapturedRegion();
588   }
589 
590   RuntimeDefinition getRuntimeDefinition() const override {
591     if (!isConversionFromLambda())
592       return RuntimeDefinition(getDecl());
593 
594     // Clang converts lambdas to blocks with an implicit user-defined
595     // conversion operator method on the lambda record that looks (roughly)
596     // like:
597     //
598     // typedef R(^block_type)(P1, P2, ...);
599     // operator block_type() const {
600     //   auto Lambda = *this;
601     //   return ^(P1 p1, P2 p2, ...){
602     //     /* return Lambda(p1, p2, ...); */
603     //   };
604     // }
605     //
606     // Here R is the return type of the lambda and P1, P2, ... are
607     // its parameter types. 'Lambda' is a fake VarDecl captured by the block
608     // that is initialized to a copy of the lambda.
609     //
610     // Sema leaves the body of a lambda-converted block empty (it is
611     // produced by CodeGen), so we can't analyze it directly. Instead, we skip
612     // the block body and analyze the operator() method on the captured lambda.
613     const VarDecl *LambdaVD = getRegionStoringCapturedLambda()->getDecl();
614     const CXXRecordDecl *LambdaDecl = LambdaVD->getType()->getAsCXXRecordDecl();
615     CXXMethodDecl* LambdaCallOperator = LambdaDecl->getLambdaCallOperator();
616 
617     return RuntimeDefinition(LambdaCallOperator);
618   }
619 
620   bool argumentsMayEscape() const override {
621     return true;
622   }
623 
624   void getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
625                                     BindingsTy &Bindings) const override;
626 
627   ArrayRef<ParmVarDecl*> parameters() const override;
628 
629   Kind getKind() const override { return CE_Block; }
630 
631   static bool classof(const CallEvent *CA) {
632     return CA->getKind() == CE_Block;
633   }
634 };
635 
636 /// Represents a non-static C++ member function call, no matter how
637 /// it is written.
638 class CXXInstanceCall : public AnyFunctionCall {
639 protected:
640   CXXInstanceCall(const CallExpr *CE, ProgramStateRef St,
641                   const LocationContext *LCtx)
642       : AnyFunctionCall(CE, St, LCtx) {}
643   CXXInstanceCall(const FunctionDecl *D, ProgramStateRef St,
644                   const LocationContext *LCtx)
645       : AnyFunctionCall(D, St, LCtx) {}
646   CXXInstanceCall(const CXXInstanceCall &Other) = default;
647 
648   void getExtraInvalidatedValues(ValueList &Values,
649          RegionAndSymbolInvalidationTraits *ETraits) const override;
650 
651 public:
652   /// Returns the expression representing the implicit 'this' object.
653   virtual const Expr *getCXXThisExpr() const { return nullptr; }
654 
655   /// Returns the value of the implicit 'this' object.
656   virtual SVal getCXXThisVal() const;
657 
658   const FunctionDecl *getDecl() const override;
659 
660   RuntimeDefinition getRuntimeDefinition() const override;
661 
662   void getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
663                                     BindingsTy &Bindings) const override;
664 
665   static bool classof(const CallEvent *CA) {
666     return CA->getKind() >= CE_BEG_CXX_INSTANCE_CALLS &&
667            CA->getKind() <= CE_END_CXX_INSTANCE_CALLS;
668   }
669 };
670 
671 /// Represents a non-static C++ member function call.
672 ///
673 /// Example: \c obj.fun()
674 class CXXMemberCall : public CXXInstanceCall {
675   friend class CallEventManager;
676 
677 protected:
678   CXXMemberCall(const CXXMemberCallExpr *CE, ProgramStateRef St,
679                 const LocationContext *LCtx)
680       : CXXInstanceCall(CE, St, LCtx) {}
681   CXXMemberCall(const CXXMemberCall &Other) = default;
682 
683   void cloneTo(void *Dest) const override { new (Dest) CXXMemberCall(*this); }
684 
685 public:
686   virtual const CXXMemberCallExpr *getOriginExpr() const {
687     return cast<CXXMemberCallExpr>(CXXInstanceCall::getOriginExpr());
688   }
689 
690   unsigned getNumArgs() const override {
691     if (const CallExpr *CE = getOriginExpr())
692       return CE->getNumArgs();
693     return 0;
694   }
695 
696   const Expr *getArgExpr(unsigned Index) const override {
697     return getOriginExpr()->getArg(Index);
698   }
699 
700   const Expr *getCXXThisExpr() const override;
701 
702   RuntimeDefinition getRuntimeDefinition() const override;
703 
704   Kind getKind() const override { return CE_CXXMember; }
705 
706   static bool classof(const CallEvent *CA) {
707     return CA->getKind() == CE_CXXMember;
708   }
709 };
710 
711 /// Represents a C++ overloaded operator call where the operator is
712 /// implemented as a non-static member function.
713 ///
714 /// Example: <tt>iter + 1</tt>
715 class CXXMemberOperatorCall : public CXXInstanceCall {
716   friend class CallEventManager;
717 
718 protected:
719   CXXMemberOperatorCall(const CXXOperatorCallExpr *CE, ProgramStateRef St,
720                         const LocationContext *LCtx)
721       : CXXInstanceCall(CE, St, LCtx) {}
722   CXXMemberOperatorCall(const CXXMemberOperatorCall &Other) = default;
723 
724   void cloneTo(void *Dest) const override {
725     new (Dest) CXXMemberOperatorCall(*this);
726   }
727 
728 public:
729   virtual const CXXOperatorCallExpr *getOriginExpr() const {
730     return cast<CXXOperatorCallExpr>(CXXInstanceCall::getOriginExpr());
731   }
732 
733   unsigned getNumArgs() const override {
734     return getOriginExpr()->getNumArgs() - 1;
735   }
736 
737   const Expr *getArgExpr(unsigned Index) const override {
738     return getOriginExpr()->getArg(Index + 1);
739   }
740 
741   const Expr *getCXXThisExpr() const override;
742 
743   Kind getKind() const override { return CE_CXXMemberOperator; }
744 
745   static bool classof(const CallEvent *CA) {
746     return CA->getKind() == CE_CXXMemberOperator;
747   }
748 
749   Optional<unsigned>
750   getAdjustedParameterIndex(unsigned ASTArgumentIndex) const override {
751     // For member operator calls argument 0 on the expression corresponds
752     // to implicit this-parameter on the declaration.
753     return (ASTArgumentIndex > 0) ? Optional<unsigned>(ASTArgumentIndex - 1)
754                                   : None;
755   }
756 
757   unsigned getASTArgumentIndex(unsigned CallArgumentIndex) const override {
758     // For member operator calls argument 0 on the expression corresponds
759     // to implicit this-parameter on the declaration.
760     return CallArgumentIndex + 1;
761   }
762 };
763 
764 /// Represents an implicit call to a C++ destructor.
765 ///
766 /// This can occur at the end of a scope (for automatic objects), at the end
767 /// of a full-expression (for temporaries), or as part of a delete.
768 class CXXDestructorCall : public CXXInstanceCall {
769   friend class CallEventManager;
770 
771 protected:
772   using DtorDataTy = llvm::PointerIntPair<const MemRegion *, 1, bool>;
773 
774   /// Creates an implicit destructor.
775   ///
776   /// \param DD The destructor that will be called.
777   /// \param Trigger The statement whose completion causes this destructor call.
778   /// \param Target The object region to be destructed.
779   /// \param St The path-sensitive state at this point in the program.
780   /// \param LCtx The location context at this point in the program.
781   CXXDestructorCall(const CXXDestructorDecl *DD, const Stmt *Trigger,
782                     const MemRegion *Target, bool IsBaseDestructor,
783                     ProgramStateRef St, const LocationContext *LCtx)
784       : CXXInstanceCall(DD, St, LCtx) {
785     Data = DtorDataTy(Target, IsBaseDestructor).getOpaqueValue();
786     Location = Trigger->getEndLoc();
787   }
788 
789   CXXDestructorCall(const CXXDestructorCall &Other) = default;
790 
791   void cloneTo(void *Dest) const override {new (Dest) CXXDestructorCall(*this);}
792 
793 public:
794   SourceRange getSourceRange() const override { return Location; }
795   unsigned getNumArgs() const override { return 0; }
796 
797   RuntimeDefinition getRuntimeDefinition() const override;
798 
799   /// Returns the value of the implicit 'this' object.
800   SVal getCXXThisVal() const override;
801 
802   /// Returns true if this is a call to a base class destructor.
803   bool isBaseDestructor() const {
804     return DtorDataTy::getFromOpaqueValue(Data).getInt();
805   }
806 
807   Kind getKind() const override { return CE_CXXDestructor; }
808 
809   static bool classof(const CallEvent *CA) {
810     return CA->getKind() == CE_CXXDestructor;
811   }
812 };
813 
814 /// Represents a call to a C++ constructor.
815 ///
816 /// Example: \c T(1)
817 class CXXConstructorCall : public AnyFunctionCall {
818   friend class CallEventManager;
819 
820 protected:
821   /// Creates a constructor call.
822   ///
823   /// \param CE The constructor expression as written in the source.
824   /// \param Target The region where the object should be constructed. If NULL,
825   ///               a new symbolic region will be used.
826   /// \param St The path-sensitive state at this point in the program.
827   /// \param LCtx The location context at this point in the program.
828   CXXConstructorCall(const CXXConstructExpr *CE, const MemRegion *Target,
829                      ProgramStateRef St, const LocationContext *LCtx)
830       : AnyFunctionCall(CE, St, LCtx) {
831     Data = Target;
832   }
833 
834   CXXConstructorCall(const CXXConstructorCall &Other) = default;
835 
836   void cloneTo(void *Dest) const override { new (Dest) CXXConstructorCall(*this); }
837 
838   void getExtraInvalidatedValues(ValueList &Values,
839          RegionAndSymbolInvalidationTraits *ETraits) const override;
840 
841 public:
842   virtual const CXXConstructExpr *getOriginExpr() const {
843     return cast<CXXConstructExpr>(AnyFunctionCall::getOriginExpr());
844   }
845 
846   const CXXConstructorDecl *getDecl() const override {
847     return getOriginExpr()->getConstructor();
848   }
849 
850   unsigned getNumArgs() const override { return getOriginExpr()->getNumArgs(); }
851 
852   const Expr *getArgExpr(unsigned Index) const override {
853     return getOriginExpr()->getArg(Index);
854   }
855 
856   /// Returns the value of the implicit 'this' object.
857   SVal getCXXThisVal() const;
858 
859   void getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
860                                     BindingsTy &Bindings) const override;
861 
862   Kind getKind() const override { return CE_CXXConstructor; }
863 
864   static bool classof(const CallEvent *CA) {
865     return CA->getKind() == CE_CXXConstructor;
866   }
867 };
868 
869 /// Represents the memory allocation call in a C++ new-expression.
870 ///
871 /// This is a call to "operator new".
872 class CXXAllocatorCall : public AnyFunctionCall {
873   friend class CallEventManager;
874 
875 protected:
876   CXXAllocatorCall(const CXXNewExpr *E, ProgramStateRef St,
877                    const LocationContext *LCtx)
878       : AnyFunctionCall(E, St, LCtx) {}
879   CXXAllocatorCall(const CXXAllocatorCall &Other) = default;
880 
881   void cloneTo(void *Dest) const override { new (Dest) CXXAllocatorCall(*this); }
882 
883 public:
884   virtual const CXXNewExpr *getOriginExpr() const {
885     return cast<CXXNewExpr>(AnyFunctionCall::getOriginExpr());
886   }
887 
888   const FunctionDecl *getDecl() const override {
889     return getOriginExpr()->getOperatorNew();
890   }
891 
892   /// Number of non-placement arguments to the call. It is equal to 2 for
893   /// C++17 aligned operator new() calls that have alignment implicitly
894   /// passed as the second argument, and to 1 for other operator new() calls.
895   unsigned getNumImplicitArgs() const {
896     return getOriginExpr()->passAlignment() ? 2 : 1;
897   }
898 
899   unsigned getNumArgs() const override {
900     return getOriginExpr()->getNumPlacementArgs() + getNumImplicitArgs();
901   }
902 
903   const Expr *getArgExpr(unsigned Index) const override {
904     // The first argument of an allocator call is the size of the allocation.
905     if (Index < getNumImplicitArgs())
906       return nullptr;
907     return getOriginExpr()->getPlacementArg(Index - getNumImplicitArgs());
908   }
909 
910   /// Number of placement arguments to the operator new() call. For example,
911   /// standard std::nothrow operator new and standard placement new both have
912   /// 1 implicit argument (size) and 1 placement argument, while regular
913   /// operator new() has 1 implicit argument and 0 placement arguments.
914   const Expr *getPlacementArgExpr(unsigned Index) const {
915     return getOriginExpr()->getPlacementArg(Index);
916   }
917 
918   Kind getKind() const override { return CE_CXXAllocator; }
919 
920   static bool classof(const CallEvent *CE) {
921     return CE->getKind() == CE_CXXAllocator;
922   }
923 };
924 
925 /// Represents the ways an Objective-C message send can occur.
926 //
927 // Note to maintainers: OCM_Message should always be last, since it does not
928 // need to fit in the Data field's low bits.
929 enum ObjCMessageKind {
930   OCM_PropertyAccess,
931   OCM_Subscript,
932   OCM_Message
933 };
934 
935 /// Represents any expression that calls an Objective-C method.
936 ///
937 /// This includes all of the kinds listed in ObjCMessageKind.
938 class ObjCMethodCall : public CallEvent {
939   friend class CallEventManager;
940 
941   const PseudoObjectExpr *getContainingPseudoObjectExpr() const;
942 
943 protected:
944   ObjCMethodCall(const ObjCMessageExpr *Msg, ProgramStateRef St,
945                  const LocationContext *LCtx)
946       : CallEvent(Msg, St, LCtx) {
947     Data = nullptr;
948   }
949 
950   ObjCMethodCall(const ObjCMethodCall &Other) = default;
951 
952   void cloneTo(void *Dest) const override { new (Dest) ObjCMethodCall(*this); }
953 
954   void getExtraInvalidatedValues(ValueList &Values,
955          RegionAndSymbolInvalidationTraits *ETraits) const override;
956 
957   /// Check if the selector may have multiple definitions (may have overrides).
958   virtual bool canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
959                                         Selector Sel) const;
960 
961 public:
962   virtual const ObjCMessageExpr *getOriginExpr() const {
963     return cast<ObjCMessageExpr>(CallEvent::getOriginExpr());
964   }
965 
966   const ObjCMethodDecl *getDecl() const override {
967     return getOriginExpr()->getMethodDecl();
968   }
969 
970   unsigned getNumArgs() const override {
971     return getOriginExpr()->getNumArgs();
972   }
973 
974   const Expr *getArgExpr(unsigned Index) const override {
975     return getOriginExpr()->getArg(Index);
976   }
977 
978   bool isInstanceMessage() const {
979     return getOriginExpr()->isInstanceMessage();
980   }
981 
982   ObjCMethodFamily getMethodFamily() const {
983     return getOriginExpr()->getMethodFamily();
984   }
985 
986   Selector getSelector() const {
987     return getOriginExpr()->getSelector();
988   }
989 
990   SourceRange getSourceRange() const override;
991 
992   /// Returns the value of the receiver at the time of this call.
993   SVal getReceiverSVal() const;
994 
995   /// Return the value of 'self' if available.
996   SVal getSelfSVal() const;
997 
998   /// Get the interface for the receiver.
999   ///
1000   /// This works whether this is an instance message or a class message.
1001   /// However, it currently just uses the static type of the receiver.
1002   const ObjCInterfaceDecl *getReceiverInterface() const {
1003     return getOriginExpr()->getReceiverInterface();
1004   }
1005 
1006   /// Checks if the receiver refers to 'self' or 'super'.
1007   bool isReceiverSelfOrSuper() const;
1008 
1009   /// Returns how the message was written in the source (property access,
1010   /// subscript, or explicit message send).
1011   ObjCMessageKind getMessageKind() const;
1012 
1013   /// Returns true if this property access or subscript is a setter (has the
1014   /// form of an assignment).
1015   bool isSetter() const {
1016     switch (getMessageKind()) {
1017     case OCM_Message:
1018       llvm_unreachable("This is not a pseudo-object access!");
1019     case OCM_PropertyAccess:
1020       return getNumArgs() > 0;
1021     case OCM_Subscript:
1022       return getNumArgs() > 1;
1023     }
1024     llvm_unreachable("Unknown message kind");
1025   }
1026 
1027   // Returns the property accessed by this method, either explicitly via
1028   // property syntax or implicitly via a getter or setter method. Returns
1029   // nullptr if the call is not a prooperty access.
1030   const ObjCPropertyDecl *getAccessedProperty() const;
1031 
1032   RuntimeDefinition getRuntimeDefinition() const override;
1033 
1034   bool argumentsMayEscape() const override;
1035 
1036   void getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
1037                                     BindingsTy &Bindings) const override;
1038 
1039   ArrayRef<ParmVarDecl*> parameters() const override;
1040 
1041   Kind getKind() const override { return CE_ObjCMessage; }
1042 
1043   static bool classof(const CallEvent *CA) {
1044     return CA->getKind() == CE_ObjCMessage;
1045   }
1046 };
1047 
1048 enum CallDescriptionFlags : int {
1049   /// Describes a C standard function that is sometimes implemented as a macro
1050   /// that expands to a compiler builtin with some __builtin prefix.
1051   /// The builtin may as well have a few extra arguments on top of the requested
1052   /// number of arguments.
1053   CDF_MaybeBuiltin = 1 << 0,
1054 };
1055 
1056 /// This class represents a description of a function call using the number of
1057 /// arguments and the name of the function.
1058 class CallDescription {
1059   friend CallEvent;
1060 
1061   mutable IdentifierInfo *II = nullptr;
1062   mutable bool IsLookupDone = false;
1063   // The list of the qualified names used to identify the specified CallEvent,
1064   // e.g. "{a, b}" represent the qualified names, like "a::b".
1065   std::vector<const char *> QualifiedName;
1066   Optional<unsigned> RequiredArgs;
1067   Optional<size_t> RequiredParams;
1068   int Flags;
1069 
1070   // A constructor helper.
1071   static Optional<size_t> readRequiredParams(Optional<unsigned> RequiredArgs,
1072                                              Optional<size_t> RequiredParams) {
1073     if (RequiredParams)
1074       return RequiredParams;
1075     if (RequiredArgs)
1076       return static_cast<size_t>(*RequiredArgs);
1077     return None;
1078   }
1079 
1080 public:
1081   /// Constructs a CallDescription object.
1082   ///
1083   /// @param QualifiedName The list of the name qualifiers of the function that
1084   /// will be matched. The user is allowed to skip any of the qualifiers.
1085   /// For example, {"std", "basic_string", "c_str"} would match both
1086   /// std::basic_string<...>::c_str() and std::__1::basic_string<...>::c_str().
1087   ///
1088   /// @param RequiredArgs The number of arguments that is expected to match a
1089   /// call. Omit this parameter to match every occurrence of call with a given
1090   /// name regardless the number of arguments.
1091   CallDescription(int Flags, ArrayRef<const char *> QualifiedName,
1092                   Optional<unsigned> RequiredArgs = None,
1093                   Optional<size_t> RequiredParams = None)
1094       : QualifiedName(QualifiedName), RequiredArgs(RequiredArgs),
1095         RequiredParams(readRequiredParams(RequiredArgs, RequiredParams)),
1096         Flags(Flags) {}
1097 
1098   /// Construct a CallDescription with default flags.
1099   CallDescription(ArrayRef<const char *> QualifiedName,
1100                   Optional<unsigned> RequiredArgs = None,
1101                   Optional<size_t> RequiredParams = None)
1102       : CallDescription(0, QualifiedName, RequiredArgs, RequiredParams) {}
1103 
1104   /// Get the name of the function that this object matches.
1105   StringRef getFunctionName() const { return QualifiedName.back(); }
1106 };
1107 
1108 /// An immutable map from CallDescriptions to arbitrary data. Provides a unified
1109 /// way for checkers to react on function calls.
1110 template <typename T> class CallDescriptionMap {
1111   // Some call descriptions aren't easily hashable (eg., the ones with qualified
1112   // names in which some sections are omitted), so let's put them
1113   // in a simple vector and use linear lookup.
1114   // TODO: Implement an actual map for fast lookup for "hashable" call
1115   // descriptions (eg., the ones for C functions that just match the name).
1116   std::vector<std::pair<CallDescription, T>> LinearMap;
1117 
1118 public:
1119   CallDescriptionMap(
1120       std::initializer_list<std::pair<CallDescription, T>> &&List)
1121       : LinearMap(List) {}
1122 
1123   ~CallDescriptionMap() = default;
1124 
1125   // These maps are usually stored once per checker, so let's make sure
1126   // we don't do redundant copies.
1127   CallDescriptionMap(const CallDescriptionMap &) = delete;
1128   CallDescriptionMap &operator=(const CallDescription &) = delete;
1129 
1130   const T *lookup(const CallEvent &Call) const {
1131     // Slow path: linear lookup.
1132     // TODO: Implement some sort of fast path.
1133     for (const std::pair<CallDescription, T> &I : LinearMap)
1134       if (Call.isCalled(I.first))
1135         return &I.second;
1136 
1137     return nullptr;
1138   }
1139 };
1140 
1141 /// Manages the lifetime of CallEvent objects.
1142 ///
1143 /// CallEventManager provides a way to create arbitrary CallEvents "on the
1144 /// stack" as if they were value objects by keeping a cache of CallEvent-sized
1145 /// memory blocks. The CallEvents created by CallEventManager are only valid
1146 /// for the lifetime of the OwnedCallEvent that holds them; right now these
1147 /// objects cannot be copied and ownership cannot be transferred.
1148 class CallEventManager {
1149   friend class CallEvent;
1150 
1151   llvm::BumpPtrAllocator &Alloc;
1152   SmallVector<void *, 8> Cache;
1153 
1154   using CallEventTemplateTy = SimpleFunctionCall;
1155 
1156   void reclaim(const void *Memory) {
1157     Cache.push_back(const_cast<void *>(Memory));
1158   }
1159 
1160   /// Returns memory that can be initialized as a CallEvent.
1161   void *allocate() {
1162     if (Cache.empty())
1163       return Alloc.Allocate<CallEventTemplateTy>();
1164     else
1165       return Cache.pop_back_val();
1166   }
1167 
1168   template <typename T, typename Arg>
1169   T *create(Arg A, ProgramStateRef St, const LocationContext *LCtx) {
1170     static_assert(sizeof(T) == sizeof(CallEventTemplateTy),
1171                   "CallEvent subclasses are not all the same size");
1172     return new (allocate()) T(A, St, LCtx);
1173   }
1174 
1175   template <typename T, typename Arg1, typename Arg2>
1176   T *create(Arg1 A1, Arg2 A2, ProgramStateRef St, const LocationContext *LCtx) {
1177     static_assert(sizeof(T) == sizeof(CallEventTemplateTy),
1178                   "CallEvent subclasses are not all the same size");
1179     return new (allocate()) T(A1, A2, St, LCtx);
1180   }
1181 
1182   template <typename T, typename Arg1, typename Arg2, typename Arg3>
1183   T *create(Arg1 A1, Arg2 A2, Arg3 A3, ProgramStateRef St,
1184             const LocationContext *LCtx) {
1185     static_assert(sizeof(T) == sizeof(CallEventTemplateTy),
1186                   "CallEvent subclasses are not all the same size");
1187     return new (allocate()) T(A1, A2, A3, St, LCtx);
1188   }
1189 
1190   template <typename T, typename Arg1, typename Arg2, typename Arg3,
1191             typename Arg4>
1192   T *create(Arg1 A1, Arg2 A2, Arg3 A3, Arg4 A4, ProgramStateRef St,
1193             const LocationContext *LCtx) {
1194     static_assert(sizeof(T) == sizeof(CallEventTemplateTy),
1195                   "CallEvent subclasses are not all the same size");
1196     return new (allocate()) T(A1, A2, A3, A4, St, LCtx);
1197   }
1198 
1199 public:
1200   CallEventManager(llvm::BumpPtrAllocator &alloc) : Alloc(alloc) {}
1201 
1202   /// Gets an outside caller given a callee context.
1203   CallEventRef<>
1204   getCaller(const StackFrameContext *CalleeCtx, ProgramStateRef State);
1205 
1206   /// Gets a call event for a function call, Objective-C method call,
1207   /// or a 'new' call.
1208   CallEventRef<>
1209   getCall(const Stmt *S, ProgramStateRef State,
1210           const LocationContext *LC);
1211 
1212   CallEventRef<>
1213   getSimpleCall(const CallExpr *E, ProgramStateRef State,
1214                 const LocationContext *LCtx);
1215 
1216   CallEventRef<ObjCMethodCall>
1217   getObjCMethodCall(const ObjCMessageExpr *E, ProgramStateRef State,
1218                     const LocationContext *LCtx) {
1219     return create<ObjCMethodCall>(E, State, LCtx);
1220   }
1221 
1222   CallEventRef<CXXConstructorCall>
1223   getCXXConstructorCall(const CXXConstructExpr *E, const MemRegion *Target,
1224                         ProgramStateRef State, const LocationContext *LCtx) {
1225     return create<CXXConstructorCall>(E, Target, State, LCtx);
1226   }
1227 
1228   CallEventRef<CXXDestructorCall>
1229   getCXXDestructorCall(const CXXDestructorDecl *DD, const Stmt *Trigger,
1230                        const MemRegion *Target, bool IsBase,
1231                        ProgramStateRef State, const LocationContext *LCtx) {
1232     return create<CXXDestructorCall>(DD, Trigger, Target, IsBase, State, LCtx);
1233   }
1234 
1235   CallEventRef<CXXAllocatorCall>
1236   getCXXAllocatorCall(const CXXNewExpr *E, ProgramStateRef State,
1237                       const LocationContext *LCtx) {
1238     return create<CXXAllocatorCall>(E, State, LCtx);
1239   }
1240 };
1241 
1242 template <typename T>
1243 CallEventRef<T> CallEvent::cloneWithState(ProgramStateRef NewState) const {
1244   assert(isa<T>(*this) && "Cloning to unrelated type");
1245   static_assert(sizeof(T) == sizeof(CallEvent),
1246                 "Subclasses may not add fields");
1247 
1248   if (NewState == State)
1249     return cast<T>(this);
1250 
1251   CallEventManager &Mgr = State->getStateManager().getCallEventManager();
1252   T *Copy = static_cast<T *>(Mgr.allocate());
1253   cloneTo(Copy);
1254   assert(Copy->getKind() == this->getKind() && "Bad copy");
1255 
1256   Copy->State = NewState;
1257   return Copy;
1258 }
1259 
1260 inline void CallEvent::Release() const {
1261   assert(RefCount > 0 && "Reference count is already zero.");
1262   --RefCount;
1263 
1264   if (RefCount > 0)
1265     return;
1266 
1267   CallEventManager &Mgr = State->getStateManager().getCallEventManager();
1268   Mgr.reclaim(this);
1269 
1270   this->~CallEvent();
1271 }
1272 
1273 } // namespace ento
1274 
1275 } // namespace clang
1276 
1277 namespace llvm {
1278 
1279 // Support isa<>, cast<>, and dyn_cast<> for CallEventRef.
1280 template<class T> struct simplify_type< clang::ento::CallEventRef<T>> {
1281   using SimpleType = const T *;
1282 
1283   static SimpleType
1284   getSimplifiedValue(clang::ento::CallEventRef<T> Val) {
1285     return Val.get();
1286   }
1287 };
1288 
1289 } // namespace llvm
1290 
1291 #endif // LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_CALLEVENT_H
1292