1 //===- CallEvent.h - Wrapper for all function and method calls --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file defines CallEvent and its subclasses, which represent path-
10 /// sensitive instances of different kinds of function and method calls
11 /// (C, C++, and Objective-C).
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_CALLEVENT_H
16 #define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_CALLEVENT_H
17 
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/AST/Type.h"
27 #include "clang/Basic/IdentifierTable.h"
28 #include "clang/Basic/LLVM.h"
29 #include "clang/Basic/SourceLocation.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
32 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
33 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
34 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/IntrusiveRefCntPtr.h"
37 #include "llvm/ADT/PointerIntPair.h"
38 #include "llvm/ADT/PointerUnion.h"
39 #include "llvm/ADT/STLExtras.h"
40 #include "llvm/ADT/SmallVector.h"
41 #include "llvm/ADT/StringRef.h"
42 #include "llvm/ADT/iterator_range.h"
43 #include "llvm/Support/Allocator.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include <cassert>
47 #include <limits>
48 #include <optional>
49 #include <utility>
50 
51 namespace clang {
52 
53 class LocationContext;
54 class ProgramPoint;
55 class ProgramPointTag;
56 class StackFrameContext;
57 
58 namespace ento {
59 
60 enum CallEventKind {
61   CE_Function,
62   CE_CXXMember,
63   CE_CXXMemberOperator,
64   CE_CXXDestructor,
65   CE_BEG_CXX_INSTANCE_CALLS = CE_CXXMember,
66   CE_END_CXX_INSTANCE_CALLS = CE_CXXDestructor,
67   CE_CXXConstructor,
68   CE_CXXInheritedConstructor,
69   CE_BEG_CXX_CONSTRUCTOR_CALLS = CE_CXXConstructor,
70   CE_END_CXX_CONSTRUCTOR_CALLS = CE_CXXInheritedConstructor,
71   CE_CXXAllocator,
72   CE_CXXDeallocator,
73   CE_BEG_FUNCTION_CALLS = CE_Function,
74   CE_END_FUNCTION_CALLS = CE_CXXDeallocator,
75   CE_Block,
76   CE_ObjCMessage
77 };
78 
79 class CallEvent;
80 
81 template<typename T = CallEvent>
82 class CallEventRef : public IntrusiveRefCntPtr<const T> {
83 public:
84   CallEventRef(const T *Call) : IntrusiveRefCntPtr<const T>(Call) {}
85   CallEventRef(const CallEventRef &Orig) : IntrusiveRefCntPtr<const T>(Orig) {}
86 
87   // The copy assignment operator is defined as deleted pending further
88   // motivation.
89   CallEventRef &operator=(const CallEventRef &) = delete;
90 
91   CallEventRef<T> cloneWithState(ProgramStateRef State) const {
92     return this->get()->template cloneWithState<T>(State);
93   }
94 
95   // Allow implicit conversions to a superclass type, since CallEventRef
96   // behaves like a pointer-to-const.
97   template <typename SuperT>
98   operator CallEventRef<SuperT> () const {
99     return this->get();
100   }
101 };
102 
103 /// \class RuntimeDefinition
104 /// Defines the runtime definition of the called function.
105 ///
106 /// Encapsulates the information we have about which Decl will be used
107 /// when the call is executed on the given path. When dealing with dynamic
108 /// dispatch, the information is based on DynamicTypeInfo and might not be
109 /// precise.
110 class RuntimeDefinition {
111   /// The Declaration of the function which could be called at runtime.
112   /// NULL if not available.
113   const Decl *D = nullptr;
114 
115   /// The region representing an object (ObjC/C++) on which the method is
116   /// called. With dynamic dispatch, the method definition depends on the
117   /// runtime type of this object. NULL when the DynamicTypeInfo is
118   /// precise.
119   const MemRegion *R = nullptr;
120 
121   /// A definition is foreign if it has been imported and newly created by the
122   /// ASTImporter. This can be true only if CTU is enabled.
123   const bool Foreign = false;
124 
125 public:
126   RuntimeDefinition() = default;
127   RuntimeDefinition(const Decl *InD): D(InD) {}
128   RuntimeDefinition(const Decl *InD, bool Foreign) : D(InD), Foreign(Foreign) {}
129   RuntimeDefinition(const Decl *InD, const MemRegion *InR): D(InD), R(InR) {}
130 
131   const Decl *getDecl() { return D; }
132   bool isForeign() const { return Foreign; }
133 
134   /// Check if the definition we have is precise.
135   /// If not, it is possible that the call dispatches to another definition at
136   /// execution time.
137   bool mayHaveOtherDefinitions() { return R != nullptr; }
138 
139   /// When other definitions are possible, returns the region whose runtime type
140   /// determines the method definition.
141   const MemRegion *getDispatchRegion() { return R; }
142 };
143 
144 /// Represents an abstract call to a function or method along a
145 /// particular path.
146 ///
147 /// CallEvents are created through the factory methods of CallEventManager.
148 ///
149 /// CallEvents should always be cheap to create and destroy. In order for
150 /// CallEventManager to be able to re-use CallEvent-sized memory blocks,
151 /// subclasses of CallEvent may not add any data members to the base class.
152 /// Use the "Data" and "Location" fields instead.
153 class CallEvent {
154 public:
155   using Kind = CallEventKind;
156 
157 private:
158   ProgramStateRef State;
159   const LocationContext *LCtx;
160   llvm::PointerUnion<const Expr *, const Decl *> Origin;
161   CFGBlock::ConstCFGElementRef ElemRef = {nullptr, 0};
162   mutable std::optional<bool> Foreign; // Set by CTU analysis.
163 
164 protected:
165   // This is user data for subclasses.
166   const void *Data;
167 
168   // This is user data for subclasses.
169   // This should come right before RefCount, so that the two fields can be
170   // packed together on LP64 platforms.
171   SourceLocation Location;
172 
173 private:
174   template <typename T> friend struct llvm::IntrusiveRefCntPtrInfo;
175 
176   mutable unsigned RefCount = 0;
177 
178   void Retain() const { ++RefCount; }
179   void Release() const;
180 
181 protected:
182   friend class CallEventManager;
183 
184   CallEvent(const Expr *E, ProgramStateRef state, const LocationContext *lctx,
185             CFGBlock::ConstCFGElementRef ElemRef)
186       : State(std::move(state)), LCtx(lctx), Origin(E), ElemRef(ElemRef) {}
187 
188   CallEvent(const Decl *D, ProgramStateRef state, const LocationContext *lctx,
189             CFGBlock::ConstCFGElementRef ElemRef)
190       : State(std::move(state)), LCtx(lctx), Origin(D), ElemRef(ElemRef) {}
191 
192   // DO NOT MAKE PUBLIC
193   CallEvent(const CallEvent &Original)
194       : State(Original.State), LCtx(Original.LCtx), Origin(Original.Origin),
195         ElemRef(Original.ElemRef), Data(Original.Data),
196         Location(Original.Location) {}
197 
198   /// Copies this CallEvent, with vtable intact, into a new block of memory.
199   virtual void cloneTo(void *Dest) const = 0;
200 
201   /// Get the value of arbitrary expressions at this point in the path.
202   SVal getSVal(const Stmt *S) const {
203     return getState()->getSVal(S, getLocationContext());
204   }
205 
206   using ValueList = SmallVectorImpl<SVal>;
207 
208   /// Used to specify non-argument regions that will be invalidated as a
209   /// result of this call.
210   virtual void getExtraInvalidatedValues(ValueList &Values,
211                  RegionAndSymbolInvalidationTraits *ETraits) const {}
212 
213 public:
214   CallEvent &operator=(const CallEvent &) = delete;
215   virtual ~CallEvent() = default;
216 
217   /// Returns the kind of call this is.
218   virtual Kind getKind() const = 0;
219   virtual StringRef getKindAsString() const = 0;
220 
221   /// Returns the declaration of the function or method that will be
222   /// called. May be null.
223   virtual const Decl *getDecl() const {
224     return Origin.dyn_cast<const Decl *>();
225   }
226 
227   bool isForeign() const {
228     assert(Foreign && "Foreign must be set before querying");
229     return *Foreign;
230   }
231   void setForeign(bool B) const { Foreign = B; }
232 
233   /// The state in which the call is being evaluated.
234   const ProgramStateRef &getState() const {
235     return State;
236   }
237 
238   /// The context in which the call is being evaluated.
239   const LocationContext *getLocationContext() const {
240     return LCtx;
241   }
242 
243   const CFGBlock::ConstCFGElementRef &getCFGElementRef() const {
244     return ElemRef;
245   }
246 
247   /// Returns the definition of the function or method that will be
248   /// called.
249   virtual RuntimeDefinition getRuntimeDefinition() const = 0;
250 
251   /// Returns the expression whose value will be the result of this call.
252   /// May be null.
253   virtual const Expr *getOriginExpr() const {
254     return Origin.dyn_cast<const Expr *>();
255   }
256 
257   /// Returns the number of arguments (explicit and implicit).
258   ///
259   /// Note that this may be greater than the number of parameters in the
260   /// callee's declaration, and that it may include arguments not written in
261   /// the source.
262   virtual unsigned getNumArgs() const = 0;
263 
264   /// Returns true if the callee is known to be from a system header.
265   bool isInSystemHeader() const {
266     const Decl *D = getDecl();
267     if (!D)
268       return false;
269 
270     SourceLocation Loc = D->getLocation();
271     if (Loc.isValid()) {
272       const SourceManager &SM =
273         getState()->getStateManager().getContext().getSourceManager();
274       return SM.isInSystemHeader(D->getLocation());
275     }
276 
277     // Special case for implicitly-declared global operator new/delete.
278     // These should be considered system functions.
279     if (const auto *FD = dyn_cast<FunctionDecl>(D))
280       return FD->isOverloadedOperator() && FD->isImplicit() && FD->isGlobal();
281 
282     return false;
283   }
284 
285   /// Returns a source range for the entire call, suitable for
286   /// outputting in diagnostics.
287   virtual SourceRange getSourceRange() const {
288     return getOriginExpr()->getSourceRange();
289   }
290 
291   /// Returns the value of a given argument at the time of the call.
292   virtual SVal getArgSVal(unsigned Index) const;
293 
294   /// Returns the expression associated with a given argument.
295   /// May be null if this expression does not appear in the source.
296   virtual const Expr *getArgExpr(unsigned Index) const { return nullptr; }
297 
298   /// Returns the source range for errors associated with this argument.
299   ///
300   /// May be invalid if the argument is not written in the source.
301   virtual SourceRange getArgSourceRange(unsigned Index) const;
302 
303   /// Returns the result type, adjusted for references.
304   QualType getResultType() const;
305 
306   /// Returns the return value of the call.
307   ///
308   /// This should only be called if the CallEvent was created using a state in
309   /// which the return value has already been bound to the origin expression.
310   SVal getReturnValue() const;
311 
312   /// Returns true if the type of any of the non-null arguments satisfies
313   /// the condition.
314   bool hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const;
315 
316   /// Returns true if any of the arguments appear to represent callbacks.
317   bool hasNonZeroCallbackArg() const;
318 
319   /// Returns true if any of the arguments is void*.
320   bool hasVoidPointerToNonConstArg() const;
321 
322   /// Returns true if any of the arguments are known to escape to long-
323   /// term storage, even if this method will not modify them.
324   // NOTE: The exact semantics of this are still being defined!
325   // We don't really want a list of hardcoded exceptions in the long run,
326   // but we don't want duplicated lists of known APIs in the short term either.
327   virtual bool argumentsMayEscape() const {
328     return hasNonZeroCallbackArg();
329   }
330 
331   /// Returns true if the callee is an externally-visible function in the
332   /// top-level namespace, such as \c malloc.
333   ///
334   /// You can use this call to determine that a particular function really is
335   /// a library function and not, say, a C++ member function with the same name.
336   ///
337   /// If a name is provided, the function must additionally match the given
338   /// name.
339   ///
340   /// Note that this deliberately excludes C++ library functions in the \c std
341   /// namespace, but will include C library functions accessed through the
342   /// \c std namespace. This also does not check if the function is declared
343   /// as 'extern "C"', or if it uses C++ name mangling.
344   // FIXME: Add a helper for checking namespaces.
345   // FIXME: Move this down to AnyFunctionCall once checkers have more
346   // precise callbacks.
347   bool isGlobalCFunction(StringRef SpecificName = StringRef()) const;
348 
349   /// Returns the name of the callee, if its name is a simple identifier.
350   ///
351   /// Note that this will fail for Objective-C methods, blocks, and C++
352   /// overloaded operators. The former is named by a Selector rather than a
353   /// simple identifier, and the latter two do not have names.
354   // FIXME: Move this down to AnyFunctionCall once checkers have more
355   // precise callbacks.
356   const IdentifierInfo *getCalleeIdentifier() const {
357     const auto *ND = dyn_cast_or_null<NamedDecl>(getDecl());
358     if (!ND)
359       return nullptr;
360     return ND->getIdentifier();
361   }
362 
363   /// Returns an appropriate ProgramPoint for this call.
364   ProgramPoint getProgramPoint(bool IsPreVisit = false,
365                                const ProgramPointTag *Tag = nullptr) const;
366 
367   /// Returns a new state with all argument regions invalidated.
368   ///
369   /// This accepts an alternate state in case some processing has already
370   /// occurred.
371   ProgramStateRef invalidateRegions(unsigned BlockCount,
372                                     ProgramStateRef Orig = nullptr) const;
373 
374   using FrameBindingTy = std::pair<SVal, SVal>;
375   using BindingsTy = SmallVectorImpl<FrameBindingTy>;
376 
377   /// Populates the given SmallVector with the bindings in the callee's stack
378   /// frame at the start of this call.
379   virtual void getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
380                                             BindingsTy &Bindings) const = 0;
381 
382   /// Returns a copy of this CallEvent, but using the given state.
383   template <typename T>
384   CallEventRef<T> cloneWithState(ProgramStateRef NewState) const;
385 
386   /// Returns a copy of this CallEvent, but using the given state.
387   CallEventRef<> cloneWithState(ProgramStateRef NewState) const {
388     return cloneWithState<CallEvent>(NewState);
389   }
390 
391   /// Returns true if this is a statement is a function or method call
392   /// of some kind.
393   static bool isCallStmt(const Stmt *S);
394 
395   /// Returns the result type of a function or method declaration.
396   ///
397   /// This will return a null QualType if the result type cannot be determined.
398   static QualType getDeclaredResultType(const Decl *D);
399 
400   /// Returns true if the given decl is known to be variadic.
401   ///
402   /// \p D must not be null.
403   static bool isVariadic(const Decl *D);
404 
405   /// Returns AnalysisDeclContext for the callee stack frame.
406   /// Currently may fail; returns null on failure.
407   AnalysisDeclContext *getCalleeAnalysisDeclContext() const;
408 
409   /// Returns the callee stack frame. That stack frame will only be entered
410   /// during analysis if the call is inlined, but it may still be useful
411   /// in intermediate calculations even if the call isn't inlined.
412   /// May fail; returns null on failure.
413   const StackFrameContext *getCalleeStackFrame(unsigned BlockCount) const;
414 
415   /// Returns memory location for a parameter variable within the callee stack
416   /// frame. The behavior is undefined if the block count is different from the
417   /// one that is there when call happens. May fail; returns null on failure.
418   const ParamVarRegion *getParameterLocation(unsigned Index,
419                                              unsigned BlockCount) const;
420 
421   /// Returns true if on the current path, the argument was constructed by
422   /// calling a C++ constructor over it. This is an internal detail of the
423   /// analysis which doesn't necessarily represent the program semantics:
424   /// if we are supposed to construct an argument directly, we may still
425   /// not do that because we don't know how (i.e., construction context is
426   /// unavailable in the CFG or not supported by the analyzer).
427   bool isArgumentConstructedDirectly(unsigned Index) const {
428     // This assumes that the object was not yet removed from the state.
429     return ExprEngine::getObjectUnderConstruction(
430                getState(), {getOriginExpr(), Index}, getLocationContext())
431         .has_value();
432   }
433 
434   /// Some calls have parameter numbering mismatched from argument numbering.
435   /// This function converts an argument index to the corresponding
436   /// parameter index. Returns std::nullopt is the argument doesn't correspond
437   /// to any parameter variable.
438   virtual std::optional<unsigned>
439   getAdjustedParameterIndex(unsigned ASTArgumentIndex) const {
440     return ASTArgumentIndex;
441   }
442 
443   /// Some call event sub-classes conveniently adjust mismatching AST indices
444   /// to match parameter indices. This function converts an argument index
445   /// as understood by CallEvent to the argument index as understood by the AST.
446   virtual unsigned getASTArgumentIndex(unsigned CallArgumentIndex) const {
447     return CallArgumentIndex;
448   }
449 
450   /// Returns the construction context of the call, if it is a C++ constructor
451   /// call or a call of a function returning a C++ class instance. Otherwise
452   /// return nullptr.
453   const ConstructionContext *getConstructionContext() const;
454 
455   /// If the call returns a C++ record type then the region of its return value
456   /// can be retrieved from its construction context.
457   std::optional<SVal> getReturnValueUnderConstruction() const;
458 
459   // Iterator access to formal parameters and their types.
460 private:
461   struct GetTypeFn {
462     QualType operator()(ParmVarDecl *PD) const { return PD->getType(); }
463   };
464 
465 public:
466   /// Return call's formal parameters.
467   ///
468   /// Remember that the number of formal parameters may not match the number
469   /// of arguments for all calls. However, the first parameter will always
470   /// correspond with the argument value returned by \c getArgSVal(0).
471   virtual ArrayRef<ParmVarDecl *> parameters() const = 0;
472 
473   using param_type_iterator =
474       llvm::mapped_iterator<ArrayRef<ParmVarDecl *>::iterator, GetTypeFn>;
475 
476   /// Returns an iterator over the types of the call's formal parameters.
477   ///
478   /// This uses the callee decl found by default name lookup rather than the
479   /// definition because it represents a public interface, and probably has
480   /// more annotations.
481   param_type_iterator param_type_begin() const {
482     return llvm::map_iterator(parameters().begin(), GetTypeFn());
483   }
484   /// \sa param_type_begin()
485   param_type_iterator param_type_end() const {
486     return llvm::map_iterator(parameters().end(), GetTypeFn());
487   }
488 
489   // For debugging purposes only
490   void dump(raw_ostream &Out) const;
491   void dump() const;
492 };
493 
494 /// Represents a call to any sort of function that might have a
495 /// FunctionDecl.
496 class AnyFunctionCall : public CallEvent {
497 protected:
498   AnyFunctionCall(const Expr *E, ProgramStateRef St,
499                   const LocationContext *LCtx,
500                   CFGBlock::ConstCFGElementRef ElemRef)
501       : CallEvent(E, St, LCtx, ElemRef) {}
502   AnyFunctionCall(const Decl *D, ProgramStateRef St,
503                   const LocationContext *LCtx,
504                   CFGBlock::ConstCFGElementRef ElemRef)
505       : CallEvent(D, St, LCtx, ElemRef) {}
506   AnyFunctionCall(const AnyFunctionCall &Other) = default;
507 
508 public:
509   // This function is overridden by subclasses, but they must return
510   // a FunctionDecl.
511   const FunctionDecl *getDecl() const override {
512     return cast<FunctionDecl>(CallEvent::getDecl());
513   }
514 
515   RuntimeDefinition getRuntimeDefinition() const override;
516 
517   bool argumentsMayEscape() const override;
518 
519   void getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
520                                     BindingsTy &Bindings) const override;
521 
522   ArrayRef<ParmVarDecl *> parameters() const override;
523 
524   static bool classof(const CallEvent *CA) {
525     return CA->getKind() >= CE_BEG_FUNCTION_CALLS &&
526            CA->getKind() <= CE_END_FUNCTION_CALLS;
527   }
528 };
529 
530 /// Represents a C function or static C++ member function call.
531 ///
532 /// Example: \c fun()
533 class SimpleFunctionCall : public AnyFunctionCall {
534   friend class CallEventManager;
535 
536 protected:
537   SimpleFunctionCall(const CallExpr *CE, ProgramStateRef St,
538                      const LocationContext *LCtx,
539                      CFGBlock::ConstCFGElementRef ElemRef)
540       : AnyFunctionCall(CE, St, LCtx, ElemRef) {}
541   SimpleFunctionCall(const SimpleFunctionCall &Other) = default;
542 
543   void cloneTo(void *Dest) const override {
544     new (Dest) SimpleFunctionCall(*this);
545   }
546 
547 public:
548   const CallExpr *getOriginExpr() const override {
549     return cast<CallExpr>(AnyFunctionCall::getOriginExpr());
550   }
551 
552   const FunctionDecl *getDecl() const override;
553 
554   unsigned getNumArgs() const override { return getOriginExpr()->getNumArgs(); }
555 
556   const Expr *getArgExpr(unsigned Index) const override {
557     return getOriginExpr()->getArg(Index);
558   }
559 
560   Kind getKind() const override { return CE_Function; }
561   StringRef getKindAsString() const override { return "SimpleFunctionCall"; }
562 
563   static bool classof(const CallEvent *CA) {
564     return CA->getKind() == CE_Function;
565   }
566 };
567 
568 /// Represents a call to a block.
569 ///
570 /// Example: <tt>^{ statement-body }()</tt>
571 class BlockCall : public CallEvent {
572   friend class CallEventManager;
573 
574 protected:
575   BlockCall(const CallExpr *CE, ProgramStateRef St, const LocationContext *LCtx,
576             CFGBlock::ConstCFGElementRef ElemRef)
577       : CallEvent(CE, St, LCtx, ElemRef) {}
578   BlockCall(const BlockCall &Other) = default;
579 
580   void cloneTo(void *Dest) const override { new (Dest) BlockCall(*this); }
581 
582   void getExtraInvalidatedValues(ValueList &Values,
583          RegionAndSymbolInvalidationTraits *ETraits) const override;
584 
585 public:
586   const CallExpr *getOriginExpr() const override {
587     return cast<CallExpr>(CallEvent::getOriginExpr());
588   }
589 
590   unsigned getNumArgs() const override { return getOriginExpr()->getNumArgs(); }
591 
592   const Expr *getArgExpr(unsigned Index) const override {
593     return getOriginExpr()->getArg(Index);
594   }
595 
596   /// Returns the region associated with this instance of the block.
597   ///
598   /// This may be NULL if the block's origin is unknown.
599   const BlockDataRegion *getBlockRegion() const;
600 
601   const BlockDecl *getDecl() const override {
602     const BlockDataRegion *BR = getBlockRegion();
603     if (!BR)
604       return nullptr;
605     return BR->getDecl();
606   }
607 
608   bool isConversionFromLambda() const {
609     const BlockDecl *BD = getDecl();
610     if (!BD)
611       return false;
612 
613     return BD->isConversionFromLambda();
614   }
615 
616   /// For a block converted from a C++ lambda, returns the block
617   /// VarRegion for the variable holding the captured C++ lambda record.
618   const VarRegion *getRegionStoringCapturedLambda() const {
619     assert(isConversionFromLambda());
620     const BlockDataRegion *BR = getBlockRegion();
621     assert(BR && "Block converted from lambda must have a block region");
622 
623     auto ReferencedVars = BR->referenced_vars();
624     assert(!ReferencedVars.empty());
625     return ReferencedVars.begin().getCapturedRegion();
626   }
627 
628   RuntimeDefinition getRuntimeDefinition() const override {
629     if (!isConversionFromLambda())
630       return RuntimeDefinition(getDecl());
631 
632     // Clang converts lambdas to blocks with an implicit user-defined
633     // conversion operator method on the lambda record that looks (roughly)
634     // like:
635     //
636     // typedef R(^block_type)(P1, P2, ...);
637     // operator block_type() const {
638     //   auto Lambda = *this;
639     //   return ^(P1 p1, P2 p2, ...){
640     //     /* return Lambda(p1, p2, ...); */
641     //   };
642     // }
643     //
644     // Here R is the return type of the lambda and P1, P2, ... are
645     // its parameter types. 'Lambda' is a fake VarDecl captured by the block
646     // that is initialized to a copy of the lambda.
647     //
648     // Sema leaves the body of a lambda-converted block empty (it is
649     // produced by CodeGen), so we can't analyze it directly. Instead, we skip
650     // the block body and analyze the operator() method on the captured lambda.
651     const VarDecl *LambdaVD = getRegionStoringCapturedLambda()->getDecl();
652     const CXXRecordDecl *LambdaDecl = LambdaVD->getType()->getAsCXXRecordDecl();
653     CXXMethodDecl* LambdaCallOperator = LambdaDecl->getLambdaCallOperator();
654 
655     return RuntimeDefinition(LambdaCallOperator);
656   }
657 
658   bool argumentsMayEscape() const override {
659     return true;
660   }
661 
662   void getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
663                                     BindingsTy &Bindings) const override;
664 
665   ArrayRef<ParmVarDecl *> parameters() const override;
666 
667   Kind getKind() const override { return CE_Block; }
668   StringRef getKindAsString() const override { return "BlockCall"; }
669 
670   static bool classof(const CallEvent *CA) { return CA->getKind() == CE_Block; }
671 };
672 
673 /// Represents a non-static C++ member function call, no matter how
674 /// it is written.
675 class CXXInstanceCall : public AnyFunctionCall {
676 protected:
677   CXXInstanceCall(const CallExpr *CE, ProgramStateRef St,
678                   const LocationContext *LCtx,
679                   CFGBlock::ConstCFGElementRef ElemRef)
680       : AnyFunctionCall(CE, St, LCtx, ElemRef) {}
681   CXXInstanceCall(const FunctionDecl *D, ProgramStateRef St,
682                   const LocationContext *LCtx,
683                   CFGBlock::ConstCFGElementRef ElemRef)
684       : AnyFunctionCall(D, St, LCtx, ElemRef) {}
685   CXXInstanceCall(const CXXInstanceCall &Other) = default;
686 
687   void getExtraInvalidatedValues(ValueList &Values,
688          RegionAndSymbolInvalidationTraits *ETraits) const override;
689 
690 public:
691   /// Returns the expression representing the implicit 'this' object.
692   virtual const Expr *getCXXThisExpr() const { return nullptr; }
693 
694   /// Returns the value of the implicit 'this' object.
695   virtual SVal getCXXThisVal() const;
696 
697   const FunctionDecl *getDecl() const override;
698 
699   RuntimeDefinition getRuntimeDefinition() const override;
700 
701   void getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
702                                     BindingsTy &Bindings) const override;
703 
704   static bool classof(const CallEvent *CA) {
705     return CA->getKind() >= CE_BEG_CXX_INSTANCE_CALLS &&
706            CA->getKind() <= CE_END_CXX_INSTANCE_CALLS;
707   }
708 };
709 
710 /// Represents a non-static C++ member function call.
711 ///
712 /// Example: \c obj.fun()
713 class CXXMemberCall : public CXXInstanceCall {
714   friend class CallEventManager;
715 
716 protected:
717   CXXMemberCall(const CXXMemberCallExpr *CE, ProgramStateRef St,
718                 const LocationContext *LCtx,
719                 CFGBlock::ConstCFGElementRef ElemRef)
720       : CXXInstanceCall(CE, St, LCtx, ElemRef) {}
721   CXXMemberCall(const CXXMemberCall &Other) = default;
722 
723   void cloneTo(void *Dest) const override { new (Dest) CXXMemberCall(*this); }
724 
725 public:
726   const CXXMemberCallExpr *getOriginExpr() const override {
727     return cast<CXXMemberCallExpr>(CXXInstanceCall::getOriginExpr());
728   }
729 
730   unsigned getNumArgs() const override {
731     if (const CallExpr *CE = getOriginExpr())
732       return CE->getNumArgs();
733     return 0;
734   }
735 
736   const Expr *getArgExpr(unsigned Index) const override {
737     return getOriginExpr()->getArg(Index);
738   }
739 
740   const Expr *getCXXThisExpr() const override;
741 
742   RuntimeDefinition getRuntimeDefinition() const override;
743 
744   Kind getKind() const override { return CE_CXXMember; }
745   StringRef getKindAsString() const override { return "CXXMemberCall"; }
746 
747   static bool classof(const CallEvent *CA) {
748     return CA->getKind() == CE_CXXMember;
749   }
750 };
751 
752 /// Represents a C++ overloaded operator call where the operator is
753 /// implemented as a non-static member function.
754 ///
755 /// Example: <tt>iter + 1</tt>
756 class CXXMemberOperatorCall : public CXXInstanceCall {
757   friend class CallEventManager;
758 
759 protected:
760   CXXMemberOperatorCall(const CXXOperatorCallExpr *CE, ProgramStateRef St,
761                         const LocationContext *LCtx,
762                         CFGBlock::ConstCFGElementRef ElemRef)
763       : CXXInstanceCall(CE, St, LCtx, ElemRef) {}
764   CXXMemberOperatorCall(const CXXMemberOperatorCall &Other) = default;
765 
766   void cloneTo(void *Dest) const override {
767     new (Dest) CXXMemberOperatorCall(*this);
768   }
769 
770 public:
771   const CXXOperatorCallExpr *getOriginExpr() const override {
772     return cast<CXXOperatorCallExpr>(CXXInstanceCall::getOriginExpr());
773   }
774 
775   unsigned getNumArgs() const override {
776     return getOriginExpr()->getNumArgs() - 1;
777   }
778 
779   const Expr *getArgExpr(unsigned Index) const override {
780     return getOriginExpr()->getArg(Index + 1);
781   }
782 
783   const Expr *getCXXThisExpr() const override;
784 
785   Kind getKind() const override { return CE_CXXMemberOperator; }
786   StringRef getKindAsString() const override { return "CXXMemberOperatorCall"; }
787 
788   static bool classof(const CallEvent *CA) {
789     return CA->getKind() == CE_CXXMemberOperator;
790   }
791 
792   std::optional<unsigned>
793   getAdjustedParameterIndex(unsigned ASTArgumentIndex) const override {
794     // For member operator calls argument 0 on the expression corresponds
795     // to implicit this-parameter on the declaration.
796     return (ASTArgumentIndex > 0)
797                ? std::optional<unsigned>(ASTArgumentIndex - 1)
798                : std::nullopt;
799   }
800 
801   unsigned getASTArgumentIndex(unsigned CallArgumentIndex) const override {
802     // For member operator calls argument 0 on the expression corresponds
803     // to implicit this-parameter on the declaration.
804     return CallArgumentIndex + 1;
805   }
806 
807   OverloadedOperatorKind getOverloadedOperator() const {
808     return getOriginExpr()->getOperator();
809   }
810 };
811 
812 /// Represents an implicit call to a C++ destructor.
813 ///
814 /// This can occur at the end of a scope (for automatic objects), at the end
815 /// of a full-expression (for temporaries), or as part of a delete.
816 class CXXDestructorCall : public CXXInstanceCall {
817   friend class CallEventManager;
818 
819 protected:
820   using DtorDataTy = llvm::PointerIntPair<const MemRegion *, 1, bool>;
821 
822   /// Creates an implicit destructor.
823   ///
824   /// \param DD The destructor that will be called.
825   /// \param Trigger The statement whose completion causes this destructor call.
826   /// \param Target The object region to be destructed.
827   /// \param St The path-sensitive state at this point in the program.
828   /// \param LCtx The location context at this point in the program.
829   /// \param ElemRef The reference to this destructor in the CFG.
830   ///
831   /// FIXME: Eventually we want to drop \param Target and deduce it from
832   /// \param ElemRef. To do that we need to migrate the logic for target
833   /// region lookup from ExprEngine::ProcessImplicitDtor() and make it
834   /// independent from ExprEngine.
835   CXXDestructorCall(const CXXDestructorDecl *DD, const Stmt *Trigger,
836                     const MemRegion *Target, bool IsBaseDestructor,
837                     ProgramStateRef St, const LocationContext *LCtx,
838                     CFGBlock::ConstCFGElementRef ElemRef)
839       : CXXInstanceCall(DD, St, LCtx, ElemRef) {
840     Data = DtorDataTy(Target, IsBaseDestructor).getOpaqueValue();
841     Location = Trigger->getEndLoc();
842   }
843 
844   CXXDestructorCall(const CXXDestructorCall &Other) = default;
845 
846   void cloneTo(void *Dest) const override {new (Dest) CXXDestructorCall(*this);}
847 
848 public:
849   SourceRange getSourceRange() const override { return Location; }
850   unsigned getNumArgs() const override { return 0; }
851 
852   RuntimeDefinition getRuntimeDefinition() const override;
853 
854   /// Returns the value of the implicit 'this' object.
855   SVal getCXXThisVal() const override;
856 
857   /// Returns true if this is a call to a base class destructor.
858   bool isBaseDestructor() const {
859     return DtorDataTy::getFromOpaqueValue(Data).getInt();
860   }
861 
862   Kind getKind() const override { return CE_CXXDestructor; }
863   StringRef getKindAsString() const override { return "CXXDestructorCall"; }
864 
865   static bool classof(const CallEvent *CA) {
866     return CA->getKind() == CE_CXXDestructor;
867   }
868 };
869 
870 /// Represents any constructor invocation. This includes regular constructors
871 /// and inherited constructors.
872 class AnyCXXConstructorCall : public AnyFunctionCall {
873 protected:
874   AnyCXXConstructorCall(const Expr *E, const MemRegion *Target,
875                         ProgramStateRef St, const LocationContext *LCtx,
876                         CFGBlock::ConstCFGElementRef ElemRef)
877       : AnyFunctionCall(E, St, LCtx, ElemRef) {
878     assert(E && (isa<CXXConstructExpr>(E) || isa<CXXInheritedCtorInitExpr>(E)));
879     // Target may be null when the region is unknown.
880     Data = Target;
881   }
882 
883   void getExtraInvalidatedValues(ValueList &Values,
884          RegionAndSymbolInvalidationTraits *ETraits) const override;
885 
886   void getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
887                                     BindingsTy &Bindings) const override;
888 
889 public:
890   /// Returns the value of the implicit 'this' object.
891   SVal getCXXThisVal() const;
892 
893   static bool classof(const CallEvent *Call) {
894     return Call->getKind() >= CE_BEG_CXX_CONSTRUCTOR_CALLS &&
895            Call->getKind() <= CE_END_CXX_CONSTRUCTOR_CALLS;
896   }
897 };
898 
899 /// Represents a call to a C++ constructor.
900 ///
901 /// Example: \c T(1)
902 class CXXConstructorCall : public AnyCXXConstructorCall {
903   friend class CallEventManager;
904 
905 protected:
906   /// Creates a constructor call.
907   ///
908   /// \param CE The constructor expression as written in the source.
909   /// \param Target The region where the object should be constructed. If NULL,
910   ///               a new symbolic region will be used.
911   /// \param St The path-sensitive state at this point in the program.
912   /// \param LCtx The location context at this point in the program.
913   /// \param ElemRef The reference to this constructor in the CFG.
914   ///
915   /// FIXME: Eventually we want to drop \param Target and deduce it from
916   /// \param ElemRef.
917   CXXConstructorCall(const CXXConstructExpr *CE, const MemRegion *Target,
918                      ProgramStateRef St, const LocationContext *LCtx,
919                      CFGBlock::ConstCFGElementRef ElemRef)
920       : AnyCXXConstructorCall(CE, Target, St, LCtx, ElemRef) {}
921 
922   CXXConstructorCall(const CXXConstructorCall &Other) = default;
923 
924   void cloneTo(void *Dest) const override { new (Dest) CXXConstructorCall(*this); }
925 
926 public:
927   const CXXConstructExpr *getOriginExpr() const override {
928     return cast<CXXConstructExpr>(AnyFunctionCall::getOriginExpr());
929   }
930 
931   const CXXConstructorDecl *getDecl() const override {
932     return getOriginExpr()->getConstructor();
933   }
934 
935   unsigned getNumArgs() const override { return getOriginExpr()->getNumArgs(); }
936 
937   const Expr *getArgExpr(unsigned Index) const override {
938     return getOriginExpr()->getArg(Index);
939   }
940 
941   Kind getKind() const override { return CE_CXXConstructor; }
942   StringRef getKindAsString() const override { return "CXXConstructorCall"; }
943 
944   static bool classof(const CallEvent *CA) {
945     return CA->getKind() == CE_CXXConstructor;
946   }
947 };
948 
949 /// Represents a call to a C++ inherited constructor.
950 ///
951 /// Example: \c class T : public S { using S::S; }; T(1);
952 ///
953 // Note, it is difficult to model the parameters. This is one of the reasons
954 // why we skip analysis of inheriting constructors as top-level functions.
955 // CXXInheritedCtorInitExpr doesn't take arguments and doesn't model parameter
956 // initialization because there is none: the arguments in the outer
957 // CXXConstructExpr directly initialize the parameters of the base class
958 // constructor, and no copies are made. (Making a copy of the parameter is
959 // incorrect, at least if it's done in an observable way.) The derived class
960 // constructor doesn't even exist in the formal model.
961 /// E.g., in:
962 ///
963 /// struct X { X *p = this; ~X() {} };
964 /// struct A { A(X x) : b(x.p == &x) {} bool b; };
965 /// struct B : A { using A::A; };
966 /// B b = X{};
967 ///
968 /// ... b.b is initialized to true.
969 class CXXInheritedConstructorCall : public AnyCXXConstructorCall {
970   friend class CallEventManager;
971 
972 protected:
973   CXXInheritedConstructorCall(const CXXInheritedCtorInitExpr *CE,
974                               const MemRegion *Target, ProgramStateRef St,
975                               const LocationContext *LCtx,
976                               CFGBlock::ConstCFGElementRef ElemRef)
977       : AnyCXXConstructorCall(CE, Target, St, LCtx, ElemRef) {}
978 
979   CXXInheritedConstructorCall(const CXXInheritedConstructorCall &Other) =
980       default;
981 
982   void cloneTo(void *Dest) const override {
983     new (Dest) CXXInheritedConstructorCall(*this);
984   }
985 
986 public:
987   const CXXInheritedCtorInitExpr *getOriginExpr() const override {
988     return cast<CXXInheritedCtorInitExpr>(AnyFunctionCall::getOriginExpr());
989   }
990 
991   const CXXConstructorDecl *getDecl() const override {
992     return getOriginExpr()->getConstructor();
993   }
994 
995   /// Obtain the stack frame of the inheriting constructor. Argument expressions
996   /// can be found on the call site of that stack frame.
997   const StackFrameContext *getInheritingStackFrame() const;
998 
999   /// Obtain the CXXConstructExpr for the sub-class that inherited the current
1000   /// constructor (possibly indirectly). It's the statement that contains
1001   /// argument expressions.
1002   const CXXConstructExpr *getInheritingConstructor() const {
1003     return cast<CXXConstructExpr>(getInheritingStackFrame()->getCallSite());
1004   }
1005 
1006   unsigned getNumArgs() const override {
1007     return getInheritingConstructor()->getNumArgs();
1008   }
1009 
1010   const Expr *getArgExpr(unsigned Index) const override {
1011     return getInheritingConstructor()->getArg(Index);
1012   }
1013 
1014   SVal getArgSVal(unsigned Index) const override {
1015     return getState()->getSVal(
1016         getArgExpr(Index),
1017         getInheritingStackFrame()->getParent()->getStackFrame());
1018   }
1019 
1020   Kind getKind() const override { return CE_CXXInheritedConstructor; }
1021   StringRef getKindAsString() const override {
1022     return "CXXInheritedConstructorCall";
1023   }
1024 
1025   static bool classof(const CallEvent *CA) {
1026     return CA->getKind() == CE_CXXInheritedConstructor;
1027   }
1028 };
1029 
1030 /// Represents the memory allocation call in a C++ new-expression.
1031 ///
1032 /// This is a call to "operator new".
1033 class CXXAllocatorCall : public AnyFunctionCall {
1034   friend class CallEventManager;
1035 
1036 protected:
1037   CXXAllocatorCall(const CXXNewExpr *E, ProgramStateRef St,
1038                    const LocationContext *LCtx,
1039                    CFGBlock::ConstCFGElementRef ElemRef)
1040       : AnyFunctionCall(E, St, LCtx, ElemRef) {}
1041   CXXAllocatorCall(const CXXAllocatorCall &Other) = default;
1042 
1043   void cloneTo(void *Dest) const override { new (Dest) CXXAllocatorCall(*this); }
1044 
1045 public:
1046   const CXXNewExpr *getOriginExpr() const override {
1047     return cast<CXXNewExpr>(AnyFunctionCall::getOriginExpr());
1048   }
1049 
1050   const FunctionDecl *getDecl() const override {
1051     return getOriginExpr()->getOperatorNew();
1052   }
1053 
1054   SVal getObjectUnderConstruction() const {
1055     return *ExprEngine::getObjectUnderConstruction(getState(), getOriginExpr(),
1056                                                    getLocationContext());
1057   }
1058 
1059   /// Number of non-placement arguments to the call. It is equal to 2 for
1060   /// C++17 aligned operator new() calls that have alignment implicitly
1061   /// passed as the second argument, and to 1 for other operator new() calls.
1062   unsigned getNumImplicitArgs() const {
1063     return getOriginExpr()->passAlignment() ? 2 : 1;
1064   }
1065 
1066   unsigned getNumArgs() const override {
1067     return getOriginExpr()->getNumPlacementArgs() + getNumImplicitArgs();
1068   }
1069 
1070   bool isArray() const { return getOriginExpr()->isArray(); }
1071 
1072   std::optional<const clang::Expr *> getArraySizeExpr() const {
1073     return getOriginExpr()->getArraySize();
1074   }
1075 
1076   SVal getArraySizeVal() const {
1077     assert(isArray() && "The allocator call doesn't allocate and array!");
1078 
1079     return getState()->getSVal(*getArraySizeExpr(), getLocationContext());
1080   }
1081 
1082   const Expr *getArgExpr(unsigned Index) const override {
1083     // The first argument of an allocator call is the size of the allocation.
1084     if (Index < getNumImplicitArgs())
1085       return nullptr;
1086     return getOriginExpr()->getPlacementArg(Index - getNumImplicitArgs());
1087   }
1088 
1089   /// Number of placement arguments to the operator new() call. For example,
1090   /// standard std::nothrow operator new and standard placement new both have
1091   /// 1 implicit argument (size) and 1 placement argument, while regular
1092   /// operator new() has 1 implicit argument and 0 placement arguments.
1093   const Expr *getPlacementArgExpr(unsigned Index) const {
1094     return getOriginExpr()->getPlacementArg(Index);
1095   }
1096 
1097   Kind getKind() const override { return CE_CXXAllocator; }
1098   StringRef getKindAsString() const override { return "CXXAllocatorCall"; }
1099 
1100   static bool classof(const CallEvent *CE) {
1101     return CE->getKind() == CE_CXXAllocator;
1102   }
1103 };
1104 
1105 /// Represents the memory deallocation call in a C++ delete-expression.
1106 ///
1107 /// This is a call to "operator delete".
1108 // FIXME: CXXDeleteExpr isn't present for custom delete operators, or even for
1109 // some those that are in the standard library, like the no-throw or align_val
1110 // versions.
1111 // Some pointers:
1112 // http://lists.llvm.org/pipermail/cfe-dev/2020-April/065080.html
1113 // clang/test/Analysis/cxx-dynamic-memory-analysis-order.cpp
1114 // clang/unittests/StaticAnalyzer/CallEventTest.cpp
1115 class CXXDeallocatorCall : public AnyFunctionCall {
1116   friend class CallEventManager;
1117 
1118 protected:
1119   CXXDeallocatorCall(const CXXDeleteExpr *E, ProgramStateRef St,
1120                      const LocationContext *LCtx,
1121                      CFGBlock::ConstCFGElementRef ElemRef)
1122       : AnyFunctionCall(E, St, LCtx, ElemRef) {}
1123   CXXDeallocatorCall(const CXXDeallocatorCall &Other) = default;
1124 
1125   void cloneTo(void *Dest) const override {
1126     new (Dest) CXXDeallocatorCall(*this);
1127   }
1128 
1129 public:
1130   const CXXDeleteExpr *getOriginExpr() const override {
1131     return cast<CXXDeleteExpr>(AnyFunctionCall::getOriginExpr());
1132   }
1133 
1134   const FunctionDecl *getDecl() const override {
1135     return getOriginExpr()->getOperatorDelete();
1136   }
1137 
1138   unsigned getNumArgs() const override { return getDecl()->getNumParams(); }
1139 
1140   const Expr *getArgExpr(unsigned Index) const override {
1141     // CXXDeleteExpr's only have a single argument.
1142     return getOriginExpr()->getArgument();
1143   }
1144 
1145   Kind getKind() const override { return CE_CXXDeallocator; }
1146   StringRef getKindAsString() const override { return "CXXDeallocatorCall"; }
1147 
1148   static bool classof(const CallEvent *CE) {
1149     return CE->getKind() == CE_CXXDeallocator;
1150   }
1151 };
1152 
1153 /// Represents the ways an Objective-C message send can occur.
1154 //
1155 // Note to maintainers: OCM_Message should always be last, since it does not
1156 // need to fit in the Data field's low bits.
1157 enum ObjCMessageKind {
1158   OCM_PropertyAccess,
1159   OCM_Subscript,
1160   OCM_Message
1161 };
1162 
1163 /// Represents any expression that calls an Objective-C method.
1164 ///
1165 /// This includes all of the kinds listed in ObjCMessageKind.
1166 class ObjCMethodCall : public CallEvent {
1167   friend class CallEventManager;
1168 
1169   const PseudoObjectExpr *getContainingPseudoObjectExpr() const;
1170 
1171 protected:
1172   ObjCMethodCall(const ObjCMessageExpr *Msg, ProgramStateRef St,
1173                  const LocationContext *LCtx,
1174                  CFGBlock::ConstCFGElementRef ElemRef)
1175       : CallEvent(Msg, St, LCtx, ElemRef) {
1176     Data = nullptr;
1177   }
1178 
1179   ObjCMethodCall(const ObjCMethodCall &Other) = default;
1180 
1181   void cloneTo(void *Dest) const override { new (Dest) ObjCMethodCall(*this); }
1182 
1183   void getExtraInvalidatedValues(ValueList &Values,
1184          RegionAndSymbolInvalidationTraits *ETraits) const override;
1185 
1186   /// Check if the selector may have multiple definitions (may have overrides).
1187   virtual bool canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
1188                                         Selector Sel) const;
1189 
1190 public:
1191   const ObjCMessageExpr *getOriginExpr() const override {
1192     return cast<ObjCMessageExpr>(CallEvent::getOriginExpr());
1193   }
1194 
1195   const ObjCMethodDecl *getDecl() const override {
1196     return getOriginExpr()->getMethodDecl();
1197   }
1198 
1199   unsigned getNumArgs() const override {
1200     return getOriginExpr()->getNumArgs();
1201   }
1202 
1203   const Expr *getArgExpr(unsigned Index) const override {
1204     return getOriginExpr()->getArg(Index);
1205   }
1206 
1207   bool isInstanceMessage() const {
1208     return getOriginExpr()->isInstanceMessage();
1209   }
1210 
1211   ObjCMethodFamily getMethodFamily() const {
1212     return getOriginExpr()->getMethodFamily();
1213   }
1214 
1215   Selector getSelector() const {
1216     return getOriginExpr()->getSelector();
1217   }
1218 
1219   SourceRange getSourceRange() const override;
1220 
1221   /// Returns the value of the receiver at the time of this call.
1222   SVal getReceiverSVal() const;
1223 
1224   /// Get the interface for the receiver.
1225   ///
1226   /// This works whether this is an instance message or a class message.
1227   /// However, it currently just uses the static type of the receiver.
1228   const ObjCInterfaceDecl *getReceiverInterface() const {
1229     return getOriginExpr()->getReceiverInterface();
1230   }
1231 
1232   /// Checks if the receiver refers to 'self' or 'super'.
1233   bool isReceiverSelfOrSuper() const;
1234 
1235   /// Returns how the message was written in the source (property access,
1236   /// subscript, or explicit message send).
1237   ObjCMessageKind getMessageKind() const;
1238 
1239   /// Returns true if this property access or subscript is a setter (has the
1240   /// form of an assignment).
1241   bool isSetter() const {
1242     switch (getMessageKind()) {
1243     case OCM_Message:
1244       llvm_unreachable("This is not a pseudo-object access!");
1245     case OCM_PropertyAccess:
1246       return getNumArgs() > 0;
1247     case OCM_Subscript:
1248       return getNumArgs() > 1;
1249     }
1250     llvm_unreachable("Unknown message kind");
1251   }
1252 
1253   // Returns the property accessed by this method, either explicitly via
1254   // property syntax or implicitly via a getter or setter method. Returns
1255   // nullptr if the call is not a prooperty access.
1256   const ObjCPropertyDecl *getAccessedProperty() const;
1257 
1258   RuntimeDefinition getRuntimeDefinition() const override;
1259 
1260   bool argumentsMayEscape() const override;
1261 
1262   void getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
1263                                     BindingsTy &Bindings) const override;
1264 
1265   ArrayRef<ParmVarDecl*> parameters() const override;
1266 
1267   Kind getKind() const override { return CE_ObjCMessage; }
1268   StringRef getKindAsString() const override { return "ObjCMethodCall"; }
1269 
1270   static bool classof(const CallEvent *CA) {
1271     return CA->getKind() == CE_ObjCMessage;
1272   }
1273 };
1274 
1275 /// Manages the lifetime of CallEvent objects.
1276 ///
1277 /// CallEventManager provides a way to create arbitrary CallEvents "on the
1278 /// stack" as if they were value objects by keeping a cache of CallEvent-sized
1279 /// memory blocks. The CallEvents created by CallEventManager are only valid
1280 /// for the lifetime of the OwnedCallEvent that holds them; right now these
1281 /// objects cannot be copied and ownership cannot be transferred.
1282 class CallEventManager {
1283   friend class CallEvent;
1284 
1285   llvm::BumpPtrAllocator &Alloc;
1286   SmallVector<void *, 8> Cache;
1287 
1288   using CallEventTemplateTy = SimpleFunctionCall;
1289 
1290   void reclaim(const void *Memory) {
1291     Cache.push_back(const_cast<void *>(Memory));
1292   }
1293 
1294   /// Returns memory that can be initialized as a CallEvent.
1295   void *allocate() {
1296     if (Cache.empty())
1297       return Alloc.Allocate<CallEventTemplateTy>();
1298     else
1299       return Cache.pop_back_val();
1300   }
1301 
1302   template <typename T, typename Arg>
1303   T *create(Arg A, ProgramStateRef St, const LocationContext *LCtx,
1304             CFGBlock::ConstCFGElementRef ElemRef) {
1305     static_assert(sizeof(T) == sizeof(CallEventTemplateTy),
1306                   "CallEvent subclasses are not all the same size");
1307     return new (allocate()) T(A, St, LCtx, ElemRef);
1308   }
1309 
1310   template <typename T, typename Arg1, typename Arg2>
1311   T *create(Arg1 A1, Arg2 A2, ProgramStateRef St, const LocationContext *LCtx,
1312             CFGBlock::ConstCFGElementRef ElemRef) {
1313     static_assert(sizeof(T) == sizeof(CallEventTemplateTy),
1314                   "CallEvent subclasses are not all the same size");
1315     return new (allocate()) T(A1, A2, St, LCtx, ElemRef);
1316   }
1317 
1318   template <typename T, typename Arg1, typename Arg2, typename Arg3>
1319   T *create(Arg1 A1, Arg2 A2, Arg3 A3, ProgramStateRef St,
1320             const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef) {
1321     static_assert(sizeof(T) == sizeof(CallEventTemplateTy),
1322                   "CallEvent subclasses are not all the same size");
1323     return new (allocate()) T(A1, A2, A3, St, LCtx, ElemRef);
1324   }
1325 
1326   template <typename T, typename Arg1, typename Arg2, typename Arg3,
1327             typename Arg4>
1328   T *create(Arg1 A1, Arg2 A2, Arg3 A3, Arg4 A4, ProgramStateRef St,
1329             const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef) {
1330     static_assert(sizeof(T) == sizeof(CallEventTemplateTy),
1331                   "CallEvent subclasses are not all the same size");
1332     return new (allocate()) T(A1, A2, A3, A4, St, LCtx, ElemRef);
1333   }
1334 
1335 public:
1336   CallEventManager(llvm::BumpPtrAllocator &alloc) : Alloc(alloc) {}
1337 
1338   /// Gets an outside caller given a callee context.
1339   CallEventRef<>
1340   getCaller(const StackFrameContext *CalleeCtx, ProgramStateRef State);
1341 
1342   /// Gets a call event for a function call, Objective-C method call,
1343   /// a 'new', or a 'delete' call.
1344   CallEventRef<> getCall(const Stmt *S, ProgramStateRef State,
1345                          const LocationContext *LC,
1346                          CFGBlock::ConstCFGElementRef ElemRef);
1347 
1348   CallEventRef<> getSimpleCall(const CallExpr *E, ProgramStateRef State,
1349                                const LocationContext *LCtx,
1350                                CFGBlock::ConstCFGElementRef ElemRef);
1351 
1352   CallEventRef<ObjCMethodCall>
1353   getObjCMethodCall(const ObjCMessageExpr *E, ProgramStateRef State,
1354                     const LocationContext *LCtx,
1355                     CFGBlock::ConstCFGElementRef ElemRef) {
1356     return create<ObjCMethodCall>(E, State, LCtx, ElemRef);
1357   }
1358 
1359   CallEventRef<CXXConstructorCall>
1360   getCXXConstructorCall(const CXXConstructExpr *E, const MemRegion *Target,
1361                         ProgramStateRef State, const LocationContext *LCtx,
1362                         CFGBlock::ConstCFGElementRef ElemRef) {
1363     return create<CXXConstructorCall>(E, Target, State, LCtx, ElemRef);
1364   }
1365 
1366   CallEventRef<CXXInheritedConstructorCall>
1367   getCXXInheritedConstructorCall(const CXXInheritedCtorInitExpr *E,
1368                                  const MemRegion *Target, ProgramStateRef State,
1369                                  const LocationContext *LCtx,
1370                                  CFGBlock::ConstCFGElementRef ElemRef) {
1371     return create<CXXInheritedConstructorCall>(E, Target, State, LCtx, ElemRef);
1372   }
1373 
1374   CallEventRef<CXXDestructorCall>
1375   getCXXDestructorCall(const CXXDestructorDecl *DD, const Stmt *Trigger,
1376                        const MemRegion *Target, bool IsBase,
1377                        ProgramStateRef State, const LocationContext *LCtx,
1378                        CFGBlock::ConstCFGElementRef ElemRef) {
1379     return create<CXXDestructorCall>(DD, Trigger, Target, IsBase, State, LCtx,
1380                                      ElemRef);
1381   }
1382 
1383   CallEventRef<CXXAllocatorCall>
1384   getCXXAllocatorCall(const CXXNewExpr *E, ProgramStateRef State,
1385                       const LocationContext *LCtx,
1386                       CFGBlock::ConstCFGElementRef ElemRef) {
1387     return create<CXXAllocatorCall>(E, State, LCtx, ElemRef);
1388   }
1389 
1390   CallEventRef<CXXDeallocatorCall>
1391   getCXXDeallocatorCall(const CXXDeleteExpr *E, ProgramStateRef State,
1392                         const LocationContext *LCtx,
1393                         CFGBlock::ConstCFGElementRef ElemRef) {
1394     return create<CXXDeallocatorCall>(E, State, LCtx, ElemRef);
1395   }
1396 };
1397 
1398 template <typename T>
1399 CallEventRef<T> CallEvent::cloneWithState(ProgramStateRef NewState) const {
1400   assert(isa<T>(*this) && "Cloning to unrelated type");
1401   static_assert(sizeof(T) == sizeof(CallEvent),
1402                 "Subclasses may not add fields");
1403 
1404   if (NewState == State)
1405     return cast<T>(this);
1406 
1407   CallEventManager &Mgr = State->getStateManager().getCallEventManager();
1408   T *Copy = static_cast<T *>(Mgr.allocate());
1409   cloneTo(Copy);
1410   assert(Copy->getKind() == this->getKind() && "Bad copy");
1411 
1412   Copy->State = NewState;
1413   return Copy;
1414 }
1415 
1416 inline void CallEvent::Release() const {
1417   assert(RefCount > 0 && "Reference count is already zero.");
1418   --RefCount;
1419 
1420   if (RefCount > 0)
1421     return;
1422 
1423   CallEventManager &Mgr = State->getStateManager().getCallEventManager();
1424   Mgr.reclaim(this);
1425 
1426   this->~CallEvent();
1427 }
1428 
1429 } // namespace ento
1430 
1431 } // namespace clang
1432 
1433 namespace llvm {
1434 
1435 // Support isa<>, cast<>, and dyn_cast<> for CallEventRef.
1436 template<class T> struct simplify_type< clang::ento::CallEventRef<T>> {
1437   using SimpleType = const T *;
1438 
1439   static SimpleType
1440   getSimplifiedValue(clang::ento::CallEventRef<T> Val) {
1441     return Val.get();
1442   }
1443 };
1444 
1445 } // namespace llvm
1446 
1447 #endif // LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_CALLEVENT_H
1448