1 //== ProgramState.h - Path-sensitive "State" for tracking values -*- C++ -*--=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the state of the program along the analysisa path.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_PROGRAMSTATE_H
14 #define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_PROGRAMSTATE_H
15 
16 #include "clang/Basic/LLVM.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/ConstraintManager.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/Environment.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
21 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
22 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
23 #include "llvm/ADT/FoldingSet.h"
24 #include "llvm/ADT/ImmutableMap.h"
25 #include "llvm/Support/Allocator.h"
26 #include <optional>
27 #include <utility>
28 
29 namespace llvm {
30 class APSInt;
31 }
32 
33 namespace clang {
34 class ASTContext;
35 
36 namespace ento {
37 
38 class AnalysisManager;
39 class CallEvent;
40 class CallEventManager;
41 
42 typedef std::unique_ptr<ConstraintManager>(*ConstraintManagerCreator)(
43     ProgramStateManager &, ExprEngine *);
44 typedef std::unique_ptr<StoreManager>(*StoreManagerCreator)(
45     ProgramStateManager &);
46 
47 //===----------------------------------------------------------------------===//
48 // ProgramStateTrait - Traits used by the Generic Data Map of a ProgramState.
49 //===----------------------------------------------------------------------===//
50 
51 template <typename T> struct ProgramStateTrait {
52   typedef typename T::data_type data_type;
MakeVoidPtrProgramStateTrait53   static inline void *MakeVoidPtr(data_type D) { return (void*) D; }
MakeDataProgramStateTrait54   static inline data_type MakeData(void *const* P) {
55     return P ? (data_type) *P : (data_type) 0;
56   }
57 };
58 
59 /// \class ProgramState
60 /// ProgramState - This class encapsulates:
61 ///
62 ///    1. A mapping from expressions to values (Environment)
63 ///    2. A mapping from locations to values (Store)
64 ///    3. Constraints on symbolic values (GenericDataMap)
65 ///
66 ///  Together these represent the "abstract state" of a program.
67 ///
68 ///  ProgramState is intended to be used as a functional object; that is,
69 ///  once it is created and made "persistent" in a FoldingSet, its
70 ///  values will never change.
71 class ProgramState : public llvm::FoldingSetNode {
72 public:
73   typedef llvm::ImmutableSet<llvm::APSInt*>                IntSetTy;
74   typedef llvm::ImmutableMap<void*, void*>                 GenericDataMap;
75 
76 private:
77   void operator=(const ProgramState& R) = delete;
78 
79   friend class ProgramStateManager;
80   friend class ExplodedGraph;
81   friend class ExplodedNode;
82   friend class NodeBuilder;
83 
84   ProgramStateManager *stateMgr;
85   Environment Env;           // Maps a Stmt to its current SVal.
86   Store store;               // Maps a location to its current value.
87   GenericDataMap   GDM;      // Custom data stored by a client of this class.
88 
89   // A state is infeasible if there is a contradiction among the constraints.
90   // An infeasible state is represented by a `nullptr`.
91   // In the sense of `assumeDual`, a state can have two children by adding a
92   // new constraint and the negation of that new constraint. A parent state is
93   // over-constrained if both of its children are infeasible. In the
94   // mathematical sense, it means that the parent is infeasible and we should
95   // have realized that at the moment when we have created it. However, we
96   // could not recognize that because of the imperfection of the underlying
97   // constraint solver. We say it is posteriorly over-constrained because we
98   // recognize that a parent is infeasible only *after* a new and more specific
99   // constraint and its negation are evaluated.
100   //
101   // Example:
102   //
103   // x * x = 4 and x is in the range [0, 1]
104   // This is an already infeasible state, but the constraint solver is not
105   // capable of handling sqrt, thus we don't know it yet.
106   //
107   // Then a new constraint `x = 0` is added. At this moment the constraint
108   // solver re-evaluates the existing constraints and realizes the
109   // contradiction `0 * 0 = 4`.
110   // We also evaluate the negated constraint `x != 0`;  the constraint solver
111   // deduces `x = 1` and then realizes the contradiction `1 * 1 = 4`.
112   // Both children are infeasible, thus the parent state is marked as
113   // posteriorly over-constrained. These parents are handled with special care:
114   // we do not allow transitions to exploded nodes with such states.
115   bool PosteriorlyOverconstrained = false;
116   // Make internal constraint solver entities friends so they can access the
117   // overconstrained-related functions. We want to keep this API inaccessible
118   // for Checkers.
119   friend class ConstraintManager;
isPosteriorlyOverconstrained()120   bool isPosteriorlyOverconstrained() const {
121     return PosteriorlyOverconstrained;
122   }
123   ProgramStateRef cloneAsPosteriorlyOverconstrained() const;
124 
125   unsigned refCount;
126 
127   /// makeWithStore - Return a ProgramState with the same values as the current
128   ///  state with the exception of using the specified Store.
129   ProgramStateRef makeWithStore(const StoreRef &store) const;
130 
131   void setStore(const StoreRef &storeRef);
132 
133 public:
134   /// This ctor is used when creating the first ProgramState object.
135   ProgramState(ProgramStateManager *mgr, const Environment& env,
136           StoreRef st, GenericDataMap gdm);
137 
138   /// Copy ctor - We must explicitly define this or else the "Next" ptr
139   ///  in FoldingSetNode will also get copied.
140   ProgramState(const ProgramState &RHS);
141 
142   ~ProgramState();
143 
144   int64_t getID() const;
145 
146   /// Return the ProgramStateManager associated with this state.
getStateManager()147   ProgramStateManager &getStateManager() const {
148     return *stateMgr;
149   }
150 
151   AnalysisManager &getAnalysisManager() const;
152 
153   /// Return the ConstraintManager.
154   ConstraintManager &getConstraintManager() const;
155 
156   /// getEnvironment - Return the environment associated with this state.
157   ///  The environment is the mapping from expressions to values.
getEnvironment()158   const Environment& getEnvironment() const { return Env; }
159 
160   /// Return the store associated with this state.  The store
161   ///  is a mapping from locations to values.
getStore()162   Store getStore() const { return store; }
163 
164 
165   /// getGDM - Return the generic data map associated with this state.
getGDM()166   GenericDataMap getGDM() const { return GDM; }
167 
setGDM(GenericDataMap gdm)168   void setGDM(GenericDataMap gdm) { GDM = gdm; }
169 
170   /// Profile - Profile the contents of a ProgramState object for use in a
171   ///  FoldingSet.  Two ProgramState objects are considered equal if they
172   ///  have the same Environment, Store, and GenericDataMap.
Profile(llvm::FoldingSetNodeID & ID,const ProgramState * V)173   static void Profile(llvm::FoldingSetNodeID& ID, const ProgramState *V) {
174     V->Env.Profile(ID);
175     ID.AddPointer(V->store);
176     V->GDM.Profile(ID);
177     ID.AddBoolean(V->PosteriorlyOverconstrained);
178   }
179 
180   /// Profile - Used to profile the contents of this object for inclusion
181   ///  in a FoldingSet.
Profile(llvm::FoldingSetNodeID & ID)182   void Profile(llvm::FoldingSetNodeID& ID) const {
183     Profile(ID, this);
184   }
185 
186   BasicValueFactory &getBasicVals() const;
187   SymbolManager &getSymbolManager() const;
188 
189   //==---------------------------------------------------------------------==//
190   // Constraints on values.
191   //==---------------------------------------------------------------------==//
192   //
193   // Each ProgramState records constraints on symbolic values.  These constraints
194   // are managed using the ConstraintManager associated with a ProgramStateManager.
195   // As constraints gradually accrue on symbolic values, added constraints
196   // may conflict and indicate that a state is infeasible (as no real values
197   // could satisfy all the constraints).  This is the principal mechanism
198   // for modeling path-sensitivity in ExprEngine/ProgramState.
199   //
200   // Various "assume" methods form the interface for adding constraints to
201   // symbolic values.  A call to 'assume' indicates an assumption being placed
202   // on one or symbolic values.  'assume' methods take the following inputs:
203   //
204   //  (1) A ProgramState object representing the current state.
205   //
206   //  (2) The assumed constraint (which is specific to a given "assume" method).
207   //
208   //  (3) A binary value "Assumption" that indicates whether the constraint is
209   //      assumed to be true or false.
210   //
211   // The output of "assume*" is a new ProgramState object with the added constraints.
212   // If no new state is feasible, NULL is returned.
213   //
214 
215   /// Assumes that the value of \p cond is zero (if \p assumption is "false")
216   /// or non-zero (if \p assumption is "true").
217   ///
218   /// This returns a new state with the added constraint on \p cond.
219   /// If no new state is feasible, NULL is returned.
220   [[nodiscard]] ProgramStateRef assume(DefinedOrUnknownSVal cond,
221                                        bool assumption) const;
222 
223   /// Assumes both "true" and "false" for \p cond, and returns both
224   /// corresponding states (respectively).
225   ///
226   /// This is more efficient than calling assume() twice. Note that one (but not
227   /// both) of the returned states may be NULL.
228   [[nodiscard]] std::pair<ProgramStateRef, ProgramStateRef>
229   assume(DefinedOrUnknownSVal cond) const;
230 
231   [[nodiscard]] std::pair<ProgramStateRef, ProgramStateRef>
232   assumeInBoundDual(DefinedOrUnknownSVal idx, DefinedOrUnknownSVal upperBound,
233                     QualType IndexType = QualType()) const;
234 
235   [[nodiscard]] ProgramStateRef
236   assumeInBound(DefinedOrUnknownSVal idx, DefinedOrUnknownSVal upperBound,
237                 bool assumption, QualType IndexType = QualType()) const;
238 
239   /// Assumes that the value of \p Val is bounded with [\p From; \p To]
240   /// (if \p assumption is "true") or it is fully out of this range
241   /// (if \p assumption is "false").
242   ///
243   /// This returns a new state with the added constraint on \p cond.
244   /// If no new state is feasible, NULL is returned.
245   [[nodiscard]] ProgramStateRef assumeInclusiveRange(DefinedOrUnknownSVal Val,
246                                                      const llvm::APSInt &From,
247                                                      const llvm::APSInt &To,
248                                                      bool assumption) const;
249 
250   /// Assumes given range both "true" and "false" for \p Val, and returns both
251   /// corresponding states (respectively).
252   ///
253   /// This is more efficient than calling assume() twice. Note that one (but not
254   /// both) of the returned states may be NULL.
255   [[nodiscard]] std::pair<ProgramStateRef, ProgramStateRef>
256   assumeInclusiveRange(DefinedOrUnknownSVal Val, const llvm::APSInt &From,
257                        const llvm::APSInt &To) const;
258 
259   /// Check if the given SVal is not constrained to zero and is not
260   ///        a zero constant.
261   ConditionTruthVal isNonNull(SVal V) const;
262 
263   /// Check if the given SVal is constrained to zero or is a zero
264   ///        constant.
265   ConditionTruthVal isNull(SVal V) const;
266 
267   /// \return Whether values \p Lhs and \p Rhs are equal.
268   ConditionTruthVal areEqual(SVal Lhs, SVal Rhs) const;
269 
270   /// Utility method for getting regions.
271   LLVM_ATTRIBUTE_RETURNS_NONNULL
272   const VarRegion* getRegion(const VarDecl *D, const LocationContext *LC) const;
273 
274   //==---------------------------------------------------------------------==//
275   // Binding and retrieving values to/from the environment and symbolic store.
276   //==---------------------------------------------------------------------==//
277 
278   /// Create a new state by binding the value 'V' to the statement 'S' in the
279   /// state's environment.
280   [[nodiscard]] ProgramStateRef BindExpr(const Stmt *S,
281                                          const LocationContext *LCtx, SVal V,
282                                          bool Invalidate = true) const;
283 
284   [[nodiscard]] ProgramStateRef bindLoc(Loc location, SVal V,
285                                         const LocationContext *LCtx,
286                                         bool notifyChanges = true) const;
287 
288   [[nodiscard]] ProgramStateRef bindLoc(SVal location, SVal V,
289                                         const LocationContext *LCtx) const;
290 
291   /// Initializes the region of memory represented by \p loc with an initial
292   /// value. Once initialized, all values loaded from any sub-regions of that
293   /// region will be equal to \p V, unless overwritten later by the program.
294   /// This method should not be used on regions that are already initialized.
295   /// If you need to indicate that memory contents have suddenly become unknown
296   /// within a certain region of memory, consider invalidateRegions().
297   [[nodiscard]] ProgramStateRef
298   bindDefaultInitial(SVal loc, SVal V, const LocationContext *LCtx) const;
299 
300   /// Performs C++ zero-initialization procedure on the region of memory
301   /// represented by \p loc.
302   [[nodiscard]] ProgramStateRef
303   bindDefaultZero(SVal loc, const LocationContext *LCtx) const;
304 
305   [[nodiscard]] ProgramStateRef killBinding(Loc LV) const;
306 
307   /// Returns the state with bindings for the given regions
308   ///  cleared from the store.
309   ///
310   /// Optionally invalidates global regions as well.
311   ///
312   /// \param Regions the set of regions to be invalidated.
313   /// \param E the expression that caused the invalidation.
314   /// \param BlockCount The number of times the current basic block has been
315   //         visited.
316   /// \param CausesPointerEscape the flag is set to true when
317   ///        the invalidation entails escape of a symbol (representing a
318   ///        pointer). For example, due to it being passed as an argument in a
319   ///        call.
320   /// \param IS the set of invalidated symbols.
321   /// \param Call if non-null, the invalidated regions represent parameters to
322   ///        the call and should be considered directly invalidated.
323   /// \param ITraits information about special handling for a particular
324   ///        region/symbol.
325   [[nodiscard]] ProgramStateRef
326   invalidateRegions(ArrayRef<const MemRegion *> Regions, const Expr *E,
327                     unsigned BlockCount, const LocationContext *LCtx,
328                     bool CausesPointerEscape, InvalidatedSymbols *IS = nullptr,
329                     const CallEvent *Call = nullptr,
330                     RegionAndSymbolInvalidationTraits *ITraits = nullptr) const;
331 
332   [[nodiscard]] ProgramStateRef
333   invalidateRegions(ArrayRef<SVal> Regions, const Expr *E, unsigned BlockCount,
334                     const LocationContext *LCtx, bool CausesPointerEscape,
335                     InvalidatedSymbols *IS = nullptr,
336                     const CallEvent *Call = nullptr,
337                     RegionAndSymbolInvalidationTraits *ITraits = nullptr) const;
338 
339   /// enterStackFrame - Returns the state for entry to the given stack frame,
340   ///  preserving the current state.
341   [[nodiscard]] ProgramStateRef
342   enterStackFrame(const CallEvent &Call,
343                   const StackFrameContext *CalleeCtx) const;
344 
345   /// Return the value of 'self' if available in the given context.
346   SVal getSelfSVal(const LocationContext *LC) const;
347 
348   /// Get the lvalue for a base class object reference.
349   Loc getLValue(const CXXBaseSpecifier &BaseSpec, const SubRegion *Super) const;
350 
351   /// Get the lvalue for a base class object reference.
352   Loc getLValue(const CXXRecordDecl *BaseClass, const SubRegion *Super,
353                 bool IsVirtual) const;
354 
355   /// Get the lvalue for a variable reference.
356   Loc getLValue(const VarDecl *D, const LocationContext *LC) const;
357 
358   Loc getLValue(const CompoundLiteralExpr *literal,
359                 const LocationContext *LC) const;
360 
361   /// Get the lvalue for an ivar reference.
362   SVal getLValue(const ObjCIvarDecl *decl, SVal base) const;
363 
364   /// Get the lvalue for a field reference.
365   SVal getLValue(const FieldDecl *decl, SVal Base) const;
366 
367   /// Get the lvalue for an indirect field reference.
368   SVal getLValue(const IndirectFieldDecl *decl, SVal Base) const;
369 
370   /// Get the lvalue for an array index.
371   SVal getLValue(QualType ElementType, SVal Idx, SVal Base) const;
372 
373   /// Returns the SVal bound to the statement 'S' in the state's environment.
374   SVal getSVal(const Stmt *S, const LocationContext *LCtx) const;
375 
376   SVal getSValAsScalarOrLoc(const Stmt *Ex, const LocationContext *LCtx) const;
377 
378   /// Return the value bound to the specified location.
379   /// Returns UnknownVal() if none found.
380   SVal getSVal(Loc LV, QualType T = QualType()) const;
381 
382   /// Returns the "raw" SVal bound to LV before any value simplfication.
383   SVal getRawSVal(Loc LV, QualType T= QualType()) const;
384 
385   /// Return the value bound to the specified location.
386   /// Returns UnknownVal() if none found.
387   SVal getSVal(const MemRegion* R, QualType T = QualType()) const;
388 
389   /// Return the value bound to the specified location, assuming
390   /// that the value is a scalar integer or an enumeration or a pointer.
391   /// Returns UnknownVal() if none found or the region is not known to hold
392   /// a value of such type.
393   SVal getSValAsScalarOrLoc(const MemRegion *R) const;
394 
395   using region_iterator = const MemRegion **;
396 
397   /// Visits the symbols reachable from the given SVal using the provided
398   /// SymbolVisitor.
399   ///
400   /// This is a convenience API. Consider using ScanReachableSymbols class
401   /// directly when making multiple scans on the same state with the same
402   /// visitor to avoid repeated initialization cost.
403   /// \sa ScanReachableSymbols
404   bool scanReachableSymbols(SVal val, SymbolVisitor& visitor) const;
405 
406   /// Visits the symbols reachable from the regions in the given
407   /// MemRegions range using the provided SymbolVisitor.
408   bool scanReachableSymbols(llvm::iterator_range<region_iterator> Reachable,
409                             SymbolVisitor &visitor) const;
410 
411   template <typename CB> CB scanReachableSymbols(SVal val) const;
412   template <typename CB> CB
413   scanReachableSymbols(llvm::iterator_range<region_iterator> Reachable) const;
414 
415   //==---------------------------------------------------------------------==//
416   // Accessing the Generic Data Map (GDM).
417   //==---------------------------------------------------------------------==//
418 
419   void *const* FindGDM(void *K) const;
420 
421   template <typename T>
422   [[nodiscard]] ProgramStateRef
423   add(typename ProgramStateTrait<T>::key_type K) const;
424 
425   template <typename T>
426   typename ProgramStateTrait<T>::data_type
get()427   get() const {
428     return ProgramStateTrait<T>::MakeData(FindGDM(ProgramStateTrait<T>::GDMIndex()));
429   }
430 
431   template<typename T>
432   typename ProgramStateTrait<T>::lookup_type
get(typename ProgramStateTrait<T>::key_type key)433   get(typename ProgramStateTrait<T>::key_type key) const {
434     void *const* d = FindGDM(ProgramStateTrait<T>::GDMIndex());
435     return ProgramStateTrait<T>::Lookup(ProgramStateTrait<T>::MakeData(d), key);
436   }
437 
438   template <typename T>
439   typename ProgramStateTrait<T>::context_type get_context() const;
440 
441   template <typename T>
442   [[nodiscard]] ProgramStateRef
443   remove(typename ProgramStateTrait<T>::key_type K) const;
444 
445   template <typename T>
446   [[nodiscard]] ProgramStateRef
447   remove(typename ProgramStateTrait<T>::key_type K,
448          typename ProgramStateTrait<T>::context_type C) const;
449 
450   template <typename T> [[nodiscard]] ProgramStateRef remove() const;
451 
452   template <typename T>
453   [[nodiscard]] ProgramStateRef
454   set(typename ProgramStateTrait<T>::data_type D) const;
455 
456   template <typename T>
457   [[nodiscard]] ProgramStateRef
458   set(typename ProgramStateTrait<T>::key_type K,
459       typename ProgramStateTrait<T>::value_type E) const;
460 
461   template <typename T>
462   [[nodiscard]] ProgramStateRef
463   set(typename ProgramStateTrait<T>::key_type K,
464       typename ProgramStateTrait<T>::value_type E,
465       typename ProgramStateTrait<T>::context_type C) const;
466 
467   template<typename T>
contains(typename ProgramStateTrait<T>::key_type key)468   bool contains(typename ProgramStateTrait<T>::key_type key) const {
469     void *const* d = FindGDM(ProgramStateTrait<T>::GDMIndex());
470     return ProgramStateTrait<T>::Contains(ProgramStateTrait<T>::MakeData(d), key);
471   }
472 
473   // Pretty-printing.
474   void printJson(raw_ostream &Out, const LocationContext *LCtx = nullptr,
475                  const char *NL = "\n", unsigned int Space = 0,
476                  bool IsDot = false) const;
477 
478   void printDOT(raw_ostream &Out, const LocationContext *LCtx = nullptr,
479                 unsigned int Space = 0) const;
480 
481   void dump() const;
482 
483 private:
484   friend void ProgramStateRetain(const ProgramState *state);
485   friend void ProgramStateRelease(const ProgramState *state);
486 
487   /// \sa invalidateValues()
488   /// \sa invalidateRegions()
489   ProgramStateRef
490   invalidateRegionsImpl(ArrayRef<SVal> Values,
491                         const Expr *E, unsigned BlockCount,
492                         const LocationContext *LCtx,
493                         bool ResultsInSymbolEscape,
494                         InvalidatedSymbols *IS,
495                         RegionAndSymbolInvalidationTraits *HTraits,
496                         const CallEvent *Call) const;
497 };
498 
499 //===----------------------------------------------------------------------===//
500 // ProgramStateManager - Factory object for ProgramStates.
501 //===----------------------------------------------------------------------===//
502 
503 class ProgramStateManager {
504   friend class ProgramState;
505   friend void ProgramStateRelease(const ProgramState *state);
506 private:
507   /// Eng - The ExprEngine that owns this state manager.
508   ExprEngine *Eng; /* Can be null. */
509 
510   EnvironmentManager                   EnvMgr;
511   std::unique_ptr<StoreManager>        StoreMgr;
512   std::unique_ptr<ConstraintManager>   ConstraintMgr;
513 
514   ProgramState::GenericDataMap::Factory     GDMFactory;
515 
516   typedef llvm::DenseMap<void*,std::pair<void*,void (*)(void*)> > GDMContextsTy;
517   GDMContextsTy GDMContexts;
518 
519   /// StateSet - FoldingSet containing all the states created for analyzing
520   ///  a particular function.  This is used to unique states.
521   llvm::FoldingSet<ProgramState> StateSet;
522 
523   /// Object that manages the data for all created SVals.
524   std::unique_ptr<SValBuilder> svalBuilder;
525 
526   /// Manages memory for created CallEvents.
527   std::unique_ptr<CallEventManager> CallEventMgr;
528 
529   /// A BumpPtrAllocator to allocate states.
530   llvm::BumpPtrAllocator &Alloc;
531 
532   /// A vector of ProgramStates that we can reuse.
533   std::vector<ProgramState *> freeStates;
534 
535 public:
536   ProgramStateManager(ASTContext &Ctx,
537                  StoreManagerCreator CreateStoreManager,
538                  ConstraintManagerCreator CreateConstraintManager,
539                  llvm::BumpPtrAllocator& alloc,
540                  ExprEngine *expreng);
541 
542   ~ProgramStateManager();
543 
544   ProgramStateRef getInitialState(const LocationContext *InitLoc);
545 
getContext()546   ASTContext &getContext() { return svalBuilder->getContext(); }
getContext()547   const ASTContext &getContext() const { return svalBuilder->getContext(); }
548 
getBasicVals()549   BasicValueFactory &getBasicVals() {
550     return svalBuilder->getBasicValueFactory();
551   }
552 
getSValBuilder()553   SValBuilder &getSValBuilder() {
554     return *svalBuilder;
555   }
556 
getSValBuilder()557   const SValBuilder &getSValBuilder() const {
558     return *svalBuilder;
559   }
560 
getSymbolManager()561   SymbolManager &getSymbolManager() {
562     return svalBuilder->getSymbolManager();
563   }
getSymbolManager()564   const SymbolManager &getSymbolManager() const {
565     return svalBuilder->getSymbolManager();
566   }
567 
getAllocator()568   llvm::BumpPtrAllocator& getAllocator() { return Alloc; }
569 
getRegionManager()570   MemRegionManager& getRegionManager() {
571     return svalBuilder->getRegionManager();
572   }
getRegionManager()573   const MemRegionManager &getRegionManager() const {
574     return svalBuilder->getRegionManager();
575   }
576 
getCallEventManager()577   CallEventManager &getCallEventManager() { return *CallEventMgr; }
578 
getStoreManager()579   StoreManager &getStoreManager() { return *StoreMgr; }
getConstraintManager()580   ConstraintManager &getConstraintManager() { return *ConstraintMgr; }
getOwningEngine()581   ExprEngine &getOwningEngine() { return *Eng; }
582 
583   ProgramStateRef
584   removeDeadBindingsFromEnvironmentAndStore(ProgramStateRef St,
585                                             const StackFrameContext *LCtx,
586                                             SymbolReaper &SymReaper);
587 
588 public:
589 
ArrayToPointer(Loc Array,QualType ElementTy)590   SVal ArrayToPointer(Loc Array, QualType ElementTy) {
591     return StoreMgr->ArrayToPointer(Array, ElementTy);
592   }
593 
594   // Methods that manipulate the GDM.
595   ProgramStateRef addGDM(ProgramStateRef St, void *Key, void *Data);
596   ProgramStateRef removeGDM(ProgramStateRef state, void *Key);
597 
598   // Methods that query & manipulate the Store.
599 
iterBindings(ProgramStateRef state,StoreManager::BindingsHandler & F)600   void iterBindings(ProgramStateRef state, StoreManager::BindingsHandler& F) {
601     StoreMgr->iterBindings(state->getStore(), F);
602   }
603 
604   ProgramStateRef getPersistentState(ProgramState &Impl);
605   ProgramStateRef getPersistentStateWithGDM(ProgramStateRef FromState,
606                                            ProgramStateRef GDMState);
607 
haveEqualConstraints(ProgramStateRef S1,ProgramStateRef S2)608   bool haveEqualConstraints(ProgramStateRef S1, ProgramStateRef S2) const {
609     return ConstraintMgr->haveEqualConstraints(S1, S2);
610   }
611 
haveEqualEnvironments(ProgramStateRef S1,ProgramStateRef S2)612   bool haveEqualEnvironments(ProgramStateRef S1, ProgramStateRef S2) const {
613     return S1->Env == S2->Env;
614   }
615 
haveEqualStores(ProgramStateRef S1,ProgramStateRef S2)616   bool haveEqualStores(ProgramStateRef S1, ProgramStateRef S2) const {
617     return S1->store == S2->store;
618   }
619 
620   //==---------------------------------------------------------------------==//
621   // Generic Data Map methods.
622   //==---------------------------------------------------------------------==//
623   //
624   // ProgramStateManager and ProgramState support a "generic data map" that allows
625   // different clients of ProgramState objects to embed arbitrary data within a
626   // ProgramState object.  The generic data map is essentially an immutable map
627   // from a "tag" (that acts as the "key" for a client) and opaque values.
628   // Tags/keys and values are simply void* values.  The typical way that clients
629   // generate unique tags are by taking the address of a static variable.
630   // Clients are responsible for ensuring that data values referred to by a
631   // the data pointer are immutable (and thus are essentially purely functional
632   // data).
633   //
634   // The templated methods below use the ProgramStateTrait<T> class
635   // to resolve keys into the GDM and to return data values to clients.
636   //
637 
638   // Trait based GDM dispatch.
639   template <typename T>
set(ProgramStateRef st,typename ProgramStateTrait<T>::data_type D)640   ProgramStateRef set(ProgramStateRef st, typename ProgramStateTrait<T>::data_type D) {
641     return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
642                   ProgramStateTrait<T>::MakeVoidPtr(D));
643   }
644 
645   template<typename T>
set(ProgramStateRef st,typename ProgramStateTrait<T>::key_type K,typename ProgramStateTrait<T>::value_type V,typename ProgramStateTrait<T>::context_type C)646   ProgramStateRef set(ProgramStateRef st,
647                      typename ProgramStateTrait<T>::key_type K,
648                      typename ProgramStateTrait<T>::value_type V,
649                      typename ProgramStateTrait<T>::context_type C) {
650 
651     return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
652      ProgramStateTrait<T>::MakeVoidPtr(ProgramStateTrait<T>::Set(st->get<T>(), K, V, C)));
653   }
654 
655   template <typename T>
add(ProgramStateRef st,typename ProgramStateTrait<T>::key_type K,typename ProgramStateTrait<T>::context_type C)656   ProgramStateRef add(ProgramStateRef st,
657                      typename ProgramStateTrait<T>::key_type K,
658                      typename ProgramStateTrait<T>::context_type C) {
659     return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
660         ProgramStateTrait<T>::MakeVoidPtr(ProgramStateTrait<T>::Add(st->get<T>(), K, C)));
661   }
662 
663   template <typename T>
remove(ProgramStateRef st,typename ProgramStateTrait<T>::key_type K,typename ProgramStateTrait<T>::context_type C)664   ProgramStateRef remove(ProgramStateRef st,
665                         typename ProgramStateTrait<T>::key_type K,
666                         typename ProgramStateTrait<T>::context_type C) {
667 
668     return addGDM(st, ProgramStateTrait<T>::GDMIndex(),
669      ProgramStateTrait<T>::MakeVoidPtr(ProgramStateTrait<T>::Remove(st->get<T>(), K, C)));
670   }
671 
672   template <typename T>
remove(ProgramStateRef st)673   ProgramStateRef remove(ProgramStateRef st) {
674     return removeGDM(st, ProgramStateTrait<T>::GDMIndex());
675   }
676 
677   void *FindGDMContext(void *index,
678                        void *(*CreateContext)(llvm::BumpPtrAllocator&),
679                        void  (*DeleteContext)(void*));
680 
681   template <typename T>
get_context()682   typename ProgramStateTrait<T>::context_type get_context() {
683     void *p = FindGDMContext(ProgramStateTrait<T>::GDMIndex(),
684                              ProgramStateTrait<T>::CreateContext,
685                              ProgramStateTrait<T>::DeleteContext);
686 
687     return ProgramStateTrait<T>::MakeContext(p);
688   }
689 };
690 
691 
692 //===----------------------------------------------------------------------===//
693 // Out-of-line method definitions for ProgramState.
694 //===----------------------------------------------------------------------===//
695 
getConstraintManager()696 inline ConstraintManager &ProgramState::getConstraintManager() const {
697   return stateMgr->getConstraintManager();
698 }
699 
getRegion(const VarDecl * D,const LocationContext * LC)700 inline const VarRegion* ProgramState::getRegion(const VarDecl *D,
701                                                 const LocationContext *LC) const
702 {
703   return getStateManager().getRegionManager().getVarRegion(D, LC);
704 }
705 
assume(DefinedOrUnknownSVal Cond,bool Assumption)706 inline ProgramStateRef ProgramState::assume(DefinedOrUnknownSVal Cond,
707                                       bool Assumption) const {
708   if (Cond.isUnknown())
709     return this;
710 
711   return getStateManager().ConstraintMgr
712       ->assume(this, Cond.castAs<DefinedSVal>(), Assumption);
713 }
714 
715 inline std::pair<ProgramStateRef , ProgramStateRef >
assume(DefinedOrUnknownSVal Cond)716 ProgramState::assume(DefinedOrUnknownSVal Cond) const {
717   if (Cond.isUnknown())
718     return std::make_pair(this, this);
719 
720   return getStateManager().ConstraintMgr
721       ->assumeDual(this, Cond.castAs<DefinedSVal>());
722 }
723 
assumeInclusiveRange(DefinedOrUnknownSVal Val,const llvm::APSInt & From,const llvm::APSInt & To,bool Assumption)724 inline ProgramStateRef ProgramState::assumeInclusiveRange(
725     DefinedOrUnknownSVal Val, const llvm::APSInt &From, const llvm::APSInt &To,
726     bool Assumption) const {
727   if (Val.isUnknown())
728     return this;
729 
730   assert(isa<NonLoc>(Val) && "Only NonLocs are supported!");
731 
732   return getStateManager().ConstraintMgr->assumeInclusiveRange(
733       this, Val.castAs<NonLoc>(), From, To, Assumption);
734 }
735 
736 inline std::pair<ProgramStateRef, ProgramStateRef>
assumeInclusiveRange(DefinedOrUnknownSVal Val,const llvm::APSInt & From,const llvm::APSInt & To)737 ProgramState::assumeInclusiveRange(DefinedOrUnknownSVal Val,
738                                    const llvm::APSInt &From,
739                                    const llvm::APSInt &To) const {
740   if (Val.isUnknown())
741     return std::make_pair(this, this);
742 
743   assert(isa<NonLoc>(Val) && "Only NonLocs are supported!");
744 
745   return getStateManager().ConstraintMgr->assumeInclusiveRangeDual(
746       this, Val.castAs<NonLoc>(), From, To);
747 }
748 
bindLoc(SVal LV,SVal V,const LocationContext * LCtx)749 inline ProgramStateRef ProgramState::bindLoc(SVal LV, SVal V, const LocationContext *LCtx) const {
750   if (std::optional<Loc> L = LV.getAs<Loc>())
751     return bindLoc(*L, V, LCtx);
752   return this;
753 }
754 
getLValue(const CXXBaseSpecifier & BaseSpec,const SubRegion * Super)755 inline Loc ProgramState::getLValue(const CXXBaseSpecifier &BaseSpec,
756                                    const SubRegion *Super) const {
757   const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl();
758   return loc::MemRegionVal(
759            getStateManager().getRegionManager().getCXXBaseObjectRegion(
760                                             Base, Super, BaseSpec.isVirtual()));
761 }
762 
getLValue(const CXXRecordDecl * BaseClass,const SubRegion * Super,bool IsVirtual)763 inline Loc ProgramState::getLValue(const CXXRecordDecl *BaseClass,
764                                    const SubRegion *Super,
765                                    bool IsVirtual) const {
766   return loc::MemRegionVal(
767            getStateManager().getRegionManager().getCXXBaseObjectRegion(
768                                                   BaseClass, Super, IsVirtual));
769 }
770 
getLValue(const VarDecl * VD,const LocationContext * LC)771 inline Loc ProgramState::getLValue(const VarDecl *VD,
772                                const LocationContext *LC) const {
773   return getStateManager().StoreMgr->getLValueVar(VD, LC);
774 }
775 
getLValue(const CompoundLiteralExpr * literal,const LocationContext * LC)776 inline Loc ProgramState::getLValue(const CompoundLiteralExpr *literal,
777                                const LocationContext *LC) const {
778   return getStateManager().StoreMgr->getLValueCompoundLiteral(literal, LC);
779 }
780 
getLValue(const ObjCIvarDecl * D,SVal Base)781 inline SVal ProgramState::getLValue(const ObjCIvarDecl *D, SVal Base) const {
782   return getStateManager().StoreMgr->getLValueIvar(D, Base);
783 }
784 
getLValue(const FieldDecl * D,SVal Base)785 inline SVal ProgramState::getLValue(const FieldDecl *D, SVal Base) const {
786   return getStateManager().StoreMgr->getLValueField(D, Base);
787 }
788 
getLValue(const IndirectFieldDecl * D,SVal Base)789 inline SVal ProgramState::getLValue(const IndirectFieldDecl *D,
790                                     SVal Base) const {
791   StoreManager &SM = *getStateManager().StoreMgr;
792   for (const auto *I : D->chain()) {
793     Base = SM.getLValueField(cast<FieldDecl>(I), Base);
794   }
795 
796   return Base;
797 }
798 
getLValue(QualType ElementType,SVal Idx,SVal Base)799 inline SVal ProgramState::getLValue(QualType ElementType, SVal Idx, SVal Base) const{
800   if (std::optional<NonLoc> N = Idx.getAs<NonLoc>())
801     return getStateManager().StoreMgr->getLValueElement(ElementType, *N, Base);
802   return UnknownVal();
803 }
804 
getSVal(const Stmt * Ex,const LocationContext * LCtx)805 inline SVal ProgramState::getSVal(const Stmt *Ex,
806                                   const LocationContext *LCtx) const{
807   return Env.getSVal(EnvironmentEntry(Ex, LCtx),
808                      *getStateManager().svalBuilder);
809 }
810 
811 inline SVal
getSValAsScalarOrLoc(const Stmt * S,const LocationContext * LCtx)812 ProgramState::getSValAsScalarOrLoc(const Stmt *S,
813                                    const LocationContext *LCtx) const {
814   if (const Expr *Ex = dyn_cast<Expr>(S)) {
815     QualType T = Ex->getType();
816     if (Ex->isGLValue() || Loc::isLocType(T) ||
817         T->isIntegralOrEnumerationType())
818       return getSVal(S, LCtx);
819   }
820 
821   return UnknownVal();
822 }
823 
getRawSVal(Loc LV,QualType T)824 inline SVal ProgramState::getRawSVal(Loc LV, QualType T) const {
825   return getStateManager().StoreMgr->getBinding(getStore(), LV, T);
826 }
827 
getSVal(const MemRegion * R,QualType T)828 inline SVal ProgramState::getSVal(const MemRegion* R, QualType T) const {
829   return getStateManager().StoreMgr->getBinding(getStore(),
830                                                 loc::MemRegionVal(R),
831                                                 T);
832 }
833 
getBasicVals()834 inline BasicValueFactory &ProgramState::getBasicVals() const {
835   return getStateManager().getBasicVals();
836 }
837 
getSymbolManager()838 inline SymbolManager &ProgramState::getSymbolManager() const {
839   return getStateManager().getSymbolManager();
840 }
841 
842 template<typename T>
add(typename ProgramStateTrait<T>::key_type K)843 ProgramStateRef ProgramState::add(typename ProgramStateTrait<T>::key_type K) const {
844   return getStateManager().add<T>(this, K, get_context<T>());
845 }
846 
847 template <typename T>
get_context()848 typename ProgramStateTrait<T>::context_type ProgramState::get_context() const {
849   return getStateManager().get_context<T>();
850 }
851 
852 template<typename T>
remove(typename ProgramStateTrait<T>::key_type K)853 ProgramStateRef ProgramState::remove(typename ProgramStateTrait<T>::key_type K) const {
854   return getStateManager().remove<T>(this, K, get_context<T>());
855 }
856 
857 template<typename T>
remove(typename ProgramStateTrait<T>::key_type K,typename ProgramStateTrait<T>::context_type C)858 ProgramStateRef ProgramState::remove(typename ProgramStateTrait<T>::key_type K,
859                                typename ProgramStateTrait<T>::context_type C) const {
860   return getStateManager().remove<T>(this, K, C);
861 }
862 
863 template <typename T>
remove()864 ProgramStateRef ProgramState::remove() const {
865   return getStateManager().remove<T>(this);
866 }
867 
868 template<typename T>
set(typename ProgramStateTrait<T>::data_type D)869 ProgramStateRef ProgramState::set(typename ProgramStateTrait<T>::data_type D) const {
870   return getStateManager().set<T>(this, D);
871 }
872 
873 template<typename T>
set(typename ProgramStateTrait<T>::key_type K,typename ProgramStateTrait<T>::value_type E)874 ProgramStateRef ProgramState::set(typename ProgramStateTrait<T>::key_type K,
875                             typename ProgramStateTrait<T>::value_type E) const {
876   return getStateManager().set<T>(this, K, E, get_context<T>());
877 }
878 
879 template<typename T>
set(typename ProgramStateTrait<T>::key_type K,typename ProgramStateTrait<T>::value_type E,typename ProgramStateTrait<T>::context_type C)880 ProgramStateRef ProgramState::set(typename ProgramStateTrait<T>::key_type K,
881                             typename ProgramStateTrait<T>::value_type E,
882                             typename ProgramStateTrait<T>::context_type C) const {
883   return getStateManager().set<T>(this, K, E, C);
884 }
885 
886 template <typename CB>
scanReachableSymbols(SVal val)887 CB ProgramState::scanReachableSymbols(SVal val) const {
888   CB cb(this);
889   scanReachableSymbols(val, cb);
890   return cb;
891 }
892 
893 template <typename CB>
scanReachableSymbols(llvm::iterator_range<region_iterator> Reachable)894 CB ProgramState::scanReachableSymbols(
895     llvm::iterator_range<region_iterator> Reachable) const {
896   CB cb(this);
897   scanReachableSymbols(Reachable, cb);
898   return cb;
899 }
900 
901 /// \class ScanReachableSymbols
902 /// A utility class that visits the reachable symbols using a custom
903 /// SymbolVisitor. Terminates recursive traversal when the visitor function
904 /// returns false.
905 class ScanReachableSymbols {
906   typedef llvm::DenseSet<const void*> VisitedItems;
907 
908   VisitedItems visited;
909   ProgramStateRef state;
910   SymbolVisitor &visitor;
911 public:
ScanReachableSymbols(ProgramStateRef st,SymbolVisitor & v)912   ScanReachableSymbols(ProgramStateRef st, SymbolVisitor &v)
913       : state(std::move(st)), visitor(v) {}
914 
915   bool scan(nonloc::LazyCompoundVal val);
916   bool scan(nonloc::CompoundVal val);
917   bool scan(SVal val);
918   bool scan(const MemRegion *R);
919   bool scan(const SymExpr *sym);
920 };
921 
922 } // end ento namespace
923 
924 } // end clang namespace
925 
926 #endif
927