1 //===- SymbolManager.h - Management of Symbolic Values ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines SymbolManager, a class that manages symbolic values
10 //  created for use by ExprEngine and related classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_SYMBOLMANAGER_H
15 #define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_SYMBOLMANAGER_H
16 
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/Type.h"
19 #include "clang/Analysis/AnalysisDeclContext.h"
20 #include "clang/Basic/LLVM.h"
21 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
22 #include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h"
23 #include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/FoldingSet.h"
27 #include "llvm/Support/Allocator.h"
28 #include <cassert>
29 
30 namespace clang {
31 
32 class ASTContext;
33 class Stmt;
34 
35 namespace ento {
36 
37 class BasicValueFactory;
38 class StoreManager;
39 
40 ///A symbol representing the value stored at a MemRegion.
41 class SymbolRegionValue : public SymbolData {
42   const TypedValueRegion *R;
43 
44 public:
45   SymbolRegionValue(SymbolID sym, const TypedValueRegion *r)
46       : SymbolData(SymbolRegionValueKind, sym), R(r) {
47     assert(r);
48     assert(isValidTypeForSymbol(r->getValueType()));
49   }
50 
51   LLVM_ATTRIBUTE_RETURNS_NONNULL
52   const TypedValueRegion* getRegion() const { return R; }
53 
54   static void Profile(llvm::FoldingSetNodeID& profile, const TypedValueRegion* R) {
55     profile.AddInteger((unsigned) SymbolRegionValueKind);
56     profile.AddPointer(R);
57   }
58 
59   void Profile(llvm::FoldingSetNodeID& profile) override {
60     Profile(profile, R);
61   }
62 
63   StringRef getKindStr() const override;
64 
65   void dumpToStream(raw_ostream &os) const override;
66   const MemRegion *getOriginRegion() const override { return getRegion(); }
67 
68   QualType getType() const override;
69 
70   // Implement isa<T> support.
71   static bool classof(const SymExpr *SE) {
72     return SE->getKind() == SymbolRegionValueKind;
73   }
74 };
75 
76 /// A symbol representing the result of an expression in the case when we do
77 /// not know anything about what the expression is.
78 class SymbolConjured : public SymbolData {
79   const Stmt *S;
80   QualType T;
81   unsigned Count;
82   const LocationContext *LCtx;
83   const void *SymbolTag;
84 
85 public:
86   SymbolConjured(SymbolID sym, const Stmt *s, const LocationContext *lctx,
87                  QualType t, unsigned count, const void *symbolTag)
88       : SymbolData(SymbolConjuredKind, sym), S(s), T(t), Count(count),
89         LCtx(lctx), SymbolTag(symbolTag) {
90     // FIXME: 's' might be a nullptr if we're conducting invalidation
91     // that was caused by a destructor call on a temporary object,
92     // which has no statement associated with it.
93     // Due to this, we might be creating the same invalidation symbol for
94     // two different invalidation passes (for two different temporaries).
95     assert(lctx);
96     assert(isValidTypeForSymbol(t));
97   }
98 
99   /// It might return null.
100   const Stmt *getStmt() const { return S; }
101   unsigned getCount() const { return Count; }
102   /// It might return null.
103   const void *getTag() const { return SymbolTag; }
104 
105   QualType getType() const override;
106 
107   StringRef getKindStr() const override;
108 
109   void dumpToStream(raw_ostream &os) const override;
110 
111   static void Profile(llvm::FoldingSetNodeID& profile, const Stmt *S,
112                       QualType T, unsigned Count, const LocationContext *LCtx,
113                       const void *SymbolTag) {
114     profile.AddInteger((unsigned) SymbolConjuredKind);
115     profile.AddPointer(S);
116     profile.AddPointer(LCtx);
117     profile.Add(T);
118     profile.AddInteger(Count);
119     profile.AddPointer(SymbolTag);
120   }
121 
122   void Profile(llvm::FoldingSetNodeID& profile) override {
123     Profile(profile, S, T, Count, LCtx, SymbolTag);
124   }
125 
126   // Implement isa<T> support.
127   static bool classof(const SymExpr *SE) {
128     return SE->getKind() == SymbolConjuredKind;
129   }
130 };
131 
132 /// A symbol representing the value of a MemRegion whose parent region has
133 /// symbolic value.
134 class SymbolDerived : public SymbolData {
135   SymbolRef parentSymbol;
136   const TypedValueRegion *R;
137 
138 public:
139   SymbolDerived(SymbolID sym, SymbolRef parent, const TypedValueRegion *r)
140       : SymbolData(SymbolDerivedKind, sym), parentSymbol(parent), R(r) {
141     assert(parent);
142     assert(r);
143     assert(isValidTypeForSymbol(r->getValueType()));
144   }
145 
146   LLVM_ATTRIBUTE_RETURNS_NONNULL
147   SymbolRef getParentSymbol() const { return parentSymbol; }
148   LLVM_ATTRIBUTE_RETURNS_NONNULL
149   const TypedValueRegion *getRegion() const { return R; }
150 
151   QualType getType() const override;
152 
153   StringRef getKindStr() const override;
154 
155   void dumpToStream(raw_ostream &os) const override;
156   const MemRegion *getOriginRegion() const override { return getRegion(); }
157 
158   static void Profile(llvm::FoldingSetNodeID& profile, SymbolRef parent,
159                       const TypedValueRegion *r) {
160     profile.AddInteger((unsigned) SymbolDerivedKind);
161     profile.AddPointer(r);
162     profile.AddPointer(parent);
163   }
164 
165   void Profile(llvm::FoldingSetNodeID& profile) override {
166     Profile(profile, parentSymbol, R);
167   }
168 
169   // Implement isa<T> support.
170   static bool classof(const SymExpr *SE) {
171     return SE->getKind() == SymbolDerivedKind;
172   }
173 };
174 
175 /// SymbolExtent - Represents the extent (size in bytes) of a bounded region.
176 ///  Clients should not ask the SymbolManager for a region's extent. Always use
177 ///  SubRegion::getExtent instead -- the value returned may not be a symbol.
178 class SymbolExtent : public SymbolData {
179   const SubRegion *R;
180 
181 public:
182   SymbolExtent(SymbolID sym, const SubRegion *r)
183       : SymbolData(SymbolExtentKind, sym), R(r) {
184     assert(r);
185   }
186 
187   LLVM_ATTRIBUTE_RETURNS_NONNULL
188   const SubRegion *getRegion() const { return R; }
189 
190   QualType getType() const override;
191 
192   StringRef getKindStr() const override;
193 
194   void dumpToStream(raw_ostream &os) const override;
195 
196   static void Profile(llvm::FoldingSetNodeID& profile, const SubRegion *R) {
197     profile.AddInteger((unsigned) SymbolExtentKind);
198     profile.AddPointer(R);
199   }
200 
201   void Profile(llvm::FoldingSetNodeID& profile) override {
202     Profile(profile, R);
203   }
204 
205   // Implement isa<T> support.
206   static bool classof(const SymExpr *SE) {
207     return SE->getKind() == SymbolExtentKind;
208   }
209 };
210 
211 /// SymbolMetadata - Represents path-dependent metadata about a specific region.
212 ///  Metadata symbols remain live as long as they are marked as in use before
213 ///  dead-symbol sweeping AND their associated regions are still alive.
214 ///  Intended for use by checkers.
215 class SymbolMetadata : public SymbolData {
216   const MemRegion* R;
217   const Stmt *S;
218   QualType T;
219   const LocationContext *LCtx;
220   unsigned Count;
221   const void *Tag;
222 
223 public:
224   SymbolMetadata(SymbolID sym, const MemRegion* r, const Stmt *s, QualType t,
225                  const LocationContext *LCtx, unsigned count, const void *tag)
226       : SymbolData(SymbolMetadataKind, sym), R(r), S(s), T(t), LCtx(LCtx),
227         Count(count), Tag(tag) {
228       assert(r);
229       assert(s);
230       assert(isValidTypeForSymbol(t));
231       assert(LCtx);
232       assert(tag);
233     }
234 
235     LLVM_ATTRIBUTE_RETURNS_NONNULL
236     const MemRegion *getRegion() const { return R; }
237 
238     LLVM_ATTRIBUTE_RETURNS_NONNULL
239     const Stmt *getStmt() const { return S; }
240 
241     LLVM_ATTRIBUTE_RETURNS_NONNULL
242     const LocationContext *getLocationContext() const { return LCtx; }
243 
244     unsigned getCount() const { return Count; }
245 
246     LLVM_ATTRIBUTE_RETURNS_NONNULL
247     const void *getTag() const { return Tag; }
248 
249     QualType getType() const override;
250 
251     StringRef getKindStr() const override;
252 
253     void dumpToStream(raw_ostream &os) const override;
254 
255     static void Profile(llvm::FoldingSetNodeID &profile, const MemRegion *R,
256                         const Stmt *S, QualType T, const LocationContext *LCtx,
257                         unsigned Count, const void *Tag) {
258       profile.AddInteger((unsigned)SymbolMetadataKind);
259       profile.AddPointer(R);
260       profile.AddPointer(S);
261       profile.Add(T);
262       profile.AddPointer(LCtx);
263       profile.AddInteger(Count);
264       profile.AddPointer(Tag);
265     }
266 
267   void Profile(llvm::FoldingSetNodeID& profile) override {
268     Profile(profile, R, S, T, LCtx, Count, Tag);
269   }
270 
271   // Implement isa<T> support.
272   static bool classof(const SymExpr *SE) {
273     return SE->getKind() == SymbolMetadataKind;
274   }
275 };
276 
277 /// Represents a cast expression.
278 class SymbolCast : public SymExpr {
279   const SymExpr *Operand;
280 
281   /// Type of the operand.
282   QualType FromTy;
283 
284   /// The type of the result.
285   QualType ToTy;
286 
287 public:
288   SymbolCast(const SymExpr *In, QualType From, QualType To)
289       : SymExpr(SymbolCastKind), Operand(In), FromTy(From), ToTy(To) {
290     assert(In);
291     assert(isValidTypeForSymbol(From));
292     // FIXME: GenericTaintChecker creates symbols of void type.
293     // Otherwise, 'To' should also be a valid type.
294   }
295 
296   unsigned computeComplexity() const override {
297     if (Complexity == 0)
298       Complexity = 1 + Operand->computeComplexity();
299     return Complexity;
300   }
301 
302   QualType getType() const override { return ToTy; }
303 
304   LLVM_ATTRIBUTE_RETURNS_NONNULL
305   const SymExpr *getOperand() const { return Operand; }
306 
307   void dumpToStream(raw_ostream &os) const override;
308 
309   static void Profile(llvm::FoldingSetNodeID& ID,
310                       const SymExpr *In, QualType From, QualType To) {
311     ID.AddInteger((unsigned) SymbolCastKind);
312     ID.AddPointer(In);
313     ID.Add(From);
314     ID.Add(To);
315   }
316 
317   void Profile(llvm::FoldingSetNodeID& ID) override {
318     Profile(ID, Operand, FromTy, ToTy);
319   }
320 
321   // Implement isa<T> support.
322   static bool classof(const SymExpr *SE) {
323     return SE->getKind() == SymbolCastKind;
324   }
325 };
326 
327 /// Represents a symbolic expression involving a unary operator.
328 class UnarySymExpr : public SymExpr {
329   const SymExpr *Operand;
330   UnaryOperator::Opcode Op;
331   QualType T;
332 
333 public:
334   UnarySymExpr(const SymExpr *In, UnaryOperator::Opcode Op, QualType T)
335       : SymExpr(UnarySymExprKind), Operand(In), Op(Op), T(T) {
336     // Note, some unary operators are modeled as a binary operator. E.g. ++x is
337     // modeled as x + 1.
338     assert((Op == UO_Minus || Op == UO_Not) && "non-supported unary expression");
339     // Unary expressions are results of arithmetic. Pointer arithmetic is not
340     // handled by unary expressions, but it is instead handled by applying
341     // sub-regions to regions.
342     assert(isValidTypeForSymbol(T) && "non-valid type for unary symbol");
343     assert(!Loc::isLocType(T) && "unary symbol should be nonloc");
344   }
345 
346   unsigned computeComplexity() const override {
347     if (Complexity == 0)
348       Complexity = 1 + Operand->computeComplexity();
349     return Complexity;
350   }
351 
352   const SymExpr *getOperand() const { return Operand; }
353   UnaryOperator::Opcode getOpcode() const { return Op; }
354   QualType getType() const override { return T; }
355 
356   void dumpToStream(raw_ostream &os) const override;
357 
358   static void Profile(llvm::FoldingSetNodeID &ID, const SymExpr *In,
359                       UnaryOperator::Opcode Op, QualType T) {
360     ID.AddInteger((unsigned)UnarySymExprKind);
361     ID.AddPointer(In);
362     ID.AddInteger(Op);
363     ID.Add(T);
364   }
365 
366   void Profile(llvm::FoldingSetNodeID &ID) override {
367     Profile(ID, Operand, Op, T);
368   }
369 
370   // Implement isa<T> support.
371   static bool classof(const SymExpr *SE) {
372     return SE->getKind() == UnarySymExprKind;
373   }
374 };
375 
376 /// Represents a symbolic expression involving a binary operator
377 class BinarySymExpr : public SymExpr {
378   BinaryOperator::Opcode Op;
379   QualType T;
380 
381 protected:
382   BinarySymExpr(Kind k, BinaryOperator::Opcode op, QualType t)
383       : SymExpr(k), Op(op), T(t) {
384     assert(classof(this));
385     // Binary expressions are results of arithmetic. Pointer arithmetic is not
386     // handled by binary expressions, but it is instead handled by applying
387     // sub-regions to regions.
388     assert(isValidTypeForSymbol(t) && !Loc::isLocType(t));
389   }
390 
391 public:
392   // FIXME: We probably need to make this out-of-line to avoid redundant
393   // generation of virtual functions.
394   QualType getType() const override { return T; }
395 
396   BinaryOperator::Opcode getOpcode() const { return Op; }
397 
398   // Implement isa<T> support.
399   static bool classof(const SymExpr *SE) {
400     Kind k = SE->getKind();
401     return k >= BEGIN_BINARYSYMEXPRS && k <= END_BINARYSYMEXPRS;
402   }
403 
404 protected:
405   static unsigned computeOperandComplexity(const SymExpr *Value) {
406     return Value->computeComplexity();
407   }
408   static unsigned computeOperandComplexity(const llvm::APSInt &Value) {
409     return 1;
410   }
411 
412   static const llvm::APSInt *getPointer(const llvm::APSInt &Value) {
413     return &Value;
414   }
415   static const SymExpr *getPointer(const SymExpr *Value) { return Value; }
416 
417   static void dumpToStreamImpl(raw_ostream &os, const SymExpr *Value);
418   static void dumpToStreamImpl(raw_ostream &os, const llvm::APSInt &Value);
419   static void dumpToStreamImpl(raw_ostream &os, BinaryOperator::Opcode op);
420 };
421 
422 /// Template implementation for all binary symbolic expressions
423 template <class LHSTYPE, class RHSTYPE, SymExpr::Kind ClassKind>
424 class BinarySymExprImpl : public BinarySymExpr {
425   LHSTYPE LHS;
426   RHSTYPE RHS;
427 
428 public:
429   BinarySymExprImpl(LHSTYPE lhs, BinaryOperator::Opcode op, RHSTYPE rhs,
430                     QualType t)
431       : BinarySymExpr(ClassKind, op, t), LHS(lhs), RHS(rhs) {
432     assert(getPointer(lhs));
433     assert(getPointer(rhs));
434   }
435 
436   void dumpToStream(raw_ostream &os) const override {
437     dumpToStreamImpl(os, LHS);
438     dumpToStreamImpl(os, getOpcode());
439     dumpToStreamImpl(os, RHS);
440   }
441 
442   LHSTYPE getLHS() const { return LHS; }
443   RHSTYPE getRHS() const { return RHS; }
444 
445   unsigned computeComplexity() const override {
446     if (Complexity == 0)
447       Complexity =
448           computeOperandComplexity(RHS) + computeOperandComplexity(LHS);
449     return Complexity;
450   }
451 
452   static void Profile(llvm::FoldingSetNodeID &ID, LHSTYPE lhs,
453                       BinaryOperator::Opcode op, RHSTYPE rhs, QualType t) {
454     ID.AddInteger((unsigned)ClassKind);
455     ID.AddPointer(getPointer(lhs));
456     ID.AddInteger(op);
457     ID.AddPointer(getPointer(rhs));
458     ID.Add(t);
459   }
460 
461   void Profile(llvm::FoldingSetNodeID &ID) override {
462     Profile(ID, LHS, getOpcode(), RHS, getType());
463   }
464 
465   // Implement isa<T> support.
466   static bool classof(const SymExpr *SE) { return SE->getKind() == ClassKind; }
467 };
468 
469 /// Represents a symbolic expression like 'x' + 3.
470 using SymIntExpr = BinarySymExprImpl<const SymExpr *, const llvm::APSInt &,
471                                      SymExpr::Kind::SymIntExprKind>;
472 
473 /// Represents a symbolic expression like 3 - 'x'.
474 using IntSymExpr = BinarySymExprImpl<const llvm::APSInt &, const SymExpr *,
475                                      SymExpr::Kind::IntSymExprKind>;
476 
477 /// Represents a symbolic expression like 'x' + 'y'.
478 using SymSymExpr = BinarySymExprImpl<const SymExpr *, const SymExpr *,
479                                      SymExpr::Kind::SymSymExprKind>;
480 
481 class SymbolManager {
482   using DataSetTy = llvm::FoldingSet<SymExpr>;
483   using SymbolDependTy =
484       llvm::DenseMap<SymbolRef, std::unique_ptr<SymbolRefSmallVectorTy>>;
485 
486   DataSetTy DataSet;
487 
488   /// Stores the extra dependencies between symbols: the data should be kept
489   /// alive as long as the key is live.
490   SymbolDependTy SymbolDependencies;
491 
492   unsigned SymbolCounter = 0;
493   llvm::BumpPtrAllocator& BPAlloc;
494   BasicValueFactory &BV;
495   ASTContext &Ctx;
496 
497 public:
498   SymbolManager(ASTContext &ctx, BasicValueFactory &bv,
499                 llvm::BumpPtrAllocator& bpalloc)
500       : SymbolDependencies(16), BPAlloc(bpalloc), BV(bv), Ctx(ctx) {}
501 
502   static bool canSymbolicate(QualType T);
503 
504   /// Make a unique symbol for MemRegion R according to its kind.
505   const SymbolRegionValue* getRegionValueSymbol(const TypedValueRegion* R);
506 
507   const SymbolConjured* conjureSymbol(const Stmt *E,
508                                       const LocationContext *LCtx,
509                                       QualType T,
510                                       unsigned VisitCount,
511                                       const void *SymbolTag = nullptr);
512 
513   const SymbolConjured* conjureSymbol(const Expr *E,
514                                       const LocationContext *LCtx,
515                                       unsigned VisitCount,
516                                       const void *SymbolTag = nullptr) {
517     return conjureSymbol(E, LCtx, E->getType(), VisitCount, SymbolTag);
518   }
519 
520   const SymbolDerived *getDerivedSymbol(SymbolRef parentSymbol,
521                                         const TypedValueRegion *R);
522 
523   const SymbolExtent *getExtentSymbol(const SubRegion *R);
524 
525   /// Creates a metadata symbol associated with a specific region.
526   ///
527   /// VisitCount can be used to differentiate regions corresponding to
528   /// different loop iterations, thus, making the symbol path-dependent.
529   const SymbolMetadata *getMetadataSymbol(const MemRegion *R, const Stmt *S,
530                                           QualType T,
531                                           const LocationContext *LCtx,
532                                           unsigned VisitCount,
533                                           const void *SymbolTag = nullptr);
534 
535   const SymbolCast* getCastSymbol(const SymExpr *Operand,
536                                   QualType From, QualType To);
537 
538   const SymIntExpr *getSymIntExpr(const SymExpr *lhs, BinaryOperator::Opcode op,
539                                   const llvm::APSInt& rhs, QualType t);
540 
541   const SymIntExpr *getSymIntExpr(const SymExpr &lhs, BinaryOperator::Opcode op,
542                                   const llvm::APSInt& rhs, QualType t) {
543     return getSymIntExpr(&lhs, op, rhs, t);
544   }
545 
546   const IntSymExpr *getIntSymExpr(const llvm::APSInt& lhs,
547                                   BinaryOperator::Opcode op,
548                                   const SymExpr *rhs, QualType t);
549 
550   const SymSymExpr *getSymSymExpr(const SymExpr *lhs, BinaryOperator::Opcode op,
551                                   const SymExpr *rhs, QualType t);
552 
553   const UnarySymExpr *getUnarySymExpr(const SymExpr *operand,
554                                       UnaryOperator::Opcode op, QualType t);
555 
556   QualType getType(const SymExpr *SE) const {
557     return SE->getType();
558   }
559 
560   /// Add artificial symbol dependency.
561   ///
562   /// The dependent symbol should stay alive as long as the primary is alive.
563   void addSymbolDependency(const SymbolRef Primary, const SymbolRef Dependent);
564 
565   const SymbolRefSmallVectorTy *getDependentSymbols(const SymbolRef Primary);
566 
567   ASTContext &getContext() { return Ctx; }
568   BasicValueFactory &getBasicVals() { return BV; }
569 };
570 
571 /// A class responsible for cleaning up unused symbols.
572 class SymbolReaper {
573   enum SymbolStatus {
574     NotProcessed,
575     HaveMarkedDependents
576   };
577 
578   using SymbolSetTy = llvm::DenseSet<SymbolRef>;
579   using SymbolMapTy = llvm::DenseMap<SymbolRef, SymbolStatus>;
580   using RegionSetTy = llvm::DenseSet<const MemRegion *>;
581 
582   SymbolMapTy TheLiving;
583   SymbolSetTy MetadataInUse;
584 
585   RegionSetTy LiveRegionRoots;
586   // The lazily copied regions are locations for which a program
587   // can access the value stored at that location, but not its address.
588   // These regions are constructed as a set of regions referred to by
589   // lazyCompoundVal.
590   RegionSetTy LazilyCopiedRegionRoots;
591 
592   const StackFrameContext *LCtx;
593   const Stmt *Loc;
594   SymbolManager& SymMgr;
595   StoreRef reapedStore;
596   llvm::DenseMap<const MemRegion *, unsigned> includedRegionCache;
597 
598 public:
599   /// Construct a reaper object, which removes everything which is not
600   /// live before we execute statement s in the given location context.
601   ///
602   /// If the statement is NULL, everything is this and parent contexts is
603   /// considered live.
604   /// If the stack frame context is NULL, everything on stack is considered
605   /// dead.
606   SymbolReaper(const StackFrameContext *Ctx, const Stmt *s,
607                SymbolManager &symmgr, StoreManager &storeMgr)
608       : LCtx(Ctx), Loc(s), SymMgr(symmgr), reapedStore(nullptr, storeMgr) {}
609 
610   /// It might return null.
611   const LocationContext *getLocationContext() const { return LCtx; }
612 
613   bool isLive(SymbolRef sym);
614   bool isLiveRegion(const MemRegion *region);
615   bool isLive(const Expr *ExprVal, const LocationContext *LCtx) const;
616   bool isLive(const VarRegion *VR, bool includeStoreBindings = false) const;
617 
618   /// Unconditionally marks a symbol as live.
619   ///
620   /// This should never be
621   /// used by checkers, only by the state infrastructure such as the store and
622   /// environment. Checkers should instead use metadata symbols and markInUse.
623   void markLive(SymbolRef sym);
624 
625   /// Marks a symbol as important to a checker.
626   ///
627   /// For metadata symbols,
628   /// this will keep the symbol alive as long as its associated region is also
629   /// live. For other symbols, this has no effect; checkers are not permitted
630   /// to influence the life of other symbols. This should be used before any
631   /// symbol marking has occurred, i.e. in the MarkLiveSymbols callback.
632   void markInUse(SymbolRef sym);
633 
634   using region_iterator = RegionSetTy::const_iterator;
635 
636   region_iterator region_begin() const { return LiveRegionRoots.begin(); }
637   region_iterator region_end() const { return LiveRegionRoots.end(); }
638 
639   /// Returns whether or not a symbol has been confirmed dead.
640   ///
641   /// This should only be called once all marking of dead symbols has completed.
642   /// (For checkers, this means only in the checkDeadSymbols callback.)
643   bool isDead(SymbolRef sym) {
644     return !isLive(sym);
645   }
646 
647   void markLive(const MemRegion *region);
648   void markLazilyCopied(const MemRegion *region);
649   void markElementIndicesLive(const MemRegion *region);
650 
651   /// Set to the value of the symbolic store after
652   /// StoreManager::removeDeadBindings has been called.
653   void setReapedStore(StoreRef st) { reapedStore = st; }
654 
655 private:
656   bool isLazilyCopiedRegion(const MemRegion *region) const;
657   // A readable region is a region that live or lazily copied.
658   // Any symbols that refer to values in regions are alive if the region
659   // is readable.
660   bool isReadableRegion(const MemRegion *region);
661 
662   /// Mark the symbols dependent on the input symbol as live.
663   void markDependentsLive(SymbolRef sym);
664 };
665 
666 class SymbolVisitor {
667 protected:
668   ~SymbolVisitor() = default;
669 
670 public:
671   SymbolVisitor() = default;
672   SymbolVisitor(const SymbolVisitor &) = default;
673   SymbolVisitor(SymbolVisitor &&) {}
674 
675   /// A visitor method invoked by ProgramStateManager::scanReachableSymbols.
676   ///
677   /// The method returns \c true if symbols should continue be scanned and \c
678   /// false otherwise.
679   virtual bool VisitSymbol(SymbolRef sym) = 0;
680   virtual bool VisitMemRegion(const MemRegion *) { return true; }
681 };
682 
683 } // namespace ento
684 
685 } // namespace clang
686 
687 #endif // LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_SYMBOLMANAGER_H
688