1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expr class and subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Expr.h"
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/ComputeDependence.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/DependenceFlags.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/IgnoreExpr.h"
25 #include "clang/AST/Mangle.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/CharInfo.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Lex/Lexer.h"
33 #include "clang/Lex/LiteralSupport.h"
34 #include "clang/Lex/Preprocessor.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/Format.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 #include <cstring>
40 #include <optional>
41 using namespace clang;
42 
43 const Expr *Expr::getBestDynamicClassTypeExpr() const {
44   const Expr *E = this;
45   while (true) {
46     E = E->IgnoreParenBaseCasts();
47 
48     // Follow the RHS of a comma operator.
49     if (auto *BO = dyn_cast<BinaryOperator>(E)) {
50       if (BO->getOpcode() == BO_Comma) {
51         E = BO->getRHS();
52         continue;
53       }
54     }
55 
56     // Step into initializer for materialized temporaries.
57     if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
58       E = MTE->getSubExpr();
59       continue;
60     }
61 
62     break;
63   }
64 
65   return E;
66 }
67 
68 const CXXRecordDecl *Expr::getBestDynamicClassType() const {
69   const Expr *E = getBestDynamicClassTypeExpr();
70   QualType DerivedType = E->getType();
71   if (const PointerType *PTy = DerivedType->getAs<PointerType>())
72     DerivedType = PTy->getPointeeType();
73 
74   if (DerivedType->isDependentType())
75     return nullptr;
76 
77   const RecordType *Ty = DerivedType->castAs<RecordType>();
78   Decl *D = Ty->getDecl();
79   return cast<CXXRecordDecl>(D);
80 }
81 
82 const Expr *Expr::skipRValueSubobjectAdjustments(
83     SmallVectorImpl<const Expr *> &CommaLHSs,
84     SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
85   const Expr *E = this;
86   while (true) {
87     E = E->IgnoreParens();
88 
89     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
90       if ((CE->getCastKind() == CK_DerivedToBase ||
91            CE->getCastKind() == CK_UncheckedDerivedToBase) &&
92           E->getType()->isRecordType()) {
93         E = CE->getSubExpr();
94         auto *Derived =
95             cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl());
96         Adjustments.push_back(SubobjectAdjustment(CE, Derived));
97         continue;
98       }
99 
100       if (CE->getCastKind() == CK_NoOp) {
101         E = CE->getSubExpr();
102         continue;
103       }
104     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
105       if (!ME->isArrow()) {
106         assert(ME->getBase()->getType()->isRecordType());
107         if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
108           if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
109             E = ME->getBase();
110             Adjustments.push_back(SubobjectAdjustment(Field));
111             continue;
112           }
113         }
114       }
115     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
116       if (BO->getOpcode() == BO_PtrMemD) {
117         assert(BO->getRHS()->isPRValue());
118         E = BO->getLHS();
119         const MemberPointerType *MPT =
120           BO->getRHS()->getType()->getAs<MemberPointerType>();
121         Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
122         continue;
123       }
124       if (BO->getOpcode() == BO_Comma) {
125         CommaLHSs.push_back(BO->getLHS());
126         E = BO->getRHS();
127         continue;
128       }
129     }
130 
131     // Nothing changed.
132     break;
133   }
134   return E;
135 }
136 
137 bool Expr::isKnownToHaveBooleanValue(bool Semantic) const {
138   const Expr *E = IgnoreParens();
139 
140   // If this value has _Bool type, it is obvious 0/1.
141   if (E->getType()->isBooleanType()) return true;
142   // If this is a non-scalar-integer type, we don't care enough to try.
143   if (!E->getType()->isIntegralOrEnumerationType()) return false;
144 
145   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
146     switch (UO->getOpcode()) {
147     case UO_Plus:
148       return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
149     case UO_LNot:
150       return true;
151     default:
152       return false;
153     }
154   }
155 
156   // Only look through implicit casts.  If the user writes
157   // '(int) (a && b)' treat it as an arbitrary int.
158   // FIXME: Should we look through any cast expression in !Semantic mode?
159   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
160     return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
161 
162   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
163     switch (BO->getOpcode()) {
164     default: return false;
165     case BO_LT:   // Relational operators.
166     case BO_GT:
167     case BO_LE:
168     case BO_GE:
169     case BO_EQ:   // Equality operators.
170     case BO_NE:
171     case BO_LAnd: // AND operator.
172     case BO_LOr:  // Logical OR operator.
173       return true;
174 
175     case BO_And:  // Bitwise AND operator.
176     case BO_Xor:  // Bitwise XOR operator.
177     case BO_Or:   // Bitwise OR operator.
178       // Handle things like (x==2)|(y==12).
179       return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) &&
180              BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
181 
182     case BO_Comma:
183     case BO_Assign:
184       return BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
185     }
186   }
187 
188   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
189     return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) &&
190            CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic);
191 
192   if (isa<ObjCBoolLiteralExpr>(E))
193     return true;
194 
195   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
196     return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic);
197 
198   if (const FieldDecl *FD = E->getSourceBitField())
199     if (!Semantic && FD->getType()->isUnsignedIntegerType() &&
200         !FD->getBitWidth()->isValueDependent() &&
201         FD->getBitWidthValue(FD->getASTContext()) == 1)
202       return true;
203 
204   return false;
205 }
206 
207 bool Expr::isFlexibleArrayMemberLike(
208     ASTContext &Context,
209     LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel,
210     bool IgnoreTemplateOrMacroSubstitution) const {
211 
212   // For compatibility with existing code, we treat arrays of length 0 or
213   // 1 as flexible array members.
214   const auto *CAT = Context.getAsConstantArrayType(getType());
215   if (CAT) {
216     llvm::APInt Size = CAT->getSize();
217 
218     using FAMKind = LangOptions::StrictFlexArraysLevelKind;
219 
220     if (StrictFlexArraysLevel == FAMKind::IncompleteOnly)
221       return false;
222 
223     // GCC extension, only allowed to represent a FAM.
224     if (Size == 0)
225       return true;
226 
227     if (StrictFlexArraysLevel == FAMKind::ZeroOrIncomplete && Size.uge(1))
228       return false;
229 
230     if (StrictFlexArraysLevel == FAMKind::OneZeroOrIncomplete && Size.uge(2))
231       return false;
232   } else if (!Context.getAsIncompleteArrayType(getType()))
233     return false;
234 
235   const Expr *E = IgnoreParens();
236 
237   const NamedDecl *ND = nullptr;
238   if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
239     ND = DRE->getDecl();
240   else if (const auto *ME = dyn_cast<MemberExpr>(E))
241     ND = ME->getMemberDecl();
242   else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
243     return IRE->getDecl()->getNextIvar() == nullptr;
244 
245   if (!ND)
246     return false;
247 
248   // A flexible array member must be the last member in the class.
249   // FIXME: If the base type of the member expr is not FD->getParent(),
250   // this should not be treated as a flexible array member access.
251   if (const auto *FD = dyn_cast<FieldDecl>(ND)) {
252     // GCC treats an array memeber of a union as an FAM if the size is one or
253     // zero.
254     if (CAT) {
255       llvm::APInt Size = CAT->getSize();
256       if (FD->getParent()->isUnion() && (Size.isZero() || Size.isOne()))
257         return true;
258     }
259 
260     // Don't consider sizes resulting from macro expansions or template argument
261     // substitution to form C89 tail-padded arrays.
262     if (IgnoreTemplateOrMacroSubstitution) {
263       TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
264       while (TInfo) {
265         TypeLoc TL = TInfo->getTypeLoc();
266         // Look through typedefs.
267         if (TypedefTypeLoc TTL = TL.getAsAdjusted<TypedefTypeLoc>()) {
268           const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
269           TInfo = TDL->getTypeSourceInfo();
270           continue;
271         }
272         if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
273           const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
274           if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
275             return false;
276         }
277         break;
278       }
279     }
280 
281     RecordDecl::field_iterator FI(
282         DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
283     return ++FI == FD->getParent()->field_end();
284   }
285 
286   return false;
287 }
288 
289 const ValueDecl *
290 Expr::getAsBuiltinConstantDeclRef(const ASTContext &Context) const {
291   Expr::EvalResult Eval;
292 
293   if (EvaluateAsConstantExpr(Eval, Context)) {
294     APValue &Value = Eval.Val;
295 
296     if (Value.isMemberPointer())
297       return Value.getMemberPointerDecl();
298 
299     if (Value.isLValue() && Value.getLValueOffset().isZero())
300       return Value.getLValueBase().dyn_cast<const ValueDecl *>();
301   }
302 
303   return nullptr;
304 }
305 
306 // Amusing macro metaprogramming hack: check whether a class provides
307 // a more specific implementation of getExprLoc().
308 //
309 // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
310 namespace {
311   /// This implementation is used when a class provides a custom
312   /// implementation of getExprLoc.
313   template <class E, class T>
314   SourceLocation getExprLocImpl(const Expr *expr,
315                                 SourceLocation (T::*v)() const) {
316     return static_cast<const E*>(expr)->getExprLoc();
317   }
318 
319   /// This implementation is used when a class doesn't provide
320   /// a custom implementation of getExprLoc.  Overload resolution
321   /// should pick it over the implementation above because it's
322   /// more specialized according to function template partial ordering.
323   template <class E>
324   SourceLocation getExprLocImpl(const Expr *expr,
325                                 SourceLocation (Expr::*v)() const) {
326     return static_cast<const E *>(expr)->getBeginLoc();
327   }
328 }
329 
330 SourceLocation Expr::getExprLoc() const {
331   switch (getStmtClass()) {
332   case Stmt::NoStmtClass: llvm_unreachable("statement without class");
333 #define ABSTRACT_STMT(type)
334 #define STMT(type, base) \
335   case Stmt::type##Class: break;
336 #define EXPR(type, base) \
337   case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
338 #include "clang/AST/StmtNodes.inc"
339   }
340   llvm_unreachable("unknown expression kind");
341 }
342 
343 //===----------------------------------------------------------------------===//
344 // Primary Expressions.
345 //===----------------------------------------------------------------------===//
346 
347 static void AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind) {
348   assert((Kind == ConstantExpr::RSK_APValue ||
349           Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) &&
350          "Invalid StorageKind Value");
351   (void)Kind;
352 }
353 
354 ConstantExpr::ResultStorageKind
355 ConstantExpr::getStorageKind(const APValue &Value) {
356   switch (Value.getKind()) {
357   case APValue::None:
358   case APValue::Indeterminate:
359     return ConstantExpr::RSK_None;
360   case APValue::Int:
361     if (!Value.getInt().needsCleanup())
362       return ConstantExpr::RSK_Int64;
363     [[fallthrough]];
364   default:
365     return ConstantExpr::RSK_APValue;
366   }
367 }
368 
369 ConstantExpr::ResultStorageKind
370 ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) {
371   if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64)
372     return ConstantExpr::RSK_Int64;
373   return ConstantExpr::RSK_APValue;
374 }
375 
376 ConstantExpr::ConstantExpr(Expr *SubExpr, ResultStorageKind StorageKind,
377                            bool IsImmediateInvocation)
378     : FullExpr(ConstantExprClass, SubExpr) {
379   ConstantExprBits.ResultKind = StorageKind;
380   ConstantExprBits.APValueKind = APValue::None;
381   ConstantExprBits.IsUnsigned = false;
382   ConstantExprBits.BitWidth = 0;
383   ConstantExprBits.HasCleanup = false;
384   ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation;
385 
386   if (StorageKind == ConstantExpr::RSK_APValue)
387     ::new (getTrailingObjects<APValue>()) APValue();
388 }
389 
390 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
391                                    ResultStorageKind StorageKind,
392                                    bool IsImmediateInvocation) {
393   assert(!isa<ConstantExpr>(E));
394   AssertResultStorageKind(StorageKind);
395 
396   unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
397       StorageKind == ConstantExpr::RSK_APValue,
398       StorageKind == ConstantExpr::RSK_Int64);
399   void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
400   return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation);
401 }
402 
403 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
404                                    const APValue &Result) {
405   ResultStorageKind StorageKind = getStorageKind(Result);
406   ConstantExpr *Self = Create(Context, E, StorageKind);
407   Self->SetResult(Result, Context);
408   return Self;
409 }
410 
411 ConstantExpr::ConstantExpr(EmptyShell Empty, ResultStorageKind StorageKind)
412     : FullExpr(ConstantExprClass, Empty) {
413   ConstantExprBits.ResultKind = StorageKind;
414 
415   if (StorageKind == ConstantExpr::RSK_APValue)
416     ::new (getTrailingObjects<APValue>()) APValue();
417 }
418 
419 ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context,
420                                         ResultStorageKind StorageKind) {
421   AssertResultStorageKind(StorageKind);
422 
423   unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
424       StorageKind == ConstantExpr::RSK_APValue,
425       StorageKind == ConstantExpr::RSK_Int64);
426   void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
427   return new (Mem) ConstantExpr(EmptyShell(), StorageKind);
428 }
429 
430 void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) {
431   assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind &&
432          "Invalid storage for this value kind");
433   ConstantExprBits.APValueKind = Value.getKind();
434   switch (ConstantExprBits.ResultKind) {
435   case RSK_None:
436     return;
437   case RSK_Int64:
438     Int64Result() = *Value.getInt().getRawData();
439     ConstantExprBits.BitWidth = Value.getInt().getBitWidth();
440     ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned();
441     return;
442   case RSK_APValue:
443     if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) {
444       ConstantExprBits.HasCleanup = true;
445       Context.addDestruction(&APValueResult());
446     }
447     APValueResult() = std::move(Value);
448     return;
449   }
450   llvm_unreachable("Invalid ResultKind Bits");
451 }
452 
453 llvm::APSInt ConstantExpr::getResultAsAPSInt() const {
454   switch (ConstantExprBits.ResultKind) {
455   case ConstantExpr::RSK_APValue:
456     return APValueResult().getInt();
457   case ConstantExpr::RSK_Int64:
458     return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
459                         ConstantExprBits.IsUnsigned);
460   default:
461     llvm_unreachable("invalid Accessor");
462   }
463 }
464 
465 APValue ConstantExpr::getAPValueResult() const {
466 
467   switch (ConstantExprBits.ResultKind) {
468   case ConstantExpr::RSK_APValue:
469     return APValueResult();
470   case ConstantExpr::RSK_Int64:
471     return APValue(
472         llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
473                      ConstantExprBits.IsUnsigned));
474   case ConstantExpr::RSK_None:
475     if (ConstantExprBits.APValueKind == APValue::Indeterminate)
476       return APValue::IndeterminateValue();
477     return APValue();
478   }
479   llvm_unreachable("invalid ResultKind");
480 }
481 
482 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
483                          bool RefersToEnclosingVariableOrCapture, QualType T,
484                          ExprValueKind VK, SourceLocation L,
485                          const DeclarationNameLoc &LocInfo,
486                          NonOdrUseReason NOUR)
487     : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) {
488   DeclRefExprBits.HasQualifier = false;
489   DeclRefExprBits.HasTemplateKWAndArgsInfo = false;
490   DeclRefExprBits.HasFoundDecl = false;
491   DeclRefExprBits.HadMultipleCandidates = false;
492   DeclRefExprBits.RefersToEnclosingVariableOrCapture =
493       RefersToEnclosingVariableOrCapture;
494   DeclRefExprBits.NonOdrUseReason = NOUR;
495   DeclRefExprBits.IsImmediateEscalating = false;
496   DeclRefExprBits.Loc = L;
497   setDependence(computeDependence(this, Ctx));
498 }
499 
500 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
501                          NestedNameSpecifierLoc QualifierLoc,
502                          SourceLocation TemplateKWLoc, ValueDecl *D,
503                          bool RefersToEnclosingVariableOrCapture,
504                          const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
505                          const TemplateArgumentListInfo *TemplateArgs,
506                          QualType T, ExprValueKind VK, NonOdrUseReason NOUR)
507     : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D),
508       DNLoc(NameInfo.getInfo()) {
509   DeclRefExprBits.Loc = NameInfo.getLoc();
510   DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
511   if (QualifierLoc)
512     new (getTrailingObjects<NestedNameSpecifierLoc>())
513         NestedNameSpecifierLoc(QualifierLoc);
514   DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
515   if (FoundD)
516     *getTrailingObjects<NamedDecl *>() = FoundD;
517   DeclRefExprBits.HasTemplateKWAndArgsInfo
518     = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
519   DeclRefExprBits.RefersToEnclosingVariableOrCapture =
520       RefersToEnclosingVariableOrCapture;
521   DeclRefExprBits.NonOdrUseReason = NOUR;
522   if (TemplateArgs) {
523     auto Deps = TemplateArgumentDependence::None;
524     getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
525         TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
526         Deps);
527     assert(!(Deps & TemplateArgumentDependence::Dependent) &&
528            "built a DeclRefExpr with dependent template args");
529   } else if (TemplateKWLoc.isValid()) {
530     getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
531         TemplateKWLoc);
532   }
533   DeclRefExprBits.IsImmediateEscalating = false;
534   DeclRefExprBits.HadMultipleCandidates = 0;
535   setDependence(computeDependence(this, Ctx));
536 }
537 
538 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
539                                  NestedNameSpecifierLoc QualifierLoc,
540                                  SourceLocation TemplateKWLoc, ValueDecl *D,
541                                  bool RefersToEnclosingVariableOrCapture,
542                                  SourceLocation NameLoc, QualType T,
543                                  ExprValueKind VK, NamedDecl *FoundD,
544                                  const TemplateArgumentListInfo *TemplateArgs,
545                                  NonOdrUseReason NOUR) {
546   return Create(Context, QualifierLoc, TemplateKWLoc, D,
547                 RefersToEnclosingVariableOrCapture,
548                 DeclarationNameInfo(D->getDeclName(), NameLoc),
549                 T, VK, FoundD, TemplateArgs, NOUR);
550 }
551 
552 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
553                                  NestedNameSpecifierLoc QualifierLoc,
554                                  SourceLocation TemplateKWLoc, ValueDecl *D,
555                                  bool RefersToEnclosingVariableOrCapture,
556                                  const DeclarationNameInfo &NameInfo,
557                                  QualType T, ExprValueKind VK,
558                                  NamedDecl *FoundD,
559                                  const TemplateArgumentListInfo *TemplateArgs,
560                                  NonOdrUseReason NOUR) {
561   // Filter out cases where the found Decl is the same as the value refenenced.
562   if (D == FoundD)
563     FoundD = nullptr;
564 
565   bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
566   std::size_t Size =
567       totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
568                        ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
569           QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
570           HasTemplateKWAndArgsInfo ? 1 : 0,
571           TemplateArgs ? TemplateArgs->size() : 0);
572 
573   void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
574   return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
575                                RefersToEnclosingVariableOrCapture, NameInfo,
576                                FoundD, TemplateArgs, T, VK, NOUR);
577 }
578 
579 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
580                                       bool HasQualifier,
581                                       bool HasFoundDecl,
582                                       bool HasTemplateKWAndArgsInfo,
583                                       unsigned NumTemplateArgs) {
584   assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
585   std::size_t Size =
586       totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
587                        ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
588           HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
589           NumTemplateArgs);
590   void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
591   return new (Mem) DeclRefExpr(EmptyShell());
592 }
593 
594 void DeclRefExpr::setDecl(ValueDecl *NewD) {
595   D = NewD;
596   if (getType()->isUndeducedType())
597     setType(NewD->getType());
598   setDependence(computeDependence(this, NewD->getASTContext()));
599 }
600 
601 SourceLocation DeclRefExpr::getBeginLoc() const {
602   if (hasQualifier())
603     return getQualifierLoc().getBeginLoc();
604   return getNameInfo().getBeginLoc();
605 }
606 SourceLocation DeclRefExpr::getEndLoc() const {
607   if (hasExplicitTemplateArgs())
608     return getRAngleLoc();
609   return getNameInfo().getEndLoc();
610 }
611 
612 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(SourceLocation OpLoc,
613                                                    SourceLocation LParen,
614                                                    SourceLocation RParen,
615                                                    QualType ResultTy,
616                                                    TypeSourceInfo *TSI)
617     : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary),
618       OpLoc(OpLoc), LParen(LParen), RParen(RParen) {
619   setTypeSourceInfo(TSI);
620   setDependence(computeDependence(this));
621 }
622 
623 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(EmptyShell Empty,
624                                                    QualType ResultTy)
625     : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary) {}
626 
627 SYCLUniqueStableNameExpr *
628 SYCLUniqueStableNameExpr::Create(const ASTContext &Ctx, SourceLocation OpLoc,
629                                  SourceLocation LParen, SourceLocation RParen,
630                                  TypeSourceInfo *TSI) {
631   QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst());
632   return new (Ctx)
633       SYCLUniqueStableNameExpr(OpLoc, LParen, RParen, ResultTy, TSI);
634 }
635 
636 SYCLUniqueStableNameExpr *
637 SYCLUniqueStableNameExpr::CreateEmpty(const ASTContext &Ctx) {
638   QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst());
639   return new (Ctx) SYCLUniqueStableNameExpr(EmptyShell(), ResultTy);
640 }
641 
642 std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context) const {
643   return SYCLUniqueStableNameExpr::ComputeName(Context,
644                                                getTypeSourceInfo()->getType());
645 }
646 
647 std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context,
648                                                   QualType Ty) {
649   auto MangleCallback = [](ASTContext &Ctx,
650                            const NamedDecl *ND) -> std::optional<unsigned> {
651     if (const auto *RD = dyn_cast<CXXRecordDecl>(ND))
652       return RD->getDeviceLambdaManglingNumber();
653     return std::nullopt;
654   };
655 
656   std::unique_ptr<MangleContext> Ctx{ItaniumMangleContext::create(
657       Context, Context.getDiagnostics(), MangleCallback)};
658 
659   std::string Buffer;
660   Buffer.reserve(128);
661   llvm::raw_string_ostream Out(Buffer);
662   Ctx->mangleTypeName(Ty, Out);
663 
664   return Out.str();
665 }
666 
667 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK,
668                                bool IsTransparent, StringLiteral *SL)
669     : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) {
670   PredefinedExprBits.Kind = IK;
671   assert((getIdentKind() == IK) &&
672          "IdentKind do not fit in PredefinedExprBitfields!");
673   bool HasFunctionName = SL != nullptr;
674   PredefinedExprBits.HasFunctionName = HasFunctionName;
675   PredefinedExprBits.IsTransparent = IsTransparent;
676   PredefinedExprBits.Loc = L;
677   if (HasFunctionName)
678     setFunctionName(SL);
679   setDependence(computeDependence(this));
680 }
681 
682 PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName)
683     : Expr(PredefinedExprClass, Empty) {
684   PredefinedExprBits.HasFunctionName = HasFunctionName;
685 }
686 
687 PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L,
688                                        QualType FNTy, IdentKind IK,
689                                        bool IsTransparent, StringLiteral *SL) {
690   bool HasFunctionName = SL != nullptr;
691   void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
692                            alignof(PredefinedExpr));
693   return new (Mem) PredefinedExpr(L, FNTy, IK, IsTransparent, SL);
694 }
695 
696 PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx,
697                                             bool HasFunctionName) {
698   void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
699                            alignof(PredefinedExpr));
700   return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName);
701 }
702 
703 StringRef PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK) {
704   switch (IK) {
705   case Func:
706     return "__func__";
707   case Function:
708     return "__FUNCTION__";
709   case FuncDName:
710     return "__FUNCDNAME__";
711   case LFunction:
712     return "L__FUNCTION__";
713   case PrettyFunction:
714     return "__PRETTY_FUNCTION__";
715   case FuncSig:
716     return "__FUNCSIG__";
717   case LFuncSig:
718     return "L__FUNCSIG__";
719   case PrettyFunctionNoVirtual:
720     break;
721   }
722   llvm_unreachable("Unknown ident kind for PredefinedExpr");
723 }
724 
725 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
726 // expr" policy instead.
727 std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) {
728   ASTContext &Context = CurrentDecl->getASTContext();
729 
730   if (IK == PredefinedExpr::FuncDName) {
731     if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
732       std::unique_ptr<MangleContext> MC;
733       MC.reset(Context.createMangleContext());
734 
735       if (MC->shouldMangleDeclName(ND)) {
736         SmallString<256> Buffer;
737         llvm::raw_svector_ostream Out(Buffer);
738         GlobalDecl GD;
739         if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
740           GD = GlobalDecl(CD, Ctor_Base);
741         else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
742           GD = GlobalDecl(DD, Dtor_Base);
743         else if (ND->hasAttr<CUDAGlobalAttr>())
744           GD = GlobalDecl(cast<FunctionDecl>(ND));
745         else
746           GD = GlobalDecl(ND);
747         MC->mangleName(GD, Out);
748 
749         if (!Buffer.empty() && Buffer.front() == '\01')
750           return std::string(Buffer.substr(1));
751         return std::string(Buffer.str());
752       }
753       return std::string(ND->getIdentifier()->getName());
754     }
755     return "";
756   }
757   if (isa<BlockDecl>(CurrentDecl)) {
758     // For blocks we only emit something if it is enclosed in a function
759     // For top-level block we'd like to include the name of variable, but we
760     // don't have it at this point.
761     auto DC = CurrentDecl->getDeclContext();
762     if (DC->isFileContext())
763       return "";
764 
765     SmallString<256> Buffer;
766     llvm::raw_svector_ostream Out(Buffer);
767     if (auto *DCBlock = dyn_cast<BlockDecl>(DC))
768       // For nested blocks, propagate up to the parent.
769       Out << ComputeName(IK, DCBlock);
770     else if (auto *DCDecl = dyn_cast<Decl>(DC))
771       Out << ComputeName(IK, DCDecl) << "_block_invoke";
772     return std::string(Out.str());
773   }
774   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
775     if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual &&
776         IK != FuncSig && IK != LFuncSig)
777       return FD->getNameAsString();
778 
779     SmallString<256> Name;
780     llvm::raw_svector_ostream Out(Name);
781 
782     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
783       if (MD->isVirtual() && IK != PrettyFunctionNoVirtual)
784         Out << "virtual ";
785       if (MD->isStatic())
786         Out << "static ";
787     }
788 
789     class PrettyCallbacks final : public PrintingCallbacks {
790     public:
791       PrettyCallbacks(const LangOptions &LO) : LO(LO) {}
792       std::string remapPath(StringRef Path) const override {
793         SmallString<128> p(Path);
794         LO.remapPathPrefix(p);
795         return std::string(p);
796       }
797 
798     private:
799       const LangOptions &LO;
800     };
801     PrintingPolicy Policy(Context.getLangOpts());
802     PrettyCallbacks PrettyCB(Context.getLangOpts());
803     Policy.Callbacks = &PrettyCB;
804     std::string Proto;
805     llvm::raw_string_ostream POut(Proto);
806 
807     const FunctionDecl *Decl = FD;
808     if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
809       Decl = Pattern;
810     const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
811     const FunctionProtoType *FT = nullptr;
812     if (FD->hasWrittenPrototype())
813       FT = dyn_cast<FunctionProtoType>(AFT);
814 
815     if (IK == FuncSig || IK == LFuncSig) {
816       switch (AFT->getCallConv()) {
817       case CC_C: POut << "__cdecl "; break;
818       case CC_X86StdCall: POut << "__stdcall "; break;
819       case CC_X86FastCall: POut << "__fastcall "; break;
820       case CC_X86ThisCall: POut << "__thiscall "; break;
821       case CC_X86VectorCall: POut << "__vectorcall "; break;
822       case CC_X86RegCall: POut << "__regcall "; break;
823       // Only bother printing the conventions that MSVC knows about.
824       default: break;
825       }
826     }
827 
828     FD->printQualifiedName(POut, Policy);
829 
830     POut << "(";
831     if (FT) {
832       for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
833         if (i) POut << ", ";
834         POut << Decl->getParamDecl(i)->getType().stream(Policy);
835       }
836 
837       if (FT->isVariadic()) {
838         if (FD->getNumParams()) POut << ", ";
839         POut << "...";
840       } else if ((IK == FuncSig || IK == LFuncSig ||
841                   !Context.getLangOpts().CPlusPlus) &&
842                  !Decl->getNumParams()) {
843         POut << "void";
844       }
845     }
846     POut << ")";
847 
848     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
849       assert(FT && "We must have a written prototype in this case.");
850       if (FT->isConst())
851         POut << " const";
852       if (FT->isVolatile())
853         POut << " volatile";
854       RefQualifierKind Ref = MD->getRefQualifier();
855       if (Ref == RQ_LValue)
856         POut << " &";
857       else if (Ref == RQ_RValue)
858         POut << " &&";
859     }
860 
861     typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
862     SpecsTy Specs;
863     const DeclContext *Ctx = FD->getDeclContext();
864     while (Ctx && isa<NamedDecl>(Ctx)) {
865       const ClassTemplateSpecializationDecl *Spec
866                                = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
867       if (Spec && !Spec->isExplicitSpecialization())
868         Specs.push_back(Spec);
869       Ctx = Ctx->getParent();
870     }
871 
872     std::string TemplateParams;
873     llvm::raw_string_ostream TOut(TemplateParams);
874     for (const ClassTemplateSpecializationDecl *D : llvm::reverse(Specs)) {
875       const TemplateParameterList *Params =
876           D->getSpecializedTemplate()->getTemplateParameters();
877       const TemplateArgumentList &Args = D->getTemplateArgs();
878       assert(Params->size() == Args.size());
879       for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
880         StringRef Param = Params->getParam(i)->getName();
881         if (Param.empty()) continue;
882         TOut << Param << " = ";
883         Args.get(i).print(Policy, TOut,
884                           TemplateParameterList::shouldIncludeTypeForArgument(
885                               Policy, Params, i));
886         TOut << ", ";
887       }
888     }
889 
890     FunctionTemplateSpecializationInfo *FSI
891                                           = FD->getTemplateSpecializationInfo();
892     if (FSI && !FSI->isExplicitSpecialization()) {
893       const TemplateParameterList* Params
894                                   = FSI->getTemplate()->getTemplateParameters();
895       const TemplateArgumentList* Args = FSI->TemplateArguments;
896       assert(Params->size() == Args->size());
897       for (unsigned i = 0, e = Params->size(); i != e; ++i) {
898         StringRef Param = Params->getParam(i)->getName();
899         if (Param.empty()) continue;
900         TOut << Param << " = ";
901         Args->get(i).print(Policy, TOut, /*IncludeType*/ true);
902         TOut << ", ";
903       }
904     }
905 
906     TOut.flush();
907     if (!TemplateParams.empty()) {
908       // remove the trailing comma and space
909       TemplateParams.resize(TemplateParams.size() - 2);
910       POut << " [" << TemplateParams << "]";
911     }
912 
913     POut.flush();
914 
915     // Print "auto" for all deduced return types. This includes C++1y return
916     // type deduction and lambdas. For trailing return types resolve the
917     // decltype expression. Otherwise print the real type when this is
918     // not a constructor or destructor.
919     if (isa<CXXMethodDecl>(FD) &&
920          cast<CXXMethodDecl>(FD)->getParent()->isLambda())
921       Proto = "auto " + Proto;
922     else if (FT && FT->getReturnType()->getAs<DecltypeType>())
923       FT->getReturnType()
924           ->getAs<DecltypeType>()
925           ->getUnderlyingType()
926           .getAsStringInternal(Proto, Policy);
927     else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
928       AFT->getReturnType().getAsStringInternal(Proto, Policy);
929 
930     Out << Proto;
931 
932     return std::string(Name);
933   }
934   if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
935     for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
936       // Skip to its enclosing function or method, but not its enclosing
937       // CapturedDecl.
938       if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
939         const Decl *D = Decl::castFromDeclContext(DC);
940         return ComputeName(IK, D);
941       }
942     llvm_unreachable("CapturedDecl not inside a function or method");
943   }
944   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
945     SmallString<256> Name;
946     llvm::raw_svector_ostream Out(Name);
947     Out << (MD->isInstanceMethod() ? '-' : '+');
948     Out << '[';
949 
950     // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
951     // a null check to avoid a crash.
952     if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
953       Out << *ID;
954 
955     if (const ObjCCategoryImplDecl *CID =
956         dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
957       Out << '(' << *CID << ')';
958 
959     Out <<  ' ';
960     MD->getSelector().print(Out);
961     Out <<  ']';
962 
963     return std::string(Name);
964   }
965   if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) {
966     // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
967     return "top level";
968   }
969   return "";
970 }
971 
972 void APNumericStorage::setIntValue(const ASTContext &C,
973                                    const llvm::APInt &Val) {
974   if (hasAllocation())
975     C.Deallocate(pVal);
976 
977   BitWidth = Val.getBitWidth();
978   unsigned NumWords = Val.getNumWords();
979   const uint64_t* Words = Val.getRawData();
980   if (NumWords > 1) {
981     pVal = new (C) uint64_t[NumWords];
982     std::copy(Words, Words + NumWords, pVal);
983   } else if (NumWords == 1)
984     VAL = Words[0];
985   else
986     VAL = 0;
987 }
988 
989 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
990                                QualType type, SourceLocation l)
991     : Expr(IntegerLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l) {
992   assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
993   assert(V.getBitWidth() == C.getIntWidth(type) &&
994          "Integer type is not the correct size for constant.");
995   setValue(C, V);
996   setDependence(ExprDependence::None);
997 }
998 
999 IntegerLiteral *
1000 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
1001                        QualType type, SourceLocation l) {
1002   return new (C) IntegerLiteral(C, V, type, l);
1003 }
1004 
1005 IntegerLiteral *
1006 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
1007   return new (C) IntegerLiteral(Empty);
1008 }
1009 
1010 FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
1011                                      QualType type, SourceLocation l,
1012                                      unsigned Scale)
1013     : Expr(FixedPointLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l),
1014       Scale(Scale) {
1015   assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral");
1016   assert(V.getBitWidth() == C.getTypeInfo(type).Width &&
1017          "Fixed point type is not the correct size for constant.");
1018   setValue(C, V);
1019   setDependence(ExprDependence::None);
1020 }
1021 
1022 FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C,
1023                                                        const llvm::APInt &V,
1024                                                        QualType type,
1025                                                        SourceLocation l,
1026                                                        unsigned Scale) {
1027   return new (C) FixedPointLiteral(C, V, type, l, Scale);
1028 }
1029 
1030 FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C,
1031                                              EmptyShell Empty) {
1032   return new (C) FixedPointLiteral(Empty);
1033 }
1034 
1035 std::string FixedPointLiteral::getValueAsString(unsigned Radix) const {
1036   // Currently the longest decimal number that can be printed is the max for an
1037   // unsigned long _Accum: 4294967295.99999999976716935634613037109375
1038   // which is 43 characters.
1039   SmallString<64> S;
1040   FixedPointValueToString(
1041       S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale);
1042   return std::string(S.str());
1043 }
1044 
1045 void CharacterLiteral::print(unsigned Val, CharacterKind Kind,
1046                              raw_ostream &OS) {
1047   switch (Kind) {
1048   case CharacterLiteral::Ascii:
1049     break; // no prefix.
1050   case CharacterLiteral::Wide:
1051     OS << 'L';
1052     break;
1053   case CharacterLiteral::UTF8:
1054     OS << "u8";
1055     break;
1056   case CharacterLiteral::UTF16:
1057     OS << 'u';
1058     break;
1059   case CharacterLiteral::UTF32:
1060     OS << 'U';
1061     break;
1062   }
1063 
1064   StringRef Escaped = escapeCStyle<EscapeChar::Single>(Val);
1065   if (!Escaped.empty()) {
1066     OS << "'" << Escaped << "'";
1067   } else {
1068     // A character literal might be sign-extended, which
1069     // would result in an invalid \U escape sequence.
1070     // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF'
1071     // are not correctly handled.
1072     if ((Val & ~0xFFu) == ~0xFFu && Kind == CharacterLiteral::Ascii)
1073       Val &= 0xFFu;
1074     if (Val < 256 && isPrintable((unsigned char)Val))
1075       OS << "'" << (char)Val << "'";
1076     else if (Val < 256)
1077       OS << "'\\x" << llvm::format("%02x", Val) << "'";
1078     else if (Val <= 0xFFFF)
1079       OS << "'\\u" << llvm::format("%04x", Val) << "'";
1080     else
1081       OS << "'\\U" << llvm::format("%08x", Val) << "'";
1082   }
1083 }
1084 
1085 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
1086                                  bool isexact, QualType Type, SourceLocation L)
1087     : Expr(FloatingLiteralClass, Type, VK_PRValue, OK_Ordinary), Loc(L) {
1088   setSemantics(V.getSemantics());
1089   FloatingLiteralBits.IsExact = isexact;
1090   setValue(C, V);
1091   setDependence(ExprDependence::None);
1092 }
1093 
1094 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
1095   : Expr(FloatingLiteralClass, Empty) {
1096   setRawSemantics(llvm::APFloatBase::S_IEEEhalf);
1097   FloatingLiteralBits.IsExact = false;
1098 }
1099 
1100 FloatingLiteral *
1101 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
1102                         bool isexact, QualType Type, SourceLocation L) {
1103   return new (C) FloatingLiteral(C, V, isexact, Type, L);
1104 }
1105 
1106 FloatingLiteral *
1107 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
1108   return new (C) FloatingLiteral(C, Empty);
1109 }
1110 
1111 /// getValueAsApproximateDouble - This returns the value as an inaccurate
1112 /// double.  Note that this may cause loss of precision, but is useful for
1113 /// debugging dumps, etc.
1114 double FloatingLiteral::getValueAsApproximateDouble() const {
1115   llvm::APFloat V = getValue();
1116   bool ignored;
1117   V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
1118             &ignored);
1119   return V.convertToDouble();
1120 }
1121 
1122 unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target,
1123                                          StringKind SK) {
1124   unsigned CharByteWidth = 0;
1125   switch (SK) {
1126   case Ordinary:
1127   case UTF8:
1128     CharByteWidth = Target.getCharWidth();
1129     break;
1130   case Wide:
1131     CharByteWidth = Target.getWCharWidth();
1132     break;
1133   case UTF16:
1134     CharByteWidth = Target.getChar16Width();
1135     break;
1136   case UTF32:
1137     CharByteWidth = Target.getChar32Width();
1138     break;
1139   case Unevaluated:
1140     return sizeof(char); // Host;
1141   }
1142   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
1143   CharByteWidth /= 8;
1144   assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
1145          "The only supported character byte widths are 1,2 and 4!");
1146   return CharByteWidth;
1147 }
1148 
1149 StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str,
1150                              StringKind Kind, bool Pascal, QualType Ty,
1151                              const SourceLocation *Loc,
1152                              unsigned NumConcatenated)
1153     : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) {
1154 
1155   unsigned Length = Str.size();
1156 
1157   StringLiteralBits.Kind = Kind;
1158   StringLiteralBits.NumConcatenated = NumConcatenated;
1159 
1160   if (Kind != StringKind::Unevaluated) {
1161     assert(Ctx.getAsConstantArrayType(Ty) &&
1162            "StringLiteral must be of constant array type!");
1163     unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind);
1164     unsigned ByteLength = Str.size();
1165     assert((ByteLength % CharByteWidth == 0) &&
1166            "The size of the data must be a multiple of CharByteWidth!");
1167 
1168     // Avoid the expensive division. The compiler should be able to figure it
1169     // out by itself. However as of clang 7, even with the appropriate
1170     // llvm_unreachable added just here, it is not able to do so.
1171     switch (CharByteWidth) {
1172     case 1:
1173       Length = ByteLength;
1174       break;
1175     case 2:
1176       Length = ByteLength / 2;
1177       break;
1178     case 4:
1179       Length = ByteLength / 4;
1180       break;
1181     default:
1182       llvm_unreachable("Unsupported character width!");
1183     }
1184 
1185     StringLiteralBits.CharByteWidth = CharByteWidth;
1186     StringLiteralBits.IsPascal = Pascal;
1187   } else {
1188     assert(!Pascal && "Can't make an unevaluated Pascal string");
1189     StringLiteralBits.CharByteWidth = 1;
1190     StringLiteralBits.IsPascal = false;
1191   }
1192 
1193   *getTrailingObjects<unsigned>() = Length;
1194 
1195   // Initialize the trailing array of SourceLocation.
1196   // This is safe since SourceLocation is POD-like.
1197   std::memcpy(getTrailingObjects<SourceLocation>(), Loc,
1198               NumConcatenated * sizeof(SourceLocation));
1199 
1200   // Initialize the trailing array of char holding the string data.
1201   std::memcpy(getTrailingObjects<char>(), Str.data(), Str.size());
1202 
1203   setDependence(ExprDependence::None);
1204 }
1205 
1206 StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated,
1207                              unsigned Length, unsigned CharByteWidth)
1208     : Expr(StringLiteralClass, Empty) {
1209   StringLiteralBits.CharByteWidth = CharByteWidth;
1210   StringLiteralBits.NumConcatenated = NumConcatenated;
1211   *getTrailingObjects<unsigned>() = Length;
1212 }
1213 
1214 StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str,
1215                                      StringKind Kind, bool Pascal, QualType Ty,
1216                                      const SourceLocation *Loc,
1217                                      unsigned NumConcatenated) {
1218   void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1219                                1, NumConcatenated, Str.size()),
1220                            alignof(StringLiteral));
1221   return new (Mem)
1222       StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated);
1223 }
1224 
1225 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx,
1226                                           unsigned NumConcatenated,
1227                                           unsigned Length,
1228                                           unsigned CharByteWidth) {
1229   void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1230                                1, NumConcatenated, Length * CharByteWidth),
1231                            alignof(StringLiteral));
1232   return new (Mem)
1233       StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth);
1234 }
1235 
1236 void StringLiteral::outputString(raw_ostream &OS) const {
1237   switch (getKind()) {
1238   case Unevaluated:
1239   case Ordinary:
1240     break; // no prefix.
1241   case Wide:  OS << 'L'; break;
1242   case UTF8:  OS << "u8"; break;
1243   case UTF16: OS << 'u'; break;
1244   case UTF32: OS << 'U'; break;
1245   }
1246   OS << '"';
1247   static const char Hex[] = "0123456789ABCDEF";
1248 
1249   unsigned LastSlashX = getLength();
1250   for (unsigned I = 0, N = getLength(); I != N; ++I) {
1251     uint32_t Char = getCodeUnit(I);
1252     StringRef Escaped = escapeCStyle<EscapeChar::Double>(Char);
1253     if (Escaped.empty()) {
1254       // FIXME: Convert UTF-8 back to codepoints before rendering.
1255 
1256       // Convert UTF-16 surrogate pairs back to codepoints before rendering.
1257       // Leave invalid surrogates alone; we'll use \x for those.
1258       if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
1259           Char <= 0xdbff) {
1260         uint32_t Trail = getCodeUnit(I + 1);
1261         if (Trail >= 0xdc00 && Trail <= 0xdfff) {
1262           Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
1263           ++I;
1264         }
1265       }
1266 
1267       if (Char > 0xff) {
1268         // If this is a wide string, output characters over 0xff using \x
1269         // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
1270         // codepoint: use \x escapes for invalid codepoints.
1271         if (getKind() == Wide ||
1272             (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
1273           // FIXME: Is this the best way to print wchar_t?
1274           OS << "\\x";
1275           int Shift = 28;
1276           while ((Char >> Shift) == 0)
1277             Shift -= 4;
1278           for (/**/; Shift >= 0; Shift -= 4)
1279             OS << Hex[(Char >> Shift) & 15];
1280           LastSlashX = I;
1281           continue;
1282         }
1283 
1284         if (Char > 0xffff)
1285           OS << "\\U00"
1286              << Hex[(Char >> 20) & 15]
1287              << Hex[(Char >> 16) & 15];
1288         else
1289           OS << "\\u";
1290         OS << Hex[(Char >> 12) & 15]
1291            << Hex[(Char >>  8) & 15]
1292            << Hex[(Char >>  4) & 15]
1293            << Hex[(Char >>  0) & 15];
1294         continue;
1295       }
1296 
1297       // If we used \x... for the previous character, and this character is a
1298       // hexadecimal digit, prevent it being slurped as part of the \x.
1299       if (LastSlashX + 1 == I) {
1300         switch (Char) {
1301           case '0': case '1': case '2': case '3': case '4':
1302           case '5': case '6': case '7': case '8': case '9':
1303           case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1304           case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
1305             OS << "\"\"";
1306         }
1307       }
1308 
1309       assert(Char <= 0xff &&
1310              "Characters above 0xff should already have been handled.");
1311 
1312       if (isPrintable(Char))
1313         OS << (char)Char;
1314       else  // Output anything hard as an octal escape.
1315         OS << '\\'
1316            << (char)('0' + ((Char >> 6) & 7))
1317            << (char)('0' + ((Char >> 3) & 7))
1318            << (char)('0' + ((Char >> 0) & 7));
1319     } else {
1320       // Handle some common non-printable cases to make dumps prettier.
1321       OS << Escaped;
1322     }
1323   }
1324   OS << '"';
1325 }
1326 
1327 /// getLocationOfByte - Return a source location that points to the specified
1328 /// byte of this string literal.
1329 ///
1330 /// Strings are amazingly complex.  They can be formed from multiple tokens and
1331 /// can have escape sequences in them in addition to the usual trigraph and
1332 /// escaped newline business.  This routine handles this complexity.
1333 ///
1334 /// The *StartToken sets the first token to be searched in this function and
1335 /// the *StartTokenByteOffset is the byte offset of the first token. Before
1336 /// returning, it updates the *StartToken to the TokNo of the token being found
1337 /// and sets *StartTokenByteOffset to the byte offset of the token in the
1338 /// string.
1339 /// Using these two parameters can reduce the time complexity from O(n^2) to
1340 /// O(n) if one wants to get the location of byte for all the tokens in a
1341 /// string.
1342 ///
1343 SourceLocation
1344 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1345                                  const LangOptions &Features,
1346                                  const TargetInfo &Target, unsigned *StartToken,
1347                                  unsigned *StartTokenByteOffset) const {
1348   assert((getKind() == StringLiteral::Ordinary ||
1349           getKind() == StringLiteral::UTF8 ||
1350           getKind() == StringLiteral::Unevaluated) &&
1351          "Only narrow string literals are currently supported");
1352 
1353   // Loop over all of the tokens in this string until we find the one that
1354   // contains the byte we're looking for.
1355   unsigned TokNo = 0;
1356   unsigned StringOffset = 0;
1357   if (StartToken)
1358     TokNo = *StartToken;
1359   if (StartTokenByteOffset) {
1360     StringOffset = *StartTokenByteOffset;
1361     ByteNo -= StringOffset;
1362   }
1363   while (true) {
1364     assert(TokNo < getNumConcatenated() && "Invalid byte number!");
1365     SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
1366 
1367     // Get the spelling of the string so that we can get the data that makes up
1368     // the string literal, not the identifier for the macro it is potentially
1369     // expanded through.
1370     SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
1371 
1372     // Re-lex the token to get its length and original spelling.
1373     std::pair<FileID, unsigned> LocInfo =
1374         SM.getDecomposedLoc(StrTokSpellingLoc);
1375     bool Invalid = false;
1376     StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1377     if (Invalid) {
1378       if (StartTokenByteOffset != nullptr)
1379         *StartTokenByteOffset = StringOffset;
1380       if (StartToken != nullptr)
1381         *StartToken = TokNo;
1382       return StrTokSpellingLoc;
1383     }
1384 
1385     const char *StrData = Buffer.data()+LocInfo.second;
1386 
1387     // Create a lexer starting at the beginning of this token.
1388     Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
1389                    Buffer.begin(), StrData, Buffer.end());
1390     Token TheTok;
1391     TheLexer.LexFromRawLexer(TheTok);
1392 
1393     // Use the StringLiteralParser to compute the length of the string in bytes.
1394     StringLiteralParser SLP(TheTok, SM, Features, Target);
1395     unsigned TokNumBytes = SLP.GetStringLength();
1396 
1397     // If the byte is in this token, return the location of the byte.
1398     if (ByteNo < TokNumBytes ||
1399         (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1400       unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1401 
1402       // Now that we know the offset of the token in the spelling, use the
1403       // preprocessor to get the offset in the original source.
1404       if (StartTokenByteOffset != nullptr)
1405         *StartTokenByteOffset = StringOffset;
1406       if (StartToken != nullptr)
1407         *StartToken = TokNo;
1408       return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
1409     }
1410 
1411     // Move to the next string token.
1412     StringOffset += TokNumBytes;
1413     ++TokNo;
1414     ByteNo -= TokNumBytes;
1415   }
1416 }
1417 
1418 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1419 /// corresponds to, e.g. "sizeof" or "[pre]++".
1420 StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
1421   switch (Op) {
1422 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
1423 #include "clang/AST/OperationKinds.def"
1424   }
1425   llvm_unreachable("Unknown unary operator");
1426 }
1427 
1428 UnaryOperatorKind
1429 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
1430   switch (OO) {
1431   default: llvm_unreachable("No unary operator for overloaded function");
1432   case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
1433   case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1434   case OO_Amp:        return UO_AddrOf;
1435   case OO_Star:       return UO_Deref;
1436   case OO_Plus:       return UO_Plus;
1437   case OO_Minus:      return UO_Minus;
1438   case OO_Tilde:      return UO_Not;
1439   case OO_Exclaim:    return UO_LNot;
1440   case OO_Coawait:    return UO_Coawait;
1441   }
1442 }
1443 
1444 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
1445   switch (Opc) {
1446   case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1447   case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1448   case UO_AddrOf: return OO_Amp;
1449   case UO_Deref: return OO_Star;
1450   case UO_Plus: return OO_Plus;
1451   case UO_Minus: return OO_Minus;
1452   case UO_Not: return OO_Tilde;
1453   case UO_LNot: return OO_Exclaim;
1454   case UO_Coawait: return OO_Coawait;
1455   default: return OO_None;
1456   }
1457 }
1458 
1459 
1460 //===----------------------------------------------------------------------===//
1461 // Postfix Operators.
1462 //===----------------------------------------------------------------------===//
1463 
1464 CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs,
1465                    ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1466                    SourceLocation RParenLoc, FPOptionsOverride FPFeatures,
1467                    unsigned MinNumArgs, ADLCallKind UsesADL)
1468     : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) {
1469   NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1470   unsigned NumPreArgs = PreArgs.size();
1471   CallExprBits.NumPreArgs = NumPreArgs;
1472   assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1473 
1474   unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1475   CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1476   assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1477          "OffsetToTrailingObjects overflow!");
1478 
1479   CallExprBits.UsesADL = static_cast<bool>(UsesADL);
1480 
1481   setCallee(Fn);
1482   for (unsigned I = 0; I != NumPreArgs; ++I)
1483     setPreArg(I, PreArgs[I]);
1484   for (unsigned I = 0; I != Args.size(); ++I)
1485     setArg(I, Args[I]);
1486   for (unsigned I = Args.size(); I != NumArgs; ++I)
1487     setArg(I, nullptr);
1488 
1489   this->computeDependence();
1490 
1491   CallExprBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
1492   if (hasStoredFPFeatures())
1493     setStoredFPFeatures(FPFeatures);
1494 }
1495 
1496 CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
1497                    bool HasFPFeatures, EmptyShell Empty)
1498     : Expr(SC, Empty), NumArgs(NumArgs) {
1499   CallExprBits.NumPreArgs = NumPreArgs;
1500   assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1501 
1502   unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1503   CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1504   assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1505          "OffsetToTrailingObjects overflow!");
1506   CallExprBits.HasFPFeatures = HasFPFeatures;
1507 }
1508 
1509 CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn,
1510                            ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1511                            SourceLocation RParenLoc,
1512                            FPOptionsOverride FPFeatures, unsigned MinNumArgs,
1513                            ADLCallKind UsesADL) {
1514   unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1515   unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects(
1516       /*NumPreArgs=*/0, NumArgs, FPFeatures.requiresTrailingStorage());
1517   void *Mem =
1518       Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1519   return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK,
1520                             RParenLoc, FPFeatures, MinNumArgs, UsesADL);
1521 }
1522 
1523 CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty,
1524                                     ExprValueKind VK, SourceLocation RParenLoc,
1525                                     ADLCallKind UsesADL) {
1526   assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) &&
1527          "Misaligned memory in CallExpr::CreateTemporary!");
1528   return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty,
1529                             VK, RParenLoc, FPOptionsOverride(),
1530                             /*MinNumArgs=*/0, UsesADL);
1531 }
1532 
1533 CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
1534                                 bool HasFPFeatures, EmptyShell Empty) {
1535   unsigned SizeOfTrailingObjects =
1536       CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures);
1537   void *Mem =
1538       Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1539   return new (Mem)
1540       CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty);
1541 }
1542 
1543 unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) {
1544   switch (SC) {
1545   case CallExprClass:
1546     return sizeof(CallExpr);
1547   case CXXOperatorCallExprClass:
1548     return sizeof(CXXOperatorCallExpr);
1549   case CXXMemberCallExprClass:
1550     return sizeof(CXXMemberCallExpr);
1551   case UserDefinedLiteralClass:
1552     return sizeof(UserDefinedLiteral);
1553   case CUDAKernelCallExprClass:
1554     return sizeof(CUDAKernelCallExpr);
1555   default:
1556     llvm_unreachable("unexpected class deriving from CallExpr!");
1557   }
1558 }
1559 
1560 Decl *Expr::getReferencedDeclOfCallee() {
1561   Expr *CEE = IgnoreParenImpCasts();
1562 
1563   while (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE))
1564     CEE = NTTP->getReplacement()->IgnoreParenImpCasts();
1565 
1566   // If we're calling a dereference, look at the pointer instead.
1567   while (true) {
1568     if (auto *BO = dyn_cast<BinaryOperator>(CEE)) {
1569       if (BO->isPtrMemOp()) {
1570         CEE = BO->getRHS()->IgnoreParenImpCasts();
1571         continue;
1572       }
1573     } else if (auto *UO = dyn_cast<UnaryOperator>(CEE)) {
1574       if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf ||
1575           UO->getOpcode() == UO_Plus) {
1576         CEE = UO->getSubExpr()->IgnoreParenImpCasts();
1577         continue;
1578       }
1579     }
1580     break;
1581   }
1582 
1583   if (auto *DRE = dyn_cast<DeclRefExpr>(CEE))
1584     return DRE->getDecl();
1585   if (auto *ME = dyn_cast<MemberExpr>(CEE))
1586     return ME->getMemberDecl();
1587   if (auto *BE = dyn_cast<BlockExpr>(CEE))
1588     return BE->getBlockDecl();
1589 
1590   return nullptr;
1591 }
1592 
1593 /// If this is a call to a builtin, return the builtin ID. If not, return 0.
1594 unsigned CallExpr::getBuiltinCallee() const {
1595   const auto *FDecl = getDirectCallee();
1596   return FDecl ? FDecl->getBuiltinID() : 0;
1597 }
1598 
1599 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
1600   if (unsigned BI = getBuiltinCallee())
1601     return Ctx.BuiltinInfo.isUnevaluated(BI);
1602   return false;
1603 }
1604 
1605 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
1606   const Expr *Callee = getCallee();
1607   QualType CalleeType = Callee->getType();
1608   if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
1609     CalleeType = FnTypePtr->getPointeeType();
1610   } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
1611     CalleeType = BPT->getPointeeType();
1612   } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1613     if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
1614       return Ctx.VoidTy;
1615 
1616     if (isa<UnresolvedMemberExpr>(Callee->IgnoreParens()))
1617       return Ctx.DependentTy;
1618 
1619     // This should never be overloaded and so should never return null.
1620     CalleeType = Expr::findBoundMemberType(Callee);
1621     assert(!CalleeType.isNull());
1622   } else if (CalleeType->isDependentType() ||
1623              CalleeType->isSpecificPlaceholderType(BuiltinType::Overload)) {
1624     return Ctx.DependentTy;
1625   }
1626 
1627   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1628   return FnType->getReturnType();
1629 }
1630 
1631 const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const {
1632   // If the return type is a struct, union, or enum that is marked nodiscard,
1633   // then return the return type attribute.
1634   if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl())
1635     if (const auto *A = TD->getAttr<WarnUnusedResultAttr>())
1636       return A;
1637 
1638   for (const auto *TD = getCallReturnType(Ctx)->getAs<TypedefType>(); TD;
1639        TD = TD->desugar()->getAs<TypedefType>())
1640     if (const auto *A = TD->getDecl()->getAttr<WarnUnusedResultAttr>())
1641       return A;
1642 
1643   // Otherwise, see if the callee is marked nodiscard and return that attribute
1644   // instead.
1645   const Decl *D = getCalleeDecl();
1646   return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr;
1647 }
1648 
1649 SourceLocation CallExpr::getBeginLoc() const {
1650   if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(this))
1651     return OCE->getBeginLoc();
1652 
1653   SourceLocation begin = getCallee()->getBeginLoc();
1654   if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
1655     begin = getArg(0)->getBeginLoc();
1656   return begin;
1657 }
1658 SourceLocation CallExpr::getEndLoc() const {
1659   if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(this))
1660     return OCE->getEndLoc();
1661 
1662   SourceLocation end = getRParenLoc();
1663   if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
1664     end = getArg(getNumArgs() - 1)->getEndLoc();
1665   return end;
1666 }
1667 
1668 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
1669                                    SourceLocation OperatorLoc,
1670                                    TypeSourceInfo *tsi,
1671                                    ArrayRef<OffsetOfNode> comps,
1672                                    ArrayRef<Expr*> exprs,
1673                                    SourceLocation RParenLoc) {
1674   void *Mem = C.Allocate(
1675       totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));
1676 
1677   return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1678                                 RParenLoc);
1679 }
1680 
1681 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
1682                                         unsigned numComps, unsigned numExprs) {
1683   void *Mem =
1684       C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
1685   return new (Mem) OffsetOfExpr(numComps, numExprs);
1686 }
1687 
1688 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1689                            SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1690                            ArrayRef<OffsetOfNode> comps, ArrayRef<Expr *> exprs,
1691                            SourceLocation RParenLoc)
1692     : Expr(OffsetOfExprClass, type, VK_PRValue, OK_Ordinary),
1693       OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1694       NumComps(comps.size()), NumExprs(exprs.size()) {
1695   for (unsigned i = 0; i != comps.size(); ++i)
1696     setComponent(i, comps[i]);
1697   for (unsigned i = 0; i != exprs.size(); ++i)
1698     setIndexExpr(i, exprs[i]);
1699 
1700   setDependence(computeDependence(this));
1701 }
1702 
1703 IdentifierInfo *OffsetOfNode::getFieldName() const {
1704   assert(getKind() == Field || getKind() == Identifier);
1705   if (getKind() == Field)
1706     return getField()->getIdentifier();
1707 
1708   return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1709 }
1710 
1711 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
1712     UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
1713     SourceLocation op, SourceLocation rp)
1714     : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_PRValue, OK_Ordinary),
1715       OpLoc(op), RParenLoc(rp) {
1716   assert(ExprKind <= UETT_Last && "invalid enum value!");
1717   UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1718   assert(static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind &&
1719          "UnaryExprOrTypeTraitExprBits.Kind overflow!");
1720   UnaryExprOrTypeTraitExprBits.IsType = false;
1721   Argument.Ex = E;
1722   setDependence(computeDependence(this));
1723 }
1724 
1725 MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1726                        ValueDecl *MemberDecl,
1727                        const DeclarationNameInfo &NameInfo, QualType T,
1728                        ExprValueKind VK, ExprObjectKind OK,
1729                        NonOdrUseReason NOUR)
1730     : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl),
1731       MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) {
1732   assert(!NameInfo.getName() ||
1733          MemberDecl->getDeclName() == NameInfo.getName());
1734   MemberExprBits.IsArrow = IsArrow;
1735   MemberExprBits.HasQualifierOrFoundDecl = false;
1736   MemberExprBits.HasTemplateKWAndArgsInfo = false;
1737   MemberExprBits.HadMultipleCandidates = false;
1738   MemberExprBits.NonOdrUseReason = NOUR;
1739   MemberExprBits.OperatorLoc = OperatorLoc;
1740   setDependence(computeDependence(this));
1741 }
1742 
1743 MemberExpr *MemberExpr::Create(
1744     const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1745     NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
1746     ValueDecl *MemberDecl, DeclAccessPair FoundDecl,
1747     DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs,
1748     QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) {
1749   bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl ||
1750                         FoundDecl.getAccess() != MemberDecl->getAccess();
1751   bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
1752   std::size_t Size =
1753       totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
1754                        TemplateArgumentLoc>(
1755           HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0,
1756           TemplateArgs ? TemplateArgs->size() : 0);
1757 
1758   void *Mem = C.Allocate(Size, alignof(MemberExpr));
1759   MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl,
1760                                        NameInfo, T, VK, OK, NOUR);
1761 
1762   if (HasQualOrFound) {
1763     E->MemberExprBits.HasQualifierOrFoundDecl = true;
1764 
1765     MemberExprNameQualifier *NQ =
1766         E->getTrailingObjects<MemberExprNameQualifier>();
1767     NQ->QualifierLoc = QualifierLoc;
1768     NQ->FoundDecl = FoundDecl;
1769   }
1770 
1771   E->MemberExprBits.HasTemplateKWAndArgsInfo =
1772       TemplateArgs || TemplateKWLoc.isValid();
1773 
1774   // FIXME: remove remaining dependence computation to computeDependence().
1775   auto Deps = E->getDependence();
1776   if (TemplateArgs) {
1777     auto TemplateArgDeps = TemplateArgumentDependence::None;
1778     E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1779         TemplateKWLoc, *TemplateArgs,
1780         E->getTrailingObjects<TemplateArgumentLoc>(), TemplateArgDeps);
1781     for (const TemplateArgumentLoc &ArgLoc : TemplateArgs->arguments()) {
1782       Deps |= toExprDependence(ArgLoc.getArgument().getDependence());
1783     }
1784   } else if (TemplateKWLoc.isValid()) {
1785     E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1786         TemplateKWLoc);
1787   }
1788   E->setDependence(Deps);
1789 
1790   return E;
1791 }
1792 
1793 MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context,
1794                                     bool HasQualifier, bool HasFoundDecl,
1795                                     bool HasTemplateKWAndArgsInfo,
1796                                     unsigned NumTemplateArgs) {
1797   assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) &&
1798          "template args but no template arg info?");
1799   bool HasQualOrFound = HasQualifier || HasFoundDecl;
1800   std::size_t Size =
1801       totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
1802                        TemplateArgumentLoc>(HasQualOrFound ? 1 : 0,
1803                                             HasTemplateKWAndArgsInfo ? 1 : 0,
1804                                             NumTemplateArgs);
1805   void *Mem = Context.Allocate(Size, alignof(MemberExpr));
1806   return new (Mem) MemberExpr(EmptyShell());
1807 }
1808 
1809 void MemberExpr::setMemberDecl(ValueDecl *NewD) {
1810   MemberDecl = NewD;
1811   if (getType()->isUndeducedType())
1812     setType(NewD->getType());
1813   setDependence(computeDependence(this));
1814 }
1815 
1816 SourceLocation MemberExpr::getBeginLoc() const {
1817   if (isImplicitAccess()) {
1818     if (hasQualifier())
1819       return getQualifierLoc().getBeginLoc();
1820     return MemberLoc;
1821   }
1822 
1823   // FIXME: We don't want this to happen. Rather, we should be able to
1824   // detect all kinds of implicit accesses more cleanly.
1825   SourceLocation BaseStartLoc = getBase()->getBeginLoc();
1826   if (BaseStartLoc.isValid())
1827     return BaseStartLoc;
1828   return MemberLoc;
1829 }
1830 SourceLocation MemberExpr::getEndLoc() const {
1831   SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1832   if (hasExplicitTemplateArgs())
1833     EndLoc = getRAngleLoc();
1834   else if (EndLoc.isInvalid())
1835     EndLoc = getBase()->getEndLoc();
1836   return EndLoc;
1837 }
1838 
1839 bool CastExpr::CastConsistency() const {
1840   switch (getCastKind()) {
1841   case CK_DerivedToBase:
1842   case CK_UncheckedDerivedToBase:
1843   case CK_DerivedToBaseMemberPointer:
1844   case CK_BaseToDerived:
1845   case CK_BaseToDerivedMemberPointer:
1846     assert(!path_empty() && "Cast kind should have a base path!");
1847     break;
1848 
1849   case CK_CPointerToObjCPointerCast:
1850     assert(getType()->isObjCObjectPointerType());
1851     assert(getSubExpr()->getType()->isPointerType());
1852     goto CheckNoBasePath;
1853 
1854   case CK_BlockPointerToObjCPointerCast:
1855     assert(getType()->isObjCObjectPointerType());
1856     assert(getSubExpr()->getType()->isBlockPointerType());
1857     goto CheckNoBasePath;
1858 
1859   case CK_ReinterpretMemberPointer:
1860     assert(getType()->isMemberPointerType());
1861     assert(getSubExpr()->getType()->isMemberPointerType());
1862     goto CheckNoBasePath;
1863 
1864   case CK_BitCast:
1865     // Arbitrary casts to C pointer types count as bitcasts.
1866     // Otherwise, we should only have block and ObjC pointer casts
1867     // here if they stay within the type kind.
1868     if (!getType()->isPointerType()) {
1869       assert(getType()->isObjCObjectPointerType() ==
1870              getSubExpr()->getType()->isObjCObjectPointerType());
1871       assert(getType()->isBlockPointerType() ==
1872              getSubExpr()->getType()->isBlockPointerType());
1873     }
1874     goto CheckNoBasePath;
1875 
1876   case CK_AnyPointerToBlockPointerCast:
1877     assert(getType()->isBlockPointerType());
1878     assert(getSubExpr()->getType()->isAnyPointerType() &&
1879            !getSubExpr()->getType()->isBlockPointerType());
1880     goto CheckNoBasePath;
1881 
1882   case CK_CopyAndAutoreleaseBlockObject:
1883     assert(getType()->isBlockPointerType());
1884     assert(getSubExpr()->getType()->isBlockPointerType());
1885     goto CheckNoBasePath;
1886 
1887   case CK_FunctionToPointerDecay:
1888     assert(getType()->isPointerType());
1889     assert(getSubExpr()->getType()->isFunctionType());
1890     goto CheckNoBasePath;
1891 
1892   case CK_AddressSpaceConversion: {
1893     auto Ty = getType();
1894     auto SETy = getSubExpr()->getType();
1895     assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy));
1896     if (isPRValue() && !Ty->isDependentType() && !SETy->isDependentType()) {
1897       Ty = Ty->getPointeeType();
1898       SETy = SETy->getPointeeType();
1899     }
1900     assert((Ty->isDependentType() || SETy->isDependentType()) ||
1901            (!Ty.isNull() && !SETy.isNull() &&
1902             Ty.getAddressSpace() != SETy.getAddressSpace()));
1903     goto CheckNoBasePath;
1904   }
1905   // These should not have an inheritance path.
1906   case CK_Dynamic:
1907   case CK_ToUnion:
1908   case CK_ArrayToPointerDecay:
1909   case CK_NullToMemberPointer:
1910   case CK_NullToPointer:
1911   case CK_ConstructorConversion:
1912   case CK_IntegralToPointer:
1913   case CK_PointerToIntegral:
1914   case CK_ToVoid:
1915   case CK_VectorSplat:
1916   case CK_IntegralCast:
1917   case CK_BooleanToSignedIntegral:
1918   case CK_IntegralToFloating:
1919   case CK_FloatingToIntegral:
1920   case CK_FloatingCast:
1921   case CK_ObjCObjectLValueCast:
1922   case CK_FloatingRealToComplex:
1923   case CK_FloatingComplexToReal:
1924   case CK_FloatingComplexCast:
1925   case CK_FloatingComplexToIntegralComplex:
1926   case CK_IntegralRealToComplex:
1927   case CK_IntegralComplexToReal:
1928   case CK_IntegralComplexCast:
1929   case CK_IntegralComplexToFloatingComplex:
1930   case CK_ARCProduceObject:
1931   case CK_ARCConsumeObject:
1932   case CK_ARCReclaimReturnedObject:
1933   case CK_ARCExtendBlockObject:
1934   case CK_ZeroToOCLOpaqueType:
1935   case CK_IntToOCLSampler:
1936   case CK_FloatingToFixedPoint:
1937   case CK_FixedPointToFloating:
1938   case CK_FixedPointCast:
1939   case CK_FixedPointToIntegral:
1940   case CK_IntegralToFixedPoint:
1941   case CK_MatrixCast:
1942     assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1943     goto CheckNoBasePath;
1944 
1945   case CK_Dependent:
1946   case CK_LValueToRValue:
1947   case CK_NoOp:
1948   case CK_AtomicToNonAtomic:
1949   case CK_NonAtomicToAtomic:
1950   case CK_PointerToBoolean:
1951   case CK_IntegralToBoolean:
1952   case CK_FloatingToBoolean:
1953   case CK_MemberPointerToBoolean:
1954   case CK_FloatingComplexToBoolean:
1955   case CK_IntegralComplexToBoolean:
1956   case CK_LValueBitCast:            // -> bool&
1957   case CK_LValueToRValueBitCast:
1958   case CK_UserDefinedConversion:    // operator bool()
1959   case CK_BuiltinFnToFnPtr:
1960   case CK_FixedPointToBoolean:
1961   CheckNoBasePath:
1962     assert(path_empty() && "Cast kind should not have a base path!");
1963     break;
1964   }
1965   return true;
1966 }
1967 
1968 const char *CastExpr::getCastKindName(CastKind CK) {
1969   switch (CK) {
1970 #define CAST_OPERATION(Name) case CK_##Name: return #Name;
1971 #include "clang/AST/OperationKinds.def"
1972   }
1973   llvm_unreachable("Unhandled cast kind!");
1974 }
1975 
1976 namespace {
1977 // Skip over implicit nodes produced as part of semantic analysis.
1978 // Designed for use with IgnoreExprNodes.
1979 static Expr *ignoreImplicitSemaNodes(Expr *E) {
1980   if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E))
1981     return Materialize->getSubExpr();
1982 
1983   if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E))
1984     return Binder->getSubExpr();
1985 
1986   if (auto *Full = dyn_cast<FullExpr>(E))
1987     return Full->getSubExpr();
1988 
1989   if (auto *CPLIE = dyn_cast<CXXParenListInitExpr>(E);
1990       CPLIE && CPLIE->getInitExprs().size() == 1)
1991     return CPLIE->getInitExprs()[0];
1992 
1993   return E;
1994 }
1995 } // namespace
1996 
1997 Expr *CastExpr::getSubExprAsWritten() {
1998   const Expr *SubExpr = nullptr;
1999 
2000   for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
2001     SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes);
2002 
2003     // Conversions by constructor and conversion functions have a
2004     // subexpression describing the call; strip it off.
2005     if (E->getCastKind() == CK_ConstructorConversion) {
2006       SubExpr = IgnoreExprNodes(cast<CXXConstructExpr>(SubExpr)->getArg(0),
2007                                 ignoreImplicitSemaNodes);
2008     } else if (E->getCastKind() == CK_UserDefinedConversion) {
2009       assert((isa<CXXMemberCallExpr>(SubExpr) || isa<BlockExpr>(SubExpr)) &&
2010              "Unexpected SubExpr for CK_UserDefinedConversion.");
2011       if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
2012         SubExpr = MCE->getImplicitObjectArgument();
2013     }
2014   }
2015 
2016   return const_cast<Expr *>(SubExpr);
2017 }
2018 
2019 NamedDecl *CastExpr::getConversionFunction() const {
2020   const Expr *SubExpr = nullptr;
2021 
2022   for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
2023     SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes);
2024 
2025     if (E->getCastKind() == CK_ConstructorConversion)
2026       return cast<CXXConstructExpr>(SubExpr)->getConstructor();
2027 
2028     if (E->getCastKind() == CK_UserDefinedConversion) {
2029       if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
2030         return MCE->getMethodDecl();
2031     }
2032   }
2033 
2034   return nullptr;
2035 }
2036 
2037 CXXBaseSpecifier **CastExpr::path_buffer() {
2038   switch (getStmtClass()) {
2039 #define ABSTRACT_STMT(x)
2040 #define CASTEXPR(Type, Base)                                                   \
2041   case Stmt::Type##Class:                                                      \
2042     return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
2043 #define STMT(Type, Base)
2044 #include "clang/AST/StmtNodes.inc"
2045   default:
2046     llvm_unreachable("non-cast expressions not possible here");
2047   }
2048 }
2049 
2050 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType,
2051                                                         QualType opType) {
2052   auto RD = unionType->castAs<RecordType>()->getDecl();
2053   return getTargetFieldForToUnionCast(RD, opType);
2054 }
2055 
2056 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD,
2057                                                         QualType OpType) {
2058   auto &Ctx = RD->getASTContext();
2059   RecordDecl::field_iterator Field, FieldEnd;
2060   for (Field = RD->field_begin(), FieldEnd = RD->field_end();
2061        Field != FieldEnd; ++Field) {
2062     if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
2063         !Field->isUnnamedBitfield()) {
2064       return *Field;
2065     }
2066   }
2067   return nullptr;
2068 }
2069 
2070 FPOptionsOverride *CastExpr::getTrailingFPFeatures() {
2071   assert(hasStoredFPFeatures());
2072   switch (getStmtClass()) {
2073   case ImplicitCastExprClass:
2074     return static_cast<ImplicitCastExpr *>(this)
2075         ->getTrailingObjects<FPOptionsOverride>();
2076   case CStyleCastExprClass:
2077     return static_cast<CStyleCastExpr *>(this)
2078         ->getTrailingObjects<FPOptionsOverride>();
2079   case CXXFunctionalCastExprClass:
2080     return static_cast<CXXFunctionalCastExpr *>(this)
2081         ->getTrailingObjects<FPOptionsOverride>();
2082   case CXXStaticCastExprClass:
2083     return static_cast<CXXStaticCastExpr *>(this)
2084         ->getTrailingObjects<FPOptionsOverride>();
2085   default:
2086     llvm_unreachable("Cast does not have FPFeatures");
2087   }
2088 }
2089 
2090 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
2091                                            CastKind Kind, Expr *Operand,
2092                                            const CXXCastPath *BasePath,
2093                                            ExprValueKind VK,
2094                                            FPOptionsOverride FPO) {
2095   unsigned PathSize = (BasePath ? BasePath->size() : 0);
2096   void *Buffer =
2097       C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2098           PathSize, FPO.requiresTrailingStorage()));
2099   // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and
2100   // std::nullptr_t have special semantics not captured by CK_LValueToRValue.
2101   assert((Kind != CK_LValueToRValue ||
2102           !(T->isNullPtrType() || T->getAsCXXRecordDecl())) &&
2103          "invalid type for lvalue-to-rvalue conversion");
2104   ImplicitCastExpr *E =
2105       new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, FPO, VK);
2106   if (PathSize)
2107     std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
2108                               E->getTrailingObjects<CXXBaseSpecifier *>());
2109   return E;
2110 }
2111 
2112 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
2113                                                 unsigned PathSize,
2114                                                 bool HasFPFeatures) {
2115   void *Buffer =
2116       C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2117           PathSize, HasFPFeatures));
2118   return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2119 }
2120 
2121 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
2122                                        ExprValueKind VK, CastKind K, Expr *Op,
2123                                        const CXXCastPath *BasePath,
2124                                        FPOptionsOverride FPO,
2125                                        TypeSourceInfo *WrittenTy,
2126                                        SourceLocation L, SourceLocation R) {
2127   unsigned PathSize = (BasePath ? BasePath->size() : 0);
2128   void *Buffer =
2129       C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2130           PathSize, FPO.requiresTrailingStorage()));
2131   CStyleCastExpr *E =
2132       new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, FPO, WrittenTy, L, R);
2133   if (PathSize)
2134     std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
2135                               E->getTrailingObjects<CXXBaseSpecifier *>());
2136   return E;
2137 }
2138 
2139 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
2140                                             unsigned PathSize,
2141                                             bool HasFPFeatures) {
2142   void *Buffer =
2143       C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2144           PathSize, HasFPFeatures));
2145   return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2146 }
2147 
2148 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2149 /// corresponds to, e.g. "<<=".
2150 StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
2151   switch (Op) {
2152 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
2153 #include "clang/AST/OperationKinds.def"
2154   }
2155   llvm_unreachable("Invalid OpCode!");
2156 }
2157 
2158 BinaryOperatorKind
2159 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
2160   switch (OO) {
2161   default: llvm_unreachable("Not an overloadable binary operator");
2162   case OO_Plus: return BO_Add;
2163   case OO_Minus: return BO_Sub;
2164   case OO_Star: return BO_Mul;
2165   case OO_Slash: return BO_Div;
2166   case OO_Percent: return BO_Rem;
2167   case OO_Caret: return BO_Xor;
2168   case OO_Amp: return BO_And;
2169   case OO_Pipe: return BO_Or;
2170   case OO_Equal: return BO_Assign;
2171   case OO_Spaceship: return BO_Cmp;
2172   case OO_Less: return BO_LT;
2173   case OO_Greater: return BO_GT;
2174   case OO_PlusEqual: return BO_AddAssign;
2175   case OO_MinusEqual: return BO_SubAssign;
2176   case OO_StarEqual: return BO_MulAssign;
2177   case OO_SlashEqual: return BO_DivAssign;
2178   case OO_PercentEqual: return BO_RemAssign;
2179   case OO_CaretEqual: return BO_XorAssign;
2180   case OO_AmpEqual: return BO_AndAssign;
2181   case OO_PipeEqual: return BO_OrAssign;
2182   case OO_LessLess: return BO_Shl;
2183   case OO_GreaterGreater: return BO_Shr;
2184   case OO_LessLessEqual: return BO_ShlAssign;
2185   case OO_GreaterGreaterEqual: return BO_ShrAssign;
2186   case OO_EqualEqual: return BO_EQ;
2187   case OO_ExclaimEqual: return BO_NE;
2188   case OO_LessEqual: return BO_LE;
2189   case OO_GreaterEqual: return BO_GE;
2190   case OO_AmpAmp: return BO_LAnd;
2191   case OO_PipePipe: return BO_LOr;
2192   case OO_Comma: return BO_Comma;
2193   case OO_ArrowStar: return BO_PtrMemI;
2194   }
2195 }
2196 
2197 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
2198   static const OverloadedOperatorKind OverOps[] = {
2199     /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
2200     OO_Star, OO_Slash, OO_Percent,
2201     OO_Plus, OO_Minus,
2202     OO_LessLess, OO_GreaterGreater,
2203     OO_Spaceship,
2204     OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
2205     OO_EqualEqual, OO_ExclaimEqual,
2206     OO_Amp,
2207     OO_Caret,
2208     OO_Pipe,
2209     OO_AmpAmp,
2210     OO_PipePipe,
2211     OO_Equal, OO_StarEqual,
2212     OO_SlashEqual, OO_PercentEqual,
2213     OO_PlusEqual, OO_MinusEqual,
2214     OO_LessLessEqual, OO_GreaterGreaterEqual,
2215     OO_AmpEqual, OO_CaretEqual,
2216     OO_PipeEqual,
2217     OO_Comma
2218   };
2219   return OverOps[Opc];
2220 }
2221 
2222 bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx,
2223                                                       Opcode Opc,
2224                                                       const Expr *LHS,
2225                                                       const Expr *RHS) {
2226   if (Opc != BO_Add)
2227     return false;
2228 
2229   // Check that we have one pointer and one integer operand.
2230   const Expr *PExp;
2231   if (LHS->getType()->isPointerType()) {
2232     if (!RHS->getType()->isIntegerType())
2233       return false;
2234     PExp = LHS;
2235   } else if (RHS->getType()->isPointerType()) {
2236     if (!LHS->getType()->isIntegerType())
2237       return false;
2238     PExp = RHS;
2239   } else {
2240     return false;
2241   }
2242 
2243   // Check that the pointer is a nullptr.
2244   if (!PExp->IgnoreParenCasts()
2245           ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
2246     return false;
2247 
2248   // Check that the pointee type is char-sized.
2249   const PointerType *PTy = PExp->getType()->getAs<PointerType>();
2250   if (!PTy || !PTy->getPointeeType()->isCharType())
2251     return false;
2252 
2253   return true;
2254 }
2255 
2256 SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, IdentKind Kind,
2257                              QualType ResultTy, SourceLocation BLoc,
2258                              SourceLocation RParenLoc,
2259                              DeclContext *ParentContext)
2260     : Expr(SourceLocExprClass, ResultTy, VK_PRValue, OK_Ordinary),
2261       BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) {
2262   SourceLocExprBits.Kind = Kind;
2263   setDependence(ExprDependence::None);
2264 }
2265 
2266 StringRef SourceLocExpr::getBuiltinStr() const {
2267   switch (getIdentKind()) {
2268   case File:
2269     return "__builtin_FILE";
2270   case FileName:
2271     return "__builtin_FILE_NAME";
2272   case Function:
2273     return "__builtin_FUNCTION";
2274   case FuncSig:
2275     return "__builtin_FUNCSIG";
2276   case Line:
2277     return "__builtin_LINE";
2278   case Column:
2279     return "__builtin_COLUMN";
2280   case SourceLocStruct:
2281     return "__builtin_source_location";
2282   }
2283   llvm_unreachable("unexpected IdentKind!");
2284 }
2285 
2286 APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx,
2287                                          const Expr *DefaultExpr) const {
2288   SourceLocation Loc;
2289   const DeclContext *Context;
2290 
2291   if (const auto *DIE = dyn_cast_if_present<CXXDefaultInitExpr>(DefaultExpr)) {
2292     Loc = DIE->getUsedLocation();
2293     Context = DIE->getUsedContext();
2294   } else if (const auto *DAE =
2295                  dyn_cast_if_present<CXXDefaultArgExpr>(DefaultExpr)) {
2296     Loc = DAE->getUsedLocation();
2297     Context = DAE->getUsedContext();
2298   } else {
2299     Loc = getLocation();
2300     Context = getParentContext();
2301   }
2302 
2303   PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc(
2304       Ctx.getSourceManager().getExpansionRange(Loc).getEnd());
2305 
2306   auto MakeStringLiteral = [&](StringRef Tmp) {
2307     using LValuePathEntry = APValue::LValuePathEntry;
2308     StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp);
2309     // Decay the string to a pointer to the first character.
2310     LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)};
2311     return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false);
2312   };
2313 
2314   switch (getIdentKind()) {
2315   case SourceLocExpr::FileName: {
2316     // __builtin_FILE_NAME() is a Clang-specific extension that expands to the
2317     // the last part of __builtin_FILE().
2318     SmallString<256> FileName;
2319     clang::Preprocessor::processPathToFileName(
2320         FileName, PLoc, Ctx.getLangOpts(), Ctx.getTargetInfo());
2321     return MakeStringLiteral(FileName);
2322   }
2323   case SourceLocExpr::File: {
2324     SmallString<256> Path(PLoc.getFilename());
2325     clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(),
2326                                                  Ctx.getTargetInfo());
2327     return MakeStringLiteral(Path);
2328   }
2329   case SourceLocExpr::Function:
2330   case SourceLocExpr::FuncSig: {
2331     const auto *CurDecl = dyn_cast<Decl>(Context);
2332     const auto Kind = getIdentKind() == SourceLocExpr::Function
2333                           ? PredefinedExpr::Function
2334                           : PredefinedExpr::FuncSig;
2335     return MakeStringLiteral(
2336         CurDecl ? PredefinedExpr::ComputeName(Kind, CurDecl) : std::string(""));
2337   }
2338   case SourceLocExpr::Line:
2339     return APValue(Ctx.MakeIntValue(PLoc.getLine(), Ctx.UnsignedIntTy));
2340   case SourceLocExpr::Column:
2341     return APValue(Ctx.MakeIntValue(PLoc.getColumn(), Ctx.UnsignedIntTy));
2342   case SourceLocExpr::SourceLocStruct: {
2343     // Fill in a std::source_location::__impl structure, by creating an
2344     // artificial file-scoped CompoundLiteralExpr, and returning a pointer to
2345     // that.
2346     const CXXRecordDecl *ImplDecl = getType()->getPointeeCXXRecordDecl();
2347     assert(ImplDecl);
2348 
2349     // Construct an APValue for the __impl struct, and get or create a Decl
2350     // corresponding to that. Note that we've already verified that the shape of
2351     // the ImplDecl type is as expected.
2352 
2353     APValue Value(APValue::UninitStruct(), 0, 4);
2354     for (const FieldDecl *F : ImplDecl->fields()) {
2355       StringRef Name = F->getName();
2356       if (Name == "_M_file_name") {
2357         SmallString<256> Path(PLoc.getFilename());
2358         clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(),
2359                                                      Ctx.getTargetInfo());
2360         Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(Path);
2361       } else if (Name == "_M_function_name") {
2362         // Note: this emits the PrettyFunction name -- different than what
2363         // __builtin_FUNCTION() above returns!
2364         const auto *CurDecl = dyn_cast<Decl>(Context);
2365         Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(
2366             CurDecl && !isa<TranslationUnitDecl>(CurDecl)
2367                 ? StringRef(PredefinedExpr::ComputeName(
2368                       PredefinedExpr::PrettyFunction, CurDecl))
2369                 : "");
2370       } else if (Name == "_M_line") {
2371         llvm::APSInt IntVal = Ctx.MakeIntValue(PLoc.getLine(), F->getType());
2372         Value.getStructField(F->getFieldIndex()) = APValue(IntVal);
2373       } else if (Name == "_M_column") {
2374         llvm::APSInt IntVal = Ctx.MakeIntValue(PLoc.getColumn(), F->getType());
2375         Value.getStructField(F->getFieldIndex()) = APValue(IntVal);
2376       }
2377     }
2378 
2379     UnnamedGlobalConstantDecl *GV =
2380         Ctx.getUnnamedGlobalConstantDecl(getType()->getPointeeType(), Value);
2381 
2382     return APValue(GV, CharUnits::Zero(), ArrayRef<APValue::LValuePathEntry>{},
2383                    false);
2384   }
2385   }
2386   llvm_unreachable("unhandled case");
2387 }
2388 
2389 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
2390                            ArrayRef<Expr *> initExprs, SourceLocation rbraceloc)
2391     : Expr(InitListExprClass, QualType(), VK_PRValue, OK_Ordinary),
2392       InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc),
2393       RBraceLoc(rbraceloc), AltForm(nullptr, true) {
2394   sawArrayRangeDesignator(false);
2395   InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
2396 
2397   setDependence(computeDependence(this));
2398 }
2399 
2400 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
2401   if (NumInits > InitExprs.size())
2402     InitExprs.reserve(C, NumInits);
2403 }
2404 
2405 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
2406   InitExprs.resize(C, NumInits, nullptr);
2407 }
2408 
2409 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
2410   if (Init >= InitExprs.size()) {
2411     InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
2412     setInit(Init, expr);
2413     return nullptr;
2414   }
2415 
2416   Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
2417   setInit(Init, expr);
2418   return Result;
2419 }
2420 
2421 void InitListExpr::setArrayFiller(Expr *filler) {
2422   assert(!hasArrayFiller() && "Filler already set!");
2423   ArrayFillerOrUnionFieldInit = filler;
2424   // Fill out any "holes" in the array due to designated initializers.
2425   Expr **inits = getInits();
2426   for (unsigned i = 0, e = getNumInits(); i != e; ++i)
2427     if (inits[i] == nullptr)
2428       inits[i] = filler;
2429 }
2430 
2431 bool InitListExpr::isStringLiteralInit() const {
2432   if (getNumInits() != 1)
2433     return false;
2434   const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
2435   if (!AT || !AT->getElementType()->isIntegerType())
2436     return false;
2437   // It is possible for getInit() to return null.
2438   const Expr *Init = getInit(0);
2439   if (!Init)
2440     return false;
2441   Init = Init->IgnoreParenImpCasts();
2442   return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
2443 }
2444 
2445 bool InitListExpr::isTransparent() const {
2446   assert(isSemanticForm() && "syntactic form never semantically transparent");
2447 
2448   // A glvalue InitListExpr is always just sugar.
2449   if (isGLValue()) {
2450     assert(getNumInits() == 1 && "multiple inits in glvalue init list");
2451     return true;
2452   }
2453 
2454   // Otherwise, we're sugar if and only if we have exactly one initializer that
2455   // is of the same type.
2456   if (getNumInits() != 1 || !getInit(0))
2457     return false;
2458 
2459   // Don't confuse aggregate initialization of a struct X { X &x; }; with a
2460   // transparent struct copy.
2461   if (!getInit(0)->isPRValue() && getType()->isRecordType())
2462     return false;
2463 
2464   return getType().getCanonicalType() ==
2465          getInit(0)->getType().getCanonicalType();
2466 }
2467 
2468 bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const {
2469   assert(isSyntacticForm() && "only test syntactic form as zero initializer");
2470 
2471   if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) {
2472     return false;
2473   }
2474 
2475   const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit());
2476   return Lit && Lit->getValue() == 0;
2477 }
2478 
2479 SourceLocation InitListExpr::getBeginLoc() const {
2480   if (InitListExpr *SyntacticForm = getSyntacticForm())
2481     return SyntacticForm->getBeginLoc();
2482   SourceLocation Beg = LBraceLoc;
2483   if (Beg.isInvalid()) {
2484     // Find the first non-null initializer.
2485     for (InitExprsTy::const_iterator I = InitExprs.begin(),
2486                                      E = InitExprs.end();
2487       I != E; ++I) {
2488       if (Stmt *S = *I) {
2489         Beg = S->getBeginLoc();
2490         break;
2491       }
2492     }
2493   }
2494   return Beg;
2495 }
2496 
2497 SourceLocation InitListExpr::getEndLoc() const {
2498   if (InitListExpr *SyntacticForm = getSyntacticForm())
2499     return SyntacticForm->getEndLoc();
2500   SourceLocation End = RBraceLoc;
2501   if (End.isInvalid()) {
2502     // Find the first non-null initializer from the end.
2503     for (Stmt *S : llvm::reverse(InitExprs)) {
2504       if (S) {
2505         End = S->getEndLoc();
2506         break;
2507       }
2508     }
2509   }
2510   return End;
2511 }
2512 
2513 /// getFunctionType - Return the underlying function type for this block.
2514 ///
2515 const FunctionProtoType *BlockExpr::getFunctionType() const {
2516   // The block pointer is never sugared, but the function type might be.
2517   return cast<BlockPointerType>(getType())
2518            ->getPointeeType()->castAs<FunctionProtoType>();
2519 }
2520 
2521 SourceLocation BlockExpr::getCaretLocation() const {
2522   return TheBlock->getCaretLocation();
2523 }
2524 const Stmt *BlockExpr::getBody() const {
2525   return TheBlock->getBody();
2526 }
2527 Stmt *BlockExpr::getBody() {
2528   return TheBlock->getBody();
2529 }
2530 
2531 
2532 //===----------------------------------------------------------------------===//
2533 // Generic Expression Routines
2534 //===----------------------------------------------------------------------===//
2535 
2536 bool Expr::isReadIfDiscardedInCPlusPlus11() const {
2537   // In C++11, discarded-value expressions of a certain form are special,
2538   // according to [expr]p10:
2539   //   The lvalue-to-rvalue conversion (4.1) is applied only if the
2540   //   expression is a glvalue of volatile-qualified type and it has
2541   //   one of the following forms:
2542   if (!isGLValue() || !getType().isVolatileQualified())
2543     return false;
2544 
2545   const Expr *E = IgnoreParens();
2546 
2547   //   - id-expression (5.1.1),
2548   if (isa<DeclRefExpr>(E))
2549     return true;
2550 
2551   //   - subscripting (5.2.1),
2552   if (isa<ArraySubscriptExpr>(E))
2553     return true;
2554 
2555   //   - class member access (5.2.5),
2556   if (isa<MemberExpr>(E))
2557     return true;
2558 
2559   //   - indirection (5.3.1),
2560   if (auto *UO = dyn_cast<UnaryOperator>(E))
2561     if (UO->getOpcode() == UO_Deref)
2562       return true;
2563 
2564   if (auto *BO = dyn_cast<BinaryOperator>(E)) {
2565     //   - pointer-to-member operation (5.5),
2566     if (BO->isPtrMemOp())
2567       return true;
2568 
2569     //   - comma expression (5.18) where the right operand is one of the above.
2570     if (BO->getOpcode() == BO_Comma)
2571       return BO->getRHS()->isReadIfDiscardedInCPlusPlus11();
2572   }
2573 
2574   //   - conditional expression (5.16) where both the second and the third
2575   //     operands are one of the above, or
2576   if (auto *CO = dyn_cast<ConditionalOperator>(E))
2577     return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() &&
2578            CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2579   // The related edge case of "*x ?: *x".
2580   if (auto *BCO =
2581           dyn_cast<BinaryConditionalOperator>(E)) {
2582     if (auto *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
2583       return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() &&
2584              BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2585   }
2586 
2587   // Objective-C++ extensions to the rule.
2588   if (isa<ObjCIvarRefExpr>(E))
2589     return true;
2590   if (const auto *POE = dyn_cast<PseudoObjectExpr>(E)) {
2591     if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(POE->getSyntacticForm()))
2592       return true;
2593   }
2594 
2595   return false;
2596 }
2597 
2598 /// isUnusedResultAWarning - Return true if this immediate expression should
2599 /// be warned about if the result is unused.  If so, fill in Loc and Ranges
2600 /// with location to warn on and the source range[s] to report with the
2601 /// warning.
2602 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
2603                                   SourceRange &R1, SourceRange &R2,
2604                                   ASTContext &Ctx) const {
2605   // Don't warn if the expr is type dependent. The type could end up
2606   // instantiating to void.
2607   if (isTypeDependent())
2608     return false;
2609 
2610   switch (getStmtClass()) {
2611   default:
2612     if (getType()->isVoidType())
2613       return false;
2614     WarnE = this;
2615     Loc = getExprLoc();
2616     R1 = getSourceRange();
2617     return true;
2618   case ParenExprClass:
2619     return cast<ParenExpr>(this)->getSubExpr()->
2620       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2621   case GenericSelectionExprClass:
2622     return cast<GenericSelectionExpr>(this)->getResultExpr()->
2623       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2624   case CoawaitExprClass:
2625   case CoyieldExprClass:
2626     return cast<CoroutineSuspendExpr>(this)->getResumeExpr()->
2627       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2628   case ChooseExprClass:
2629     return cast<ChooseExpr>(this)->getChosenSubExpr()->
2630       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2631   case UnaryOperatorClass: {
2632     const UnaryOperator *UO = cast<UnaryOperator>(this);
2633 
2634     switch (UO->getOpcode()) {
2635     case UO_Plus:
2636     case UO_Minus:
2637     case UO_AddrOf:
2638     case UO_Not:
2639     case UO_LNot:
2640     case UO_Deref:
2641       break;
2642     case UO_Coawait:
2643       // This is just the 'operator co_await' call inside the guts of a
2644       // dependent co_await call.
2645     case UO_PostInc:
2646     case UO_PostDec:
2647     case UO_PreInc:
2648     case UO_PreDec:                 // ++/--
2649       return false;  // Not a warning.
2650     case UO_Real:
2651     case UO_Imag:
2652       // accessing a piece of a volatile complex is a side-effect.
2653       if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
2654           .isVolatileQualified())
2655         return false;
2656       break;
2657     case UO_Extension:
2658       return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2659     }
2660     WarnE = this;
2661     Loc = UO->getOperatorLoc();
2662     R1 = UO->getSubExpr()->getSourceRange();
2663     return true;
2664   }
2665   case BinaryOperatorClass: {
2666     const BinaryOperator *BO = cast<BinaryOperator>(this);
2667     switch (BO->getOpcode()) {
2668       default:
2669         break;
2670       // Consider the RHS of comma for side effects. LHS was checked by
2671       // Sema::CheckCommaOperands.
2672       case BO_Comma:
2673         // ((foo = <blah>), 0) is an idiom for hiding the result (and
2674         // lvalue-ness) of an assignment written in a macro.
2675         if (IntegerLiteral *IE =
2676               dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
2677           if (IE->getValue() == 0)
2678             return false;
2679         return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2680       // Consider '||', '&&' to have side effects if the LHS or RHS does.
2681       case BO_LAnd:
2682       case BO_LOr:
2683         if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2684             !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2685           return false;
2686         break;
2687     }
2688     if (BO->isAssignmentOp())
2689       return false;
2690     WarnE = this;
2691     Loc = BO->getOperatorLoc();
2692     R1 = BO->getLHS()->getSourceRange();
2693     R2 = BO->getRHS()->getSourceRange();
2694     return true;
2695   }
2696   case CompoundAssignOperatorClass:
2697   case VAArgExprClass:
2698   case AtomicExprClass:
2699     return false;
2700 
2701   case ConditionalOperatorClass: {
2702     // If only one of the LHS or RHS is a warning, the operator might
2703     // be being used for control flow. Only warn if both the LHS and
2704     // RHS are warnings.
2705     const auto *Exp = cast<ConditionalOperator>(this);
2706     return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) &&
2707            Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2708   }
2709   case BinaryConditionalOperatorClass: {
2710     const auto *Exp = cast<BinaryConditionalOperator>(this);
2711     return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2712   }
2713 
2714   case MemberExprClass:
2715     WarnE = this;
2716     Loc = cast<MemberExpr>(this)->getMemberLoc();
2717     R1 = SourceRange(Loc, Loc);
2718     R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2719     return true;
2720 
2721   case ArraySubscriptExprClass:
2722     WarnE = this;
2723     Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2724     R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2725     R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2726     return true;
2727 
2728   case CXXOperatorCallExprClass: {
2729     // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2730     // overloads as there is no reasonable way to define these such that they
2731     // have non-trivial, desirable side-effects. See the -Wunused-comparison
2732     // warning: operators == and != are commonly typo'ed, and so warning on them
2733     // provides additional value as well. If this list is updated,
2734     // DiagnoseUnusedComparison should be as well.
2735     const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2736     switch (Op->getOperator()) {
2737     default:
2738       break;
2739     case OO_EqualEqual:
2740     case OO_ExclaimEqual:
2741     case OO_Less:
2742     case OO_Greater:
2743     case OO_GreaterEqual:
2744     case OO_LessEqual:
2745       if (Op->getCallReturnType(Ctx)->isReferenceType() ||
2746           Op->getCallReturnType(Ctx)->isVoidType())
2747         break;
2748       WarnE = this;
2749       Loc = Op->getOperatorLoc();
2750       R1 = Op->getSourceRange();
2751       return true;
2752     }
2753 
2754     // Fallthrough for generic call handling.
2755     [[fallthrough]];
2756   }
2757   case CallExprClass:
2758   case CXXMemberCallExprClass:
2759   case UserDefinedLiteralClass: {
2760     // If this is a direct call, get the callee.
2761     const CallExpr *CE = cast<CallExpr>(this);
2762     if (const Decl *FD = CE->getCalleeDecl()) {
2763       // If the callee has attribute pure, const, or warn_unused_result, warn
2764       // about it. void foo() { strlen("bar"); } should warn.
2765       //
2766       // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2767       // updated to match for QoI.
2768       if (CE->hasUnusedResultAttr(Ctx) ||
2769           FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
2770         WarnE = this;
2771         Loc = CE->getCallee()->getBeginLoc();
2772         R1 = CE->getCallee()->getSourceRange();
2773 
2774         if (unsigned NumArgs = CE->getNumArgs())
2775           R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2776                            CE->getArg(NumArgs - 1)->getEndLoc());
2777         return true;
2778       }
2779     }
2780     return false;
2781   }
2782 
2783   // If we don't know precisely what we're looking at, let's not warn.
2784   case UnresolvedLookupExprClass:
2785   case CXXUnresolvedConstructExprClass:
2786   case RecoveryExprClass:
2787     return false;
2788 
2789   case CXXTemporaryObjectExprClass:
2790   case CXXConstructExprClass: {
2791     if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2792       const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>();
2793       if (Type->hasAttr<WarnUnusedAttr>() ||
2794           (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) {
2795         WarnE = this;
2796         Loc = getBeginLoc();
2797         R1 = getSourceRange();
2798         return true;
2799       }
2800     }
2801 
2802     const auto *CE = cast<CXXConstructExpr>(this);
2803     if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
2804       const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>();
2805       if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) {
2806         WarnE = this;
2807         Loc = getBeginLoc();
2808         R1 = getSourceRange();
2809 
2810         if (unsigned NumArgs = CE->getNumArgs())
2811           R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2812                            CE->getArg(NumArgs - 1)->getEndLoc());
2813         return true;
2814       }
2815     }
2816 
2817     return false;
2818   }
2819 
2820   case ObjCMessageExprClass: {
2821     const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2822     if (Ctx.getLangOpts().ObjCAutoRefCount &&
2823         ME->isInstanceMessage() &&
2824         !ME->getType()->isVoidType() &&
2825         ME->getMethodFamily() == OMF_init) {
2826       WarnE = this;
2827       Loc = getExprLoc();
2828       R1 = ME->getSourceRange();
2829       return true;
2830     }
2831 
2832     if (const ObjCMethodDecl *MD = ME->getMethodDecl())
2833       if (MD->hasAttr<WarnUnusedResultAttr>()) {
2834         WarnE = this;
2835         Loc = getExprLoc();
2836         return true;
2837       }
2838 
2839     return false;
2840   }
2841 
2842   case ObjCPropertyRefExprClass:
2843   case ObjCSubscriptRefExprClass:
2844     WarnE = this;
2845     Loc = getExprLoc();
2846     R1 = getSourceRange();
2847     return true;
2848 
2849   case PseudoObjectExprClass: {
2850     const auto *POE = cast<PseudoObjectExpr>(this);
2851 
2852     // For some syntactic forms, we should always warn.
2853     if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(
2854             POE->getSyntacticForm())) {
2855       WarnE = this;
2856       Loc = getExprLoc();
2857       R1 = getSourceRange();
2858       return true;
2859     }
2860 
2861     // For others, we should never warn.
2862     if (auto *BO = dyn_cast<BinaryOperator>(POE->getSyntacticForm()))
2863       if (BO->isAssignmentOp())
2864         return false;
2865     if (auto *UO = dyn_cast<UnaryOperator>(POE->getSyntacticForm()))
2866       if (UO->isIncrementDecrementOp())
2867         return false;
2868 
2869     // Otherwise, warn if the result expression would warn.
2870     const Expr *Result = POE->getResultExpr();
2871     return Result && Result->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2872   }
2873 
2874   case StmtExprClass: {
2875     // Statement exprs don't logically have side effects themselves, but are
2876     // sometimes used in macros in ways that give them a type that is unused.
2877     // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2878     // however, if the result of the stmt expr is dead, we don't want to emit a
2879     // warning.
2880     const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2881     if (!CS->body_empty()) {
2882       if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2883         return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2884       if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2885         if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2886           return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2887     }
2888 
2889     if (getType()->isVoidType())
2890       return false;
2891     WarnE = this;
2892     Loc = cast<StmtExpr>(this)->getLParenLoc();
2893     R1 = getSourceRange();
2894     return true;
2895   }
2896   case CXXFunctionalCastExprClass:
2897   case CStyleCastExprClass: {
2898     // Ignore an explicit cast to void, except in C++98 if the operand is a
2899     // volatile glvalue for which we would trigger an implicit read in any
2900     // other language mode. (Such an implicit read always happens as part of
2901     // the lvalue conversion in C, and happens in C++ for expressions of all
2902     // forms where it seems likely the user intended to trigger a volatile
2903     // load.)
2904     const CastExpr *CE = cast<CastExpr>(this);
2905     const Expr *SubE = CE->getSubExpr()->IgnoreParens();
2906     if (CE->getCastKind() == CK_ToVoid) {
2907       if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 &&
2908           SubE->isReadIfDiscardedInCPlusPlus11()) {
2909         // Suppress the "unused value" warning for idiomatic usage of
2910         // '(void)var;' used to suppress "unused variable" warnings.
2911         if (auto *DRE = dyn_cast<DeclRefExpr>(SubE))
2912           if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2913             if (!VD->isExternallyVisible())
2914               return false;
2915 
2916         // The lvalue-to-rvalue conversion would have no effect for an array.
2917         // It's implausible that the programmer expected this to result in a
2918         // volatile array load, so don't warn.
2919         if (SubE->getType()->isArrayType())
2920           return false;
2921 
2922         return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2923       }
2924       return false;
2925     }
2926 
2927     // If this is a cast to a constructor conversion, check the operand.
2928     // Otherwise, the result of the cast is unused.
2929     if (CE->getCastKind() == CK_ConstructorConversion)
2930       return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2931     if (CE->getCastKind() == CK_Dependent)
2932       return false;
2933 
2934     WarnE = this;
2935     if (const CXXFunctionalCastExpr *CXXCE =
2936             dyn_cast<CXXFunctionalCastExpr>(this)) {
2937       Loc = CXXCE->getBeginLoc();
2938       R1 = CXXCE->getSubExpr()->getSourceRange();
2939     } else {
2940       const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2941       Loc = CStyleCE->getLParenLoc();
2942       R1 = CStyleCE->getSubExpr()->getSourceRange();
2943     }
2944     return true;
2945   }
2946   case ImplicitCastExprClass: {
2947     const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2948 
2949     // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2950     if (ICE->getCastKind() == CK_LValueToRValue &&
2951         ICE->getSubExpr()->getType().isVolatileQualified())
2952       return false;
2953 
2954     return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2955   }
2956   case CXXDefaultArgExprClass:
2957     return (cast<CXXDefaultArgExpr>(this)
2958             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2959   case CXXDefaultInitExprClass:
2960     return (cast<CXXDefaultInitExpr>(this)
2961             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2962 
2963   case CXXNewExprClass:
2964     // FIXME: In theory, there might be new expressions that don't have side
2965     // effects (e.g. a placement new with an uninitialized POD).
2966   case CXXDeleteExprClass:
2967     return false;
2968   case MaterializeTemporaryExprClass:
2969     return cast<MaterializeTemporaryExpr>(this)
2970         ->getSubExpr()
2971         ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2972   case CXXBindTemporaryExprClass:
2973     return cast<CXXBindTemporaryExpr>(this)->getSubExpr()
2974                ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2975   case ExprWithCleanupsClass:
2976     return cast<ExprWithCleanups>(this)->getSubExpr()
2977                ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2978   }
2979 }
2980 
2981 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
2982 /// returns true, if it is; false otherwise.
2983 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2984   const Expr *E = IgnoreParens();
2985   switch (E->getStmtClass()) {
2986   default:
2987     return false;
2988   case ObjCIvarRefExprClass:
2989     return true;
2990   case Expr::UnaryOperatorClass:
2991     return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2992   case ImplicitCastExprClass:
2993     return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2994   case MaterializeTemporaryExprClass:
2995     return cast<MaterializeTemporaryExpr>(E)->getSubExpr()->isOBJCGCCandidate(
2996         Ctx);
2997   case CStyleCastExprClass:
2998     return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2999   case DeclRefExprClass: {
3000     const Decl *D = cast<DeclRefExpr>(E)->getDecl();
3001 
3002     if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
3003       if (VD->hasGlobalStorage())
3004         return true;
3005       QualType T = VD->getType();
3006       // dereferencing to a  pointer is always a gc'able candidate,
3007       // unless it is __weak.
3008       return T->isPointerType() &&
3009              (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
3010     }
3011     return false;
3012   }
3013   case MemberExprClass: {
3014     const MemberExpr *M = cast<MemberExpr>(E);
3015     return M->getBase()->isOBJCGCCandidate(Ctx);
3016   }
3017   case ArraySubscriptExprClass:
3018     return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
3019   }
3020 }
3021 
3022 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
3023   if (isTypeDependent())
3024     return false;
3025   return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
3026 }
3027 
3028 QualType Expr::findBoundMemberType(const Expr *expr) {
3029   assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
3030 
3031   // Bound member expressions are always one of these possibilities:
3032   //   x->m      x.m      x->*y      x.*y
3033   // (possibly parenthesized)
3034 
3035   expr = expr->IgnoreParens();
3036   if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
3037     assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
3038     return mem->getMemberDecl()->getType();
3039   }
3040 
3041   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
3042     QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
3043                       ->getPointeeType();
3044     assert(type->isFunctionType());
3045     return type;
3046   }
3047 
3048   assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
3049   return QualType();
3050 }
3051 
3052 Expr *Expr::IgnoreImpCasts() {
3053   return IgnoreExprNodes(this, IgnoreImplicitCastsSingleStep);
3054 }
3055 
3056 Expr *Expr::IgnoreCasts() {
3057   return IgnoreExprNodes(this, IgnoreCastsSingleStep);
3058 }
3059 
3060 Expr *Expr::IgnoreImplicit() {
3061   return IgnoreExprNodes(this, IgnoreImplicitSingleStep);
3062 }
3063 
3064 Expr *Expr::IgnoreImplicitAsWritten() {
3065   return IgnoreExprNodes(this, IgnoreImplicitAsWrittenSingleStep);
3066 }
3067 
3068 Expr *Expr::IgnoreParens() {
3069   return IgnoreExprNodes(this, IgnoreParensSingleStep);
3070 }
3071 
3072 Expr *Expr::IgnoreParenImpCasts() {
3073   return IgnoreExprNodes(this, IgnoreParensSingleStep,
3074                          IgnoreImplicitCastsExtraSingleStep);
3075 }
3076 
3077 Expr *Expr::IgnoreParenCasts() {
3078   return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep);
3079 }
3080 
3081 Expr *Expr::IgnoreConversionOperatorSingleStep() {
3082   if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
3083     if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
3084       return MCE->getImplicitObjectArgument();
3085   }
3086   return this;
3087 }
3088 
3089 Expr *Expr::IgnoreParenLValueCasts() {
3090   return IgnoreExprNodes(this, IgnoreParensSingleStep,
3091                          IgnoreLValueCastsSingleStep);
3092 }
3093 
3094 Expr *Expr::IgnoreParenBaseCasts() {
3095   return IgnoreExprNodes(this, IgnoreParensSingleStep,
3096                          IgnoreBaseCastsSingleStep);
3097 }
3098 
3099 Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) {
3100   auto IgnoreNoopCastsSingleStep = [&Ctx](Expr *E) {
3101     if (auto *CE = dyn_cast<CastExpr>(E)) {
3102       // We ignore integer <-> casts that are of the same width, ptr<->ptr and
3103       // ptr<->int casts of the same width. We also ignore all identity casts.
3104       Expr *SubExpr = CE->getSubExpr();
3105       bool IsIdentityCast =
3106           Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType());
3107       bool IsSameWidthCast = (E->getType()->isPointerType() ||
3108                               E->getType()->isIntegralType(Ctx)) &&
3109                              (SubExpr->getType()->isPointerType() ||
3110                               SubExpr->getType()->isIntegralType(Ctx)) &&
3111                              (Ctx.getTypeSize(E->getType()) ==
3112                               Ctx.getTypeSize(SubExpr->getType()));
3113 
3114       if (IsIdentityCast || IsSameWidthCast)
3115         return SubExpr;
3116     } else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
3117       return NTTP->getReplacement();
3118 
3119     return E;
3120   };
3121   return IgnoreExprNodes(this, IgnoreParensSingleStep,
3122                          IgnoreNoopCastsSingleStep);
3123 }
3124 
3125 Expr *Expr::IgnoreUnlessSpelledInSource() {
3126   auto IgnoreImplicitConstructorSingleStep = [](Expr *E) {
3127     if (auto *Cast = dyn_cast<CXXFunctionalCastExpr>(E)) {
3128       auto *SE = Cast->getSubExpr();
3129       if (SE->getSourceRange() == E->getSourceRange())
3130         return SE;
3131     }
3132 
3133     if (auto *C = dyn_cast<CXXConstructExpr>(E)) {
3134       auto NumArgs = C->getNumArgs();
3135       if (NumArgs == 1 ||
3136           (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) {
3137         Expr *A = C->getArg(0);
3138         if (A->getSourceRange() == E->getSourceRange() || C->isElidable())
3139           return A;
3140       }
3141     }
3142     return E;
3143   };
3144   auto IgnoreImplicitMemberCallSingleStep = [](Expr *E) {
3145     if (auto *C = dyn_cast<CXXMemberCallExpr>(E)) {
3146       Expr *ExprNode = C->getImplicitObjectArgument();
3147       if (ExprNode->getSourceRange() == E->getSourceRange()) {
3148         return ExprNode;
3149       }
3150       if (auto *PE = dyn_cast<ParenExpr>(ExprNode)) {
3151         if (PE->getSourceRange() == C->getSourceRange()) {
3152           return cast<Expr>(PE);
3153         }
3154       }
3155       ExprNode = ExprNode->IgnoreParenImpCasts();
3156       if (ExprNode->getSourceRange() == E->getSourceRange())
3157         return ExprNode;
3158     }
3159     return E;
3160   };
3161   return IgnoreExprNodes(
3162       this, IgnoreImplicitSingleStep, IgnoreImplicitCastsExtraSingleStep,
3163       IgnoreParensOnlySingleStep, IgnoreImplicitConstructorSingleStep,
3164       IgnoreImplicitMemberCallSingleStep);
3165 }
3166 
3167 bool Expr::isDefaultArgument() const {
3168   const Expr *E = this;
3169   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
3170     E = M->getSubExpr();
3171 
3172   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3173     E = ICE->getSubExprAsWritten();
3174 
3175   return isa<CXXDefaultArgExpr>(E);
3176 }
3177 
3178 /// Skip over any no-op casts and any temporary-binding
3179 /// expressions.
3180 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
3181   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
3182     E = M->getSubExpr();
3183 
3184   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3185     if (ICE->getCastKind() == CK_NoOp)
3186       E = ICE->getSubExpr();
3187     else
3188       break;
3189   }
3190 
3191   while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3192     E = BE->getSubExpr();
3193 
3194   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3195     if (ICE->getCastKind() == CK_NoOp)
3196       E = ICE->getSubExpr();
3197     else
3198       break;
3199   }
3200 
3201   return E->IgnoreParens();
3202 }
3203 
3204 /// isTemporaryObject - Determines if this expression produces a
3205 /// temporary of the given class type.
3206 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
3207   if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
3208     return false;
3209 
3210   const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
3211 
3212   // Temporaries are by definition pr-values of class type.
3213   if (!E->Classify(C).isPRValue()) {
3214     // In this context, property reference is a message call and is pr-value.
3215     if (!isa<ObjCPropertyRefExpr>(E))
3216       return false;
3217   }
3218 
3219   // Black-list a few cases which yield pr-values of class type that don't
3220   // refer to temporaries of that type:
3221 
3222   // - implicit derived-to-base conversions
3223   if (isa<ImplicitCastExpr>(E)) {
3224     switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
3225     case CK_DerivedToBase:
3226     case CK_UncheckedDerivedToBase:
3227       return false;
3228     default:
3229       break;
3230     }
3231   }
3232 
3233   // - member expressions (all)
3234   if (isa<MemberExpr>(E))
3235     return false;
3236 
3237   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
3238     if (BO->isPtrMemOp())
3239       return false;
3240 
3241   // - opaque values (all)
3242   if (isa<OpaqueValueExpr>(E))
3243     return false;
3244 
3245   return true;
3246 }
3247 
3248 bool Expr::isImplicitCXXThis() const {
3249   const Expr *E = this;
3250 
3251   // Strip away parentheses and casts we don't care about.
3252   while (true) {
3253     if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
3254       E = Paren->getSubExpr();
3255       continue;
3256     }
3257 
3258     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3259       if (ICE->getCastKind() == CK_NoOp ||
3260           ICE->getCastKind() == CK_LValueToRValue ||
3261           ICE->getCastKind() == CK_DerivedToBase ||
3262           ICE->getCastKind() == CK_UncheckedDerivedToBase) {
3263         E = ICE->getSubExpr();
3264         continue;
3265       }
3266     }
3267 
3268     if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
3269       if (UnOp->getOpcode() == UO_Extension) {
3270         E = UnOp->getSubExpr();
3271         continue;
3272       }
3273     }
3274 
3275     if (const MaterializeTemporaryExpr *M
3276                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
3277       E = M->getSubExpr();
3278       continue;
3279     }
3280 
3281     break;
3282   }
3283 
3284   if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
3285     return This->isImplicit();
3286 
3287   return false;
3288 }
3289 
3290 /// hasAnyTypeDependentArguments - Determines if any of the expressions
3291 /// in Exprs is type-dependent.
3292 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
3293   for (unsigned I = 0; I < Exprs.size(); ++I)
3294     if (Exprs[I]->isTypeDependent())
3295       return true;
3296 
3297   return false;
3298 }
3299 
3300 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
3301                                  const Expr **Culprit) const {
3302   assert(!isValueDependent() &&
3303          "Expression evaluator can't be called on a dependent expression.");
3304 
3305   // This function is attempting whether an expression is an initializer
3306   // which can be evaluated at compile-time. It very closely parallels
3307   // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
3308   // will lead to unexpected results.  Like ConstExprEmitter, it falls back
3309   // to isEvaluatable most of the time.
3310   //
3311   // If we ever capture reference-binding directly in the AST, we can
3312   // kill the second parameter.
3313 
3314   if (IsForRef) {
3315     if (auto *EWC = dyn_cast<ExprWithCleanups>(this))
3316       return EWC->getSubExpr()->isConstantInitializer(Ctx, true, Culprit);
3317     if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(this))
3318       return MTE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3319     EvalResult Result;
3320     if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
3321       return true;
3322     if (Culprit)
3323       *Culprit = this;
3324     return false;
3325   }
3326 
3327   switch (getStmtClass()) {
3328   default: break;
3329   case Stmt::ExprWithCleanupsClass:
3330     return cast<ExprWithCleanups>(this)->getSubExpr()->isConstantInitializer(
3331         Ctx, IsForRef, Culprit);
3332   case StringLiteralClass:
3333   case ObjCEncodeExprClass:
3334     return true;
3335   case CXXTemporaryObjectExprClass:
3336   case CXXConstructExprClass: {
3337     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3338 
3339     if (CE->getConstructor()->isTrivial() &&
3340         CE->getConstructor()->getParent()->hasTrivialDestructor()) {
3341       // Trivial default constructor
3342       if (!CE->getNumArgs()) return true;
3343 
3344       // Trivial copy constructor
3345       assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
3346       return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
3347     }
3348 
3349     break;
3350   }
3351   case ConstantExprClass: {
3352     // FIXME: We should be able to return "true" here, but it can lead to extra
3353     // error messages. E.g. in Sema/array-init.c.
3354     const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr();
3355     return Exp->isConstantInitializer(Ctx, false, Culprit);
3356   }
3357   case CompoundLiteralExprClass: {
3358     // This handles gcc's extension that allows global initializers like
3359     // "struct x {int x;} x = (struct x) {};".
3360     // FIXME: This accepts other cases it shouldn't!
3361     const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
3362     return Exp->isConstantInitializer(Ctx, false, Culprit);
3363   }
3364   case DesignatedInitUpdateExprClass: {
3365     const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
3366     return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
3367            DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
3368   }
3369   case InitListExprClass: {
3370     const InitListExpr *ILE = cast<InitListExpr>(this);
3371     assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form");
3372     if (ILE->getType()->isArrayType()) {
3373       unsigned numInits = ILE->getNumInits();
3374       for (unsigned i = 0; i < numInits; i++) {
3375         if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
3376           return false;
3377       }
3378       return true;
3379     }
3380 
3381     if (ILE->getType()->isRecordType()) {
3382       unsigned ElementNo = 0;
3383       RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
3384       for (const auto *Field : RD->fields()) {
3385         // If this is a union, skip all the fields that aren't being initialized.
3386         if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
3387           continue;
3388 
3389         // Don't emit anonymous bitfields, they just affect layout.
3390         if (Field->isUnnamedBitfield())
3391           continue;
3392 
3393         if (ElementNo < ILE->getNumInits()) {
3394           const Expr *Elt = ILE->getInit(ElementNo++);
3395           if (Field->isBitField()) {
3396             // Bitfields have to evaluate to an integer.
3397             EvalResult Result;
3398             if (!Elt->EvaluateAsInt(Result, Ctx)) {
3399               if (Culprit)
3400                 *Culprit = Elt;
3401               return false;
3402             }
3403           } else {
3404             bool RefType = Field->getType()->isReferenceType();
3405             if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
3406               return false;
3407           }
3408         }
3409       }
3410       return true;
3411     }
3412 
3413     break;
3414   }
3415   case ImplicitValueInitExprClass:
3416   case NoInitExprClass:
3417     return true;
3418   case ParenExprClass:
3419     return cast<ParenExpr>(this)->getSubExpr()
3420       ->isConstantInitializer(Ctx, IsForRef, Culprit);
3421   case GenericSelectionExprClass:
3422     return cast<GenericSelectionExpr>(this)->getResultExpr()
3423       ->isConstantInitializer(Ctx, IsForRef, Culprit);
3424   case ChooseExprClass:
3425     if (cast<ChooseExpr>(this)->isConditionDependent()) {
3426       if (Culprit)
3427         *Culprit = this;
3428       return false;
3429     }
3430     return cast<ChooseExpr>(this)->getChosenSubExpr()
3431       ->isConstantInitializer(Ctx, IsForRef, Culprit);
3432   case UnaryOperatorClass: {
3433     const UnaryOperator* Exp = cast<UnaryOperator>(this);
3434     if (Exp->getOpcode() == UO_Extension)
3435       return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3436     break;
3437   }
3438   case CXXFunctionalCastExprClass:
3439   case CXXStaticCastExprClass:
3440   case ImplicitCastExprClass:
3441   case CStyleCastExprClass:
3442   case ObjCBridgedCastExprClass:
3443   case CXXDynamicCastExprClass:
3444   case CXXReinterpretCastExprClass:
3445   case CXXAddrspaceCastExprClass:
3446   case CXXConstCastExprClass: {
3447     const CastExpr *CE = cast<CastExpr>(this);
3448 
3449     // Handle misc casts we want to ignore.
3450     if (CE->getCastKind() == CK_NoOp ||
3451         CE->getCastKind() == CK_LValueToRValue ||
3452         CE->getCastKind() == CK_ToUnion ||
3453         CE->getCastKind() == CK_ConstructorConversion ||
3454         CE->getCastKind() == CK_NonAtomicToAtomic ||
3455         CE->getCastKind() == CK_AtomicToNonAtomic ||
3456         CE->getCastKind() == CK_NullToPointer ||
3457         CE->getCastKind() == CK_IntToOCLSampler)
3458       return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3459 
3460     break;
3461   }
3462   case MaterializeTemporaryExprClass:
3463     return cast<MaterializeTemporaryExpr>(this)
3464         ->getSubExpr()
3465         ->isConstantInitializer(Ctx, false, Culprit);
3466 
3467   case SubstNonTypeTemplateParmExprClass:
3468     return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
3469       ->isConstantInitializer(Ctx, false, Culprit);
3470   case CXXDefaultArgExprClass:
3471     return cast<CXXDefaultArgExpr>(this)->getExpr()
3472       ->isConstantInitializer(Ctx, false, Culprit);
3473   case CXXDefaultInitExprClass:
3474     return cast<CXXDefaultInitExpr>(this)->getExpr()
3475       ->isConstantInitializer(Ctx, false, Culprit);
3476   }
3477   // Allow certain forms of UB in constant initializers: signed integer
3478   // overflow and floating-point division by zero. We'll give a warning on
3479   // these, but they're common enough that we have to accept them.
3480   if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior))
3481     return true;
3482   if (Culprit)
3483     *Culprit = this;
3484   return false;
3485 }
3486 
3487 bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const {
3488   unsigned BuiltinID = getBuiltinCallee();
3489   if (BuiltinID != Builtin::BI__assume &&
3490       BuiltinID != Builtin::BI__builtin_assume)
3491     return false;
3492 
3493   const Expr* Arg = getArg(0);
3494   bool ArgVal;
3495   return !Arg->isValueDependent() &&
3496          Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal;
3497 }
3498 
3499 bool CallExpr::isCallToStdMove() const {
3500   return getBuiltinCallee() == Builtin::BImove;
3501 }
3502 
3503 namespace {
3504   /// Look for any side effects within a Stmt.
3505   class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
3506     typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
3507     const bool IncludePossibleEffects;
3508     bool HasSideEffects;
3509 
3510   public:
3511     explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
3512       : Inherited(Context),
3513         IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
3514 
3515     bool hasSideEffects() const { return HasSideEffects; }
3516 
3517     void VisitDecl(const Decl *D) {
3518       if (!D)
3519         return;
3520 
3521       // We assume the caller checks subexpressions (eg, the initializer, VLA
3522       // bounds) for side-effects on our behalf.
3523       if (auto *VD = dyn_cast<VarDecl>(D)) {
3524         // Registering a destructor is a side-effect.
3525         if (IncludePossibleEffects && VD->isThisDeclarationADefinition() &&
3526             VD->needsDestruction(Context))
3527           HasSideEffects = true;
3528       }
3529     }
3530 
3531     void VisitDeclStmt(const DeclStmt *DS) {
3532       for (auto *D : DS->decls())
3533         VisitDecl(D);
3534       Inherited::VisitDeclStmt(DS);
3535     }
3536 
3537     void VisitExpr(const Expr *E) {
3538       if (!HasSideEffects &&
3539           E->HasSideEffects(Context, IncludePossibleEffects))
3540         HasSideEffects = true;
3541     }
3542   };
3543 }
3544 
3545 bool Expr::HasSideEffects(const ASTContext &Ctx,
3546                           bool IncludePossibleEffects) const {
3547   // In circumstances where we care about definite side effects instead of
3548   // potential side effects, we want to ignore expressions that are part of a
3549   // macro expansion as a potential side effect.
3550   if (!IncludePossibleEffects && getExprLoc().isMacroID())
3551     return false;
3552 
3553   switch (getStmtClass()) {
3554   case NoStmtClass:
3555   #define ABSTRACT_STMT(Type)
3556   #define STMT(Type, Base) case Type##Class:
3557   #define EXPR(Type, Base)
3558   #include "clang/AST/StmtNodes.inc"
3559     llvm_unreachable("unexpected Expr kind");
3560 
3561   case DependentScopeDeclRefExprClass:
3562   case CXXUnresolvedConstructExprClass:
3563   case CXXDependentScopeMemberExprClass:
3564   case UnresolvedLookupExprClass:
3565   case UnresolvedMemberExprClass:
3566   case PackExpansionExprClass:
3567   case SubstNonTypeTemplateParmPackExprClass:
3568   case FunctionParmPackExprClass:
3569   case TypoExprClass:
3570   case RecoveryExprClass:
3571   case CXXFoldExprClass:
3572     // Make a conservative assumption for dependent nodes.
3573     return IncludePossibleEffects;
3574 
3575   case DeclRefExprClass:
3576   case ObjCIvarRefExprClass:
3577   case PredefinedExprClass:
3578   case IntegerLiteralClass:
3579   case FixedPointLiteralClass:
3580   case FloatingLiteralClass:
3581   case ImaginaryLiteralClass:
3582   case StringLiteralClass:
3583   case CharacterLiteralClass:
3584   case OffsetOfExprClass:
3585   case ImplicitValueInitExprClass:
3586   case UnaryExprOrTypeTraitExprClass:
3587   case AddrLabelExprClass:
3588   case GNUNullExprClass:
3589   case ArrayInitIndexExprClass:
3590   case NoInitExprClass:
3591   case CXXBoolLiteralExprClass:
3592   case CXXNullPtrLiteralExprClass:
3593   case CXXThisExprClass:
3594   case CXXScalarValueInitExprClass:
3595   case TypeTraitExprClass:
3596   case ArrayTypeTraitExprClass:
3597   case ExpressionTraitExprClass:
3598   case CXXNoexceptExprClass:
3599   case SizeOfPackExprClass:
3600   case ObjCStringLiteralClass:
3601   case ObjCEncodeExprClass:
3602   case ObjCBoolLiteralExprClass:
3603   case ObjCAvailabilityCheckExprClass:
3604   case CXXUuidofExprClass:
3605   case OpaqueValueExprClass:
3606   case SourceLocExprClass:
3607   case ConceptSpecializationExprClass:
3608   case RequiresExprClass:
3609   case SYCLUniqueStableNameExprClass:
3610     // These never have a side-effect.
3611     return false;
3612 
3613   case ConstantExprClass:
3614     // FIXME: Move this into the "return false;" block above.
3615     return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects(
3616         Ctx, IncludePossibleEffects);
3617 
3618   case CallExprClass:
3619   case CXXOperatorCallExprClass:
3620   case CXXMemberCallExprClass:
3621   case CUDAKernelCallExprClass:
3622   case UserDefinedLiteralClass: {
3623     // We don't know a call definitely has side effects, except for calls
3624     // to pure/const functions that definitely don't.
3625     // If the call itself is considered side-effect free, check the operands.
3626     const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
3627     bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
3628     if (IsPure || !IncludePossibleEffects)
3629       break;
3630     return true;
3631   }
3632 
3633   case BlockExprClass:
3634   case CXXBindTemporaryExprClass:
3635     if (!IncludePossibleEffects)
3636       break;
3637     return true;
3638 
3639   case MSPropertyRefExprClass:
3640   case MSPropertySubscriptExprClass:
3641   case CompoundAssignOperatorClass:
3642   case VAArgExprClass:
3643   case AtomicExprClass:
3644   case CXXThrowExprClass:
3645   case CXXNewExprClass:
3646   case CXXDeleteExprClass:
3647   case CoawaitExprClass:
3648   case DependentCoawaitExprClass:
3649   case CoyieldExprClass:
3650     // These always have a side-effect.
3651     return true;
3652 
3653   case StmtExprClass: {
3654     // StmtExprs have a side-effect if any substatement does.
3655     SideEffectFinder Finder(Ctx, IncludePossibleEffects);
3656     Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
3657     return Finder.hasSideEffects();
3658   }
3659 
3660   case ExprWithCleanupsClass:
3661     if (IncludePossibleEffects)
3662       if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
3663         return true;
3664     break;
3665 
3666   case ParenExprClass:
3667   case ArraySubscriptExprClass:
3668   case MatrixSubscriptExprClass:
3669   case OMPArraySectionExprClass:
3670   case OMPArrayShapingExprClass:
3671   case OMPIteratorExprClass:
3672   case MemberExprClass:
3673   case ConditionalOperatorClass:
3674   case BinaryConditionalOperatorClass:
3675   case CompoundLiteralExprClass:
3676   case ExtVectorElementExprClass:
3677   case DesignatedInitExprClass:
3678   case DesignatedInitUpdateExprClass:
3679   case ArrayInitLoopExprClass:
3680   case ParenListExprClass:
3681   case CXXPseudoDestructorExprClass:
3682   case CXXRewrittenBinaryOperatorClass:
3683   case CXXStdInitializerListExprClass:
3684   case SubstNonTypeTemplateParmExprClass:
3685   case MaterializeTemporaryExprClass:
3686   case ShuffleVectorExprClass:
3687   case ConvertVectorExprClass:
3688   case AsTypeExprClass:
3689   case CXXParenListInitExprClass:
3690     // These have a side-effect if any subexpression does.
3691     break;
3692 
3693   case UnaryOperatorClass:
3694     if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
3695       return true;
3696     break;
3697 
3698   case BinaryOperatorClass:
3699     if (cast<BinaryOperator>(this)->isAssignmentOp())
3700       return true;
3701     break;
3702 
3703   case InitListExprClass:
3704     // FIXME: The children for an InitListExpr doesn't include the array filler.
3705     if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
3706       if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3707         return true;
3708     break;
3709 
3710   case GenericSelectionExprClass:
3711     return cast<GenericSelectionExpr>(this)->getResultExpr()->
3712         HasSideEffects(Ctx, IncludePossibleEffects);
3713 
3714   case ChooseExprClass:
3715     return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
3716         Ctx, IncludePossibleEffects);
3717 
3718   case CXXDefaultArgExprClass:
3719     return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
3720         Ctx, IncludePossibleEffects);
3721 
3722   case CXXDefaultInitExprClass: {
3723     const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
3724     if (const Expr *E = FD->getInClassInitializer())
3725       return E->HasSideEffects(Ctx, IncludePossibleEffects);
3726     // If we've not yet parsed the initializer, assume it has side-effects.
3727     return true;
3728   }
3729 
3730   case CXXDynamicCastExprClass: {
3731     // A dynamic_cast expression has side-effects if it can throw.
3732     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
3733     if (DCE->getTypeAsWritten()->isReferenceType() &&
3734         DCE->getCastKind() == CK_Dynamic)
3735       return true;
3736     }
3737     [[fallthrough]];
3738   case ImplicitCastExprClass:
3739   case CStyleCastExprClass:
3740   case CXXStaticCastExprClass:
3741   case CXXReinterpretCastExprClass:
3742   case CXXConstCastExprClass:
3743   case CXXAddrspaceCastExprClass:
3744   case CXXFunctionalCastExprClass:
3745   case BuiltinBitCastExprClass: {
3746     // While volatile reads are side-effecting in both C and C++, we treat them
3747     // as having possible (not definite) side-effects. This allows idiomatic
3748     // code to behave without warning, such as sizeof(*v) for a volatile-
3749     // qualified pointer.
3750     if (!IncludePossibleEffects)
3751       break;
3752 
3753     const CastExpr *CE = cast<CastExpr>(this);
3754     if (CE->getCastKind() == CK_LValueToRValue &&
3755         CE->getSubExpr()->getType().isVolatileQualified())
3756       return true;
3757     break;
3758   }
3759 
3760   case CXXTypeidExprClass:
3761     // typeid might throw if its subexpression is potentially-evaluated, so has
3762     // side-effects in that case whether or not its subexpression does.
3763     return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
3764 
3765   case CXXConstructExprClass:
3766   case CXXTemporaryObjectExprClass: {
3767     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3768     if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
3769       return true;
3770     // A trivial constructor does not add any side-effects of its own. Just look
3771     // at its arguments.
3772     break;
3773   }
3774 
3775   case CXXInheritedCtorInitExprClass: {
3776     const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
3777     if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
3778       return true;
3779     break;
3780   }
3781 
3782   case LambdaExprClass: {
3783     const LambdaExpr *LE = cast<LambdaExpr>(this);
3784     for (Expr *E : LE->capture_inits())
3785       if (E && E->HasSideEffects(Ctx, IncludePossibleEffects))
3786         return true;
3787     return false;
3788   }
3789 
3790   case PseudoObjectExprClass: {
3791     // Only look for side-effects in the semantic form, and look past
3792     // OpaqueValueExpr bindings in that form.
3793     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3794     for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
3795                                                     E = PO->semantics_end();
3796          I != E; ++I) {
3797       const Expr *Subexpr = *I;
3798       if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3799         Subexpr = OVE->getSourceExpr();
3800       if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
3801         return true;
3802     }
3803     return false;
3804   }
3805 
3806   case ObjCBoxedExprClass:
3807   case ObjCArrayLiteralClass:
3808   case ObjCDictionaryLiteralClass:
3809   case ObjCSelectorExprClass:
3810   case ObjCProtocolExprClass:
3811   case ObjCIsaExprClass:
3812   case ObjCIndirectCopyRestoreExprClass:
3813   case ObjCSubscriptRefExprClass:
3814   case ObjCBridgedCastExprClass:
3815   case ObjCMessageExprClass:
3816   case ObjCPropertyRefExprClass:
3817   // FIXME: Classify these cases better.
3818     if (IncludePossibleEffects)
3819       return true;
3820     break;
3821   }
3822 
3823   // Recurse to children.
3824   for (const Stmt *SubStmt : children())
3825     if (SubStmt &&
3826         cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
3827       return true;
3828 
3829   return false;
3830 }
3831 
3832 FPOptions Expr::getFPFeaturesInEffect(const LangOptions &LO) const {
3833   if (auto Call = dyn_cast<CallExpr>(this))
3834     return Call->getFPFeaturesInEffect(LO);
3835   if (auto UO = dyn_cast<UnaryOperator>(this))
3836     return UO->getFPFeaturesInEffect(LO);
3837   if (auto BO = dyn_cast<BinaryOperator>(this))
3838     return BO->getFPFeaturesInEffect(LO);
3839   if (auto Cast = dyn_cast<CastExpr>(this))
3840     return Cast->getFPFeaturesInEffect(LO);
3841   return FPOptions::defaultWithoutTrailingStorage(LO);
3842 }
3843 
3844 namespace {
3845   /// Look for a call to a non-trivial function within an expression.
3846   class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
3847   {
3848     typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
3849 
3850     bool NonTrivial;
3851 
3852   public:
3853     explicit NonTrivialCallFinder(const ASTContext &Context)
3854       : Inherited(Context), NonTrivial(false) { }
3855 
3856     bool hasNonTrivialCall() const { return NonTrivial; }
3857 
3858     void VisitCallExpr(const CallExpr *E) {
3859       if (const CXXMethodDecl *Method
3860           = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
3861         if (Method->isTrivial()) {
3862           // Recurse to children of the call.
3863           Inherited::VisitStmt(E);
3864           return;
3865         }
3866       }
3867 
3868       NonTrivial = true;
3869     }
3870 
3871     void VisitCXXConstructExpr(const CXXConstructExpr *E) {
3872       if (E->getConstructor()->isTrivial()) {
3873         // Recurse to children of the call.
3874         Inherited::VisitStmt(E);
3875         return;
3876       }
3877 
3878       NonTrivial = true;
3879     }
3880 
3881     void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
3882       if (E->getTemporary()->getDestructor()->isTrivial()) {
3883         Inherited::VisitStmt(E);
3884         return;
3885       }
3886 
3887       NonTrivial = true;
3888     }
3889   };
3890 }
3891 
3892 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
3893   NonTrivialCallFinder Finder(Ctx);
3894   Finder.Visit(this);
3895   return Finder.hasNonTrivialCall();
3896 }
3897 
3898 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3899 /// pointer constant or not, as well as the specific kind of constant detected.
3900 /// Null pointer constants can be integer constant expressions with the
3901 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
3902 /// (a GNU extension).
3903 Expr::NullPointerConstantKind
3904 Expr::isNullPointerConstant(ASTContext &Ctx,
3905                             NullPointerConstantValueDependence NPC) const {
3906   if (isValueDependent() &&
3907       (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
3908     // Error-dependent expr should never be a null pointer.
3909     if (containsErrors())
3910       return NPCK_NotNull;
3911     switch (NPC) {
3912     case NPC_NeverValueDependent:
3913       llvm_unreachable("Unexpected value dependent expression!");
3914     case NPC_ValueDependentIsNull:
3915       if (isTypeDependent() || getType()->isIntegralType(Ctx))
3916         return NPCK_ZeroExpression;
3917       else
3918         return NPCK_NotNull;
3919 
3920     case NPC_ValueDependentIsNotNull:
3921       return NPCK_NotNull;
3922     }
3923   }
3924 
3925   // Strip off a cast to void*, if it exists. Except in C++.
3926   if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3927     if (!Ctx.getLangOpts().CPlusPlus) {
3928       // Check that it is a cast to void*.
3929       if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3930         QualType Pointee = PT->getPointeeType();
3931         Qualifiers Qs = Pointee.getQualifiers();
3932         // Only (void*)0 or equivalent are treated as nullptr. If pointee type
3933         // has non-default address space it is not treated as nullptr.
3934         // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
3935         // since it cannot be assigned to a pointer to constant address space.
3936         if (Ctx.getLangOpts().OpenCL &&
3937             Pointee.getAddressSpace() == Ctx.getDefaultOpenCLPointeeAddrSpace())
3938           Qs.removeAddressSpace();
3939 
3940         if (Pointee->isVoidType() && Qs.empty() && // to void*
3941             CE->getSubExpr()->getType()->isIntegerType()) // from int
3942           return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3943       }
3944     }
3945   } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3946     // Ignore the ImplicitCastExpr type entirely.
3947     return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3948   } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3949     // Accept ((void*)0) as a null pointer constant, as many other
3950     // implementations do.
3951     return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3952   } else if (const GenericSelectionExpr *GE =
3953                dyn_cast<GenericSelectionExpr>(this)) {
3954     if (GE->isResultDependent())
3955       return NPCK_NotNull;
3956     return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3957   } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
3958     if (CE->isConditionDependent())
3959       return NPCK_NotNull;
3960     return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3961   } else if (const CXXDefaultArgExpr *DefaultArg
3962                = dyn_cast<CXXDefaultArgExpr>(this)) {
3963     // See through default argument expressions.
3964     return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3965   } else if (const CXXDefaultInitExpr *DefaultInit
3966                = dyn_cast<CXXDefaultInitExpr>(this)) {
3967     // See through default initializer expressions.
3968     return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3969   } else if (isa<GNUNullExpr>(this)) {
3970     // The GNU __null extension is always a null pointer constant.
3971     return NPCK_GNUNull;
3972   } else if (const MaterializeTemporaryExpr *M
3973                                    = dyn_cast<MaterializeTemporaryExpr>(this)) {
3974     return M->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3975   } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3976     if (const Expr *Source = OVE->getSourceExpr())
3977       return Source->isNullPointerConstant(Ctx, NPC);
3978   }
3979 
3980   // If the expression has no type information, it cannot be a null pointer
3981   // constant.
3982   if (getType().isNull())
3983     return NPCK_NotNull;
3984 
3985   // C++11/C2x nullptr_t is always a null pointer constant.
3986   if (getType()->isNullPtrType())
3987     return NPCK_CXX11_nullptr;
3988 
3989   if (const RecordType *UT = getType()->getAsUnionType())
3990     if (!Ctx.getLangOpts().CPlusPlus11 &&
3991         UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3992       if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3993         const Expr *InitExpr = CLE->getInitializer();
3994         if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3995           return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3996       }
3997   // This expression must be an integer type.
3998   if (!getType()->isIntegerType() ||
3999       (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
4000     return NPCK_NotNull;
4001 
4002   if (Ctx.getLangOpts().CPlusPlus11) {
4003     // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
4004     // value zero or a prvalue of type std::nullptr_t.
4005     // Microsoft mode permits C++98 rules reflecting MSVC behavior.
4006     const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
4007     if (Lit && !Lit->getValue())
4008       return NPCK_ZeroLiteral;
4009     if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
4010       return NPCK_NotNull;
4011   } else {
4012     // If we have an integer constant expression, we need to *evaluate* it and
4013     // test for the value 0.
4014     if (!isIntegerConstantExpr(Ctx))
4015       return NPCK_NotNull;
4016   }
4017 
4018   if (EvaluateKnownConstInt(Ctx) != 0)
4019     return NPCK_NotNull;
4020 
4021   if (isa<IntegerLiteral>(this))
4022     return NPCK_ZeroLiteral;
4023   return NPCK_ZeroExpression;
4024 }
4025 
4026 /// If this expression is an l-value for an Objective C
4027 /// property, find the underlying property reference expression.
4028 const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
4029   const Expr *E = this;
4030   while (true) {
4031     assert((E->isLValue() && E->getObjectKind() == OK_ObjCProperty) &&
4032            "expression is not a property reference");
4033     E = E->IgnoreParenCasts();
4034     if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4035       if (BO->getOpcode() == BO_Comma) {
4036         E = BO->getRHS();
4037         continue;
4038       }
4039     }
4040 
4041     break;
4042   }
4043 
4044   return cast<ObjCPropertyRefExpr>(E);
4045 }
4046 
4047 bool Expr::isObjCSelfExpr() const {
4048   const Expr *E = IgnoreParenImpCasts();
4049 
4050   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
4051   if (!DRE)
4052     return false;
4053 
4054   const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
4055   if (!Param)
4056     return false;
4057 
4058   const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
4059   if (!M)
4060     return false;
4061 
4062   return M->getSelfDecl() == Param;
4063 }
4064 
4065 FieldDecl *Expr::getSourceBitField() {
4066   Expr *E = this->IgnoreParens();
4067 
4068   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4069     if (ICE->getCastKind() == CK_LValueToRValue ||
4070         (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp))
4071       E = ICE->getSubExpr()->IgnoreParens();
4072     else
4073       break;
4074   }
4075 
4076   if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
4077     if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
4078       if (Field->isBitField())
4079         return Field;
4080 
4081   if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
4082     FieldDecl *Ivar = IvarRef->getDecl();
4083     if (Ivar->isBitField())
4084       return Ivar;
4085   }
4086 
4087   if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) {
4088     if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
4089       if (Field->isBitField())
4090         return Field;
4091 
4092     if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl()))
4093       if (Expr *E = BD->getBinding())
4094         return E->getSourceBitField();
4095   }
4096 
4097   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
4098     if (BinOp->isAssignmentOp() && BinOp->getLHS())
4099       return BinOp->getLHS()->getSourceBitField();
4100 
4101     if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
4102       return BinOp->getRHS()->getSourceBitField();
4103   }
4104 
4105   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
4106     if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
4107       return UnOp->getSubExpr()->getSourceBitField();
4108 
4109   return nullptr;
4110 }
4111 
4112 bool Expr::refersToVectorElement() const {
4113   // FIXME: Why do we not just look at the ObjectKind here?
4114   const Expr *E = this->IgnoreParens();
4115 
4116   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4117     if (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp)
4118       E = ICE->getSubExpr()->IgnoreParens();
4119     else
4120       break;
4121   }
4122 
4123   if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
4124     return ASE->getBase()->getType()->isVectorType();
4125 
4126   if (isa<ExtVectorElementExpr>(E))
4127     return true;
4128 
4129   if (auto *DRE = dyn_cast<DeclRefExpr>(E))
4130     if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl()))
4131       if (auto *E = BD->getBinding())
4132         return E->refersToVectorElement();
4133 
4134   return false;
4135 }
4136 
4137 bool Expr::refersToGlobalRegisterVar() const {
4138   const Expr *E = this->IgnoreParenImpCasts();
4139 
4140   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
4141     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
4142       if (VD->getStorageClass() == SC_Register &&
4143           VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
4144         return true;
4145 
4146   return false;
4147 }
4148 
4149 bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) {
4150   E1 = E1->IgnoreParens();
4151   E2 = E2->IgnoreParens();
4152 
4153   if (E1->getStmtClass() != E2->getStmtClass())
4154     return false;
4155 
4156   switch (E1->getStmtClass()) {
4157     default:
4158       return false;
4159     case CXXThisExprClass:
4160       return true;
4161     case DeclRefExprClass: {
4162       // DeclRefExpr without an ImplicitCastExpr can happen for integral
4163       // template parameters.
4164       const auto *DRE1 = cast<DeclRefExpr>(E1);
4165       const auto *DRE2 = cast<DeclRefExpr>(E2);
4166       return DRE1->isPRValue() && DRE2->isPRValue() &&
4167              DRE1->getDecl() == DRE2->getDecl();
4168     }
4169     case ImplicitCastExprClass: {
4170       // Peel off implicit casts.
4171       while (true) {
4172         const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1);
4173         const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2);
4174         if (!ICE1 || !ICE2)
4175           return false;
4176         if (ICE1->getCastKind() != ICE2->getCastKind())
4177           return false;
4178         E1 = ICE1->getSubExpr()->IgnoreParens();
4179         E2 = ICE2->getSubExpr()->IgnoreParens();
4180         // The final cast must be one of these types.
4181         if (ICE1->getCastKind() == CK_LValueToRValue ||
4182             ICE1->getCastKind() == CK_ArrayToPointerDecay ||
4183             ICE1->getCastKind() == CK_FunctionToPointerDecay) {
4184           break;
4185         }
4186       }
4187 
4188       const auto *DRE1 = dyn_cast<DeclRefExpr>(E1);
4189       const auto *DRE2 = dyn_cast<DeclRefExpr>(E2);
4190       if (DRE1 && DRE2)
4191         return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl());
4192 
4193       const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1);
4194       const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2);
4195       if (Ivar1 && Ivar2) {
4196         return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() &&
4197                declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl());
4198       }
4199 
4200       const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1);
4201       const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2);
4202       if (Array1 && Array2) {
4203         if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase()))
4204           return false;
4205 
4206         auto Idx1 = Array1->getIdx();
4207         auto Idx2 = Array2->getIdx();
4208         const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1);
4209         const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2);
4210         if (Integer1 && Integer2) {
4211           if (!llvm::APInt::isSameValue(Integer1->getValue(),
4212                                         Integer2->getValue()))
4213             return false;
4214         } else {
4215           if (!isSameComparisonOperand(Idx1, Idx2))
4216             return false;
4217         }
4218 
4219         return true;
4220       }
4221 
4222       // Walk the MemberExpr chain.
4223       while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) {
4224         const auto *ME1 = cast<MemberExpr>(E1);
4225         const auto *ME2 = cast<MemberExpr>(E2);
4226         if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl()))
4227           return false;
4228         if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl()))
4229           if (D->isStaticDataMember())
4230             return true;
4231         E1 = ME1->getBase()->IgnoreParenImpCasts();
4232         E2 = ME2->getBase()->IgnoreParenImpCasts();
4233       }
4234 
4235       if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2))
4236         return true;
4237 
4238       // A static member variable can end the MemberExpr chain with either
4239       // a MemberExpr or a DeclRefExpr.
4240       auto getAnyDecl = [](const Expr *E) -> const ValueDecl * {
4241         if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
4242           return DRE->getDecl();
4243         if (const auto *ME = dyn_cast<MemberExpr>(E))
4244           return ME->getMemberDecl();
4245         return nullptr;
4246       };
4247 
4248       const ValueDecl *VD1 = getAnyDecl(E1);
4249       const ValueDecl *VD2 = getAnyDecl(E2);
4250       return declaresSameEntity(VD1, VD2);
4251     }
4252   }
4253 }
4254 
4255 /// isArrow - Return true if the base expression is a pointer to vector,
4256 /// return false if the base expression is a vector.
4257 bool ExtVectorElementExpr::isArrow() const {
4258   return getBase()->getType()->isPointerType();
4259 }
4260 
4261 unsigned ExtVectorElementExpr::getNumElements() const {
4262   if (const VectorType *VT = getType()->getAs<VectorType>())
4263     return VT->getNumElements();
4264   return 1;
4265 }
4266 
4267 /// containsDuplicateElements - Return true if any element access is repeated.
4268 bool ExtVectorElementExpr::containsDuplicateElements() const {
4269   // FIXME: Refactor this code to an accessor on the AST node which returns the
4270   // "type" of component access, and share with code below and in Sema.
4271   StringRef Comp = Accessor->getName();
4272 
4273   // Halving swizzles do not contain duplicate elements.
4274   if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
4275     return false;
4276 
4277   // Advance past s-char prefix on hex swizzles.
4278   if (Comp[0] == 's' || Comp[0] == 'S')
4279     Comp = Comp.substr(1);
4280 
4281   for (unsigned i = 0, e = Comp.size(); i != e; ++i)
4282     if (Comp.substr(i + 1).contains(Comp[i]))
4283         return true;
4284 
4285   return false;
4286 }
4287 
4288 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
4289 void ExtVectorElementExpr::getEncodedElementAccess(
4290     SmallVectorImpl<uint32_t> &Elts) const {
4291   StringRef Comp = Accessor->getName();
4292   bool isNumericAccessor = false;
4293   if (Comp[0] == 's' || Comp[0] == 'S') {
4294     Comp = Comp.substr(1);
4295     isNumericAccessor = true;
4296   }
4297 
4298   bool isHi =   Comp == "hi";
4299   bool isLo =   Comp == "lo";
4300   bool isEven = Comp == "even";
4301   bool isOdd  = Comp == "odd";
4302 
4303   for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
4304     uint64_t Index;
4305 
4306     if (isHi)
4307       Index = e + i;
4308     else if (isLo)
4309       Index = i;
4310     else if (isEven)
4311       Index = 2 * i;
4312     else if (isOdd)
4313       Index = 2 * i + 1;
4314     else
4315       Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor);
4316 
4317     Elts.push_back(Index);
4318   }
4319 }
4320 
4321 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr *> args,
4322                                      QualType Type, SourceLocation BLoc,
4323                                      SourceLocation RP)
4324     : Expr(ShuffleVectorExprClass, Type, VK_PRValue, OK_Ordinary),
4325       BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) {
4326   SubExprs = new (C) Stmt*[args.size()];
4327   for (unsigned i = 0; i != args.size(); i++)
4328     SubExprs[i] = args[i];
4329 
4330   setDependence(computeDependence(this));
4331 }
4332 
4333 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
4334   if (SubExprs) C.Deallocate(SubExprs);
4335 
4336   this->NumExprs = Exprs.size();
4337   SubExprs = new (C) Stmt*[NumExprs];
4338   memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
4339 }
4340 
4341 GenericSelectionExpr::GenericSelectionExpr(
4342     const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr,
4343     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4344     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4345     bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
4346     : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
4347            AssocExprs[ResultIndex]->getValueKind(),
4348            AssocExprs[ResultIndex]->getObjectKind()),
4349       NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
4350       IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4351   assert(AssocTypes.size() == AssocExprs.size() &&
4352          "Must have the same number of association expressions"
4353          " and TypeSourceInfo!");
4354   assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
4355 
4356   GenericSelectionExprBits.GenericLoc = GenericLoc;
4357   getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] =
4358       ControllingExpr;
4359   std::copy(AssocExprs.begin(), AssocExprs.end(),
4360             getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4361   std::copy(AssocTypes.begin(), AssocTypes.end(),
4362             getTrailingObjects<TypeSourceInfo *>() +
4363                 getIndexOfStartOfAssociatedTypes());
4364 
4365   setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4366 }
4367 
4368 GenericSelectionExpr::GenericSelectionExpr(
4369     const ASTContext &, SourceLocation GenericLoc,
4370     TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4371     ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4372     SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack,
4373     unsigned ResultIndex)
4374     : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
4375            AssocExprs[ResultIndex]->getValueKind(),
4376            AssocExprs[ResultIndex]->getObjectKind()),
4377       NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
4378       IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4379   assert(AssocTypes.size() == AssocExprs.size() &&
4380          "Must have the same number of association expressions"
4381          " and TypeSourceInfo!");
4382   assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
4383 
4384   GenericSelectionExprBits.GenericLoc = GenericLoc;
4385   getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] =
4386       ControllingType;
4387   std::copy(AssocExprs.begin(), AssocExprs.end(),
4388             getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4389   std::copy(AssocTypes.begin(), AssocTypes.end(),
4390             getTrailingObjects<TypeSourceInfo *>() +
4391                 getIndexOfStartOfAssociatedTypes());
4392 
4393   setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4394 }
4395 
4396 GenericSelectionExpr::GenericSelectionExpr(
4397     const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4398     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4399     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4400     bool ContainsUnexpandedParameterPack)
4401     : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue,
4402            OK_Ordinary),
4403       NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
4404       IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4405   assert(AssocTypes.size() == AssocExprs.size() &&
4406          "Must have the same number of association expressions"
4407          " and TypeSourceInfo!");
4408 
4409   GenericSelectionExprBits.GenericLoc = GenericLoc;
4410   getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] =
4411       ControllingExpr;
4412   std::copy(AssocExprs.begin(), AssocExprs.end(),
4413             getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4414   std::copy(AssocTypes.begin(), AssocTypes.end(),
4415             getTrailingObjects<TypeSourceInfo *>() +
4416                 getIndexOfStartOfAssociatedTypes());
4417 
4418   setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4419 }
4420 
4421 GenericSelectionExpr::GenericSelectionExpr(
4422     const ASTContext &Context, SourceLocation GenericLoc,
4423     TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4424     ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4425     SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack)
4426     : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue,
4427            OK_Ordinary),
4428       NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
4429       IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4430   assert(AssocTypes.size() == AssocExprs.size() &&
4431          "Must have the same number of association expressions"
4432          " and TypeSourceInfo!");
4433 
4434   GenericSelectionExprBits.GenericLoc = GenericLoc;
4435   getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] =
4436       ControllingType;
4437   std::copy(AssocExprs.begin(), AssocExprs.end(),
4438             getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4439   std::copy(AssocTypes.begin(), AssocTypes.end(),
4440             getTrailingObjects<TypeSourceInfo *>() +
4441                 getIndexOfStartOfAssociatedTypes());
4442 
4443   setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4444 }
4445 
4446 GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs)
4447     : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {}
4448 
4449 GenericSelectionExpr *GenericSelectionExpr::Create(
4450     const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4451     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4452     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4453     bool ContainsUnexpandedParameterPack, unsigned ResultIndex) {
4454   unsigned NumAssocs = AssocExprs.size();
4455   void *Mem = Context.Allocate(
4456       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4457       alignof(GenericSelectionExpr));
4458   return new (Mem) GenericSelectionExpr(
4459       Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4460       RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
4461 }
4462 
4463 GenericSelectionExpr *GenericSelectionExpr::Create(
4464     const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4465     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4466     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4467     bool ContainsUnexpandedParameterPack) {
4468   unsigned NumAssocs = AssocExprs.size();
4469   void *Mem = Context.Allocate(
4470       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4471       alignof(GenericSelectionExpr));
4472   return new (Mem) GenericSelectionExpr(
4473       Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4474       RParenLoc, ContainsUnexpandedParameterPack);
4475 }
4476 
4477 GenericSelectionExpr *GenericSelectionExpr::Create(
4478     const ASTContext &Context, SourceLocation GenericLoc,
4479     TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4480     ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4481     SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack,
4482     unsigned ResultIndex) {
4483   unsigned NumAssocs = AssocExprs.size();
4484   void *Mem = Context.Allocate(
4485       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4486       alignof(GenericSelectionExpr));
4487   return new (Mem) GenericSelectionExpr(
4488       Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc,
4489       RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
4490 }
4491 
4492 GenericSelectionExpr *GenericSelectionExpr::Create(
4493     const ASTContext &Context, SourceLocation GenericLoc,
4494     TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4495     ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4496     SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack) {
4497   unsigned NumAssocs = AssocExprs.size();
4498   void *Mem = Context.Allocate(
4499       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4500       alignof(GenericSelectionExpr));
4501   return new (Mem) GenericSelectionExpr(
4502       Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc,
4503       RParenLoc, ContainsUnexpandedParameterPack);
4504 }
4505 
4506 GenericSelectionExpr *
4507 GenericSelectionExpr::CreateEmpty(const ASTContext &Context,
4508                                   unsigned NumAssocs) {
4509   void *Mem = Context.Allocate(
4510       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4511       alignof(GenericSelectionExpr));
4512   return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs);
4513 }
4514 
4515 //===----------------------------------------------------------------------===//
4516 //  DesignatedInitExpr
4517 //===----------------------------------------------------------------------===//
4518 
4519 const IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
4520   assert(isFieldDesignator() && "Only valid on a field designator");
4521   if (FieldInfo.NameOrField & 0x01)
4522     return reinterpret_cast<IdentifierInfo *>(FieldInfo.NameOrField & ~0x01);
4523   return getFieldDecl()->getIdentifier();
4524 }
4525 
4526 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
4527                                        llvm::ArrayRef<Designator> Designators,
4528                                        SourceLocation EqualOrColonLoc,
4529                                        bool GNUSyntax,
4530                                        ArrayRef<Expr *> IndexExprs, Expr *Init)
4531     : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(),
4532            Init->getObjectKind()),
4533       EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
4534       NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
4535   this->Designators = new (C) Designator[NumDesignators];
4536 
4537   // Record the initializer itself.
4538   child_iterator Child = child_begin();
4539   *Child++ = Init;
4540 
4541   // Copy the designators and their subexpressions, computing
4542   // value-dependence along the way.
4543   unsigned IndexIdx = 0;
4544   for (unsigned I = 0; I != NumDesignators; ++I) {
4545     this->Designators[I] = Designators[I];
4546     if (this->Designators[I].isArrayDesignator()) {
4547       // Copy the index expressions into permanent storage.
4548       *Child++ = IndexExprs[IndexIdx++];
4549     } else if (this->Designators[I].isArrayRangeDesignator()) {
4550       // Copy the start/end expressions into permanent storage.
4551       *Child++ = IndexExprs[IndexIdx++];
4552       *Child++ = IndexExprs[IndexIdx++];
4553     }
4554   }
4555 
4556   assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
4557   setDependence(computeDependence(this));
4558 }
4559 
4560 DesignatedInitExpr *
4561 DesignatedInitExpr::Create(const ASTContext &C,
4562                            llvm::ArrayRef<Designator> Designators,
4563                            ArrayRef<Expr*> IndexExprs,
4564                            SourceLocation ColonOrEqualLoc,
4565                            bool UsesColonSyntax, Expr *Init) {
4566   void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
4567                          alignof(DesignatedInitExpr));
4568   return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
4569                                       ColonOrEqualLoc, UsesColonSyntax,
4570                                       IndexExprs, Init);
4571 }
4572 
4573 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
4574                                                     unsigned NumIndexExprs) {
4575   void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
4576                          alignof(DesignatedInitExpr));
4577   return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
4578 }
4579 
4580 void DesignatedInitExpr::setDesignators(const ASTContext &C,
4581                                         const Designator *Desigs,
4582                                         unsigned NumDesigs) {
4583   Designators = new (C) Designator[NumDesigs];
4584   NumDesignators = NumDesigs;
4585   for (unsigned I = 0; I != NumDesigs; ++I)
4586     Designators[I] = Desigs[I];
4587 }
4588 
4589 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
4590   DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
4591   if (size() == 1)
4592     return DIE->getDesignator(0)->getSourceRange();
4593   return SourceRange(DIE->getDesignator(0)->getBeginLoc(),
4594                      DIE->getDesignator(size() - 1)->getEndLoc());
4595 }
4596 
4597 SourceLocation DesignatedInitExpr::getBeginLoc() const {
4598   auto *DIE = const_cast<DesignatedInitExpr *>(this);
4599   Designator &First = *DIE->getDesignator(0);
4600   if (First.isFieldDesignator())
4601     return GNUSyntax ? First.getFieldLoc() : First.getDotLoc();
4602   return First.getLBracketLoc();
4603 }
4604 
4605 SourceLocation DesignatedInitExpr::getEndLoc() const {
4606   return getInit()->getEndLoc();
4607 }
4608 
4609 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
4610   assert(D.isArrayDesignator() && "Requires array designator");
4611   return getSubExpr(D.getArrayIndex() + 1);
4612 }
4613 
4614 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
4615   assert(D.isArrayRangeDesignator() && "Requires array range designator");
4616   return getSubExpr(D.getArrayIndex() + 1);
4617 }
4618 
4619 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
4620   assert(D.isArrayRangeDesignator() && "Requires array range designator");
4621   return getSubExpr(D.getArrayIndex() + 2);
4622 }
4623 
4624 /// Replaces the designator at index @p Idx with the series
4625 /// of designators in [First, Last).
4626 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
4627                                           const Designator *First,
4628                                           const Designator *Last) {
4629   unsigned NumNewDesignators = Last - First;
4630   if (NumNewDesignators == 0) {
4631     std::copy_backward(Designators + Idx + 1,
4632                        Designators + NumDesignators,
4633                        Designators + Idx);
4634     --NumNewDesignators;
4635     return;
4636   }
4637   if (NumNewDesignators == 1) {
4638     Designators[Idx] = *First;
4639     return;
4640   }
4641 
4642   Designator *NewDesignators
4643     = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
4644   std::copy(Designators, Designators + Idx, NewDesignators);
4645   std::copy(First, Last, NewDesignators + Idx);
4646   std::copy(Designators + Idx + 1, Designators + NumDesignators,
4647             NewDesignators + Idx + NumNewDesignators);
4648   Designators = NewDesignators;
4649   NumDesignators = NumDesignators - 1 + NumNewDesignators;
4650 }
4651 
4652 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
4653                                                    SourceLocation lBraceLoc,
4654                                                    Expr *baseExpr,
4655                                                    SourceLocation rBraceLoc)
4656     : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_PRValue,
4657            OK_Ordinary) {
4658   BaseAndUpdaterExprs[0] = baseExpr;
4659 
4660   InitListExpr *ILE =
4661       new (C) InitListExpr(C, lBraceLoc, std::nullopt, rBraceLoc);
4662   ILE->setType(baseExpr->getType());
4663   BaseAndUpdaterExprs[1] = ILE;
4664 
4665   // FIXME: this is wrong, set it correctly.
4666   setDependence(ExprDependence::None);
4667 }
4668 
4669 SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const {
4670   return getBase()->getBeginLoc();
4671 }
4672 
4673 SourceLocation DesignatedInitUpdateExpr::getEndLoc() const {
4674   return getBase()->getEndLoc();
4675 }
4676 
4677 ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
4678                              SourceLocation RParenLoc)
4679     : Expr(ParenListExprClass, QualType(), VK_PRValue, OK_Ordinary),
4680       LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
4681   ParenListExprBits.NumExprs = Exprs.size();
4682 
4683   for (unsigned I = 0, N = Exprs.size(); I != N; ++I)
4684     getTrailingObjects<Stmt *>()[I] = Exprs[I];
4685   setDependence(computeDependence(this));
4686 }
4687 
4688 ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs)
4689     : Expr(ParenListExprClass, Empty) {
4690   ParenListExprBits.NumExprs = NumExprs;
4691 }
4692 
4693 ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx,
4694                                      SourceLocation LParenLoc,
4695                                      ArrayRef<Expr *> Exprs,
4696                                      SourceLocation RParenLoc) {
4697   void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()),
4698                            alignof(ParenListExpr));
4699   return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc);
4700 }
4701 
4702 ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx,
4703                                           unsigned NumExprs) {
4704   void *Mem =
4705       Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr));
4706   return new (Mem) ParenListExpr(EmptyShell(), NumExprs);
4707 }
4708 
4709 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
4710                                Opcode opc, QualType ResTy, ExprValueKind VK,
4711                                ExprObjectKind OK, SourceLocation opLoc,
4712                                FPOptionsOverride FPFeatures)
4713     : Expr(BinaryOperatorClass, ResTy, VK, OK) {
4714   BinaryOperatorBits.Opc = opc;
4715   assert(!isCompoundAssignmentOp() &&
4716          "Use CompoundAssignOperator for compound assignments");
4717   BinaryOperatorBits.OpLoc = opLoc;
4718   SubExprs[LHS] = lhs;
4719   SubExprs[RHS] = rhs;
4720   BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4721   if (hasStoredFPFeatures())
4722     setStoredFPFeatures(FPFeatures);
4723   setDependence(computeDependence(this));
4724 }
4725 
4726 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
4727                                Opcode opc, QualType ResTy, ExprValueKind VK,
4728                                ExprObjectKind OK, SourceLocation opLoc,
4729                                FPOptionsOverride FPFeatures, bool dead2)
4730     : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) {
4731   BinaryOperatorBits.Opc = opc;
4732   assert(isCompoundAssignmentOp() &&
4733          "Use CompoundAssignOperator for compound assignments");
4734   BinaryOperatorBits.OpLoc = opLoc;
4735   SubExprs[LHS] = lhs;
4736   SubExprs[RHS] = rhs;
4737   BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4738   if (hasStoredFPFeatures())
4739     setStoredFPFeatures(FPFeatures);
4740   setDependence(computeDependence(this));
4741 }
4742 
4743 BinaryOperator *BinaryOperator::CreateEmpty(const ASTContext &C,
4744                                             bool HasFPFeatures) {
4745   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4746   void *Mem =
4747       C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
4748   return new (Mem) BinaryOperator(EmptyShell());
4749 }
4750 
4751 BinaryOperator *BinaryOperator::Create(const ASTContext &C, Expr *lhs,
4752                                        Expr *rhs, Opcode opc, QualType ResTy,
4753                                        ExprValueKind VK, ExprObjectKind OK,
4754                                        SourceLocation opLoc,
4755                                        FPOptionsOverride FPFeatures) {
4756   bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4757   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4758   void *Mem =
4759       C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
4760   return new (Mem)
4761       BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures);
4762 }
4763 
4764 CompoundAssignOperator *
4765 CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) {
4766   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4767   void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
4768                          alignof(CompoundAssignOperator));
4769   return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures);
4770 }
4771 
4772 CompoundAssignOperator *
4773 CompoundAssignOperator::Create(const ASTContext &C, Expr *lhs, Expr *rhs,
4774                                Opcode opc, QualType ResTy, ExprValueKind VK,
4775                                ExprObjectKind OK, SourceLocation opLoc,
4776                                FPOptionsOverride FPFeatures,
4777                                QualType CompLHSType, QualType CompResultType) {
4778   bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4779   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4780   void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
4781                          alignof(CompoundAssignOperator));
4782   return new (Mem)
4783       CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures,
4784                              CompLHSType, CompResultType);
4785 }
4786 
4787 UnaryOperator *UnaryOperator::CreateEmpty(const ASTContext &C,
4788                                           bool hasFPFeatures) {
4789   void *Mem = C.Allocate(totalSizeToAlloc<FPOptionsOverride>(hasFPFeatures),
4790                          alignof(UnaryOperator));
4791   return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell());
4792 }
4793 
4794 UnaryOperator::UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc,
4795                              QualType type, ExprValueKind VK, ExprObjectKind OK,
4796                              SourceLocation l, bool CanOverflow,
4797                              FPOptionsOverride FPFeatures)
4798     : Expr(UnaryOperatorClass, type, VK, OK), Val(input) {
4799   UnaryOperatorBits.Opc = opc;
4800   UnaryOperatorBits.CanOverflow = CanOverflow;
4801   UnaryOperatorBits.Loc = l;
4802   UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4803   if (hasStoredFPFeatures())
4804     setStoredFPFeatures(FPFeatures);
4805   setDependence(computeDependence(this, Ctx));
4806 }
4807 
4808 UnaryOperator *UnaryOperator::Create(const ASTContext &C, Expr *input,
4809                                      Opcode opc, QualType type,
4810                                      ExprValueKind VK, ExprObjectKind OK,
4811                                      SourceLocation l, bool CanOverflow,
4812                                      FPOptionsOverride FPFeatures) {
4813   bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4814   unsigned Size = totalSizeToAlloc<FPOptionsOverride>(HasFPFeatures);
4815   void *Mem = C.Allocate(Size, alignof(UnaryOperator));
4816   return new (Mem)
4817       UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures);
4818 }
4819 
4820 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
4821   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
4822     e = ewc->getSubExpr();
4823   if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
4824     e = m->getSubExpr();
4825   e = cast<CXXConstructExpr>(e)->getArg(0);
4826   while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
4827     e = ice->getSubExpr();
4828   return cast<OpaqueValueExpr>(e);
4829 }
4830 
4831 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
4832                                            EmptyShell sh,
4833                                            unsigned numSemanticExprs) {
4834   void *buffer =
4835       Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
4836                        alignof(PseudoObjectExpr));
4837   return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
4838 }
4839 
4840 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
4841   : Expr(PseudoObjectExprClass, shell) {
4842   PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
4843 }
4844 
4845 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
4846                                            ArrayRef<Expr*> semantics,
4847                                            unsigned resultIndex) {
4848   assert(syntax && "no syntactic expression!");
4849   assert(semantics.size() && "no semantic expressions!");
4850 
4851   QualType type;
4852   ExprValueKind VK;
4853   if (resultIndex == NoResult) {
4854     type = C.VoidTy;
4855     VK = VK_PRValue;
4856   } else {
4857     assert(resultIndex < semantics.size());
4858     type = semantics[resultIndex]->getType();
4859     VK = semantics[resultIndex]->getValueKind();
4860     assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
4861   }
4862 
4863   void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
4864                             alignof(PseudoObjectExpr));
4865   return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
4866                                       resultIndex);
4867 }
4868 
4869 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
4870                                    Expr *syntax, ArrayRef<Expr *> semantics,
4871                                    unsigned resultIndex)
4872     : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) {
4873   PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
4874   PseudoObjectExprBits.ResultIndex = resultIndex + 1;
4875 
4876   for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
4877     Expr *E = (i == 0 ? syntax : semantics[i-1]);
4878     getSubExprsBuffer()[i] = E;
4879 
4880     if (isa<OpaqueValueExpr>(E))
4881       assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
4882              "opaque-value semantic expressions for pseudo-object "
4883              "operations must have sources");
4884   }
4885 
4886   setDependence(computeDependence(this));
4887 }
4888 
4889 //===----------------------------------------------------------------------===//
4890 //  Child Iterators for iterating over subexpressions/substatements
4891 //===----------------------------------------------------------------------===//
4892 
4893 // UnaryExprOrTypeTraitExpr
4894 Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
4895   const_child_range CCR =
4896       const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
4897   return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end()));
4898 }
4899 
4900 Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const {
4901   // If this is of a type and the type is a VLA type (and not a typedef), the
4902   // size expression of the VLA needs to be treated as an executable expression.
4903   // Why isn't this weirdness documented better in StmtIterator?
4904   if (isArgumentType()) {
4905     if (const VariableArrayType *T =
4906             dyn_cast<VariableArrayType>(getArgumentType().getTypePtr()))
4907       return const_child_range(const_child_iterator(T), const_child_iterator());
4908     return const_child_range(const_child_iterator(), const_child_iterator());
4909   }
4910   return const_child_range(&Argument.Ex, &Argument.Ex + 1);
4911 }
4912 
4913 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr *> args, QualType t,
4914                        AtomicOp op, SourceLocation RP)
4915     : Expr(AtomicExprClass, t, VK_PRValue, OK_Ordinary),
4916       NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) {
4917   assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4918   for (unsigned i = 0; i != args.size(); i++)
4919     SubExprs[i] = args[i];
4920   setDependence(computeDependence(this));
4921 }
4922 
4923 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
4924   switch (Op) {
4925   case AO__c11_atomic_init:
4926   case AO__opencl_atomic_init:
4927   case AO__c11_atomic_load:
4928   case AO__atomic_load_n:
4929     return 2;
4930 
4931   case AO__opencl_atomic_load:
4932   case AO__hip_atomic_load:
4933   case AO__c11_atomic_store:
4934   case AO__c11_atomic_exchange:
4935   case AO__atomic_load:
4936   case AO__atomic_store:
4937   case AO__atomic_store_n:
4938   case AO__atomic_exchange_n:
4939   case AO__c11_atomic_fetch_add:
4940   case AO__c11_atomic_fetch_sub:
4941   case AO__c11_atomic_fetch_and:
4942   case AO__c11_atomic_fetch_or:
4943   case AO__c11_atomic_fetch_xor:
4944   case AO__c11_atomic_fetch_nand:
4945   case AO__c11_atomic_fetch_max:
4946   case AO__c11_atomic_fetch_min:
4947   case AO__atomic_fetch_add:
4948   case AO__atomic_fetch_sub:
4949   case AO__atomic_fetch_and:
4950   case AO__atomic_fetch_or:
4951   case AO__atomic_fetch_xor:
4952   case AO__atomic_fetch_nand:
4953   case AO__atomic_add_fetch:
4954   case AO__atomic_sub_fetch:
4955   case AO__atomic_and_fetch:
4956   case AO__atomic_or_fetch:
4957   case AO__atomic_xor_fetch:
4958   case AO__atomic_nand_fetch:
4959   case AO__atomic_min_fetch:
4960   case AO__atomic_max_fetch:
4961   case AO__atomic_fetch_min:
4962   case AO__atomic_fetch_max:
4963     return 3;
4964 
4965   case AO__hip_atomic_exchange:
4966   case AO__hip_atomic_fetch_add:
4967   case AO__hip_atomic_fetch_sub:
4968   case AO__hip_atomic_fetch_and:
4969   case AO__hip_atomic_fetch_or:
4970   case AO__hip_atomic_fetch_xor:
4971   case AO__hip_atomic_fetch_min:
4972   case AO__hip_atomic_fetch_max:
4973   case AO__opencl_atomic_store:
4974   case AO__hip_atomic_store:
4975   case AO__opencl_atomic_exchange:
4976   case AO__opencl_atomic_fetch_add:
4977   case AO__opencl_atomic_fetch_sub:
4978   case AO__opencl_atomic_fetch_and:
4979   case AO__opencl_atomic_fetch_or:
4980   case AO__opencl_atomic_fetch_xor:
4981   case AO__opencl_atomic_fetch_min:
4982   case AO__opencl_atomic_fetch_max:
4983   case AO__atomic_exchange:
4984     return 4;
4985 
4986   case AO__c11_atomic_compare_exchange_strong:
4987   case AO__c11_atomic_compare_exchange_weak:
4988     return 5;
4989   case AO__hip_atomic_compare_exchange_strong:
4990   case AO__opencl_atomic_compare_exchange_strong:
4991   case AO__opencl_atomic_compare_exchange_weak:
4992   case AO__hip_atomic_compare_exchange_weak:
4993   case AO__atomic_compare_exchange:
4994   case AO__atomic_compare_exchange_n:
4995     return 6;
4996   }
4997   llvm_unreachable("unknown atomic op");
4998 }
4999 
5000 QualType AtomicExpr::getValueType() const {
5001   auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
5002   if (auto AT = T->getAs<AtomicType>())
5003     return AT->getValueType();
5004   return T;
5005 }
5006 
5007 QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) {
5008   unsigned ArraySectionCount = 0;
5009   while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) {
5010     Base = OASE->getBase();
5011     ++ArraySectionCount;
5012   }
5013   while (auto *ASE =
5014              dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
5015     Base = ASE->getBase();
5016     ++ArraySectionCount;
5017   }
5018   Base = Base->IgnoreParenImpCasts();
5019   auto OriginalTy = Base->getType();
5020   if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
5021     if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
5022       OriginalTy = PVD->getOriginalType().getNonReferenceType();
5023 
5024   for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
5025     if (OriginalTy->isAnyPointerType())
5026       OriginalTy = OriginalTy->getPointeeType();
5027     else {
5028       assert (OriginalTy->isArrayType());
5029       OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
5030     }
5031   }
5032   return OriginalTy;
5033 }
5034 
5035 RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc,
5036                            SourceLocation EndLoc, ArrayRef<Expr *> SubExprs)
5037     : Expr(RecoveryExprClass, T.getNonReferenceType(),
5038            T->isDependentType() ? VK_LValue : getValueKindForType(T),
5039            OK_Ordinary),
5040       BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) {
5041   assert(!T.isNull());
5042   assert(!llvm::is_contained(SubExprs, nullptr));
5043 
5044   llvm::copy(SubExprs, getTrailingObjects<Expr *>());
5045   setDependence(computeDependence(this));
5046 }
5047 
5048 RecoveryExpr *RecoveryExpr::Create(ASTContext &Ctx, QualType T,
5049                                    SourceLocation BeginLoc,
5050                                    SourceLocation EndLoc,
5051                                    ArrayRef<Expr *> SubExprs) {
5052   void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(SubExprs.size()),
5053                            alignof(RecoveryExpr));
5054   return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs);
5055 }
5056 
5057 RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) {
5058   void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(NumSubExprs),
5059                            alignof(RecoveryExpr));
5060   return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs);
5061 }
5062 
5063 void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) {
5064   assert(
5065       NumDims == Dims.size() &&
5066       "Preallocated number of dimensions is different from the provided one.");
5067   llvm::copy(Dims, getTrailingObjects<Expr *>());
5068 }
5069 
5070 void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) {
5071   assert(
5072       NumDims == BR.size() &&
5073       "Preallocated number of dimensions is different from the provided one.");
5074   llvm::copy(BR, getTrailingObjects<SourceRange>());
5075 }
5076 
5077 OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op,
5078                                          SourceLocation L, SourceLocation R,
5079                                          ArrayRef<Expr *> Dims)
5080     : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L),
5081       RPLoc(R), NumDims(Dims.size()) {
5082   setBase(Op);
5083   setDimensions(Dims);
5084   setDependence(computeDependence(this));
5085 }
5086 
5087 OMPArrayShapingExpr *
5088 OMPArrayShapingExpr::Create(const ASTContext &Context, QualType T, Expr *Op,
5089                             SourceLocation L, SourceLocation R,
5090                             ArrayRef<Expr *> Dims,
5091                             ArrayRef<SourceRange> BracketRanges) {
5092   assert(Dims.size() == BracketRanges.size() &&
5093          "Different number of dimensions and brackets ranges.");
5094   void *Mem = Context.Allocate(
5095       totalSizeToAlloc<Expr *, SourceRange>(Dims.size() + 1, Dims.size()),
5096       alignof(OMPArrayShapingExpr));
5097   auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims);
5098   E->setBracketsRanges(BracketRanges);
5099   return E;
5100 }
5101 
5102 OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context,
5103                                                       unsigned NumDims) {
5104   void *Mem = Context.Allocate(
5105       totalSizeToAlloc<Expr *, SourceRange>(NumDims + 1, NumDims),
5106       alignof(OMPArrayShapingExpr));
5107   return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims);
5108 }
5109 
5110 void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) {
5111   assert(I < NumIterators &&
5112          "Idx is greater or equal the number of iterators definitions.");
5113   getTrailingObjects<Decl *>()[I] = D;
5114 }
5115 
5116 void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) {
5117   assert(I < NumIterators &&
5118          "Idx is greater or equal the number of iterators definitions.");
5119   getTrailingObjects<
5120       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5121                         static_cast<int>(RangeLocOffset::AssignLoc)] = Loc;
5122 }
5123 
5124 void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin,
5125                                        SourceLocation ColonLoc, Expr *End,
5126                                        SourceLocation SecondColonLoc,
5127                                        Expr *Step) {
5128   assert(I < NumIterators &&
5129          "Idx is greater or equal the number of iterators definitions.");
5130   getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5131                                static_cast<int>(RangeExprOffset::Begin)] =
5132       Begin;
5133   getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5134                                static_cast<int>(RangeExprOffset::End)] = End;
5135   getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5136                                static_cast<int>(RangeExprOffset::Step)] = Step;
5137   getTrailingObjects<
5138       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5139                         static_cast<int>(RangeLocOffset::FirstColonLoc)] =
5140       ColonLoc;
5141   getTrailingObjects<
5142       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5143                         static_cast<int>(RangeLocOffset::SecondColonLoc)] =
5144       SecondColonLoc;
5145 }
5146 
5147 Decl *OMPIteratorExpr::getIteratorDecl(unsigned I) {
5148   return getTrailingObjects<Decl *>()[I];
5149 }
5150 
5151 OMPIteratorExpr::IteratorRange OMPIteratorExpr::getIteratorRange(unsigned I) {
5152   IteratorRange Res;
5153   Res.Begin =
5154       getTrailingObjects<Expr *>()[I * static_cast<int>(
5155                                            RangeExprOffset::Total) +
5156                                    static_cast<int>(RangeExprOffset::Begin)];
5157   Res.End =
5158       getTrailingObjects<Expr *>()[I * static_cast<int>(
5159                                            RangeExprOffset::Total) +
5160                                    static_cast<int>(RangeExprOffset::End)];
5161   Res.Step =
5162       getTrailingObjects<Expr *>()[I * static_cast<int>(
5163                                            RangeExprOffset::Total) +
5164                                    static_cast<int>(RangeExprOffset::Step)];
5165   return Res;
5166 }
5167 
5168 SourceLocation OMPIteratorExpr::getAssignLoc(unsigned I) const {
5169   return getTrailingObjects<
5170       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5171                         static_cast<int>(RangeLocOffset::AssignLoc)];
5172 }
5173 
5174 SourceLocation OMPIteratorExpr::getColonLoc(unsigned I) const {
5175   return getTrailingObjects<
5176       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5177                         static_cast<int>(RangeLocOffset::FirstColonLoc)];
5178 }
5179 
5180 SourceLocation OMPIteratorExpr::getSecondColonLoc(unsigned I) const {
5181   return getTrailingObjects<
5182       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5183                         static_cast<int>(RangeLocOffset::SecondColonLoc)];
5184 }
5185 
5186 void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) {
5187   getTrailingObjects<OMPIteratorHelperData>()[I] = D;
5188 }
5189 
5190 OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) {
5191   return getTrailingObjects<OMPIteratorHelperData>()[I];
5192 }
5193 
5194 const OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) const {
5195   return getTrailingObjects<OMPIteratorHelperData>()[I];
5196 }
5197 
5198 OMPIteratorExpr::OMPIteratorExpr(
5199     QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L,
5200     SourceLocation R, ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
5201     ArrayRef<OMPIteratorHelperData> Helpers)
5202     : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary),
5203       IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R),
5204       NumIterators(Data.size()) {
5205   for (unsigned I = 0, E = Data.size(); I < E; ++I) {
5206     const IteratorDefinition &D = Data[I];
5207     setIteratorDeclaration(I, D.IteratorDecl);
5208     setAssignmentLoc(I, D.AssignmentLoc);
5209     setIteratorRange(I, D.Range.Begin, D.ColonLoc, D.Range.End,
5210                      D.SecondColonLoc, D.Range.Step);
5211     setHelper(I, Helpers[I]);
5212   }
5213   setDependence(computeDependence(this));
5214 }
5215 
5216 OMPIteratorExpr *
5217 OMPIteratorExpr::Create(const ASTContext &Context, QualType T,
5218                         SourceLocation IteratorKwLoc, SourceLocation L,
5219                         SourceLocation R,
5220                         ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
5221                         ArrayRef<OMPIteratorHelperData> Helpers) {
5222   assert(Data.size() == Helpers.size() &&
5223          "Data and helpers must have the same size.");
5224   void *Mem = Context.Allocate(
5225       totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
5226           Data.size(), Data.size() * static_cast<int>(RangeExprOffset::Total),
5227           Data.size() * static_cast<int>(RangeLocOffset::Total),
5228           Helpers.size()),
5229       alignof(OMPIteratorExpr));
5230   return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers);
5231 }
5232 
5233 OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context,
5234                                               unsigned NumIterators) {
5235   void *Mem = Context.Allocate(
5236       totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
5237           NumIterators, NumIterators * static_cast<int>(RangeExprOffset::Total),
5238           NumIterators * static_cast<int>(RangeLocOffset::Total), NumIterators),
5239       alignof(OMPIteratorExpr));
5240   return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators);
5241 }
5242