1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implements C++ name mangling according to the Itanium C++ ABI,
10 // which is used in GCC 3.2 and newer (and many compilers that are
11 // ABI-compatible with GCC):
12 //
13 //   http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclOpenMP.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprConcepts.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/Mangle.h"
29 #include "clang/AST/TypeLoc.h"
30 #include "clang/Basic/ABI.h"
31 #include "clang/Basic/Module.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Basic/Thunk.h"
35 #include "llvm/ADT/StringExtras.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <optional>
39 
40 using namespace clang;
41 
42 namespace {
43 
44 static bool isLocalContainerContext(const DeclContext *DC) {
45   return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
46 }
47 
48 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
49   if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
50     return ftd->getTemplatedDecl();
51 
52   return fn;
53 }
54 
55 static const NamedDecl *getStructor(const NamedDecl *decl) {
56   const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
57   return (fn ? getStructor(fn) : decl);
58 }
59 
60 static bool isLambda(const NamedDecl *ND) {
61   const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
62   if (!Record)
63     return false;
64 
65   return Record->isLambda();
66 }
67 
68 static const unsigned UnknownArity = ~0U;
69 
70 class ItaniumMangleContextImpl : public ItaniumMangleContext {
71   typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
72   llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
73   llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
74   const DiscriminatorOverrideTy DiscriminatorOverride = nullptr;
75   NamespaceDecl *StdNamespace = nullptr;
76 
77   bool NeedsUniqueInternalLinkageNames = false;
78 
79 public:
80   explicit ItaniumMangleContextImpl(
81       ASTContext &Context, DiagnosticsEngine &Diags,
82       DiscriminatorOverrideTy DiscriminatorOverride, bool IsAux = false)
83       : ItaniumMangleContext(Context, Diags, IsAux),
84         DiscriminatorOverride(DiscriminatorOverride) {}
85 
86   /// @name Mangler Entry Points
87   /// @{
88 
89   bool shouldMangleCXXName(const NamedDecl *D) override;
90   bool shouldMangleStringLiteral(const StringLiteral *) override {
91     return false;
92   }
93 
94   bool isUniqueInternalLinkageDecl(const NamedDecl *ND) override;
95   void needsUniqueInternalLinkageNames() override {
96     NeedsUniqueInternalLinkageNames = true;
97   }
98 
99   void mangleCXXName(GlobalDecl GD, raw_ostream &) override;
100   void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
101                    raw_ostream &) override;
102   void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
103                           const ThisAdjustment &ThisAdjustment,
104                           raw_ostream &) override;
105   void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
106                                 raw_ostream &) override;
107   void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
108   void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
109   void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
110                            const CXXRecordDecl *Type, raw_ostream &) override;
111   void mangleCXXRTTI(QualType T, raw_ostream &) override;
112   void mangleCXXRTTIName(QualType T, raw_ostream &) override;
113   void mangleTypeName(QualType T, raw_ostream &) override;
114 
115   void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
116   void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
117   void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
118   void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
119   void mangleDynamicAtExitDestructor(const VarDecl *D,
120                                      raw_ostream &Out) override;
121   void mangleDynamicStermFinalizer(const VarDecl *D, raw_ostream &Out) override;
122   void mangleSEHFilterExpression(GlobalDecl EnclosingDecl,
123                                  raw_ostream &Out) override;
124   void mangleSEHFinallyBlock(GlobalDecl EnclosingDecl,
125                              raw_ostream &Out) override;
126   void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
127   void mangleItaniumThreadLocalWrapper(const VarDecl *D,
128                                        raw_ostream &) override;
129 
130   void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
131 
132   void mangleLambdaSig(const CXXRecordDecl *Lambda, raw_ostream &) override;
133 
134   void mangleModuleInitializer(const Module *Module, raw_ostream &) override;
135 
136   bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
137     // Lambda closure types are already numbered.
138     if (isLambda(ND))
139       return false;
140 
141     // Anonymous tags are already numbered.
142     if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
143       if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
144         return false;
145     }
146 
147     // Use the canonical number for externally visible decls.
148     if (ND->isExternallyVisible()) {
149       unsigned discriminator = getASTContext().getManglingNumber(ND, isAux());
150       if (discriminator == 1)
151         return false;
152       disc = discriminator - 2;
153       return true;
154     }
155 
156     // Make up a reasonable number for internal decls.
157     unsigned &discriminator = Uniquifier[ND];
158     if (!discriminator) {
159       const DeclContext *DC = getEffectiveDeclContext(ND);
160       discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
161     }
162     if (discriminator == 1)
163       return false;
164     disc = discriminator-2;
165     return true;
166   }
167 
168   std::string getLambdaString(const CXXRecordDecl *Lambda) override {
169     // This function matches the one in MicrosoftMangle, which returns
170     // the string that is used in lambda mangled names.
171     assert(Lambda->isLambda() && "RD must be a lambda!");
172     std::string Name("<lambda");
173     Decl *LambdaContextDecl = Lambda->getLambdaContextDecl();
174     unsigned LambdaManglingNumber = Lambda->getLambdaManglingNumber();
175     unsigned LambdaId;
176     const ParmVarDecl *Parm = dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl);
177     const FunctionDecl *Func =
178         Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr;
179 
180     if (Func) {
181       unsigned DefaultArgNo =
182           Func->getNumParams() - Parm->getFunctionScopeIndex();
183       Name += llvm::utostr(DefaultArgNo);
184       Name += "_";
185     }
186 
187     if (LambdaManglingNumber)
188       LambdaId = LambdaManglingNumber;
189     else
190       LambdaId = getAnonymousStructIdForDebugInfo(Lambda);
191 
192     Name += llvm::utostr(LambdaId);
193     Name += '>';
194     return Name;
195   }
196 
197   DiscriminatorOverrideTy getDiscriminatorOverride() const override {
198     return DiscriminatorOverride;
199   }
200 
201   NamespaceDecl *getStdNamespace();
202 
203   const DeclContext *getEffectiveDeclContext(const Decl *D);
204   const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
205     return getEffectiveDeclContext(cast<Decl>(DC));
206   }
207 
208   bool isInternalLinkageDecl(const NamedDecl *ND);
209   const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC);
210 
211   /// @}
212 };
213 
214 /// Manage the mangling of a single name.
215 class CXXNameMangler {
216   ItaniumMangleContextImpl &Context;
217   raw_ostream &Out;
218   bool NullOut = false;
219   /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated.
220   /// This mode is used when mangler creates another mangler recursively to
221   /// calculate ABI tags for the function return value or the variable type.
222   /// Also it is required to avoid infinite recursion in some cases.
223   bool DisableDerivedAbiTags = false;
224 
225   /// The "structor" is the top-level declaration being mangled, if
226   /// that's not a template specialization; otherwise it's the pattern
227   /// for that specialization.
228   const NamedDecl *Structor;
229   unsigned StructorType = 0;
230 
231   /// The next substitution sequence number.
232   unsigned SeqID = 0;
233 
234   class FunctionTypeDepthState {
235     unsigned Bits;
236 
237     enum { InResultTypeMask = 1 };
238 
239   public:
240     FunctionTypeDepthState() : Bits(0) {}
241 
242     /// The number of function types we're inside.
243     unsigned getDepth() const {
244       return Bits >> 1;
245     }
246 
247     /// True if we're in the return type of the innermost function type.
248     bool isInResultType() const {
249       return Bits & InResultTypeMask;
250     }
251 
252     FunctionTypeDepthState push() {
253       FunctionTypeDepthState tmp = *this;
254       Bits = (Bits & ~InResultTypeMask) + 2;
255       return tmp;
256     }
257 
258     void enterResultType() {
259       Bits |= InResultTypeMask;
260     }
261 
262     void leaveResultType() {
263       Bits &= ~InResultTypeMask;
264     }
265 
266     void pop(FunctionTypeDepthState saved) {
267       assert(getDepth() == saved.getDepth() + 1);
268       Bits = saved.Bits;
269     }
270 
271   } FunctionTypeDepth;
272 
273   // abi_tag is a gcc attribute, taking one or more strings called "tags".
274   // The goal is to annotate against which version of a library an object was
275   // built and to be able to provide backwards compatibility ("dual abi").
276   // For more information see docs/ItaniumMangleAbiTags.rst.
277   typedef SmallVector<StringRef, 4> AbiTagList;
278 
279   // State to gather all implicit and explicit tags used in a mangled name.
280   // Must always have an instance of this while emitting any name to keep
281   // track.
282   class AbiTagState final {
283   public:
284     explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) {
285       Parent = LinkHead;
286       LinkHead = this;
287     }
288 
289     // No copy, no move.
290     AbiTagState(const AbiTagState &) = delete;
291     AbiTagState &operator=(const AbiTagState &) = delete;
292 
293     ~AbiTagState() { pop(); }
294 
295     void write(raw_ostream &Out, const NamedDecl *ND,
296                const AbiTagList *AdditionalAbiTags) {
297       ND = cast<NamedDecl>(ND->getCanonicalDecl());
298       if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) {
299         assert(
300             !AdditionalAbiTags &&
301             "only function and variables need a list of additional abi tags");
302         if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) {
303           if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) {
304             UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
305                                AbiTag->tags().end());
306           }
307           // Don't emit abi tags for namespaces.
308           return;
309         }
310       }
311 
312       AbiTagList TagList;
313       if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) {
314         UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
315                            AbiTag->tags().end());
316         TagList.insert(TagList.end(), AbiTag->tags().begin(),
317                        AbiTag->tags().end());
318       }
319 
320       if (AdditionalAbiTags) {
321         UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(),
322                            AdditionalAbiTags->end());
323         TagList.insert(TagList.end(), AdditionalAbiTags->begin(),
324                        AdditionalAbiTags->end());
325       }
326 
327       llvm::sort(TagList);
328       TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end());
329 
330       writeSortedUniqueAbiTags(Out, TagList);
331     }
332 
333     const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; }
334     void setUsedAbiTags(const AbiTagList &AbiTags) {
335       UsedAbiTags = AbiTags;
336     }
337 
338     const AbiTagList &getEmittedAbiTags() const {
339       return EmittedAbiTags;
340     }
341 
342     const AbiTagList &getSortedUniqueUsedAbiTags() {
343       llvm::sort(UsedAbiTags);
344       UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()),
345                         UsedAbiTags.end());
346       return UsedAbiTags;
347     }
348 
349   private:
350     //! All abi tags used implicitly or explicitly.
351     AbiTagList UsedAbiTags;
352     //! All explicit abi tags (i.e. not from namespace).
353     AbiTagList EmittedAbiTags;
354 
355     AbiTagState *&LinkHead;
356     AbiTagState *Parent = nullptr;
357 
358     void pop() {
359       assert(LinkHead == this &&
360              "abi tag link head must point to us on destruction");
361       if (Parent) {
362         Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(),
363                                    UsedAbiTags.begin(), UsedAbiTags.end());
364         Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(),
365                                       EmittedAbiTags.begin(),
366                                       EmittedAbiTags.end());
367       }
368       LinkHead = Parent;
369     }
370 
371     void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) {
372       for (const auto &Tag : AbiTags) {
373         EmittedAbiTags.push_back(Tag);
374         Out << "B";
375         Out << Tag.size();
376         Out << Tag;
377       }
378     }
379   };
380 
381   AbiTagState *AbiTags = nullptr;
382   AbiTagState AbiTagsRoot;
383 
384   llvm::DenseMap<uintptr_t, unsigned> Substitutions;
385   llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions;
386 
387   ASTContext &getASTContext() const { return Context.getASTContext(); }
388 
389   bool isStd(const NamespaceDecl *NS);
390   bool isStdNamespace(const DeclContext *DC);
391 
392   const RecordDecl *GetLocalClassDecl(const Decl *D);
393   const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC);
394   bool isSpecializedAs(QualType S, llvm::StringRef Name, QualType A);
395   bool isStdCharSpecialization(const ClassTemplateSpecializationDecl *SD,
396                                llvm::StringRef Name, bool HasAllocator);
397 
398 public:
399   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
400                  const NamedDecl *D = nullptr, bool NullOut_ = false)
401       : Context(C), Out(Out_), NullOut(NullOut_), Structor(getStructor(D)),
402         AbiTagsRoot(AbiTags) {
403     // These can't be mangled without a ctor type or dtor type.
404     assert(!D || (!isa<CXXDestructorDecl>(D) &&
405                   !isa<CXXConstructorDecl>(D)));
406   }
407   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
408                  const CXXConstructorDecl *D, CXXCtorType Type)
409       : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
410         AbiTagsRoot(AbiTags) {}
411   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
412                  const CXXDestructorDecl *D, CXXDtorType Type)
413       : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
414         AbiTagsRoot(AbiTags) {}
415 
416   CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_)
417       : Context(Outer.Context), Out(Out_), Structor(Outer.Structor),
418         StructorType(Outer.StructorType), SeqID(Outer.SeqID),
419         FunctionTypeDepth(Outer.FunctionTypeDepth), AbiTagsRoot(AbiTags),
420         Substitutions(Outer.Substitutions),
421         ModuleSubstitutions(Outer.ModuleSubstitutions) {}
422 
423   CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_)
424       : CXXNameMangler(Outer, (raw_ostream &)Out_) {
425     NullOut = true;
426   }
427 
428   raw_ostream &getStream() { return Out; }
429 
430   void disableDerivedAbiTags() { DisableDerivedAbiTags = true; }
431   static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD);
432 
433   void mangle(GlobalDecl GD);
434   void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
435   void mangleNumber(const llvm::APSInt &I);
436   void mangleNumber(int64_t Number);
437   void mangleFloat(const llvm::APFloat &F);
438   void mangleFunctionEncoding(GlobalDecl GD);
439   void mangleSeqID(unsigned SeqID);
440   void mangleName(GlobalDecl GD);
441   void mangleType(QualType T);
442   void mangleNameOrStandardSubstitution(const NamedDecl *ND);
443   void mangleLambdaSig(const CXXRecordDecl *Lambda);
444   void mangleModuleNamePrefix(StringRef Name, bool IsPartition = false);
445 
446 private:
447 
448   bool mangleSubstitution(const NamedDecl *ND);
449   bool mangleSubstitution(NestedNameSpecifier *NNS);
450   bool mangleSubstitution(QualType T);
451   bool mangleSubstitution(TemplateName Template);
452   bool mangleSubstitution(uintptr_t Ptr);
453 
454   void mangleExistingSubstitution(TemplateName name);
455 
456   bool mangleStandardSubstitution(const NamedDecl *ND);
457 
458   void addSubstitution(const NamedDecl *ND) {
459     ND = cast<NamedDecl>(ND->getCanonicalDecl());
460 
461     addSubstitution(reinterpret_cast<uintptr_t>(ND));
462   }
463   void addSubstitution(NestedNameSpecifier *NNS) {
464     NNS = Context.getASTContext().getCanonicalNestedNameSpecifier(NNS);
465 
466     addSubstitution(reinterpret_cast<uintptr_t>(NNS));
467   }
468   void addSubstitution(QualType T);
469   void addSubstitution(TemplateName Template);
470   void addSubstitution(uintptr_t Ptr);
471   // Destructive copy substitutions from other mangler.
472   void extendSubstitutions(CXXNameMangler* Other);
473 
474   void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
475                               bool recursive = false);
476   void mangleUnresolvedName(NestedNameSpecifier *qualifier,
477                             DeclarationName name,
478                             const TemplateArgumentLoc *TemplateArgs,
479                             unsigned NumTemplateArgs,
480                             unsigned KnownArity = UnknownArity);
481 
482   void mangleFunctionEncodingBareType(const FunctionDecl *FD);
483 
484   void mangleNameWithAbiTags(GlobalDecl GD,
485                              const AbiTagList *AdditionalAbiTags);
486   void mangleModuleName(const NamedDecl *ND);
487   void mangleTemplateName(const TemplateDecl *TD,
488                           ArrayRef<TemplateArgument> Args);
489   void mangleUnqualifiedName(GlobalDecl GD, const DeclContext *DC,
490                              const AbiTagList *AdditionalAbiTags) {
491     mangleUnqualifiedName(GD, cast<NamedDecl>(GD.getDecl())->getDeclName(), DC,
492                           UnknownArity, AdditionalAbiTags);
493   }
494   void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name,
495                              const DeclContext *DC, unsigned KnownArity,
496                              const AbiTagList *AdditionalAbiTags);
497   void mangleUnscopedName(GlobalDecl GD, const DeclContext *DC,
498                           const AbiTagList *AdditionalAbiTags);
499   void mangleUnscopedTemplateName(GlobalDecl GD, const DeclContext *DC,
500                                   const AbiTagList *AdditionalAbiTags);
501   void mangleSourceName(const IdentifierInfo *II);
502   void mangleRegCallName(const IdentifierInfo *II);
503   void mangleDeviceStubName(const IdentifierInfo *II);
504   void mangleSourceNameWithAbiTags(
505       const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr);
506   void mangleLocalName(GlobalDecl GD,
507                        const AbiTagList *AdditionalAbiTags);
508   void mangleBlockForPrefix(const BlockDecl *Block);
509   void mangleUnqualifiedBlock(const BlockDecl *Block);
510   void mangleTemplateParamDecl(const NamedDecl *Decl);
511   void mangleLambda(const CXXRecordDecl *Lambda);
512   void mangleNestedName(GlobalDecl GD, const DeclContext *DC,
513                         const AbiTagList *AdditionalAbiTags,
514                         bool NoFunction=false);
515   void mangleNestedName(const TemplateDecl *TD,
516                         ArrayRef<TemplateArgument> Args);
517   void mangleNestedNameWithClosurePrefix(GlobalDecl GD,
518                                          const NamedDecl *PrefixND,
519                                          const AbiTagList *AdditionalAbiTags);
520   void manglePrefix(NestedNameSpecifier *qualifier);
521   void manglePrefix(const DeclContext *DC, bool NoFunction=false);
522   void manglePrefix(QualType type);
523   void mangleTemplatePrefix(GlobalDecl GD, bool NoFunction=false);
524   void mangleTemplatePrefix(TemplateName Template);
525   const NamedDecl *getClosurePrefix(const Decl *ND);
526   void mangleClosurePrefix(const NamedDecl *ND, bool NoFunction = false);
527   bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
528                                       StringRef Prefix = "");
529   void mangleOperatorName(DeclarationName Name, unsigned Arity);
530   void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
531   void mangleVendorQualifier(StringRef qualifier);
532   void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr);
533   void mangleRefQualifier(RefQualifierKind RefQualifier);
534 
535   void mangleObjCMethodName(const ObjCMethodDecl *MD);
536 
537   // Declare manglers for every type class.
538 #define ABSTRACT_TYPE(CLASS, PARENT)
539 #define NON_CANONICAL_TYPE(CLASS, PARENT)
540 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
541 #include "clang/AST/TypeNodes.inc"
542 
543   void mangleType(const TagType*);
544   void mangleType(TemplateName);
545   static StringRef getCallingConvQualifierName(CallingConv CC);
546   void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info);
547   void mangleExtFunctionInfo(const FunctionType *T);
548   void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType,
549                               const FunctionDecl *FD = nullptr);
550   void mangleNeonVectorType(const VectorType *T);
551   void mangleNeonVectorType(const DependentVectorType *T);
552   void mangleAArch64NeonVectorType(const VectorType *T);
553   void mangleAArch64NeonVectorType(const DependentVectorType *T);
554   void mangleAArch64FixedSveVectorType(const VectorType *T);
555   void mangleAArch64FixedSveVectorType(const DependentVectorType *T);
556 
557   void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
558   void mangleFloatLiteral(QualType T, const llvm::APFloat &V);
559   void mangleFixedPointLiteral();
560   void mangleNullPointer(QualType T);
561 
562   void mangleMemberExprBase(const Expr *base, bool isArrow);
563   void mangleMemberExpr(const Expr *base, bool isArrow,
564                         NestedNameSpecifier *qualifier,
565                         NamedDecl *firstQualifierLookup,
566                         DeclarationName name,
567                         const TemplateArgumentLoc *TemplateArgs,
568                         unsigned NumTemplateArgs,
569                         unsigned knownArity);
570   void mangleCastExpression(const Expr *E, StringRef CastEncoding);
571   void mangleInitListElements(const InitListExpr *InitList);
572   void mangleExpression(const Expr *E, unsigned Arity = UnknownArity,
573                         bool AsTemplateArg = false);
574   void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom);
575   void mangleCXXDtorType(CXXDtorType T);
576 
577   void mangleTemplateArgs(TemplateName TN,
578                           const TemplateArgumentLoc *TemplateArgs,
579                           unsigned NumTemplateArgs);
580   void mangleTemplateArgs(TemplateName TN, ArrayRef<TemplateArgument> Args);
581   void mangleTemplateArgs(TemplateName TN, const TemplateArgumentList &AL);
582   void mangleTemplateArg(TemplateArgument A, bool NeedExactType);
583   void mangleTemplateArgExpr(const Expr *E);
584   void mangleValueInTemplateArg(QualType T, const APValue &V, bool TopLevel,
585                                 bool NeedExactType = false);
586 
587   void mangleTemplateParameter(unsigned Depth, unsigned Index);
588 
589   void mangleFunctionParam(const ParmVarDecl *parm);
590 
591   void writeAbiTags(const NamedDecl *ND,
592                     const AbiTagList *AdditionalAbiTags);
593 
594   // Returns sorted unique list of ABI tags.
595   AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD);
596   // Returns sorted unique list of ABI tags.
597   AbiTagList makeVariableTypeTags(const VarDecl *VD);
598 };
599 
600 }
601 
602 NamespaceDecl *ItaniumMangleContextImpl::getStdNamespace() {
603   if (!StdNamespace) {
604     StdNamespace = NamespaceDecl::Create(
605         getASTContext(), getASTContext().getTranslationUnitDecl(),
606         /*Inline=*/false, SourceLocation(), SourceLocation(),
607         &getASTContext().Idents.get("std"),
608         /*PrevDecl=*/nullptr, /*Nested=*/false);
609     StdNamespace->setImplicit();
610   }
611   return StdNamespace;
612 }
613 
614 /// Retrieve the declaration context that should be used when mangling the given
615 /// declaration.
616 const DeclContext *
617 ItaniumMangleContextImpl::getEffectiveDeclContext(const Decl *D) {
618   // The ABI assumes that lambda closure types that occur within
619   // default arguments live in the context of the function. However, due to
620   // the way in which Clang parses and creates function declarations, this is
621   // not the case: the lambda closure type ends up living in the context
622   // where the function itself resides, because the function declaration itself
623   // had not yet been created. Fix the context here.
624   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
625     if (RD->isLambda())
626       if (ParmVarDecl *ContextParam =
627               dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
628         return ContextParam->getDeclContext();
629   }
630 
631   // Perform the same check for block literals.
632   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
633     if (ParmVarDecl *ContextParam =
634             dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
635       return ContextParam->getDeclContext();
636   }
637 
638   // On ARM and AArch64, the va_list tag is always mangled as if in the std
639   // namespace. We do not represent va_list as actually being in the std
640   // namespace in C because this would result in incorrect debug info in C,
641   // among other things. It is important for both languages to have the same
642   // mangling in order for -fsanitize=cfi-icall to work.
643   if (D == getASTContext().getVaListTagDecl()) {
644     const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
645     if (T.isARM() || T.isThumb() || T.isAArch64())
646       return getStdNamespace();
647   }
648 
649   const DeclContext *DC = D->getDeclContext();
650   if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) ||
651       isa<OMPDeclareMapperDecl>(DC)) {
652     return getEffectiveDeclContext(cast<Decl>(DC));
653   }
654 
655   if (const auto *VD = dyn_cast<VarDecl>(D))
656     if (VD->isExternC())
657       return getASTContext().getTranslationUnitDecl();
658 
659   if (const auto *FD = dyn_cast<FunctionDecl>(D))
660     if (FD->isExternC())
661       return getASTContext().getTranslationUnitDecl();
662 
663   return DC->getRedeclContext();
664 }
665 
666 bool ItaniumMangleContextImpl::isInternalLinkageDecl(const NamedDecl *ND) {
667   if (ND && ND->getFormalLinkage() == InternalLinkage &&
668       !ND->isExternallyVisible() &&
669       getEffectiveDeclContext(ND)->isFileContext() &&
670       !ND->isInAnonymousNamespace())
671     return true;
672   return false;
673 }
674 
675 // Check if this Function Decl needs a unique internal linkage name.
676 bool ItaniumMangleContextImpl::isUniqueInternalLinkageDecl(
677     const NamedDecl *ND) {
678   if (!NeedsUniqueInternalLinkageNames || !ND)
679     return false;
680 
681   const auto *FD = dyn_cast<FunctionDecl>(ND);
682   if (!FD)
683     return false;
684 
685   // For C functions without prototypes, return false as their
686   // names should not be mangled.
687   if (!FD->getType()->getAs<FunctionProtoType>())
688     return false;
689 
690   if (isInternalLinkageDecl(ND))
691     return true;
692 
693   return false;
694 }
695 
696 bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
697   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
698     LanguageLinkage L = FD->getLanguageLinkage();
699     // Overloadable functions need mangling.
700     if (FD->hasAttr<OverloadableAttr>())
701       return true;
702 
703     // "main" is not mangled.
704     if (FD->isMain())
705       return false;
706 
707     // The Windows ABI expects that we would never mangle "typical"
708     // user-defined entry points regardless of visibility or freestanding-ness.
709     //
710     // N.B. This is distinct from asking about "main".  "main" has a lot of
711     // special rules associated with it in the standard while these
712     // user-defined entry points are outside of the purview of the standard.
713     // For example, there can be only one definition for "main" in a standards
714     // compliant program; however nothing forbids the existence of wmain and
715     // WinMain in the same translation unit.
716     if (FD->isMSVCRTEntryPoint())
717       return false;
718 
719     // C++ functions and those whose names are not a simple identifier need
720     // mangling.
721     if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
722       return true;
723 
724     // C functions are not mangled.
725     if (L == CLanguageLinkage)
726       return false;
727   }
728 
729   // Otherwise, no mangling is done outside C++ mode.
730   if (!getASTContext().getLangOpts().CPlusPlus)
731     return false;
732 
733   if (const auto *VD = dyn_cast<VarDecl>(D)) {
734     // Decompositions are mangled.
735     if (isa<DecompositionDecl>(VD))
736       return true;
737 
738     // C variables are not mangled.
739     if (VD->isExternC())
740       return false;
741 
742     // Variables at global scope are not mangled unless they have internal
743     // linkage or are specializations or are attached to a named module.
744     const DeclContext *DC = getEffectiveDeclContext(D);
745     // Check for extern variable declared locally.
746     if (DC->isFunctionOrMethod() && D->hasLinkage())
747       while (!DC->isFileContext())
748         DC = getEffectiveParentContext(DC);
749     if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
750         !CXXNameMangler::shouldHaveAbiTags(*this, VD) &&
751         !isa<VarTemplateSpecializationDecl>(VD) &&
752         !VD->getOwningModuleForLinkage())
753       return false;
754   }
755 
756   return true;
757 }
758 
759 void CXXNameMangler::writeAbiTags(const NamedDecl *ND,
760                                   const AbiTagList *AdditionalAbiTags) {
761   assert(AbiTags && "require AbiTagState");
762   AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags);
763 }
764 
765 void CXXNameMangler::mangleSourceNameWithAbiTags(
766     const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) {
767   mangleSourceName(ND->getIdentifier());
768   writeAbiTags(ND, AdditionalAbiTags);
769 }
770 
771 void CXXNameMangler::mangle(GlobalDecl GD) {
772   // <mangled-name> ::= _Z <encoding>
773   //            ::= <data name>
774   //            ::= <special-name>
775   Out << "_Z";
776   if (isa<FunctionDecl>(GD.getDecl()))
777     mangleFunctionEncoding(GD);
778   else if (isa<VarDecl, FieldDecl, MSGuidDecl, TemplateParamObjectDecl,
779                BindingDecl>(GD.getDecl()))
780     mangleName(GD);
781   else if (const IndirectFieldDecl *IFD =
782                dyn_cast<IndirectFieldDecl>(GD.getDecl()))
783     mangleName(IFD->getAnonField());
784   else
785     llvm_unreachable("unexpected kind of global decl");
786 }
787 
788 void CXXNameMangler::mangleFunctionEncoding(GlobalDecl GD) {
789   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
790   // <encoding> ::= <function name> <bare-function-type>
791 
792   // Don't mangle in the type if this isn't a decl we should typically mangle.
793   if (!Context.shouldMangleDeclName(FD)) {
794     mangleName(GD);
795     return;
796   }
797 
798   AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD);
799   if (ReturnTypeAbiTags.empty()) {
800     // There are no tags for return type, the simplest case.
801     mangleName(GD);
802     mangleFunctionEncodingBareType(FD);
803     return;
804   }
805 
806   // Mangle function name and encoding to temporary buffer.
807   // We have to output name and encoding to the same mangler to get the same
808   // substitution as it will be in final mangling.
809   SmallString<256> FunctionEncodingBuf;
810   llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf);
811   CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream);
812   // Output name of the function.
813   FunctionEncodingMangler.disableDerivedAbiTags();
814   FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr);
815 
816   // Remember length of the function name in the buffer.
817   size_t EncodingPositionStart = FunctionEncodingStream.str().size();
818   FunctionEncodingMangler.mangleFunctionEncodingBareType(FD);
819 
820   // Get tags from return type that are not present in function name or
821   // encoding.
822   const AbiTagList &UsedAbiTags =
823       FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
824   AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size());
825   AdditionalAbiTags.erase(
826       std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(),
827                           UsedAbiTags.begin(), UsedAbiTags.end(),
828                           AdditionalAbiTags.begin()),
829       AdditionalAbiTags.end());
830 
831   // Output name with implicit tags and function encoding from temporary buffer.
832   mangleNameWithAbiTags(FD, &AdditionalAbiTags);
833   Out << FunctionEncodingStream.str().substr(EncodingPositionStart);
834 
835   // Function encoding could create new substitutions so we have to add
836   // temp mangled substitutions to main mangler.
837   extendSubstitutions(&FunctionEncodingMangler);
838 }
839 
840 void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) {
841   if (FD->hasAttr<EnableIfAttr>()) {
842     FunctionTypeDepthState Saved = FunctionTypeDepth.push();
843     Out << "Ua9enable_ifI";
844     for (AttrVec::const_iterator I = FD->getAttrs().begin(),
845                                  E = FD->getAttrs().end();
846          I != E; ++I) {
847       EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
848       if (!EIA)
849         continue;
850       if (Context.getASTContext().getLangOpts().getClangABICompat() >
851           LangOptions::ClangABI::Ver11) {
852         mangleTemplateArgExpr(EIA->getCond());
853       } else {
854         // Prior to Clang 12, we hardcoded the X/E around enable-if's argument,
855         // even though <template-arg> should not include an X/E around
856         // <expr-primary>.
857         Out << 'X';
858         mangleExpression(EIA->getCond());
859         Out << 'E';
860       }
861     }
862     Out << 'E';
863     FunctionTypeDepth.pop(Saved);
864   }
865 
866   // When mangling an inheriting constructor, the bare function type used is
867   // that of the inherited constructor.
868   if (auto *CD = dyn_cast<CXXConstructorDecl>(FD))
869     if (auto Inherited = CD->getInheritedConstructor())
870       FD = Inherited.getConstructor();
871 
872   // Whether the mangling of a function type includes the return type depends on
873   // the context and the nature of the function. The rules for deciding whether
874   // the return type is included are:
875   //
876   //   1. Template functions (names or types) have return types encoded, with
877   //   the exceptions listed below.
878   //   2. Function types not appearing as part of a function name mangling,
879   //   e.g. parameters, pointer types, etc., have return type encoded, with the
880   //   exceptions listed below.
881   //   3. Non-template function names do not have return types encoded.
882   //
883   // The exceptions mentioned in (1) and (2) above, for which the return type is
884   // never included, are
885   //   1. Constructors.
886   //   2. Destructors.
887   //   3. Conversion operator functions, e.g. operator int.
888   bool MangleReturnType = false;
889   if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
890     if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
891           isa<CXXConversionDecl>(FD)))
892       MangleReturnType = true;
893 
894     // Mangle the type of the primary template.
895     FD = PrimaryTemplate->getTemplatedDecl();
896   }
897 
898   mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(),
899                          MangleReturnType, FD);
900 }
901 
902 /// Return whether a given namespace is the 'std' namespace.
903 bool CXXNameMangler::isStd(const NamespaceDecl *NS) {
904   if (!Context.getEffectiveParentContext(NS)->isTranslationUnit())
905     return false;
906 
907   const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
908   return II && II->isStr("std");
909 }
910 
911 // isStdNamespace - Return whether a given decl context is a toplevel 'std'
912 // namespace.
913 bool CXXNameMangler::isStdNamespace(const DeclContext *DC) {
914   if (!DC->isNamespace())
915     return false;
916 
917   return isStd(cast<NamespaceDecl>(DC));
918 }
919 
920 static const GlobalDecl
921 isTemplate(GlobalDecl GD, const TemplateArgumentList *&TemplateArgs) {
922   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
923   // Check if we have a function template.
924   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
925     if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
926       TemplateArgs = FD->getTemplateSpecializationArgs();
927       return GD.getWithDecl(TD);
928     }
929   }
930 
931   // Check if we have a class template.
932   if (const ClassTemplateSpecializationDecl *Spec =
933         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
934     TemplateArgs = &Spec->getTemplateArgs();
935     return GD.getWithDecl(Spec->getSpecializedTemplate());
936   }
937 
938   // Check if we have a variable template.
939   if (const VarTemplateSpecializationDecl *Spec =
940           dyn_cast<VarTemplateSpecializationDecl>(ND)) {
941     TemplateArgs = &Spec->getTemplateArgs();
942     return GD.getWithDecl(Spec->getSpecializedTemplate());
943   }
944 
945   return GlobalDecl();
946 }
947 
948 static TemplateName asTemplateName(GlobalDecl GD) {
949   const TemplateDecl *TD = dyn_cast_or_null<TemplateDecl>(GD.getDecl());
950   return TemplateName(const_cast<TemplateDecl*>(TD));
951 }
952 
953 void CXXNameMangler::mangleName(GlobalDecl GD) {
954   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
955   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
956     // Variables should have implicit tags from its type.
957     AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD);
958     if (VariableTypeAbiTags.empty()) {
959       // Simple case no variable type tags.
960       mangleNameWithAbiTags(VD, nullptr);
961       return;
962     }
963 
964     // Mangle variable name to null stream to collect tags.
965     llvm::raw_null_ostream NullOutStream;
966     CXXNameMangler VariableNameMangler(*this, NullOutStream);
967     VariableNameMangler.disableDerivedAbiTags();
968     VariableNameMangler.mangleNameWithAbiTags(VD, nullptr);
969 
970     // Get tags from variable type that are not present in its name.
971     const AbiTagList &UsedAbiTags =
972         VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
973     AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size());
974     AdditionalAbiTags.erase(
975         std::set_difference(VariableTypeAbiTags.begin(),
976                             VariableTypeAbiTags.end(), UsedAbiTags.begin(),
977                             UsedAbiTags.end(), AdditionalAbiTags.begin()),
978         AdditionalAbiTags.end());
979 
980     // Output name with implicit tags.
981     mangleNameWithAbiTags(VD, &AdditionalAbiTags);
982   } else {
983     mangleNameWithAbiTags(GD, nullptr);
984   }
985 }
986 
987 const RecordDecl *CXXNameMangler::GetLocalClassDecl(const Decl *D) {
988   const DeclContext *DC = Context.getEffectiveDeclContext(D);
989   while (!DC->isNamespace() && !DC->isTranslationUnit()) {
990     if (isLocalContainerContext(DC))
991       return dyn_cast<RecordDecl>(D);
992     D = cast<Decl>(DC);
993     DC = Context.getEffectiveDeclContext(D);
994   }
995   return nullptr;
996 }
997 
998 void CXXNameMangler::mangleNameWithAbiTags(GlobalDecl GD,
999                                            const AbiTagList *AdditionalAbiTags) {
1000   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
1001   //  <name> ::= [<module-name>] <nested-name>
1002   //         ::= [<module-name>] <unscoped-name>
1003   //         ::= [<module-name>] <unscoped-template-name> <template-args>
1004   //         ::= <local-name>
1005   //
1006   const DeclContext *DC = Context.getEffectiveDeclContext(ND);
1007 
1008   // If this is an extern variable declared locally, the relevant DeclContext
1009   // is that of the containing namespace, or the translation unit.
1010   // FIXME: This is a hack; extern variables declared locally should have
1011   // a proper semantic declaration context!
1012   if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
1013     while (!DC->isNamespace() && !DC->isTranslationUnit())
1014       DC = Context.getEffectiveParentContext(DC);
1015   else if (GetLocalClassDecl(ND)) {
1016     mangleLocalName(GD, AdditionalAbiTags);
1017     return;
1018   }
1019 
1020   assert(!isa<LinkageSpecDecl>(DC) && "context cannot be LinkageSpecDecl");
1021 
1022   if (isLocalContainerContext(DC)) {
1023     mangleLocalName(GD, AdditionalAbiTags);
1024     return;
1025   }
1026 
1027   // Closures can require a nested-name mangling even if they're semantically
1028   // in the global namespace.
1029   if (const NamedDecl *PrefixND = getClosurePrefix(ND)) {
1030     mangleNestedNameWithClosurePrefix(GD, PrefixND, AdditionalAbiTags);
1031     return;
1032   }
1033 
1034   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
1035     // Check if we have a template.
1036     const TemplateArgumentList *TemplateArgs = nullptr;
1037     if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
1038       mangleUnscopedTemplateName(TD, DC, AdditionalAbiTags);
1039       mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
1040       return;
1041     }
1042 
1043     mangleUnscopedName(GD, DC, AdditionalAbiTags);
1044     return;
1045   }
1046 
1047   mangleNestedName(GD, DC, AdditionalAbiTags);
1048 }
1049 
1050 void CXXNameMangler::mangleModuleName(const NamedDecl *ND) {
1051   if (ND->isExternallyVisible())
1052     if (Module *M = ND->getOwningModuleForLinkage())
1053       mangleModuleNamePrefix(M->getPrimaryModuleInterfaceName());
1054 }
1055 
1056 // <module-name> ::= <module-subname>
1057 //		 ::= <module-name> <module-subname>
1058 //	 	 ::= <substitution>
1059 // <module-subname> ::= W <source-name>
1060 //		    ::= W P <source-name>
1061 void CXXNameMangler::mangleModuleNamePrefix(StringRef Name, bool IsPartition) {
1062   //  <substitution> ::= S <seq-id> _
1063   auto It = ModuleSubstitutions.find(Name);
1064   if (It != ModuleSubstitutions.end()) {
1065     Out << 'S';
1066     mangleSeqID(It->second);
1067     return;
1068   }
1069 
1070   // FIXME: Preserve hierarchy in module names rather than flattening
1071   // them to strings; use Module*s as substitution keys.
1072   auto Parts = Name.rsplit('.');
1073   if (Parts.second.empty())
1074     Parts.second = Parts.first;
1075   else {
1076     mangleModuleNamePrefix(Parts.first, IsPartition);
1077     IsPartition = false;
1078   }
1079 
1080   Out << 'W';
1081   if (IsPartition)
1082     Out << 'P';
1083   Out << Parts.second.size() << Parts.second;
1084   ModuleSubstitutions.insert({Name, SeqID++});
1085 }
1086 
1087 void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD,
1088                                         ArrayRef<TemplateArgument> Args) {
1089   const DeclContext *DC = Context.getEffectiveDeclContext(TD);
1090 
1091   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
1092     mangleUnscopedTemplateName(TD, DC, nullptr);
1093     mangleTemplateArgs(asTemplateName(TD), Args);
1094   } else {
1095     mangleNestedName(TD, Args);
1096   }
1097 }
1098 
1099 void CXXNameMangler::mangleUnscopedName(GlobalDecl GD, const DeclContext *DC,
1100                                         const AbiTagList *AdditionalAbiTags) {
1101   //  <unscoped-name> ::= <unqualified-name>
1102   //                  ::= St <unqualified-name>   # ::std::
1103 
1104   assert(!isa<LinkageSpecDecl>(DC) && "unskipped LinkageSpecDecl");
1105   if (isStdNamespace(DC))
1106     Out << "St";
1107 
1108   mangleUnqualifiedName(GD, DC, AdditionalAbiTags);
1109 }
1110 
1111 void CXXNameMangler::mangleUnscopedTemplateName(
1112     GlobalDecl GD, const DeclContext *DC, const AbiTagList *AdditionalAbiTags) {
1113   const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl());
1114   //     <unscoped-template-name> ::= <unscoped-name>
1115   //                              ::= <substitution>
1116   if (mangleSubstitution(ND))
1117     return;
1118 
1119   // <template-template-param> ::= <template-param>
1120   if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1121     assert(!AdditionalAbiTags &&
1122            "template template param cannot have abi tags");
1123     mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
1124   } else if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND)) {
1125     mangleUnscopedName(GD, DC, AdditionalAbiTags);
1126   } else {
1127     mangleUnscopedName(GD.getWithDecl(ND->getTemplatedDecl()), DC,
1128                        AdditionalAbiTags);
1129   }
1130 
1131   addSubstitution(ND);
1132 }
1133 
1134 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
1135   // ABI:
1136   //   Floating-point literals are encoded using a fixed-length
1137   //   lowercase hexadecimal string corresponding to the internal
1138   //   representation (IEEE on Itanium), high-order bytes first,
1139   //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
1140   //   on Itanium.
1141   // The 'without leading zeroes' thing seems to be an editorial
1142   // mistake; see the discussion on cxx-abi-dev beginning on
1143   // 2012-01-16.
1144 
1145   // Our requirements here are just barely weird enough to justify
1146   // using a custom algorithm instead of post-processing APInt::toString().
1147 
1148   llvm::APInt valueBits = f.bitcastToAPInt();
1149   unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
1150   assert(numCharacters != 0);
1151 
1152   // Allocate a buffer of the right number of characters.
1153   SmallVector<char, 20> buffer(numCharacters);
1154 
1155   // Fill the buffer left-to-right.
1156   for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
1157     // The bit-index of the next hex digit.
1158     unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
1159 
1160     // Project out 4 bits starting at 'digitIndex'.
1161     uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64];
1162     hexDigit >>= (digitBitIndex % 64);
1163     hexDigit &= 0xF;
1164 
1165     // Map that over to a lowercase hex digit.
1166     static const char charForHex[16] = {
1167       '0', '1', '2', '3', '4', '5', '6', '7',
1168       '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
1169     };
1170     buffer[stringIndex] = charForHex[hexDigit];
1171   }
1172 
1173   Out.write(buffer.data(), numCharacters);
1174 }
1175 
1176 void CXXNameMangler::mangleFloatLiteral(QualType T, const llvm::APFloat &V) {
1177   Out << 'L';
1178   mangleType(T);
1179   mangleFloat(V);
1180   Out << 'E';
1181 }
1182 
1183 void CXXNameMangler::mangleFixedPointLiteral() {
1184   DiagnosticsEngine &Diags = Context.getDiags();
1185   unsigned DiagID = Diags.getCustomDiagID(
1186       DiagnosticsEngine::Error, "cannot mangle fixed point literals yet");
1187   Diags.Report(DiagID);
1188 }
1189 
1190 void CXXNameMangler::mangleNullPointer(QualType T) {
1191   //  <expr-primary> ::= L <type> 0 E
1192   Out << 'L';
1193   mangleType(T);
1194   Out << "0E";
1195 }
1196 
1197 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
1198   if (Value.isSigned() && Value.isNegative()) {
1199     Out << 'n';
1200     Value.abs().print(Out, /*signed*/ false);
1201   } else {
1202     Value.print(Out, /*signed*/ false);
1203   }
1204 }
1205 
1206 void CXXNameMangler::mangleNumber(int64_t Number) {
1207   //  <number> ::= [n] <non-negative decimal integer>
1208   if (Number < 0) {
1209     Out << 'n';
1210     Number = -Number;
1211   }
1212 
1213   Out << Number;
1214 }
1215 
1216 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
1217   //  <call-offset>  ::= h <nv-offset> _
1218   //                 ::= v <v-offset> _
1219   //  <nv-offset>    ::= <offset number>        # non-virtual base override
1220   //  <v-offset>     ::= <offset number> _ <virtual offset number>
1221   //                      # virtual base override, with vcall offset
1222   if (!Virtual) {
1223     Out << 'h';
1224     mangleNumber(NonVirtual);
1225     Out << '_';
1226     return;
1227   }
1228 
1229   Out << 'v';
1230   mangleNumber(NonVirtual);
1231   Out << '_';
1232   mangleNumber(Virtual);
1233   Out << '_';
1234 }
1235 
1236 void CXXNameMangler::manglePrefix(QualType type) {
1237   if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
1238     if (!mangleSubstitution(QualType(TST, 0))) {
1239       mangleTemplatePrefix(TST->getTemplateName());
1240 
1241       // FIXME: GCC does not appear to mangle the template arguments when
1242       // the template in question is a dependent template name. Should we
1243       // emulate that badness?
1244       mangleTemplateArgs(TST->getTemplateName(), TST->template_arguments());
1245       addSubstitution(QualType(TST, 0));
1246     }
1247   } else if (const auto *DTST =
1248                  type->getAs<DependentTemplateSpecializationType>()) {
1249     if (!mangleSubstitution(QualType(DTST, 0))) {
1250       TemplateName Template = getASTContext().getDependentTemplateName(
1251           DTST->getQualifier(), DTST->getIdentifier());
1252       mangleTemplatePrefix(Template);
1253 
1254       // FIXME: GCC does not appear to mangle the template arguments when
1255       // the template in question is a dependent template name. Should we
1256       // emulate that badness?
1257       mangleTemplateArgs(Template, DTST->template_arguments());
1258       addSubstitution(QualType(DTST, 0));
1259     }
1260   } else {
1261     // We use the QualType mangle type variant here because it handles
1262     // substitutions.
1263     mangleType(type);
1264   }
1265 }
1266 
1267 /// Mangle everything prior to the base-unresolved-name in an unresolved-name.
1268 ///
1269 /// \param recursive - true if this is being called recursively,
1270 ///   i.e. if there is more prefix "to the right".
1271 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
1272                                             bool recursive) {
1273 
1274   // x, ::x
1275   // <unresolved-name> ::= [gs] <base-unresolved-name>
1276 
1277   // T::x / decltype(p)::x
1278   // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
1279 
1280   // T::N::x /decltype(p)::N::x
1281   // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
1282   //                       <base-unresolved-name>
1283 
1284   // A::x, N::y, A<T>::z; "gs" means leading "::"
1285   // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
1286   //                       <base-unresolved-name>
1287 
1288   switch (qualifier->getKind()) {
1289   case NestedNameSpecifier::Global:
1290     Out << "gs";
1291 
1292     // We want an 'sr' unless this is the entire NNS.
1293     if (recursive)
1294       Out << "sr";
1295 
1296     // We never want an 'E' here.
1297     return;
1298 
1299   case NestedNameSpecifier::Super:
1300     llvm_unreachable("Can't mangle __super specifier");
1301 
1302   case NestedNameSpecifier::Namespace:
1303     if (qualifier->getPrefix())
1304       mangleUnresolvedPrefix(qualifier->getPrefix(),
1305                              /*recursive*/ true);
1306     else
1307       Out << "sr";
1308     mangleSourceNameWithAbiTags(qualifier->getAsNamespace());
1309     break;
1310   case NestedNameSpecifier::NamespaceAlias:
1311     if (qualifier->getPrefix())
1312       mangleUnresolvedPrefix(qualifier->getPrefix(),
1313                              /*recursive*/ true);
1314     else
1315       Out << "sr";
1316     mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias());
1317     break;
1318 
1319   case NestedNameSpecifier::TypeSpec:
1320   case NestedNameSpecifier::TypeSpecWithTemplate: {
1321     const Type *type = qualifier->getAsType();
1322 
1323     // We only want to use an unresolved-type encoding if this is one of:
1324     //   - a decltype
1325     //   - a template type parameter
1326     //   - a template template parameter with arguments
1327     // In all of these cases, we should have no prefix.
1328     if (qualifier->getPrefix()) {
1329       mangleUnresolvedPrefix(qualifier->getPrefix(),
1330                              /*recursive*/ true);
1331     } else {
1332       // Otherwise, all the cases want this.
1333       Out << "sr";
1334     }
1335 
1336     if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
1337       return;
1338 
1339     break;
1340   }
1341 
1342   case NestedNameSpecifier::Identifier:
1343     // Member expressions can have these without prefixes.
1344     if (qualifier->getPrefix())
1345       mangleUnresolvedPrefix(qualifier->getPrefix(),
1346                              /*recursive*/ true);
1347     else
1348       Out << "sr";
1349 
1350     mangleSourceName(qualifier->getAsIdentifier());
1351     // An Identifier has no type information, so we can't emit abi tags for it.
1352     break;
1353   }
1354 
1355   // If this was the innermost part of the NNS, and we fell out to
1356   // here, append an 'E'.
1357   if (!recursive)
1358     Out << 'E';
1359 }
1360 
1361 /// Mangle an unresolved-name, which is generally used for names which
1362 /// weren't resolved to specific entities.
1363 void CXXNameMangler::mangleUnresolvedName(
1364     NestedNameSpecifier *qualifier, DeclarationName name,
1365     const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs,
1366     unsigned knownArity) {
1367   if (qualifier) mangleUnresolvedPrefix(qualifier);
1368   switch (name.getNameKind()) {
1369     // <base-unresolved-name> ::= <simple-id>
1370     case DeclarationName::Identifier:
1371       mangleSourceName(name.getAsIdentifierInfo());
1372       break;
1373     // <base-unresolved-name> ::= dn <destructor-name>
1374     case DeclarationName::CXXDestructorName:
1375       Out << "dn";
1376       mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
1377       break;
1378     // <base-unresolved-name> ::= on <operator-name>
1379     case DeclarationName::CXXConversionFunctionName:
1380     case DeclarationName::CXXLiteralOperatorName:
1381     case DeclarationName::CXXOperatorName:
1382       Out << "on";
1383       mangleOperatorName(name, knownArity);
1384       break;
1385     case DeclarationName::CXXConstructorName:
1386       llvm_unreachable("Can't mangle a constructor name!");
1387     case DeclarationName::CXXUsingDirective:
1388       llvm_unreachable("Can't mangle a using directive name!");
1389     case DeclarationName::CXXDeductionGuideName:
1390       llvm_unreachable("Can't mangle a deduction guide name!");
1391     case DeclarationName::ObjCMultiArgSelector:
1392     case DeclarationName::ObjCOneArgSelector:
1393     case DeclarationName::ObjCZeroArgSelector:
1394       llvm_unreachable("Can't mangle Objective-C selector names here!");
1395   }
1396 
1397   // The <simple-id> and on <operator-name> productions end in an optional
1398   // <template-args>.
1399   if (TemplateArgs)
1400     mangleTemplateArgs(TemplateName(), TemplateArgs, NumTemplateArgs);
1401 }
1402 
1403 void CXXNameMangler::mangleUnqualifiedName(
1404     GlobalDecl GD, DeclarationName Name, const DeclContext *DC,
1405     unsigned KnownArity, const AbiTagList *AdditionalAbiTags) {
1406   const NamedDecl *ND = cast_or_null<NamedDecl>(GD.getDecl());
1407   //  <unqualified-name> ::= [<module-name>] <operator-name>
1408   //                     ::= <ctor-dtor-name>
1409   //                     ::= [<module-name>] <source-name>
1410   //                     ::= [<module-name>] DC <source-name>* E
1411 
1412   if (ND && DC && DC->isFileContext())
1413     mangleModuleName(ND);
1414 
1415   unsigned Arity = KnownArity;
1416   switch (Name.getNameKind()) {
1417   case DeclarationName::Identifier: {
1418     const IdentifierInfo *II = Name.getAsIdentifierInfo();
1419 
1420     // We mangle decomposition declarations as the names of their bindings.
1421     if (auto *DD = dyn_cast<DecompositionDecl>(ND)) {
1422       // FIXME: Non-standard mangling for decomposition declarations:
1423       //
1424       //  <unqualified-name> ::= DC <source-name>* E
1425       //
1426       // Proposed on cxx-abi-dev on 2016-08-12
1427       Out << "DC";
1428       for (auto *BD : DD->bindings())
1429         mangleSourceName(BD->getDeclName().getAsIdentifierInfo());
1430       Out << 'E';
1431       writeAbiTags(ND, AdditionalAbiTags);
1432       break;
1433     }
1434 
1435     if (auto *GD = dyn_cast<MSGuidDecl>(ND)) {
1436       // We follow MSVC in mangling GUID declarations as if they were variables
1437       // with a particular reserved name. Continue the pretense here.
1438       SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID;
1439       llvm::raw_svector_ostream GUIDOS(GUID);
1440       Context.mangleMSGuidDecl(GD, GUIDOS);
1441       Out << GUID.size() << GUID;
1442       break;
1443     }
1444 
1445     if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
1446       // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63.
1447       Out << "TA";
1448       mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(),
1449                                TPO->getValue(), /*TopLevel=*/true);
1450       break;
1451     }
1452 
1453     if (II) {
1454       // Match GCC's naming convention for internal linkage symbols, for
1455       // symbols that are not actually visible outside of this TU. GCC
1456       // distinguishes between internal and external linkage symbols in
1457       // its mangling, to support cases like this that were valid C++ prior
1458       // to DR426:
1459       //
1460       //   void test() { extern void foo(); }
1461       //   static void foo();
1462       //
1463       // Don't bother with the L marker for names in anonymous namespaces; the
1464       // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better
1465       // matches GCC anyway, because GCC does not treat anonymous namespaces as
1466       // implying internal linkage.
1467       if (Context.isInternalLinkageDecl(ND))
1468         Out << 'L';
1469 
1470       auto *FD = dyn_cast<FunctionDecl>(ND);
1471       bool IsRegCall = FD &&
1472                        FD->getType()->castAs<FunctionType>()->getCallConv() ==
1473                            clang::CC_X86RegCall;
1474       bool IsDeviceStub =
1475           FD && FD->hasAttr<CUDAGlobalAttr>() &&
1476           GD.getKernelReferenceKind() == KernelReferenceKind::Stub;
1477       if (IsDeviceStub)
1478         mangleDeviceStubName(II);
1479       else if (IsRegCall)
1480         mangleRegCallName(II);
1481       else
1482         mangleSourceName(II);
1483 
1484       writeAbiTags(ND, AdditionalAbiTags);
1485       break;
1486     }
1487 
1488     // Otherwise, an anonymous entity.  We must have a declaration.
1489     assert(ND && "mangling empty name without declaration");
1490 
1491     if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1492       if (NS->isAnonymousNamespace()) {
1493         // This is how gcc mangles these names.
1494         Out << "12_GLOBAL__N_1";
1495         break;
1496       }
1497     }
1498 
1499     if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1500       // We must have an anonymous union or struct declaration.
1501       const RecordDecl *RD = VD->getType()->castAs<RecordType>()->getDecl();
1502 
1503       // Itanium C++ ABI 5.1.2:
1504       //
1505       //   For the purposes of mangling, the name of an anonymous union is
1506       //   considered to be the name of the first named data member found by a
1507       //   pre-order, depth-first, declaration-order walk of the data members of
1508       //   the anonymous union. If there is no such data member (i.e., if all of
1509       //   the data members in the union are unnamed), then there is no way for
1510       //   a program to refer to the anonymous union, and there is therefore no
1511       //   need to mangle its name.
1512       assert(RD->isAnonymousStructOrUnion()
1513              && "Expected anonymous struct or union!");
1514       const FieldDecl *FD = RD->findFirstNamedDataMember();
1515 
1516       // It's actually possible for various reasons for us to get here
1517       // with an empty anonymous struct / union.  Fortunately, it
1518       // doesn't really matter what name we generate.
1519       if (!FD) break;
1520       assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1521 
1522       mangleSourceName(FD->getIdentifier());
1523       // Not emitting abi tags: internal name anyway.
1524       break;
1525     }
1526 
1527     // Class extensions have no name as a category, and it's possible
1528     // for them to be the semantic parent of certain declarations
1529     // (primarily, tag decls defined within declarations).  Such
1530     // declarations will always have internal linkage, so the name
1531     // doesn't really matter, but we shouldn't crash on them.  For
1532     // safety, just handle all ObjC containers here.
1533     if (isa<ObjCContainerDecl>(ND))
1534       break;
1535 
1536     // We must have an anonymous struct.
1537     const TagDecl *TD = cast<TagDecl>(ND);
1538     if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1539       assert(TD->getDeclContext() == D->getDeclContext() &&
1540              "Typedef should not be in another decl context!");
1541       assert(D->getDeclName().getAsIdentifierInfo() &&
1542              "Typedef was not named!");
1543       mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1544       assert(!AdditionalAbiTags && "Type cannot have additional abi tags");
1545       // Explicit abi tags are still possible; take from underlying type, not
1546       // from typedef.
1547       writeAbiTags(TD, nullptr);
1548       break;
1549     }
1550 
1551     // <unnamed-type-name> ::= <closure-type-name>
1552     //
1553     // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1554     // <lambda-sig> ::= <template-param-decl>* <parameter-type>+
1555     //     # Parameter types or 'v' for 'void'.
1556     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1557       std::optional<unsigned> DeviceNumber =
1558           Context.getDiscriminatorOverride()(Context.getASTContext(), Record);
1559 
1560       // If we have a device-number via the discriminator, use that to mangle
1561       // the lambda, otherwise use the typical lambda-mangling-number. In either
1562       // case, a '0' should be mangled as a normal unnamed class instead of as a
1563       // lambda.
1564       if (Record->isLambda() &&
1565           ((DeviceNumber && *DeviceNumber > 0) ||
1566            (!DeviceNumber && Record->getLambdaManglingNumber() > 0))) {
1567         assert(!AdditionalAbiTags &&
1568                "Lambda type cannot have additional abi tags");
1569         mangleLambda(Record);
1570         break;
1571       }
1572     }
1573 
1574     if (TD->isExternallyVisible()) {
1575       unsigned UnnamedMangle =
1576           getASTContext().getManglingNumber(TD, Context.isAux());
1577       Out << "Ut";
1578       if (UnnamedMangle > 1)
1579         Out << UnnamedMangle - 2;
1580       Out << '_';
1581       writeAbiTags(TD, AdditionalAbiTags);
1582       break;
1583     }
1584 
1585     // Get a unique id for the anonymous struct. If it is not a real output
1586     // ID doesn't matter so use fake one.
1587     unsigned AnonStructId =
1588         NullOut ? 0
1589                 : Context.getAnonymousStructId(TD, dyn_cast<FunctionDecl>(DC));
1590 
1591     // Mangle it as a source name in the form
1592     // [n] $_<id>
1593     // where n is the length of the string.
1594     SmallString<8> Str;
1595     Str += "$_";
1596     Str += llvm::utostr(AnonStructId);
1597 
1598     Out << Str.size();
1599     Out << Str;
1600     break;
1601   }
1602 
1603   case DeclarationName::ObjCZeroArgSelector:
1604   case DeclarationName::ObjCOneArgSelector:
1605   case DeclarationName::ObjCMultiArgSelector:
1606     llvm_unreachable("Can't mangle Objective-C selector names here!");
1607 
1608   case DeclarationName::CXXConstructorName: {
1609     const CXXRecordDecl *InheritedFrom = nullptr;
1610     TemplateName InheritedTemplateName;
1611     const TemplateArgumentList *InheritedTemplateArgs = nullptr;
1612     if (auto Inherited =
1613             cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) {
1614       InheritedFrom = Inherited.getConstructor()->getParent();
1615       InheritedTemplateName =
1616           TemplateName(Inherited.getConstructor()->getPrimaryTemplate());
1617       InheritedTemplateArgs =
1618           Inherited.getConstructor()->getTemplateSpecializationArgs();
1619     }
1620 
1621     if (ND == Structor)
1622       // If the named decl is the C++ constructor we're mangling, use the type
1623       // we were given.
1624       mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom);
1625     else
1626       // Otherwise, use the complete constructor name. This is relevant if a
1627       // class with a constructor is declared within a constructor.
1628       mangleCXXCtorType(Ctor_Complete, InheritedFrom);
1629 
1630     // FIXME: The template arguments are part of the enclosing prefix or
1631     // nested-name, but it's more convenient to mangle them here.
1632     if (InheritedTemplateArgs)
1633       mangleTemplateArgs(InheritedTemplateName, *InheritedTemplateArgs);
1634 
1635     writeAbiTags(ND, AdditionalAbiTags);
1636     break;
1637   }
1638 
1639   case DeclarationName::CXXDestructorName:
1640     if (ND == Structor)
1641       // If the named decl is the C++ destructor we're mangling, use the type we
1642       // were given.
1643       mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1644     else
1645       // Otherwise, use the complete destructor name. This is relevant if a
1646       // class with a destructor is declared within a destructor.
1647       mangleCXXDtorType(Dtor_Complete);
1648     writeAbiTags(ND, AdditionalAbiTags);
1649     break;
1650 
1651   case DeclarationName::CXXOperatorName:
1652     if (ND && Arity == UnknownArity) {
1653       Arity = cast<FunctionDecl>(ND)->getNumParams();
1654 
1655       // If we have a member function, we need to include the 'this' pointer.
1656       if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
1657         if (!MD->isStatic())
1658           Arity++;
1659     }
1660     [[fallthrough]];
1661   case DeclarationName::CXXConversionFunctionName:
1662   case DeclarationName::CXXLiteralOperatorName:
1663     mangleOperatorName(Name, Arity);
1664     writeAbiTags(ND, AdditionalAbiTags);
1665     break;
1666 
1667   case DeclarationName::CXXDeductionGuideName:
1668     llvm_unreachable("Can't mangle a deduction guide name!");
1669 
1670   case DeclarationName::CXXUsingDirective:
1671     llvm_unreachable("Can't mangle a using directive name!");
1672   }
1673 }
1674 
1675 void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) {
1676   // <source-name> ::= <positive length number> __regcall3__ <identifier>
1677   // <number> ::= [n] <non-negative decimal integer>
1678   // <identifier> ::= <unqualified source code identifier>
1679   Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__"
1680       << II->getName();
1681 }
1682 
1683 void CXXNameMangler::mangleDeviceStubName(const IdentifierInfo *II) {
1684   // <source-name> ::= <positive length number> __device_stub__ <identifier>
1685   // <number> ::= [n] <non-negative decimal integer>
1686   // <identifier> ::= <unqualified source code identifier>
1687   Out << II->getLength() + sizeof("__device_stub__") - 1 << "__device_stub__"
1688       << II->getName();
1689 }
1690 
1691 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1692   // <source-name> ::= <positive length number> <identifier>
1693   // <number> ::= [n] <non-negative decimal integer>
1694   // <identifier> ::= <unqualified source code identifier>
1695   Out << II->getLength() << II->getName();
1696 }
1697 
1698 void CXXNameMangler::mangleNestedName(GlobalDecl GD,
1699                                       const DeclContext *DC,
1700                                       const AbiTagList *AdditionalAbiTags,
1701                                       bool NoFunction) {
1702   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
1703   // <nested-name>
1704   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1705   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1706   //       <template-args> E
1707 
1708   Out << 'N';
1709   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1710     Qualifiers MethodQuals = Method->getMethodQualifiers();
1711     // We do not consider restrict a distinguishing attribute for overloading
1712     // purposes so we must not mangle it.
1713     MethodQuals.removeRestrict();
1714     mangleQualifiers(MethodQuals);
1715     mangleRefQualifier(Method->getRefQualifier());
1716   }
1717 
1718   // Check if we have a template.
1719   const TemplateArgumentList *TemplateArgs = nullptr;
1720   if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
1721     mangleTemplatePrefix(TD, NoFunction);
1722     mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
1723   } else {
1724     manglePrefix(DC, NoFunction);
1725     mangleUnqualifiedName(GD, DC, AdditionalAbiTags);
1726   }
1727 
1728   Out << 'E';
1729 }
1730 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1731                                       ArrayRef<TemplateArgument> Args) {
1732   // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1733 
1734   Out << 'N';
1735 
1736   mangleTemplatePrefix(TD);
1737   mangleTemplateArgs(asTemplateName(TD), Args);
1738 
1739   Out << 'E';
1740 }
1741 
1742 void CXXNameMangler::mangleNestedNameWithClosurePrefix(
1743     GlobalDecl GD, const NamedDecl *PrefixND,
1744     const AbiTagList *AdditionalAbiTags) {
1745   // A <closure-prefix> represents a variable or field, not a regular
1746   // DeclContext, so needs special handling. In this case we're mangling a
1747   // limited form of <nested-name>:
1748   //
1749   // <nested-name> ::= N <closure-prefix> <closure-type-name> E
1750 
1751   Out << 'N';
1752 
1753   mangleClosurePrefix(PrefixND);
1754   mangleUnqualifiedName(GD, nullptr, AdditionalAbiTags);
1755 
1756   Out << 'E';
1757 }
1758 
1759 static GlobalDecl getParentOfLocalEntity(const DeclContext *DC) {
1760   GlobalDecl GD;
1761   // The Itanium spec says:
1762   // For entities in constructors and destructors, the mangling of the
1763   // complete object constructor or destructor is used as the base function
1764   // name, i.e. the C1 or D1 version.
1765   if (auto *CD = dyn_cast<CXXConstructorDecl>(DC))
1766     GD = GlobalDecl(CD, Ctor_Complete);
1767   else if (auto *DD = dyn_cast<CXXDestructorDecl>(DC))
1768     GD = GlobalDecl(DD, Dtor_Complete);
1769   else
1770     GD = GlobalDecl(cast<FunctionDecl>(DC));
1771   return GD;
1772 }
1773 
1774 void CXXNameMangler::mangleLocalName(GlobalDecl GD,
1775                                      const AbiTagList *AdditionalAbiTags) {
1776   const Decl *D = GD.getDecl();
1777   // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1778   //              := Z <function encoding> E s [<discriminator>]
1779   // <local-name> := Z <function encoding> E d [ <parameter number> ]
1780   //                 _ <entity name>
1781   // <discriminator> := _ <non-negative number>
1782   assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1783   const RecordDecl *RD = GetLocalClassDecl(D);
1784   const DeclContext *DC = Context.getEffectiveDeclContext(RD ? RD : D);
1785 
1786   Out << 'Z';
1787 
1788   {
1789     AbiTagState LocalAbiTags(AbiTags);
1790 
1791     if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1792       mangleObjCMethodName(MD);
1793     else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1794       mangleBlockForPrefix(BD);
1795     else
1796       mangleFunctionEncoding(getParentOfLocalEntity(DC));
1797 
1798     // Implicit ABI tags (from namespace) are not available in the following
1799     // entity; reset to actually emitted tags, which are available.
1800     LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags());
1801   }
1802 
1803   Out << 'E';
1804 
1805   // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
1806   // be a bug that is fixed in trunk.
1807 
1808   if (RD) {
1809     // The parameter number is omitted for the last parameter, 0 for the
1810     // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1811     // <entity name> will of course contain a <closure-type-name>: Its
1812     // numbering will be local to the particular argument in which it appears
1813     // -- other default arguments do not affect its encoding.
1814     const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1815     if (CXXRD && CXXRD->isLambda()) {
1816       if (const ParmVarDecl *Parm
1817               = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1818         if (const FunctionDecl *Func
1819               = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1820           Out << 'd';
1821           unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1822           if (Num > 1)
1823             mangleNumber(Num - 2);
1824           Out << '_';
1825         }
1826       }
1827     }
1828 
1829     // Mangle the name relative to the closest enclosing function.
1830     // equality ok because RD derived from ND above
1831     if (D == RD)  {
1832       mangleUnqualifiedName(RD, DC, AdditionalAbiTags);
1833     } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1834       if (const NamedDecl *PrefixND = getClosurePrefix(BD))
1835         mangleClosurePrefix(PrefixND, true /*NoFunction*/);
1836       else
1837         manglePrefix(Context.getEffectiveDeclContext(BD), true /*NoFunction*/);
1838       assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1839       mangleUnqualifiedBlock(BD);
1840     } else {
1841       const NamedDecl *ND = cast<NamedDecl>(D);
1842       mangleNestedName(GD, Context.getEffectiveDeclContext(ND),
1843                        AdditionalAbiTags, true /*NoFunction*/);
1844     }
1845   } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1846     // Mangle a block in a default parameter; see above explanation for
1847     // lambdas.
1848     if (const ParmVarDecl *Parm
1849             = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1850       if (const FunctionDecl *Func
1851             = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1852         Out << 'd';
1853         unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1854         if (Num > 1)
1855           mangleNumber(Num - 2);
1856         Out << '_';
1857       }
1858     }
1859 
1860     assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1861     mangleUnqualifiedBlock(BD);
1862   } else {
1863     mangleUnqualifiedName(GD, DC, AdditionalAbiTags);
1864   }
1865 
1866   if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1867     unsigned disc;
1868     if (Context.getNextDiscriminator(ND, disc)) {
1869       if (disc < 10)
1870         Out << '_' << disc;
1871       else
1872         Out << "__" << disc << '_';
1873     }
1874   }
1875 }
1876 
1877 void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1878   if (GetLocalClassDecl(Block)) {
1879     mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1880     return;
1881   }
1882   const DeclContext *DC = Context.getEffectiveDeclContext(Block);
1883   if (isLocalContainerContext(DC)) {
1884     mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1885     return;
1886   }
1887   if (const NamedDecl *PrefixND = getClosurePrefix(Block))
1888     mangleClosurePrefix(PrefixND);
1889   else
1890     manglePrefix(DC);
1891   mangleUnqualifiedBlock(Block);
1892 }
1893 
1894 void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1895   // When trying to be ABI-compatibility with clang 12 and before, mangle a
1896   // <data-member-prefix> now, with no substitutions and no <template-args>.
1897   if (Decl *Context = Block->getBlockManglingContextDecl()) {
1898     if (getASTContext().getLangOpts().getClangABICompat() <=
1899             LangOptions::ClangABI::Ver12 &&
1900         (isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1901         Context->getDeclContext()->isRecord()) {
1902       const auto *ND = cast<NamedDecl>(Context);
1903       if (ND->getIdentifier()) {
1904         mangleSourceNameWithAbiTags(ND);
1905         Out << 'M';
1906       }
1907     }
1908   }
1909 
1910   // If we have a block mangling number, use it.
1911   unsigned Number = Block->getBlockManglingNumber();
1912   // Otherwise, just make up a number. It doesn't matter what it is because
1913   // the symbol in question isn't externally visible.
1914   if (!Number)
1915     Number = Context.getBlockId(Block, false);
1916   else {
1917     // Stored mangling numbers are 1-based.
1918     --Number;
1919   }
1920   Out << "Ub";
1921   if (Number > 0)
1922     Out << Number - 1;
1923   Out << '_';
1924 }
1925 
1926 // <template-param-decl>
1927 //   ::= Ty                              # template type parameter
1928 //   ::= Tn <type>                       # template non-type parameter
1929 //   ::= Tt <template-param-decl>* E     # template template parameter
1930 //   ::= Tp <template-param-decl>        # template parameter pack
1931 void CXXNameMangler::mangleTemplateParamDecl(const NamedDecl *Decl) {
1932   if (auto *Ty = dyn_cast<TemplateTypeParmDecl>(Decl)) {
1933     if (Ty->isParameterPack())
1934       Out << "Tp";
1935     Out << "Ty";
1936   } else if (auto *Tn = dyn_cast<NonTypeTemplateParmDecl>(Decl)) {
1937     if (Tn->isExpandedParameterPack()) {
1938       for (unsigned I = 0, N = Tn->getNumExpansionTypes(); I != N; ++I) {
1939         Out << "Tn";
1940         mangleType(Tn->getExpansionType(I));
1941       }
1942     } else {
1943       QualType T = Tn->getType();
1944       if (Tn->isParameterPack()) {
1945         Out << "Tp";
1946         if (auto *PackExpansion = T->getAs<PackExpansionType>())
1947           T = PackExpansion->getPattern();
1948       }
1949       Out << "Tn";
1950       mangleType(T);
1951     }
1952   } else if (auto *Tt = dyn_cast<TemplateTemplateParmDecl>(Decl)) {
1953     if (Tt->isExpandedParameterPack()) {
1954       for (unsigned I = 0, N = Tt->getNumExpansionTemplateParameters(); I != N;
1955            ++I) {
1956         Out << "Tt";
1957         for (auto *Param : *Tt->getExpansionTemplateParameters(I))
1958           mangleTemplateParamDecl(Param);
1959         Out << "E";
1960       }
1961     } else {
1962       if (Tt->isParameterPack())
1963         Out << "Tp";
1964       Out << "Tt";
1965       for (auto *Param : *Tt->getTemplateParameters())
1966         mangleTemplateParamDecl(Param);
1967       Out << "E";
1968     }
1969   }
1970 }
1971 
1972 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1973   // When trying to be ABI-compatibility with clang 12 and before, mangle a
1974   // <data-member-prefix> now, with no substitutions.
1975   if (Decl *Context = Lambda->getLambdaContextDecl()) {
1976     if (getASTContext().getLangOpts().getClangABICompat() <=
1977             LangOptions::ClangABI::Ver12 &&
1978         (isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1979         !isa<ParmVarDecl>(Context)) {
1980       if (const IdentifierInfo *Name
1981             = cast<NamedDecl>(Context)->getIdentifier()) {
1982         mangleSourceName(Name);
1983         const TemplateArgumentList *TemplateArgs = nullptr;
1984         if (GlobalDecl TD = isTemplate(cast<NamedDecl>(Context), TemplateArgs))
1985           mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
1986         Out << 'M';
1987       }
1988     }
1989   }
1990 
1991   Out << "Ul";
1992   mangleLambdaSig(Lambda);
1993   Out << "E";
1994 
1995   // The number is omitted for the first closure type with a given
1996   // <lambda-sig> in a given context; it is n-2 for the nth closure type
1997   // (in lexical order) with that same <lambda-sig> and context.
1998   //
1999   // The AST keeps track of the number for us.
2000   //
2001   // In CUDA/HIP, to ensure the consistent lamba numbering between the device-
2002   // and host-side compilations, an extra device mangle context may be created
2003   // if the host-side CXX ABI has different numbering for lambda. In such case,
2004   // if the mangle context is that device-side one, use the device-side lambda
2005   // mangling number for this lambda.
2006   std::optional<unsigned> DeviceNumber =
2007       Context.getDiscriminatorOverride()(Context.getASTContext(), Lambda);
2008   unsigned Number =
2009       DeviceNumber ? *DeviceNumber : Lambda->getLambdaManglingNumber();
2010 
2011   assert(Number > 0 && "Lambda should be mangled as an unnamed class");
2012   if (Number > 1)
2013     mangleNumber(Number - 2);
2014   Out << '_';
2015 }
2016 
2017 void CXXNameMangler::mangleLambdaSig(const CXXRecordDecl *Lambda) {
2018   for (auto *D : Lambda->getLambdaExplicitTemplateParameters())
2019     mangleTemplateParamDecl(D);
2020   auto *Proto =
2021       Lambda->getLambdaTypeInfo()->getType()->castAs<FunctionProtoType>();
2022   mangleBareFunctionType(Proto, /*MangleReturnType=*/false,
2023                          Lambda->getLambdaStaticInvoker());
2024 }
2025 
2026 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
2027   switch (qualifier->getKind()) {
2028   case NestedNameSpecifier::Global:
2029     // nothing
2030     return;
2031 
2032   case NestedNameSpecifier::Super:
2033     llvm_unreachable("Can't mangle __super specifier");
2034 
2035   case NestedNameSpecifier::Namespace:
2036     mangleName(qualifier->getAsNamespace());
2037     return;
2038 
2039   case NestedNameSpecifier::NamespaceAlias:
2040     mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
2041     return;
2042 
2043   case NestedNameSpecifier::TypeSpec:
2044   case NestedNameSpecifier::TypeSpecWithTemplate:
2045     manglePrefix(QualType(qualifier->getAsType(), 0));
2046     return;
2047 
2048   case NestedNameSpecifier::Identifier:
2049     // Clang 14 and before did not consider this substitutable.
2050     bool Clang14Compat = getASTContext().getLangOpts().getClangABICompat() <=
2051                          LangOptions::ClangABI::Ver14;
2052     if (!Clang14Compat && mangleSubstitution(qualifier))
2053       return;
2054 
2055     // Member expressions can have these without prefixes, but that
2056     // should end up in mangleUnresolvedPrefix instead.
2057     assert(qualifier->getPrefix());
2058     manglePrefix(qualifier->getPrefix());
2059 
2060     mangleSourceName(qualifier->getAsIdentifier());
2061 
2062     if (!Clang14Compat)
2063       addSubstitution(qualifier);
2064     return;
2065   }
2066 
2067   llvm_unreachable("unexpected nested name specifier");
2068 }
2069 
2070 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
2071   //  <prefix> ::= <prefix> <unqualified-name>
2072   //           ::= <template-prefix> <template-args>
2073   //           ::= <closure-prefix>
2074   //           ::= <template-param>
2075   //           ::= # empty
2076   //           ::= <substitution>
2077 
2078   assert(!isa<LinkageSpecDecl>(DC) && "prefix cannot be LinkageSpecDecl");
2079 
2080   if (DC->isTranslationUnit())
2081     return;
2082 
2083   if (NoFunction && isLocalContainerContext(DC))
2084     return;
2085 
2086   assert(!isLocalContainerContext(DC));
2087 
2088   const NamedDecl *ND = cast<NamedDecl>(DC);
2089   if (mangleSubstitution(ND))
2090     return;
2091 
2092   // Check if we have a template-prefix or a closure-prefix.
2093   const TemplateArgumentList *TemplateArgs = nullptr;
2094   if (GlobalDecl TD = isTemplate(ND, TemplateArgs)) {
2095     mangleTemplatePrefix(TD);
2096     mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
2097   } else if (const NamedDecl *PrefixND = getClosurePrefix(ND)) {
2098     mangleClosurePrefix(PrefixND, NoFunction);
2099     mangleUnqualifiedName(ND, nullptr, nullptr);
2100   } else {
2101     const DeclContext *DC = Context.getEffectiveDeclContext(ND);
2102     manglePrefix(DC, NoFunction);
2103     mangleUnqualifiedName(ND, DC, nullptr);
2104   }
2105 
2106   addSubstitution(ND);
2107 }
2108 
2109 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
2110   // <template-prefix> ::= <prefix> <template unqualified-name>
2111   //                   ::= <template-param>
2112   //                   ::= <substitution>
2113   if (TemplateDecl *TD = Template.getAsTemplateDecl())
2114     return mangleTemplatePrefix(TD);
2115 
2116   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
2117   assert(Dependent && "unexpected template name kind");
2118 
2119   // Clang 11 and before mangled the substitution for a dependent template name
2120   // after already having emitted (a substitution for) the prefix.
2121   bool Clang11Compat = getASTContext().getLangOpts().getClangABICompat() <=
2122                        LangOptions::ClangABI::Ver11;
2123   if (!Clang11Compat && mangleSubstitution(Template))
2124     return;
2125 
2126   if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
2127     manglePrefix(Qualifier);
2128 
2129   if (Clang11Compat && mangleSubstitution(Template))
2130     return;
2131 
2132   if (const IdentifierInfo *Id = Dependent->getIdentifier())
2133     mangleSourceName(Id);
2134   else
2135     mangleOperatorName(Dependent->getOperator(), UnknownArity);
2136 
2137   addSubstitution(Template);
2138 }
2139 
2140 void CXXNameMangler::mangleTemplatePrefix(GlobalDecl GD,
2141                                           bool NoFunction) {
2142   const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl());
2143   // <template-prefix> ::= <prefix> <template unqualified-name>
2144   //                   ::= <template-param>
2145   //                   ::= <substitution>
2146   // <template-template-param> ::= <template-param>
2147   //                               <substitution>
2148 
2149   if (mangleSubstitution(ND))
2150     return;
2151 
2152   // <template-template-param> ::= <template-param>
2153   if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
2154     mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
2155   } else {
2156     const DeclContext *DC = Context.getEffectiveDeclContext(ND);
2157     manglePrefix(DC, NoFunction);
2158     if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND))
2159       mangleUnqualifiedName(GD, DC, nullptr);
2160     else
2161       mangleUnqualifiedName(GD.getWithDecl(ND->getTemplatedDecl()), DC,
2162                             nullptr);
2163   }
2164 
2165   addSubstitution(ND);
2166 }
2167 
2168 const NamedDecl *CXXNameMangler::getClosurePrefix(const Decl *ND) {
2169   if (getASTContext().getLangOpts().getClangABICompat() <=
2170       LangOptions::ClangABI::Ver12)
2171     return nullptr;
2172 
2173   const NamedDecl *Context = nullptr;
2174   if (auto *Block = dyn_cast<BlockDecl>(ND)) {
2175     Context = dyn_cast_or_null<NamedDecl>(Block->getBlockManglingContextDecl());
2176   } else if (auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
2177     if (RD->isLambda())
2178       Context = dyn_cast_or_null<NamedDecl>(RD->getLambdaContextDecl());
2179   }
2180   if (!Context)
2181     return nullptr;
2182 
2183   // Only lambdas within the initializer of a non-local variable or non-static
2184   // data member get a <closure-prefix>.
2185   if ((isa<VarDecl>(Context) && cast<VarDecl>(Context)->hasGlobalStorage()) ||
2186       isa<FieldDecl>(Context))
2187     return Context;
2188 
2189   return nullptr;
2190 }
2191 
2192 void CXXNameMangler::mangleClosurePrefix(const NamedDecl *ND, bool NoFunction) {
2193   //  <closure-prefix> ::= [ <prefix> ] <unqualified-name> M
2194   //                   ::= <template-prefix> <template-args> M
2195   if (mangleSubstitution(ND))
2196     return;
2197 
2198   const TemplateArgumentList *TemplateArgs = nullptr;
2199   if (GlobalDecl TD = isTemplate(ND, TemplateArgs)) {
2200     mangleTemplatePrefix(TD, NoFunction);
2201     mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
2202   } else {
2203     const auto *DC = Context.getEffectiveDeclContext(ND);
2204     manglePrefix(DC, NoFunction);
2205     mangleUnqualifiedName(ND, DC, nullptr);
2206   }
2207 
2208   Out << 'M';
2209 
2210   addSubstitution(ND);
2211 }
2212 
2213 /// Mangles a template name under the production <type>.  Required for
2214 /// template template arguments.
2215 ///   <type> ::= <class-enum-type>
2216 ///          ::= <template-param>
2217 ///          ::= <substitution>
2218 void CXXNameMangler::mangleType(TemplateName TN) {
2219   if (mangleSubstitution(TN))
2220     return;
2221 
2222   TemplateDecl *TD = nullptr;
2223 
2224   switch (TN.getKind()) {
2225   case TemplateName::QualifiedTemplate:
2226   case TemplateName::UsingTemplate:
2227   case TemplateName::Template:
2228     TD = TN.getAsTemplateDecl();
2229     goto HaveDecl;
2230 
2231   HaveDecl:
2232     if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TD))
2233       mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
2234     else
2235       mangleName(TD);
2236     break;
2237 
2238   case TemplateName::OverloadedTemplate:
2239   case TemplateName::AssumedTemplate:
2240     llvm_unreachable("can't mangle an overloaded template name as a <type>");
2241 
2242   case TemplateName::DependentTemplate: {
2243     const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
2244     assert(Dependent->isIdentifier());
2245 
2246     // <class-enum-type> ::= <name>
2247     // <name> ::= <nested-name>
2248     mangleUnresolvedPrefix(Dependent->getQualifier());
2249     mangleSourceName(Dependent->getIdentifier());
2250     break;
2251   }
2252 
2253   case TemplateName::SubstTemplateTemplateParm: {
2254     // Substituted template parameters are mangled as the substituted
2255     // template.  This will check for the substitution twice, which is
2256     // fine, but we have to return early so that we don't try to *add*
2257     // the substitution twice.
2258     SubstTemplateTemplateParmStorage *subst
2259       = TN.getAsSubstTemplateTemplateParm();
2260     mangleType(subst->getReplacement());
2261     return;
2262   }
2263 
2264   case TemplateName::SubstTemplateTemplateParmPack: {
2265     // FIXME: not clear how to mangle this!
2266     // template <template <class> class T...> class A {
2267     //   template <template <class> class U...> void foo(B<T,U> x...);
2268     // };
2269     Out << "_SUBSTPACK_";
2270     break;
2271   }
2272   }
2273 
2274   addSubstitution(TN);
2275 }
2276 
2277 bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
2278                                                     StringRef Prefix) {
2279   // Only certain other types are valid as prefixes;  enumerate them.
2280   switch (Ty->getTypeClass()) {
2281   case Type::Builtin:
2282   case Type::Complex:
2283   case Type::Adjusted:
2284   case Type::Decayed:
2285   case Type::Pointer:
2286   case Type::BlockPointer:
2287   case Type::LValueReference:
2288   case Type::RValueReference:
2289   case Type::MemberPointer:
2290   case Type::ConstantArray:
2291   case Type::IncompleteArray:
2292   case Type::VariableArray:
2293   case Type::DependentSizedArray:
2294   case Type::DependentAddressSpace:
2295   case Type::DependentVector:
2296   case Type::DependentSizedExtVector:
2297   case Type::Vector:
2298   case Type::ExtVector:
2299   case Type::ConstantMatrix:
2300   case Type::DependentSizedMatrix:
2301   case Type::FunctionProto:
2302   case Type::FunctionNoProto:
2303   case Type::Paren:
2304   case Type::Attributed:
2305   case Type::BTFTagAttributed:
2306   case Type::Auto:
2307   case Type::DeducedTemplateSpecialization:
2308   case Type::PackExpansion:
2309   case Type::ObjCObject:
2310   case Type::ObjCInterface:
2311   case Type::ObjCObjectPointer:
2312   case Type::ObjCTypeParam:
2313   case Type::Atomic:
2314   case Type::Pipe:
2315   case Type::MacroQualified:
2316   case Type::BitInt:
2317   case Type::DependentBitInt:
2318     llvm_unreachable("type is illegal as a nested name specifier");
2319 
2320   case Type::SubstTemplateTypeParmPack:
2321     // FIXME: not clear how to mangle this!
2322     // template <class T...> class A {
2323     //   template <class U...> void foo(decltype(T::foo(U())) x...);
2324     // };
2325     Out << "_SUBSTPACK_";
2326     break;
2327 
2328   // <unresolved-type> ::= <template-param>
2329   //                   ::= <decltype>
2330   //                   ::= <template-template-param> <template-args>
2331   // (this last is not official yet)
2332   case Type::TypeOfExpr:
2333   case Type::TypeOf:
2334   case Type::Decltype:
2335   case Type::TemplateTypeParm:
2336   case Type::UnaryTransform:
2337   case Type::SubstTemplateTypeParm:
2338   unresolvedType:
2339     // Some callers want a prefix before the mangled type.
2340     Out << Prefix;
2341 
2342     // This seems to do everything we want.  It's not really
2343     // sanctioned for a substituted template parameter, though.
2344     mangleType(Ty);
2345 
2346     // We never want to print 'E' directly after an unresolved-type,
2347     // so we return directly.
2348     return true;
2349 
2350   case Type::Typedef:
2351     mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl());
2352     break;
2353 
2354   case Type::UnresolvedUsing:
2355     mangleSourceNameWithAbiTags(
2356         cast<UnresolvedUsingType>(Ty)->getDecl());
2357     break;
2358 
2359   case Type::Enum:
2360   case Type::Record:
2361     mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl());
2362     break;
2363 
2364   case Type::TemplateSpecialization: {
2365     const TemplateSpecializationType *TST =
2366         cast<TemplateSpecializationType>(Ty);
2367     TemplateName TN = TST->getTemplateName();
2368     switch (TN.getKind()) {
2369     case TemplateName::Template:
2370     case TemplateName::QualifiedTemplate: {
2371       TemplateDecl *TD = TN.getAsTemplateDecl();
2372 
2373       // If the base is a template template parameter, this is an
2374       // unresolved type.
2375       assert(TD && "no template for template specialization type");
2376       if (isa<TemplateTemplateParmDecl>(TD))
2377         goto unresolvedType;
2378 
2379       mangleSourceNameWithAbiTags(TD);
2380       break;
2381     }
2382 
2383     case TemplateName::OverloadedTemplate:
2384     case TemplateName::AssumedTemplate:
2385     case TemplateName::DependentTemplate:
2386       llvm_unreachable("invalid base for a template specialization type");
2387 
2388     case TemplateName::SubstTemplateTemplateParm: {
2389       SubstTemplateTemplateParmStorage *subst =
2390           TN.getAsSubstTemplateTemplateParm();
2391       mangleExistingSubstitution(subst->getReplacement());
2392       break;
2393     }
2394 
2395     case TemplateName::SubstTemplateTemplateParmPack: {
2396       // FIXME: not clear how to mangle this!
2397       // template <template <class U> class T...> class A {
2398       //   template <class U...> void foo(decltype(T<U>::foo) x...);
2399       // };
2400       Out << "_SUBSTPACK_";
2401       break;
2402     }
2403     case TemplateName::UsingTemplate: {
2404       TemplateDecl *TD = TN.getAsTemplateDecl();
2405       assert(TD && !isa<TemplateTemplateParmDecl>(TD));
2406       mangleSourceNameWithAbiTags(TD);
2407       break;
2408     }
2409     }
2410 
2411     // Note: we don't pass in the template name here. We are mangling the
2412     // original source-level template arguments, so we shouldn't consider
2413     // conversions to the corresponding template parameter.
2414     // FIXME: Other compilers mangle partially-resolved template arguments in
2415     // unresolved-qualifier-levels.
2416     mangleTemplateArgs(TemplateName(), TST->template_arguments());
2417     break;
2418   }
2419 
2420   case Type::InjectedClassName:
2421     mangleSourceNameWithAbiTags(
2422         cast<InjectedClassNameType>(Ty)->getDecl());
2423     break;
2424 
2425   case Type::DependentName:
2426     mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
2427     break;
2428 
2429   case Type::DependentTemplateSpecialization: {
2430     const DependentTemplateSpecializationType *DTST =
2431         cast<DependentTemplateSpecializationType>(Ty);
2432     TemplateName Template = getASTContext().getDependentTemplateName(
2433         DTST->getQualifier(), DTST->getIdentifier());
2434     mangleSourceName(DTST->getIdentifier());
2435     mangleTemplateArgs(Template, DTST->template_arguments());
2436     break;
2437   }
2438 
2439   case Type::Using:
2440     return mangleUnresolvedTypeOrSimpleId(cast<UsingType>(Ty)->desugar(),
2441                                           Prefix);
2442   case Type::Elaborated:
2443     return mangleUnresolvedTypeOrSimpleId(
2444         cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
2445   }
2446 
2447   return false;
2448 }
2449 
2450 void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
2451   switch (Name.getNameKind()) {
2452   case DeclarationName::CXXConstructorName:
2453   case DeclarationName::CXXDestructorName:
2454   case DeclarationName::CXXDeductionGuideName:
2455   case DeclarationName::CXXUsingDirective:
2456   case DeclarationName::Identifier:
2457   case DeclarationName::ObjCMultiArgSelector:
2458   case DeclarationName::ObjCOneArgSelector:
2459   case DeclarationName::ObjCZeroArgSelector:
2460     llvm_unreachable("Not an operator name");
2461 
2462   case DeclarationName::CXXConversionFunctionName:
2463     // <operator-name> ::= cv <type>    # (cast)
2464     Out << "cv";
2465     mangleType(Name.getCXXNameType());
2466     break;
2467 
2468   case DeclarationName::CXXLiteralOperatorName:
2469     Out << "li";
2470     mangleSourceName(Name.getCXXLiteralIdentifier());
2471     return;
2472 
2473   case DeclarationName::CXXOperatorName:
2474     mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
2475     break;
2476   }
2477 }
2478 
2479 void
2480 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
2481   switch (OO) {
2482   // <operator-name> ::= nw     # new
2483   case OO_New: Out << "nw"; break;
2484   //              ::= na        # new[]
2485   case OO_Array_New: Out << "na"; break;
2486   //              ::= dl        # delete
2487   case OO_Delete: Out << "dl"; break;
2488   //              ::= da        # delete[]
2489   case OO_Array_Delete: Out << "da"; break;
2490   //              ::= ps        # + (unary)
2491   //              ::= pl        # + (binary or unknown)
2492   case OO_Plus:
2493     Out << (Arity == 1? "ps" : "pl"); break;
2494   //              ::= ng        # - (unary)
2495   //              ::= mi        # - (binary or unknown)
2496   case OO_Minus:
2497     Out << (Arity == 1? "ng" : "mi"); break;
2498   //              ::= ad        # & (unary)
2499   //              ::= an        # & (binary or unknown)
2500   case OO_Amp:
2501     Out << (Arity == 1? "ad" : "an"); break;
2502   //              ::= de        # * (unary)
2503   //              ::= ml        # * (binary or unknown)
2504   case OO_Star:
2505     // Use binary when unknown.
2506     Out << (Arity == 1? "de" : "ml"); break;
2507   //              ::= co        # ~
2508   case OO_Tilde: Out << "co"; break;
2509   //              ::= dv        # /
2510   case OO_Slash: Out << "dv"; break;
2511   //              ::= rm        # %
2512   case OO_Percent: Out << "rm"; break;
2513   //              ::= or        # |
2514   case OO_Pipe: Out << "or"; break;
2515   //              ::= eo        # ^
2516   case OO_Caret: Out << "eo"; break;
2517   //              ::= aS        # =
2518   case OO_Equal: Out << "aS"; break;
2519   //              ::= pL        # +=
2520   case OO_PlusEqual: Out << "pL"; break;
2521   //              ::= mI        # -=
2522   case OO_MinusEqual: Out << "mI"; break;
2523   //              ::= mL        # *=
2524   case OO_StarEqual: Out << "mL"; break;
2525   //              ::= dV        # /=
2526   case OO_SlashEqual: Out << "dV"; break;
2527   //              ::= rM        # %=
2528   case OO_PercentEqual: Out << "rM"; break;
2529   //              ::= aN        # &=
2530   case OO_AmpEqual: Out << "aN"; break;
2531   //              ::= oR        # |=
2532   case OO_PipeEqual: Out << "oR"; break;
2533   //              ::= eO        # ^=
2534   case OO_CaretEqual: Out << "eO"; break;
2535   //              ::= ls        # <<
2536   case OO_LessLess: Out << "ls"; break;
2537   //              ::= rs        # >>
2538   case OO_GreaterGreater: Out << "rs"; break;
2539   //              ::= lS        # <<=
2540   case OO_LessLessEqual: Out << "lS"; break;
2541   //              ::= rS        # >>=
2542   case OO_GreaterGreaterEqual: Out << "rS"; break;
2543   //              ::= eq        # ==
2544   case OO_EqualEqual: Out << "eq"; break;
2545   //              ::= ne        # !=
2546   case OO_ExclaimEqual: Out << "ne"; break;
2547   //              ::= lt        # <
2548   case OO_Less: Out << "lt"; break;
2549   //              ::= gt        # >
2550   case OO_Greater: Out << "gt"; break;
2551   //              ::= le        # <=
2552   case OO_LessEqual: Out << "le"; break;
2553   //              ::= ge        # >=
2554   case OO_GreaterEqual: Out << "ge"; break;
2555   //              ::= nt        # !
2556   case OO_Exclaim: Out << "nt"; break;
2557   //              ::= aa        # &&
2558   case OO_AmpAmp: Out << "aa"; break;
2559   //              ::= oo        # ||
2560   case OO_PipePipe: Out << "oo"; break;
2561   //              ::= pp        # ++
2562   case OO_PlusPlus: Out << "pp"; break;
2563   //              ::= mm        # --
2564   case OO_MinusMinus: Out << "mm"; break;
2565   //              ::= cm        # ,
2566   case OO_Comma: Out << "cm"; break;
2567   //              ::= pm        # ->*
2568   case OO_ArrowStar: Out << "pm"; break;
2569   //              ::= pt        # ->
2570   case OO_Arrow: Out << "pt"; break;
2571   //              ::= cl        # ()
2572   case OO_Call: Out << "cl"; break;
2573   //              ::= ix        # []
2574   case OO_Subscript: Out << "ix"; break;
2575 
2576   //              ::= qu        # ?
2577   // The conditional operator can't be overloaded, but we still handle it when
2578   // mangling expressions.
2579   case OO_Conditional: Out << "qu"; break;
2580   // Proposal on cxx-abi-dev, 2015-10-21.
2581   //              ::= aw        # co_await
2582   case OO_Coawait: Out << "aw"; break;
2583   // Proposed in cxx-abi github issue 43.
2584   //              ::= ss        # <=>
2585   case OO_Spaceship: Out << "ss"; break;
2586 
2587   case OO_None:
2588   case NUM_OVERLOADED_OPERATORS:
2589     llvm_unreachable("Not an overloaded operator");
2590   }
2591 }
2592 
2593 void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) {
2594   // Vendor qualifiers come first and if they are order-insensitive they must
2595   // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5.
2596 
2597   // <type> ::= U <addrspace-expr>
2598   if (DAST) {
2599     Out << "U2ASI";
2600     mangleExpression(DAST->getAddrSpaceExpr());
2601     Out << "E";
2602   }
2603 
2604   // Address space qualifiers start with an ordinary letter.
2605   if (Quals.hasAddressSpace()) {
2606     // Address space extension:
2607     //
2608     //   <type> ::= U <target-addrspace>
2609     //   <type> ::= U <OpenCL-addrspace>
2610     //   <type> ::= U <CUDA-addrspace>
2611 
2612     SmallString<64> ASString;
2613     LangAS AS = Quals.getAddressSpace();
2614 
2615     if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
2616       //  <target-addrspace> ::= "AS" <address-space-number>
2617       unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
2618       if (TargetAS != 0 ||
2619           Context.getASTContext().getTargetAddressSpace(LangAS::Default) != 0)
2620         ASString = "AS" + llvm::utostr(TargetAS);
2621     } else {
2622       switch (AS) {
2623       default: llvm_unreachable("Not a language specific address space");
2624       //  <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" |
2625       //                                "private"| "generic" | "device" |
2626       //                                "host" ]
2627       case LangAS::opencl_global:
2628         ASString = "CLglobal";
2629         break;
2630       case LangAS::opencl_global_device:
2631         ASString = "CLdevice";
2632         break;
2633       case LangAS::opencl_global_host:
2634         ASString = "CLhost";
2635         break;
2636       case LangAS::opencl_local:
2637         ASString = "CLlocal";
2638         break;
2639       case LangAS::opencl_constant:
2640         ASString = "CLconstant";
2641         break;
2642       case LangAS::opencl_private:
2643         ASString = "CLprivate";
2644         break;
2645       case LangAS::opencl_generic:
2646         ASString = "CLgeneric";
2647         break;
2648       //  <SYCL-addrspace> ::= "SY" [ "global" | "local" | "private" |
2649       //                              "device" | "host" ]
2650       case LangAS::sycl_global:
2651         ASString = "SYglobal";
2652         break;
2653       case LangAS::sycl_global_device:
2654         ASString = "SYdevice";
2655         break;
2656       case LangAS::sycl_global_host:
2657         ASString = "SYhost";
2658         break;
2659       case LangAS::sycl_local:
2660         ASString = "SYlocal";
2661         break;
2662       case LangAS::sycl_private:
2663         ASString = "SYprivate";
2664         break;
2665       //  <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
2666       case LangAS::cuda_device:
2667         ASString = "CUdevice";
2668         break;
2669       case LangAS::cuda_constant:
2670         ASString = "CUconstant";
2671         break;
2672       case LangAS::cuda_shared:
2673         ASString = "CUshared";
2674         break;
2675       //  <ptrsize-addrspace> ::= [ "ptr32_sptr" | "ptr32_uptr" | "ptr64" ]
2676       case LangAS::ptr32_sptr:
2677         ASString = "ptr32_sptr";
2678         break;
2679       case LangAS::ptr32_uptr:
2680         ASString = "ptr32_uptr";
2681         break;
2682       case LangAS::ptr64:
2683         ASString = "ptr64";
2684         break;
2685       }
2686     }
2687     if (!ASString.empty())
2688       mangleVendorQualifier(ASString);
2689   }
2690 
2691   // The ARC ownership qualifiers start with underscores.
2692   // Objective-C ARC Extension:
2693   //
2694   //   <type> ::= U "__strong"
2695   //   <type> ::= U "__weak"
2696   //   <type> ::= U "__autoreleasing"
2697   //
2698   // Note: we emit __weak first to preserve the order as
2699   // required by the Itanium ABI.
2700   if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak)
2701     mangleVendorQualifier("__weak");
2702 
2703   // __unaligned (from -fms-extensions)
2704   if (Quals.hasUnaligned())
2705     mangleVendorQualifier("__unaligned");
2706 
2707   // Remaining ARC ownership qualifiers.
2708   switch (Quals.getObjCLifetime()) {
2709   case Qualifiers::OCL_None:
2710     break;
2711 
2712   case Qualifiers::OCL_Weak:
2713     // Do nothing as we already handled this case above.
2714     break;
2715 
2716   case Qualifiers::OCL_Strong:
2717     mangleVendorQualifier("__strong");
2718     break;
2719 
2720   case Qualifiers::OCL_Autoreleasing:
2721     mangleVendorQualifier("__autoreleasing");
2722     break;
2723 
2724   case Qualifiers::OCL_ExplicitNone:
2725     // The __unsafe_unretained qualifier is *not* mangled, so that
2726     // __unsafe_unretained types in ARC produce the same manglings as the
2727     // equivalent (but, naturally, unqualified) types in non-ARC, providing
2728     // better ABI compatibility.
2729     //
2730     // It's safe to do this because unqualified 'id' won't show up
2731     // in any type signatures that need to be mangled.
2732     break;
2733   }
2734 
2735   // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
2736   if (Quals.hasRestrict())
2737     Out << 'r';
2738   if (Quals.hasVolatile())
2739     Out << 'V';
2740   if (Quals.hasConst())
2741     Out << 'K';
2742 }
2743 
2744 void CXXNameMangler::mangleVendorQualifier(StringRef name) {
2745   Out << 'U' << name.size() << name;
2746 }
2747 
2748 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
2749   // <ref-qualifier> ::= R                # lvalue reference
2750   //                 ::= O                # rvalue-reference
2751   switch (RefQualifier) {
2752   case RQ_None:
2753     break;
2754 
2755   case RQ_LValue:
2756     Out << 'R';
2757     break;
2758 
2759   case RQ_RValue:
2760     Out << 'O';
2761     break;
2762   }
2763 }
2764 
2765 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
2766   Context.mangleObjCMethodNameAsSourceName(MD, Out);
2767 }
2768 
2769 static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty,
2770                                 ASTContext &Ctx) {
2771   if (Quals)
2772     return true;
2773   if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
2774     return true;
2775   if (Ty->isOpenCLSpecificType())
2776     return true;
2777   if (Ty->isBuiltinType())
2778     return false;
2779   // Through to Clang 6.0, we accidentally treated undeduced auto types as
2780   // substitution candidates.
2781   if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 &&
2782       isa<AutoType>(Ty))
2783     return false;
2784   // A placeholder type for class template deduction is substitutable with
2785   // its corresponding template name; this is handled specially when mangling
2786   // the type.
2787   if (auto *DeducedTST = Ty->getAs<DeducedTemplateSpecializationType>())
2788     if (DeducedTST->getDeducedType().isNull())
2789       return false;
2790   return true;
2791 }
2792 
2793 void CXXNameMangler::mangleType(QualType T) {
2794   // If our type is instantiation-dependent but not dependent, we mangle
2795   // it as it was written in the source, removing any top-level sugar.
2796   // Otherwise, use the canonical type.
2797   //
2798   // FIXME: This is an approximation of the instantiation-dependent name
2799   // mangling rules, since we should really be using the type as written and
2800   // augmented via semantic analysis (i.e., with implicit conversions and
2801   // default template arguments) for any instantiation-dependent type.
2802   // Unfortunately, that requires several changes to our AST:
2803   //   - Instantiation-dependent TemplateSpecializationTypes will need to be
2804   //     uniqued, so that we can handle substitutions properly
2805   //   - Default template arguments will need to be represented in the
2806   //     TemplateSpecializationType, since they need to be mangled even though
2807   //     they aren't written.
2808   //   - Conversions on non-type template arguments need to be expressed, since
2809   //     they can affect the mangling of sizeof/alignof.
2810   //
2811   // FIXME: This is wrong when mapping to the canonical type for a dependent
2812   // type discards instantiation-dependent portions of the type, such as for:
2813   //
2814   //   template<typename T, int N> void f(T (&)[sizeof(N)]);
2815   //   template<typename T> void f(T() throw(typename T::type)); (pre-C++17)
2816   //
2817   // It's also wrong in the opposite direction when instantiation-dependent,
2818   // canonically-equivalent types differ in some irrelevant portion of inner
2819   // type sugar. In such cases, we fail to form correct substitutions, eg:
2820   //
2821   //   template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*));
2822   //
2823   // We should instead canonicalize the non-instantiation-dependent parts,
2824   // regardless of whether the type as a whole is dependent or instantiation
2825   // dependent.
2826   if (!T->isInstantiationDependentType() || T->isDependentType())
2827     T = T.getCanonicalType();
2828   else {
2829     // Desugar any types that are purely sugar.
2830     do {
2831       // Don't desugar through template specialization types that aren't
2832       // type aliases. We need to mangle the template arguments as written.
2833       if (const TemplateSpecializationType *TST
2834                                       = dyn_cast<TemplateSpecializationType>(T))
2835         if (!TST->isTypeAlias())
2836           break;
2837 
2838       // FIXME: We presumably shouldn't strip off ElaboratedTypes with
2839       // instantation-dependent qualifiers. See
2840       // https://github.com/itanium-cxx-abi/cxx-abi/issues/114.
2841 
2842       QualType Desugared
2843         = T.getSingleStepDesugaredType(Context.getASTContext());
2844       if (Desugared == T)
2845         break;
2846 
2847       T = Desugared;
2848     } while (true);
2849   }
2850   SplitQualType split = T.split();
2851   Qualifiers quals = split.Quals;
2852   const Type *ty = split.Ty;
2853 
2854   bool isSubstitutable =
2855     isTypeSubstitutable(quals, ty, Context.getASTContext());
2856   if (isSubstitutable && mangleSubstitution(T))
2857     return;
2858 
2859   // If we're mangling a qualified array type, push the qualifiers to
2860   // the element type.
2861   if (quals && isa<ArrayType>(T)) {
2862     ty = Context.getASTContext().getAsArrayType(T);
2863     quals = Qualifiers();
2864 
2865     // Note that we don't update T: we want to add the
2866     // substitution at the original type.
2867   }
2868 
2869   if (quals || ty->isDependentAddressSpaceType()) {
2870     if (const DependentAddressSpaceType *DAST =
2871         dyn_cast<DependentAddressSpaceType>(ty)) {
2872       SplitQualType splitDAST = DAST->getPointeeType().split();
2873       mangleQualifiers(splitDAST.Quals, DAST);
2874       mangleType(QualType(splitDAST.Ty, 0));
2875     } else {
2876       mangleQualifiers(quals);
2877 
2878       // Recurse:  even if the qualified type isn't yet substitutable,
2879       // the unqualified type might be.
2880       mangleType(QualType(ty, 0));
2881     }
2882   } else {
2883     switch (ty->getTypeClass()) {
2884 #define ABSTRACT_TYPE(CLASS, PARENT)
2885 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
2886     case Type::CLASS: \
2887       llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
2888       return;
2889 #define TYPE(CLASS, PARENT) \
2890     case Type::CLASS: \
2891       mangleType(static_cast<const CLASS##Type*>(ty)); \
2892       break;
2893 #include "clang/AST/TypeNodes.inc"
2894     }
2895   }
2896 
2897   // Add the substitution.
2898   if (isSubstitutable)
2899     addSubstitution(T);
2900 }
2901 
2902 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
2903   if (!mangleStandardSubstitution(ND))
2904     mangleName(ND);
2905 }
2906 
2907 void CXXNameMangler::mangleType(const BuiltinType *T) {
2908   //  <type>         ::= <builtin-type>
2909   //  <builtin-type> ::= v  # void
2910   //                 ::= w  # wchar_t
2911   //                 ::= b  # bool
2912   //                 ::= c  # char
2913   //                 ::= a  # signed char
2914   //                 ::= h  # unsigned char
2915   //                 ::= s  # short
2916   //                 ::= t  # unsigned short
2917   //                 ::= i  # int
2918   //                 ::= j  # unsigned int
2919   //                 ::= l  # long
2920   //                 ::= m  # unsigned long
2921   //                 ::= x  # long long, __int64
2922   //                 ::= y  # unsigned long long, __int64
2923   //                 ::= n  # __int128
2924   //                 ::= o  # unsigned __int128
2925   //                 ::= f  # float
2926   //                 ::= d  # double
2927   //                 ::= e  # long double, __float80
2928   //                 ::= g  # __float128
2929   //                 ::= g  # __ibm128
2930   // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
2931   // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
2932   // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
2933   //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
2934   //                 ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits);
2935   //                 ::= Di # char32_t
2936   //                 ::= Ds # char16_t
2937   //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
2938   //                 ::= u <source-name>    # vendor extended type
2939   std::string type_name;
2940   switch (T->getKind()) {
2941   case BuiltinType::Void:
2942     Out << 'v';
2943     break;
2944   case BuiltinType::Bool:
2945     Out << 'b';
2946     break;
2947   case BuiltinType::Char_U:
2948   case BuiltinType::Char_S:
2949     Out << 'c';
2950     break;
2951   case BuiltinType::UChar:
2952     Out << 'h';
2953     break;
2954   case BuiltinType::UShort:
2955     Out << 't';
2956     break;
2957   case BuiltinType::UInt:
2958     Out << 'j';
2959     break;
2960   case BuiltinType::ULong:
2961     Out << 'm';
2962     break;
2963   case BuiltinType::ULongLong:
2964     Out << 'y';
2965     break;
2966   case BuiltinType::UInt128:
2967     Out << 'o';
2968     break;
2969   case BuiltinType::SChar:
2970     Out << 'a';
2971     break;
2972   case BuiltinType::WChar_S:
2973   case BuiltinType::WChar_U:
2974     Out << 'w';
2975     break;
2976   case BuiltinType::Char8:
2977     Out << "Du";
2978     break;
2979   case BuiltinType::Char16:
2980     Out << "Ds";
2981     break;
2982   case BuiltinType::Char32:
2983     Out << "Di";
2984     break;
2985   case BuiltinType::Short:
2986     Out << 's';
2987     break;
2988   case BuiltinType::Int:
2989     Out << 'i';
2990     break;
2991   case BuiltinType::Long:
2992     Out << 'l';
2993     break;
2994   case BuiltinType::LongLong:
2995     Out << 'x';
2996     break;
2997   case BuiltinType::Int128:
2998     Out << 'n';
2999     break;
3000   case BuiltinType::Float16:
3001     Out << "DF16_";
3002     break;
3003   case BuiltinType::ShortAccum:
3004   case BuiltinType::Accum:
3005   case BuiltinType::LongAccum:
3006   case BuiltinType::UShortAccum:
3007   case BuiltinType::UAccum:
3008   case BuiltinType::ULongAccum:
3009   case BuiltinType::ShortFract:
3010   case BuiltinType::Fract:
3011   case BuiltinType::LongFract:
3012   case BuiltinType::UShortFract:
3013   case BuiltinType::UFract:
3014   case BuiltinType::ULongFract:
3015   case BuiltinType::SatShortAccum:
3016   case BuiltinType::SatAccum:
3017   case BuiltinType::SatLongAccum:
3018   case BuiltinType::SatUShortAccum:
3019   case BuiltinType::SatUAccum:
3020   case BuiltinType::SatULongAccum:
3021   case BuiltinType::SatShortFract:
3022   case BuiltinType::SatFract:
3023   case BuiltinType::SatLongFract:
3024   case BuiltinType::SatUShortFract:
3025   case BuiltinType::SatUFract:
3026   case BuiltinType::SatULongFract:
3027     llvm_unreachable("Fixed point types are disabled for c++");
3028   case BuiltinType::Half:
3029     Out << "Dh";
3030     break;
3031   case BuiltinType::Float:
3032     Out << 'f';
3033     break;
3034   case BuiltinType::Double:
3035     Out << 'd';
3036     break;
3037   case BuiltinType::LongDouble: {
3038     const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
3039                                    getASTContext().getLangOpts().OpenMPIsDevice
3040                                ? getASTContext().getAuxTargetInfo()
3041                                : &getASTContext().getTargetInfo();
3042     Out << TI->getLongDoubleMangling();
3043     break;
3044   }
3045   case BuiltinType::Float128: {
3046     const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
3047                                    getASTContext().getLangOpts().OpenMPIsDevice
3048                                ? getASTContext().getAuxTargetInfo()
3049                                : &getASTContext().getTargetInfo();
3050     Out << TI->getFloat128Mangling();
3051     break;
3052   }
3053   case BuiltinType::BFloat16: {
3054     const TargetInfo *TI = &getASTContext().getTargetInfo();
3055     Out << TI->getBFloat16Mangling();
3056     break;
3057   }
3058   case BuiltinType::Ibm128: {
3059     const TargetInfo *TI = &getASTContext().getTargetInfo();
3060     Out << TI->getIbm128Mangling();
3061     break;
3062   }
3063   case BuiltinType::NullPtr:
3064     Out << "Dn";
3065     break;
3066 
3067 #define BUILTIN_TYPE(Id, SingletonId)
3068 #define PLACEHOLDER_TYPE(Id, SingletonId) \
3069   case BuiltinType::Id:
3070 #include "clang/AST/BuiltinTypes.def"
3071   case BuiltinType::Dependent:
3072     if (!NullOut)
3073       llvm_unreachable("mangling a placeholder type");
3074     break;
3075   case BuiltinType::ObjCId:
3076     Out << "11objc_object";
3077     break;
3078   case BuiltinType::ObjCClass:
3079     Out << "10objc_class";
3080     break;
3081   case BuiltinType::ObjCSel:
3082     Out << "13objc_selector";
3083     break;
3084 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
3085   case BuiltinType::Id: \
3086     type_name = "ocl_" #ImgType "_" #Suffix; \
3087     Out << type_name.size() << type_name; \
3088     break;
3089 #include "clang/Basic/OpenCLImageTypes.def"
3090   case BuiltinType::OCLSampler:
3091     Out << "11ocl_sampler";
3092     break;
3093   case BuiltinType::OCLEvent:
3094     Out << "9ocl_event";
3095     break;
3096   case BuiltinType::OCLClkEvent:
3097     Out << "12ocl_clkevent";
3098     break;
3099   case BuiltinType::OCLQueue:
3100     Out << "9ocl_queue";
3101     break;
3102   case BuiltinType::OCLReserveID:
3103     Out << "13ocl_reserveid";
3104     break;
3105 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
3106   case BuiltinType::Id: \
3107     type_name = "ocl_" #ExtType; \
3108     Out << type_name.size() << type_name; \
3109     break;
3110 #include "clang/Basic/OpenCLExtensionTypes.def"
3111   // The SVE types are effectively target-specific.  The mangling scheme
3112   // is defined in the appendices to the Procedure Call Standard for the
3113   // Arm Architecture.
3114 #define SVE_VECTOR_TYPE(InternalName, MangledName, Id, SingletonId, NumEls,    \
3115                         ElBits, IsSigned, IsFP, IsBF)                          \
3116   case BuiltinType::Id:                                                        \
3117     type_name = MangledName;                                                   \
3118     Out << (type_name == InternalName ? "u" : "") << type_name.size()          \
3119         << type_name;                                                          \
3120     break;
3121 #define SVE_PREDICATE_TYPE(InternalName, MangledName, Id, SingletonId, NumEls) \
3122   case BuiltinType::Id:                                                        \
3123     type_name = MangledName;                                                   \
3124     Out << (type_name == InternalName ? "u" : "") << type_name.size()          \
3125         << type_name;                                                          \
3126     break;
3127 #include "clang/Basic/AArch64SVEACLETypes.def"
3128 #define PPC_VECTOR_TYPE(Name, Id, Size) \
3129   case BuiltinType::Id: \
3130     type_name = #Name; \
3131     Out << 'u' << type_name.size() << type_name; \
3132     break;
3133 #include "clang/Basic/PPCTypes.def"
3134     // TODO: Check the mangling scheme for RISC-V V.
3135 #define RVV_TYPE(Name, Id, SingletonId)                                        \
3136   case BuiltinType::Id:                                                        \
3137     type_name = Name;                                                          \
3138     Out << 'u' << type_name.size() << type_name;                               \
3139     break;
3140 #include "clang/Basic/RISCVVTypes.def"
3141   }
3142 }
3143 
3144 StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) {
3145   switch (CC) {
3146   case CC_C:
3147     return "";
3148 
3149   case CC_X86VectorCall:
3150   case CC_X86Pascal:
3151   case CC_X86RegCall:
3152   case CC_AAPCS:
3153   case CC_AAPCS_VFP:
3154   case CC_AArch64VectorCall:
3155   case CC_AArch64SVEPCS:
3156   case CC_AMDGPUKernelCall:
3157   case CC_IntelOclBicc:
3158   case CC_SpirFunction:
3159   case CC_OpenCLKernel:
3160   case CC_PreserveMost:
3161   case CC_PreserveAll:
3162     // FIXME: we should be mangling all of the above.
3163     return "";
3164 
3165   case CC_X86ThisCall:
3166     // FIXME: To match mingw GCC, thiscall should only be mangled in when it is
3167     // used explicitly. At this point, we don't have that much information in
3168     // the AST, since clang tends to bake the convention into the canonical
3169     // function type. thiscall only rarely used explicitly, so don't mangle it
3170     // for now.
3171     return "";
3172 
3173   case CC_X86StdCall:
3174     return "stdcall";
3175   case CC_X86FastCall:
3176     return "fastcall";
3177   case CC_X86_64SysV:
3178     return "sysv_abi";
3179   case CC_Win64:
3180     return "ms_abi";
3181   case CC_Swift:
3182     return "swiftcall";
3183   case CC_SwiftAsync:
3184     return "swiftasynccall";
3185   }
3186   llvm_unreachable("bad calling convention");
3187 }
3188 
3189 void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) {
3190   // Fast path.
3191   if (T->getExtInfo() == FunctionType::ExtInfo())
3192     return;
3193 
3194   // Vendor-specific qualifiers are emitted in reverse alphabetical order.
3195   // This will get more complicated in the future if we mangle other
3196   // things here; but for now, since we mangle ns_returns_retained as
3197   // a qualifier on the result type, we can get away with this:
3198   StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC());
3199   if (!CCQualifier.empty())
3200     mangleVendorQualifier(CCQualifier);
3201 
3202   // FIXME: regparm
3203   // FIXME: noreturn
3204 }
3205 
3206 void
3207 CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) {
3208   // Vendor-specific qualifiers are emitted in reverse alphabetical order.
3209 
3210   // Note that these are *not* substitution candidates.  Demanglers might
3211   // have trouble with this if the parameter type is fully substituted.
3212 
3213   switch (PI.getABI()) {
3214   case ParameterABI::Ordinary:
3215     break;
3216 
3217   // All of these start with "swift", so they come before "ns_consumed".
3218   case ParameterABI::SwiftContext:
3219   case ParameterABI::SwiftAsyncContext:
3220   case ParameterABI::SwiftErrorResult:
3221   case ParameterABI::SwiftIndirectResult:
3222     mangleVendorQualifier(getParameterABISpelling(PI.getABI()));
3223     break;
3224   }
3225 
3226   if (PI.isConsumed())
3227     mangleVendorQualifier("ns_consumed");
3228 
3229   if (PI.isNoEscape())
3230     mangleVendorQualifier("noescape");
3231 }
3232 
3233 // <type>          ::= <function-type>
3234 // <function-type> ::= [<CV-qualifiers>] F [Y]
3235 //                      <bare-function-type> [<ref-qualifier>] E
3236 void CXXNameMangler::mangleType(const FunctionProtoType *T) {
3237   mangleExtFunctionInfo(T);
3238 
3239   // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
3240   // e.g. "const" in "int (A::*)() const".
3241   mangleQualifiers(T->getMethodQuals());
3242 
3243   // Mangle instantiation-dependent exception-specification, if present,
3244   // per cxx-abi-dev proposal on 2016-10-11.
3245   if (T->hasInstantiationDependentExceptionSpec()) {
3246     if (isComputedNoexcept(T->getExceptionSpecType())) {
3247       Out << "DO";
3248       mangleExpression(T->getNoexceptExpr());
3249       Out << "E";
3250     } else {
3251       assert(T->getExceptionSpecType() == EST_Dynamic);
3252       Out << "Dw";
3253       for (auto ExceptTy : T->exceptions())
3254         mangleType(ExceptTy);
3255       Out << "E";
3256     }
3257   } else if (T->isNothrow()) {
3258     Out << "Do";
3259   }
3260 
3261   Out << 'F';
3262 
3263   // FIXME: We don't have enough information in the AST to produce the 'Y'
3264   // encoding for extern "C" function types.
3265   mangleBareFunctionType(T, /*MangleReturnType=*/true);
3266 
3267   // Mangle the ref-qualifier, if present.
3268   mangleRefQualifier(T->getRefQualifier());
3269 
3270   Out << 'E';
3271 }
3272 
3273 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
3274   // Function types without prototypes can arise when mangling a function type
3275   // within an overloadable function in C. We mangle these as the absence of any
3276   // parameter types (not even an empty parameter list).
3277   Out << 'F';
3278 
3279   FunctionTypeDepthState saved = FunctionTypeDepth.push();
3280 
3281   FunctionTypeDepth.enterResultType();
3282   mangleType(T->getReturnType());
3283   FunctionTypeDepth.leaveResultType();
3284 
3285   FunctionTypeDepth.pop(saved);
3286   Out << 'E';
3287 }
3288 
3289 void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto,
3290                                             bool MangleReturnType,
3291                                             const FunctionDecl *FD) {
3292   // Record that we're in a function type.  See mangleFunctionParam
3293   // for details on what we're trying to achieve here.
3294   FunctionTypeDepthState saved = FunctionTypeDepth.push();
3295 
3296   // <bare-function-type> ::= <signature type>+
3297   if (MangleReturnType) {
3298     FunctionTypeDepth.enterResultType();
3299 
3300     // Mangle ns_returns_retained as an order-sensitive qualifier here.
3301     if (Proto->getExtInfo().getProducesResult() && FD == nullptr)
3302       mangleVendorQualifier("ns_returns_retained");
3303 
3304     // Mangle the return type without any direct ARC ownership qualifiers.
3305     QualType ReturnTy = Proto->getReturnType();
3306     if (ReturnTy.getObjCLifetime()) {
3307       auto SplitReturnTy = ReturnTy.split();
3308       SplitReturnTy.Quals.removeObjCLifetime();
3309       ReturnTy = getASTContext().getQualifiedType(SplitReturnTy);
3310     }
3311     mangleType(ReturnTy);
3312 
3313     FunctionTypeDepth.leaveResultType();
3314   }
3315 
3316   if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
3317     //   <builtin-type> ::= v   # void
3318     Out << 'v';
3319 
3320     FunctionTypeDepth.pop(saved);
3321     return;
3322   }
3323 
3324   assert(!FD || FD->getNumParams() == Proto->getNumParams());
3325   for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
3326     // Mangle extended parameter info as order-sensitive qualifiers here.
3327     if (Proto->hasExtParameterInfos() && FD == nullptr) {
3328       mangleExtParameterInfo(Proto->getExtParameterInfo(I));
3329     }
3330 
3331     // Mangle the type.
3332     QualType ParamTy = Proto->getParamType(I);
3333     mangleType(Context.getASTContext().getSignatureParameterType(ParamTy));
3334 
3335     if (FD) {
3336       if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) {
3337         // Attr can only take 1 character, so we can hardcode the length below.
3338         assert(Attr->getType() <= 9 && Attr->getType() >= 0);
3339         if (Attr->isDynamic())
3340           Out << "U25pass_dynamic_object_size" << Attr->getType();
3341         else
3342           Out << "U17pass_object_size" << Attr->getType();
3343       }
3344     }
3345   }
3346 
3347   FunctionTypeDepth.pop(saved);
3348 
3349   // <builtin-type>      ::= z  # ellipsis
3350   if (Proto->isVariadic())
3351     Out << 'z';
3352 }
3353 
3354 // <type>            ::= <class-enum-type>
3355 // <class-enum-type> ::= <name>
3356 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
3357   mangleName(T->getDecl());
3358 }
3359 
3360 // <type>            ::= <class-enum-type>
3361 // <class-enum-type> ::= <name>
3362 void CXXNameMangler::mangleType(const EnumType *T) {
3363   mangleType(static_cast<const TagType*>(T));
3364 }
3365 void CXXNameMangler::mangleType(const RecordType *T) {
3366   mangleType(static_cast<const TagType*>(T));
3367 }
3368 void CXXNameMangler::mangleType(const TagType *T) {
3369   mangleName(T->getDecl());
3370 }
3371 
3372 // <type>       ::= <array-type>
3373 // <array-type> ::= A <positive dimension number> _ <element type>
3374 //              ::= A [<dimension expression>] _ <element type>
3375 void CXXNameMangler::mangleType(const ConstantArrayType *T) {
3376   Out << 'A' << T->getSize() << '_';
3377   mangleType(T->getElementType());
3378 }
3379 void CXXNameMangler::mangleType(const VariableArrayType *T) {
3380   Out << 'A';
3381   // decayed vla types (size 0) will just be skipped.
3382   if (T->getSizeExpr())
3383     mangleExpression(T->getSizeExpr());
3384   Out << '_';
3385   mangleType(T->getElementType());
3386 }
3387 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
3388   Out << 'A';
3389   // A DependentSizedArrayType might not have size expression as below
3390   //
3391   // template<int ...N> int arr[] = {N...};
3392   if (T->getSizeExpr())
3393     mangleExpression(T->getSizeExpr());
3394   Out << '_';
3395   mangleType(T->getElementType());
3396 }
3397 void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
3398   Out << "A_";
3399   mangleType(T->getElementType());
3400 }
3401 
3402 // <type>                   ::= <pointer-to-member-type>
3403 // <pointer-to-member-type> ::= M <class type> <member type>
3404 void CXXNameMangler::mangleType(const MemberPointerType *T) {
3405   Out << 'M';
3406   mangleType(QualType(T->getClass(), 0));
3407   QualType PointeeType = T->getPointeeType();
3408   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
3409     mangleType(FPT);
3410 
3411     // Itanium C++ ABI 5.1.8:
3412     //
3413     //   The type of a non-static member function is considered to be different,
3414     //   for the purposes of substitution, from the type of a namespace-scope or
3415     //   static member function whose type appears similar. The types of two
3416     //   non-static member functions are considered to be different, for the
3417     //   purposes of substitution, if the functions are members of different
3418     //   classes. In other words, for the purposes of substitution, the class of
3419     //   which the function is a member is considered part of the type of
3420     //   function.
3421 
3422     // Given that we already substitute member function pointers as a
3423     // whole, the net effect of this rule is just to unconditionally
3424     // suppress substitution on the function type in a member pointer.
3425     // We increment the SeqID here to emulate adding an entry to the
3426     // substitution table.
3427     ++SeqID;
3428   } else
3429     mangleType(PointeeType);
3430 }
3431 
3432 // <type>           ::= <template-param>
3433 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
3434   mangleTemplateParameter(T->getDepth(), T->getIndex());
3435 }
3436 
3437 // <type>           ::= <template-param>
3438 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
3439   // FIXME: not clear how to mangle this!
3440   // template <class T...> class A {
3441   //   template <class U...> void foo(T(*)(U) x...);
3442   // };
3443   Out << "_SUBSTPACK_";
3444 }
3445 
3446 // <type> ::= P <type>   # pointer-to
3447 void CXXNameMangler::mangleType(const PointerType *T) {
3448   Out << 'P';
3449   mangleType(T->getPointeeType());
3450 }
3451 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
3452   Out << 'P';
3453   mangleType(T->getPointeeType());
3454 }
3455 
3456 // <type> ::= R <type>   # reference-to
3457 void CXXNameMangler::mangleType(const LValueReferenceType *T) {
3458   Out << 'R';
3459   mangleType(T->getPointeeType());
3460 }
3461 
3462 // <type> ::= O <type>   # rvalue reference-to (C++0x)
3463 void CXXNameMangler::mangleType(const RValueReferenceType *T) {
3464   Out << 'O';
3465   mangleType(T->getPointeeType());
3466 }
3467 
3468 // <type> ::= C <type>   # complex pair (C 2000)
3469 void CXXNameMangler::mangleType(const ComplexType *T) {
3470   Out << 'C';
3471   mangleType(T->getElementType());
3472 }
3473 
3474 // ARM's ABI for Neon vector types specifies that they should be mangled as
3475 // if they are structs (to match ARM's initial implementation).  The
3476 // vector type must be one of the special types predefined by ARM.
3477 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
3478   QualType EltType = T->getElementType();
3479   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3480   const char *EltName = nullptr;
3481   if (T->getVectorKind() == VectorType::NeonPolyVector) {
3482     switch (cast<BuiltinType>(EltType)->getKind()) {
3483     case BuiltinType::SChar:
3484     case BuiltinType::UChar:
3485       EltName = "poly8_t";
3486       break;
3487     case BuiltinType::Short:
3488     case BuiltinType::UShort:
3489       EltName = "poly16_t";
3490       break;
3491     case BuiltinType::LongLong:
3492     case BuiltinType::ULongLong:
3493       EltName = "poly64_t";
3494       break;
3495     default: llvm_unreachable("unexpected Neon polynomial vector element type");
3496     }
3497   } else {
3498     switch (cast<BuiltinType>(EltType)->getKind()) {
3499     case BuiltinType::SChar:     EltName = "int8_t"; break;
3500     case BuiltinType::UChar:     EltName = "uint8_t"; break;
3501     case BuiltinType::Short:     EltName = "int16_t"; break;
3502     case BuiltinType::UShort:    EltName = "uint16_t"; break;
3503     case BuiltinType::Int:       EltName = "int32_t"; break;
3504     case BuiltinType::UInt:      EltName = "uint32_t"; break;
3505     case BuiltinType::LongLong:  EltName = "int64_t"; break;
3506     case BuiltinType::ULongLong: EltName = "uint64_t"; break;
3507     case BuiltinType::Double:    EltName = "float64_t"; break;
3508     case BuiltinType::Float:     EltName = "float32_t"; break;
3509     case BuiltinType::Half:      EltName = "float16_t"; break;
3510     case BuiltinType::BFloat16:  EltName = "bfloat16_t"; break;
3511     default:
3512       llvm_unreachable("unexpected Neon vector element type");
3513     }
3514   }
3515   const char *BaseName = nullptr;
3516   unsigned BitSize = (T->getNumElements() *
3517                       getASTContext().getTypeSize(EltType));
3518   if (BitSize == 64)
3519     BaseName = "__simd64_";
3520   else {
3521     assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
3522     BaseName = "__simd128_";
3523   }
3524   Out << strlen(BaseName) + strlen(EltName);
3525   Out << BaseName << EltName;
3526 }
3527 
3528 void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) {
3529   DiagnosticsEngine &Diags = Context.getDiags();
3530   unsigned DiagID = Diags.getCustomDiagID(
3531       DiagnosticsEngine::Error,
3532       "cannot mangle this dependent neon vector type yet");
3533   Diags.Report(T->getAttributeLoc(), DiagID);
3534 }
3535 
3536 static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
3537   switch (EltType->getKind()) {
3538   case BuiltinType::SChar:
3539     return "Int8";
3540   case BuiltinType::Short:
3541     return "Int16";
3542   case BuiltinType::Int:
3543     return "Int32";
3544   case BuiltinType::Long:
3545   case BuiltinType::LongLong:
3546     return "Int64";
3547   case BuiltinType::UChar:
3548     return "Uint8";
3549   case BuiltinType::UShort:
3550     return "Uint16";
3551   case BuiltinType::UInt:
3552     return "Uint32";
3553   case BuiltinType::ULong:
3554   case BuiltinType::ULongLong:
3555     return "Uint64";
3556   case BuiltinType::Half:
3557     return "Float16";
3558   case BuiltinType::Float:
3559     return "Float32";
3560   case BuiltinType::Double:
3561     return "Float64";
3562   case BuiltinType::BFloat16:
3563     return "Bfloat16";
3564   default:
3565     llvm_unreachable("Unexpected vector element base type");
3566   }
3567 }
3568 
3569 // AArch64's ABI for Neon vector types specifies that they should be mangled as
3570 // the equivalent internal name. The vector type must be one of the special
3571 // types predefined by ARM.
3572 void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
3573   QualType EltType = T->getElementType();
3574   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3575   unsigned BitSize =
3576       (T->getNumElements() * getASTContext().getTypeSize(EltType));
3577   (void)BitSize; // Silence warning.
3578 
3579   assert((BitSize == 64 || BitSize == 128) &&
3580          "Neon vector type not 64 or 128 bits");
3581 
3582   StringRef EltName;
3583   if (T->getVectorKind() == VectorType::NeonPolyVector) {
3584     switch (cast<BuiltinType>(EltType)->getKind()) {
3585     case BuiltinType::UChar:
3586       EltName = "Poly8";
3587       break;
3588     case BuiltinType::UShort:
3589       EltName = "Poly16";
3590       break;
3591     case BuiltinType::ULong:
3592     case BuiltinType::ULongLong:
3593       EltName = "Poly64";
3594       break;
3595     default:
3596       llvm_unreachable("unexpected Neon polynomial vector element type");
3597     }
3598   } else
3599     EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
3600 
3601   std::string TypeName =
3602       ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str();
3603   Out << TypeName.length() << TypeName;
3604 }
3605 void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) {
3606   DiagnosticsEngine &Diags = Context.getDiags();
3607   unsigned DiagID = Diags.getCustomDiagID(
3608       DiagnosticsEngine::Error,
3609       "cannot mangle this dependent neon vector type yet");
3610   Diags.Report(T->getAttributeLoc(), DiagID);
3611 }
3612 
3613 // The AArch64 ACLE specifies that fixed-length SVE vector and predicate types
3614 // defined with the 'arm_sve_vector_bits' attribute map to the same AAPCS64
3615 // type as the sizeless variants.
3616 //
3617 // The mangling scheme for VLS types is implemented as a "pseudo" template:
3618 //
3619 //   '__SVE_VLS<<type>, <vector length>>'
3620 //
3621 // Combining the existing SVE type and a specific vector length (in bits).
3622 // For example:
3623 //
3624 //   typedef __SVInt32_t foo __attribute__((arm_sve_vector_bits(512)));
3625 //
3626 // is described as '__SVE_VLS<__SVInt32_t, 512u>' and mangled as:
3627 //
3628 //   "9__SVE_VLSI" + base type mangling + "Lj" + __ARM_FEATURE_SVE_BITS + "EE"
3629 //
3630 //   i.e. 9__SVE_VLSIu11__SVInt32_tLj512EE
3631 //
3632 // The latest ACLE specification (00bet5) does not contain details of this
3633 // mangling scheme, it will be specified in the next revision. The mangling
3634 // scheme is otherwise defined in the appendices to the Procedure Call Standard
3635 // for the Arm Architecture, see
3636 // https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst#appendix-c-mangling
3637 void CXXNameMangler::mangleAArch64FixedSveVectorType(const VectorType *T) {
3638   assert((T->getVectorKind() == VectorType::SveFixedLengthDataVector ||
3639           T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) &&
3640          "expected fixed-length SVE vector!");
3641 
3642   QualType EltType = T->getElementType();
3643   assert(EltType->isBuiltinType() &&
3644          "expected builtin type for fixed-length SVE vector!");
3645 
3646   StringRef TypeName;
3647   switch (cast<BuiltinType>(EltType)->getKind()) {
3648   case BuiltinType::SChar:
3649     TypeName = "__SVInt8_t";
3650     break;
3651   case BuiltinType::UChar: {
3652     if (T->getVectorKind() == VectorType::SveFixedLengthDataVector)
3653       TypeName = "__SVUint8_t";
3654     else
3655       TypeName = "__SVBool_t";
3656     break;
3657   }
3658   case BuiltinType::Short:
3659     TypeName = "__SVInt16_t";
3660     break;
3661   case BuiltinType::UShort:
3662     TypeName = "__SVUint16_t";
3663     break;
3664   case BuiltinType::Int:
3665     TypeName = "__SVInt32_t";
3666     break;
3667   case BuiltinType::UInt:
3668     TypeName = "__SVUint32_t";
3669     break;
3670   case BuiltinType::Long:
3671     TypeName = "__SVInt64_t";
3672     break;
3673   case BuiltinType::ULong:
3674     TypeName = "__SVUint64_t";
3675     break;
3676   case BuiltinType::Half:
3677     TypeName = "__SVFloat16_t";
3678     break;
3679   case BuiltinType::Float:
3680     TypeName = "__SVFloat32_t";
3681     break;
3682   case BuiltinType::Double:
3683     TypeName = "__SVFloat64_t";
3684     break;
3685   case BuiltinType::BFloat16:
3686     TypeName = "__SVBfloat16_t";
3687     break;
3688   default:
3689     llvm_unreachable("unexpected element type for fixed-length SVE vector!");
3690   }
3691 
3692   unsigned VecSizeInBits = getASTContext().getTypeInfo(T).Width;
3693 
3694   if (T->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
3695     VecSizeInBits *= 8;
3696 
3697   Out << "9__SVE_VLSI" << 'u' << TypeName.size() << TypeName << "Lj"
3698       << VecSizeInBits << "EE";
3699 }
3700 
3701 void CXXNameMangler::mangleAArch64FixedSveVectorType(
3702     const DependentVectorType *T) {
3703   DiagnosticsEngine &Diags = Context.getDiags();
3704   unsigned DiagID = Diags.getCustomDiagID(
3705       DiagnosticsEngine::Error,
3706       "cannot mangle this dependent fixed-length SVE vector type yet");
3707   Diags.Report(T->getAttributeLoc(), DiagID);
3708 }
3709 
3710 // GNU extension: vector types
3711 // <type>                  ::= <vector-type>
3712 // <vector-type>           ::= Dv <positive dimension number> _
3713 //                                    <extended element type>
3714 //                         ::= Dv [<dimension expression>] _ <element type>
3715 // <extended element type> ::= <element type>
3716 //                         ::= p # AltiVec vector pixel
3717 //                         ::= b # Altivec vector bool
3718 void CXXNameMangler::mangleType(const VectorType *T) {
3719   if ((T->getVectorKind() == VectorType::NeonVector ||
3720        T->getVectorKind() == VectorType::NeonPolyVector)) {
3721     llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3722     llvm::Triple::ArchType Arch =
3723         getASTContext().getTargetInfo().getTriple().getArch();
3724     if ((Arch == llvm::Triple::aarch64 ||
3725          Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
3726       mangleAArch64NeonVectorType(T);
3727     else
3728       mangleNeonVectorType(T);
3729     return;
3730   } else if (T->getVectorKind() == VectorType::SveFixedLengthDataVector ||
3731              T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
3732     mangleAArch64FixedSveVectorType(T);
3733     return;
3734   }
3735   Out << "Dv" << T->getNumElements() << '_';
3736   if (T->getVectorKind() == VectorType::AltiVecPixel)
3737     Out << 'p';
3738   else if (T->getVectorKind() == VectorType::AltiVecBool)
3739     Out << 'b';
3740   else
3741     mangleType(T->getElementType());
3742 }
3743 
3744 void CXXNameMangler::mangleType(const DependentVectorType *T) {
3745   if ((T->getVectorKind() == VectorType::NeonVector ||
3746        T->getVectorKind() == VectorType::NeonPolyVector)) {
3747     llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3748     llvm::Triple::ArchType Arch =
3749         getASTContext().getTargetInfo().getTriple().getArch();
3750     if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) &&
3751         !Target.isOSDarwin())
3752       mangleAArch64NeonVectorType(T);
3753     else
3754       mangleNeonVectorType(T);
3755     return;
3756   } else if (T->getVectorKind() == VectorType::SveFixedLengthDataVector ||
3757              T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
3758     mangleAArch64FixedSveVectorType(T);
3759     return;
3760   }
3761 
3762   Out << "Dv";
3763   mangleExpression(T->getSizeExpr());
3764   Out << '_';
3765   if (T->getVectorKind() == VectorType::AltiVecPixel)
3766     Out << 'p';
3767   else if (T->getVectorKind() == VectorType::AltiVecBool)
3768     Out << 'b';
3769   else
3770     mangleType(T->getElementType());
3771 }
3772 
3773 void CXXNameMangler::mangleType(const ExtVectorType *T) {
3774   mangleType(static_cast<const VectorType*>(T));
3775 }
3776 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
3777   Out << "Dv";
3778   mangleExpression(T->getSizeExpr());
3779   Out << '_';
3780   mangleType(T->getElementType());
3781 }
3782 
3783 void CXXNameMangler::mangleType(const ConstantMatrixType *T) {
3784   // Mangle matrix types as a vendor extended type:
3785   // u<Len>matrix_typeI<Rows><Columns><element type>E
3786 
3787   StringRef VendorQualifier = "matrix_type";
3788   Out << "u" << VendorQualifier.size() << VendorQualifier;
3789 
3790   Out << "I";
3791   auto &ASTCtx = getASTContext();
3792   unsigned BitWidth = ASTCtx.getTypeSize(ASTCtx.getSizeType());
3793   llvm::APSInt Rows(BitWidth);
3794   Rows = T->getNumRows();
3795   mangleIntegerLiteral(ASTCtx.getSizeType(), Rows);
3796   llvm::APSInt Columns(BitWidth);
3797   Columns = T->getNumColumns();
3798   mangleIntegerLiteral(ASTCtx.getSizeType(), Columns);
3799   mangleType(T->getElementType());
3800   Out << "E";
3801 }
3802 
3803 void CXXNameMangler::mangleType(const DependentSizedMatrixType *T) {
3804   // Mangle matrix types as a vendor extended type:
3805   // u<Len>matrix_typeI<row expr><column expr><element type>E
3806   StringRef VendorQualifier = "matrix_type";
3807   Out << "u" << VendorQualifier.size() << VendorQualifier;
3808 
3809   Out << "I";
3810   mangleTemplateArgExpr(T->getRowExpr());
3811   mangleTemplateArgExpr(T->getColumnExpr());
3812   mangleType(T->getElementType());
3813   Out << "E";
3814 }
3815 
3816 void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) {
3817   SplitQualType split = T->getPointeeType().split();
3818   mangleQualifiers(split.Quals, T);
3819   mangleType(QualType(split.Ty, 0));
3820 }
3821 
3822 void CXXNameMangler::mangleType(const PackExpansionType *T) {
3823   // <type>  ::= Dp <type>          # pack expansion (C++0x)
3824   Out << "Dp";
3825   mangleType(T->getPattern());
3826 }
3827 
3828 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
3829   mangleSourceName(T->getDecl()->getIdentifier());
3830 }
3831 
3832 void CXXNameMangler::mangleType(const ObjCObjectType *T) {
3833   // Treat __kindof as a vendor extended type qualifier.
3834   if (T->isKindOfType())
3835     Out << "U8__kindof";
3836 
3837   if (!T->qual_empty()) {
3838     // Mangle protocol qualifiers.
3839     SmallString<64> QualStr;
3840     llvm::raw_svector_ostream QualOS(QualStr);
3841     QualOS << "objcproto";
3842     for (const auto *I : T->quals()) {
3843       StringRef name = I->getName();
3844       QualOS << name.size() << name;
3845     }
3846     Out << 'U' << QualStr.size() << QualStr;
3847   }
3848 
3849   mangleType(T->getBaseType());
3850 
3851   if (T->isSpecialized()) {
3852     // Mangle type arguments as I <type>+ E
3853     Out << 'I';
3854     for (auto typeArg : T->getTypeArgs())
3855       mangleType(typeArg);
3856     Out << 'E';
3857   }
3858 }
3859 
3860 void CXXNameMangler::mangleType(const BlockPointerType *T) {
3861   Out << "U13block_pointer";
3862   mangleType(T->getPointeeType());
3863 }
3864 
3865 void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
3866   // Mangle injected class name types as if the user had written the
3867   // specialization out fully.  It may not actually be possible to see
3868   // this mangling, though.
3869   mangleType(T->getInjectedSpecializationType());
3870 }
3871 
3872 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
3873   if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
3874     mangleTemplateName(TD, T->template_arguments());
3875   } else {
3876     if (mangleSubstitution(QualType(T, 0)))
3877       return;
3878 
3879     mangleTemplatePrefix(T->getTemplateName());
3880 
3881     // FIXME: GCC does not appear to mangle the template arguments when
3882     // the template in question is a dependent template name. Should we
3883     // emulate that badness?
3884     mangleTemplateArgs(T->getTemplateName(), T->template_arguments());
3885     addSubstitution(QualType(T, 0));
3886   }
3887 }
3888 
3889 void CXXNameMangler::mangleType(const DependentNameType *T) {
3890   // Proposal by cxx-abi-dev, 2014-03-26
3891   // <class-enum-type> ::= <name>    # non-dependent or dependent type name or
3892   //                                 # dependent elaborated type specifier using
3893   //                                 # 'typename'
3894   //                   ::= Ts <name> # dependent elaborated type specifier using
3895   //                                 # 'struct' or 'class'
3896   //                   ::= Tu <name> # dependent elaborated type specifier using
3897   //                                 # 'union'
3898   //                   ::= Te <name> # dependent elaborated type specifier using
3899   //                                 # 'enum'
3900   switch (T->getKeyword()) {
3901     case ETK_None:
3902     case ETK_Typename:
3903       break;
3904     case ETK_Struct:
3905     case ETK_Class:
3906     case ETK_Interface:
3907       Out << "Ts";
3908       break;
3909     case ETK_Union:
3910       Out << "Tu";
3911       break;
3912     case ETK_Enum:
3913       Out << "Te";
3914       break;
3915   }
3916   // Typename types are always nested
3917   Out << 'N';
3918   manglePrefix(T->getQualifier());
3919   mangleSourceName(T->getIdentifier());
3920   Out << 'E';
3921 }
3922 
3923 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
3924   // Dependently-scoped template types are nested if they have a prefix.
3925   Out << 'N';
3926 
3927   // TODO: avoid making this TemplateName.
3928   TemplateName Prefix =
3929     getASTContext().getDependentTemplateName(T->getQualifier(),
3930                                              T->getIdentifier());
3931   mangleTemplatePrefix(Prefix);
3932 
3933   // FIXME: GCC does not appear to mangle the template arguments when
3934   // the template in question is a dependent template name. Should we
3935   // emulate that badness?
3936   mangleTemplateArgs(Prefix, T->template_arguments());
3937   Out << 'E';
3938 }
3939 
3940 void CXXNameMangler::mangleType(const TypeOfType *T) {
3941   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3942   // "extension with parameters" mangling.
3943   Out << "u6typeof";
3944 }
3945 
3946 void CXXNameMangler::mangleType(const TypeOfExprType *T) {
3947   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3948   // "extension with parameters" mangling.
3949   Out << "u6typeof";
3950 }
3951 
3952 void CXXNameMangler::mangleType(const DecltypeType *T) {
3953   Expr *E = T->getUnderlyingExpr();
3954 
3955   // type ::= Dt <expression> E  # decltype of an id-expression
3956   //                             #   or class member access
3957   //      ::= DT <expression> E  # decltype of an expression
3958 
3959   // This purports to be an exhaustive list of id-expressions and
3960   // class member accesses.  Note that we do not ignore parentheses;
3961   // parentheses change the semantics of decltype for these
3962   // expressions (and cause the mangler to use the other form).
3963   if (isa<DeclRefExpr>(E) ||
3964       isa<MemberExpr>(E) ||
3965       isa<UnresolvedLookupExpr>(E) ||
3966       isa<DependentScopeDeclRefExpr>(E) ||
3967       isa<CXXDependentScopeMemberExpr>(E) ||
3968       isa<UnresolvedMemberExpr>(E))
3969     Out << "Dt";
3970   else
3971     Out << "DT";
3972   mangleExpression(E);
3973   Out << 'E';
3974 }
3975 
3976 void CXXNameMangler::mangleType(const UnaryTransformType *T) {
3977   // If this is dependent, we need to record that. If not, we simply
3978   // mangle it as the underlying type since they are equivalent.
3979   if (T->isDependentType()) {
3980     Out << "u";
3981 
3982     StringRef BuiltinName;
3983     switch (T->getUTTKind()) {
3984 #define TRANSFORM_TYPE_TRAIT_DEF(Enum, Trait)                                  \
3985   case UnaryTransformType::Enum:                                               \
3986     BuiltinName = "__" #Trait;                                                 \
3987     break;
3988 #include "clang/Basic/TransformTypeTraits.def"
3989     }
3990     Out << BuiltinName.size() << BuiltinName;
3991   }
3992 
3993   Out << "I";
3994   mangleType(T->getBaseType());
3995   Out << "E";
3996 }
3997 
3998 void CXXNameMangler::mangleType(const AutoType *T) {
3999   assert(T->getDeducedType().isNull() &&
4000          "Deduced AutoType shouldn't be handled here!");
4001   assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType &&
4002          "shouldn't need to mangle __auto_type!");
4003   // <builtin-type> ::= Da # auto
4004   //                ::= Dc # decltype(auto)
4005   Out << (T->isDecltypeAuto() ? "Dc" : "Da");
4006 }
4007 
4008 void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) {
4009   QualType Deduced = T->getDeducedType();
4010   if (!Deduced.isNull())
4011     return mangleType(Deduced);
4012 
4013   TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl();
4014   assert(TD && "shouldn't form deduced TST unless we know we have a template");
4015 
4016   if (mangleSubstitution(TD))
4017     return;
4018 
4019   mangleName(GlobalDecl(TD));
4020   addSubstitution(TD);
4021 }
4022 
4023 void CXXNameMangler::mangleType(const AtomicType *T) {
4024   // <type> ::= U <source-name> <type>  # vendor extended type qualifier
4025   // (Until there's a standardized mangling...)
4026   Out << "U7_Atomic";
4027   mangleType(T->getValueType());
4028 }
4029 
4030 void CXXNameMangler::mangleType(const PipeType *T) {
4031   // Pipe type mangling rules are described in SPIR 2.0 specification
4032   // A.1 Data types and A.3 Summary of changes
4033   // <type> ::= 8ocl_pipe
4034   Out << "8ocl_pipe";
4035 }
4036 
4037 void CXXNameMangler::mangleType(const BitIntType *T) {
4038   // 5.1.5.2 Builtin types
4039   // <type> ::= DB <number | instantiation-dependent expression> _
4040   //        ::= DU <number | instantiation-dependent expression> _
4041   Out << "D" << (T->isUnsigned() ? "U" : "B") << T->getNumBits() << "_";
4042 }
4043 
4044 void CXXNameMangler::mangleType(const DependentBitIntType *T) {
4045   // 5.1.5.2 Builtin types
4046   // <type> ::= DB <number | instantiation-dependent expression> _
4047   //        ::= DU <number | instantiation-dependent expression> _
4048   Out << "D" << (T->isUnsigned() ? "U" : "B");
4049   mangleExpression(T->getNumBitsExpr());
4050   Out << "_";
4051 }
4052 
4053 void CXXNameMangler::mangleIntegerLiteral(QualType T,
4054                                           const llvm::APSInt &Value) {
4055   //  <expr-primary> ::= L <type> <value number> E # integer literal
4056   Out << 'L';
4057 
4058   mangleType(T);
4059   if (T->isBooleanType()) {
4060     // Boolean values are encoded as 0/1.
4061     Out << (Value.getBoolValue() ? '1' : '0');
4062   } else {
4063     mangleNumber(Value);
4064   }
4065   Out << 'E';
4066 
4067 }
4068 
4069 void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) {
4070   // Ignore member expressions involving anonymous unions.
4071   while (const auto *RT = Base->getType()->getAs<RecordType>()) {
4072     if (!RT->getDecl()->isAnonymousStructOrUnion())
4073       break;
4074     const auto *ME = dyn_cast<MemberExpr>(Base);
4075     if (!ME)
4076       break;
4077     Base = ME->getBase();
4078     IsArrow = ME->isArrow();
4079   }
4080 
4081   if (Base->isImplicitCXXThis()) {
4082     // Note: GCC mangles member expressions to the implicit 'this' as
4083     // *this., whereas we represent them as this->. The Itanium C++ ABI
4084     // does not specify anything here, so we follow GCC.
4085     Out << "dtdefpT";
4086   } else {
4087     Out << (IsArrow ? "pt" : "dt");
4088     mangleExpression(Base);
4089   }
4090 }
4091 
4092 /// Mangles a member expression.
4093 void CXXNameMangler::mangleMemberExpr(const Expr *base,
4094                                       bool isArrow,
4095                                       NestedNameSpecifier *qualifier,
4096                                       NamedDecl *firstQualifierLookup,
4097                                       DeclarationName member,
4098                                       const TemplateArgumentLoc *TemplateArgs,
4099                                       unsigned NumTemplateArgs,
4100                                       unsigned arity) {
4101   // <expression> ::= dt <expression> <unresolved-name>
4102   //              ::= pt <expression> <unresolved-name>
4103   if (base)
4104     mangleMemberExprBase(base, isArrow);
4105   mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity);
4106 }
4107 
4108 /// Look at the callee of the given call expression and determine if
4109 /// it's a parenthesized id-expression which would have triggered ADL
4110 /// otherwise.
4111 static bool isParenthesizedADLCallee(const CallExpr *call) {
4112   const Expr *callee = call->getCallee();
4113   const Expr *fn = callee->IgnoreParens();
4114 
4115   // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
4116   // too, but for those to appear in the callee, it would have to be
4117   // parenthesized.
4118   if (callee == fn) return false;
4119 
4120   // Must be an unresolved lookup.
4121   const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
4122   if (!lookup) return false;
4123 
4124   assert(!lookup->requiresADL());
4125 
4126   // Must be an unqualified lookup.
4127   if (lookup->getQualifier()) return false;
4128 
4129   // Must not have found a class member.  Note that if one is a class
4130   // member, they're all class members.
4131   if (lookup->getNumDecls() > 0 &&
4132       (*lookup->decls_begin())->isCXXClassMember())
4133     return false;
4134 
4135   // Otherwise, ADL would have been triggered.
4136   return true;
4137 }
4138 
4139 void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
4140   const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
4141   Out << CastEncoding;
4142   mangleType(ECE->getType());
4143   mangleExpression(ECE->getSubExpr());
4144 }
4145 
4146 void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) {
4147   if (auto *Syntactic = InitList->getSyntacticForm())
4148     InitList = Syntactic;
4149   for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
4150     mangleExpression(InitList->getInit(i));
4151 }
4152 
4153 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity,
4154                                       bool AsTemplateArg) {
4155   // <expression> ::= <unary operator-name> <expression>
4156   //              ::= <binary operator-name> <expression> <expression>
4157   //              ::= <trinary operator-name> <expression> <expression> <expression>
4158   //              ::= cv <type> expression           # conversion with one argument
4159   //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
4160   //              ::= dc <type> <expression>         # dynamic_cast<type> (expression)
4161   //              ::= sc <type> <expression>         # static_cast<type> (expression)
4162   //              ::= cc <type> <expression>         # const_cast<type> (expression)
4163   //              ::= rc <type> <expression>         # reinterpret_cast<type> (expression)
4164   //              ::= st <type>                      # sizeof (a type)
4165   //              ::= at <type>                      # alignof (a type)
4166   //              ::= <template-param>
4167   //              ::= <function-param>
4168   //              ::= fpT                            # 'this' expression (part of <function-param>)
4169   //              ::= sr <type> <unqualified-name>                   # dependent name
4170   //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
4171   //              ::= ds <expression> <expression>                   # expr.*expr
4172   //              ::= sZ <template-param>                            # size of a parameter pack
4173   //              ::= sZ <function-param>    # size of a function parameter pack
4174   //              ::= u <source-name> <template-arg>* E # vendor extended expression
4175   //              ::= <expr-primary>
4176   // <expr-primary> ::= L <type> <value number> E    # integer literal
4177   //                ::= L <type> <value float> E     # floating literal
4178   //                ::= L <type> <string type> E     # string literal
4179   //                ::= L <nullptr type> E           # nullptr literal "LDnE"
4180   //                ::= L <pointer type> 0 E         # null pointer template argument
4181   //                ::= L <type> <real-part float> _ <imag-part float> E    # complex floating point literal (C99); not used by clang
4182   //                ::= L <mangled-name> E           # external name
4183   QualType ImplicitlyConvertedToType;
4184 
4185   // A top-level expression that's not <expr-primary> needs to be wrapped in
4186   // X...E in a template arg.
4187   bool IsPrimaryExpr = true;
4188   auto NotPrimaryExpr = [&] {
4189     if (AsTemplateArg && IsPrimaryExpr)
4190       Out << 'X';
4191     IsPrimaryExpr = false;
4192   };
4193 
4194   auto MangleDeclRefExpr = [&](const NamedDecl *D) {
4195     switch (D->getKind()) {
4196     default:
4197       //  <expr-primary> ::= L <mangled-name> E # external name
4198       Out << 'L';
4199       mangle(D);
4200       Out << 'E';
4201       break;
4202 
4203     case Decl::ParmVar:
4204       NotPrimaryExpr();
4205       mangleFunctionParam(cast<ParmVarDecl>(D));
4206       break;
4207 
4208     case Decl::EnumConstant: {
4209       // <expr-primary>
4210       const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
4211       mangleIntegerLiteral(ED->getType(), ED->getInitVal());
4212       break;
4213     }
4214 
4215     case Decl::NonTypeTemplateParm:
4216       NotPrimaryExpr();
4217       const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
4218       mangleTemplateParameter(PD->getDepth(), PD->getIndex());
4219       break;
4220     }
4221   };
4222 
4223   // 'goto recurse' is used when handling a simple "unwrapping" node which
4224   // produces no output, where ImplicitlyConvertedToType and AsTemplateArg need
4225   // to be preserved.
4226 recurse:
4227   switch (E->getStmtClass()) {
4228   case Expr::NoStmtClass:
4229 #define ABSTRACT_STMT(Type)
4230 #define EXPR(Type, Base)
4231 #define STMT(Type, Base) \
4232   case Expr::Type##Class:
4233 #include "clang/AST/StmtNodes.inc"
4234     // fallthrough
4235 
4236   // These all can only appear in local or variable-initialization
4237   // contexts and so should never appear in a mangling.
4238   case Expr::AddrLabelExprClass:
4239   case Expr::DesignatedInitUpdateExprClass:
4240   case Expr::ImplicitValueInitExprClass:
4241   case Expr::ArrayInitLoopExprClass:
4242   case Expr::ArrayInitIndexExprClass:
4243   case Expr::NoInitExprClass:
4244   case Expr::ParenListExprClass:
4245   case Expr::MSPropertyRefExprClass:
4246   case Expr::MSPropertySubscriptExprClass:
4247   case Expr::TypoExprClass: // This should no longer exist in the AST by now.
4248   case Expr::RecoveryExprClass:
4249   case Expr::OMPArraySectionExprClass:
4250   case Expr::OMPArrayShapingExprClass:
4251   case Expr::OMPIteratorExprClass:
4252   case Expr::CXXInheritedCtorInitExprClass:
4253   case Expr::CXXParenListInitExprClass:
4254     llvm_unreachable("unexpected statement kind");
4255 
4256   case Expr::ConstantExprClass:
4257     E = cast<ConstantExpr>(E)->getSubExpr();
4258     goto recurse;
4259 
4260   // FIXME: invent manglings for all these.
4261   case Expr::BlockExprClass:
4262   case Expr::ChooseExprClass:
4263   case Expr::CompoundLiteralExprClass:
4264   case Expr::ExtVectorElementExprClass:
4265   case Expr::GenericSelectionExprClass:
4266   case Expr::ObjCEncodeExprClass:
4267   case Expr::ObjCIsaExprClass:
4268   case Expr::ObjCIvarRefExprClass:
4269   case Expr::ObjCMessageExprClass:
4270   case Expr::ObjCPropertyRefExprClass:
4271   case Expr::ObjCProtocolExprClass:
4272   case Expr::ObjCSelectorExprClass:
4273   case Expr::ObjCStringLiteralClass:
4274   case Expr::ObjCBoxedExprClass:
4275   case Expr::ObjCArrayLiteralClass:
4276   case Expr::ObjCDictionaryLiteralClass:
4277   case Expr::ObjCSubscriptRefExprClass:
4278   case Expr::ObjCIndirectCopyRestoreExprClass:
4279   case Expr::ObjCAvailabilityCheckExprClass:
4280   case Expr::OffsetOfExprClass:
4281   case Expr::PredefinedExprClass:
4282   case Expr::ShuffleVectorExprClass:
4283   case Expr::ConvertVectorExprClass:
4284   case Expr::StmtExprClass:
4285   case Expr::TypeTraitExprClass:
4286   case Expr::RequiresExprClass:
4287   case Expr::ArrayTypeTraitExprClass:
4288   case Expr::ExpressionTraitExprClass:
4289   case Expr::VAArgExprClass:
4290   case Expr::CUDAKernelCallExprClass:
4291   case Expr::AsTypeExprClass:
4292   case Expr::PseudoObjectExprClass:
4293   case Expr::AtomicExprClass:
4294   case Expr::SourceLocExprClass:
4295   case Expr::BuiltinBitCastExprClass:
4296   {
4297     NotPrimaryExpr();
4298     if (!NullOut) {
4299       // As bad as this diagnostic is, it's better than crashing.
4300       DiagnosticsEngine &Diags = Context.getDiags();
4301       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
4302                                        "cannot yet mangle expression type %0");
4303       Diags.Report(E->getExprLoc(), DiagID)
4304         << E->getStmtClassName() << E->getSourceRange();
4305       return;
4306     }
4307     break;
4308   }
4309 
4310   case Expr::CXXUuidofExprClass: {
4311     NotPrimaryExpr();
4312     const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
4313     // As of clang 12, uuidof uses the vendor extended expression
4314     // mangling. Previously, it used a special-cased nonstandard extension.
4315     if (Context.getASTContext().getLangOpts().getClangABICompat() >
4316         LangOptions::ClangABI::Ver11) {
4317       Out << "u8__uuidof";
4318       if (UE->isTypeOperand())
4319         mangleType(UE->getTypeOperand(Context.getASTContext()));
4320       else
4321         mangleTemplateArgExpr(UE->getExprOperand());
4322       Out << 'E';
4323     } else {
4324       if (UE->isTypeOperand()) {
4325         QualType UuidT = UE->getTypeOperand(Context.getASTContext());
4326         Out << "u8__uuidoft";
4327         mangleType(UuidT);
4328       } else {
4329         Expr *UuidExp = UE->getExprOperand();
4330         Out << "u8__uuidofz";
4331         mangleExpression(UuidExp);
4332       }
4333     }
4334     break;
4335   }
4336 
4337   // Even gcc-4.5 doesn't mangle this.
4338   case Expr::BinaryConditionalOperatorClass: {
4339     NotPrimaryExpr();
4340     DiagnosticsEngine &Diags = Context.getDiags();
4341     unsigned DiagID =
4342       Diags.getCustomDiagID(DiagnosticsEngine::Error,
4343                 "?: operator with omitted middle operand cannot be mangled");
4344     Diags.Report(E->getExprLoc(), DiagID)
4345       << E->getStmtClassName() << E->getSourceRange();
4346     return;
4347   }
4348 
4349   // These are used for internal purposes and cannot be meaningfully mangled.
4350   case Expr::OpaqueValueExprClass:
4351     llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
4352 
4353   case Expr::InitListExprClass: {
4354     NotPrimaryExpr();
4355     Out << "il";
4356     mangleInitListElements(cast<InitListExpr>(E));
4357     Out << "E";
4358     break;
4359   }
4360 
4361   case Expr::DesignatedInitExprClass: {
4362     NotPrimaryExpr();
4363     auto *DIE = cast<DesignatedInitExpr>(E);
4364     for (const auto &Designator : DIE->designators()) {
4365       if (Designator.isFieldDesignator()) {
4366         Out << "di";
4367         mangleSourceName(Designator.getFieldName());
4368       } else if (Designator.isArrayDesignator()) {
4369         Out << "dx";
4370         mangleExpression(DIE->getArrayIndex(Designator));
4371       } else {
4372         assert(Designator.isArrayRangeDesignator() &&
4373                "unknown designator kind");
4374         Out << "dX";
4375         mangleExpression(DIE->getArrayRangeStart(Designator));
4376         mangleExpression(DIE->getArrayRangeEnd(Designator));
4377       }
4378     }
4379     mangleExpression(DIE->getInit());
4380     break;
4381   }
4382 
4383   case Expr::CXXDefaultArgExprClass:
4384     E = cast<CXXDefaultArgExpr>(E)->getExpr();
4385     goto recurse;
4386 
4387   case Expr::CXXDefaultInitExprClass:
4388     E = cast<CXXDefaultInitExpr>(E)->getExpr();
4389     goto recurse;
4390 
4391   case Expr::CXXStdInitializerListExprClass:
4392     E = cast<CXXStdInitializerListExpr>(E)->getSubExpr();
4393     goto recurse;
4394 
4395   case Expr::SubstNonTypeTemplateParmExprClass:
4396     E = cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement();
4397     goto recurse;
4398 
4399   case Expr::UserDefinedLiteralClass:
4400     // We follow g++'s approach of mangling a UDL as a call to the literal
4401     // operator.
4402   case Expr::CXXMemberCallExprClass: // fallthrough
4403   case Expr::CallExprClass: {
4404     NotPrimaryExpr();
4405     const CallExpr *CE = cast<CallExpr>(E);
4406 
4407     // <expression> ::= cp <simple-id> <expression>* E
4408     // We use this mangling only when the call would use ADL except
4409     // for being parenthesized.  Per discussion with David
4410     // Vandervoorde, 2011.04.25.
4411     if (isParenthesizedADLCallee(CE)) {
4412       Out << "cp";
4413       // The callee here is a parenthesized UnresolvedLookupExpr with
4414       // no qualifier and should always get mangled as a <simple-id>
4415       // anyway.
4416 
4417     // <expression> ::= cl <expression>* E
4418     } else {
4419       Out << "cl";
4420     }
4421 
4422     unsigned CallArity = CE->getNumArgs();
4423     for (const Expr *Arg : CE->arguments())
4424       if (isa<PackExpansionExpr>(Arg))
4425         CallArity = UnknownArity;
4426 
4427     mangleExpression(CE->getCallee(), CallArity);
4428     for (const Expr *Arg : CE->arguments())
4429       mangleExpression(Arg);
4430     Out << 'E';
4431     break;
4432   }
4433 
4434   case Expr::CXXNewExprClass: {
4435     NotPrimaryExpr();
4436     const CXXNewExpr *New = cast<CXXNewExpr>(E);
4437     if (New->isGlobalNew()) Out << "gs";
4438     Out << (New->isArray() ? "na" : "nw");
4439     for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
4440            E = New->placement_arg_end(); I != E; ++I)
4441       mangleExpression(*I);
4442     Out << '_';
4443     mangleType(New->getAllocatedType());
4444     if (New->hasInitializer()) {
4445       if (New->getInitializationStyle() == CXXNewExpr::ListInit)
4446         Out << "il";
4447       else
4448         Out << "pi";
4449       const Expr *Init = New->getInitializer();
4450       if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
4451         // Directly inline the initializers.
4452         for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
4453                                                   E = CCE->arg_end();
4454              I != E; ++I)
4455           mangleExpression(*I);
4456       } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
4457         for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
4458           mangleExpression(PLE->getExpr(i));
4459       } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
4460                  isa<InitListExpr>(Init)) {
4461         // Only take InitListExprs apart for list-initialization.
4462         mangleInitListElements(cast<InitListExpr>(Init));
4463       } else
4464         mangleExpression(Init);
4465     }
4466     Out << 'E';
4467     break;
4468   }
4469 
4470   case Expr::CXXPseudoDestructorExprClass: {
4471     NotPrimaryExpr();
4472     const auto *PDE = cast<CXXPseudoDestructorExpr>(E);
4473     if (const Expr *Base = PDE->getBase())
4474       mangleMemberExprBase(Base, PDE->isArrow());
4475     NestedNameSpecifier *Qualifier = PDE->getQualifier();
4476     if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) {
4477       if (Qualifier) {
4478         mangleUnresolvedPrefix(Qualifier,
4479                                /*recursive=*/true);
4480         mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType());
4481         Out << 'E';
4482       } else {
4483         Out << "sr";
4484         if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()))
4485           Out << 'E';
4486       }
4487     } else if (Qualifier) {
4488       mangleUnresolvedPrefix(Qualifier);
4489     }
4490     // <base-unresolved-name> ::= dn <destructor-name>
4491     Out << "dn";
4492     QualType DestroyedType = PDE->getDestroyedType();
4493     mangleUnresolvedTypeOrSimpleId(DestroyedType);
4494     break;
4495   }
4496 
4497   case Expr::MemberExprClass: {
4498     NotPrimaryExpr();
4499     const MemberExpr *ME = cast<MemberExpr>(E);
4500     mangleMemberExpr(ME->getBase(), ME->isArrow(),
4501                      ME->getQualifier(), nullptr,
4502                      ME->getMemberDecl()->getDeclName(),
4503                      ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4504                      Arity);
4505     break;
4506   }
4507 
4508   case Expr::UnresolvedMemberExprClass: {
4509     NotPrimaryExpr();
4510     const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
4511     mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
4512                      ME->isArrow(), ME->getQualifier(), nullptr,
4513                      ME->getMemberName(),
4514                      ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4515                      Arity);
4516     break;
4517   }
4518 
4519   case Expr::CXXDependentScopeMemberExprClass: {
4520     NotPrimaryExpr();
4521     const CXXDependentScopeMemberExpr *ME
4522       = cast<CXXDependentScopeMemberExpr>(E);
4523     mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
4524                      ME->isArrow(), ME->getQualifier(),
4525                      ME->getFirstQualifierFoundInScope(),
4526                      ME->getMember(),
4527                      ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4528                      Arity);
4529     break;
4530   }
4531 
4532   case Expr::UnresolvedLookupExprClass: {
4533     NotPrimaryExpr();
4534     const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
4535     mangleUnresolvedName(ULE->getQualifier(), ULE->getName(),
4536                          ULE->getTemplateArgs(), ULE->getNumTemplateArgs(),
4537                          Arity);
4538     break;
4539   }
4540 
4541   case Expr::CXXUnresolvedConstructExprClass: {
4542     NotPrimaryExpr();
4543     const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
4544     unsigned N = CE->getNumArgs();
4545 
4546     if (CE->isListInitialization()) {
4547       assert(N == 1 && "unexpected form for list initialization");
4548       auto *IL = cast<InitListExpr>(CE->getArg(0));
4549       Out << "tl";
4550       mangleType(CE->getType());
4551       mangleInitListElements(IL);
4552       Out << "E";
4553       break;
4554     }
4555 
4556     Out << "cv";
4557     mangleType(CE->getType());
4558     if (N != 1) Out << '_';
4559     for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
4560     if (N != 1) Out << 'E';
4561     break;
4562   }
4563 
4564   case Expr::CXXConstructExprClass: {
4565     // An implicit cast is silent, thus may contain <expr-primary>.
4566     const auto *CE = cast<CXXConstructExpr>(E);
4567     if (!CE->isListInitialization() || CE->isStdInitListInitialization()) {
4568       assert(
4569           CE->getNumArgs() >= 1 &&
4570           (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) &&
4571           "implicit CXXConstructExpr must have one argument");
4572       E = cast<CXXConstructExpr>(E)->getArg(0);
4573       goto recurse;
4574     }
4575     NotPrimaryExpr();
4576     Out << "il";
4577     for (auto *E : CE->arguments())
4578       mangleExpression(E);
4579     Out << "E";
4580     break;
4581   }
4582 
4583   case Expr::CXXTemporaryObjectExprClass: {
4584     NotPrimaryExpr();
4585     const auto *CE = cast<CXXTemporaryObjectExpr>(E);
4586     unsigned N = CE->getNumArgs();
4587     bool List = CE->isListInitialization();
4588 
4589     if (List)
4590       Out << "tl";
4591     else
4592       Out << "cv";
4593     mangleType(CE->getType());
4594     if (!List && N != 1)
4595       Out << '_';
4596     if (CE->isStdInitListInitialization()) {
4597       // We implicitly created a std::initializer_list<T> for the first argument
4598       // of a constructor of type U in an expression of the form U{a, b, c}.
4599       // Strip all the semantic gunk off the initializer list.
4600       auto *SILE =
4601           cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit());
4602       auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit());
4603       mangleInitListElements(ILE);
4604     } else {
4605       for (auto *E : CE->arguments())
4606         mangleExpression(E);
4607     }
4608     if (List || N != 1)
4609       Out << 'E';
4610     break;
4611   }
4612 
4613   case Expr::CXXScalarValueInitExprClass:
4614     NotPrimaryExpr();
4615     Out << "cv";
4616     mangleType(E->getType());
4617     Out << "_E";
4618     break;
4619 
4620   case Expr::CXXNoexceptExprClass:
4621     NotPrimaryExpr();
4622     Out << "nx";
4623     mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
4624     break;
4625 
4626   case Expr::UnaryExprOrTypeTraitExprClass: {
4627     // Non-instantiation-dependent traits are an <expr-primary> integer literal.
4628     const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
4629 
4630     if (!SAE->isInstantiationDependent()) {
4631       // Itanium C++ ABI:
4632       //   If the operand of a sizeof or alignof operator is not
4633       //   instantiation-dependent it is encoded as an integer literal
4634       //   reflecting the result of the operator.
4635       //
4636       //   If the result of the operator is implicitly converted to a known
4637       //   integer type, that type is used for the literal; otherwise, the type
4638       //   of std::size_t or std::ptrdiff_t is used.
4639       QualType T = (ImplicitlyConvertedToType.isNull() ||
4640                     !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
4641                                                     : ImplicitlyConvertedToType;
4642       llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
4643       mangleIntegerLiteral(T, V);
4644       break;
4645     }
4646 
4647     NotPrimaryExpr(); // But otherwise, they are not.
4648 
4649     auto MangleAlignofSizeofArg = [&] {
4650       if (SAE->isArgumentType()) {
4651         Out << 't';
4652         mangleType(SAE->getArgumentType());
4653       } else {
4654         Out << 'z';
4655         mangleExpression(SAE->getArgumentExpr());
4656       }
4657     };
4658 
4659     switch(SAE->getKind()) {
4660     case UETT_SizeOf:
4661       Out << 's';
4662       MangleAlignofSizeofArg();
4663       break;
4664     case UETT_PreferredAlignOf:
4665       // As of clang 12, we mangle __alignof__ differently than alignof. (They
4666       // have acted differently since Clang 8, but were previously mangled the
4667       // same.)
4668       if (Context.getASTContext().getLangOpts().getClangABICompat() >
4669           LangOptions::ClangABI::Ver11) {
4670         Out << "u11__alignof__";
4671         if (SAE->isArgumentType())
4672           mangleType(SAE->getArgumentType());
4673         else
4674           mangleTemplateArgExpr(SAE->getArgumentExpr());
4675         Out << 'E';
4676         break;
4677       }
4678       [[fallthrough]];
4679     case UETT_AlignOf:
4680       Out << 'a';
4681       MangleAlignofSizeofArg();
4682       break;
4683     case UETT_VecStep: {
4684       DiagnosticsEngine &Diags = Context.getDiags();
4685       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
4686                                      "cannot yet mangle vec_step expression");
4687       Diags.Report(DiagID);
4688       return;
4689     }
4690     case UETT_OpenMPRequiredSimdAlign: {
4691       DiagnosticsEngine &Diags = Context.getDiags();
4692       unsigned DiagID = Diags.getCustomDiagID(
4693           DiagnosticsEngine::Error,
4694           "cannot yet mangle __builtin_omp_required_simd_align expression");
4695       Diags.Report(DiagID);
4696       return;
4697     }
4698     }
4699     break;
4700   }
4701 
4702   case Expr::CXXThrowExprClass: {
4703     NotPrimaryExpr();
4704     const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
4705     //  <expression> ::= tw <expression>  # throw expression
4706     //               ::= tr               # rethrow
4707     if (TE->getSubExpr()) {
4708       Out << "tw";
4709       mangleExpression(TE->getSubExpr());
4710     } else {
4711       Out << "tr";
4712     }
4713     break;
4714   }
4715 
4716   case Expr::CXXTypeidExprClass: {
4717     NotPrimaryExpr();
4718     const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
4719     //  <expression> ::= ti <type>        # typeid (type)
4720     //               ::= te <expression>  # typeid (expression)
4721     if (TIE->isTypeOperand()) {
4722       Out << "ti";
4723       mangleType(TIE->getTypeOperand(Context.getASTContext()));
4724     } else {
4725       Out << "te";
4726       mangleExpression(TIE->getExprOperand());
4727     }
4728     break;
4729   }
4730 
4731   case Expr::CXXDeleteExprClass: {
4732     NotPrimaryExpr();
4733     const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
4734     //  <expression> ::= [gs] dl <expression>  # [::] delete expr
4735     //               ::= [gs] da <expression>  # [::] delete [] expr
4736     if (DE->isGlobalDelete()) Out << "gs";
4737     Out << (DE->isArrayForm() ? "da" : "dl");
4738     mangleExpression(DE->getArgument());
4739     break;
4740   }
4741 
4742   case Expr::UnaryOperatorClass: {
4743     NotPrimaryExpr();
4744     const UnaryOperator *UO = cast<UnaryOperator>(E);
4745     mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
4746                        /*Arity=*/1);
4747     mangleExpression(UO->getSubExpr());
4748     break;
4749   }
4750 
4751   case Expr::ArraySubscriptExprClass: {
4752     NotPrimaryExpr();
4753     const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
4754 
4755     // Array subscript is treated as a syntactically weird form of
4756     // binary operator.
4757     Out << "ix";
4758     mangleExpression(AE->getLHS());
4759     mangleExpression(AE->getRHS());
4760     break;
4761   }
4762 
4763   case Expr::MatrixSubscriptExprClass: {
4764     NotPrimaryExpr();
4765     const MatrixSubscriptExpr *ME = cast<MatrixSubscriptExpr>(E);
4766     Out << "ixix";
4767     mangleExpression(ME->getBase());
4768     mangleExpression(ME->getRowIdx());
4769     mangleExpression(ME->getColumnIdx());
4770     break;
4771   }
4772 
4773   case Expr::CompoundAssignOperatorClass: // fallthrough
4774   case Expr::BinaryOperatorClass: {
4775     NotPrimaryExpr();
4776     const BinaryOperator *BO = cast<BinaryOperator>(E);
4777     if (BO->getOpcode() == BO_PtrMemD)
4778       Out << "ds";
4779     else
4780       mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
4781                          /*Arity=*/2);
4782     mangleExpression(BO->getLHS());
4783     mangleExpression(BO->getRHS());
4784     break;
4785   }
4786 
4787   case Expr::CXXRewrittenBinaryOperatorClass: {
4788     NotPrimaryExpr();
4789     // The mangled form represents the original syntax.
4790     CXXRewrittenBinaryOperator::DecomposedForm Decomposed =
4791         cast<CXXRewrittenBinaryOperator>(E)->getDecomposedForm();
4792     mangleOperatorName(BinaryOperator::getOverloadedOperator(Decomposed.Opcode),
4793                        /*Arity=*/2);
4794     mangleExpression(Decomposed.LHS);
4795     mangleExpression(Decomposed.RHS);
4796     break;
4797   }
4798 
4799   case Expr::ConditionalOperatorClass: {
4800     NotPrimaryExpr();
4801     const ConditionalOperator *CO = cast<ConditionalOperator>(E);
4802     mangleOperatorName(OO_Conditional, /*Arity=*/3);
4803     mangleExpression(CO->getCond());
4804     mangleExpression(CO->getLHS(), Arity);
4805     mangleExpression(CO->getRHS(), Arity);
4806     break;
4807   }
4808 
4809   case Expr::ImplicitCastExprClass: {
4810     ImplicitlyConvertedToType = E->getType();
4811     E = cast<ImplicitCastExpr>(E)->getSubExpr();
4812     goto recurse;
4813   }
4814 
4815   case Expr::ObjCBridgedCastExprClass: {
4816     NotPrimaryExpr();
4817     // Mangle ownership casts as a vendor extended operator __bridge,
4818     // __bridge_transfer, or __bridge_retain.
4819     StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
4820     Out << "v1U" << Kind.size() << Kind;
4821     mangleCastExpression(E, "cv");
4822     break;
4823   }
4824 
4825   case Expr::CStyleCastExprClass:
4826     NotPrimaryExpr();
4827     mangleCastExpression(E, "cv");
4828     break;
4829 
4830   case Expr::CXXFunctionalCastExprClass: {
4831     NotPrimaryExpr();
4832     auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit();
4833     // FIXME: Add isImplicit to CXXConstructExpr.
4834     if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub))
4835       if (CCE->getParenOrBraceRange().isInvalid())
4836         Sub = CCE->getArg(0)->IgnoreImplicit();
4837     if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub))
4838       Sub = StdInitList->getSubExpr()->IgnoreImplicit();
4839     if (auto *IL = dyn_cast<InitListExpr>(Sub)) {
4840       Out << "tl";
4841       mangleType(E->getType());
4842       mangleInitListElements(IL);
4843       Out << "E";
4844     } else {
4845       mangleCastExpression(E, "cv");
4846     }
4847     break;
4848   }
4849 
4850   case Expr::CXXStaticCastExprClass:
4851     NotPrimaryExpr();
4852     mangleCastExpression(E, "sc");
4853     break;
4854   case Expr::CXXDynamicCastExprClass:
4855     NotPrimaryExpr();
4856     mangleCastExpression(E, "dc");
4857     break;
4858   case Expr::CXXReinterpretCastExprClass:
4859     NotPrimaryExpr();
4860     mangleCastExpression(E, "rc");
4861     break;
4862   case Expr::CXXConstCastExprClass:
4863     NotPrimaryExpr();
4864     mangleCastExpression(E, "cc");
4865     break;
4866   case Expr::CXXAddrspaceCastExprClass:
4867     NotPrimaryExpr();
4868     mangleCastExpression(E, "ac");
4869     break;
4870 
4871   case Expr::CXXOperatorCallExprClass: {
4872     NotPrimaryExpr();
4873     const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
4874     unsigned NumArgs = CE->getNumArgs();
4875     // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax
4876     // (the enclosing MemberExpr covers the syntactic portion).
4877     if (CE->getOperator() != OO_Arrow)
4878       mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
4879     // Mangle the arguments.
4880     for (unsigned i = 0; i != NumArgs; ++i)
4881       mangleExpression(CE->getArg(i));
4882     break;
4883   }
4884 
4885   case Expr::ParenExprClass:
4886     E = cast<ParenExpr>(E)->getSubExpr();
4887     goto recurse;
4888 
4889   case Expr::ConceptSpecializationExprClass: {
4890     //  <expr-primary> ::= L <mangled-name> E # external name
4891     Out << "L_Z";
4892     auto *CSE = cast<ConceptSpecializationExpr>(E);
4893     mangleTemplateName(CSE->getNamedConcept(), CSE->getTemplateArguments());
4894     Out << 'E';
4895     break;
4896   }
4897 
4898   case Expr::DeclRefExprClass:
4899     // MangleDeclRefExpr helper handles primary-vs-nonprimary
4900     MangleDeclRefExpr(cast<DeclRefExpr>(E)->getDecl());
4901     break;
4902 
4903   case Expr::SubstNonTypeTemplateParmPackExprClass:
4904     NotPrimaryExpr();
4905     // FIXME: not clear how to mangle this!
4906     // template <unsigned N...> class A {
4907     //   template <class U...> void foo(U (&x)[N]...);
4908     // };
4909     Out << "_SUBSTPACK_";
4910     break;
4911 
4912   case Expr::FunctionParmPackExprClass: {
4913     NotPrimaryExpr();
4914     // FIXME: not clear how to mangle this!
4915     const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
4916     Out << "v110_SUBSTPACK";
4917     MangleDeclRefExpr(FPPE->getParameterPack());
4918     break;
4919   }
4920 
4921   case Expr::DependentScopeDeclRefExprClass: {
4922     NotPrimaryExpr();
4923     const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
4924     mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(),
4925                          DRE->getTemplateArgs(), DRE->getNumTemplateArgs(),
4926                          Arity);
4927     break;
4928   }
4929 
4930   case Expr::CXXBindTemporaryExprClass:
4931     E = cast<CXXBindTemporaryExpr>(E)->getSubExpr();
4932     goto recurse;
4933 
4934   case Expr::ExprWithCleanupsClass:
4935     E = cast<ExprWithCleanups>(E)->getSubExpr();
4936     goto recurse;
4937 
4938   case Expr::FloatingLiteralClass: {
4939     // <expr-primary>
4940     const FloatingLiteral *FL = cast<FloatingLiteral>(E);
4941     mangleFloatLiteral(FL->getType(), FL->getValue());
4942     break;
4943   }
4944 
4945   case Expr::FixedPointLiteralClass:
4946     // Currently unimplemented -- might be <expr-primary> in future?
4947     mangleFixedPointLiteral();
4948     break;
4949 
4950   case Expr::CharacterLiteralClass:
4951     // <expr-primary>
4952     Out << 'L';
4953     mangleType(E->getType());
4954     Out << cast<CharacterLiteral>(E)->getValue();
4955     Out << 'E';
4956     break;
4957 
4958   // FIXME. __objc_yes/__objc_no are mangled same as true/false
4959   case Expr::ObjCBoolLiteralExprClass:
4960     // <expr-primary>
4961     Out << "Lb";
4962     Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4963     Out << 'E';
4964     break;
4965 
4966   case Expr::CXXBoolLiteralExprClass:
4967     // <expr-primary>
4968     Out << "Lb";
4969     Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4970     Out << 'E';
4971     break;
4972 
4973   case Expr::IntegerLiteralClass: {
4974     // <expr-primary>
4975     llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
4976     if (E->getType()->isSignedIntegerType())
4977       Value.setIsSigned(true);
4978     mangleIntegerLiteral(E->getType(), Value);
4979     break;
4980   }
4981 
4982   case Expr::ImaginaryLiteralClass: {
4983     // <expr-primary>
4984     const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
4985     // Mangle as if a complex literal.
4986     // Proposal from David Vandevoorde, 2010.06.30.
4987     Out << 'L';
4988     mangleType(E->getType());
4989     if (const FloatingLiteral *Imag =
4990           dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
4991       // Mangle a floating-point zero of the appropriate type.
4992       mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
4993       Out << '_';
4994       mangleFloat(Imag->getValue());
4995     } else {
4996       Out << "0_";
4997       llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
4998       if (IE->getSubExpr()->getType()->isSignedIntegerType())
4999         Value.setIsSigned(true);
5000       mangleNumber(Value);
5001     }
5002     Out << 'E';
5003     break;
5004   }
5005 
5006   case Expr::StringLiteralClass: {
5007     // <expr-primary>
5008     // Revised proposal from David Vandervoorde, 2010.07.15.
5009     Out << 'L';
5010     assert(isa<ConstantArrayType>(E->getType()));
5011     mangleType(E->getType());
5012     Out << 'E';
5013     break;
5014   }
5015 
5016   case Expr::GNUNullExprClass:
5017     // <expr-primary>
5018     // Mangle as if an integer literal 0.
5019     mangleIntegerLiteral(E->getType(), llvm::APSInt(32));
5020     break;
5021 
5022   case Expr::CXXNullPtrLiteralExprClass: {
5023     // <expr-primary>
5024     Out << "LDnE";
5025     break;
5026   }
5027 
5028   case Expr::LambdaExprClass: {
5029     // A lambda-expression can't appear in the signature of an
5030     // externally-visible declaration, so there's no standard mangling for
5031     // this, but mangling as a literal of the closure type seems reasonable.
5032     Out << "L";
5033     mangleType(Context.getASTContext().getRecordType(cast<LambdaExpr>(E)->getLambdaClass()));
5034     Out << "E";
5035     break;
5036   }
5037 
5038   case Expr::PackExpansionExprClass:
5039     NotPrimaryExpr();
5040     Out << "sp";
5041     mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
5042     break;
5043 
5044   case Expr::SizeOfPackExprClass: {
5045     NotPrimaryExpr();
5046     auto *SPE = cast<SizeOfPackExpr>(E);
5047     if (SPE->isPartiallySubstituted()) {
5048       Out << "sP";
5049       for (const auto &A : SPE->getPartialArguments())
5050         mangleTemplateArg(A, false);
5051       Out << "E";
5052       break;
5053     }
5054 
5055     Out << "sZ";
5056     const NamedDecl *Pack = SPE->getPack();
5057     if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
5058       mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
5059     else if (const NonTypeTemplateParmDecl *NTTP
5060                 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
5061       mangleTemplateParameter(NTTP->getDepth(), NTTP->getIndex());
5062     else if (const TemplateTemplateParmDecl *TempTP
5063                                     = dyn_cast<TemplateTemplateParmDecl>(Pack))
5064       mangleTemplateParameter(TempTP->getDepth(), TempTP->getIndex());
5065     else
5066       mangleFunctionParam(cast<ParmVarDecl>(Pack));
5067     break;
5068   }
5069 
5070   case Expr::MaterializeTemporaryExprClass:
5071     E = cast<MaterializeTemporaryExpr>(E)->getSubExpr();
5072     goto recurse;
5073 
5074   case Expr::CXXFoldExprClass: {
5075     NotPrimaryExpr();
5076     auto *FE = cast<CXXFoldExpr>(E);
5077     if (FE->isLeftFold())
5078       Out << (FE->getInit() ? "fL" : "fl");
5079     else
5080       Out << (FE->getInit() ? "fR" : "fr");
5081 
5082     if (FE->getOperator() == BO_PtrMemD)
5083       Out << "ds";
5084     else
5085       mangleOperatorName(
5086           BinaryOperator::getOverloadedOperator(FE->getOperator()),
5087           /*Arity=*/2);
5088 
5089     if (FE->getLHS())
5090       mangleExpression(FE->getLHS());
5091     if (FE->getRHS())
5092       mangleExpression(FE->getRHS());
5093     break;
5094   }
5095 
5096   case Expr::CXXThisExprClass:
5097     NotPrimaryExpr();
5098     Out << "fpT";
5099     break;
5100 
5101   case Expr::CoawaitExprClass:
5102     // FIXME: Propose a non-vendor mangling.
5103     NotPrimaryExpr();
5104     Out << "v18co_await";
5105     mangleExpression(cast<CoawaitExpr>(E)->getOperand());
5106     break;
5107 
5108   case Expr::DependentCoawaitExprClass:
5109     // FIXME: Propose a non-vendor mangling.
5110     NotPrimaryExpr();
5111     Out << "v18co_await";
5112     mangleExpression(cast<DependentCoawaitExpr>(E)->getOperand());
5113     break;
5114 
5115   case Expr::CoyieldExprClass:
5116     // FIXME: Propose a non-vendor mangling.
5117     NotPrimaryExpr();
5118     Out << "v18co_yield";
5119     mangleExpression(cast<CoawaitExpr>(E)->getOperand());
5120     break;
5121   case Expr::SYCLUniqueStableNameExprClass: {
5122     const auto *USN = cast<SYCLUniqueStableNameExpr>(E);
5123     NotPrimaryExpr();
5124 
5125     Out << "u33__builtin_sycl_unique_stable_name";
5126     mangleType(USN->getTypeSourceInfo()->getType());
5127 
5128     Out << "E";
5129     break;
5130   }
5131   }
5132 
5133   if (AsTemplateArg && !IsPrimaryExpr)
5134     Out << 'E';
5135 }
5136 
5137 /// Mangle an expression which refers to a parameter variable.
5138 ///
5139 /// <expression>     ::= <function-param>
5140 /// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
5141 /// <function-param> ::= fp <top-level CV-qualifiers>
5142 ///                      <parameter-2 non-negative number> _ # L == 0, I > 0
5143 /// <function-param> ::= fL <L-1 non-negative number>
5144 ///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
5145 /// <function-param> ::= fL <L-1 non-negative number>
5146 ///                      p <top-level CV-qualifiers>
5147 ///                      <I-1 non-negative number> _         # L > 0, I > 0
5148 ///
5149 /// L is the nesting depth of the parameter, defined as 1 if the
5150 /// parameter comes from the innermost function prototype scope
5151 /// enclosing the current context, 2 if from the next enclosing
5152 /// function prototype scope, and so on, with one special case: if
5153 /// we've processed the full parameter clause for the innermost
5154 /// function type, then L is one less.  This definition conveniently
5155 /// makes it irrelevant whether a function's result type was written
5156 /// trailing or leading, but is otherwise overly complicated; the
5157 /// numbering was first designed without considering references to
5158 /// parameter in locations other than return types, and then the
5159 /// mangling had to be generalized without changing the existing
5160 /// manglings.
5161 ///
5162 /// I is the zero-based index of the parameter within its parameter
5163 /// declaration clause.  Note that the original ABI document describes
5164 /// this using 1-based ordinals.
5165 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
5166   unsigned parmDepth = parm->getFunctionScopeDepth();
5167   unsigned parmIndex = parm->getFunctionScopeIndex();
5168 
5169   // Compute 'L'.
5170   // parmDepth does not include the declaring function prototype.
5171   // FunctionTypeDepth does account for that.
5172   assert(parmDepth < FunctionTypeDepth.getDepth());
5173   unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
5174   if (FunctionTypeDepth.isInResultType())
5175     nestingDepth--;
5176 
5177   if (nestingDepth == 0) {
5178     Out << "fp";
5179   } else {
5180     Out << "fL" << (nestingDepth - 1) << 'p';
5181   }
5182 
5183   // Top-level qualifiers.  We don't have to worry about arrays here,
5184   // because parameters declared as arrays should already have been
5185   // transformed to have pointer type. FIXME: apparently these don't
5186   // get mangled if used as an rvalue of a known non-class type?
5187   assert(!parm->getType()->isArrayType()
5188          && "parameter's type is still an array type?");
5189 
5190   if (const DependentAddressSpaceType *DAST =
5191       dyn_cast<DependentAddressSpaceType>(parm->getType())) {
5192     mangleQualifiers(DAST->getPointeeType().getQualifiers(), DAST);
5193   } else {
5194     mangleQualifiers(parm->getType().getQualifiers());
5195   }
5196 
5197   // Parameter index.
5198   if (parmIndex != 0) {
5199     Out << (parmIndex - 1);
5200   }
5201   Out << '_';
5202 }
5203 
5204 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T,
5205                                        const CXXRecordDecl *InheritedFrom) {
5206   // <ctor-dtor-name> ::= C1  # complete object constructor
5207   //                  ::= C2  # base object constructor
5208   //                  ::= CI1 <type> # complete inheriting constructor
5209   //                  ::= CI2 <type> # base inheriting constructor
5210   //
5211   // In addition, C5 is a comdat name with C1 and C2 in it.
5212   Out << 'C';
5213   if (InheritedFrom)
5214     Out << 'I';
5215   switch (T) {
5216   case Ctor_Complete:
5217     Out << '1';
5218     break;
5219   case Ctor_Base:
5220     Out << '2';
5221     break;
5222   case Ctor_Comdat:
5223     Out << '5';
5224     break;
5225   case Ctor_DefaultClosure:
5226   case Ctor_CopyingClosure:
5227     llvm_unreachable("closure constructors don't exist for the Itanium ABI!");
5228   }
5229   if (InheritedFrom)
5230     mangleName(InheritedFrom);
5231 }
5232 
5233 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
5234   // <ctor-dtor-name> ::= D0  # deleting destructor
5235   //                  ::= D1  # complete object destructor
5236   //                  ::= D2  # base object destructor
5237   //
5238   // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
5239   switch (T) {
5240   case Dtor_Deleting:
5241     Out << "D0";
5242     break;
5243   case Dtor_Complete:
5244     Out << "D1";
5245     break;
5246   case Dtor_Base:
5247     Out << "D2";
5248     break;
5249   case Dtor_Comdat:
5250     Out << "D5";
5251     break;
5252   }
5253 }
5254 
5255 namespace {
5256 // Helper to provide ancillary information on a template used to mangle its
5257 // arguments.
5258 struct TemplateArgManglingInfo {
5259   TemplateDecl *ResolvedTemplate = nullptr;
5260   bool SeenPackExpansionIntoNonPack = false;
5261   const NamedDecl *UnresolvedExpandedPack = nullptr;
5262 
5263   TemplateArgManglingInfo(TemplateName TN) {
5264     if (TemplateDecl *TD = TN.getAsTemplateDecl())
5265       ResolvedTemplate = TD;
5266   }
5267 
5268   /// Do we need to mangle template arguments with exactly correct types?
5269   ///
5270   /// This should be called exactly once for each parameter / argument pair, in
5271   /// order.
5272   bool needExactType(unsigned ParamIdx, const TemplateArgument &Arg) {
5273     // We need correct types when the template-name is unresolved or when it
5274     // names a template that is able to be overloaded.
5275     if (!ResolvedTemplate || SeenPackExpansionIntoNonPack)
5276       return true;
5277 
5278     // Move to the next parameter.
5279     const NamedDecl *Param = UnresolvedExpandedPack;
5280     if (!Param) {
5281       assert(ParamIdx < ResolvedTemplate->getTemplateParameters()->size() &&
5282              "no parameter for argument");
5283       Param = ResolvedTemplate->getTemplateParameters()->getParam(ParamIdx);
5284 
5285       // If we reach an expanded parameter pack whose argument isn't in pack
5286       // form, that means Sema couldn't figure out which arguments belonged to
5287       // it, because it contains a pack expansion. Track the expanded pack for
5288       // all further template arguments until we hit that pack expansion.
5289       if (Param->isParameterPack() && Arg.getKind() != TemplateArgument::Pack) {
5290         assert(getExpandedPackSize(Param) &&
5291                "failed to form pack argument for parameter pack");
5292         UnresolvedExpandedPack = Param;
5293       }
5294     }
5295 
5296     // If we encounter a pack argument that is expanded into a non-pack
5297     // parameter, we can no longer track parameter / argument correspondence,
5298     // and need to use exact types from this point onwards.
5299     if (Arg.isPackExpansion() &&
5300         (!Param->isParameterPack() || UnresolvedExpandedPack)) {
5301       SeenPackExpansionIntoNonPack = true;
5302       return true;
5303     }
5304 
5305     // We need exact types for function template arguments because they might be
5306     // overloaded on template parameter type. As a special case, a member
5307     // function template of a generic lambda is not overloadable.
5308     if (auto *FTD = dyn_cast<FunctionTemplateDecl>(ResolvedTemplate)) {
5309       auto *RD = dyn_cast<CXXRecordDecl>(FTD->getDeclContext());
5310       if (!RD || !RD->isGenericLambda())
5311         return true;
5312     }
5313 
5314     // Otherwise, we only need a correct type if the parameter has a deduced
5315     // type.
5316     //
5317     // Note: for an expanded parameter pack, getType() returns the type prior
5318     // to expansion. We could ask for the expanded type with getExpansionType(),
5319     // but it doesn't matter because substitution and expansion don't affect
5320     // whether a deduced type appears in the type.
5321     auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param);
5322     return NTTP && NTTP->getType()->getContainedDeducedType();
5323   }
5324 };
5325 }
5326 
5327 void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
5328                                         const TemplateArgumentLoc *TemplateArgs,
5329                                         unsigned NumTemplateArgs) {
5330   // <template-args> ::= I <template-arg>+ E
5331   Out << 'I';
5332   TemplateArgManglingInfo Info(TN);
5333   for (unsigned i = 0; i != NumTemplateArgs; ++i)
5334     mangleTemplateArg(TemplateArgs[i].getArgument(),
5335                       Info.needExactType(i, TemplateArgs[i].getArgument()));
5336   Out << 'E';
5337 }
5338 
5339 void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
5340                                         const TemplateArgumentList &AL) {
5341   // <template-args> ::= I <template-arg>+ E
5342   Out << 'I';
5343   TemplateArgManglingInfo Info(TN);
5344   for (unsigned i = 0, e = AL.size(); i != e; ++i)
5345     mangleTemplateArg(AL[i], Info.needExactType(i, AL[i]));
5346   Out << 'E';
5347 }
5348 
5349 void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
5350                                         ArrayRef<TemplateArgument> Args) {
5351   // <template-args> ::= I <template-arg>+ E
5352   Out << 'I';
5353   TemplateArgManglingInfo Info(TN);
5354   for (unsigned i = 0; i != Args.size(); ++i)
5355     mangleTemplateArg(Args[i], Info.needExactType(i, Args[i]));
5356   Out << 'E';
5357 }
5358 
5359 void CXXNameMangler::mangleTemplateArg(TemplateArgument A, bool NeedExactType) {
5360   // <template-arg> ::= <type>              # type or template
5361   //                ::= X <expression> E    # expression
5362   //                ::= <expr-primary>      # simple expressions
5363   //                ::= J <template-arg>* E # argument pack
5364   if (!A.isInstantiationDependent() || A.isDependent())
5365     A = Context.getASTContext().getCanonicalTemplateArgument(A);
5366 
5367   switch (A.getKind()) {
5368   case TemplateArgument::Null:
5369     llvm_unreachable("Cannot mangle NULL template argument");
5370 
5371   case TemplateArgument::Type:
5372     mangleType(A.getAsType());
5373     break;
5374   case TemplateArgument::Template:
5375     // This is mangled as <type>.
5376     mangleType(A.getAsTemplate());
5377     break;
5378   case TemplateArgument::TemplateExpansion:
5379     // <type>  ::= Dp <type>          # pack expansion (C++0x)
5380     Out << "Dp";
5381     mangleType(A.getAsTemplateOrTemplatePattern());
5382     break;
5383   case TemplateArgument::Expression:
5384     mangleTemplateArgExpr(A.getAsExpr());
5385     break;
5386   case TemplateArgument::Integral:
5387     mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
5388     break;
5389   case TemplateArgument::Declaration: {
5390     //  <expr-primary> ::= L <mangled-name> E # external name
5391     ValueDecl *D = A.getAsDecl();
5392 
5393     // Template parameter objects are modeled by reproducing a source form
5394     // produced as if by aggregate initialization.
5395     if (A.getParamTypeForDecl()->isRecordType()) {
5396       auto *TPO = cast<TemplateParamObjectDecl>(D);
5397       mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(),
5398                                TPO->getValue(), /*TopLevel=*/true,
5399                                NeedExactType);
5400       break;
5401     }
5402 
5403     ASTContext &Ctx = Context.getASTContext();
5404     APValue Value;
5405     if (D->isCXXInstanceMember())
5406       // Simple pointer-to-member with no conversion.
5407       Value = APValue(D, /*IsDerivedMember=*/false, /*Path=*/{});
5408     else if (D->getType()->isArrayType() &&
5409              Ctx.hasSimilarType(Ctx.getDecayedType(D->getType()),
5410                                 A.getParamTypeForDecl()) &&
5411              Ctx.getLangOpts().getClangABICompat() >
5412                  LangOptions::ClangABI::Ver11)
5413       // Build a value corresponding to this implicit array-to-pointer decay.
5414       Value = APValue(APValue::LValueBase(D), CharUnits::Zero(),
5415                       {APValue::LValuePathEntry::ArrayIndex(0)},
5416                       /*OnePastTheEnd=*/false);
5417     else
5418       // Regular pointer or reference to a declaration.
5419       Value = APValue(APValue::LValueBase(D), CharUnits::Zero(),
5420                       ArrayRef<APValue::LValuePathEntry>(),
5421                       /*OnePastTheEnd=*/false);
5422     mangleValueInTemplateArg(A.getParamTypeForDecl(), Value, /*TopLevel=*/true,
5423                              NeedExactType);
5424     break;
5425   }
5426   case TemplateArgument::NullPtr: {
5427     mangleNullPointer(A.getNullPtrType());
5428     break;
5429   }
5430   case TemplateArgument::Pack: {
5431     //  <template-arg> ::= J <template-arg>* E
5432     Out << 'J';
5433     for (const auto &P : A.pack_elements())
5434       mangleTemplateArg(P, NeedExactType);
5435     Out << 'E';
5436   }
5437   }
5438 }
5439 
5440 void CXXNameMangler::mangleTemplateArgExpr(const Expr *E) {
5441   ASTContext &Ctx = Context.getASTContext();
5442   if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver11) {
5443     mangleExpression(E, UnknownArity, /*AsTemplateArg=*/true);
5444     return;
5445   }
5446 
5447   // Prior to Clang 12, we didn't omit the X .. E around <expr-primary>
5448   // correctly in cases where the template argument was
5449   // constructed from an expression rather than an already-evaluated
5450   // literal. In such a case, we would then e.g. emit 'XLi0EE' instead of
5451   // 'Li0E'.
5452   //
5453   // We did special-case DeclRefExpr to attempt to DTRT for that one
5454   // expression-kind, but while doing so, unfortunately handled ParmVarDecl
5455   // (subtype of VarDecl) _incorrectly_, and emitted 'L_Z .. E' instead of
5456   // the proper 'Xfp_E'.
5457   E = E->IgnoreParenImpCasts();
5458   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
5459     const ValueDecl *D = DRE->getDecl();
5460     if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
5461       Out << 'L';
5462       mangle(D);
5463       Out << 'E';
5464       return;
5465     }
5466   }
5467   Out << 'X';
5468   mangleExpression(E);
5469   Out << 'E';
5470 }
5471 
5472 /// Determine whether a given value is equivalent to zero-initialization for
5473 /// the purpose of discarding a trailing portion of a 'tl' mangling.
5474 ///
5475 /// Note that this is not in general equivalent to determining whether the
5476 /// value has an all-zeroes bit pattern.
5477 static bool isZeroInitialized(QualType T, const APValue &V) {
5478   // FIXME: mangleValueInTemplateArg has quadratic time complexity in
5479   // pathological cases due to using this, but it's a little awkward
5480   // to do this in linear time in general.
5481   switch (V.getKind()) {
5482   case APValue::None:
5483   case APValue::Indeterminate:
5484   case APValue::AddrLabelDiff:
5485     return false;
5486 
5487   case APValue::Struct: {
5488     const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5489     assert(RD && "unexpected type for record value");
5490     unsigned I = 0;
5491     for (const CXXBaseSpecifier &BS : RD->bases()) {
5492       if (!isZeroInitialized(BS.getType(), V.getStructBase(I)))
5493         return false;
5494       ++I;
5495     }
5496     I = 0;
5497     for (const FieldDecl *FD : RD->fields()) {
5498       if (!FD->isUnnamedBitfield() &&
5499           !isZeroInitialized(FD->getType(), V.getStructField(I)))
5500         return false;
5501       ++I;
5502     }
5503     return true;
5504   }
5505 
5506   case APValue::Union: {
5507     const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5508     assert(RD && "unexpected type for union value");
5509     // Zero-initialization zeroes the first non-unnamed-bitfield field, if any.
5510     for (const FieldDecl *FD : RD->fields()) {
5511       if (!FD->isUnnamedBitfield())
5512         return V.getUnionField() && declaresSameEntity(FD, V.getUnionField()) &&
5513                isZeroInitialized(FD->getType(), V.getUnionValue());
5514     }
5515     // If there are no fields (other than unnamed bitfields), the value is
5516     // necessarily zero-initialized.
5517     return true;
5518   }
5519 
5520   case APValue::Array: {
5521     QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0);
5522     for (unsigned I = 0, N = V.getArrayInitializedElts(); I != N; ++I)
5523       if (!isZeroInitialized(ElemT, V.getArrayInitializedElt(I)))
5524         return false;
5525     return !V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller());
5526   }
5527 
5528   case APValue::Vector: {
5529     const VectorType *VT = T->castAs<VectorType>();
5530     for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I)
5531       if (!isZeroInitialized(VT->getElementType(), V.getVectorElt(I)))
5532         return false;
5533     return true;
5534   }
5535 
5536   case APValue::Int:
5537     return !V.getInt();
5538 
5539   case APValue::Float:
5540     return V.getFloat().isPosZero();
5541 
5542   case APValue::FixedPoint:
5543     return !V.getFixedPoint().getValue();
5544 
5545   case APValue::ComplexFloat:
5546     return V.getComplexFloatReal().isPosZero() &&
5547            V.getComplexFloatImag().isPosZero();
5548 
5549   case APValue::ComplexInt:
5550     return !V.getComplexIntReal() && !V.getComplexIntImag();
5551 
5552   case APValue::LValue:
5553     return V.isNullPointer();
5554 
5555   case APValue::MemberPointer:
5556     return !V.getMemberPointerDecl();
5557   }
5558 
5559   llvm_unreachable("Unhandled APValue::ValueKind enum");
5560 }
5561 
5562 static QualType getLValueType(ASTContext &Ctx, const APValue &LV) {
5563   QualType T = LV.getLValueBase().getType();
5564   for (APValue::LValuePathEntry E : LV.getLValuePath()) {
5565     if (const ArrayType *AT = Ctx.getAsArrayType(T))
5566       T = AT->getElementType();
5567     else if (const FieldDecl *FD =
5568                  dyn_cast<FieldDecl>(E.getAsBaseOrMember().getPointer()))
5569       T = FD->getType();
5570     else
5571       T = Ctx.getRecordType(
5572           cast<CXXRecordDecl>(E.getAsBaseOrMember().getPointer()));
5573   }
5574   return T;
5575 }
5576 
5577 static IdentifierInfo *getUnionInitName(SourceLocation UnionLoc,
5578                                         DiagnosticsEngine &Diags,
5579                                         const FieldDecl *FD) {
5580   // According to:
5581   // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling.anonymous
5582   // For the purposes of mangling, the name of an anonymous union is considered
5583   // to be the name of the first named data member found by a pre-order,
5584   // depth-first, declaration-order walk of the data members of the anonymous
5585   // union.
5586 
5587   if (FD->getIdentifier())
5588     return FD->getIdentifier();
5589 
5590   // The only cases where the identifer of a FieldDecl would be blank is if the
5591   // field represents an anonymous record type or if it is an unnamed bitfield.
5592   // There is no type to descend into in the case of a bitfield, so we can just
5593   // return nullptr in that case.
5594   if (FD->isBitField())
5595     return nullptr;
5596   const CXXRecordDecl *RD = FD->getType()->getAsCXXRecordDecl();
5597 
5598   // Consider only the fields in declaration order, searched depth-first.  We
5599   // don't care about the active member of the union, as all we are doing is
5600   // looking for a valid name. We also don't check bases, due to guidance from
5601   // the Itanium ABI folks.
5602   for (const FieldDecl *RDField : RD->fields()) {
5603     if (IdentifierInfo *II = getUnionInitName(UnionLoc, Diags, RDField))
5604       return II;
5605   }
5606 
5607   // According to the Itanium ABI: If there is no such data member (i.e., if all
5608   // of the data members in the union are unnamed), then there is no way for a
5609   // program to refer to the anonymous union, and there is therefore no need to
5610   // mangle its name. However, we should diagnose this anyway.
5611   unsigned DiagID = Diags.getCustomDiagID(
5612       DiagnosticsEngine::Error, "cannot mangle this unnamed union NTTP yet");
5613   Diags.Report(UnionLoc, DiagID);
5614 
5615   return nullptr;
5616 }
5617 
5618 void CXXNameMangler::mangleValueInTemplateArg(QualType T, const APValue &V,
5619                                               bool TopLevel,
5620                                               bool NeedExactType) {
5621   // Ignore all top-level cv-qualifiers, to match GCC.
5622   Qualifiers Quals;
5623   T = getASTContext().getUnqualifiedArrayType(T, Quals);
5624 
5625   // A top-level expression that's not a primary expression is wrapped in X...E.
5626   bool IsPrimaryExpr = true;
5627   auto NotPrimaryExpr = [&] {
5628     if (TopLevel && IsPrimaryExpr)
5629       Out << 'X';
5630     IsPrimaryExpr = false;
5631   };
5632 
5633   // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63.
5634   switch (V.getKind()) {
5635   case APValue::None:
5636   case APValue::Indeterminate:
5637     Out << 'L';
5638     mangleType(T);
5639     Out << 'E';
5640     break;
5641 
5642   case APValue::AddrLabelDiff:
5643     llvm_unreachable("unexpected value kind in template argument");
5644 
5645   case APValue::Struct: {
5646     const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5647     assert(RD && "unexpected type for record value");
5648 
5649     // Drop trailing zero-initialized elements.
5650     llvm::SmallVector<const FieldDecl *, 16> Fields(RD->fields());
5651     while (
5652         !Fields.empty() &&
5653         (Fields.back()->isUnnamedBitfield() ||
5654          isZeroInitialized(Fields.back()->getType(),
5655                            V.getStructField(Fields.back()->getFieldIndex())))) {
5656       Fields.pop_back();
5657     }
5658     llvm::ArrayRef<CXXBaseSpecifier> Bases(RD->bases_begin(), RD->bases_end());
5659     if (Fields.empty()) {
5660       while (!Bases.empty() &&
5661              isZeroInitialized(Bases.back().getType(),
5662                                V.getStructBase(Bases.size() - 1)))
5663         Bases = Bases.drop_back();
5664     }
5665 
5666     // <expression> ::= tl <type> <braced-expression>* E
5667     NotPrimaryExpr();
5668     Out << "tl";
5669     mangleType(T);
5670     for (unsigned I = 0, N = Bases.size(); I != N; ++I)
5671       mangleValueInTemplateArg(Bases[I].getType(), V.getStructBase(I), false);
5672     for (unsigned I = 0, N = Fields.size(); I != N; ++I) {
5673       if (Fields[I]->isUnnamedBitfield())
5674         continue;
5675       mangleValueInTemplateArg(Fields[I]->getType(),
5676                                V.getStructField(Fields[I]->getFieldIndex()),
5677                                false);
5678     }
5679     Out << 'E';
5680     break;
5681   }
5682 
5683   case APValue::Union: {
5684     assert(T->getAsCXXRecordDecl() && "unexpected type for union value");
5685     const FieldDecl *FD = V.getUnionField();
5686 
5687     if (!FD) {
5688       Out << 'L';
5689       mangleType(T);
5690       Out << 'E';
5691       break;
5692     }
5693 
5694     // <braced-expression> ::= di <field source-name> <braced-expression>
5695     NotPrimaryExpr();
5696     Out << "tl";
5697     mangleType(T);
5698     if (!isZeroInitialized(T, V)) {
5699       Out << "di";
5700       IdentifierInfo *II = (getUnionInitName(
5701           T->getAsCXXRecordDecl()->getLocation(), Context.getDiags(), FD));
5702       if (II)
5703         mangleSourceName(II);
5704       mangleValueInTemplateArg(FD->getType(), V.getUnionValue(), false);
5705     }
5706     Out << 'E';
5707     break;
5708   }
5709 
5710   case APValue::Array: {
5711     QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0);
5712 
5713     NotPrimaryExpr();
5714     Out << "tl";
5715     mangleType(T);
5716 
5717     // Drop trailing zero-initialized elements.
5718     unsigned N = V.getArraySize();
5719     if (!V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller())) {
5720       N = V.getArrayInitializedElts();
5721       while (N && isZeroInitialized(ElemT, V.getArrayInitializedElt(N - 1)))
5722         --N;
5723     }
5724 
5725     for (unsigned I = 0; I != N; ++I) {
5726       const APValue &Elem = I < V.getArrayInitializedElts()
5727                                 ? V.getArrayInitializedElt(I)
5728                                 : V.getArrayFiller();
5729       mangleValueInTemplateArg(ElemT, Elem, false);
5730     }
5731     Out << 'E';
5732     break;
5733   }
5734 
5735   case APValue::Vector: {
5736     const VectorType *VT = T->castAs<VectorType>();
5737 
5738     NotPrimaryExpr();
5739     Out << "tl";
5740     mangleType(T);
5741     unsigned N = V.getVectorLength();
5742     while (N && isZeroInitialized(VT->getElementType(), V.getVectorElt(N - 1)))
5743       --N;
5744     for (unsigned I = 0; I != N; ++I)
5745       mangleValueInTemplateArg(VT->getElementType(), V.getVectorElt(I), false);
5746     Out << 'E';
5747     break;
5748   }
5749 
5750   case APValue::Int:
5751     mangleIntegerLiteral(T, V.getInt());
5752     break;
5753 
5754   case APValue::Float:
5755     mangleFloatLiteral(T, V.getFloat());
5756     break;
5757 
5758   case APValue::FixedPoint:
5759     mangleFixedPointLiteral();
5760     break;
5761 
5762   case APValue::ComplexFloat: {
5763     const ComplexType *CT = T->castAs<ComplexType>();
5764     NotPrimaryExpr();
5765     Out << "tl";
5766     mangleType(T);
5767     if (!V.getComplexFloatReal().isPosZero() ||
5768         !V.getComplexFloatImag().isPosZero())
5769       mangleFloatLiteral(CT->getElementType(), V.getComplexFloatReal());
5770     if (!V.getComplexFloatImag().isPosZero())
5771       mangleFloatLiteral(CT->getElementType(), V.getComplexFloatImag());
5772     Out << 'E';
5773     break;
5774   }
5775 
5776   case APValue::ComplexInt: {
5777     const ComplexType *CT = T->castAs<ComplexType>();
5778     NotPrimaryExpr();
5779     Out << "tl";
5780     mangleType(T);
5781     if (V.getComplexIntReal().getBoolValue() ||
5782         V.getComplexIntImag().getBoolValue())
5783       mangleIntegerLiteral(CT->getElementType(), V.getComplexIntReal());
5784     if (V.getComplexIntImag().getBoolValue())
5785       mangleIntegerLiteral(CT->getElementType(), V.getComplexIntImag());
5786     Out << 'E';
5787     break;
5788   }
5789 
5790   case APValue::LValue: {
5791     // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47.
5792     assert((T->isPointerType() || T->isReferenceType()) &&
5793            "unexpected type for LValue template arg");
5794 
5795     if (V.isNullPointer()) {
5796       mangleNullPointer(T);
5797       break;
5798     }
5799 
5800     APValue::LValueBase B = V.getLValueBase();
5801     if (!B) {
5802       // Non-standard mangling for integer cast to a pointer; this can only
5803       // occur as an extension.
5804       CharUnits Offset = V.getLValueOffset();
5805       if (Offset.isZero()) {
5806         // This is reinterpret_cast<T*>(0), not a null pointer. Mangle this as
5807         // a cast, because L <type> 0 E means something else.
5808         NotPrimaryExpr();
5809         Out << "rc";
5810         mangleType(T);
5811         Out << "Li0E";
5812         if (TopLevel)
5813           Out << 'E';
5814       } else {
5815         Out << "L";
5816         mangleType(T);
5817         Out << Offset.getQuantity() << 'E';
5818       }
5819       break;
5820     }
5821 
5822     ASTContext &Ctx = Context.getASTContext();
5823 
5824     enum { Base, Offset, Path } Kind;
5825     if (!V.hasLValuePath()) {
5826       // Mangle as (T*)((char*)&base + N).
5827       if (T->isReferenceType()) {
5828         NotPrimaryExpr();
5829         Out << "decvP";
5830         mangleType(T->getPointeeType());
5831       } else {
5832         NotPrimaryExpr();
5833         Out << "cv";
5834         mangleType(T);
5835       }
5836       Out << "plcvPcad";
5837       Kind = Offset;
5838     } else {
5839       if (!V.getLValuePath().empty() || V.isLValueOnePastTheEnd()) {
5840         NotPrimaryExpr();
5841         // A final conversion to the template parameter's type is usually
5842         // folded into the 'so' mangling, but we can't do that for 'void*'
5843         // parameters without introducing collisions.
5844         if (NeedExactType && T->isVoidPointerType()) {
5845           Out << "cv";
5846           mangleType(T);
5847         }
5848         if (T->isPointerType())
5849           Out << "ad";
5850         Out << "so";
5851         mangleType(T->isVoidPointerType()
5852                        ? getLValueType(Ctx, V).getUnqualifiedType()
5853                        : T->getPointeeType());
5854         Kind = Path;
5855       } else {
5856         if (NeedExactType &&
5857             !Ctx.hasSameType(T->getPointeeType(), getLValueType(Ctx, V)) &&
5858             Ctx.getLangOpts().getClangABICompat() >
5859                 LangOptions::ClangABI::Ver11) {
5860           NotPrimaryExpr();
5861           Out << "cv";
5862           mangleType(T);
5863         }
5864         if (T->isPointerType()) {
5865           NotPrimaryExpr();
5866           Out << "ad";
5867         }
5868         Kind = Base;
5869       }
5870     }
5871 
5872     QualType TypeSoFar = B.getType();
5873     if (auto *VD = B.dyn_cast<const ValueDecl*>()) {
5874       Out << 'L';
5875       mangle(VD);
5876       Out << 'E';
5877     } else if (auto *E = B.dyn_cast<const Expr*>()) {
5878       NotPrimaryExpr();
5879       mangleExpression(E);
5880     } else if (auto TI = B.dyn_cast<TypeInfoLValue>()) {
5881       NotPrimaryExpr();
5882       Out << "ti";
5883       mangleType(QualType(TI.getType(), 0));
5884     } else {
5885       // We should never see dynamic allocations here.
5886       llvm_unreachable("unexpected lvalue base kind in template argument");
5887     }
5888 
5889     switch (Kind) {
5890     case Base:
5891       break;
5892 
5893     case Offset:
5894       Out << 'L';
5895       mangleType(Ctx.getPointerDiffType());
5896       mangleNumber(V.getLValueOffset().getQuantity());
5897       Out << 'E';
5898       break;
5899 
5900     case Path:
5901       // <expression> ::= so <referent type> <expr> [<offset number>]
5902       //                  <union-selector>* [p] E
5903       if (!V.getLValueOffset().isZero())
5904         mangleNumber(V.getLValueOffset().getQuantity());
5905 
5906       // We model a past-the-end array pointer as array indexing with index N,
5907       // not with the "past the end" flag. Compensate for that.
5908       bool OnePastTheEnd = V.isLValueOnePastTheEnd();
5909 
5910       for (APValue::LValuePathEntry E : V.getLValuePath()) {
5911         if (auto *AT = TypeSoFar->getAsArrayTypeUnsafe()) {
5912           if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
5913             OnePastTheEnd |= CAT->getSize() == E.getAsArrayIndex();
5914           TypeSoFar = AT->getElementType();
5915         } else {
5916           const Decl *D = E.getAsBaseOrMember().getPointer();
5917           if (auto *FD = dyn_cast<FieldDecl>(D)) {
5918             // <union-selector> ::= _ <number>
5919             if (FD->getParent()->isUnion()) {
5920               Out << '_';
5921               if (FD->getFieldIndex())
5922                 Out << (FD->getFieldIndex() - 1);
5923             }
5924             TypeSoFar = FD->getType();
5925           } else {
5926             TypeSoFar = Ctx.getRecordType(cast<CXXRecordDecl>(D));
5927           }
5928         }
5929       }
5930 
5931       if (OnePastTheEnd)
5932         Out << 'p';
5933       Out << 'E';
5934       break;
5935     }
5936 
5937     break;
5938   }
5939 
5940   case APValue::MemberPointer:
5941     // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47.
5942     if (!V.getMemberPointerDecl()) {
5943       mangleNullPointer(T);
5944       break;
5945     }
5946 
5947     ASTContext &Ctx = Context.getASTContext();
5948 
5949     NotPrimaryExpr();
5950     if (!V.getMemberPointerPath().empty()) {
5951       Out << "mc";
5952       mangleType(T);
5953     } else if (NeedExactType &&
5954                !Ctx.hasSameType(
5955                    T->castAs<MemberPointerType>()->getPointeeType(),
5956                    V.getMemberPointerDecl()->getType()) &&
5957                Ctx.getLangOpts().getClangABICompat() >
5958                    LangOptions::ClangABI::Ver11) {
5959       Out << "cv";
5960       mangleType(T);
5961     }
5962     Out << "adL";
5963     mangle(V.getMemberPointerDecl());
5964     Out << 'E';
5965     if (!V.getMemberPointerPath().empty()) {
5966       CharUnits Offset =
5967           Context.getASTContext().getMemberPointerPathAdjustment(V);
5968       if (!Offset.isZero())
5969         mangleNumber(Offset.getQuantity());
5970       Out << 'E';
5971     }
5972     break;
5973   }
5974 
5975   if (TopLevel && !IsPrimaryExpr)
5976     Out << 'E';
5977 }
5978 
5979 void CXXNameMangler::mangleTemplateParameter(unsigned Depth, unsigned Index) {
5980   // <template-param> ::= T_    # first template parameter
5981   //                  ::= T <parameter-2 non-negative number> _
5982   //                  ::= TL <L-1 non-negative number> __
5983   //                  ::= TL <L-1 non-negative number> _
5984   //                         <parameter-2 non-negative number> _
5985   //
5986   // The latter two manglings are from a proposal here:
5987   // https://github.com/itanium-cxx-abi/cxx-abi/issues/31#issuecomment-528122117
5988   Out << 'T';
5989   if (Depth != 0)
5990     Out << 'L' << (Depth - 1) << '_';
5991   if (Index != 0)
5992     Out << (Index - 1);
5993   Out << '_';
5994 }
5995 
5996 void CXXNameMangler::mangleSeqID(unsigned SeqID) {
5997   if (SeqID == 0) {
5998     // Nothing.
5999   } else if (SeqID == 1) {
6000     Out << '0';
6001   } else {
6002     SeqID--;
6003 
6004     // <seq-id> is encoded in base-36, using digits and upper case letters.
6005     char Buffer[7]; // log(2**32) / log(36) ~= 7
6006     MutableArrayRef<char> BufferRef(Buffer);
6007     MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
6008 
6009     for (; SeqID != 0; SeqID /= 36) {
6010       unsigned C = SeqID % 36;
6011       *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
6012     }
6013 
6014     Out.write(I.base(), I - BufferRef.rbegin());
6015   }
6016   Out << '_';
6017 }
6018 
6019 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
6020   bool result = mangleSubstitution(tname);
6021   assert(result && "no existing substitution for template name");
6022   (void) result;
6023 }
6024 
6025 // <substitution> ::= S <seq-id> _
6026 //                ::= S_
6027 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
6028   // Try one of the standard substitutions first.
6029   if (mangleStandardSubstitution(ND))
6030     return true;
6031 
6032   ND = cast<NamedDecl>(ND->getCanonicalDecl());
6033   return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
6034 }
6035 
6036 bool CXXNameMangler::mangleSubstitution(NestedNameSpecifier *NNS) {
6037   assert(NNS->getKind() == NestedNameSpecifier::Identifier &&
6038          "mangleSubstitution(NestedNameSpecifier *) is only used for "
6039          "identifier nested name specifiers.");
6040   NNS = Context.getASTContext().getCanonicalNestedNameSpecifier(NNS);
6041   return mangleSubstitution(reinterpret_cast<uintptr_t>(NNS));
6042 }
6043 
6044 /// Determine whether the given type has any qualifiers that are relevant for
6045 /// substitutions.
6046 static bool hasMangledSubstitutionQualifiers(QualType T) {
6047   Qualifiers Qs = T.getQualifiers();
6048   return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned();
6049 }
6050 
6051 bool CXXNameMangler::mangleSubstitution(QualType T) {
6052   if (!hasMangledSubstitutionQualifiers(T)) {
6053     if (const RecordType *RT = T->getAs<RecordType>())
6054       return mangleSubstitution(RT->getDecl());
6055   }
6056 
6057   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
6058 
6059   return mangleSubstitution(TypePtr);
6060 }
6061 
6062 bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
6063   if (TemplateDecl *TD = Template.getAsTemplateDecl())
6064     return mangleSubstitution(TD);
6065 
6066   Template = Context.getASTContext().getCanonicalTemplateName(Template);
6067   return mangleSubstitution(
6068                       reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
6069 }
6070 
6071 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
6072   llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
6073   if (I == Substitutions.end())
6074     return false;
6075 
6076   unsigned SeqID = I->second;
6077   Out << 'S';
6078   mangleSeqID(SeqID);
6079 
6080   return true;
6081 }
6082 
6083 /// Returns whether S is a template specialization of std::Name with a single
6084 /// argument of type A.
6085 bool CXXNameMangler::isSpecializedAs(QualType S, llvm::StringRef Name,
6086                                      QualType A) {
6087   if (S.isNull())
6088     return false;
6089 
6090   const RecordType *RT = S->getAs<RecordType>();
6091   if (!RT)
6092     return false;
6093 
6094   const ClassTemplateSpecializationDecl *SD =
6095     dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
6096   if (!SD || !SD->getIdentifier()->isStr(Name))
6097     return false;
6098 
6099   if (!isStdNamespace(Context.getEffectiveDeclContext(SD)))
6100     return false;
6101 
6102   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
6103   if (TemplateArgs.size() != 1)
6104     return false;
6105 
6106   if (TemplateArgs[0].getAsType() != A)
6107     return false;
6108 
6109   if (SD->getSpecializedTemplate()->getOwningModuleForLinkage())
6110     return false;
6111 
6112   return true;
6113 }
6114 
6115 /// Returns whether SD is a template specialization std::Name<char,
6116 /// std::char_traits<char> [, std::allocator<char>]>
6117 /// HasAllocator controls whether the 3rd template argument is needed.
6118 bool CXXNameMangler::isStdCharSpecialization(
6119     const ClassTemplateSpecializationDecl *SD, llvm::StringRef Name,
6120     bool HasAllocator) {
6121   if (!SD->getIdentifier()->isStr(Name))
6122     return false;
6123 
6124   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
6125   if (TemplateArgs.size() != (HasAllocator ? 3 : 2))
6126     return false;
6127 
6128   QualType A = TemplateArgs[0].getAsType();
6129   if (A.isNull())
6130     return false;
6131   // Plain 'char' is named Char_S or Char_U depending on the target ABI.
6132   if (!A->isSpecificBuiltinType(BuiltinType::Char_S) &&
6133       !A->isSpecificBuiltinType(BuiltinType::Char_U))
6134     return false;
6135 
6136   if (!isSpecializedAs(TemplateArgs[1].getAsType(), "char_traits", A))
6137     return false;
6138 
6139   if (HasAllocator &&
6140       !isSpecializedAs(TemplateArgs[2].getAsType(), "allocator", A))
6141     return false;
6142 
6143   if (SD->getSpecializedTemplate()->getOwningModuleForLinkage())
6144     return false;
6145 
6146   return true;
6147 }
6148 
6149 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
6150   // <substitution> ::= St # ::std::
6151   if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
6152     if (isStd(NS)) {
6153       Out << "St";
6154       return true;
6155     }
6156     return false;
6157   }
6158 
6159   if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
6160     if (!isStdNamespace(Context.getEffectiveDeclContext(TD)))
6161       return false;
6162 
6163     if (TD->getOwningModuleForLinkage())
6164       return false;
6165 
6166     // <substitution> ::= Sa # ::std::allocator
6167     if (TD->getIdentifier()->isStr("allocator")) {
6168       Out << "Sa";
6169       return true;
6170     }
6171 
6172     // <<substitution> ::= Sb # ::std::basic_string
6173     if (TD->getIdentifier()->isStr("basic_string")) {
6174       Out << "Sb";
6175       return true;
6176     }
6177     return false;
6178   }
6179 
6180   if (const ClassTemplateSpecializationDecl *SD =
6181         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
6182     if (!isStdNamespace(Context.getEffectiveDeclContext(SD)))
6183       return false;
6184 
6185     if (SD->getSpecializedTemplate()->getOwningModuleForLinkage())
6186       return false;
6187 
6188     //    <substitution> ::= Ss # ::std::basic_string<char,
6189     //                            ::std::char_traits<char>,
6190     //                            ::std::allocator<char> >
6191     if (isStdCharSpecialization(SD, "basic_string", /*HasAllocator=*/true)) {
6192       Out << "Ss";
6193       return true;
6194     }
6195 
6196     //    <substitution> ::= Si # ::std::basic_istream<char,
6197     //                            ::std::char_traits<char> >
6198     if (isStdCharSpecialization(SD, "basic_istream", /*HasAllocator=*/false)) {
6199       Out << "Si";
6200       return true;
6201     }
6202 
6203     //    <substitution> ::= So # ::std::basic_ostream<char,
6204     //                            ::std::char_traits<char> >
6205     if (isStdCharSpecialization(SD, "basic_ostream", /*HasAllocator=*/false)) {
6206       Out << "So";
6207       return true;
6208     }
6209 
6210     //    <substitution> ::= Sd # ::std::basic_iostream<char,
6211     //                            ::std::char_traits<char> >
6212     if (isStdCharSpecialization(SD, "basic_iostream", /*HasAllocator=*/false)) {
6213       Out << "Sd";
6214       return true;
6215     }
6216     return false;
6217   }
6218 
6219   return false;
6220 }
6221 
6222 void CXXNameMangler::addSubstitution(QualType T) {
6223   if (!hasMangledSubstitutionQualifiers(T)) {
6224     if (const RecordType *RT = T->getAs<RecordType>()) {
6225       addSubstitution(RT->getDecl());
6226       return;
6227     }
6228   }
6229 
6230   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
6231   addSubstitution(TypePtr);
6232 }
6233 
6234 void CXXNameMangler::addSubstitution(TemplateName Template) {
6235   if (TemplateDecl *TD = Template.getAsTemplateDecl())
6236     return addSubstitution(TD);
6237 
6238   Template = Context.getASTContext().getCanonicalTemplateName(Template);
6239   addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
6240 }
6241 
6242 void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
6243   assert(!Substitutions.count(Ptr) && "Substitution already exists!");
6244   Substitutions[Ptr] = SeqID++;
6245 }
6246 
6247 void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) {
6248   assert(Other->SeqID >= SeqID && "Must be superset of substitutions!");
6249   if (Other->SeqID > SeqID) {
6250     Substitutions.swap(Other->Substitutions);
6251     SeqID = Other->SeqID;
6252   }
6253 }
6254 
6255 CXXNameMangler::AbiTagList
6256 CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) {
6257   // When derived abi tags are disabled there is no need to make any list.
6258   if (DisableDerivedAbiTags)
6259     return AbiTagList();
6260 
6261   llvm::raw_null_ostream NullOutStream;
6262   CXXNameMangler TrackReturnTypeTags(*this, NullOutStream);
6263   TrackReturnTypeTags.disableDerivedAbiTags();
6264 
6265   const FunctionProtoType *Proto =
6266       cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>());
6267   FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push();
6268   TrackReturnTypeTags.FunctionTypeDepth.enterResultType();
6269   TrackReturnTypeTags.mangleType(Proto->getReturnType());
6270   TrackReturnTypeTags.FunctionTypeDepth.leaveResultType();
6271   TrackReturnTypeTags.FunctionTypeDepth.pop(saved);
6272 
6273   return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags();
6274 }
6275 
6276 CXXNameMangler::AbiTagList
6277 CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) {
6278   // When derived abi tags are disabled there is no need to make any list.
6279   if (DisableDerivedAbiTags)
6280     return AbiTagList();
6281 
6282   llvm::raw_null_ostream NullOutStream;
6283   CXXNameMangler TrackVariableType(*this, NullOutStream);
6284   TrackVariableType.disableDerivedAbiTags();
6285 
6286   TrackVariableType.mangleType(VD->getType());
6287 
6288   return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags();
6289 }
6290 
6291 bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C,
6292                                        const VarDecl *VD) {
6293   llvm::raw_null_ostream NullOutStream;
6294   CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true);
6295   TrackAbiTags.mangle(VD);
6296   return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size();
6297 }
6298 
6299 //
6300 
6301 /// Mangles the name of the declaration D and emits that name to the given
6302 /// output stream.
6303 ///
6304 /// If the declaration D requires a mangled name, this routine will emit that
6305 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged
6306 /// and this routine will return false. In this case, the caller should just
6307 /// emit the identifier of the declaration (\c D->getIdentifier()) as its
6308 /// name.
6309 void ItaniumMangleContextImpl::mangleCXXName(GlobalDecl GD,
6310                                              raw_ostream &Out) {
6311   const NamedDecl *D = cast<NamedDecl>(GD.getDecl());
6312   assert((isa<FunctionDecl, VarDecl, TemplateParamObjectDecl>(D)) &&
6313          "Invalid mangleName() call, argument is not a variable or function!");
6314 
6315   PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
6316                                  getASTContext().getSourceManager(),
6317                                  "Mangling declaration");
6318 
6319   if (auto *CD = dyn_cast<CXXConstructorDecl>(D)) {
6320     auto Type = GD.getCtorType();
6321     CXXNameMangler Mangler(*this, Out, CD, Type);
6322     return Mangler.mangle(GlobalDecl(CD, Type));
6323   }
6324 
6325   if (auto *DD = dyn_cast<CXXDestructorDecl>(D)) {
6326     auto Type = GD.getDtorType();
6327     CXXNameMangler Mangler(*this, Out, DD, Type);
6328     return Mangler.mangle(GlobalDecl(DD, Type));
6329   }
6330 
6331   CXXNameMangler Mangler(*this, Out, D);
6332   Mangler.mangle(GD);
6333 }
6334 
6335 void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D,
6336                                                    raw_ostream &Out) {
6337   CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat);
6338   Mangler.mangle(GlobalDecl(D, Ctor_Comdat));
6339 }
6340 
6341 void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D,
6342                                                    raw_ostream &Out) {
6343   CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat);
6344   Mangler.mangle(GlobalDecl(D, Dtor_Comdat));
6345 }
6346 
6347 void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
6348                                            const ThunkInfo &Thunk,
6349                                            raw_ostream &Out) {
6350   //  <special-name> ::= T <call-offset> <base encoding>
6351   //                      # base is the nominal target function of thunk
6352   //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
6353   //                      # base is the nominal target function of thunk
6354   //                      # first call-offset is 'this' adjustment
6355   //                      # second call-offset is result adjustment
6356 
6357   assert(!isa<CXXDestructorDecl>(MD) &&
6358          "Use mangleCXXDtor for destructor decls!");
6359   CXXNameMangler Mangler(*this, Out);
6360   Mangler.getStream() << "_ZT";
6361   if (!Thunk.Return.isEmpty())
6362     Mangler.getStream() << 'c';
6363 
6364   // Mangle the 'this' pointer adjustment.
6365   Mangler.mangleCallOffset(Thunk.This.NonVirtual,
6366                            Thunk.This.Virtual.Itanium.VCallOffsetOffset);
6367 
6368   // Mangle the return pointer adjustment if there is one.
6369   if (!Thunk.Return.isEmpty())
6370     Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
6371                              Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
6372 
6373   Mangler.mangleFunctionEncoding(MD);
6374 }
6375 
6376 void ItaniumMangleContextImpl::mangleCXXDtorThunk(
6377     const CXXDestructorDecl *DD, CXXDtorType Type,
6378     const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
6379   //  <special-name> ::= T <call-offset> <base encoding>
6380   //                      # base is the nominal target function of thunk
6381   CXXNameMangler Mangler(*this, Out, DD, Type);
6382   Mangler.getStream() << "_ZT";
6383 
6384   // Mangle the 'this' pointer adjustment.
6385   Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
6386                            ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
6387 
6388   Mangler.mangleFunctionEncoding(GlobalDecl(DD, Type));
6389 }
6390 
6391 /// Returns the mangled name for a guard variable for the passed in VarDecl.
6392 void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
6393                                                          raw_ostream &Out) {
6394   //  <special-name> ::= GV <object name>       # Guard variable for one-time
6395   //                                            # initialization
6396   CXXNameMangler Mangler(*this, Out);
6397   // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
6398   // be a bug that is fixed in trunk.
6399   Mangler.getStream() << "_ZGV";
6400   Mangler.mangleName(D);
6401 }
6402 
6403 void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
6404                                                         raw_ostream &Out) {
6405   // These symbols are internal in the Itanium ABI, so the names don't matter.
6406   // Clang has traditionally used this symbol and allowed LLVM to adjust it to
6407   // avoid duplicate symbols.
6408   Out << "__cxx_global_var_init";
6409 }
6410 
6411 void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
6412                                                              raw_ostream &Out) {
6413   // Prefix the mangling of D with __dtor_.
6414   CXXNameMangler Mangler(*this, Out);
6415   Mangler.getStream() << "__dtor_";
6416   if (shouldMangleDeclName(D))
6417     Mangler.mangle(D);
6418   else
6419     Mangler.getStream() << D->getName();
6420 }
6421 
6422 void ItaniumMangleContextImpl::mangleDynamicStermFinalizer(const VarDecl *D,
6423                                                            raw_ostream &Out) {
6424   // Clang generates these internal-linkage functions as part of its
6425   // implementation of the XL ABI.
6426   CXXNameMangler Mangler(*this, Out);
6427   Mangler.getStream() << "__finalize_";
6428   if (shouldMangleDeclName(D))
6429     Mangler.mangle(D);
6430   else
6431     Mangler.getStream() << D->getName();
6432 }
6433 
6434 void ItaniumMangleContextImpl::mangleSEHFilterExpression(
6435     GlobalDecl EnclosingDecl, raw_ostream &Out) {
6436   CXXNameMangler Mangler(*this, Out);
6437   Mangler.getStream() << "__filt_";
6438   auto *EnclosingFD = cast<FunctionDecl>(EnclosingDecl.getDecl());
6439   if (shouldMangleDeclName(EnclosingFD))
6440     Mangler.mangle(EnclosingDecl);
6441   else
6442     Mangler.getStream() << EnclosingFD->getName();
6443 }
6444 
6445 void ItaniumMangleContextImpl::mangleSEHFinallyBlock(
6446     GlobalDecl EnclosingDecl, raw_ostream &Out) {
6447   CXXNameMangler Mangler(*this, Out);
6448   Mangler.getStream() << "__fin_";
6449   auto *EnclosingFD = cast<FunctionDecl>(EnclosingDecl.getDecl());
6450   if (shouldMangleDeclName(EnclosingFD))
6451     Mangler.mangle(EnclosingDecl);
6452   else
6453     Mangler.getStream() << EnclosingFD->getName();
6454 }
6455 
6456 void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
6457                                                             raw_ostream &Out) {
6458   //  <special-name> ::= TH <object name>
6459   CXXNameMangler Mangler(*this, Out);
6460   Mangler.getStream() << "_ZTH";
6461   Mangler.mangleName(D);
6462 }
6463 
6464 void
6465 ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
6466                                                           raw_ostream &Out) {
6467   //  <special-name> ::= TW <object name>
6468   CXXNameMangler Mangler(*this, Out);
6469   Mangler.getStream() << "_ZTW";
6470   Mangler.mangleName(D);
6471 }
6472 
6473 void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
6474                                                         unsigned ManglingNumber,
6475                                                         raw_ostream &Out) {
6476   // We match the GCC mangling here.
6477   //  <special-name> ::= GR <object name>
6478   CXXNameMangler Mangler(*this, Out);
6479   Mangler.getStream() << "_ZGR";
6480   Mangler.mangleName(D);
6481   assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
6482   Mangler.mangleSeqID(ManglingNumber - 1);
6483 }
6484 
6485 void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
6486                                                raw_ostream &Out) {
6487   // <special-name> ::= TV <type>  # virtual table
6488   CXXNameMangler Mangler(*this, Out);
6489   Mangler.getStream() << "_ZTV";
6490   Mangler.mangleNameOrStandardSubstitution(RD);
6491 }
6492 
6493 void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
6494                                             raw_ostream &Out) {
6495   // <special-name> ::= TT <type>  # VTT structure
6496   CXXNameMangler Mangler(*this, Out);
6497   Mangler.getStream() << "_ZTT";
6498   Mangler.mangleNameOrStandardSubstitution(RD);
6499 }
6500 
6501 void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
6502                                                    int64_t Offset,
6503                                                    const CXXRecordDecl *Type,
6504                                                    raw_ostream &Out) {
6505   // <special-name> ::= TC <type> <offset number> _ <base type>
6506   CXXNameMangler Mangler(*this, Out);
6507   Mangler.getStream() << "_ZTC";
6508   Mangler.mangleNameOrStandardSubstitution(RD);
6509   Mangler.getStream() << Offset;
6510   Mangler.getStream() << '_';
6511   Mangler.mangleNameOrStandardSubstitution(Type);
6512 }
6513 
6514 void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
6515   // <special-name> ::= TI <type>  # typeinfo structure
6516   assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
6517   CXXNameMangler Mangler(*this, Out);
6518   Mangler.getStream() << "_ZTI";
6519   Mangler.mangleType(Ty);
6520 }
6521 
6522 void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
6523                                                  raw_ostream &Out) {
6524   // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
6525   CXXNameMangler Mangler(*this, Out);
6526   Mangler.getStream() << "_ZTS";
6527   Mangler.mangleType(Ty);
6528 }
6529 
6530 void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
6531   mangleCXXRTTIName(Ty, Out);
6532 }
6533 
6534 void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
6535   llvm_unreachable("Can't mangle string literals");
6536 }
6537 
6538 void ItaniumMangleContextImpl::mangleLambdaSig(const CXXRecordDecl *Lambda,
6539                                                raw_ostream &Out) {
6540   CXXNameMangler Mangler(*this, Out);
6541   Mangler.mangleLambdaSig(Lambda);
6542 }
6543 
6544 void ItaniumMangleContextImpl::mangleModuleInitializer(const Module *M,
6545                                                        raw_ostream &Out) {
6546   // <special-name> ::= GI <module-name>  # module initializer function
6547   CXXNameMangler Mangler(*this, Out);
6548   Mangler.getStream() << "_ZGI";
6549   Mangler.mangleModuleNamePrefix(M->getPrimaryModuleInterfaceName());
6550   if (M->isModulePartition()) {
6551     // The partition needs including, as partitions can have them too.
6552     auto Partition = M->Name.find(':');
6553     Mangler.mangleModuleNamePrefix(
6554         StringRef(&M->Name[Partition + 1], M->Name.size() - Partition - 1),
6555         /*IsPartition*/ true);
6556   }
6557 }
6558 
6559 ItaniumMangleContext *ItaniumMangleContext::create(ASTContext &Context,
6560                                                    DiagnosticsEngine &Diags,
6561                                                    bool IsAux) {
6562   return new ItaniumMangleContextImpl(
6563       Context, Diags,
6564       [](ASTContext &, const NamedDecl *) -> std::optional<unsigned> {
6565         return std::nullopt;
6566       },
6567       IsAux);
6568 }
6569 
6570 ItaniumMangleContext *
6571 ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags,
6572                              DiscriminatorOverrideTy DiscriminatorOverride,
6573                              bool IsAux) {
6574   return new ItaniumMangleContextImpl(Context, Diags, DiscriminatorOverride,
6575                                       IsAux);
6576 }
6577