1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implements C++ name mangling according to the Itanium C++ ABI,
10 // which is used in GCC 3.2 and newer (and many compilers that are
11 // ABI-compatible with GCC):
12 //
13 //   http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "clang/AST/Mangle.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclOpenMP.h"
24 #include "clang/AST/DeclTemplate.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/ExprConcepts.h"
27 #include "clang/AST/ExprCXX.h"
28 #include "clang/AST/ExprObjC.h"
29 #include "clang/AST/TypeLoc.h"
30 #include "clang/Basic/ABI.h"
31 #include "clang/Basic/Module.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "llvm/ADT/StringExtras.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/raw_ostream.h"
37 
38 using namespace clang;
39 
40 namespace {
41 
42 /// Retrieve the declaration context that should be used when mangling the given
43 /// declaration.
44 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
45   // The ABI assumes that lambda closure types that occur within
46   // default arguments live in the context of the function. However, due to
47   // the way in which Clang parses and creates function declarations, this is
48   // not the case: the lambda closure type ends up living in the context
49   // where the function itself resides, because the function declaration itself
50   // had not yet been created. Fix the context here.
51   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
52     if (RD->isLambda())
53       if (ParmVarDecl *ContextParam
54             = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
55         return ContextParam->getDeclContext();
56   }
57 
58   // Perform the same check for block literals.
59   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
60     if (ParmVarDecl *ContextParam
61           = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
62       return ContextParam->getDeclContext();
63   }
64 
65   const DeclContext *DC = D->getDeclContext();
66   if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) ||
67       isa<OMPDeclareMapperDecl>(DC)) {
68     return getEffectiveDeclContext(cast<Decl>(DC));
69   }
70 
71   if (const auto *VD = dyn_cast<VarDecl>(D))
72     if (VD->isExternC())
73       return VD->getASTContext().getTranslationUnitDecl();
74 
75   if (const auto *FD = dyn_cast<FunctionDecl>(D))
76     if (FD->isExternC())
77       return FD->getASTContext().getTranslationUnitDecl();
78 
79   return DC->getRedeclContext();
80 }
81 
82 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
83   return getEffectiveDeclContext(cast<Decl>(DC));
84 }
85 
86 static bool isLocalContainerContext(const DeclContext *DC) {
87   return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
88 }
89 
90 static const RecordDecl *GetLocalClassDecl(const Decl *D) {
91   const DeclContext *DC = getEffectiveDeclContext(D);
92   while (!DC->isNamespace() && !DC->isTranslationUnit()) {
93     if (isLocalContainerContext(DC))
94       return dyn_cast<RecordDecl>(D);
95     D = cast<Decl>(DC);
96     DC = getEffectiveDeclContext(D);
97   }
98   return nullptr;
99 }
100 
101 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
102   if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
103     return ftd->getTemplatedDecl();
104 
105   return fn;
106 }
107 
108 static const NamedDecl *getStructor(const NamedDecl *decl) {
109   const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
110   return (fn ? getStructor(fn) : decl);
111 }
112 
113 static bool isLambda(const NamedDecl *ND) {
114   const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
115   if (!Record)
116     return false;
117 
118   return Record->isLambda();
119 }
120 
121 static const unsigned UnknownArity = ~0U;
122 
123 class ItaniumMangleContextImpl : public ItaniumMangleContext {
124   typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
125   llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
126   llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
127 
128   bool IsDevCtx = false;
129 
130 public:
131   explicit ItaniumMangleContextImpl(ASTContext &Context,
132                                     DiagnosticsEngine &Diags)
133       : ItaniumMangleContext(Context, Diags) {}
134 
135   /// @name Mangler Entry Points
136   /// @{
137 
138   bool shouldMangleCXXName(const NamedDecl *D) override;
139   bool shouldMangleStringLiteral(const StringLiteral *) override {
140     return false;
141   }
142 
143   bool isDeviceMangleContext() const override { return IsDevCtx; }
144   void setDeviceMangleContext(bool IsDev) override { IsDevCtx = IsDev; }
145 
146   void mangleCXXName(GlobalDecl GD, raw_ostream &) override;
147   void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
148                    raw_ostream &) override;
149   void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
150                           const ThisAdjustment &ThisAdjustment,
151                           raw_ostream &) override;
152   void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
153                                 raw_ostream &) override;
154   void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
155   void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
156   void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
157                            const CXXRecordDecl *Type, raw_ostream &) override;
158   void mangleCXXRTTI(QualType T, raw_ostream &) override;
159   void mangleCXXRTTIName(QualType T, raw_ostream &) override;
160   void mangleTypeName(QualType T, raw_ostream &) override;
161 
162   void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
163   void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
164   void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
165   void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
166   void mangleDynamicAtExitDestructor(const VarDecl *D,
167                                      raw_ostream &Out) override;
168   void mangleDynamicStermFinalizer(const VarDecl *D, raw_ostream &Out) override;
169   void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
170                                  raw_ostream &Out) override;
171   void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
172                              raw_ostream &Out) override;
173   void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
174   void mangleItaniumThreadLocalWrapper(const VarDecl *D,
175                                        raw_ostream &) override;
176 
177   void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
178 
179   void mangleLambdaSig(const CXXRecordDecl *Lambda, raw_ostream &) override;
180 
181   bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
182     // Lambda closure types are already numbered.
183     if (isLambda(ND))
184       return false;
185 
186     // Anonymous tags are already numbered.
187     if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
188       if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
189         return false;
190     }
191 
192     // Use the canonical number for externally visible decls.
193     if (ND->isExternallyVisible()) {
194       unsigned discriminator = getASTContext().getManglingNumber(ND);
195       if (discriminator == 1)
196         return false;
197       disc = discriminator - 2;
198       return true;
199     }
200 
201     // Make up a reasonable number for internal decls.
202     unsigned &discriminator = Uniquifier[ND];
203     if (!discriminator) {
204       const DeclContext *DC = getEffectiveDeclContext(ND);
205       discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
206     }
207     if (discriminator == 1)
208       return false;
209     disc = discriminator-2;
210     return true;
211   }
212   /// @}
213 };
214 
215 /// Manage the mangling of a single name.
216 class CXXNameMangler {
217   ItaniumMangleContextImpl &Context;
218   raw_ostream &Out;
219   bool NullOut = false;
220   /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated.
221   /// This mode is used when mangler creates another mangler recursively to
222   /// calculate ABI tags for the function return value or the variable type.
223   /// Also it is required to avoid infinite recursion in some cases.
224   bool DisableDerivedAbiTags = false;
225 
226   /// The "structor" is the top-level declaration being mangled, if
227   /// that's not a template specialization; otherwise it's the pattern
228   /// for that specialization.
229   const NamedDecl *Structor;
230   unsigned StructorType;
231 
232   /// The next substitution sequence number.
233   unsigned SeqID;
234 
235   class FunctionTypeDepthState {
236     unsigned Bits;
237 
238     enum { InResultTypeMask = 1 };
239 
240   public:
241     FunctionTypeDepthState() : Bits(0) {}
242 
243     /// The number of function types we're inside.
244     unsigned getDepth() const {
245       return Bits >> 1;
246     }
247 
248     /// True if we're in the return type of the innermost function type.
249     bool isInResultType() const {
250       return Bits & InResultTypeMask;
251     }
252 
253     FunctionTypeDepthState push() {
254       FunctionTypeDepthState tmp = *this;
255       Bits = (Bits & ~InResultTypeMask) + 2;
256       return tmp;
257     }
258 
259     void enterResultType() {
260       Bits |= InResultTypeMask;
261     }
262 
263     void leaveResultType() {
264       Bits &= ~InResultTypeMask;
265     }
266 
267     void pop(FunctionTypeDepthState saved) {
268       assert(getDepth() == saved.getDepth() + 1);
269       Bits = saved.Bits;
270     }
271 
272   } FunctionTypeDepth;
273 
274   // abi_tag is a gcc attribute, taking one or more strings called "tags".
275   // The goal is to annotate against which version of a library an object was
276   // built and to be able to provide backwards compatibility ("dual abi").
277   // For more information see docs/ItaniumMangleAbiTags.rst.
278   typedef SmallVector<StringRef, 4> AbiTagList;
279 
280   // State to gather all implicit and explicit tags used in a mangled name.
281   // Must always have an instance of this while emitting any name to keep
282   // track.
283   class AbiTagState final {
284   public:
285     explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) {
286       Parent = LinkHead;
287       LinkHead = this;
288     }
289 
290     // No copy, no move.
291     AbiTagState(const AbiTagState &) = delete;
292     AbiTagState &operator=(const AbiTagState &) = delete;
293 
294     ~AbiTagState() { pop(); }
295 
296     void write(raw_ostream &Out, const NamedDecl *ND,
297                const AbiTagList *AdditionalAbiTags) {
298       ND = cast<NamedDecl>(ND->getCanonicalDecl());
299       if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) {
300         assert(
301             !AdditionalAbiTags &&
302             "only function and variables need a list of additional abi tags");
303         if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) {
304           if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) {
305             UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
306                                AbiTag->tags().end());
307           }
308           // Don't emit abi tags for namespaces.
309           return;
310         }
311       }
312 
313       AbiTagList TagList;
314       if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) {
315         UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
316                            AbiTag->tags().end());
317         TagList.insert(TagList.end(), AbiTag->tags().begin(),
318                        AbiTag->tags().end());
319       }
320 
321       if (AdditionalAbiTags) {
322         UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(),
323                            AdditionalAbiTags->end());
324         TagList.insert(TagList.end(), AdditionalAbiTags->begin(),
325                        AdditionalAbiTags->end());
326       }
327 
328       llvm::sort(TagList);
329       TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end());
330 
331       writeSortedUniqueAbiTags(Out, TagList);
332     }
333 
334     const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; }
335     void setUsedAbiTags(const AbiTagList &AbiTags) {
336       UsedAbiTags = AbiTags;
337     }
338 
339     const AbiTagList &getEmittedAbiTags() const {
340       return EmittedAbiTags;
341     }
342 
343     const AbiTagList &getSortedUniqueUsedAbiTags() {
344       llvm::sort(UsedAbiTags);
345       UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()),
346                         UsedAbiTags.end());
347       return UsedAbiTags;
348     }
349 
350   private:
351     //! All abi tags used implicitly or explicitly.
352     AbiTagList UsedAbiTags;
353     //! All explicit abi tags (i.e. not from namespace).
354     AbiTagList EmittedAbiTags;
355 
356     AbiTagState *&LinkHead;
357     AbiTagState *Parent = nullptr;
358 
359     void pop() {
360       assert(LinkHead == this &&
361              "abi tag link head must point to us on destruction");
362       if (Parent) {
363         Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(),
364                                    UsedAbiTags.begin(), UsedAbiTags.end());
365         Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(),
366                                       EmittedAbiTags.begin(),
367                                       EmittedAbiTags.end());
368       }
369       LinkHead = Parent;
370     }
371 
372     void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) {
373       for (const auto &Tag : AbiTags) {
374         EmittedAbiTags.push_back(Tag);
375         Out << "B";
376         Out << Tag.size();
377         Out << Tag;
378       }
379     }
380   };
381 
382   AbiTagState *AbiTags = nullptr;
383   AbiTagState AbiTagsRoot;
384 
385   llvm::DenseMap<uintptr_t, unsigned> Substitutions;
386   llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions;
387 
388   ASTContext &getASTContext() const { return Context.getASTContext(); }
389 
390 public:
391   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
392                  const NamedDecl *D = nullptr, bool NullOut_ = false)
393     : Context(C), Out(Out_), NullOut(NullOut_),  Structor(getStructor(D)),
394       StructorType(0), SeqID(0), AbiTagsRoot(AbiTags) {
395     // These can't be mangled without a ctor type or dtor type.
396     assert(!D || (!isa<CXXDestructorDecl>(D) &&
397                   !isa<CXXConstructorDecl>(D)));
398   }
399   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
400                  const CXXConstructorDecl *D, CXXCtorType Type)
401     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
402       SeqID(0), AbiTagsRoot(AbiTags) { }
403   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
404                  const CXXDestructorDecl *D, CXXDtorType Type)
405     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
406       SeqID(0), AbiTagsRoot(AbiTags) { }
407 
408   CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_)
409       : Context(Outer.Context), Out(Out_), NullOut(false),
410         Structor(Outer.Structor), StructorType(Outer.StructorType),
411         SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
412         AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
413 
414   CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_)
415       : Context(Outer.Context), Out(Out_), NullOut(true),
416         Structor(Outer.Structor), StructorType(Outer.StructorType),
417         SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
418         AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
419 
420   raw_ostream &getStream() { return Out; }
421 
422   void disableDerivedAbiTags() { DisableDerivedAbiTags = true; }
423   static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD);
424 
425   void mangle(GlobalDecl GD);
426   void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
427   void mangleNumber(const llvm::APSInt &I);
428   void mangleNumber(int64_t Number);
429   void mangleFloat(const llvm::APFloat &F);
430   void mangleFunctionEncoding(GlobalDecl GD);
431   void mangleSeqID(unsigned SeqID);
432   void mangleName(GlobalDecl GD);
433   void mangleType(QualType T);
434   void mangleNameOrStandardSubstitution(const NamedDecl *ND);
435   void mangleLambdaSig(const CXXRecordDecl *Lambda);
436 
437 private:
438 
439   bool mangleSubstitution(const NamedDecl *ND);
440   bool mangleSubstitution(QualType T);
441   bool mangleSubstitution(TemplateName Template);
442   bool mangleSubstitution(uintptr_t Ptr);
443 
444   void mangleExistingSubstitution(TemplateName name);
445 
446   bool mangleStandardSubstitution(const NamedDecl *ND);
447 
448   void addSubstitution(const NamedDecl *ND) {
449     ND = cast<NamedDecl>(ND->getCanonicalDecl());
450 
451     addSubstitution(reinterpret_cast<uintptr_t>(ND));
452   }
453   void addSubstitution(QualType T);
454   void addSubstitution(TemplateName Template);
455   void addSubstitution(uintptr_t Ptr);
456   // Destructive copy substitutions from other mangler.
457   void extendSubstitutions(CXXNameMangler* Other);
458 
459   void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
460                               bool recursive = false);
461   void mangleUnresolvedName(NestedNameSpecifier *qualifier,
462                             DeclarationName name,
463                             const TemplateArgumentLoc *TemplateArgs,
464                             unsigned NumTemplateArgs,
465                             unsigned KnownArity = UnknownArity);
466 
467   void mangleFunctionEncodingBareType(const FunctionDecl *FD);
468 
469   void mangleNameWithAbiTags(GlobalDecl GD,
470                              const AbiTagList *AdditionalAbiTags);
471   void mangleModuleName(const Module *M);
472   void mangleModuleNamePrefix(StringRef Name);
473   void mangleTemplateName(const TemplateDecl *TD,
474                           const TemplateArgument *TemplateArgs,
475                           unsigned NumTemplateArgs);
476   void mangleUnqualifiedName(GlobalDecl GD,
477                              const AbiTagList *AdditionalAbiTags) {
478     mangleUnqualifiedName(GD, cast<NamedDecl>(GD.getDecl())->getDeclName(), UnknownArity,
479                           AdditionalAbiTags);
480   }
481   void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name,
482                              unsigned KnownArity,
483                              const AbiTagList *AdditionalAbiTags);
484   void mangleUnscopedName(GlobalDecl GD,
485                           const AbiTagList *AdditionalAbiTags);
486   void mangleUnscopedTemplateName(GlobalDecl GD,
487                                   const AbiTagList *AdditionalAbiTags);
488   void mangleSourceName(const IdentifierInfo *II);
489   void mangleRegCallName(const IdentifierInfo *II);
490   void mangleDeviceStubName(const IdentifierInfo *II);
491   void mangleSourceNameWithAbiTags(
492       const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr);
493   void mangleLocalName(GlobalDecl GD,
494                        const AbiTagList *AdditionalAbiTags);
495   void mangleBlockForPrefix(const BlockDecl *Block);
496   void mangleUnqualifiedBlock(const BlockDecl *Block);
497   void mangleTemplateParamDecl(const NamedDecl *Decl);
498   void mangleLambda(const CXXRecordDecl *Lambda);
499   void mangleNestedName(GlobalDecl GD, const DeclContext *DC,
500                         const AbiTagList *AdditionalAbiTags,
501                         bool NoFunction=false);
502   void mangleNestedName(const TemplateDecl *TD,
503                         const TemplateArgument *TemplateArgs,
504                         unsigned NumTemplateArgs);
505   void manglePrefix(NestedNameSpecifier *qualifier);
506   void manglePrefix(const DeclContext *DC, bool NoFunction=false);
507   void manglePrefix(QualType type);
508   void mangleTemplatePrefix(GlobalDecl GD, bool NoFunction=false);
509   void mangleTemplatePrefix(TemplateName Template);
510   bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
511                                       StringRef Prefix = "");
512   void mangleOperatorName(DeclarationName Name, unsigned Arity);
513   void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
514   void mangleVendorQualifier(StringRef qualifier);
515   void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr);
516   void mangleRefQualifier(RefQualifierKind RefQualifier);
517 
518   void mangleObjCMethodName(const ObjCMethodDecl *MD);
519 
520   // Declare manglers for every type class.
521 #define ABSTRACT_TYPE(CLASS, PARENT)
522 #define NON_CANONICAL_TYPE(CLASS, PARENT)
523 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
524 #include "clang/AST/TypeNodes.inc"
525 
526   void mangleType(const TagType*);
527   void mangleType(TemplateName);
528   static StringRef getCallingConvQualifierName(CallingConv CC);
529   void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info);
530   void mangleExtFunctionInfo(const FunctionType *T);
531   void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType,
532                               const FunctionDecl *FD = nullptr);
533   void mangleNeonVectorType(const VectorType *T);
534   void mangleNeonVectorType(const DependentVectorType *T);
535   void mangleAArch64NeonVectorType(const VectorType *T);
536   void mangleAArch64NeonVectorType(const DependentVectorType *T);
537   void mangleAArch64FixedSveVectorType(const VectorType *T);
538   void mangleAArch64FixedSveVectorType(const DependentVectorType *T);
539 
540   void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
541   void mangleFloatLiteral(QualType T, const llvm::APFloat &V);
542   void mangleFixedPointLiteral();
543   void mangleNullPointer(QualType T);
544 
545   void mangleMemberExprBase(const Expr *base, bool isArrow);
546   void mangleMemberExpr(const Expr *base, bool isArrow,
547                         NestedNameSpecifier *qualifier,
548                         NamedDecl *firstQualifierLookup,
549                         DeclarationName name,
550                         const TemplateArgumentLoc *TemplateArgs,
551                         unsigned NumTemplateArgs,
552                         unsigned knownArity);
553   void mangleCastExpression(const Expr *E, StringRef CastEncoding);
554   void mangleInitListElements(const InitListExpr *InitList);
555   void mangleExpression(const Expr *E, unsigned Arity = UnknownArity,
556                         bool AsTemplateArg = false);
557   void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom);
558   void mangleCXXDtorType(CXXDtorType T);
559 
560   void mangleTemplateArgs(TemplateName TN,
561                           const TemplateArgumentLoc *TemplateArgs,
562                           unsigned NumTemplateArgs);
563   void mangleTemplateArgs(TemplateName TN, const TemplateArgument *TemplateArgs,
564                           unsigned NumTemplateArgs);
565   void mangleTemplateArgs(TemplateName TN, const TemplateArgumentList &AL);
566   void mangleTemplateArg(TemplateArgument A, bool NeedExactType);
567   void mangleTemplateArgExpr(const Expr *E);
568   void mangleValueInTemplateArg(QualType T, const APValue &V, bool TopLevel,
569                                 bool NeedExactType = false);
570 
571   void mangleTemplateParameter(unsigned Depth, unsigned Index);
572 
573   void mangleFunctionParam(const ParmVarDecl *parm);
574 
575   void writeAbiTags(const NamedDecl *ND,
576                     const AbiTagList *AdditionalAbiTags);
577 
578   // Returns sorted unique list of ABI tags.
579   AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD);
580   // Returns sorted unique list of ABI tags.
581   AbiTagList makeVariableTypeTags(const VarDecl *VD);
582 };
583 
584 }
585 
586 bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
587   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
588   if (FD) {
589     LanguageLinkage L = FD->getLanguageLinkage();
590     // Overloadable functions need mangling.
591     if (FD->hasAttr<OverloadableAttr>())
592       return true;
593 
594     // "main" is not mangled.
595     if (FD->isMain())
596       return false;
597 
598     // The Windows ABI expects that we would never mangle "typical"
599     // user-defined entry points regardless of visibility or freestanding-ness.
600     //
601     // N.B. This is distinct from asking about "main".  "main" has a lot of
602     // special rules associated with it in the standard while these
603     // user-defined entry points are outside of the purview of the standard.
604     // For example, there can be only one definition for "main" in a standards
605     // compliant program; however nothing forbids the existence of wmain and
606     // WinMain in the same translation unit.
607     if (FD->isMSVCRTEntryPoint())
608       return false;
609 
610     // C++ functions and those whose names are not a simple identifier need
611     // mangling.
612     if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
613       return true;
614 
615     // C functions are not mangled.
616     if (L == CLanguageLinkage)
617       return false;
618   }
619 
620   // Otherwise, no mangling is done outside C++ mode.
621   if (!getASTContext().getLangOpts().CPlusPlus)
622     return false;
623 
624   const VarDecl *VD = dyn_cast<VarDecl>(D);
625   if (VD && !isa<DecompositionDecl>(D)) {
626     // C variables are not mangled.
627     if (VD->isExternC())
628       return false;
629 
630     // Variables at global scope with non-internal linkage are not mangled
631     const DeclContext *DC = getEffectiveDeclContext(D);
632     // Check for extern variable declared locally.
633     if (DC->isFunctionOrMethod() && D->hasLinkage())
634       while (!DC->isNamespace() && !DC->isTranslationUnit())
635         DC = getEffectiveParentContext(DC);
636     if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
637         !CXXNameMangler::shouldHaveAbiTags(*this, VD) &&
638         !isa<VarTemplateSpecializationDecl>(D))
639       return false;
640   }
641 
642   return true;
643 }
644 
645 void CXXNameMangler::writeAbiTags(const NamedDecl *ND,
646                                   const AbiTagList *AdditionalAbiTags) {
647   assert(AbiTags && "require AbiTagState");
648   AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags);
649 }
650 
651 void CXXNameMangler::mangleSourceNameWithAbiTags(
652     const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) {
653   mangleSourceName(ND->getIdentifier());
654   writeAbiTags(ND, AdditionalAbiTags);
655 }
656 
657 void CXXNameMangler::mangle(GlobalDecl GD) {
658   // <mangled-name> ::= _Z <encoding>
659   //            ::= <data name>
660   //            ::= <special-name>
661   Out << "_Z";
662   if (isa<FunctionDecl>(GD.getDecl()))
663     mangleFunctionEncoding(GD);
664   else if (isa<VarDecl, FieldDecl, MSGuidDecl, TemplateParamObjectDecl,
665                BindingDecl>(GD.getDecl()))
666     mangleName(GD);
667   else if (const IndirectFieldDecl *IFD =
668                dyn_cast<IndirectFieldDecl>(GD.getDecl()))
669     mangleName(IFD->getAnonField());
670   else
671     llvm_unreachable("unexpected kind of global decl");
672 }
673 
674 void CXXNameMangler::mangleFunctionEncoding(GlobalDecl GD) {
675   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
676   // <encoding> ::= <function name> <bare-function-type>
677 
678   // Don't mangle in the type if this isn't a decl we should typically mangle.
679   if (!Context.shouldMangleDeclName(FD)) {
680     mangleName(GD);
681     return;
682   }
683 
684   AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD);
685   if (ReturnTypeAbiTags.empty()) {
686     // There are no tags for return type, the simplest case.
687     mangleName(GD);
688     mangleFunctionEncodingBareType(FD);
689     return;
690   }
691 
692   // Mangle function name and encoding to temporary buffer.
693   // We have to output name and encoding to the same mangler to get the same
694   // substitution as it will be in final mangling.
695   SmallString<256> FunctionEncodingBuf;
696   llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf);
697   CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream);
698   // Output name of the function.
699   FunctionEncodingMangler.disableDerivedAbiTags();
700   FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr);
701 
702   // Remember length of the function name in the buffer.
703   size_t EncodingPositionStart = FunctionEncodingStream.str().size();
704   FunctionEncodingMangler.mangleFunctionEncodingBareType(FD);
705 
706   // Get tags from return type that are not present in function name or
707   // encoding.
708   const AbiTagList &UsedAbiTags =
709       FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
710   AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size());
711   AdditionalAbiTags.erase(
712       std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(),
713                           UsedAbiTags.begin(), UsedAbiTags.end(),
714                           AdditionalAbiTags.begin()),
715       AdditionalAbiTags.end());
716 
717   // Output name with implicit tags and function encoding from temporary buffer.
718   mangleNameWithAbiTags(FD, &AdditionalAbiTags);
719   Out << FunctionEncodingStream.str().substr(EncodingPositionStart);
720 
721   // Function encoding could create new substitutions so we have to add
722   // temp mangled substitutions to main mangler.
723   extendSubstitutions(&FunctionEncodingMangler);
724 }
725 
726 void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) {
727   if (FD->hasAttr<EnableIfAttr>()) {
728     FunctionTypeDepthState Saved = FunctionTypeDepth.push();
729     Out << "Ua9enable_ifI";
730     for (AttrVec::const_iterator I = FD->getAttrs().begin(),
731                                  E = FD->getAttrs().end();
732          I != E; ++I) {
733       EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
734       if (!EIA)
735         continue;
736       if (Context.getASTContext().getLangOpts().getClangABICompat() >
737           LangOptions::ClangABI::Ver11) {
738         mangleTemplateArgExpr(EIA->getCond());
739       } else {
740         // Prior to Clang 12, we hardcoded the X/E around enable-if's argument,
741         // even though <template-arg> should not include an X/E around
742         // <expr-primary>.
743         Out << 'X';
744         mangleExpression(EIA->getCond());
745         Out << 'E';
746       }
747     }
748     Out << 'E';
749     FunctionTypeDepth.pop(Saved);
750   }
751 
752   // When mangling an inheriting constructor, the bare function type used is
753   // that of the inherited constructor.
754   if (auto *CD = dyn_cast<CXXConstructorDecl>(FD))
755     if (auto Inherited = CD->getInheritedConstructor())
756       FD = Inherited.getConstructor();
757 
758   // Whether the mangling of a function type includes the return type depends on
759   // the context and the nature of the function. The rules for deciding whether
760   // the return type is included are:
761   //
762   //   1. Template functions (names or types) have return types encoded, with
763   //   the exceptions listed below.
764   //   2. Function types not appearing as part of a function name mangling,
765   //   e.g. parameters, pointer types, etc., have return type encoded, with the
766   //   exceptions listed below.
767   //   3. Non-template function names do not have return types encoded.
768   //
769   // The exceptions mentioned in (1) and (2) above, for which the return type is
770   // never included, are
771   //   1. Constructors.
772   //   2. Destructors.
773   //   3. Conversion operator functions, e.g. operator int.
774   bool MangleReturnType = false;
775   if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
776     if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
777           isa<CXXConversionDecl>(FD)))
778       MangleReturnType = true;
779 
780     // Mangle the type of the primary template.
781     FD = PrimaryTemplate->getTemplatedDecl();
782   }
783 
784   mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(),
785                          MangleReturnType, FD);
786 }
787 
788 static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
789   while (isa<LinkageSpecDecl>(DC)) {
790     DC = getEffectiveParentContext(DC);
791   }
792 
793   return DC;
794 }
795 
796 /// Return whether a given namespace is the 'std' namespace.
797 static bool isStd(const NamespaceDecl *NS) {
798   if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
799                                 ->isTranslationUnit())
800     return false;
801 
802   const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
803   return II && II->isStr("std");
804 }
805 
806 // isStdNamespace - Return whether a given decl context is a toplevel 'std'
807 // namespace.
808 static bool isStdNamespace(const DeclContext *DC) {
809   if (!DC->isNamespace())
810     return false;
811 
812   return isStd(cast<NamespaceDecl>(DC));
813 }
814 
815 static const GlobalDecl
816 isTemplate(GlobalDecl GD, const TemplateArgumentList *&TemplateArgs) {
817   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
818   // Check if we have a function template.
819   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
820     if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
821       TemplateArgs = FD->getTemplateSpecializationArgs();
822       return GD.getWithDecl(TD);
823     }
824   }
825 
826   // Check if we have a class template.
827   if (const ClassTemplateSpecializationDecl *Spec =
828         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
829     TemplateArgs = &Spec->getTemplateArgs();
830     return GD.getWithDecl(Spec->getSpecializedTemplate());
831   }
832 
833   // Check if we have a variable template.
834   if (const VarTemplateSpecializationDecl *Spec =
835           dyn_cast<VarTemplateSpecializationDecl>(ND)) {
836     TemplateArgs = &Spec->getTemplateArgs();
837     return GD.getWithDecl(Spec->getSpecializedTemplate());
838   }
839 
840   return GlobalDecl();
841 }
842 
843 static TemplateName asTemplateName(GlobalDecl GD) {
844   const TemplateDecl *TD = dyn_cast_or_null<TemplateDecl>(GD.getDecl());
845   return TemplateName(const_cast<TemplateDecl*>(TD));
846 }
847 
848 void CXXNameMangler::mangleName(GlobalDecl GD) {
849   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
850   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
851     // Variables should have implicit tags from its type.
852     AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD);
853     if (VariableTypeAbiTags.empty()) {
854       // Simple case no variable type tags.
855       mangleNameWithAbiTags(VD, nullptr);
856       return;
857     }
858 
859     // Mangle variable name to null stream to collect tags.
860     llvm::raw_null_ostream NullOutStream;
861     CXXNameMangler VariableNameMangler(*this, NullOutStream);
862     VariableNameMangler.disableDerivedAbiTags();
863     VariableNameMangler.mangleNameWithAbiTags(VD, nullptr);
864 
865     // Get tags from variable type that are not present in its name.
866     const AbiTagList &UsedAbiTags =
867         VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
868     AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size());
869     AdditionalAbiTags.erase(
870         std::set_difference(VariableTypeAbiTags.begin(),
871                             VariableTypeAbiTags.end(), UsedAbiTags.begin(),
872                             UsedAbiTags.end(), AdditionalAbiTags.begin()),
873         AdditionalAbiTags.end());
874 
875     // Output name with implicit tags.
876     mangleNameWithAbiTags(VD, &AdditionalAbiTags);
877   } else {
878     mangleNameWithAbiTags(GD, nullptr);
879   }
880 }
881 
882 void CXXNameMangler::mangleNameWithAbiTags(GlobalDecl GD,
883                                            const AbiTagList *AdditionalAbiTags) {
884   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
885   //  <name> ::= [<module-name>] <nested-name>
886   //         ::= [<module-name>] <unscoped-name>
887   //         ::= [<module-name>] <unscoped-template-name> <template-args>
888   //         ::= <local-name>
889   //
890   const DeclContext *DC = getEffectiveDeclContext(ND);
891 
892   // If this is an extern variable declared locally, the relevant DeclContext
893   // is that of the containing namespace, or the translation unit.
894   // FIXME: This is a hack; extern variables declared locally should have
895   // a proper semantic declaration context!
896   if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
897     while (!DC->isNamespace() && !DC->isTranslationUnit())
898       DC = getEffectiveParentContext(DC);
899   else if (GetLocalClassDecl(ND)) {
900     mangleLocalName(GD, AdditionalAbiTags);
901     return;
902   }
903 
904   DC = IgnoreLinkageSpecDecls(DC);
905 
906   if (isLocalContainerContext(DC)) {
907     mangleLocalName(GD, AdditionalAbiTags);
908     return;
909   }
910 
911   // Do not mangle the owning module for an external linkage declaration.
912   // This enables backwards-compatibility with non-modular code, and is
913   // a valid choice since conflicts are not permitted by C++ Modules TS
914   // [basic.def.odr]/6.2.
915   if (!ND->hasExternalFormalLinkage())
916     if (Module *M = ND->getOwningModuleForLinkage())
917       mangleModuleName(M);
918 
919   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
920     // Check if we have a template.
921     const TemplateArgumentList *TemplateArgs = nullptr;
922     if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
923       mangleUnscopedTemplateName(TD, AdditionalAbiTags);
924       mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
925       return;
926     }
927 
928     mangleUnscopedName(GD, AdditionalAbiTags);
929     return;
930   }
931 
932   mangleNestedName(GD, DC, AdditionalAbiTags);
933 }
934 
935 void CXXNameMangler::mangleModuleName(const Module *M) {
936   // Implement the C++ Modules TS name mangling proposal; see
937   //     https://gcc.gnu.org/wiki/cxx-modules?action=AttachFile
938   //
939   //   <module-name> ::= W <unscoped-name>+ E
940   //                 ::= W <module-subst> <unscoped-name>* E
941   Out << 'W';
942   mangleModuleNamePrefix(M->Name);
943   Out << 'E';
944 }
945 
946 void CXXNameMangler::mangleModuleNamePrefix(StringRef Name) {
947   //  <module-subst> ::= _ <seq-id>          # 0 < seq-id < 10
948   //                 ::= W <seq-id - 10> _   # otherwise
949   auto It = ModuleSubstitutions.find(Name);
950   if (It != ModuleSubstitutions.end()) {
951     if (It->second < 10)
952       Out << '_' << static_cast<char>('0' + It->second);
953     else
954       Out << 'W' << (It->second - 10) << '_';
955     return;
956   }
957 
958   // FIXME: Preserve hierarchy in module names rather than flattening
959   // them to strings; use Module*s as substitution keys.
960   auto Parts = Name.rsplit('.');
961   if (Parts.second.empty())
962     Parts.second = Parts.first;
963   else
964     mangleModuleNamePrefix(Parts.first);
965 
966   Out << Parts.second.size() << Parts.second;
967   ModuleSubstitutions.insert({Name, ModuleSubstitutions.size()});
968 }
969 
970 void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD,
971                                         const TemplateArgument *TemplateArgs,
972                                         unsigned NumTemplateArgs) {
973   const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
974 
975   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
976     mangleUnscopedTemplateName(TD, nullptr);
977     mangleTemplateArgs(asTemplateName(TD), TemplateArgs, NumTemplateArgs);
978   } else {
979     mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
980   }
981 }
982 
983 void CXXNameMangler::mangleUnscopedName(GlobalDecl GD,
984                                         const AbiTagList *AdditionalAbiTags) {
985   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
986   //  <unscoped-name> ::= <unqualified-name>
987   //                  ::= St <unqualified-name>   # ::std::
988 
989   if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
990     Out << "St";
991 
992   mangleUnqualifiedName(GD, AdditionalAbiTags);
993 }
994 
995 void CXXNameMangler::mangleUnscopedTemplateName(
996     GlobalDecl GD, const AbiTagList *AdditionalAbiTags) {
997   const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl());
998   //     <unscoped-template-name> ::= <unscoped-name>
999   //                              ::= <substitution>
1000   if (mangleSubstitution(ND))
1001     return;
1002 
1003   // <template-template-param> ::= <template-param>
1004   if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1005     assert(!AdditionalAbiTags &&
1006            "template template param cannot have abi tags");
1007     mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
1008   } else if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND)) {
1009     mangleUnscopedName(GD, AdditionalAbiTags);
1010   } else {
1011     mangleUnscopedName(GD.getWithDecl(ND->getTemplatedDecl()), AdditionalAbiTags);
1012   }
1013 
1014   addSubstitution(ND);
1015 }
1016 
1017 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
1018   // ABI:
1019   //   Floating-point literals are encoded using a fixed-length
1020   //   lowercase hexadecimal string corresponding to the internal
1021   //   representation (IEEE on Itanium), high-order bytes first,
1022   //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
1023   //   on Itanium.
1024   // The 'without leading zeroes' thing seems to be an editorial
1025   // mistake; see the discussion on cxx-abi-dev beginning on
1026   // 2012-01-16.
1027 
1028   // Our requirements here are just barely weird enough to justify
1029   // using a custom algorithm instead of post-processing APInt::toString().
1030 
1031   llvm::APInt valueBits = f.bitcastToAPInt();
1032   unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
1033   assert(numCharacters != 0);
1034 
1035   // Allocate a buffer of the right number of characters.
1036   SmallVector<char, 20> buffer(numCharacters);
1037 
1038   // Fill the buffer left-to-right.
1039   for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
1040     // The bit-index of the next hex digit.
1041     unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
1042 
1043     // Project out 4 bits starting at 'digitIndex'.
1044     uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64];
1045     hexDigit >>= (digitBitIndex % 64);
1046     hexDigit &= 0xF;
1047 
1048     // Map that over to a lowercase hex digit.
1049     static const char charForHex[16] = {
1050       '0', '1', '2', '3', '4', '5', '6', '7',
1051       '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
1052     };
1053     buffer[stringIndex] = charForHex[hexDigit];
1054   }
1055 
1056   Out.write(buffer.data(), numCharacters);
1057 }
1058 
1059 void CXXNameMangler::mangleFloatLiteral(QualType T, const llvm::APFloat &V) {
1060   Out << 'L';
1061   mangleType(T);
1062   mangleFloat(V);
1063   Out << 'E';
1064 }
1065 
1066 void CXXNameMangler::mangleFixedPointLiteral() {
1067   DiagnosticsEngine &Diags = Context.getDiags();
1068   unsigned DiagID = Diags.getCustomDiagID(
1069       DiagnosticsEngine::Error, "cannot mangle fixed point literals yet");
1070   Diags.Report(DiagID);
1071 }
1072 
1073 void CXXNameMangler::mangleNullPointer(QualType T) {
1074   //  <expr-primary> ::= L <type> 0 E
1075   Out << 'L';
1076   mangleType(T);
1077   Out << "0E";
1078 }
1079 
1080 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
1081   if (Value.isSigned() && Value.isNegative()) {
1082     Out << 'n';
1083     Value.abs().print(Out, /*signed*/ false);
1084   } else {
1085     Value.print(Out, /*signed*/ false);
1086   }
1087 }
1088 
1089 void CXXNameMangler::mangleNumber(int64_t Number) {
1090   //  <number> ::= [n] <non-negative decimal integer>
1091   if (Number < 0) {
1092     Out << 'n';
1093     Number = -Number;
1094   }
1095 
1096   Out << Number;
1097 }
1098 
1099 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
1100   //  <call-offset>  ::= h <nv-offset> _
1101   //                 ::= v <v-offset> _
1102   //  <nv-offset>    ::= <offset number>        # non-virtual base override
1103   //  <v-offset>     ::= <offset number> _ <virtual offset number>
1104   //                      # virtual base override, with vcall offset
1105   if (!Virtual) {
1106     Out << 'h';
1107     mangleNumber(NonVirtual);
1108     Out << '_';
1109     return;
1110   }
1111 
1112   Out << 'v';
1113   mangleNumber(NonVirtual);
1114   Out << '_';
1115   mangleNumber(Virtual);
1116   Out << '_';
1117 }
1118 
1119 void CXXNameMangler::manglePrefix(QualType type) {
1120   if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
1121     if (!mangleSubstitution(QualType(TST, 0))) {
1122       mangleTemplatePrefix(TST->getTemplateName());
1123 
1124       // FIXME: GCC does not appear to mangle the template arguments when
1125       // the template in question is a dependent template name. Should we
1126       // emulate that badness?
1127       mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(),
1128                          TST->getNumArgs());
1129       addSubstitution(QualType(TST, 0));
1130     }
1131   } else if (const auto *DTST =
1132                  type->getAs<DependentTemplateSpecializationType>()) {
1133     if (!mangleSubstitution(QualType(DTST, 0))) {
1134       TemplateName Template = getASTContext().getDependentTemplateName(
1135           DTST->getQualifier(), DTST->getIdentifier());
1136       mangleTemplatePrefix(Template);
1137 
1138       // FIXME: GCC does not appear to mangle the template arguments when
1139       // the template in question is a dependent template name. Should we
1140       // emulate that badness?
1141       mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs());
1142       addSubstitution(QualType(DTST, 0));
1143     }
1144   } else {
1145     // We use the QualType mangle type variant here because it handles
1146     // substitutions.
1147     mangleType(type);
1148   }
1149 }
1150 
1151 /// Mangle everything prior to the base-unresolved-name in an unresolved-name.
1152 ///
1153 /// \param recursive - true if this is being called recursively,
1154 ///   i.e. if there is more prefix "to the right".
1155 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
1156                                             bool recursive) {
1157 
1158   // x, ::x
1159   // <unresolved-name> ::= [gs] <base-unresolved-name>
1160 
1161   // T::x / decltype(p)::x
1162   // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
1163 
1164   // T::N::x /decltype(p)::N::x
1165   // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
1166   //                       <base-unresolved-name>
1167 
1168   // A::x, N::y, A<T>::z; "gs" means leading "::"
1169   // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
1170   //                       <base-unresolved-name>
1171 
1172   switch (qualifier->getKind()) {
1173   case NestedNameSpecifier::Global:
1174     Out << "gs";
1175 
1176     // We want an 'sr' unless this is the entire NNS.
1177     if (recursive)
1178       Out << "sr";
1179 
1180     // We never want an 'E' here.
1181     return;
1182 
1183   case NestedNameSpecifier::Super:
1184     llvm_unreachable("Can't mangle __super specifier");
1185 
1186   case NestedNameSpecifier::Namespace:
1187     if (qualifier->getPrefix())
1188       mangleUnresolvedPrefix(qualifier->getPrefix(),
1189                              /*recursive*/ true);
1190     else
1191       Out << "sr";
1192     mangleSourceNameWithAbiTags(qualifier->getAsNamespace());
1193     break;
1194   case NestedNameSpecifier::NamespaceAlias:
1195     if (qualifier->getPrefix())
1196       mangleUnresolvedPrefix(qualifier->getPrefix(),
1197                              /*recursive*/ true);
1198     else
1199       Out << "sr";
1200     mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias());
1201     break;
1202 
1203   case NestedNameSpecifier::TypeSpec:
1204   case NestedNameSpecifier::TypeSpecWithTemplate: {
1205     const Type *type = qualifier->getAsType();
1206 
1207     // We only want to use an unresolved-type encoding if this is one of:
1208     //   - a decltype
1209     //   - a template type parameter
1210     //   - a template template parameter with arguments
1211     // In all of these cases, we should have no prefix.
1212     if (qualifier->getPrefix()) {
1213       mangleUnresolvedPrefix(qualifier->getPrefix(),
1214                              /*recursive*/ true);
1215     } else {
1216       // Otherwise, all the cases want this.
1217       Out << "sr";
1218     }
1219 
1220     if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
1221       return;
1222 
1223     break;
1224   }
1225 
1226   case NestedNameSpecifier::Identifier:
1227     // Member expressions can have these without prefixes.
1228     if (qualifier->getPrefix())
1229       mangleUnresolvedPrefix(qualifier->getPrefix(),
1230                              /*recursive*/ true);
1231     else
1232       Out << "sr";
1233 
1234     mangleSourceName(qualifier->getAsIdentifier());
1235     // An Identifier has no type information, so we can't emit abi tags for it.
1236     break;
1237   }
1238 
1239   // If this was the innermost part of the NNS, and we fell out to
1240   // here, append an 'E'.
1241   if (!recursive)
1242     Out << 'E';
1243 }
1244 
1245 /// Mangle an unresolved-name, which is generally used for names which
1246 /// weren't resolved to specific entities.
1247 void CXXNameMangler::mangleUnresolvedName(
1248     NestedNameSpecifier *qualifier, DeclarationName name,
1249     const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs,
1250     unsigned knownArity) {
1251   if (qualifier) mangleUnresolvedPrefix(qualifier);
1252   switch (name.getNameKind()) {
1253     // <base-unresolved-name> ::= <simple-id>
1254     case DeclarationName::Identifier:
1255       mangleSourceName(name.getAsIdentifierInfo());
1256       break;
1257     // <base-unresolved-name> ::= dn <destructor-name>
1258     case DeclarationName::CXXDestructorName:
1259       Out << "dn";
1260       mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
1261       break;
1262     // <base-unresolved-name> ::= on <operator-name>
1263     case DeclarationName::CXXConversionFunctionName:
1264     case DeclarationName::CXXLiteralOperatorName:
1265     case DeclarationName::CXXOperatorName:
1266       Out << "on";
1267       mangleOperatorName(name, knownArity);
1268       break;
1269     case DeclarationName::CXXConstructorName:
1270       llvm_unreachable("Can't mangle a constructor name!");
1271     case DeclarationName::CXXUsingDirective:
1272       llvm_unreachable("Can't mangle a using directive name!");
1273     case DeclarationName::CXXDeductionGuideName:
1274       llvm_unreachable("Can't mangle a deduction guide name!");
1275     case DeclarationName::ObjCMultiArgSelector:
1276     case DeclarationName::ObjCOneArgSelector:
1277     case DeclarationName::ObjCZeroArgSelector:
1278       llvm_unreachable("Can't mangle Objective-C selector names here!");
1279   }
1280 
1281   // The <simple-id> and on <operator-name> productions end in an optional
1282   // <template-args>.
1283   if (TemplateArgs)
1284     mangleTemplateArgs(TemplateName(), TemplateArgs, NumTemplateArgs);
1285 }
1286 
1287 void CXXNameMangler::mangleUnqualifiedName(GlobalDecl GD,
1288                                            DeclarationName Name,
1289                                            unsigned KnownArity,
1290                                            const AbiTagList *AdditionalAbiTags) {
1291   const NamedDecl *ND = cast_or_null<NamedDecl>(GD.getDecl());
1292   unsigned Arity = KnownArity;
1293   //  <unqualified-name> ::= <operator-name>
1294   //                     ::= <ctor-dtor-name>
1295   //                     ::= <source-name>
1296   switch (Name.getNameKind()) {
1297   case DeclarationName::Identifier: {
1298     const IdentifierInfo *II = Name.getAsIdentifierInfo();
1299 
1300     // We mangle decomposition declarations as the names of their bindings.
1301     if (auto *DD = dyn_cast<DecompositionDecl>(ND)) {
1302       // FIXME: Non-standard mangling for decomposition declarations:
1303       //
1304       //  <unqualified-name> ::= DC <source-name>* E
1305       //
1306       // These can never be referenced across translation units, so we do
1307       // not need a cross-vendor mangling for anything other than demanglers.
1308       // Proposed on cxx-abi-dev on 2016-08-12
1309       Out << "DC";
1310       for (auto *BD : DD->bindings())
1311         mangleSourceName(BD->getDeclName().getAsIdentifierInfo());
1312       Out << 'E';
1313       writeAbiTags(ND, AdditionalAbiTags);
1314       break;
1315     }
1316 
1317     if (auto *GD = dyn_cast<MSGuidDecl>(ND)) {
1318       // We follow MSVC in mangling GUID declarations as if they were variables
1319       // with a particular reserved name. Continue the pretense here.
1320       SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID;
1321       llvm::raw_svector_ostream GUIDOS(GUID);
1322       Context.mangleMSGuidDecl(GD, GUIDOS);
1323       Out << GUID.size() << GUID;
1324       break;
1325     }
1326 
1327     if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
1328       // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63.
1329       Out << "TA";
1330       mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(),
1331                                TPO->getValue(), /*TopLevel=*/true);
1332       break;
1333     }
1334 
1335     if (II) {
1336       // Match GCC's naming convention for internal linkage symbols, for
1337       // symbols that are not actually visible outside of this TU. GCC
1338       // distinguishes between internal and external linkage symbols in
1339       // its mangling, to support cases like this that were valid C++ prior
1340       // to DR426:
1341       //
1342       //   void test() { extern void foo(); }
1343       //   static void foo();
1344       //
1345       // Don't bother with the L marker for names in anonymous namespaces; the
1346       // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better
1347       // matches GCC anyway, because GCC does not treat anonymous namespaces as
1348       // implying internal linkage.
1349       if (ND && ND->getFormalLinkage() == InternalLinkage &&
1350           !ND->isExternallyVisible() &&
1351           getEffectiveDeclContext(ND)->isFileContext() &&
1352           !ND->isInAnonymousNamespace())
1353         Out << 'L';
1354 
1355       auto *FD = dyn_cast<FunctionDecl>(ND);
1356       bool IsRegCall = FD &&
1357                        FD->getType()->castAs<FunctionType>()->getCallConv() ==
1358                            clang::CC_X86RegCall;
1359       bool IsDeviceStub =
1360           FD && FD->hasAttr<CUDAGlobalAttr>() &&
1361           GD.getKernelReferenceKind() == KernelReferenceKind::Stub;
1362       if (IsDeviceStub)
1363         mangleDeviceStubName(II);
1364       else if (IsRegCall)
1365         mangleRegCallName(II);
1366       else
1367         mangleSourceName(II);
1368 
1369       writeAbiTags(ND, AdditionalAbiTags);
1370       break;
1371     }
1372 
1373     // Otherwise, an anonymous entity.  We must have a declaration.
1374     assert(ND && "mangling empty name without declaration");
1375 
1376     if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1377       if (NS->isAnonymousNamespace()) {
1378         // This is how gcc mangles these names.
1379         Out << "12_GLOBAL__N_1";
1380         break;
1381       }
1382     }
1383 
1384     if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1385       // We must have an anonymous union or struct declaration.
1386       const RecordDecl *RD = VD->getType()->castAs<RecordType>()->getDecl();
1387 
1388       // Itanium C++ ABI 5.1.2:
1389       //
1390       //   For the purposes of mangling, the name of an anonymous union is
1391       //   considered to be the name of the first named data member found by a
1392       //   pre-order, depth-first, declaration-order walk of the data members of
1393       //   the anonymous union. If there is no such data member (i.e., if all of
1394       //   the data members in the union are unnamed), then there is no way for
1395       //   a program to refer to the anonymous union, and there is therefore no
1396       //   need to mangle its name.
1397       assert(RD->isAnonymousStructOrUnion()
1398              && "Expected anonymous struct or union!");
1399       const FieldDecl *FD = RD->findFirstNamedDataMember();
1400 
1401       // It's actually possible for various reasons for us to get here
1402       // with an empty anonymous struct / union.  Fortunately, it
1403       // doesn't really matter what name we generate.
1404       if (!FD) break;
1405       assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1406 
1407       mangleSourceName(FD->getIdentifier());
1408       // Not emitting abi tags: internal name anyway.
1409       break;
1410     }
1411 
1412     // Class extensions have no name as a category, and it's possible
1413     // for them to be the semantic parent of certain declarations
1414     // (primarily, tag decls defined within declarations).  Such
1415     // declarations will always have internal linkage, so the name
1416     // doesn't really matter, but we shouldn't crash on them.  For
1417     // safety, just handle all ObjC containers here.
1418     if (isa<ObjCContainerDecl>(ND))
1419       break;
1420 
1421     // We must have an anonymous struct.
1422     const TagDecl *TD = cast<TagDecl>(ND);
1423     if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1424       assert(TD->getDeclContext() == D->getDeclContext() &&
1425              "Typedef should not be in another decl context!");
1426       assert(D->getDeclName().getAsIdentifierInfo() &&
1427              "Typedef was not named!");
1428       mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1429       assert(!AdditionalAbiTags && "Type cannot have additional abi tags");
1430       // Explicit abi tags are still possible; take from underlying type, not
1431       // from typedef.
1432       writeAbiTags(TD, nullptr);
1433       break;
1434     }
1435 
1436     // <unnamed-type-name> ::= <closure-type-name>
1437     //
1438     // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1439     // <lambda-sig> ::= <template-param-decl>* <parameter-type>+
1440     //     # Parameter types or 'v' for 'void'.
1441     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1442       if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1443         assert(!AdditionalAbiTags &&
1444                "Lambda type cannot have additional abi tags");
1445         mangleLambda(Record);
1446         break;
1447       }
1448     }
1449 
1450     if (TD->isExternallyVisible()) {
1451       unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
1452       Out << "Ut";
1453       if (UnnamedMangle > 1)
1454         Out << UnnamedMangle - 2;
1455       Out << '_';
1456       writeAbiTags(TD, AdditionalAbiTags);
1457       break;
1458     }
1459 
1460     // Get a unique id for the anonymous struct. If it is not a real output
1461     // ID doesn't matter so use fake one.
1462     unsigned AnonStructId = NullOut ? 0 : Context.getAnonymousStructId(TD);
1463 
1464     // Mangle it as a source name in the form
1465     // [n] $_<id>
1466     // where n is the length of the string.
1467     SmallString<8> Str;
1468     Str += "$_";
1469     Str += llvm::utostr(AnonStructId);
1470 
1471     Out << Str.size();
1472     Out << Str;
1473     break;
1474   }
1475 
1476   case DeclarationName::ObjCZeroArgSelector:
1477   case DeclarationName::ObjCOneArgSelector:
1478   case DeclarationName::ObjCMultiArgSelector:
1479     llvm_unreachable("Can't mangle Objective-C selector names here!");
1480 
1481   case DeclarationName::CXXConstructorName: {
1482     const CXXRecordDecl *InheritedFrom = nullptr;
1483     TemplateName InheritedTemplateName;
1484     const TemplateArgumentList *InheritedTemplateArgs = nullptr;
1485     if (auto Inherited =
1486             cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) {
1487       InheritedFrom = Inherited.getConstructor()->getParent();
1488       InheritedTemplateName =
1489           TemplateName(Inherited.getConstructor()->getPrimaryTemplate());
1490       InheritedTemplateArgs =
1491           Inherited.getConstructor()->getTemplateSpecializationArgs();
1492     }
1493 
1494     if (ND == Structor)
1495       // If the named decl is the C++ constructor we're mangling, use the type
1496       // we were given.
1497       mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom);
1498     else
1499       // Otherwise, use the complete constructor name. This is relevant if a
1500       // class with a constructor is declared within a constructor.
1501       mangleCXXCtorType(Ctor_Complete, InheritedFrom);
1502 
1503     // FIXME: The template arguments are part of the enclosing prefix or
1504     // nested-name, but it's more convenient to mangle them here.
1505     if (InheritedTemplateArgs)
1506       mangleTemplateArgs(InheritedTemplateName, *InheritedTemplateArgs);
1507 
1508     writeAbiTags(ND, AdditionalAbiTags);
1509     break;
1510   }
1511 
1512   case DeclarationName::CXXDestructorName:
1513     if (ND == Structor)
1514       // If the named decl is the C++ destructor we're mangling, use the type we
1515       // were given.
1516       mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1517     else
1518       // Otherwise, use the complete destructor name. This is relevant if a
1519       // class with a destructor is declared within a destructor.
1520       mangleCXXDtorType(Dtor_Complete);
1521     writeAbiTags(ND, AdditionalAbiTags);
1522     break;
1523 
1524   case DeclarationName::CXXOperatorName:
1525     if (ND && Arity == UnknownArity) {
1526       Arity = cast<FunctionDecl>(ND)->getNumParams();
1527 
1528       // If we have a member function, we need to include the 'this' pointer.
1529       if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
1530         if (!MD->isStatic())
1531           Arity++;
1532     }
1533     LLVM_FALLTHROUGH;
1534   case DeclarationName::CXXConversionFunctionName:
1535   case DeclarationName::CXXLiteralOperatorName:
1536     mangleOperatorName(Name, Arity);
1537     writeAbiTags(ND, AdditionalAbiTags);
1538     break;
1539 
1540   case DeclarationName::CXXDeductionGuideName:
1541     llvm_unreachable("Can't mangle a deduction guide name!");
1542 
1543   case DeclarationName::CXXUsingDirective:
1544     llvm_unreachable("Can't mangle a using directive name!");
1545   }
1546 }
1547 
1548 void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) {
1549   // <source-name> ::= <positive length number> __regcall3__ <identifier>
1550   // <number> ::= [n] <non-negative decimal integer>
1551   // <identifier> ::= <unqualified source code identifier>
1552   Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__"
1553       << II->getName();
1554 }
1555 
1556 void CXXNameMangler::mangleDeviceStubName(const IdentifierInfo *II) {
1557   // <source-name> ::= <positive length number> __device_stub__ <identifier>
1558   // <number> ::= [n] <non-negative decimal integer>
1559   // <identifier> ::= <unqualified source code identifier>
1560   Out << II->getLength() + sizeof("__device_stub__") - 1 << "__device_stub__"
1561       << II->getName();
1562 }
1563 
1564 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1565   // <source-name> ::= <positive length number> <identifier>
1566   // <number> ::= [n] <non-negative decimal integer>
1567   // <identifier> ::= <unqualified source code identifier>
1568   Out << II->getLength() << II->getName();
1569 }
1570 
1571 void CXXNameMangler::mangleNestedName(GlobalDecl GD,
1572                                       const DeclContext *DC,
1573                                       const AbiTagList *AdditionalAbiTags,
1574                                       bool NoFunction) {
1575   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
1576   // <nested-name>
1577   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1578   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1579   //       <template-args> E
1580 
1581   Out << 'N';
1582   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1583     Qualifiers MethodQuals = Method->getMethodQualifiers();
1584     // We do not consider restrict a distinguishing attribute for overloading
1585     // purposes so we must not mangle it.
1586     MethodQuals.removeRestrict();
1587     mangleQualifiers(MethodQuals);
1588     mangleRefQualifier(Method->getRefQualifier());
1589   }
1590 
1591   // Check if we have a template.
1592   const TemplateArgumentList *TemplateArgs = nullptr;
1593   if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
1594     mangleTemplatePrefix(TD, NoFunction);
1595     mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
1596   }
1597   else {
1598     manglePrefix(DC, NoFunction);
1599     mangleUnqualifiedName(GD, AdditionalAbiTags);
1600   }
1601 
1602   Out << 'E';
1603 }
1604 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1605                                       const TemplateArgument *TemplateArgs,
1606                                       unsigned NumTemplateArgs) {
1607   // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1608 
1609   Out << 'N';
1610 
1611   mangleTemplatePrefix(TD);
1612   mangleTemplateArgs(asTemplateName(TD), TemplateArgs, NumTemplateArgs);
1613 
1614   Out << 'E';
1615 }
1616 
1617 static GlobalDecl getParentOfLocalEntity(const DeclContext *DC) {
1618   GlobalDecl GD;
1619   // The Itanium spec says:
1620   // For entities in constructors and destructors, the mangling of the
1621   // complete object constructor or destructor is used as the base function
1622   // name, i.e. the C1 or D1 version.
1623   if (auto *CD = dyn_cast<CXXConstructorDecl>(DC))
1624     GD = GlobalDecl(CD, Ctor_Complete);
1625   else if (auto *DD = dyn_cast<CXXDestructorDecl>(DC))
1626     GD = GlobalDecl(DD, Dtor_Complete);
1627   else
1628     GD = GlobalDecl(cast<FunctionDecl>(DC));
1629   return GD;
1630 }
1631 
1632 void CXXNameMangler::mangleLocalName(GlobalDecl GD,
1633                                      const AbiTagList *AdditionalAbiTags) {
1634   const Decl *D = GD.getDecl();
1635   // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1636   //              := Z <function encoding> E s [<discriminator>]
1637   // <local-name> := Z <function encoding> E d [ <parameter number> ]
1638   //                 _ <entity name>
1639   // <discriminator> := _ <non-negative number>
1640   assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1641   const RecordDecl *RD = GetLocalClassDecl(D);
1642   const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
1643 
1644   Out << 'Z';
1645 
1646   {
1647     AbiTagState LocalAbiTags(AbiTags);
1648 
1649     if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1650       mangleObjCMethodName(MD);
1651     else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1652       mangleBlockForPrefix(BD);
1653     else
1654       mangleFunctionEncoding(getParentOfLocalEntity(DC));
1655 
1656     // Implicit ABI tags (from namespace) are not available in the following
1657     // entity; reset to actually emitted tags, which are available.
1658     LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags());
1659   }
1660 
1661   Out << 'E';
1662 
1663   // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
1664   // be a bug that is fixed in trunk.
1665 
1666   if (RD) {
1667     // The parameter number is omitted for the last parameter, 0 for the
1668     // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1669     // <entity name> will of course contain a <closure-type-name>: Its
1670     // numbering will be local to the particular argument in which it appears
1671     // -- other default arguments do not affect its encoding.
1672     const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1673     if (CXXRD && CXXRD->isLambda()) {
1674       if (const ParmVarDecl *Parm
1675               = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1676         if (const FunctionDecl *Func
1677               = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1678           Out << 'd';
1679           unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1680           if (Num > 1)
1681             mangleNumber(Num - 2);
1682           Out << '_';
1683         }
1684       }
1685     }
1686 
1687     // Mangle the name relative to the closest enclosing function.
1688     // equality ok because RD derived from ND above
1689     if (D == RD)  {
1690       mangleUnqualifiedName(RD, AdditionalAbiTags);
1691     } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1692       manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1693       assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1694       mangleUnqualifiedBlock(BD);
1695     } else {
1696       const NamedDecl *ND = cast<NamedDecl>(D);
1697       mangleNestedName(GD, getEffectiveDeclContext(ND), AdditionalAbiTags,
1698                        true /*NoFunction*/);
1699     }
1700   } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1701     // Mangle a block in a default parameter; see above explanation for
1702     // lambdas.
1703     if (const ParmVarDecl *Parm
1704             = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1705       if (const FunctionDecl *Func
1706             = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1707         Out << 'd';
1708         unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1709         if (Num > 1)
1710           mangleNumber(Num - 2);
1711         Out << '_';
1712       }
1713     }
1714 
1715     assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1716     mangleUnqualifiedBlock(BD);
1717   } else {
1718     mangleUnqualifiedName(GD, AdditionalAbiTags);
1719   }
1720 
1721   if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1722     unsigned disc;
1723     if (Context.getNextDiscriminator(ND, disc)) {
1724       if (disc < 10)
1725         Out << '_' << disc;
1726       else
1727         Out << "__" << disc << '_';
1728     }
1729   }
1730 }
1731 
1732 void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1733   if (GetLocalClassDecl(Block)) {
1734     mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1735     return;
1736   }
1737   const DeclContext *DC = getEffectiveDeclContext(Block);
1738   if (isLocalContainerContext(DC)) {
1739     mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1740     return;
1741   }
1742   manglePrefix(getEffectiveDeclContext(Block));
1743   mangleUnqualifiedBlock(Block);
1744 }
1745 
1746 void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1747   if (Decl *Context = Block->getBlockManglingContextDecl()) {
1748     if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1749         Context->getDeclContext()->isRecord()) {
1750       const auto *ND = cast<NamedDecl>(Context);
1751       if (ND->getIdentifier()) {
1752         mangleSourceNameWithAbiTags(ND);
1753         Out << 'M';
1754       }
1755     }
1756   }
1757 
1758   // If we have a block mangling number, use it.
1759   unsigned Number = Block->getBlockManglingNumber();
1760   // Otherwise, just make up a number. It doesn't matter what it is because
1761   // the symbol in question isn't externally visible.
1762   if (!Number)
1763     Number = Context.getBlockId(Block, false);
1764   else {
1765     // Stored mangling numbers are 1-based.
1766     --Number;
1767   }
1768   Out << "Ub";
1769   if (Number > 0)
1770     Out << Number - 1;
1771   Out << '_';
1772 }
1773 
1774 // <template-param-decl>
1775 //   ::= Ty                              # template type parameter
1776 //   ::= Tn <type>                       # template non-type parameter
1777 //   ::= Tt <template-param-decl>* E     # template template parameter
1778 //   ::= Tp <template-param-decl>        # template parameter pack
1779 void CXXNameMangler::mangleTemplateParamDecl(const NamedDecl *Decl) {
1780   if (auto *Ty = dyn_cast<TemplateTypeParmDecl>(Decl)) {
1781     if (Ty->isParameterPack())
1782       Out << "Tp";
1783     Out << "Ty";
1784   } else if (auto *Tn = dyn_cast<NonTypeTemplateParmDecl>(Decl)) {
1785     if (Tn->isExpandedParameterPack()) {
1786       for (unsigned I = 0, N = Tn->getNumExpansionTypes(); I != N; ++I) {
1787         Out << "Tn";
1788         mangleType(Tn->getExpansionType(I));
1789       }
1790     } else {
1791       QualType T = Tn->getType();
1792       if (Tn->isParameterPack()) {
1793         Out << "Tp";
1794         if (auto *PackExpansion = T->getAs<PackExpansionType>())
1795           T = PackExpansion->getPattern();
1796       }
1797       Out << "Tn";
1798       mangleType(T);
1799     }
1800   } else if (auto *Tt = dyn_cast<TemplateTemplateParmDecl>(Decl)) {
1801     if (Tt->isExpandedParameterPack()) {
1802       for (unsigned I = 0, N = Tt->getNumExpansionTemplateParameters(); I != N;
1803            ++I) {
1804         Out << "Tt";
1805         for (auto *Param : *Tt->getExpansionTemplateParameters(I))
1806           mangleTemplateParamDecl(Param);
1807         Out << "E";
1808       }
1809     } else {
1810       if (Tt->isParameterPack())
1811         Out << "Tp";
1812       Out << "Tt";
1813       for (auto *Param : *Tt->getTemplateParameters())
1814         mangleTemplateParamDecl(Param);
1815       Out << "E";
1816     }
1817   }
1818 }
1819 
1820 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1821   // If the context of a closure type is an initializer for a class member
1822   // (static or nonstatic), it is encoded in a qualified name with a final
1823   // <prefix> of the form:
1824   //
1825   //   <data-member-prefix> := <member source-name> M
1826   //
1827   // Technically, the data-member-prefix is part of the <prefix>. However,
1828   // since a closure type will always be mangled with a prefix, it's easier
1829   // to emit that last part of the prefix here.
1830   if (Decl *Context = Lambda->getLambdaContextDecl()) {
1831     if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1832         !isa<ParmVarDecl>(Context)) {
1833       // FIXME: 'inline auto [a, b] = []{ return ... };' does not get a
1834       // reasonable mangling here.
1835       if (const IdentifierInfo *Name
1836             = cast<NamedDecl>(Context)->getIdentifier()) {
1837         mangleSourceName(Name);
1838         const TemplateArgumentList *TemplateArgs = nullptr;
1839         if (GlobalDecl TD = isTemplate(cast<NamedDecl>(Context), TemplateArgs))
1840           mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
1841         Out << 'M';
1842       }
1843     }
1844   }
1845 
1846   Out << "Ul";
1847   mangleLambdaSig(Lambda);
1848   Out << "E";
1849 
1850   // The number is omitted for the first closure type with a given
1851   // <lambda-sig> in a given context; it is n-2 for the nth closure type
1852   // (in lexical order) with that same <lambda-sig> and context.
1853   //
1854   // The AST keeps track of the number for us.
1855   //
1856   // In CUDA/HIP, to ensure the consistent lamba numbering between the device-
1857   // and host-side compilations, an extra device mangle context may be created
1858   // if the host-side CXX ABI has different numbering for lambda. In such case,
1859   // if the mangle context is that device-side one, use the device-side lambda
1860   // mangling number for this lambda.
1861   unsigned Number = Context.isDeviceMangleContext()
1862                         ? Lambda->getDeviceLambdaManglingNumber()
1863                         : Lambda->getLambdaManglingNumber();
1864   assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1865   if (Number > 1)
1866     mangleNumber(Number - 2);
1867   Out << '_';
1868 }
1869 
1870 void CXXNameMangler::mangleLambdaSig(const CXXRecordDecl *Lambda) {
1871   for (auto *D : Lambda->getLambdaExplicitTemplateParameters())
1872     mangleTemplateParamDecl(D);
1873   auto *Proto =
1874       Lambda->getLambdaTypeInfo()->getType()->castAs<FunctionProtoType>();
1875   mangleBareFunctionType(Proto, /*MangleReturnType=*/false,
1876                          Lambda->getLambdaStaticInvoker());
1877 }
1878 
1879 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1880   switch (qualifier->getKind()) {
1881   case NestedNameSpecifier::Global:
1882     // nothing
1883     return;
1884 
1885   case NestedNameSpecifier::Super:
1886     llvm_unreachable("Can't mangle __super specifier");
1887 
1888   case NestedNameSpecifier::Namespace:
1889     mangleName(qualifier->getAsNamespace());
1890     return;
1891 
1892   case NestedNameSpecifier::NamespaceAlias:
1893     mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1894     return;
1895 
1896   case NestedNameSpecifier::TypeSpec:
1897   case NestedNameSpecifier::TypeSpecWithTemplate:
1898     manglePrefix(QualType(qualifier->getAsType(), 0));
1899     return;
1900 
1901   case NestedNameSpecifier::Identifier:
1902     // Member expressions can have these without prefixes, but that
1903     // should end up in mangleUnresolvedPrefix instead.
1904     assert(qualifier->getPrefix());
1905     manglePrefix(qualifier->getPrefix());
1906 
1907     mangleSourceName(qualifier->getAsIdentifier());
1908     return;
1909   }
1910 
1911   llvm_unreachable("unexpected nested name specifier");
1912 }
1913 
1914 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1915   //  <prefix> ::= <prefix> <unqualified-name>
1916   //           ::= <template-prefix> <template-args>
1917   //           ::= <template-param>
1918   //           ::= # empty
1919   //           ::= <substitution>
1920 
1921   DC = IgnoreLinkageSpecDecls(DC);
1922 
1923   if (DC->isTranslationUnit())
1924     return;
1925 
1926   if (NoFunction && isLocalContainerContext(DC))
1927     return;
1928 
1929   assert(!isLocalContainerContext(DC));
1930 
1931   const NamedDecl *ND = cast<NamedDecl>(DC);
1932   if (mangleSubstitution(ND))
1933     return;
1934 
1935   // Check if we have a template.
1936   const TemplateArgumentList *TemplateArgs = nullptr;
1937   if (GlobalDecl TD = isTemplate(ND, TemplateArgs)) {
1938     mangleTemplatePrefix(TD);
1939     mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
1940   } else {
1941     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1942     mangleUnqualifiedName(ND, nullptr);
1943   }
1944 
1945   addSubstitution(ND);
1946 }
1947 
1948 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1949   // <template-prefix> ::= <prefix> <template unqualified-name>
1950   //                   ::= <template-param>
1951   //                   ::= <substitution>
1952   if (TemplateDecl *TD = Template.getAsTemplateDecl())
1953     return mangleTemplatePrefix(TD);
1954 
1955   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1956   assert(Dependent && "unexpected template name kind");
1957 
1958   // Clang 11 and before mangled the substitution for a dependent template name
1959   // after already having emitted (a substitution for) the prefix.
1960   bool Clang11Compat = getASTContext().getLangOpts().getClangABICompat() <=
1961                        LangOptions::ClangABI::Ver11;
1962   if (!Clang11Compat && mangleSubstitution(Template))
1963     return;
1964 
1965   if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
1966     manglePrefix(Qualifier);
1967 
1968   if (Clang11Compat && mangleSubstitution(Template))
1969     return;
1970 
1971   if (const IdentifierInfo *Id = Dependent->getIdentifier())
1972     mangleSourceName(Id);
1973   else
1974     mangleOperatorName(Dependent->getOperator(), UnknownArity);
1975 
1976   addSubstitution(Template);
1977 }
1978 
1979 void CXXNameMangler::mangleTemplatePrefix(GlobalDecl GD,
1980                                           bool NoFunction) {
1981   const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl());
1982   // <template-prefix> ::= <prefix> <template unqualified-name>
1983   //                   ::= <template-param>
1984   //                   ::= <substitution>
1985   // <template-template-param> ::= <template-param>
1986   //                               <substitution>
1987 
1988   if (mangleSubstitution(ND))
1989     return;
1990 
1991   // <template-template-param> ::= <template-param>
1992   if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1993     mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
1994   } else {
1995     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1996     if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND))
1997       mangleUnqualifiedName(GD, nullptr);
1998     else
1999       mangleUnqualifiedName(GD.getWithDecl(ND->getTemplatedDecl()), nullptr);
2000   }
2001 
2002   addSubstitution(ND);
2003 }
2004 
2005 /// Mangles a template name under the production <type>.  Required for
2006 /// template template arguments.
2007 ///   <type> ::= <class-enum-type>
2008 ///          ::= <template-param>
2009 ///          ::= <substitution>
2010 void CXXNameMangler::mangleType(TemplateName TN) {
2011   if (mangleSubstitution(TN))
2012     return;
2013 
2014   TemplateDecl *TD = nullptr;
2015 
2016   switch (TN.getKind()) {
2017   case TemplateName::QualifiedTemplate:
2018     TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
2019     goto HaveDecl;
2020 
2021   case TemplateName::Template:
2022     TD = TN.getAsTemplateDecl();
2023     goto HaveDecl;
2024 
2025   HaveDecl:
2026     if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TD))
2027       mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
2028     else
2029       mangleName(TD);
2030     break;
2031 
2032   case TemplateName::OverloadedTemplate:
2033   case TemplateName::AssumedTemplate:
2034     llvm_unreachable("can't mangle an overloaded template name as a <type>");
2035 
2036   case TemplateName::DependentTemplate: {
2037     const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
2038     assert(Dependent->isIdentifier());
2039 
2040     // <class-enum-type> ::= <name>
2041     // <name> ::= <nested-name>
2042     mangleUnresolvedPrefix(Dependent->getQualifier());
2043     mangleSourceName(Dependent->getIdentifier());
2044     break;
2045   }
2046 
2047   case TemplateName::SubstTemplateTemplateParm: {
2048     // Substituted template parameters are mangled as the substituted
2049     // template.  This will check for the substitution twice, which is
2050     // fine, but we have to return early so that we don't try to *add*
2051     // the substitution twice.
2052     SubstTemplateTemplateParmStorage *subst
2053       = TN.getAsSubstTemplateTemplateParm();
2054     mangleType(subst->getReplacement());
2055     return;
2056   }
2057 
2058   case TemplateName::SubstTemplateTemplateParmPack: {
2059     // FIXME: not clear how to mangle this!
2060     // template <template <class> class T...> class A {
2061     //   template <template <class> class U...> void foo(B<T,U> x...);
2062     // };
2063     Out << "_SUBSTPACK_";
2064     break;
2065   }
2066   }
2067 
2068   addSubstitution(TN);
2069 }
2070 
2071 bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
2072                                                     StringRef Prefix) {
2073   // Only certain other types are valid as prefixes;  enumerate them.
2074   switch (Ty->getTypeClass()) {
2075   case Type::Builtin:
2076   case Type::Complex:
2077   case Type::Adjusted:
2078   case Type::Decayed:
2079   case Type::Pointer:
2080   case Type::BlockPointer:
2081   case Type::LValueReference:
2082   case Type::RValueReference:
2083   case Type::MemberPointer:
2084   case Type::ConstantArray:
2085   case Type::IncompleteArray:
2086   case Type::VariableArray:
2087   case Type::DependentSizedArray:
2088   case Type::DependentAddressSpace:
2089   case Type::DependentVector:
2090   case Type::DependentSizedExtVector:
2091   case Type::Vector:
2092   case Type::ExtVector:
2093   case Type::ConstantMatrix:
2094   case Type::DependentSizedMatrix:
2095   case Type::FunctionProto:
2096   case Type::FunctionNoProto:
2097   case Type::Paren:
2098   case Type::Attributed:
2099   case Type::Auto:
2100   case Type::DeducedTemplateSpecialization:
2101   case Type::PackExpansion:
2102   case Type::ObjCObject:
2103   case Type::ObjCInterface:
2104   case Type::ObjCObjectPointer:
2105   case Type::ObjCTypeParam:
2106   case Type::Atomic:
2107   case Type::Pipe:
2108   case Type::MacroQualified:
2109   case Type::ExtInt:
2110   case Type::DependentExtInt:
2111     llvm_unreachable("type is illegal as a nested name specifier");
2112 
2113   case Type::SubstTemplateTypeParmPack:
2114     // FIXME: not clear how to mangle this!
2115     // template <class T...> class A {
2116     //   template <class U...> void foo(decltype(T::foo(U())) x...);
2117     // };
2118     Out << "_SUBSTPACK_";
2119     break;
2120 
2121   // <unresolved-type> ::= <template-param>
2122   //                   ::= <decltype>
2123   //                   ::= <template-template-param> <template-args>
2124   // (this last is not official yet)
2125   case Type::TypeOfExpr:
2126   case Type::TypeOf:
2127   case Type::Decltype:
2128   case Type::TemplateTypeParm:
2129   case Type::UnaryTransform:
2130   case Type::SubstTemplateTypeParm:
2131   unresolvedType:
2132     // Some callers want a prefix before the mangled type.
2133     Out << Prefix;
2134 
2135     // This seems to do everything we want.  It's not really
2136     // sanctioned for a substituted template parameter, though.
2137     mangleType(Ty);
2138 
2139     // We never want to print 'E' directly after an unresolved-type,
2140     // so we return directly.
2141     return true;
2142 
2143   case Type::Typedef:
2144     mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl());
2145     break;
2146 
2147   case Type::UnresolvedUsing:
2148     mangleSourceNameWithAbiTags(
2149         cast<UnresolvedUsingType>(Ty)->getDecl());
2150     break;
2151 
2152   case Type::Enum:
2153   case Type::Record:
2154     mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl());
2155     break;
2156 
2157   case Type::TemplateSpecialization: {
2158     const TemplateSpecializationType *TST =
2159         cast<TemplateSpecializationType>(Ty);
2160     TemplateName TN = TST->getTemplateName();
2161     switch (TN.getKind()) {
2162     case TemplateName::Template:
2163     case TemplateName::QualifiedTemplate: {
2164       TemplateDecl *TD = TN.getAsTemplateDecl();
2165 
2166       // If the base is a template template parameter, this is an
2167       // unresolved type.
2168       assert(TD && "no template for template specialization type");
2169       if (isa<TemplateTemplateParmDecl>(TD))
2170         goto unresolvedType;
2171 
2172       mangleSourceNameWithAbiTags(TD);
2173       break;
2174     }
2175 
2176     case TemplateName::OverloadedTemplate:
2177     case TemplateName::AssumedTemplate:
2178     case TemplateName::DependentTemplate:
2179       llvm_unreachable("invalid base for a template specialization type");
2180 
2181     case TemplateName::SubstTemplateTemplateParm: {
2182       SubstTemplateTemplateParmStorage *subst =
2183           TN.getAsSubstTemplateTemplateParm();
2184       mangleExistingSubstitution(subst->getReplacement());
2185       break;
2186     }
2187 
2188     case TemplateName::SubstTemplateTemplateParmPack: {
2189       // FIXME: not clear how to mangle this!
2190       // template <template <class U> class T...> class A {
2191       //   template <class U...> void foo(decltype(T<U>::foo) x...);
2192       // };
2193       Out << "_SUBSTPACK_";
2194       break;
2195     }
2196     }
2197 
2198     // Note: we don't pass in the template name here. We are mangling the
2199     // original source-level template arguments, so we shouldn't consider
2200     // conversions to the corresponding template parameter.
2201     // FIXME: Other compilers mangle partially-resolved template arguments in
2202     // unresolved-qualifier-levels.
2203     mangleTemplateArgs(TemplateName(), TST->getArgs(), TST->getNumArgs());
2204     break;
2205   }
2206 
2207   case Type::InjectedClassName:
2208     mangleSourceNameWithAbiTags(
2209         cast<InjectedClassNameType>(Ty)->getDecl());
2210     break;
2211 
2212   case Type::DependentName:
2213     mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
2214     break;
2215 
2216   case Type::DependentTemplateSpecialization: {
2217     const DependentTemplateSpecializationType *DTST =
2218         cast<DependentTemplateSpecializationType>(Ty);
2219     TemplateName Template = getASTContext().getDependentTemplateName(
2220         DTST->getQualifier(), DTST->getIdentifier());
2221     mangleSourceName(DTST->getIdentifier());
2222     mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs());
2223     break;
2224   }
2225 
2226   case Type::Elaborated:
2227     return mangleUnresolvedTypeOrSimpleId(
2228         cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
2229   }
2230 
2231   return false;
2232 }
2233 
2234 void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
2235   switch (Name.getNameKind()) {
2236   case DeclarationName::CXXConstructorName:
2237   case DeclarationName::CXXDestructorName:
2238   case DeclarationName::CXXDeductionGuideName:
2239   case DeclarationName::CXXUsingDirective:
2240   case DeclarationName::Identifier:
2241   case DeclarationName::ObjCMultiArgSelector:
2242   case DeclarationName::ObjCOneArgSelector:
2243   case DeclarationName::ObjCZeroArgSelector:
2244     llvm_unreachable("Not an operator name");
2245 
2246   case DeclarationName::CXXConversionFunctionName:
2247     // <operator-name> ::= cv <type>    # (cast)
2248     Out << "cv";
2249     mangleType(Name.getCXXNameType());
2250     break;
2251 
2252   case DeclarationName::CXXLiteralOperatorName:
2253     Out << "li";
2254     mangleSourceName(Name.getCXXLiteralIdentifier());
2255     return;
2256 
2257   case DeclarationName::CXXOperatorName:
2258     mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
2259     break;
2260   }
2261 }
2262 
2263 void
2264 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
2265   switch (OO) {
2266   // <operator-name> ::= nw     # new
2267   case OO_New: Out << "nw"; break;
2268   //              ::= na        # new[]
2269   case OO_Array_New: Out << "na"; break;
2270   //              ::= dl        # delete
2271   case OO_Delete: Out << "dl"; break;
2272   //              ::= da        # delete[]
2273   case OO_Array_Delete: Out << "da"; break;
2274   //              ::= ps        # + (unary)
2275   //              ::= pl        # + (binary or unknown)
2276   case OO_Plus:
2277     Out << (Arity == 1? "ps" : "pl"); break;
2278   //              ::= ng        # - (unary)
2279   //              ::= mi        # - (binary or unknown)
2280   case OO_Minus:
2281     Out << (Arity == 1? "ng" : "mi"); break;
2282   //              ::= ad        # & (unary)
2283   //              ::= an        # & (binary or unknown)
2284   case OO_Amp:
2285     Out << (Arity == 1? "ad" : "an"); break;
2286   //              ::= de        # * (unary)
2287   //              ::= ml        # * (binary or unknown)
2288   case OO_Star:
2289     // Use binary when unknown.
2290     Out << (Arity == 1? "de" : "ml"); break;
2291   //              ::= co        # ~
2292   case OO_Tilde: Out << "co"; break;
2293   //              ::= dv        # /
2294   case OO_Slash: Out << "dv"; break;
2295   //              ::= rm        # %
2296   case OO_Percent: Out << "rm"; break;
2297   //              ::= or        # |
2298   case OO_Pipe: Out << "or"; break;
2299   //              ::= eo        # ^
2300   case OO_Caret: Out << "eo"; break;
2301   //              ::= aS        # =
2302   case OO_Equal: Out << "aS"; break;
2303   //              ::= pL        # +=
2304   case OO_PlusEqual: Out << "pL"; break;
2305   //              ::= mI        # -=
2306   case OO_MinusEqual: Out << "mI"; break;
2307   //              ::= mL        # *=
2308   case OO_StarEqual: Out << "mL"; break;
2309   //              ::= dV        # /=
2310   case OO_SlashEqual: Out << "dV"; break;
2311   //              ::= rM        # %=
2312   case OO_PercentEqual: Out << "rM"; break;
2313   //              ::= aN        # &=
2314   case OO_AmpEqual: Out << "aN"; break;
2315   //              ::= oR        # |=
2316   case OO_PipeEqual: Out << "oR"; break;
2317   //              ::= eO        # ^=
2318   case OO_CaretEqual: Out << "eO"; break;
2319   //              ::= ls        # <<
2320   case OO_LessLess: Out << "ls"; break;
2321   //              ::= rs        # >>
2322   case OO_GreaterGreater: Out << "rs"; break;
2323   //              ::= lS        # <<=
2324   case OO_LessLessEqual: Out << "lS"; break;
2325   //              ::= rS        # >>=
2326   case OO_GreaterGreaterEqual: Out << "rS"; break;
2327   //              ::= eq        # ==
2328   case OO_EqualEqual: Out << "eq"; break;
2329   //              ::= ne        # !=
2330   case OO_ExclaimEqual: Out << "ne"; break;
2331   //              ::= lt        # <
2332   case OO_Less: Out << "lt"; break;
2333   //              ::= gt        # >
2334   case OO_Greater: Out << "gt"; break;
2335   //              ::= le        # <=
2336   case OO_LessEqual: Out << "le"; break;
2337   //              ::= ge        # >=
2338   case OO_GreaterEqual: Out << "ge"; break;
2339   //              ::= nt        # !
2340   case OO_Exclaim: Out << "nt"; break;
2341   //              ::= aa        # &&
2342   case OO_AmpAmp: Out << "aa"; break;
2343   //              ::= oo        # ||
2344   case OO_PipePipe: Out << "oo"; break;
2345   //              ::= pp        # ++
2346   case OO_PlusPlus: Out << "pp"; break;
2347   //              ::= mm        # --
2348   case OO_MinusMinus: Out << "mm"; break;
2349   //              ::= cm        # ,
2350   case OO_Comma: Out << "cm"; break;
2351   //              ::= pm        # ->*
2352   case OO_ArrowStar: Out << "pm"; break;
2353   //              ::= pt        # ->
2354   case OO_Arrow: Out << "pt"; break;
2355   //              ::= cl        # ()
2356   case OO_Call: Out << "cl"; break;
2357   //              ::= ix        # []
2358   case OO_Subscript: Out << "ix"; break;
2359 
2360   //              ::= qu        # ?
2361   // The conditional operator can't be overloaded, but we still handle it when
2362   // mangling expressions.
2363   case OO_Conditional: Out << "qu"; break;
2364   // Proposal on cxx-abi-dev, 2015-10-21.
2365   //              ::= aw        # co_await
2366   case OO_Coawait: Out << "aw"; break;
2367   // Proposed in cxx-abi github issue 43.
2368   //              ::= ss        # <=>
2369   case OO_Spaceship: Out << "ss"; break;
2370 
2371   case OO_None:
2372   case NUM_OVERLOADED_OPERATORS:
2373     llvm_unreachable("Not an overloaded operator");
2374   }
2375 }
2376 
2377 void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) {
2378   // Vendor qualifiers come first and if they are order-insensitive they must
2379   // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5.
2380 
2381   // <type> ::= U <addrspace-expr>
2382   if (DAST) {
2383     Out << "U2ASI";
2384     mangleExpression(DAST->getAddrSpaceExpr());
2385     Out << "E";
2386   }
2387 
2388   // Address space qualifiers start with an ordinary letter.
2389   if (Quals.hasAddressSpace()) {
2390     // Address space extension:
2391     //
2392     //   <type> ::= U <target-addrspace>
2393     //   <type> ::= U <OpenCL-addrspace>
2394     //   <type> ::= U <CUDA-addrspace>
2395 
2396     SmallString<64> ASString;
2397     LangAS AS = Quals.getAddressSpace();
2398 
2399     if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
2400       //  <target-addrspace> ::= "AS" <address-space-number>
2401       unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
2402       if (TargetAS != 0)
2403         ASString = "AS" + llvm::utostr(TargetAS);
2404     } else {
2405       switch (AS) {
2406       default: llvm_unreachable("Not a language specific address space");
2407       //  <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" |
2408       //                                "private"| "generic" | "device" |
2409       //                                "host" ]
2410       case LangAS::opencl_global:
2411         ASString = "CLglobal";
2412         break;
2413       case LangAS::opencl_global_device:
2414         ASString = "CLdevice";
2415         break;
2416       case LangAS::opencl_global_host:
2417         ASString = "CLhost";
2418         break;
2419       case LangAS::opencl_local:
2420         ASString = "CLlocal";
2421         break;
2422       case LangAS::opencl_constant:
2423         ASString = "CLconstant";
2424         break;
2425       case LangAS::opencl_private:
2426         ASString = "CLprivate";
2427         break;
2428       case LangAS::opencl_generic:
2429         ASString = "CLgeneric";
2430         break;
2431       //  <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
2432       case LangAS::cuda_device:
2433         ASString = "CUdevice";
2434         break;
2435       case LangAS::cuda_constant:
2436         ASString = "CUconstant";
2437         break;
2438       case LangAS::cuda_shared:
2439         ASString = "CUshared";
2440         break;
2441       //  <ptrsize-addrspace> ::= [ "ptr32_sptr" | "ptr32_uptr" | "ptr64" ]
2442       case LangAS::ptr32_sptr:
2443         ASString = "ptr32_sptr";
2444         break;
2445       case LangAS::ptr32_uptr:
2446         ASString = "ptr32_uptr";
2447         break;
2448       case LangAS::ptr64:
2449         ASString = "ptr64";
2450         break;
2451       }
2452     }
2453     if (!ASString.empty())
2454       mangleVendorQualifier(ASString);
2455   }
2456 
2457   // The ARC ownership qualifiers start with underscores.
2458   // Objective-C ARC Extension:
2459   //
2460   //   <type> ::= U "__strong"
2461   //   <type> ::= U "__weak"
2462   //   <type> ::= U "__autoreleasing"
2463   //
2464   // Note: we emit __weak first to preserve the order as
2465   // required by the Itanium ABI.
2466   if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak)
2467     mangleVendorQualifier("__weak");
2468 
2469   // __unaligned (from -fms-extensions)
2470   if (Quals.hasUnaligned())
2471     mangleVendorQualifier("__unaligned");
2472 
2473   // Remaining ARC ownership qualifiers.
2474   switch (Quals.getObjCLifetime()) {
2475   case Qualifiers::OCL_None:
2476     break;
2477 
2478   case Qualifiers::OCL_Weak:
2479     // Do nothing as we already handled this case above.
2480     break;
2481 
2482   case Qualifiers::OCL_Strong:
2483     mangleVendorQualifier("__strong");
2484     break;
2485 
2486   case Qualifiers::OCL_Autoreleasing:
2487     mangleVendorQualifier("__autoreleasing");
2488     break;
2489 
2490   case Qualifiers::OCL_ExplicitNone:
2491     // The __unsafe_unretained qualifier is *not* mangled, so that
2492     // __unsafe_unretained types in ARC produce the same manglings as the
2493     // equivalent (but, naturally, unqualified) types in non-ARC, providing
2494     // better ABI compatibility.
2495     //
2496     // It's safe to do this because unqualified 'id' won't show up
2497     // in any type signatures that need to be mangled.
2498     break;
2499   }
2500 
2501   // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
2502   if (Quals.hasRestrict())
2503     Out << 'r';
2504   if (Quals.hasVolatile())
2505     Out << 'V';
2506   if (Quals.hasConst())
2507     Out << 'K';
2508 }
2509 
2510 void CXXNameMangler::mangleVendorQualifier(StringRef name) {
2511   Out << 'U' << name.size() << name;
2512 }
2513 
2514 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
2515   // <ref-qualifier> ::= R                # lvalue reference
2516   //                 ::= O                # rvalue-reference
2517   switch (RefQualifier) {
2518   case RQ_None:
2519     break;
2520 
2521   case RQ_LValue:
2522     Out << 'R';
2523     break;
2524 
2525   case RQ_RValue:
2526     Out << 'O';
2527     break;
2528   }
2529 }
2530 
2531 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
2532   Context.mangleObjCMethodNameAsSourceName(MD, Out);
2533 }
2534 
2535 static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty,
2536                                 ASTContext &Ctx) {
2537   if (Quals)
2538     return true;
2539   if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
2540     return true;
2541   if (Ty->isOpenCLSpecificType())
2542     return true;
2543   if (Ty->isBuiltinType())
2544     return false;
2545   // Through to Clang 6.0, we accidentally treated undeduced auto types as
2546   // substitution candidates.
2547   if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 &&
2548       isa<AutoType>(Ty))
2549     return false;
2550   // A placeholder type for class template deduction is substitutable with
2551   // its corresponding template name; this is handled specially when mangling
2552   // the type.
2553   if (auto *DeducedTST = Ty->getAs<DeducedTemplateSpecializationType>())
2554     if (DeducedTST->getDeducedType().isNull())
2555       return false;
2556   return true;
2557 }
2558 
2559 void CXXNameMangler::mangleType(QualType T) {
2560   // If our type is instantiation-dependent but not dependent, we mangle
2561   // it as it was written in the source, removing any top-level sugar.
2562   // Otherwise, use the canonical type.
2563   //
2564   // FIXME: This is an approximation of the instantiation-dependent name
2565   // mangling rules, since we should really be using the type as written and
2566   // augmented via semantic analysis (i.e., with implicit conversions and
2567   // default template arguments) for any instantiation-dependent type.
2568   // Unfortunately, that requires several changes to our AST:
2569   //   - Instantiation-dependent TemplateSpecializationTypes will need to be
2570   //     uniqued, so that we can handle substitutions properly
2571   //   - Default template arguments will need to be represented in the
2572   //     TemplateSpecializationType, since they need to be mangled even though
2573   //     they aren't written.
2574   //   - Conversions on non-type template arguments need to be expressed, since
2575   //     they can affect the mangling of sizeof/alignof.
2576   //
2577   // FIXME: This is wrong when mapping to the canonical type for a dependent
2578   // type discards instantiation-dependent portions of the type, such as for:
2579   //
2580   //   template<typename T, int N> void f(T (&)[sizeof(N)]);
2581   //   template<typename T> void f(T() throw(typename T::type)); (pre-C++17)
2582   //
2583   // It's also wrong in the opposite direction when instantiation-dependent,
2584   // canonically-equivalent types differ in some irrelevant portion of inner
2585   // type sugar. In such cases, we fail to form correct substitutions, eg:
2586   //
2587   //   template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*));
2588   //
2589   // We should instead canonicalize the non-instantiation-dependent parts,
2590   // regardless of whether the type as a whole is dependent or instantiation
2591   // dependent.
2592   if (!T->isInstantiationDependentType() || T->isDependentType())
2593     T = T.getCanonicalType();
2594   else {
2595     // Desugar any types that are purely sugar.
2596     do {
2597       // Don't desugar through template specialization types that aren't
2598       // type aliases. We need to mangle the template arguments as written.
2599       if (const TemplateSpecializationType *TST
2600                                       = dyn_cast<TemplateSpecializationType>(T))
2601         if (!TST->isTypeAlias())
2602           break;
2603 
2604       // FIXME: We presumably shouldn't strip off ElaboratedTypes with
2605       // instantation-dependent qualifiers. See
2606       // https://github.com/itanium-cxx-abi/cxx-abi/issues/114.
2607 
2608       QualType Desugared
2609         = T.getSingleStepDesugaredType(Context.getASTContext());
2610       if (Desugared == T)
2611         break;
2612 
2613       T = Desugared;
2614     } while (true);
2615   }
2616   SplitQualType split = T.split();
2617   Qualifiers quals = split.Quals;
2618   const Type *ty = split.Ty;
2619 
2620   bool isSubstitutable =
2621     isTypeSubstitutable(quals, ty, Context.getASTContext());
2622   if (isSubstitutable && mangleSubstitution(T))
2623     return;
2624 
2625   // If we're mangling a qualified array type, push the qualifiers to
2626   // the element type.
2627   if (quals && isa<ArrayType>(T)) {
2628     ty = Context.getASTContext().getAsArrayType(T);
2629     quals = Qualifiers();
2630 
2631     // Note that we don't update T: we want to add the
2632     // substitution at the original type.
2633   }
2634 
2635   if (quals || ty->isDependentAddressSpaceType()) {
2636     if (const DependentAddressSpaceType *DAST =
2637         dyn_cast<DependentAddressSpaceType>(ty)) {
2638       SplitQualType splitDAST = DAST->getPointeeType().split();
2639       mangleQualifiers(splitDAST.Quals, DAST);
2640       mangleType(QualType(splitDAST.Ty, 0));
2641     } else {
2642       mangleQualifiers(quals);
2643 
2644       // Recurse:  even if the qualified type isn't yet substitutable,
2645       // the unqualified type might be.
2646       mangleType(QualType(ty, 0));
2647     }
2648   } else {
2649     switch (ty->getTypeClass()) {
2650 #define ABSTRACT_TYPE(CLASS, PARENT)
2651 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
2652     case Type::CLASS: \
2653       llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
2654       return;
2655 #define TYPE(CLASS, PARENT) \
2656     case Type::CLASS: \
2657       mangleType(static_cast<const CLASS##Type*>(ty)); \
2658       break;
2659 #include "clang/AST/TypeNodes.inc"
2660     }
2661   }
2662 
2663   // Add the substitution.
2664   if (isSubstitutable)
2665     addSubstitution(T);
2666 }
2667 
2668 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
2669   if (!mangleStandardSubstitution(ND))
2670     mangleName(ND);
2671 }
2672 
2673 void CXXNameMangler::mangleType(const BuiltinType *T) {
2674   //  <type>         ::= <builtin-type>
2675   //  <builtin-type> ::= v  # void
2676   //                 ::= w  # wchar_t
2677   //                 ::= b  # bool
2678   //                 ::= c  # char
2679   //                 ::= a  # signed char
2680   //                 ::= h  # unsigned char
2681   //                 ::= s  # short
2682   //                 ::= t  # unsigned short
2683   //                 ::= i  # int
2684   //                 ::= j  # unsigned int
2685   //                 ::= l  # long
2686   //                 ::= m  # unsigned long
2687   //                 ::= x  # long long, __int64
2688   //                 ::= y  # unsigned long long, __int64
2689   //                 ::= n  # __int128
2690   //                 ::= o  # unsigned __int128
2691   //                 ::= f  # float
2692   //                 ::= d  # double
2693   //                 ::= e  # long double, __float80
2694   //                 ::= g  # __float128
2695   // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
2696   // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
2697   // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
2698   //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
2699   //                 ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits);
2700   //                 ::= Di # char32_t
2701   //                 ::= Ds # char16_t
2702   //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
2703   //                 ::= u <source-name>    # vendor extended type
2704   std::string type_name;
2705   switch (T->getKind()) {
2706   case BuiltinType::Void:
2707     Out << 'v';
2708     break;
2709   case BuiltinType::Bool:
2710     Out << 'b';
2711     break;
2712   case BuiltinType::Char_U:
2713   case BuiltinType::Char_S:
2714     Out << 'c';
2715     break;
2716   case BuiltinType::UChar:
2717     Out << 'h';
2718     break;
2719   case BuiltinType::UShort:
2720     Out << 't';
2721     break;
2722   case BuiltinType::UInt:
2723     Out << 'j';
2724     break;
2725   case BuiltinType::ULong:
2726     Out << 'm';
2727     break;
2728   case BuiltinType::ULongLong:
2729     Out << 'y';
2730     break;
2731   case BuiltinType::UInt128:
2732     Out << 'o';
2733     break;
2734   case BuiltinType::SChar:
2735     Out << 'a';
2736     break;
2737   case BuiltinType::WChar_S:
2738   case BuiltinType::WChar_U:
2739     Out << 'w';
2740     break;
2741   case BuiltinType::Char8:
2742     Out << "Du";
2743     break;
2744   case BuiltinType::Char16:
2745     Out << "Ds";
2746     break;
2747   case BuiltinType::Char32:
2748     Out << "Di";
2749     break;
2750   case BuiltinType::Short:
2751     Out << 's';
2752     break;
2753   case BuiltinType::Int:
2754     Out << 'i';
2755     break;
2756   case BuiltinType::Long:
2757     Out << 'l';
2758     break;
2759   case BuiltinType::LongLong:
2760     Out << 'x';
2761     break;
2762   case BuiltinType::Int128:
2763     Out << 'n';
2764     break;
2765   case BuiltinType::Float16:
2766     Out << "DF16_";
2767     break;
2768   case BuiltinType::ShortAccum:
2769   case BuiltinType::Accum:
2770   case BuiltinType::LongAccum:
2771   case BuiltinType::UShortAccum:
2772   case BuiltinType::UAccum:
2773   case BuiltinType::ULongAccum:
2774   case BuiltinType::ShortFract:
2775   case BuiltinType::Fract:
2776   case BuiltinType::LongFract:
2777   case BuiltinType::UShortFract:
2778   case BuiltinType::UFract:
2779   case BuiltinType::ULongFract:
2780   case BuiltinType::SatShortAccum:
2781   case BuiltinType::SatAccum:
2782   case BuiltinType::SatLongAccum:
2783   case BuiltinType::SatUShortAccum:
2784   case BuiltinType::SatUAccum:
2785   case BuiltinType::SatULongAccum:
2786   case BuiltinType::SatShortFract:
2787   case BuiltinType::SatFract:
2788   case BuiltinType::SatLongFract:
2789   case BuiltinType::SatUShortFract:
2790   case BuiltinType::SatUFract:
2791   case BuiltinType::SatULongFract:
2792     llvm_unreachable("Fixed point types are disabled for c++");
2793   case BuiltinType::Half:
2794     Out << "Dh";
2795     break;
2796   case BuiltinType::Float:
2797     Out << 'f';
2798     break;
2799   case BuiltinType::Double:
2800     Out << 'd';
2801     break;
2802   case BuiltinType::LongDouble: {
2803     const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
2804                                    getASTContext().getLangOpts().OpenMPIsDevice
2805                                ? getASTContext().getAuxTargetInfo()
2806                                : &getASTContext().getTargetInfo();
2807     Out << TI->getLongDoubleMangling();
2808     break;
2809   }
2810   case BuiltinType::Float128: {
2811     const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
2812                                    getASTContext().getLangOpts().OpenMPIsDevice
2813                                ? getASTContext().getAuxTargetInfo()
2814                                : &getASTContext().getTargetInfo();
2815     Out << TI->getFloat128Mangling();
2816     break;
2817   }
2818   case BuiltinType::BFloat16: {
2819     const TargetInfo *TI = &getASTContext().getTargetInfo();
2820     Out << TI->getBFloat16Mangling();
2821     break;
2822   }
2823   case BuiltinType::NullPtr:
2824     Out << "Dn";
2825     break;
2826 
2827 #define BUILTIN_TYPE(Id, SingletonId)
2828 #define PLACEHOLDER_TYPE(Id, SingletonId) \
2829   case BuiltinType::Id:
2830 #include "clang/AST/BuiltinTypes.def"
2831   case BuiltinType::Dependent:
2832     if (!NullOut)
2833       llvm_unreachable("mangling a placeholder type");
2834     break;
2835   case BuiltinType::ObjCId:
2836     Out << "11objc_object";
2837     break;
2838   case BuiltinType::ObjCClass:
2839     Out << "10objc_class";
2840     break;
2841   case BuiltinType::ObjCSel:
2842     Out << "13objc_selector";
2843     break;
2844 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2845   case BuiltinType::Id: \
2846     type_name = "ocl_" #ImgType "_" #Suffix; \
2847     Out << type_name.size() << type_name; \
2848     break;
2849 #include "clang/Basic/OpenCLImageTypes.def"
2850   case BuiltinType::OCLSampler:
2851     Out << "11ocl_sampler";
2852     break;
2853   case BuiltinType::OCLEvent:
2854     Out << "9ocl_event";
2855     break;
2856   case BuiltinType::OCLClkEvent:
2857     Out << "12ocl_clkevent";
2858     break;
2859   case BuiltinType::OCLQueue:
2860     Out << "9ocl_queue";
2861     break;
2862   case BuiltinType::OCLReserveID:
2863     Out << "13ocl_reserveid";
2864     break;
2865 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2866   case BuiltinType::Id: \
2867     type_name = "ocl_" #ExtType; \
2868     Out << type_name.size() << type_name; \
2869     break;
2870 #include "clang/Basic/OpenCLExtensionTypes.def"
2871   // The SVE types are effectively target-specific.  The mangling scheme
2872   // is defined in the appendices to the Procedure Call Standard for the
2873   // Arm Architecture.
2874 #define SVE_VECTOR_TYPE(InternalName, MangledName, Id, SingletonId, NumEls,    \
2875                         ElBits, IsSigned, IsFP, IsBF)                          \
2876   case BuiltinType::Id:                                                        \
2877     type_name = MangledName;                                                   \
2878     Out << (type_name == InternalName ? "u" : "") << type_name.size()          \
2879         << type_name;                                                          \
2880     break;
2881 #define SVE_PREDICATE_TYPE(InternalName, MangledName, Id, SingletonId, NumEls) \
2882   case BuiltinType::Id:                                                        \
2883     type_name = MangledName;                                                   \
2884     Out << (type_name == InternalName ? "u" : "") << type_name.size()          \
2885         << type_name;                                                          \
2886     break;
2887 #include "clang/Basic/AArch64SVEACLETypes.def"
2888 #define PPC_VECTOR_TYPE(Name, Id, Size) \
2889   case BuiltinType::Id: \
2890     type_name = #Name; \
2891     Out << 'u' << type_name.size() << type_name; \
2892     break;
2893 #include "clang/Basic/PPCTypes.def"
2894   }
2895 }
2896 
2897 StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) {
2898   switch (CC) {
2899   case CC_C:
2900     return "";
2901 
2902   case CC_X86VectorCall:
2903   case CC_X86Pascal:
2904   case CC_X86RegCall:
2905   case CC_AAPCS:
2906   case CC_AAPCS_VFP:
2907   case CC_AArch64VectorCall:
2908   case CC_IntelOclBicc:
2909   case CC_SpirFunction:
2910   case CC_OpenCLKernel:
2911   case CC_PreserveMost:
2912   case CC_PreserveAll:
2913     // FIXME: we should be mangling all of the above.
2914     return "";
2915 
2916   case CC_X86ThisCall:
2917     // FIXME: To match mingw GCC, thiscall should only be mangled in when it is
2918     // used explicitly. At this point, we don't have that much information in
2919     // the AST, since clang tends to bake the convention into the canonical
2920     // function type. thiscall only rarely used explicitly, so don't mangle it
2921     // for now.
2922     return "";
2923 
2924   case CC_X86StdCall:
2925     return "stdcall";
2926   case CC_X86FastCall:
2927     return "fastcall";
2928   case CC_X86_64SysV:
2929     return "sysv_abi";
2930   case CC_Win64:
2931     return "ms_abi";
2932   case CC_Swift:
2933     return "swiftcall";
2934   }
2935   llvm_unreachable("bad calling convention");
2936 }
2937 
2938 void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) {
2939   // Fast path.
2940   if (T->getExtInfo() == FunctionType::ExtInfo())
2941     return;
2942 
2943   // Vendor-specific qualifiers are emitted in reverse alphabetical order.
2944   // This will get more complicated in the future if we mangle other
2945   // things here; but for now, since we mangle ns_returns_retained as
2946   // a qualifier on the result type, we can get away with this:
2947   StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC());
2948   if (!CCQualifier.empty())
2949     mangleVendorQualifier(CCQualifier);
2950 
2951   // FIXME: regparm
2952   // FIXME: noreturn
2953 }
2954 
2955 void
2956 CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) {
2957   // Vendor-specific qualifiers are emitted in reverse alphabetical order.
2958 
2959   // Note that these are *not* substitution candidates.  Demanglers might
2960   // have trouble with this if the parameter type is fully substituted.
2961 
2962   switch (PI.getABI()) {
2963   case ParameterABI::Ordinary:
2964     break;
2965 
2966   // All of these start with "swift", so they come before "ns_consumed".
2967   case ParameterABI::SwiftContext:
2968   case ParameterABI::SwiftErrorResult:
2969   case ParameterABI::SwiftIndirectResult:
2970     mangleVendorQualifier(getParameterABISpelling(PI.getABI()));
2971     break;
2972   }
2973 
2974   if (PI.isConsumed())
2975     mangleVendorQualifier("ns_consumed");
2976 
2977   if (PI.isNoEscape())
2978     mangleVendorQualifier("noescape");
2979 }
2980 
2981 // <type>          ::= <function-type>
2982 // <function-type> ::= [<CV-qualifiers>] F [Y]
2983 //                      <bare-function-type> [<ref-qualifier>] E
2984 void CXXNameMangler::mangleType(const FunctionProtoType *T) {
2985   mangleExtFunctionInfo(T);
2986 
2987   // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
2988   // e.g. "const" in "int (A::*)() const".
2989   mangleQualifiers(T->getMethodQuals());
2990 
2991   // Mangle instantiation-dependent exception-specification, if present,
2992   // per cxx-abi-dev proposal on 2016-10-11.
2993   if (T->hasInstantiationDependentExceptionSpec()) {
2994     if (isComputedNoexcept(T->getExceptionSpecType())) {
2995       Out << "DO";
2996       mangleExpression(T->getNoexceptExpr());
2997       Out << "E";
2998     } else {
2999       assert(T->getExceptionSpecType() == EST_Dynamic);
3000       Out << "Dw";
3001       for (auto ExceptTy : T->exceptions())
3002         mangleType(ExceptTy);
3003       Out << "E";
3004     }
3005   } else if (T->isNothrow()) {
3006     Out << "Do";
3007   }
3008 
3009   Out << 'F';
3010 
3011   // FIXME: We don't have enough information in the AST to produce the 'Y'
3012   // encoding for extern "C" function types.
3013   mangleBareFunctionType(T, /*MangleReturnType=*/true);
3014 
3015   // Mangle the ref-qualifier, if present.
3016   mangleRefQualifier(T->getRefQualifier());
3017 
3018   Out << 'E';
3019 }
3020 
3021 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
3022   // Function types without prototypes can arise when mangling a function type
3023   // within an overloadable function in C. We mangle these as the absence of any
3024   // parameter types (not even an empty parameter list).
3025   Out << 'F';
3026 
3027   FunctionTypeDepthState saved = FunctionTypeDepth.push();
3028 
3029   FunctionTypeDepth.enterResultType();
3030   mangleType(T->getReturnType());
3031   FunctionTypeDepth.leaveResultType();
3032 
3033   FunctionTypeDepth.pop(saved);
3034   Out << 'E';
3035 }
3036 
3037 void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto,
3038                                             bool MangleReturnType,
3039                                             const FunctionDecl *FD) {
3040   // Record that we're in a function type.  See mangleFunctionParam
3041   // for details on what we're trying to achieve here.
3042   FunctionTypeDepthState saved = FunctionTypeDepth.push();
3043 
3044   // <bare-function-type> ::= <signature type>+
3045   if (MangleReturnType) {
3046     FunctionTypeDepth.enterResultType();
3047 
3048     // Mangle ns_returns_retained as an order-sensitive qualifier here.
3049     if (Proto->getExtInfo().getProducesResult() && FD == nullptr)
3050       mangleVendorQualifier("ns_returns_retained");
3051 
3052     // Mangle the return type without any direct ARC ownership qualifiers.
3053     QualType ReturnTy = Proto->getReturnType();
3054     if (ReturnTy.getObjCLifetime()) {
3055       auto SplitReturnTy = ReturnTy.split();
3056       SplitReturnTy.Quals.removeObjCLifetime();
3057       ReturnTy = getASTContext().getQualifiedType(SplitReturnTy);
3058     }
3059     mangleType(ReturnTy);
3060 
3061     FunctionTypeDepth.leaveResultType();
3062   }
3063 
3064   if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
3065     //   <builtin-type> ::= v   # void
3066     Out << 'v';
3067 
3068     FunctionTypeDepth.pop(saved);
3069     return;
3070   }
3071 
3072   assert(!FD || FD->getNumParams() == Proto->getNumParams());
3073   for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
3074     // Mangle extended parameter info as order-sensitive qualifiers here.
3075     if (Proto->hasExtParameterInfos() && FD == nullptr) {
3076       mangleExtParameterInfo(Proto->getExtParameterInfo(I));
3077     }
3078 
3079     // Mangle the type.
3080     QualType ParamTy = Proto->getParamType(I);
3081     mangleType(Context.getASTContext().getSignatureParameterType(ParamTy));
3082 
3083     if (FD) {
3084       if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) {
3085         // Attr can only take 1 character, so we can hardcode the length below.
3086         assert(Attr->getType() <= 9 && Attr->getType() >= 0);
3087         if (Attr->isDynamic())
3088           Out << "U25pass_dynamic_object_size" << Attr->getType();
3089         else
3090           Out << "U17pass_object_size" << Attr->getType();
3091       }
3092     }
3093   }
3094 
3095   FunctionTypeDepth.pop(saved);
3096 
3097   // <builtin-type>      ::= z  # ellipsis
3098   if (Proto->isVariadic())
3099     Out << 'z';
3100 }
3101 
3102 // <type>            ::= <class-enum-type>
3103 // <class-enum-type> ::= <name>
3104 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
3105   mangleName(T->getDecl());
3106 }
3107 
3108 // <type>            ::= <class-enum-type>
3109 // <class-enum-type> ::= <name>
3110 void CXXNameMangler::mangleType(const EnumType *T) {
3111   mangleType(static_cast<const TagType*>(T));
3112 }
3113 void CXXNameMangler::mangleType(const RecordType *T) {
3114   mangleType(static_cast<const TagType*>(T));
3115 }
3116 void CXXNameMangler::mangleType(const TagType *T) {
3117   mangleName(T->getDecl());
3118 }
3119 
3120 // <type>       ::= <array-type>
3121 // <array-type> ::= A <positive dimension number> _ <element type>
3122 //              ::= A [<dimension expression>] _ <element type>
3123 void CXXNameMangler::mangleType(const ConstantArrayType *T) {
3124   Out << 'A' << T->getSize() << '_';
3125   mangleType(T->getElementType());
3126 }
3127 void CXXNameMangler::mangleType(const VariableArrayType *T) {
3128   Out << 'A';
3129   // decayed vla types (size 0) will just be skipped.
3130   if (T->getSizeExpr())
3131     mangleExpression(T->getSizeExpr());
3132   Out << '_';
3133   mangleType(T->getElementType());
3134 }
3135 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
3136   Out << 'A';
3137   mangleExpression(T->getSizeExpr());
3138   Out << '_';
3139   mangleType(T->getElementType());
3140 }
3141 void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
3142   Out << "A_";
3143   mangleType(T->getElementType());
3144 }
3145 
3146 // <type>                   ::= <pointer-to-member-type>
3147 // <pointer-to-member-type> ::= M <class type> <member type>
3148 void CXXNameMangler::mangleType(const MemberPointerType *T) {
3149   Out << 'M';
3150   mangleType(QualType(T->getClass(), 0));
3151   QualType PointeeType = T->getPointeeType();
3152   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
3153     mangleType(FPT);
3154 
3155     // Itanium C++ ABI 5.1.8:
3156     //
3157     //   The type of a non-static member function is considered to be different,
3158     //   for the purposes of substitution, from the type of a namespace-scope or
3159     //   static member function whose type appears similar. The types of two
3160     //   non-static member functions are considered to be different, for the
3161     //   purposes of substitution, if the functions are members of different
3162     //   classes. In other words, for the purposes of substitution, the class of
3163     //   which the function is a member is considered part of the type of
3164     //   function.
3165 
3166     // Given that we already substitute member function pointers as a
3167     // whole, the net effect of this rule is just to unconditionally
3168     // suppress substitution on the function type in a member pointer.
3169     // We increment the SeqID here to emulate adding an entry to the
3170     // substitution table.
3171     ++SeqID;
3172   } else
3173     mangleType(PointeeType);
3174 }
3175 
3176 // <type>           ::= <template-param>
3177 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
3178   mangleTemplateParameter(T->getDepth(), T->getIndex());
3179 }
3180 
3181 // <type>           ::= <template-param>
3182 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
3183   // FIXME: not clear how to mangle this!
3184   // template <class T...> class A {
3185   //   template <class U...> void foo(T(*)(U) x...);
3186   // };
3187   Out << "_SUBSTPACK_";
3188 }
3189 
3190 // <type> ::= P <type>   # pointer-to
3191 void CXXNameMangler::mangleType(const PointerType *T) {
3192   Out << 'P';
3193   mangleType(T->getPointeeType());
3194 }
3195 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
3196   Out << 'P';
3197   mangleType(T->getPointeeType());
3198 }
3199 
3200 // <type> ::= R <type>   # reference-to
3201 void CXXNameMangler::mangleType(const LValueReferenceType *T) {
3202   Out << 'R';
3203   mangleType(T->getPointeeType());
3204 }
3205 
3206 // <type> ::= O <type>   # rvalue reference-to (C++0x)
3207 void CXXNameMangler::mangleType(const RValueReferenceType *T) {
3208   Out << 'O';
3209   mangleType(T->getPointeeType());
3210 }
3211 
3212 // <type> ::= C <type>   # complex pair (C 2000)
3213 void CXXNameMangler::mangleType(const ComplexType *T) {
3214   Out << 'C';
3215   mangleType(T->getElementType());
3216 }
3217 
3218 // ARM's ABI for Neon vector types specifies that they should be mangled as
3219 // if they are structs (to match ARM's initial implementation).  The
3220 // vector type must be one of the special types predefined by ARM.
3221 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
3222   QualType EltType = T->getElementType();
3223   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3224   const char *EltName = nullptr;
3225   if (T->getVectorKind() == VectorType::NeonPolyVector) {
3226     switch (cast<BuiltinType>(EltType)->getKind()) {
3227     case BuiltinType::SChar:
3228     case BuiltinType::UChar:
3229       EltName = "poly8_t";
3230       break;
3231     case BuiltinType::Short:
3232     case BuiltinType::UShort:
3233       EltName = "poly16_t";
3234       break;
3235     case BuiltinType::LongLong:
3236     case BuiltinType::ULongLong:
3237       EltName = "poly64_t";
3238       break;
3239     default: llvm_unreachable("unexpected Neon polynomial vector element type");
3240     }
3241   } else {
3242     switch (cast<BuiltinType>(EltType)->getKind()) {
3243     case BuiltinType::SChar:     EltName = "int8_t"; break;
3244     case BuiltinType::UChar:     EltName = "uint8_t"; break;
3245     case BuiltinType::Short:     EltName = "int16_t"; break;
3246     case BuiltinType::UShort:    EltName = "uint16_t"; break;
3247     case BuiltinType::Int:       EltName = "int32_t"; break;
3248     case BuiltinType::UInt:      EltName = "uint32_t"; break;
3249     case BuiltinType::LongLong:  EltName = "int64_t"; break;
3250     case BuiltinType::ULongLong: EltName = "uint64_t"; break;
3251     case BuiltinType::Double:    EltName = "float64_t"; break;
3252     case BuiltinType::Float:     EltName = "float32_t"; break;
3253     case BuiltinType::Half:      EltName = "float16_t"; break;
3254     case BuiltinType::BFloat16:  EltName = "bfloat16_t"; break;
3255     default:
3256       llvm_unreachable("unexpected Neon vector element type");
3257     }
3258   }
3259   const char *BaseName = nullptr;
3260   unsigned BitSize = (T->getNumElements() *
3261                       getASTContext().getTypeSize(EltType));
3262   if (BitSize == 64)
3263     BaseName = "__simd64_";
3264   else {
3265     assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
3266     BaseName = "__simd128_";
3267   }
3268   Out << strlen(BaseName) + strlen(EltName);
3269   Out << BaseName << EltName;
3270 }
3271 
3272 void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) {
3273   DiagnosticsEngine &Diags = Context.getDiags();
3274   unsigned DiagID = Diags.getCustomDiagID(
3275       DiagnosticsEngine::Error,
3276       "cannot mangle this dependent neon vector type yet");
3277   Diags.Report(T->getAttributeLoc(), DiagID);
3278 }
3279 
3280 static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
3281   switch (EltType->getKind()) {
3282   case BuiltinType::SChar:
3283     return "Int8";
3284   case BuiltinType::Short:
3285     return "Int16";
3286   case BuiltinType::Int:
3287     return "Int32";
3288   case BuiltinType::Long:
3289   case BuiltinType::LongLong:
3290     return "Int64";
3291   case BuiltinType::UChar:
3292     return "Uint8";
3293   case BuiltinType::UShort:
3294     return "Uint16";
3295   case BuiltinType::UInt:
3296     return "Uint32";
3297   case BuiltinType::ULong:
3298   case BuiltinType::ULongLong:
3299     return "Uint64";
3300   case BuiltinType::Half:
3301     return "Float16";
3302   case BuiltinType::Float:
3303     return "Float32";
3304   case BuiltinType::Double:
3305     return "Float64";
3306   case BuiltinType::BFloat16:
3307     return "Bfloat16";
3308   default:
3309     llvm_unreachable("Unexpected vector element base type");
3310   }
3311 }
3312 
3313 // AArch64's ABI for Neon vector types specifies that they should be mangled as
3314 // the equivalent internal name. The vector type must be one of the special
3315 // types predefined by ARM.
3316 void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
3317   QualType EltType = T->getElementType();
3318   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3319   unsigned BitSize =
3320       (T->getNumElements() * getASTContext().getTypeSize(EltType));
3321   (void)BitSize; // Silence warning.
3322 
3323   assert((BitSize == 64 || BitSize == 128) &&
3324          "Neon vector type not 64 or 128 bits");
3325 
3326   StringRef EltName;
3327   if (T->getVectorKind() == VectorType::NeonPolyVector) {
3328     switch (cast<BuiltinType>(EltType)->getKind()) {
3329     case BuiltinType::UChar:
3330       EltName = "Poly8";
3331       break;
3332     case BuiltinType::UShort:
3333       EltName = "Poly16";
3334       break;
3335     case BuiltinType::ULong:
3336     case BuiltinType::ULongLong:
3337       EltName = "Poly64";
3338       break;
3339     default:
3340       llvm_unreachable("unexpected Neon polynomial vector element type");
3341     }
3342   } else
3343     EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
3344 
3345   std::string TypeName =
3346       ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str();
3347   Out << TypeName.length() << TypeName;
3348 }
3349 void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) {
3350   DiagnosticsEngine &Diags = Context.getDiags();
3351   unsigned DiagID = Diags.getCustomDiagID(
3352       DiagnosticsEngine::Error,
3353       "cannot mangle this dependent neon vector type yet");
3354   Diags.Report(T->getAttributeLoc(), DiagID);
3355 }
3356 
3357 // The AArch64 ACLE specifies that fixed-length SVE vector and predicate types
3358 // defined with the 'arm_sve_vector_bits' attribute map to the same AAPCS64
3359 // type as the sizeless variants.
3360 //
3361 // The mangling scheme for VLS types is implemented as a "pseudo" template:
3362 //
3363 //   '__SVE_VLS<<type>, <vector length>>'
3364 //
3365 // Combining the existing SVE type and a specific vector length (in bits).
3366 // For example:
3367 //
3368 //   typedef __SVInt32_t foo __attribute__((arm_sve_vector_bits(512)));
3369 //
3370 // is described as '__SVE_VLS<__SVInt32_t, 512u>' and mangled as:
3371 //
3372 //   "9__SVE_VLSI" + base type mangling + "Lj" + __ARM_FEATURE_SVE_BITS + "EE"
3373 //
3374 //   i.e. 9__SVE_VLSIu11__SVInt32_tLj512EE
3375 //
3376 // The latest ACLE specification (00bet5) does not contain details of this
3377 // mangling scheme, it will be specified in the next revision. The mangling
3378 // scheme is otherwise defined in the appendices to the Procedure Call Standard
3379 // for the Arm Architecture, see
3380 // https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst#appendix-c-mangling
3381 void CXXNameMangler::mangleAArch64FixedSveVectorType(const VectorType *T) {
3382   assert((T->getVectorKind() == VectorType::SveFixedLengthDataVector ||
3383           T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) &&
3384          "expected fixed-length SVE vector!");
3385 
3386   QualType EltType = T->getElementType();
3387   assert(EltType->isBuiltinType() &&
3388          "expected builtin type for fixed-length SVE vector!");
3389 
3390   StringRef TypeName;
3391   switch (cast<BuiltinType>(EltType)->getKind()) {
3392   case BuiltinType::SChar:
3393     TypeName = "__SVInt8_t";
3394     break;
3395   case BuiltinType::UChar: {
3396     if (T->getVectorKind() == VectorType::SveFixedLengthDataVector)
3397       TypeName = "__SVUint8_t";
3398     else
3399       TypeName = "__SVBool_t";
3400     break;
3401   }
3402   case BuiltinType::Short:
3403     TypeName = "__SVInt16_t";
3404     break;
3405   case BuiltinType::UShort:
3406     TypeName = "__SVUint16_t";
3407     break;
3408   case BuiltinType::Int:
3409     TypeName = "__SVInt32_t";
3410     break;
3411   case BuiltinType::UInt:
3412     TypeName = "__SVUint32_t";
3413     break;
3414   case BuiltinType::Long:
3415     TypeName = "__SVInt64_t";
3416     break;
3417   case BuiltinType::ULong:
3418     TypeName = "__SVUint64_t";
3419     break;
3420   case BuiltinType::Half:
3421     TypeName = "__SVFloat16_t";
3422     break;
3423   case BuiltinType::Float:
3424     TypeName = "__SVFloat32_t";
3425     break;
3426   case BuiltinType::Double:
3427     TypeName = "__SVFloat64_t";
3428     break;
3429   case BuiltinType::BFloat16:
3430     TypeName = "__SVBfloat16_t";
3431     break;
3432   default:
3433     llvm_unreachable("unexpected element type for fixed-length SVE vector!");
3434   }
3435 
3436   unsigned VecSizeInBits = getASTContext().getTypeInfo(T).Width;
3437 
3438   if (T->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
3439     VecSizeInBits *= 8;
3440 
3441   Out << "9__SVE_VLSI" << 'u' << TypeName.size() << TypeName << "Lj"
3442       << VecSizeInBits << "EE";
3443 }
3444 
3445 void CXXNameMangler::mangleAArch64FixedSveVectorType(
3446     const DependentVectorType *T) {
3447   DiagnosticsEngine &Diags = Context.getDiags();
3448   unsigned DiagID = Diags.getCustomDiagID(
3449       DiagnosticsEngine::Error,
3450       "cannot mangle this dependent fixed-length SVE vector type yet");
3451   Diags.Report(T->getAttributeLoc(), DiagID);
3452 }
3453 
3454 // GNU extension: vector types
3455 // <type>                  ::= <vector-type>
3456 // <vector-type>           ::= Dv <positive dimension number> _
3457 //                                    <extended element type>
3458 //                         ::= Dv [<dimension expression>] _ <element type>
3459 // <extended element type> ::= <element type>
3460 //                         ::= p # AltiVec vector pixel
3461 //                         ::= b # Altivec vector bool
3462 void CXXNameMangler::mangleType(const VectorType *T) {
3463   if ((T->getVectorKind() == VectorType::NeonVector ||
3464        T->getVectorKind() == VectorType::NeonPolyVector)) {
3465     llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3466     llvm::Triple::ArchType Arch =
3467         getASTContext().getTargetInfo().getTriple().getArch();
3468     if ((Arch == llvm::Triple::aarch64 ||
3469          Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
3470       mangleAArch64NeonVectorType(T);
3471     else
3472       mangleNeonVectorType(T);
3473     return;
3474   } else if (T->getVectorKind() == VectorType::SveFixedLengthDataVector ||
3475              T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
3476     mangleAArch64FixedSveVectorType(T);
3477     return;
3478   }
3479   Out << "Dv" << T->getNumElements() << '_';
3480   if (T->getVectorKind() == VectorType::AltiVecPixel)
3481     Out << 'p';
3482   else if (T->getVectorKind() == VectorType::AltiVecBool)
3483     Out << 'b';
3484   else
3485     mangleType(T->getElementType());
3486 }
3487 
3488 void CXXNameMangler::mangleType(const DependentVectorType *T) {
3489   if ((T->getVectorKind() == VectorType::NeonVector ||
3490        T->getVectorKind() == VectorType::NeonPolyVector)) {
3491     llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3492     llvm::Triple::ArchType Arch =
3493         getASTContext().getTargetInfo().getTriple().getArch();
3494     if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) &&
3495         !Target.isOSDarwin())
3496       mangleAArch64NeonVectorType(T);
3497     else
3498       mangleNeonVectorType(T);
3499     return;
3500   } else if (T->getVectorKind() == VectorType::SveFixedLengthDataVector ||
3501              T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
3502     mangleAArch64FixedSveVectorType(T);
3503     return;
3504   }
3505 
3506   Out << "Dv";
3507   mangleExpression(T->getSizeExpr());
3508   Out << '_';
3509   if (T->getVectorKind() == VectorType::AltiVecPixel)
3510     Out << 'p';
3511   else if (T->getVectorKind() == VectorType::AltiVecBool)
3512     Out << 'b';
3513   else
3514     mangleType(T->getElementType());
3515 }
3516 
3517 void CXXNameMangler::mangleType(const ExtVectorType *T) {
3518   mangleType(static_cast<const VectorType*>(T));
3519 }
3520 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
3521   Out << "Dv";
3522   mangleExpression(T->getSizeExpr());
3523   Out << '_';
3524   mangleType(T->getElementType());
3525 }
3526 
3527 void CXXNameMangler::mangleType(const ConstantMatrixType *T) {
3528   // Mangle matrix types as a vendor extended type:
3529   // u<Len>matrix_typeI<Rows><Columns><element type>E
3530 
3531   StringRef VendorQualifier = "matrix_type";
3532   Out << "u" << VendorQualifier.size() << VendorQualifier;
3533 
3534   Out << "I";
3535   auto &ASTCtx = getASTContext();
3536   unsigned BitWidth = ASTCtx.getTypeSize(ASTCtx.getSizeType());
3537   llvm::APSInt Rows(BitWidth);
3538   Rows = T->getNumRows();
3539   mangleIntegerLiteral(ASTCtx.getSizeType(), Rows);
3540   llvm::APSInt Columns(BitWidth);
3541   Columns = T->getNumColumns();
3542   mangleIntegerLiteral(ASTCtx.getSizeType(), Columns);
3543   mangleType(T->getElementType());
3544   Out << "E";
3545 }
3546 
3547 void CXXNameMangler::mangleType(const DependentSizedMatrixType *T) {
3548   // Mangle matrix types as a vendor extended type:
3549   // u<Len>matrix_typeI<row expr><column expr><element type>E
3550   StringRef VendorQualifier = "matrix_type";
3551   Out << "u" << VendorQualifier.size() << VendorQualifier;
3552 
3553   Out << "I";
3554   mangleTemplateArgExpr(T->getRowExpr());
3555   mangleTemplateArgExpr(T->getColumnExpr());
3556   mangleType(T->getElementType());
3557   Out << "E";
3558 }
3559 
3560 void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) {
3561   SplitQualType split = T->getPointeeType().split();
3562   mangleQualifiers(split.Quals, T);
3563   mangleType(QualType(split.Ty, 0));
3564 }
3565 
3566 void CXXNameMangler::mangleType(const PackExpansionType *T) {
3567   // <type>  ::= Dp <type>          # pack expansion (C++0x)
3568   Out << "Dp";
3569   mangleType(T->getPattern());
3570 }
3571 
3572 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
3573   mangleSourceName(T->getDecl()->getIdentifier());
3574 }
3575 
3576 void CXXNameMangler::mangleType(const ObjCObjectType *T) {
3577   // Treat __kindof as a vendor extended type qualifier.
3578   if (T->isKindOfType())
3579     Out << "U8__kindof";
3580 
3581   if (!T->qual_empty()) {
3582     // Mangle protocol qualifiers.
3583     SmallString<64> QualStr;
3584     llvm::raw_svector_ostream QualOS(QualStr);
3585     QualOS << "objcproto";
3586     for (const auto *I : T->quals()) {
3587       StringRef name = I->getName();
3588       QualOS << name.size() << name;
3589     }
3590     Out << 'U' << QualStr.size() << QualStr;
3591   }
3592 
3593   mangleType(T->getBaseType());
3594 
3595   if (T->isSpecialized()) {
3596     // Mangle type arguments as I <type>+ E
3597     Out << 'I';
3598     for (auto typeArg : T->getTypeArgs())
3599       mangleType(typeArg);
3600     Out << 'E';
3601   }
3602 }
3603 
3604 void CXXNameMangler::mangleType(const BlockPointerType *T) {
3605   Out << "U13block_pointer";
3606   mangleType(T->getPointeeType());
3607 }
3608 
3609 void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
3610   // Mangle injected class name types as if the user had written the
3611   // specialization out fully.  It may not actually be possible to see
3612   // this mangling, though.
3613   mangleType(T->getInjectedSpecializationType());
3614 }
3615 
3616 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
3617   if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
3618     mangleTemplateName(TD, T->getArgs(), T->getNumArgs());
3619   } else {
3620     if (mangleSubstitution(QualType(T, 0)))
3621       return;
3622 
3623     mangleTemplatePrefix(T->getTemplateName());
3624 
3625     // FIXME: GCC does not appear to mangle the template arguments when
3626     // the template in question is a dependent template name. Should we
3627     // emulate that badness?
3628     mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs());
3629     addSubstitution(QualType(T, 0));
3630   }
3631 }
3632 
3633 void CXXNameMangler::mangleType(const DependentNameType *T) {
3634   // Proposal by cxx-abi-dev, 2014-03-26
3635   // <class-enum-type> ::= <name>    # non-dependent or dependent type name or
3636   //                                 # dependent elaborated type specifier using
3637   //                                 # 'typename'
3638   //                   ::= Ts <name> # dependent elaborated type specifier using
3639   //                                 # 'struct' or 'class'
3640   //                   ::= Tu <name> # dependent elaborated type specifier using
3641   //                                 # 'union'
3642   //                   ::= Te <name> # dependent elaborated type specifier using
3643   //                                 # 'enum'
3644   switch (T->getKeyword()) {
3645     case ETK_None:
3646     case ETK_Typename:
3647       break;
3648     case ETK_Struct:
3649     case ETK_Class:
3650     case ETK_Interface:
3651       Out << "Ts";
3652       break;
3653     case ETK_Union:
3654       Out << "Tu";
3655       break;
3656     case ETK_Enum:
3657       Out << "Te";
3658       break;
3659   }
3660   // Typename types are always nested
3661   Out << 'N';
3662   manglePrefix(T->getQualifier());
3663   mangleSourceName(T->getIdentifier());
3664   Out << 'E';
3665 }
3666 
3667 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
3668   // Dependently-scoped template types are nested if they have a prefix.
3669   Out << 'N';
3670 
3671   // TODO: avoid making this TemplateName.
3672   TemplateName Prefix =
3673     getASTContext().getDependentTemplateName(T->getQualifier(),
3674                                              T->getIdentifier());
3675   mangleTemplatePrefix(Prefix);
3676 
3677   // FIXME: GCC does not appear to mangle the template arguments when
3678   // the template in question is a dependent template name. Should we
3679   // emulate that badness?
3680   mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs());
3681   Out << 'E';
3682 }
3683 
3684 void CXXNameMangler::mangleType(const TypeOfType *T) {
3685   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3686   // "extension with parameters" mangling.
3687   Out << "u6typeof";
3688 }
3689 
3690 void CXXNameMangler::mangleType(const TypeOfExprType *T) {
3691   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3692   // "extension with parameters" mangling.
3693   Out << "u6typeof";
3694 }
3695 
3696 void CXXNameMangler::mangleType(const DecltypeType *T) {
3697   Expr *E = T->getUnderlyingExpr();
3698 
3699   // type ::= Dt <expression> E  # decltype of an id-expression
3700   //                             #   or class member access
3701   //      ::= DT <expression> E  # decltype of an expression
3702 
3703   // This purports to be an exhaustive list of id-expressions and
3704   // class member accesses.  Note that we do not ignore parentheses;
3705   // parentheses change the semantics of decltype for these
3706   // expressions (and cause the mangler to use the other form).
3707   if (isa<DeclRefExpr>(E) ||
3708       isa<MemberExpr>(E) ||
3709       isa<UnresolvedLookupExpr>(E) ||
3710       isa<DependentScopeDeclRefExpr>(E) ||
3711       isa<CXXDependentScopeMemberExpr>(E) ||
3712       isa<UnresolvedMemberExpr>(E))
3713     Out << "Dt";
3714   else
3715     Out << "DT";
3716   mangleExpression(E);
3717   Out << 'E';
3718 }
3719 
3720 void CXXNameMangler::mangleType(const UnaryTransformType *T) {
3721   // If this is dependent, we need to record that. If not, we simply
3722   // mangle it as the underlying type since they are equivalent.
3723   if (T->isDependentType()) {
3724     Out << 'U';
3725 
3726     switch (T->getUTTKind()) {
3727       case UnaryTransformType::EnumUnderlyingType:
3728         Out << "3eut";
3729         break;
3730     }
3731   }
3732 
3733   mangleType(T->getBaseType());
3734 }
3735 
3736 void CXXNameMangler::mangleType(const AutoType *T) {
3737   assert(T->getDeducedType().isNull() &&
3738          "Deduced AutoType shouldn't be handled here!");
3739   assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType &&
3740          "shouldn't need to mangle __auto_type!");
3741   // <builtin-type> ::= Da # auto
3742   //                ::= Dc # decltype(auto)
3743   Out << (T->isDecltypeAuto() ? "Dc" : "Da");
3744 }
3745 
3746 void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) {
3747   QualType Deduced = T->getDeducedType();
3748   if (!Deduced.isNull())
3749     return mangleType(Deduced);
3750 
3751   TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl();
3752   assert(TD && "shouldn't form deduced TST unless we know we have a template");
3753 
3754   if (mangleSubstitution(TD))
3755     return;
3756 
3757   mangleName(GlobalDecl(TD));
3758   addSubstitution(TD);
3759 }
3760 
3761 void CXXNameMangler::mangleType(const AtomicType *T) {
3762   // <type> ::= U <source-name> <type>  # vendor extended type qualifier
3763   // (Until there's a standardized mangling...)
3764   Out << "U7_Atomic";
3765   mangleType(T->getValueType());
3766 }
3767 
3768 void CXXNameMangler::mangleType(const PipeType *T) {
3769   // Pipe type mangling rules are described in SPIR 2.0 specification
3770   // A.1 Data types and A.3 Summary of changes
3771   // <type> ::= 8ocl_pipe
3772   Out << "8ocl_pipe";
3773 }
3774 
3775 void CXXNameMangler::mangleType(const ExtIntType *T) {
3776   Out << "U7_ExtInt";
3777   llvm::APSInt BW(32, true);
3778   BW = T->getNumBits();
3779   TemplateArgument TA(Context.getASTContext(), BW, getASTContext().IntTy);
3780   mangleTemplateArgs(TemplateName(), &TA, 1);
3781   if (T->isUnsigned())
3782     Out << "j";
3783   else
3784     Out << "i";
3785 }
3786 
3787 void CXXNameMangler::mangleType(const DependentExtIntType *T) {
3788   Out << "U7_ExtInt";
3789   TemplateArgument TA(T->getNumBitsExpr());
3790   mangleTemplateArgs(TemplateName(), &TA, 1);
3791   if (T->isUnsigned())
3792     Out << "j";
3793   else
3794     Out << "i";
3795 }
3796 
3797 void CXXNameMangler::mangleIntegerLiteral(QualType T,
3798                                           const llvm::APSInt &Value) {
3799   //  <expr-primary> ::= L <type> <value number> E # integer literal
3800   Out << 'L';
3801 
3802   mangleType(T);
3803   if (T->isBooleanType()) {
3804     // Boolean values are encoded as 0/1.
3805     Out << (Value.getBoolValue() ? '1' : '0');
3806   } else {
3807     mangleNumber(Value);
3808   }
3809   Out << 'E';
3810 
3811 }
3812 
3813 void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) {
3814   // Ignore member expressions involving anonymous unions.
3815   while (const auto *RT = Base->getType()->getAs<RecordType>()) {
3816     if (!RT->getDecl()->isAnonymousStructOrUnion())
3817       break;
3818     const auto *ME = dyn_cast<MemberExpr>(Base);
3819     if (!ME)
3820       break;
3821     Base = ME->getBase();
3822     IsArrow = ME->isArrow();
3823   }
3824 
3825   if (Base->isImplicitCXXThis()) {
3826     // Note: GCC mangles member expressions to the implicit 'this' as
3827     // *this., whereas we represent them as this->. The Itanium C++ ABI
3828     // does not specify anything here, so we follow GCC.
3829     Out << "dtdefpT";
3830   } else {
3831     Out << (IsArrow ? "pt" : "dt");
3832     mangleExpression(Base);
3833   }
3834 }
3835 
3836 /// Mangles a member expression.
3837 void CXXNameMangler::mangleMemberExpr(const Expr *base,
3838                                       bool isArrow,
3839                                       NestedNameSpecifier *qualifier,
3840                                       NamedDecl *firstQualifierLookup,
3841                                       DeclarationName member,
3842                                       const TemplateArgumentLoc *TemplateArgs,
3843                                       unsigned NumTemplateArgs,
3844                                       unsigned arity) {
3845   // <expression> ::= dt <expression> <unresolved-name>
3846   //              ::= pt <expression> <unresolved-name>
3847   if (base)
3848     mangleMemberExprBase(base, isArrow);
3849   mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity);
3850 }
3851 
3852 /// Look at the callee of the given call expression and determine if
3853 /// it's a parenthesized id-expression which would have triggered ADL
3854 /// otherwise.
3855 static bool isParenthesizedADLCallee(const CallExpr *call) {
3856   const Expr *callee = call->getCallee();
3857   const Expr *fn = callee->IgnoreParens();
3858 
3859   // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
3860   // too, but for those to appear in the callee, it would have to be
3861   // parenthesized.
3862   if (callee == fn) return false;
3863 
3864   // Must be an unresolved lookup.
3865   const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
3866   if (!lookup) return false;
3867 
3868   assert(!lookup->requiresADL());
3869 
3870   // Must be an unqualified lookup.
3871   if (lookup->getQualifier()) return false;
3872 
3873   // Must not have found a class member.  Note that if one is a class
3874   // member, they're all class members.
3875   if (lookup->getNumDecls() > 0 &&
3876       (*lookup->decls_begin())->isCXXClassMember())
3877     return false;
3878 
3879   // Otherwise, ADL would have been triggered.
3880   return true;
3881 }
3882 
3883 void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
3884   const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
3885   Out << CastEncoding;
3886   mangleType(ECE->getType());
3887   mangleExpression(ECE->getSubExpr());
3888 }
3889 
3890 void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) {
3891   if (auto *Syntactic = InitList->getSyntacticForm())
3892     InitList = Syntactic;
3893   for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
3894     mangleExpression(InitList->getInit(i));
3895 }
3896 
3897 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity,
3898                                       bool AsTemplateArg) {
3899   // <expression> ::= <unary operator-name> <expression>
3900   //              ::= <binary operator-name> <expression> <expression>
3901   //              ::= <trinary operator-name> <expression> <expression> <expression>
3902   //              ::= cv <type> expression           # conversion with one argument
3903   //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
3904   //              ::= dc <type> <expression>         # dynamic_cast<type> (expression)
3905   //              ::= sc <type> <expression>         # static_cast<type> (expression)
3906   //              ::= cc <type> <expression>         # const_cast<type> (expression)
3907   //              ::= rc <type> <expression>         # reinterpret_cast<type> (expression)
3908   //              ::= st <type>                      # sizeof (a type)
3909   //              ::= at <type>                      # alignof (a type)
3910   //              ::= <template-param>
3911   //              ::= <function-param>
3912   //              ::= fpT                            # 'this' expression (part of <function-param>)
3913   //              ::= sr <type> <unqualified-name>                   # dependent name
3914   //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
3915   //              ::= ds <expression> <expression>                   # expr.*expr
3916   //              ::= sZ <template-param>                            # size of a parameter pack
3917   //              ::= sZ <function-param>    # size of a function parameter pack
3918   //              ::= u <source-name> <template-arg>* E # vendor extended expression
3919   //              ::= <expr-primary>
3920   // <expr-primary> ::= L <type> <value number> E    # integer literal
3921   //                ::= L <type> <value float> E     # floating literal
3922   //                ::= L <type> <string type> E     # string literal
3923   //                ::= L <nullptr type> E           # nullptr literal "LDnE"
3924   //                ::= L <pointer type> 0 E         # null pointer template argument
3925   //                ::= L <type> <real-part float> _ <imag-part float> E    # complex floating point literal (C99); not used by clang
3926   //                ::= L <mangled-name> E           # external name
3927   QualType ImplicitlyConvertedToType;
3928 
3929   // A top-level expression that's not <expr-primary> needs to be wrapped in
3930   // X...E in a template arg.
3931   bool IsPrimaryExpr = true;
3932   auto NotPrimaryExpr = [&] {
3933     if (AsTemplateArg && IsPrimaryExpr)
3934       Out << 'X';
3935     IsPrimaryExpr = false;
3936   };
3937 
3938   auto MangleDeclRefExpr = [&](const NamedDecl *D) {
3939     switch (D->getKind()) {
3940     default:
3941       //  <expr-primary> ::= L <mangled-name> E # external name
3942       Out << 'L';
3943       mangle(D);
3944       Out << 'E';
3945       break;
3946 
3947     case Decl::ParmVar:
3948       NotPrimaryExpr();
3949       mangleFunctionParam(cast<ParmVarDecl>(D));
3950       break;
3951 
3952     case Decl::EnumConstant: {
3953       // <expr-primary>
3954       const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
3955       mangleIntegerLiteral(ED->getType(), ED->getInitVal());
3956       break;
3957     }
3958 
3959     case Decl::NonTypeTemplateParm:
3960       NotPrimaryExpr();
3961       const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
3962       mangleTemplateParameter(PD->getDepth(), PD->getIndex());
3963       break;
3964     }
3965   };
3966 
3967   // 'goto recurse' is used when handling a simple "unwrapping" node which
3968   // produces no output, where ImplicitlyConvertedToType and AsTemplateArg need
3969   // to be preserved.
3970 recurse:
3971   switch (E->getStmtClass()) {
3972   case Expr::NoStmtClass:
3973 #define ABSTRACT_STMT(Type)
3974 #define EXPR(Type, Base)
3975 #define STMT(Type, Base) \
3976   case Expr::Type##Class:
3977 #include "clang/AST/StmtNodes.inc"
3978     // fallthrough
3979 
3980   // These all can only appear in local or variable-initialization
3981   // contexts and so should never appear in a mangling.
3982   case Expr::AddrLabelExprClass:
3983   case Expr::DesignatedInitUpdateExprClass:
3984   case Expr::ImplicitValueInitExprClass:
3985   case Expr::ArrayInitLoopExprClass:
3986   case Expr::ArrayInitIndexExprClass:
3987   case Expr::NoInitExprClass:
3988   case Expr::ParenListExprClass:
3989   case Expr::LambdaExprClass:
3990   case Expr::MSPropertyRefExprClass:
3991   case Expr::MSPropertySubscriptExprClass:
3992   case Expr::TypoExprClass: // This should no longer exist in the AST by now.
3993   case Expr::RecoveryExprClass:
3994   case Expr::OMPArraySectionExprClass:
3995   case Expr::OMPArrayShapingExprClass:
3996   case Expr::OMPIteratorExprClass:
3997   case Expr::CXXInheritedCtorInitExprClass:
3998     llvm_unreachable("unexpected statement kind");
3999 
4000   case Expr::ConstantExprClass:
4001     E = cast<ConstantExpr>(E)->getSubExpr();
4002     goto recurse;
4003 
4004   // FIXME: invent manglings for all these.
4005   case Expr::BlockExprClass:
4006   case Expr::ChooseExprClass:
4007   case Expr::CompoundLiteralExprClass:
4008   case Expr::ExtVectorElementExprClass:
4009   case Expr::GenericSelectionExprClass:
4010   case Expr::ObjCEncodeExprClass:
4011   case Expr::ObjCIsaExprClass:
4012   case Expr::ObjCIvarRefExprClass:
4013   case Expr::ObjCMessageExprClass:
4014   case Expr::ObjCPropertyRefExprClass:
4015   case Expr::ObjCProtocolExprClass:
4016   case Expr::ObjCSelectorExprClass:
4017   case Expr::ObjCStringLiteralClass:
4018   case Expr::ObjCBoxedExprClass:
4019   case Expr::ObjCArrayLiteralClass:
4020   case Expr::ObjCDictionaryLiteralClass:
4021   case Expr::ObjCSubscriptRefExprClass:
4022   case Expr::ObjCIndirectCopyRestoreExprClass:
4023   case Expr::ObjCAvailabilityCheckExprClass:
4024   case Expr::OffsetOfExprClass:
4025   case Expr::PredefinedExprClass:
4026   case Expr::ShuffleVectorExprClass:
4027   case Expr::ConvertVectorExprClass:
4028   case Expr::StmtExprClass:
4029   case Expr::TypeTraitExprClass:
4030   case Expr::RequiresExprClass:
4031   case Expr::ArrayTypeTraitExprClass:
4032   case Expr::ExpressionTraitExprClass:
4033   case Expr::VAArgExprClass:
4034   case Expr::CUDAKernelCallExprClass:
4035   case Expr::AsTypeExprClass:
4036   case Expr::PseudoObjectExprClass:
4037   case Expr::AtomicExprClass:
4038   case Expr::SourceLocExprClass:
4039   case Expr::BuiltinBitCastExprClass:
4040   {
4041     NotPrimaryExpr();
4042     if (!NullOut) {
4043       // As bad as this diagnostic is, it's better than crashing.
4044       DiagnosticsEngine &Diags = Context.getDiags();
4045       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
4046                                        "cannot yet mangle expression type %0");
4047       Diags.Report(E->getExprLoc(), DiagID)
4048         << E->getStmtClassName() << E->getSourceRange();
4049       return;
4050     }
4051     break;
4052   }
4053 
4054   case Expr::CXXUuidofExprClass: {
4055     NotPrimaryExpr();
4056     const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
4057     // As of clang 12, uuidof uses the vendor extended expression
4058     // mangling. Previously, it used a special-cased nonstandard extension.
4059     if (Context.getASTContext().getLangOpts().getClangABICompat() >
4060         LangOptions::ClangABI::Ver11) {
4061       Out << "u8__uuidof";
4062       if (UE->isTypeOperand())
4063         mangleType(UE->getTypeOperand(Context.getASTContext()));
4064       else
4065         mangleTemplateArgExpr(UE->getExprOperand());
4066       Out << 'E';
4067     } else {
4068       if (UE->isTypeOperand()) {
4069         QualType UuidT = UE->getTypeOperand(Context.getASTContext());
4070         Out << "u8__uuidoft";
4071         mangleType(UuidT);
4072       } else {
4073         Expr *UuidExp = UE->getExprOperand();
4074         Out << "u8__uuidofz";
4075         mangleExpression(UuidExp);
4076       }
4077     }
4078     break;
4079   }
4080 
4081   // Even gcc-4.5 doesn't mangle this.
4082   case Expr::BinaryConditionalOperatorClass: {
4083     NotPrimaryExpr();
4084     DiagnosticsEngine &Diags = Context.getDiags();
4085     unsigned DiagID =
4086       Diags.getCustomDiagID(DiagnosticsEngine::Error,
4087                 "?: operator with omitted middle operand cannot be mangled");
4088     Diags.Report(E->getExprLoc(), DiagID)
4089       << E->getStmtClassName() << E->getSourceRange();
4090     return;
4091   }
4092 
4093   // These are used for internal purposes and cannot be meaningfully mangled.
4094   case Expr::OpaqueValueExprClass:
4095     llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
4096 
4097   case Expr::InitListExprClass: {
4098     NotPrimaryExpr();
4099     Out << "il";
4100     mangleInitListElements(cast<InitListExpr>(E));
4101     Out << "E";
4102     break;
4103   }
4104 
4105   case Expr::DesignatedInitExprClass: {
4106     NotPrimaryExpr();
4107     auto *DIE = cast<DesignatedInitExpr>(E);
4108     for (const auto &Designator : DIE->designators()) {
4109       if (Designator.isFieldDesignator()) {
4110         Out << "di";
4111         mangleSourceName(Designator.getFieldName());
4112       } else if (Designator.isArrayDesignator()) {
4113         Out << "dx";
4114         mangleExpression(DIE->getArrayIndex(Designator));
4115       } else {
4116         assert(Designator.isArrayRangeDesignator() &&
4117                "unknown designator kind");
4118         Out << "dX";
4119         mangleExpression(DIE->getArrayRangeStart(Designator));
4120         mangleExpression(DIE->getArrayRangeEnd(Designator));
4121       }
4122     }
4123     mangleExpression(DIE->getInit());
4124     break;
4125   }
4126 
4127   case Expr::CXXDefaultArgExprClass:
4128     E = cast<CXXDefaultArgExpr>(E)->getExpr();
4129     goto recurse;
4130 
4131   case Expr::CXXDefaultInitExprClass:
4132     E = cast<CXXDefaultInitExpr>(E)->getExpr();
4133     goto recurse;
4134 
4135   case Expr::CXXStdInitializerListExprClass:
4136     E = cast<CXXStdInitializerListExpr>(E)->getSubExpr();
4137     goto recurse;
4138 
4139   case Expr::SubstNonTypeTemplateParmExprClass:
4140     E = cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement();
4141     goto recurse;
4142 
4143   case Expr::UserDefinedLiteralClass:
4144     // We follow g++'s approach of mangling a UDL as a call to the literal
4145     // operator.
4146   case Expr::CXXMemberCallExprClass: // fallthrough
4147   case Expr::CallExprClass: {
4148     NotPrimaryExpr();
4149     const CallExpr *CE = cast<CallExpr>(E);
4150 
4151     // <expression> ::= cp <simple-id> <expression>* E
4152     // We use this mangling only when the call would use ADL except
4153     // for being parenthesized.  Per discussion with David
4154     // Vandervoorde, 2011.04.25.
4155     if (isParenthesizedADLCallee(CE)) {
4156       Out << "cp";
4157       // The callee here is a parenthesized UnresolvedLookupExpr with
4158       // no qualifier and should always get mangled as a <simple-id>
4159       // anyway.
4160 
4161     // <expression> ::= cl <expression>* E
4162     } else {
4163       Out << "cl";
4164     }
4165 
4166     unsigned CallArity = CE->getNumArgs();
4167     for (const Expr *Arg : CE->arguments())
4168       if (isa<PackExpansionExpr>(Arg))
4169         CallArity = UnknownArity;
4170 
4171     mangleExpression(CE->getCallee(), CallArity);
4172     for (const Expr *Arg : CE->arguments())
4173       mangleExpression(Arg);
4174     Out << 'E';
4175     break;
4176   }
4177 
4178   case Expr::CXXNewExprClass: {
4179     NotPrimaryExpr();
4180     const CXXNewExpr *New = cast<CXXNewExpr>(E);
4181     if (New->isGlobalNew()) Out << "gs";
4182     Out << (New->isArray() ? "na" : "nw");
4183     for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
4184            E = New->placement_arg_end(); I != E; ++I)
4185       mangleExpression(*I);
4186     Out << '_';
4187     mangleType(New->getAllocatedType());
4188     if (New->hasInitializer()) {
4189       if (New->getInitializationStyle() == CXXNewExpr::ListInit)
4190         Out << "il";
4191       else
4192         Out << "pi";
4193       const Expr *Init = New->getInitializer();
4194       if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
4195         // Directly inline the initializers.
4196         for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
4197                                                   E = CCE->arg_end();
4198              I != E; ++I)
4199           mangleExpression(*I);
4200       } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
4201         for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
4202           mangleExpression(PLE->getExpr(i));
4203       } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
4204                  isa<InitListExpr>(Init)) {
4205         // Only take InitListExprs apart for list-initialization.
4206         mangleInitListElements(cast<InitListExpr>(Init));
4207       } else
4208         mangleExpression(Init);
4209     }
4210     Out << 'E';
4211     break;
4212   }
4213 
4214   case Expr::CXXPseudoDestructorExprClass: {
4215     NotPrimaryExpr();
4216     const auto *PDE = cast<CXXPseudoDestructorExpr>(E);
4217     if (const Expr *Base = PDE->getBase())
4218       mangleMemberExprBase(Base, PDE->isArrow());
4219     NestedNameSpecifier *Qualifier = PDE->getQualifier();
4220     if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) {
4221       if (Qualifier) {
4222         mangleUnresolvedPrefix(Qualifier,
4223                                /*recursive=*/true);
4224         mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType());
4225         Out << 'E';
4226       } else {
4227         Out << "sr";
4228         if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()))
4229           Out << 'E';
4230       }
4231     } else if (Qualifier) {
4232       mangleUnresolvedPrefix(Qualifier);
4233     }
4234     // <base-unresolved-name> ::= dn <destructor-name>
4235     Out << "dn";
4236     QualType DestroyedType = PDE->getDestroyedType();
4237     mangleUnresolvedTypeOrSimpleId(DestroyedType);
4238     break;
4239   }
4240 
4241   case Expr::MemberExprClass: {
4242     NotPrimaryExpr();
4243     const MemberExpr *ME = cast<MemberExpr>(E);
4244     mangleMemberExpr(ME->getBase(), ME->isArrow(),
4245                      ME->getQualifier(), nullptr,
4246                      ME->getMemberDecl()->getDeclName(),
4247                      ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4248                      Arity);
4249     break;
4250   }
4251 
4252   case Expr::UnresolvedMemberExprClass: {
4253     NotPrimaryExpr();
4254     const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
4255     mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
4256                      ME->isArrow(), ME->getQualifier(), nullptr,
4257                      ME->getMemberName(),
4258                      ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4259                      Arity);
4260     break;
4261   }
4262 
4263   case Expr::CXXDependentScopeMemberExprClass: {
4264     NotPrimaryExpr();
4265     const CXXDependentScopeMemberExpr *ME
4266       = cast<CXXDependentScopeMemberExpr>(E);
4267     mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
4268                      ME->isArrow(), ME->getQualifier(),
4269                      ME->getFirstQualifierFoundInScope(),
4270                      ME->getMember(),
4271                      ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4272                      Arity);
4273     break;
4274   }
4275 
4276   case Expr::UnresolvedLookupExprClass: {
4277     NotPrimaryExpr();
4278     const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
4279     mangleUnresolvedName(ULE->getQualifier(), ULE->getName(),
4280                          ULE->getTemplateArgs(), ULE->getNumTemplateArgs(),
4281                          Arity);
4282     break;
4283   }
4284 
4285   case Expr::CXXUnresolvedConstructExprClass: {
4286     NotPrimaryExpr();
4287     const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
4288     unsigned N = CE->getNumArgs();
4289 
4290     if (CE->isListInitialization()) {
4291       assert(N == 1 && "unexpected form for list initialization");
4292       auto *IL = cast<InitListExpr>(CE->getArg(0));
4293       Out << "tl";
4294       mangleType(CE->getType());
4295       mangleInitListElements(IL);
4296       Out << "E";
4297       break;
4298     }
4299 
4300     Out << "cv";
4301     mangleType(CE->getType());
4302     if (N != 1) Out << '_';
4303     for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
4304     if (N != 1) Out << 'E';
4305     break;
4306   }
4307 
4308   case Expr::CXXConstructExprClass: {
4309     // An implicit cast is silent, thus may contain <expr-primary>.
4310     const auto *CE = cast<CXXConstructExpr>(E);
4311     if (!CE->isListInitialization() || CE->isStdInitListInitialization()) {
4312       assert(
4313           CE->getNumArgs() >= 1 &&
4314           (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) &&
4315           "implicit CXXConstructExpr must have one argument");
4316       E = cast<CXXConstructExpr>(E)->getArg(0);
4317       goto recurse;
4318     }
4319     NotPrimaryExpr();
4320     Out << "il";
4321     for (auto *E : CE->arguments())
4322       mangleExpression(E);
4323     Out << "E";
4324     break;
4325   }
4326 
4327   case Expr::CXXTemporaryObjectExprClass: {
4328     NotPrimaryExpr();
4329     const auto *CE = cast<CXXTemporaryObjectExpr>(E);
4330     unsigned N = CE->getNumArgs();
4331     bool List = CE->isListInitialization();
4332 
4333     if (List)
4334       Out << "tl";
4335     else
4336       Out << "cv";
4337     mangleType(CE->getType());
4338     if (!List && N != 1)
4339       Out << '_';
4340     if (CE->isStdInitListInitialization()) {
4341       // We implicitly created a std::initializer_list<T> for the first argument
4342       // of a constructor of type U in an expression of the form U{a, b, c}.
4343       // Strip all the semantic gunk off the initializer list.
4344       auto *SILE =
4345           cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit());
4346       auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit());
4347       mangleInitListElements(ILE);
4348     } else {
4349       for (auto *E : CE->arguments())
4350         mangleExpression(E);
4351     }
4352     if (List || N != 1)
4353       Out << 'E';
4354     break;
4355   }
4356 
4357   case Expr::CXXScalarValueInitExprClass:
4358     NotPrimaryExpr();
4359     Out << "cv";
4360     mangleType(E->getType());
4361     Out << "_E";
4362     break;
4363 
4364   case Expr::CXXNoexceptExprClass:
4365     NotPrimaryExpr();
4366     Out << "nx";
4367     mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
4368     break;
4369 
4370   case Expr::UnaryExprOrTypeTraitExprClass: {
4371     // Non-instantiation-dependent traits are an <expr-primary> integer literal.
4372     const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
4373 
4374     if (!SAE->isInstantiationDependent()) {
4375       // Itanium C++ ABI:
4376       //   If the operand of a sizeof or alignof operator is not
4377       //   instantiation-dependent it is encoded as an integer literal
4378       //   reflecting the result of the operator.
4379       //
4380       //   If the result of the operator is implicitly converted to a known
4381       //   integer type, that type is used for the literal; otherwise, the type
4382       //   of std::size_t or std::ptrdiff_t is used.
4383       QualType T = (ImplicitlyConvertedToType.isNull() ||
4384                     !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
4385                                                     : ImplicitlyConvertedToType;
4386       llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
4387       mangleIntegerLiteral(T, V);
4388       break;
4389     }
4390 
4391     NotPrimaryExpr(); // But otherwise, they are not.
4392 
4393     auto MangleAlignofSizeofArg = [&] {
4394       if (SAE->isArgumentType()) {
4395         Out << 't';
4396         mangleType(SAE->getArgumentType());
4397       } else {
4398         Out << 'z';
4399         mangleExpression(SAE->getArgumentExpr());
4400       }
4401     };
4402 
4403     switch(SAE->getKind()) {
4404     case UETT_SizeOf:
4405       Out << 's';
4406       MangleAlignofSizeofArg();
4407       break;
4408     case UETT_PreferredAlignOf:
4409       // As of clang 12, we mangle __alignof__ differently than alignof. (They
4410       // have acted differently since Clang 8, but were previously mangled the
4411       // same.)
4412       if (Context.getASTContext().getLangOpts().getClangABICompat() >
4413           LangOptions::ClangABI::Ver11) {
4414         Out << "u11__alignof__";
4415         if (SAE->isArgumentType())
4416           mangleType(SAE->getArgumentType());
4417         else
4418           mangleTemplateArgExpr(SAE->getArgumentExpr());
4419         Out << 'E';
4420         break;
4421       }
4422       LLVM_FALLTHROUGH;
4423     case UETT_AlignOf:
4424       Out << 'a';
4425       MangleAlignofSizeofArg();
4426       break;
4427     case UETT_VecStep: {
4428       DiagnosticsEngine &Diags = Context.getDiags();
4429       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
4430                                      "cannot yet mangle vec_step expression");
4431       Diags.Report(DiagID);
4432       return;
4433     }
4434     case UETT_OpenMPRequiredSimdAlign: {
4435       DiagnosticsEngine &Diags = Context.getDiags();
4436       unsigned DiagID = Diags.getCustomDiagID(
4437           DiagnosticsEngine::Error,
4438           "cannot yet mangle __builtin_omp_required_simd_align expression");
4439       Diags.Report(DiagID);
4440       return;
4441     }
4442     }
4443     break;
4444   }
4445 
4446   case Expr::CXXThrowExprClass: {
4447     NotPrimaryExpr();
4448     const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
4449     //  <expression> ::= tw <expression>  # throw expression
4450     //               ::= tr               # rethrow
4451     if (TE->getSubExpr()) {
4452       Out << "tw";
4453       mangleExpression(TE->getSubExpr());
4454     } else {
4455       Out << "tr";
4456     }
4457     break;
4458   }
4459 
4460   case Expr::CXXTypeidExprClass: {
4461     NotPrimaryExpr();
4462     const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
4463     //  <expression> ::= ti <type>        # typeid (type)
4464     //               ::= te <expression>  # typeid (expression)
4465     if (TIE->isTypeOperand()) {
4466       Out << "ti";
4467       mangleType(TIE->getTypeOperand(Context.getASTContext()));
4468     } else {
4469       Out << "te";
4470       mangleExpression(TIE->getExprOperand());
4471     }
4472     break;
4473   }
4474 
4475   case Expr::CXXDeleteExprClass: {
4476     NotPrimaryExpr();
4477     const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
4478     //  <expression> ::= [gs] dl <expression>  # [::] delete expr
4479     //               ::= [gs] da <expression>  # [::] delete [] expr
4480     if (DE->isGlobalDelete()) Out << "gs";
4481     Out << (DE->isArrayForm() ? "da" : "dl");
4482     mangleExpression(DE->getArgument());
4483     break;
4484   }
4485 
4486   case Expr::UnaryOperatorClass: {
4487     NotPrimaryExpr();
4488     const UnaryOperator *UO = cast<UnaryOperator>(E);
4489     mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
4490                        /*Arity=*/1);
4491     mangleExpression(UO->getSubExpr());
4492     break;
4493   }
4494 
4495   case Expr::ArraySubscriptExprClass: {
4496     NotPrimaryExpr();
4497     const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
4498 
4499     // Array subscript is treated as a syntactically weird form of
4500     // binary operator.
4501     Out << "ix";
4502     mangleExpression(AE->getLHS());
4503     mangleExpression(AE->getRHS());
4504     break;
4505   }
4506 
4507   case Expr::MatrixSubscriptExprClass: {
4508     NotPrimaryExpr();
4509     const MatrixSubscriptExpr *ME = cast<MatrixSubscriptExpr>(E);
4510     Out << "ixix";
4511     mangleExpression(ME->getBase());
4512     mangleExpression(ME->getRowIdx());
4513     mangleExpression(ME->getColumnIdx());
4514     break;
4515   }
4516 
4517   case Expr::CompoundAssignOperatorClass: // fallthrough
4518   case Expr::BinaryOperatorClass: {
4519     NotPrimaryExpr();
4520     const BinaryOperator *BO = cast<BinaryOperator>(E);
4521     if (BO->getOpcode() == BO_PtrMemD)
4522       Out << "ds";
4523     else
4524       mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
4525                          /*Arity=*/2);
4526     mangleExpression(BO->getLHS());
4527     mangleExpression(BO->getRHS());
4528     break;
4529   }
4530 
4531   case Expr::CXXRewrittenBinaryOperatorClass: {
4532     NotPrimaryExpr();
4533     // The mangled form represents the original syntax.
4534     CXXRewrittenBinaryOperator::DecomposedForm Decomposed =
4535         cast<CXXRewrittenBinaryOperator>(E)->getDecomposedForm();
4536     mangleOperatorName(BinaryOperator::getOverloadedOperator(Decomposed.Opcode),
4537                        /*Arity=*/2);
4538     mangleExpression(Decomposed.LHS);
4539     mangleExpression(Decomposed.RHS);
4540     break;
4541   }
4542 
4543   case Expr::ConditionalOperatorClass: {
4544     NotPrimaryExpr();
4545     const ConditionalOperator *CO = cast<ConditionalOperator>(E);
4546     mangleOperatorName(OO_Conditional, /*Arity=*/3);
4547     mangleExpression(CO->getCond());
4548     mangleExpression(CO->getLHS(), Arity);
4549     mangleExpression(CO->getRHS(), Arity);
4550     break;
4551   }
4552 
4553   case Expr::ImplicitCastExprClass: {
4554     ImplicitlyConvertedToType = E->getType();
4555     E = cast<ImplicitCastExpr>(E)->getSubExpr();
4556     goto recurse;
4557   }
4558 
4559   case Expr::ObjCBridgedCastExprClass: {
4560     NotPrimaryExpr();
4561     // Mangle ownership casts as a vendor extended operator __bridge,
4562     // __bridge_transfer, or __bridge_retain.
4563     StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
4564     Out << "v1U" << Kind.size() << Kind;
4565     mangleCastExpression(E, "cv");
4566     break;
4567   }
4568 
4569   case Expr::CStyleCastExprClass:
4570     NotPrimaryExpr();
4571     mangleCastExpression(E, "cv");
4572     break;
4573 
4574   case Expr::CXXFunctionalCastExprClass: {
4575     NotPrimaryExpr();
4576     auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit();
4577     // FIXME: Add isImplicit to CXXConstructExpr.
4578     if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub))
4579       if (CCE->getParenOrBraceRange().isInvalid())
4580         Sub = CCE->getArg(0)->IgnoreImplicit();
4581     if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub))
4582       Sub = StdInitList->getSubExpr()->IgnoreImplicit();
4583     if (auto *IL = dyn_cast<InitListExpr>(Sub)) {
4584       Out << "tl";
4585       mangleType(E->getType());
4586       mangleInitListElements(IL);
4587       Out << "E";
4588     } else {
4589       mangleCastExpression(E, "cv");
4590     }
4591     break;
4592   }
4593 
4594   case Expr::CXXStaticCastExprClass:
4595     NotPrimaryExpr();
4596     mangleCastExpression(E, "sc");
4597     break;
4598   case Expr::CXXDynamicCastExprClass:
4599     NotPrimaryExpr();
4600     mangleCastExpression(E, "dc");
4601     break;
4602   case Expr::CXXReinterpretCastExprClass:
4603     NotPrimaryExpr();
4604     mangleCastExpression(E, "rc");
4605     break;
4606   case Expr::CXXConstCastExprClass:
4607     NotPrimaryExpr();
4608     mangleCastExpression(E, "cc");
4609     break;
4610   case Expr::CXXAddrspaceCastExprClass:
4611     NotPrimaryExpr();
4612     mangleCastExpression(E, "ac");
4613     break;
4614 
4615   case Expr::CXXOperatorCallExprClass: {
4616     NotPrimaryExpr();
4617     const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
4618     unsigned NumArgs = CE->getNumArgs();
4619     // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax
4620     // (the enclosing MemberExpr covers the syntactic portion).
4621     if (CE->getOperator() != OO_Arrow)
4622       mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
4623     // Mangle the arguments.
4624     for (unsigned i = 0; i != NumArgs; ++i)
4625       mangleExpression(CE->getArg(i));
4626     break;
4627   }
4628 
4629   case Expr::ParenExprClass:
4630     E = cast<ParenExpr>(E)->getSubExpr();
4631     goto recurse;
4632 
4633   case Expr::ConceptSpecializationExprClass: {
4634     //  <expr-primary> ::= L <mangled-name> E # external name
4635     Out << "L_Z";
4636     auto *CSE = cast<ConceptSpecializationExpr>(E);
4637     mangleTemplateName(CSE->getNamedConcept(),
4638                        CSE->getTemplateArguments().data(),
4639                        CSE->getTemplateArguments().size());
4640     Out << 'E';
4641     break;
4642   }
4643 
4644   case Expr::DeclRefExprClass:
4645     // MangleDeclRefExpr helper handles primary-vs-nonprimary
4646     MangleDeclRefExpr(cast<DeclRefExpr>(E)->getDecl());
4647     break;
4648 
4649   case Expr::SubstNonTypeTemplateParmPackExprClass:
4650     NotPrimaryExpr();
4651     // FIXME: not clear how to mangle this!
4652     // template <unsigned N...> class A {
4653     //   template <class U...> void foo(U (&x)[N]...);
4654     // };
4655     Out << "_SUBSTPACK_";
4656     break;
4657 
4658   case Expr::FunctionParmPackExprClass: {
4659     NotPrimaryExpr();
4660     // FIXME: not clear how to mangle this!
4661     const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
4662     Out << "v110_SUBSTPACK";
4663     MangleDeclRefExpr(FPPE->getParameterPack());
4664     break;
4665   }
4666 
4667   case Expr::DependentScopeDeclRefExprClass: {
4668     NotPrimaryExpr();
4669     const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
4670     mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(),
4671                          DRE->getTemplateArgs(), DRE->getNumTemplateArgs(),
4672                          Arity);
4673     break;
4674   }
4675 
4676   case Expr::CXXBindTemporaryExprClass:
4677     E = cast<CXXBindTemporaryExpr>(E)->getSubExpr();
4678     goto recurse;
4679 
4680   case Expr::ExprWithCleanupsClass:
4681     E = cast<ExprWithCleanups>(E)->getSubExpr();
4682     goto recurse;
4683 
4684   case Expr::FloatingLiteralClass: {
4685     // <expr-primary>
4686     const FloatingLiteral *FL = cast<FloatingLiteral>(E);
4687     mangleFloatLiteral(FL->getType(), FL->getValue());
4688     break;
4689   }
4690 
4691   case Expr::FixedPointLiteralClass:
4692     // Currently unimplemented -- might be <expr-primary> in future?
4693     mangleFixedPointLiteral();
4694     break;
4695 
4696   case Expr::CharacterLiteralClass:
4697     // <expr-primary>
4698     Out << 'L';
4699     mangleType(E->getType());
4700     Out << cast<CharacterLiteral>(E)->getValue();
4701     Out << 'E';
4702     break;
4703 
4704   // FIXME. __objc_yes/__objc_no are mangled same as true/false
4705   case Expr::ObjCBoolLiteralExprClass:
4706     // <expr-primary>
4707     Out << "Lb";
4708     Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4709     Out << 'E';
4710     break;
4711 
4712   case Expr::CXXBoolLiteralExprClass:
4713     // <expr-primary>
4714     Out << "Lb";
4715     Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4716     Out << 'E';
4717     break;
4718 
4719   case Expr::IntegerLiteralClass: {
4720     // <expr-primary>
4721     llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
4722     if (E->getType()->isSignedIntegerType())
4723       Value.setIsSigned(true);
4724     mangleIntegerLiteral(E->getType(), Value);
4725     break;
4726   }
4727 
4728   case Expr::ImaginaryLiteralClass: {
4729     // <expr-primary>
4730     const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
4731     // Mangle as if a complex literal.
4732     // Proposal from David Vandevoorde, 2010.06.30.
4733     Out << 'L';
4734     mangleType(E->getType());
4735     if (const FloatingLiteral *Imag =
4736           dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
4737       // Mangle a floating-point zero of the appropriate type.
4738       mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
4739       Out << '_';
4740       mangleFloat(Imag->getValue());
4741     } else {
4742       Out << "0_";
4743       llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
4744       if (IE->getSubExpr()->getType()->isSignedIntegerType())
4745         Value.setIsSigned(true);
4746       mangleNumber(Value);
4747     }
4748     Out << 'E';
4749     break;
4750   }
4751 
4752   case Expr::StringLiteralClass: {
4753     // <expr-primary>
4754     // Revised proposal from David Vandervoorde, 2010.07.15.
4755     Out << 'L';
4756     assert(isa<ConstantArrayType>(E->getType()));
4757     mangleType(E->getType());
4758     Out << 'E';
4759     break;
4760   }
4761 
4762   case Expr::GNUNullExprClass:
4763     // <expr-primary>
4764     // Mangle as if an integer literal 0.
4765     mangleIntegerLiteral(E->getType(), llvm::APSInt(32));
4766     break;
4767 
4768   case Expr::CXXNullPtrLiteralExprClass: {
4769     // <expr-primary>
4770     Out << "LDnE";
4771     break;
4772   }
4773 
4774   case Expr::PackExpansionExprClass:
4775     NotPrimaryExpr();
4776     Out << "sp";
4777     mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
4778     break;
4779 
4780   case Expr::SizeOfPackExprClass: {
4781     NotPrimaryExpr();
4782     auto *SPE = cast<SizeOfPackExpr>(E);
4783     if (SPE->isPartiallySubstituted()) {
4784       Out << "sP";
4785       for (const auto &A : SPE->getPartialArguments())
4786         mangleTemplateArg(A, false);
4787       Out << "E";
4788       break;
4789     }
4790 
4791     Out << "sZ";
4792     const NamedDecl *Pack = SPE->getPack();
4793     if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
4794       mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
4795     else if (const NonTypeTemplateParmDecl *NTTP
4796                 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
4797       mangleTemplateParameter(NTTP->getDepth(), NTTP->getIndex());
4798     else if (const TemplateTemplateParmDecl *TempTP
4799                                     = dyn_cast<TemplateTemplateParmDecl>(Pack))
4800       mangleTemplateParameter(TempTP->getDepth(), TempTP->getIndex());
4801     else
4802       mangleFunctionParam(cast<ParmVarDecl>(Pack));
4803     break;
4804   }
4805 
4806   case Expr::MaterializeTemporaryExprClass:
4807     E = cast<MaterializeTemporaryExpr>(E)->getSubExpr();
4808     goto recurse;
4809 
4810   case Expr::CXXFoldExprClass: {
4811     NotPrimaryExpr();
4812     auto *FE = cast<CXXFoldExpr>(E);
4813     if (FE->isLeftFold())
4814       Out << (FE->getInit() ? "fL" : "fl");
4815     else
4816       Out << (FE->getInit() ? "fR" : "fr");
4817 
4818     if (FE->getOperator() == BO_PtrMemD)
4819       Out << "ds";
4820     else
4821       mangleOperatorName(
4822           BinaryOperator::getOverloadedOperator(FE->getOperator()),
4823           /*Arity=*/2);
4824 
4825     if (FE->getLHS())
4826       mangleExpression(FE->getLHS());
4827     if (FE->getRHS())
4828       mangleExpression(FE->getRHS());
4829     break;
4830   }
4831 
4832   case Expr::CXXThisExprClass:
4833     NotPrimaryExpr();
4834     Out << "fpT";
4835     break;
4836 
4837   case Expr::CoawaitExprClass:
4838     // FIXME: Propose a non-vendor mangling.
4839     NotPrimaryExpr();
4840     Out << "v18co_await";
4841     mangleExpression(cast<CoawaitExpr>(E)->getOperand());
4842     break;
4843 
4844   case Expr::DependentCoawaitExprClass:
4845     // FIXME: Propose a non-vendor mangling.
4846     NotPrimaryExpr();
4847     Out << "v18co_await";
4848     mangleExpression(cast<DependentCoawaitExpr>(E)->getOperand());
4849     break;
4850 
4851   case Expr::CoyieldExprClass:
4852     // FIXME: Propose a non-vendor mangling.
4853     NotPrimaryExpr();
4854     Out << "v18co_yield";
4855     mangleExpression(cast<CoawaitExpr>(E)->getOperand());
4856     break;
4857   }
4858 
4859   if (AsTemplateArg && !IsPrimaryExpr)
4860     Out << 'E';
4861 }
4862 
4863 /// Mangle an expression which refers to a parameter variable.
4864 ///
4865 /// <expression>     ::= <function-param>
4866 /// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
4867 /// <function-param> ::= fp <top-level CV-qualifiers>
4868 ///                      <parameter-2 non-negative number> _ # L == 0, I > 0
4869 /// <function-param> ::= fL <L-1 non-negative number>
4870 ///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
4871 /// <function-param> ::= fL <L-1 non-negative number>
4872 ///                      p <top-level CV-qualifiers>
4873 ///                      <I-1 non-negative number> _         # L > 0, I > 0
4874 ///
4875 /// L is the nesting depth of the parameter, defined as 1 if the
4876 /// parameter comes from the innermost function prototype scope
4877 /// enclosing the current context, 2 if from the next enclosing
4878 /// function prototype scope, and so on, with one special case: if
4879 /// we've processed the full parameter clause for the innermost
4880 /// function type, then L is one less.  This definition conveniently
4881 /// makes it irrelevant whether a function's result type was written
4882 /// trailing or leading, but is otherwise overly complicated; the
4883 /// numbering was first designed without considering references to
4884 /// parameter in locations other than return types, and then the
4885 /// mangling had to be generalized without changing the existing
4886 /// manglings.
4887 ///
4888 /// I is the zero-based index of the parameter within its parameter
4889 /// declaration clause.  Note that the original ABI document describes
4890 /// this using 1-based ordinals.
4891 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
4892   unsigned parmDepth = parm->getFunctionScopeDepth();
4893   unsigned parmIndex = parm->getFunctionScopeIndex();
4894 
4895   // Compute 'L'.
4896   // parmDepth does not include the declaring function prototype.
4897   // FunctionTypeDepth does account for that.
4898   assert(parmDepth < FunctionTypeDepth.getDepth());
4899   unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
4900   if (FunctionTypeDepth.isInResultType())
4901     nestingDepth--;
4902 
4903   if (nestingDepth == 0) {
4904     Out << "fp";
4905   } else {
4906     Out << "fL" << (nestingDepth - 1) << 'p';
4907   }
4908 
4909   // Top-level qualifiers.  We don't have to worry about arrays here,
4910   // because parameters declared as arrays should already have been
4911   // transformed to have pointer type. FIXME: apparently these don't
4912   // get mangled if used as an rvalue of a known non-class type?
4913   assert(!parm->getType()->isArrayType()
4914          && "parameter's type is still an array type?");
4915 
4916   if (const DependentAddressSpaceType *DAST =
4917       dyn_cast<DependentAddressSpaceType>(parm->getType())) {
4918     mangleQualifiers(DAST->getPointeeType().getQualifiers(), DAST);
4919   } else {
4920     mangleQualifiers(parm->getType().getQualifiers());
4921   }
4922 
4923   // Parameter index.
4924   if (parmIndex != 0) {
4925     Out << (parmIndex - 1);
4926   }
4927   Out << '_';
4928 }
4929 
4930 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T,
4931                                        const CXXRecordDecl *InheritedFrom) {
4932   // <ctor-dtor-name> ::= C1  # complete object constructor
4933   //                  ::= C2  # base object constructor
4934   //                  ::= CI1 <type> # complete inheriting constructor
4935   //                  ::= CI2 <type> # base inheriting constructor
4936   //
4937   // In addition, C5 is a comdat name with C1 and C2 in it.
4938   Out << 'C';
4939   if (InheritedFrom)
4940     Out << 'I';
4941   switch (T) {
4942   case Ctor_Complete:
4943     Out << '1';
4944     break;
4945   case Ctor_Base:
4946     Out << '2';
4947     break;
4948   case Ctor_Comdat:
4949     Out << '5';
4950     break;
4951   case Ctor_DefaultClosure:
4952   case Ctor_CopyingClosure:
4953     llvm_unreachable("closure constructors don't exist for the Itanium ABI!");
4954   }
4955   if (InheritedFrom)
4956     mangleName(InheritedFrom);
4957 }
4958 
4959 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
4960   // <ctor-dtor-name> ::= D0  # deleting destructor
4961   //                  ::= D1  # complete object destructor
4962   //                  ::= D2  # base object destructor
4963   //
4964   // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
4965   switch (T) {
4966   case Dtor_Deleting:
4967     Out << "D0";
4968     break;
4969   case Dtor_Complete:
4970     Out << "D1";
4971     break;
4972   case Dtor_Base:
4973     Out << "D2";
4974     break;
4975   case Dtor_Comdat:
4976     Out << "D5";
4977     break;
4978   }
4979 }
4980 
4981 namespace {
4982 // Helper to provide ancillary information on a template used to mangle its
4983 // arguments.
4984 struct TemplateArgManglingInfo {
4985   TemplateDecl *ResolvedTemplate = nullptr;
4986   bool SeenPackExpansionIntoNonPack = false;
4987   const NamedDecl *UnresolvedExpandedPack = nullptr;
4988 
4989   TemplateArgManglingInfo(TemplateName TN) {
4990     if (TemplateDecl *TD = TN.getAsTemplateDecl())
4991       ResolvedTemplate = TD;
4992   }
4993 
4994   /// Do we need to mangle template arguments with exactly correct types?
4995   ///
4996   /// This should be called exactly once for each parameter / argument pair, in
4997   /// order.
4998   bool needExactType(unsigned ParamIdx, const TemplateArgument &Arg) {
4999     // We need correct types when the template-name is unresolved or when it
5000     // names a template that is able to be overloaded.
5001     if (!ResolvedTemplate || SeenPackExpansionIntoNonPack)
5002       return true;
5003 
5004     // Move to the next parameter.
5005     const NamedDecl *Param = UnresolvedExpandedPack;
5006     if (!Param) {
5007       assert(ParamIdx < ResolvedTemplate->getTemplateParameters()->size() &&
5008              "no parameter for argument");
5009       Param = ResolvedTemplate->getTemplateParameters()->getParam(ParamIdx);
5010 
5011       // If we reach an expanded parameter pack whose argument isn't in pack
5012       // form, that means Sema couldn't figure out which arguments belonged to
5013       // it, because it contains a pack expansion. Track the expanded pack for
5014       // all further template arguments until we hit that pack expansion.
5015       if (Param->isParameterPack() && Arg.getKind() != TemplateArgument::Pack) {
5016         assert(getExpandedPackSize(Param) &&
5017                "failed to form pack argument for parameter pack");
5018         UnresolvedExpandedPack = Param;
5019       }
5020     }
5021 
5022     // If we encounter a pack argument that is expanded into a non-pack
5023     // parameter, we can no longer track parameter / argument correspondence,
5024     // and need to use exact types from this point onwards.
5025     if (Arg.isPackExpansion() &&
5026         (!Param->isParameterPack() || UnresolvedExpandedPack)) {
5027       SeenPackExpansionIntoNonPack = true;
5028       return true;
5029     }
5030 
5031     // We need exact types for function template arguments because they might be
5032     // overloaded on template parameter type. As a special case, a member
5033     // function template of a generic lambda is not overloadable.
5034     if (auto *FTD = dyn_cast<FunctionTemplateDecl>(ResolvedTemplate)) {
5035       auto *RD = dyn_cast<CXXRecordDecl>(FTD->getDeclContext());
5036       if (!RD || !RD->isGenericLambda())
5037         return true;
5038     }
5039 
5040     // Otherwise, we only need a correct type if the parameter has a deduced
5041     // type.
5042     //
5043     // Note: for an expanded parameter pack, getType() returns the type prior
5044     // to expansion. We could ask for the expanded type with getExpansionType(),
5045     // but it doesn't matter because substitution and expansion don't affect
5046     // whether a deduced type appears in the type.
5047     auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param);
5048     return NTTP && NTTP->getType()->getContainedDeducedType();
5049   }
5050 };
5051 }
5052 
5053 void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
5054                                         const TemplateArgumentLoc *TemplateArgs,
5055                                         unsigned NumTemplateArgs) {
5056   // <template-args> ::= I <template-arg>+ E
5057   Out << 'I';
5058   TemplateArgManglingInfo Info(TN);
5059   for (unsigned i = 0; i != NumTemplateArgs; ++i)
5060     mangleTemplateArg(TemplateArgs[i].getArgument(),
5061                       Info.needExactType(i, TemplateArgs[i].getArgument()));
5062   Out << 'E';
5063 }
5064 
5065 void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
5066                                         const TemplateArgumentList &AL) {
5067   // <template-args> ::= I <template-arg>+ E
5068   Out << 'I';
5069   TemplateArgManglingInfo Info(TN);
5070   for (unsigned i = 0, e = AL.size(); i != e; ++i)
5071     mangleTemplateArg(AL[i], Info.needExactType(i, AL[i]));
5072   Out << 'E';
5073 }
5074 
5075 void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
5076                                         const TemplateArgument *TemplateArgs,
5077                                         unsigned NumTemplateArgs) {
5078   // <template-args> ::= I <template-arg>+ E
5079   Out << 'I';
5080   TemplateArgManglingInfo Info(TN);
5081   for (unsigned i = 0; i != NumTemplateArgs; ++i)
5082     mangleTemplateArg(TemplateArgs[i], Info.needExactType(i, TemplateArgs[i]));
5083   Out << 'E';
5084 }
5085 
5086 void CXXNameMangler::mangleTemplateArg(TemplateArgument A, bool NeedExactType) {
5087   // <template-arg> ::= <type>              # type or template
5088   //                ::= X <expression> E    # expression
5089   //                ::= <expr-primary>      # simple expressions
5090   //                ::= J <template-arg>* E # argument pack
5091   if (!A.isInstantiationDependent() || A.isDependent())
5092     A = Context.getASTContext().getCanonicalTemplateArgument(A);
5093 
5094   switch (A.getKind()) {
5095   case TemplateArgument::Null:
5096     llvm_unreachable("Cannot mangle NULL template argument");
5097 
5098   case TemplateArgument::Type:
5099     mangleType(A.getAsType());
5100     break;
5101   case TemplateArgument::Template:
5102     // This is mangled as <type>.
5103     mangleType(A.getAsTemplate());
5104     break;
5105   case TemplateArgument::TemplateExpansion:
5106     // <type>  ::= Dp <type>          # pack expansion (C++0x)
5107     Out << "Dp";
5108     mangleType(A.getAsTemplateOrTemplatePattern());
5109     break;
5110   case TemplateArgument::Expression:
5111     mangleTemplateArgExpr(A.getAsExpr());
5112     break;
5113   case TemplateArgument::Integral:
5114     mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
5115     break;
5116   case TemplateArgument::Declaration: {
5117     //  <expr-primary> ::= L <mangled-name> E # external name
5118     ValueDecl *D = A.getAsDecl();
5119 
5120     // Template parameter objects are modeled by reproducing a source form
5121     // produced as if by aggregate initialization.
5122     if (A.getParamTypeForDecl()->isRecordType()) {
5123       auto *TPO = cast<TemplateParamObjectDecl>(D);
5124       mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(),
5125                                TPO->getValue(), /*TopLevel=*/true,
5126                                NeedExactType);
5127       break;
5128     }
5129 
5130     ASTContext &Ctx = Context.getASTContext();
5131     APValue Value;
5132     if (D->isCXXInstanceMember())
5133       // Simple pointer-to-member with no conversion.
5134       Value = APValue(D, /*IsDerivedMember=*/false, /*Path=*/{});
5135     else if (D->getType()->isArrayType() &&
5136              Ctx.hasSimilarType(Ctx.getDecayedType(D->getType()),
5137                                 A.getParamTypeForDecl()) &&
5138              Ctx.getLangOpts().getClangABICompat() >
5139                  LangOptions::ClangABI::Ver11)
5140       // Build a value corresponding to this implicit array-to-pointer decay.
5141       Value = APValue(APValue::LValueBase(D), CharUnits::Zero(),
5142                       {APValue::LValuePathEntry::ArrayIndex(0)},
5143                       /*OnePastTheEnd=*/false);
5144     else
5145       // Regular pointer or reference to a declaration.
5146       Value = APValue(APValue::LValueBase(D), CharUnits::Zero(),
5147                       ArrayRef<APValue::LValuePathEntry>(),
5148                       /*OnePastTheEnd=*/false);
5149     mangleValueInTemplateArg(A.getParamTypeForDecl(), Value, /*TopLevel=*/true,
5150                              NeedExactType);
5151     break;
5152   }
5153   case TemplateArgument::NullPtr: {
5154     mangleNullPointer(A.getNullPtrType());
5155     break;
5156   }
5157   case TemplateArgument::Pack: {
5158     //  <template-arg> ::= J <template-arg>* E
5159     Out << 'J';
5160     for (const auto &P : A.pack_elements())
5161       mangleTemplateArg(P, NeedExactType);
5162     Out << 'E';
5163   }
5164   }
5165 }
5166 
5167 void CXXNameMangler::mangleTemplateArgExpr(const Expr *E) {
5168   ASTContext &Ctx = Context.getASTContext();
5169   if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver11) {
5170     mangleExpression(E, UnknownArity, /*AsTemplateArg=*/true);
5171     return;
5172   }
5173 
5174   // Prior to Clang 12, we didn't omit the X .. E around <expr-primary>
5175   // correctly in cases where the template argument was
5176   // constructed from an expression rather than an already-evaluated
5177   // literal. In such a case, we would then e.g. emit 'XLi0EE' instead of
5178   // 'Li0E'.
5179   //
5180   // We did special-case DeclRefExpr to attempt to DTRT for that one
5181   // expression-kind, but while doing so, unfortunately handled ParmVarDecl
5182   // (subtype of VarDecl) _incorrectly_, and emitted 'L_Z .. E' instead of
5183   // the proper 'Xfp_E'.
5184   E = E->IgnoreParenImpCasts();
5185   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
5186     const ValueDecl *D = DRE->getDecl();
5187     if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
5188       Out << 'L';
5189       mangle(D);
5190       Out << 'E';
5191       return;
5192     }
5193   }
5194   Out << 'X';
5195   mangleExpression(E);
5196   Out << 'E';
5197 }
5198 
5199 /// Determine whether a given value is equivalent to zero-initialization for
5200 /// the purpose of discarding a trailing portion of a 'tl' mangling.
5201 ///
5202 /// Note that this is not in general equivalent to determining whether the
5203 /// value has an all-zeroes bit pattern.
5204 static bool isZeroInitialized(QualType T, const APValue &V) {
5205   // FIXME: mangleValueInTemplateArg has quadratic time complexity in
5206   // pathological cases due to using this, but it's a little awkward
5207   // to do this in linear time in general.
5208   switch (V.getKind()) {
5209   case APValue::None:
5210   case APValue::Indeterminate:
5211   case APValue::AddrLabelDiff:
5212     return false;
5213 
5214   case APValue::Struct: {
5215     const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5216     assert(RD && "unexpected type for record value");
5217     unsigned I = 0;
5218     for (const CXXBaseSpecifier &BS : RD->bases()) {
5219       if (!isZeroInitialized(BS.getType(), V.getStructBase(I)))
5220         return false;
5221       ++I;
5222     }
5223     I = 0;
5224     for (const FieldDecl *FD : RD->fields()) {
5225       if (!FD->isUnnamedBitfield() &&
5226           !isZeroInitialized(FD->getType(), V.getStructField(I)))
5227         return false;
5228       ++I;
5229     }
5230     return true;
5231   }
5232 
5233   case APValue::Union: {
5234     const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5235     assert(RD && "unexpected type for union value");
5236     // Zero-initialization zeroes the first non-unnamed-bitfield field, if any.
5237     for (const FieldDecl *FD : RD->fields()) {
5238       if (!FD->isUnnamedBitfield())
5239         return V.getUnionField() && declaresSameEntity(FD, V.getUnionField()) &&
5240                isZeroInitialized(FD->getType(), V.getUnionValue());
5241     }
5242     // If there are no fields (other than unnamed bitfields), the value is
5243     // necessarily zero-initialized.
5244     return true;
5245   }
5246 
5247   case APValue::Array: {
5248     QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0);
5249     for (unsigned I = 0, N = V.getArrayInitializedElts(); I != N; ++I)
5250       if (!isZeroInitialized(ElemT, V.getArrayInitializedElt(I)))
5251         return false;
5252     return !V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller());
5253   }
5254 
5255   case APValue::Vector: {
5256     const VectorType *VT = T->castAs<VectorType>();
5257     for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I)
5258       if (!isZeroInitialized(VT->getElementType(), V.getVectorElt(I)))
5259         return false;
5260     return true;
5261   }
5262 
5263   case APValue::Int:
5264     return !V.getInt();
5265 
5266   case APValue::Float:
5267     return V.getFloat().isPosZero();
5268 
5269   case APValue::FixedPoint:
5270     return !V.getFixedPoint().getValue();
5271 
5272   case APValue::ComplexFloat:
5273     return V.getComplexFloatReal().isPosZero() &&
5274            V.getComplexFloatImag().isPosZero();
5275 
5276   case APValue::ComplexInt:
5277     return !V.getComplexIntReal() && !V.getComplexIntImag();
5278 
5279   case APValue::LValue:
5280     return V.isNullPointer();
5281 
5282   case APValue::MemberPointer:
5283     return !V.getMemberPointerDecl();
5284   }
5285 
5286   llvm_unreachable("Unhandled APValue::ValueKind enum");
5287 }
5288 
5289 static QualType getLValueType(ASTContext &Ctx, const APValue &LV) {
5290   QualType T = LV.getLValueBase().getType();
5291   for (APValue::LValuePathEntry E : LV.getLValuePath()) {
5292     if (const ArrayType *AT = Ctx.getAsArrayType(T))
5293       T = AT->getElementType();
5294     else if (const FieldDecl *FD =
5295                  dyn_cast<FieldDecl>(E.getAsBaseOrMember().getPointer()))
5296       T = FD->getType();
5297     else
5298       T = Ctx.getRecordType(
5299           cast<CXXRecordDecl>(E.getAsBaseOrMember().getPointer()));
5300   }
5301   return T;
5302 }
5303 
5304 void CXXNameMangler::mangleValueInTemplateArg(QualType T, const APValue &V,
5305                                               bool TopLevel,
5306                                               bool NeedExactType) {
5307   // Ignore all top-level cv-qualifiers, to match GCC.
5308   Qualifiers Quals;
5309   T = getASTContext().getUnqualifiedArrayType(T, Quals);
5310 
5311   // A top-level expression that's not a primary expression is wrapped in X...E.
5312   bool IsPrimaryExpr = true;
5313   auto NotPrimaryExpr = [&] {
5314     if (TopLevel && IsPrimaryExpr)
5315       Out << 'X';
5316     IsPrimaryExpr = false;
5317   };
5318 
5319   // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63.
5320   switch (V.getKind()) {
5321   case APValue::None:
5322   case APValue::Indeterminate:
5323     Out << 'L';
5324     mangleType(T);
5325     Out << 'E';
5326     break;
5327 
5328   case APValue::AddrLabelDiff:
5329     llvm_unreachable("unexpected value kind in template argument");
5330 
5331   case APValue::Struct: {
5332     const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5333     assert(RD && "unexpected type for record value");
5334 
5335     // Drop trailing zero-initialized elements.
5336     llvm::SmallVector<const FieldDecl *, 16> Fields(RD->field_begin(),
5337                                                     RD->field_end());
5338     while (
5339         !Fields.empty() &&
5340         (Fields.back()->isUnnamedBitfield() ||
5341          isZeroInitialized(Fields.back()->getType(),
5342                            V.getStructField(Fields.back()->getFieldIndex())))) {
5343       Fields.pop_back();
5344     }
5345     llvm::ArrayRef<CXXBaseSpecifier> Bases(RD->bases_begin(), RD->bases_end());
5346     if (Fields.empty()) {
5347       while (!Bases.empty() &&
5348              isZeroInitialized(Bases.back().getType(),
5349                                V.getStructBase(Bases.size() - 1)))
5350         Bases = Bases.drop_back();
5351     }
5352 
5353     // <expression> ::= tl <type> <braced-expression>* E
5354     NotPrimaryExpr();
5355     Out << "tl";
5356     mangleType(T);
5357     for (unsigned I = 0, N = Bases.size(); I != N; ++I)
5358       mangleValueInTemplateArg(Bases[I].getType(), V.getStructBase(I), false);
5359     for (unsigned I = 0, N = Fields.size(); I != N; ++I) {
5360       if (Fields[I]->isUnnamedBitfield())
5361         continue;
5362       mangleValueInTemplateArg(Fields[I]->getType(),
5363                                V.getStructField(Fields[I]->getFieldIndex()),
5364                                false);
5365     }
5366     Out << 'E';
5367     break;
5368   }
5369 
5370   case APValue::Union: {
5371     assert(T->getAsCXXRecordDecl() && "unexpected type for union value");
5372     const FieldDecl *FD = V.getUnionField();
5373 
5374     if (!FD) {
5375       Out << 'L';
5376       mangleType(T);
5377       Out << 'E';
5378       break;
5379     }
5380 
5381     // <braced-expression> ::= di <field source-name> <braced-expression>
5382     NotPrimaryExpr();
5383     Out << "tl";
5384     mangleType(T);
5385     if (!isZeroInitialized(T, V)) {
5386       Out << "di";
5387       mangleSourceName(FD->getIdentifier());
5388       mangleValueInTemplateArg(FD->getType(), V.getUnionValue(), false);
5389     }
5390     Out << 'E';
5391     break;
5392   }
5393 
5394   case APValue::Array: {
5395     QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0);
5396 
5397     NotPrimaryExpr();
5398     Out << "tl";
5399     mangleType(T);
5400 
5401     // Drop trailing zero-initialized elements.
5402     unsigned N = V.getArraySize();
5403     if (!V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller())) {
5404       N = V.getArrayInitializedElts();
5405       while (N && isZeroInitialized(ElemT, V.getArrayInitializedElt(N - 1)))
5406         --N;
5407     }
5408 
5409     for (unsigned I = 0; I != N; ++I) {
5410       const APValue &Elem = I < V.getArrayInitializedElts()
5411                                 ? V.getArrayInitializedElt(I)
5412                                 : V.getArrayFiller();
5413       mangleValueInTemplateArg(ElemT, Elem, false);
5414     }
5415     Out << 'E';
5416     break;
5417   }
5418 
5419   case APValue::Vector: {
5420     const VectorType *VT = T->castAs<VectorType>();
5421 
5422     NotPrimaryExpr();
5423     Out << "tl";
5424     mangleType(T);
5425     unsigned N = V.getVectorLength();
5426     while (N && isZeroInitialized(VT->getElementType(), V.getVectorElt(N - 1)))
5427       --N;
5428     for (unsigned I = 0; I != N; ++I)
5429       mangleValueInTemplateArg(VT->getElementType(), V.getVectorElt(I), false);
5430     Out << 'E';
5431     break;
5432   }
5433 
5434   case APValue::Int:
5435     mangleIntegerLiteral(T, V.getInt());
5436     break;
5437 
5438   case APValue::Float:
5439     mangleFloatLiteral(T, V.getFloat());
5440     break;
5441 
5442   case APValue::FixedPoint:
5443     mangleFixedPointLiteral();
5444     break;
5445 
5446   case APValue::ComplexFloat: {
5447     const ComplexType *CT = T->castAs<ComplexType>();
5448     NotPrimaryExpr();
5449     Out << "tl";
5450     mangleType(T);
5451     if (!V.getComplexFloatReal().isPosZero() ||
5452         !V.getComplexFloatImag().isPosZero())
5453       mangleFloatLiteral(CT->getElementType(), V.getComplexFloatReal());
5454     if (!V.getComplexFloatImag().isPosZero())
5455       mangleFloatLiteral(CT->getElementType(), V.getComplexFloatImag());
5456     Out << 'E';
5457     break;
5458   }
5459 
5460   case APValue::ComplexInt: {
5461     const ComplexType *CT = T->castAs<ComplexType>();
5462     NotPrimaryExpr();
5463     Out << "tl";
5464     mangleType(T);
5465     if (V.getComplexIntReal().getBoolValue() ||
5466         V.getComplexIntImag().getBoolValue())
5467       mangleIntegerLiteral(CT->getElementType(), V.getComplexIntReal());
5468     if (V.getComplexIntImag().getBoolValue())
5469       mangleIntegerLiteral(CT->getElementType(), V.getComplexIntImag());
5470     Out << 'E';
5471     break;
5472   }
5473 
5474   case APValue::LValue: {
5475     // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47.
5476     assert((T->isPointerType() || T->isReferenceType()) &&
5477            "unexpected type for LValue template arg");
5478 
5479     if (V.isNullPointer()) {
5480       mangleNullPointer(T);
5481       break;
5482     }
5483 
5484     APValue::LValueBase B = V.getLValueBase();
5485     if (!B) {
5486       // Non-standard mangling for integer cast to a pointer; this can only
5487       // occur as an extension.
5488       CharUnits Offset = V.getLValueOffset();
5489       if (Offset.isZero()) {
5490         // This is reinterpret_cast<T*>(0), not a null pointer. Mangle this as
5491         // a cast, because L <type> 0 E means something else.
5492         NotPrimaryExpr();
5493         Out << "rc";
5494         mangleType(T);
5495         Out << "Li0E";
5496         if (TopLevel)
5497           Out << 'E';
5498       } else {
5499         Out << "L";
5500         mangleType(T);
5501         Out << Offset.getQuantity() << 'E';
5502       }
5503       break;
5504     }
5505 
5506     ASTContext &Ctx = Context.getASTContext();
5507 
5508     enum { Base, Offset, Path } Kind;
5509     if (!V.hasLValuePath()) {
5510       // Mangle as (T*)((char*)&base + N).
5511       if (T->isReferenceType()) {
5512         NotPrimaryExpr();
5513         Out << "decvP";
5514         mangleType(T->getPointeeType());
5515       } else {
5516         NotPrimaryExpr();
5517         Out << "cv";
5518         mangleType(T);
5519       }
5520       Out << "plcvPcad";
5521       Kind = Offset;
5522     } else {
5523       if (!V.getLValuePath().empty() || V.isLValueOnePastTheEnd()) {
5524         NotPrimaryExpr();
5525         // A final conversion to the template parameter's type is usually
5526         // folded into the 'so' mangling, but we can't do that for 'void*'
5527         // parameters without introducing collisions.
5528         if (NeedExactType && T->isVoidPointerType()) {
5529           Out << "cv";
5530           mangleType(T);
5531         }
5532         if (T->isPointerType())
5533           Out << "ad";
5534         Out << "so";
5535         mangleType(T->isVoidPointerType()
5536                        ? getLValueType(Ctx, V).getUnqualifiedType()
5537                        : T->getPointeeType());
5538         Kind = Path;
5539       } else {
5540         if (NeedExactType &&
5541             !Ctx.hasSameType(T->getPointeeType(), getLValueType(Ctx, V)) &&
5542             Ctx.getLangOpts().getClangABICompat() >
5543                 LangOptions::ClangABI::Ver11) {
5544           NotPrimaryExpr();
5545           Out << "cv";
5546           mangleType(T);
5547         }
5548         if (T->isPointerType()) {
5549           NotPrimaryExpr();
5550           Out << "ad";
5551         }
5552         Kind = Base;
5553       }
5554     }
5555 
5556     QualType TypeSoFar = B.getType();
5557     if (auto *VD = B.dyn_cast<const ValueDecl*>()) {
5558       Out << 'L';
5559       mangle(VD);
5560       Out << 'E';
5561     } else if (auto *E = B.dyn_cast<const Expr*>()) {
5562       NotPrimaryExpr();
5563       mangleExpression(E);
5564     } else if (auto TI = B.dyn_cast<TypeInfoLValue>()) {
5565       NotPrimaryExpr();
5566       Out << "ti";
5567       mangleType(QualType(TI.getType(), 0));
5568     } else {
5569       // We should never see dynamic allocations here.
5570       llvm_unreachable("unexpected lvalue base kind in template argument");
5571     }
5572 
5573     switch (Kind) {
5574     case Base:
5575       break;
5576 
5577     case Offset:
5578       Out << 'L';
5579       mangleType(Ctx.getPointerDiffType());
5580       mangleNumber(V.getLValueOffset().getQuantity());
5581       Out << 'E';
5582       break;
5583 
5584     case Path:
5585       // <expression> ::= so <referent type> <expr> [<offset number>]
5586       //                  <union-selector>* [p] E
5587       if (!V.getLValueOffset().isZero())
5588         mangleNumber(V.getLValueOffset().getQuantity());
5589 
5590       // We model a past-the-end array pointer as array indexing with index N,
5591       // not with the "past the end" flag. Compensate for that.
5592       bool OnePastTheEnd = V.isLValueOnePastTheEnd();
5593 
5594       for (APValue::LValuePathEntry E : V.getLValuePath()) {
5595         if (auto *AT = TypeSoFar->getAsArrayTypeUnsafe()) {
5596           if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
5597             OnePastTheEnd |= CAT->getSize() == E.getAsArrayIndex();
5598           TypeSoFar = AT->getElementType();
5599         } else {
5600           const Decl *D = E.getAsBaseOrMember().getPointer();
5601           if (auto *FD = dyn_cast<FieldDecl>(D)) {
5602             // <union-selector> ::= _ <number>
5603             if (FD->getParent()->isUnion()) {
5604               Out << '_';
5605               if (FD->getFieldIndex())
5606                 Out << (FD->getFieldIndex() - 1);
5607             }
5608             TypeSoFar = FD->getType();
5609           } else {
5610             TypeSoFar = Ctx.getRecordType(cast<CXXRecordDecl>(D));
5611           }
5612         }
5613       }
5614 
5615       if (OnePastTheEnd)
5616         Out << 'p';
5617       Out << 'E';
5618       break;
5619     }
5620 
5621     break;
5622   }
5623 
5624   case APValue::MemberPointer:
5625     // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47.
5626     if (!V.getMemberPointerDecl()) {
5627       mangleNullPointer(T);
5628       break;
5629     }
5630 
5631     ASTContext &Ctx = Context.getASTContext();
5632 
5633     NotPrimaryExpr();
5634     if (!V.getMemberPointerPath().empty()) {
5635       Out << "mc";
5636       mangleType(T);
5637     } else if (NeedExactType &&
5638                !Ctx.hasSameType(
5639                    T->castAs<MemberPointerType>()->getPointeeType(),
5640                    V.getMemberPointerDecl()->getType()) &&
5641                Ctx.getLangOpts().getClangABICompat() >
5642                    LangOptions::ClangABI::Ver11) {
5643       Out << "cv";
5644       mangleType(T);
5645     }
5646     Out << "adL";
5647     mangle(V.getMemberPointerDecl());
5648     Out << 'E';
5649     if (!V.getMemberPointerPath().empty()) {
5650       CharUnits Offset =
5651           Context.getASTContext().getMemberPointerPathAdjustment(V);
5652       if (!Offset.isZero())
5653         mangleNumber(Offset.getQuantity());
5654       Out << 'E';
5655     }
5656     break;
5657   }
5658 
5659   if (TopLevel && !IsPrimaryExpr)
5660     Out << 'E';
5661 }
5662 
5663 void CXXNameMangler::mangleTemplateParameter(unsigned Depth, unsigned Index) {
5664   // <template-param> ::= T_    # first template parameter
5665   //                  ::= T <parameter-2 non-negative number> _
5666   //                  ::= TL <L-1 non-negative number> __
5667   //                  ::= TL <L-1 non-negative number> _
5668   //                         <parameter-2 non-negative number> _
5669   //
5670   // The latter two manglings are from a proposal here:
5671   // https://github.com/itanium-cxx-abi/cxx-abi/issues/31#issuecomment-528122117
5672   Out << 'T';
5673   if (Depth != 0)
5674     Out << 'L' << (Depth - 1) << '_';
5675   if (Index != 0)
5676     Out << (Index - 1);
5677   Out << '_';
5678 }
5679 
5680 void CXXNameMangler::mangleSeqID(unsigned SeqID) {
5681   if (SeqID == 1)
5682     Out << '0';
5683   else if (SeqID > 1) {
5684     SeqID--;
5685 
5686     // <seq-id> is encoded in base-36, using digits and upper case letters.
5687     char Buffer[7]; // log(2**32) / log(36) ~= 7
5688     MutableArrayRef<char> BufferRef(Buffer);
5689     MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
5690 
5691     for (; SeqID != 0; SeqID /= 36) {
5692       unsigned C = SeqID % 36;
5693       *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
5694     }
5695 
5696     Out.write(I.base(), I - BufferRef.rbegin());
5697   }
5698   Out << '_';
5699 }
5700 
5701 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
5702   bool result = mangleSubstitution(tname);
5703   assert(result && "no existing substitution for template name");
5704   (void) result;
5705 }
5706 
5707 // <substitution> ::= S <seq-id> _
5708 //                ::= S_
5709 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
5710   // Try one of the standard substitutions first.
5711   if (mangleStandardSubstitution(ND))
5712     return true;
5713 
5714   ND = cast<NamedDecl>(ND->getCanonicalDecl());
5715   return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
5716 }
5717 
5718 /// Determine whether the given type has any qualifiers that are relevant for
5719 /// substitutions.
5720 static bool hasMangledSubstitutionQualifiers(QualType T) {
5721   Qualifiers Qs = T.getQualifiers();
5722   return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned();
5723 }
5724 
5725 bool CXXNameMangler::mangleSubstitution(QualType T) {
5726   if (!hasMangledSubstitutionQualifiers(T)) {
5727     if (const RecordType *RT = T->getAs<RecordType>())
5728       return mangleSubstitution(RT->getDecl());
5729   }
5730 
5731   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
5732 
5733   return mangleSubstitution(TypePtr);
5734 }
5735 
5736 bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
5737   if (TemplateDecl *TD = Template.getAsTemplateDecl())
5738     return mangleSubstitution(TD);
5739 
5740   Template = Context.getASTContext().getCanonicalTemplateName(Template);
5741   return mangleSubstitution(
5742                       reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
5743 }
5744 
5745 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
5746   llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
5747   if (I == Substitutions.end())
5748     return false;
5749 
5750   unsigned SeqID = I->second;
5751   Out << 'S';
5752   mangleSeqID(SeqID);
5753 
5754   return true;
5755 }
5756 
5757 static bool isCharType(QualType T) {
5758   if (T.isNull())
5759     return false;
5760 
5761   return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
5762     T->isSpecificBuiltinType(BuiltinType::Char_U);
5763 }
5764 
5765 /// Returns whether a given type is a template specialization of a given name
5766 /// with a single argument of type char.
5767 static bool isCharSpecialization(QualType T, const char *Name) {
5768   if (T.isNull())
5769     return false;
5770 
5771   const RecordType *RT = T->getAs<RecordType>();
5772   if (!RT)
5773     return false;
5774 
5775   const ClassTemplateSpecializationDecl *SD =
5776     dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5777   if (!SD)
5778     return false;
5779 
5780   if (!isStdNamespace(getEffectiveDeclContext(SD)))
5781     return false;
5782 
5783   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
5784   if (TemplateArgs.size() != 1)
5785     return false;
5786 
5787   if (!isCharType(TemplateArgs[0].getAsType()))
5788     return false;
5789 
5790   return SD->getIdentifier()->getName() == Name;
5791 }
5792 
5793 template <std::size_t StrLen>
5794 static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
5795                                        const char (&Str)[StrLen]) {
5796   if (!SD->getIdentifier()->isStr(Str))
5797     return false;
5798 
5799   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
5800   if (TemplateArgs.size() != 2)
5801     return false;
5802 
5803   if (!isCharType(TemplateArgs[0].getAsType()))
5804     return false;
5805 
5806   if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
5807     return false;
5808 
5809   return true;
5810 }
5811 
5812 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
5813   // <substitution> ::= St # ::std::
5814   if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
5815     if (isStd(NS)) {
5816       Out << "St";
5817       return true;
5818     }
5819   }
5820 
5821   if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
5822     if (!isStdNamespace(getEffectiveDeclContext(TD)))
5823       return false;
5824 
5825     // <substitution> ::= Sa # ::std::allocator
5826     if (TD->getIdentifier()->isStr("allocator")) {
5827       Out << "Sa";
5828       return true;
5829     }
5830 
5831     // <<substitution> ::= Sb # ::std::basic_string
5832     if (TD->getIdentifier()->isStr("basic_string")) {
5833       Out << "Sb";
5834       return true;
5835     }
5836   }
5837 
5838   if (const ClassTemplateSpecializationDecl *SD =
5839         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
5840     if (!isStdNamespace(getEffectiveDeclContext(SD)))
5841       return false;
5842 
5843     //    <substitution> ::= Ss # ::std::basic_string<char,
5844     //                            ::std::char_traits<char>,
5845     //                            ::std::allocator<char> >
5846     if (SD->getIdentifier()->isStr("basic_string")) {
5847       const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
5848 
5849       if (TemplateArgs.size() != 3)
5850         return false;
5851 
5852       if (!isCharType(TemplateArgs[0].getAsType()))
5853         return false;
5854 
5855       if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
5856         return false;
5857 
5858       if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
5859         return false;
5860 
5861       Out << "Ss";
5862       return true;
5863     }
5864 
5865     //    <substitution> ::= Si # ::std::basic_istream<char,
5866     //                            ::std::char_traits<char> >
5867     if (isStreamCharSpecialization(SD, "basic_istream")) {
5868       Out << "Si";
5869       return true;
5870     }
5871 
5872     //    <substitution> ::= So # ::std::basic_ostream<char,
5873     //                            ::std::char_traits<char> >
5874     if (isStreamCharSpecialization(SD, "basic_ostream")) {
5875       Out << "So";
5876       return true;
5877     }
5878 
5879     //    <substitution> ::= Sd # ::std::basic_iostream<char,
5880     //                            ::std::char_traits<char> >
5881     if (isStreamCharSpecialization(SD, "basic_iostream")) {
5882       Out << "Sd";
5883       return true;
5884     }
5885   }
5886   return false;
5887 }
5888 
5889 void CXXNameMangler::addSubstitution(QualType T) {
5890   if (!hasMangledSubstitutionQualifiers(T)) {
5891     if (const RecordType *RT = T->getAs<RecordType>()) {
5892       addSubstitution(RT->getDecl());
5893       return;
5894     }
5895   }
5896 
5897   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
5898   addSubstitution(TypePtr);
5899 }
5900 
5901 void CXXNameMangler::addSubstitution(TemplateName Template) {
5902   if (TemplateDecl *TD = Template.getAsTemplateDecl())
5903     return addSubstitution(TD);
5904 
5905   Template = Context.getASTContext().getCanonicalTemplateName(Template);
5906   addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
5907 }
5908 
5909 void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
5910   assert(!Substitutions.count(Ptr) && "Substitution already exists!");
5911   Substitutions[Ptr] = SeqID++;
5912 }
5913 
5914 void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) {
5915   assert(Other->SeqID >= SeqID && "Must be superset of substitutions!");
5916   if (Other->SeqID > SeqID) {
5917     Substitutions.swap(Other->Substitutions);
5918     SeqID = Other->SeqID;
5919   }
5920 }
5921 
5922 CXXNameMangler::AbiTagList
5923 CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) {
5924   // When derived abi tags are disabled there is no need to make any list.
5925   if (DisableDerivedAbiTags)
5926     return AbiTagList();
5927 
5928   llvm::raw_null_ostream NullOutStream;
5929   CXXNameMangler TrackReturnTypeTags(*this, NullOutStream);
5930   TrackReturnTypeTags.disableDerivedAbiTags();
5931 
5932   const FunctionProtoType *Proto =
5933       cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>());
5934   FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push();
5935   TrackReturnTypeTags.FunctionTypeDepth.enterResultType();
5936   TrackReturnTypeTags.mangleType(Proto->getReturnType());
5937   TrackReturnTypeTags.FunctionTypeDepth.leaveResultType();
5938   TrackReturnTypeTags.FunctionTypeDepth.pop(saved);
5939 
5940   return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags();
5941 }
5942 
5943 CXXNameMangler::AbiTagList
5944 CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) {
5945   // When derived abi tags are disabled there is no need to make any list.
5946   if (DisableDerivedAbiTags)
5947     return AbiTagList();
5948 
5949   llvm::raw_null_ostream NullOutStream;
5950   CXXNameMangler TrackVariableType(*this, NullOutStream);
5951   TrackVariableType.disableDerivedAbiTags();
5952 
5953   TrackVariableType.mangleType(VD->getType());
5954 
5955   return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags();
5956 }
5957 
5958 bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C,
5959                                        const VarDecl *VD) {
5960   llvm::raw_null_ostream NullOutStream;
5961   CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true);
5962   TrackAbiTags.mangle(VD);
5963   return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size();
5964 }
5965 
5966 //
5967 
5968 /// Mangles the name of the declaration D and emits that name to the given
5969 /// output stream.
5970 ///
5971 /// If the declaration D requires a mangled name, this routine will emit that
5972 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged
5973 /// and this routine will return false. In this case, the caller should just
5974 /// emit the identifier of the declaration (\c D->getIdentifier()) as its
5975 /// name.
5976 void ItaniumMangleContextImpl::mangleCXXName(GlobalDecl GD,
5977                                              raw_ostream &Out) {
5978   const NamedDecl *D = cast<NamedDecl>(GD.getDecl());
5979   assert((isa<FunctionDecl, VarDecl, TemplateParamObjectDecl>(D)) &&
5980          "Invalid mangleName() call, argument is not a variable or function!");
5981 
5982   PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
5983                                  getASTContext().getSourceManager(),
5984                                  "Mangling declaration");
5985 
5986   if (auto *CD = dyn_cast<CXXConstructorDecl>(D)) {
5987     auto Type = GD.getCtorType();
5988     CXXNameMangler Mangler(*this, Out, CD, Type);
5989     return Mangler.mangle(GlobalDecl(CD, Type));
5990   }
5991 
5992   if (auto *DD = dyn_cast<CXXDestructorDecl>(D)) {
5993     auto Type = GD.getDtorType();
5994     CXXNameMangler Mangler(*this, Out, DD, Type);
5995     return Mangler.mangle(GlobalDecl(DD, Type));
5996   }
5997 
5998   CXXNameMangler Mangler(*this, Out, D);
5999   Mangler.mangle(GD);
6000 }
6001 
6002 void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D,
6003                                                    raw_ostream &Out) {
6004   CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat);
6005   Mangler.mangle(GlobalDecl(D, Ctor_Comdat));
6006 }
6007 
6008 void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D,
6009                                                    raw_ostream &Out) {
6010   CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat);
6011   Mangler.mangle(GlobalDecl(D, Dtor_Comdat));
6012 }
6013 
6014 void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
6015                                            const ThunkInfo &Thunk,
6016                                            raw_ostream &Out) {
6017   //  <special-name> ::= T <call-offset> <base encoding>
6018   //                      # base is the nominal target function of thunk
6019   //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
6020   //                      # base is the nominal target function of thunk
6021   //                      # first call-offset is 'this' adjustment
6022   //                      # second call-offset is result adjustment
6023 
6024   assert(!isa<CXXDestructorDecl>(MD) &&
6025          "Use mangleCXXDtor for destructor decls!");
6026   CXXNameMangler Mangler(*this, Out);
6027   Mangler.getStream() << "_ZT";
6028   if (!Thunk.Return.isEmpty())
6029     Mangler.getStream() << 'c';
6030 
6031   // Mangle the 'this' pointer adjustment.
6032   Mangler.mangleCallOffset(Thunk.This.NonVirtual,
6033                            Thunk.This.Virtual.Itanium.VCallOffsetOffset);
6034 
6035   // Mangle the return pointer adjustment if there is one.
6036   if (!Thunk.Return.isEmpty())
6037     Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
6038                              Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
6039 
6040   Mangler.mangleFunctionEncoding(MD);
6041 }
6042 
6043 void ItaniumMangleContextImpl::mangleCXXDtorThunk(
6044     const CXXDestructorDecl *DD, CXXDtorType Type,
6045     const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
6046   //  <special-name> ::= T <call-offset> <base encoding>
6047   //                      # base is the nominal target function of thunk
6048   CXXNameMangler Mangler(*this, Out, DD, Type);
6049   Mangler.getStream() << "_ZT";
6050 
6051   // Mangle the 'this' pointer adjustment.
6052   Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
6053                            ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
6054 
6055   Mangler.mangleFunctionEncoding(GlobalDecl(DD, Type));
6056 }
6057 
6058 /// Returns the mangled name for a guard variable for the passed in VarDecl.
6059 void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
6060                                                          raw_ostream &Out) {
6061   //  <special-name> ::= GV <object name>       # Guard variable for one-time
6062   //                                            # initialization
6063   CXXNameMangler Mangler(*this, Out);
6064   // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
6065   // be a bug that is fixed in trunk.
6066   Mangler.getStream() << "_ZGV";
6067   Mangler.mangleName(D);
6068 }
6069 
6070 void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
6071                                                         raw_ostream &Out) {
6072   // These symbols are internal in the Itanium ABI, so the names don't matter.
6073   // Clang has traditionally used this symbol and allowed LLVM to adjust it to
6074   // avoid duplicate symbols.
6075   Out << "__cxx_global_var_init";
6076 }
6077 
6078 void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
6079                                                              raw_ostream &Out) {
6080   // Prefix the mangling of D with __dtor_.
6081   CXXNameMangler Mangler(*this, Out);
6082   Mangler.getStream() << "__dtor_";
6083   if (shouldMangleDeclName(D))
6084     Mangler.mangle(D);
6085   else
6086     Mangler.getStream() << D->getName();
6087 }
6088 
6089 void ItaniumMangleContextImpl::mangleDynamicStermFinalizer(const VarDecl *D,
6090                                                            raw_ostream &Out) {
6091   // Clang generates these internal-linkage functions as part of its
6092   // implementation of the XL ABI.
6093   CXXNameMangler Mangler(*this, Out);
6094   Mangler.getStream() << "__finalize_";
6095   if (shouldMangleDeclName(D))
6096     Mangler.mangle(D);
6097   else
6098     Mangler.getStream() << D->getName();
6099 }
6100 
6101 void ItaniumMangleContextImpl::mangleSEHFilterExpression(
6102     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
6103   CXXNameMangler Mangler(*this, Out);
6104   Mangler.getStream() << "__filt_";
6105   if (shouldMangleDeclName(EnclosingDecl))
6106     Mangler.mangle(EnclosingDecl);
6107   else
6108     Mangler.getStream() << EnclosingDecl->getName();
6109 }
6110 
6111 void ItaniumMangleContextImpl::mangleSEHFinallyBlock(
6112     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
6113   CXXNameMangler Mangler(*this, Out);
6114   Mangler.getStream() << "__fin_";
6115   if (shouldMangleDeclName(EnclosingDecl))
6116     Mangler.mangle(EnclosingDecl);
6117   else
6118     Mangler.getStream() << EnclosingDecl->getName();
6119 }
6120 
6121 void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
6122                                                             raw_ostream &Out) {
6123   //  <special-name> ::= TH <object name>
6124   CXXNameMangler Mangler(*this, Out);
6125   Mangler.getStream() << "_ZTH";
6126   Mangler.mangleName(D);
6127 }
6128 
6129 void
6130 ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
6131                                                           raw_ostream &Out) {
6132   //  <special-name> ::= TW <object name>
6133   CXXNameMangler Mangler(*this, Out);
6134   Mangler.getStream() << "_ZTW";
6135   Mangler.mangleName(D);
6136 }
6137 
6138 void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
6139                                                         unsigned ManglingNumber,
6140                                                         raw_ostream &Out) {
6141   // We match the GCC mangling here.
6142   //  <special-name> ::= GR <object name>
6143   CXXNameMangler Mangler(*this, Out);
6144   Mangler.getStream() << "_ZGR";
6145   Mangler.mangleName(D);
6146   assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
6147   Mangler.mangleSeqID(ManglingNumber - 1);
6148 }
6149 
6150 void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
6151                                                raw_ostream &Out) {
6152   // <special-name> ::= TV <type>  # virtual table
6153   CXXNameMangler Mangler(*this, Out);
6154   Mangler.getStream() << "_ZTV";
6155   Mangler.mangleNameOrStandardSubstitution(RD);
6156 }
6157 
6158 void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
6159                                             raw_ostream &Out) {
6160   // <special-name> ::= TT <type>  # VTT structure
6161   CXXNameMangler Mangler(*this, Out);
6162   Mangler.getStream() << "_ZTT";
6163   Mangler.mangleNameOrStandardSubstitution(RD);
6164 }
6165 
6166 void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
6167                                                    int64_t Offset,
6168                                                    const CXXRecordDecl *Type,
6169                                                    raw_ostream &Out) {
6170   // <special-name> ::= TC <type> <offset number> _ <base type>
6171   CXXNameMangler Mangler(*this, Out);
6172   Mangler.getStream() << "_ZTC";
6173   Mangler.mangleNameOrStandardSubstitution(RD);
6174   Mangler.getStream() << Offset;
6175   Mangler.getStream() << '_';
6176   Mangler.mangleNameOrStandardSubstitution(Type);
6177 }
6178 
6179 void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
6180   // <special-name> ::= TI <type>  # typeinfo structure
6181   assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
6182   CXXNameMangler Mangler(*this, Out);
6183   Mangler.getStream() << "_ZTI";
6184   Mangler.mangleType(Ty);
6185 }
6186 
6187 void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
6188                                                  raw_ostream &Out) {
6189   // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
6190   CXXNameMangler Mangler(*this, Out);
6191   Mangler.getStream() << "_ZTS";
6192   Mangler.mangleType(Ty);
6193 }
6194 
6195 void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
6196   mangleCXXRTTIName(Ty, Out);
6197 }
6198 
6199 void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
6200   llvm_unreachable("Can't mangle string literals");
6201 }
6202 
6203 void ItaniumMangleContextImpl::mangleLambdaSig(const CXXRecordDecl *Lambda,
6204                                                raw_ostream &Out) {
6205   CXXNameMangler Mangler(*this, Out);
6206   Mangler.mangleLambdaSig(Lambda);
6207 }
6208 
6209 ItaniumMangleContext *
6210 ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
6211   return new ItaniumMangleContextImpl(Context, Diags);
6212 }
6213