1 //===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides C++ name mangling targeting the Microsoft Visual C++ ABI.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/Attr.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/CharUnits.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclOpenMP.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/Mangle.h"
25 #include "clang/AST/VTableBuilder.h"
26 #include "clang/Basic/ABI.h"
27 #include "clang/Basic/DiagnosticOptions.h"
28 #include "clang/Basic/FileManager.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/Support/CRC.h"
33 #include "llvm/Support/MD5.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/StringSaver.h"
36 #include "llvm/Support/xxhash.h"
37 
38 using namespace clang;
39 
40 namespace {
41 
42 struct msvc_hashing_ostream : public llvm::raw_svector_ostream {
43   raw_ostream &OS;
44   llvm::SmallString<64> Buffer;
45 
46   msvc_hashing_ostream(raw_ostream &OS)
47       : llvm::raw_svector_ostream(Buffer), OS(OS) {}
48   ~msvc_hashing_ostream() override {
49     StringRef MangledName = str();
50     bool StartsWithEscape = MangledName.startswith("\01");
51     if (StartsWithEscape)
52       MangledName = MangledName.drop_front(1);
53     if (MangledName.size() <= 4096) {
54       OS << str();
55       return;
56     }
57 
58     llvm::MD5 Hasher;
59     llvm::MD5::MD5Result Hash;
60     Hasher.update(MangledName);
61     Hasher.final(Hash);
62 
63     SmallString<32> HexString;
64     llvm::MD5::stringifyResult(Hash, HexString);
65 
66     if (StartsWithEscape)
67       OS << '\01';
68     OS << "??@" << HexString << '@';
69   }
70 };
71 
72 static const DeclContext *
73 getLambdaDefaultArgumentDeclContext(const Decl *D) {
74   if (const auto *RD = dyn_cast<CXXRecordDecl>(D))
75     if (RD->isLambda())
76       if (const auto *Parm =
77               dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
78         return Parm->getDeclContext();
79   return nullptr;
80 }
81 
82 /// Retrieve the declaration context that should be used when mangling
83 /// the given declaration.
84 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
85   // The ABI assumes that lambda closure types that occur within
86   // default arguments live in the context of the function. However, due to
87   // the way in which Clang parses and creates function declarations, this is
88   // not the case: the lambda closure type ends up living in the context
89   // where the function itself resides, because the function declaration itself
90   // had not yet been created. Fix the context here.
91   if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(D))
92     return LDADC;
93 
94   // Perform the same check for block literals.
95   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
96     if (ParmVarDecl *ContextParam =
97             dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
98       return ContextParam->getDeclContext();
99   }
100 
101   const DeclContext *DC = D->getDeclContext();
102   if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) ||
103       isa<OMPDeclareMapperDecl>(DC)) {
104     return getEffectiveDeclContext(cast<Decl>(DC));
105   }
106 
107   return DC->getRedeclContext();
108 }
109 
110 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
111   return getEffectiveDeclContext(cast<Decl>(DC));
112 }
113 
114 static const FunctionDecl *getStructor(const NamedDecl *ND) {
115   if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(ND))
116     return FTD->getTemplatedDecl()->getCanonicalDecl();
117 
118   const auto *FD = cast<FunctionDecl>(ND);
119   if (const auto *FTD = FD->getPrimaryTemplate())
120     return FTD->getTemplatedDecl()->getCanonicalDecl();
121 
122   return FD->getCanonicalDecl();
123 }
124 
125 /// MicrosoftMangleContextImpl - Overrides the default MangleContext for the
126 /// Microsoft Visual C++ ABI.
127 class MicrosoftMangleContextImpl : public MicrosoftMangleContext {
128   typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy;
129   llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
130   llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier;
131   llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds;
132   llvm::DenseMap<const NamedDecl *, unsigned> SEHFilterIds;
133   llvm::DenseMap<const NamedDecl *, unsigned> SEHFinallyIds;
134   SmallString<16> AnonymousNamespaceHash;
135 
136 public:
137   MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags);
138   bool shouldMangleCXXName(const NamedDecl *D) override;
139   bool shouldMangleStringLiteral(const StringLiteral *SL) override;
140   void mangleCXXName(GlobalDecl GD, raw_ostream &Out) override;
141   void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
142                                 const MethodVFTableLocation &ML,
143                                 raw_ostream &Out) override;
144   void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
145                    raw_ostream &) override;
146   void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
147                           const ThisAdjustment &ThisAdjustment,
148                           raw_ostream &) override;
149   void mangleCXXVFTable(const CXXRecordDecl *Derived,
150                         ArrayRef<const CXXRecordDecl *> BasePath,
151                         raw_ostream &Out) override;
152   void mangleCXXVBTable(const CXXRecordDecl *Derived,
153                         ArrayRef<const CXXRecordDecl *> BasePath,
154                         raw_ostream &Out) override;
155   void mangleCXXVirtualDisplacementMap(const CXXRecordDecl *SrcRD,
156                                        const CXXRecordDecl *DstRD,
157                                        raw_ostream &Out) override;
158   void mangleCXXThrowInfo(QualType T, bool IsConst, bool IsVolatile,
159                           bool IsUnaligned, uint32_t NumEntries,
160                           raw_ostream &Out) override;
161   void mangleCXXCatchableTypeArray(QualType T, uint32_t NumEntries,
162                                    raw_ostream &Out) override;
163   void mangleCXXCatchableType(QualType T, const CXXConstructorDecl *CD,
164                               CXXCtorType CT, uint32_t Size, uint32_t NVOffset,
165                               int32_t VBPtrOffset, uint32_t VBIndex,
166                               raw_ostream &Out) override;
167   void mangleCXXRTTI(QualType T, raw_ostream &Out) override;
168   void mangleCXXRTTIName(QualType T, raw_ostream &Out) override;
169   void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived,
170                                         uint32_t NVOffset, int32_t VBPtrOffset,
171                                         uint32_t VBTableOffset, uint32_t Flags,
172                                         raw_ostream &Out) override;
173   void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived,
174                                    raw_ostream &Out) override;
175   void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived,
176                                              raw_ostream &Out) override;
177   void
178   mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived,
179                                      ArrayRef<const CXXRecordDecl *> BasePath,
180                                      raw_ostream &Out) override;
181   void mangleTypeName(QualType T, raw_ostream &) override;
182   void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber,
183                                 raw_ostream &) override;
184   void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override;
185   void mangleThreadSafeStaticGuardVariable(const VarDecl *D, unsigned GuardNum,
186                                            raw_ostream &Out) override;
187   void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
188   void mangleDynamicAtExitDestructor(const VarDecl *D,
189                                      raw_ostream &Out) override;
190   void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
191                                  raw_ostream &Out) override;
192   void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
193                              raw_ostream &Out) override;
194   void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override;
195   bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
196     const DeclContext *DC = getEffectiveDeclContext(ND);
197     if (!DC->isFunctionOrMethod())
198       return false;
199 
200     // Lambda closure types are already numbered, give out a phony number so
201     // that they demangle nicely.
202     if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
203       if (RD->isLambda()) {
204         disc = 1;
205         return true;
206       }
207     }
208 
209     // Use the canonical number for externally visible decls.
210     if (ND->isExternallyVisible()) {
211       disc = getASTContext().getManglingNumber(ND);
212       return true;
213     }
214 
215     // Anonymous tags are already numbered.
216     if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
217       if (!Tag->hasNameForLinkage() &&
218           !getASTContext().getDeclaratorForUnnamedTagDecl(Tag) &&
219           !getASTContext().getTypedefNameForUnnamedTagDecl(Tag))
220         return false;
221     }
222 
223     // Make up a reasonable number for internal decls.
224     unsigned &discriminator = Uniquifier[ND];
225     if (!discriminator)
226       discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
227     disc = discriminator + 1;
228     return true;
229   }
230 
231   unsigned getLambdaId(const CXXRecordDecl *RD) {
232     assert(RD->isLambda() && "RD must be a lambda!");
233     assert(!RD->isExternallyVisible() && "RD must not be visible!");
234     assert(RD->getLambdaManglingNumber() == 0 &&
235            "RD must not have a mangling number!");
236     std::pair<llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator, bool>
237         Result = LambdaIds.insert(std::make_pair(RD, LambdaIds.size()));
238     return Result.first->second;
239   }
240 
241   /// Return a character sequence that is (somewhat) unique to the TU suitable
242   /// for mangling anonymous namespaces.
243   StringRef getAnonymousNamespaceHash() const {
244     return AnonymousNamespaceHash;
245   }
246 
247 private:
248   void mangleInitFiniStub(const VarDecl *D, char CharCode, raw_ostream &Out);
249 };
250 
251 /// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
252 /// Microsoft Visual C++ ABI.
253 class MicrosoftCXXNameMangler {
254   MicrosoftMangleContextImpl &Context;
255   raw_ostream &Out;
256 
257   /// The "structor" is the top-level declaration being mangled, if
258   /// that's not a template specialization; otherwise it's the pattern
259   /// for that specialization.
260   const NamedDecl *Structor;
261   unsigned StructorType;
262 
263   typedef llvm::SmallVector<std::string, 10> BackRefVec;
264   BackRefVec NameBackReferences;
265 
266   typedef llvm::DenseMap<const void *, unsigned> ArgBackRefMap;
267   ArgBackRefMap FunArgBackReferences;
268   ArgBackRefMap TemplateArgBackReferences;
269 
270   typedef llvm::DenseMap<const void *, StringRef> TemplateArgStringMap;
271   TemplateArgStringMap TemplateArgStrings;
272   llvm::StringSaver TemplateArgStringStorage;
273   llvm::BumpPtrAllocator TemplateArgStringStorageAlloc;
274 
275   typedef std::set<std::pair<int, bool>> PassObjectSizeArgsSet;
276   PassObjectSizeArgsSet PassObjectSizeArgs;
277 
278   ASTContext &getASTContext() const { return Context.getASTContext(); }
279 
280   const bool PointersAre64Bit;
281 
282 public:
283   enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result };
284 
285   MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_)
286       : Context(C), Out(Out_), Structor(nullptr), StructorType(-1),
287         TemplateArgStringStorage(TemplateArgStringStorageAlloc),
288         PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
289                          64) {}
290 
291   MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
292                           const CXXConstructorDecl *D, CXXCtorType Type)
293       : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
294         TemplateArgStringStorage(TemplateArgStringStorageAlloc),
295         PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
296                          64) {}
297 
298   MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
299                           const CXXDestructorDecl *D, CXXDtorType Type)
300       : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
301         TemplateArgStringStorage(TemplateArgStringStorageAlloc),
302         PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
303                          64) {}
304 
305   raw_ostream &getStream() const { return Out; }
306 
307   void mangle(const NamedDecl *D, StringRef Prefix = "?");
308   void mangleName(const NamedDecl *ND);
309   void mangleFunctionEncoding(const FunctionDecl *FD, bool ShouldMangle);
310   void mangleVariableEncoding(const VarDecl *VD);
311   void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD);
312   void mangleMemberFunctionPointer(const CXXRecordDecl *RD,
313                                    const CXXMethodDecl *MD);
314   void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
315                                 const MethodVFTableLocation &ML);
316   void mangleNumber(int64_t Number);
317   void mangleTagTypeKind(TagTypeKind TK);
318   void mangleArtificialTagType(TagTypeKind TK, StringRef UnqualifiedName,
319                               ArrayRef<StringRef> NestedNames = None);
320   void mangleAddressSpaceType(QualType T, Qualifiers Quals, SourceRange Range);
321   void mangleType(QualType T, SourceRange Range,
322                   QualifierMangleMode QMM = QMM_Mangle);
323   void mangleFunctionType(const FunctionType *T,
324                           const FunctionDecl *D = nullptr,
325                           bool ForceThisQuals = false,
326                           bool MangleExceptionSpec = true);
327   void mangleNestedName(const NamedDecl *ND);
328 
329 private:
330   bool isStructorDecl(const NamedDecl *ND) const {
331     return ND == Structor || getStructor(ND) == Structor;
332   }
333 
334   bool is64BitPointer(Qualifiers Quals) const {
335     LangAS AddrSpace = Quals.getAddressSpace();
336     return AddrSpace == LangAS::ptr64 ||
337            (PointersAre64Bit && !(AddrSpace == LangAS::ptr32_sptr ||
338                                   AddrSpace == LangAS::ptr32_uptr));
339   }
340 
341   void mangleUnqualifiedName(const NamedDecl *ND) {
342     mangleUnqualifiedName(ND, ND->getDeclName());
343   }
344   void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name);
345   void mangleSourceName(StringRef Name);
346   void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc);
347   void mangleCXXDtorType(CXXDtorType T);
348   void mangleQualifiers(Qualifiers Quals, bool IsMember);
349   void mangleRefQualifier(RefQualifierKind RefQualifier);
350   void manglePointerCVQualifiers(Qualifiers Quals);
351   void manglePointerExtQualifiers(Qualifiers Quals, QualType PointeeType);
352 
353   void mangleUnscopedTemplateName(const TemplateDecl *ND);
354   void
355   mangleTemplateInstantiationName(const TemplateDecl *TD,
356                                   const TemplateArgumentList &TemplateArgs);
357   void mangleObjCMethodName(const ObjCMethodDecl *MD);
358 
359   void mangleFunctionArgumentType(QualType T, SourceRange Range);
360   void manglePassObjectSizeArg(const PassObjectSizeAttr *POSA);
361 
362   bool isArtificialTagType(QualType T) const;
363 
364   // Declare manglers for every type class.
365 #define ABSTRACT_TYPE(CLASS, PARENT)
366 #define NON_CANONICAL_TYPE(CLASS, PARENT)
367 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \
368                                             Qualifiers Quals, \
369                                             SourceRange Range);
370 #include "clang/AST/TypeNodes.inc"
371 #undef ABSTRACT_TYPE
372 #undef NON_CANONICAL_TYPE
373 #undef TYPE
374 
375   void mangleType(const TagDecl *TD);
376   void mangleDecayedArrayType(const ArrayType *T);
377   void mangleArrayType(const ArrayType *T);
378   void mangleFunctionClass(const FunctionDecl *FD);
379   void mangleCallingConvention(CallingConv CC);
380   void mangleCallingConvention(const FunctionType *T);
381   void mangleIntegerLiteral(const llvm::APSInt &Number, bool IsBoolean);
382   void mangleExpression(const Expr *E);
383   void mangleThrowSpecification(const FunctionProtoType *T);
384 
385   void mangleTemplateArgs(const TemplateDecl *TD,
386                           const TemplateArgumentList &TemplateArgs);
387   void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA,
388                          const NamedDecl *Parm);
389 
390   void mangleObjCProtocol(const ObjCProtocolDecl *PD);
391   void mangleObjCLifetime(const QualType T, Qualifiers Quals,
392                           SourceRange Range);
393   void mangleObjCKindOfType(const ObjCObjectType *T, Qualifiers Quals,
394                             SourceRange Range);
395 };
396 }
397 
398 MicrosoftMangleContextImpl::MicrosoftMangleContextImpl(ASTContext &Context,
399                                                        DiagnosticsEngine &Diags)
400     : MicrosoftMangleContext(Context, Diags) {
401   // To mangle anonymous namespaces, hash the path to the main source file. The
402   // path should be whatever (probably relative) path was passed on the command
403   // line. The goal is for the compiler to produce the same output regardless of
404   // working directory, so use the uncanonicalized relative path.
405   //
406   // It's important to make the mangled names unique because, when CodeView
407   // debug info is in use, the debugger uses mangled type names to distinguish
408   // between otherwise identically named types in anonymous namespaces.
409   //
410   // These symbols are always internal, so there is no need for the hash to
411   // match what MSVC produces. For the same reason, clang is free to change the
412   // hash at any time without breaking compatibility with old versions of clang.
413   // The generated names are intended to look similar to what MSVC generates,
414   // which are something like "?A0x01234567@".
415   SourceManager &SM = Context.getSourceManager();
416   if (const FileEntry *FE = SM.getFileEntryForID(SM.getMainFileID())) {
417     // Truncate the hash so we get 8 characters of hexadecimal.
418     uint32_t TruncatedHash = uint32_t(xxHash64(FE->getName()));
419     AnonymousNamespaceHash = llvm::utohexstr(TruncatedHash);
420   } else {
421     // If we don't have a path to the main file, we'll just use 0.
422     AnonymousNamespaceHash = "0";
423   }
424 }
425 
426 bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
427   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
428     LanguageLinkage L = FD->getLanguageLinkage();
429     // Overloadable functions need mangling.
430     if (FD->hasAttr<OverloadableAttr>())
431       return true;
432 
433     // The ABI expects that we would never mangle "typical" user-defined entry
434     // points regardless of visibility or freestanding-ness.
435     //
436     // N.B. This is distinct from asking about "main".  "main" has a lot of
437     // special rules associated with it in the standard while these
438     // user-defined entry points are outside of the purview of the standard.
439     // For example, there can be only one definition for "main" in a standards
440     // compliant program; however nothing forbids the existence of wmain and
441     // WinMain in the same translation unit.
442     if (FD->isMSVCRTEntryPoint())
443       return false;
444 
445     // C++ functions and those whose names are not a simple identifier need
446     // mangling.
447     if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
448       return true;
449 
450     // C functions are not mangled.
451     if (L == CLanguageLinkage)
452       return false;
453   }
454 
455   // Otherwise, no mangling is done outside C++ mode.
456   if (!getASTContext().getLangOpts().CPlusPlus)
457     return false;
458 
459   const VarDecl *VD = dyn_cast<VarDecl>(D);
460   if (VD && !isa<DecompositionDecl>(D)) {
461     // C variables are not mangled.
462     if (VD->isExternC())
463       return false;
464 
465     // Variables at global scope with internal linkage are not mangled.
466     const DeclContext *DC = getEffectiveDeclContext(D);
467     // Check for extern variable declared locally.
468     if (DC->isFunctionOrMethod() && D->hasLinkage())
469       while (!DC->isNamespace() && !DC->isTranslationUnit())
470         DC = getEffectiveParentContext(DC);
471 
472     if (DC->isTranslationUnit() && D->getFormalLinkage() == InternalLinkage &&
473         !isa<VarTemplateSpecializationDecl>(D) &&
474         D->getIdentifier() != nullptr)
475       return false;
476   }
477 
478   return true;
479 }
480 
481 bool
482 MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) {
483   return true;
484 }
485 
486 void MicrosoftCXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
487   // MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
488   // Therefore it's really important that we don't decorate the
489   // name with leading underscores or leading/trailing at signs. So, by
490   // default, we emit an asm marker at the start so we get the name right.
491   // Callers can override this with a custom prefix.
492 
493   // <mangled-name> ::= ? <name> <type-encoding>
494   Out << Prefix;
495   mangleName(D);
496   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
497     mangleFunctionEncoding(FD, Context.shouldMangleDeclName(FD));
498   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
499     mangleVariableEncoding(VD);
500   else if (isa<MSGuidDecl>(D))
501     // MSVC appears to mangle GUIDs as if they were variables of type
502     // 'const struct __s_GUID'.
503     Out << "3U__s_GUID@@B";
504   else
505     llvm_unreachable("Tried to mangle unexpected NamedDecl!");
506 }
507 
508 void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD,
509                                                      bool ShouldMangle) {
510   // <type-encoding> ::= <function-class> <function-type>
511 
512   // Since MSVC operates on the type as written and not the canonical type, it
513   // actually matters which decl we have here.  MSVC appears to choose the
514   // first, since it is most likely to be the declaration in a header file.
515   FD = FD->getFirstDecl();
516 
517   // We should never ever see a FunctionNoProtoType at this point.
518   // We don't even know how to mangle their types anyway :).
519   const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>();
520 
521   // extern "C" functions can hold entities that must be mangled.
522   // As it stands, these functions still need to get expressed in the full
523   // external name.  They have their class and type omitted, replaced with '9'.
524   if (ShouldMangle) {
525     // We would like to mangle all extern "C" functions using this additional
526     // component but this would break compatibility with MSVC's behavior.
527     // Instead, do this when we know that compatibility isn't important (in
528     // other words, when it is an overloaded extern "C" function).
529     if (FD->isExternC() && FD->hasAttr<OverloadableAttr>())
530       Out << "$$J0";
531 
532     mangleFunctionClass(FD);
533 
534     mangleFunctionType(FT, FD, false, false);
535   } else {
536     Out << '9';
537   }
538 }
539 
540 void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
541   // <type-encoding> ::= <storage-class> <variable-type>
542   // <storage-class> ::= 0  # private static member
543   //                 ::= 1  # protected static member
544   //                 ::= 2  # public static member
545   //                 ::= 3  # global
546   //                 ::= 4  # static local
547 
548   // The first character in the encoding (after the name) is the storage class.
549   if (VD->isStaticDataMember()) {
550     // If it's a static member, it also encodes the access level.
551     switch (VD->getAccess()) {
552       default:
553       case AS_private: Out << '0'; break;
554       case AS_protected: Out << '1'; break;
555       case AS_public: Out << '2'; break;
556     }
557   }
558   else if (!VD->isStaticLocal())
559     Out << '3';
560   else
561     Out << '4';
562   // Now mangle the type.
563   // <variable-type> ::= <type> <cvr-qualifiers>
564   //                 ::= <type> <pointee-cvr-qualifiers> # pointers, references
565   // Pointers and references are odd. The type of 'int * const foo;' gets
566   // mangled as 'QAHA' instead of 'PAHB', for example.
567   SourceRange SR = VD->getSourceRange();
568   QualType Ty = VD->getType();
569   if (Ty->isPointerType() || Ty->isReferenceType() ||
570       Ty->isMemberPointerType()) {
571     mangleType(Ty, SR, QMM_Drop);
572     manglePointerExtQualifiers(
573         Ty.getDesugaredType(getASTContext()).getLocalQualifiers(), QualType());
574     if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) {
575       mangleQualifiers(MPT->getPointeeType().getQualifiers(), true);
576       // Member pointers are suffixed with a back reference to the member
577       // pointer's class name.
578       mangleName(MPT->getClass()->getAsCXXRecordDecl());
579     } else
580       mangleQualifiers(Ty->getPointeeType().getQualifiers(), false);
581   } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) {
582     // Global arrays are funny, too.
583     mangleDecayedArrayType(AT);
584     if (AT->getElementType()->isArrayType())
585       Out << 'A';
586     else
587       mangleQualifiers(Ty.getQualifiers(), false);
588   } else {
589     mangleType(Ty, SR, QMM_Drop);
590     mangleQualifiers(Ty.getQualifiers(), false);
591   }
592 }
593 
594 void MicrosoftCXXNameMangler::mangleMemberDataPointer(const CXXRecordDecl *RD,
595                                                       const ValueDecl *VD) {
596   // <member-data-pointer> ::= <integer-literal>
597   //                       ::= $F <number> <number>
598   //                       ::= $G <number> <number> <number>
599 
600   int64_t FieldOffset;
601   int64_t VBTableOffset;
602   MSInheritanceModel IM = RD->getMSInheritanceModel();
603   if (VD) {
604     FieldOffset = getASTContext().getFieldOffset(VD);
605     assert(FieldOffset % getASTContext().getCharWidth() == 0 &&
606            "cannot take address of bitfield");
607     FieldOffset /= getASTContext().getCharWidth();
608 
609     VBTableOffset = 0;
610 
611     if (IM == MSInheritanceModel::Virtual)
612       FieldOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity();
613   } else {
614     FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1;
615 
616     VBTableOffset = -1;
617   }
618 
619   char Code = '\0';
620   switch (IM) {
621   case MSInheritanceModel::Single:      Code = '0'; break;
622   case MSInheritanceModel::Multiple:    Code = '0'; break;
623   case MSInheritanceModel::Virtual:     Code = 'F'; break;
624   case MSInheritanceModel::Unspecified: Code = 'G'; break;
625   }
626 
627   Out << '$' << Code;
628 
629   mangleNumber(FieldOffset);
630 
631   // The C++ standard doesn't allow base-to-derived member pointer conversions
632   // in template parameter contexts, so the vbptr offset of data member pointers
633   // is always zero.
634   if (inheritanceModelHasVBPtrOffsetField(IM))
635     mangleNumber(0);
636   if (inheritanceModelHasVBTableOffsetField(IM))
637     mangleNumber(VBTableOffset);
638 }
639 
640 void
641 MicrosoftCXXNameMangler::mangleMemberFunctionPointer(const CXXRecordDecl *RD,
642                                                      const CXXMethodDecl *MD) {
643   // <member-function-pointer> ::= $1? <name>
644   //                           ::= $H? <name> <number>
645   //                           ::= $I? <name> <number> <number>
646   //                           ::= $J? <name> <number> <number> <number>
647 
648   MSInheritanceModel IM = RD->getMSInheritanceModel();
649 
650   char Code = '\0';
651   switch (IM) {
652   case MSInheritanceModel::Single:      Code = '1'; break;
653   case MSInheritanceModel::Multiple:    Code = 'H'; break;
654   case MSInheritanceModel::Virtual:     Code = 'I'; break;
655   case MSInheritanceModel::Unspecified: Code = 'J'; break;
656   }
657 
658   // If non-virtual, mangle the name.  If virtual, mangle as a virtual memptr
659   // thunk.
660   uint64_t NVOffset = 0;
661   uint64_t VBTableOffset = 0;
662   uint64_t VBPtrOffset = 0;
663   if (MD) {
664     Out << '$' << Code << '?';
665     if (MD->isVirtual()) {
666       MicrosoftVTableContext *VTContext =
667           cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
668       MethodVFTableLocation ML =
669           VTContext->getMethodVFTableLocation(GlobalDecl(MD));
670       mangleVirtualMemPtrThunk(MD, ML);
671       NVOffset = ML.VFPtrOffset.getQuantity();
672       VBTableOffset = ML.VBTableIndex * 4;
673       if (ML.VBase) {
674         const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(RD);
675         VBPtrOffset = Layout.getVBPtrOffset().getQuantity();
676       }
677     } else {
678       mangleName(MD);
679       mangleFunctionEncoding(MD, /*ShouldMangle=*/true);
680     }
681 
682     if (VBTableOffset == 0 && IM == MSInheritanceModel::Virtual)
683       NVOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity();
684   } else {
685     // Null single inheritance member functions are encoded as a simple nullptr.
686     if (IM == MSInheritanceModel::Single) {
687       Out << "$0A@";
688       return;
689     }
690     if (IM == MSInheritanceModel::Unspecified)
691       VBTableOffset = -1;
692     Out << '$' << Code;
693   }
694 
695   if (inheritanceModelHasNVOffsetField(/*IsMemberFunction=*/true, IM))
696     mangleNumber(static_cast<uint32_t>(NVOffset));
697   if (inheritanceModelHasVBPtrOffsetField(IM))
698     mangleNumber(VBPtrOffset);
699   if (inheritanceModelHasVBTableOffsetField(IM))
700     mangleNumber(VBTableOffset);
701 }
702 
703 void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk(
704     const CXXMethodDecl *MD, const MethodVFTableLocation &ML) {
705   // Get the vftable offset.
706   CharUnits PointerWidth = getASTContext().toCharUnitsFromBits(
707       getASTContext().getTargetInfo().getPointerWidth(0));
708   uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity();
709 
710   Out << "?_9";
711   mangleName(MD->getParent());
712   Out << "$B";
713   mangleNumber(OffsetInVFTable);
714   Out << 'A';
715   mangleCallingConvention(MD->getType()->castAs<FunctionProtoType>());
716 }
717 
718 void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) {
719   // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
720 
721   // Always start with the unqualified name.
722   mangleUnqualifiedName(ND);
723 
724   mangleNestedName(ND);
725 
726   // Terminate the whole name with an '@'.
727   Out << '@';
728 }
729 
730 void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
731   // <non-negative integer> ::= A@              # when Number == 0
732   //                        ::= <decimal digit> # when 1 <= Number <= 10
733   //                        ::= <hex digit>+ @  # when Number >= 10
734   //
735   // <number>               ::= [?] <non-negative integer>
736 
737   uint64_t Value = static_cast<uint64_t>(Number);
738   if (Number < 0) {
739     Value = -Value;
740     Out << '?';
741   }
742 
743   if (Value == 0)
744     Out << "A@";
745   else if (Value >= 1 && Value <= 10)
746     Out << (Value - 1);
747   else {
748     // Numbers that are not encoded as decimal digits are represented as nibbles
749     // in the range of ASCII characters 'A' to 'P'.
750     // The number 0x123450 would be encoded as 'BCDEFA'
751     char EncodedNumberBuffer[sizeof(uint64_t) * 2];
752     MutableArrayRef<char> BufferRef(EncodedNumberBuffer);
753     MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
754     for (; Value != 0; Value >>= 4)
755       *I++ = 'A' + (Value & 0xf);
756     Out.write(I.base(), I - BufferRef.rbegin());
757     Out << '@';
758   }
759 }
760 
761 static const TemplateDecl *
762 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
763   // Check if we have a function template.
764   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
765     if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
766       TemplateArgs = FD->getTemplateSpecializationArgs();
767       return TD;
768     }
769   }
770 
771   // Check if we have a class template.
772   if (const ClassTemplateSpecializationDecl *Spec =
773           dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
774     TemplateArgs = &Spec->getTemplateArgs();
775     return Spec->getSpecializedTemplate();
776   }
777 
778   // Check if we have a variable template.
779   if (const VarTemplateSpecializationDecl *Spec =
780           dyn_cast<VarTemplateSpecializationDecl>(ND)) {
781     TemplateArgs = &Spec->getTemplateArgs();
782     return Spec->getSpecializedTemplate();
783   }
784 
785   return nullptr;
786 }
787 
788 void MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
789                                                     DeclarationName Name) {
790   //  <unqualified-name> ::= <operator-name>
791   //                     ::= <ctor-dtor-name>
792   //                     ::= <source-name>
793   //                     ::= <template-name>
794 
795   // Check if we have a template.
796   const TemplateArgumentList *TemplateArgs = nullptr;
797   if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
798     // Function templates aren't considered for name back referencing.  This
799     // makes sense since function templates aren't likely to occur multiple
800     // times in a symbol.
801     if (isa<FunctionTemplateDecl>(TD)) {
802       mangleTemplateInstantiationName(TD, *TemplateArgs);
803       Out << '@';
804       return;
805     }
806 
807     // Here comes the tricky thing: if we need to mangle something like
808     //   void foo(A::X<Y>, B::X<Y>),
809     // the X<Y> part is aliased. However, if you need to mangle
810     //   void foo(A::X<A::Y>, A::X<B::Y>),
811     // the A::X<> part is not aliased.
812     // That is, from the mangler's perspective we have a structure like this:
813     //   namespace[s] -> type[ -> template-parameters]
814     // but from the Clang perspective we have
815     //   type [ -> template-parameters]
816     //      \-> namespace[s]
817     // What we do is we create a new mangler, mangle the same type (without
818     // a namespace suffix) to a string using the extra mangler and then use
819     // the mangled type name as a key to check the mangling of different types
820     // for aliasing.
821 
822     // It's important to key cache reads off ND, not TD -- the same TD can
823     // be used with different TemplateArgs, but ND uniquely identifies
824     // TD / TemplateArg pairs.
825     ArgBackRefMap::iterator Found = TemplateArgBackReferences.find(ND);
826     if (Found == TemplateArgBackReferences.end()) {
827 
828       TemplateArgStringMap::iterator Found = TemplateArgStrings.find(ND);
829       if (Found == TemplateArgStrings.end()) {
830         // Mangle full template name into temporary buffer.
831         llvm::SmallString<64> TemplateMangling;
832         llvm::raw_svector_ostream Stream(TemplateMangling);
833         MicrosoftCXXNameMangler Extra(Context, Stream);
834         Extra.mangleTemplateInstantiationName(TD, *TemplateArgs);
835 
836         // Use the string backref vector to possibly get a back reference.
837         mangleSourceName(TemplateMangling);
838 
839         // Memoize back reference for this type if one exist, else memoize
840         // the mangling itself.
841         BackRefVec::iterator StringFound =
842             llvm::find(NameBackReferences, TemplateMangling);
843         if (StringFound != NameBackReferences.end()) {
844           TemplateArgBackReferences[ND] =
845               StringFound - NameBackReferences.begin();
846         } else {
847           TemplateArgStrings[ND] =
848               TemplateArgStringStorage.save(TemplateMangling.str());
849         }
850       } else {
851         Out << Found->second << '@'; // Outputs a StringRef.
852       }
853     } else {
854       Out << Found->second; // Outputs a back reference (an int).
855     }
856     return;
857   }
858 
859   switch (Name.getNameKind()) {
860     case DeclarationName::Identifier: {
861       if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
862         mangleSourceName(II->getName());
863         break;
864       }
865 
866       // Otherwise, an anonymous entity.  We must have a declaration.
867       assert(ND && "mangling empty name without declaration");
868 
869       if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
870         if (NS->isAnonymousNamespace()) {
871           Out << "?A0x" << Context.getAnonymousNamespaceHash() << '@';
872           break;
873         }
874       }
875 
876       if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(ND)) {
877         // Decomposition declarations are considered anonymous, and get
878         // numbered with a $S prefix.
879         llvm::SmallString<64> Name("$S");
880         // Get a unique id for the anonymous struct.
881         Name += llvm::utostr(Context.getAnonymousStructId(DD) + 1);
882         mangleSourceName(Name);
883         break;
884       }
885 
886       if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
887         // We must have an anonymous union or struct declaration.
888         const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl();
889         assert(RD && "expected variable decl to have a record type");
890         // Anonymous types with no tag or typedef get the name of their
891         // declarator mangled in.  If they have no declarator, number them with
892         // a $S prefix.
893         llvm::SmallString<64> Name("$S");
894         // Get a unique id for the anonymous struct.
895         Name += llvm::utostr(Context.getAnonymousStructId(RD) + 1);
896         mangleSourceName(Name.str());
897         break;
898       }
899 
900       if (const MSGuidDecl *GD = dyn_cast<MSGuidDecl>(ND)) {
901         // Mangle a GUID object as if it were a variable with the corresponding
902         // mangled name.
903         SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID;
904         llvm::raw_svector_ostream GUIDOS(GUID);
905         Context.mangleMSGuidDecl(GD, GUIDOS);
906         mangleSourceName(GUID);
907         break;
908       }
909 
910       // We must have an anonymous struct.
911       const TagDecl *TD = cast<TagDecl>(ND);
912       if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
913         assert(TD->getDeclContext() == D->getDeclContext() &&
914                "Typedef should not be in another decl context!");
915         assert(D->getDeclName().getAsIdentifierInfo() &&
916                "Typedef was not named!");
917         mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName());
918         break;
919       }
920 
921       if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
922         if (Record->isLambda()) {
923           llvm::SmallString<10> Name("<lambda_");
924 
925           Decl *LambdaContextDecl = Record->getLambdaContextDecl();
926           unsigned LambdaManglingNumber = Record->getLambdaManglingNumber();
927           unsigned LambdaId;
928           const ParmVarDecl *Parm =
929               dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl);
930           const FunctionDecl *Func =
931               Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr;
932 
933           if (Func) {
934             unsigned DefaultArgNo =
935                 Func->getNumParams() - Parm->getFunctionScopeIndex();
936             Name += llvm::utostr(DefaultArgNo);
937             Name += "_";
938           }
939 
940           if (LambdaManglingNumber)
941             LambdaId = LambdaManglingNumber;
942           else
943             LambdaId = Context.getLambdaId(Record);
944 
945           Name += llvm::utostr(LambdaId);
946           Name += ">";
947 
948           mangleSourceName(Name);
949 
950           // If the context is a variable or a class member and not a parameter,
951           // it is encoded in a qualified name.
952           if (LambdaManglingNumber && LambdaContextDecl) {
953             if ((isa<VarDecl>(LambdaContextDecl) ||
954                  isa<FieldDecl>(LambdaContextDecl)) &&
955                 !isa<ParmVarDecl>(LambdaContextDecl)) {
956               mangleUnqualifiedName(cast<NamedDecl>(LambdaContextDecl));
957             }
958           }
959           break;
960         }
961       }
962 
963       llvm::SmallString<64> Name;
964       if (DeclaratorDecl *DD =
965               Context.getASTContext().getDeclaratorForUnnamedTagDecl(TD)) {
966         // Anonymous types without a name for linkage purposes have their
967         // declarator mangled in if they have one.
968         Name += "<unnamed-type-";
969         Name += DD->getName();
970       } else if (TypedefNameDecl *TND =
971                      Context.getASTContext().getTypedefNameForUnnamedTagDecl(
972                          TD)) {
973         // Anonymous types without a name for linkage purposes have their
974         // associate typedef mangled in if they have one.
975         Name += "<unnamed-type-";
976         Name += TND->getName();
977       } else if (isa<EnumDecl>(TD) &&
978                  cast<EnumDecl>(TD)->enumerator_begin() !=
979                      cast<EnumDecl>(TD)->enumerator_end()) {
980         // Anonymous non-empty enums mangle in the first enumerator.
981         auto *ED = cast<EnumDecl>(TD);
982         Name += "<unnamed-enum-";
983         Name += ED->enumerator_begin()->getName();
984       } else {
985         // Otherwise, number the types using a $S prefix.
986         Name += "<unnamed-type-$S";
987         Name += llvm::utostr(Context.getAnonymousStructId(TD) + 1);
988       }
989       Name += ">";
990       mangleSourceName(Name.str());
991       break;
992     }
993 
994     case DeclarationName::ObjCZeroArgSelector:
995     case DeclarationName::ObjCOneArgSelector:
996     case DeclarationName::ObjCMultiArgSelector: {
997       // This is reachable only when constructing an outlined SEH finally
998       // block.  Nothing depends on this mangling and it's used only with
999       // functinos with internal linkage.
1000       llvm::SmallString<64> Name;
1001       mangleSourceName(Name.str());
1002       break;
1003     }
1004 
1005     case DeclarationName::CXXConstructorName:
1006       if (isStructorDecl(ND)) {
1007         if (StructorType == Ctor_CopyingClosure) {
1008           Out << "?_O";
1009           return;
1010         }
1011         if (StructorType == Ctor_DefaultClosure) {
1012           Out << "?_F";
1013           return;
1014         }
1015       }
1016       Out << "?0";
1017       return;
1018 
1019     case DeclarationName::CXXDestructorName:
1020       if (isStructorDecl(ND))
1021         // If the named decl is the C++ destructor we're mangling,
1022         // use the type we were given.
1023         mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1024       else
1025         // Otherwise, use the base destructor name. This is relevant if a
1026         // class with a destructor is declared within a destructor.
1027         mangleCXXDtorType(Dtor_Base);
1028       break;
1029 
1030     case DeclarationName::CXXConversionFunctionName:
1031       // <operator-name> ::= ?B # (cast)
1032       // The target type is encoded as the return type.
1033       Out << "?B";
1034       break;
1035 
1036     case DeclarationName::CXXOperatorName:
1037       mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation());
1038       break;
1039 
1040     case DeclarationName::CXXLiteralOperatorName: {
1041       Out << "?__K";
1042       mangleSourceName(Name.getCXXLiteralIdentifier()->getName());
1043       break;
1044     }
1045 
1046     case DeclarationName::CXXDeductionGuideName:
1047       llvm_unreachable("Can't mangle a deduction guide name!");
1048 
1049     case DeclarationName::CXXUsingDirective:
1050       llvm_unreachable("Can't mangle a using directive name!");
1051   }
1052 }
1053 
1054 // <postfix> ::= <unqualified-name> [<postfix>]
1055 //           ::= <substitution> [<postfix>]
1056 void MicrosoftCXXNameMangler::mangleNestedName(const NamedDecl *ND) {
1057   const DeclContext *DC = getEffectiveDeclContext(ND);
1058   while (!DC->isTranslationUnit()) {
1059     if (isa<TagDecl>(ND) || isa<VarDecl>(ND)) {
1060       unsigned Disc;
1061       if (Context.getNextDiscriminator(ND, Disc)) {
1062         Out << '?';
1063         mangleNumber(Disc);
1064         Out << '?';
1065       }
1066     }
1067 
1068     if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
1069       auto Discriminate =
1070           [](StringRef Name, const unsigned Discriminator,
1071              const unsigned ParameterDiscriminator) -> std::string {
1072         std::string Buffer;
1073         llvm::raw_string_ostream Stream(Buffer);
1074         Stream << Name;
1075         if (Discriminator)
1076           Stream << '_' << Discriminator;
1077         if (ParameterDiscriminator)
1078           Stream << '_' << ParameterDiscriminator;
1079         return Stream.str();
1080       };
1081 
1082       unsigned Discriminator = BD->getBlockManglingNumber();
1083       if (!Discriminator)
1084         Discriminator = Context.getBlockId(BD, /*Local=*/false);
1085 
1086       // Mangle the parameter position as a discriminator to deal with unnamed
1087       // parameters.  Rather than mangling the unqualified parameter name,
1088       // always use the position to give a uniform mangling.
1089       unsigned ParameterDiscriminator = 0;
1090       if (const auto *MC = BD->getBlockManglingContextDecl())
1091         if (const auto *P = dyn_cast<ParmVarDecl>(MC))
1092           if (const auto *F = dyn_cast<FunctionDecl>(P->getDeclContext()))
1093             ParameterDiscriminator =
1094                 F->getNumParams() - P->getFunctionScopeIndex();
1095 
1096       DC = getEffectiveDeclContext(BD);
1097 
1098       Out << '?';
1099       mangleSourceName(Discriminate("_block_invoke", Discriminator,
1100                                     ParameterDiscriminator));
1101       // If we have a block mangling context, encode that now.  This allows us
1102       // to discriminate between named static data initializers in the same
1103       // scope.  This is handled differently from parameters, which use
1104       // positions to discriminate between multiple instances.
1105       if (const auto *MC = BD->getBlockManglingContextDecl())
1106         if (!isa<ParmVarDecl>(MC))
1107           if (const auto *ND = dyn_cast<NamedDecl>(MC))
1108             mangleUnqualifiedName(ND);
1109       // MS ABI and Itanium manglings are in inverted scopes.  In the case of a
1110       // RecordDecl, mangle the entire scope hierarchy at this point rather than
1111       // just the unqualified name to get the ordering correct.
1112       if (const auto *RD = dyn_cast<RecordDecl>(DC))
1113         mangleName(RD);
1114       else
1115         Out << '@';
1116       // void __cdecl
1117       Out << "YAX";
1118       // struct __block_literal *
1119       Out << 'P';
1120       // __ptr64
1121       if (PointersAre64Bit)
1122         Out << 'E';
1123       Out << 'A';
1124       mangleArtificialTagType(TTK_Struct,
1125                              Discriminate("__block_literal", Discriminator,
1126                                           ParameterDiscriminator));
1127       Out << "@Z";
1128 
1129       // If the effective context was a Record, we have fully mangled the
1130       // qualified name and do not need to continue.
1131       if (isa<RecordDecl>(DC))
1132         break;
1133       continue;
1134     } else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) {
1135       mangleObjCMethodName(Method);
1136     } else if (isa<NamedDecl>(DC)) {
1137       ND = cast<NamedDecl>(DC);
1138       if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1139         mangle(FD, "?");
1140         break;
1141       } else {
1142         mangleUnqualifiedName(ND);
1143         // Lambdas in default arguments conceptually belong to the function the
1144         // parameter corresponds to.
1145         if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(ND)) {
1146           DC = LDADC;
1147           continue;
1148         }
1149       }
1150     }
1151     DC = DC->getParent();
1152   }
1153 }
1154 
1155 void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
1156   // Microsoft uses the names on the case labels for these dtor variants.  Clang
1157   // uses the Itanium terminology internally.  Everything in this ABI delegates
1158   // towards the base dtor.
1159   switch (T) {
1160   // <operator-name> ::= ?1  # destructor
1161   case Dtor_Base: Out << "?1"; return;
1162   // <operator-name> ::= ?_D # vbase destructor
1163   case Dtor_Complete: Out << "?_D"; return;
1164   // <operator-name> ::= ?_G # scalar deleting destructor
1165   case Dtor_Deleting: Out << "?_G"; return;
1166   // <operator-name> ::= ?_E # vector deleting destructor
1167   // FIXME: Add a vector deleting dtor type.  It goes in the vtable, so we need
1168   // it.
1169   case Dtor_Comdat:
1170     llvm_unreachable("not expecting a COMDAT");
1171   }
1172   llvm_unreachable("Unsupported dtor type?");
1173 }
1174 
1175 void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO,
1176                                                  SourceLocation Loc) {
1177   switch (OO) {
1178   //                     ?0 # constructor
1179   //                     ?1 # destructor
1180   // <operator-name> ::= ?2 # new
1181   case OO_New: Out << "?2"; break;
1182   // <operator-name> ::= ?3 # delete
1183   case OO_Delete: Out << "?3"; break;
1184   // <operator-name> ::= ?4 # =
1185   case OO_Equal: Out << "?4"; break;
1186   // <operator-name> ::= ?5 # >>
1187   case OO_GreaterGreater: Out << "?5"; break;
1188   // <operator-name> ::= ?6 # <<
1189   case OO_LessLess: Out << "?6"; break;
1190   // <operator-name> ::= ?7 # !
1191   case OO_Exclaim: Out << "?7"; break;
1192   // <operator-name> ::= ?8 # ==
1193   case OO_EqualEqual: Out << "?8"; break;
1194   // <operator-name> ::= ?9 # !=
1195   case OO_ExclaimEqual: Out << "?9"; break;
1196   // <operator-name> ::= ?A # []
1197   case OO_Subscript: Out << "?A"; break;
1198   //                     ?B # conversion
1199   // <operator-name> ::= ?C # ->
1200   case OO_Arrow: Out << "?C"; break;
1201   // <operator-name> ::= ?D # *
1202   case OO_Star: Out << "?D"; break;
1203   // <operator-name> ::= ?E # ++
1204   case OO_PlusPlus: Out << "?E"; break;
1205   // <operator-name> ::= ?F # --
1206   case OO_MinusMinus: Out << "?F"; break;
1207   // <operator-name> ::= ?G # -
1208   case OO_Minus: Out << "?G"; break;
1209   // <operator-name> ::= ?H # +
1210   case OO_Plus: Out << "?H"; break;
1211   // <operator-name> ::= ?I # &
1212   case OO_Amp: Out << "?I"; break;
1213   // <operator-name> ::= ?J # ->*
1214   case OO_ArrowStar: Out << "?J"; break;
1215   // <operator-name> ::= ?K # /
1216   case OO_Slash: Out << "?K"; break;
1217   // <operator-name> ::= ?L # %
1218   case OO_Percent: Out << "?L"; break;
1219   // <operator-name> ::= ?M # <
1220   case OO_Less: Out << "?M"; break;
1221   // <operator-name> ::= ?N # <=
1222   case OO_LessEqual: Out << "?N"; break;
1223   // <operator-name> ::= ?O # >
1224   case OO_Greater: Out << "?O"; break;
1225   // <operator-name> ::= ?P # >=
1226   case OO_GreaterEqual: Out << "?P"; break;
1227   // <operator-name> ::= ?Q # ,
1228   case OO_Comma: Out << "?Q"; break;
1229   // <operator-name> ::= ?R # ()
1230   case OO_Call: Out << "?R"; break;
1231   // <operator-name> ::= ?S # ~
1232   case OO_Tilde: Out << "?S"; break;
1233   // <operator-name> ::= ?T # ^
1234   case OO_Caret: Out << "?T"; break;
1235   // <operator-name> ::= ?U # |
1236   case OO_Pipe: Out << "?U"; break;
1237   // <operator-name> ::= ?V # &&
1238   case OO_AmpAmp: Out << "?V"; break;
1239   // <operator-name> ::= ?W # ||
1240   case OO_PipePipe: Out << "?W"; break;
1241   // <operator-name> ::= ?X # *=
1242   case OO_StarEqual: Out << "?X"; break;
1243   // <operator-name> ::= ?Y # +=
1244   case OO_PlusEqual: Out << "?Y"; break;
1245   // <operator-name> ::= ?Z # -=
1246   case OO_MinusEqual: Out << "?Z"; break;
1247   // <operator-name> ::= ?_0 # /=
1248   case OO_SlashEqual: Out << "?_0"; break;
1249   // <operator-name> ::= ?_1 # %=
1250   case OO_PercentEqual: Out << "?_1"; break;
1251   // <operator-name> ::= ?_2 # >>=
1252   case OO_GreaterGreaterEqual: Out << "?_2"; break;
1253   // <operator-name> ::= ?_3 # <<=
1254   case OO_LessLessEqual: Out << "?_3"; break;
1255   // <operator-name> ::= ?_4 # &=
1256   case OO_AmpEqual: Out << "?_4"; break;
1257   // <operator-name> ::= ?_5 # |=
1258   case OO_PipeEqual: Out << "?_5"; break;
1259   // <operator-name> ::= ?_6 # ^=
1260   case OO_CaretEqual: Out << "?_6"; break;
1261   //                     ?_7 # vftable
1262   //                     ?_8 # vbtable
1263   //                     ?_9 # vcall
1264   //                     ?_A # typeof
1265   //                     ?_B # local static guard
1266   //                     ?_C # string
1267   //                     ?_D # vbase destructor
1268   //                     ?_E # vector deleting destructor
1269   //                     ?_F # default constructor closure
1270   //                     ?_G # scalar deleting destructor
1271   //                     ?_H # vector constructor iterator
1272   //                     ?_I # vector destructor iterator
1273   //                     ?_J # vector vbase constructor iterator
1274   //                     ?_K # virtual displacement map
1275   //                     ?_L # eh vector constructor iterator
1276   //                     ?_M # eh vector destructor iterator
1277   //                     ?_N # eh vector vbase constructor iterator
1278   //                     ?_O # copy constructor closure
1279   //                     ?_P<name> # udt returning <name>
1280   //                     ?_Q # <unknown>
1281   //                     ?_R0 # RTTI Type Descriptor
1282   //                     ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
1283   //                     ?_R2 # RTTI Base Class Array
1284   //                     ?_R3 # RTTI Class Hierarchy Descriptor
1285   //                     ?_R4 # RTTI Complete Object Locator
1286   //                     ?_S # local vftable
1287   //                     ?_T # local vftable constructor closure
1288   // <operator-name> ::= ?_U # new[]
1289   case OO_Array_New: Out << "?_U"; break;
1290   // <operator-name> ::= ?_V # delete[]
1291   case OO_Array_Delete: Out << "?_V"; break;
1292   // <operator-name> ::= ?__L # co_await
1293   case OO_Coawait: Out << "?__L"; break;
1294   // <operator-name> ::= ?__M # <=>
1295   case OO_Spaceship: Out << "?__M"; break;
1296 
1297   case OO_Conditional: {
1298     DiagnosticsEngine &Diags = Context.getDiags();
1299     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1300       "cannot mangle this conditional operator yet");
1301     Diags.Report(Loc, DiagID);
1302     break;
1303   }
1304 
1305   case OO_None:
1306   case NUM_OVERLOADED_OPERATORS:
1307     llvm_unreachable("Not an overloaded operator");
1308   }
1309 }
1310 
1311 void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) {
1312   // <source name> ::= <identifier> @
1313   BackRefVec::iterator Found = llvm::find(NameBackReferences, Name);
1314   if (Found == NameBackReferences.end()) {
1315     if (NameBackReferences.size() < 10)
1316       NameBackReferences.push_back(std::string(Name));
1317     Out << Name << '@';
1318   } else {
1319     Out << (Found - NameBackReferences.begin());
1320   }
1321 }
1322 
1323 void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1324   Context.mangleObjCMethodName(MD, Out);
1325 }
1326 
1327 void MicrosoftCXXNameMangler::mangleTemplateInstantiationName(
1328     const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
1329   // <template-name> ::= <unscoped-template-name> <template-args>
1330   //                 ::= <substitution>
1331   // Always start with the unqualified name.
1332 
1333   // Templates have their own context for back references.
1334   ArgBackRefMap OuterFunArgsContext;
1335   ArgBackRefMap OuterTemplateArgsContext;
1336   BackRefVec OuterTemplateContext;
1337   PassObjectSizeArgsSet OuterPassObjectSizeArgs;
1338   NameBackReferences.swap(OuterTemplateContext);
1339   FunArgBackReferences.swap(OuterFunArgsContext);
1340   TemplateArgBackReferences.swap(OuterTemplateArgsContext);
1341   PassObjectSizeArgs.swap(OuterPassObjectSizeArgs);
1342 
1343   mangleUnscopedTemplateName(TD);
1344   mangleTemplateArgs(TD, TemplateArgs);
1345 
1346   // Restore the previous back reference contexts.
1347   NameBackReferences.swap(OuterTemplateContext);
1348   FunArgBackReferences.swap(OuterFunArgsContext);
1349   TemplateArgBackReferences.swap(OuterTemplateArgsContext);
1350   PassObjectSizeArgs.swap(OuterPassObjectSizeArgs);
1351 }
1352 
1353 void
1354 MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) {
1355   // <unscoped-template-name> ::= ?$ <unqualified-name>
1356   Out << "?$";
1357   mangleUnqualifiedName(TD);
1358 }
1359 
1360 void MicrosoftCXXNameMangler::mangleIntegerLiteral(const llvm::APSInt &Value,
1361                                                    bool IsBoolean) {
1362   // <integer-literal> ::= $0 <number>
1363   Out << "$0";
1364   // Make sure booleans are encoded as 0/1.
1365   if (IsBoolean && Value.getBoolValue())
1366     mangleNumber(1);
1367   else if (Value.isSigned())
1368     mangleNumber(Value.getSExtValue());
1369   else
1370     mangleNumber(Value.getZExtValue());
1371 }
1372 
1373 void MicrosoftCXXNameMangler::mangleExpression(const Expr *E) {
1374   // See if this is a constant expression.
1375   llvm::APSInt Value;
1376   if (E->isIntegerConstantExpr(Value, Context.getASTContext())) {
1377     mangleIntegerLiteral(Value, E->getType()->isBooleanType());
1378     return;
1379   }
1380 
1381   // As bad as this diagnostic is, it's better than crashing.
1382   DiagnosticsEngine &Diags = Context.getDiags();
1383   unsigned DiagID = Diags.getCustomDiagID(
1384       DiagnosticsEngine::Error, "cannot yet mangle expression type %0");
1385   Diags.Report(E->getExprLoc(), DiagID) << E->getStmtClassName()
1386                                         << E->getSourceRange();
1387 }
1388 
1389 void MicrosoftCXXNameMangler::mangleTemplateArgs(
1390     const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
1391   // <template-args> ::= <template-arg>+
1392   const TemplateParameterList *TPL = TD->getTemplateParameters();
1393   assert(TPL->size() == TemplateArgs.size() &&
1394          "size mismatch between args and parms!");
1395 
1396   for (size_t i = 0; i < TemplateArgs.size(); ++i) {
1397     const TemplateArgument &TA = TemplateArgs[i];
1398 
1399     // Separate consecutive packs by $$Z.
1400     if (i > 0 && TA.getKind() == TemplateArgument::Pack &&
1401         TemplateArgs[i - 1].getKind() == TemplateArgument::Pack)
1402       Out << "$$Z";
1403 
1404     mangleTemplateArg(TD, TA, TPL->getParam(i));
1405   }
1406 }
1407 
1408 void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD,
1409                                                 const TemplateArgument &TA,
1410                                                 const NamedDecl *Parm) {
1411   // <template-arg> ::= <type>
1412   //                ::= <integer-literal>
1413   //                ::= <member-data-pointer>
1414   //                ::= <member-function-pointer>
1415   //                ::= $E? <name> <type-encoding>
1416   //                ::= $1? <name> <type-encoding>
1417   //                ::= $0A@
1418   //                ::= <template-args>
1419 
1420   switch (TA.getKind()) {
1421   case TemplateArgument::Null:
1422     llvm_unreachable("Can't mangle null template arguments!");
1423   case TemplateArgument::TemplateExpansion:
1424     llvm_unreachable("Can't mangle template expansion arguments!");
1425   case TemplateArgument::Type: {
1426     QualType T = TA.getAsType();
1427     mangleType(T, SourceRange(), QMM_Escape);
1428     break;
1429   }
1430   case TemplateArgument::Declaration: {
1431     const NamedDecl *ND = TA.getAsDecl();
1432     if (isa<FieldDecl>(ND) || isa<IndirectFieldDecl>(ND)) {
1433       mangleMemberDataPointer(cast<CXXRecordDecl>(ND->getDeclContext())
1434                                   ->getMostRecentNonInjectedDecl(),
1435                               cast<ValueDecl>(ND));
1436     } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1437       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1438       if (MD && MD->isInstance()) {
1439         mangleMemberFunctionPointer(
1440             MD->getParent()->getMostRecentNonInjectedDecl(), MD);
1441       } else {
1442         Out << "$1?";
1443         mangleName(FD);
1444         mangleFunctionEncoding(FD, /*ShouldMangle=*/true);
1445       }
1446     } else {
1447       mangle(ND, TA.getParamTypeForDecl()->isReferenceType() ? "$E?" : "$1?");
1448     }
1449     break;
1450   }
1451   case TemplateArgument::Integral:
1452     mangleIntegerLiteral(TA.getAsIntegral(),
1453                          TA.getIntegralType()->isBooleanType());
1454     break;
1455   case TemplateArgument::NullPtr: {
1456     QualType T = TA.getNullPtrType();
1457     if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) {
1458       const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
1459       if (MPT->isMemberFunctionPointerType() &&
1460           !isa<FunctionTemplateDecl>(TD)) {
1461         mangleMemberFunctionPointer(RD, nullptr);
1462         return;
1463       }
1464       if (MPT->isMemberDataPointer()) {
1465         if (!isa<FunctionTemplateDecl>(TD)) {
1466           mangleMemberDataPointer(RD, nullptr);
1467           return;
1468         }
1469         // nullptr data pointers are always represented with a single field
1470         // which is initialized with either 0 or -1.  Why -1?  Well, we need to
1471         // distinguish the case where the data member is at offset zero in the
1472         // record.
1473         // However, we are free to use 0 *if* we would use multiple fields for
1474         // non-nullptr member pointers.
1475         if (!RD->nullFieldOffsetIsZero()) {
1476           mangleIntegerLiteral(llvm::APSInt::get(-1), /*IsBoolean=*/false);
1477           return;
1478         }
1479       }
1480     }
1481     mangleIntegerLiteral(llvm::APSInt::getUnsigned(0), /*IsBoolean=*/false);
1482     break;
1483   }
1484   case TemplateArgument::Expression:
1485     mangleExpression(TA.getAsExpr());
1486     break;
1487   case TemplateArgument::Pack: {
1488     ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray();
1489     if (TemplateArgs.empty()) {
1490       if (isa<TemplateTypeParmDecl>(Parm) ||
1491           isa<TemplateTemplateParmDecl>(Parm))
1492         // MSVC 2015 changed the mangling for empty expanded template packs,
1493         // use the old mangling for link compatibility for old versions.
1494         Out << (Context.getASTContext().getLangOpts().isCompatibleWithMSVC(
1495                     LangOptions::MSVC2015)
1496                     ? "$$V"
1497                     : "$$$V");
1498       else if (isa<NonTypeTemplateParmDecl>(Parm))
1499         Out << "$S";
1500       else
1501         llvm_unreachable("unexpected template parameter decl!");
1502     } else {
1503       for (const TemplateArgument &PA : TemplateArgs)
1504         mangleTemplateArg(TD, PA, Parm);
1505     }
1506     break;
1507   }
1508   case TemplateArgument::Template: {
1509     const NamedDecl *ND =
1510         TA.getAsTemplate().getAsTemplateDecl()->getTemplatedDecl();
1511     if (const auto *TD = dyn_cast<TagDecl>(ND)) {
1512       mangleType(TD);
1513     } else if (isa<TypeAliasDecl>(ND)) {
1514       Out << "$$Y";
1515       mangleName(ND);
1516     } else {
1517       llvm_unreachable("unexpected template template NamedDecl!");
1518     }
1519     break;
1520   }
1521   }
1522 }
1523 
1524 void MicrosoftCXXNameMangler::mangleObjCProtocol(const ObjCProtocolDecl *PD) {
1525   llvm::SmallString<64> TemplateMangling;
1526   llvm::raw_svector_ostream Stream(TemplateMangling);
1527   MicrosoftCXXNameMangler Extra(Context, Stream);
1528 
1529   Stream << "?$";
1530   Extra.mangleSourceName("Protocol");
1531   Extra.mangleArtificialTagType(TTK_Struct, PD->getName());
1532 
1533   mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"});
1534 }
1535 
1536 void MicrosoftCXXNameMangler::mangleObjCLifetime(const QualType Type,
1537                                                  Qualifiers Quals,
1538                                                  SourceRange Range) {
1539   llvm::SmallString<64> TemplateMangling;
1540   llvm::raw_svector_ostream Stream(TemplateMangling);
1541   MicrosoftCXXNameMangler Extra(Context, Stream);
1542 
1543   Stream << "?$";
1544   switch (Quals.getObjCLifetime()) {
1545   case Qualifiers::OCL_None:
1546   case Qualifiers::OCL_ExplicitNone:
1547     break;
1548   case Qualifiers::OCL_Autoreleasing:
1549     Extra.mangleSourceName("Autoreleasing");
1550     break;
1551   case Qualifiers::OCL_Strong:
1552     Extra.mangleSourceName("Strong");
1553     break;
1554   case Qualifiers::OCL_Weak:
1555     Extra.mangleSourceName("Weak");
1556     break;
1557   }
1558   Extra.manglePointerCVQualifiers(Quals);
1559   Extra.manglePointerExtQualifiers(Quals, Type);
1560   Extra.mangleType(Type, Range);
1561 
1562   mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"});
1563 }
1564 
1565 void MicrosoftCXXNameMangler::mangleObjCKindOfType(const ObjCObjectType *T,
1566                                                    Qualifiers Quals,
1567                                                    SourceRange Range) {
1568   llvm::SmallString<64> TemplateMangling;
1569   llvm::raw_svector_ostream Stream(TemplateMangling);
1570   MicrosoftCXXNameMangler Extra(Context, Stream);
1571 
1572   Stream << "?$";
1573   Extra.mangleSourceName("KindOf");
1574   Extra.mangleType(QualType(T, 0)
1575                        .stripObjCKindOfType(getASTContext())
1576                        ->getAs<ObjCObjectType>(),
1577                    Quals, Range);
1578 
1579   mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"});
1580 }
1581 
1582 void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
1583                                                bool IsMember) {
1584   // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
1585   // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
1586   // 'I' means __restrict (32/64-bit).
1587   // Note that the MSVC __restrict keyword isn't the same as the C99 restrict
1588   // keyword!
1589   // <base-cvr-qualifiers> ::= A  # near
1590   //                       ::= B  # near const
1591   //                       ::= C  # near volatile
1592   //                       ::= D  # near const volatile
1593   //                       ::= E  # far (16-bit)
1594   //                       ::= F  # far const (16-bit)
1595   //                       ::= G  # far volatile (16-bit)
1596   //                       ::= H  # far const volatile (16-bit)
1597   //                       ::= I  # huge (16-bit)
1598   //                       ::= J  # huge const (16-bit)
1599   //                       ::= K  # huge volatile (16-bit)
1600   //                       ::= L  # huge const volatile (16-bit)
1601   //                       ::= M <basis> # based
1602   //                       ::= N <basis> # based const
1603   //                       ::= O <basis> # based volatile
1604   //                       ::= P <basis> # based const volatile
1605   //                       ::= Q  # near member
1606   //                       ::= R  # near const member
1607   //                       ::= S  # near volatile member
1608   //                       ::= T  # near const volatile member
1609   //                       ::= U  # far member (16-bit)
1610   //                       ::= V  # far const member (16-bit)
1611   //                       ::= W  # far volatile member (16-bit)
1612   //                       ::= X  # far const volatile member (16-bit)
1613   //                       ::= Y  # huge member (16-bit)
1614   //                       ::= Z  # huge const member (16-bit)
1615   //                       ::= 0  # huge volatile member (16-bit)
1616   //                       ::= 1  # huge const volatile member (16-bit)
1617   //                       ::= 2 <basis> # based member
1618   //                       ::= 3 <basis> # based const member
1619   //                       ::= 4 <basis> # based volatile member
1620   //                       ::= 5 <basis> # based const volatile member
1621   //                       ::= 6  # near function (pointers only)
1622   //                       ::= 7  # far function (pointers only)
1623   //                       ::= 8  # near method (pointers only)
1624   //                       ::= 9  # far method (pointers only)
1625   //                       ::= _A <basis> # based function (pointers only)
1626   //                       ::= _B <basis> # based function (far?) (pointers only)
1627   //                       ::= _C <basis> # based method (pointers only)
1628   //                       ::= _D <basis> # based method (far?) (pointers only)
1629   //                       ::= _E # block (Clang)
1630   // <basis> ::= 0 # __based(void)
1631   //         ::= 1 # __based(segment)?
1632   //         ::= 2 <name> # __based(name)
1633   //         ::= 3 # ?
1634   //         ::= 4 # ?
1635   //         ::= 5 # not really based
1636   bool HasConst = Quals.hasConst(),
1637        HasVolatile = Quals.hasVolatile();
1638 
1639   if (!IsMember) {
1640     if (HasConst && HasVolatile) {
1641       Out << 'D';
1642     } else if (HasVolatile) {
1643       Out << 'C';
1644     } else if (HasConst) {
1645       Out << 'B';
1646     } else {
1647       Out << 'A';
1648     }
1649   } else {
1650     if (HasConst && HasVolatile) {
1651       Out << 'T';
1652     } else if (HasVolatile) {
1653       Out << 'S';
1654     } else if (HasConst) {
1655       Out << 'R';
1656     } else {
1657       Out << 'Q';
1658     }
1659   }
1660 
1661   // FIXME: For now, just drop all extension qualifiers on the floor.
1662 }
1663 
1664 void
1665 MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1666   // <ref-qualifier> ::= G                # lvalue reference
1667   //                 ::= H                # rvalue-reference
1668   switch (RefQualifier) {
1669   case RQ_None:
1670     break;
1671 
1672   case RQ_LValue:
1673     Out << 'G';
1674     break;
1675 
1676   case RQ_RValue:
1677     Out << 'H';
1678     break;
1679   }
1680 }
1681 
1682 void MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals,
1683                                                          QualType PointeeType) {
1684   // Check if this is a default 64-bit pointer or has __ptr64 qualifier.
1685   bool is64Bit = PointeeType.isNull() ? PointersAre64Bit :
1686       is64BitPointer(PointeeType.getQualifiers());
1687   if (is64Bit && (PointeeType.isNull() || !PointeeType->isFunctionType()))
1688     Out << 'E';
1689 
1690   if (Quals.hasRestrict())
1691     Out << 'I';
1692 
1693   if (Quals.hasUnaligned() ||
1694       (!PointeeType.isNull() && PointeeType.getLocalQualifiers().hasUnaligned()))
1695     Out << 'F';
1696 }
1697 
1698 void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) {
1699   // <pointer-cv-qualifiers> ::= P  # no qualifiers
1700   //                         ::= Q  # const
1701   //                         ::= R  # volatile
1702   //                         ::= S  # const volatile
1703   bool HasConst = Quals.hasConst(),
1704        HasVolatile = Quals.hasVolatile();
1705 
1706   if (HasConst && HasVolatile) {
1707     Out << 'S';
1708   } else if (HasVolatile) {
1709     Out << 'R';
1710   } else if (HasConst) {
1711     Out << 'Q';
1712   } else {
1713     Out << 'P';
1714   }
1715 }
1716 
1717 void MicrosoftCXXNameMangler::mangleFunctionArgumentType(QualType T,
1718                                                          SourceRange Range) {
1719   // MSVC will backreference two canonically equivalent types that have slightly
1720   // different manglings when mangled alone.
1721 
1722   // Decayed types do not match up with non-decayed versions of the same type.
1723   //
1724   // e.g.
1725   // void (*x)(void) will not form a backreference with void x(void)
1726   void *TypePtr;
1727   if (const auto *DT = T->getAs<DecayedType>()) {
1728     QualType OriginalType = DT->getOriginalType();
1729     // All decayed ArrayTypes should be treated identically; as-if they were
1730     // a decayed IncompleteArrayType.
1731     if (const auto *AT = getASTContext().getAsArrayType(OriginalType))
1732       OriginalType = getASTContext().getIncompleteArrayType(
1733           AT->getElementType(), AT->getSizeModifier(),
1734           AT->getIndexTypeCVRQualifiers());
1735 
1736     TypePtr = OriginalType.getCanonicalType().getAsOpaquePtr();
1737     // If the original parameter was textually written as an array,
1738     // instead treat the decayed parameter like it's const.
1739     //
1740     // e.g.
1741     // int [] -> int * const
1742     if (OriginalType->isArrayType())
1743       T = T.withConst();
1744   } else {
1745     TypePtr = T.getCanonicalType().getAsOpaquePtr();
1746   }
1747 
1748   ArgBackRefMap::iterator Found = FunArgBackReferences.find(TypePtr);
1749 
1750   if (Found == FunArgBackReferences.end()) {
1751     size_t OutSizeBefore = Out.tell();
1752 
1753     mangleType(T, Range, QMM_Drop);
1754 
1755     // See if it's worth creating a back reference.
1756     // Only types longer than 1 character are considered
1757     // and only 10 back references slots are available:
1758     bool LongerThanOneChar = (Out.tell() - OutSizeBefore > 1);
1759     if (LongerThanOneChar && FunArgBackReferences.size() < 10) {
1760       size_t Size = FunArgBackReferences.size();
1761       FunArgBackReferences[TypePtr] = Size;
1762     }
1763   } else {
1764     Out << Found->second;
1765   }
1766 }
1767 
1768 void MicrosoftCXXNameMangler::manglePassObjectSizeArg(
1769     const PassObjectSizeAttr *POSA) {
1770   int Type = POSA->getType();
1771   bool Dynamic = POSA->isDynamic();
1772 
1773   auto Iter = PassObjectSizeArgs.insert({Type, Dynamic}).first;
1774   auto *TypePtr = (const void *)&*Iter;
1775   ArgBackRefMap::iterator Found = FunArgBackReferences.find(TypePtr);
1776 
1777   if (Found == FunArgBackReferences.end()) {
1778     std::string Name =
1779         Dynamic ? "__pass_dynamic_object_size" : "__pass_object_size";
1780     mangleArtificialTagType(TTK_Enum, Name + llvm::utostr(Type), {"__clang"});
1781 
1782     if (FunArgBackReferences.size() < 10) {
1783       size_t Size = FunArgBackReferences.size();
1784       FunArgBackReferences[TypePtr] = Size;
1785     }
1786   } else {
1787     Out << Found->second;
1788   }
1789 }
1790 
1791 void MicrosoftCXXNameMangler::mangleAddressSpaceType(QualType T,
1792                                                      Qualifiers Quals,
1793                                                      SourceRange Range) {
1794   // Address space is mangled as an unqualified templated type in the __clang
1795   // namespace. The demangled version of this is:
1796   // In the case of a language specific address space:
1797   // __clang::struct _AS[language_addr_space]<Type>
1798   // where:
1799   //  <language_addr_space> ::= <OpenCL-addrspace> | <CUDA-addrspace>
1800   //    <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" |
1801   //                                "private"| "generic" ]
1802   //    <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
1803   //    Note that the above were chosen to match the Itanium mangling for this.
1804   //
1805   // In the case of a non-language specific address space:
1806   //  __clang::struct _AS<TargetAS, Type>
1807   assert(Quals.hasAddressSpace() && "Not valid without address space");
1808   llvm::SmallString<32> ASMangling;
1809   llvm::raw_svector_ostream Stream(ASMangling);
1810   MicrosoftCXXNameMangler Extra(Context, Stream);
1811   Stream << "?$";
1812 
1813   LangAS AS = Quals.getAddressSpace();
1814   if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
1815     unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
1816     Extra.mangleSourceName("_AS");
1817     Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(TargetAS),
1818                                /*IsBoolean*/ false);
1819   } else {
1820     switch (AS) {
1821     default:
1822       llvm_unreachable("Not a language specific address space");
1823     case LangAS::opencl_global:
1824       Extra.mangleSourceName("_ASCLglobal");
1825       break;
1826     case LangAS::opencl_local:
1827       Extra.mangleSourceName("_ASCLlocal");
1828       break;
1829     case LangAS::opencl_constant:
1830       Extra.mangleSourceName("_ASCLconstant");
1831       break;
1832     case LangAS::opencl_private:
1833       Extra.mangleSourceName("_ASCLprivate");
1834       break;
1835     case LangAS::opencl_generic:
1836       Extra.mangleSourceName("_ASCLgeneric");
1837       break;
1838     case LangAS::cuda_device:
1839       Extra.mangleSourceName("_ASCUdevice");
1840       break;
1841     case LangAS::cuda_constant:
1842       Extra.mangleSourceName("_ASCUconstant");
1843       break;
1844     case LangAS::cuda_shared:
1845       Extra.mangleSourceName("_ASCUshared");
1846       break;
1847     case LangAS::ptr32_sptr:
1848     case LangAS::ptr32_uptr:
1849     case LangAS::ptr64:
1850       llvm_unreachable("don't mangle ptr address spaces with _AS");
1851     }
1852   }
1853 
1854   Extra.mangleType(T, Range, QMM_Escape);
1855   mangleQualifiers(Qualifiers(), false);
1856   mangleArtificialTagType(TTK_Struct, ASMangling, {"__clang"});
1857 }
1858 
1859 void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range,
1860                                          QualifierMangleMode QMM) {
1861   // Don't use the canonical types.  MSVC includes things like 'const' on
1862   // pointer arguments to function pointers that canonicalization strips away.
1863   T = T.getDesugaredType(getASTContext());
1864   Qualifiers Quals = T.getLocalQualifiers();
1865 
1866   if (const ArrayType *AT = getASTContext().getAsArrayType(T)) {
1867     // If there were any Quals, getAsArrayType() pushed them onto the array
1868     // element type.
1869     if (QMM == QMM_Mangle)
1870       Out << 'A';
1871     else if (QMM == QMM_Escape || QMM == QMM_Result)
1872       Out << "$$B";
1873     mangleArrayType(AT);
1874     return;
1875   }
1876 
1877   bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() ||
1878                    T->isReferenceType() || T->isBlockPointerType();
1879 
1880   switch (QMM) {
1881   case QMM_Drop:
1882     if (Quals.hasObjCLifetime())
1883       Quals = Quals.withoutObjCLifetime();
1884     break;
1885   case QMM_Mangle:
1886     if (const FunctionType *FT = dyn_cast<FunctionType>(T)) {
1887       Out << '6';
1888       mangleFunctionType(FT);
1889       return;
1890     }
1891     mangleQualifiers(Quals, false);
1892     break;
1893   case QMM_Escape:
1894     if (!IsPointer && Quals) {
1895       Out << "$$C";
1896       mangleQualifiers(Quals, false);
1897     }
1898     break;
1899   case QMM_Result:
1900     // Presence of __unaligned qualifier shouldn't affect mangling here.
1901     Quals.removeUnaligned();
1902     if (Quals.hasObjCLifetime())
1903       Quals = Quals.withoutObjCLifetime();
1904     if ((!IsPointer && Quals) || isa<TagType>(T) || isArtificialTagType(T)) {
1905       Out << '?';
1906       mangleQualifiers(Quals, false);
1907     }
1908     break;
1909   }
1910 
1911   const Type *ty = T.getTypePtr();
1912 
1913   switch (ty->getTypeClass()) {
1914 #define ABSTRACT_TYPE(CLASS, PARENT)
1915 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
1916   case Type::CLASS: \
1917     llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1918     return;
1919 #define TYPE(CLASS, PARENT) \
1920   case Type::CLASS: \
1921     mangleType(cast<CLASS##Type>(ty), Quals, Range); \
1922     break;
1923 #include "clang/AST/TypeNodes.inc"
1924 #undef ABSTRACT_TYPE
1925 #undef NON_CANONICAL_TYPE
1926 #undef TYPE
1927   }
1928 }
1929 
1930 void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T, Qualifiers,
1931                                          SourceRange Range) {
1932   //  <type>         ::= <builtin-type>
1933   //  <builtin-type> ::= X  # void
1934   //                 ::= C  # signed char
1935   //                 ::= D  # char
1936   //                 ::= E  # unsigned char
1937   //                 ::= F  # short
1938   //                 ::= G  # unsigned short (or wchar_t if it's not a builtin)
1939   //                 ::= H  # int
1940   //                 ::= I  # unsigned int
1941   //                 ::= J  # long
1942   //                 ::= K  # unsigned long
1943   //                     L  # <none>
1944   //                 ::= M  # float
1945   //                 ::= N  # double
1946   //                 ::= O  # long double (__float80 is mangled differently)
1947   //                 ::= _J # long long, __int64
1948   //                 ::= _K # unsigned long long, __int64
1949   //                 ::= _L # __int128
1950   //                 ::= _M # unsigned __int128
1951   //                 ::= _N # bool
1952   //                     _O # <array in parameter>
1953   //                 ::= _Q # char8_t
1954   //                 ::= _S # char16_t
1955   //                 ::= _T # __float80 (Intel)
1956   //                 ::= _U # char32_t
1957   //                 ::= _W # wchar_t
1958   //                 ::= _Z # __float80 (Digital Mars)
1959   switch (T->getKind()) {
1960   case BuiltinType::Void:
1961     Out << 'X';
1962     break;
1963   case BuiltinType::SChar:
1964     Out << 'C';
1965     break;
1966   case BuiltinType::Char_U:
1967   case BuiltinType::Char_S:
1968     Out << 'D';
1969     break;
1970   case BuiltinType::UChar:
1971     Out << 'E';
1972     break;
1973   case BuiltinType::Short:
1974     Out << 'F';
1975     break;
1976   case BuiltinType::UShort:
1977     Out << 'G';
1978     break;
1979   case BuiltinType::Int:
1980     Out << 'H';
1981     break;
1982   case BuiltinType::UInt:
1983     Out << 'I';
1984     break;
1985   case BuiltinType::Long:
1986     Out << 'J';
1987     break;
1988   case BuiltinType::ULong:
1989     Out << 'K';
1990     break;
1991   case BuiltinType::Float:
1992     Out << 'M';
1993     break;
1994   case BuiltinType::Double:
1995     Out << 'N';
1996     break;
1997   // TODO: Determine size and mangle accordingly
1998   case BuiltinType::LongDouble:
1999     Out << 'O';
2000     break;
2001   case BuiltinType::LongLong:
2002     Out << "_J";
2003     break;
2004   case BuiltinType::ULongLong:
2005     Out << "_K";
2006     break;
2007   case BuiltinType::Int128:
2008     Out << "_L";
2009     break;
2010   case BuiltinType::UInt128:
2011     Out << "_M";
2012     break;
2013   case BuiltinType::Bool:
2014     Out << "_N";
2015     break;
2016   case BuiltinType::Char8:
2017     Out << "_Q";
2018     break;
2019   case BuiltinType::Char16:
2020     Out << "_S";
2021     break;
2022   case BuiltinType::Char32:
2023     Out << "_U";
2024     break;
2025   case BuiltinType::WChar_S:
2026   case BuiltinType::WChar_U:
2027     Out << "_W";
2028     break;
2029 
2030 #define BUILTIN_TYPE(Id, SingletonId)
2031 #define PLACEHOLDER_TYPE(Id, SingletonId) \
2032   case BuiltinType::Id:
2033 #include "clang/AST/BuiltinTypes.def"
2034   case BuiltinType::Dependent:
2035     llvm_unreachable("placeholder types shouldn't get to name mangling");
2036 
2037   case BuiltinType::ObjCId:
2038     mangleArtificialTagType(TTK_Struct, "objc_object");
2039     break;
2040   case BuiltinType::ObjCClass:
2041     mangleArtificialTagType(TTK_Struct, "objc_class");
2042     break;
2043   case BuiltinType::ObjCSel:
2044     mangleArtificialTagType(TTK_Struct, "objc_selector");
2045     break;
2046 
2047 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2048   case BuiltinType::Id: \
2049     Out << "PAUocl_" #ImgType "_" #Suffix "@@"; \
2050     break;
2051 #include "clang/Basic/OpenCLImageTypes.def"
2052   case BuiltinType::OCLSampler:
2053     Out << "PA";
2054     mangleArtificialTagType(TTK_Struct, "ocl_sampler");
2055     break;
2056   case BuiltinType::OCLEvent:
2057     Out << "PA";
2058     mangleArtificialTagType(TTK_Struct, "ocl_event");
2059     break;
2060   case BuiltinType::OCLClkEvent:
2061     Out << "PA";
2062     mangleArtificialTagType(TTK_Struct, "ocl_clkevent");
2063     break;
2064   case BuiltinType::OCLQueue:
2065     Out << "PA";
2066     mangleArtificialTagType(TTK_Struct, "ocl_queue");
2067     break;
2068   case BuiltinType::OCLReserveID:
2069     Out << "PA";
2070     mangleArtificialTagType(TTK_Struct, "ocl_reserveid");
2071     break;
2072 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2073   case BuiltinType::Id: \
2074     mangleArtificialTagType(TTK_Struct, "ocl_" #ExtType); \
2075     break;
2076 #include "clang/Basic/OpenCLExtensionTypes.def"
2077 
2078   case BuiltinType::NullPtr:
2079     Out << "$$T";
2080     break;
2081 
2082   case BuiltinType::Float16:
2083     mangleArtificialTagType(TTK_Struct, "_Float16", {"__clang"});
2084     break;
2085 
2086   case BuiltinType::Half:
2087     mangleArtificialTagType(TTK_Struct, "_Half", {"__clang"});
2088     break;
2089 
2090 #define SVE_TYPE(Name, Id, SingletonId) \
2091   case BuiltinType::Id:
2092 #include "clang/Basic/AArch64SVEACLETypes.def"
2093   case BuiltinType::ShortAccum:
2094   case BuiltinType::Accum:
2095   case BuiltinType::LongAccum:
2096   case BuiltinType::UShortAccum:
2097   case BuiltinType::UAccum:
2098   case BuiltinType::ULongAccum:
2099   case BuiltinType::ShortFract:
2100   case BuiltinType::Fract:
2101   case BuiltinType::LongFract:
2102   case BuiltinType::UShortFract:
2103   case BuiltinType::UFract:
2104   case BuiltinType::ULongFract:
2105   case BuiltinType::SatShortAccum:
2106   case BuiltinType::SatAccum:
2107   case BuiltinType::SatLongAccum:
2108   case BuiltinType::SatUShortAccum:
2109   case BuiltinType::SatUAccum:
2110   case BuiltinType::SatULongAccum:
2111   case BuiltinType::SatShortFract:
2112   case BuiltinType::SatFract:
2113   case BuiltinType::SatLongFract:
2114   case BuiltinType::SatUShortFract:
2115   case BuiltinType::SatUFract:
2116   case BuiltinType::SatULongFract:
2117   case BuiltinType::BFloat16:
2118   case BuiltinType::Float128: {
2119     DiagnosticsEngine &Diags = Context.getDiags();
2120     unsigned DiagID = Diags.getCustomDiagID(
2121         DiagnosticsEngine::Error, "cannot mangle this built-in %0 type yet");
2122     Diags.Report(Range.getBegin(), DiagID)
2123         << T->getName(Context.getASTContext().getPrintingPolicy()) << Range;
2124     break;
2125   }
2126   }
2127 }
2128 
2129 // <type>          ::= <function-type>
2130 void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T, Qualifiers,
2131                                          SourceRange) {
2132   // Structors only appear in decls, so at this point we know it's not a
2133   // structor type.
2134   // FIXME: This may not be lambda-friendly.
2135   if (T->getMethodQuals() || T->getRefQualifier() != RQ_None) {
2136     Out << "$$A8@@";
2137     mangleFunctionType(T, /*D=*/nullptr, /*ForceThisQuals=*/true);
2138   } else {
2139     Out << "$$A6";
2140     mangleFunctionType(T);
2141   }
2142 }
2143 void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T,
2144                                          Qualifiers, SourceRange) {
2145   Out << "$$A6";
2146   mangleFunctionType(T);
2147 }
2148 
2149 void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T,
2150                                                  const FunctionDecl *D,
2151                                                  bool ForceThisQuals,
2152                                                  bool MangleExceptionSpec) {
2153   // <function-type> ::= <this-cvr-qualifiers> <calling-convention>
2154   //                     <return-type> <argument-list> <throw-spec>
2155   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(T);
2156 
2157   SourceRange Range;
2158   if (D) Range = D->getSourceRange();
2159 
2160   bool IsInLambda = false;
2161   bool IsStructor = false, HasThisQuals = ForceThisQuals, IsCtorClosure = false;
2162   CallingConv CC = T->getCallConv();
2163   if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) {
2164     if (MD->getParent()->isLambda())
2165       IsInLambda = true;
2166     if (MD->isInstance())
2167       HasThisQuals = true;
2168     if (isa<CXXDestructorDecl>(MD)) {
2169       IsStructor = true;
2170     } else if (isa<CXXConstructorDecl>(MD)) {
2171       IsStructor = true;
2172       IsCtorClosure = (StructorType == Ctor_CopyingClosure ||
2173                        StructorType == Ctor_DefaultClosure) &&
2174                       isStructorDecl(MD);
2175       if (IsCtorClosure)
2176         CC = getASTContext().getDefaultCallingConvention(
2177             /*IsVariadic=*/false, /*IsCXXMethod=*/true);
2178     }
2179   }
2180 
2181   // If this is a C++ instance method, mangle the CVR qualifiers for the
2182   // this pointer.
2183   if (HasThisQuals) {
2184     Qualifiers Quals = Proto->getMethodQuals();
2185     manglePointerExtQualifiers(Quals, /*PointeeType=*/QualType());
2186     mangleRefQualifier(Proto->getRefQualifier());
2187     mangleQualifiers(Quals, /*IsMember=*/false);
2188   }
2189 
2190   mangleCallingConvention(CC);
2191 
2192   // <return-type> ::= <type>
2193   //               ::= @ # structors (they have no declared return type)
2194   if (IsStructor) {
2195     if (isa<CXXDestructorDecl>(D) && isStructorDecl(D)) {
2196       // The scalar deleting destructor takes an extra int argument which is not
2197       // reflected in the AST.
2198       if (StructorType == Dtor_Deleting) {
2199         Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z");
2200         return;
2201       }
2202       // The vbase destructor returns void which is not reflected in the AST.
2203       if (StructorType == Dtor_Complete) {
2204         Out << "XXZ";
2205         return;
2206       }
2207     }
2208     if (IsCtorClosure) {
2209       // Default constructor closure and copy constructor closure both return
2210       // void.
2211       Out << 'X';
2212 
2213       if (StructorType == Ctor_DefaultClosure) {
2214         // Default constructor closure always has no arguments.
2215         Out << 'X';
2216       } else if (StructorType == Ctor_CopyingClosure) {
2217         // Copy constructor closure always takes an unqualified reference.
2218         mangleFunctionArgumentType(getASTContext().getLValueReferenceType(
2219                                        Proto->getParamType(0)
2220                                            ->getAs<LValueReferenceType>()
2221                                            ->getPointeeType(),
2222                                        /*SpelledAsLValue=*/true),
2223                                    Range);
2224         Out << '@';
2225       } else {
2226         llvm_unreachable("unexpected constructor closure!");
2227       }
2228       Out << 'Z';
2229       return;
2230     }
2231     Out << '@';
2232   } else {
2233     QualType ResultType = T->getReturnType();
2234     if (const auto *AT =
2235             dyn_cast_or_null<AutoType>(ResultType->getContainedAutoType())) {
2236       Out << '?';
2237       mangleQualifiers(ResultType.getLocalQualifiers(), /*IsMember=*/false);
2238       Out << '?';
2239       assert(AT->getKeyword() != AutoTypeKeyword::GNUAutoType &&
2240              "shouldn't need to mangle __auto_type!");
2241       mangleSourceName(AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>");
2242       Out << '@';
2243     } else if (IsInLambda) {
2244       Out << '@';
2245     } else {
2246       if (ResultType->isVoidType())
2247         ResultType = ResultType.getUnqualifiedType();
2248       mangleType(ResultType, Range, QMM_Result);
2249     }
2250   }
2251 
2252   // <argument-list> ::= X # void
2253   //                 ::= <type>+ @
2254   //                 ::= <type>* Z # varargs
2255   if (!Proto) {
2256     // Function types without prototypes can arise when mangling a function type
2257     // within an overloadable function in C. We mangle these as the absence of
2258     // any parameter types (not even an empty parameter list).
2259     Out << '@';
2260   } else if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
2261     Out << 'X';
2262   } else {
2263     // Happens for function pointer type arguments for example.
2264     for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
2265       mangleFunctionArgumentType(Proto->getParamType(I), Range);
2266       // Mangle each pass_object_size parameter as if it's a parameter of enum
2267       // type passed directly after the parameter with the pass_object_size
2268       // attribute. The aforementioned enum's name is __pass_object_size, and we
2269       // pretend it resides in a top-level namespace called __clang.
2270       //
2271       // FIXME: Is there a defined extension notation for the MS ABI, or is it
2272       // necessary to just cross our fingers and hope this type+namespace
2273       // combination doesn't conflict with anything?
2274       if (D)
2275         if (const auto *P = D->getParamDecl(I)->getAttr<PassObjectSizeAttr>())
2276           manglePassObjectSizeArg(P);
2277     }
2278     // <builtin-type>      ::= Z  # ellipsis
2279     if (Proto->isVariadic())
2280       Out << 'Z';
2281     else
2282       Out << '@';
2283   }
2284 
2285   if (MangleExceptionSpec && getASTContext().getLangOpts().CPlusPlus17 &&
2286       getASTContext().getLangOpts().isCompatibleWithMSVC(
2287           LangOptions::MSVC2017_5))
2288     mangleThrowSpecification(Proto);
2289   else
2290     Out << 'Z';
2291 }
2292 
2293 void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
2294   // <function-class>  ::= <member-function> E? # E designates a 64-bit 'this'
2295   //                                            # pointer. in 64-bit mode *all*
2296   //                                            # 'this' pointers are 64-bit.
2297   //                   ::= <global-function>
2298   // <member-function> ::= A # private: near
2299   //                   ::= B # private: far
2300   //                   ::= C # private: static near
2301   //                   ::= D # private: static far
2302   //                   ::= E # private: virtual near
2303   //                   ::= F # private: virtual far
2304   //                   ::= I # protected: near
2305   //                   ::= J # protected: far
2306   //                   ::= K # protected: static near
2307   //                   ::= L # protected: static far
2308   //                   ::= M # protected: virtual near
2309   //                   ::= N # protected: virtual far
2310   //                   ::= Q # public: near
2311   //                   ::= R # public: far
2312   //                   ::= S # public: static near
2313   //                   ::= T # public: static far
2314   //                   ::= U # public: virtual near
2315   //                   ::= V # public: virtual far
2316   // <global-function> ::= Y # global near
2317   //                   ::= Z # global far
2318   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
2319     bool IsVirtual = MD->isVirtual();
2320     // When mangling vbase destructor variants, ignore whether or not the
2321     // underlying destructor was defined to be virtual.
2322     if (isa<CXXDestructorDecl>(MD) && isStructorDecl(MD) &&
2323         StructorType == Dtor_Complete) {
2324       IsVirtual = false;
2325     }
2326     switch (MD->getAccess()) {
2327       case AS_none:
2328         llvm_unreachable("Unsupported access specifier");
2329       case AS_private:
2330         if (MD->isStatic())
2331           Out << 'C';
2332         else if (IsVirtual)
2333           Out << 'E';
2334         else
2335           Out << 'A';
2336         break;
2337       case AS_protected:
2338         if (MD->isStatic())
2339           Out << 'K';
2340         else if (IsVirtual)
2341           Out << 'M';
2342         else
2343           Out << 'I';
2344         break;
2345       case AS_public:
2346         if (MD->isStatic())
2347           Out << 'S';
2348         else if (IsVirtual)
2349           Out << 'U';
2350         else
2351           Out << 'Q';
2352     }
2353   } else {
2354     Out << 'Y';
2355   }
2356 }
2357 void MicrosoftCXXNameMangler::mangleCallingConvention(CallingConv CC) {
2358   // <calling-convention> ::= A # __cdecl
2359   //                      ::= B # __export __cdecl
2360   //                      ::= C # __pascal
2361   //                      ::= D # __export __pascal
2362   //                      ::= E # __thiscall
2363   //                      ::= F # __export __thiscall
2364   //                      ::= G # __stdcall
2365   //                      ::= H # __export __stdcall
2366   //                      ::= I # __fastcall
2367   //                      ::= J # __export __fastcall
2368   //                      ::= Q # __vectorcall
2369   //                      ::= w # __regcall
2370   // The 'export' calling conventions are from a bygone era
2371   // (*cough*Win16*cough*) when functions were declared for export with
2372   // that keyword. (It didn't actually export them, it just made them so
2373   // that they could be in a DLL and somebody from another module could call
2374   // them.)
2375 
2376   switch (CC) {
2377     default:
2378       llvm_unreachable("Unsupported CC for mangling");
2379     case CC_Win64:
2380     case CC_X86_64SysV:
2381     case CC_C: Out << 'A'; break;
2382     case CC_X86Pascal: Out << 'C'; break;
2383     case CC_X86ThisCall: Out << 'E'; break;
2384     case CC_X86StdCall: Out << 'G'; break;
2385     case CC_X86FastCall: Out << 'I'; break;
2386     case CC_X86VectorCall: Out << 'Q'; break;
2387     case CC_Swift: Out << 'S'; break;
2388     case CC_PreserveMost: Out << 'U'; break;
2389     case CC_X86RegCall: Out << 'w'; break;
2390   }
2391 }
2392 void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) {
2393   mangleCallingConvention(T->getCallConv());
2394 }
2395 
2396 void MicrosoftCXXNameMangler::mangleThrowSpecification(
2397                                                 const FunctionProtoType *FT) {
2398   // <throw-spec> ::= Z # (default)
2399   //              ::= _E # noexcept
2400   if (FT->canThrow())
2401     Out << 'Z';
2402   else
2403     Out << "_E";
2404 }
2405 
2406 void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T,
2407                                          Qualifiers, SourceRange Range) {
2408   // Probably should be mangled as a template instantiation; need to see what
2409   // VC does first.
2410   DiagnosticsEngine &Diags = Context.getDiags();
2411   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2412     "cannot mangle this unresolved dependent type yet");
2413   Diags.Report(Range.getBegin(), DiagID)
2414     << Range;
2415 }
2416 
2417 // <type>        ::= <union-type> | <struct-type> | <class-type> | <enum-type>
2418 // <union-type>  ::= T <name>
2419 // <struct-type> ::= U <name>
2420 // <class-type>  ::= V <name>
2421 // <enum-type>   ::= W4 <name>
2422 void MicrosoftCXXNameMangler::mangleTagTypeKind(TagTypeKind TTK) {
2423   switch (TTK) {
2424     case TTK_Union:
2425       Out << 'T';
2426       break;
2427     case TTK_Struct:
2428     case TTK_Interface:
2429       Out << 'U';
2430       break;
2431     case TTK_Class:
2432       Out << 'V';
2433       break;
2434     case TTK_Enum:
2435       Out << "W4";
2436       break;
2437   }
2438 }
2439 void MicrosoftCXXNameMangler::mangleType(const EnumType *T, Qualifiers,
2440                                          SourceRange) {
2441   mangleType(cast<TagType>(T)->getDecl());
2442 }
2443 void MicrosoftCXXNameMangler::mangleType(const RecordType *T, Qualifiers,
2444                                          SourceRange) {
2445   mangleType(cast<TagType>(T)->getDecl());
2446 }
2447 void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) {
2448   mangleTagTypeKind(TD->getTagKind());
2449   mangleName(TD);
2450 }
2451 
2452 // If you add a call to this, consider updating isArtificialTagType() too.
2453 void MicrosoftCXXNameMangler::mangleArtificialTagType(
2454     TagTypeKind TK, StringRef UnqualifiedName,
2455     ArrayRef<StringRef> NestedNames) {
2456   // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
2457   mangleTagTypeKind(TK);
2458 
2459   // Always start with the unqualified name.
2460   mangleSourceName(UnqualifiedName);
2461 
2462   for (auto I = NestedNames.rbegin(), E = NestedNames.rend(); I != E; ++I)
2463     mangleSourceName(*I);
2464 
2465   // Terminate the whole name with an '@'.
2466   Out << '@';
2467 }
2468 
2469 // <type>       ::= <array-type>
2470 // <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
2471 //                  [Y <dimension-count> <dimension>+]
2472 //                  <element-type> # as global, E is never required
2473 // It's supposed to be the other way around, but for some strange reason, it
2474 // isn't. Today this behavior is retained for the sole purpose of backwards
2475 // compatibility.
2476 void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) {
2477   // This isn't a recursive mangling, so now we have to do it all in this
2478   // one call.
2479   manglePointerCVQualifiers(T->getElementType().getQualifiers());
2480   mangleType(T->getElementType(), SourceRange());
2481 }
2482 void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T, Qualifiers,
2483                                          SourceRange) {
2484   llvm_unreachable("Should have been special cased");
2485 }
2486 void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T, Qualifiers,
2487                                          SourceRange) {
2488   llvm_unreachable("Should have been special cased");
2489 }
2490 void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T,
2491                                          Qualifiers, SourceRange) {
2492   llvm_unreachable("Should have been special cased");
2493 }
2494 void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T,
2495                                          Qualifiers, SourceRange) {
2496   llvm_unreachable("Should have been special cased");
2497 }
2498 void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) {
2499   QualType ElementTy(T, 0);
2500   SmallVector<llvm::APInt, 3> Dimensions;
2501   for (;;) {
2502     if (ElementTy->isConstantArrayType()) {
2503       const ConstantArrayType *CAT =
2504           getASTContext().getAsConstantArrayType(ElementTy);
2505       Dimensions.push_back(CAT->getSize());
2506       ElementTy = CAT->getElementType();
2507     } else if (ElementTy->isIncompleteArrayType()) {
2508       const IncompleteArrayType *IAT =
2509           getASTContext().getAsIncompleteArrayType(ElementTy);
2510       Dimensions.push_back(llvm::APInt(32, 0));
2511       ElementTy = IAT->getElementType();
2512     } else if (ElementTy->isVariableArrayType()) {
2513       const VariableArrayType *VAT =
2514         getASTContext().getAsVariableArrayType(ElementTy);
2515       Dimensions.push_back(llvm::APInt(32, 0));
2516       ElementTy = VAT->getElementType();
2517     } else if (ElementTy->isDependentSizedArrayType()) {
2518       // The dependent expression has to be folded into a constant (TODO).
2519       const DependentSizedArrayType *DSAT =
2520         getASTContext().getAsDependentSizedArrayType(ElementTy);
2521       DiagnosticsEngine &Diags = Context.getDiags();
2522       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2523         "cannot mangle this dependent-length array yet");
2524       Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID)
2525         << DSAT->getBracketsRange();
2526       return;
2527     } else {
2528       break;
2529     }
2530   }
2531   Out << 'Y';
2532   // <dimension-count> ::= <number> # number of extra dimensions
2533   mangleNumber(Dimensions.size());
2534   for (const llvm::APInt &Dimension : Dimensions)
2535     mangleNumber(Dimension.getLimitedValue());
2536   mangleType(ElementTy, SourceRange(), QMM_Escape);
2537 }
2538 
2539 // <type>                   ::= <pointer-to-member-type>
2540 // <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
2541 //                                                          <class name> <type>
2542 void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T,
2543                                          Qualifiers Quals, SourceRange Range) {
2544   QualType PointeeType = T->getPointeeType();
2545   manglePointerCVQualifiers(Quals);
2546   manglePointerExtQualifiers(Quals, PointeeType);
2547   if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) {
2548     Out << '8';
2549     mangleName(T->getClass()->castAs<RecordType>()->getDecl());
2550     mangleFunctionType(FPT, nullptr, true);
2551   } else {
2552     mangleQualifiers(PointeeType.getQualifiers(), true);
2553     mangleName(T->getClass()->castAs<RecordType>()->getDecl());
2554     mangleType(PointeeType, Range, QMM_Drop);
2555   }
2556 }
2557 
2558 void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T,
2559                                          Qualifiers, SourceRange Range) {
2560   DiagnosticsEngine &Diags = Context.getDiags();
2561   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2562     "cannot mangle this template type parameter type yet");
2563   Diags.Report(Range.getBegin(), DiagID)
2564     << Range;
2565 }
2566 
2567 void MicrosoftCXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T,
2568                                          Qualifiers, SourceRange Range) {
2569   DiagnosticsEngine &Diags = Context.getDiags();
2570   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2571     "cannot mangle this substituted parameter pack yet");
2572   Diags.Report(Range.getBegin(), DiagID)
2573     << Range;
2574 }
2575 
2576 // <type> ::= <pointer-type>
2577 // <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
2578 //                       # the E is required for 64-bit non-static pointers
2579 void MicrosoftCXXNameMangler::mangleType(const PointerType *T, Qualifiers Quals,
2580                                          SourceRange Range) {
2581   QualType PointeeType = T->getPointeeType();
2582   manglePointerCVQualifiers(Quals);
2583   manglePointerExtQualifiers(Quals, PointeeType);
2584 
2585   // For pointer size address spaces, go down the same type mangling path as
2586   // non address space types.
2587   LangAS AddrSpace = PointeeType.getQualifiers().getAddressSpace();
2588   if (isPtrSizeAddressSpace(AddrSpace) || AddrSpace == LangAS::Default)
2589     mangleType(PointeeType, Range);
2590   else
2591     mangleAddressSpaceType(PointeeType, PointeeType.getQualifiers(), Range);
2592 }
2593 
2594 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T,
2595                                          Qualifiers Quals, SourceRange Range) {
2596   QualType PointeeType = T->getPointeeType();
2597   switch (Quals.getObjCLifetime()) {
2598   case Qualifiers::OCL_None:
2599   case Qualifiers::OCL_ExplicitNone:
2600     break;
2601   case Qualifiers::OCL_Autoreleasing:
2602   case Qualifiers::OCL_Strong:
2603   case Qualifiers::OCL_Weak:
2604     return mangleObjCLifetime(PointeeType, Quals, Range);
2605   }
2606   manglePointerCVQualifiers(Quals);
2607   manglePointerExtQualifiers(Quals, PointeeType);
2608   mangleType(PointeeType, Range);
2609 }
2610 
2611 // <type> ::= <reference-type>
2612 // <reference-type> ::= A E? <cvr-qualifiers> <type>
2613 //                 # the E is required for 64-bit non-static lvalue references
2614 void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T,
2615                                          Qualifiers Quals, SourceRange Range) {
2616   QualType PointeeType = T->getPointeeType();
2617   assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!");
2618   Out << 'A';
2619   manglePointerExtQualifiers(Quals, PointeeType);
2620   mangleType(PointeeType, Range);
2621 }
2622 
2623 // <type> ::= <r-value-reference-type>
2624 // <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type>
2625 //                 # the E is required for 64-bit non-static rvalue references
2626 void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T,
2627                                          Qualifiers Quals, SourceRange Range) {
2628   QualType PointeeType = T->getPointeeType();
2629   assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!");
2630   Out << "$$Q";
2631   manglePointerExtQualifiers(Quals, PointeeType);
2632   mangleType(PointeeType, Range);
2633 }
2634 
2635 void MicrosoftCXXNameMangler::mangleType(const ComplexType *T, Qualifiers,
2636                                          SourceRange Range) {
2637   QualType ElementType = T->getElementType();
2638 
2639   llvm::SmallString<64> TemplateMangling;
2640   llvm::raw_svector_ostream Stream(TemplateMangling);
2641   MicrosoftCXXNameMangler Extra(Context, Stream);
2642   Stream << "?$";
2643   Extra.mangleSourceName("_Complex");
2644   Extra.mangleType(ElementType, Range, QMM_Escape);
2645 
2646   mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"});
2647 }
2648 
2649 // Returns true for types that mangleArtificialTagType() gets called for with
2650 // TTK_Union, TTK_Struct, TTK_Class and where compatibility with MSVC's
2651 // mangling matters.
2652 // (It doesn't matter for Objective-C types and the like that cl.exe doesn't
2653 // support.)
2654 bool MicrosoftCXXNameMangler::isArtificialTagType(QualType T) const {
2655   const Type *ty = T.getTypePtr();
2656   switch (ty->getTypeClass()) {
2657   default:
2658     return false;
2659 
2660   case Type::Vector: {
2661     // For ABI compatibility only __m64, __m128(id), and __m256(id) matter,
2662     // but since mangleType(VectorType*) always calls mangleArtificialTagType()
2663     // just always return true (the other vector types are clang-only).
2664     return true;
2665   }
2666   }
2667 }
2668 
2669 void MicrosoftCXXNameMangler::mangleType(const VectorType *T, Qualifiers Quals,
2670                                          SourceRange Range) {
2671   const BuiltinType *ET = T->getElementType()->getAs<BuiltinType>();
2672   assert(ET && "vectors with non-builtin elements are unsupported");
2673   uint64_t Width = getASTContext().getTypeSize(T);
2674   // Pattern match exactly the typedefs in our intrinsic headers.  Anything that
2675   // doesn't match the Intel types uses a custom mangling below.
2676   size_t OutSizeBefore = Out.tell();
2677   if (!isa<ExtVectorType>(T)) {
2678     if (getASTContext().getTargetInfo().getTriple().isX86()) {
2679       if (Width == 64 && ET->getKind() == BuiltinType::LongLong) {
2680         mangleArtificialTagType(TTK_Union, "__m64");
2681       } else if (Width >= 128) {
2682         if (ET->getKind() == BuiltinType::Float)
2683           mangleArtificialTagType(TTK_Union, "__m" + llvm::utostr(Width));
2684         else if (ET->getKind() == BuiltinType::LongLong)
2685           mangleArtificialTagType(TTK_Union, "__m" + llvm::utostr(Width) + 'i');
2686         else if (ET->getKind() == BuiltinType::Double)
2687           mangleArtificialTagType(TTK_Struct, "__m" + llvm::utostr(Width) + 'd');
2688       }
2689     }
2690   }
2691 
2692   bool IsBuiltin = Out.tell() != OutSizeBefore;
2693   if (!IsBuiltin) {
2694     // The MS ABI doesn't have a special mangling for vector types, so we define
2695     // our own mangling to handle uses of __vector_size__ on user-specified
2696     // types, and for extensions like __v4sf.
2697 
2698     llvm::SmallString<64> TemplateMangling;
2699     llvm::raw_svector_ostream Stream(TemplateMangling);
2700     MicrosoftCXXNameMangler Extra(Context, Stream);
2701     Stream << "?$";
2702     Extra.mangleSourceName("__vector");
2703     Extra.mangleType(QualType(ET, 0), Range, QMM_Escape);
2704     Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumElements()),
2705                                /*IsBoolean=*/false);
2706 
2707     mangleArtificialTagType(TTK_Union, TemplateMangling, {"__clang"});
2708   }
2709 }
2710 
2711 void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T,
2712                                          Qualifiers Quals, SourceRange Range) {
2713   mangleType(static_cast<const VectorType *>(T), Quals, Range);
2714 }
2715 
2716 void MicrosoftCXXNameMangler::mangleType(const DependentVectorType *T,
2717                                          Qualifiers, SourceRange Range) {
2718   DiagnosticsEngine &Diags = Context.getDiags();
2719   unsigned DiagID = Diags.getCustomDiagID(
2720       DiagnosticsEngine::Error,
2721       "cannot mangle this dependent-sized vector type yet");
2722   Diags.Report(Range.getBegin(), DiagID) << Range;
2723 }
2724 
2725 void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T,
2726                                          Qualifiers, SourceRange Range) {
2727   DiagnosticsEngine &Diags = Context.getDiags();
2728   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2729     "cannot mangle this dependent-sized extended vector type yet");
2730   Diags.Report(Range.getBegin(), DiagID)
2731     << Range;
2732 }
2733 
2734 void MicrosoftCXXNameMangler::mangleType(const ConstantMatrixType *T,
2735                                          Qualifiers quals, SourceRange Range) {
2736   DiagnosticsEngine &Diags = Context.getDiags();
2737   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2738                                           "Cannot mangle this matrix type yet");
2739   Diags.Report(Range.getBegin(), DiagID) << Range;
2740 }
2741 
2742 void MicrosoftCXXNameMangler::mangleType(const DependentSizedMatrixType *T,
2743                                          Qualifiers quals, SourceRange Range) {
2744   DiagnosticsEngine &Diags = Context.getDiags();
2745   unsigned DiagID = Diags.getCustomDiagID(
2746       DiagnosticsEngine::Error,
2747       "Cannot mangle this dependent-sized matrix type yet");
2748   Diags.Report(Range.getBegin(), DiagID) << Range;
2749 }
2750 
2751 void MicrosoftCXXNameMangler::mangleType(const DependentAddressSpaceType *T,
2752                                          Qualifiers, SourceRange Range) {
2753   DiagnosticsEngine &Diags = Context.getDiags();
2754   unsigned DiagID = Diags.getCustomDiagID(
2755       DiagnosticsEngine::Error,
2756       "cannot mangle this dependent address space type yet");
2757   Diags.Report(Range.getBegin(), DiagID) << Range;
2758 }
2759 
2760 void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T, Qualifiers,
2761                                          SourceRange) {
2762   // ObjC interfaces have structs underlying them.
2763   mangleTagTypeKind(TTK_Struct);
2764   mangleName(T->getDecl());
2765 }
2766 
2767 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T,
2768                                          Qualifiers Quals, SourceRange Range) {
2769   if (T->isKindOfType())
2770     return mangleObjCKindOfType(T, Quals, Range);
2771 
2772   if (T->qual_empty() && !T->isSpecialized())
2773     return mangleType(T->getBaseType(), Range, QMM_Drop);
2774 
2775   ArgBackRefMap OuterFunArgsContext;
2776   ArgBackRefMap OuterTemplateArgsContext;
2777   BackRefVec OuterTemplateContext;
2778 
2779   FunArgBackReferences.swap(OuterFunArgsContext);
2780   TemplateArgBackReferences.swap(OuterTemplateArgsContext);
2781   NameBackReferences.swap(OuterTemplateContext);
2782 
2783   mangleTagTypeKind(TTK_Struct);
2784 
2785   Out << "?$";
2786   if (T->isObjCId())
2787     mangleSourceName("objc_object");
2788   else if (T->isObjCClass())
2789     mangleSourceName("objc_class");
2790   else
2791     mangleSourceName(T->getInterface()->getName());
2792 
2793   for (const auto &Q : T->quals())
2794     mangleObjCProtocol(Q);
2795 
2796   if (T->isSpecialized())
2797     for (const auto &TA : T->getTypeArgs())
2798       mangleType(TA, Range, QMM_Drop);
2799 
2800   Out << '@';
2801 
2802   Out << '@';
2803 
2804   FunArgBackReferences.swap(OuterFunArgsContext);
2805   TemplateArgBackReferences.swap(OuterTemplateArgsContext);
2806   NameBackReferences.swap(OuterTemplateContext);
2807 }
2808 
2809 void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T,
2810                                          Qualifiers Quals, SourceRange Range) {
2811   QualType PointeeType = T->getPointeeType();
2812   manglePointerCVQualifiers(Quals);
2813   manglePointerExtQualifiers(Quals, PointeeType);
2814 
2815   Out << "_E";
2816 
2817   mangleFunctionType(PointeeType->castAs<FunctionProtoType>());
2818 }
2819 
2820 void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *,
2821                                          Qualifiers, SourceRange) {
2822   llvm_unreachable("Cannot mangle injected class name type.");
2823 }
2824 
2825 void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T,
2826                                          Qualifiers, SourceRange Range) {
2827   DiagnosticsEngine &Diags = Context.getDiags();
2828   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2829     "cannot mangle this template specialization type yet");
2830   Diags.Report(Range.getBegin(), DiagID)
2831     << Range;
2832 }
2833 
2834 void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T, Qualifiers,
2835                                          SourceRange Range) {
2836   DiagnosticsEngine &Diags = Context.getDiags();
2837   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2838     "cannot mangle this dependent name type yet");
2839   Diags.Report(Range.getBegin(), DiagID)
2840     << Range;
2841 }
2842 
2843 void MicrosoftCXXNameMangler::mangleType(
2844     const DependentTemplateSpecializationType *T, Qualifiers,
2845     SourceRange Range) {
2846   DiagnosticsEngine &Diags = Context.getDiags();
2847   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2848     "cannot mangle this dependent template specialization type yet");
2849   Diags.Report(Range.getBegin(), DiagID)
2850     << Range;
2851 }
2852 
2853 void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T, Qualifiers,
2854                                          SourceRange Range) {
2855   DiagnosticsEngine &Diags = Context.getDiags();
2856   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2857     "cannot mangle this pack expansion yet");
2858   Diags.Report(Range.getBegin(), DiagID)
2859     << Range;
2860 }
2861 
2862 void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T, Qualifiers,
2863                                          SourceRange Range) {
2864   DiagnosticsEngine &Diags = Context.getDiags();
2865   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2866     "cannot mangle this typeof(type) yet");
2867   Diags.Report(Range.getBegin(), DiagID)
2868     << Range;
2869 }
2870 
2871 void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T, Qualifiers,
2872                                          SourceRange Range) {
2873   DiagnosticsEngine &Diags = Context.getDiags();
2874   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2875     "cannot mangle this typeof(expression) yet");
2876   Diags.Report(Range.getBegin(), DiagID)
2877     << Range;
2878 }
2879 
2880 void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T, Qualifiers,
2881                                          SourceRange Range) {
2882   DiagnosticsEngine &Diags = Context.getDiags();
2883   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2884     "cannot mangle this decltype() yet");
2885   Diags.Report(Range.getBegin(), DiagID)
2886     << Range;
2887 }
2888 
2889 void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T,
2890                                          Qualifiers, SourceRange Range) {
2891   DiagnosticsEngine &Diags = Context.getDiags();
2892   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2893     "cannot mangle this unary transform type yet");
2894   Diags.Report(Range.getBegin(), DiagID)
2895     << Range;
2896 }
2897 
2898 void MicrosoftCXXNameMangler::mangleType(const AutoType *T, Qualifiers,
2899                                          SourceRange Range) {
2900   assert(T->getDeducedType().isNull() && "expecting a dependent type!");
2901 
2902   DiagnosticsEngine &Diags = Context.getDiags();
2903   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2904     "cannot mangle this 'auto' type yet");
2905   Diags.Report(Range.getBegin(), DiagID)
2906     << Range;
2907 }
2908 
2909 void MicrosoftCXXNameMangler::mangleType(
2910     const DeducedTemplateSpecializationType *T, Qualifiers, SourceRange Range) {
2911   assert(T->getDeducedType().isNull() && "expecting a dependent type!");
2912 
2913   DiagnosticsEngine &Diags = Context.getDiags();
2914   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2915     "cannot mangle this deduced class template specialization type yet");
2916   Diags.Report(Range.getBegin(), DiagID)
2917     << Range;
2918 }
2919 
2920 void MicrosoftCXXNameMangler::mangleType(const AtomicType *T, Qualifiers,
2921                                          SourceRange Range) {
2922   QualType ValueType = T->getValueType();
2923 
2924   llvm::SmallString<64> TemplateMangling;
2925   llvm::raw_svector_ostream Stream(TemplateMangling);
2926   MicrosoftCXXNameMangler Extra(Context, Stream);
2927   Stream << "?$";
2928   Extra.mangleSourceName("_Atomic");
2929   Extra.mangleType(ValueType, Range, QMM_Escape);
2930 
2931   mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"});
2932 }
2933 
2934 void MicrosoftCXXNameMangler::mangleType(const PipeType *T, Qualifiers,
2935                                          SourceRange Range) {
2936   QualType ElementType = T->getElementType();
2937 
2938   llvm::SmallString<64> TemplateMangling;
2939   llvm::raw_svector_ostream Stream(TemplateMangling);
2940   MicrosoftCXXNameMangler Extra(Context, Stream);
2941   Stream << "?$";
2942   Extra.mangleSourceName("ocl_pipe");
2943   Extra.mangleType(ElementType, Range, QMM_Escape);
2944   Extra.mangleIntegerLiteral(llvm::APSInt::get(T->isReadOnly()), true);
2945 
2946   mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"});
2947 }
2948 
2949 void MicrosoftMangleContextImpl::mangleCXXName(GlobalDecl GD,
2950                                                raw_ostream &Out) {
2951   const NamedDecl *D = cast<NamedDecl>(GD.getDecl());
2952   PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
2953                                  getASTContext().getSourceManager(),
2954                                  "Mangling declaration");
2955 
2956   msvc_hashing_ostream MHO(Out);
2957 
2958   if (auto *CD = dyn_cast<CXXConstructorDecl>(D)) {
2959     auto Type = GD.getCtorType();
2960     MicrosoftCXXNameMangler mangler(*this, MHO, CD, Type);
2961     return mangler.mangle(D);
2962   }
2963 
2964   if (auto *DD = dyn_cast<CXXDestructorDecl>(D)) {
2965     auto Type = GD.getDtorType();
2966     MicrosoftCXXNameMangler mangler(*this, MHO, DD, Type);
2967     return mangler.mangle(D);
2968   }
2969 
2970   MicrosoftCXXNameMangler Mangler(*this, MHO);
2971   return Mangler.mangle(D);
2972 }
2973 
2974 void MicrosoftCXXNameMangler::mangleType(const ExtIntType *T, Qualifiers,
2975                                          SourceRange Range) {
2976   llvm::SmallString<64> TemplateMangling;
2977   llvm::raw_svector_ostream Stream(TemplateMangling);
2978   MicrosoftCXXNameMangler Extra(Context, Stream);
2979   Stream << "?$";
2980   if (T->isUnsigned())
2981     Extra.mangleSourceName("_UExtInt");
2982   else
2983     Extra.mangleSourceName("_ExtInt");
2984   Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumBits()),
2985                              /*IsBoolean=*/false);
2986 
2987   mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"});
2988 }
2989 
2990 void MicrosoftCXXNameMangler::mangleType(const DependentExtIntType *T,
2991                                          Qualifiers, SourceRange Range) {
2992   DiagnosticsEngine &Diags = Context.getDiags();
2993   unsigned DiagID = Diags.getCustomDiagID(
2994       DiagnosticsEngine::Error, "cannot mangle this DependentExtInt type yet");
2995   Diags.Report(Range.getBegin(), DiagID) << Range;
2996 }
2997 
2998 // <this-adjustment> ::= <no-adjustment> | <static-adjustment> |
2999 //                       <virtual-adjustment>
3000 // <no-adjustment>      ::= A # private near
3001 //                      ::= B # private far
3002 //                      ::= I # protected near
3003 //                      ::= J # protected far
3004 //                      ::= Q # public near
3005 //                      ::= R # public far
3006 // <static-adjustment>  ::= G <static-offset> # private near
3007 //                      ::= H <static-offset> # private far
3008 //                      ::= O <static-offset> # protected near
3009 //                      ::= P <static-offset> # protected far
3010 //                      ::= W <static-offset> # public near
3011 //                      ::= X <static-offset> # public far
3012 // <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near
3013 //                      ::= $1 <virtual-shift> <static-offset> # private far
3014 //                      ::= $2 <virtual-shift> <static-offset> # protected near
3015 //                      ::= $3 <virtual-shift> <static-offset> # protected far
3016 //                      ::= $4 <virtual-shift> <static-offset> # public near
3017 //                      ::= $5 <virtual-shift> <static-offset> # public far
3018 // <virtual-shift>      ::= <vtordisp-shift> | <vtordispex-shift>
3019 // <vtordisp-shift>     ::= <offset-to-vtordisp>
3020 // <vtordispex-shift>   ::= <offset-to-vbptr> <vbase-offset-offset>
3021 //                          <offset-to-vtordisp>
3022 static void mangleThunkThisAdjustment(AccessSpecifier AS,
3023                                       const ThisAdjustment &Adjustment,
3024                                       MicrosoftCXXNameMangler &Mangler,
3025                                       raw_ostream &Out) {
3026   if (!Adjustment.Virtual.isEmpty()) {
3027     Out << '$';
3028     char AccessSpec;
3029     switch (AS) {
3030     case AS_none:
3031       llvm_unreachable("Unsupported access specifier");
3032     case AS_private:
3033       AccessSpec = '0';
3034       break;
3035     case AS_protected:
3036       AccessSpec = '2';
3037       break;
3038     case AS_public:
3039       AccessSpec = '4';
3040     }
3041     if (Adjustment.Virtual.Microsoft.VBPtrOffset) {
3042       Out << 'R' << AccessSpec;
3043       Mangler.mangleNumber(
3044           static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset));
3045       Mangler.mangleNumber(
3046           static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset));
3047       Mangler.mangleNumber(
3048           static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
3049       Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual));
3050     } else {
3051       Out << AccessSpec;
3052       Mangler.mangleNumber(
3053           static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
3054       Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
3055     }
3056   } else if (Adjustment.NonVirtual != 0) {
3057     switch (AS) {
3058     case AS_none:
3059       llvm_unreachable("Unsupported access specifier");
3060     case AS_private:
3061       Out << 'G';
3062       break;
3063     case AS_protected:
3064       Out << 'O';
3065       break;
3066     case AS_public:
3067       Out << 'W';
3068     }
3069     Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
3070   } else {
3071     switch (AS) {
3072     case AS_none:
3073       llvm_unreachable("Unsupported access specifier");
3074     case AS_private:
3075       Out << 'A';
3076       break;
3077     case AS_protected:
3078       Out << 'I';
3079       break;
3080     case AS_public:
3081       Out << 'Q';
3082     }
3083   }
3084 }
3085 
3086 void MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk(
3087     const CXXMethodDecl *MD, const MethodVFTableLocation &ML,
3088     raw_ostream &Out) {
3089   msvc_hashing_ostream MHO(Out);
3090   MicrosoftCXXNameMangler Mangler(*this, MHO);
3091   Mangler.getStream() << '?';
3092   Mangler.mangleVirtualMemPtrThunk(MD, ML);
3093 }
3094 
3095 void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
3096                                              const ThunkInfo &Thunk,
3097                                              raw_ostream &Out) {
3098   msvc_hashing_ostream MHO(Out);
3099   MicrosoftCXXNameMangler Mangler(*this, MHO);
3100   Mangler.getStream() << '?';
3101   Mangler.mangleName(MD);
3102 
3103   // Usually the thunk uses the access specifier of the new method, but if this
3104   // is a covariant return thunk, then MSVC always uses the public access
3105   // specifier, and we do the same.
3106   AccessSpecifier AS = Thunk.Return.isEmpty() ? MD->getAccess() : AS_public;
3107   mangleThunkThisAdjustment(AS, Thunk.This, Mangler, MHO);
3108 
3109   if (!Thunk.Return.isEmpty())
3110     assert(Thunk.Method != nullptr &&
3111            "Thunk info should hold the overridee decl");
3112 
3113   const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD;
3114   Mangler.mangleFunctionType(
3115       DeclForFPT->getType()->castAs<FunctionProtoType>(), MD);
3116 }
3117 
3118 void MicrosoftMangleContextImpl::mangleCXXDtorThunk(
3119     const CXXDestructorDecl *DD, CXXDtorType Type,
3120     const ThisAdjustment &Adjustment, raw_ostream &Out) {
3121   // FIXME: Actually, the dtor thunk should be emitted for vector deleting
3122   // dtors rather than scalar deleting dtors. Just use the vector deleting dtor
3123   // mangling manually until we support both deleting dtor types.
3124   assert(Type == Dtor_Deleting);
3125   msvc_hashing_ostream MHO(Out);
3126   MicrosoftCXXNameMangler Mangler(*this, MHO, DD, Type);
3127   Mangler.getStream() << "??_E";
3128   Mangler.mangleName(DD->getParent());
3129   mangleThunkThisAdjustment(DD->getAccess(), Adjustment, Mangler, MHO);
3130   Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD);
3131 }
3132 
3133 void MicrosoftMangleContextImpl::mangleCXXVFTable(
3134     const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
3135     raw_ostream &Out) {
3136   // <mangled-name> ::= ?_7 <class-name> <storage-class>
3137   //                    <cvr-qualifiers> [<name>] @
3138   // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
3139   // is always '6' for vftables.
3140   msvc_hashing_ostream MHO(Out);
3141   MicrosoftCXXNameMangler Mangler(*this, MHO);
3142   if (Derived->hasAttr<DLLImportAttr>())
3143     Mangler.getStream() << "??_S";
3144   else
3145     Mangler.getStream() << "??_7";
3146   Mangler.mangleName(Derived);
3147   Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
3148   for (const CXXRecordDecl *RD : BasePath)
3149     Mangler.mangleName(RD);
3150   Mangler.getStream() << '@';
3151 }
3152 
3153 void MicrosoftMangleContextImpl::mangleCXXVBTable(
3154     const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
3155     raw_ostream &Out) {
3156   // <mangled-name> ::= ?_8 <class-name> <storage-class>
3157   //                    <cvr-qualifiers> [<name>] @
3158   // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
3159   // is always '7' for vbtables.
3160   msvc_hashing_ostream MHO(Out);
3161   MicrosoftCXXNameMangler Mangler(*this, MHO);
3162   Mangler.getStream() << "??_8";
3163   Mangler.mangleName(Derived);
3164   Mangler.getStream() << "7B";  // '7' for vbtable, 'B' for const.
3165   for (const CXXRecordDecl *RD : BasePath)
3166     Mangler.mangleName(RD);
3167   Mangler.getStream() << '@';
3168 }
3169 
3170 void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) {
3171   msvc_hashing_ostream MHO(Out);
3172   MicrosoftCXXNameMangler Mangler(*this, MHO);
3173   Mangler.getStream() << "??_R0";
3174   Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
3175   Mangler.getStream() << "@8";
3176 }
3177 
3178 void MicrosoftMangleContextImpl::mangleCXXRTTIName(QualType T,
3179                                                    raw_ostream &Out) {
3180   MicrosoftCXXNameMangler Mangler(*this, Out);
3181   Mangler.getStream() << '.';
3182   Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
3183 }
3184 
3185 void MicrosoftMangleContextImpl::mangleCXXVirtualDisplacementMap(
3186     const CXXRecordDecl *SrcRD, const CXXRecordDecl *DstRD, raw_ostream &Out) {
3187   msvc_hashing_ostream MHO(Out);
3188   MicrosoftCXXNameMangler Mangler(*this, MHO);
3189   Mangler.getStream() << "??_K";
3190   Mangler.mangleName(SrcRD);
3191   Mangler.getStream() << "$C";
3192   Mangler.mangleName(DstRD);
3193 }
3194 
3195 void MicrosoftMangleContextImpl::mangleCXXThrowInfo(QualType T, bool IsConst,
3196                                                     bool IsVolatile,
3197                                                     bool IsUnaligned,
3198                                                     uint32_t NumEntries,
3199                                                     raw_ostream &Out) {
3200   msvc_hashing_ostream MHO(Out);
3201   MicrosoftCXXNameMangler Mangler(*this, MHO);
3202   Mangler.getStream() << "_TI";
3203   if (IsConst)
3204     Mangler.getStream() << 'C';
3205   if (IsVolatile)
3206     Mangler.getStream() << 'V';
3207   if (IsUnaligned)
3208     Mangler.getStream() << 'U';
3209   Mangler.getStream() << NumEntries;
3210   Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
3211 }
3212 
3213 void MicrosoftMangleContextImpl::mangleCXXCatchableTypeArray(
3214     QualType T, uint32_t NumEntries, raw_ostream &Out) {
3215   msvc_hashing_ostream MHO(Out);
3216   MicrosoftCXXNameMangler Mangler(*this, MHO);
3217   Mangler.getStream() << "_CTA";
3218   Mangler.getStream() << NumEntries;
3219   Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
3220 }
3221 
3222 void MicrosoftMangleContextImpl::mangleCXXCatchableType(
3223     QualType T, const CXXConstructorDecl *CD, CXXCtorType CT, uint32_t Size,
3224     uint32_t NVOffset, int32_t VBPtrOffset, uint32_t VBIndex,
3225     raw_ostream &Out) {
3226   MicrosoftCXXNameMangler Mangler(*this, Out);
3227   Mangler.getStream() << "_CT";
3228 
3229   llvm::SmallString<64> RTTIMangling;
3230   {
3231     llvm::raw_svector_ostream Stream(RTTIMangling);
3232     msvc_hashing_ostream MHO(Stream);
3233     mangleCXXRTTI(T, MHO);
3234   }
3235   Mangler.getStream() << RTTIMangling;
3236 
3237   // VS2015 and VS2017.1 omit the copy-constructor in the mangled name but
3238   // both older and newer versions include it.
3239   // FIXME: It is known that the Ctor is present in 2013, and in 2017.7
3240   // (_MSC_VER 1914) and newer, and that it's omitted in 2015 and 2017.4
3241   // (_MSC_VER 1911), but it's unknown when exactly it reappeared (1914?
3242   // Or 1912, 1913 aleady?).
3243   bool OmitCopyCtor = getASTContext().getLangOpts().isCompatibleWithMSVC(
3244                           LangOptions::MSVC2015) &&
3245                       !getASTContext().getLangOpts().isCompatibleWithMSVC(
3246                           LangOptions::MSVC2017_7);
3247   llvm::SmallString<64> CopyCtorMangling;
3248   if (!OmitCopyCtor && CD) {
3249     llvm::raw_svector_ostream Stream(CopyCtorMangling);
3250     msvc_hashing_ostream MHO(Stream);
3251     mangleCXXName(GlobalDecl(CD, CT), MHO);
3252   }
3253   Mangler.getStream() << CopyCtorMangling;
3254 
3255   Mangler.getStream() << Size;
3256   if (VBPtrOffset == -1) {
3257     if (NVOffset) {
3258       Mangler.getStream() << NVOffset;
3259     }
3260   } else {
3261     Mangler.getStream() << NVOffset;
3262     Mangler.getStream() << VBPtrOffset;
3263     Mangler.getStream() << VBIndex;
3264   }
3265 }
3266 
3267 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor(
3268     const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset,
3269     uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) {
3270   msvc_hashing_ostream MHO(Out);
3271   MicrosoftCXXNameMangler Mangler(*this, MHO);
3272   Mangler.getStream() << "??_R1";
3273   Mangler.mangleNumber(NVOffset);
3274   Mangler.mangleNumber(VBPtrOffset);
3275   Mangler.mangleNumber(VBTableOffset);
3276   Mangler.mangleNumber(Flags);
3277   Mangler.mangleName(Derived);
3278   Mangler.getStream() << "8";
3279 }
3280 
3281 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray(
3282     const CXXRecordDecl *Derived, raw_ostream &Out) {
3283   msvc_hashing_ostream MHO(Out);
3284   MicrosoftCXXNameMangler Mangler(*this, MHO);
3285   Mangler.getStream() << "??_R2";
3286   Mangler.mangleName(Derived);
3287   Mangler.getStream() << "8";
3288 }
3289 
3290 void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor(
3291     const CXXRecordDecl *Derived, raw_ostream &Out) {
3292   msvc_hashing_ostream MHO(Out);
3293   MicrosoftCXXNameMangler Mangler(*this, MHO);
3294   Mangler.getStream() << "??_R3";
3295   Mangler.mangleName(Derived);
3296   Mangler.getStream() << "8";
3297 }
3298 
3299 void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator(
3300     const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
3301     raw_ostream &Out) {
3302   // <mangled-name> ::= ?_R4 <class-name> <storage-class>
3303   //                    <cvr-qualifiers> [<name>] @
3304   // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
3305   // is always '6' for vftables.
3306   llvm::SmallString<64> VFTableMangling;
3307   llvm::raw_svector_ostream Stream(VFTableMangling);
3308   mangleCXXVFTable(Derived, BasePath, Stream);
3309 
3310   if (VFTableMangling.startswith("??@")) {
3311     assert(VFTableMangling.endswith("@"));
3312     Out << VFTableMangling << "??_R4@";
3313     return;
3314   }
3315 
3316   assert(VFTableMangling.startswith("??_7") ||
3317          VFTableMangling.startswith("??_S"));
3318 
3319   Out << "??_R4" << StringRef(VFTableMangling).drop_front(4);
3320 }
3321 
3322 void MicrosoftMangleContextImpl::mangleSEHFilterExpression(
3323     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
3324   msvc_hashing_ostream MHO(Out);
3325   MicrosoftCXXNameMangler Mangler(*this, MHO);
3326   // The function body is in the same comdat as the function with the handler,
3327   // so the numbering here doesn't have to be the same across TUs.
3328   //
3329   // <mangled-name> ::= ?filt$ <filter-number> @0
3330   Mangler.getStream() << "?filt$" << SEHFilterIds[EnclosingDecl]++ << "@0@";
3331   Mangler.mangleName(EnclosingDecl);
3332 }
3333 
3334 void MicrosoftMangleContextImpl::mangleSEHFinallyBlock(
3335     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
3336   msvc_hashing_ostream MHO(Out);
3337   MicrosoftCXXNameMangler Mangler(*this, MHO);
3338   // The function body is in the same comdat as the function with the handler,
3339   // so the numbering here doesn't have to be the same across TUs.
3340   //
3341   // <mangled-name> ::= ?fin$ <filter-number> @0
3342   Mangler.getStream() << "?fin$" << SEHFinallyIds[EnclosingDecl]++ << "@0@";
3343   Mangler.mangleName(EnclosingDecl);
3344 }
3345 
3346 void MicrosoftMangleContextImpl::mangleTypeName(QualType T, raw_ostream &Out) {
3347   // This is just a made up unique string for the purposes of tbaa.  undname
3348   // does *not* know how to demangle it.
3349   MicrosoftCXXNameMangler Mangler(*this, Out);
3350   Mangler.getStream() << '?';
3351   Mangler.mangleType(T, SourceRange());
3352 }
3353 
3354 void MicrosoftMangleContextImpl::mangleReferenceTemporary(
3355     const VarDecl *VD, unsigned ManglingNumber, raw_ostream &Out) {
3356   msvc_hashing_ostream MHO(Out);
3357   MicrosoftCXXNameMangler Mangler(*this, MHO);
3358 
3359   Mangler.getStream() << "?$RT" << ManglingNumber << '@';
3360   Mangler.mangle(VD, "");
3361 }
3362 
3363 void MicrosoftMangleContextImpl::mangleThreadSafeStaticGuardVariable(
3364     const VarDecl *VD, unsigned GuardNum, raw_ostream &Out) {
3365   msvc_hashing_ostream MHO(Out);
3366   MicrosoftCXXNameMangler Mangler(*this, MHO);
3367 
3368   Mangler.getStream() << "?$TSS" << GuardNum << '@';
3369   Mangler.mangleNestedName(VD);
3370   Mangler.getStream() << "@4HA";
3371 }
3372 
3373 void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD,
3374                                                            raw_ostream &Out) {
3375   // <guard-name> ::= ?_B <postfix> @5 <scope-depth>
3376   //              ::= ?__J <postfix> @5 <scope-depth>
3377   //              ::= ?$S <guard-num> @ <postfix> @4IA
3378 
3379   // The first mangling is what MSVC uses to guard static locals in inline
3380   // functions.  It uses a different mangling in external functions to support
3381   // guarding more than 32 variables.  MSVC rejects inline functions with more
3382   // than 32 static locals.  We don't fully implement the second mangling
3383   // because those guards are not externally visible, and instead use LLVM's
3384   // default renaming when creating a new guard variable.
3385   msvc_hashing_ostream MHO(Out);
3386   MicrosoftCXXNameMangler Mangler(*this, MHO);
3387 
3388   bool Visible = VD->isExternallyVisible();
3389   if (Visible) {
3390     Mangler.getStream() << (VD->getTLSKind() ? "??__J" : "??_B");
3391   } else {
3392     Mangler.getStream() << "?$S1@";
3393   }
3394   unsigned ScopeDepth = 0;
3395   if (Visible && !getNextDiscriminator(VD, ScopeDepth))
3396     // If we do not have a discriminator and are emitting a guard variable for
3397     // use at global scope, then mangling the nested name will not be enough to
3398     // remove ambiguities.
3399     Mangler.mangle(VD, "");
3400   else
3401     Mangler.mangleNestedName(VD);
3402   Mangler.getStream() << (Visible ? "@5" : "@4IA");
3403   if (ScopeDepth)
3404     Mangler.mangleNumber(ScopeDepth);
3405 }
3406 
3407 void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D,
3408                                                     char CharCode,
3409                                                     raw_ostream &Out) {
3410   msvc_hashing_ostream MHO(Out);
3411   MicrosoftCXXNameMangler Mangler(*this, MHO);
3412   Mangler.getStream() << "??__" << CharCode;
3413   if (D->isStaticDataMember()) {
3414     Mangler.getStream() << '?';
3415     Mangler.mangleName(D);
3416     Mangler.mangleVariableEncoding(D);
3417     Mangler.getStream() << "@@";
3418   } else {
3419     Mangler.mangleName(D);
3420   }
3421   // This is the function class mangling.  These stubs are global, non-variadic,
3422   // cdecl functions that return void and take no args.
3423   Mangler.getStream() << "YAXXZ";
3424 }
3425 
3426 void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D,
3427                                                           raw_ostream &Out) {
3428   // <initializer-name> ::= ?__E <name> YAXXZ
3429   mangleInitFiniStub(D, 'E', Out);
3430 }
3431 
3432 void
3433 MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
3434                                                           raw_ostream &Out) {
3435   // <destructor-name> ::= ?__F <name> YAXXZ
3436   mangleInitFiniStub(D, 'F', Out);
3437 }
3438 
3439 void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL,
3440                                                      raw_ostream &Out) {
3441   // <char-type> ::= 0   # char, char16_t, char32_t
3442   //                     # (little endian char data in mangling)
3443   //             ::= 1   # wchar_t (big endian char data in mangling)
3444   //
3445   // <literal-length> ::= <non-negative integer>  # the length of the literal
3446   //
3447   // <encoded-crc>    ::= <hex digit>+ @          # crc of the literal including
3448   //                                              # trailing null bytes
3449   //
3450   // <encoded-string> ::= <simple character>           # uninteresting character
3451   //                  ::= '?$' <hex digit> <hex digit> # these two nibbles
3452   //                                                   # encode the byte for the
3453   //                                                   # character
3454   //                  ::= '?' [a-z]                    # \xe1 - \xfa
3455   //                  ::= '?' [A-Z]                    # \xc1 - \xda
3456   //                  ::= '?' [0-9]                    # [,/\:. \n\t'-]
3457   //
3458   // <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc>
3459   //               <encoded-string> '@'
3460   MicrosoftCXXNameMangler Mangler(*this, Out);
3461   Mangler.getStream() << "??_C@_";
3462 
3463   // The actual string length might be different from that of the string literal
3464   // in cases like:
3465   // char foo[3] = "foobar";
3466   // char bar[42] = "foobar";
3467   // Where it is truncated or zero-padded to fit the array. This is the length
3468   // used for mangling, and any trailing null-bytes also need to be mangled.
3469   unsigned StringLength = getASTContext()
3470                               .getAsConstantArrayType(SL->getType())
3471                               ->getSize()
3472                               .getZExtValue();
3473   unsigned StringByteLength = StringLength * SL->getCharByteWidth();
3474 
3475   // <char-type>: The "kind" of string literal is encoded into the mangled name.
3476   if (SL->isWide())
3477     Mangler.getStream() << '1';
3478   else
3479     Mangler.getStream() << '0';
3480 
3481   // <literal-length>: The next part of the mangled name consists of the length
3482   // of the string in bytes.
3483   Mangler.mangleNumber(StringByteLength);
3484 
3485   auto GetLittleEndianByte = [&SL](unsigned Index) {
3486     unsigned CharByteWidth = SL->getCharByteWidth();
3487     if (Index / CharByteWidth >= SL->getLength())
3488       return static_cast<char>(0);
3489     uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
3490     unsigned OffsetInCodeUnit = Index % CharByteWidth;
3491     return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
3492   };
3493 
3494   auto GetBigEndianByte = [&SL](unsigned Index) {
3495     unsigned CharByteWidth = SL->getCharByteWidth();
3496     if (Index / CharByteWidth >= SL->getLength())
3497       return static_cast<char>(0);
3498     uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
3499     unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth);
3500     return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
3501   };
3502 
3503   // CRC all the bytes of the StringLiteral.
3504   llvm::JamCRC JC;
3505   for (unsigned I = 0, E = StringByteLength; I != E; ++I)
3506     JC.update(GetLittleEndianByte(I));
3507 
3508   // <encoded-crc>: The CRC is encoded utilizing the standard number mangling
3509   // scheme.
3510   Mangler.mangleNumber(JC.getCRC());
3511 
3512   // <encoded-string>: The mangled name also contains the first 32 bytes
3513   // (including null-terminator bytes) of the encoded StringLiteral.
3514   // Each character is encoded by splitting them into bytes and then encoding
3515   // the constituent bytes.
3516   auto MangleByte = [&Mangler](char Byte) {
3517     // There are five different manglings for characters:
3518     // - [a-zA-Z0-9_$]: A one-to-one mapping.
3519     // - ?[a-z]: The range from \xe1 to \xfa.
3520     // - ?[A-Z]: The range from \xc1 to \xda.
3521     // - ?[0-9]: The set of [,/\:. \n\t'-].
3522     // - ?$XX: A fallback which maps nibbles.
3523     if (isIdentifierBody(Byte, /*AllowDollar=*/true)) {
3524       Mangler.getStream() << Byte;
3525     } else if (isLetter(Byte & 0x7f)) {
3526       Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f);
3527     } else {
3528       const char SpecialChars[] = {',', '/',  '\\', ':',  '.',
3529                                    ' ', '\n', '\t', '\'', '-'};
3530       const char *Pos = llvm::find(SpecialChars, Byte);
3531       if (Pos != std::end(SpecialChars)) {
3532         Mangler.getStream() << '?' << (Pos - std::begin(SpecialChars));
3533       } else {
3534         Mangler.getStream() << "?$";
3535         Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf));
3536         Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf));
3537       }
3538     }
3539   };
3540 
3541   // Enforce our 32 bytes max, except wchar_t which gets 32 chars instead.
3542   unsigned MaxBytesToMangle = SL->isWide() ? 64U : 32U;
3543   unsigned NumBytesToMangle = std::min(MaxBytesToMangle, StringByteLength);
3544   for (unsigned I = 0; I != NumBytesToMangle; ++I) {
3545     if (SL->isWide())
3546       MangleByte(GetBigEndianByte(I));
3547     else
3548       MangleByte(GetLittleEndianByte(I));
3549   }
3550 
3551   Mangler.getStream() << '@';
3552 }
3553 
3554 MicrosoftMangleContext *
3555 MicrosoftMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
3556   return new MicrosoftMangleContextImpl(Context, Diags);
3557 }
3558