1 //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "clang/AST/ASTContext.h"
10 #include "clang/AST/ASTDiagnostic.h"
11 #include "clang/AST/Attr.h"
12 #include "clang/AST/CXXInheritance.h"
13 #include "clang/AST/Decl.h"
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/Expr.h"
17 #include "clang/AST/VTableBuilder.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/Support/Format.h"
22 #include "llvm/Support/MathExtras.h"
23 
24 using namespace clang;
25 
26 namespace {
27 
28 /// BaseSubobjectInfo - Represents a single base subobject in a complete class.
29 /// For a class hierarchy like
30 ///
31 /// class A { };
32 /// class B : A { };
33 /// class C : A, B { };
34 ///
35 /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
36 /// instances, one for B and two for A.
37 ///
38 /// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
39 struct BaseSubobjectInfo {
40   /// Class - The class for this base info.
41   const CXXRecordDecl *Class;
42 
43   /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
44   bool IsVirtual;
45 
46   /// Bases - Information about the base subobjects.
47   SmallVector<BaseSubobjectInfo*, 4> Bases;
48 
49   /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
50   /// of this base info (if one exists).
51   BaseSubobjectInfo *PrimaryVirtualBaseInfo;
52 
53   // FIXME: Document.
54   const BaseSubobjectInfo *Derived;
55 };
56 
57 /// Externally provided layout. Typically used when the AST source, such
58 /// as DWARF, lacks all the information that was available at compile time, such
59 /// as alignment attributes on fields and pragmas in effect.
60 struct ExternalLayout {
61   ExternalLayout() : Size(0), Align(0) {}
62 
63   /// Overall record size in bits.
64   uint64_t Size;
65 
66   /// Overall record alignment in bits.
67   uint64_t Align;
68 
69   /// Record field offsets in bits.
70   llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets;
71 
72   /// Direct, non-virtual base offsets.
73   llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets;
74 
75   /// Virtual base offsets.
76   llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets;
77 
78   /// Get the offset of the given field. The external source must provide
79   /// entries for all fields in the record.
80   uint64_t getExternalFieldOffset(const FieldDecl *FD) {
81     assert(FieldOffsets.count(FD) &&
82            "Field does not have an external offset");
83     return FieldOffsets[FD];
84   }
85 
86   bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
87     auto Known = BaseOffsets.find(RD);
88     if (Known == BaseOffsets.end())
89       return false;
90     BaseOffset = Known->second;
91     return true;
92   }
93 
94   bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
95     auto Known = VirtualBaseOffsets.find(RD);
96     if (Known == VirtualBaseOffsets.end())
97       return false;
98     BaseOffset = Known->second;
99     return true;
100   }
101 };
102 
103 /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
104 /// offsets while laying out a C++ class.
105 class EmptySubobjectMap {
106   const ASTContext &Context;
107   uint64_t CharWidth;
108 
109   /// Class - The class whose empty entries we're keeping track of.
110   const CXXRecordDecl *Class;
111 
112   /// EmptyClassOffsets - A map from offsets to empty record decls.
113   typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy;
114   typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
115   EmptyClassOffsetsMapTy EmptyClassOffsets;
116 
117   /// MaxEmptyClassOffset - The highest offset known to contain an empty
118   /// base subobject.
119   CharUnits MaxEmptyClassOffset;
120 
121   /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
122   /// member subobject that is empty.
123   void ComputeEmptySubobjectSizes();
124 
125   void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
126 
127   void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
128                                  CharUnits Offset, bool PlacingEmptyBase);
129 
130   void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
131                                   const CXXRecordDecl *Class, CharUnits Offset,
132                                   bool PlacingOverlappingField);
133   void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset,
134                                   bool PlacingOverlappingField);
135 
136   /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
137   /// subobjects beyond the given offset.
138   bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
139     return Offset <= MaxEmptyClassOffset;
140   }
141 
142   CharUnits
143   getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
144     uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
145     assert(FieldOffset % CharWidth == 0 &&
146            "Field offset not at char boundary!");
147 
148     return Context.toCharUnitsFromBits(FieldOffset);
149   }
150 
151 protected:
152   bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
153                                  CharUnits Offset) const;
154 
155   bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
156                                      CharUnits Offset);
157 
158   bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
159                                       const CXXRecordDecl *Class,
160                                       CharUnits Offset) const;
161   bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
162                                       CharUnits Offset) const;
163 
164 public:
165   /// This holds the size of the largest empty subobject (either a base
166   /// or a member). Will be zero if the record being built doesn't contain
167   /// any empty classes.
168   CharUnits SizeOfLargestEmptySubobject;
169 
170   EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
171   : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
172       ComputeEmptySubobjectSizes();
173   }
174 
175   /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
176   /// at the given offset.
177   /// Returns false if placing the record will result in two components
178   /// (direct or indirect) of the same type having the same offset.
179   bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
180                             CharUnits Offset);
181 
182   /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
183   /// offset.
184   bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
185 };
186 
187 void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
188   // Check the bases.
189   for (const CXXBaseSpecifier &Base : Class->bases()) {
190     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
191 
192     CharUnits EmptySize;
193     const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
194     if (BaseDecl->isEmpty()) {
195       // If the class decl is empty, get its size.
196       EmptySize = Layout.getSize();
197     } else {
198       // Otherwise, we get the largest empty subobject for the decl.
199       EmptySize = Layout.getSizeOfLargestEmptySubobject();
200     }
201 
202     if (EmptySize > SizeOfLargestEmptySubobject)
203       SizeOfLargestEmptySubobject = EmptySize;
204   }
205 
206   // Check the fields.
207   for (const FieldDecl *FD : Class->fields()) {
208     const RecordType *RT =
209         Context.getBaseElementType(FD->getType())->getAs<RecordType>();
210 
211     // We only care about record types.
212     if (!RT)
213       continue;
214 
215     CharUnits EmptySize;
216     const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl();
217     const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
218     if (MemberDecl->isEmpty()) {
219       // If the class decl is empty, get its size.
220       EmptySize = Layout.getSize();
221     } else {
222       // Otherwise, we get the largest empty subobject for the decl.
223       EmptySize = Layout.getSizeOfLargestEmptySubobject();
224     }
225 
226     if (EmptySize > SizeOfLargestEmptySubobject)
227       SizeOfLargestEmptySubobject = EmptySize;
228   }
229 }
230 
231 bool
232 EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
233                                              CharUnits Offset) const {
234   // We only need to check empty bases.
235   if (!RD->isEmpty())
236     return true;
237 
238   EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
239   if (I == EmptyClassOffsets.end())
240     return true;
241 
242   const ClassVectorTy &Classes = I->second;
243   if (llvm::find(Classes, RD) == Classes.end())
244     return true;
245 
246   // There is already an empty class of the same type at this offset.
247   return false;
248 }
249 
250 void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
251                                              CharUnits Offset) {
252   // We only care about empty bases.
253   if (!RD->isEmpty())
254     return;
255 
256   // If we have empty structures inside a union, we can assign both
257   // the same offset. Just avoid pushing them twice in the list.
258   ClassVectorTy &Classes = EmptyClassOffsets[Offset];
259   if (llvm::is_contained(Classes, RD))
260     return;
261 
262   Classes.push_back(RD);
263 
264   // Update the empty class offset.
265   if (Offset > MaxEmptyClassOffset)
266     MaxEmptyClassOffset = Offset;
267 }
268 
269 bool
270 EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
271                                                  CharUnits Offset) {
272   // We don't have to keep looking past the maximum offset that's known to
273   // contain an empty class.
274   if (!AnyEmptySubobjectsBeyondOffset(Offset))
275     return true;
276 
277   if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
278     return false;
279 
280   // Traverse all non-virtual bases.
281   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
282   for (const BaseSubobjectInfo *Base : Info->Bases) {
283     if (Base->IsVirtual)
284       continue;
285 
286     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
287 
288     if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
289       return false;
290   }
291 
292   if (Info->PrimaryVirtualBaseInfo) {
293     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
294 
295     if (Info == PrimaryVirtualBaseInfo->Derived) {
296       if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
297         return false;
298     }
299   }
300 
301   // Traverse all member variables.
302   unsigned FieldNo = 0;
303   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
304        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
305     if (I->isBitField())
306       continue;
307 
308     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
309     if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
310       return false;
311   }
312 
313   return true;
314 }
315 
316 void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
317                                                   CharUnits Offset,
318                                                   bool PlacingEmptyBase) {
319   if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
320     // We know that the only empty subobjects that can conflict with empty
321     // subobject of non-empty bases, are empty bases that can be placed at
322     // offset zero. Because of this, we only need to keep track of empty base
323     // subobjects with offsets less than the size of the largest empty
324     // subobject for our class.
325     return;
326   }
327 
328   AddSubobjectAtOffset(Info->Class, Offset);
329 
330   // Traverse all non-virtual bases.
331   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
332   for (const BaseSubobjectInfo *Base : Info->Bases) {
333     if (Base->IsVirtual)
334       continue;
335 
336     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
337     UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
338   }
339 
340   if (Info->PrimaryVirtualBaseInfo) {
341     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
342 
343     if (Info == PrimaryVirtualBaseInfo->Derived)
344       UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
345                                 PlacingEmptyBase);
346   }
347 
348   // Traverse all member variables.
349   unsigned FieldNo = 0;
350   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
351        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
352     if (I->isBitField())
353       continue;
354 
355     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
356     UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingEmptyBase);
357   }
358 }
359 
360 bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
361                                              CharUnits Offset) {
362   // If we know this class doesn't have any empty subobjects we don't need to
363   // bother checking.
364   if (SizeOfLargestEmptySubobject.isZero())
365     return true;
366 
367   if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
368     return false;
369 
370   // We are able to place the base at this offset. Make sure to update the
371   // empty base subobject map.
372   UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
373   return true;
374 }
375 
376 bool
377 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
378                                                   const CXXRecordDecl *Class,
379                                                   CharUnits Offset) const {
380   // We don't have to keep looking past the maximum offset that's known to
381   // contain an empty class.
382   if (!AnyEmptySubobjectsBeyondOffset(Offset))
383     return true;
384 
385   if (!CanPlaceSubobjectAtOffset(RD, Offset))
386     return false;
387 
388   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
389 
390   // Traverse all non-virtual bases.
391   for (const CXXBaseSpecifier &Base : RD->bases()) {
392     if (Base.isVirtual())
393       continue;
394 
395     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
396 
397     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
398     if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
399       return false;
400   }
401 
402   if (RD == Class) {
403     // This is the most derived class, traverse virtual bases as well.
404     for (const CXXBaseSpecifier &Base : RD->vbases()) {
405       const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
406 
407       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
408       if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
409         return false;
410     }
411   }
412 
413   // Traverse all member variables.
414   unsigned FieldNo = 0;
415   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
416        I != E; ++I, ++FieldNo) {
417     if (I->isBitField())
418       continue;
419 
420     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
421 
422     if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
423       return false;
424   }
425 
426   return true;
427 }
428 
429 bool
430 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
431                                                   CharUnits Offset) const {
432   // We don't have to keep looking past the maximum offset that's known to
433   // contain an empty class.
434   if (!AnyEmptySubobjectsBeyondOffset(Offset))
435     return true;
436 
437   QualType T = FD->getType();
438   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
439     return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
440 
441   // If we have an array type we need to look at every element.
442   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
443     QualType ElemTy = Context.getBaseElementType(AT);
444     const RecordType *RT = ElemTy->getAs<RecordType>();
445     if (!RT)
446       return true;
447 
448     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
449     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
450 
451     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
452     CharUnits ElementOffset = Offset;
453     for (uint64_t I = 0; I != NumElements; ++I) {
454       // We don't have to keep looking past the maximum offset that's known to
455       // contain an empty class.
456       if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
457         return true;
458 
459       if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
460         return false;
461 
462       ElementOffset += Layout.getSize();
463     }
464   }
465 
466   return true;
467 }
468 
469 bool
470 EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
471                                          CharUnits Offset) {
472   if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
473     return false;
474 
475   // We are able to place the member variable at this offset.
476   // Make sure to update the empty field subobject map.
477   UpdateEmptyFieldSubobjects(FD, Offset, FD->hasAttr<NoUniqueAddressAttr>());
478   return true;
479 }
480 
481 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
482     const CXXRecordDecl *RD, const CXXRecordDecl *Class, CharUnits Offset,
483     bool PlacingOverlappingField) {
484   // We know that the only empty subobjects that can conflict with empty
485   // field subobjects are subobjects of empty bases and potentially-overlapping
486   // fields that can be placed at offset zero. Because of this, we only need to
487   // keep track of empty field subobjects with offsets less than the size of
488   // the largest empty subobject for our class.
489   //
490   // (Proof: we will only consider placing a subobject at offset zero or at
491   // >= the current dsize. The only cases where the earlier subobject can be
492   // placed beyond the end of dsize is if it's an empty base or a
493   // potentially-overlapping field.)
494   if (!PlacingOverlappingField && Offset >= SizeOfLargestEmptySubobject)
495     return;
496 
497   AddSubobjectAtOffset(RD, Offset);
498 
499   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
500 
501   // Traverse all non-virtual bases.
502   for (const CXXBaseSpecifier &Base : RD->bases()) {
503     if (Base.isVirtual())
504       continue;
505 
506     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
507 
508     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
509     UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset,
510                                PlacingOverlappingField);
511   }
512 
513   if (RD == Class) {
514     // This is the most derived class, traverse virtual bases as well.
515     for (const CXXBaseSpecifier &Base : RD->vbases()) {
516       const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
517 
518       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
519       UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset,
520                                  PlacingOverlappingField);
521     }
522   }
523 
524   // Traverse all member variables.
525   unsigned FieldNo = 0;
526   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
527        I != E; ++I, ++FieldNo) {
528     if (I->isBitField())
529       continue;
530 
531     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
532 
533     UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingOverlappingField);
534   }
535 }
536 
537 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
538     const FieldDecl *FD, CharUnits Offset, bool PlacingOverlappingField) {
539   QualType T = FD->getType();
540   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
541     UpdateEmptyFieldSubobjects(RD, RD, Offset, PlacingOverlappingField);
542     return;
543   }
544 
545   // If we have an array type we need to update every element.
546   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
547     QualType ElemTy = Context.getBaseElementType(AT);
548     const RecordType *RT = ElemTy->getAs<RecordType>();
549     if (!RT)
550       return;
551 
552     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
553     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
554 
555     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
556     CharUnits ElementOffset = Offset;
557 
558     for (uint64_t I = 0; I != NumElements; ++I) {
559       // We know that the only empty subobjects that can conflict with empty
560       // field subobjects are subobjects of empty bases that can be placed at
561       // offset zero. Because of this, we only need to keep track of empty field
562       // subobjects with offsets less than the size of the largest empty
563       // subobject for our class.
564       if (!PlacingOverlappingField &&
565           ElementOffset >= SizeOfLargestEmptySubobject)
566         return;
567 
568       UpdateEmptyFieldSubobjects(RD, RD, ElementOffset,
569                                  PlacingOverlappingField);
570       ElementOffset += Layout.getSize();
571     }
572   }
573 }
574 
575 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;
576 
577 class ItaniumRecordLayoutBuilder {
578 protected:
579   // FIXME: Remove this and make the appropriate fields public.
580   friend class clang::ASTContext;
581 
582   const ASTContext &Context;
583 
584   EmptySubobjectMap *EmptySubobjects;
585 
586   /// Size - The current size of the record layout.
587   uint64_t Size;
588 
589   /// Alignment - The current alignment of the record layout.
590   CharUnits Alignment;
591 
592   /// PreferredAlignment - The preferred alignment of the record layout.
593   CharUnits PreferredAlignment;
594 
595   /// The alignment if attribute packed is not used.
596   CharUnits UnpackedAlignment;
597 
598   /// \brief The maximum of the alignments of top-level members.
599   CharUnits UnadjustedAlignment;
600 
601   SmallVector<uint64_t, 16> FieldOffsets;
602 
603   /// Whether the external AST source has provided a layout for this
604   /// record.
605   unsigned UseExternalLayout : 1;
606 
607   /// Whether we need to infer alignment, even when we have an
608   /// externally-provided layout.
609   unsigned InferAlignment : 1;
610 
611   /// Packed - Whether the record is packed or not.
612   unsigned Packed : 1;
613 
614   unsigned IsUnion : 1;
615 
616   unsigned IsMac68kAlign : 1;
617 
618   unsigned IsNaturalAlign : 1;
619 
620   unsigned IsMsStruct : 1;
621 
622   /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
623   /// this contains the number of bits in the last unit that can be used for
624   /// an adjacent bitfield if necessary.  The unit in question is usually
625   /// a byte, but larger units are used if IsMsStruct.
626   unsigned char UnfilledBitsInLastUnit;
627 
628   /// LastBitfieldStorageUnitSize - If IsMsStruct, represents the size of the
629   /// storage unit of the previous field if it was a bitfield.
630   unsigned char LastBitfieldStorageUnitSize;
631 
632   /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
633   /// #pragma pack.
634   CharUnits MaxFieldAlignment;
635 
636   /// DataSize - The data size of the record being laid out.
637   uint64_t DataSize;
638 
639   CharUnits NonVirtualSize;
640   CharUnits NonVirtualAlignment;
641   CharUnits PreferredNVAlignment;
642 
643   /// If we've laid out a field but not included its tail padding in Size yet,
644   /// this is the size up to the end of that field.
645   CharUnits PaddedFieldSize;
646 
647   /// PrimaryBase - the primary base class (if one exists) of the class
648   /// we're laying out.
649   const CXXRecordDecl *PrimaryBase;
650 
651   /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
652   /// out is virtual.
653   bool PrimaryBaseIsVirtual;
654 
655   /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
656   /// pointer, as opposed to inheriting one from a primary base class.
657   bool HasOwnVFPtr;
658 
659   /// the flag of field offset changing due to packed attribute.
660   bool HasPackedField;
661 
662   /// HandledFirstNonOverlappingEmptyField - An auxiliary field used for AIX.
663   /// When there are OverlappingEmptyFields existing in the aggregate, the
664   /// flag shows if the following first non-empty or empty-but-non-overlapping
665   /// field has been handled, if any.
666   bool HandledFirstNonOverlappingEmptyField;
667 
668   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
669 
670   /// Bases - base classes and their offsets in the record.
671   BaseOffsetsMapTy Bases;
672 
673   // VBases - virtual base classes and their offsets in the record.
674   ASTRecordLayout::VBaseOffsetsMapTy VBases;
675 
676   /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
677   /// primary base classes for some other direct or indirect base class.
678   CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
679 
680   /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
681   /// inheritance graph order. Used for determining the primary base class.
682   const CXXRecordDecl *FirstNearlyEmptyVBase;
683 
684   /// VisitedVirtualBases - A set of all the visited virtual bases, used to
685   /// avoid visiting virtual bases more than once.
686   llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
687 
688   /// Valid if UseExternalLayout is true.
689   ExternalLayout External;
690 
691   ItaniumRecordLayoutBuilder(const ASTContext &Context,
692                              EmptySubobjectMap *EmptySubobjects)
693       : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
694         Alignment(CharUnits::One()), PreferredAlignment(CharUnits::One()),
695         UnpackedAlignment(CharUnits::One()),
696         UnadjustedAlignment(CharUnits::One()), UseExternalLayout(false),
697         InferAlignment(false), Packed(false), IsUnion(false),
698         IsMac68kAlign(false),
699         IsNaturalAlign(!Context.getTargetInfo().getTriple().isOSAIX()),
700         IsMsStruct(false), UnfilledBitsInLastUnit(0),
701         LastBitfieldStorageUnitSize(0), MaxFieldAlignment(CharUnits::Zero()),
702         DataSize(0), NonVirtualSize(CharUnits::Zero()),
703         NonVirtualAlignment(CharUnits::One()),
704         PreferredNVAlignment(CharUnits::One()),
705         PaddedFieldSize(CharUnits::Zero()), PrimaryBase(nullptr),
706         PrimaryBaseIsVirtual(false), HasOwnVFPtr(false), HasPackedField(false),
707         HandledFirstNonOverlappingEmptyField(false),
708         FirstNearlyEmptyVBase(nullptr) {}
709 
710   void Layout(const RecordDecl *D);
711   void Layout(const CXXRecordDecl *D);
712   void Layout(const ObjCInterfaceDecl *D);
713 
714   void LayoutFields(const RecordDecl *D);
715   void LayoutField(const FieldDecl *D, bool InsertExtraPadding);
716   void LayoutWideBitField(uint64_t FieldSize, uint64_t StorageUnitSize,
717                           bool FieldPacked, const FieldDecl *D);
718   void LayoutBitField(const FieldDecl *D);
719 
720   TargetCXXABI getCXXABI() const {
721     return Context.getTargetInfo().getCXXABI();
722   }
723 
724   /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
725   llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
726 
727   typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
728     BaseSubobjectInfoMapTy;
729 
730   /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
731   /// of the class we're laying out to their base subobject info.
732   BaseSubobjectInfoMapTy VirtualBaseInfo;
733 
734   /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
735   /// class we're laying out to their base subobject info.
736   BaseSubobjectInfoMapTy NonVirtualBaseInfo;
737 
738   /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
739   /// bases of the given class.
740   void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
741 
742   /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
743   /// single class and all of its base classes.
744   BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
745                                               bool IsVirtual,
746                                               BaseSubobjectInfo *Derived);
747 
748   /// DeterminePrimaryBase - Determine the primary base of the given class.
749   void DeterminePrimaryBase(const CXXRecordDecl *RD);
750 
751   void SelectPrimaryVBase(const CXXRecordDecl *RD);
752 
753   void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
754 
755   /// LayoutNonVirtualBases - Determines the primary base class (if any) and
756   /// lays it out. Will then proceed to lay out all non-virtual base clasess.
757   void LayoutNonVirtualBases(const CXXRecordDecl *RD);
758 
759   /// LayoutNonVirtualBase - Lays out a single non-virtual base.
760   void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
761 
762   void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
763                                     CharUnits Offset);
764 
765   /// LayoutVirtualBases - Lays out all the virtual bases.
766   void LayoutVirtualBases(const CXXRecordDecl *RD,
767                           const CXXRecordDecl *MostDerivedClass);
768 
769   /// LayoutVirtualBase - Lays out a single virtual base.
770   void LayoutVirtualBase(const BaseSubobjectInfo *Base);
771 
772   /// LayoutBase - Will lay out a base and return the offset where it was
773   /// placed, in chars.
774   CharUnits LayoutBase(const BaseSubobjectInfo *Base);
775 
776   /// InitializeLayout - Initialize record layout for the given record decl.
777   void InitializeLayout(const Decl *D);
778 
779   /// FinishLayout - Finalize record layout. Adjust record size based on the
780   /// alignment.
781   void FinishLayout(const NamedDecl *D);
782 
783   void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment,
784                        CharUnits PreferredAlignment);
785   void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment) {
786     UpdateAlignment(NewAlignment, UnpackedNewAlignment, NewAlignment);
787   }
788   void UpdateAlignment(CharUnits NewAlignment) {
789     UpdateAlignment(NewAlignment, NewAlignment, NewAlignment);
790   }
791 
792   /// Retrieve the externally-supplied field offset for the given
793   /// field.
794   ///
795   /// \param Field The field whose offset is being queried.
796   /// \param ComputedOffset The offset that we've computed for this field.
797   uint64_t updateExternalFieldOffset(const FieldDecl *Field,
798                                      uint64_t ComputedOffset);
799 
800   void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
801                           uint64_t UnpackedOffset, unsigned UnpackedAlign,
802                           bool isPacked, const FieldDecl *D);
803 
804   DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
805 
806   CharUnits getSize() const {
807     assert(Size % Context.getCharWidth() == 0);
808     return Context.toCharUnitsFromBits(Size);
809   }
810   uint64_t getSizeInBits() const { return Size; }
811 
812   void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
813   void setSize(uint64_t NewSize) { Size = NewSize; }
814 
815   CharUnits getAligment() const { return Alignment; }
816 
817   CharUnits getDataSize() const {
818     assert(DataSize % Context.getCharWidth() == 0);
819     return Context.toCharUnitsFromBits(DataSize);
820   }
821   uint64_t getDataSizeInBits() const { return DataSize; }
822 
823   void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
824   void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
825 
826   ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder &) = delete;
827   void operator=(const ItaniumRecordLayoutBuilder &) = delete;
828 };
829 } // end anonymous namespace
830 
831 void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
832   for (const auto &I : RD->bases()) {
833     assert(!I.getType()->isDependentType() &&
834            "Cannot layout class with dependent bases.");
835 
836     const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
837 
838     // Check if this is a nearly empty virtual base.
839     if (I.isVirtual() && Context.isNearlyEmpty(Base)) {
840       // If it's not an indirect primary base, then we've found our primary
841       // base.
842       if (!IndirectPrimaryBases.count(Base)) {
843         PrimaryBase = Base;
844         PrimaryBaseIsVirtual = true;
845         return;
846       }
847 
848       // Is this the first nearly empty virtual base?
849       if (!FirstNearlyEmptyVBase)
850         FirstNearlyEmptyVBase = Base;
851     }
852 
853     SelectPrimaryVBase(Base);
854     if (PrimaryBase)
855       return;
856   }
857 }
858 
859 /// DeterminePrimaryBase - Determine the primary base of the given class.
860 void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
861   // If the class isn't dynamic, it won't have a primary base.
862   if (!RD->isDynamicClass())
863     return;
864 
865   // Compute all the primary virtual bases for all of our direct and
866   // indirect bases, and record all their primary virtual base classes.
867   RD->getIndirectPrimaryBases(IndirectPrimaryBases);
868 
869   // If the record has a dynamic base class, attempt to choose a primary base
870   // class. It is the first (in direct base class order) non-virtual dynamic
871   // base class, if one exists.
872   for (const auto &I : RD->bases()) {
873     // Ignore virtual bases.
874     if (I.isVirtual())
875       continue;
876 
877     const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
878 
879     if (Base->isDynamicClass()) {
880       // We found it.
881       PrimaryBase = Base;
882       PrimaryBaseIsVirtual = false;
883       return;
884     }
885   }
886 
887   // Under the Itanium ABI, if there is no non-virtual primary base class,
888   // try to compute the primary virtual base.  The primary virtual base is
889   // the first nearly empty virtual base that is not an indirect primary
890   // virtual base class, if one exists.
891   if (RD->getNumVBases() != 0) {
892     SelectPrimaryVBase(RD);
893     if (PrimaryBase)
894       return;
895   }
896 
897   // Otherwise, it is the first indirect primary base class, if one exists.
898   if (FirstNearlyEmptyVBase) {
899     PrimaryBase = FirstNearlyEmptyVBase;
900     PrimaryBaseIsVirtual = true;
901     return;
902   }
903 
904   assert(!PrimaryBase && "Should not get here with a primary base!");
905 }
906 
907 BaseSubobjectInfo *ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
908     const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) {
909   BaseSubobjectInfo *Info;
910 
911   if (IsVirtual) {
912     // Check if we already have info about this virtual base.
913     BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
914     if (InfoSlot) {
915       assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
916       return InfoSlot;
917     }
918 
919     // We don't, create it.
920     InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
921     Info = InfoSlot;
922   } else {
923     Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
924   }
925 
926   Info->Class = RD;
927   Info->IsVirtual = IsVirtual;
928   Info->Derived = nullptr;
929   Info->PrimaryVirtualBaseInfo = nullptr;
930 
931   const CXXRecordDecl *PrimaryVirtualBase = nullptr;
932   BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr;
933 
934   // Check if this base has a primary virtual base.
935   if (RD->getNumVBases()) {
936     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
937     if (Layout.isPrimaryBaseVirtual()) {
938       // This base does have a primary virtual base.
939       PrimaryVirtualBase = Layout.getPrimaryBase();
940       assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
941 
942       // Now check if we have base subobject info about this primary base.
943       PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
944 
945       if (PrimaryVirtualBaseInfo) {
946         if (PrimaryVirtualBaseInfo->Derived) {
947           // We did have info about this primary base, and it turns out that it
948           // has already been claimed as a primary virtual base for another
949           // base.
950           PrimaryVirtualBase = nullptr;
951         } else {
952           // We can claim this base as our primary base.
953           Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
954           PrimaryVirtualBaseInfo->Derived = Info;
955         }
956       }
957     }
958   }
959 
960   // Now go through all direct bases.
961   for (const auto &I : RD->bases()) {
962     bool IsVirtual = I.isVirtual();
963 
964     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
965 
966     Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
967   }
968 
969   if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
970     // Traversing the bases must have created the base info for our primary
971     // virtual base.
972     PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
973     assert(PrimaryVirtualBaseInfo &&
974            "Did not create a primary virtual base!");
975 
976     // Claim the primary virtual base as our primary virtual base.
977     Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
978     PrimaryVirtualBaseInfo->Derived = Info;
979   }
980 
981   return Info;
982 }
983 
984 void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
985     const CXXRecordDecl *RD) {
986   for (const auto &I : RD->bases()) {
987     bool IsVirtual = I.isVirtual();
988 
989     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
990 
991     // Compute the base subobject info for this base.
992     BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual,
993                                                        nullptr);
994 
995     if (IsVirtual) {
996       // ComputeBaseInfo has already added this base for us.
997       assert(VirtualBaseInfo.count(BaseDecl) &&
998              "Did not add virtual base!");
999     } else {
1000       // Add the base info to the map of non-virtual bases.
1001       assert(!NonVirtualBaseInfo.count(BaseDecl) &&
1002              "Non-virtual base already exists!");
1003       NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
1004     }
1005   }
1006 }
1007 
1008 void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment(
1009     CharUnits UnpackedBaseAlign) {
1010   CharUnits BaseAlign = Packed ? CharUnits::One() : UnpackedBaseAlign;
1011 
1012   // The maximum field alignment overrides base align.
1013   if (!MaxFieldAlignment.isZero()) {
1014     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1015     UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
1016   }
1017 
1018   // Round up the current record size to pointer alignment.
1019   setSize(getSize().alignTo(BaseAlign));
1020 
1021   // Update the alignment.
1022   UpdateAlignment(BaseAlign, UnpackedBaseAlign, BaseAlign);
1023 }
1024 
1025 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases(
1026     const CXXRecordDecl *RD) {
1027   // Then, determine the primary base class.
1028   DeterminePrimaryBase(RD);
1029 
1030   // Compute base subobject info.
1031   ComputeBaseSubobjectInfo(RD);
1032 
1033   // If we have a primary base class, lay it out.
1034   if (PrimaryBase) {
1035     if (PrimaryBaseIsVirtual) {
1036       // If the primary virtual base was a primary virtual base of some other
1037       // base class we'll have to steal it.
1038       BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
1039       PrimaryBaseInfo->Derived = nullptr;
1040 
1041       // We have a virtual primary base, insert it as an indirect primary base.
1042       IndirectPrimaryBases.insert(PrimaryBase);
1043 
1044       assert(!VisitedVirtualBases.count(PrimaryBase) &&
1045              "vbase already visited!");
1046       VisitedVirtualBases.insert(PrimaryBase);
1047 
1048       LayoutVirtualBase(PrimaryBaseInfo);
1049     } else {
1050       BaseSubobjectInfo *PrimaryBaseInfo =
1051         NonVirtualBaseInfo.lookup(PrimaryBase);
1052       assert(PrimaryBaseInfo &&
1053              "Did not find base info for non-virtual primary base!");
1054 
1055       LayoutNonVirtualBase(PrimaryBaseInfo);
1056     }
1057 
1058   // If this class needs a vtable/vf-table and didn't get one from a
1059   // primary base, add it in now.
1060   } else if (RD->isDynamicClass()) {
1061     assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
1062     CharUnits PtrWidth =
1063       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
1064     CharUnits PtrAlign =
1065       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
1066     EnsureVTablePointerAlignment(PtrAlign);
1067     HasOwnVFPtr = true;
1068 
1069     assert(!IsUnion && "Unions cannot be dynamic classes.");
1070     HandledFirstNonOverlappingEmptyField = true;
1071 
1072     setSize(getSize() + PtrWidth);
1073     setDataSize(getSize());
1074   }
1075 
1076   // Now lay out the non-virtual bases.
1077   for (const auto &I : RD->bases()) {
1078 
1079     // Ignore virtual bases.
1080     if (I.isVirtual())
1081       continue;
1082 
1083     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
1084 
1085     // Skip the primary base, because we've already laid it out.  The
1086     // !PrimaryBaseIsVirtual check is required because we might have a
1087     // non-virtual base of the same type as a primary virtual base.
1088     if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
1089       continue;
1090 
1091     // Lay out the base.
1092     BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
1093     assert(BaseInfo && "Did not find base info for non-virtual base!");
1094 
1095     LayoutNonVirtualBase(BaseInfo);
1096   }
1097 }
1098 
1099 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase(
1100     const BaseSubobjectInfo *Base) {
1101   // Layout the base.
1102   CharUnits Offset = LayoutBase(Base);
1103 
1104   // Add its base class offset.
1105   assert(!Bases.count(Base->Class) && "base offset already exists!");
1106   Bases.insert(std::make_pair(Base->Class, Offset));
1107 
1108   AddPrimaryVirtualBaseOffsets(Base, Offset);
1109 }
1110 
1111 void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(
1112     const BaseSubobjectInfo *Info, CharUnits Offset) {
1113   // This base isn't interesting, it has no virtual bases.
1114   if (!Info->Class->getNumVBases())
1115     return;
1116 
1117   // First, check if we have a virtual primary base to add offsets for.
1118   if (Info->PrimaryVirtualBaseInfo) {
1119     assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
1120            "Primary virtual base is not virtual!");
1121     if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
1122       // Add the offset.
1123       assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
1124              "primary vbase offset already exists!");
1125       VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
1126                                    ASTRecordLayout::VBaseInfo(Offset, false)));
1127 
1128       // Traverse the primary virtual base.
1129       AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
1130     }
1131   }
1132 
1133   // Now go through all direct non-virtual bases.
1134   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
1135   for (const BaseSubobjectInfo *Base : Info->Bases) {
1136     if (Base->IsVirtual)
1137       continue;
1138 
1139     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
1140     AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
1141   }
1142 }
1143 
1144 void ItaniumRecordLayoutBuilder::LayoutVirtualBases(
1145     const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) {
1146   const CXXRecordDecl *PrimaryBase;
1147   bool PrimaryBaseIsVirtual;
1148 
1149   if (MostDerivedClass == RD) {
1150     PrimaryBase = this->PrimaryBase;
1151     PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
1152   } else {
1153     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1154     PrimaryBase = Layout.getPrimaryBase();
1155     PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
1156   }
1157 
1158   for (const CXXBaseSpecifier &Base : RD->bases()) {
1159     assert(!Base.getType()->isDependentType() &&
1160            "Cannot layout class with dependent bases.");
1161 
1162     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1163 
1164     if (Base.isVirtual()) {
1165       if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
1166         bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
1167 
1168         // Only lay out the virtual base if it's not an indirect primary base.
1169         if (!IndirectPrimaryBase) {
1170           // Only visit virtual bases once.
1171           if (!VisitedVirtualBases.insert(BaseDecl).second)
1172             continue;
1173 
1174           const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
1175           assert(BaseInfo && "Did not find virtual base info!");
1176           LayoutVirtualBase(BaseInfo);
1177         }
1178       }
1179     }
1180 
1181     if (!BaseDecl->getNumVBases()) {
1182       // This base isn't interesting since it doesn't have any virtual bases.
1183       continue;
1184     }
1185 
1186     LayoutVirtualBases(BaseDecl, MostDerivedClass);
1187   }
1188 }
1189 
1190 void ItaniumRecordLayoutBuilder::LayoutVirtualBase(
1191     const BaseSubobjectInfo *Base) {
1192   assert(!Base->Derived && "Trying to lay out a primary virtual base!");
1193 
1194   // Layout the base.
1195   CharUnits Offset = LayoutBase(Base);
1196 
1197   // Add its base class offset.
1198   assert(!VBases.count(Base->Class) && "vbase offset already exists!");
1199   VBases.insert(std::make_pair(Base->Class,
1200                        ASTRecordLayout::VBaseInfo(Offset, false)));
1201 
1202   AddPrimaryVirtualBaseOffsets(Base, Offset);
1203 }
1204 
1205 CharUnits
1206 ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
1207   assert(!IsUnion && "Unions cannot have base classes.");
1208 
1209   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
1210   CharUnits Offset;
1211 
1212   // Query the external layout to see if it provides an offset.
1213   bool HasExternalLayout = false;
1214   if (UseExternalLayout) {
1215     if (Base->IsVirtual)
1216       HasExternalLayout = External.getExternalVBaseOffset(Base->Class, Offset);
1217     else
1218       HasExternalLayout = External.getExternalNVBaseOffset(Base->Class, Offset);
1219   }
1220 
1221   auto getBaseOrPreferredBaseAlignFromUnpacked = [&](CharUnits UnpackedAlign) {
1222     // Clang <= 6 incorrectly applied the 'packed' attribute to base classes.
1223     // Per GCC's documentation, it only applies to non-static data members.
1224     return (Packed && ((Context.getLangOpts().getClangABICompat() <=
1225                         LangOptions::ClangABI::Ver6) ||
1226                        Context.getTargetInfo().getTriple().isPS4() ||
1227                        Context.getTargetInfo().getTriple().isOSAIX()))
1228                ? CharUnits::One()
1229                : UnpackedAlign;
1230   };
1231 
1232   CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment();
1233   CharUnits UnpackedPreferredBaseAlign = Layout.getPreferredNVAlignment();
1234   CharUnits BaseAlign =
1235       getBaseOrPreferredBaseAlignFromUnpacked(UnpackedBaseAlign);
1236   CharUnits PreferredBaseAlign =
1237       getBaseOrPreferredBaseAlignFromUnpacked(UnpackedPreferredBaseAlign);
1238 
1239   const bool DefaultsToAIXPowerAlignment =
1240       Context.getTargetInfo().defaultsToAIXPowerAlignment();
1241   if (DefaultsToAIXPowerAlignment) {
1242     // AIX `power` alignment does not apply the preferred alignment for
1243     // non-union classes if the source of the alignment (the current base in
1244     // this context) follows introduction of the first subobject with
1245     // exclusively allocated space or zero-extent array.
1246     if (!Base->Class->isEmpty() && !HandledFirstNonOverlappingEmptyField) {
1247       // By handling a base class that is not empty, we're handling the
1248       // "first (inherited) member".
1249       HandledFirstNonOverlappingEmptyField = true;
1250     } else if (!IsNaturalAlign) {
1251       UnpackedPreferredBaseAlign = UnpackedBaseAlign;
1252       PreferredBaseAlign = BaseAlign;
1253     }
1254   }
1255 
1256   CharUnits UnpackedAlignTo = !DefaultsToAIXPowerAlignment
1257                                   ? UnpackedBaseAlign
1258                                   : UnpackedPreferredBaseAlign;
1259   // If we have an empty base class, try to place it at offset 0.
1260   if (Base->Class->isEmpty() &&
1261       (!HasExternalLayout || Offset == CharUnits::Zero()) &&
1262       EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
1263     setSize(std::max(getSize(), Layout.getSize()));
1264     UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign);
1265 
1266     return CharUnits::Zero();
1267   }
1268 
1269   // The maximum field alignment overrides the base align/(AIX-only) preferred
1270   // base align.
1271   if (!MaxFieldAlignment.isZero()) {
1272     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1273     PreferredBaseAlign = std::min(PreferredBaseAlign, MaxFieldAlignment);
1274     UnpackedAlignTo = std::min(UnpackedAlignTo, MaxFieldAlignment);
1275   }
1276 
1277   CharUnits AlignTo =
1278       !DefaultsToAIXPowerAlignment ? BaseAlign : PreferredBaseAlign;
1279   if (!HasExternalLayout) {
1280     // Round up the current record size to the base's alignment boundary.
1281     Offset = getDataSize().alignTo(AlignTo);
1282 
1283     // Try to place the base.
1284     while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
1285       Offset += AlignTo;
1286   } else {
1287     bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
1288     (void)Allowed;
1289     assert(Allowed && "Base subobject externally placed at overlapping offset");
1290 
1291     if (InferAlignment && Offset < getDataSize().alignTo(AlignTo)) {
1292       // The externally-supplied base offset is before the base offset we
1293       // computed. Assume that the structure is packed.
1294       Alignment = CharUnits::One();
1295       InferAlignment = false;
1296     }
1297   }
1298 
1299   if (!Base->Class->isEmpty()) {
1300     // Update the data size.
1301     setDataSize(Offset + Layout.getNonVirtualSize());
1302 
1303     setSize(std::max(getSize(), getDataSize()));
1304   } else
1305     setSize(std::max(getSize(), Offset + Layout.getSize()));
1306 
1307   // Remember max struct/class alignment.
1308   UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign);
1309 
1310   return Offset;
1311 }
1312 
1313 void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl *D) {
1314   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
1315     IsUnion = RD->isUnion();
1316     IsMsStruct = RD->isMsStruct(Context);
1317   }
1318 
1319   Packed = D->hasAttr<PackedAttr>();
1320 
1321   // Honor the default struct packing maximum alignment flag.
1322   if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
1323     MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
1324   }
1325 
1326   // mac68k alignment supersedes maximum field alignment and attribute aligned,
1327   // and forces all structures to have 2-byte alignment. The IBM docs on it
1328   // allude to additional (more complicated) semantics, especially with regard
1329   // to bit-fields, but gcc appears not to follow that.
1330   if (D->hasAttr<AlignMac68kAttr>()) {
1331     assert(
1332         !D->hasAttr<AlignNaturalAttr>() &&
1333         "Having both mac68k and natural alignment on a decl is not allowed.");
1334     IsMac68kAlign = true;
1335     MaxFieldAlignment = CharUnits::fromQuantity(2);
1336     Alignment = CharUnits::fromQuantity(2);
1337     PreferredAlignment = CharUnits::fromQuantity(2);
1338   } else {
1339     if (D->hasAttr<AlignNaturalAttr>())
1340       IsNaturalAlign = true;
1341 
1342     if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
1343       MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
1344 
1345     if (unsigned MaxAlign = D->getMaxAlignment())
1346       UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
1347   }
1348 
1349   HandledFirstNonOverlappingEmptyField =
1350       !Context.getTargetInfo().defaultsToAIXPowerAlignment() || IsNaturalAlign;
1351 
1352   // If there is an external AST source, ask it for the various offsets.
1353   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
1354     if (ExternalASTSource *Source = Context.getExternalSource()) {
1355       UseExternalLayout = Source->layoutRecordType(
1356           RD, External.Size, External.Align, External.FieldOffsets,
1357           External.BaseOffsets, External.VirtualBaseOffsets);
1358 
1359       // Update based on external alignment.
1360       if (UseExternalLayout) {
1361         if (External.Align > 0) {
1362           Alignment = Context.toCharUnitsFromBits(External.Align);
1363           PreferredAlignment = Context.toCharUnitsFromBits(External.Align);
1364         } else {
1365           // The external source didn't have alignment information; infer it.
1366           InferAlignment = true;
1367         }
1368       }
1369     }
1370 }
1371 
1372 void ItaniumRecordLayoutBuilder::Layout(const RecordDecl *D) {
1373   InitializeLayout(D);
1374   LayoutFields(D);
1375 
1376   // Finally, round the size of the total struct up to the alignment of the
1377   // struct itself.
1378   FinishLayout(D);
1379 }
1380 
1381 void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
1382   InitializeLayout(RD);
1383 
1384   // Lay out the vtable and the non-virtual bases.
1385   LayoutNonVirtualBases(RD);
1386 
1387   LayoutFields(RD);
1388 
1389   NonVirtualSize = Context.toCharUnitsFromBits(
1390       llvm::alignTo(getSizeInBits(), Context.getTargetInfo().getCharAlign()));
1391   NonVirtualAlignment = Alignment;
1392   PreferredNVAlignment = PreferredAlignment;
1393 
1394   // Lay out the virtual bases and add the primary virtual base offsets.
1395   LayoutVirtualBases(RD, RD);
1396 
1397   // Finally, round the size of the total struct up to the alignment
1398   // of the struct itself.
1399   FinishLayout(RD);
1400 
1401 #ifndef NDEBUG
1402   // Check that we have base offsets for all bases.
1403   for (const CXXBaseSpecifier &Base : RD->bases()) {
1404     if (Base.isVirtual())
1405       continue;
1406 
1407     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1408 
1409     assert(Bases.count(BaseDecl) && "Did not find base offset!");
1410   }
1411 
1412   // And all virtual bases.
1413   for (const CXXBaseSpecifier &Base : RD->vbases()) {
1414     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1415 
1416     assert(VBases.count(BaseDecl) && "Did not find base offset!");
1417   }
1418 #endif
1419 }
1420 
1421 void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
1422   if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
1423     const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
1424 
1425     UpdateAlignment(SL.getAlignment());
1426 
1427     // We start laying out ivars not at the end of the superclass
1428     // structure, but at the next byte following the last field.
1429     setDataSize(SL.getDataSize());
1430     setSize(getDataSize());
1431   }
1432 
1433   InitializeLayout(D);
1434   // Layout each ivar sequentially.
1435   for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
1436        IVD = IVD->getNextIvar())
1437     LayoutField(IVD, false);
1438 
1439   // Finally, round the size of the total struct up to the alignment of the
1440   // struct itself.
1441   FinishLayout(D);
1442 }
1443 
1444 void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
1445   // Layout each field, for now, just sequentially, respecting alignment.  In
1446   // the future, this will need to be tweakable by targets.
1447   bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true);
1448   bool HasFlexibleArrayMember = D->hasFlexibleArrayMember();
1449   for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) {
1450     auto Next(I);
1451     ++Next;
1452     LayoutField(*I,
1453                 InsertExtraPadding && (Next != End || !HasFlexibleArrayMember));
1454   }
1455 }
1456 
1457 // Rounds the specified size to have it a multiple of the char size.
1458 static uint64_t
1459 roundUpSizeToCharAlignment(uint64_t Size,
1460                            const ASTContext &Context) {
1461   uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1462   return llvm::alignTo(Size, CharAlignment);
1463 }
1464 
1465 void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
1466                                                     uint64_t StorageUnitSize,
1467                                                     bool FieldPacked,
1468                                                     const FieldDecl *D) {
1469   assert(Context.getLangOpts().CPlusPlus &&
1470          "Can only have wide bit-fields in C++!");
1471 
1472   // Itanium C++ ABI 2.4:
1473   //   If sizeof(T)*8 < n, let T' be the largest integral POD type with
1474   //   sizeof(T')*8 <= n.
1475 
1476   QualType IntegralPODTypes[] = {
1477     Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
1478     Context.UnsignedLongTy, Context.UnsignedLongLongTy
1479   };
1480 
1481   QualType Type;
1482   for (const QualType &QT : IntegralPODTypes) {
1483     uint64_t Size = Context.getTypeSize(QT);
1484 
1485     if (Size > FieldSize)
1486       break;
1487 
1488     Type = QT;
1489   }
1490   assert(!Type.isNull() && "Did not find a type!");
1491 
1492   CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
1493 
1494   // We're not going to use any of the unfilled bits in the last byte.
1495   UnfilledBitsInLastUnit = 0;
1496   LastBitfieldStorageUnitSize = 0;
1497 
1498   uint64_t FieldOffset;
1499   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1500 
1501   if (IsUnion) {
1502     uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize,
1503                                                            Context);
1504     setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1505     FieldOffset = 0;
1506   } else {
1507     // The bitfield is allocated starting at the next offset aligned
1508     // appropriately for T', with length n bits.
1509     FieldOffset = llvm::alignTo(getDataSizeInBits(), Context.toBits(TypeAlign));
1510 
1511     uint64_t NewSizeInBits = FieldOffset + FieldSize;
1512 
1513     setDataSize(
1514         llvm::alignTo(NewSizeInBits, Context.getTargetInfo().getCharAlign()));
1515     UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1516   }
1517 
1518   // Place this field at the current location.
1519   FieldOffsets.push_back(FieldOffset);
1520 
1521   CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
1522                     Context.toBits(TypeAlign), FieldPacked, D);
1523 
1524   // Update the size.
1525   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1526 
1527   // Remember max struct/class alignment.
1528   UpdateAlignment(TypeAlign);
1529 }
1530 
1531 void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
1532   bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1533   uint64_t FieldSize = D->getBitWidthValue(Context);
1534   TypeInfo FieldInfo = Context.getTypeInfo(D->getType());
1535   uint64_t StorageUnitSize = FieldInfo.Width;
1536   unsigned FieldAlign = FieldInfo.Align;
1537 
1538   // UnfilledBitsInLastUnit is the difference between the end of the
1539   // last allocated bitfield (i.e. the first bit offset available for
1540   // bitfields) and the end of the current data size in bits (i.e. the
1541   // first bit offset available for non-bitfields).  The current data
1542   // size in bits is always a multiple of the char size; additionally,
1543   // for ms_struct records it's also a multiple of the
1544   // LastBitfieldStorageUnitSize (if set).
1545 
1546   // The struct-layout algorithm is dictated by the platform ABI,
1547   // which in principle could use almost any rules it likes.  In
1548   // practice, UNIXy targets tend to inherit the algorithm described
1549   // in the System V generic ABI.  The basic bitfield layout rule in
1550   // System V is to place bitfields at the next available bit offset
1551   // where the entire bitfield would fit in an aligned storage unit of
1552   // the declared type; it's okay if an earlier or later non-bitfield
1553   // is allocated in the same storage unit.  However, some targets
1554   // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't
1555   // require this storage unit to be aligned, and therefore always put
1556   // the bitfield at the next available bit offset.
1557 
1558   // ms_struct basically requests a complete replacement of the
1559   // platform ABI's struct-layout algorithm, with the high-level goal
1560   // of duplicating MSVC's layout.  For non-bitfields, this follows
1561   // the standard algorithm.  The basic bitfield layout rule is to
1562   // allocate an entire unit of the bitfield's declared type
1563   // (e.g. 'unsigned long'), then parcel it up among successive
1564   // bitfields whose declared types have the same size, making a new
1565   // unit as soon as the last can no longer store the whole value.
1566   // Since it completely replaces the platform ABI's algorithm,
1567   // settings like !useBitFieldTypeAlignment() do not apply.
1568 
1569   // A zero-width bitfield forces the use of a new storage unit for
1570   // later bitfields.  In general, this occurs by rounding up the
1571   // current size of the struct as if the algorithm were about to
1572   // place a non-bitfield of the field's formal type.  Usually this
1573   // does not change the alignment of the struct itself, but it does
1574   // on some targets (those that useZeroLengthBitfieldAlignment(),
1575   // e.g. ARM).  In ms_struct layout, zero-width bitfields are
1576   // ignored unless they follow a non-zero-width bitfield.
1577 
1578   // A field alignment restriction (e.g. from #pragma pack) or
1579   // specification (e.g. from __attribute__((aligned))) changes the
1580   // formal alignment of the field.  For System V, this alters the
1581   // required alignment of the notional storage unit that must contain
1582   // the bitfield.  For ms_struct, this only affects the placement of
1583   // new storage units.  In both cases, the effect of #pragma pack is
1584   // ignored on zero-width bitfields.
1585 
1586   // On System V, a packed field (e.g. from #pragma pack or
1587   // __attribute__((packed))) always uses the next available bit
1588   // offset.
1589 
1590   // In an ms_struct struct, the alignment of a fundamental type is
1591   // always equal to its size.  This is necessary in order to mimic
1592   // the i386 alignment rules on targets which might not fully align
1593   // all types (e.g. Darwin PPC32, where alignof(long long) == 4).
1594 
1595   // First, some simple bookkeeping to perform for ms_struct structs.
1596   if (IsMsStruct) {
1597     // The field alignment for integer types is always the size.
1598     FieldAlign = StorageUnitSize;
1599 
1600     // If the previous field was not a bitfield, or was a bitfield
1601     // with a different storage unit size, or if this field doesn't fit into
1602     // the current storage unit, we're done with that storage unit.
1603     if (LastBitfieldStorageUnitSize != StorageUnitSize ||
1604         UnfilledBitsInLastUnit < FieldSize) {
1605       // Also, ignore zero-length bitfields after non-bitfields.
1606       if (!LastBitfieldStorageUnitSize && !FieldSize)
1607         FieldAlign = 1;
1608 
1609       UnfilledBitsInLastUnit = 0;
1610       LastBitfieldStorageUnitSize = 0;
1611     }
1612   }
1613 
1614   // If the field is wider than its declared type, it follows
1615   // different rules in all cases.
1616   if (FieldSize > StorageUnitSize) {
1617     LayoutWideBitField(FieldSize, StorageUnitSize, FieldPacked, D);
1618     return;
1619   }
1620 
1621   // Compute the next available bit offset.
1622   uint64_t FieldOffset =
1623     IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit);
1624 
1625   // Handle targets that don't honor bitfield type alignment.
1626   if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) {
1627     // Some such targets do honor it on zero-width bitfields.
1628     if (FieldSize == 0 &&
1629         Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
1630       // The alignment to round up to is the max of the field's natural
1631       // alignment and a target-specific fixed value (sometimes zero).
1632       unsigned ZeroLengthBitfieldBoundary =
1633         Context.getTargetInfo().getZeroLengthBitfieldBoundary();
1634       FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary);
1635 
1636     // If that doesn't apply, just ignore the field alignment.
1637     } else {
1638       FieldAlign = 1;
1639     }
1640   }
1641 
1642   // Remember the alignment we would have used if the field were not packed.
1643   unsigned UnpackedFieldAlign = FieldAlign;
1644 
1645   // Ignore the field alignment if the field is packed unless it has zero-size.
1646   if (!IsMsStruct && FieldPacked && FieldSize != 0)
1647     FieldAlign = 1;
1648 
1649   // But, if there's an 'aligned' attribute on the field, honor that.
1650   unsigned ExplicitFieldAlign = D->getMaxAlignment();
1651   if (ExplicitFieldAlign) {
1652     FieldAlign = std::max(FieldAlign, ExplicitFieldAlign);
1653     UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign);
1654   }
1655 
1656   // But, if there's a #pragma pack in play, that takes precedent over
1657   // even the 'aligned' attribute, for non-zero-width bitfields.
1658   unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
1659   if (!MaxFieldAlignment.isZero() && FieldSize) {
1660     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
1661     if (FieldPacked)
1662       FieldAlign = UnpackedFieldAlign;
1663     else
1664       FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1665   }
1666 
1667   // But, ms_struct just ignores all of that in unions, even explicit
1668   // alignment attributes.
1669   if (IsMsStruct && IsUnion) {
1670     FieldAlign = UnpackedFieldAlign = 1;
1671   }
1672 
1673   // For purposes of diagnostics, we're going to simultaneously
1674   // compute the field offsets that we would have used if we weren't
1675   // adding any alignment padding or if the field weren't packed.
1676   uint64_t UnpaddedFieldOffset = FieldOffset;
1677   uint64_t UnpackedFieldOffset = FieldOffset;
1678 
1679   // Check if we need to add padding to fit the bitfield within an
1680   // allocation unit with the right size and alignment.  The rules are
1681   // somewhat different here for ms_struct structs.
1682   if (IsMsStruct) {
1683     // If it's not a zero-width bitfield, and we can fit the bitfield
1684     // into the active storage unit (and we haven't already decided to
1685     // start a new storage unit), just do so, regardless of any other
1686     // other consideration.  Otherwise, round up to the right alignment.
1687     if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) {
1688       FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1689       UnpackedFieldOffset =
1690           llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1691       UnfilledBitsInLastUnit = 0;
1692     }
1693 
1694   } else {
1695     // #pragma pack, with any value, suppresses the insertion of padding.
1696     bool AllowPadding = MaxFieldAlignment.isZero();
1697 
1698     // Compute the real offset.
1699     if (FieldSize == 0 ||
1700         (AllowPadding &&
1701          (FieldOffset & (FieldAlign - 1)) + FieldSize > StorageUnitSize)) {
1702       FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1703     } else if (ExplicitFieldAlign &&
1704                (MaxFieldAlignmentInBits == 0 ||
1705                 ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1706                Context.getTargetInfo().useExplicitBitFieldAlignment()) {
1707       // TODO: figure it out what needs to be done on targets that don't honor
1708       // bit-field type alignment like ARM APCS ABI.
1709       FieldOffset = llvm::alignTo(FieldOffset, ExplicitFieldAlign);
1710     }
1711 
1712     // Repeat the computation for diagnostic purposes.
1713     if (FieldSize == 0 ||
1714         (AllowPadding &&
1715          (UnpackedFieldOffset & (UnpackedFieldAlign - 1)) + FieldSize >
1716              StorageUnitSize))
1717       UnpackedFieldOffset =
1718           llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1719     else if (ExplicitFieldAlign &&
1720              (MaxFieldAlignmentInBits == 0 ||
1721               ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1722              Context.getTargetInfo().useExplicitBitFieldAlignment())
1723       UnpackedFieldOffset =
1724           llvm::alignTo(UnpackedFieldOffset, ExplicitFieldAlign);
1725   }
1726 
1727   // If we're using external layout, give the external layout a chance
1728   // to override this information.
1729   if (UseExternalLayout)
1730     FieldOffset = updateExternalFieldOffset(D, FieldOffset);
1731 
1732   // Okay, place the bitfield at the calculated offset.
1733   FieldOffsets.push_back(FieldOffset);
1734 
1735   // Bookkeeping:
1736 
1737   // Anonymous members don't affect the overall record alignment,
1738   // except on targets where they do.
1739   if (!IsMsStruct &&
1740       !Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
1741       !D->getIdentifier())
1742     FieldAlign = UnpackedFieldAlign = 1;
1743 
1744   // Diagnose differences in layout due to padding or packing.
1745   if (!UseExternalLayout)
1746     CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
1747                       UnpackedFieldAlign, FieldPacked, D);
1748 
1749   // Update DataSize to include the last byte containing (part of) the bitfield.
1750 
1751   // For unions, this is just a max operation, as usual.
1752   if (IsUnion) {
1753     // For ms_struct, allocate the entire storage unit --- unless this
1754     // is a zero-width bitfield, in which case just use a size of 1.
1755     uint64_t RoundedFieldSize;
1756     if (IsMsStruct) {
1757       RoundedFieldSize = (FieldSize ? StorageUnitSize
1758                                     : Context.getTargetInfo().getCharWidth());
1759 
1760       // Otherwise, allocate just the number of bytes required to store
1761       // the bitfield.
1762     } else {
1763       RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, Context);
1764     }
1765     setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1766 
1767   // For non-zero-width bitfields in ms_struct structs, allocate a new
1768   // storage unit if necessary.
1769   } else if (IsMsStruct && FieldSize) {
1770     // We should have cleared UnfilledBitsInLastUnit in every case
1771     // where we changed storage units.
1772     if (!UnfilledBitsInLastUnit) {
1773       setDataSize(FieldOffset + StorageUnitSize);
1774       UnfilledBitsInLastUnit = StorageUnitSize;
1775     }
1776     UnfilledBitsInLastUnit -= FieldSize;
1777     LastBitfieldStorageUnitSize = StorageUnitSize;
1778 
1779     // Otherwise, bump the data size up to include the bitfield,
1780     // including padding up to char alignment, and then remember how
1781     // bits we didn't use.
1782   } else {
1783     uint64_t NewSizeInBits = FieldOffset + FieldSize;
1784     uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1785     setDataSize(llvm::alignTo(NewSizeInBits, CharAlignment));
1786     UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1787 
1788     // The only time we can get here for an ms_struct is if this is a
1789     // zero-width bitfield, which doesn't count as anything for the
1790     // purposes of unfilled bits.
1791     LastBitfieldStorageUnitSize = 0;
1792   }
1793 
1794   // Update the size.
1795   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1796 
1797   // Remember max struct/class alignment.
1798   UnadjustedAlignment =
1799       std::max(UnadjustedAlignment, Context.toCharUnitsFromBits(FieldAlign));
1800   UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
1801                   Context.toCharUnitsFromBits(UnpackedFieldAlign));
1802 }
1803 
1804 void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D,
1805                                              bool InsertExtraPadding) {
1806   auto *FieldClass = D->getType()->getAsCXXRecordDecl();
1807   bool PotentiallyOverlapping = D->hasAttr<NoUniqueAddressAttr>() && FieldClass;
1808   bool IsOverlappingEmptyField =
1809       PotentiallyOverlapping && FieldClass->isEmpty();
1810 
1811   CharUnits FieldOffset =
1812       (IsUnion || IsOverlappingEmptyField) ? CharUnits::Zero() : getDataSize();
1813 
1814   const bool DefaultsToAIXPowerAlignment =
1815       Context.getTargetInfo().defaultsToAIXPowerAlignment();
1816   bool FoundFirstNonOverlappingEmptyFieldForAIX = false;
1817   if (DefaultsToAIXPowerAlignment && !HandledFirstNonOverlappingEmptyField) {
1818     assert(FieldOffset == CharUnits::Zero() &&
1819            "The first non-overlapping empty field should have been handled.");
1820 
1821     if (!IsOverlappingEmptyField) {
1822       FoundFirstNonOverlappingEmptyFieldForAIX = true;
1823 
1824       // We're going to handle the "first member" based on
1825       // `FoundFirstNonOverlappingEmptyFieldForAIX` during the current
1826       // invocation of this function; record it as handled for future
1827       // invocations (except for unions, because the current field does not
1828       // represent all "firsts").
1829       HandledFirstNonOverlappingEmptyField = !IsUnion;
1830     }
1831   }
1832 
1833   if (D->isBitField()) {
1834     LayoutBitField(D);
1835     return;
1836   }
1837 
1838   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1839   // Reset the unfilled bits.
1840   UnfilledBitsInLastUnit = 0;
1841   LastBitfieldStorageUnitSize = 0;
1842 
1843   bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1844 
1845   bool AlignIsRequired = false;
1846   CharUnits FieldSize;
1847   CharUnits FieldAlign;
1848   // The amount of this class's dsize occupied by the field.
1849   // This is equal to FieldSize unless we're permitted to pack
1850   // into the field's tail padding.
1851   CharUnits EffectiveFieldSize;
1852 
1853   auto setDeclInfo = [&](bool IsIncompleteArrayType) {
1854     auto TI = Context.getTypeInfoInChars(D->getType());
1855     FieldAlign = TI.Align;
1856     // Flexible array members don't have any size, but they have to be
1857     // aligned appropriately for their element type.
1858     EffectiveFieldSize = FieldSize =
1859         IsIncompleteArrayType ? CharUnits::Zero() : TI.Width;
1860     AlignIsRequired = TI.AlignIsRequired;
1861   };
1862 
1863   if (D->getType()->isIncompleteArrayType()) {
1864     setDeclInfo(true /* IsIncompleteArrayType */);
1865   } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
1866     unsigned AS = Context.getTargetAddressSpace(RT->getPointeeType());
1867     EffectiveFieldSize = FieldSize = Context.toCharUnitsFromBits(
1868         Context.getTargetInfo().getPointerWidth(AS));
1869     FieldAlign = Context.toCharUnitsFromBits(
1870         Context.getTargetInfo().getPointerAlign(AS));
1871   } else {
1872     setDeclInfo(false /* IsIncompleteArrayType */);
1873 
1874     // A potentially-overlapping field occupies its dsize or nvsize, whichever
1875     // is larger.
1876     if (PotentiallyOverlapping) {
1877       const ASTRecordLayout &Layout = Context.getASTRecordLayout(FieldClass);
1878       EffectiveFieldSize =
1879           std::max(Layout.getNonVirtualSize(), Layout.getDataSize());
1880     }
1881 
1882     if (IsMsStruct) {
1883       // If MS bitfield layout is required, figure out what type is being
1884       // laid out and align the field to the width of that type.
1885 
1886       // Resolve all typedefs down to their base type and round up the field
1887       // alignment if necessary.
1888       QualType T = Context.getBaseElementType(D->getType());
1889       if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
1890         CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
1891 
1892         if (!llvm::isPowerOf2_64(TypeSize.getQuantity())) {
1893           assert(
1894               !Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() &&
1895               "Non PowerOf2 size in MSVC mode");
1896           // Base types with sizes that aren't a power of two don't work
1897           // with the layout rules for MS structs. This isn't an issue in
1898           // MSVC itself since there are no such base data types there.
1899           // On e.g. x86_32 mingw and linux, long double is 12 bytes though.
1900           // Any structs involving that data type obviously can't be ABI
1901           // compatible with MSVC regardless of how it is laid out.
1902 
1903           // Since ms_struct can be mass enabled (via a pragma or via the
1904           // -mms-bitfields command line parameter), this can trigger for
1905           // structs that don't actually need MSVC compatibility, so we
1906           // need to be able to sidestep the ms_struct layout for these types.
1907 
1908           // Since the combination of -mms-bitfields together with structs
1909           // like max_align_t (which contains a long double) for mingw is
1910           // quite comon (and GCC handles it silently), just handle it
1911           // silently there. For other targets that have ms_struct enabled
1912           // (most probably via a pragma or attribute), trigger a diagnostic
1913           // that defaults to an error.
1914           if (!Context.getTargetInfo().getTriple().isWindowsGNUEnvironment())
1915             Diag(D->getLocation(), diag::warn_npot_ms_struct);
1916         }
1917         if (TypeSize > FieldAlign &&
1918             llvm::isPowerOf2_64(TypeSize.getQuantity()))
1919           FieldAlign = TypeSize;
1920       }
1921     }
1922   }
1923 
1924   // The AIX `power` alignment rules apply the natural alignment of the
1925   // "first member" if it is of a floating-point data type (or is an aggregate
1926   // whose recursively "first" member or element is such a type). The alignment
1927   // associated with these types for subsequent members use an alignment value
1928   // where the floating-point data type is considered to have 4-byte alignment.
1929   //
1930   // For the purposes of the foregoing: vtable pointers, non-empty base classes,
1931   // and zero-width bit-fields count as prior members; members of empty class
1932   // types marked `no_unique_address` are not considered to be prior members.
1933   CharUnits PreferredAlign = FieldAlign;
1934   if (DefaultsToAIXPowerAlignment && !AlignIsRequired &&
1935       (FoundFirstNonOverlappingEmptyFieldForAIX || IsNaturalAlign)) {
1936     auto performBuiltinTypeAlignmentUpgrade = [&](const BuiltinType *BTy) {
1937       if (BTy->getKind() == BuiltinType::Double ||
1938           BTy->getKind() == BuiltinType::LongDouble) {
1939         assert(PreferredAlign == CharUnits::fromQuantity(4) &&
1940                "No need to upgrade the alignment value.");
1941         PreferredAlign = CharUnits::fromQuantity(8);
1942       }
1943     };
1944 
1945     const Type *Ty = D->getType()->getBaseElementTypeUnsafe();
1946     if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
1947       performBuiltinTypeAlignmentUpgrade(CTy->getElementType()->castAs<BuiltinType>());
1948     } else if (const BuiltinType *BTy = Ty->getAs<BuiltinType>()) {
1949       performBuiltinTypeAlignmentUpgrade(BTy);
1950     } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
1951       const RecordDecl *RD = RT->getDecl();
1952       assert(RD && "Expected non-null RecordDecl.");
1953       const ASTRecordLayout &FieldRecord = Context.getASTRecordLayout(RD);
1954       PreferredAlign = FieldRecord.getPreferredAlignment();
1955     }
1956   }
1957 
1958   // The align if the field is not packed. This is to check if the attribute
1959   // was unnecessary (-Wpacked).
1960   CharUnits UnpackedFieldAlign =
1961       !DefaultsToAIXPowerAlignment ? FieldAlign : PreferredAlign;
1962   CharUnits UnpackedFieldOffset = FieldOffset;
1963 
1964   if (FieldPacked) {
1965     FieldAlign = CharUnits::One();
1966     PreferredAlign = CharUnits::One();
1967   }
1968   CharUnits MaxAlignmentInChars =
1969       Context.toCharUnitsFromBits(D->getMaxAlignment());
1970   FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
1971   PreferredAlign = std::max(PreferredAlign, MaxAlignmentInChars);
1972   UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
1973 
1974   // The maximum field alignment overrides the aligned attribute.
1975   if (!MaxFieldAlignment.isZero()) {
1976     FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
1977     PreferredAlign = std::min(PreferredAlign, MaxFieldAlignment);
1978     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
1979   }
1980 
1981   CharUnits AlignTo =
1982       !DefaultsToAIXPowerAlignment ? FieldAlign : PreferredAlign;
1983   // Round up the current record size to the field's alignment boundary.
1984   FieldOffset = FieldOffset.alignTo(AlignTo);
1985   UnpackedFieldOffset = UnpackedFieldOffset.alignTo(UnpackedFieldAlign);
1986 
1987   if (UseExternalLayout) {
1988     FieldOffset = Context.toCharUnitsFromBits(
1989         updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
1990 
1991     if (!IsUnion && EmptySubobjects) {
1992       // Record the fact that we're placing a field at this offset.
1993       bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
1994       (void)Allowed;
1995       assert(Allowed && "Externally-placed field cannot be placed here");
1996     }
1997   } else {
1998     if (!IsUnion && EmptySubobjects) {
1999       // Check if we can place the field at this offset.
2000       while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
2001         // We couldn't place the field at the offset. Try again at a new offset.
2002         // We try offset 0 (for an empty field) and then dsize(C) onwards.
2003         if (FieldOffset == CharUnits::Zero() &&
2004             getDataSize() != CharUnits::Zero())
2005           FieldOffset = getDataSize().alignTo(AlignTo);
2006         else
2007           FieldOffset += AlignTo;
2008       }
2009     }
2010   }
2011 
2012   // Place this field at the current location.
2013   FieldOffsets.push_back(Context.toBits(FieldOffset));
2014 
2015   if (!UseExternalLayout)
2016     CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
2017                       Context.toBits(UnpackedFieldOffset),
2018                       Context.toBits(UnpackedFieldAlign), FieldPacked, D);
2019 
2020   if (InsertExtraPadding) {
2021     CharUnits ASanAlignment = CharUnits::fromQuantity(8);
2022     CharUnits ExtraSizeForAsan = ASanAlignment;
2023     if (FieldSize % ASanAlignment)
2024       ExtraSizeForAsan +=
2025           ASanAlignment - CharUnits::fromQuantity(FieldSize % ASanAlignment);
2026     EffectiveFieldSize = FieldSize = FieldSize + ExtraSizeForAsan;
2027   }
2028 
2029   // Reserve space for this field.
2030   if (!IsOverlappingEmptyField) {
2031     uint64_t EffectiveFieldSizeInBits = Context.toBits(EffectiveFieldSize);
2032     if (IsUnion)
2033       setDataSize(std::max(getDataSizeInBits(), EffectiveFieldSizeInBits));
2034     else
2035       setDataSize(FieldOffset + EffectiveFieldSize);
2036 
2037     PaddedFieldSize = std::max(PaddedFieldSize, FieldOffset + FieldSize);
2038     setSize(std::max(getSizeInBits(), getDataSizeInBits()));
2039   } else {
2040     setSize(std::max(getSizeInBits(),
2041                      (uint64_t)Context.toBits(FieldOffset + FieldSize)));
2042   }
2043 
2044   // Remember max struct/class ABI-specified alignment.
2045   UnadjustedAlignment = std::max(UnadjustedAlignment, FieldAlign);
2046   UpdateAlignment(FieldAlign, UnpackedFieldAlign, PreferredAlign);
2047 }
2048 
2049 void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
2050   // In C++, records cannot be of size 0.
2051   if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
2052     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
2053       // Compatibility with gcc requires a class (pod or non-pod)
2054       // which is not empty but of size 0; such as having fields of
2055       // array of zero-length, remains of Size 0
2056       if (RD->isEmpty())
2057         setSize(CharUnits::One());
2058     }
2059     else
2060       setSize(CharUnits::One());
2061   }
2062 
2063   // If we have any remaining field tail padding, include that in the overall
2064   // size.
2065   setSize(std::max(getSizeInBits(), (uint64_t)Context.toBits(PaddedFieldSize)));
2066 
2067   // Finally, round the size of the record up to the alignment of the
2068   // record itself.
2069   uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit;
2070   uint64_t UnpackedSizeInBits =
2071       llvm::alignTo(getSizeInBits(), Context.toBits(UnpackedAlignment));
2072 
2073   uint64_t RoundedSize = llvm::alignTo(
2074       getSizeInBits(),
2075       Context.toBits(!Context.getTargetInfo().defaultsToAIXPowerAlignment()
2076                          ? Alignment
2077                          : PreferredAlignment));
2078 
2079   if (UseExternalLayout) {
2080     // If we're inferring alignment, and the external size is smaller than
2081     // our size after we've rounded up to alignment, conservatively set the
2082     // alignment to 1.
2083     if (InferAlignment && External.Size < RoundedSize) {
2084       Alignment = CharUnits::One();
2085       PreferredAlignment = CharUnits::One();
2086       InferAlignment = false;
2087     }
2088     setSize(External.Size);
2089     return;
2090   }
2091 
2092   // Set the size to the final size.
2093   setSize(RoundedSize);
2094 
2095   unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2096   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
2097     // Warn if padding was introduced to the struct/class/union.
2098     if (getSizeInBits() > UnpaddedSize) {
2099       unsigned PadSize = getSizeInBits() - UnpaddedSize;
2100       bool InBits = true;
2101       if (PadSize % CharBitNum == 0) {
2102         PadSize = PadSize / CharBitNum;
2103         InBits = false;
2104       }
2105       Diag(RD->getLocation(), diag::warn_padded_struct_size)
2106           << Context.getTypeDeclType(RD)
2107           << PadSize
2108           << (InBits ? 1 : 0); // (byte|bit)
2109     }
2110 
2111     // Warn if we packed it unnecessarily, when the unpacked alignment is not
2112     // greater than the one after packing, the size in bits doesn't change and
2113     // the offset of each field is identical.
2114     if (Packed && UnpackedAlignment <= Alignment &&
2115         UnpackedSizeInBits == getSizeInBits() && !HasPackedField)
2116       Diag(D->getLocation(), diag::warn_unnecessary_packed)
2117           << Context.getTypeDeclType(RD);
2118   }
2119 }
2120 
2121 void ItaniumRecordLayoutBuilder::UpdateAlignment(
2122     CharUnits NewAlignment, CharUnits UnpackedNewAlignment,
2123     CharUnits PreferredNewAlignment) {
2124   // The alignment is not modified when using 'mac68k' alignment or when
2125   // we have an externally-supplied layout that also provides overall alignment.
2126   if (IsMac68kAlign || (UseExternalLayout && !InferAlignment))
2127     return;
2128 
2129   if (NewAlignment > Alignment) {
2130     assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) &&
2131            "Alignment not a power of 2");
2132     Alignment = NewAlignment;
2133   }
2134 
2135   if (UnpackedNewAlignment > UnpackedAlignment) {
2136     assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) &&
2137            "Alignment not a power of 2");
2138     UnpackedAlignment = UnpackedNewAlignment;
2139   }
2140 
2141   if (PreferredNewAlignment > PreferredAlignment) {
2142     assert(llvm::isPowerOf2_64(PreferredNewAlignment.getQuantity()) &&
2143            "Alignment not a power of 2");
2144     PreferredAlignment = PreferredNewAlignment;
2145   }
2146 }
2147 
2148 uint64_t
2149 ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
2150                                                       uint64_t ComputedOffset) {
2151   uint64_t ExternalFieldOffset = External.getExternalFieldOffset(Field);
2152 
2153   if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
2154     // The externally-supplied field offset is before the field offset we
2155     // computed. Assume that the structure is packed.
2156     Alignment = CharUnits::One();
2157     PreferredAlignment = CharUnits::One();
2158     InferAlignment = false;
2159   }
2160 
2161   // Use the externally-supplied field offset.
2162   return ExternalFieldOffset;
2163 }
2164 
2165 /// Get diagnostic %select index for tag kind for
2166 /// field padding diagnostic message.
2167 /// WARNING: Indexes apply to particular diagnostics only!
2168 ///
2169 /// \returns diagnostic %select index.
2170 static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
2171   switch (Tag) {
2172   case TTK_Struct: return 0;
2173   case TTK_Interface: return 1;
2174   case TTK_Class: return 2;
2175   default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
2176   }
2177 }
2178 
2179 void ItaniumRecordLayoutBuilder::CheckFieldPadding(
2180     uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset,
2181     unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) {
2182   // We let objc ivars without warning, objc interfaces generally are not used
2183   // for padding tricks.
2184   if (isa<ObjCIvarDecl>(D))
2185     return;
2186 
2187   // Don't warn about structs created without a SourceLocation.  This can
2188   // be done by clients of the AST, such as codegen.
2189   if (D->getLocation().isInvalid())
2190     return;
2191 
2192   unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2193 
2194   // Warn if padding was introduced to the struct/class.
2195   if (!IsUnion && Offset > UnpaddedOffset) {
2196     unsigned PadSize = Offset - UnpaddedOffset;
2197     bool InBits = true;
2198     if (PadSize % CharBitNum == 0) {
2199       PadSize = PadSize / CharBitNum;
2200       InBits = false;
2201     }
2202     if (D->getIdentifier())
2203       Diag(D->getLocation(), diag::warn_padded_struct_field)
2204           << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2205           << Context.getTypeDeclType(D->getParent())
2206           << PadSize
2207           << (InBits ? 1 : 0) // (byte|bit)
2208           << D->getIdentifier();
2209     else
2210       Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
2211           << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2212           << Context.getTypeDeclType(D->getParent())
2213           << PadSize
2214           << (InBits ? 1 : 0); // (byte|bit)
2215  }
2216  if (isPacked && Offset != UnpackedOffset) {
2217    HasPackedField = true;
2218  }
2219 }
2220 
2221 static const CXXMethodDecl *computeKeyFunction(ASTContext &Context,
2222                                                const CXXRecordDecl *RD) {
2223   // If a class isn't polymorphic it doesn't have a key function.
2224   if (!RD->isPolymorphic())
2225     return nullptr;
2226 
2227   // A class that is not externally visible doesn't have a key function. (Or
2228   // at least, there's no point to assigning a key function to such a class;
2229   // this doesn't affect the ABI.)
2230   if (!RD->isExternallyVisible())
2231     return nullptr;
2232 
2233   // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6.
2234   // Same behavior as GCC.
2235   TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
2236   if (TSK == TSK_ImplicitInstantiation ||
2237       TSK == TSK_ExplicitInstantiationDeclaration ||
2238       TSK == TSK_ExplicitInstantiationDefinition)
2239     return nullptr;
2240 
2241   bool allowInlineFunctions =
2242     Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline();
2243 
2244   for (const CXXMethodDecl *MD : RD->methods()) {
2245     if (!MD->isVirtual())
2246       continue;
2247 
2248     if (MD->isPure())
2249       continue;
2250 
2251     // Ignore implicit member functions, they are always marked as inline, but
2252     // they don't have a body until they're defined.
2253     if (MD->isImplicit())
2254       continue;
2255 
2256     if (MD->isInlineSpecified() || MD->isConstexpr())
2257       continue;
2258 
2259     if (MD->hasInlineBody())
2260       continue;
2261 
2262     // Ignore inline deleted or defaulted functions.
2263     if (!MD->isUserProvided())
2264       continue;
2265 
2266     // In certain ABIs, ignore functions with out-of-line inline definitions.
2267     if (!allowInlineFunctions) {
2268       const FunctionDecl *Def;
2269       if (MD->hasBody(Def) && Def->isInlineSpecified())
2270         continue;
2271     }
2272 
2273     if (Context.getLangOpts().CUDA) {
2274       // While compiler may see key method in this TU, during CUDA
2275       // compilation we should ignore methods that are not accessible
2276       // on this side of compilation.
2277       if (Context.getLangOpts().CUDAIsDevice) {
2278         // In device mode ignore methods without __device__ attribute.
2279         if (!MD->hasAttr<CUDADeviceAttr>())
2280           continue;
2281       } else {
2282         // In host mode ignore __device__-only methods.
2283         if (!MD->hasAttr<CUDAHostAttr>() && MD->hasAttr<CUDADeviceAttr>())
2284           continue;
2285       }
2286     }
2287 
2288     // If the key function is dllimport but the class isn't, then the class has
2289     // no key function. The DLL that exports the key function won't export the
2290     // vtable in this case.
2291     if (MD->hasAttr<DLLImportAttr>() && !RD->hasAttr<DLLImportAttr>())
2292       return nullptr;
2293 
2294     // We found it.
2295     return MD;
2296   }
2297 
2298   return nullptr;
2299 }
2300 
2301 DiagnosticBuilder ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc,
2302                                                    unsigned DiagID) {
2303   return Context.getDiagnostics().Report(Loc, DiagID);
2304 }
2305 
2306 /// Does the target C++ ABI require us to skip over the tail-padding
2307 /// of the given class (considering it as a base class) when allocating
2308 /// objects?
2309 static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) {
2310   switch (ABI.getTailPaddingUseRules()) {
2311   case TargetCXXABI::AlwaysUseTailPadding:
2312     return false;
2313 
2314   case TargetCXXABI::UseTailPaddingUnlessPOD03:
2315     // FIXME: To the extent that this is meant to cover the Itanium ABI
2316     // rules, we should implement the restrictions about over-sized
2317     // bitfields:
2318     //
2319     // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#POD :
2320     //   In general, a type is considered a POD for the purposes of
2321     //   layout if it is a POD type (in the sense of ISO C++
2322     //   [basic.types]). However, a POD-struct or POD-union (in the
2323     //   sense of ISO C++ [class]) with a bitfield member whose
2324     //   declared width is wider than the declared type of the
2325     //   bitfield is not a POD for the purpose of layout.  Similarly,
2326     //   an array type is not a POD for the purpose of layout if the
2327     //   element type of the array is not a POD for the purpose of
2328     //   layout.
2329     //
2330     //   Where references to the ISO C++ are made in this paragraph,
2331     //   the Technical Corrigendum 1 version of the standard is
2332     //   intended.
2333     return RD->isPOD();
2334 
2335   case TargetCXXABI::UseTailPaddingUnlessPOD11:
2336     // This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
2337     // but with a lot of abstraction penalty stripped off.  This does
2338     // assume that these properties are set correctly even in C++98
2339     // mode; fortunately, that is true because we want to assign
2340     // consistently semantics to the type-traits intrinsics (or at
2341     // least as many of them as possible).
2342     return RD->isTrivial() && RD->isCXX11StandardLayout();
2343   }
2344 
2345   llvm_unreachable("bad tail-padding use kind");
2346 }
2347 
2348 static bool isMsLayout(const ASTContext &Context) {
2349   return Context.getTargetInfo().getCXXABI().isMicrosoft();
2350 }
2351 
2352 // This section contains an implementation of struct layout that is, up to the
2353 // included tests, compatible with cl.exe (2013).  The layout produced is
2354 // significantly different than those produced by the Itanium ABI.  Here we note
2355 // the most important differences.
2356 //
2357 // * The alignment of bitfields in unions is ignored when computing the
2358 //   alignment of the union.
2359 // * The existence of zero-width bitfield that occurs after anything other than
2360 //   a non-zero length bitfield is ignored.
2361 // * There is no explicit primary base for the purposes of layout.  All bases
2362 //   with vfptrs are laid out first, followed by all bases without vfptrs.
2363 // * The Itanium equivalent vtable pointers are split into a vfptr (virtual
2364 //   function pointer) and a vbptr (virtual base pointer).  They can each be
2365 //   shared with a, non-virtual bases. These bases need not be the same.  vfptrs
2366 //   always occur at offset 0.  vbptrs can occur at an arbitrary offset and are
2367 //   placed after the lexicographically last non-virtual base.  This placement
2368 //   is always before fields but can be in the middle of the non-virtual bases
2369 //   due to the two-pass layout scheme for non-virtual-bases.
2370 // * Virtual bases sometimes require a 'vtordisp' field that is laid out before
2371 //   the virtual base and is used in conjunction with virtual overrides during
2372 //   construction and destruction.  This is always a 4 byte value and is used as
2373 //   an alternative to constructor vtables.
2374 // * vtordisps are allocated in a block of memory with size and alignment equal
2375 //   to the alignment of the completed structure (before applying __declspec(
2376 //   align())).  The vtordisp always occur at the end of the allocation block,
2377 //   immediately prior to the virtual base.
2378 // * vfptrs are injected after all bases and fields have been laid out.  In
2379 //   order to guarantee proper alignment of all fields, the vfptr injection
2380 //   pushes all bases and fields back by the alignment imposed by those bases
2381 //   and fields.  This can potentially add a significant amount of padding.
2382 //   vfptrs are always injected at offset 0.
2383 // * vbptrs are injected after all bases and fields have been laid out.  In
2384 //   order to guarantee proper alignment of all fields, the vfptr injection
2385 //   pushes all bases and fields back by the alignment imposed by those bases
2386 //   and fields.  This can potentially add a significant amount of padding.
2387 //   vbptrs are injected immediately after the last non-virtual base as
2388 //   lexicographically ordered in the code.  If this site isn't pointer aligned
2389 //   the vbptr is placed at the next properly aligned location.  Enough padding
2390 //   is added to guarantee a fit.
2391 // * The last zero sized non-virtual base can be placed at the end of the
2392 //   struct (potentially aliasing another object), or may alias with the first
2393 //   field, even if they are of the same type.
2394 // * The last zero size virtual base may be placed at the end of the struct
2395 //   potentially aliasing another object.
2396 // * The ABI attempts to avoid aliasing of zero sized bases by adding padding
2397 //   between bases or vbases with specific properties.  The criteria for
2398 //   additional padding between two bases is that the first base is zero sized
2399 //   or ends with a zero sized subobject and the second base is zero sized or
2400 //   trails with a zero sized base or field (sharing of vfptrs can reorder the
2401 //   layout of the so the leading base is not always the first one declared).
2402 //   This rule does take into account fields that are not records, so padding
2403 //   will occur even if the last field is, e.g. an int. The padding added for
2404 //   bases is 1 byte.  The padding added between vbases depends on the alignment
2405 //   of the object but is at least 4 bytes (in both 32 and 64 bit modes).
2406 // * There is no concept of non-virtual alignment, non-virtual alignment and
2407 //   alignment are always identical.
2408 // * There is a distinction between alignment and required alignment.
2409 //   __declspec(align) changes the required alignment of a struct.  This
2410 //   alignment is _always_ obeyed, even in the presence of #pragma pack. A
2411 //   record inherits required alignment from all of its fields and bases.
2412 // * __declspec(align) on bitfields has the effect of changing the bitfield's
2413 //   alignment instead of its required alignment.  This is the only known way
2414 //   to make the alignment of a struct bigger than 8.  Interestingly enough
2415 //   this alignment is also immune to the effects of #pragma pack and can be
2416 //   used to create structures with large alignment under #pragma pack.
2417 //   However, because it does not impact required alignment, such a structure,
2418 //   when used as a field or base, will not be aligned if #pragma pack is
2419 //   still active at the time of use.
2420 //
2421 // Known incompatibilities:
2422 // * all: #pragma pack between fields in a record
2423 // * 2010 and back: If the last field in a record is a bitfield, every object
2424 //   laid out after the record will have extra padding inserted before it.  The
2425 //   extra padding will have size equal to the size of the storage class of the
2426 //   bitfield.  0 sized bitfields don't exhibit this behavior and the extra
2427 //   padding can be avoided by adding a 0 sized bitfield after the non-zero-
2428 //   sized bitfield.
2429 // * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or
2430 //   greater due to __declspec(align()) then a second layout phase occurs after
2431 //   The locations of the vf and vb pointers are known.  This layout phase
2432 //   suffers from the "last field is a bitfield" bug in 2010 and results in
2433 //   _every_ field getting padding put in front of it, potentially including the
2434 //   vfptr, leaving the vfprt at a non-zero location which results in a fault if
2435 //   anything tries to read the vftbl.  The second layout phase also treats
2436 //   bitfields as separate entities and gives them each storage rather than
2437 //   packing them.  Additionally, because this phase appears to perform a
2438 //   (an unstable) sort on the members before laying them out and because merged
2439 //   bitfields have the same address, the bitfields end up in whatever order
2440 //   the sort left them in, a behavior we could never hope to replicate.
2441 
2442 namespace {
2443 struct MicrosoftRecordLayoutBuilder {
2444   struct ElementInfo {
2445     CharUnits Size;
2446     CharUnits Alignment;
2447   };
2448   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
2449   MicrosoftRecordLayoutBuilder(const ASTContext &Context) : Context(Context) {}
2450 private:
2451   MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete;
2452   void operator=(const MicrosoftRecordLayoutBuilder &) = delete;
2453 public:
2454   void layout(const RecordDecl *RD);
2455   void cxxLayout(const CXXRecordDecl *RD);
2456   /// Initializes size and alignment and honors some flags.
2457   void initializeLayout(const RecordDecl *RD);
2458   /// Initialized C++ layout, compute alignment and virtual alignment and
2459   /// existence of vfptrs and vbptrs.  Alignment is needed before the vfptr is
2460   /// laid out.
2461   void initializeCXXLayout(const CXXRecordDecl *RD);
2462   void layoutNonVirtualBases(const CXXRecordDecl *RD);
2463   void layoutNonVirtualBase(const CXXRecordDecl *RD,
2464                             const CXXRecordDecl *BaseDecl,
2465                             const ASTRecordLayout &BaseLayout,
2466                             const ASTRecordLayout *&PreviousBaseLayout);
2467   void injectVFPtr(const CXXRecordDecl *RD);
2468   void injectVBPtr(const CXXRecordDecl *RD);
2469   /// Lays out the fields of the record.  Also rounds size up to
2470   /// alignment.
2471   void layoutFields(const RecordDecl *RD);
2472   void layoutField(const FieldDecl *FD);
2473   void layoutBitField(const FieldDecl *FD);
2474   /// Lays out a single zero-width bit-field in the record and handles
2475   /// special cases associated with zero-width bit-fields.
2476   void layoutZeroWidthBitField(const FieldDecl *FD);
2477   void layoutVirtualBases(const CXXRecordDecl *RD);
2478   void finalizeLayout(const RecordDecl *RD);
2479   /// Gets the size and alignment of a base taking pragma pack and
2480   /// __declspec(align) into account.
2481   ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout);
2482   /// Gets the size and alignment of a field taking pragma  pack and
2483   /// __declspec(align) into account.  It also updates RequiredAlignment as a
2484   /// side effect because it is most convenient to do so here.
2485   ElementInfo getAdjustedElementInfo(const FieldDecl *FD);
2486   /// Places a field at an offset in CharUnits.
2487   void placeFieldAtOffset(CharUnits FieldOffset) {
2488     FieldOffsets.push_back(Context.toBits(FieldOffset));
2489   }
2490   /// Places a bitfield at a bit offset.
2491   void placeFieldAtBitOffset(uint64_t FieldOffset) {
2492     FieldOffsets.push_back(FieldOffset);
2493   }
2494   /// Compute the set of virtual bases for which vtordisps are required.
2495   void computeVtorDispSet(
2496       llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet,
2497       const CXXRecordDecl *RD) const;
2498   const ASTContext &Context;
2499   /// The size of the record being laid out.
2500   CharUnits Size;
2501   /// The non-virtual size of the record layout.
2502   CharUnits NonVirtualSize;
2503   /// The data size of the record layout.
2504   CharUnits DataSize;
2505   /// The current alignment of the record layout.
2506   CharUnits Alignment;
2507   /// The maximum allowed field alignment. This is set by #pragma pack.
2508   CharUnits MaxFieldAlignment;
2509   /// The alignment that this record must obey.  This is imposed by
2510   /// __declspec(align()) on the record itself or one of its fields or bases.
2511   CharUnits RequiredAlignment;
2512   /// The size of the allocation of the currently active bitfield.
2513   /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield
2514   /// is true.
2515   CharUnits CurrentBitfieldSize;
2516   /// Offset to the virtual base table pointer (if one exists).
2517   CharUnits VBPtrOffset;
2518   /// Minimum record size possible.
2519   CharUnits MinEmptyStructSize;
2520   /// The size and alignment info of a pointer.
2521   ElementInfo PointerInfo;
2522   /// The primary base class (if one exists).
2523   const CXXRecordDecl *PrimaryBase;
2524   /// The class we share our vb-pointer with.
2525   const CXXRecordDecl *SharedVBPtrBase;
2526   /// The collection of field offsets.
2527   SmallVector<uint64_t, 16> FieldOffsets;
2528   /// Base classes and their offsets in the record.
2529   BaseOffsetsMapTy Bases;
2530   /// virtual base classes and their offsets in the record.
2531   ASTRecordLayout::VBaseOffsetsMapTy VBases;
2532   /// The number of remaining bits in our last bitfield allocation.
2533   /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is
2534   /// true.
2535   unsigned RemainingBitsInField;
2536   bool IsUnion : 1;
2537   /// True if the last field laid out was a bitfield and was not 0
2538   /// width.
2539   bool LastFieldIsNonZeroWidthBitfield : 1;
2540   /// True if the class has its own vftable pointer.
2541   bool HasOwnVFPtr : 1;
2542   /// True if the class has a vbtable pointer.
2543   bool HasVBPtr : 1;
2544   /// True if the last sub-object within the type is zero sized or the
2545   /// object itself is zero sized.  This *does not* count members that are not
2546   /// records.  Only used for MS-ABI.
2547   bool EndsWithZeroSizedObject : 1;
2548   /// True if this class is zero sized or first base is zero sized or
2549   /// has this property.  Only used for MS-ABI.
2550   bool LeadsWithZeroSizedBase : 1;
2551 
2552   /// True if the external AST source provided a layout for this record.
2553   bool UseExternalLayout : 1;
2554 
2555   /// The layout provided by the external AST source. Only active if
2556   /// UseExternalLayout is true.
2557   ExternalLayout External;
2558 };
2559 } // namespace
2560 
2561 MicrosoftRecordLayoutBuilder::ElementInfo
2562 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2563     const ASTRecordLayout &Layout) {
2564   ElementInfo Info;
2565   Info.Alignment = Layout.getAlignment();
2566   // Respect pragma pack.
2567   if (!MaxFieldAlignment.isZero())
2568     Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2569   // Track zero-sized subobjects here where it's already available.
2570   EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2571   // Respect required alignment, this is necessary because we may have adjusted
2572   // the alignment in the case of pragam pack.  Note that the required alignment
2573   // doesn't actually apply to the struct alignment at this point.
2574   Alignment = std::max(Alignment, Info.Alignment);
2575   RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment());
2576   Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment());
2577   Info.Size = Layout.getNonVirtualSize();
2578   return Info;
2579 }
2580 
2581 MicrosoftRecordLayoutBuilder::ElementInfo
2582 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2583     const FieldDecl *FD) {
2584   // Get the alignment of the field type's natural alignment, ignore any
2585   // alignment attributes.
2586   auto TInfo =
2587       Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType());
2588   ElementInfo Info{TInfo.Width, TInfo.Align};
2589   // Respect align attributes on the field.
2590   CharUnits FieldRequiredAlignment =
2591       Context.toCharUnitsFromBits(FD->getMaxAlignment());
2592   // Respect align attributes on the type.
2593   if (Context.isAlignmentRequired(FD->getType()))
2594     FieldRequiredAlignment = std::max(
2595         Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment);
2596   // Respect attributes applied to subobjects of the field.
2597   if (FD->isBitField())
2598     // For some reason __declspec align impacts alignment rather than required
2599     // alignment when it is applied to bitfields.
2600     Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2601   else {
2602     if (auto RT =
2603             FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
2604       auto const &Layout = Context.getASTRecordLayout(RT->getDecl());
2605       EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2606       FieldRequiredAlignment = std::max(FieldRequiredAlignment,
2607                                         Layout.getRequiredAlignment());
2608     }
2609     // Capture required alignment as a side-effect.
2610     RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment);
2611   }
2612   // Respect pragma pack, attribute pack and declspec align
2613   if (!MaxFieldAlignment.isZero())
2614     Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2615   if (FD->hasAttr<PackedAttr>())
2616     Info.Alignment = CharUnits::One();
2617   Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2618   return Info;
2619 }
2620 
2621 void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) {
2622   // For C record layout, zero-sized records always have size 4.
2623   MinEmptyStructSize = CharUnits::fromQuantity(4);
2624   initializeLayout(RD);
2625   layoutFields(RD);
2626   DataSize = Size = Size.alignTo(Alignment);
2627   RequiredAlignment = std::max(
2628       RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2629   finalizeLayout(RD);
2630 }
2631 
2632 void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) {
2633   // The C++ standard says that empty structs have size 1.
2634   MinEmptyStructSize = CharUnits::One();
2635   initializeLayout(RD);
2636   initializeCXXLayout(RD);
2637   layoutNonVirtualBases(RD);
2638   layoutFields(RD);
2639   injectVBPtr(RD);
2640   injectVFPtr(RD);
2641   if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase))
2642     Alignment = std::max(Alignment, PointerInfo.Alignment);
2643   auto RoundingAlignment = Alignment;
2644   if (!MaxFieldAlignment.isZero())
2645     RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
2646   if (!UseExternalLayout)
2647     Size = Size.alignTo(RoundingAlignment);
2648   NonVirtualSize = Size;
2649   RequiredAlignment = std::max(
2650       RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2651   layoutVirtualBases(RD);
2652   finalizeLayout(RD);
2653 }
2654 
2655 void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) {
2656   IsUnion = RD->isUnion();
2657   Size = CharUnits::Zero();
2658   Alignment = CharUnits::One();
2659   // In 64-bit mode we always perform an alignment step after laying out vbases.
2660   // In 32-bit mode we do not.  The check to see if we need to perform alignment
2661   // checks the RequiredAlignment field and performs alignment if it isn't 0.
2662   RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit()
2663                           ? CharUnits::One()
2664                           : CharUnits::Zero();
2665   // Compute the maximum field alignment.
2666   MaxFieldAlignment = CharUnits::Zero();
2667   // Honor the default struct packing maximum alignment flag.
2668   if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct)
2669       MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
2670   // Honor the packing attribute.  The MS-ABI ignores pragma pack if its larger
2671   // than the pointer size.
2672   if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){
2673     unsigned PackedAlignment = MFAA->getAlignment();
2674     if (PackedAlignment <= Context.getTargetInfo().getPointerWidth(0))
2675       MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment);
2676   }
2677   // Packed attribute forces max field alignment to be 1.
2678   if (RD->hasAttr<PackedAttr>())
2679     MaxFieldAlignment = CharUnits::One();
2680 
2681   // Try to respect the external layout if present.
2682   UseExternalLayout = false;
2683   if (ExternalASTSource *Source = Context.getExternalSource())
2684     UseExternalLayout = Source->layoutRecordType(
2685         RD, External.Size, External.Align, External.FieldOffsets,
2686         External.BaseOffsets, External.VirtualBaseOffsets);
2687 }
2688 
2689 void
2690 MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) {
2691   EndsWithZeroSizedObject = false;
2692   LeadsWithZeroSizedBase = false;
2693   HasOwnVFPtr = false;
2694   HasVBPtr = false;
2695   PrimaryBase = nullptr;
2696   SharedVBPtrBase = nullptr;
2697   // Calculate pointer size and alignment.  These are used for vfptr and vbprt
2698   // injection.
2699   PointerInfo.Size =
2700       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
2701   PointerInfo.Alignment =
2702       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
2703   // Respect pragma pack.
2704   if (!MaxFieldAlignment.isZero())
2705     PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment);
2706 }
2707 
2708 void
2709 MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) {
2710   // The MS-ABI lays out all bases that contain leading vfptrs before it lays
2711   // out any bases that do not contain vfptrs.  We implement this as two passes
2712   // over the bases.  This approach guarantees that the primary base is laid out
2713   // first.  We use these passes to calculate some additional aggregated
2714   // information about the bases, such as required alignment and the presence of
2715   // zero sized members.
2716   const ASTRecordLayout *PreviousBaseLayout = nullptr;
2717   bool HasPolymorphicBaseClass = false;
2718   // Iterate through the bases and lay out the non-virtual ones.
2719   for (const CXXBaseSpecifier &Base : RD->bases()) {
2720     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2721     HasPolymorphicBaseClass |= BaseDecl->isPolymorphic();
2722     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2723     // Mark and skip virtual bases.
2724     if (Base.isVirtual()) {
2725       HasVBPtr = true;
2726       continue;
2727     }
2728     // Check for a base to share a VBPtr with.
2729     if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) {
2730       SharedVBPtrBase = BaseDecl;
2731       HasVBPtr = true;
2732     }
2733     // Only lay out bases with extendable VFPtrs on the first pass.
2734     if (!BaseLayout.hasExtendableVFPtr())
2735       continue;
2736     // If we don't have a primary base, this one qualifies.
2737     if (!PrimaryBase) {
2738       PrimaryBase = BaseDecl;
2739       LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2740     }
2741     // Lay out the base.
2742     layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2743   }
2744   // Figure out if we need a fresh VFPtr for this class.
2745   if (RD->isPolymorphic()) {
2746     if (!HasPolymorphicBaseClass)
2747       // This class introduces polymorphism, so we need a vftable to store the
2748       // RTTI information.
2749       HasOwnVFPtr = true;
2750     else if (!PrimaryBase) {
2751       // We have a polymorphic base class but can't extend its vftable. Add a
2752       // new vfptr if we would use any vftable slots.
2753       for (CXXMethodDecl *M : RD->methods()) {
2754         if (MicrosoftVTableContext::hasVtableSlot(M) &&
2755             M->size_overridden_methods() == 0) {
2756           HasOwnVFPtr = true;
2757           break;
2758         }
2759       }
2760     }
2761   }
2762   // If we don't have a primary base then we have a leading object that could
2763   // itself lead with a zero-sized object, something we track.
2764   bool CheckLeadingLayout = !PrimaryBase;
2765   // Iterate through the bases and lay out the non-virtual ones.
2766   for (const CXXBaseSpecifier &Base : RD->bases()) {
2767     if (Base.isVirtual())
2768       continue;
2769     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2770     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2771     // Only lay out bases without extendable VFPtrs on the second pass.
2772     if (BaseLayout.hasExtendableVFPtr()) {
2773       VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2774       continue;
2775     }
2776     // If this is the first layout, check to see if it leads with a zero sized
2777     // object.  If it does, so do we.
2778     if (CheckLeadingLayout) {
2779       CheckLeadingLayout = false;
2780       LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2781     }
2782     // Lay out the base.
2783     layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2784     VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2785   }
2786   // Set our VBPtroffset if we know it at this point.
2787   if (!HasVBPtr)
2788     VBPtrOffset = CharUnits::fromQuantity(-1);
2789   else if (SharedVBPtrBase) {
2790     const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase);
2791     VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset();
2792   }
2793 }
2794 
2795 static bool recordUsesEBO(const RecordDecl *RD) {
2796   if (!isa<CXXRecordDecl>(RD))
2797     return false;
2798   if (RD->hasAttr<EmptyBasesAttr>())
2799     return true;
2800   if (auto *LVA = RD->getAttr<LayoutVersionAttr>())
2801     // TODO: Double check with the next version of MSVC.
2802     if (LVA->getVersion() <= LangOptions::MSVC2015)
2803       return false;
2804   // TODO: Some later version of MSVC will change the default behavior of the
2805   // compiler to enable EBO by default.  When this happens, we will need an
2806   // additional isCompatibleWithMSVC check.
2807   return false;
2808 }
2809 
2810 void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase(
2811     const CXXRecordDecl *RD,
2812     const CXXRecordDecl *BaseDecl,
2813     const ASTRecordLayout &BaseLayout,
2814     const ASTRecordLayout *&PreviousBaseLayout) {
2815   // Insert padding between two bases if the left first one is zero sized or
2816   // contains a zero sized subobject and the right is zero sized or one leads
2817   // with a zero sized base.
2818   bool MDCUsesEBO = recordUsesEBO(RD);
2819   if (PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
2820       BaseLayout.leadsWithZeroSizedBase() && !MDCUsesEBO)
2821     Size++;
2822   ElementInfo Info = getAdjustedElementInfo(BaseLayout);
2823   CharUnits BaseOffset;
2824 
2825   // Respect the external AST source base offset, if present.
2826   bool FoundBase = false;
2827   if (UseExternalLayout) {
2828     FoundBase = External.getExternalNVBaseOffset(BaseDecl, BaseOffset);
2829     if (FoundBase) {
2830       assert(BaseOffset >= Size && "base offset already allocated");
2831       Size = BaseOffset;
2832     }
2833   }
2834 
2835   if (!FoundBase) {
2836     if (MDCUsesEBO && BaseDecl->isEmpty()) {
2837       assert(BaseLayout.getNonVirtualSize() == CharUnits::Zero());
2838       BaseOffset = CharUnits::Zero();
2839     } else {
2840       // Otherwise, lay the base out at the end of the MDC.
2841       BaseOffset = Size = Size.alignTo(Info.Alignment);
2842     }
2843   }
2844   Bases.insert(std::make_pair(BaseDecl, BaseOffset));
2845   Size += BaseLayout.getNonVirtualSize();
2846   PreviousBaseLayout = &BaseLayout;
2847 }
2848 
2849 void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) {
2850   LastFieldIsNonZeroWidthBitfield = false;
2851   for (const FieldDecl *Field : RD->fields())
2852     layoutField(Field);
2853 }
2854 
2855 void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) {
2856   if (FD->isBitField()) {
2857     layoutBitField(FD);
2858     return;
2859   }
2860   LastFieldIsNonZeroWidthBitfield = false;
2861   ElementInfo Info = getAdjustedElementInfo(FD);
2862   Alignment = std::max(Alignment, Info.Alignment);
2863   CharUnits FieldOffset;
2864   if (UseExternalLayout)
2865     FieldOffset =
2866         Context.toCharUnitsFromBits(External.getExternalFieldOffset(FD));
2867   else if (IsUnion)
2868     FieldOffset = CharUnits::Zero();
2869   else
2870     FieldOffset = Size.alignTo(Info.Alignment);
2871   placeFieldAtOffset(FieldOffset);
2872   Size = std::max(Size, FieldOffset + Info.Size);
2873 }
2874 
2875 void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) {
2876   unsigned Width = FD->getBitWidthValue(Context);
2877   if (Width == 0) {
2878     layoutZeroWidthBitField(FD);
2879     return;
2880   }
2881   ElementInfo Info = getAdjustedElementInfo(FD);
2882   // Clamp the bitfield to a containable size for the sake of being able
2883   // to lay them out.  Sema will throw an error.
2884   if (Width > Context.toBits(Info.Size))
2885     Width = Context.toBits(Info.Size);
2886   // Check to see if this bitfield fits into an existing allocation.  Note:
2887   // MSVC refuses to pack bitfields of formal types with different sizes
2888   // into the same allocation.
2889   if (!UseExternalLayout && !IsUnion && LastFieldIsNonZeroWidthBitfield &&
2890       CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) {
2891     placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField);
2892     RemainingBitsInField -= Width;
2893     return;
2894   }
2895   LastFieldIsNonZeroWidthBitfield = true;
2896   CurrentBitfieldSize = Info.Size;
2897   if (UseExternalLayout) {
2898     auto FieldBitOffset = External.getExternalFieldOffset(FD);
2899     placeFieldAtBitOffset(FieldBitOffset);
2900     auto NewSize = Context.toCharUnitsFromBits(
2901         llvm::alignDown(FieldBitOffset, Context.toBits(Info.Alignment)) +
2902         Context.toBits(Info.Size));
2903     Size = std::max(Size, NewSize);
2904     Alignment = std::max(Alignment, Info.Alignment);
2905   } else if (IsUnion) {
2906     placeFieldAtOffset(CharUnits::Zero());
2907     Size = std::max(Size, Info.Size);
2908     // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
2909   } else {
2910     // Allocate a new block of memory and place the bitfield in it.
2911     CharUnits FieldOffset = Size.alignTo(Info.Alignment);
2912     placeFieldAtOffset(FieldOffset);
2913     Size = FieldOffset + Info.Size;
2914     Alignment = std::max(Alignment, Info.Alignment);
2915     RemainingBitsInField = Context.toBits(Info.Size) - Width;
2916   }
2917 }
2918 
2919 void
2920 MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) {
2921   // Zero-width bitfields are ignored unless they follow a non-zero-width
2922   // bitfield.
2923   if (!LastFieldIsNonZeroWidthBitfield) {
2924     placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size);
2925     // TODO: Add a Sema warning that MS ignores alignment for zero
2926     // sized bitfields that occur after zero-size bitfields or non-bitfields.
2927     return;
2928   }
2929   LastFieldIsNonZeroWidthBitfield = false;
2930   ElementInfo Info = getAdjustedElementInfo(FD);
2931   if (IsUnion) {
2932     placeFieldAtOffset(CharUnits::Zero());
2933     Size = std::max(Size, Info.Size);
2934     // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
2935   } else {
2936     // Round up the current record size to the field's alignment boundary.
2937     CharUnits FieldOffset = Size.alignTo(Info.Alignment);
2938     placeFieldAtOffset(FieldOffset);
2939     Size = FieldOffset;
2940     Alignment = std::max(Alignment, Info.Alignment);
2941   }
2942 }
2943 
2944 void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) {
2945   if (!HasVBPtr || SharedVBPtrBase)
2946     return;
2947   // Inject the VBPointer at the injection site.
2948   CharUnits InjectionSite = VBPtrOffset;
2949   // But before we do, make sure it's properly aligned.
2950   VBPtrOffset = VBPtrOffset.alignTo(PointerInfo.Alignment);
2951   // Determine where the first field should be laid out after the vbptr.
2952   CharUnits FieldStart = VBPtrOffset + PointerInfo.Size;
2953   // Shift everything after the vbptr down, unless we're using an external
2954   // layout.
2955   if (UseExternalLayout) {
2956     // It is possible that there were no fields or bases located after vbptr,
2957     // so the size was not adjusted before.
2958     if (Size < FieldStart)
2959       Size = FieldStart;
2960     return;
2961   }
2962   // Make sure that the amount we push the fields back by is a multiple of the
2963   // alignment.
2964   CharUnits Offset = (FieldStart - InjectionSite)
2965                          .alignTo(std::max(RequiredAlignment, Alignment));
2966   Size += Offset;
2967   for (uint64_t &FieldOffset : FieldOffsets)
2968     FieldOffset += Context.toBits(Offset);
2969   for (BaseOffsetsMapTy::value_type &Base : Bases)
2970     if (Base.second >= InjectionSite)
2971       Base.second += Offset;
2972 }
2973 
2974 void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) {
2975   if (!HasOwnVFPtr)
2976     return;
2977   // Make sure that the amount we push the struct back by is a multiple of the
2978   // alignment.
2979   CharUnits Offset =
2980       PointerInfo.Size.alignTo(std::max(RequiredAlignment, Alignment));
2981   // Push back the vbptr, but increase the size of the object and push back
2982   // regular fields by the offset only if not using external record layout.
2983   if (HasVBPtr)
2984     VBPtrOffset += Offset;
2985 
2986   if (UseExternalLayout) {
2987     // The class may have no bases or fields, but still have a vfptr
2988     // (e.g. it's an interface class). The size was not correctly set before
2989     // in this case.
2990     if (FieldOffsets.empty() && Bases.empty())
2991       Size += Offset;
2992     return;
2993   }
2994 
2995   Size += Offset;
2996 
2997   // If we're using an external layout, the fields offsets have already
2998   // accounted for this adjustment.
2999   for (uint64_t &FieldOffset : FieldOffsets)
3000     FieldOffset += Context.toBits(Offset);
3001   for (BaseOffsetsMapTy::value_type &Base : Bases)
3002     Base.second += Offset;
3003 }
3004 
3005 void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) {
3006   if (!HasVBPtr)
3007     return;
3008   // Vtordisps are always 4 bytes (even in 64-bit mode)
3009   CharUnits VtorDispSize = CharUnits::fromQuantity(4);
3010   CharUnits VtorDispAlignment = VtorDispSize;
3011   // vtordisps respect pragma pack.
3012   if (!MaxFieldAlignment.isZero())
3013     VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment);
3014   // The alignment of the vtordisp is at least the required alignment of the
3015   // entire record.  This requirement may be present to support vtordisp
3016   // injection.
3017   for (const CXXBaseSpecifier &VBase : RD->vbases()) {
3018     const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
3019     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
3020     RequiredAlignment =
3021         std::max(RequiredAlignment, BaseLayout.getRequiredAlignment());
3022   }
3023   VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment);
3024   // Compute the vtordisp set.
3025   llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet;
3026   computeVtorDispSet(HasVtorDispSet, RD);
3027   // Iterate through the virtual bases and lay them out.
3028   const ASTRecordLayout *PreviousBaseLayout = nullptr;
3029   for (const CXXBaseSpecifier &VBase : RD->vbases()) {
3030     const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
3031     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
3032     bool HasVtordisp = HasVtorDispSet.count(BaseDecl) > 0;
3033     // Insert padding between two bases if the left first one is zero sized or
3034     // contains a zero sized subobject and the right is zero sized or one leads
3035     // with a zero sized base.  The padding between virtual bases is 4
3036     // bytes (in both 32 and 64 bits modes) and always involves rounding up to
3037     // the required alignment, we don't know why.
3038     if ((PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
3039          BaseLayout.leadsWithZeroSizedBase() && !recordUsesEBO(RD)) ||
3040         HasVtordisp) {
3041       Size = Size.alignTo(VtorDispAlignment) + VtorDispSize;
3042       Alignment = std::max(VtorDispAlignment, Alignment);
3043     }
3044     // Insert the virtual base.
3045     ElementInfo Info = getAdjustedElementInfo(BaseLayout);
3046     CharUnits BaseOffset;
3047 
3048     // Respect the external AST source base offset, if present.
3049     if (UseExternalLayout) {
3050       if (!External.getExternalVBaseOffset(BaseDecl, BaseOffset))
3051         BaseOffset = Size;
3052     } else
3053       BaseOffset = Size.alignTo(Info.Alignment);
3054 
3055     assert(BaseOffset >= Size && "base offset already allocated");
3056 
3057     VBases.insert(std::make_pair(BaseDecl,
3058         ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp)));
3059     Size = BaseOffset + BaseLayout.getNonVirtualSize();
3060     PreviousBaseLayout = &BaseLayout;
3061   }
3062 }
3063 
3064 void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) {
3065   // Respect required alignment.  Note that in 32-bit mode Required alignment
3066   // may be 0 and cause size not to be updated.
3067   DataSize = Size;
3068   if (!RequiredAlignment.isZero()) {
3069     Alignment = std::max(Alignment, RequiredAlignment);
3070     auto RoundingAlignment = Alignment;
3071     if (!MaxFieldAlignment.isZero())
3072       RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
3073     RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment);
3074     Size = Size.alignTo(RoundingAlignment);
3075   }
3076   if (Size.isZero()) {
3077     if (!recordUsesEBO(RD) || !cast<CXXRecordDecl>(RD)->isEmpty()) {
3078       EndsWithZeroSizedObject = true;
3079       LeadsWithZeroSizedBase = true;
3080     }
3081     // Zero-sized structures have size equal to their alignment if a
3082     // __declspec(align) came into play.
3083     if (RequiredAlignment >= MinEmptyStructSize)
3084       Size = Alignment;
3085     else
3086       Size = MinEmptyStructSize;
3087   }
3088 
3089   if (UseExternalLayout) {
3090     Size = Context.toCharUnitsFromBits(External.Size);
3091     if (External.Align)
3092       Alignment = Context.toCharUnitsFromBits(External.Align);
3093   }
3094 }
3095 
3096 // Recursively walks the non-virtual bases of a class and determines if any of
3097 // them are in the bases with overridden methods set.
3098 static bool
3099 RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> &
3100                      BasesWithOverriddenMethods,
3101                  const CXXRecordDecl *RD) {
3102   if (BasesWithOverriddenMethods.count(RD))
3103     return true;
3104   // If any of a virtual bases non-virtual bases (recursively) requires a
3105   // vtordisp than so does this virtual base.
3106   for (const CXXBaseSpecifier &Base : RD->bases())
3107     if (!Base.isVirtual() &&
3108         RequiresVtordisp(BasesWithOverriddenMethods,
3109                          Base.getType()->getAsCXXRecordDecl()))
3110       return true;
3111   return false;
3112 }
3113 
3114 void MicrosoftRecordLayoutBuilder::computeVtorDispSet(
3115     llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet,
3116     const CXXRecordDecl *RD) const {
3117   // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with
3118   // vftables.
3119   if (RD->getMSVtorDispMode() == MSVtorDispMode::ForVFTable) {
3120     for (const CXXBaseSpecifier &Base : RD->vbases()) {
3121       const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3122       const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
3123       if (Layout.hasExtendableVFPtr())
3124         HasVtordispSet.insert(BaseDecl);
3125     }
3126     return;
3127   }
3128 
3129   // If any of our bases need a vtordisp for this type, so do we.  Check our
3130   // direct bases for vtordisp requirements.
3131   for (const CXXBaseSpecifier &Base : RD->bases()) {
3132     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3133     const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
3134     for (const auto &bi : Layout.getVBaseOffsetsMap())
3135       if (bi.second.hasVtorDisp())
3136         HasVtordispSet.insert(bi.first);
3137   }
3138   // We don't introduce any additional vtordisps if either:
3139   // * A user declared constructor or destructor aren't declared.
3140   // * #pragma vtordisp(0) or the /vd0 flag are in use.
3141   if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) ||
3142       RD->getMSVtorDispMode() == MSVtorDispMode::Never)
3143     return;
3144   // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's
3145   // possible for a partially constructed object with virtual base overrides to
3146   // escape a non-trivial constructor.
3147   assert(RD->getMSVtorDispMode() == MSVtorDispMode::ForVBaseOverride);
3148   // Compute a set of base classes which define methods we override.  A virtual
3149   // base in this set will require a vtordisp.  A virtual base that transitively
3150   // contains one of these bases as a non-virtual base will also require a
3151   // vtordisp.
3152   llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work;
3153   llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods;
3154   // Seed the working set with our non-destructor, non-pure virtual methods.
3155   for (const CXXMethodDecl *MD : RD->methods())
3156     if (MicrosoftVTableContext::hasVtableSlot(MD) &&
3157         !isa<CXXDestructorDecl>(MD) && !MD->isPure())
3158       Work.insert(MD);
3159   while (!Work.empty()) {
3160     const CXXMethodDecl *MD = *Work.begin();
3161     auto MethodRange = MD->overridden_methods();
3162     // If a virtual method has no-overrides it lives in its parent's vtable.
3163     if (MethodRange.begin() == MethodRange.end())
3164       BasesWithOverriddenMethods.insert(MD->getParent());
3165     else
3166       Work.insert(MethodRange.begin(), MethodRange.end());
3167     // We've finished processing this element, remove it from the working set.
3168     Work.erase(MD);
3169   }
3170   // For each of our virtual bases, check if it is in the set of overridden
3171   // bases or if it transitively contains a non-virtual base that is.
3172   for (const CXXBaseSpecifier &Base : RD->vbases()) {
3173     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3174     if (!HasVtordispSet.count(BaseDecl) &&
3175         RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl))
3176       HasVtordispSet.insert(BaseDecl);
3177   }
3178 }
3179 
3180 /// getASTRecordLayout - Get or compute information about the layout of the
3181 /// specified record (struct/union/class), which indicates its size and field
3182 /// position information.
3183 const ASTRecordLayout &
3184 ASTContext::getASTRecordLayout(const RecordDecl *D) const {
3185   // These asserts test different things.  A record has a definition
3186   // as soon as we begin to parse the definition.  That definition is
3187   // not a complete definition (which is what isDefinition() tests)
3188   // until we *finish* parsing the definition.
3189 
3190   if (D->hasExternalLexicalStorage() && !D->getDefinition())
3191     getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
3192 
3193   D = D->getDefinition();
3194   assert(D && "Cannot get layout of forward declarations!");
3195   assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!");
3196   assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
3197 
3198   // Look up this layout, if already laid out, return what we have.
3199   // Note that we can't save a reference to the entry because this function
3200   // is recursive.
3201   const ASTRecordLayout *Entry = ASTRecordLayouts[D];
3202   if (Entry) return *Entry;
3203 
3204   const ASTRecordLayout *NewEntry = nullptr;
3205 
3206   if (isMsLayout(*this)) {
3207     MicrosoftRecordLayoutBuilder Builder(*this);
3208     if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
3209       Builder.cxxLayout(RD);
3210       NewEntry = new (*this) ASTRecordLayout(
3211           *this, Builder.Size, Builder.Alignment, Builder.Alignment,
3212           Builder.Alignment, Builder.RequiredAlignment, Builder.HasOwnVFPtr,
3213           Builder.HasOwnVFPtr || Builder.PrimaryBase, Builder.VBPtrOffset,
3214           Builder.DataSize, Builder.FieldOffsets, Builder.NonVirtualSize,
3215           Builder.Alignment, Builder.Alignment, CharUnits::Zero(),
3216           Builder.PrimaryBase, false, Builder.SharedVBPtrBase,
3217           Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase,
3218           Builder.Bases, Builder.VBases);
3219     } else {
3220       Builder.layout(D);
3221       NewEntry = new (*this) ASTRecordLayout(
3222           *this, Builder.Size, Builder.Alignment, Builder.Alignment,
3223           Builder.Alignment, Builder.RequiredAlignment, Builder.Size,
3224           Builder.FieldOffsets);
3225     }
3226   } else {
3227     if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
3228       EmptySubobjectMap EmptySubobjects(*this, RD);
3229       ItaniumRecordLayoutBuilder Builder(*this, &EmptySubobjects);
3230       Builder.Layout(RD);
3231 
3232       // In certain situations, we are allowed to lay out objects in the
3233       // tail-padding of base classes.  This is ABI-dependent.
3234       // FIXME: this should be stored in the record layout.
3235       bool skipTailPadding =
3236           mustSkipTailPadding(getTargetInfo().getCXXABI(), RD);
3237 
3238       // FIXME: This should be done in FinalizeLayout.
3239       CharUnits DataSize =
3240           skipTailPadding ? Builder.getSize() : Builder.getDataSize();
3241       CharUnits NonVirtualSize =
3242           skipTailPadding ? DataSize : Builder.NonVirtualSize;
3243       NewEntry = new (*this) ASTRecordLayout(
3244           *this, Builder.getSize(), Builder.Alignment,
3245           Builder.PreferredAlignment, Builder.UnadjustedAlignment,
3246           /*RequiredAlignment : used by MS-ABI)*/
3247           Builder.Alignment, Builder.HasOwnVFPtr, RD->isDynamicClass(),
3248           CharUnits::fromQuantity(-1), DataSize, Builder.FieldOffsets,
3249           NonVirtualSize, Builder.NonVirtualAlignment,
3250           Builder.PreferredNVAlignment,
3251           EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase,
3252           Builder.PrimaryBaseIsVirtual, nullptr, false, false, Builder.Bases,
3253           Builder.VBases);
3254     } else {
3255       ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3256       Builder.Layout(D);
3257 
3258       NewEntry = new (*this) ASTRecordLayout(
3259           *this, Builder.getSize(), Builder.Alignment,
3260           Builder.PreferredAlignment, Builder.UnadjustedAlignment,
3261           /*RequiredAlignment : used by MS-ABI)*/
3262           Builder.Alignment, Builder.getSize(), Builder.FieldOffsets);
3263     }
3264   }
3265 
3266   ASTRecordLayouts[D] = NewEntry;
3267 
3268   if (getLangOpts().DumpRecordLayouts) {
3269     llvm::outs() << "\n*** Dumping AST Record Layout\n";
3270     DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple);
3271   }
3272 
3273   return *NewEntry;
3274 }
3275 
3276 const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) {
3277   if (!getTargetInfo().getCXXABI().hasKeyFunctions())
3278     return nullptr;
3279 
3280   assert(RD->getDefinition() && "Cannot get key function for forward decl!");
3281   RD = RD->getDefinition();
3282 
3283   // Beware:
3284   //  1) computing the key function might trigger deserialization, which might
3285   //     invalidate iterators into KeyFunctions
3286   //  2) 'get' on the LazyDeclPtr might also trigger deserialization and
3287   //     invalidate the LazyDeclPtr within the map itself
3288   LazyDeclPtr Entry = KeyFunctions[RD];
3289   const Decl *Result =
3290       Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD);
3291 
3292   // Store it back if it changed.
3293   if (Entry.isOffset() || Entry.isValid() != bool(Result))
3294     KeyFunctions[RD] = const_cast<Decl*>(Result);
3295 
3296   return cast_or_null<CXXMethodDecl>(Result);
3297 }
3298 
3299 void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) {
3300   assert(Method == Method->getFirstDecl() &&
3301          "not working with method declaration from class definition");
3302 
3303   // Look up the cache entry.  Since we're working with the first
3304   // declaration, its parent must be the class definition, which is
3305   // the correct key for the KeyFunctions hash.
3306   const auto &Map = KeyFunctions;
3307   auto I = Map.find(Method->getParent());
3308 
3309   // If it's not cached, there's nothing to do.
3310   if (I == Map.end()) return;
3311 
3312   // If it is cached, check whether it's the target method, and if so,
3313   // remove it from the cache. Note, the call to 'get' might invalidate
3314   // the iterator and the LazyDeclPtr object within the map.
3315   LazyDeclPtr Ptr = I->second;
3316   if (Ptr.get(getExternalSource()) == Method) {
3317     // FIXME: remember that we did this for module / chained PCH state?
3318     KeyFunctions.erase(Method->getParent());
3319   }
3320 }
3321 
3322 static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
3323   const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
3324   return Layout.getFieldOffset(FD->getFieldIndex());
3325 }
3326 
3327 uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
3328   uint64_t OffsetInBits;
3329   if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
3330     OffsetInBits = ::getFieldOffset(*this, FD);
3331   } else {
3332     const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
3333 
3334     OffsetInBits = 0;
3335     for (const NamedDecl *ND : IFD->chain())
3336       OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND));
3337   }
3338 
3339   return OffsetInBits;
3340 }
3341 
3342 uint64_t ASTContext::lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
3343                                           const ObjCImplementationDecl *ID,
3344                                           const ObjCIvarDecl *Ivar) const {
3345   const ObjCInterfaceDecl *Container = Ivar->getContainingInterface();
3346 
3347   // FIXME: We should eliminate the need to have ObjCImplementationDecl passed
3348   // in here; it should never be necessary because that should be the lexical
3349   // decl context for the ivar.
3350 
3351   // If we know have an implementation (and the ivar is in it) then
3352   // look up in the implementation layout.
3353   const ASTRecordLayout *RL;
3354   if (ID && declaresSameEntity(ID->getClassInterface(), Container))
3355     RL = &getASTObjCImplementationLayout(ID);
3356   else
3357     RL = &getASTObjCInterfaceLayout(Container);
3358 
3359   // Compute field index.
3360   //
3361   // FIXME: The index here is closely tied to how ASTContext::getObjCLayout is
3362   // implemented. This should be fixed to get the information from the layout
3363   // directly.
3364   unsigned Index = 0;
3365 
3366   for (const ObjCIvarDecl *IVD = Container->all_declared_ivar_begin();
3367        IVD; IVD = IVD->getNextIvar()) {
3368     if (Ivar == IVD)
3369       break;
3370     ++Index;
3371   }
3372   assert(Index < RL->getFieldCount() && "Ivar is not inside record layout!");
3373 
3374   return RL->getFieldOffset(Index);
3375 }
3376 
3377 /// getObjCLayout - Get or compute information about the layout of the
3378 /// given interface.
3379 ///
3380 /// \param Impl - If given, also include the layout of the interface's
3381 /// implementation. This may differ by including synthesized ivars.
3382 const ASTRecordLayout &
3383 ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
3384                           const ObjCImplementationDecl *Impl) const {
3385   // Retrieve the definition
3386   if (D->hasExternalLexicalStorage() && !D->getDefinition())
3387     getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
3388   D = D->getDefinition();
3389   assert(D && !D->isInvalidDecl() && D->isThisDeclarationADefinition() &&
3390          "Invalid interface decl!");
3391 
3392   // Look up this layout, if already laid out, return what we have.
3393   const ObjCContainerDecl *Key =
3394     Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
3395   if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
3396     return *Entry;
3397 
3398   // Add in synthesized ivar count if laying out an implementation.
3399   if (Impl) {
3400     unsigned SynthCount = CountNonClassIvars(D);
3401     // If there aren't any synthesized ivars then reuse the interface
3402     // entry. Note we can't cache this because we simply free all
3403     // entries later; however we shouldn't look up implementations
3404     // frequently.
3405     if (SynthCount == 0)
3406       return getObjCLayout(D, nullptr);
3407   }
3408 
3409   ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3410   Builder.Layout(D);
3411 
3412   const ASTRecordLayout *NewEntry = new (*this) ASTRecordLayout(
3413       *this, Builder.getSize(), Builder.Alignment, Builder.PreferredAlignment,
3414       Builder.UnadjustedAlignment,
3415       /*RequiredAlignment : used by MS-ABI)*/
3416       Builder.Alignment, Builder.getDataSize(), Builder.FieldOffsets);
3417 
3418   ObjCLayouts[Key] = NewEntry;
3419 
3420   return *NewEntry;
3421 }
3422 
3423 static void PrintOffset(raw_ostream &OS,
3424                         CharUnits Offset, unsigned IndentLevel) {
3425   OS << llvm::format("%10" PRId64 " | ", (int64_t)Offset.getQuantity());
3426   OS.indent(IndentLevel * 2);
3427 }
3428 
3429 static void PrintBitFieldOffset(raw_ostream &OS, CharUnits Offset,
3430                                 unsigned Begin, unsigned Width,
3431                                 unsigned IndentLevel) {
3432   llvm::SmallString<10> Buffer;
3433   {
3434     llvm::raw_svector_ostream BufferOS(Buffer);
3435     BufferOS << Offset.getQuantity() << ':';
3436     if (Width == 0) {
3437       BufferOS << '-';
3438     } else {
3439       BufferOS << Begin << '-' << (Begin + Width - 1);
3440     }
3441   }
3442 
3443   OS << llvm::right_justify(Buffer, 10) << " | ";
3444   OS.indent(IndentLevel * 2);
3445 }
3446 
3447 static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) {
3448   OS << "           | ";
3449   OS.indent(IndentLevel * 2);
3450 }
3451 
3452 static void DumpRecordLayout(raw_ostream &OS, const RecordDecl *RD,
3453                              const ASTContext &C,
3454                              CharUnits Offset,
3455                              unsigned IndentLevel,
3456                              const char* Description,
3457                              bool PrintSizeInfo,
3458                              bool IncludeVirtualBases) {
3459   const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
3460   auto CXXRD = dyn_cast<CXXRecordDecl>(RD);
3461 
3462   PrintOffset(OS, Offset, IndentLevel);
3463   OS << C.getTypeDeclType(const_cast<RecordDecl*>(RD)).getAsString();
3464   if (Description)
3465     OS << ' ' << Description;
3466   if (CXXRD && CXXRD->isEmpty())
3467     OS << " (empty)";
3468   OS << '\n';
3469 
3470   IndentLevel++;
3471 
3472   // Dump bases.
3473   if (CXXRD) {
3474     const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
3475     bool HasOwnVFPtr = Layout.hasOwnVFPtr();
3476     bool HasOwnVBPtr = Layout.hasOwnVBPtr();
3477 
3478     // Vtable pointer.
3479     if (CXXRD->isDynamicClass() && !PrimaryBase && !isMsLayout(C)) {
3480       PrintOffset(OS, Offset, IndentLevel);
3481       OS << '(' << *RD << " vtable pointer)\n";
3482     } else if (HasOwnVFPtr) {
3483       PrintOffset(OS, Offset, IndentLevel);
3484       // vfptr (for Microsoft C++ ABI)
3485       OS << '(' << *RD << " vftable pointer)\n";
3486     }
3487 
3488     // Collect nvbases.
3489     SmallVector<const CXXRecordDecl *, 4> Bases;
3490     for (const CXXBaseSpecifier &Base : CXXRD->bases()) {
3491       assert(!Base.getType()->isDependentType() &&
3492              "Cannot layout class with dependent bases.");
3493       if (!Base.isVirtual())
3494         Bases.push_back(Base.getType()->getAsCXXRecordDecl());
3495     }
3496 
3497     // Sort nvbases by offset.
3498     llvm::stable_sort(
3499         Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
3500           return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
3501         });
3502 
3503     // Dump (non-virtual) bases
3504     for (const CXXRecordDecl *Base : Bases) {
3505       CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
3506       DumpRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
3507                        Base == PrimaryBase ? "(primary base)" : "(base)",
3508                        /*PrintSizeInfo=*/false,
3509                        /*IncludeVirtualBases=*/false);
3510     }
3511 
3512     // vbptr (for Microsoft C++ ABI)
3513     if (HasOwnVBPtr) {
3514       PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
3515       OS << '(' << *RD << " vbtable pointer)\n";
3516     }
3517   }
3518 
3519   // Dump fields.
3520   uint64_t FieldNo = 0;
3521   for (RecordDecl::field_iterator I = RD->field_begin(),
3522          E = RD->field_end(); I != E; ++I, ++FieldNo) {
3523     const FieldDecl &Field = **I;
3524     uint64_t LocalFieldOffsetInBits = Layout.getFieldOffset(FieldNo);
3525     CharUnits FieldOffset =
3526       Offset + C.toCharUnitsFromBits(LocalFieldOffsetInBits);
3527 
3528     // Recursively dump fields of record type.
3529     if (auto RT = Field.getType()->getAs<RecordType>()) {
3530       DumpRecordLayout(OS, RT->getDecl(), C, FieldOffset, IndentLevel,
3531                        Field.getName().data(),
3532                        /*PrintSizeInfo=*/false,
3533                        /*IncludeVirtualBases=*/true);
3534       continue;
3535     }
3536 
3537     if (Field.isBitField()) {
3538       uint64_t LocalFieldByteOffsetInBits = C.toBits(FieldOffset - Offset);
3539       unsigned Begin = LocalFieldOffsetInBits - LocalFieldByteOffsetInBits;
3540       unsigned Width = Field.getBitWidthValue(C);
3541       PrintBitFieldOffset(OS, FieldOffset, Begin, Width, IndentLevel);
3542     } else {
3543       PrintOffset(OS, FieldOffset, IndentLevel);
3544     }
3545     OS << Field.getType().getAsString() << ' ' << Field << '\n';
3546   }
3547 
3548   // Dump virtual bases.
3549   if (CXXRD && IncludeVirtualBases) {
3550     const ASTRecordLayout::VBaseOffsetsMapTy &VtorDisps =
3551       Layout.getVBaseOffsetsMap();
3552 
3553     for (const CXXBaseSpecifier &Base : CXXRD->vbases()) {
3554       assert(Base.isVirtual() && "Found non-virtual class!");
3555       const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl();
3556 
3557       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
3558 
3559       if (VtorDisps.find(VBase)->second.hasVtorDisp()) {
3560         PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
3561         OS << "(vtordisp for vbase " << *VBase << ")\n";
3562       }
3563 
3564       DumpRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
3565                        VBase == Layout.getPrimaryBase() ?
3566                          "(primary virtual base)" : "(virtual base)",
3567                        /*PrintSizeInfo=*/false,
3568                        /*IncludeVirtualBases=*/false);
3569     }
3570   }
3571 
3572   if (!PrintSizeInfo) return;
3573 
3574   PrintIndentNoOffset(OS, IndentLevel - 1);
3575   OS << "[sizeof=" << Layout.getSize().getQuantity();
3576   if (CXXRD && !isMsLayout(C))
3577     OS << ", dsize=" << Layout.getDataSize().getQuantity();
3578   OS << ", align=" << Layout.getAlignment().getQuantity();
3579   if (C.getTargetInfo().defaultsToAIXPowerAlignment())
3580     OS << ", preferredalign=" << Layout.getPreferredAlignment().getQuantity();
3581 
3582   if (CXXRD) {
3583     OS << ",\n";
3584     PrintIndentNoOffset(OS, IndentLevel - 1);
3585     OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
3586     OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity();
3587     if (C.getTargetInfo().defaultsToAIXPowerAlignment())
3588       OS << ", preferrednvalign="
3589          << Layout.getPreferredNVAlignment().getQuantity();
3590   }
3591   OS << "]\n";
3592 }
3593 
3594 void ASTContext::DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
3595                                   bool Simple) const {
3596   if (!Simple) {
3597     ::DumpRecordLayout(OS, RD, *this, CharUnits(), 0, nullptr,
3598                        /*PrintSizeInfo*/ true,
3599                        /*IncludeVirtualBases=*/true);
3600     return;
3601   }
3602 
3603   // The "simple" format is designed to be parsed by the
3604   // layout-override testing code.  There shouldn't be any external
3605   // uses of this format --- when LLDB overrides a layout, it sets up
3606   // the data structures directly --- so feel free to adjust this as
3607   // you like as long as you also update the rudimentary parser for it
3608   // in libFrontend.
3609 
3610   const ASTRecordLayout &Info = getASTRecordLayout(RD);
3611   OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
3612   OS << "\nLayout: ";
3613   OS << "<ASTRecordLayout\n";
3614   OS << "  Size:" << toBits(Info.getSize()) << "\n";
3615   if (!isMsLayout(*this))
3616     OS << "  DataSize:" << toBits(Info.getDataSize()) << "\n";
3617   OS << "  Alignment:" << toBits(Info.getAlignment()) << "\n";
3618   if (Target->defaultsToAIXPowerAlignment())
3619     OS << "  PreferredAlignment:" << toBits(Info.getPreferredAlignment())
3620        << "\n";
3621   OS << "  FieldOffsets: [";
3622   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
3623     if (i)
3624       OS << ", ";
3625     OS << Info.getFieldOffset(i);
3626   }
3627   OS << "]>\n";
3628 }
3629