1 //===- ThreadSafety.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // A intra-procedural analysis for thread safety (e.g. deadlocks and race
10 // conditions), based off of an annotation system.
11 //
12 // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html
13 // for more information.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "clang/Analysis/Analyses/ThreadSafety.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclGroup.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/OperationKinds.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/AST/StmtVisitor.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
29 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
30 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
31 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
32 #include "clang/Analysis/Analyses/ThreadSafetyUtil.h"
33 #include "clang/Analysis/AnalysisDeclContext.h"
34 #include "clang/Analysis/CFG.h"
35 #include "clang/Basic/Builtins.h"
36 #include "clang/Basic/LLVM.h"
37 #include "clang/Basic/OperatorKinds.h"
38 #include "clang/Basic/SourceLocation.h"
39 #include "clang/Basic/Specifiers.h"
40 #include "llvm/ADT/ArrayRef.h"
41 #include "llvm/ADT/DenseMap.h"
42 #include "llvm/ADT/ImmutableMap.h"
43 #include "llvm/ADT/STLExtras.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/StringRef.h"
46 #include "llvm/Support/Allocator.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <functional>
53 #include <iterator>
54 #include <memory>
55 #include <optional>
56 #include <string>
57 #include <type_traits>
58 #include <utility>
59 #include <vector>
60 
61 using namespace clang;
62 using namespace threadSafety;
63 
64 // Key method definition
65 ThreadSafetyHandler::~ThreadSafetyHandler() = default;
66 
67 /// Issue a warning about an invalid lock expression
68 static void warnInvalidLock(ThreadSafetyHandler &Handler,
69                             const Expr *MutexExp, const NamedDecl *D,
70                             const Expr *DeclExp, StringRef Kind) {
71   SourceLocation Loc;
72   if (DeclExp)
73     Loc = DeclExp->getExprLoc();
74 
75   // FIXME: add a note about the attribute location in MutexExp or D
76   if (Loc.isValid())
77     Handler.handleInvalidLockExp(Loc);
78 }
79 
80 namespace {
81 
82 /// A set of CapabilityExpr objects, which are compiled from thread safety
83 /// attributes on a function.
84 class CapExprSet : public SmallVector<CapabilityExpr, 4> {
85 public:
86   /// Push M onto list, but discard duplicates.
87   void push_back_nodup(const CapabilityExpr &CapE) {
88     if (llvm::none_of(*this, [=](const CapabilityExpr &CapE2) {
89           return CapE.equals(CapE2);
90         }))
91       push_back(CapE);
92   }
93 };
94 
95 class FactManager;
96 class FactSet;
97 
98 /// This is a helper class that stores a fact that is known at a
99 /// particular point in program execution.  Currently, a fact is a capability,
100 /// along with additional information, such as where it was acquired, whether
101 /// it is exclusive or shared, etc.
102 ///
103 /// FIXME: this analysis does not currently support re-entrant locking.
104 class FactEntry : public CapabilityExpr {
105 public:
106   /// Where a fact comes from.
107   enum SourceKind {
108     Acquired, ///< The fact has been directly acquired.
109     Asserted, ///< The fact has been asserted to be held.
110     Declared, ///< The fact is assumed to be held by callers.
111     Managed,  ///< The fact has been acquired through a scoped capability.
112   };
113 
114 private:
115   /// Exclusive or shared.
116   LockKind LKind : 8;
117 
118   // How it was acquired.
119   SourceKind Source : 8;
120 
121   /// Where it was acquired.
122   SourceLocation AcquireLoc;
123 
124 public:
125   FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
126             SourceKind Src)
127       : CapabilityExpr(CE), LKind(LK), Source(Src), AcquireLoc(Loc) {}
128   virtual ~FactEntry() = default;
129 
130   LockKind kind() const { return LKind;      }
131   SourceLocation loc() const { return AcquireLoc; }
132 
133   bool asserted() const { return Source == Asserted; }
134   bool declared() const { return Source == Declared; }
135   bool managed() const { return Source == Managed; }
136 
137   virtual void
138   handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
139                                 SourceLocation JoinLoc, LockErrorKind LEK,
140                                 ThreadSafetyHandler &Handler) const = 0;
141   virtual void handleLock(FactSet &FSet, FactManager &FactMan,
142                           const FactEntry &entry,
143                           ThreadSafetyHandler &Handler) const = 0;
144   virtual void handleUnlock(FactSet &FSet, FactManager &FactMan,
145                             const CapabilityExpr &Cp, SourceLocation UnlockLoc,
146                             bool FullyRemove,
147                             ThreadSafetyHandler &Handler) const = 0;
148 
149   // Return true if LKind >= LK, where exclusive > shared
150   bool isAtLeast(LockKind LK) const {
151     return  (LKind == LK_Exclusive) || (LK == LK_Shared);
152   }
153 };
154 
155 using FactID = unsigned short;
156 
157 /// FactManager manages the memory for all facts that are created during
158 /// the analysis of a single routine.
159 class FactManager {
160 private:
161   std::vector<std::unique_ptr<const FactEntry>> Facts;
162 
163 public:
164   FactID newFact(std::unique_ptr<FactEntry> Entry) {
165     Facts.push_back(std::move(Entry));
166     return static_cast<unsigned short>(Facts.size() - 1);
167   }
168 
169   const FactEntry &operator[](FactID F) const { return *Facts[F]; }
170 };
171 
172 /// A FactSet is the set of facts that are known to be true at a
173 /// particular program point.  FactSets must be small, because they are
174 /// frequently copied, and are thus implemented as a set of indices into a
175 /// table maintained by a FactManager.  A typical FactSet only holds 1 or 2
176 /// locks, so we can get away with doing a linear search for lookup.  Note
177 /// that a hashtable or map is inappropriate in this case, because lookups
178 /// may involve partial pattern matches, rather than exact matches.
179 class FactSet {
180 private:
181   using FactVec = SmallVector<FactID, 4>;
182 
183   FactVec FactIDs;
184 
185 public:
186   using iterator = FactVec::iterator;
187   using const_iterator = FactVec::const_iterator;
188 
189   iterator begin() { return FactIDs.begin(); }
190   const_iterator begin() const { return FactIDs.begin(); }
191 
192   iterator end() { return FactIDs.end(); }
193   const_iterator end() const { return FactIDs.end(); }
194 
195   bool isEmpty() const { return FactIDs.size() == 0; }
196 
197   // Return true if the set contains only negative facts
198   bool isEmpty(FactManager &FactMan) const {
199     for (const auto FID : *this) {
200       if (!FactMan[FID].negative())
201         return false;
202     }
203     return true;
204   }
205 
206   void addLockByID(FactID ID) { FactIDs.push_back(ID); }
207 
208   FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) {
209     FactID F = FM.newFact(std::move(Entry));
210     FactIDs.push_back(F);
211     return F;
212   }
213 
214   bool removeLock(FactManager& FM, const CapabilityExpr &CapE) {
215     unsigned n = FactIDs.size();
216     if (n == 0)
217       return false;
218 
219     for (unsigned i = 0; i < n-1; ++i) {
220       if (FM[FactIDs[i]].matches(CapE)) {
221         FactIDs[i] = FactIDs[n-1];
222         FactIDs.pop_back();
223         return true;
224       }
225     }
226     if (FM[FactIDs[n-1]].matches(CapE)) {
227       FactIDs.pop_back();
228       return true;
229     }
230     return false;
231   }
232 
233   iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) {
234     return std::find_if(begin(), end(), [&](FactID ID) {
235       return FM[ID].matches(CapE);
236     });
237   }
238 
239   const FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const {
240     auto I = std::find_if(begin(), end(), [&](FactID ID) {
241       return FM[ID].matches(CapE);
242     });
243     return I != end() ? &FM[*I] : nullptr;
244   }
245 
246   const FactEntry *findLockUniv(FactManager &FM,
247                                 const CapabilityExpr &CapE) const {
248     auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
249       return FM[ID].matchesUniv(CapE);
250     });
251     return I != end() ? &FM[*I] : nullptr;
252   }
253 
254   const FactEntry *findPartialMatch(FactManager &FM,
255                                     const CapabilityExpr &CapE) const {
256     auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
257       return FM[ID].partiallyMatches(CapE);
258     });
259     return I != end() ? &FM[*I] : nullptr;
260   }
261 
262   bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const {
263     auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
264       return FM[ID].valueDecl() == Vd;
265     });
266     return I != end();
267   }
268 };
269 
270 class ThreadSafetyAnalyzer;
271 
272 } // namespace
273 
274 namespace clang {
275 namespace threadSafety {
276 
277 class BeforeSet {
278 private:
279   using BeforeVect = SmallVector<const ValueDecl *, 4>;
280 
281   struct BeforeInfo {
282     BeforeVect Vect;
283     int Visited = 0;
284 
285     BeforeInfo() = default;
286     BeforeInfo(BeforeInfo &&) = default;
287   };
288 
289   using BeforeMap =
290       llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>>;
291   using CycleMap = llvm::DenseMap<const ValueDecl *, bool>;
292 
293 public:
294   BeforeSet() = default;
295 
296   BeforeInfo* insertAttrExprs(const ValueDecl* Vd,
297                               ThreadSafetyAnalyzer& Analyzer);
298 
299   BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd,
300                                    ThreadSafetyAnalyzer &Analyzer);
301 
302   void checkBeforeAfter(const ValueDecl* Vd,
303                         const FactSet& FSet,
304                         ThreadSafetyAnalyzer& Analyzer,
305                         SourceLocation Loc, StringRef CapKind);
306 
307 private:
308   BeforeMap BMap;
309   CycleMap CycMap;
310 };
311 
312 } // namespace threadSafety
313 } // namespace clang
314 
315 namespace {
316 
317 class LocalVariableMap;
318 
319 using LocalVarContext = llvm::ImmutableMap<const NamedDecl *, unsigned>;
320 
321 /// A side (entry or exit) of a CFG node.
322 enum CFGBlockSide { CBS_Entry, CBS_Exit };
323 
324 /// CFGBlockInfo is a struct which contains all the information that is
325 /// maintained for each block in the CFG.  See LocalVariableMap for more
326 /// information about the contexts.
327 struct CFGBlockInfo {
328   // Lockset held at entry to block
329   FactSet EntrySet;
330 
331   // Lockset held at exit from block
332   FactSet ExitSet;
333 
334   // Context held at entry to block
335   LocalVarContext EntryContext;
336 
337   // Context held at exit from block
338   LocalVarContext ExitContext;
339 
340   // Location of first statement in block
341   SourceLocation EntryLoc;
342 
343   // Location of last statement in block.
344   SourceLocation ExitLoc;
345 
346   // Used to replay contexts later
347   unsigned EntryIndex;
348 
349   // Is this block reachable?
350   bool Reachable = false;
351 
352   const FactSet &getSet(CFGBlockSide Side) const {
353     return Side == CBS_Entry ? EntrySet : ExitSet;
354   }
355 
356   SourceLocation getLocation(CFGBlockSide Side) const {
357     return Side == CBS_Entry ? EntryLoc : ExitLoc;
358   }
359 
360 private:
361   CFGBlockInfo(LocalVarContext EmptyCtx)
362       : EntryContext(EmptyCtx), ExitContext(EmptyCtx) {}
363 
364 public:
365   static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
366 };
367 
368 // A LocalVariableMap maintains a map from local variables to their currently
369 // valid definitions.  It provides SSA-like functionality when traversing the
370 // CFG.  Like SSA, each definition or assignment to a variable is assigned a
371 // unique name (an integer), which acts as the SSA name for that definition.
372 // The total set of names is shared among all CFG basic blocks.
373 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs
374 // with their SSA-names.  Instead, we compute a Context for each point in the
375 // code, which maps local variables to the appropriate SSA-name.  This map
376 // changes with each assignment.
377 //
378 // The map is computed in a single pass over the CFG.  Subsequent analyses can
379 // then query the map to find the appropriate Context for a statement, and use
380 // that Context to look up the definitions of variables.
381 class LocalVariableMap {
382 public:
383   using Context = LocalVarContext;
384 
385   /// A VarDefinition consists of an expression, representing the value of the
386   /// variable, along with the context in which that expression should be
387   /// interpreted.  A reference VarDefinition does not itself contain this
388   /// information, but instead contains a pointer to a previous VarDefinition.
389   struct VarDefinition {
390   public:
391     friend class LocalVariableMap;
392 
393     // The original declaration for this variable.
394     const NamedDecl *Dec;
395 
396     // The expression for this variable, OR
397     const Expr *Exp = nullptr;
398 
399     // Reference to another VarDefinition
400     unsigned Ref = 0;
401 
402     // The map with which Exp should be interpreted.
403     Context Ctx;
404 
405     bool isReference() const { return !Exp; }
406 
407   private:
408     // Create ordinary variable definition
409     VarDefinition(const NamedDecl *D, const Expr *E, Context C)
410         : Dec(D), Exp(E), Ctx(C) {}
411 
412     // Create reference to previous definition
413     VarDefinition(const NamedDecl *D, unsigned R, Context C)
414         : Dec(D), Ref(R), Ctx(C) {}
415   };
416 
417 private:
418   Context::Factory ContextFactory;
419   std::vector<VarDefinition> VarDefinitions;
420   std::vector<std::pair<const Stmt *, Context>> SavedContexts;
421 
422 public:
423   LocalVariableMap() {
424     // index 0 is a placeholder for undefined variables (aka phi-nodes).
425     VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext()));
426   }
427 
428   /// Look up a definition, within the given context.
429   const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
430     const unsigned *i = Ctx.lookup(D);
431     if (!i)
432       return nullptr;
433     assert(*i < VarDefinitions.size());
434     return &VarDefinitions[*i];
435   }
436 
437   /// Look up the definition for D within the given context.  Returns
438   /// NULL if the expression is not statically known.  If successful, also
439   /// modifies Ctx to hold the context of the return Expr.
440   const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
441     const unsigned *P = Ctx.lookup(D);
442     if (!P)
443       return nullptr;
444 
445     unsigned i = *P;
446     while (i > 0) {
447       if (VarDefinitions[i].Exp) {
448         Ctx = VarDefinitions[i].Ctx;
449         return VarDefinitions[i].Exp;
450       }
451       i = VarDefinitions[i].Ref;
452     }
453     return nullptr;
454   }
455 
456   Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
457 
458   /// Return the next context after processing S.  This function is used by
459   /// clients of the class to get the appropriate context when traversing the
460   /// CFG.  It must be called for every assignment or DeclStmt.
461   Context getNextContext(unsigned &CtxIndex, const Stmt *S, Context C) {
462     if (SavedContexts[CtxIndex+1].first == S) {
463       CtxIndex++;
464       Context Result = SavedContexts[CtxIndex].second;
465       return Result;
466     }
467     return C;
468   }
469 
470   void dumpVarDefinitionName(unsigned i) {
471     if (i == 0) {
472       llvm::errs() << "Undefined";
473       return;
474     }
475     const NamedDecl *Dec = VarDefinitions[i].Dec;
476     if (!Dec) {
477       llvm::errs() << "<<NULL>>";
478       return;
479     }
480     Dec->printName(llvm::errs());
481     llvm::errs() << "." << i << " " << ((const void*) Dec);
482   }
483 
484   /// Dumps an ASCII representation of the variable map to llvm::errs()
485   void dump() {
486     for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
487       const Expr *Exp = VarDefinitions[i].Exp;
488       unsigned Ref = VarDefinitions[i].Ref;
489 
490       dumpVarDefinitionName(i);
491       llvm::errs() << " = ";
492       if (Exp) Exp->dump();
493       else {
494         dumpVarDefinitionName(Ref);
495         llvm::errs() << "\n";
496       }
497     }
498   }
499 
500   /// Dumps an ASCII representation of a Context to llvm::errs()
501   void dumpContext(Context C) {
502     for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
503       const NamedDecl *D = I.getKey();
504       D->printName(llvm::errs());
505       llvm::errs() << " -> ";
506       dumpVarDefinitionName(I.getData());
507       llvm::errs() << "\n";
508     }
509   }
510 
511   /// Builds the variable map.
512   void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph,
513                    std::vector<CFGBlockInfo> &BlockInfo);
514 
515 protected:
516   friend class VarMapBuilder;
517 
518   // Get the current context index
519   unsigned getContextIndex() { return SavedContexts.size()-1; }
520 
521   // Save the current context for later replay
522   void saveContext(const Stmt *S, Context C) {
523     SavedContexts.push_back(std::make_pair(S, C));
524   }
525 
526   // Adds a new definition to the given context, and returns a new context.
527   // This method should be called when declaring a new variable.
528   Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) {
529     assert(!Ctx.contains(D));
530     unsigned newID = VarDefinitions.size();
531     Context NewCtx = ContextFactory.add(Ctx, D, newID);
532     VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
533     return NewCtx;
534   }
535 
536   // Add a new reference to an existing definition.
537   Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
538     unsigned newID = VarDefinitions.size();
539     Context NewCtx = ContextFactory.add(Ctx, D, newID);
540     VarDefinitions.push_back(VarDefinition(D, i, Ctx));
541     return NewCtx;
542   }
543 
544   // Updates a definition only if that definition is already in the map.
545   // This method should be called when assigning to an existing variable.
546   Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
547     if (Ctx.contains(D)) {
548       unsigned newID = VarDefinitions.size();
549       Context NewCtx = ContextFactory.remove(Ctx, D);
550       NewCtx = ContextFactory.add(NewCtx, D, newID);
551       VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
552       return NewCtx;
553     }
554     return Ctx;
555   }
556 
557   // Removes a definition from the context, but keeps the variable name
558   // as a valid variable.  The index 0 is a placeholder for cleared definitions.
559   Context clearDefinition(const NamedDecl *D, Context Ctx) {
560     Context NewCtx = Ctx;
561     if (NewCtx.contains(D)) {
562       NewCtx = ContextFactory.remove(NewCtx, D);
563       NewCtx = ContextFactory.add(NewCtx, D, 0);
564     }
565     return NewCtx;
566   }
567 
568   // Remove a definition entirely frmo the context.
569   Context removeDefinition(const NamedDecl *D, Context Ctx) {
570     Context NewCtx = Ctx;
571     if (NewCtx.contains(D)) {
572       NewCtx = ContextFactory.remove(NewCtx, D);
573     }
574     return NewCtx;
575   }
576 
577   Context intersectContexts(Context C1, Context C2);
578   Context createReferenceContext(Context C);
579   void intersectBackEdge(Context C1, Context C2);
580 };
581 
582 } // namespace
583 
584 // This has to be defined after LocalVariableMap.
585 CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
586   return CFGBlockInfo(M.getEmptyContext());
587 }
588 
589 namespace {
590 
591 /// Visitor which builds a LocalVariableMap
592 class VarMapBuilder : public ConstStmtVisitor<VarMapBuilder> {
593 public:
594   LocalVariableMap* VMap;
595   LocalVariableMap::Context Ctx;
596 
597   VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
598       : VMap(VM), Ctx(C) {}
599 
600   void VisitDeclStmt(const DeclStmt *S);
601   void VisitBinaryOperator(const BinaryOperator *BO);
602 };
603 
604 } // namespace
605 
606 // Add new local variables to the variable map
607 void VarMapBuilder::VisitDeclStmt(const DeclStmt *S) {
608   bool modifiedCtx = false;
609   const DeclGroupRef DGrp = S->getDeclGroup();
610   for (const auto *D : DGrp) {
611     if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) {
612       const Expr *E = VD->getInit();
613 
614       // Add local variables with trivial type to the variable map
615       QualType T = VD->getType();
616       if (T.isTrivialType(VD->getASTContext())) {
617         Ctx = VMap->addDefinition(VD, E, Ctx);
618         modifiedCtx = true;
619       }
620     }
621   }
622   if (modifiedCtx)
623     VMap->saveContext(S, Ctx);
624 }
625 
626 // Update local variable definitions in variable map
627 void VarMapBuilder::VisitBinaryOperator(const BinaryOperator *BO) {
628   if (!BO->isAssignmentOp())
629     return;
630 
631   Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
632 
633   // Update the variable map and current context.
634   if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
635     const ValueDecl *VDec = DRE->getDecl();
636     if (Ctx.lookup(VDec)) {
637       if (BO->getOpcode() == BO_Assign)
638         Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
639       else
640         // FIXME -- handle compound assignment operators
641         Ctx = VMap->clearDefinition(VDec, Ctx);
642       VMap->saveContext(BO, Ctx);
643     }
644   }
645 }
646 
647 // Computes the intersection of two contexts.  The intersection is the
648 // set of variables which have the same definition in both contexts;
649 // variables with different definitions are discarded.
650 LocalVariableMap::Context
651 LocalVariableMap::intersectContexts(Context C1, Context C2) {
652   Context Result = C1;
653   for (const auto &P : C1) {
654     const NamedDecl *Dec = P.first;
655     const unsigned *i2 = C2.lookup(Dec);
656     if (!i2)             // variable doesn't exist on second path
657       Result = removeDefinition(Dec, Result);
658     else if (*i2 != P.second)  // variable exists, but has different definition
659       Result = clearDefinition(Dec, Result);
660   }
661   return Result;
662 }
663 
664 // For every variable in C, create a new variable that refers to the
665 // definition in C.  Return a new context that contains these new variables.
666 // (We use this for a naive implementation of SSA on loop back-edges.)
667 LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
668   Context Result = getEmptyContext();
669   for (const auto &P : C)
670     Result = addReference(P.first, P.second, Result);
671   return Result;
672 }
673 
674 // This routine also takes the intersection of C1 and C2, but it does so by
675 // altering the VarDefinitions.  C1 must be the result of an earlier call to
676 // createReferenceContext.
677 void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
678   for (const auto &P : C1) {
679     unsigned i1 = P.second;
680     VarDefinition *VDef = &VarDefinitions[i1];
681     assert(VDef->isReference());
682 
683     const unsigned *i2 = C2.lookup(P.first);
684     if (!i2 || (*i2 != i1))
685       VDef->Ref = 0;    // Mark this variable as undefined
686   }
687 }
688 
689 // Traverse the CFG in topological order, so all predecessors of a block
690 // (excluding back-edges) are visited before the block itself.  At
691 // each point in the code, we calculate a Context, which holds the set of
692 // variable definitions which are visible at that point in execution.
693 // Visible variables are mapped to their definitions using an array that
694 // contains all definitions.
695 //
696 // At join points in the CFG, the set is computed as the intersection of
697 // the incoming sets along each edge, E.g.
698 //
699 //                       { Context                 | VarDefinitions }
700 //   int x = 0;          { x -> x1                 | x1 = 0 }
701 //   int y = 0;          { x -> x1, y -> y1        | y1 = 0, x1 = 0 }
702 //   if (b) x = 1;       { x -> x2, y -> y1        | x2 = 1, y1 = 0, ... }
703 //   else   x = 2;       { x -> x3, y -> y1        | x3 = 2, x2 = 1, ... }
704 //   ...                 { y -> y1  (x is unknown) | x3 = 2, x2 = 1, ... }
705 //
706 // This is essentially a simpler and more naive version of the standard SSA
707 // algorithm.  Those definitions that remain in the intersection are from blocks
708 // that strictly dominate the current block.  We do not bother to insert proper
709 // phi nodes, because they are not used in our analysis; instead, wherever
710 // a phi node would be required, we simply remove that definition from the
711 // context (E.g. x above).
712 //
713 // The initial traversal does not capture back-edges, so those need to be
714 // handled on a separate pass.  Whenever the first pass encounters an
715 // incoming back edge, it duplicates the context, creating new definitions
716 // that refer back to the originals.  (These correspond to places where SSA
717 // might have to insert a phi node.)  On the second pass, these definitions are
718 // set to NULL if the variable has changed on the back-edge (i.e. a phi
719 // node was actually required.)  E.g.
720 //
721 //                       { Context           | VarDefinitions }
722 //   int x = 0, y = 0;   { x -> x1, y -> y1  | y1 = 0, x1 = 0 }
723 //   while (b)           { x -> x2, y -> y1  | [1st:] x2=x1; [2nd:] x2=NULL; }
724 //     x = x+1;          { x -> x3, y -> y1  | x3 = x2 + 1, ... }
725 //   ...                 { y -> y1           | x3 = 2, x2 = 1, ... }
726 void LocalVariableMap::traverseCFG(CFG *CFGraph,
727                                    const PostOrderCFGView *SortedGraph,
728                                    std::vector<CFGBlockInfo> &BlockInfo) {
729   PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
730 
731   for (const auto *CurrBlock : *SortedGraph) {
732     unsigned CurrBlockID = CurrBlock->getBlockID();
733     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
734 
735     VisitedBlocks.insert(CurrBlock);
736 
737     // Calculate the entry context for the current block
738     bool HasBackEdges = false;
739     bool CtxInit = true;
740     for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
741          PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
742       // if *PI -> CurrBlock is a back edge, so skip it
743       if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) {
744         HasBackEdges = true;
745         continue;
746       }
747 
748       unsigned PrevBlockID = (*PI)->getBlockID();
749       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
750 
751       if (CtxInit) {
752         CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
753         CtxInit = false;
754       }
755       else {
756         CurrBlockInfo->EntryContext =
757           intersectContexts(CurrBlockInfo->EntryContext,
758                             PrevBlockInfo->ExitContext);
759       }
760     }
761 
762     // Duplicate the context if we have back-edges, so we can call
763     // intersectBackEdges later.
764     if (HasBackEdges)
765       CurrBlockInfo->EntryContext =
766         createReferenceContext(CurrBlockInfo->EntryContext);
767 
768     // Create a starting context index for the current block
769     saveContext(nullptr, CurrBlockInfo->EntryContext);
770     CurrBlockInfo->EntryIndex = getContextIndex();
771 
772     // Visit all the statements in the basic block.
773     VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
774     for (const auto &BI : *CurrBlock) {
775       switch (BI.getKind()) {
776         case CFGElement::Statement: {
777           CFGStmt CS = BI.castAs<CFGStmt>();
778           VMapBuilder.Visit(CS.getStmt());
779           break;
780         }
781         default:
782           break;
783       }
784     }
785     CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
786 
787     // Mark variables on back edges as "unknown" if they've been changed.
788     for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
789          SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
790       // if CurrBlock -> *SI is *not* a back edge
791       if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
792         continue;
793 
794       CFGBlock *FirstLoopBlock = *SI;
795       Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
796       Context LoopEnd   = CurrBlockInfo->ExitContext;
797       intersectBackEdge(LoopBegin, LoopEnd);
798     }
799   }
800 
801   // Put an extra entry at the end of the indexed context array
802   unsigned exitID = CFGraph->getExit().getBlockID();
803   saveContext(nullptr, BlockInfo[exitID].ExitContext);
804 }
805 
806 /// Find the appropriate source locations to use when producing diagnostics for
807 /// each block in the CFG.
808 static void findBlockLocations(CFG *CFGraph,
809                                const PostOrderCFGView *SortedGraph,
810                                std::vector<CFGBlockInfo> &BlockInfo) {
811   for (const auto *CurrBlock : *SortedGraph) {
812     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
813 
814     // Find the source location of the last statement in the block, if the
815     // block is not empty.
816     if (const Stmt *S = CurrBlock->getTerminatorStmt()) {
817       CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getBeginLoc();
818     } else {
819       for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
820            BE = CurrBlock->rend(); BI != BE; ++BI) {
821         // FIXME: Handle other CFGElement kinds.
822         if (std::optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
823           CurrBlockInfo->ExitLoc = CS->getStmt()->getBeginLoc();
824           break;
825         }
826       }
827     }
828 
829     if (CurrBlockInfo->ExitLoc.isValid()) {
830       // This block contains at least one statement. Find the source location
831       // of the first statement in the block.
832       for (const auto &BI : *CurrBlock) {
833         // FIXME: Handle other CFGElement kinds.
834         if (std::optional<CFGStmt> CS = BI.getAs<CFGStmt>()) {
835           CurrBlockInfo->EntryLoc = CS->getStmt()->getBeginLoc();
836           break;
837         }
838       }
839     } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
840                CurrBlock != &CFGraph->getExit()) {
841       // The block is empty, and has a single predecessor. Use its exit
842       // location.
843       CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
844           BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
845     } else if (CurrBlock->succ_size() == 1 && *CurrBlock->succ_begin()) {
846       // The block is empty, and has a single successor. Use its entry
847       // location.
848       CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
849           BlockInfo[(*CurrBlock->succ_begin())->getBlockID()].EntryLoc;
850     }
851   }
852 }
853 
854 namespace {
855 
856 class LockableFactEntry : public FactEntry {
857 public:
858   LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
859                     SourceKind Src = Acquired)
860       : FactEntry(CE, LK, Loc, Src) {}
861 
862   void
863   handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
864                                 SourceLocation JoinLoc, LockErrorKind LEK,
865                                 ThreadSafetyHandler &Handler) const override {
866     if (!asserted() && !negative() && !isUniversal()) {
867       Handler.handleMutexHeldEndOfScope(getKind(), toString(), loc(), JoinLoc,
868                                         LEK);
869     }
870   }
871 
872   void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry,
873                   ThreadSafetyHandler &Handler) const override {
874     Handler.handleDoubleLock(entry.getKind(), entry.toString(), loc(),
875                              entry.loc());
876   }
877 
878   void handleUnlock(FactSet &FSet, FactManager &FactMan,
879                     const CapabilityExpr &Cp, SourceLocation UnlockLoc,
880                     bool FullyRemove,
881                     ThreadSafetyHandler &Handler) const override {
882     FSet.removeLock(FactMan, Cp);
883     if (!Cp.negative()) {
884       FSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
885                                 !Cp, LK_Exclusive, UnlockLoc));
886     }
887   }
888 };
889 
890 class ScopedLockableFactEntry : public FactEntry {
891 private:
892   enum UnderlyingCapabilityKind {
893     UCK_Acquired,          ///< Any kind of acquired capability.
894     UCK_ReleasedShared,    ///< Shared capability that was released.
895     UCK_ReleasedExclusive, ///< Exclusive capability that was released.
896   };
897 
898   struct UnderlyingCapability {
899     CapabilityExpr Cap;
900     UnderlyingCapabilityKind Kind;
901   };
902 
903   SmallVector<UnderlyingCapability, 2> UnderlyingMutexes;
904 
905 public:
906   ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc)
907       : FactEntry(CE, LK_Exclusive, Loc, Acquired) {}
908 
909   void addLock(const CapabilityExpr &M) {
910     UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_Acquired});
911   }
912 
913   void addExclusiveUnlock(const CapabilityExpr &M) {
914     UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_ReleasedExclusive});
915   }
916 
917   void addSharedUnlock(const CapabilityExpr &M) {
918     UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_ReleasedShared});
919   }
920 
921   void
922   handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
923                                 SourceLocation JoinLoc, LockErrorKind LEK,
924                                 ThreadSafetyHandler &Handler) const override {
925     for (const auto &UnderlyingMutex : UnderlyingMutexes) {
926       const auto *Entry = FSet.findLock(FactMan, UnderlyingMutex.Cap);
927       if ((UnderlyingMutex.Kind == UCK_Acquired && Entry) ||
928           (UnderlyingMutex.Kind != UCK_Acquired && !Entry)) {
929         // If this scoped lock manages another mutex, and if the underlying
930         // mutex is still/not held, then warn about the underlying mutex.
931         Handler.handleMutexHeldEndOfScope(UnderlyingMutex.Cap.getKind(),
932                                           UnderlyingMutex.Cap.toString(), loc(),
933                                           JoinLoc, LEK);
934       }
935     }
936   }
937 
938   void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry,
939                   ThreadSafetyHandler &Handler) const override {
940     for (const auto &UnderlyingMutex : UnderlyingMutexes) {
941       if (UnderlyingMutex.Kind == UCK_Acquired)
942         lock(FSet, FactMan, UnderlyingMutex.Cap, entry.kind(), entry.loc(),
943              &Handler);
944       else
945         unlock(FSet, FactMan, UnderlyingMutex.Cap, entry.loc(), &Handler);
946     }
947   }
948 
949   void handleUnlock(FactSet &FSet, FactManager &FactMan,
950                     const CapabilityExpr &Cp, SourceLocation UnlockLoc,
951                     bool FullyRemove,
952                     ThreadSafetyHandler &Handler) const override {
953     assert(!Cp.negative() && "Managing object cannot be negative.");
954     for (const auto &UnderlyingMutex : UnderlyingMutexes) {
955       // Remove/lock the underlying mutex if it exists/is still unlocked; warn
956       // on double unlocking/locking if we're not destroying the scoped object.
957       ThreadSafetyHandler *TSHandler = FullyRemove ? nullptr : &Handler;
958       if (UnderlyingMutex.Kind == UCK_Acquired) {
959         unlock(FSet, FactMan, UnderlyingMutex.Cap, UnlockLoc, TSHandler);
960       } else {
961         LockKind kind = UnderlyingMutex.Kind == UCK_ReleasedShared
962                             ? LK_Shared
963                             : LK_Exclusive;
964         lock(FSet, FactMan, UnderlyingMutex.Cap, kind, UnlockLoc, TSHandler);
965       }
966     }
967     if (FullyRemove)
968       FSet.removeLock(FactMan, Cp);
969   }
970 
971 private:
972   void lock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp,
973             LockKind kind, SourceLocation loc,
974             ThreadSafetyHandler *Handler) const {
975     if (const FactEntry *Fact = FSet.findLock(FactMan, Cp)) {
976       if (Handler)
977         Handler->handleDoubleLock(Cp.getKind(), Cp.toString(), Fact->loc(),
978                                   loc);
979     } else {
980       FSet.removeLock(FactMan, !Cp);
981       FSet.addLock(FactMan,
982                    std::make_unique<LockableFactEntry>(Cp, kind, loc, Managed));
983     }
984   }
985 
986   void unlock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp,
987               SourceLocation loc, ThreadSafetyHandler *Handler) const {
988     if (FSet.findLock(FactMan, Cp)) {
989       FSet.removeLock(FactMan, Cp);
990       FSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
991                                 !Cp, LK_Exclusive, loc));
992     } else if (Handler) {
993       SourceLocation PrevLoc;
994       if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp))
995         PrevLoc = Neg->loc();
996       Handler->handleUnmatchedUnlock(Cp.getKind(), Cp.toString(), loc, PrevLoc);
997     }
998   }
999 };
1000 
1001 /// Class which implements the core thread safety analysis routines.
1002 class ThreadSafetyAnalyzer {
1003   friend class BuildLockset;
1004   friend class threadSafety::BeforeSet;
1005 
1006   llvm::BumpPtrAllocator Bpa;
1007   threadSafety::til::MemRegionRef Arena;
1008   threadSafety::SExprBuilder SxBuilder;
1009 
1010   ThreadSafetyHandler &Handler;
1011   const CXXMethodDecl *CurrentMethod;
1012   LocalVariableMap LocalVarMap;
1013   FactManager FactMan;
1014   std::vector<CFGBlockInfo> BlockInfo;
1015 
1016   BeforeSet *GlobalBeforeSet;
1017 
1018 public:
1019   ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset)
1020       : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {}
1021 
1022   bool inCurrentScope(const CapabilityExpr &CapE);
1023 
1024   void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry,
1025                bool ReqAttr = false);
1026   void removeLock(FactSet &FSet, const CapabilityExpr &CapE,
1027                   SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind);
1028 
1029   template <typename AttrType>
1030   void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp,
1031                    const NamedDecl *D, til::SExpr *Self = nullptr);
1032 
1033   template <class AttrType>
1034   void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp,
1035                    const NamedDecl *D,
1036                    const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
1037                    Expr *BrE, bool Neg);
1038 
1039   const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
1040                                      bool &Negate);
1041 
1042   void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
1043                       const CFGBlock* PredBlock,
1044                       const CFGBlock *CurrBlock);
1045 
1046   bool join(const FactEntry &a, const FactEntry &b, bool CanModify);
1047 
1048   void intersectAndWarn(FactSet &EntrySet, const FactSet &ExitSet,
1049                         SourceLocation JoinLoc, LockErrorKind EntryLEK,
1050                         LockErrorKind ExitLEK);
1051 
1052   void intersectAndWarn(FactSet &EntrySet, const FactSet &ExitSet,
1053                         SourceLocation JoinLoc, LockErrorKind LEK) {
1054     intersectAndWarn(EntrySet, ExitSet, JoinLoc, LEK, LEK);
1055   }
1056 
1057   void runAnalysis(AnalysisDeclContext &AC);
1058 };
1059 
1060 } // namespace
1061 
1062 /// Process acquired_before and acquired_after attributes on Vd.
1063 BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd,
1064     ThreadSafetyAnalyzer& Analyzer) {
1065   // Create a new entry for Vd.
1066   BeforeInfo *Info = nullptr;
1067   {
1068     // Keep InfoPtr in its own scope in case BMap is modified later and the
1069     // reference becomes invalid.
1070     std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd];
1071     if (!InfoPtr)
1072       InfoPtr.reset(new BeforeInfo());
1073     Info = InfoPtr.get();
1074   }
1075 
1076   for (const auto *At : Vd->attrs()) {
1077     switch (At->getKind()) {
1078       case attr::AcquiredBefore: {
1079         const auto *A = cast<AcquiredBeforeAttr>(At);
1080 
1081         // Read exprs from the attribute, and add them to BeforeVect.
1082         for (const auto *Arg : A->args()) {
1083           CapabilityExpr Cp =
1084             Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
1085           if (const ValueDecl *Cpvd = Cp.valueDecl()) {
1086             Info->Vect.push_back(Cpvd);
1087             const auto It = BMap.find(Cpvd);
1088             if (It == BMap.end())
1089               insertAttrExprs(Cpvd, Analyzer);
1090           }
1091         }
1092         break;
1093       }
1094       case attr::AcquiredAfter: {
1095         const auto *A = cast<AcquiredAfterAttr>(At);
1096 
1097         // Read exprs from the attribute, and add them to BeforeVect.
1098         for (const auto *Arg : A->args()) {
1099           CapabilityExpr Cp =
1100             Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
1101           if (const ValueDecl *ArgVd = Cp.valueDecl()) {
1102             // Get entry for mutex listed in attribute
1103             BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer);
1104             ArgInfo->Vect.push_back(Vd);
1105           }
1106         }
1107         break;
1108       }
1109       default:
1110         break;
1111     }
1112   }
1113 
1114   return Info;
1115 }
1116 
1117 BeforeSet::BeforeInfo *
1118 BeforeSet::getBeforeInfoForDecl(const ValueDecl *Vd,
1119                                 ThreadSafetyAnalyzer &Analyzer) {
1120   auto It = BMap.find(Vd);
1121   BeforeInfo *Info = nullptr;
1122   if (It == BMap.end())
1123     Info = insertAttrExprs(Vd, Analyzer);
1124   else
1125     Info = It->second.get();
1126   assert(Info && "BMap contained nullptr?");
1127   return Info;
1128 }
1129 
1130 /// Return true if any mutexes in FSet are in the acquired_before set of Vd.
1131 void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd,
1132                                  const FactSet& FSet,
1133                                  ThreadSafetyAnalyzer& Analyzer,
1134                                  SourceLocation Loc, StringRef CapKind) {
1135   SmallVector<BeforeInfo*, 8> InfoVect;
1136 
1137   // Do a depth-first traversal of Vd.
1138   // Return true if there are cycles.
1139   std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) {
1140     if (!Vd)
1141       return false;
1142 
1143     BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer);
1144 
1145     if (Info->Visited == 1)
1146       return true;
1147 
1148     if (Info->Visited == 2)
1149       return false;
1150 
1151     if (Info->Vect.empty())
1152       return false;
1153 
1154     InfoVect.push_back(Info);
1155     Info->Visited = 1;
1156     for (const auto *Vdb : Info->Vect) {
1157       // Exclude mutexes in our immediate before set.
1158       if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) {
1159         StringRef L1 = StartVd->getName();
1160         StringRef L2 = Vdb->getName();
1161         Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc);
1162       }
1163       // Transitively search other before sets, and warn on cycles.
1164       if (traverse(Vdb)) {
1165         if (!CycMap.contains(Vd)) {
1166           CycMap.insert(std::make_pair(Vd, true));
1167           StringRef L1 = Vd->getName();
1168           Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation());
1169         }
1170       }
1171     }
1172     Info->Visited = 2;
1173     return false;
1174   };
1175 
1176   traverse(StartVd);
1177 
1178   for (auto *Info : InfoVect)
1179     Info->Visited = 0;
1180 }
1181 
1182 /// Gets the value decl pointer from DeclRefExprs or MemberExprs.
1183 static const ValueDecl *getValueDecl(const Expr *Exp) {
1184   if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp))
1185     return getValueDecl(CE->getSubExpr());
1186 
1187   if (const auto *DR = dyn_cast<DeclRefExpr>(Exp))
1188     return DR->getDecl();
1189 
1190   if (const auto *ME = dyn_cast<MemberExpr>(Exp))
1191     return ME->getMemberDecl();
1192 
1193   return nullptr;
1194 }
1195 
1196 namespace {
1197 
1198 template <typename Ty>
1199 class has_arg_iterator_range {
1200   using yes = char[1];
1201   using no = char[2];
1202 
1203   template <typename Inner>
1204   static yes& test(Inner *I, decltype(I->args()) * = nullptr);
1205 
1206   template <typename>
1207   static no& test(...);
1208 
1209 public:
1210   static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
1211 };
1212 
1213 } // namespace
1214 
1215 bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) {
1216   const threadSafety::til::SExpr *SExp = CapE.sexpr();
1217   assert(SExp && "Null expressions should be ignored");
1218 
1219   if (const auto *LP = dyn_cast<til::LiteralPtr>(SExp)) {
1220     const ValueDecl *VD = LP->clangDecl();
1221     // Variables defined in a function are always inaccessible.
1222     if (!VD || !VD->isDefinedOutsideFunctionOrMethod())
1223       return false;
1224     // For now we consider static class members to be inaccessible.
1225     if (isa<CXXRecordDecl>(VD->getDeclContext()))
1226       return false;
1227     // Global variables are always in scope.
1228     return true;
1229   }
1230 
1231   // Members are in scope from methods of the same class.
1232   if (const auto *P = dyn_cast<til::Project>(SExp)) {
1233     if (!CurrentMethod)
1234       return false;
1235     const ValueDecl *VD = P->clangDecl();
1236     return VD->getDeclContext() == CurrentMethod->getDeclContext();
1237   }
1238 
1239   return false;
1240 }
1241 
1242 /// Add a new lock to the lockset, warning if the lock is already there.
1243 /// \param ReqAttr -- true if this is part of an initial Requires attribute.
1244 void ThreadSafetyAnalyzer::addLock(FactSet &FSet,
1245                                    std::unique_ptr<FactEntry> Entry,
1246                                    bool ReqAttr) {
1247   if (Entry->shouldIgnore())
1248     return;
1249 
1250   if (!ReqAttr && !Entry->negative()) {
1251     // look for the negative capability, and remove it from the fact set.
1252     CapabilityExpr NegC = !*Entry;
1253     const FactEntry *Nen = FSet.findLock(FactMan, NegC);
1254     if (Nen) {
1255       FSet.removeLock(FactMan, NegC);
1256     }
1257     else {
1258       if (inCurrentScope(*Entry) && !Entry->asserted())
1259         Handler.handleNegativeNotHeld(Entry->getKind(), Entry->toString(),
1260                                       NegC.toString(), Entry->loc());
1261     }
1262   }
1263 
1264   // Check before/after constraints
1265   if (Handler.issueBetaWarnings() &&
1266       !Entry->asserted() && !Entry->declared()) {
1267     GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this,
1268                                       Entry->loc(), Entry->getKind());
1269   }
1270 
1271   // FIXME: Don't always warn when we have support for reentrant locks.
1272   if (const FactEntry *Cp = FSet.findLock(FactMan, *Entry)) {
1273     if (!Entry->asserted())
1274       Cp->handleLock(FSet, FactMan, *Entry, Handler);
1275   } else {
1276     FSet.addLock(FactMan, std::move(Entry));
1277   }
1278 }
1279 
1280 /// Remove a lock from the lockset, warning if the lock is not there.
1281 /// \param UnlockLoc The source location of the unlock (only used in error msg)
1282 void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp,
1283                                       SourceLocation UnlockLoc,
1284                                       bool FullyRemove, LockKind ReceivedKind) {
1285   if (Cp.shouldIgnore())
1286     return;
1287 
1288   const FactEntry *LDat = FSet.findLock(FactMan, Cp);
1289   if (!LDat) {
1290     SourceLocation PrevLoc;
1291     if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp))
1292       PrevLoc = Neg->loc();
1293     Handler.handleUnmatchedUnlock(Cp.getKind(), Cp.toString(), UnlockLoc,
1294                                   PrevLoc);
1295     return;
1296   }
1297 
1298   // Generic lock removal doesn't care about lock kind mismatches, but
1299   // otherwise diagnose when the lock kinds are mismatched.
1300   if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) {
1301     Handler.handleIncorrectUnlockKind(Cp.getKind(), Cp.toString(), LDat->kind(),
1302                                       ReceivedKind, LDat->loc(), UnlockLoc);
1303   }
1304 
1305   LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler);
1306 }
1307 
1308 /// Extract the list of mutexIDs from the attribute on an expression,
1309 /// and push them onto Mtxs, discarding any duplicates.
1310 template <typename AttrType>
1311 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
1312                                        const Expr *Exp, const NamedDecl *D,
1313                                        til::SExpr *Self) {
1314   if (Attr->args_size() == 0) {
1315     // The mutex held is the "this" object.
1316     CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, Self);
1317     if (Cp.isInvalid()) {
1318       warnInvalidLock(Handler, nullptr, D, Exp, Cp.getKind());
1319       return;
1320     }
1321     //else
1322     if (!Cp.shouldIgnore())
1323       Mtxs.push_back_nodup(Cp);
1324     return;
1325   }
1326 
1327   for (const auto *Arg : Attr->args()) {
1328     CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, Self);
1329     if (Cp.isInvalid()) {
1330       warnInvalidLock(Handler, nullptr, D, Exp, Cp.getKind());
1331       continue;
1332     }
1333     //else
1334     if (!Cp.shouldIgnore())
1335       Mtxs.push_back_nodup(Cp);
1336   }
1337 }
1338 
1339 /// Extract the list of mutexIDs from a trylock attribute.  If the
1340 /// trylock applies to the given edge, then push them onto Mtxs, discarding
1341 /// any duplicates.
1342 template <class AttrType>
1343 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
1344                                        const Expr *Exp, const NamedDecl *D,
1345                                        const CFGBlock *PredBlock,
1346                                        const CFGBlock *CurrBlock,
1347                                        Expr *BrE, bool Neg) {
1348   // Find out which branch has the lock
1349   bool branch = false;
1350   if (const auto *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE))
1351     branch = BLE->getValue();
1352   else if (const auto *ILE = dyn_cast_or_null<IntegerLiteral>(BrE))
1353     branch = ILE->getValue().getBoolValue();
1354 
1355   int branchnum = branch ? 0 : 1;
1356   if (Neg)
1357     branchnum = !branchnum;
1358 
1359   // If we've taken the trylock branch, then add the lock
1360   int i = 0;
1361   for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
1362        SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
1363     if (*SI == CurrBlock && i == branchnum)
1364       getMutexIDs(Mtxs, Attr, Exp, D);
1365   }
1366 }
1367 
1368 static bool getStaticBooleanValue(Expr *E, bool &TCond) {
1369   if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
1370     TCond = false;
1371     return true;
1372   } else if (const auto *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
1373     TCond = BLE->getValue();
1374     return true;
1375   } else if (const auto *ILE = dyn_cast<IntegerLiteral>(E)) {
1376     TCond = ILE->getValue().getBoolValue();
1377     return true;
1378   } else if (auto *CE = dyn_cast<ImplicitCastExpr>(E))
1379     return getStaticBooleanValue(CE->getSubExpr(), TCond);
1380   return false;
1381 }
1382 
1383 // If Cond can be traced back to a function call, return the call expression.
1384 // The negate variable should be called with false, and will be set to true
1385 // if the function call is negated, e.g. if (!mu.tryLock(...))
1386 const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
1387                                                          LocalVarContext C,
1388                                                          bool &Negate) {
1389   if (!Cond)
1390     return nullptr;
1391 
1392   if (const auto *CallExp = dyn_cast<CallExpr>(Cond)) {
1393     if (CallExp->getBuiltinCallee() == Builtin::BI__builtin_expect)
1394       return getTrylockCallExpr(CallExp->getArg(0), C, Negate);
1395     return CallExp;
1396   }
1397   else if (const auto *PE = dyn_cast<ParenExpr>(Cond))
1398     return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
1399   else if (const auto *CE = dyn_cast<ImplicitCastExpr>(Cond))
1400     return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
1401   else if (const auto *FE = dyn_cast<FullExpr>(Cond))
1402     return getTrylockCallExpr(FE->getSubExpr(), C, Negate);
1403   else if (const auto *DRE = dyn_cast<DeclRefExpr>(Cond)) {
1404     const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
1405     return getTrylockCallExpr(E, C, Negate);
1406   }
1407   else if (const auto *UOP = dyn_cast<UnaryOperator>(Cond)) {
1408     if (UOP->getOpcode() == UO_LNot) {
1409       Negate = !Negate;
1410       return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
1411     }
1412     return nullptr;
1413   }
1414   else if (const auto *BOP = dyn_cast<BinaryOperator>(Cond)) {
1415     if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
1416       if (BOP->getOpcode() == BO_NE)
1417         Negate = !Negate;
1418 
1419       bool TCond = false;
1420       if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
1421         if (!TCond) Negate = !Negate;
1422         return getTrylockCallExpr(BOP->getLHS(), C, Negate);
1423       }
1424       TCond = false;
1425       if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
1426         if (!TCond) Negate = !Negate;
1427         return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1428       }
1429       return nullptr;
1430     }
1431     if (BOP->getOpcode() == BO_LAnd) {
1432       // LHS must have been evaluated in a different block.
1433       return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1434     }
1435     if (BOP->getOpcode() == BO_LOr)
1436       return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1437     return nullptr;
1438   } else if (const auto *COP = dyn_cast<ConditionalOperator>(Cond)) {
1439     bool TCond, FCond;
1440     if (getStaticBooleanValue(COP->getTrueExpr(), TCond) &&
1441         getStaticBooleanValue(COP->getFalseExpr(), FCond)) {
1442       if (TCond && !FCond)
1443         return getTrylockCallExpr(COP->getCond(), C, Negate);
1444       if (!TCond && FCond) {
1445         Negate = !Negate;
1446         return getTrylockCallExpr(COP->getCond(), C, Negate);
1447       }
1448     }
1449   }
1450   return nullptr;
1451 }
1452 
1453 /// Find the lockset that holds on the edge between PredBlock
1454 /// and CurrBlock.  The edge set is the exit set of PredBlock (passed
1455 /// as the ExitSet parameter) plus any trylocks, which are conditionally held.
1456 void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
1457                                           const FactSet &ExitSet,
1458                                           const CFGBlock *PredBlock,
1459                                           const CFGBlock *CurrBlock) {
1460   Result = ExitSet;
1461 
1462   const Stmt *Cond = PredBlock->getTerminatorCondition();
1463   // We don't acquire try-locks on ?: branches, only when its result is used.
1464   if (!Cond || isa<ConditionalOperator>(PredBlock->getTerminatorStmt()))
1465     return;
1466 
1467   bool Negate = false;
1468   const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
1469   const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
1470 
1471   const auto *Exp = getTrylockCallExpr(Cond, LVarCtx, Negate);
1472   if (!Exp)
1473     return;
1474 
1475   auto *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1476   if(!FunDecl || !FunDecl->hasAttrs())
1477     return;
1478 
1479   CapExprSet ExclusiveLocksToAdd;
1480   CapExprSet SharedLocksToAdd;
1481 
1482   // If the condition is a call to a Trylock function, then grab the attributes
1483   for (const auto *Attr : FunDecl->attrs()) {
1484     switch (Attr->getKind()) {
1485       case attr::TryAcquireCapability: {
1486         auto *A = cast<TryAcquireCapabilityAttr>(Attr);
1487         getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
1488                     Exp, FunDecl, PredBlock, CurrBlock, A->getSuccessValue(),
1489                     Negate);
1490         break;
1491       };
1492       case attr::ExclusiveTrylockFunction: {
1493         const auto *A = cast<ExclusiveTrylockFunctionAttr>(Attr);
1494         getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl, PredBlock, CurrBlock,
1495                     A->getSuccessValue(), Negate);
1496         break;
1497       }
1498       case attr::SharedTrylockFunction: {
1499         const auto *A = cast<SharedTrylockFunctionAttr>(Attr);
1500         getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl, PredBlock, CurrBlock,
1501                     A->getSuccessValue(), Negate);
1502         break;
1503       }
1504       default:
1505         break;
1506     }
1507   }
1508 
1509   // Add and remove locks.
1510   SourceLocation Loc = Exp->getExprLoc();
1511   for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd)
1512     addLock(Result, std::make_unique<LockableFactEntry>(ExclusiveLockToAdd,
1513                                                         LK_Exclusive, Loc));
1514   for (const auto &SharedLockToAdd : SharedLocksToAdd)
1515     addLock(Result, std::make_unique<LockableFactEntry>(SharedLockToAdd,
1516                                                         LK_Shared, Loc));
1517 }
1518 
1519 namespace {
1520 
1521 /// We use this class to visit different types of expressions in
1522 /// CFGBlocks, and build up the lockset.
1523 /// An expression may cause us to add or remove locks from the lockset, or else
1524 /// output error messages related to missing locks.
1525 /// FIXME: In future, we may be able to not inherit from a visitor.
1526 class BuildLockset : public ConstStmtVisitor<BuildLockset> {
1527   friend class ThreadSafetyAnalyzer;
1528 
1529   ThreadSafetyAnalyzer *Analyzer;
1530   FactSet FSet;
1531   /// Maps constructed objects to `this` placeholder prior to initialization.
1532   llvm::SmallDenseMap<const Expr *, til::LiteralPtr *> ConstructedObjects;
1533   LocalVariableMap::Context LVarCtx;
1534   unsigned CtxIndex;
1535 
1536   // helper functions
1537   void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK,
1538                           Expr *MutexExp, ProtectedOperationKind POK,
1539                           til::LiteralPtr *Self, SourceLocation Loc);
1540   void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp,
1541                        til::LiteralPtr *Self, SourceLocation Loc);
1542 
1543   void checkAccess(const Expr *Exp, AccessKind AK,
1544                    ProtectedOperationKind POK = POK_VarAccess);
1545   void checkPtAccess(const Expr *Exp, AccessKind AK,
1546                      ProtectedOperationKind POK = POK_VarAccess);
1547 
1548   void handleCall(const Expr *Exp, const NamedDecl *D,
1549                   til::LiteralPtr *Self = nullptr,
1550                   SourceLocation Loc = SourceLocation());
1551   void examineArguments(const FunctionDecl *FD,
1552                         CallExpr::const_arg_iterator ArgBegin,
1553                         CallExpr::const_arg_iterator ArgEnd,
1554                         bool SkipFirstParam = false);
1555 
1556 public:
1557   BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info)
1558       : ConstStmtVisitor<BuildLockset>(), Analyzer(Anlzr), FSet(Info.EntrySet),
1559         LVarCtx(Info.EntryContext), CtxIndex(Info.EntryIndex) {}
1560 
1561   void VisitUnaryOperator(const UnaryOperator *UO);
1562   void VisitBinaryOperator(const BinaryOperator *BO);
1563   void VisitCastExpr(const CastExpr *CE);
1564   void VisitCallExpr(const CallExpr *Exp);
1565   void VisitCXXConstructExpr(const CXXConstructExpr *Exp);
1566   void VisitDeclStmt(const DeclStmt *S);
1567   void VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *Exp);
1568 };
1569 
1570 } // namespace
1571 
1572 /// Warn if the LSet does not contain a lock sufficient to protect access
1573 /// of at least the passed in AccessKind.
1574 void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp,
1575                                       AccessKind AK, Expr *MutexExp,
1576                                       ProtectedOperationKind POK,
1577                                       til::LiteralPtr *Self,
1578                                       SourceLocation Loc) {
1579   LockKind LK = getLockKindFromAccessKind(AK);
1580 
1581   CapabilityExpr Cp =
1582       Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp, Self);
1583   if (Cp.isInvalid()) {
1584     warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, Cp.getKind());
1585     return;
1586   } else if (Cp.shouldIgnore()) {
1587     return;
1588   }
1589 
1590   if (Cp.negative()) {
1591     // Negative capabilities act like locks excluded
1592     const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, !Cp);
1593     if (LDat) {
1594       Analyzer->Handler.handleFunExcludesLock(
1595           Cp.getKind(), D->getNameAsString(), (!Cp).toString(), Loc);
1596       return;
1597     }
1598 
1599     // If this does not refer to a negative capability in the same class,
1600     // then stop here.
1601     if (!Analyzer->inCurrentScope(Cp))
1602       return;
1603 
1604     // Otherwise the negative requirement must be propagated to the caller.
1605     LDat = FSet.findLock(Analyzer->FactMan, Cp);
1606     if (!LDat) {
1607       Analyzer->Handler.handleNegativeNotHeld(D, Cp.toString(), Loc);
1608     }
1609     return;
1610   }
1611 
1612   const FactEntry *LDat = FSet.findLockUniv(Analyzer->FactMan, Cp);
1613   bool NoError = true;
1614   if (!LDat) {
1615     // No exact match found.  Look for a partial match.
1616     LDat = FSet.findPartialMatch(Analyzer->FactMan, Cp);
1617     if (LDat) {
1618       // Warn that there's no precise match.
1619       std::string PartMatchStr = LDat->toString();
1620       StringRef   PartMatchName(PartMatchStr);
1621       Analyzer->Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(),
1622                                            LK, Loc, &PartMatchName);
1623     } else {
1624       // Warn that there's no match at all.
1625       Analyzer->Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(),
1626                                            LK, Loc);
1627     }
1628     NoError = false;
1629   }
1630   // Make sure the mutex we found is the right kind.
1631   if (NoError && LDat && !LDat->isAtLeast(LK)) {
1632     Analyzer->Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(),
1633                                          LK, Loc);
1634   }
1635 }
1636 
1637 /// Warn if the LSet contains the given lock.
1638 void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp,
1639                                    Expr *MutexExp, til::LiteralPtr *Self,
1640                                    SourceLocation Loc) {
1641   CapabilityExpr Cp =
1642       Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp, Self);
1643   if (Cp.isInvalid()) {
1644     warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, Cp.getKind());
1645     return;
1646   } else if (Cp.shouldIgnore()) {
1647     return;
1648   }
1649 
1650   const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, Cp);
1651   if (LDat) {
1652     Analyzer->Handler.handleFunExcludesLock(Cp.getKind(), D->getNameAsString(),
1653                                             Cp.toString(), Loc);
1654   }
1655 }
1656 
1657 /// Checks guarded_by and pt_guarded_by attributes.
1658 /// Whenever we identify an access (read or write) to a DeclRefExpr that is
1659 /// marked with guarded_by, we must ensure the appropriate mutexes are held.
1660 /// Similarly, we check if the access is to an expression that dereferences
1661 /// a pointer marked with pt_guarded_by.
1662 void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK,
1663                                ProtectedOperationKind POK) {
1664   Exp = Exp->IgnoreImplicit()->IgnoreParenCasts();
1665 
1666   SourceLocation Loc = Exp->getExprLoc();
1667 
1668   // Local variables of reference type cannot be re-assigned;
1669   // map them to their initializer.
1670   while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) {
1671     const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl());
1672     if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) {
1673       if (const auto *E = VD->getInit()) {
1674         // Guard against self-initialization. e.g., int &i = i;
1675         if (E == Exp)
1676           break;
1677         Exp = E;
1678         continue;
1679       }
1680     }
1681     break;
1682   }
1683 
1684   if (const auto *UO = dyn_cast<UnaryOperator>(Exp)) {
1685     // For dereferences
1686     if (UO->getOpcode() == UO_Deref)
1687       checkPtAccess(UO->getSubExpr(), AK, POK);
1688     return;
1689   }
1690 
1691   if (const auto *BO = dyn_cast<BinaryOperator>(Exp)) {
1692     switch (BO->getOpcode()) {
1693     case BO_PtrMemD: // .*
1694       return checkAccess(BO->getLHS(), AK, POK);
1695     case BO_PtrMemI: // ->*
1696       return checkPtAccess(BO->getLHS(), AK, POK);
1697     default:
1698       return;
1699     }
1700   }
1701 
1702   if (const auto *AE = dyn_cast<ArraySubscriptExpr>(Exp)) {
1703     checkPtAccess(AE->getLHS(), AK, POK);
1704     return;
1705   }
1706 
1707   if (const auto *ME = dyn_cast<MemberExpr>(Exp)) {
1708     if (ME->isArrow())
1709       checkPtAccess(ME->getBase(), AK, POK);
1710     else
1711       checkAccess(ME->getBase(), AK, POK);
1712   }
1713 
1714   const ValueDecl *D = getValueDecl(Exp);
1715   if (!D || !D->hasAttrs())
1716     return;
1717 
1718   if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) {
1719     Analyzer->Handler.handleNoMutexHeld(D, POK, AK, Loc);
1720   }
1721 
1722   for (const auto *I : D->specific_attrs<GuardedByAttr>())
1723     warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK, nullptr, Loc);
1724 }
1725 
1726 /// Checks pt_guarded_by and pt_guarded_var attributes.
1727 /// POK is the same  operationKind that was passed to checkAccess.
1728 void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK,
1729                                  ProtectedOperationKind POK) {
1730   while (true) {
1731     if (const auto *PE = dyn_cast<ParenExpr>(Exp)) {
1732       Exp = PE->getSubExpr();
1733       continue;
1734     }
1735     if (const auto *CE = dyn_cast<CastExpr>(Exp)) {
1736       if (CE->getCastKind() == CK_ArrayToPointerDecay) {
1737         // If it's an actual array, and not a pointer, then it's elements
1738         // are protected by GUARDED_BY, not PT_GUARDED_BY;
1739         checkAccess(CE->getSubExpr(), AK, POK);
1740         return;
1741       }
1742       Exp = CE->getSubExpr();
1743       continue;
1744     }
1745     break;
1746   }
1747 
1748   // Pass by reference warnings are under a different flag.
1749   ProtectedOperationKind PtPOK = POK_VarDereference;
1750   if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef;
1751 
1752   const ValueDecl *D = getValueDecl(Exp);
1753   if (!D || !D->hasAttrs())
1754     return;
1755 
1756   if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan))
1757     Analyzer->Handler.handleNoMutexHeld(D, PtPOK, AK, Exp->getExprLoc());
1758 
1759   for (auto const *I : D->specific_attrs<PtGuardedByAttr>())
1760     warnIfMutexNotHeld(D, Exp, AK, I->getArg(), PtPOK, nullptr,
1761                        Exp->getExprLoc());
1762 }
1763 
1764 /// Process a function call, method call, constructor call,
1765 /// or destructor call.  This involves looking at the attributes on the
1766 /// corresponding function/method/constructor/destructor, issuing warnings,
1767 /// and updating the locksets accordingly.
1768 ///
1769 /// FIXME: For classes annotated with one of the guarded annotations, we need
1770 /// to treat const method calls as reads and non-const method calls as writes,
1771 /// and check that the appropriate locks are held. Non-const method calls with
1772 /// the same signature as const method calls can be also treated as reads.
1773 ///
1774 /// \param Exp   The call expression.
1775 /// \param D     The callee declaration.
1776 /// \param Self  If \p Exp = nullptr, the implicit this argument.
1777 /// \param Loc   If \p Exp = nullptr, the location.
1778 void BuildLockset::handleCall(const Expr *Exp, const NamedDecl *D,
1779                               til::LiteralPtr *Self, SourceLocation Loc) {
1780   CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd;
1781   CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove;
1782   CapExprSet ScopedReqsAndExcludes;
1783 
1784   // Figure out if we're constructing an object of scoped lockable class
1785   CapabilityExpr Scp;
1786   if (Exp) {
1787     assert(!Self);
1788     const auto *TagT = Exp->getType()->getAs<TagType>();
1789     if (TagT && Exp->isPRValue()) {
1790       std::pair<til::LiteralPtr *, StringRef> Placeholder =
1791           Analyzer->SxBuilder.createThisPlaceholder(Exp);
1792       [[maybe_unused]] auto inserted =
1793           ConstructedObjects.insert({Exp, Placeholder.first});
1794       assert(inserted.second && "Are we visiting the same expression again?");
1795       if (isa<CXXConstructExpr>(Exp))
1796         Self = Placeholder.first;
1797       if (TagT->getDecl()->hasAttr<ScopedLockableAttr>())
1798         Scp = CapabilityExpr(Placeholder.first, Placeholder.second, false);
1799     }
1800 
1801     assert(Loc.isInvalid());
1802     Loc = Exp->getExprLoc();
1803   }
1804 
1805   for(const Attr *At : D->attrs()) {
1806     switch (At->getKind()) {
1807       // When we encounter a lock function, we need to add the lock to our
1808       // lockset.
1809       case attr::AcquireCapability: {
1810         const auto *A = cast<AcquireCapabilityAttr>(At);
1811         Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd
1812                                             : ExclusiveLocksToAdd,
1813                               A, Exp, D, Self);
1814         break;
1815       }
1816 
1817       // An assert will add a lock to the lockset, but will not generate
1818       // a warning if it is already there, and will not generate a warning
1819       // if it is not removed.
1820       case attr::AssertExclusiveLock: {
1821         const auto *A = cast<AssertExclusiveLockAttr>(At);
1822 
1823         CapExprSet AssertLocks;
1824         Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self);
1825         for (const auto &AssertLock : AssertLocks)
1826           Analyzer->addLock(
1827               FSet, std::make_unique<LockableFactEntry>(
1828                         AssertLock, LK_Exclusive, Loc, FactEntry::Asserted));
1829         break;
1830       }
1831       case attr::AssertSharedLock: {
1832         const auto *A = cast<AssertSharedLockAttr>(At);
1833 
1834         CapExprSet AssertLocks;
1835         Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self);
1836         for (const auto &AssertLock : AssertLocks)
1837           Analyzer->addLock(
1838               FSet, std::make_unique<LockableFactEntry>(
1839                         AssertLock, LK_Shared, Loc, FactEntry::Asserted));
1840         break;
1841       }
1842 
1843       case attr::AssertCapability: {
1844         const auto *A = cast<AssertCapabilityAttr>(At);
1845         CapExprSet AssertLocks;
1846         Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self);
1847         for (const auto &AssertLock : AssertLocks)
1848           Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>(
1849                                       AssertLock,
1850                                       A->isShared() ? LK_Shared : LK_Exclusive,
1851                                       Loc, FactEntry::Asserted));
1852         break;
1853       }
1854 
1855       // When we encounter an unlock function, we need to remove unlocked
1856       // mutexes from the lockset, and flag a warning if they are not there.
1857       case attr::ReleaseCapability: {
1858         const auto *A = cast<ReleaseCapabilityAttr>(At);
1859         if (A->isGeneric())
1860           Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, Self);
1861         else if (A->isShared())
1862           Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, Self);
1863         else
1864           Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, Self);
1865         break;
1866       }
1867 
1868       case attr::RequiresCapability: {
1869         const auto *A = cast<RequiresCapabilityAttr>(At);
1870         for (auto *Arg : A->args()) {
1871           warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg,
1872                              POK_FunctionCall, Self, Loc);
1873           // use for adopting a lock
1874           if (!Scp.shouldIgnore())
1875             Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, Self);
1876         }
1877         break;
1878       }
1879 
1880       case attr::LocksExcluded: {
1881         const auto *A = cast<LocksExcludedAttr>(At);
1882         for (auto *Arg : A->args()) {
1883           warnIfMutexHeld(D, Exp, Arg, Self, Loc);
1884           // use for deferring a lock
1885           if (!Scp.shouldIgnore())
1886             Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, Self);
1887         }
1888         break;
1889       }
1890 
1891       // Ignore attributes unrelated to thread-safety
1892       default:
1893         break;
1894     }
1895   }
1896 
1897   // Remove locks first to allow lock upgrading/downgrading.
1898   // FIXME -- should only fully remove if the attribute refers to 'this'.
1899   bool Dtor = isa<CXXDestructorDecl>(D);
1900   for (const auto &M : ExclusiveLocksToRemove)
1901     Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive);
1902   for (const auto &M : SharedLocksToRemove)
1903     Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared);
1904   for (const auto &M : GenericLocksToRemove)
1905     Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic);
1906 
1907   // Add locks.
1908   FactEntry::SourceKind Source =
1909       !Scp.shouldIgnore() ? FactEntry::Managed : FactEntry::Acquired;
1910   for (const auto &M : ExclusiveLocksToAdd)
1911     Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>(M, LK_Exclusive,
1912                                                                 Loc, Source));
1913   for (const auto &M : SharedLocksToAdd)
1914     Analyzer->addLock(
1915         FSet, std::make_unique<LockableFactEntry>(M, LK_Shared, Loc, Source));
1916 
1917   if (!Scp.shouldIgnore()) {
1918     // Add the managing object as a dummy mutex, mapped to the underlying mutex.
1919     auto ScopedEntry = std::make_unique<ScopedLockableFactEntry>(Scp, Loc);
1920     for (const auto &M : ExclusiveLocksToAdd)
1921       ScopedEntry->addLock(M);
1922     for (const auto &M : SharedLocksToAdd)
1923       ScopedEntry->addLock(M);
1924     for (const auto &M : ScopedReqsAndExcludes)
1925       ScopedEntry->addLock(M);
1926     for (const auto &M : ExclusiveLocksToRemove)
1927       ScopedEntry->addExclusiveUnlock(M);
1928     for (const auto &M : SharedLocksToRemove)
1929       ScopedEntry->addSharedUnlock(M);
1930     Analyzer->addLock(FSet, std::move(ScopedEntry));
1931   }
1932 }
1933 
1934 /// For unary operations which read and write a variable, we need to
1935 /// check whether we hold any required mutexes. Reads are checked in
1936 /// VisitCastExpr.
1937 void BuildLockset::VisitUnaryOperator(const UnaryOperator *UO) {
1938   switch (UO->getOpcode()) {
1939     case UO_PostDec:
1940     case UO_PostInc:
1941     case UO_PreDec:
1942     case UO_PreInc:
1943       checkAccess(UO->getSubExpr(), AK_Written);
1944       break;
1945     default:
1946       break;
1947   }
1948 }
1949 
1950 /// For binary operations which assign to a variable (writes), we need to check
1951 /// whether we hold any required mutexes.
1952 /// FIXME: Deal with non-primitive types.
1953 void BuildLockset::VisitBinaryOperator(const BinaryOperator *BO) {
1954   if (!BO->isAssignmentOp())
1955     return;
1956 
1957   // adjust the context
1958   LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
1959 
1960   checkAccess(BO->getLHS(), AK_Written);
1961 }
1962 
1963 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and
1964 /// need to ensure we hold any required mutexes.
1965 /// FIXME: Deal with non-primitive types.
1966 void BuildLockset::VisitCastExpr(const CastExpr *CE) {
1967   if (CE->getCastKind() != CK_LValueToRValue)
1968     return;
1969   checkAccess(CE->getSubExpr(), AK_Read);
1970 }
1971 
1972 void BuildLockset::examineArguments(const FunctionDecl *FD,
1973                                     CallExpr::const_arg_iterator ArgBegin,
1974                                     CallExpr::const_arg_iterator ArgEnd,
1975                                     bool SkipFirstParam) {
1976   // Currently we can't do anything if we don't know the function declaration.
1977   if (!FD)
1978     return;
1979 
1980   // NO_THREAD_SAFETY_ANALYSIS does double duty here.  Normally it
1981   // only turns off checking within the body of a function, but we also
1982   // use it to turn off checking in arguments to the function.  This
1983   // could result in some false negatives, but the alternative is to
1984   // create yet another attribute.
1985   if (FD->hasAttr<NoThreadSafetyAnalysisAttr>())
1986     return;
1987 
1988   const ArrayRef<ParmVarDecl *> Params = FD->parameters();
1989   auto Param = Params.begin();
1990   if (SkipFirstParam)
1991     ++Param;
1992 
1993   // There can be default arguments, so we stop when one iterator is at end().
1994   for (auto Arg = ArgBegin; Param != Params.end() && Arg != ArgEnd;
1995        ++Param, ++Arg) {
1996     QualType Qt = (*Param)->getType();
1997     if (Qt->isReferenceType())
1998       checkAccess(*Arg, AK_Read, POK_PassByRef);
1999   }
2000 }
2001 
2002 void BuildLockset::VisitCallExpr(const CallExpr *Exp) {
2003   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(Exp)) {
2004     const auto *ME = dyn_cast<MemberExpr>(CE->getCallee());
2005     // ME can be null when calling a method pointer
2006     const CXXMethodDecl *MD = CE->getMethodDecl();
2007 
2008     if (ME && MD) {
2009       if (ME->isArrow()) {
2010         // Should perhaps be AK_Written if !MD->isConst().
2011         checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
2012       } else {
2013         // Should perhaps be AK_Written if !MD->isConst().
2014         checkAccess(CE->getImplicitObjectArgument(), AK_Read);
2015       }
2016     }
2017 
2018     examineArguments(CE->getDirectCallee(), CE->arg_begin(), CE->arg_end());
2019   } else if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) {
2020     OverloadedOperatorKind OEop = OE->getOperator();
2021     switch (OEop) {
2022       case OO_Equal:
2023       case OO_PlusEqual:
2024       case OO_MinusEqual:
2025       case OO_StarEqual:
2026       case OO_SlashEqual:
2027       case OO_PercentEqual:
2028       case OO_CaretEqual:
2029       case OO_AmpEqual:
2030       case OO_PipeEqual:
2031       case OO_LessLessEqual:
2032       case OO_GreaterGreaterEqual:
2033         checkAccess(OE->getArg(1), AK_Read);
2034         [[fallthrough]];
2035       case OO_PlusPlus:
2036       case OO_MinusMinus:
2037         checkAccess(OE->getArg(0), AK_Written);
2038         break;
2039       case OO_Star:
2040       case OO_ArrowStar:
2041       case OO_Arrow:
2042       case OO_Subscript:
2043         if (!(OEop == OO_Star && OE->getNumArgs() > 1)) {
2044           // Grrr.  operator* can be multiplication...
2045           checkPtAccess(OE->getArg(0), AK_Read);
2046         }
2047         [[fallthrough]];
2048       default: {
2049         // TODO: get rid of this, and rely on pass-by-ref instead.
2050         const Expr *Obj = OE->getArg(0);
2051         checkAccess(Obj, AK_Read);
2052         // Check the remaining arguments. For method operators, the first
2053         // argument is the implicit self argument, and doesn't appear in the
2054         // FunctionDecl, but for non-methods it does.
2055         const FunctionDecl *FD = OE->getDirectCallee();
2056         examineArguments(FD, std::next(OE->arg_begin()), OE->arg_end(),
2057                          /*SkipFirstParam*/ !isa<CXXMethodDecl>(FD));
2058         break;
2059       }
2060     }
2061   } else {
2062     examineArguments(Exp->getDirectCallee(), Exp->arg_begin(), Exp->arg_end());
2063   }
2064 
2065   auto *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
2066   if(!D || !D->hasAttrs())
2067     return;
2068   handleCall(Exp, D);
2069 }
2070 
2071 void BuildLockset::VisitCXXConstructExpr(const CXXConstructExpr *Exp) {
2072   const CXXConstructorDecl *D = Exp->getConstructor();
2073   if (D && D->isCopyConstructor()) {
2074     const Expr* Source = Exp->getArg(0);
2075     checkAccess(Source, AK_Read);
2076   } else {
2077     examineArguments(D, Exp->arg_begin(), Exp->arg_end());
2078   }
2079   if (D && D->hasAttrs())
2080     handleCall(Exp, D);
2081 }
2082 
2083 static const Expr *UnpackConstruction(const Expr *E) {
2084   if (auto *CE = dyn_cast<CastExpr>(E))
2085     if (CE->getCastKind() == CK_NoOp)
2086       E = CE->getSubExpr()->IgnoreParens();
2087   if (auto *CE = dyn_cast<CastExpr>(E))
2088     if (CE->getCastKind() == CK_ConstructorConversion ||
2089         CE->getCastKind() == CK_UserDefinedConversion)
2090       E = CE->getSubExpr();
2091   if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E))
2092     E = BTE->getSubExpr();
2093   return E;
2094 }
2095 
2096 void BuildLockset::VisitDeclStmt(const DeclStmt *S) {
2097   // adjust the context
2098   LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
2099 
2100   for (auto *D : S->getDeclGroup()) {
2101     if (auto *VD = dyn_cast_or_null<VarDecl>(D)) {
2102       const Expr *E = VD->getInit();
2103       if (!E)
2104         continue;
2105       E = E->IgnoreParens();
2106 
2107       // handle constructors that involve temporaries
2108       if (auto *EWC = dyn_cast<ExprWithCleanups>(E))
2109         E = EWC->getSubExpr()->IgnoreParens();
2110       E = UnpackConstruction(E);
2111 
2112       if (auto Object = ConstructedObjects.find(E);
2113           Object != ConstructedObjects.end()) {
2114         Object->second->setClangDecl(VD);
2115         ConstructedObjects.erase(Object);
2116       }
2117     }
2118   }
2119 }
2120 
2121 void BuildLockset::VisitMaterializeTemporaryExpr(
2122     const MaterializeTemporaryExpr *Exp) {
2123   if (const ValueDecl *ExtD = Exp->getExtendingDecl()) {
2124     if (auto Object =
2125             ConstructedObjects.find(UnpackConstruction(Exp->getSubExpr()));
2126         Object != ConstructedObjects.end()) {
2127       Object->second->setClangDecl(ExtD);
2128       ConstructedObjects.erase(Object);
2129     }
2130   }
2131 }
2132 
2133 /// Given two facts merging on a join point, possibly warn and decide whether to
2134 /// keep or replace.
2135 ///
2136 /// \param CanModify Whether we can replace \p A by \p B.
2137 /// \return  false if we should keep \p A, true if we should take \p B.
2138 bool ThreadSafetyAnalyzer::join(const FactEntry &A, const FactEntry &B,
2139                                 bool CanModify) {
2140   if (A.kind() != B.kind()) {
2141     // For managed capabilities, the destructor should unlock in the right mode
2142     // anyway. For asserted capabilities no unlocking is needed.
2143     if ((A.managed() || A.asserted()) && (B.managed() || B.asserted())) {
2144       // The shared capability subsumes the exclusive capability, if possible.
2145       bool ShouldTakeB = B.kind() == LK_Shared;
2146       if (CanModify || !ShouldTakeB)
2147         return ShouldTakeB;
2148     }
2149     Handler.handleExclusiveAndShared(B.getKind(), B.toString(), B.loc(),
2150                                      A.loc());
2151     // Take the exclusive capability to reduce further warnings.
2152     return CanModify && B.kind() == LK_Exclusive;
2153   } else {
2154     // The non-asserted capability is the one we want to track.
2155     return CanModify && A.asserted() && !B.asserted();
2156   }
2157 }
2158 
2159 /// Compute the intersection of two locksets and issue warnings for any
2160 /// locks in the symmetric difference.
2161 ///
2162 /// This function is used at a merge point in the CFG when comparing the lockset
2163 /// of each branch being merged. For example, given the following sequence:
2164 /// A; if () then B; else C; D; we need to check that the lockset after B and C
2165 /// are the same. In the event of a difference, we use the intersection of these
2166 /// two locksets at the start of D.
2167 ///
2168 /// \param EntrySet A lockset for entry into a (possibly new) block.
2169 /// \param ExitSet The lockset on exiting a preceding block.
2170 /// \param JoinLoc The location of the join point for error reporting
2171 /// \param EntryLEK The warning if a mutex is missing from \p EntrySet.
2172 /// \param ExitLEK The warning if a mutex is missing from \p ExitSet.
2173 void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &EntrySet,
2174                                             const FactSet &ExitSet,
2175                                             SourceLocation JoinLoc,
2176                                             LockErrorKind EntryLEK,
2177                                             LockErrorKind ExitLEK) {
2178   FactSet EntrySetOrig = EntrySet;
2179 
2180   // Find locks in ExitSet that conflict or are not in EntrySet, and warn.
2181   for (const auto &Fact : ExitSet) {
2182     const FactEntry &ExitFact = FactMan[Fact];
2183 
2184     FactSet::iterator EntryIt = EntrySet.findLockIter(FactMan, ExitFact);
2185     if (EntryIt != EntrySet.end()) {
2186       if (join(FactMan[*EntryIt], ExitFact,
2187                EntryLEK != LEK_LockedSomeLoopIterations))
2188         *EntryIt = Fact;
2189     } else if (!ExitFact.managed()) {
2190       ExitFact.handleRemovalFromIntersection(ExitSet, FactMan, JoinLoc,
2191                                              EntryLEK, Handler);
2192     }
2193   }
2194 
2195   // Find locks in EntrySet that are not in ExitSet, and remove them.
2196   for (const auto &Fact : EntrySetOrig) {
2197     const FactEntry *EntryFact = &FactMan[Fact];
2198     const FactEntry *ExitFact = ExitSet.findLock(FactMan, *EntryFact);
2199 
2200     if (!ExitFact) {
2201       if (!EntryFact->managed() || ExitLEK == LEK_LockedSomeLoopIterations)
2202         EntryFact->handleRemovalFromIntersection(EntrySetOrig, FactMan, JoinLoc,
2203                                                  ExitLEK, Handler);
2204       if (ExitLEK == LEK_LockedSomePredecessors)
2205         EntrySet.removeLock(FactMan, *EntryFact);
2206     }
2207   }
2208 }
2209 
2210 // Return true if block B never continues to its successors.
2211 static bool neverReturns(const CFGBlock *B) {
2212   if (B->hasNoReturnElement())
2213     return true;
2214   if (B->empty())
2215     return false;
2216 
2217   CFGElement Last = B->back();
2218   if (std::optional<CFGStmt> S = Last.getAs<CFGStmt>()) {
2219     if (isa<CXXThrowExpr>(S->getStmt()))
2220       return true;
2221   }
2222   return false;
2223 }
2224 
2225 /// Check a function's CFG for thread-safety violations.
2226 ///
2227 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
2228 /// at the end of each block, and issue warnings for thread safety violations.
2229 /// Each block in the CFG is traversed exactly once.
2230 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
2231   // TODO: this whole function needs be rewritten as a visitor for CFGWalker.
2232   // For now, we just use the walker to set things up.
2233   threadSafety::CFGWalker walker;
2234   if (!walker.init(AC))
2235     return;
2236 
2237   // AC.dumpCFG(true);
2238   // threadSafety::printSCFG(walker);
2239 
2240   CFG *CFGraph = walker.getGraph();
2241   const NamedDecl *D = walker.getDecl();
2242   const auto *CurrentFunction = dyn_cast<FunctionDecl>(D);
2243   CurrentMethod = dyn_cast<CXXMethodDecl>(D);
2244 
2245   if (D->hasAttr<NoThreadSafetyAnalysisAttr>())
2246     return;
2247 
2248   // FIXME: Do something a bit more intelligent inside constructor and
2249   // destructor code.  Constructors and destructors must assume unique access
2250   // to 'this', so checks on member variable access is disabled, but we should
2251   // still enable checks on other objects.
2252   if (isa<CXXConstructorDecl>(D))
2253     return;  // Don't check inside constructors.
2254   if (isa<CXXDestructorDecl>(D))
2255     return;  // Don't check inside destructors.
2256 
2257   Handler.enterFunction(CurrentFunction);
2258 
2259   BlockInfo.resize(CFGraph->getNumBlockIDs(),
2260     CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
2261 
2262   // We need to explore the CFG via a "topological" ordering.
2263   // That way, we will be guaranteed to have information about required
2264   // predecessor locksets when exploring a new block.
2265   const PostOrderCFGView *SortedGraph = walker.getSortedGraph();
2266   PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
2267 
2268   // Mark entry block as reachable
2269   BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true;
2270 
2271   // Compute SSA names for local variables
2272   LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
2273 
2274   // Fill in source locations for all CFGBlocks.
2275   findBlockLocations(CFGraph, SortedGraph, BlockInfo);
2276 
2277   CapExprSet ExclusiveLocksAcquired;
2278   CapExprSet SharedLocksAcquired;
2279   CapExprSet LocksReleased;
2280 
2281   // Add locks from exclusive_locks_required and shared_locks_required
2282   // to initial lockset. Also turn off checking for lock and unlock functions.
2283   // FIXME: is there a more intelligent way to check lock/unlock functions?
2284   if (!SortedGraph->empty() && D->hasAttrs()) {
2285     const CFGBlock *FirstBlock = *SortedGraph->begin();
2286     FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
2287 
2288     CapExprSet ExclusiveLocksToAdd;
2289     CapExprSet SharedLocksToAdd;
2290 
2291     SourceLocation Loc = D->getLocation();
2292     for (const auto *Attr : D->attrs()) {
2293       Loc = Attr->getLocation();
2294       if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) {
2295         getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
2296                     nullptr, D);
2297       } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) {
2298         // UNLOCK_FUNCTION() is used to hide the underlying lock implementation.
2299         // We must ignore such methods.
2300         if (A->args_size() == 0)
2301           return;
2302         getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
2303                     nullptr, D);
2304         getMutexIDs(LocksReleased, A, nullptr, D);
2305       } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) {
2306         if (A->args_size() == 0)
2307           return;
2308         getMutexIDs(A->isShared() ? SharedLocksAcquired
2309                                   : ExclusiveLocksAcquired,
2310                     A, nullptr, D);
2311       } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
2312         // Don't try to check trylock functions for now.
2313         return;
2314       } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
2315         // Don't try to check trylock functions for now.
2316         return;
2317       } else if (isa<TryAcquireCapabilityAttr>(Attr)) {
2318         // Don't try to check trylock functions for now.
2319         return;
2320       }
2321     }
2322 
2323     // FIXME -- Loc can be wrong here.
2324     for (const auto &Mu : ExclusiveLocksToAdd) {
2325       auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc,
2326                                                        FactEntry::Declared);
2327       addLock(InitialLockset, std::move(Entry), true);
2328     }
2329     for (const auto &Mu : SharedLocksToAdd) {
2330       auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc,
2331                                                        FactEntry::Declared);
2332       addLock(InitialLockset, std::move(Entry), true);
2333     }
2334   }
2335 
2336   for (const auto *CurrBlock : *SortedGraph) {
2337     unsigned CurrBlockID = CurrBlock->getBlockID();
2338     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
2339 
2340     // Use the default initial lockset in case there are no predecessors.
2341     VisitedBlocks.insert(CurrBlock);
2342 
2343     // Iterate through the predecessor blocks and warn if the lockset for all
2344     // predecessors is not the same. We take the entry lockset of the current
2345     // block to be the intersection of all previous locksets.
2346     // FIXME: By keeping the intersection, we may output more errors in future
2347     // for a lock which is not in the intersection, but was in the union. We
2348     // may want to also keep the union in future. As an example, let's say
2349     // the intersection contains Mutex L, and the union contains L and M.
2350     // Later we unlock M. At this point, we would output an error because we
2351     // never locked M; although the real error is probably that we forgot to
2352     // lock M on all code paths. Conversely, let's say that later we lock M.
2353     // In this case, we should compare against the intersection instead of the
2354     // union because the real error is probably that we forgot to unlock M on
2355     // all code paths.
2356     bool LocksetInitialized = false;
2357     for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
2358          PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
2359       // if *PI -> CurrBlock is a back edge
2360       if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI))
2361         continue;
2362 
2363       unsigned PrevBlockID = (*PI)->getBlockID();
2364       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2365 
2366       // Ignore edges from blocks that can't return.
2367       if (neverReturns(*PI) || !PrevBlockInfo->Reachable)
2368         continue;
2369 
2370       // Okay, we can reach this block from the entry.
2371       CurrBlockInfo->Reachable = true;
2372 
2373       FactSet PrevLockset;
2374       getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
2375 
2376       if (!LocksetInitialized) {
2377         CurrBlockInfo->EntrySet = PrevLockset;
2378         LocksetInitialized = true;
2379       } else {
2380         // Surprisingly 'continue' doesn't always produce back edges, because
2381         // the CFG has empty "transition" blocks where they meet with the end
2382         // of the regular loop body. We still want to diagnose them as loop.
2383         intersectAndWarn(
2384             CurrBlockInfo->EntrySet, PrevLockset, CurrBlockInfo->EntryLoc,
2385             isa_and_nonnull<ContinueStmt>((*PI)->getTerminatorStmt())
2386                 ? LEK_LockedSomeLoopIterations
2387                 : LEK_LockedSomePredecessors);
2388       }
2389     }
2390 
2391     // Skip rest of block if it's not reachable.
2392     if (!CurrBlockInfo->Reachable)
2393       continue;
2394 
2395     BuildLockset LocksetBuilder(this, *CurrBlockInfo);
2396 
2397     // Visit all the statements in the basic block.
2398     for (const auto &BI : *CurrBlock) {
2399       switch (BI.getKind()) {
2400         case CFGElement::Statement: {
2401           CFGStmt CS = BI.castAs<CFGStmt>();
2402           LocksetBuilder.Visit(CS.getStmt());
2403           break;
2404         }
2405         // Ignore BaseDtor and MemberDtor for now.
2406         case CFGElement::AutomaticObjectDtor: {
2407           CFGAutomaticObjDtor AD = BI.castAs<CFGAutomaticObjDtor>();
2408           const auto *DD = AD.getDestructorDecl(AC.getASTContext());
2409           if (!DD->hasAttrs())
2410             break;
2411 
2412           LocksetBuilder.handleCall(nullptr, DD,
2413                                     SxBuilder.createVariable(AD.getVarDecl()),
2414                                     AD.getTriggerStmt()->getEndLoc());
2415           break;
2416         }
2417         case CFGElement::TemporaryDtor: {
2418           auto TD = BI.castAs<CFGTemporaryDtor>();
2419 
2420           // Clean up constructed object even if there are no attributes to
2421           // keep the number of objects in limbo as small as possible.
2422           if (auto Object = LocksetBuilder.ConstructedObjects.find(
2423                   TD.getBindTemporaryExpr()->getSubExpr());
2424               Object != LocksetBuilder.ConstructedObjects.end()) {
2425             const auto *DD = TD.getDestructorDecl(AC.getASTContext());
2426             if (DD->hasAttrs())
2427               // TODO: the location here isn't quite correct.
2428               LocksetBuilder.handleCall(nullptr, DD, Object->second,
2429                                         TD.getBindTemporaryExpr()->getEndLoc());
2430             LocksetBuilder.ConstructedObjects.erase(Object);
2431           }
2432           break;
2433         }
2434         default:
2435           break;
2436       }
2437     }
2438     CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
2439 
2440     // For every back edge from CurrBlock (the end of the loop) to another block
2441     // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
2442     // the one held at the beginning of FirstLoopBlock. We can look up the
2443     // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
2444     for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
2445          SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
2446       // if CurrBlock -> *SI is *not* a back edge
2447       if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
2448         continue;
2449 
2450       CFGBlock *FirstLoopBlock = *SI;
2451       CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
2452       CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
2453       intersectAndWarn(PreLoop->EntrySet, LoopEnd->ExitSet, PreLoop->EntryLoc,
2454                        LEK_LockedSomeLoopIterations);
2455     }
2456   }
2457 
2458   CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()];
2459   CFGBlockInfo *Final   = &BlockInfo[CFGraph->getExit().getBlockID()];
2460 
2461   // Skip the final check if the exit block is unreachable.
2462   if (!Final->Reachable)
2463     return;
2464 
2465   // By default, we expect all locks held on entry to be held on exit.
2466   FactSet ExpectedExitSet = Initial->EntrySet;
2467 
2468   // Adjust the expected exit set by adding or removing locks, as declared
2469   // by *-LOCK_FUNCTION and UNLOCK_FUNCTION.  The intersect below will then
2470   // issue the appropriate warning.
2471   // FIXME: the location here is not quite right.
2472   for (const auto &Lock : ExclusiveLocksAcquired)
2473     ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
2474                                          Lock, LK_Exclusive, D->getLocation()));
2475   for (const auto &Lock : SharedLocksAcquired)
2476     ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
2477                                          Lock, LK_Shared, D->getLocation()));
2478   for (const auto &Lock : LocksReleased)
2479     ExpectedExitSet.removeLock(FactMan, Lock);
2480 
2481   // FIXME: Should we call this function for all blocks which exit the function?
2482   intersectAndWarn(ExpectedExitSet, Final->ExitSet, Final->ExitLoc,
2483                    LEK_LockedAtEndOfFunction, LEK_NotLockedAtEndOfFunction);
2484 
2485   Handler.leaveFunction(CurrentFunction);
2486 }
2487 
2488 /// Check a function's CFG for thread-safety violations.
2489 ///
2490 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
2491 /// at the end of each block, and issue warnings for thread safety violations.
2492 /// Each block in the CFG is traversed exactly once.
2493 void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC,
2494                                            ThreadSafetyHandler &Handler,
2495                                            BeforeSet **BSet) {
2496   if (!*BSet)
2497     *BSet = new BeforeSet;
2498   ThreadSafetyAnalyzer Analyzer(Handler, *BSet);
2499   Analyzer.runAnalysis(AC);
2500 }
2501 
2502 void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; }
2503 
2504 /// Helper function that returns a LockKind required for the given level
2505 /// of access.
2506 LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) {
2507   switch (AK) {
2508     case AK_Read :
2509       return LK_Shared;
2510     case AK_Written :
2511       return LK_Exclusive;
2512   }
2513   llvm_unreachable("Unknown AccessKind");
2514 }
2515