1 //===- UninitializedValues.cpp - Find Uninitialized Values ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements uninitialized values analysis for source-level CFGs.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Analysis/Analyses/UninitializedValues.h"
14 #include "clang/AST/Attr.h"
15 #include "clang/AST/Decl.h"
16 #include "clang/AST/DeclBase.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/OperationKinds.h"
19 #include "clang/AST/Stmt.h"
20 #include "clang/AST/StmtObjC.h"
21 #include "clang/AST/StmtVisitor.h"
22 #include "clang/AST/Type.h"
23 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
24 #include "clang/Analysis/AnalysisDeclContext.h"
25 #include "clang/Analysis/CFG.h"
26 #include "clang/Analysis/DomainSpecific/ObjCNoReturn.h"
27 #include "clang/Analysis/FlowSensitive/DataflowWorklist.h"
28 #include "clang/Basic/LLVM.h"
29 #include "llvm/ADT/BitVector.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/PackedVector.h"
32 #include "llvm/ADT/SmallBitVector.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/Support/Casting.h"
35 #include <algorithm>
36 #include <cassert>
37 #include <optional>
38 
39 using namespace clang;
40 
41 #define DEBUG_LOGGING 0
42 
43 static bool isTrackedVar(const VarDecl *vd, const DeclContext *dc) {
44   if (vd->isLocalVarDecl() && !vd->hasGlobalStorage() &&
45       !vd->isExceptionVariable() && !vd->isInitCapture() &&
46       !vd->isImplicit() && vd->getDeclContext() == dc) {
47     QualType ty = vd->getType();
48     return ty->isScalarType() || ty->isVectorType() || ty->isRecordType() ||
49            ty->isRVVType();
50   }
51   return false;
52 }
53 
54 //------------------------------------------------------------------------====//
55 // DeclToIndex: a mapping from Decls we track to value indices.
56 //====------------------------------------------------------------------------//
57 
58 namespace {
59 
60 class DeclToIndex {
61   llvm::DenseMap<const VarDecl *, unsigned> map;
62 
63 public:
64   DeclToIndex() = default;
65 
66   /// Compute the actual mapping from declarations to bits.
67   void computeMap(const DeclContext &dc);
68 
69   /// Return the number of declarations in the map.
70   unsigned size() const { return map.size(); }
71 
72   /// Returns the bit vector index for a given declaration.
73   std::optional<unsigned> getValueIndex(const VarDecl *d) const;
74 };
75 
76 } // namespace
77 
78 void DeclToIndex::computeMap(const DeclContext &dc) {
79   unsigned count = 0;
80   DeclContext::specific_decl_iterator<VarDecl> I(dc.decls_begin()),
81                                                E(dc.decls_end());
82   for ( ; I != E; ++I) {
83     const VarDecl *vd = *I;
84     if (isTrackedVar(vd, &dc))
85       map[vd] = count++;
86   }
87 }
88 
89 std::optional<unsigned> DeclToIndex::getValueIndex(const VarDecl *d) const {
90   llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = map.find(d);
91   if (I == map.end())
92     return std::nullopt;
93   return I->second;
94 }
95 
96 //------------------------------------------------------------------------====//
97 // CFGBlockValues: dataflow values for CFG blocks.
98 //====------------------------------------------------------------------------//
99 
100 // These values are defined in such a way that a merge can be done using
101 // a bitwise OR.
102 enum Value { Unknown = 0x0,         /* 00 */
103              Initialized = 0x1,     /* 01 */
104              Uninitialized = 0x2,   /* 10 */
105              MayUninitialized = 0x3 /* 11 */ };
106 
107 static bool isUninitialized(const Value v) {
108   return v >= Uninitialized;
109 }
110 
111 static bool isAlwaysUninit(const Value v) {
112   return v == Uninitialized;
113 }
114 
115 namespace {
116 
117 using ValueVector = llvm::PackedVector<Value, 2, llvm::SmallBitVector>;
118 
119 class CFGBlockValues {
120   const CFG &cfg;
121   SmallVector<ValueVector, 8> vals;
122   ValueVector scratch;
123   DeclToIndex declToIndex;
124 
125 public:
126   CFGBlockValues(const CFG &cfg);
127 
128   unsigned getNumEntries() const { return declToIndex.size(); }
129 
130   void computeSetOfDeclarations(const DeclContext &dc);
131 
132   ValueVector &getValueVector(const CFGBlock *block) {
133     return vals[block->getBlockID()];
134   }
135 
136   void setAllScratchValues(Value V);
137   void mergeIntoScratch(ValueVector const &source, bool isFirst);
138   bool updateValueVectorWithScratch(const CFGBlock *block);
139 
140   bool hasNoDeclarations() const {
141     return declToIndex.size() == 0;
142   }
143 
144   void resetScratch();
145 
146   ValueVector::reference operator[](const VarDecl *vd);
147 
148   Value getValue(const CFGBlock *block, const CFGBlock *dstBlock,
149                  const VarDecl *vd) {
150     std::optional<unsigned> idx = declToIndex.getValueIndex(vd);
151     return getValueVector(block)[*idx];
152   }
153 };
154 
155 } // namespace
156 
157 CFGBlockValues::CFGBlockValues(const CFG &c) : cfg(c), vals(0) {}
158 
159 void CFGBlockValues::computeSetOfDeclarations(const DeclContext &dc) {
160   declToIndex.computeMap(dc);
161   unsigned decls = declToIndex.size();
162   scratch.resize(decls);
163   unsigned n = cfg.getNumBlockIDs();
164   if (!n)
165     return;
166   vals.resize(n);
167   for (auto &val : vals)
168     val.resize(decls);
169 }
170 
171 #if DEBUG_LOGGING
172 static void printVector(const CFGBlock *block, ValueVector &bv,
173                         unsigned num) {
174   llvm::errs() << block->getBlockID() << " :";
175   for (const auto &i : bv)
176     llvm::errs() << ' ' << i;
177   llvm::errs() << " : " << num << '\n';
178 }
179 #endif
180 
181 void CFGBlockValues::setAllScratchValues(Value V) {
182   for (unsigned I = 0, E = scratch.size(); I != E; ++I)
183     scratch[I] = V;
184 }
185 
186 void CFGBlockValues::mergeIntoScratch(ValueVector const &source,
187                                       bool isFirst) {
188   if (isFirst)
189     scratch = source;
190   else
191     scratch |= source;
192 }
193 
194 bool CFGBlockValues::updateValueVectorWithScratch(const CFGBlock *block) {
195   ValueVector &dst = getValueVector(block);
196   bool changed = (dst != scratch);
197   if (changed)
198     dst = scratch;
199 #if DEBUG_LOGGING
200   printVector(block, scratch, 0);
201 #endif
202   return changed;
203 }
204 
205 void CFGBlockValues::resetScratch() {
206   scratch.reset();
207 }
208 
209 ValueVector::reference CFGBlockValues::operator[](const VarDecl *vd) {
210   return scratch[*declToIndex.getValueIndex(vd)];
211 }
212 
213 //------------------------------------------------------------------------====//
214 // Classification of DeclRefExprs as use or initialization.
215 //====------------------------------------------------------------------------//
216 
217 namespace {
218 
219 class FindVarResult {
220   const VarDecl *vd;
221   const DeclRefExpr *dr;
222 
223 public:
224   FindVarResult(const VarDecl *vd, const DeclRefExpr *dr) : vd(vd), dr(dr) {}
225 
226   const DeclRefExpr *getDeclRefExpr() const { return dr; }
227   const VarDecl *getDecl() const { return vd; }
228 };
229 
230 } // namespace
231 
232 static const Expr *stripCasts(ASTContext &C, const Expr *Ex) {
233   while (Ex) {
234     Ex = Ex->IgnoreParenNoopCasts(C);
235     if (const auto *CE = dyn_cast<CastExpr>(Ex)) {
236       if (CE->getCastKind() == CK_LValueBitCast) {
237         Ex = CE->getSubExpr();
238         continue;
239       }
240     }
241     break;
242   }
243   return Ex;
244 }
245 
246 /// If E is an expression comprising a reference to a single variable, find that
247 /// variable.
248 static FindVarResult findVar(const Expr *E, const DeclContext *DC) {
249   if (const auto *DRE =
250           dyn_cast<DeclRefExpr>(stripCasts(DC->getParentASTContext(), E)))
251     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
252       if (isTrackedVar(VD, DC))
253         return FindVarResult(VD, DRE);
254   return FindVarResult(nullptr, nullptr);
255 }
256 
257 namespace {
258 
259 /// Classify each DeclRefExpr as an initialization or a use. Any
260 /// DeclRefExpr which isn't explicitly classified will be assumed to have
261 /// escaped the analysis and will be treated as an initialization.
262 class ClassifyRefs : public StmtVisitor<ClassifyRefs> {
263 public:
264   enum Class {
265     Init,
266     Use,
267     SelfInit,
268     ConstRefUse,
269     Ignore
270   };
271 
272 private:
273   const DeclContext *DC;
274   llvm::DenseMap<const DeclRefExpr *, Class> Classification;
275 
276   bool isTrackedVar(const VarDecl *VD) const {
277     return ::isTrackedVar(VD, DC);
278   }
279 
280   void classify(const Expr *E, Class C);
281 
282 public:
283   ClassifyRefs(AnalysisDeclContext &AC) : DC(cast<DeclContext>(AC.getDecl())) {}
284 
285   void VisitDeclStmt(DeclStmt *DS);
286   void VisitUnaryOperator(UnaryOperator *UO);
287   void VisitBinaryOperator(BinaryOperator *BO);
288   void VisitCallExpr(CallExpr *CE);
289   void VisitCastExpr(CastExpr *CE);
290   void VisitOMPExecutableDirective(OMPExecutableDirective *ED);
291 
292   void operator()(Stmt *S) { Visit(S); }
293 
294   Class get(const DeclRefExpr *DRE) const {
295     llvm::DenseMap<const DeclRefExpr*, Class>::const_iterator I
296         = Classification.find(DRE);
297     if (I != Classification.end())
298       return I->second;
299 
300     const auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
301     if (!VD || !isTrackedVar(VD))
302       return Ignore;
303 
304     return Init;
305   }
306 };
307 
308 } // namespace
309 
310 static const DeclRefExpr *getSelfInitExpr(VarDecl *VD) {
311   if (VD->getType()->isRecordType())
312     return nullptr;
313   if (Expr *Init = VD->getInit()) {
314     const auto *DRE =
315         dyn_cast<DeclRefExpr>(stripCasts(VD->getASTContext(), Init));
316     if (DRE && DRE->getDecl() == VD)
317       return DRE;
318   }
319   return nullptr;
320 }
321 
322 void ClassifyRefs::classify(const Expr *E, Class C) {
323   // The result of a ?: could also be an lvalue.
324   E = E->IgnoreParens();
325   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
326     classify(CO->getTrueExpr(), C);
327     classify(CO->getFalseExpr(), C);
328     return;
329   }
330 
331   if (const auto *BCO = dyn_cast<BinaryConditionalOperator>(E)) {
332     classify(BCO->getFalseExpr(), C);
333     return;
334   }
335 
336   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) {
337     classify(OVE->getSourceExpr(), C);
338     return;
339   }
340 
341   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
342     if (const auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
343       if (!VD->isStaticDataMember())
344         classify(ME->getBase(), C);
345     }
346     return;
347   }
348 
349   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
350     switch (BO->getOpcode()) {
351     case BO_PtrMemD:
352     case BO_PtrMemI:
353       classify(BO->getLHS(), C);
354       return;
355     case BO_Comma:
356       classify(BO->getRHS(), C);
357       return;
358     default:
359       return;
360     }
361   }
362 
363   FindVarResult Var = findVar(E, DC);
364   if (const DeclRefExpr *DRE = Var.getDeclRefExpr())
365     Classification[DRE] = std::max(Classification[DRE], C);
366 }
367 
368 void ClassifyRefs::VisitDeclStmt(DeclStmt *DS) {
369   for (auto *DI : DS->decls()) {
370     auto *VD = dyn_cast<VarDecl>(DI);
371     if (VD && isTrackedVar(VD))
372       if (const DeclRefExpr *DRE = getSelfInitExpr(VD))
373         Classification[DRE] = SelfInit;
374   }
375 }
376 
377 void ClassifyRefs::VisitBinaryOperator(BinaryOperator *BO) {
378   // Ignore the evaluation of a DeclRefExpr on the LHS of an assignment. If this
379   // is not a compound-assignment, we will treat it as initializing the variable
380   // when TransferFunctions visits it. A compound-assignment does not affect
381   // whether a variable is uninitialized, and there's no point counting it as a
382   // use.
383   if (BO->isCompoundAssignmentOp())
384     classify(BO->getLHS(), Use);
385   else if (BO->getOpcode() == BO_Assign || BO->getOpcode() == BO_Comma)
386     classify(BO->getLHS(), Ignore);
387 }
388 
389 void ClassifyRefs::VisitUnaryOperator(UnaryOperator *UO) {
390   // Increment and decrement are uses despite there being no lvalue-to-rvalue
391   // conversion.
392   if (UO->isIncrementDecrementOp())
393     classify(UO->getSubExpr(), Use);
394 }
395 
396 void ClassifyRefs::VisitOMPExecutableDirective(OMPExecutableDirective *ED) {
397   for (Stmt *S : OMPExecutableDirective::used_clauses_children(ED->clauses()))
398     classify(cast<Expr>(S), Use);
399 }
400 
401 static bool isPointerToConst(const QualType &QT) {
402   return QT->isAnyPointerType() && QT->getPointeeType().isConstQualified();
403 }
404 
405 static bool hasTrivialBody(CallExpr *CE) {
406   if (FunctionDecl *FD = CE->getDirectCallee()) {
407     if (FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
408       return FTD->getTemplatedDecl()->hasTrivialBody();
409     return FD->hasTrivialBody();
410   }
411   return false;
412 }
413 
414 void ClassifyRefs::VisitCallExpr(CallExpr *CE) {
415   // Classify arguments to std::move as used.
416   if (CE->isCallToStdMove()) {
417     // RecordTypes are handled in SemaDeclCXX.cpp.
418     if (!CE->getArg(0)->getType()->isRecordType())
419       classify(CE->getArg(0), Use);
420     return;
421   }
422   bool isTrivialBody = hasTrivialBody(CE);
423   // If a value is passed by const pointer to a function,
424   // we should not assume that it is initialized by the call, and we
425   // conservatively do not assume that it is used.
426   // If a value is passed by const reference to a function,
427   // it should already be initialized.
428   for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end();
429        I != E; ++I) {
430     if ((*I)->isGLValue()) {
431       if ((*I)->getType().isConstQualified())
432         classify((*I), isTrivialBody ? Ignore : ConstRefUse);
433     } else if (isPointerToConst((*I)->getType())) {
434       const Expr *Ex = stripCasts(DC->getParentASTContext(), *I);
435       const auto *UO = dyn_cast<UnaryOperator>(Ex);
436       if (UO && UO->getOpcode() == UO_AddrOf)
437         Ex = UO->getSubExpr();
438       classify(Ex, Ignore);
439     }
440   }
441 }
442 
443 void ClassifyRefs::VisitCastExpr(CastExpr *CE) {
444   if (CE->getCastKind() == CK_LValueToRValue)
445     classify(CE->getSubExpr(), Use);
446   else if (const auto *CSE = dyn_cast<CStyleCastExpr>(CE)) {
447     if (CSE->getType()->isVoidType()) {
448       // Squelch any detected load of an uninitialized value if
449       // we cast it to void.
450       // e.g. (void) x;
451       classify(CSE->getSubExpr(), Ignore);
452     }
453   }
454 }
455 
456 //------------------------------------------------------------------------====//
457 // Transfer function for uninitialized values analysis.
458 //====------------------------------------------------------------------------//
459 
460 namespace {
461 
462 class TransferFunctions : public StmtVisitor<TransferFunctions> {
463   CFGBlockValues &vals;
464   const CFG &cfg;
465   const CFGBlock *block;
466   AnalysisDeclContext &ac;
467   const ClassifyRefs &classification;
468   ObjCNoReturn objCNoRet;
469   UninitVariablesHandler &handler;
470 
471 public:
472   TransferFunctions(CFGBlockValues &vals, const CFG &cfg,
473                     const CFGBlock *block, AnalysisDeclContext &ac,
474                     const ClassifyRefs &classification,
475                     UninitVariablesHandler &handler)
476       : vals(vals), cfg(cfg), block(block), ac(ac),
477         classification(classification), objCNoRet(ac.getASTContext()),
478         handler(handler) {}
479 
480   void reportUse(const Expr *ex, const VarDecl *vd);
481   void reportConstRefUse(const Expr *ex, const VarDecl *vd);
482 
483   void VisitBinaryOperator(BinaryOperator *bo);
484   void VisitBlockExpr(BlockExpr *be);
485   void VisitCallExpr(CallExpr *ce);
486   void VisitDeclRefExpr(DeclRefExpr *dr);
487   void VisitDeclStmt(DeclStmt *ds);
488   void VisitGCCAsmStmt(GCCAsmStmt *as);
489   void VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS);
490   void VisitObjCMessageExpr(ObjCMessageExpr *ME);
491   void VisitOMPExecutableDirective(OMPExecutableDirective *ED);
492 
493   bool isTrackedVar(const VarDecl *vd) {
494     return ::isTrackedVar(vd, cast<DeclContext>(ac.getDecl()));
495   }
496 
497   FindVarResult findVar(const Expr *ex) {
498     return ::findVar(ex, cast<DeclContext>(ac.getDecl()));
499   }
500 
501   UninitUse getUninitUse(const Expr *ex, const VarDecl *vd, Value v) {
502     UninitUse Use(ex, isAlwaysUninit(v));
503 
504     assert(isUninitialized(v));
505     if (Use.getKind() == UninitUse::Always)
506       return Use;
507 
508     // If an edge which leads unconditionally to this use did not initialize
509     // the variable, we can say something stronger than 'may be uninitialized':
510     // we can say 'either it's used uninitialized or you have dead code'.
511     //
512     // We track the number of successors of a node which have been visited, and
513     // visit a node once we have visited all of its successors. Only edges where
514     // the variable might still be uninitialized are followed. Since a variable
515     // can't transfer from being initialized to being uninitialized, this will
516     // trace out the subgraph which inevitably leads to the use and does not
517     // initialize the variable. We do not want to skip past loops, since their
518     // non-termination might be correlated with the initialization condition.
519     //
520     // For example:
521     //
522     //         void f(bool a, bool b) {
523     // block1:   int n;
524     //           if (a) {
525     // block2:     if (b)
526     // block3:       n = 1;
527     // block4:   } else if (b) {
528     // block5:     while (!a) {
529     // block6:       do_work(&a);
530     //               n = 2;
531     //             }
532     //           }
533     // block7:   if (a)
534     // block8:     g();
535     // block9:   return n;
536     //         }
537     //
538     // Starting from the maybe-uninitialized use in block 9:
539     //  * Block 7 is not visited because we have only visited one of its two
540     //    successors.
541     //  * Block 8 is visited because we've visited its only successor.
542     // From block 8:
543     //  * Block 7 is visited because we've now visited both of its successors.
544     // From block 7:
545     //  * Blocks 1, 2, 4, 5, and 6 are not visited because we didn't visit all
546     //    of their successors (we didn't visit 4, 3, 5, 6, and 5, respectively).
547     //  * Block 3 is not visited because it initializes 'n'.
548     // Now the algorithm terminates, having visited blocks 7 and 8, and having
549     // found the frontier is blocks 2, 4, and 5.
550     //
551     // 'n' is definitely uninitialized for two edges into block 7 (from blocks 2
552     // and 4), so we report that any time either of those edges is taken (in
553     // each case when 'b == false'), 'n' is used uninitialized.
554     SmallVector<const CFGBlock*, 32> Queue;
555     SmallVector<unsigned, 32> SuccsVisited(cfg.getNumBlockIDs(), 0);
556     Queue.push_back(block);
557     // Specify that we've already visited all successors of the starting block.
558     // This has the dual purpose of ensuring we never add it to the queue, and
559     // of marking it as not being a candidate element of the frontier.
560     SuccsVisited[block->getBlockID()] = block->succ_size();
561     while (!Queue.empty()) {
562       const CFGBlock *B = Queue.pop_back_val();
563 
564       // If the use is always reached from the entry block, make a note of that.
565       if (B == &cfg.getEntry())
566         Use.setUninitAfterCall();
567 
568       for (CFGBlock::const_pred_iterator I = B->pred_begin(), E = B->pred_end();
569            I != E; ++I) {
570         const CFGBlock *Pred = *I;
571         if (!Pred)
572           continue;
573 
574         Value AtPredExit = vals.getValue(Pred, B, vd);
575         if (AtPredExit == Initialized)
576           // This block initializes the variable.
577           continue;
578         if (AtPredExit == MayUninitialized &&
579             vals.getValue(B, nullptr, vd) == Uninitialized) {
580           // This block declares the variable (uninitialized), and is reachable
581           // from a block that initializes the variable. We can't guarantee to
582           // give an earlier location for the diagnostic (and it appears that
583           // this code is intended to be reachable) so give a diagnostic here
584           // and go no further down this path.
585           Use.setUninitAfterDecl();
586           continue;
587         }
588 
589         if (AtPredExit == MayUninitialized) {
590           // If the predecessor's terminator is an "asm goto" that initializes
591           // the variable, then don't count it as "initialized" on the indirect
592           // paths.
593           CFGTerminator term = Pred->getTerminator();
594           if (const auto *as = dyn_cast_or_null<GCCAsmStmt>(term.getStmt())) {
595             const CFGBlock *fallthrough = *Pred->succ_begin();
596             if (as->isAsmGoto() &&
597                 llvm::any_of(as->outputs(), [&](const Expr *output) {
598                     return vd == findVar(output).getDecl() &&
599                         llvm::any_of(as->labels(),
600                                      [&](const AddrLabelExpr *label) {
601                           return label->getLabel()->getStmt() == B->Label &&
602                               B != fallthrough;
603                         });
604                 })) {
605               Use.setUninitAfterDecl();
606               continue;
607             }
608           }
609         }
610 
611         unsigned &SV = SuccsVisited[Pred->getBlockID()];
612         if (!SV) {
613           // When visiting the first successor of a block, mark all NULL
614           // successors as having been visited.
615           for (CFGBlock::const_succ_iterator SI = Pred->succ_begin(),
616                                              SE = Pred->succ_end();
617                SI != SE; ++SI)
618             if (!*SI)
619               ++SV;
620         }
621 
622         if (++SV == Pred->succ_size())
623           // All paths from this block lead to the use and don't initialize the
624           // variable.
625           Queue.push_back(Pred);
626       }
627     }
628 
629     // Scan the frontier, looking for blocks where the variable was
630     // uninitialized.
631     for (const auto *Block : cfg) {
632       unsigned BlockID = Block->getBlockID();
633       const Stmt *Term = Block->getTerminatorStmt();
634       if (SuccsVisited[BlockID] && SuccsVisited[BlockID] < Block->succ_size() &&
635           Term) {
636         // This block inevitably leads to the use. If we have an edge from here
637         // to a post-dominator block, and the variable is uninitialized on that
638         // edge, we have found a bug.
639         for (CFGBlock::const_succ_iterator I = Block->succ_begin(),
640              E = Block->succ_end(); I != E; ++I) {
641           const CFGBlock *Succ = *I;
642           if (Succ && SuccsVisited[Succ->getBlockID()] >= Succ->succ_size() &&
643               vals.getValue(Block, Succ, vd) == Uninitialized) {
644             // Switch cases are a special case: report the label to the caller
645             // as the 'terminator', not the switch statement itself. Suppress
646             // situations where no label matched: we can't be sure that's
647             // possible.
648             if (isa<SwitchStmt>(Term)) {
649               const Stmt *Label = Succ->getLabel();
650               if (!Label || !isa<SwitchCase>(Label))
651                 // Might not be possible.
652                 continue;
653               UninitUse::Branch Branch;
654               Branch.Terminator = Label;
655               Branch.Output = 0; // Ignored.
656               Use.addUninitBranch(Branch);
657             } else {
658               UninitUse::Branch Branch;
659               Branch.Terminator = Term;
660               Branch.Output = I - Block->succ_begin();
661               Use.addUninitBranch(Branch);
662             }
663           }
664         }
665       }
666     }
667 
668     return Use;
669   }
670 };
671 
672 } // namespace
673 
674 void TransferFunctions::reportUse(const Expr *ex, const VarDecl *vd) {
675   Value v = vals[vd];
676   if (isUninitialized(v))
677     handler.handleUseOfUninitVariable(vd, getUninitUse(ex, vd, v));
678 }
679 
680 void TransferFunctions::reportConstRefUse(const Expr *ex, const VarDecl *vd) {
681   Value v = vals[vd];
682   if (isAlwaysUninit(v))
683     handler.handleConstRefUseOfUninitVariable(vd, getUninitUse(ex, vd, v));
684 }
685 
686 void TransferFunctions::VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS) {
687   // This represents an initialization of the 'element' value.
688   if (const auto *DS = dyn_cast<DeclStmt>(FS->getElement())) {
689     const auto *VD = cast<VarDecl>(DS->getSingleDecl());
690     if (isTrackedVar(VD))
691       vals[VD] = Initialized;
692   }
693 }
694 
695 void TransferFunctions::VisitOMPExecutableDirective(
696     OMPExecutableDirective *ED) {
697   for (Stmt *S : OMPExecutableDirective::used_clauses_children(ED->clauses())) {
698     assert(S && "Expected non-null used-in-clause child.");
699     Visit(S);
700   }
701   if (!ED->isStandaloneDirective())
702     Visit(ED->getStructuredBlock());
703 }
704 
705 void TransferFunctions::VisitBlockExpr(BlockExpr *be) {
706   const BlockDecl *bd = be->getBlockDecl();
707   for (const auto &I : bd->captures()) {
708     const VarDecl *vd = I.getVariable();
709     if (!isTrackedVar(vd))
710       continue;
711     if (I.isByRef()) {
712       vals[vd] = Initialized;
713       continue;
714     }
715     reportUse(be, vd);
716   }
717 }
718 
719 void TransferFunctions::VisitCallExpr(CallExpr *ce) {
720   if (Decl *Callee = ce->getCalleeDecl()) {
721     if (Callee->hasAttr<ReturnsTwiceAttr>()) {
722       // After a call to a function like setjmp or vfork, any variable which is
723       // initialized anywhere within this function may now be initialized. For
724       // now, just assume such a call initializes all variables.  FIXME: Only
725       // mark variables as initialized if they have an initializer which is
726       // reachable from here.
727       vals.setAllScratchValues(Initialized);
728     }
729     else if (Callee->hasAttr<AnalyzerNoReturnAttr>()) {
730       // Functions labeled like "analyzer_noreturn" are often used to denote
731       // "panic" functions that in special debug situations can still return,
732       // but for the most part should not be treated as returning.  This is a
733       // useful annotation borrowed from the static analyzer that is useful for
734       // suppressing branch-specific false positives when we call one of these
735       // functions but keep pretending the path continues (when in reality the
736       // user doesn't care).
737       vals.setAllScratchValues(Unknown);
738     }
739   }
740 }
741 
742 void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *dr) {
743   switch (classification.get(dr)) {
744   case ClassifyRefs::Ignore:
745     break;
746   case ClassifyRefs::Use:
747     reportUse(dr, cast<VarDecl>(dr->getDecl()));
748     break;
749   case ClassifyRefs::Init:
750     vals[cast<VarDecl>(dr->getDecl())] = Initialized;
751     break;
752   case ClassifyRefs::SelfInit:
753     handler.handleSelfInit(cast<VarDecl>(dr->getDecl()));
754     break;
755   case ClassifyRefs::ConstRefUse:
756     reportConstRefUse(dr, cast<VarDecl>(dr->getDecl()));
757     break;
758   }
759 }
760 
761 void TransferFunctions::VisitBinaryOperator(BinaryOperator *BO) {
762   if (BO->getOpcode() == BO_Assign) {
763     FindVarResult Var = findVar(BO->getLHS());
764     if (const VarDecl *VD = Var.getDecl())
765       vals[VD] = Initialized;
766   }
767 }
768 
769 void TransferFunctions::VisitDeclStmt(DeclStmt *DS) {
770   for (auto *DI : DS->decls()) {
771     auto *VD = dyn_cast<VarDecl>(DI);
772     if (VD && isTrackedVar(VD)) {
773       if (getSelfInitExpr(VD)) {
774         // If the initializer consists solely of a reference to itself, we
775         // explicitly mark the variable as uninitialized. This allows code
776         // like the following:
777         //
778         //   int x = x;
779         //
780         // to deliberately leave a variable uninitialized. Different analysis
781         // clients can detect this pattern and adjust their reporting
782         // appropriately, but we need to continue to analyze subsequent uses
783         // of the variable.
784         vals[VD] = Uninitialized;
785       } else if (VD->getInit()) {
786         // Treat the new variable as initialized.
787         vals[VD] = Initialized;
788       } else {
789         // No initializer: the variable is now uninitialized. This matters
790         // for cases like:
791         //   while (...) {
792         //     int n;
793         //     use(n);
794         //     n = 0;
795         //   }
796         // FIXME: Mark the variable as uninitialized whenever its scope is
797         // left, since its scope could be re-entered by a jump over the
798         // declaration.
799         vals[VD] = Uninitialized;
800       }
801     }
802   }
803 }
804 
805 void TransferFunctions::VisitGCCAsmStmt(GCCAsmStmt *as) {
806   // An "asm goto" statement is a terminator that may initialize some variables.
807   if (!as->isAsmGoto())
808     return;
809 
810   ASTContext &C = ac.getASTContext();
811   for (const Expr *O : as->outputs()) {
812     const Expr *Ex = stripCasts(C, O);
813 
814     // Strip away any unary operators. Invalid l-values are reported by other
815     // semantic analysis passes.
816     while (const auto *UO = dyn_cast<UnaryOperator>(Ex))
817       Ex = stripCasts(C, UO->getSubExpr());
818 
819     // Mark the variable as potentially uninitialized for those cases where
820     // it's used on an indirect path, where it's not guaranteed to be
821     // defined.
822     if (const VarDecl *VD = findVar(Ex).getDecl())
823       vals[VD] = MayUninitialized;
824   }
825 }
826 
827 void TransferFunctions::VisitObjCMessageExpr(ObjCMessageExpr *ME) {
828   // If the Objective-C message expression is an implicit no-return that
829   // is not modeled in the CFG, set the tracked dataflow values to Unknown.
830   if (objCNoRet.isImplicitNoReturn(ME)) {
831     vals.setAllScratchValues(Unknown);
832   }
833 }
834 
835 //------------------------------------------------------------------------====//
836 // High-level "driver" logic for uninitialized values analysis.
837 //====------------------------------------------------------------------------//
838 
839 static bool runOnBlock(const CFGBlock *block, const CFG &cfg,
840                        AnalysisDeclContext &ac, CFGBlockValues &vals,
841                        const ClassifyRefs &classification,
842                        llvm::BitVector &wasAnalyzed,
843                        UninitVariablesHandler &handler) {
844   wasAnalyzed[block->getBlockID()] = true;
845   vals.resetScratch();
846   // Merge in values of predecessor blocks.
847   bool isFirst = true;
848   for (CFGBlock::const_pred_iterator I = block->pred_begin(),
849        E = block->pred_end(); I != E; ++I) {
850     const CFGBlock *pred = *I;
851     if (!pred)
852       continue;
853     if (wasAnalyzed[pred->getBlockID()]) {
854       vals.mergeIntoScratch(vals.getValueVector(pred), isFirst);
855       isFirst = false;
856     }
857   }
858   // Apply the transfer function.
859   TransferFunctions tf(vals, cfg, block, ac, classification, handler);
860   for (const auto &I : *block) {
861     if (std::optional<CFGStmt> cs = I.getAs<CFGStmt>())
862       tf.Visit(const_cast<Stmt *>(cs->getStmt()));
863   }
864   CFGTerminator terminator = block->getTerminator();
865   if (auto *as = dyn_cast_or_null<GCCAsmStmt>(terminator.getStmt()))
866     if (as->isAsmGoto())
867       tf.Visit(as);
868   return vals.updateValueVectorWithScratch(block);
869 }
870 
871 namespace {
872 
873 /// PruneBlocksHandler is a special UninitVariablesHandler that is used
874 /// to detect when a CFGBlock has any *potential* use of an uninitialized
875 /// variable.  It is mainly used to prune out work during the final
876 /// reporting pass.
877 struct PruneBlocksHandler : public UninitVariablesHandler {
878   /// Records if a CFGBlock had a potential use of an uninitialized variable.
879   llvm::BitVector hadUse;
880 
881   /// Records if any CFGBlock had a potential use of an uninitialized variable.
882   bool hadAnyUse = false;
883 
884   /// The current block to scribble use information.
885   unsigned currentBlock = 0;
886 
887   PruneBlocksHandler(unsigned numBlocks) : hadUse(numBlocks, false) {}
888 
889   ~PruneBlocksHandler() override = default;
890 
891   void handleUseOfUninitVariable(const VarDecl *vd,
892                                  const UninitUse &use) override {
893     hadUse[currentBlock] = true;
894     hadAnyUse = true;
895   }
896 
897   void handleConstRefUseOfUninitVariable(const VarDecl *vd,
898                                          const UninitUse &use) override {
899     hadUse[currentBlock] = true;
900     hadAnyUse = true;
901   }
902 
903   /// Called when the uninitialized variable analysis detects the
904   /// idiom 'int x = x'.  All other uses of 'x' within the initializer
905   /// are handled by handleUseOfUninitVariable.
906   void handleSelfInit(const VarDecl *vd) override {
907     hadUse[currentBlock] = true;
908     hadAnyUse = true;
909   }
910 };
911 
912 } // namespace
913 
914 void clang::runUninitializedVariablesAnalysis(
915     const DeclContext &dc,
916     const CFG &cfg,
917     AnalysisDeclContext &ac,
918     UninitVariablesHandler &handler,
919     UninitVariablesAnalysisStats &stats) {
920   CFGBlockValues vals(cfg);
921   vals.computeSetOfDeclarations(dc);
922   if (vals.hasNoDeclarations())
923     return;
924 
925   stats.NumVariablesAnalyzed = vals.getNumEntries();
926 
927   // Precompute which expressions are uses and which are initializations.
928   ClassifyRefs classification(ac);
929   cfg.VisitBlockStmts(classification);
930 
931   // Mark all variables uninitialized at the entry.
932   const CFGBlock &entry = cfg.getEntry();
933   ValueVector &vec = vals.getValueVector(&entry);
934   const unsigned n = vals.getNumEntries();
935   for (unsigned j = 0; j < n; ++j) {
936     vec[j] = Uninitialized;
937   }
938 
939   // Proceed with the workist.
940   ForwardDataflowWorklist worklist(cfg, ac);
941   llvm::BitVector previouslyVisited(cfg.getNumBlockIDs());
942   worklist.enqueueSuccessors(&cfg.getEntry());
943   llvm::BitVector wasAnalyzed(cfg.getNumBlockIDs(), false);
944   wasAnalyzed[cfg.getEntry().getBlockID()] = true;
945   PruneBlocksHandler PBH(cfg.getNumBlockIDs());
946 
947   while (const CFGBlock *block = worklist.dequeue()) {
948     PBH.currentBlock = block->getBlockID();
949 
950     // Did the block change?
951     bool changed = runOnBlock(block, cfg, ac, vals,
952                               classification, wasAnalyzed, PBH);
953     ++stats.NumBlockVisits;
954     if (changed || !previouslyVisited[block->getBlockID()])
955       worklist.enqueueSuccessors(block);
956     previouslyVisited[block->getBlockID()] = true;
957   }
958 
959   if (!PBH.hadAnyUse)
960     return;
961 
962   // Run through the blocks one more time, and report uninitialized variables.
963   for (const auto *block : cfg)
964     if (PBH.hadUse[block->getBlockID()]) {
965       runOnBlock(block, cfg, ac, vals, classification, wasAnalyzed, handler);
966       ++stats.NumBlockVisits;
967     }
968 }
969 
970 UninitVariablesHandler::~UninitVariablesHandler() = default;
971