1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Builtin calls as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ABIInfo.h"
14 #include "CGCUDARuntime.h"
15 #include "CGCXXABI.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CGRecordLayout.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "ConstantEmitter.h"
22 #include "PatternInit.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/OSLog.h"
28 #include "clang/AST/OperationKinds.h"
29 #include "clang/Basic/TargetBuiltins.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Basic/TargetOptions.h"
32 #include "clang/CodeGen/CGFunctionInfo.h"
33 #include "clang/Frontend/FrontendDiagnostic.h"
34 #include "llvm/ADT/APFloat.h"
35 #include "llvm/ADT/APInt.h"
36 #include "llvm/ADT/FloatingPointMode.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/StringExtras.h"
39 #include "llvm/Analysis/ValueTracking.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/InlineAsm.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/IntrinsicsAArch64.h"
44 #include "llvm/IR/IntrinsicsAMDGPU.h"
45 #include "llvm/IR/IntrinsicsARM.h"
46 #include "llvm/IR/IntrinsicsBPF.h"
47 #include "llvm/IR/IntrinsicsHexagon.h"
48 #include "llvm/IR/IntrinsicsNVPTX.h"
49 #include "llvm/IR/IntrinsicsPowerPC.h"
50 #include "llvm/IR/IntrinsicsR600.h"
51 #include "llvm/IR/IntrinsicsRISCV.h"
52 #include "llvm/IR/IntrinsicsS390.h"
53 #include "llvm/IR/IntrinsicsVE.h"
54 #include "llvm/IR/IntrinsicsWebAssembly.h"
55 #include "llvm/IR/IntrinsicsX86.h"
56 #include "llvm/IR/MDBuilder.h"
57 #include "llvm/IR/MatrixBuilder.h"
58 #include "llvm/Support/ConvertUTF.h"
59 #include "llvm/Support/MathExtras.h"
60 #include "llvm/Support/ScopedPrinter.h"
61 #include "llvm/TargetParser/AArch64TargetParser.h"
62 #include "llvm/TargetParser/X86TargetParser.h"
63 #include <optional>
64 #include <sstream>
65 
66 using namespace clang;
67 using namespace CodeGen;
68 using namespace llvm;
69 
70 static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size,
71                              Align AlignmentInBytes) {
72   ConstantInt *Byte;
73   switch (CGF.getLangOpts().getTrivialAutoVarInit()) {
74   case LangOptions::TrivialAutoVarInitKind::Uninitialized:
75     // Nothing to initialize.
76     return;
77   case LangOptions::TrivialAutoVarInitKind::Zero:
78     Byte = CGF.Builder.getInt8(0x00);
79     break;
80   case LangOptions::TrivialAutoVarInitKind::Pattern: {
81     llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext());
82     Byte = llvm::dyn_cast<llvm::ConstantInt>(
83         initializationPatternFor(CGF.CGM, Int8));
84     break;
85   }
86   }
87   if (CGF.CGM.stopAutoInit())
88     return;
89   auto *I = CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes);
90   I->addAnnotationMetadata("auto-init");
91 }
92 
93 /// getBuiltinLibFunction - Given a builtin id for a function like
94 /// "__builtin_fabsf", return a Function* for "fabsf".
95 llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
96                                                      unsigned BuiltinID) {
97   assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
98 
99   // Get the name, skip over the __builtin_ prefix (if necessary).
100   StringRef Name;
101   GlobalDecl D(FD);
102 
103   // TODO: This list should be expanded or refactored after all GCC-compatible
104   // std libcall builtins are implemented.
105   static SmallDenseMap<unsigned, StringRef, 64> F128Builtins{
106       {Builtin::BI__builtin___fprintf_chk, "__fprintf_chkieee128"},
107       {Builtin::BI__builtin___printf_chk, "__printf_chkieee128"},
108       {Builtin::BI__builtin___snprintf_chk, "__snprintf_chkieee128"},
109       {Builtin::BI__builtin___sprintf_chk, "__sprintf_chkieee128"},
110       {Builtin::BI__builtin___vfprintf_chk, "__vfprintf_chkieee128"},
111       {Builtin::BI__builtin___vprintf_chk, "__vprintf_chkieee128"},
112       {Builtin::BI__builtin___vsnprintf_chk, "__vsnprintf_chkieee128"},
113       {Builtin::BI__builtin___vsprintf_chk, "__vsprintf_chkieee128"},
114       {Builtin::BI__builtin_fprintf, "__fprintfieee128"},
115       {Builtin::BI__builtin_printf, "__printfieee128"},
116       {Builtin::BI__builtin_snprintf, "__snprintfieee128"},
117       {Builtin::BI__builtin_sprintf, "__sprintfieee128"},
118       {Builtin::BI__builtin_vfprintf, "__vfprintfieee128"},
119       {Builtin::BI__builtin_vprintf, "__vprintfieee128"},
120       {Builtin::BI__builtin_vsnprintf, "__vsnprintfieee128"},
121       {Builtin::BI__builtin_vsprintf, "__vsprintfieee128"},
122       {Builtin::BI__builtin_fscanf, "__fscanfieee128"},
123       {Builtin::BI__builtin_scanf, "__scanfieee128"},
124       {Builtin::BI__builtin_sscanf, "__sscanfieee128"},
125       {Builtin::BI__builtin_vfscanf, "__vfscanfieee128"},
126       {Builtin::BI__builtin_vscanf, "__vscanfieee128"},
127       {Builtin::BI__builtin_vsscanf, "__vsscanfieee128"},
128       {Builtin::BI__builtin_nexttowardf128, "__nexttowardieee128"},
129   };
130 
131   // The AIX library functions frexpl, ldexpl, and modfl are for 128-bit
132   // IBM 'long double' (i.e. __ibm128). Map to the 'double' versions
133   // if it is 64-bit 'long double' mode.
134   static SmallDenseMap<unsigned, StringRef, 4> AIXLongDouble64Builtins{
135       {Builtin::BI__builtin_frexpl, "frexp"},
136       {Builtin::BI__builtin_ldexpl, "ldexp"},
137       {Builtin::BI__builtin_modfl, "modf"},
138   };
139 
140   // If the builtin has been declared explicitly with an assembler label,
141   // use the mangled name. This differs from the plain label on platforms
142   // that prefix labels.
143   if (FD->hasAttr<AsmLabelAttr>())
144     Name = getMangledName(D);
145   else {
146     // TODO: This mutation should also be applied to other targets other than
147     // PPC, after backend supports IEEE 128-bit style libcalls.
148     if (getTriple().isPPC64() &&
149         &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad() &&
150         F128Builtins.contains(BuiltinID))
151       Name = F128Builtins[BuiltinID];
152     else if (getTriple().isOSAIX() &&
153              &getTarget().getLongDoubleFormat() ==
154                  &llvm::APFloat::IEEEdouble() &&
155              AIXLongDouble64Builtins.contains(BuiltinID))
156       Name = AIXLongDouble64Builtins[BuiltinID];
157     else
158       Name = Context.BuiltinInfo.getName(BuiltinID).substr(10);
159   }
160 
161   llvm::FunctionType *Ty =
162     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
163 
164   return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
165 }
166 
167 /// Emit the conversions required to turn the given value into an
168 /// integer of the given size.
169 static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
170                         QualType T, llvm::IntegerType *IntType) {
171   V = CGF.EmitToMemory(V, T);
172 
173   if (V->getType()->isPointerTy())
174     return CGF.Builder.CreatePtrToInt(V, IntType);
175 
176   assert(V->getType() == IntType);
177   return V;
178 }
179 
180 static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
181                           QualType T, llvm::Type *ResultType) {
182   V = CGF.EmitFromMemory(V, T);
183 
184   if (ResultType->isPointerTy())
185     return CGF.Builder.CreateIntToPtr(V, ResultType);
186 
187   assert(V->getType() == ResultType);
188   return V;
189 }
190 
191 static Address CheckAtomicAlignment(CodeGenFunction &CGF, const CallExpr *E) {
192   ASTContext &Ctx = CGF.getContext();
193   Address Ptr = CGF.EmitPointerWithAlignment(E->getArg(0));
194   unsigned Bytes = Ptr.getElementType()->isPointerTy()
195                        ? Ctx.getTypeSizeInChars(Ctx.VoidPtrTy).getQuantity()
196                        : Ptr.getElementType()->getScalarSizeInBits() / 8;
197   unsigned Align = Ptr.getAlignment().getQuantity();
198   if (Align % Bytes != 0) {
199     DiagnosticsEngine &Diags = CGF.CGM.getDiags();
200     Diags.Report(E->getBeginLoc(), diag::warn_sync_op_misaligned);
201     // Force address to be at least naturally-aligned.
202     return Ptr.withAlignment(CharUnits::fromQuantity(Bytes));
203   }
204   return Ptr;
205 }
206 
207 /// Utility to insert an atomic instruction based on Intrinsic::ID
208 /// and the expression node.
209 static Value *MakeBinaryAtomicValue(
210     CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
211     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
212 
213   QualType T = E->getType();
214   assert(E->getArg(0)->getType()->isPointerType());
215   assert(CGF.getContext().hasSameUnqualifiedType(T,
216                                   E->getArg(0)->getType()->getPointeeType()));
217   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
218 
219   Address DestAddr = CheckAtomicAlignment(CGF, E);
220 
221   llvm::IntegerType *IntType = llvm::IntegerType::get(
222       CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
223 
224   llvm::Value *Val = CGF.EmitScalarExpr(E->getArg(1));
225   llvm::Type *ValueType = Val->getType();
226   Val = EmitToInt(CGF, Val, T, IntType);
227 
228   llvm::Value *Result =
229       CGF.Builder.CreateAtomicRMW(Kind, DestAddr, Val, Ordering);
230   return EmitFromInt(CGF, Result, T, ValueType);
231 }
232 
233 static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
234   Value *Val = CGF.EmitScalarExpr(E->getArg(0));
235   Address Addr = CGF.EmitPointerWithAlignment(E->getArg(1));
236 
237   Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
238   LValue LV = CGF.MakeAddrLValue(Addr, E->getArg(0)->getType());
239   LV.setNontemporal(true);
240   CGF.EmitStoreOfScalar(Val, LV, false);
241   return nullptr;
242 }
243 
244 static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
245   Address Addr = CGF.EmitPointerWithAlignment(E->getArg(0));
246 
247   LValue LV = CGF.MakeAddrLValue(Addr, E->getType());
248   LV.setNontemporal(true);
249   return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
250 }
251 
252 static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
253                                llvm::AtomicRMWInst::BinOp Kind,
254                                const CallExpr *E) {
255   return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
256 }
257 
258 /// Utility to insert an atomic instruction based Intrinsic::ID and
259 /// the expression node, where the return value is the result of the
260 /// operation.
261 static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
262                                    llvm::AtomicRMWInst::BinOp Kind,
263                                    const CallExpr *E,
264                                    Instruction::BinaryOps Op,
265                                    bool Invert = false) {
266   QualType T = E->getType();
267   assert(E->getArg(0)->getType()->isPointerType());
268   assert(CGF.getContext().hasSameUnqualifiedType(T,
269                                   E->getArg(0)->getType()->getPointeeType()));
270   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
271 
272   Address DestAddr = CheckAtomicAlignment(CGF, E);
273 
274   llvm::IntegerType *IntType = llvm::IntegerType::get(
275       CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
276 
277   llvm::Value *Val = CGF.EmitScalarExpr(E->getArg(1));
278   llvm::Type *ValueType = Val->getType();
279   Val = EmitToInt(CGF, Val, T, IntType);
280 
281   llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
282       Kind, DestAddr, Val, llvm::AtomicOrdering::SequentiallyConsistent);
283   Result = CGF.Builder.CreateBinOp(Op, Result, Val);
284   if (Invert)
285     Result =
286         CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
287                                 llvm::ConstantInt::getAllOnesValue(IntType));
288   Result = EmitFromInt(CGF, Result, T, ValueType);
289   return RValue::get(Result);
290 }
291 
292 /// Utility to insert an atomic cmpxchg instruction.
293 ///
294 /// @param CGF The current codegen function.
295 /// @param E   Builtin call expression to convert to cmpxchg.
296 ///            arg0 - address to operate on
297 ///            arg1 - value to compare with
298 ///            arg2 - new value
299 /// @param ReturnBool Specifies whether to return success flag of
300 ///                   cmpxchg result or the old value.
301 ///
302 /// @returns result of cmpxchg, according to ReturnBool
303 ///
304 /// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
305 /// invoke the function EmitAtomicCmpXchgForMSIntrin.
306 static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
307                                      bool ReturnBool) {
308   QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
309   Address DestAddr = CheckAtomicAlignment(CGF, E);
310 
311   llvm::IntegerType *IntType = llvm::IntegerType::get(
312       CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
313 
314   Value *Cmp = CGF.EmitScalarExpr(E->getArg(1));
315   llvm::Type *ValueType = Cmp->getType();
316   Cmp = EmitToInt(CGF, Cmp, T, IntType);
317   Value *New = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
318 
319   Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
320       DestAddr, Cmp, New, llvm::AtomicOrdering::SequentiallyConsistent,
321       llvm::AtomicOrdering::SequentiallyConsistent);
322   if (ReturnBool)
323     // Extract boolean success flag and zext it to int.
324     return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
325                                   CGF.ConvertType(E->getType()));
326   else
327     // Extract old value and emit it using the same type as compare value.
328     return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
329                        ValueType);
330 }
331 
332 /// This function should be invoked to emit atomic cmpxchg for Microsoft's
333 /// _InterlockedCompareExchange* intrinsics which have the following signature:
334 /// T _InterlockedCompareExchange(T volatile *Destination,
335 ///                               T Exchange,
336 ///                               T Comparand);
337 ///
338 /// Whereas the llvm 'cmpxchg' instruction has the following syntax:
339 /// cmpxchg *Destination, Comparand, Exchange.
340 /// So we need to swap Comparand and Exchange when invoking
341 /// CreateAtomicCmpXchg. That is the reason we could not use the above utility
342 /// function MakeAtomicCmpXchgValue since it expects the arguments to be
343 /// already swapped.
344 
345 static
346 Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E,
347     AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
348   assert(E->getArg(0)->getType()->isPointerType());
349   assert(CGF.getContext().hasSameUnqualifiedType(
350       E->getType(), E->getArg(0)->getType()->getPointeeType()));
351   assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
352                                                  E->getArg(1)->getType()));
353   assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
354                                                  E->getArg(2)->getType()));
355 
356   Address DestAddr = CheckAtomicAlignment(CGF, E);
357 
358   auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
359   auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
360 
361   // For Release ordering, the failure ordering should be Monotonic.
362   auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
363                          AtomicOrdering::Monotonic :
364                          SuccessOrdering;
365 
366   // The atomic instruction is marked volatile for consistency with MSVC. This
367   // blocks the few atomics optimizations that LLVM has. If we want to optimize
368   // _Interlocked* operations in the future, we will have to remove the volatile
369   // marker.
370   auto *Result = CGF.Builder.CreateAtomicCmpXchg(
371       DestAddr, Comparand, Exchange, SuccessOrdering, FailureOrdering);
372   Result->setVolatile(true);
373   return CGF.Builder.CreateExtractValue(Result, 0);
374 }
375 
376 // 64-bit Microsoft platforms support 128 bit cmpxchg operations. They are
377 // prototyped like this:
378 //
379 // unsigned char _InterlockedCompareExchange128...(
380 //     __int64 volatile * _Destination,
381 //     __int64 _ExchangeHigh,
382 //     __int64 _ExchangeLow,
383 //     __int64 * _ComparandResult);
384 //
385 // Note that Destination is assumed to be at least 16-byte aligned, despite
386 // being typed int64.
387 
388 static Value *EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction &CGF,
389                                               const CallExpr *E,
390                                               AtomicOrdering SuccessOrdering) {
391   assert(E->getNumArgs() == 4);
392   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
393   llvm::Value *ExchangeHigh = CGF.EmitScalarExpr(E->getArg(1));
394   llvm::Value *ExchangeLow = CGF.EmitScalarExpr(E->getArg(2));
395   Address ComparandAddr = CGF.EmitPointerWithAlignment(E->getArg(3));
396 
397   assert(DestPtr->getType()->isPointerTy());
398   assert(!ExchangeHigh->getType()->isPointerTy());
399   assert(!ExchangeLow->getType()->isPointerTy());
400 
401   // For Release ordering, the failure ordering should be Monotonic.
402   auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release
403                              ? AtomicOrdering::Monotonic
404                              : SuccessOrdering;
405 
406   // Convert to i128 pointers and values. Alignment is also overridden for
407   // destination pointer.
408   llvm::Type *Int128Ty = llvm::IntegerType::get(CGF.getLLVMContext(), 128);
409   Address DestAddr(DestPtr, Int128Ty,
410                    CGF.getContext().toCharUnitsFromBits(128));
411   ComparandAddr = ComparandAddr.withElementType(Int128Ty);
412 
413   // (((i128)hi) << 64) | ((i128)lo)
414   ExchangeHigh = CGF.Builder.CreateZExt(ExchangeHigh, Int128Ty);
415   ExchangeLow = CGF.Builder.CreateZExt(ExchangeLow, Int128Ty);
416   ExchangeHigh =
417       CGF.Builder.CreateShl(ExchangeHigh, llvm::ConstantInt::get(Int128Ty, 64));
418   llvm::Value *Exchange = CGF.Builder.CreateOr(ExchangeHigh, ExchangeLow);
419 
420   // Load the comparand for the instruction.
421   llvm::Value *Comparand = CGF.Builder.CreateLoad(ComparandAddr);
422 
423   auto *CXI = CGF.Builder.CreateAtomicCmpXchg(DestAddr, Comparand, Exchange,
424                                               SuccessOrdering, FailureOrdering);
425 
426   // The atomic instruction is marked volatile for consistency with MSVC. This
427   // blocks the few atomics optimizations that LLVM has. If we want to optimize
428   // _Interlocked* operations in the future, we will have to remove the volatile
429   // marker.
430   CXI->setVolatile(true);
431 
432   // Store the result as an outparameter.
433   CGF.Builder.CreateStore(CGF.Builder.CreateExtractValue(CXI, 0),
434                           ComparandAddr);
435 
436   // Get the success boolean and zero extend it to i8.
437   Value *Success = CGF.Builder.CreateExtractValue(CXI, 1);
438   return CGF.Builder.CreateZExt(Success, CGF.Int8Ty);
439 }
440 
441 static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E,
442     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
443   assert(E->getArg(0)->getType()->isPointerType());
444 
445   auto *IntTy = CGF.ConvertType(E->getType());
446   Address DestAddr = CheckAtomicAlignment(CGF, E);
447   auto *Result = CGF.Builder.CreateAtomicRMW(
448       AtomicRMWInst::Add, DestAddr, ConstantInt::get(IntTy, 1), Ordering);
449   return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
450 }
451 
452 static Value *EmitAtomicDecrementValue(
453     CodeGenFunction &CGF, const CallExpr *E,
454     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
455   assert(E->getArg(0)->getType()->isPointerType());
456 
457   auto *IntTy = CGF.ConvertType(E->getType());
458   Address DestAddr = CheckAtomicAlignment(CGF, E);
459   auto *Result = CGF.Builder.CreateAtomicRMW(
460       AtomicRMWInst::Sub, DestAddr, ConstantInt::get(IntTy, 1), Ordering);
461   return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
462 }
463 
464 // Build a plain volatile load.
465 static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) {
466   Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
467   QualType ElTy = E->getArg(0)->getType()->getPointeeType();
468   CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy);
469   llvm::Type *ITy =
470       llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8);
471   llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(ITy, Ptr, LoadSize);
472   Load->setVolatile(true);
473   return Load;
474 }
475 
476 // Build a plain volatile store.
477 static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) {
478   Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
479   Value *Value = CGF.EmitScalarExpr(E->getArg(1));
480   QualType ElTy = E->getArg(0)->getType()->getPointeeType();
481   CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy);
482   llvm::StoreInst *Store =
483       CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize);
484   Store->setVolatile(true);
485   return Store;
486 }
487 
488 // Emit a simple mangled intrinsic that has 1 argument and a return type
489 // matching the argument type. Depending on mode, this may be a constrained
490 // floating-point intrinsic.
491 static Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
492                                 const CallExpr *E, unsigned IntrinsicID,
493                                 unsigned ConstrainedIntrinsicID) {
494   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
495 
496   CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
497   if (CGF.Builder.getIsFPConstrained()) {
498     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
499     return CGF.Builder.CreateConstrainedFPCall(F, { Src0 });
500   } else {
501     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
502     return CGF.Builder.CreateCall(F, Src0);
503   }
504 }
505 
506 // Emit an intrinsic that has 2 operands of the same type as its result.
507 // Depending on mode, this may be a constrained floating-point intrinsic.
508 static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
509                                 const CallExpr *E, unsigned IntrinsicID,
510                                 unsigned ConstrainedIntrinsicID) {
511   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
512   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
513 
514   if (CGF.Builder.getIsFPConstrained()) {
515     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
516     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
517     return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1 });
518   } else {
519     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
520     return CGF.Builder.CreateCall(F, { Src0, Src1 });
521   }
522 }
523 
524 // Has second type mangled argument.
525 static Value *emitBinaryExpMaybeConstrainedFPBuiltin(
526     CodeGenFunction &CGF, const CallExpr *E, llvm::Intrinsic::ID IntrinsicID,
527     llvm::Intrinsic::ID ConstrainedIntrinsicID) {
528   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
529   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
530 
531   if (CGF.Builder.getIsFPConstrained()) {
532     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
533     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID,
534                                        {Src0->getType(), Src1->getType()});
535     return CGF.Builder.CreateConstrainedFPCall(F, {Src0, Src1});
536   }
537 
538   Function *F =
539       CGF.CGM.getIntrinsic(IntrinsicID, {Src0->getType(), Src1->getType()});
540   return CGF.Builder.CreateCall(F, {Src0, Src1});
541 }
542 
543 // Emit an intrinsic that has 3 operands of the same type as its result.
544 // Depending on mode, this may be a constrained floating-point intrinsic.
545 static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
546                                  const CallExpr *E, unsigned IntrinsicID,
547                                  unsigned ConstrainedIntrinsicID) {
548   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
549   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
550   llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
551 
552   if (CGF.Builder.getIsFPConstrained()) {
553     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
554     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
555     return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1, Src2 });
556   } else {
557     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
558     return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
559   }
560 }
561 
562 // Emit an intrinsic where all operands are of the same type as the result.
563 // Depending on mode, this may be a constrained floating-point intrinsic.
564 static Value *emitCallMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
565                                                 unsigned IntrinsicID,
566                                                 unsigned ConstrainedIntrinsicID,
567                                                 llvm::Type *Ty,
568                                                 ArrayRef<Value *> Args) {
569   Function *F;
570   if (CGF.Builder.getIsFPConstrained())
571     F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Ty);
572   else
573     F = CGF.CGM.getIntrinsic(IntrinsicID, Ty);
574 
575   if (CGF.Builder.getIsFPConstrained())
576     return CGF.Builder.CreateConstrainedFPCall(F, Args);
577   else
578     return CGF.Builder.CreateCall(F, Args);
579 }
580 
581 // Emit a simple mangled intrinsic that has 1 argument and a return type
582 // matching the argument type.
583 static Value *emitUnaryBuiltin(CodeGenFunction &CGF, const CallExpr *E,
584                                unsigned IntrinsicID,
585                                llvm::StringRef Name = "") {
586   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
587 
588   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
589   return CGF.Builder.CreateCall(F, Src0, Name);
590 }
591 
592 // Emit an intrinsic that has 2 operands of the same type as its result.
593 static Value *emitBinaryBuiltin(CodeGenFunction &CGF,
594                                 const CallExpr *E,
595                                 unsigned IntrinsicID) {
596   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
597   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
598 
599   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
600   return CGF.Builder.CreateCall(F, { Src0, Src1 });
601 }
602 
603 // Emit an intrinsic that has 3 operands of the same type as its result.
604 static Value *emitTernaryBuiltin(CodeGenFunction &CGF,
605                                  const CallExpr *E,
606                                  unsigned IntrinsicID) {
607   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
608   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
609   llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
610 
611   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
612   return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
613 }
614 
615 // Emit an intrinsic that has 1 float or double operand, and 1 integer.
616 static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
617                                const CallExpr *E,
618                                unsigned IntrinsicID) {
619   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
620   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
621 
622   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
623   return CGF.Builder.CreateCall(F, {Src0, Src1});
624 }
625 
626 // Emit an intrinsic that has overloaded integer result and fp operand.
627 static Value *
628 emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E,
629                                         unsigned IntrinsicID,
630                                         unsigned ConstrainedIntrinsicID) {
631   llvm::Type *ResultType = CGF.ConvertType(E->getType());
632   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
633 
634   if (CGF.Builder.getIsFPConstrained()) {
635     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
636     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID,
637                                        {ResultType, Src0->getType()});
638     return CGF.Builder.CreateConstrainedFPCall(F, {Src0});
639   } else {
640     Function *F =
641         CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()});
642     return CGF.Builder.CreateCall(F, Src0);
643   }
644 }
645 
646 static Value *emitFrexpBuiltin(CodeGenFunction &CGF, const CallExpr *E,
647                                llvm::Intrinsic::ID IntrinsicID) {
648   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
649   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
650 
651   QualType IntPtrTy = E->getArg(1)->getType()->getPointeeType();
652   llvm::Type *IntTy = CGF.ConvertType(IntPtrTy);
653   llvm::Function *F =
654       CGF.CGM.getIntrinsic(IntrinsicID, {Src0->getType(), IntTy});
655   llvm::Value *Call = CGF.Builder.CreateCall(F, Src0);
656 
657   llvm::Value *Exp = CGF.Builder.CreateExtractValue(Call, 1);
658   LValue LV = CGF.MakeNaturalAlignAddrLValue(Src1, IntPtrTy);
659   CGF.EmitStoreOfScalar(Exp, LV);
660 
661   return CGF.Builder.CreateExtractValue(Call, 0);
662 }
663 
664 /// EmitFAbs - Emit a call to @llvm.fabs().
665 static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
666   Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
667   llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
668   Call->setDoesNotAccessMemory();
669   return Call;
670 }
671 
672 /// Emit the computation of the sign bit for a floating point value. Returns
673 /// the i1 sign bit value.
674 static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
675   LLVMContext &C = CGF.CGM.getLLVMContext();
676 
677   llvm::Type *Ty = V->getType();
678   int Width = Ty->getPrimitiveSizeInBits();
679   llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
680   V = CGF.Builder.CreateBitCast(V, IntTy);
681   if (Ty->isPPC_FP128Ty()) {
682     // We want the sign bit of the higher-order double. The bitcast we just
683     // did works as if the double-double was stored to memory and then
684     // read as an i128. The "store" will put the higher-order double in the
685     // lower address in both little- and big-Endian modes, but the "load"
686     // will treat those bits as a different part of the i128: the low bits in
687     // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
688     // we need to shift the high bits down to the low before truncating.
689     Width >>= 1;
690     if (CGF.getTarget().isBigEndian()) {
691       Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
692       V = CGF.Builder.CreateLShr(V, ShiftCst);
693     }
694     // We are truncating value in order to extract the higher-order
695     // double, which we will be using to extract the sign from.
696     IntTy = llvm::IntegerType::get(C, Width);
697     V = CGF.Builder.CreateTrunc(V, IntTy);
698   }
699   Value *Zero = llvm::Constant::getNullValue(IntTy);
700   return CGF.Builder.CreateICmpSLT(V, Zero);
701 }
702 
703 static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
704                               const CallExpr *E, llvm::Constant *calleeValue) {
705   CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
706   return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
707 }
708 
709 /// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
710 /// depending on IntrinsicID.
711 ///
712 /// \arg CGF The current codegen function.
713 /// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
714 /// \arg X The first argument to the llvm.*.with.overflow.*.
715 /// \arg Y The second argument to the llvm.*.with.overflow.*.
716 /// \arg Carry The carry returned by the llvm.*.with.overflow.*.
717 /// \returns The result (i.e. sum/product) returned by the intrinsic.
718 static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
719                                           const llvm::Intrinsic::ID IntrinsicID,
720                                           llvm::Value *X, llvm::Value *Y,
721                                           llvm::Value *&Carry) {
722   // Make sure we have integers of the same width.
723   assert(X->getType() == Y->getType() &&
724          "Arguments must be the same type. (Did you forget to make sure both "
725          "arguments have the same integer width?)");
726 
727   Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
728   llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
729   Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
730   return CGF.Builder.CreateExtractValue(Tmp, 0);
731 }
732 
733 static Value *emitRangedBuiltin(CodeGenFunction &CGF,
734                                 unsigned IntrinsicID,
735                                 int low, int high) {
736     llvm::MDBuilder MDHelper(CGF.getLLVMContext());
737     llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high));
738     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
739     llvm::Instruction *Call = CGF.Builder.CreateCall(F);
740     Call->setMetadata(llvm::LLVMContext::MD_range, RNode);
741     Call->setMetadata(llvm::LLVMContext::MD_noundef,
742                       llvm::MDNode::get(CGF.getLLVMContext(), std::nullopt));
743     return Call;
744 }
745 
746 namespace {
747   struct WidthAndSignedness {
748     unsigned Width;
749     bool Signed;
750   };
751 }
752 
753 static WidthAndSignedness
754 getIntegerWidthAndSignedness(const clang::ASTContext &context,
755                              const clang::QualType Type) {
756   assert(Type->isIntegerType() && "Given type is not an integer.");
757   unsigned Width = Type->isBooleanType()  ? 1
758                    : Type->isBitIntType() ? context.getIntWidth(Type)
759                                           : context.getTypeInfo(Type).Width;
760   bool Signed = Type->isSignedIntegerType();
761   return {Width, Signed};
762 }
763 
764 // Given one or more integer types, this function produces an integer type that
765 // encompasses them: any value in one of the given types could be expressed in
766 // the encompassing type.
767 static struct WidthAndSignedness
768 EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
769   assert(Types.size() > 0 && "Empty list of types.");
770 
771   // If any of the given types is signed, we must return a signed type.
772   bool Signed = false;
773   for (const auto &Type : Types) {
774     Signed |= Type.Signed;
775   }
776 
777   // The encompassing type must have a width greater than or equal to the width
778   // of the specified types.  Additionally, if the encompassing type is signed,
779   // its width must be strictly greater than the width of any unsigned types
780   // given.
781   unsigned Width = 0;
782   for (const auto &Type : Types) {
783     unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
784     if (Width < MinWidth) {
785       Width = MinWidth;
786     }
787   }
788 
789   return {Width, Signed};
790 }
791 
792 Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
793   Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
794   return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
795 }
796 
797 /// Checks if using the result of __builtin_object_size(p, @p From) in place of
798 /// __builtin_object_size(p, @p To) is correct
799 static bool areBOSTypesCompatible(int From, int To) {
800   // Note: Our __builtin_object_size implementation currently treats Type=0 and
801   // Type=2 identically. Encoding this implementation detail here may make
802   // improving __builtin_object_size difficult in the future, so it's omitted.
803   return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
804 }
805 
806 static llvm::Value *
807 getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
808   return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
809 }
810 
811 llvm::Value *
812 CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
813                                                  llvm::IntegerType *ResType,
814                                                  llvm::Value *EmittedE,
815                                                  bool IsDynamic) {
816   uint64_t ObjectSize;
817   if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
818     return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic);
819   return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
820 }
821 
822 const FieldDecl *CodeGenFunction::FindFlexibleArrayMemberField(
823     ASTContext &Ctx, const RecordDecl *RD, StringRef Name, uint64_t &Offset) {
824   const LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel =
825       getLangOpts().getStrictFlexArraysLevel();
826   unsigned FieldNo = 0;
827   bool IsUnion = RD->isUnion();
828 
829   for (const Decl *D : RD->decls()) {
830     if (const auto *Field = dyn_cast<FieldDecl>(D);
831         Field && (Name.empty() || Field->getNameAsString() == Name) &&
832         Decl::isFlexibleArrayMemberLike(
833             Ctx, Field, Field->getType(), StrictFlexArraysLevel,
834             /*IgnoreTemplateOrMacroSubstitution=*/true)) {
835       const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(RD);
836       Offset += Layout.getFieldOffset(FieldNo);
837       return Field;
838     }
839 
840     if (const auto *Record = dyn_cast<RecordDecl>(D))
841       if (const FieldDecl *Field =
842               FindFlexibleArrayMemberField(Ctx, Record, Name, Offset)) {
843         const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(RD);
844         Offset += Layout.getFieldOffset(FieldNo);
845         return Field;
846       }
847 
848     if (!IsUnion && isa<FieldDecl>(D))
849       ++FieldNo;
850   }
851 
852   return nullptr;
853 }
854 
855 static unsigned CountCountedByAttrs(const RecordDecl *RD) {
856   unsigned Num = 0;
857 
858   for (const Decl *D : RD->decls()) {
859     if (const auto *FD = dyn_cast<FieldDecl>(D);
860         FD && FD->hasAttr<CountedByAttr>()) {
861       return ++Num;
862     }
863 
864     if (const auto *Rec = dyn_cast<RecordDecl>(D))
865       Num += CountCountedByAttrs(Rec);
866   }
867 
868   return Num;
869 }
870 
871 llvm::Value *
872 CodeGenFunction::emitFlexibleArrayMemberSize(const Expr *E, unsigned Type,
873                                              llvm::IntegerType *ResType) {
874   // The code generated here calculates the size of a struct with a flexible
875   // array member that uses the counted_by attribute. There are two instances
876   // we handle:
877   //
878   //       struct s {
879   //         unsigned long flags;
880   //         int count;
881   //         int array[] __attribute__((counted_by(count)));
882   //       }
883   //
884   //   1) bdos of the flexible array itself:
885   //
886   //     __builtin_dynamic_object_size(p->array, 1) ==
887   //         p->count * sizeof(*p->array)
888   //
889   //   2) bdos of a pointer into the flexible array:
890   //
891   //     __builtin_dynamic_object_size(&p->array[42], 1) ==
892   //         (p->count - 42) * sizeof(*p->array)
893   //
894   //   2) bdos of the whole struct, including the flexible array:
895   //
896   //     __builtin_dynamic_object_size(p, 1) ==
897   //        max(sizeof(struct s),
898   //            offsetof(struct s, array) + p->count * sizeof(*p->array))
899   //
900   ASTContext &Ctx = getContext();
901   const Expr *Base = E->IgnoreParenImpCasts();
902   const Expr *Idx = nullptr;
903 
904   if (const auto *UO = dyn_cast<UnaryOperator>(Base);
905       UO && UO->getOpcode() == UO_AddrOf) {
906     Expr *SubExpr = UO->getSubExpr()->IgnoreParenImpCasts();
907     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(SubExpr)) {
908       Base = ASE->getBase()->IgnoreParenImpCasts();
909       Idx = ASE->getIdx()->IgnoreParenImpCasts();
910 
911       if (const auto *IL = dyn_cast<IntegerLiteral>(Idx)) {
912         int64_t Val = IL->getValue().getSExtValue();
913         if (Val < 0)
914           return getDefaultBuiltinObjectSizeResult(Type, ResType);
915 
916         if (Val == 0)
917           // The index is 0, so we don't need to take it into account.
918           Idx = nullptr;
919       }
920     } else {
921       // Potential pointer to another element in the struct.
922       Base = SubExpr;
923     }
924   }
925 
926   // Get the flexible array member Decl.
927   const RecordDecl *OuterRD = nullptr;
928   std::string FAMName;
929   if (const auto *ME = dyn_cast<MemberExpr>(Base)) {
930     // Check if \p Base is referencing the FAM itself.
931     const ValueDecl *VD = ME->getMemberDecl();
932     OuterRD = VD->getDeclContext()->getOuterLexicalRecordContext();
933     FAMName = VD->getNameAsString();
934   } else if (const auto *DRE = dyn_cast<DeclRefExpr>(Base)) {
935     // Check if we're pointing to the whole struct.
936     QualType Ty = DRE->getDecl()->getType();
937     if (Ty->isPointerType())
938       Ty = Ty->getPointeeType();
939     OuterRD = Ty->getAsRecordDecl();
940 
941     // If we have a situation like this:
942     //
943     //     struct union_of_fams {
944     //         int flags;
945     //         union {
946     //             signed char normal_field;
947     //             struct {
948     //                 int count1;
949     //                 int arr1[] __counted_by(count1);
950     //             };
951     //             struct {
952     //                 signed char count2;
953     //                 int arr2[] __counted_by(count2);
954     //             };
955     //         };
956     //    };
957     //
958     // We don't konw which 'count' to use in this scenario:
959     //
960     //     size_t get_size(struct union_of_fams *p) {
961     //         return __builtin_dynamic_object_size(p, 1);
962     //     }
963     //
964     // Instead of calculating a wrong number, we give up.
965     if (OuterRD && CountCountedByAttrs(OuterRD) > 1)
966       return nullptr;
967   }
968 
969   if (!OuterRD)
970     return nullptr;
971 
972   uint64_t Offset = 0;
973   const FieldDecl *FAMDecl =
974       FindFlexibleArrayMemberField(Ctx, OuterRD, FAMName, Offset);
975   Offset = Ctx.toCharUnitsFromBits(Offset).getQuantity();
976 
977   if (!FAMDecl || !FAMDecl->hasAttr<CountedByAttr>())
978     // No flexible array member found or it doesn't have the "counted_by"
979     // attribute.
980     return nullptr;
981 
982   const FieldDecl *CountedByFD = FindCountedByField(FAMDecl);
983   if (!CountedByFD)
984     // Can't find the field referenced by the "counted_by" attribute.
985     return nullptr;
986 
987   // Build a load of the counted_by field.
988   bool IsSigned = CountedByFD->getType()->isSignedIntegerType();
989   Value *CountedByInst = EmitCountedByFieldExpr(Base, FAMDecl, CountedByFD);
990   if (!CountedByInst)
991     return getDefaultBuiltinObjectSizeResult(Type, ResType);
992 
993   CountedByInst = Builder.CreateIntCast(CountedByInst, ResType, IsSigned);
994 
995   // Build a load of the index and subtract it from the count.
996   Value *IdxInst = nullptr;
997   if (Idx) {
998     if (Idx->HasSideEffects(getContext()))
999       // We can't have side-effects.
1000       return getDefaultBuiltinObjectSizeResult(Type, ResType);
1001 
1002     bool IdxSigned = Idx->getType()->isSignedIntegerType();
1003     IdxInst = EmitAnyExprToTemp(Idx).getScalarVal();
1004     IdxInst = Builder.CreateIntCast(IdxInst, ResType, IdxSigned);
1005 
1006     // We go ahead with the calculation here. If the index turns out to be
1007     // negative, we'll catch it at the end.
1008     CountedByInst =
1009         Builder.CreateSub(CountedByInst, IdxInst, "", !IsSigned, IsSigned);
1010   }
1011 
1012   // Calculate how large the flexible array member is in bytes.
1013   const ArrayType *ArrayTy = Ctx.getAsArrayType(FAMDecl->getType());
1014   CharUnits Size = Ctx.getTypeSizeInChars(ArrayTy->getElementType());
1015   llvm::Constant *ElemSize =
1016       llvm::ConstantInt::get(ResType, Size.getQuantity(), IsSigned);
1017   Value *FAMSize =
1018       Builder.CreateMul(CountedByInst, ElemSize, "", !IsSigned, IsSigned);
1019   FAMSize = Builder.CreateIntCast(FAMSize, ResType, IsSigned);
1020   Value *Res = FAMSize;
1021 
1022   if (isa<DeclRefExpr>(Base)) {
1023     // The whole struct is specificed in the __bdos.
1024     const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(OuterRD);
1025 
1026     // Get the offset of the FAM.
1027     llvm::Constant *FAMOffset = ConstantInt::get(ResType, Offset, IsSigned);
1028     Value *OffsetAndFAMSize =
1029         Builder.CreateAdd(FAMOffset, Res, "", !IsSigned, IsSigned);
1030 
1031     // Get the full size of the struct.
1032     llvm::Constant *SizeofStruct =
1033         ConstantInt::get(ResType, Layout.getSize().getQuantity(), IsSigned);
1034 
1035     // max(sizeof(struct s),
1036     //     offsetof(struct s, array) + p->count * sizeof(*p->array))
1037     Res = IsSigned
1038               ? Builder.CreateBinaryIntrinsic(llvm::Intrinsic::smax,
1039                                               OffsetAndFAMSize, SizeofStruct)
1040               : Builder.CreateBinaryIntrinsic(llvm::Intrinsic::umax,
1041                                               OffsetAndFAMSize, SizeofStruct);
1042   }
1043 
1044   // A negative \p IdxInst or \p CountedByInst means that the index lands
1045   // outside of the flexible array member. If that's the case, we want to
1046   // return 0.
1047   Value *Cmp = Builder.CreateIsNotNeg(CountedByInst);
1048   if (IdxInst)
1049     Cmp = Builder.CreateAnd(Builder.CreateIsNotNeg(IdxInst), Cmp);
1050 
1051   return Builder.CreateSelect(Cmp, Res, ConstantInt::get(ResType, 0, IsSigned));
1052 }
1053 
1054 /// Returns a Value corresponding to the size of the given expression.
1055 /// This Value may be either of the following:
1056 ///   - A llvm::Argument (if E is a param with the pass_object_size attribute on
1057 ///     it)
1058 ///   - A call to the @llvm.objectsize intrinsic
1059 ///
1060 /// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
1061 /// and we wouldn't otherwise try to reference a pass_object_size parameter,
1062 /// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
1063 llvm::Value *
1064 CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
1065                                        llvm::IntegerType *ResType,
1066                                        llvm::Value *EmittedE, bool IsDynamic) {
1067   // We need to reference an argument if the pointer is a parameter with the
1068   // pass_object_size attribute.
1069   if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
1070     auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
1071     auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
1072     if (Param != nullptr && PS != nullptr &&
1073         areBOSTypesCompatible(PS->getType(), Type)) {
1074       auto Iter = SizeArguments.find(Param);
1075       assert(Iter != SizeArguments.end());
1076 
1077       const ImplicitParamDecl *D = Iter->second;
1078       auto DIter = LocalDeclMap.find(D);
1079       assert(DIter != LocalDeclMap.end());
1080 
1081       return EmitLoadOfScalar(DIter->second, /*Volatile=*/false,
1082                               getContext().getSizeType(), E->getBeginLoc());
1083     }
1084   }
1085 
1086   if (IsDynamic) {
1087     // Emit special code for a flexible array member with the "counted_by"
1088     // attribute.
1089     if (Value *V = emitFlexibleArrayMemberSize(E, Type, ResType))
1090       return V;
1091   }
1092 
1093   // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
1094   // evaluate E for side-effects. In either case, we shouldn't lower to
1095   // @llvm.objectsize.
1096   if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
1097     return getDefaultBuiltinObjectSizeResult(Type, ResType);
1098 
1099   Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
1100   assert(Ptr->getType()->isPointerTy() &&
1101          "Non-pointer passed to __builtin_object_size?");
1102 
1103   Function *F =
1104       CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
1105 
1106   // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
1107   Value *Min = Builder.getInt1((Type & 2) != 0);
1108   // For GCC compatibility, __builtin_object_size treat NULL as unknown size.
1109   Value *NullIsUnknown = Builder.getTrue();
1110   Value *Dynamic = Builder.getInt1(IsDynamic);
1111   return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic});
1112 }
1113 
1114 namespace {
1115 /// A struct to generically describe a bit test intrinsic.
1116 struct BitTest {
1117   enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
1118   enum InterlockingKind : uint8_t {
1119     Unlocked,
1120     Sequential,
1121     Acquire,
1122     Release,
1123     NoFence
1124   };
1125 
1126   ActionKind Action;
1127   InterlockingKind Interlocking;
1128   bool Is64Bit;
1129 
1130   static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
1131 };
1132 } // namespace
1133 
1134 BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
1135   switch (BuiltinID) {
1136     // Main portable variants.
1137   case Builtin::BI_bittest:
1138     return {TestOnly, Unlocked, false};
1139   case Builtin::BI_bittestandcomplement:
1140     return {Complement, Unlocked, false};
1141   case Builtin::BI_bittestandreset:
1142     return {Reset, Unlocked, false};
1143   case Builtin::BI_bittestandset:
1144     return {Set, Unlocked, false};
1145   case Builtin::BI_interlockedbittestandreset:
1146     return {Reset, Sequential, false};
1147   case Builtin::BI_interlockedbittestandset:
1148     return {Set, Sequential, false};
1149 
1150     // X86-specific 64-bit variants.
1151   case Builtin::BI_bittest64:
1152     return {TestOnly, Unlocked, true};
1153   case Builtin::BI_bittestandcomplement64:
1154     return {Complement, Unlocked, true};
1155   case Builtin::BI_bittestandreset64:
1156     return {Reset, Unlocked, true};
1157   case Builtin::BI_bittestandset64:
1158     return {Set, Unlocked, true};
1159   case Builtin::BI_interlockedbittestandreset64:
1160     return {Reset, Sequential, true};
1161   case Builtin::BI_interlockedbittestandset64:
1162     return {Set, Sequential, true};
1163 
1164     // ARM/AArch64-specific ordering variants.
1165   case Builtin::BI_interlockedbittestandset_acq:
1166     return {Set, Acquire, false};
1167   case Builtin::BI_interlockedbittestandset_rel:
1168     return {Set, Release, false};
1169   case Builtin::BI_interlockedbittestandset_nf:
1170     return {Set, NoFence, false};
1171   case Builtin::BI_interlockedbittestandreset_acq:
1172     return {Reset, Acquire, false};
1173   case Builtin::BI_interlockedbittestandreset_rel:
1174     return {Reset, Release, false};
1175   case Builtin::BI_interlockedbittestandreset_nf:
1176     return {Reset, NoFence, false};
1177   }
1178   llvm_unreachable("expected only bittest intrinsics");
1179 }
1180 
1181 static char bitActionToX86BTCode(BitTest::ActionKind A) {
1182   switch (A) {
1183   case BitTest::TestOnly:   return '\0';
1184   case BitTest::Complement: return 'c';
1185   case BitTest::Reset:      return 'r';
1186   case BitTest::Set:        return 's';
1187   }
1188   llvm_unreachable("invalid action");
1189 }
1190 
1191 static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF,
1192                                             BitTest BT,
1193                                             const CallExpr *E, Value *BitBase,
1194                                             Value *BitPos) {
1195   char Action = bitActionToX86BTCode(BT.Action);
1196   char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
1197 
1198   // Build the assembly.
1199   SmallString<64> Asm;
1200   raw_svector_ostream AsmOS(Asm);
1201   if (BT.Interlocking != BitTest::Unlocked)
1202     AsmOS << "lock ";
1203   AsmOS << "bt";
1204   if (Action)
1205     AsmOS << Action;
1206   AsmOS << SizeSuffix << " $2, ($1)";
1207 
1208   // Build the constraints. FIXME: We should support immediates when possible.
1209   std::string Constraints = "={@ccc},r,r,~{cc},~{memory}";
1210   std::string_view MachineClobbers = CGF.getTarget().getClobbers();
1211   if (!MachineClobbers.empty()) {
1212     Constraints += ',';
1213     Constraints += MachineClobbers;
1214   }
1215   llvm::IntegerType *IntType = llvm::IntegerType::get(
1216       CGF.getLLVMContext(),
1217       CGF.getContext().getTypeSize(E->getArg(1)->getType()));
1218   llvm::FunctionType *FTy =
1219       llvm::FunctionType::get(CGF.Int8Ty, {CGF.UnqualPtrTy, IntType}, false);
1220 
1221   llvm::InlineAsm *IA =
1222       llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1223   return CGF.Builder.CreateCall(IA, {BitBase, BitPos});
1224 }
1225 
1226 static llvm::AtomicOrdering
1227 getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
1228   switch (I) {
1229   case BitTest::Unlocked:   return llvm::AtomicOrdering::NotAtomic;
1230   case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
1231   case BitTest::Acquire:    return llvm::AtomicOrdering::Acquire;
1232   case BitTest::Release:    return llvm::AtomicOrdering::Release;
1233   case BitTest::NoFence:    return llvm::AtomicOrdering::Monotonic;
1234   }
1235   llvm_unreachable("invalid interlocking");
1236 }
1237 
1238 /// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
1239 /// bits and a bit position and read and optionally modify the bit at that
1240 /// position. The position index can be arbitrarily large, i.e. it can be larger
1241 /// than 31 or 63, so we need an indexed load in the general case.
1242 static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
1243                                          unsigned BuiltinID,
1244                                          const CallExpr *E) {
1245   Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
1246   Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
1247 
1248   BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
1249 
1250   // X86 has special BT, BTC, BTR, and BTS instructions that handle the array
1251   // indexing operation internally. Use them if possible.
1252   if (CGF.getTarget().getTriple().isX86())
1253     return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
1254 
1255   // Otherwise, use generic code to load one byte and test the bit. Use all but
1256   // the bottom three bits as the array index, and the bottom three bits to form
1257   // a mask.
1258   // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
1259   Value *ByteIndex = CGF.Builder.CreateAShr(
1260       BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx");
1261   Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy);
1262   Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
1263                                                  ByteIndex, "bittest.byteaddr"),
1264                    CGF.Int8Ty, CharUnits::One());
1265   Value *PosLow =
1266       CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty),
1267                             llvm::ConstantInt::get(CGF.Int8Ty, 0x7));
1268 
1269   // The updating instructions will need a mask.
1270   Value *Mask = nullptr;
1271   if (BT.Action != BitTest::TestOnly) {
1272     Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow,
1273                                  "bittest.mask");
1274   }
1275 
1276   // Check the action and ordering of the interlocked intrinsics.
1277   llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking);
1278 
1279   Value *OldByte = nullptr;
1280   if (Ordering != llvm::AtomicOrdering::NotAtomic) {
1281     // Emit a combined atomicrmw load/store operation for the interlocked
1282     // intrinsics.
1283     llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
1284     if (BT.Action == BitTest::Reset) {
1285       Mask = CGF.Builder.CreateNot(Mask);
1286       RMWOp = llvm::AtomicRMWInst::And;
1287     }
1288     OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr, Mask, Ordering);
1289   } else {
1290     // Emit a plain load for the non-interlocked intrinsics.
1291     OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte");
1292     Value *NewByte = nullptr;
1293     switch (BT.Action) {
1294     case BitTest::TestOnly:
1295       // Don't store anything.
1296       break;
1297     case BitTest::Complement:
1298       NewByte = CGF.Builder.CreateXor(OldByte, Mask);
1299       break;
1300     case BitTest::Reset:
1301       NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask));
1302       break;
1303     case BitTest::Set:
1304       NewByte = CGF.Builder.CreateOr(OldByte, Mask);
1305       break;
1306     }
1307     if (NewByte)
1308       CGF.Builder.CreateStore(NewByte, ByteAddr);
1309   }
1310 
1311   // However we loaded the old byte, either by plain load or atomicrmw, shift
1312   // the bit into the low position and mask it to 0 or 1.
1313   Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr");
1314   return CGF.Builder.CreateAnd(
1315       ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res");
1316 }
1317 
1318 static llvm::Value *emitPPCLoadReserveIntrinsic(CodeGenFunction &CGF,
1319                                                 unsigned BuiltinID,
1320                                                 const CallExpr *E) {
1321   Value *Addr = CGF.EmitScalarExpr(E->getArg(0));
1322 
1323   SmallString<64> Asm;
1324   raw_svector_ostream AsmOS(Asm);
1325   llvm::IntegerType *RetType = CGF.Int32Ty;
1326 
1327   switch (BuiltinID) {
1328   case clang::PPC::BI__builtin_ppc_ldarx:
1329     AsmOS << "ldarx ";
1330     RetType = CGF.Int64Ty;
1331     break;
1332   case clang::PPC::BI__builtin_ppc_lwarx:
1333     AsmOS << "lwarx ";
1334     RetType = CGF.Int32Ty;
1335     break;
1336   case clang::PPC::BI__builtin_ppc_lharx:
1337     AsmOS << "lharx ";
1338     RetType = CGF.Int16Ty;
1339     break;
1340   case clang::PPC::BI__builtin_ppc_lbarx:
1341     AsmOS << "lbarx ";
1342     RetType = CGF.Int8Ty;
1343     break;
1344   default:
1345     llvm_unreachable("Expected only PowerPC load reserve intrinsics");
1346   }
1347 
1348   AsmOS << "$0, ${1:y}";
1349 
1350   std::string Constraints = "=r,*Z,~{memory}";
1351   std::string_view MachineClobbers = CGF.getTarget().getClobbers();
1352   if (!MachineClobbers.empty()) {
1353     Constraints += ',';
1354     Constraints += MachineClobbers;
1355   }
1356 
1357   llvm::Type *PtrType = CGF.UnqualPtrTy;
1358   llvm::FunctionType *FTy = llvm::FunctionType::get(RetType, {PtrType}, false);
1359 
1360   llvm::InlineAsm *IA =
1361       llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1362   llvm::CallInst *CI = CGF.Builder.CreateCall(IA, {Addr});
1363   CI->addParamAttr(
1364       0, Attribute::get(CGF.getLLVMContext(), Attribute::ElementType, RetType));
1365   return CI;
1366 }
1367 
1368 namespace {
1369 enum class MSVCSetJmpKind {
1370   _setjmpex,
1371   _setjmp3,
1372   _setjmp
1373 };
1374 }
1375 
1376 /// MSVC handles setjmp a bit differently on different platforms. On every
1377 /// architecture except 32-bit x86, the frame address is passed. On x86, extra
1378 /// parameters can be passed as variadic arguments, but we always pass none.
1379 static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
1380                                const CallExpr *E) {
1381   llvm::Value *Arg1 = nullptr;
1382   llvm::Type *Arg1Ty = nullptr;
1383   StringRef Name;
1384   bool IsVarArg = false;
1385   if (SJKind == MSVCSetJmpKind::_setjmp3) {
1386     Name = "_setjmp3";
1387     Arg1Ty = CGF.Int32Ty;
1388     Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0);
1389     IsVarArg = true;
1390   } else {
1391     Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
1392     Arg1Ty = CGF.Int8PtrTy;
1393     if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
1394       Arg1 = CGF.Builder.CreateCall(
1395           CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy));
1396     } else
1397       Arg1 = CGF.Builder.CreateCall(
1398           CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy),
1399           llvm::ConstantInt::get(CGF.Int32Ty, 0));
1400   }
1401 
1402   // Mark the call site and declaration with ReturnsTwice.
1403   llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
1404   llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
1405       CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
1406       llvm::Attribute::ReturnsTwice);
1407   llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction(
1408       llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name,
1409       ReturnsTwiceAttr, /*Local=*/true);
1410 
1411   llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
1412       CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
1413   llvm::Value *Args[] = {Buf, Arg1};
1414   llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
1415   CB->setAttributes(ReturnsTwiceAttr);
1416   return RValue::get(CB);
1417 }
1418 
1419 // Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
1420 // we handle them here.
1421 enum class CodeGenFunction::MSVCIntrin {
1422   _BitScanForward,
1423   _BitScanReverse,
1424   _InterlockedAnd,
1425   _InterlockedDecrement,
1426   _InterlockedExchange,
1427   _InterlockedExchangeAdd,
1428   _InterlockedExchangeSub,
1429   _InterlockedIncrement,
1430   _InterlockedOr,
1431   _InterlockedXor,
1432   _InterlockedExchangeAdd_acq,
1433   _InterlockedExchangeAdd_rel,
1434   _InterlockedExchangeAdd_nf,
1435   _InterlockedExchange_acq,
1436   _InterlockedExchange_rel,
1437   _InterlockedExchange_nf,
1438   _InterlockedCompareExchange_acq,
1439   _InterlockedCompareExchange_rel,
1440   _InterlockedCompareExchange_nf,
1441   _InterlockedCompareExchange128,
1442   _InterlockedCompareExchange128_acq,
1443   _InterlockedCompareExchange128_rel,
1444   _InterlockedCompareExchange128_nf,
1445   _InterlockedOr_acq,
1446   _InterlockedOr_rel,
1447   _InterlockedOr_nf,
1448   _InterlockedXor_acq,
1449   _InterlockedXor_rel,
1450   _InterlockedXor_nf,
1451   _InterlockedAnd_acq,
1452   _InterlockedAnd_rel,
1453   _InterlockedAnd_nf,
1454   _InterlockedIncrement_acq,
1455   _InterlockedIncrement_rel,
1456   _InterlockedIncrement_nf,
1457   _InterlockedDecrement_acq,
1458   _InterlockedDecrement_rel,
1459   _InterlockedDecrement_nf,
1460   __fastfail,
1461 };
1462 
1463 static std::optional<CodeGenFunction::MSVCIntrin>
1464 translateArmToMsvcIntrin(unsigned BuiltinID) {
1465   using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1466   switch (BuiltinID) {
1467   default:
1468     return std::nullopt;
1469   case clang::ARM::BI_BitScanForward:
1470   case clang::ARM::BI_BitScanForward64:
1471     return MSVCIntrin::_BitScanForward;
1472   case clang::ARM::BI_BitScanReverse:
1473   case clang::ARM::BI_BitScanReverse64:
1474     return MSVCIntrin::_BitScanReverse;
1475   case clang::ARM::BI_InterlockedAnd64:
1476     return MSVCIntrin::_InterlockedAnd;
1477   case clang::ARM::BI_InterlockedExchange64:
1478     return MSVCIntrin::_InterlockedExchange;
1479   case clang::ARM::BI_InterlockedExchangeAdd64:
1480     return MSVCIntrin::_InterlockedExchangeAdd;
1481   case clang::ARM::BI_InterlockedExchangeSub64:
1482     return MSVCIntrin::_InterlockedExchangeSub;
1483   case clang::ARM::BI_InterlockedOr64:
1484     return MSVCIntrin::_InterlockedOr;
1485   case clang::ARM::BI_InterlockedXor64:
1486     return MSVCIntrin::_InterlockedXor;
1487   case clang::ARM::BI_InterlockedDecrement64:
1488     return MSVCIntrin::_InterlockedDecrement;
1489   case clang::ARM::BI_InterlockedIncrement64:
1490     return MSVCIntrin::_InterlockedIncrement;
1491   case clang::ARM::BI_InterlockedExchangeAdd8_acq:
1492   case clang::ARM::BI_InterlockedExchangeAdd16_acq:
1493   case clang::ARM::BI_InterlockedExchangeAdd_acq:
1494   case clang::ARM::BI_InterlockedExchangeAdd64_acq:
1495     return MSVCIntrin::_InterlockedExchangeAdd_acq;
1496   case clang::ARM::BI_InterlockedExchangeAdd8_rel:
1497   case clang::ARM::BI_InterlockedExchangeAdd16_rel:
1498   case clang::ARM::BI_InterlockedExchangeAdd_rel:
1499   case clang::ARM::BI_InterlockedExchangeAdd64_rel:
1500     return MSVCIntrin::_InterlockedExchangeAdd_rel;
1501   case clang::ARM::BI_InterlockedExchangeAdd8_nf:
1502   case clang::ARM::BI_InterlockedExchangeAdd16_nf:
1503   case clang::ARM::BI_InterlockedExchangeAdd_nf:
1504   case clang::ARM::BI_InterlockedExchangeAdd64_nf:
1505     return MSVCIntrin::_InterlockedExchangeAdd_nf;
1506   case clang::ARM::BI_InterlockedExchange8_acq:
1507   case clang::ARM::BI_InterlockedExchange16_acq:
1508   case clang::ARM::BI_InterlockedExchange_acq:
1509   case clang::ARM::BI_InterlockedExchange64_acq:
1510     return MSVCIntrin::_InterlockedExchange_acq;
1511   case clang::ARM::BI_InterlockedExchange8_rel:
1512   case clang::ARM::BI_InterlockedExchange16_rel:
1513   case clang::ARM::BI_InterlockedExchange_rel:
1514   case clang::ARM::BI_InterlockedExchange64_rel:
1515     return MSVCIntrin::_InterlockedExchange_rel;
1516   case clang::ARM::BI_InterlockedExchange8_nf:
1517   case clang::ARM::BI_InterlockedExchange16_nf:
1518   case clang::ARM::BI_InterlockedExchange_nf:
1519   case clang::ARM::BI_InterlockedExchange64_nf:
1520     return MSVCIntrin::_InterlockedExchange_nf;
1521   case clang::ARM::BI_InterlockedCompareExchange8_acq:
1522   case clang::ARM::BI_InterlockedCompareExchange16_acq:
1523   case clang::ARM::BI_InterlockedCompareExchange_acq:
1524   case clang::ARM::BI_InterlockedCompareExchange64_acq:
1525     return MSVCIntrin::_InterlockedCompareExchange_acq;
1526   case clang::ARM::BI_InterlockedCompareExchange8_rel:
1527   case clang::ARM::BI_InterlockedCompareExchange16_rel:
1528   case clang::ARM::BI_InterlockedCompareExchange_rel:
1529   case clang::ARM::BI_InterlockedCompareExchange64_rel:
1530     return MSVCIntrin::_InterlockedCompareExchange_rel;
1531   case clang::ARM::BI_InterlockedCompareExchange8_nf:
1532   case clang::ARM::BI_InterlockedCompareExchange16_nf:
1533   case clang::ARM::BI_InterlockedCompareExchange_nf:
1534   case clang::ARM::BI_InterlockedCompareExchange64_nf:
1535     return MSVCIntrin::_InterlockedCompareExchange_nf;
1536   case clang::ARM::BI_InterlockedOr8_acq:
1537   case clang::ARM::BI_InterlockedOr16_acq:
1538   case clang::ARM::BI_InterlockedOr_acq:
1539   case clang::ARM::BI_InterlockedOr64_acq:
1540     return MSVCIntrin::_InterlockedOr_acq;
1541   case clang::ARM::BI_InterlockedOr8_rel:
1542   case clang::ARM::BI_InterlockedOr16_rel:
1543   case clang::ARM::BI_InterlockedOr_rel:
1544   case clang::ARM::BI_InterlockedOr64_rel:
1545     return MSVCIntrin::_InterlockedOr_rel;
1546   case clang::ARM::BI_InterlockedOr8_nf:
1547   case clang::ARM::BI_InterlockedOr16_nf:
1548   case clang::ARM::BI_InterlockedOr_nf:
1549   case clang::ARM::BI_InterlockedOr64_nf:
1550     return MSVCIntrin::_InterlockedOr_nf;
1551   case clang::ARM::BI_InterlockedXor8_acq:
1552   case clang::ARM::BI_InterlockedXor16_acq:
1553   case clang::ARM::BI_InterlockedXor_acq:
1554   case clang::ARM::BI_InterlockedXor64_acq:
1555     return MSVCIntrin::_InterlockedXor_acq;
1556   case clang::ARM::BI_InterlockedXor8_rel:
1557   case clang::ARM::BI_InterlockedXor16_rel:
1558   case clang::ARM::BI_InterlockedXor_rel:
1559   case clang::ARM::BI_InterlockedXor64_rel:
1560     return MSVCIntrin::_InterlockedXor_rel;
1561   case clang::ARM::BI_InterlockedXor8_nf:
1562   case clang::ARM::BI_InterlockedXor16_nf:
1563   case clang::ARM::BI_InterlockedXor_nf:
1564   case clang::ARM::BI_InterlockedXor64_nf:
1565     return MSVCIntrin::_InterlockedXor_nf;
1566   case clang::ARM::BI_InterlockedAnd8_acq:
1567   case clang::ARM::BI_InterlockedAnd16_acq:
1568   case clang::ARM::BI_InterlockedAnd_acq:
1569   case clang::ARM::BI_InterlockedAnd64_acq:
1570     return MSVCIntrin::_InterlockedAnd_acq;
1571   case clang::ARM::BI_InterlockedAnd8_rel:
1572   case clang::ARM::BI_InterlockedAnd16_rel:
1573   case clang::ARM::BI_InterlockedAnd_rel:
1574   case clang::ARM::BI_InterlockedAnd64_rel:
1575     return MSVCIntrin::_InterlockedAnd_rel;
1576   case clang::ARM::BI_InterlockedAnd8_nf:
1577   case clang::ARM::BI_InterlockedAnd16_nf:
1578   case clang::ARM::BI_InterlockedAnd_nf:
1579   case clang::ARM::BI_InterlockedAnd64_nf:
1580     return MSVCIntrin::_InterlockedAnd_nf;
1581   case clang::ARM::BI_InterlockedIncrement16_acq:
1582   case clang::ARM::BI_InterlockedIncrement_acq:
1583   case clang::ARM::BI_InterlockedIncrement64_acq:
1584     return MSVCIntrin::_InterlockedIncrement_acq;
1585   case clang::ARM::BI_InterlockedIncrement16_rel:
1586   case clang::ARM::BI_InterlockedIncrement_rel:
1587   case clang::ARM::BI_InterlockedIncrement64_rel:
1588     return MSVCIntrin::_InterlockedIncrement_rel;
1589   case clang::ARM::BI_InterlockedIncrement16_nf:
1590   case clang::ARM::BI_InterlockedIncrement_nf:
1591   case clang::ARM::BI_InterlockedIncrement64_nf:
1592     return MSVCIntrin::_InterlockedIncrement_nf;
1593   case clang::ARM::BI_InterlockedDecrement16_acq:
1594   case clang::ARM::BI_InterlockedDecrement_acq:
1595   case clang::ARM::BI_InterlockedDecrement64_acq:
1596     return MSVCIntrin::_InterlockedDecrement_acq;
1597   case clang::ARM::BI_InterlockedDecrement16_rel:
1598   case clang::ARM::BI_InterlockedDecrement_rel:
1599   case clang::ARM::BI_InterlockedDecrement64_rel:
1600     return MSVCIntrin::_InterlockedDecrement_rel;
1601   case clang::ARM::BI_InterlockedDecrement16_nf:
1602   case clang::ARM::BI_InterlockedDecrement_nf:
1603   case clang::ARM::BI_InterlockedDecrement64_nf:
1604     return MSVCIntrin::_InterlockedDecrement_nf;
1605   }
1606   llvm_unreachable("must return from switch");
1607 }
1608 
1609 static std::optional<CodeGenFunction::MSVCIntrin>
1610 translateAarch64ToMsvcIntrin(unsigned BuiltinID) {
1611   using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1612   switch (BuiltinID) {
1613   default:
1614     return std::nullopt;
1615   case clang::AArch64::BI_BitScanForward:
1616   case clang::AArch64::BI_BitScanForward64:
1617     return MSVCIntrin::_BitScanForward;
1618   case clang::AArch64::BI_BitScanReverse:
1619   case clang::AArch64::BI_BitScanReverse64:
1620     return MSVCIntrin::_BitScanReverse;
1621   case clang::AArch64::BI_InterlockedAnd64:
1622     return MSVCIntrin::_InterlockedAnd;
1623   case clang::AArch64::BI_InterlockedExchange64:
1624     return MSVCIntrin::_InterlockedExchange;
1625   case clang::AArch64::BI_InterlockedExchangeAdd64:
1626     return MSVCIntrin::_InterlockedExchangeAdd;
1627   case clang::AArch64::BI_InterlockedExchangeSub64:
1628     return MSVCIntrin::_InterlockedExchangeSub;
1629   case clang::AArch64::BI_InterlockedOr64:
1630     return MSVCIntrin::_InterlockedOr;
1631   case clang::AArch64::BI_InterlockedXor64:
1632     return MSVCIntrin::_InterlockedXor;
1633   case clang::AArch64::BI_InterlockedDecrement64:
1634     return MSVCIntrin::_InterlockedDecrement;
1635   case clang::AArch64::BI_InterlockedIncrement64:
1636     return MSVCIntrin::_InterlockedIncrement;
1637   case clang::AArch64::BI_InterlockedExchangeAdd8_acq:
1638   case clang::AArch64::BI_InterlockedExchangeAdd16_acq:
1639   case clang::AArch64::BI_InterlockedExchangeAdd_acq:
1640   case clang::AArch64::BI_InterlockedExchangeAdd64_acq:
1641     return MSVCIntrin::_InterlockedExchangeAdd_acq;
1642   case clang::AArch64::BI_InterlockedExchangeAdd8_rel:
1643   case clang::AArch64::BI_InterlockedExchangeAdd16_rel:
1644   case clang::AArch64::BI_InterlockedExchangeAdd_rel:
1645   case clang::AArch64::BI_InterlockedExchangeAdd64_rel:
1646     return MSVCIntrin::_InterlockedExchangeAdd_rel;
1647   case clang::AArch64::BI_InterlockedExchangeAdd8_nf:
1648   case clang::AArch64::BI_InterlockedExchangeAdd16_nf:
1649   case clang::AArch64::BI_InterlockedExchangeAdd_nf:
1650   case clang::AArch64::BI_InterlockedExchangeAdd64_nf:
1651     return MSVCIntrin::_InterlockedExchangeAdd_nf;
1652   case clang::AArch64::BI_InterlockedExchange8_acq:
1653   case clang::AArch64::BI_InterlockedExchange16_acq:
1654   case clang::AArch64::BI_InterlockedExchange_acq:
1655   case clang::AArch64::BI_InterlockedExchange64_acq:
1656     return MSVCIntrin::_InterlockedExchange_acq;
1657   case clang::AArch64::BI_InterlockedExchange8_rel:
1658   case clang::AArch64::BI_InterlockedExchange16_rel:
1659   case clang::AArch64::BI_InterlockedExchange_rel:
1660   case clang::AArch64::BI_InterlockedExchange64_rel:
1661     return MSVCIntrin::_InterlockedExchange_rel;
1662   case clang::AArch64::BI_InterlockedExchange8_nf:
1663   case clang::AArch64::BI_InterlockedExchange16_nf:
1664   case clang::AArch64::BI_InterlockedExchange_nf:
1665   case clang::AArch64::BI_InterlockedExchange64_nf:
1666     return MSVCIntrin::_InterlockedExchange_nf;
1667   case clang::AArch64::BI_InterlockedCompareExchange8_acq:
1668   case clang::AArch64::BI_InterlockedCompareExchange16_acq:
1669   case clang::AArch64::BI_InterlockedCompareExchange_acq:
1670   case clang::AArch64::BI_InterlockedCompareExchange64_acq:
1671     return MSVCIntrin::_InterlockedCompareExchange_acq;
1672   case clang::AArch64::BI_InterlockedCompareExchange8_rel:
1673   case clang::AArch64::BI_InterlockedCompareExchange16_rel:
1674   case clang::AArch64::BI_InterlockedCompareExchange_rel:
1675   case clang::AArch64::BI_InterlockedCompareExchange64_rel:
1676     return MSVCIntrin::_InterlockedCompareExchange_rel;
1677   case clang::AArch64::BI_InterlockedCompareExchange8_nf:
1678   case clang::AArch64::BI_InterlockedCompareExchange16_nf:
1679   case clang::AArch64::BI_InterlockedCompareExchange_nf:
1680   case clang::AArch64::BI_InterlockedCompareExchange64_nf:
1681     return MSVCIntrin::_InterlockedCompareExchange_nf;
1682   case clang::AArch64::BI_InterlockedCompareExchange128:
1683     return MSVCIntrin::_InterlockedCompareExchange128;
1684   case clang::AArch64::BI_InterlockedCompareExchange128_acq:
1685     return MSVCIntrin::_InterlockedCompareExchange128_acq;
1686   case clang::AArch64::BI_InterlockedCompareExchange128_nf:
1687     return MSVCIntrin::_InterlockedCompareExchange128_nf;
1688   case clang::AArch64::BI_InterlockedCompareExchange128_rel:
1689     return MSVCIntrin::_InterlockedCompareExchange128_rel;
1690   case clang::AArch64::BI_InterlockedOr8_acq:
1691   case clang::AArch64::BI_InterlockedOr16_acq:
1692   case clang::AArch64::BI_InterlockedOr_acq:
1693   case clang::AArch64::BI_InterlockedOr64_acq:
1694     return MSVCIntrin::_InterlockedOr_acq;
1695   case clang::AArch64::BI_InterlockedOr8_rel:
1696   case clang::AArch64::BI_InterlockedOr16_rel:
1697   case clang::AArch64::BI_InterlockedOr_rel:
1698   case clang::AArch64::BI_InterlockedOr64_rel:
1699     return MSVCIntrin::_InterlockedOr_rel;
1700   case clang::AArch64::BI_InterlockedOr8_nf:
1701   case clang::AArch64::BI_InterlockedOr16_nf:
1702   case clang::AArch64::BI_InterlockedOr_nf:
1703   case clang::AArch64::BI_InterlockedOr64_nf:
1704     return MSVCIntrin::_InterlockedOr_nf;
1705   case clang::AArch64::BI_InterlockedXor8_acq:
1706   case clang::AArch64::BI_InterlockedXor16_acq:
1707   case clang::AArch64::BI_InterlockedXor_acq:
1708   case clang::AArch64::BI_InterlockedXor64_acq:
1709     return MSVCIntrin::_InterlockedXor_acq;
1710   case clang::AArch64::BI_InterlockedXor8_rel:
1711   case clang::AArch64::BI_InterlockedXor16_rel:
1712   case clang::AArch64::BI_InterlockedXor_rel:
1713   case clang::AArch64::BI_InterlockedXor64_rel:
1714     return MSVCIntrin::_InterlockedXor_rel;
1715   case clang::AArch64::BI_InterlockedXor8_nf:
1716   case clang::AArch64::BI_InterlockedXor16_nf:
1717   case clang::AArch64::BI_InterlockedXor_nf:
1718   case clang::AArch64::BI_InterlockedXor64_nf:
1719     return MSVCIntrin::_InterlockedXor_nf;
1720   case clang::AArch64::BI_InterlockedAnd8_acq:
1721   case clang::AArch64::BI_InterlockedAnd16_acq:
1722   case clang::AArch64::BI_InterlockedAnd_acq:
1723   case clang::AArch64::BI_InterlockedAnd64_acq:
1724     return MSVCIntrin::_InterlockedAnd_acq;
1725   case clang::AArch64::BI_InterlockedAnd8_rel:
1726   case clang::AArch64::BI_InterlockedAnd16_rel:
1727   case clang::AArch64::BI_InterlockedAnd_rel:
1728   case clang::AArch64::BI_InterlockedAnd64_rel:
1729     return MSVCIntrin::_InterlockedAnd_rel;
1730   case clang::AArch64::BI_InterlockedAnd8_nf:
1731   case clang::AArch64::BI_InterlockedAnd16_nf:
1732   case clang::AArch64::BI_InterlockedAnd_nf:
1733   case clang::AArch64::BI_InterlockedAnd64_nf:
1734     return MSVCIntrin::_InterlockedAnd_nf;
1735   case clang::AArch64::BI_InterlockedIncrement16_acq:
1736   case clang::AArch64::BI_InterlockedIncrement_acq:
1737   case clang::AArch64::BI_InterlockedIncrement64_acq:
1738     return MSVCIntrin::_InterlockedIncrement_acq;
1739   case clang::AArch64::BI_InterlockedIncrement16_rel:
1740   case clang::AArch64::BI_InterlockedIncrement_rel:
1741   case clang::AArch64::BI_InterlockedIncrement64_rel:
1742     return MSVCIntrin::_InterlockedIncrement_rel;
1743   case clang::AArch64::BI_InterlockedIncrement16_nf:
1744   case clang::AArch64::BI_InterlockedIncrement_nf:
1745   case clang::AArch64::BI_InterlockedIncrement64_nf:
1746     return MSVCIntrin::_InterlockedIncrement_nf;
1747   case clang::AArch64::BI_InterlockedDecrement16_acq:
1748   case clang::AArch64::BI_InterlockedDecrement_acq:
1749   case clang::AArch64::BI_InterlockedDecrement64_acq:
1750     return MSVCIntrin::_InterlockedDecrement_acq;
1751   case clang::AArch64::BI_InterlockedDecrement16_rel:
1752   case clang::AArch64::BI_InterlockedDecrement_rel:
1753   case clang::AArch64::BI_InterlockedDecrement64_rel:
1754     return MSVCIntrin::_InterlockedDecrement_rel;
1755   case clang::AArch64::BI_InterlockedDecrement16_nf:
1756   case clang::AArch64::BI_InterlockedDecrement_nf:
1757   case clang::AArch64::BI_InterlockedDecrement64_nf:
1758     return MSVCIntrin::_InterlockedDecrement_nf;
1759   }
1760   llvm_unreachable("must return from switch");
1761 }
1762 
1763 static std::optional<CodeGenFunction::MSVCIntrin>
1764 translateX86ToMsvcIntrin(unsigned BuiltinID) {
1765   using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1766   switch (BuiltinID) {
1767   default:
1768     return std::nullopt;
1769   case clang::X86::BI_BitScanForward:
1770   case clang::X86::BI_BitScanForward64:
1771     return MSVCIntrin::_BitScanForward;
1772   case clang::X86::BI_BitScanReverse:
1773   case clang::X86::BI_BitScanReverse64:
1774     return MSVCIntrin::_BitScanReverse;
1775   case clang::X86::BI_InterlockedAnd64:
1776     return MSVCIntrin::_InterlockedAnd;
1777   case clang::X86::BI_InterlockedCompareExchange128:
1778     return MSVCIntrin::_InterlockedCompareExchange128;
1779   case clang::X86::BI_InterlockedExchange64:
1780     return MSVCIntrin::_InterlockedExchange;
1781   case clang::X86::BI_InterlockedExchangeAdd64:
1782     return MSVCIntrin::_InterlockedExchangeAdd;
1783   case clang::X86::BI_InterlockedExchangeSub64:
1784     return MSVCIntrin::_InterlockedExchangeSub;
1785   case clang::X86::BI_InterlockedOr64:
1786     return MSVCIntrin::_InterlockedOr;
1787   case clang::X86::BI_InterlockedXor64:
1788     return MSVCIntrin::_InterlockedXor;
1789   case clang::X86::BI_InterlockedDecrement64:
1790     return MSVCIntrin::_InterlockedDecrement;
1791   case clang::X86::BI_InterlockedIncrement64:
1792     return MSVCIntrin::_InterlockedIncrement;
1793   }
1794   llvm_unreachable("must return from switch");
1795 }
1796 
1797 // Emit an MSVC intrinsic. Assumes that arguments have *not* been evaluated.
1798 Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
1799                                             const CallExpr *E) {
1800   switch (BuiltinID) {
1801   case MSVCIntrin::_BitScanForward:
1802   case MSVCIntrin::_BitScanReverse: {
1803     Address IndexAddress(EmitPointerWithAlignment(E->getArg(0)));
1804     Value *ArgValue = EmitScalarExpr(E->getArg(1));
1805 
1806     llvm::Type *ArgType = ArgValue->getType();
1807     llvm::Type *IndexType = IndexAddress.getElementType();
1808     llvm::Type *ResultType = ConvertType(E->getType());
1809 
1810     Value *ArgZero = llvm::Constant::getNullValue(ArgType);
1811     Value *ResZero = llvm::Constant::getNullValue(ResultType);
1812     Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
1813 
1814     BasicBlock *Begin = Builder.GetInsertBlock();
1815     BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
1816     Builder.SetInsertPoint(End);
1817     PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
1818 
1819     Builder.SetInsertPoint(Begin);
1820     Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
1821     BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
1822     Builder.CreateCondBr(IsZero, End, NotZero);
1823     Result->addIncoming(ResZero, Begin);
1824 
1825     Builder.SetInsertPoint(NotZero);
1826 
1827     if (BuiltinID == MSVCIntrin::_BitScanForward) {
1828       Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1829       Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1830       ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1831       Builder.CreateStore(ZeroCount, IndexAddress, false);
1832     } else {
1833       unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
1834       Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
1835 
1836       Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1837       Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1838       ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1839       Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
1840       Builder.CreateStore(Index, IndexAddress, false);
1841     }
1842     Builder.CreateBr(End);
1843     Result->addIncoming(ResOne, NotZero);
1844 
1845     Builder.SetInsertPoint(End);
1846     return Result;
1847   }
1848   case MSVCIntrin::_InterlockedAnd:
1849     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
1850   case MSVCIntrin::_InterlockedExchange:
1851     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
1852   case MSVCIntrin::_InterlockedExchangeAdd:
1853     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
1854   case MSVCIntrin::_InterlockedExchangeSub:
1855     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
1856   case MSVCIntrin::_InterlockedOr:
1857     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
1858   case MSVCIntrin::_InterlockedXor:
1859     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
1860   case MSVCIntrin::_InterlockedExchangeAdd_acq:
1861     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1862                                  AtomicOrdering::Acquire);
1863   case MSVCIntrin::_InterlockedExchangeAdd_rel:
1864     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1865                                  AtomicOrdering::Release);
1866   case MSVCIntrin::_InterlockedExchangeAdd_nf:
1867     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1868                                  AtomicOrdering::Monotonic);
1869   case MSVCIntrin::_InterlockedExchange_acq:
1870     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1871                                  AtomicOrdering::Acquire);
1872   case MSVCIntrin::_InterlockedExchange_rel:
1873     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1874                                  AtomicOrdering::Release);
1875   case MSVCIntrin::_InterlockedExchange_nf:
1876     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1877                                  AtomicOrdering::Monotonic);
1878   case MSVCIntrin::_InterlockedCompareExchange_acq:
1879     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
1880   case MSVCIntrin::_InterlockedCompareExchange_rel:
1881     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
1882   case MSVCIntrin::_InterlockedCompareExchange_nf:
1883     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1884   case MSVCIntrin::_InterlockedCompareExchange128:
1885     return EmitAtomicCmpXchg128ForMSIntrin(
1886         *this, E, AtomicOrdering::SequentiallyConsistent);
1887   case MSVCIntrin::_InterlockedCompareExchange128_acq:
1888     return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Acquire);
1889   case MSVCIntrin::_InterlockedCompareExchange128_rel:
1890     return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Release);
1891   case MSVCIntrin::_InterlockedCompareExchange128_nf:
1892     return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1893   case MSVCIntrin::_InterlockedOr_acq:
1894     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1895                                  AtomicOrdering::Acquire);
1896   case MSVCIntrin::_InterlockedOr_rel:
1897     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1898                                  AtomicOrdering::Release);
1899   case MSVCIntrin::_InterlockedOr_nf:
1900     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1901                                  AtomicOrdering::Monotonic);
1902   case MSVCIntrin::_InterlockedXor_acq:
1903     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1904                                  AtomicOrdering::Acquire);
1905   case MSVCIntrin::_InterlockedXor_rel:
1906     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1907                                  AtomicOrdering::Release);
1908   case MSVCIntrin::_InterlockedXor_nf:
1909     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1910                                  AtomicOrdering::Monotonic);
1911   case MSVCIntrin::_InterlockedAnd_acq:
1912     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1913                                  AtomicOrdering::Acquire);
1914   case MSVCIntrin::_InterlockedAnd_rel:
1915     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1916                                  AtomicOrdering::Release);
1917   case MSVCIntrin::_InterlockedAnd_nf:
1918     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1919                                  AtomicOrdering::Monotonic);
1920   case MSVCIntrin::_InterlockedIncrement_acq:
1921     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
1922   case MSVCIntrin::_InterlockedIncrement_rel:
1923     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
1924   case MSVCIntrin::_InterlockedIncrement_nf:
1925     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
1926   case MSVCIntrin::_InterlockedDecrement_acq:
1927     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
1928   case MSVCIntrin::_InterlockedDecrement_rel:
1929     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
1930   case MSVCIntrin::_InterlockedDecrement_nf:
1931     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
1932 
1933   case MSVCIntrin::_InterlockedDecrement:
1934     return EmitAtomicDecrementValue(*this, E);
1935   case MSVCIntrin::_InterlockedIncrement:
1936     return EmitAtomicIncrementValue(*this, E);
1937 
1938   case MSVCIntrin::__fastfail: {
1939     // Request immediate process termination from the kernel. The instruction
1940     // sequences to do this are documented on MSDN:
1941     // https://msdn.microsoft.com/en-us/library/dn774154.aspx
1942     llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
1943     StringRef Asm, Constraints;
1944     switch (ISA) {
1945     default:
1946       ErrorUnsupported(E, "__fastfail call for this architecture");
1947       break;
1948     case llvm::Triple::x86:
1949     case llvm::Triple::x86_64:
1950       Asm = "int $$0x29";
1951       Constraints = "{cx}";
1952       break;
1953     case llvm::Triple::thumb:
1954       Asm = "udf #251";
1955       Constraints = "{r0}";
1956       break;
1957     case llvm::Triple::aarch64:
1958       Asm = "brk #0xF003";
1959       Constraints = "{w0}";
1960     }
1961     llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
1962     llvm::InlineAsm *IA =
1963         llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1964     llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
1965         getLLVMContext(), llvm::AttributeList::FunctionIndex,
1966         llvm::Attribute::NoReturn);
1967     llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
1968     CI->setAttributes(NoReturnAttr);
1969     return CI;
1970   }
1971   }
1972   llvm_unreachable("Incorrect MSVC intrinsic!");
1973 }
1974 
1975 namespace {
1976 // ARC cleanup for __builtin_os_log_format
1977 struct CallObjCArcUse final : EHScopeStack::Cleanup {
1978   CallObjCArcUse(llvm::Value *object) : object(object) {}
1979   llvm::Value *object;
1980 
1981   void Emit(CodeGenFunction &CGF, Flags flags) override {
1982     CGF.EmitARCIntrinsicUse(object);
1983   }
1984 };
1985 }
1986 
1987 Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
1988                                                  BuiltinCheckKind Kind) {
1989   assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)
1990           && "Unsupported builtin check kind");
1991 
1992   Value *ArgValue = EmitScalarExpr(E);
1993   if (!SanOpts.has(SanitizerKind::Builtin))
1994     return ArgValue;
1995 
1996   SanitizerScope SanScope(this);
1997   Value *Cond = Builder.CreateICmpNE(
1998       ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
1999   EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
2000             SanitizerHandler::InvalidBuiltin,
2001             {EmitCheckSourceLocation(E->getExprLoc()),
2002              llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
2003             std::nullopt);
2004   return ArgValue;
2005 }
2006 
2007 static Value *EmitAbs(CodeGenFunction &CGF, Value *ArgValue, bool HasNSW) {
2008   return CGF.Builder.CreateBinaryIntrinsic(
2009       Intrinsic::abs, ArgValue,
2010       ConstantInt::get(CGF.Builder.getInt1Ty(), HasNSW));
2011 }
2012 
2013 static Value *EmitOverflowCheckedAbs(CodeGenFunction &CGF, const CallExpr *E,
2014                                      bool SanitizeOverflow) {
2015   Value *ArgValue = CGF.EmitScalarExpr(E->getArg(0));
2016 
2017   // Try to eliminate overflow check.
2018   if (const auto *VCI = dyn_cast<llvm::ConstantInt>(ArgValue)) {
2019     if (!VCI->isMinSignedValue())
2020       return EmitAbs(CGF, ArgValue, true);
2021   }
2022 
2023   CodeGenFunction::SanitizerScope SanScope(&CGF);
2024 
2025   Constant *Zero = Constant::getNullValue(ArgValue->getType());
2026   Value *ResultAndOverflow = CGF.Builder.CreateBinaryIntrinsic(
2027       Intrinsic::ssub_with_overflow, Zero, ArgValue);
2028   Value *Result = CGF.Builder.CreateExtractValue(ResultAndOverflow, 0);
2029   Value *NotOverflow = CGF.Builder.CreateNot(
2030       CGF.Builder.CreateExtractValue(ResultAndOverflow, 1));
2031 
2032   // TODO: support -ftrapv-handler.
2033   if (SanitizeOverflow) {
2034     CGF.EmitCheck({{NotOverflow, SanitizerKind::SignedIntegerOverflow}},
2035                   SanitizerHandler::NegateOverflow,
2036                   {CGF.EmitCheckSourceLocation(E->getArg(0)->getExprLoc()),
2037                    CGF.EmitCheckTypeDescriptor(E->getType())},
2038                   {ArgValue});
2039   } else
2040     CGF.EmitTrapCheck(NotOverflow, SanitizerHandler::SubOverflow);
2041 
2042   Value *CmpResult = CGF.Builder.CreateICmpSLT(ArgValue, Zero, "abscond");
2043   return CGF.Builder.CreateSelect(CmpResult, Result, ArgValue, "abs");
2044 }
2045 
2046 /// Get the argument type for arguments to os_log_helper.
2047 static CanQualType getOSLogArgType(ASTContext &C, int Size) {
2048   QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
2049   return C.getCanonicalType(UnsignedTy);
2050 }
2051 
2052 llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
2053     const analyze_os_log::OSLogBufferLayout &Layout,
2054     CharUnits BufferAlignment) {
2055   ASTContext &Ctx = getContext();
2056 
2057   llvm::SmallString<64> Name;
2058   {
2059     raw_svector_ostream OS(Name);
2060     OS << "__os_log_helper";
2061     OS << "_" << BufferAlignment.getQuantity();
2062     OS << "_" << int(Layout.getSummaryByte());
2063     OS << "_" << int(Layout.getNumArgsByte());
2064     for (const auto &Item : Layout.Items)
2065       OS << "_" << int(Item.getSizeByte()) << "_"
2066          << int(Item.getDescriptorByte());
2067   }
2068 
2069   if (llvm::Function *F = CGM.getModule().getFunction(Name))
2070     return F;
2071 
2072   llvm::SmallVector<QualType, 4> ArgTys;
2073   FunctionArgList Args;
2074   Args.push_back(ImplicitParamDecl::Create(
2075       Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy,
2076       ImplicitParamKind::Other));
2077   ArgTys.emplace_back(Ctx.VoidPtrTy);
2078 
2079   for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
2080     char Size = Layout.Items[I].getSizeByte();
2081     if (!Size)
2082       continue;
2083 
2084     QualType ArgTy = getOSLogArgType(Ctx, Size);
2085     Args.push_back(ImplicitParamDecl::Create(
2086         Ctx, nullptr, SourceLocation(),
2087         &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
2088         ImplicitParamKind::Other));
2089     ArgTys.emplace_back(ArgTy);
2090   }
2091 
2092   QualType ReturnTy = Ctx.VoidTy;
2093 
2094   // The helper function has linkonce_odr linkage to enable the linker to merge
2095   // identical functions. To ensure the merging always happens, 'noinline' is
2096   // attached to the function when compiling with -Oz.
2097   const CGFunctionInfo &FI =
2098       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args);
2099   llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
2100   llvm::Function *Fn = llvm::Function::Create(
2101       FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
2102   Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
2103   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn, /*IsThunk=*/false);
2104   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
2105   Fn->setDoesNotThrow();
2106 
2107   // Attach 'noinline' at -Oz.
2108   if (CGM.getCodeGenOpts().OptimizeSize == 2)
2109     Fn->addFnAttr(llvm::Attribute::NoInline);
2110 
2111   auto NL = ApplyDebugLocation::CreateEmpty(*this);
2112   StartFunction(GlobalDecl(), ReturnTy, Fn, FI, Args);
2113 
2114   // Create a scope with an artificial location for the body of this function.
2115   auto AL = ApplyDebugLocation::CreateArtificial(*this);
2116 
2117   CharUnits Offset;
2118   Address BufAddr =
2119       Address(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"), Int8Ty,
2120               BufferAlignment);
2121   Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
2122                       Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
2123   Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
2124                       Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
2125 
2126   unsigned I = 1;
2127   for (const auto &Item : Layout.Items) {
2128     Builder.CreateStore(
2129         Builder.getInt8(Item.getDescriptorByte()),
2130         Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
2131     Builder.CreateStore(
2132         Builder.getInt8(Item.getSizeByte()),
2133         Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
2134 
2135     CharUnits Size = Item.size();
2136     if (!Size.getQuantity())
2137       continue;
2138 
2139     Address Arg = GetAddrOfLocalVar(Args[I]);
2140     Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
2141     Addr = Addr.withElementType(Arg.getElementType());
2142     Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
2143     Offset += Size;
2144     ++I;
2145   }
2146 
2147   FinishFunction();
2148 
2149   return Fn;
2150 }
2151 
2152 RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
2153   assert(E.getNumArgs() >= 2 &&
2154          "__builtin_os_log_format takes at least 2 arguments");
2155   ASTContext &Ctx = getContext();
2156   analyze_os_log::OSLogBufferLayout Layout;
2157   analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
2158   Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
2159   llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
2160 
2161   // Ignore argument 1, the format string. It is not currently used.
2162   CallArgList Args;
2163   Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy);
2164 
2165   for (const auto &Item : Layout.Items) {
2166     int Size = Item.getSizeByte();
2167     if (!Size)
2168       continue;
2169 
2170     llvm::Value *ArgVal;
2171 
2172     if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
2173       uint64_t Val = 0;
2174       for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
2175         Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
2176       ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
2177     } else if (const Expr *TheExpr = Item.getExpr()) {
2178       ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
2179 
2180       // If a temporary object that requires destruction after the full
2181       // expression is passed, push a lifetime-extended cleanup to extend its
2182       // lifetime to the end of the enclosing block scope.
2183       auto LifetimeExtendObject = [&](const Expr *E) {
2184         E = E->IgnoreParenCasts();
2185         // Extend lifetimes of objects returned by function calls and message
2186         // sends.
2187 
2188         // FIXME: We should do this in other cases in which temporaries are
2189         //        created including arguments of non-ARC types (e.g., C++
2190         //        temporaries).
2191         if (isa<CallExpr>(E) || isa<ObjCMessageExpr>(E))
2192           return true;
2193         return false;
2194       };
2195 
2196       if (TheExpr->getType()->isObjCRetainableType() &&
2197           getLangOpts().ObjCAutoRefCount && LifetimeExtendObject(TheExpr)) {
2198         assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&
2199                "Only scalar can be a ObjC retainable type");
2200         if (!isa<Constant>(ArgVal)) {
2201           CleanupKind Cleanup = getARCCleanupKind();
2202           QualType Ty = TheExpr->getType();
2203           Address Alloca = Address::invalid();
2204           Address Addr = CreateMemTemp(Ty, "os.log.arg", &Alloca);
2205           ArgVal = EmitARCRetain(Ty, ArgVal);
2206           Builder.CreateStore(ArgVal, Addr);
2207           pushLifetimeExtendedDestroy(Cleanup, Alloca, Ty,
2208                                       CodeGenFunction::destroyARCStrongPrecise,
2209                                       Cleanup & EHCleanup);
2210 
2211           // Push a clang.arc.use call to ensure ARC optimizer knows that the
2212           // argument has to be alive.
2213           if (CGM.getCodeGenOpts().OptimizationLevel != 0)
2214             pushCleanupAfterFullExpr<CallObjCArcUse>(Cleanup, ArgVal);
2215         }
2216       }
2217     } else {
2218       ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
2219     }
2220 
2221     unsigned ArgValSize =
2222         CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
2223     llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
2224                                                      ArgValSize);
2225     ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
2226     CanQualType ArgTy = getOSLogArgType(Ctx, Size);
2227     // If ArgVal has type x86_fp80, zero-extend ArgVal.
2228     ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
2229     Args.add(RValue::get(ArgVal), ArgTy);
2230   }
2231 
2232   const CGFunctionInfo &FI =
2233       CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
2234   llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
2235       Layout, BufAddr.getAlignment());
2236   EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
2237   return RValue::get(BufAddr.getPointer());
2238 }
2239 
2240 static bool isSpecialUnsignedMultiplySignedResult(
2241     unsigned BuiltinID, WidthAndSignedness Op1Info, WidthAndSignedness Op2Info,
2242     WidthAndSignedness ResultInfo) {
2243   return BuiltinID == Builtin::BI__builtin_mul_overflow &&
2244          Op1Info.Width == Op2Info.Width && Op2Info.Width == ResultInfo.Width &&
2245          !Op1Info.Signed && !Op2Info.Signed && ResultInfo.Signed;
2246 }
2247 
2248 static RValue EmitCheckedUnsignedMultiplySignedResult(
2249     CodeGenFunction &CGF, const clang::Expr *Op1, WidthAndSignedness Op1Info,
2250     const clang::Expr *Op2, WidthAndSignedness Op2Info,
2251     const clang::Expr *ResultArg, QualType ResultQTy,
2252     WidthAndSignedness ResultInfo) {
2253   assert(isSpecialUnsignedMultiplySignedResult(
2254              Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
2255          "Cannot specialize this multiply");
2256 
2257   llvm::Value *V1 = CGF.EmitScalarExpr(Op1);
2258   llvm::Value *V2 = CGF.EmitScalarExpr(Op2);
2259 
2260   llvm::Value *HasOverflow;
2261   llvm::Value *Result = EmitOverflowIntrinsic(
2262       CGF, llvm::Intrinsic::umul_with_overflow, V1, V2, HasOverflow);
2263 
2264   // The intrinsic call will detect overflow when the value is > UINT_MAX,
2265   // however, since the original builtin had a signed result, we need to report
2266   // an overflow when the result is greater than INT_MAX.
2267   auto IntMax = llvm::APInt::getSignedMaxValue(ResultInfo.Width);
2268   llvm::Value *IntMaxValue = llvm::ConstantInt::get(Result->getType(), IntMax);
2269 
2270   llvm::Value *IntMaxOverflow = CGF.Builder.CreateICmpUGT(Result, IntMaxValue);
2271   HasOverflow = CGF.Builder.CreateOr(HasOverflow, IntMaxOverflow);
2272 
2273   bool isVolatile =
2274       ResultArg->getType()->getPointeeType().isVolatileQualified();
2275   Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
2276   CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
2277                           isVolatile);
2278   return RValue::get(HasOverflow);
2279 }
2280 
2281 /// Determine if a binop is a checked mixed-sign multiply we can specialize.
2282 static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
2283                                        WidthAndSignedness Op1Info,
2284                                        WidthAndSignedness Op2Info,
2285                                        WidthAndSignedness ResultInfo) {
2286   return BuiltinID == Builtin::BI__builtin_mul_overflow &&
2287          std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
2288          Op1Info.Signed != Op2Info.Signed;
2289 }
2290 
2291 /// Emit a checked mixed-sign multiply. This is a cheaper specialization of
2292 /// the generic checked-binop irgen.
2293 static RValue
2294 EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
2295                              WidthAndSignedness Op1Info, const clang::Expr *Op2,
2296                              WidthAndSignedness Op2Info,
2297                              const clang::Expr *ResultArg, QualType ResultQTy,
2298                              WidthAndSignedness ResultInfo) {
2299   assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,
2300                                     Op2Info, ResultInfo) &&
2301          "Not a mixed-sign multipliction we can specialize");
2302 
2303   // Emit the signed and unsigned operands.
2304   const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
2305   const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
2306   llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
2307   llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
2308   unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
2309   unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
2310 
2311   // One of the operands may be smaller than the other. If so, [s|z]ext it.
2312   if (SignedOpWidth < UnsignedOpWidth)
2313     Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext");
2314   if (UnsignedOpWidth < SignedOpWidth)
2315     Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext");
2316 
2317   llvm::Type *OpTy = Signed->getType();
2318   llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
2319   Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
2320   llvm::Type *ResTy = ResultPtr.getElementType();
2321   unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width);
2322 
2323   // Take the absolute value of the signed operand.
2324   llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
2325   llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
2326   llvm::Value *AbsSigned =
2327       CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
2328 
2329   // Perform a checked unsigned multiplication.
2330   llvm::Value *UnsignedOverflow;
2331   llvm::Value *UnsignedResult =
2332       EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
2333                             Unsigned, UnsignedOverflow);
2334 
2335   llvm::Value *Overflow, *Result;
2336   if (ResultInfo.Signed) {
2337     // Signed overflow occurs if the result is greater than INT_MAX or lesser
2338     // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
2339     auto IntMax =
2340         llvm::APInt::getSignedMaxValue(ResultInfo.Width).zext(OpWidth);
2341     llvm::Value *MaxResult =
2342         CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
2343                               CGF.Builder.CreateZExt(IsNegative, OpTy));
2344     llvm::Value *SignedOverflow =
2345         CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
2346     Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
2347 
2348     // Prepare the signed result (possibly by negating it).
2349     llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
2350     llvm::Value *SignedResult =
2351         CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
2352     Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
2353   } else {
2354     // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
2355     llvm::Value *Underflow = CGF.Builder.CreateAnd(
2356         IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
2357     Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
2358     if (ResultInfo.Width < OpWidth) {
2359       auto IntMax =
2360           llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth);
2361       llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
2362           UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
2363       Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
2364     }
2365 
2366     // Negate the product if it would be negative in infinite precision.
2367     Result = CGF.Builder.CreateSelect(
2368         IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
2369 
2370     Result = CGF.Builder.CreateTrunc(Result, ResTy);
2371   }
2372   assert(Overflow && Result && "Missing overflow or result");
2373 
2374   bool isVolatile =
2375       ResultArg->getType()->getPointeeType().isVolatileQualified();
2376   CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
2377                           isVolatile);
2378   return RValue::get(Overflow);
2379 }
2380 
2381 static bool
2382 TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty,
2383                               llvm::SmallPtrSetImpl<const Decl *> &Seen) {
2384   if (const auto *Arr = Ctx.getAsArrayType(Ty))
2385     Ty = Ctx.getBaseElementType(Arr);
2386 
2387   const auto *Record = Ty->getAsCXXRecordDecl();
2388   if (!Record)
2389     return false;
2390 
2391   // We've already checked this type, or are in the process of checking it.
2392   if (!Seen.insert(Record).second)
2393     return false;
2394 
2395   assert(Record->hasDefinition() &&
2396          "Incomplete types should already be diagnosed");
2397 
2398   if (Record->isDynamicClass())
2399     return true;
2400 
2401   for (FieldDecl *F : Record->fields()) {
2402     if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
2403       return true;
2404   }
2405   return false;
2406 }
2407 
2408 /// Determine if the specified type requires laundering by checking if it is a
2409 /// dynamic class type or contains a subobject which is a dynamic class type.
2410 static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) {
2411   if (!CGM.getCodeGenOpts().StrictVTablePointers)
2412     return false;
2413   llvm::SmallPtrSet<const Decl *, 16> Seen;
2414   return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
2415 }
2416 
2417 RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
2418   llvm::Value *Src = EmitScalarExpr(E->getArg(0));
2419   llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
2420 
2421   // The builtin's shift arg may have a different type than the source arg and
2422   // result, but the LLVM intrinsic uses the same type for all values.
2423   llvm::Type *Ty = Src->getType();
2424   ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false);
2425 
2426   // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
2427   unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
2428   Function *F = CGM.getIntrinsic(IID, Ty);
2429   return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt }));
2430 }
2431 
2432 // Map math builtins for long-double to f128 version.
2433 static unsigned mutateLongDoubleBuiltin(unsigned BuiltinID) {
2434   switch (BuiltinID) {
2435 #define MUTATE_LDBL(func) \
2436   case Builtin::BI__builtin_##func##l: \
2437     return Builtin::BI__builtin_##func##f128;
2438   MUTATE_LDBL(sqrt)
2439   MUTATE_LDBL(cbrt)
2440   MUTATE_LDBL(fabs)
2441   MUTATE_LDBL(log)
2442   MUTATE_LDBL(log2)
2443   MUTATE_LDBL(log10)
2444   MUTATE_LDBL(log1p)
2445   MUTATE_LDBL(logb)
2446   MUTATE_LDBL(exp)
2447   MUTATE_LDBL(exp2)
2448   MUTATE_LDBL(expm1)
2449   MUTATE_LDBL(fdim)
2450   MUTATE_LDBL(hypot)
2451   MUTATE_LDBL(ilogb)
2452   MUTATE_LDBL(pow)
2453   MUTATE_LDBL(fmin)
2454   MUTATE_LDBL(fmax)
2455   MUTATE_LDBL(ceil)
2456   MUTATE_LDBL(trunc)
2457   MUTATE_LDBL(rint)
2458   MUTATE_LDBL(nearbyint)
2459   MUTATE_LDBL(round)
2460   MUTATE_LDBL(floor)
2461   MUTATE_LDBL(lround)
2462   MUTATE_LDBL(llround)
2463   MUTATE_LDBL(lrint)
2464   MUTATE_LDBL(llrint)
2465   MUTATE_LDBL(fmod)
2466   MUTATE_LDBL(modf)
2467   MUTATE_LDBL(nan)
2468   MUTATE_LDBL(nans)
2469   MUTATE_LDBL(inf)
2470   MUTATE_LDBL(fma)
2471   MUTATE_LDBL(sin)
2472   MUTATE_LDBL(cos)
2473   MUTATE_LDBL(tan)
2474   MUTATE_LDBL(sinh)
2475   MUTATE_LDBL(cosh)
2476   MUTATE_LDBL(tanh)
2477   MUTATE_LDBL(asin)
2478   MUTATE_LDBL(acos)
2479   MUTATE_LDBL(atan)
2480   MUTATE_LDBL(asinh)
2481   MUTATE_LDBL(acosh)
2482   MUTATE_LDBL(atanh)
2483   MUTATE_LDBL(atan2)
2484   MUTATE_LDBL(erf)
2485   MUTATE_LDBL(erfc)
2486   MUTATE_LDBL(ldexp)
2487   MUTATE_LDBL(frexp)
2488   MUTATE_LDBL(huge_val)
2489   MUTATE_LDBL(copysign)
2490   MUTATE_LDBL(nextafter)
2491   MUTATE_LDBL(nexttoward)
2492   MUTATE_LDBL(remainder)
2493   MUTATE_LDBL(remquo)
2494   MUTATE_LDBL(scalbln)
2495   MUTATE_LDBL(scalbn)
2496   MUTATE_LDBL(tgamma)
2497   MUTATE_LDBL(lgamma)
2498 #undef MUTATE_LDBL
2499   default:
2500     return BuiltinID;
2501   }
2502 }
2503 
2504 static Value *tryUseTestFPKind(CodeGenFunction &CGF, unsigned BuiltinID,
2505                                Value *V) {
2506   if (CGF.Builder.getIsFPConstrained() &&
2507       CGF.Builder.getDefaultConstrainedExcept() != fp::ebIgnore) {
2508     if (Value *Result =
2509             CGF.getTargetHooks().testFPKind(V, BuiltinID, CGF.Builder, CGF.CGM))
2510       return Result;
2511   }
2512   return nullptr;
2513 }
2514 
2515 static RValue EmitHipStdParUnsupportedBuiltin(CodeGenFunction *CGF,
2516                                               const FunctionDecl *FD) {
2517   auto Name = FD->getNameAsString() + "__hipstdpar_unsupported";
2518   auto FnTy = CGF->CGM.getTypes().GetFunctionType(FD);
2519   auto UBF = CGF->CGM.getModule().getOrInsertFunction(Name, FnTy);
2520 
2521   SmallVector<Value *, 16> Args;
2522   for (auto &&FormalTy : FnTy->params())
2523     Args.push_back(llvm::PoisonValue::get(FormalTy));
2524 
2525   return RValue::get(CGF->Builder.CreateCall(UBF, Args));
2526 }
2527 
2528 RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
2529                                         const CallExpr *E,
2530                                         ReturnValueSlot ReturnValue) {
2531   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
2532   // See if we can constant fold this builtin.  If so, don't emit it at all.
2533   // TODO: Extend this handling to all builtin calls that we can constant-fold.
2534   Expr::EvalResult Result;
2535   if (E->isPRValue() && E->EvaluateAsRValue(Result, CGM.getContext()) &&
2536       !Result.hasSideEffects()) {
2537     if (Result.Val.isInt())
2538       return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
2539                                                 Result.Val.getInt()));
2540     if (Result.Val.isFloat())
2541       return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
2542                                                Result.Val.getFloat()));
2543   }
2544 
2545   // If current long-double semantics is IEEE 128-bit, replace math builtins
2546   // of long-double with f128 equivalent.
2547   // TODO: This mutation should also be applied to other targets other than PPC,
2548   // after backend supports IEEE 128-bit style libcalls.
2549   if (getTarget().getTriple().isPPC64() &&
2550       &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
2551     BuiltinID = mutateLongDoubleBuiltin(BuiltinID);
2552 
2553   // If the builtin has been declared explicitly with an assembler label,
2554   // disable the specialized emitting below. Ideally we should communicate the
2555   // rename in IR, or at least avoid generating the intrinsic calls that are
2556   // likely to get lowered to the renamed library functions.
2557   const unsigned BuiltinIDIfNoAsmLabel =
2558       FD->hasAttr<AsmLabelAttr>() ? 0 : BuiltinID;
2559 
2560   std::optional<bool> ErrnoOverriden;
2561   // ErrnoOverriden is true if math-errno is overriden via the
2562   // '#pragma float_control(precise, on)'. This pragma disables fast-math,
2563   // which implies math-errno.
2564   if (E->hasStoredFPFeatures()) {
2565     FPOptionsOverride OP = E->getFPFeatures();
2566     if (OP.hasMathErrnoOverride())
2567       ErrnoOverriden = OP.getMathErrnoOverride();
2568   }
2569   // True if 'atttibute__((optnone)) is used. This attibute overrides
2570   // fast-math which implies math-errno.
2571   bool OptNone = CurFuncDecl && CurFuncDecl->hasAttr<OptimizeNoneAttr>();
2572 
2573   // True if we are compiling at -O2 and errno has been disabled
2574   // using the '#pragma float_control(precise, off)', and
2575   // attribute opt-none hasn't been seen.
2576   bool ErrnoOverridenToFalseWithOpt =
2577        ErrnoOverriden.has_value() && !ErrnoOverriden.value() && !OptNone &&
2578        CGM.getCodeGenOpts().OptimizationLevel != 0;
2579 
2580   // There are LLVM math intrinsics/instructions corresponding to math library
2581   // functions except the LLVM op will never set errno while the math library
2582   // might. Also, math builtins have the same semantics as their math library
2583   // twins. Thus, we can transform math library and builtin calls to their
2584   // LLVM counterparts if the call is marked 'const' (known to never set errno).
2585   // In case FP exceptions are enabled, the experimental versions of the
2586   // intrinsics model those.
2587   bool ConstAlways =
2588       getContext().BuiltinInfo.isConst(BuiltinID);
2589 
2590   // There's a special case with the fma builtins where they are always const
2591   // if the target environment is GNU or the target is OS is Windows and we're
2592   // targeting the MSVCRT.dll environment.
2593   // FIXME: This list can be become outdated. Need to find a way to get it some
2594   // other way.
2595   switch (BuiltinID) {
2596   case Builtin::BI__builtin_fma:
2597   case Builtin::BI__builtin_fmaf:
2598   case Builtin::BI__builtin_fmal:
2599   case Builtin::BIfma:
2600   case Builtin::BIfmaf:
2601   case Builtin::BIfmal: {
2602     auto &Trip = CGM.getTriple();
2603     if (Trip.isGNUEnvironment() || Trip.isOSMSVCRT())
2604       ConstAlways = true;
2605     break;
2606   }
2607   default:
2608     break;
2609   }
2610 
2611   bool ConstWithoutErrnoAndExceptions =
2612       getContext().BuiltinInfo.isConstWithoutErrnoAndExceptions(BuiltinID);
2613   bool ConstWithoutExceptions =
2614       getContext().BuiltinInfo.isConstWithoutExceptions(BuiltinID);
2615 
2616   // ConstAttr is enabled in fast-math mode. In fast-math mode, math-errno is
2617   // disabled.
2618   // Math intrinsics are generated only when math-errno is disabled. Any pragmas
2619   // or attributes that affect math-errno should prevent or allow math
2620   // intrincs to be generated. Intrinsics are generated:
2621   //   1- In fast math mode, unless math-errno is overriden
2622   //      via '#pragma float_control(precise, on)', or via an
2623   //      'attribute__((optnone))'.
2624   //   2- If math-errno was enabled on command line but overriden
2625   //      to false via '#pragma float_control(precise, off))' and
2626   //      'attribute__((optnone))' hasn't been used.
2627   //   3- If we are compiling with optimization and errno has been disabled
2628   //      via '#pragma float_control(precise, off)', and
2629   //      'attribute__((optnone))' hasn't been used.
2630 
2631   bool ConstWithoutErrnoOrExceptions =
2632       ConstWithoutErrnoAndExceptions || ConstWithoutExceptions;
2633   bool GenerateIntrinsics =
2634       (ConstAlways && !OptNone) ||
2635       (!getLangOpts().MathErrno &&
2636        !(ErrnoOverriden.has_value() && ErrnoOverriden.value()) && !OptNone);
2637   if (!GenerateIntrinsics) {
2638     GenerateIntrinsics =
2639         ConstWithoutErrnoOrExceptions && !ConstWithoutErrnoAndExceptions;
2640     if (!GenerateIntrinsics)
2641       GenerateIntrinsics =
2642           ConstWithoutErrnoOrExceptions &&
2643           (!getLangOpts().MathErrno &&
2644            !(ErrnoOverriden.has_value() && ErrnoOverriden.value()) && !OptNone);
2645     if (!GenerateIntrinsics)
2646       GenerateIntrinsics =
2647           ConstWithoutErrnoOrExceptions && ErrnoOverridenToFalseWithOpt;
2648   }
2649   if (GenerateIntrinsics) {
2650     switch (BuiltinIDIfNoAsmLabel) {
2651     case Builtin::BIceil:
2652     case Builtin::BIceilf:
2653     case Builtin::BIceill:
2654     case Builtin::BI__builtin_ceil:
2655     case Builtin::BI__builtin_ceilf:
2656     case Builtin::BI__builtin_ceilf16:
2657     case Builtin::BI__builtin_ceill:
2658     case Builtin::BI__builtin_ceilf128:
2659       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2660                                    Intrinsic::ceil,
2661                                    Intrinsic::experimental_constrained_ceil));
2662 
2663     case Builtin::BIcopysign:
2664     case Builtin::BIcopysignf:
2665     case Builtin::BIcopysignl:
2666     case Builtin::BI__builtin_copysign:
2667     case Builtin::BI__builtin_copysignf:
2668     case Builtin::BI__builtin_copysignf16:
2669     case Builtin::BI__builtin_copysignl:
2670     case Builtin::BI__builtin_copysignf128:
2671       return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
2672 
2673     case Builtin::BIcos:
2674     case Builtin::BIcosf:
2675     case Builtin::BIcosl:
2676     case Builtin::BI__builtin_cos:
2677     case Builtin::BI__builtin_cosf:
2678     case Builtin::BI__builtin_cosf16:
2679     case Builtin::BI__builtin_cosl:
2680     case Builtin::BI__builtin_cosf128:
2681       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2682                                    Intrinsic::cos,
2683                                    Intrinsic::experimental_constrained_cos));
2684 
2685     case Builtin::BIexp:
2686     case Builtin::BIexpf:
2687     case Builtin::BIexpl:
2688     case Builtin::BI__builtin_exp:
2689     case Builtin::BI__builtin_expf:
2690     case Builtin::BI__builtin_expf16:
2691     case Builtin::BI__builtin_expl:
2692     case Builtin::BI__builtin_expf128:
2693       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2694                                    Intrinsic::exp,
2695                                    Intrinsic::experimental_constrained_exp));
2696 
2697     case Builtin::BIexp2:
2698     case Builtin::BIexp2f:
2699     case Builtin::BIexp2l:
2700     case Builtin::BI__builtin_exp2:
2701     case Builtin::BI__builtin_exp2f:
2702     case Builtin::BI__builtin_exp2f16:
2703     case Builtin::BI__builtin_exp2l:
2704     case Builtin::BI__builtin_exp2f128:
2705       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2706                                    Intrinsic::exp2,
2707                                    Intrinsic::experimental_constrained_exp2));
2708     case Builtin::BI__builtin_exp10:
2709     case Builtin::BI__builtin_exp10f:
2710     case Builtin::BI__builtin_exp10f16:
2711     case Builtin::BI__builtin_exp10l:
2712     case Builtin::BI__builtin_exp10f128: {
2713       // TODO: strictfp support
2714       if (Builder.getIsFPConstrained())
2715         break;
2716       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::exp10));
2717     }
2718     case Builtin::BIfabs:
2719     case Builtin::BIfabsf:
2720     case Builtin::BIfabsl:
2721     case Builtin::BI__builtin_fabs:
2722     case Builtin::BI__builtin_fabsf:
2723     case Builtin::BI__builtin_fabsf16:
2724     case Builtin::BI__builtin_fabsl:
2725     case Builtin::BI__builtin_fabsf128:
2726       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
2727 
2728     case Builtin::BIfloor:
2729     case Builtin::BIfloorf:
2730     case Builtin::BIfloorl:
2731     case Builtin::BI__builtin_floor:
2732     case Builtin::BI__builtin_floorf:
2733     case Builtin::BI__builtin_floorf16:
2734     case Builtin::BI__builtin_floorl:
2735     case Builtin::BI__builtin_floorf128:
2736       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2737                                    Intrinsic::floor,
2738                                    Intrinsic::experimental_constrained_floor));
2739 
2740     case Builtin::BIfma:
2741     case Builtin::BIfmaf:
2742     case Builtin::BIfmal:
2743     case Builtin::BI__builtin_fma:
2744     case Builtin::BI__builtin_fmaf:
2745     case Builtin::BI__builtin_fmaf16:
2746     case Builtin::BI__builtin_fmal:
2747     case Builtin::BI__builtin_fmaf128:
2748       return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E,
2749                                    Intrinsic::fma,
2750                                    Intrinsic::experimental_constrained_fma));
2751 
2752     case Builtin::BIfmax:
2753     case Builtin::BIfmaxf:
2754     case Builtin::BIfmaxl:
2755     case Builtin::BI__builtin_fmax:
2756     case Builtin::BI__builtin_fmaxf:
2757     case Builtin::BI__builtin_fmaxf16:
2758     case Builtin::BI__builtin_fmaxl:
2759     case Builtin::BI__builtin_fmaxf128:
2760       return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2761                                    Intrinsic::maxnum,
2762                                    Intrinsic::experimental_constrained_maxnum));
2763 
2764     case Builtin::BIfmin:
2765     case Builtin::BIfminf:
2766     case Builtin::BIfminl:
2767     case Builtin::BI__builtin_fmin:
2768     case Builtin::BI__builtin_fminf:
2769     case Builtin::BI__builtin_fminf16:
2770     case Builtin::BI__builtin_fminl:
2771     case Builtin::BI__builtin_fminf128:
2772       return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2773                                    Intrinsic::minnum,
2774                                    Intrinsic::experimental_constrained_minnum));
2775 
2776     // fmod() is a special-case. It maps to the frem instruction rather than an
2777     // LLVM intrinsic.
2778     case Builtin::BIfmod:
2779     case Builtin::BIfmodf:
2780     case Builtin::BIfmodl:
2781     case Builtin::BI__builtin_fmod:
2782     case Builtin::BI__builtin_fmodf:
2783     case Builtin::BI__builtin_fmodf16:
2784     case Builtin::BI__builtin_fmodl:
2785     case Builtin::BI__builtin_fmodf128: {
2786       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2787       Value *Arg1 = EmitScalarExpr(E->getArg(0));
2788       Value *Arg2 = EmitScalarExpr(E->getArg(1));
2789       return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
2790     }
2791 
2792     case Builtin::BIlog:
2793     case Builtin::BIlogf:
2794     case Builtin::BIlogl:
2795     case Builtin::BI__builtin_log:
2796     case Builtin::BI__builtin_logf:
2797     case Builtin::BI__builtin_logf16:
2798     case Builtin::BI__builtin_logl:
2799     case Builtin::BI__builtin_logf128:
2800       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2801                                    Intrinsic::log,
2802                                    Intrinsic::experimental_constrained_log));
2803 
2804     case Builtin::BIlog10:
2805     case Builtin::BIlog10f:
2806     case Builtin::BIlog10l:
2807     case Builtin::BI__builtin_log10:
2808     case Builtin::BI__builtin_log10f:
2809     case Builtin::BI__builtin_log10f16:
2810     case Builtin::BI__builtin_log10l:
2811     case Builtin::BI__builtin_log10f128:
2812       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2813                                    Intrinsic::log10,
2814                                    Intrinsic::experimental_constrained_log10));
2815 
2816     case Builtin::BIlog2:
2817     case Builtin::BIlog2f:
2818     case Builtin::BIlog2l:
2819     case Builtin::BI__builtin_log2:
2820     case Builtin::BI__builtin_log2f:
2821     case Builtin::BI__builtin_log2f16:
2822     case Builtin::BI__builtin_log2l:
2823     case Builtin::BI__builtin_log2f128:
2824       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2825                                    Intrinsic::log2,
2826                                    Intrinsic::experimental_constrained_log2));
2827 
2828     case Builtin::BInearbyint:
2829     case Builtin::BInearbyintf:
2830     case Builtin::BInearbyintl:
2831     case Builtin::BI__builtin_nearbyint:
2832     case Builtin::BI__builtin_nearbyintf:
2833     case Builtin::BI__builtin_nearbyintl:
2834     case Builtin::BI__builtin_nearbyintf128:
2835       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2836                                 Intrinsic::nearbyint,
2837                                 Intrinsic::experimental_constrained_nearbyint));
2838 
2839     case Builtin::BIpow:
2840     case Builtin::BIpowf:
2841     case Builtin::BIpowl:
2842     case Builtin::BI__builtin_pow:
2843     case Builtin::BI__builtin_powf:
2844     case Builtin::BI__builtin_powf16:
2845     case Builtin::BI__builtin_powl:
2846     case Builtin::BI__builtin_powf128:
2847       return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2848                                    Intrinsic::pow,
2849                                    Intrinsic::experimental_constrained_pow));
2850 
2851     case Builtin::BIrint:
2852     case Builtin::BIrintf:
2853     case Builtin::BIrintl:
2854     case Builtin::BI__builtin_rint:
2855     case Builtin::BI__builtin_rintf:
2856     case Builtin::BI__builtin_rintf16:
2857     case Builtin::BI__builtin_rintl:
2858     case Builtin::BI__builtin_rintf128:
2859       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2860                                    Intrinsic::rint,
2861                                    Intrinsic::experimental_constrained_rint));
2862 
2863     case Builtin::BIround:
2864     case Builtin::BIroundf:
2865     case Builtin::BIroundl:
2866     case Builtin::BI__builtin_round:
2867     case Builtin::BI__builtin_roundf:
2868     case Builtin::BI__builtin_roundf16:
2869     case Builtin::BI__builtin_roundl:
2870     case Builtin::BI__builtin_roundf128:
2871       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2872                                    Intrinsic::round,
2873                                    Intrinsic::experimental_constrained_round));
2874 
2875     case Builtin::BIroundeven:
2876     case Builtin::BIroundevenf:
2877     case Builtin::BIroundevenl:
2878     case Builtin::BI__builtin_roundeven:
2879     case Builtin::BI__builtin_roundevenf:
2880     case Builtin::BI__builtin_roundevenf16:
2881     case Builtin::BI__builtin_roundevenl:
2882     case Builtin::BI__builtin_roundevenf128:
2883       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2884                                    Intrinsic::roundeven,
2885                                    Intrinsic::experimental_constrained_roundeven));
2886 
2887     case Builtin::BIsin:
2888     case Builtin::BIsinf:
2889     case Builtin::BIsinl:
2890     case Builtin::BI__builtin_sin:
2891     case Builtin::BI__builtin_sinf:
2892     case Builtin::BI__builtin_sinf16:
2893     case Builtin::BI__builtin_sinl:
2894     case Builtin::BI__builtin_sinf128:
2895       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2896                                    Intrinsic::sin,
2897                                    Intrinsic::experimental_constrained_sin));
2898 
2899     case Builtin::BIsqrt:
2900     case Builtin::BIsqrtf:
2901     case Builtin::BIsqrtl:
2902     case Builtin::BI__builtin_sqrt:
2903     case Builtin::BI__builtin_sqrtf:
2904     case Builtin::BI__builtin_sqrtf16:
2905     case Builtin::BI__builtin_sqrtl:
2906     case Builtin::BI__builtin_sqrtf128:
2907     case Builtin::BI__builtin_elementwise_sqrt: {
2908       llvm::Value *Call = emitUnaryMaybeConstrainedFPBuiltin(
2909           *this, E, Intrinsic::sqrt, Intrinsic::experimental_constrained_sqrt);
2910       SetSqrtFPAccuracy(Call);
2911       return RValue::get(Call);
2912     }
2913     case Builtin::BItrunc:
2914     case Builtin::BItruncf:
2915     case Builtin::BItruncl:
2916     case Builtin::BI__builtin_trunc:
2917     case Builtin::BI__builtin_truncf:
2918     case Builtin::BI__builtin_truncf16:
2919     case Builtin::BI__builtin_truncl:
2920     case Builtin::BI__builtin_truncf128:
2921       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2922                                    Intrinsic::trunc,
2923                                    Intrinsic::experimental_constrained_trunc));
2924 
2925     case Builtin::BIlround:
2926     case Builtin::BIlroundf:
2927     case Builtin::BIlroundl:
2928     case Builtin::BI__builtin_lround:
2929     case Builtin::BI__builtin_lroundf:
2930     case Builtin::BI__builtin_lroundl:
2931     case Builtin::BI__builtin_lroundf128:
2932       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2933           *this, E, Intrinsic::lround,
2934           Intrinsic::experimental_constrained_lround));
2935 
2936     case Builtin::BIllround:
2937     case Builtin::BIllroundf:
2938     case Builtin::BIllroundl:
2939     case Builtin::BI__builtin_llround:
2940     case Builtin::BI__builtin_llroundf:
2941     case Builtin::BI__builtin_llroundl:
2942     case Builtin::BI__builtin_llroundf128:
2943       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2944           *this, E, Intrinsic::llround,
2945           Intrinsic::experimental_constrained_llround));
2946 
2947     case Builtin::BIlrint:
2948     case Builtin::BIlrintf:
2949     case Builtin::BIlrintl:
2950     case Builtin::BI__builtin_lrint:
2951     case Builtin::BI__builtin_lrintf:
2952     case Builtin::BI__builtin_lrintl:
2953     case Builtin::BI__builtin_lrintf128:
2954       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2955           *this, E, Intrinsic::lrint,
2956           Intrinsic::experimental_constrained_lrint));
2957 
2958     case Builtin::BIllrint:
2959     case Builtin::BIllrintf:
2960     case Builtin::BIllrintl:
2961     case Builtin::BI__builtin_llrint:
2962     case Builtin::BI__builtin_llrintf:
2963     case Builtin::BI__builtin_llrintl:
2964     case Builtin::BI__builtin_llrintf128:
2965       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2966           *this, E, Intrinsic::llrint,
2967           Intrinsic::experimental_constrained_llrint));
2968     case Builtin::BI__builtin_ldexp:
2969     case Builtin::BI__builtin_ldexpf:
2970     case Builtin::BI__builtin_ldexpl:
2971     case Builtin::BI__builtin_ldexpf16:
2972     case Builtin::BI__builtin_ldexpf128: {
2973       return RValue::get(emitBinaryExpMaybeConstrainedFPBuiltin(
2974           *this, E, Intrinsic::ldexp,
2975           Intrinsic::experimental_constrained_ldexp));
2976     }
2977     default:
2978       break;
2979     }
2980   }
2981 
2982   // Check NonnullAttribute/NullabilityArg and Alignment.
2983   auto EmitArgCheck = [&](TypeCheckKind Kind, Address A, const Expr *Arg,
2984                           unsigned ParmNum) {
2985     Value *Val = A.getPointer();
2986     EmitNonNullArgCheck(RValue::get(Val), Arg->getType(), Arg->getExprLoc(), FD,
2987                         ParmNum);
2988 
2989     if (SanOpts.has(SanitizerKind::Alignment)) {
2990       SanitizerSet SkippedChecks;
2991       SkippedChecks.set(SanitizerKind::All);
2992       SkippedChecks.clear(SanitizerKind::Alignment);
2993       SourceLocation Loc = Arg->getExprLoc();
2994       // Strip an implicit cast.
2995       if (auto *CE = dyn_cast<ImplicitCastExpr>(Arg))
2996         if (CE->getCastKind() == CK_BitCast)
2997           Arg = CE->getSubExpr();
2998       EmitTypeCheck(Kind, Loc, Val, Arg->getType(), A.getAlignment(),
2999                     SkippedChecks);
3000     }
3001   };
3002 
3003   switch (BuiltinIDIfNoAsmLabel) {
3004   default: break;
3005   case Builtin::BI__builtin___CFStringMakeConstantString:
3006   case Builtin::BI__builtin___NSStringMakeConstantString:
3007     return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
3008   case Builtin::BI__builtin_stdarg_start:
3009   case Builtin::BI__builtin_va_start:
3010   case Builtin::BI__va_start:
3011   case Builtin::BI__builtin_va_end:
3012     EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
3013                        ? EmitScalarExpr(E->getArg(0))
3014                        : EmitVAListRef(E->getArg(0)).getPointer(),
3015                    BuiltinID != Builtin::BI__builtin_va_end);
3016     return RValue::get(nullptr);
3017   case Builtin::BI__builtin_va_copy: {
3018     Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
3019     Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
3020     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy), {DstPtr, SrcPtr});
3021     return RValue::get(nullptr);
3022   }
3023   case Builtin::BIabs:
3024   case Builtin::BIlabs:
3025   case Builtin::BIllabs:
3026   case Builtin::BI__builtin_abs:
3027   case Builtin::BI__builtin_labs:
3028   case Builtin::BI__builtin_llabs: {
3029     bool SanitizeOverflow = SanOpts.has(SanitizerKind::SignedIntegerOverflow);
3030 
3031     Value *Result;
3032     switch (getLangOpts().getSignedOverflowBehavior()) {
3033     case LangOptions::SOB_Defined:
3034       Result = EmitAbs(*this, EmitScalarExpr(E->getArg(0)), false);
3035       break;
3036     case LangOptions::SOB_Undefined:
3037       if (!SanitizeOverflow) {
3038         Result = EmitAbs(*this, EmitScalarExpr(E->getArg(0)), true);
3039         break;
3040       }
3041       [[fallthrough]];
3042     case LangOptions::SOB_Trapping:
3043       // TODO: Somehow handle the corner case when the address of abs is taken.
3044       Result = EmitOverflowCheckedAbs(*this, E, SanitizeOverflow);
3045       break;
3046     }
3047     return RValue::get(Result);
3048   }
3049   case Builtin::BI__builtin_complex: {
3050     Value *Real = EmitScalarExpr(E->getArg(0));
3051     Value *Imag = EmitScalarExpr(E->getArg(1));
3052     return RValue::getComplex({Real, Imag});
3053   }
3054   case Builtin::BI__builtin_conj:
3055   case Builtin::BI__builtin_conjf:
3056   case Builtin::BI__builtin_conjl:
3057   case Builtin::BIconj:
3058   case Builtin::BIconjf:
3059   case Builtin::BIconjl: {
3060     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
3061     Value *Real = ComplexVal.first;
3062     Value *Imag = ComplexVal.second;
3063     Imag = Builder.CreateFNeg(Imag, "neg");
3064     return RValue::getComplex(std::make_pair(Real, Imag));
3065   }
3066   case Builtin::BI__builtin_creal:
3067   case Builtin::BI__builtin_crealf:
3068   case Builtin::BI__builtin_creall:
3069   case Builtin::BIcreal:
3070   case Builtin::BIcrealf:
3071   case Builtin::BIcreall: {
3072     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
3073     return RValue::get(ComplexVal.first);
3074   }
3075 
3076   case Builtin::BI__builtin_preserve_access_index: {
3077     // Only enabled preserved access index region when debuginfo
3078     // is available as debuginfo is needed to preserve user-level
3079     // access pattern.
3080     if (!getDebugInfo()) {
3081       CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g");
3082       return RValue::get(EmitScalarExpr(E->getArg(0)));
3083     }
3084 
3085     // Nested builtin_preserve_access_index() not supported
3086     if (IsInPreservedAIRegion) {
3087       CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported");
3088       return RValue::get(EmitScalarExpr(E->getArg(0)));
3089     }
3090 
3091     IsInPreservedAIRegion = true;
3092     Value *Res = EmitScalarExpr(E->getArg(0));
3093     IsInPreservedAIRegion = false;
3094     return RValue::get(Res);
3095   }
3096 
3097   case Builtin::BI__builtin_cimag:
3098   case Builtin::BI__builtin_cimagf:
3099   case Builtin::BI__builtin_cimagl:
3100   case Builtin::BIcimag:
3101   case Builtin::BIcimagf:
3102   case Builtin::BIcimagl: {
3103     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
3104     return RValue::get(ComplexVal.second);
3105   }
3106 
3107   case Builtin::BI__builtin_clrsb:
3108   case Builtin::BI__builtin_clrsbl:
3109   case Builtin::BI__builtin_clrsbll: {
3110     // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
3111     Value *ArgValue = EmitScalarExpr(E->getArg(0));
3112 
3113     llvm::Type *ArgType = ArgValue->getType();
3114     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
3115 
3116     llvm::Type *ResultType = ConvertType(E->getType());
3117     Value *Zero = llvm::Constant::getNullValue(ArgType);
3118     Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg");
3119     Value *Inverse = Builder.CreateNot(ArgValue, "not");
3120     Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue);
3121     Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()});
3122     Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1));
3123     Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3124                                    "cast");
3125     return RValue::get(Result);
3126   }
3127   case Builtin::BI__builtin_ctzs:
3128   case Builtin::BI__builtin_ctz:
3129   case Builtin::BI__builtin_ctzl:
3130   case Builtin::BI__builtin_ctzll: {
3131     Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
3132 
3133     llvm::Type *ArgType = ArgValue->getType();
3134     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
3135 
3136     llvm::Type *ResultType = ConvertType(E->getType());
3137     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
3138     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
3139     if (Result->getType() != ResultType)
3140       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3141                                      "cast");
3142     return RValue::get(Result);
3143   }
3144   case Builtin::BI__builtin_clzs:
3145   case Builtin::BI__builtin_clz:
3146   case Builtin::BI__builtin_clzl:
3147   case Builtin::BI__builtin_clzll: {
3148     Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
3149 
3150     llvm::Type *ArgType = ArgValue->getType();
3151     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
3152 
3153     llvm::Type *ResultType = ConvertType(E->getType());
3154     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
3155     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
3156     if (Result->getType() != ResultType)
3157       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3158                                      "cast");
3159     return RValue::get(Result);
3160   }
3161   case Builtin::BI__builtin_ffs:
3162   case Builtin::BI__builtin_ffsl:
3163   case Builtin::BI__builtin_ffsll: {
3164     // ffs(x) -> x ? cttz(x) + 1 : 0
3165     Value *ArgValue = EmitScalarExpr(E->getArg(0));
3166 
3167     llvm::Type *ArgType = ArgValue->getType();
3168     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
3169 
3170     llvm::Type *ResultType = ConvertType(E->getType());
3171     Value *Tmp =
3172         Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
3173                           llvm::ConstantInt::get(ArgType, 1));
3174     Value *Zero = llvm::Constant::getNullValue(ArgType);
3175     Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
3176     Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
3177     if (Result->getType() != ResultType)
3178       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3179                                      "cast");
3180     return RValue::get(Result);
3181   }
3182   case Builtin::BI__builtin_parity:
3183   case Builtin::BI__builtin_parityl:
3184   case Builtin::BI__builtin_parityll: {
3185     // parity(x) -> ctpop(x) & 1
3186     Value *ArgValue = EmitScalarExpr(E->getArg(0));
3187 
3188     llvm::Type *ArgType = ArgValue->getType();
3189     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
3190 
3191     llvm::Type *ResultType = ConvertType(E->getType());
3192     Value *Tmp = Builder.CreateCall(F, ArgValue);
3193     Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
3194     if (Result->getType() != ResultType)
3195       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3196                                      "cast");
3197     return RValue::get(Result);
3198   }
3199   case Builtin::BI__lzcnt16:
3200   case Builtin::BI__lzcnt:
3201   case Builtin::BI__lzcnt64: {
3202     Value *ArgValue = EmitScalarExpr(E->getArg(0));
3203 
3204     llvm::Type *ArgType = ArgValue->getType();
3205     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
3206 
3207     llvm::Type *ResultType = ConvertType(E->getType());
3208     Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()});
3209     if (Result->getType() != ResultType)
3210       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3211                                      "cast");
3212     return RValue::get(Result);
3213   }
3214   case Builtin::BI__popcnt16:
3215   case Builtin::BI__popcnt:
3216   case Builtin::BI__popcnt64:
3217   case Builtin::BI__builtin_popcount:
3218   case Builtin::BI__builtin_popcountl:
3219   case Builtin::BI__builtin_popcountll: {
3220     Value *ArgValue = EmitScalarExpr(E->getArg(0));
3221 
3222     llvm::Type *ArgType = ArgValue->getType();
3223     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
3224 
3225     llvm::Type *ResultType = ConvertType(E->getType());
3226     Value *Result = Builder.CreateCall(F, ArgValue);
3227     if (Result->getType() != ResultType)
3228       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3229                                      "cast");
3230     return RValue::get(Result);
3231   }
3232   case Builtin::BI__builtin_unpredictable: {
3233     // Always return the argument of __builtin_unpredictable. LLVM does not
3234     // handle this builtin. Metadata for this builtin should be added directly
3235     // to instructions such as branches or switches that use it.
3236     return RValue::get(EmitScalarExpr(E->getArg(0)));
3237   }
3238   case Builtin::BI__builtin_expect: {
3239     Value *ArgValue = EmitScalarExpr(E->getArg(0));
3240     llvm::Type *ArgType = ArgValue->getType();
3241 
3242     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
3243     // Don't generate llvm.expect on -O0 as the backend won't use it for
3244     // anything.
3245     // Note, we still IRGen ExpectedValue because it could have side-effects.
3246     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
3247       return RValue::get(ArgValue);
3248 
3249     Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
3250     Value *Result =
3251         Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
3252     return RValue::get(Result);
3253   }
3254   case Builtin::BI__builtin_expect_with_probability: {
3255     Value *ArgValue = EmitScalarExpr(E->getArg(0));
3256     llvm::Type *ArgType = ArgValue->getType();
3257 
3258     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
3259     llvm::APFloat Probability(0.0);
3260     const Expr *ProbArg = E->getArg(2);
3261     bool EvalSucceed = ProbArg->EvaluateAsFloat(Probability, CGM.getContext());
3262     assert(EvalSucceed && "probability should be able to evaluate as float");
3263     (void)EvalSucceed;
3264     bool LoseInfo = false;
3265     Probability.convert(llvm::APFloat::IEEEdouble(),
3266                         llvm::RoundingMode::Dynamic, &LoseInfo);
3267     llvm::Type *Ty = ConvertType(ProbArg->getType());
3268     Constant *Confidence = ConstantFP::get(Ty, Probability);
3269     // Don't generate llvm.expect.with.probability on -O0 as the backend
3270     // won't use it for anything.
3271     // Note, we still IRGen ExpectedValue because it could have side-effects.
3272     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
3273       return RValue::get(ArgValue);
3274 
3275     Function *FnExpect =
3276         CGM.getIntrinsic(Intrinsic::expect_with_probability, ArgType);
3277     Value *Result = Builder.CreateCall(
3278         FnExpect, {ArgValue, ExpectedValue, Confidence}, "expval");
3279     return RValue::get(Result);
3280   }
3281   case Builtin::BI__builtin_assume_aligned: {
3282     const Expr *Ptr = E->getArg(0);
3283     Value *PtrValue = EmitScalarExpr(Ptr);
3284     Value *OffsetValue =
3285       (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
3286 
3287     Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
3288     ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
3289     if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
3290       AlignmentCI = ConstantInt::get(AlignmentCI->getIntegerType(),
3291                                      llvm::Value::MaximumAlignment);
3292 
3293     emitAlignmentAssumption(PtrValue, Ptr,
3294                             /*The expr loc is sufficient.*/ SourceLocation(),
3295                             AlignmentCI, OffsetValue);
3296     return RValue::get(PtrValue);
3297   }
3298   case Builtin::BI__assume:
3299   case Builtin::BI__builtin_assume: {
3300     if (E->getArg(0)->HasSideEffects(getContext()))
3301       return RValue::get(nullptr);
3302 
3303     Value *ArgValue = EmitScalarExpr(E->getArg(0));
3304     Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
3305     Builder.CreateCall(FnAssume, ArgValue);
3306     return RValue::get(nullptr);
3307   }
3308   case Builtin::BI__builtin_assume_separate_storage: {
3309     const Expr *Arg0 = E->getArg(0);
3310     const Expr *Arg1 = E->getArg(1);
3311 
3312     Value *Value0 = EmitScalarExpr(Arg0);
3313     Value *Value1 = EmitScalarExpr(Arg1);
3314 
3315     Value *Values[] = {Value0, Value1};
3316     OperandBundleDefT<Value *> OBD("separate_storage", Values);
3317     Builder.CreateAssumption(ConstantInt::getTrue(getLLVMContext()), {OBD});
3318     return RValue::get(nullptr);
3319   }
3320   case Builtin::BI__arithmetic_fence: {
3321     // Create the builtin call if FastMath is selected, and the target
3322     // supports the builtin, otherwise just return the argument.
3323     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3324     llvm::FastMathFlags FMF = Builder.getFastMathFlags();
3325     bool isArithmeticFenceEnabled =
3326         FMF.allowReassoc() &&
3327         getContext().getTargetInfo().checkArithmeticFenceSupported();
3328     QualType ArgType = E->getArg(0)->getType();
3329     if (ArgType->isComplexType()) {
3330       if (isArithmeticFenceEnabled) {
3331         QualType ElementType = ArgType->castAs<ComplexType>()->getElementType();
3332         ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
3333         Value *Real = Builder.CreateArithmeticFence(ComplexVal.first,
3334                                                     ConvertType(ElementType));
3335         Value *Imag = Builder.CreateArithmeticFence(ComplexVal.second,
3336                                                     ConvertType(ElementType));
3337         return RValue::getComplex(std::make_pair(Real, Imag));
3338       }
3339       ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
3340       Value *Real = ComplexVal.first;
3341       Value *Imag = ComplexVal.second;
3342       return RValue::getComplex(std::make_pair(Real, Imag));
3343     }
3344     Value *ArgValue = EmitScalarExpr(E->getArg(0));
3345     if (isArithmeticFenceEnabled)
3346       return RValue::get(
3347           Builder.CreateArithmeticFence(ArgValue, ConvertType(ArgType)));
3348     return RValue::get(ArgValue);
3349   }
3350   case Builtin::BI__builtin_bswap16:
3351   case Builtin::BI__builtin_bswap32:
3352   case Builtin::BI__builtin_bswap64:
3353   case Builtin::BI_byteswap_ushort:
3354   case Builtin::BI_byteswap_ulong:
3355   case Builtin::BI_byteswap_uint64: {
3356     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
3357   }
3358   case Builtin::BI__builtin_bitreverse8:
3359   case Builtin::BI__builtin_bitreverse16:
3360   case Builtin::BI__builtin_bitreverse32:
3361   case Builtin::BI__builtin_bitreverse64: {
3362     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
3363   }
3364   case Builtin::BI__builtin_rotateleft8:
3365   case Builtin::BI__builtin_rotateleft16:
3366   case Builtin::BI__builtin_rotateleft32:
3367   case Builtin::BI__builtin_rotateleft64:
3368   case Builtin::BI_rotl8: // Microsoft variants of rotate left
3369   case Builtin::BI_rotl16:
3370   case Builtin::BI_rotl:
3371   case Builtin::BI_lrotl:
3372   case Builtin::BI_rotl64:
3373     return emitRotate(E, false);
3374 
3375   case Builtin::BI__builtin_rotateright8:
3376   case Builtin::BI__builtin_rotateright16:
3377   case Builtin::BI__builtin_rotateright32:
3378   case Builtin::BI__builtin_rotateright64:
3379   case Builtin::BI_rotr8: // Microsoft variants of rotate right
3380   case Builtin::BI_rotr16:
3381   case Builtin::BI_rotr:
3382   case Builtin::BI_lrotr:
3383   case Builtin::BI_rotr64:
3384     return emitRotate(E, true);
3385 
3386   case Builtin::BI__builtin_constant_p: {
3387     llvm::Type *ResultType = ConvertType(E->getType());
3388 
3389     const Expr *Arg = E->getArg(0);
3390     QualType ArgType = Arg->getType();
3391     // FIXME: The allowance for Obj-C pointers and block pointers is historical
3392     // and likely a mistake.
3393     if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() &&
3394         !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType())
3395       // Per the GCC documentation, only numeric constants are recognized after
3396       // inlining.
3397       return RValue::get(ConstantInt::get(ResultType, 0));
3398 
3399     if (Arg->HasSideEffects(getContext()))
3400       // The argument is unevaluated, so be conservative if it might have
3401       // side-effects.
3402       return RValue::get(ConstantInt::get(ResultType, 0));
3403 
3404     Value *ArgValue = EmitScalarExpr(Arg);
3405     if (ArgType->isObjCObjectPointerType()) {
3406       // Convert Objective-C objects to id because we cannot distinguish between
3407       // LLVM types for Obj-C classes as they are opaque.
3408       ArgType = CGM.getContext().getObjCIdType();
3409       ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType));
3410     }
3411     Function *F =
3412         CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType));
3413     Value *Result = Builder.CreateCall(F, ArgValue);
3414     if (Result->getType() != ResultType)
3415       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false);
3416     return RValue::get(Result);
3417   }
3418   case Builtin::BI__builtin_dynamic_object_size:
3419   case Builtin::BI__builtin_object_size: {
3420     unsigned Type =
3421         E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
3422     auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
3423 
3424     // We pass this builtin onto the optimizer so that it can figure out the
3425     // object size in more complex cases.
3426     bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size;
3427     return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
3428                                              /*EmittedE=*/nullptr, IsDynamic));
3429   }
3430   case Builtin::BI__builtin_prefetch: {
3431     Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
3432     // FIXME: Technically these constants should of type 'int', yes?
3433     RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
3434       llvm::ConstantInt::get(Int32Ty, 0);
3435     Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
3436       llvm::ConstantInt::get(Int32Ty, 3);
3437     Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
3438     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
3439     Builder.CreateCall(F, {Address, RW, Locality, Data});
3440     return RValue::get(nullptr);
3441   }
3442   case Builtin::BI__builtin_readcyclecounter: {
3443     Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
3444     return RValue::get(Builder.CreateCall(F));
3445   }
3446   case Builtin::BI__builtin___clear_cache: {
3447     Value *Begin = EmitScalarExpr(E->getArg(0));
3448     Value *End = EmitScalarExpr(E->getArg(1));
3449     Function *F = CGM.getIntrinsic(Intrinsic::clear_cache);
3450     return RValue::get(Builder.CreateCall(F, {Begin, End}));
3451   }
3452   case Builtin::BI__builtin_trap:
3453     EmitTrapCall(Intrinsic::trap);
3454     return RValue::get(nullptr);
3455   case Builtin::BI__debugbreak:
3456     EmitTrapCall(Intrinsic::debugtrap);
3457     return RValue::get(nullptr);
3458   case Builtin::BI__builtin_unreachable: {
3459     EmitUnreachable(E->getExprLoc());
3460 
3461     // We do need to preserve an insertion point.
3462     EmitBlock(createBasicBlock("unreachable.cont"));
3463 
3464     return RValue::get(nullptr);
3465   }
3466 
3467   case Builtin::BI__builtin_powi:
3468   case Builtin::BI__builtin_powif:
3469   case Builtin::BI__builtin_powil: {
3470     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
3471     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
3472 
3473     if (Builder.getIsFPConstrained()) {
3474       // FIXME: llvm.powi has 2 mangling types,
3475       // llvm.experimental.constrained.powi has one.
3476       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3477       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_powi,
3478                                      Src0->getType());
3479       return RValue::get(Builder.CreateConstrainedFPCall(F, { Src0, Src1 }));
3480     }
3481 
3482     Function *F = CGM.getIntrinsic(Intrinsic::powi,
3483                                    { Src0->getType(), Src1->getType() });
3484     return RValue::get(Builder.CreateCall(F, { Src0, Src1 }));
3485   }
3486   case Builtin::BI__builtin_frexpl: {
3487     // Linux PPC will not be adding additional PPCDoubleDouble support.
3488     // WIP to switch default to IEEE long double. Will emit libcall for
3489     // frexpl instead of legalizing this type in the BE.
3490     if (&getTarget().getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble())
3491       break;
3492     LLVM_FALLTHROUGH;
3493   }
3494   case Builtin::BI__builtin_frexp:
3495   case Builtin::BI__builtin_frexpf:
3496   case Builtin::BI__builtin_frexpf128:
3497   case Builtin::BI__builtin_frexpf16:
3498     return RValue::get(emitFrexpBuiltin(*this, E, Intrinsic::frexp));
3499   case Builtin::BI__builtin_isgreater:
3500   case Builtin::BI__builtin_isgreaterequal:
3501   case Builtin::BI__builtin_isless:
3502   case Builtin::BI__builtin_islessequal:
3503   case Builtin::BI__builtin_islessgreater:
3504   case Builtin::BI__builtin_isunordered: {
3505     // Ordered comparisons: we know the arguments to these are matching scalar
3506     // floating point values.
3507     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3508     Value *LHS = EmitScalarExpr(E->getArg(0));
3509     Value *RHS = EmitScalarExpr(E->getArg(1));
3510 
3511     switch (BuiltinID) {
3512     default: llvm_unreachable("Unknown ordered comparison");
3513     case Builtin::BI__builtin_isgreater:
3514       LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
3515       break;
3516     case Builtin::BI__builtin_isgreaterequal:
3517       LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
3518       break;
3519     case Builtin::BI__builtin_isless:
3520       LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
3521       break;
3522     case Builtin::BI__builtin_islessequal:
3523       LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
3524       break;
3525     case Builtin::BI__builtin_islessgreater:
3526       LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
3527       break;
3528     case Builtin::BI__builtin_isunordered:
3529       LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
3530       break;
3531     }
3532     // ZExt bool to int type.
3533     return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
3534   }
3535 
3536   case Builtin::BI__builtin_isnan: {
3537     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3538     Value *V = EmitScalarExpr(E->getArg(0));
3539     if (Value *Result = tryUseTestFPKind(*this, BuiltinID, V))
3540       return RValue::get(Result);
3541     return RValue::get(
3542         Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcNan),
3543                            ConvertType(E->getType())));
3544   }
3545 
3546   case Builtin::BI__builtin_issignaling: {
3547     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3548     Value *V = EmitScalarExpr(E->getArg(0));
3549     return RValue::get(
3550         Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcSNan),
3551                            ConvertType(E->getType())));
3552   }
3553 
3554   case Builtin::BI__builtin_isinf: {
3555     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3556     Value *V = EmitScalarExpr(E->getArg(0));
3557     if (Value *Result = tryUseTestFPKind(*this, BuiltinID, V))
3558       return RValue::get(Result);
3559     return RValue::get(
3560         Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcInf),
3561                            ConvertType(E->getType())));
3562   }
3563 
3564   case Builtin::BIfinite:
3565   case Builtin::BI__finite:
3566   case Builtin::BIfinitef:
3567   case Builtin::BI__finitef:
3568   case Builtin::BIfinitel:
3569   case Builtin::BI__finitel:
3570   case Builtin::BI__builtin_isfinite: {
3571     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3572     Value *V = EmitScalarExpr(E->getArg(0));
3573     if (Value *Result = tryUseTestFPKind(*this, BuiltinID, V))
3574       return RValue::get(Result);
3575     return RValue::get(
3576         Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcFinite),
3577                            ConvertType(E->getType())));
3578   }
3579 
3580   case Builtin::BI__builtin_isnormal: {
3581     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3582     Value *V = EmitScalarExpr(E->getArg(0));
3583     return RValue::get(
3584         Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcNormal),
3585                            ConvertType(E->getType())));
3586   }
3587 
3588   case Builtin::BI__builtin_issubnormal: {
3589     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3590     Value *V = EmitScalarExpr(E->getArg(0));
3591     return RValue::get(
3592         Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcSubnormal),
3593                            ConvertType(E->getType())));
3594   }
3595 
3596   case Builtin::BI__builtin_iszero: {
3597     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3598     Value *V = EmitScalarExpr(E->getArg(0));
3599     return RValue::get(
3600         Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcZero),
3601                            ConvertType(E->getType())));
3602   }
3603 
3604   case Builtin::BI__builtin_isfpclass: {
3605     Expr::EvalResult Result;
3606     if (!E->getArg(1)->EvaluateAsInt(Result, CGM.getContext()))
3607       break;
3608     uint64_t Test = Result.Val.getInt().getLimitedValue();
3609     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3610     Value *V = EmitScalarExpr(E->getArg(0));
3611     return RValue::get(Builder.CreateZExt(Builder.createIsFPClass(V, Test),
3612                                           ConvertType(E->getType())));
3613   }
3614 
3615   case Builtin::BI__builtin_nondeterministic_value: {
3616     llvm::Type *Ty = ConvertType(E->getArg(0)->getType());
3617 
3618     Value *Result = PoisonValue::get(Ty);
3619     Result = Builder.CreateFreeze(Result);
3620 
3621     return RValue::get(Result);
3622   }
3623 
3624   case Builtin::BI__builtin_elementwise_abs: {
3625     Value *Result;
3626     QualType QT = E->getArg(0)->getType();
3627 
3628     if (auto *VecTy = QT->getAs<VectorType>())
3629       QT = VecTy->getElementType();
3630     if (QT->isIntegerType())
3631       Result = Builder.CreateBinaryIntrinsic(
3632           llvm::Intrinsic::abs, EmitScalarExpr(E->getArg(0)),
3633           Builder.getFalse(), nullptr, "elt.abs");
3634     else
3635       Result = emitUnaryBuiltin(*this, E, llvm::Intrinsic::fabs, "elt.abs");
3636 
3637     return RValue::get(Result);
3638   }
3639 
3640   case Builtin::BI__builtin_elementwise_ceil:
3641     return RValue::get(
3642         emitUnaryBuiltin(*this, E, llvm::Intrinsic::ceil, "elt.ceil"));
3643   case Builtin::BI__builtin_elementwise_exp:
3644     return RValue::get(
3645         emitUnaryBuiltin(*this, E, llvm::Intrinsic::exp, "elt.exp"));
3646   case Builtin::BI__builtin_elementwise_exp2:
3647     return RValue::get(
3648         emitUnaryBuiltin(*this, E, llvm::Intrinsic::exp2, "elt.exp2"));
3649   case Builtin::BI__builtin_elementwise_log:
3650     return RValue::get(
3651         emitUnaryBuiltin(*this, E, llvm::Intrinsic::log, "elt.log"));
3652   case Builtin::BI__builtin_elementwise_log2:
3653     return RValue::get(
3654         emitUnaryBuiltin(*this, E, llvm::Intrinsic::log2, "elt.log2"));
3655   case Builtin::BI__builtin_elementwise_log10:
3656     return RValue::get(
3657         emitUnaryBuiltin(*this, E, llvm::Intrinsic::log10, "elt.log10"));
3658   case Builtin::BI__builtin_elementwise_pow: {
3659     return RValue::get(emitBinaryBuiltin(*this, E, llvm::Intrinsic::pow));
3660   }
3661   case Builtin::BI__builtin_elementwise_bitreverse:
3662     return RValue::get(emitUnaryBuiltin(*this, E, llvm::Intrinsic::bitreverse,
3663                                         "elt.bitreverse"));
3664   case Builtin::BI__builtin_elementwise_cos:
3665     return RValue::get(
3666         emitUnaryBuiltin(*this, E, llvm::Intrinsic::cos, "elt.cos"));
3667   case Builtin::BI__builtin_elementwise_floor:
3668     return RValue::get(
3669         emitUnaryBuiltin(*this, E, llvm::Intrinsic::floor, "elt.floor"));
3670   case Builtin::BI__builtin_elementwise_roundeven:
3671     return RValue::get(emitUnaryBuiltin(*this, E, llvm::Intrinsic::roundeven,
3672                                         "elt.roundeven"));
3673   case Builtin::BI__builtin_elementwise_round:
3674     return RValue::get(emitUnaryBuiltin(*this, E, llvm::Intrinsic::round,
3675                                         "elt.round"));
3676   case Builtin::BI__builtin_elementwise_rint:
3677     return RValue::get(emitUnaryBuiltin(*this, E, llvm::Intrinsic::rint,
3678                                         "elt.rint"));
3679   case Builtin::BI__builtin_elementwise_nearbyint:
3680     return RValue::get(emitUnaryBuiltin(*this, E, llvm::Intrinsic::nearbyint,
3681                                         "elt.nearbyint"));
3682   case Builtin::BI__builtin_elementwise_sin:
3683     return RValue::get(
3684         emitUnaryBuiltin(*this, E, llvm::Intrinsic::sin, "elt.sin"));
3685 
3686   case Builtin::BI__builtin_elementwise_trunc:
3687     return RValue::get(
3688         emitUnaryBuiltin(*this, E, llvm::Intrinsic::trunc, "elt.trunc"));
3689   case Builtin::BI__builtin_elementwise_canonicalize:
3690     return RValue::get(
3691         emitUnaryBuiltin(*this, E, llvm::Intrinsic::canonicalize, "elt.canonicalize"));
3692   case Builtin::BI__builtin_elementwise_copysign:
3693     return RValue::get(emitBinaryBuiltin(*this, E, llvm::Intrinsic::copysign));
3694   case Builtin::BI__builtin_elementwise_fma:
3695     return RValue::get(emitTernaryBuiltin(*this, E, llvm::Intrinsic::fma));
3696   case Builtin::BI__builtin_elementwise_add_sat:
3697   case Builtin::BI__builtin_elementwise_sub_sat: {
3698     Value *Op0 = EmitScalarExpr(E->getArg(0));
3699     Value *Op1 = EmitScalarExpr(E->getArg(1));
3700     Value *Result;
3701     assert(Op0->getType()->isIntOrIntVectorTy() && "integer type expected");
3702     QualType Ty = E->getArg(0)->getType();
3703     if (auto *VecTy = Ty->getAs<VectorType>())
3704       Ty = VecTy->getElementType();
3705     bool IsSigned = Ty->isSignedIntegerType();
3706     unsigned Opc;
3707     if (BuiltinIDIfNoAsmLabel == Builtin::BI__builtin_elementwise_add_sat)
3708       Opc = IsSigned ? llvm::Intrinsic::sadd_sat : llvm::Intrinsic::uadd_sat;
3709     else
3710       Opc = IsSigned ? llvm::Intrinsic::ssub_sat : llvm::Intrinsic::usub_sat;
3711     Result = Builder.CreateBinaryIntrinsic(Opc, Op0, Op1, nullptr, "elt.sat");
3712     return RValue::get(Result);
3713   }
3714 
3715   case Builtin::BI__builtin_elementwise_max: {
3716     Value *Op0 = EmitScalarExpr(E->getArg(0));
3717     Value *Op1 = EmitScalarExpr(E->getArg(1));
3718     Value *Result;
3719     if (Op0->getType()->isIntOrIntVectorTy()) {
3720       QualType Ty = E->getArg(0)->getType();
3721       if (auto *VecTy = Ty->getAs<VectorType>())
3722         Ty = VecTy->getElementType();
3723       Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType()
3724                                                  ? llvm::Intrinsic::smax
3725                                                  : llvm::Intrinsic::umax,
3726                                              Op0, Op1, nullptr, "elt.max");
3727     } else
3728       Result = Builder.CreateMaxNum(Op0, Op1, "elt.max");
3729     return RValue::get(Result);
3730   }
3731   case Builtin::BI__builtin_elementwise_min: {
3732     Value *Op0 = EmitScalarExpr(E->getArg(0));
3733     Value *Op1 = EmitScalarExpr(E->getArg(1));
3734     Value *Result;
3735     if (Op0->getType()->isIntOrIntVectorTy()) {
3736       QualType Ty = E->getArg(0)->getType();
3737       if (auto *VecTy = Ty->getAs<VectorType>())
3738         Ty = VecTy->getElementType();
3739       Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType()
3740                                                  ? llvm::Intrinsic::smin
3741                                                  : llvm::Intrinsic::umin,
3742                                              Op0, Op1, nullptr, "elt.min");
3743     } else
3744       Result = Builder.CreateMinNum(Op0, Op1, "elt.min");
3745     return RValue::get(Result);
3746   }
3747 
3748   case Builtin::BI__builtin_reduce_max: {
3749     auto GetIntrinsicID = [](QualType QT) {
3750       if (auto *VecTy = QT->getAs<VectorType>())
3751         QT = VecTy->getElementType();
3752       if (QT->isSignedIntegerType())
3753         return llvm::Intrinsic::vector_reduce_smax;
3754       if (QT->isUnsignedIntegerType())
3755         return llvm::Intrinsic::vector_reduce_umax;
3756       assert(QT->isFloatingType() && "must have a float here");
3757       return llvm::Intrinsic::vector_reduce_fmax;
3758     };
3759     return RValue::get(emitUnaryBuiltin(
3760         *this, E, GetIntrinsicID(E->getArg(0)->getType()), "rdx.min"));
3761   }
3762 
3763   case Builtin::BI__builtin_reduce_min: {
3764     auto GetIntrinsicID = [](QualType QT) {
3765       if (auto *VecTy = QT->getAs<VectorType>())
3766         QT = VecTy->getElementType();
3767       if (QT->isSignedIntegerType())
3768         return llvm::Intrinsic::vector_reduce_smin;
3769       if (QT->isUnsignedIntegerType())
3770         return llvm::Intrinsic::vector_reduce_umin;
3771       assert(QT->isFloatingType() && "must have a float here");
3772       return llvm::Intrinsic::vector_reduce_fmin;
3773     };
3774 
3775     return RValue::get(emitUnaryBuiltin(
3776         *this, E, GetIntrinsicID(E->getArg(0)->getType()), "rdx.min"));
3777   }
3778 
3779   case Builtin::BI__builtin_reduce_add:
3780     return RValue::get(emitUnaryBuiltin(
3781         *this, E, llvm::Intrinsic::vector_reduce_add, "rdx.add"));
3782   case Builtin::BI__builtin_reduce_mul:
3783     return RValue::get(emitUnaryBuiltin(
3784         *this, E, llvm::Intrinsic::vector_reduce_mul, "rdx.mul"));
3785   case Builtin::BI__builtin_reduce_xor:
3786     return RValue::get(emitUnaryBuiltin(
3787         *this, E, llvm::Intrinsic::vector_reduce_xor, "rdx.xor"));
3788   case Builtin::BI__builtin_reduce_or:
3789     return RValue::get(emitUnaryBuiltin(
3790         *this, E, llvm::Intrinsic::vector_reduce_or, "rdx.or"));
3791   case Builtin::BI__builtin_reduce_and:
3792     return RValue::get(emitUnaryBuiltin(
3793         *this, E, llvm::Intrinsic::vector_reduce_and, "rdx.and"));
3794 
3795   case Builtin::BI__builtin_matrix_transpose: {
3796     auto *MatrixTy = E->getArg(0)->getType()->castAs<ConstantMatrixType>();
3797     Value *MatValue = EmitScalarExpr(E->getArg(0));
3798     MatrixBuilder MB(Builder);
3799     Value *Result = MB.CreateMatrixTranspose(MatValue, MatrixTy->getNumRows(),
3800                                              MatrixTy->getNumColumns());
3801     return RValue::get(Result);
3802   }
3803 
3804   case Builtin::BI__builtin_matrix_column_major_load: {
3805     MatrixBuilder MB(Builder);
3806     // Emit everything that isn't dependent on the first parameter type
3807     Value *Stride = EmitScalarExpr(E->getArg(3));
3808     const auto *ResultTy = E->getType()->getAs<ConstantMatrixType>();
3809     auto *PtrTy = E->getArg(0)->getType()->getAs<PointerType>();
3810     assert(PtrTy && "arg0 must be of pointer type");
3811     bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
3812 
3813     Address Src = EmitPointerWithAlignment(E->getArg(0));
3814     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(0)->getType(),
3815                         E->getArg(0)->getExprLoc(), FD, 0);
3816     Value *Result = MB.CreateColumnMajorLoad(
3817         Src.getElementType(), Src.getPointer(),
3818         Align(Src.getAlignment().getQuantity()), Stride, IsVolatile,
3819         ResultTy->getNumRows(), ResultTy->getNumColumns(),
3820         "matrix");
3821     return RValue::get(Result);
3822   }
3823 
3824   case Builtin::BI__builtin_matrix_column_major_store: {
3825     MatrixBuilder MB(Builder);
3826     Value *Matrix = EmitScalarExpr(E->getArg(0));
3827     Address Dst = EmitPointerWithAlignment(E->getArg(1));
3828     Value *Stride = EmitScalarExpr(E->getArg(2));
3829 
3830     const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>();
3831     auto *PtrTy = E->getArg(1)->getType()->getAs<PointerType>();
3832     assert(PtrTy && "arg1 must be of pointer type");
3833     bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
3834 
3835     EmitNonNullArgCheck(RValue::get(Dst.getPointer()), E->getArg(1)->getType(),
3836                         E->getArg(1)->getExprLoc(), FD, 0);
3837     Value *Result = MB.CreateColumnMajorStore(
3838         Matrix, Dst.getPointer(), Align(Dst.getAlignment().getQuantity()),
3839         Stride, IsVolatile, MatrixTy->getNumRows(), MatrixTy->getNumColumns());
3840     return RValue::get(Result);
3841   }
3842 
3843   case Builtin::BI__builtin_isinf_sign: {
3844     // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
3845     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3846     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3847     Value *Arg = EmitScalarExpr(E->getArg(0));
3848     Value *AbsArg = EmitFAbs(*this, Arg);
3849     Value *IsInf = Builder.CreateFCmpOEQ(
3850         AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
3851     Value *IsNeg = EmitSignBit(*this, Arg);
3852 
3853     llvm::Type *IntTy = ConvertType(E->getType());
3854     Value *Zero = Constant::getNullValue(IntTy);
3855     Value *One = ConstantInt::get(IntTy, 1);
3856     Value *NegativeOne = ConstantInt::get(IntTy, -1);
3857     Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
3858     Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
3859     return RValue::get(Result);
3860   }
3861 
3862   case Builtin::BI__builtin_flt_rounds: {
3863     Function *F = CGM.getIntrinsic(Intrinsic::get_rounding);
3864 
3865     llvm::Type *ResultType = ConvertType(E->getType());
3866     Value *Result = Builder.CreateCall(F);
3867     if (Result->getType() != ResultType)
3868       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3869                                      "cast");
3870     return RValue::get(Result);
3871   }
3872 
3873   case Builtin::BI__builtin_set_flt_rounds: {
3874     Function *F = CGM.getIntrinsic(Intrinsic::set_rounding);
3875 
3876     Value *V = EmitScalarExpr(E->getArg(0));
3877     Builder.CreateCall(F, V);
3878     return RValue::get(nullptr);
3879   }
3880 
3881   case Builtin::BI__builtin_fpclassify: {
3882     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3883     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3884     Value *V = EmitScalarExpr(E->getArg(5));
3885     llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
3886 
3887     // Create Result
3888     BasicBlock *Begin = Builder.GetInsertBlock();
3889     BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
3890     Builder.SetInsertPoint(End);
3891     PHINode *Result =
3892       Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
3893                         "fpclassify_result");
3894 
3895     // if (V==0) return FP_ZERO
3896     Builder.SetInsertPoint(Begin);
3897     Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
3898                                           "iszero");
3899     Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
3900     BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
3901     Builder.CreateCondBr(IsZero, End, NotZero);
3902     Result->addIncoming(ZeroLiteral, Begin);
3903 
3904     // if (V != V) return FP_NAN
3905     Builder.SetInsertPoint(NotZero);
3906     Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
3907     Value *NanLiteral = EmitScalarExpr(E->getArg(0));
3908     BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
3909     Builder.CreateCondBr(IsNan, End, NotNan);
3910     Result->addIncoming(NanLiteral, NotZero);
3911 
3912     // if (fabs(V) == infinity) return FP_INFINITY
3913     Builder.SetInsertPoint(NotNan);
3914     Value *VAbs = EmitFAbs(*this, V);
3915     Value *IsInf =
3916       Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
3917                             "isinf");
3918     Value *InfLiteral = EmitScalarExpr(E->getArg(1));
3919     BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
3920     Builder.CreateCondBr(IsInf, End, NotInf);
3921     Result->addIncoming(InfLiteral, NotNan);
3922 
3923     // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
3924     Builder.SetInsertPoint(NotInf);
3925     APFloat Smallest = APFloat::getSmallestNormalized(
3926         getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
3927     Value *IsNormal =
3928       Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
3929                             "isnormal");
3930     Value *NormalResult =
3931       Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
3932                            EmitScalarExpr(E->getArg(3)));
3933     Builder.CreateBr(End);
3934     Result->addIncoming(NormalResult, NotInf);
3935 
3936     // return Result
3937     Builder.SetInsertPoint(End);
3938     return RValue::get(Result);
3939   }
3940 
3941   // An alloca will always return a pointer to the alloca (stack) address
3942   // space. This address space need not be the same as the AST / Language
3943   // default (e.g. in C / C++ auto vars are in the generic address space). At
3944   // the AST level this is handled within CreateTempAlloca et al., but for the
3945   // builtin / dynamic alloca we have to handle it here. We use an explicit cast
3946   // instead of passing an AS to CreateAlloca so as to not inhibit optimisation.
3947   case Builtin::BIalloca:
3948   case Builtin::BI_alloca:
3949   case Builtin::BI__builtin_alloca_uninitialized:
3950   case Builtin::BI__builtin_alloca: {
3951     Value *Size = EmitScalarExpr(E->getArg(0));
3952     const TargetInfo &TI = getContext().getTargetInfo();
3953     // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
3954     const Align SuitableAlignmentInBytes =
3955         CGM.getContext()
3956             .toCharUnitsFromBits(TI.getSuitableAlign())
3957             .getAsAlign();
3958     AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
3959     AI->setAlignment(SuitableAlignmentInBytes);
3960     if (BuiltinID != Builtin::BI__builtin_alloca_uninitialized)
3961       initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes);
3962     LangAS AAS = getASTAllocaAddressSpace();
3963     LangAS EAS = E->getType()->getPointeeType().getAddressSpace();
3964     if (AAS != EAS) {
3965       llvm::Type *Ty = CGM.getTypes().ConvertType(E->getType());
3966       return RValue::get(getTargetHooks().performAddrSpaceCast(*this, AI, AAS,
3967                                                                EAS, Ty));
3968     }
3969     return RValue::get(AI);
3970   }
3971 
3972   case Builtin::BI__builtin_alloca_with_align_uninitialized:
3973   case Builtin::BI__builtin_alloca_with_align: {
3974     Value *Size = EmitScalarExpr(E->getArg(0));
3975     Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
3976     auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
3977     unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
3978     const Align AlignmentInBytes =
3979         CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getAsAlign();
3980     AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
3981     AI->setAlignment(AlignmentInBytes);
3982     if (BuiltinID != Builtin::BI__builtin_alloca_with_align_uninitialized)
3983       initializeAlloca(*this, AI, Size, AlignmentInBytes);
3984     LangAS AAS = getASTAllocaAddressSpace();
3985     LangAS EAS = E->getType()->getPointeeType().getAddressSpace();
3986     if (AAS != EAS) {
3987       llvm::Type *Ty = CGM.getTypes().ConvertType(E->getType());
3988       return RValue::get(getTargetHooks().performAddrSpaceCast(*this, AI, AAS,
3989                                                                EAS, Ty));
3990     }
3991     return RValue::get(AI);
3992   }
3993 
3994   case Builtin::BIbzero:
3995   case Builtin::BI__builtin_bzero: {
3996     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3997     Value *SizeVal = EmitScalarExpr(E->getArg(1));
3998     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3999                         E->getArg(0)->getExprLoc(), FD, 0);
4000     Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
4001     return RValue::get(nullptr);
4002   }
4003 
4004   case Builtin::BIbcopy:
4005   case Builtin::BI__builtin_bcopy: {
4006     Address Src = EmitPointerWithAlignment(E->getArg(0));
4007     Address Dest = EmitPointerWithAlignment(E->getArg(1));
4008     Value *SizeVal = EmitScalarExpr(E->getArg(2));
4009     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(0)->getType(),
4010                         E->getArg(0)->getExprLoc(), FD, 0);
4011     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(1)->getType(),
4012                         E->getArg(1)->getExprLoc(), FD, 0);
4013     Builder.CreateMemMove(Dest, Src, SizeVal, false);
4014     return RValue::get(Dest.getPointer());
4015   }
4016 
4017   case Builtin::BImemcpy:
4018   case Builtin::BI__builtin_memcpy:
4019   case Builtin::BImempcpy:
4020   case Builtin::BI__builtin_mempcpy: {
4021     Address Dest = EmitPointerWithAlignment(E->getArg(0));
4022     Address Src = EmitPointerWithAlignment(E->getArg(1));
4023     Value *SizeVal = EmitScalarExpr(E->getArg(2));
4024     EmitArgCheck(TCK_Store, Dest, E->getArg(0), 0);
4025     EmitArgCheck(TCK_Load, Src, E->getArg(1), 1);
4026     Builder.CreateMemCpy(Dest, Src, SizeVal, false);
4027     if (BuiltinID == Builtin::BImempcpy ||
4028         BuiltinID == Builtin::BI__builtin_mempcpy)
4029       return RValue::get(Builder.CreateInBoundsGEP(Dest.getElementType(),
4030                                                    Dest.getPointer(), SizeVal));
4031     else
4032       return RValue::get(Dest.getPointer());
4033   }
4034 
4035   case Builtin::BI__builtin_memcpy_inline: {
4036     Address Dest = EmitPointerWithAlignment(E->getArg(0));
4037     Address Src = EmitPointerWithAlignment(E->getArg(1));
4038     uint64_t Size =
4039         E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
4040     EmitArgCheck(TCK_Store, Dest, E->getArg(0), 0);
4041     EmitArgCheck(TCK_Load, Src, E->getArg(1), 1);
4042     Builder.CreateMemCpyInline(Dest, Src, Size);
4043     return RValue::get(nullptr);
4044   }
4045 
4046   case Builtin::BI__builtin_char_memchr:
4047     BuiltinID = Builtin::BI__builtin_memchr;
4048     break;
4049 
4050   case Builtin::BI__builtin___memcpy_chk: {
4051     // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
4052     Expr::EvalResult SizeResult, DstSizeResult;
4053     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
4054         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
4055       break;
4056     llvm::APSInt Size = SizeResult.Val.getInt();
4057     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
4058     if (Size.ugt(DstSize))
4059       break;
4060     Address Dest = EmitPointerWithAlignment(E->getArg(0));
4061     Address Src = EmitPointerWithAlignment(E->getArg(1));
4062     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
4063     Builder.CreateMemCpy(Dest, Src, SizeVal, false);
4064     return RValue::get(Dest.getPointer());
4065   }
4066 
4067   case Builtin::BI__builtin_objc_memmove_collectable: {
4068     Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
4069     Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
4070     Value *SizeVal = EmitScalarExpr(E->getArg(2));
4071     CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
4072                                                   DestAddr, SrcAddr, SizeVal);
4073     return RValue::get(DestAddr.getPointer());
4074   }
4075 
4076   case Builtin::BI__builtin___memmove_chk: {
4077     // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
4078     Expr::EvalResult SizeResult, DstSizeResult;
4079     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
4080         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
4081       break;
4082     llvm::APSInt Size = SizeResult.Val.getInt();
4083     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
4084     if (Size.ugt(DstSize))
4085       break;
4086     Address Dest = EmitPointerWithAlignment(E->getArg(0));
4087     Address Src = EmitPointerWithAlignment(E->getArg(1));
4088     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
4089     Builder.CreateMemMove(Dest, Src, SizeVal, false);
4090     return RValue::get(Dest.getPointer());
4091   }
4092 
4093   case Builtin::BImemmove:
4094   case Builtin::BI__builtin_memmove: {
4095     Address Dest = EmitPointerWithAlignment(E->getArg(0));
4096     Address Src = EmitPointerWithAlignment(E->getArg(1));
4097     Value *SizeVal = EmitScalarExpr(E->getArg(2));
4098     EmitArgCheck(TCK_Store, Dest, E->getArg(0), 0);
4099     EmitArgCheck(TCK_Load, Src, E->getArg(1), 1);
4100     Builder.CreateMemMove(Dest, Src, SizeVal, false);
4101     return RValue::get(Dest.getPointer());
4102   }
4103   case Builtin::BImemset:
4104   case Builtin::BI__builtin_memset: {
4105     Address Dest = EmitPointerWithAlignment(E->getArg(0));
4106     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
4107                                          Builder.getInt8Ty());
4108     Value *SizeVal = EmitScalarExpr(E->getArg(2));
4109     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
4110                         E->getArg(0)->getExprLoc(), FD, 0);
4111     Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
4112     return RValue::get(Dest.getPointer());
4113   }
4114   case Builtin::BI__builtin_memset_inline: {
4115     Address Dest = EmitPointerWithAlignment(E->getArg(0));
4116     Value *ByteVal =
4117         Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), Builder.getInt8Ty());
4118     uint64_t Size =
4119         E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
4120     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
4121                         E->getArg(0)->getExprLoc(), FD, 0);
4122     Builder.CreateMemSetInline(Dest, ByteVal, Size);
4123     return RValue::get(nullptr);
4124   }
4125   case Builtin::BI__builtin___memset_chk: {
4126     // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
4127     Expr::EvalResult SizeResult, DstSizeResult;
4128     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
4129         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
4130       break;
4131     llvm::APSInt Size = SizeResult.Val.getInt();
4132     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
4133     if (Size.ugt(DstSize))
4134       break;
4135     Address Dest = EmitPointerWithAlignment(E->getArg(0));
4136     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
4137                                          Builder.getInt8Ty());
4138     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
4139     Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
4140     return RValue::get(Dest.getPointer());
4141   }
4142   case Builtin::BI__builtin_wmemchr: {
4143     // The MSVC runtime library does not provide a definition of wmemchr, so we
4144     // need an inline implementation.
4145     if (!getTarget().getTriple().isOSMSVCRT())
4146       break;
4147 
4148     llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
4149     Value *Str = EmitScalarExpr(E->getArg(0));
4150     Value *Chr = EmitScalarExpr(E->getArg(1));
4151     Value *Size = EmitScalarExpr(E->getArg(2));
4152 
4153     BasicBlock *Entry = Builder.GetInsertBlock();
4154     BasicBlock *CmpEq = createBasicBlock("wmemchr.eq");
4155     BasicBlock *Next = createBasicBlock("wmemchr.next");
4156     BasicBlock *Exit = createBasicBlock("wmemchr.exit");
4157     Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
4158     Builder.CreateCondBr(SizeEq0, Exit, CmpEq);
4159 
4160     EmitBlock(CmpEq);
4161     PHINode *StrPhi = Builder.CreatePHI(Str->getType(), 2);
4162     StrPhi->addIncoming(Str, Entry);
4163     PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
4164     SizePhi->addIncoming(Size, Entry);
4165     CharUnits WCharAlign =
4166         getContext().getTypeAlignInChars(getContext().WCharTy);
4167     Value *StrCh = Builder.CreateAlignedLoad(WCharTy, StrPhi, WCharAlign);
4168     Value *FoundChr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 0);
4169     Value *StrEqChr = Builder.CreateICmpEQ(StrCh, Chr);
4170     Builder.CreateCondBr(StrEqChr, Exit, Next);
4171 
4172     EmitBlock(Next);
4173     Value *NextStr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 1);
4174     Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
4175     Value *NextSizeEq0 =
4176         Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
4177     Builder.CreateCondBr(NextSizeEq0, Exit, CmpEq);
4178     StrPhi->addIncoming(NextStr, Next);
4179     SizePhi->addIncoming(NextSize, Next);
4180 
4181     EmitBlock(Exit);
4182     PHINode *Ret = Builder.CreatePHI(Str->getType(), 3);
4183     Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Entry);
4184     Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Next);
4185     Ret->addIncoming(FoundChr, CmpEq);
4186     return RValue::get(Ret);
4187   }
4188   case Builtin::BI__builtin_wmemcmp: {
4189     // The MSVC runtime library does not provide a definition of wmemcmp, so we
4190     // need an inline implementation.
4191     if (!getTarget().getTriple().isOSMSVCRT())
4192       break;
4193 
4194     llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
4195 
4196     Value *Dst = EmitScalarExpr(E->getArg(0));
4197     Value *Src = EmitScalarExpr(E->getArg(1));
4198     Value *Size = EmitScalarExpr(E->getArg(2));
4199 
4200     BasicBlock *Entry = Builder.GetInsertBlock();
4201     BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
4202     BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
4203     BasicBlock *Next = createBasicBlock("wmemcmp.next");
4204     BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
4205     Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
4206     Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
4207 
4208     EmitBlock(CmpGT);
4209     PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
4210     DstPhi->addIncoming(Dst, Entry);
4211     PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
4212     SrcPhi->addIncoming(Src, Entry);
4213     PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
4214     SizePhi->addIncoming(Size, Entry);
4215     CharUnits WCharAlign =
4216         getContext().getTypeAlignInChars(getContext().WCharTy);
4217     Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
4218     Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
4219     Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
4220     Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
4221 
4222     EmitBlock(CmpLT);
4223     Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
4224     Builder.CreateCondBr(DstLtSrc, Exit, Next);
4225 
4226     EmitBlock(Next);
4227     Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
4228     Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
4229     Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
4230     Value *NextSizeEq0 =
4231         Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
4232     Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
4233     DstPhi->addIncoming(NextDst, Next);
4234     SrcPhi->addIncoming(NextSrc, Next);
4235     SizePhi->addIncoming(NextSize, Next);
4236 
4237     EmitBlock(Exit);
4238     PHINode *Ret = Builder.CreatePHI(IntTy, 4);
4239     Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
4240     Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
4241     Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
4242     Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
4243     return RValue::get(Ret);
4244   }
4245   case Builtin::BI__builtin_dwarf_cfa: {
4246     // The offset in bytes from the first argument to the CFA.
4247     //
4248     // Why on earth is this in the frontend?  Is there any reason at
4249     // all that the backend can't reasonably determine this while
4250     // lowering llvm.eh.dwarf.cfa()?
4251     //
4252     // TODO: If there's a satisfactory reason, add a target hook for
4253     // this instead of hard-coding 0, which is correct for most targets.
4254     int32_t Offset = 0;
4255 
4256     Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
4257     return RValue::get(Builder.CreateCall(F,
4258                                       llvm::ConstantInt::get(Int32Ty, Offset)));
4259   }
4260   case Builtin::BI__builtin_return_address: {
4261     Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
4262                                                    getContext().UnsignedIntTy);
4263     Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
4264     return RValue::get(Builder.CreateCall(F, Depth));
4265   }
4266   case Builtin::BI_ReturnAddress: {
4267     Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
4268     return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
4269   }
4270   case Builtin::BI__builtin_frame_address: {
4271     Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
4272                                                    getContext().UnsignedIntTy);
4273     Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy);
4274     return RValue::get(Builder.CreateCall(F, Depth));
4275   }
4276   case Builtin::BI__builtin_extract_return_addr: {
4277     Value *Address = EmitScalarExpr(E->getArg(0));
4278     Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
4279     return RValue::get(Result);
4280   }
4281   case Builtin::BI__builtin_frob_return_addr: {
4282     Value *Address = EmitScalarExpr(E->getArg(0));
4283     Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
4284     return RValue::get(Result);
4285   }
4286   case Builtin::BI__builtin_dwarf_sp_column: {
4287     llvm::IntegerType *Ty
4288       = cast<llvm::IntegerType>(ConvertType(E->getType()));
4289     int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
4290     if (Column == -1) {
4291       CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
4292       return RValue::get(llvm::UndefValue::get(Ty));
4293     }
4294     return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
4295   }
4296   case Builtin::BI__builtin_init_dwarf_reg_size_table: {
4297     Value *Address = EmitScalarExpr(E->getArg(0));
4298     if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
4299       CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
4300     return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
4301   }
4302   case Builtin::BI__builtin_eh_return: {
4303     Value *Int = EmitScalarExpr(E->getArg(0));
4304     Value *Ptr = EmitScalarExpr(E->getArg(1));
4305 
4306     llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
4307     assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
4308            "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
4309     Function *F =
4310         CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32
4311                                                     : Intrinsic::eh_return_i64);
4312     Builder.CreateCall(F, {Int, Ptr});
4313     Builder.CreateUnreachable();
4314 
4315     // We do need to preserve an insertion point.
4316     EmitBlock(createBasicBlock("builtin_eh_return.cont"));
4317 
4318     return RValue::get(nullptr);
4319   }
4320   case Builtin::BI__builtin_unwind_init: {
4321     Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
4322     Builder.CreateCall(F);
4323     return RValue::get(nullptr);
4324   }
4325   case Builtin::BI__builtin_extend_pointer: {
4326     // Extends a pointer to the size of an _Unwind_Word, which is
4327     // uint64_t on all platforms.  Generally this gets poked into a
4328     // register and eventually used as an address, so if the
4329     // addressing registers are wider than pointers and the platform
4330     // doesn't implicitly ignore high-order bits when doing
4331     // addressing, we need to make sure we zext / sext based on
4332     // the platform's expectations.
4333     //
4334     // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
4335 
4336     // Cast the pointer to intptr_t.
4337     Value *Ptr = EmitScalarExpr(E->getArg(0));
4338     Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
4339 
4340     // If that's 64 bits, we're done.
4341     if (IntPtrTy->getBitWidth() == 64)
4342       return RValue::get(Result);
4343 
4344     // Otherwise, ask the codegen data what to do.
4345     if (getTargetHooks().extendPointerWithSExt())
4346       return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
4347     else
4348       return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
4349   }
4350   case Builtin::BI__builtin_setjmp: {
4351     // Buffer is a void**.
4352     Address Buf = EmitPointerWithAlignment(E->getArg(0));
4353 
4354     // Store the frame pointer to the setjmp buffer.
4355     Value *FrameAddr = Builder.CreateCall(
4356         CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy),
4357         ConstantInt::get(Int32Ty, 0));
4358     Builder.CreateStore(FrameAddr, Buf);
4359 
4360     // Store the stack pointer to the setjmp buffer.
4361     Value *StackAddr = Builder.CreateStackSave();
4362     assert(Buf.getPointer()->getType() == StackAddr->getType());
4363 
4364     Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2);
4365     Builder.CreateStore(StackAddr, StackSaveSlot);
4366 
4367     // Call LLVM's EH setjmp, which is lightweight.
4368     Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
4369     return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
4370   }
4371   case Builtin::BI__builtin_longjmp: {
4372     Value *Buf = EmitScalarExpr(E->getArg(0));
4373 
4374     // Call LLVM's EH longjmp, which is lightweight.
4375     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
4376 
4377     // longjmp doesn't return; mark this as unreachable.
4378     Builder.CreateUnreachable();
4379 
4380     // We do need to preserve an insertion point.
4381     EmitBlock(createBasicBlock("longjmp.cont"));
4382 
4383     return RValue::get(nullptr);
4384   }
4385   case Builtin::BI__builtin_launder: {
4386     const Expr *Arg = E->getArg(0);
4387     QualType ArgTy = Arg->getType()->getPointeeType();
4388     Value *Ptr = EmitScalarExpr(Arg);
4389     if (TypeRequiresBuiltinLaunder(CGM, ArgTy))
4390       Ptr = Builder.CreateLaunderInvariantGroup(Ptr);
4391 
4392     return RValue::get(Ptr);
4393   }
4394   case Builtin::BI__sync_fetch_and_add:
4395   case Builtin::BI__sync_fetch_and_sub:
4396   case Builtin::BI__sync_fetch_and_or:
4397   case Builtin::BI__sync_fetch_and_and:
4398   case Builtin::BI__sync_fetch_and_xor:
4399   case Builtin::BI__sync_fetch_and_nand:
4400   case Builtin::BI__sync_add_and_fetch:
4401   case Builtin::BI__sync_sub_and_fetch:
4402   case Builtin::BI__sync_and_and_fetch:
4403   case Builtin::BI__sync_or_and_fetch:
4404   case Builtin::BI__sync_xor_and_fetch:
4405   case Builtin::BI__sync_nand_and_fetch:
4406   case Builtin::BI__sync_val_compare_and_swap:
4407   case Builtin::BI__sync_bool_compare_and_swap:
4408   case Builtin::BI__sync_lock_test_and_set:
4409   case Builtin::BI__sync_lock_release:
4410   case Builtin::BI__sync_swap:
4411     llvm_unreachable("Shouldn't make it through sema");
4412   case Builtin::BI__sync_fetch_and_add_1:
4413   case Builtin::BI__sync_fetch_and_add_2:
4414   case Builtin::BI__sync_fetch_and_add_4:
4415   case Builtin::BI__sync_fetch_and_add_8:
4416   case Builtin::BI__sync_fetch_and_add_16:
4417     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
4418   case Builtin::BI__sync_fetch_and_sub_1:
4419   case Builtin::BI__sync_fetch_and_sub_2:
4420   case Builtin::BI__sync_fetch_and_sub_4:
4421   case Builtin::BI__sync_fetch_and_sub_8:
4422   case Builtin::BI__sync_fetch_and_sub_16:
4423     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
4424   case Builtin::BI__sync_fetch_and_or_1:
4425   case Builtin::BI__sync_fetch_and_or_2:
4426   case Builtin::BI__sync_fetch_and_or_4:
4427   case Builtin::BI__sync_fetch_and_or_8:
4428   case Builtin::BI__sync_fetch_and_or_16:
4429     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
4430   case Builtin::BI__sync_fetch_and_and_1:
4431   case Builtin::BI__sync_fetch_and_and_2:
4432   case Builtin::BI__sync_fetch_and_and_4:
4433   case Builtin::BI__sync_fetch_and_and_8:
4434   case Builtin::BI__sync_fetch_and_and_16:
4435     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
4436   case Builtin::BI__sync_fetch_and_xor_1:
4437   case Builtin::BI__sync_fetch_and_xor_2:
4438   case Builtin::BI__sync_fetch_and_xor_4:
4439   case Builtin::BI__sync_fetch_and_xor_8:
4440   case Builtin::BI__sync_fetch_and_xor_16:
4441     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
4442   case Builtin::BI__sync_fetch_and_nand_1:
4443   case Builtin::BI__sync_fetch_and_nand_2:
4444   case Builtin::BI__sync_fetch_and_nand_4:
4445   case Builtin::BI__sync_fetch_and_nand_8:
4446   case Builtin::BI__sync_fetch_and_nand_16:
4447     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
4448 
4449   // Clang extensions: not overloaded yet.
4450   case Builtin::BI__sync_fetch_and_min:
4451     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
4452   case Builtin::BI__sync_fetch_and_max:
4453     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
4454   case Builtin::BI__sync_fetch_and_umin:
4455     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
4456   case Builtin::BI__sync_fetch_and_umax:
4457     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
4458 
4459   case Builtin::BI__sync_add_and_fetch_1:
4460   case Builtin::BI__sync_add_and_fetch_2:
4461   case Builtin::BI__sync_add_and_fetch_4:
4462   case Builtin::BI__sync_add_and_fetch_8:
4463   case Builtin::BI__sync_add_and_fetch_16:
4464     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
4465                                 llvm::Instruction::Add);
4466   case Builtin::BI__sync_sub_and_fetch_1:
4467   case Builtin::BI__sync_sub_and_fetch_2:
4468   case Builtin::BI__sync_sub_and_fetch_4:
4469   case Builtin::BI__sync_sub_and_fetch_8:
4470   case Builtin::BI__sync_sub_and_fetch_16:
4471     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
4472                                 llvm::Instruction::Sub);
4473   case Builtin::BI__sync_and_and_fetch_1:
4474   case Builtin::BI__sync_and_and_fetch_2:
4475   case Builtin::BI__sync_and_and_fetch_4:
4476   case Builtin::BI__sync_and_and_fetch_8:
4477   case Builtin::BI__sync_and_and_fetch_16:
4478     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
4479                                 llvm::Instruction::And);
4480   case Builtin::BI__sync_or_and_fetch_1:
4481   case Builtin::BI__sync_or_and_fetch_2:
4482   case Builtin::BI__sync_or_and_fetch_4:
4483   case Builtin::BI__sync_or_and_fetch_8:
4484   case Builtin::BI__sync_or_and_fetch_16:
4485     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
4486                                 llvm::Instruction::Or);
4487   case Builtin::BI__sync_xor_and_fetch_1:
4488   case Builtin::BI__sync_xor_and_fetch_2:
4489   case Builtin::BI__sync_xor_and_fetch_4:
4490   case Builtin::BI__sync_xor_and_fetch_8:
4491   case Builtin::BI__sync_xor_and_fetch_16:
4492     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
4493                                 llvm::Instruction::Xor);
4494   case Builtin::BI__sync_nand_and_fetch_1:
4495   case Builtin::BI__sync_nand_and_fetch_2:
4496   case Builtin::BI__sync_nand_and_fetch_4:
4497   case Builtin::BI__sync_nand_and_fetch_8:
4498   case Builtin::BI__sync_nand_and_fetch_16:
4499     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
4500                                 llvm::Instruction::And, true);
4501 
4502   case Builtin::BI__sync_val_compare_and_swap_1:
4503   case Builtin::BI__sync_val_compare_and_swap_2:
4504   case Builtin::BI__sync_val_compare_and_swap_4:
4505   case Builtin::BI__sync_val_compare_and_swap_8:
4506   case Builtin::BI__sync_val_compare_and_swap_16:
4507     return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
4508 
4509   case Builtin::BI__sync_bool_compare_and_swap_1:
4510   case Builtin::BI__sync_bool_compare_and_swap_2:
4511   case Builtin::BI__sync_bool_compare_and_swap_4:
4512   case Builtin::BI__sync_bool_compare_and_swap_8:
4513   case Builtin::BI__sync_bool_compare_and_swap_16:
4514     return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
4515 
4516   case Builtin::BI__sync_swap_1:
4517   case Builtin::BI__sync_swap_2:
4518   case Builtin::BI__sync_swap_4:
4519   case Builtin::BI__sync_swap_8:
4520   case Builtin::BI__sync_swap_16:
4521     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
4522 
4523   case Builtin::BI__sync_lock_test_and_set_1:
4524   case Builtin::BI__sync_lock_test_and_set_2:
4525   case Builtin::BI__sync_lock_test_and_set_4:
4526   case Builtin::BI__sync_lock_test_and_set_8:
4527   case Builtin::BI__sync_lock_test_and_set_16:
4528     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
4529 
4530   case Builtin::BI__sync_lock_release_1:
4531   case Builtin::BI__sync_lock_release_2:
4532   case Builtin::BI__sync_lock_release_4:
4533   case Builtin::BI__sync_lock_release_8:
4534   case Builtin::BI__sync_lock_release_16: {
4535     Address Ptr = CheckAtomicAlignment(*this, E);
4536     QualType ElTy = E->getArg(0)->getType()->getPointeeType();
4537 
4538     llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
4539                                              getContext().getTypeSize(ElTy));
4540     llvm::StoreInst *Store =
4541         Builder.CreateStore(llvm::Constant::getNullValue(ITy), Ptr);
4542     Store->setAtomic(llvm::AtomicOrdering::Release);
4543     return RValue::get(nullptr);
4544   }
4545 
4546   case Builtin::BI__sync_synchronize: {
4547     // We assume this is supposed to correspond to a C++0x-style
4548     // sequentially-consistent fence (i.e. this is only usable for
4549     // synchronization, not device I/O or anything like that). This intrinsic
4550     // is really badly designed in the sense that in theory, there isn't
4551     // any way to safely use it... but in practice, it mostly works
4552     // to use it with non-atomic loads and stores to get acquire/release
4553     // semantics.
4554     Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
4555     return RValue::get(nullptr);
4556   }
4557 
4558   case Builtin::BI__builtin_nontemporal_load:
4559     return RValue::get(EmitNontemporalLoad(*this, E));
4560   case Builtin::BI__builtin_nontemporal_store:
4561     return RValue::get(EmitNontemporalStore(*this, E));
4562   case Builtin::BI__c11_atomic_is_lock_free:
4563   case Builtin::BI__atomic_is_lock_free: {
4564     // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
4565     // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
4566     // _Atomic(T) is always properly-aligned.
4567     const char *LibCallName = "__atomic_is_lock_free";
4568     CallArgList Args;
4569     Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
4570              getContext().getSizeType());
4571     if (BuiltinID == Builtin::BI__atomic_is_lock_free)
4572       Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
4573                getContext().VoidPtrTy);
4574     else
4575       Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
4576                getContext().VoidPtrTy);
4577     const CGFunctionInfo &FuncInfo =
4578         CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
4579     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
4580     llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
4581     return EmitCall(FuncInfo, CGCallee::forDirect(Func),
4582                     ReturnValueSlot(), Args);
4583   }
4584 
4585   case Builtin::BI__atomic_test_and_set: {
4586     // Look at the argument type to determine whether this is a volatile
4587     // operation. The parameter type is always volatile.
4588     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
4589     bool Volatile =
4590         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
4591 
4592     Address Ptr =
4593         EmitPointerWithAlignment(E->getArg(0)).withElementType(Int8Ty);
4594 
4595     Value *NewVal = Builder.getInt8(1);
4596     Value *Order = EmitScalarExpr(E->getArg(1));
4597     if (isa<llvm::ConstantInt>(Order)) {
4598       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4599       AtomicRMWInst *Result = nullptr;
4600       switch (ord) {
4601       case 0:  // memory_order_relaxed
4602       default: // invalid order
4603         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4604                                          llvm::AtomicOrdering::Monotonic);
4605         break;
4606       case 1: // memory_order_consume
4607       case 2: // memory_order_acquire
4608         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4609                                          llvm::AtomicOrdering::Acquire);
4610         break;
4611       case 3: // memory_order_release
4612         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4613                                          llvm::AtomicOrdering::Release);
4614         break;
4615       case 4: // memory_order_acq_rel
4616 
4617         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4618                                          llvm::AtomicOrdering::AcquireRelease);
4619         break;
4620       case 5: // memory_order_seq_cst
4621         Result = Builder.CreateAtomicRMW(
4622             llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4623             llvm::AtomicOrdering::SequentiallyConsistent);
4624         break;
4625       }
4626       Result->setVolatile(Volatile);
4627       return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
4628     }
4629 
4630     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4631 
4632     llvm::BasicBlock *BBs[5] = {
4633       createBasicBlock("monotonic", CurFn),
4634       createBasicBlock("acquire", CurFn),
4635       createBasicBlock("release", CurFn),
4636       createBasicBlock("acqrel", CurFn),
4637       createBasicBlock("seqcst", CurFn)
4638     };
4639     llvm::AtomicOrdering Orders[5] = {
4640         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
4641         llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
4642         llvm::AtomicOrdering::SequentiallyConsistent};
4643 
4644     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4645     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
4646 
4647     Builder.SetInsertPoint(ContBB);
4648     PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
4649 
4650     for (unsigned i = 0; i < 5; ++i) {
4651       Builder.SetInsertPoint(BBs[i]);
4652       AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
4653                                                    Ptr, NewVal, Orders[i]);
4654       RMW->setVolatile(Volatile);
4655       Result->addIncoming(RMW, BBs[i]);
4656       Builder.CreateBr(ContBB);
4657     }
4658 
4659     SI->addCase(Builder.getInt32(0), BBs[0]);
4660     SI->addCase(Builder.getInt32(1), BBs[1]);
4661     SI->addCase(Builder.getInt32(2), BBs[1]);
4662     SI->addCase(Builder.getInt32(3), BBs[2]);
4663     SI->addCase(Builder.getInt32(4), BBs[3]);
4664     SI->addCase(Builder.getInt32(5), BBs[4]);
4665 
4666     Builder.SetInsertPoint(ContBB);
4667     return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
4668   }
4669 
4670   case Builtin::BI__atomic_clear: {
4671     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
4672     bool Volatile =
4673         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
4674 
4675     Address Ptr = EmitPointerWithAlignment(E->getArg(0));
4676     Ptr = Ptr.withElementType(Int8Ty);
4677     Value *NewVal = Builder.getInt8(0);
4678     Value *Order = EmitScalarExpr(E->getArg(1));
4679     if (isa<llvm::ConstantInt>(Order)) {
4680       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4681       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
4682       switch (ord) {
4683       case 0:  // memory_order_relaxed
4684       default: // invalid order
4685         Store->setOrdering(llvm::AtomicOrdering::Monotonic);
4686         break;
4687       case 3:  // memory_order_release
4688         Store->setOrdering(llvm::AtomicOrdering::Release);
4689         break;
4690       case 5:  // memory_order_seq_cst
4691         Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
4692         break;
4693       }
4694       return RValue::get(nullptr);
4695     }
4696 
4697     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4698 
4699     llvm::BasicBlock *BBs[3] = {
4700       createBasicBlock("monotonic", CurFn),
4701       createBasicBlock("release", CurFn),
4702       createBasicBlock("seqcst", CurFn)
4703     };
4704     llvm::AtomicOrdering Orders[3] = {
4705         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
4706         llvm::AtomicOrdering::SequentiallyConsistent};
4707 
4708     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4709     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
4710 
4711     for (unsigned i = 0; i < 3; ++i) {
4712       Builder.SetInsertPoint(BBs[i]);
4713       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
4714       Store->setOrdering(Orders[i]);
4715       Builder.CreateBr(ContBB);
4716     }
4717 
4718     SI->addCase(Builder.getInt32(0), BBs[0]);
4719     SI->addCase(Builder.getInt32(3), BBs[1]);
4720     SI->addCase(Builder.getInt32(5), BBs[2]);
4721 
4722     Builder.SetInsertPoint(ContBB);
4723     return RValue::get(nullptr);
4724   }
4725 
4726   case Builtin::BI__atomic_thread_fence:
4727   case Builtin::BI__atomic_signal_fence:
4728   case Builtin::BI__c11_atomic_thread_fence:
4729   case Builtin::BI__c11_atomic_signal_fence: {
4730     llvm::SyncScope::ID SSID;
4731     if (BuiltinID == Builtin::BI__atomic_signal_fence ||
4732         BuiltinID == Builtin::BI__c11_atomic_signal_fence)
4733       SSID = llvm::SyncScope::SingleThread;
4734     else
4735       SSID = llvm::SyncScope::System;
4736     Value *Order = EmitScalarExpr(E->getArg(0));
4737     if (isa<llvm::ConstantInt>(Order)) {
4738       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4739       switch (ord) {
4740       case 0:  // memory_order_relaxed
4741       default: // invalid order
4742         break;
4743       case 1:  // memory_order_consume
4744       case 2:  // memory_order_acquire
4745         Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
4746         break;
4747       case 3:  // memory_order_release
4748         Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
4749         break;
4750       case 4:  // memory_order_acq_rel
4751         Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
4752         break;
4753       case 5:  // memory_order_seq_cst
4754         Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4755         break;
4756       }
4757       return RValue::get(nullptr);
4758     }
4759 
4760     llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
4761     AcquireBB = createBasicBlock("acquire", CurFn);
4762     ReleaseBB = createBasicBlock("release", CurFn);
4763     AcqRelBB = createBasicBlock("acqrel", CurFn);
4764     SeqCstBB = createBasicBlock("seqcst", CurFn);
4765     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4766 
4767     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4768     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
4769 
4770     Builder.SetInsertPoint(AcquireBB);
4771     Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
4772     Builder.CreateBr(ContBB);
4773     SI->addCase(Builder.getInt32(1), AcquireBB);
4774     SI->addCase(Builder.getInt32(2), AcquireBB);
4775 
4776     Builder.SetInsertPoint(ReleaseBB);
4777     Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
4778     Builder.CreateBr(ContBB);
4779     SI->addCase(Builder.getInt32(3), ReleaseBB);
4780 
4781     Builder.SetInsertPoint(AcqRelBB);
4782     Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
4783     Builder.CreateBr(ContBB);
4784     SI->addCase(Builder.getInt32(4), AcqRelBB);
4785 
4786     Builder.SetInsertPoint(SeqCstBB);
4787     Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4788     Builder.CreateBr(ContBB);
4789     SI->addCase(Builder.getInt32(5), SeqCstBB);
4790 
4791     Builder.SetInsertPoint(ContBB);
4792     return RValue::get(nullptr);
4793   }
4794 
4795   case Builtin::BI__builtin_signbit:
4796   case Builtin::BI__builtin_signbitf:
4797   case Builtin::BI__builtin_signbitl: {
4798     return RValue::get(
4799         Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
4800                            ConvertType(E->getType())));
4801   }
4802   case Builtin::BI__warn_memset_zero_len:
4803     return RValue::getIgnored();
4804   case Builtin::BI__annotation: {
4805     // Re-encode each wide string to UTF8 and make an MDString.
4806     SmallVector<Metadata *, 1> Strings;
4807     for (const Expr *Arg : E->arguments()) {
4808       const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
4809       assert(Str->getCharByteWidth() == 2);
4810       StringRef WideBytes = Str->getBytes();
4811       std::string StrUtf8;
4812       if (!convertUTF16ToUTF8String(
4813               ArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
4814         CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
4815         continue;
4816       }
4817       Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
4818     }
4819 
4820     // Build and MDTuple of MDStrings and emit the intrinsic call.
4821     llvm::Function *F =
4822         CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
4823     MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
4824     Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
4825     return RValue::getIgnored();
4826   }
4827   case Builtin::BI__builtin_annotation: {
4828     llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
4829     llvm::Function *F =
4830         CGM.getIntrinsic(llvm::Intrinsic::annotation,
4831                          {AnnVal->getType(), CGM.ConstGlobalsPtrTy});
4832 
4833     // Get the annotation string, go through casts. Sema requires this to be a
4834     // non-wide string literal, potentially casted, so the cast<> is safe.
4835     const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
4836     StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
4837     return RValue::get(
4838         EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc(), nullptr));
4839   }
4840   case Builtin::BI__builtin_addcb:
4841   case Builtin::BI__builtin_addcs:
4842   case Builtin::BI__builtin_addc:
4843   case Builtin::BI__builtin_addcl:
4844   case Builtin::BI__builtin_addcll:
4845   case Builtin::BI__builtin_subcb:
4846   case Builtin::BI__builtin_subcs:
4847   case Builtin::BI__builtin_subc:
4848   case Builtin::BI__builtin_subcl:
4849   case Builtin::BI__builtin_subcll: {
4850 
4851     // We translate all of these builtins from expressions of the form:
4852     //   int x = ..., y = ..., carryin = ..., carryout, result;
4853     //   result = __builtin_addc(x, y, carryin, &carryout);
4854     //
4855     // to LLVM IR of the form:
4856     //
4857     //   %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
4858     //   %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
4859     //   %carry1 = extractvalue {i32, i1} %tmp1, 1
4860     //   %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
4861     //                                                       i32 %carryin)
4862     //   %result = extractvalue {i32, i1} %tmp2, 0
4863     //   %carry2 = extractvalue {i32, i1} %tmp2, 1
4864     //   %tmp3 = or i1 %carry1, %carry2
4865     //   %tmp4 = zext i1 %tmp3 to i32
4866     //   store i32 %tmp4, i32* %carryout
4867 
4868     // Scalarize our inputs.
4869     llvm::Value *X = EmitScalarExpr(E->getArg(0));
4870     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
4871     llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
4872     Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
4873 
4874     // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
4875     llvm::Intrinsic::ID IntrinsicId;
4876     switch (BuiltinID) {
4877     default: llvm_unreachable("Unknown multiprecision builtin id.");
4878     case Builtin::BI__builtin_addcb:
4879     case Builtin::BI__builtin_addcs:
4880     case Builtin::BI__builtin_addc:
4881     case Builtin::BI__builtin_addcl:
4882     case Builtin::BI__builtin_addcll:
4883       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
4884       break;
4885     case Builtin::BI__builtin_subcb:
4886     case Builtin::BI__builtin_subcs:
4887     case Builtin::BI__builtin_subc:
4888     case Builtin::BI__builtin_subcl:
4889     case Builtin::BI__builtin_subcll:
4890       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
4891       break;
4892     }
4893 
4894     // Construct our resulting LLVM IR expression.
4895     llvm::Value *Carry1;
4896     llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
4897                                               X, Y, Carry1);
4898     llvm::Value *Carry2;
4899     llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
4900                                               Sum1, Carryin, Carry2);
4901     llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
4902                                                X->getType());
4903     Builder.CreateStore(CarryOut, CarryOutPtr);
4904     return RValue::get(Sum2);
4905   }
4906 
4907   case Builtin::BI__builtin_add_overflow:
4908   case Builtin::BI__builtin_sub_overflow:
4909   case Builtin::BI__builtin_mul_overflow: {
4910     const clang::Expr *LeftArg = E->getArg(0);
4911     const clang::Expr *RightArg = E->getArg(1);
4912     const clang::Expr *ResultArg = E->getArg(2);
4913 
4914     clang::QualType ResultQTy =
4915         ResultArg->getType()->castAs<PointerType>()->getPointeeType();
4916 
4917     WidthAndSignedness LeftInfo =
4918         getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
4919     WidthAndSignedness RightInfo =
4920         getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
4921     WidthAndSignedness ResultInfo =
4922         getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
4923 
4924     // Handle mixed-sign multiplication as a special case, because adding
4925     // runtime or backend support for our generic irgen would be too expensive.
4926     if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
4927       return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
4928                                           RightInfo, ResultArg, ResultQTy,
4929                                           ResultInfo);
4930 
4931     if (isSpecialUnsignedMultiplySignedResult(BuiltinID, LeftInfo, RightInfo,
4932                                               ResultInfo))
4933       return EmitCheckedUnsignedMultiplySignedResult(
4934           *this, LeftArg, LeftInfo, RightArg, RightInfo, ResultArg, ResultQTy,
4935           ResultInfo);
4936 
4937     WidthAndSignedness EncompassingInfo =
4938         EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
4939 
4940     llvm::Type *EncompassingLLVMTy =
4941         llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
4942 
4943     llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
4944 
4945     llvm::Intrinsic::ID IntrinsicId;
4946     switch (BuiltinID) {
4947     default:
4948       llvm_unreachable("Unknown overflow builtin id.");
4949     case Builtin::BI__builtin_add_overflow:
4950       IntrinsicId = EncompassingInfo.Signed
4951                         ? llvm::Intrinsic::sadd_with_overflow
4952                         : llvm::Intrinsic::uadd_with_overflow;
4953       break;
4954     case Builtin::BI__builtin_sub_overflow:
4955       IntrinsicId = EncompassingInfo.Signed
4956                         ? llvm::Intrinsic::ssub_with_overflow
4957                         : llvm::Intrinsic::usub_with_overflow;
4958       break;
4959     case Builtin::BI__builtin_mul_overflow:
4960       IntrinsicId = EncompassingInfo.Signed
4961                         ? llvm::Intrinsic::smul_with_overflow
4962                         : llvm::Intrinsic::umul_with_overflow;
4963       break;
4964     }
4965 
4966     llvm::Value *Left = EmitScalarExpr(LeftArg);
4967     llvm::Value *Right = EmitScalarExpr(RightArg);
4968     Address ResultPtr = EmitPointerWithAlignment(ResultArg);
4969 
4970     // Extend each operand to the encompassing type.
4971     Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
4972     Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
4973 
4974     // Perform the operation on the extended values.
4975     llvm::Value *Overflow, *Result;
4976     Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
4977 
4978     if (EncompassingInfo.Width > ResultInfo.Width) {
4979       // The encompassing type is wider than the result type, so we need to
4980       // truncate it.
4981       llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
4982 
4983       // To see if the truncation caused an overflow, we will extend
4984       // the result and then compare it to the original result.
4985       llvm::Value *ResultTruncExt = Builder.CreateIntCast(
4986           ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
4987       llvm::Value *TruncationOverflow =
4988           Builder.CreateICmpNE(Result, ResultTruncExt);
4989 
4990       Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
4991       Result = ResultTrunc;
4992     }
4993 
4994     // Finally, store the result using the pointer.
4995     bool isVolatile =
4996       ResultArg->getType()->getPointeeType().isVolatileQualified();
4997     Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
4998 
4999     return RValue::get(Overflow);
5000   }
5001 
5002   case Builtin::BI__builtin_uadd_overflow:
5003   case Builtin::BI__builtin_uaddl_overflow:
5004   case Builtin::BI__builtin_uaddll_overflow:
5005   case Builtin::BI__builtin_usub_overflow:
5006   case Builtin::BI__builtin_usubl_overflow:
5007   case Builtin::BI__builtin_usubll_overflow:
5008   case Builtin::BI__builtin_umul_overflow:
5009   case Builtin::BI__builtin_umull_overflow:
5010   case Builtin::BI__builtin_umulll_overflow:
5011   case Builtin::BI__builtin_sadd_overflow:
5012   case Builtin::BI__builtin_saddl_overflow:
5013   case Builtin::BI__builtin_saddll_overflow:
5014   case Builtin::BI__builtin_ssub_overflow:
5015   case Builtin::BI__builtin_ssubl_overflow:
5016   case Builtin::BI__builtin_ssubll_overflow:
5017   case Builtin::BI__builtin_smul_overflow:
5018   case Builtin::BI__builtin_smull_overflow:
5019   case Builtin::BI__builtin_smulll_overflow: {
5020 
5021     // We translate all of these builtins directly to the relevant llvm IR node.
5022 
5023     // Scalarize our inputs.
5024     llvm::Value *X = EmitScalarExpr(E->getArg(0));
5025     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
5026     Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
5027 
5028     // Decide which of the overflow intrinsics we are lowering to:
5029     llvm::Intrinsic::ID IntrinsicId;
5030     switch (BuiltinID) {
5031     default: llvm_unreachable("Unknown overflow builtin id.");
5032     case Builtin::BI__builtin_uadd_overflow:
5033     case Builtin::BI__builtin_uaddl_overflow:
5034     case Builtin::BI__builtin_uaddll_overflow:
5035       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
5036       break;
5037     case Builtin::BI__builtin_usub_overflow:
5038     case Builtin::BI__builtin_usubl_overflow:
5039     case Builtin::BI__builtin_usubll_overflow:
5040       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
5041       break;
5042     case Builtin::BI__builtin_umul_overflow:
5043     case Builtin::BI__builtin_umull_overflow:
5044     case Builtin::BI__builtin_umulll_overflow:
5045       IntrinsicId = llvm::Intrinsic::umul_with_overflow;
5046       break;
5047     case Builtin::BI__builtin_sadd_overflow:
5048     case Builtin::BI__builtin_saddl_overflow:
5049     case Builtin::BI__builtin_saddll_overflow:
5050       IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
5051       break;
5052     case Builtin::BI__builtin_ssub_overflow:
5053     case Builtin::BI__builtin_ssubl_overflow:
5054     case Builtin::BI__builtin_ssubll_overflow:
5055       IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
5056       break;
5057     case Builtin::BI__builtin_smul_overflow:
5058     case Builtin::BI__builtin_smull_overflow:
5059     case Builtin::BI__builtin_smulll_overflow:
5060       IntrinsicId = llvm::Intrinsic::smul_with_overflow;
5061       break;
5062     }
5063 
5064 
5065     llvm::Value *Carry;
5066     llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
5067     Builder.CreateStore(Sum, SumOutPtr);
5068 
5069     return RValue::get(Carry);
5070   }
5071   case Builtin::BIaddressof:
5072   case Builtin::BI__addressof:
5073   case Builtin::BI__builtin_addressof:
5074     return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this));
5075   case Builtin::BI__builtin_function_start:
5076     return RValue::get(CGM.GetFunctionStart(
5077         E->getArg(0)->getAsBuiltinConstantDeclRef(CGM.getContext())));
5078   case Builtin::BI__builtin_operator_new:
5079     return EmitBuiltinNewDeleteCall(
5080         E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false);
5081   case Builtin::BI__builtin_operator_delete:
5082     EmitBuiltinNewDeleteCall(
5083         E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true);
5084     return RValue::get(nullptr);
5085 
5086   case Builtin::BI__builtin_is_aligned:
5087     return EmitBuiltinIsAligned(E);
5088   case Builtin::BI__builtin_align_up:
5089     return EmitBuiltinAlignTo(E, true);
5090   case Builtin::BI__builtin_align_down:
5091     return EmitBuiltinAlignTo(E, false);
5092 
5093   case Builtin::BI__noop:
5094     // __noop always evaluates to an integer literal zero.
5095     return RValue::get(ConstantInt::get(IntTy, 0));
5096   case Builtin::BI__builtin_call_with_static_chain: {
5097     const CallExpr *Call = cast<CallExpr>(E->getArg(0));
5098     const Expr *Chain = E->getArg(1);
5099     return EmitCall(Call->getCallee()->getType(),
5100                     EmitCallee(Call->getCallee()), Call, ReturnValue,
5101                     EmitScalarExpr(Chain));
5102   }
5103   case Builtin::BI_InterlockedExchange8:
5104   case Builtin::BI_InterlockedExchange16:
5105   case Builtin::BI_InterlockedExchange:
5106   case Builtin::BI_InterlockedExchangePointer:
5107     return RValue::get(
5108         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
5109   case Builtin::BI_InterlockedCompareExchangePointer:
5110   case Builtin::BI_InterlockedCompareExchangePointer_nf: {
5111     llvm::Type *RTy;
5112     llvm::IntegerType *IntType = IntegerType::get(
5113         getLLVMContext(), getContext().getTypeSize(E->getType()));
5114 
5115     Address DestAddr = CheckAtomicAlignment(*this, E);
5116 
5117     llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
5118     RTy = Exchange->getType();
5119     Exchange = Builder.CreatePtrToInt(Exchange, IntType);
5120 
5121     llvm::Value *Comparand =
5122       Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
5123 
5124     auto Ordering =
5125       BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ?
5126       AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent;
5127 
5128     auto Result = Builder.CreateAtomicCmpXchg(DestAddr, Comparand, Exchange,
5129                                               Ordering, Ordering);
5130     Result->setVolatile(true);
5131 
5132     return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
5133                                                                          0),
5134                                               RTy));
5135   }
5136   case Builtin::BI_InterlockedCompareExchange8:
5137   case Builtin::BI_InterlockedCompareExchange16:
5138   case Builtin::BI_InterlockedCompareExchange:
5139   case Builtin::BI_InterlockedCompareExchange64:
5140     return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E));
5141   case Builtin::BI_InterlockedIncrement16:
5142   case Builtin::BI_InterlockedIncrement:
5143     return RValue::get(
5144         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
5145   case Builtin::BI_InterlockedDecrement16:
5146   case Builtin::BI_InterlockedDecrement:
5147     return RValue::get(
5148         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
5149   case Builtin::BI_InterlockedAnd8:
5150   case Builtin::BI_InterlockedAnd16:
5151   case Builtin::BI_InterlockedAnd:
5152     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
5153   case Builtin::BI_InterlockedExchangeAdd8:
5154   case Builtin::BI_InterlockedExchangeAdd16:
5155   case Builtin::BI_InterlockedExchangeAdd:
5156     return RValue::get(
5157         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
5158   case Builtin::BI_InterlockedExchangeSub8:
5159   case Builtin::BI_InterlockedExchangeSub16:
5160   case Builtin::BI_InterlockedExchangeSub:
5161     return RValue::get(
5162         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
5163   case Builtin::BI_InterlockedOr8:
5164   case Builtin::BI_InterlockedOr16:
5165   case Builtin::BI_InterlockedOr:
5166     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
5167   case Builtin::BI_InterlockedXor8:
5168   case Builtin::BI_InterlockedXor16:
5169   case Builtin::BI_InterlockedXor:
5170     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
5171 
5172   case Builtin::BI_bittest64:
5173   case Builtin::BI_bittest:
5174   case Builtin::BI_bittestandcomplement64:
5175   case Builtin::BI_bittestandcomplement:
5176   case Builtin::BI_bittestandreset64:
5177   case Builtin::BI_bittestandreset:
5178   case Builtin::BI_bittestandset64:
5179   case Builtin::BI_bittestandset:
5180   case Builtin::BI_interlockedbittestandreset:
5181   case Builtin::BI_interlockedbittestandreset64:
5182   case Builtin::BI_interlockedbittestandset64:
5183   case Builtin::BI_interlockedbittestandset:
5184   case Builtin::BI_interlockedbittestandset_acq:
5185   case Builtin::BI_interlockedbittestandset_rel:
5186   case Builtin::BI_interlockedbittestandset_nf:
5187   case Builtin::BI_interlockedbittestandreset_acq:
5188   case Builtin::BI_interlockedbittestandreset_rel:
5189   case Builtin::BI_interlockedbittestandreset_nf:
5190     return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E));
5191 
5192     // These builtins exist to emit regular volatile loads and stores not
5193     // affected by the -fms-volatile setting.
5194   case Builtin::BI__iso_volatile_load8:
5195   case Builtin::BI__iso_volatile_load16:
5196   case Builtin::BI__iso_volatile_load32:
5197   case Builtin::BI__iso_volatile_load64:
5198     return RValue::get(EmitISOVolatileLoad(*this, E));
5199   case Builtin::BI__iso_volatile_store8:
5200   case Builtin::BI__iso_volatile_store16:
5201   case Builtin::BI__iso_volatile_store32:
5202   case Builtin::BI__iso_volatile_store64:
5203     return RValue::get(EmitISOVolatileStore(*this, E));
5204 
5205   case Builtin::BI__exception_code:
5206   case Builtin::BI_exception_code:
5207     return RValue::get(EmitSEHExceptionCode());
5208   case Builtin::BI__exception_info:
5209   case Builtin::BI_exception_info:
5210     return RValue::get(EmitSEHExceptionInfo());
5211   case Builtin::BI__abnormal_termination:
5212   case Builtin::BI_abnormal_termination:
5213     return RValue::get(EmitSEHAbnormalTermination());
5214   case Builtin::BI_setjmpex:
5215     if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
5216         E->getArg(0)->getType()->isPointerType())
5217       return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
5218     break;
5219   case Builtin::BI_setjmp:
5220     if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
5221         E->getArg(0)->getType()->isPointerType()) {
5222       if (getTarget().getTriple().getArch() == llvm::Triple::x86)
5223         return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E);
5224       else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64)
5225         return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
5226       return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E);
5227     }
5228     break;
5229 
5230   // C++ std:: builtins.
5231   case Builtin::BImove:
5232   case Builtin::BImove_if_noexcept:
5233   case Builtin::BIforward:
5234   case Builtin::BIforward_like:
5235   case Builtin::BIas_const:
5236     return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this));
5237   case Builtin::BI__GetExceptionInfo: {
5238     if (llvm::GlobalVariable *GV =
5239             CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
5240       return RValue::get(GV);
5241     break;
5242   }
5243 
5244   case Builtin::BI__fastfail:
5245     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
5246 
5247   case Builtin::BI__builtin_coro_id:
5248     return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
5249   case Builtin::BI__builtin_coro_promise:
5250     return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
5251   case Builtin::BI__builtin_coro_resume:
5252     EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
5253     return RValue::get(nullptr);
5254   case Builtin::BI__builtin_coro_frame:
5255     return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
5256   case Builtin::BI__builtin_coro_noop:
5257     return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop);
5258   case Builtin::BI__builtin_coro_free:
5259     return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
5260   case Builtin::BI__builtin_coro_destroy:
5261     EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
5262     return RValue::get(nullptr);
5263   case Builtin::BI__builtin_coro_done:
5264     return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
5265   case Builtin::BI__builtin_coro_alloc:
5266     return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
5267   case Builtin::BI__builtin_coro_begin:
5268     return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
5269   case Builtin::BI__builtin_coro_end:
5270     return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
5271   case Builtin::BI__builtin_coro_suspend:
5272     return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
5273   case Builtin::BI__builtin_coro_size:
5274     return EmitCoroutineIntrinsic(E, Intrinsic::coro_size);
5275   case Builtin::BI__builtin_coro_align:
5276     return EmitCoroutineIntrinsic(E, Intrinsic::coro_align);
5277 
5278   // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
5279   case Builtin::BIread_pipe:
5280   case Builtin::BIwrite_pipe: {
5281     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
5282           *Arg1 = EmitScalarExpr(E->getArg(1));
5283     CGOpenCLRuntime OpenCLRT(CGM);
5284     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
5285     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
5286 
5287     // Type of the generic packet parameter.
5288     unsigned GenericAS =
5289         getContext().getTargetAddressSpace(LangAS::opencl_generic);
5290     llvm::Type *I8PTy = llvm::PointerType::get(getLLVMContext(), GenericAS);
5291 
5292     // Testing which overloaded version we should generate the call for.
5293     if (2U == E->getNumArgs()) {
5294       const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
5295                                                              : "__write_pipe_2";
5296       // Creating a generic function type to be able to call with any builtin or
5297       // user defined type.
5298       llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
5299       llvm::FunctionType *FTy = llvm::FunctionType::get(
5300           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5301       Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
5302       return RValue::get(
5303           EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5304                           {Arg0, BCast, PacketSize, PacketAlign}));
5305     } else {
5306       assert(4 == E->getNumArgs() &&
5307              "Illegal number of parameters to pipe function");
5308       const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
5309                                                              : "__write_pipe_4";
5310 
5311       llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
5312                               Int32Ty, Int32Ty};
5313       Value *Arg2 = EmitScalarExpr(E->getArg(2)),
5314             *Arg3 = EmitScalarExpr(E->getArg(3));
5315       llvm::FunctionType *FTy = llvm::FunctionType::get(
5316           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5317       Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
5318       // We know the third argument is an integer type, but we may need to cast
5319       // it to i32.
5320       if (Arg2->getType() != Int32Ty)
5321         Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
5322       return RValue::get(
5323           EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5324                           {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
5325     }
5326   }
5327   // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
5328   // functions
5329   case Builtin::BIreserve_read_pipe:
5330   case Builtin::BIreserve_write_pipe:
5331   case Builtin::BIwork_group_reserve_read_pipe:
5332   case Builtin::BIwork_group_reserve_write_pipe:
5333   case Builtin::BIsub_group_reserve_read_pipe:
5334   case Builtin::BIsub_group_reserve_write_pipe: {
5335     // Composing the mangled name for the function.
5336     const char *Name;
5337     if (BuiltinID == Builtin::BIreserve_read_pipe)
5338       Name = "__reserve_read_pipe";
5339     else if (BuiltinID == Builtin::BIreserve_write_pipe)
5340       Name = "__reserve_write_pipe";
5341     else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
5342       Name = "__work_group_reserve_read_pipe";
5343     else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
5344       Name = "__work_group_reserve_write_pipe";
5345     else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
5346       Name = "__sub_group_reserve_read_pipe";
5347     else
5348       Name = "__sub_group_reserve_write_pipe";
5349 
5350     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
5351           *Arg1 = EmitScalarExpr(E->getArg(1));
5352     llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
5353     CGOpenCLRuntime OpenCLRT(CGM);
5354     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
5355     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
5356 
5357     // Building the generic function prototype.
5358     llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
5359     llvm::FunctionType *FTy = llvm::FunctionType::get(
5360         ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5361     // We know the second argument is an integer type, but we may need to cast
5362     // it to i32.
5363     if (Arg1->getType() != Int32Ty)
5364       Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
5365     return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5366                                        {Arg0, Arg1, PacketSize, PacketAlign}));
5367   }
5368   // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
5369   // functions
5370   case Builtin::BIcommit_read_pipe:
5371   case Builtin::BIcommit_write_pipe:
5372   case Builtin::BIwork_group_commit_read_pipe:
5373   case Builtin::BIwork_group_commit_write_pipe:
5374   case Builtin::BIsub_group_commit_read_pipe:
5375   case Builtin::BIsub_group_commit_write_pipe: {
5376     const char *Name;
5377     if (BuiltinID == Builtin::BIcommit_read_pipe)
5378       Name = "__commit_read_pipe";
5379     else if (BuiltinID == Builtin::BIcommit_write_pipe)
5380       Name = "__commit_write_pipe";
5381     else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
5382       Name = "__work_group_commit_read_pipe";
5383     else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
5384       Name = "__work_group_commit_write_pipe";
5385     else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
5386       Name = "__sub_group_commit_read_pipe";
5387     else
5388       Name = "__sub_group_commit_write_pipe";
5389 
5390     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
5391           *Arg1 = EmitScalarExpr(E->getArg(1));
5392     CGOpenCLRuntime OpenCLRT(CGM);
5393     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
5394     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
5395 
5396     // Building the generic function prototype.
5397     llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
5398     llvm::FunctionType *FTy =
5399         llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
5400                                 llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5401 
5402     return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5403                                        {Arg0, Arg1, PacketSize, PacketAlign}));
5404   }
5405   // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
5406   case Builtin::BIget_pipe_num_packets:
5407   case Builtin::BIget_pipe_max_packets: {
5408     const char *BaseName;
5409     const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>();
5410     if (BuiltinID == Builtin::BIget_pipe_num_packets)
5411       BaseName = "__get_pipe_num_packets";
5412     else
5413       BaseName = "__get_pipe_max_packets";
5414     std::string Name = std::string(BaseName) +
5415                        std::string(PipeTy->isReadOnly() ? "_ro" : "_wo");
5416 
5417     // Building the generic function prototype.
5418     Value *Arg0 = EmitScalarExpr(E->getArg(0));
5419     CGOpenCLRuntime OpenCLRT(CGM);
5420     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
5421     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
5422     llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
5423     llvm::FunctionType *FTy = llvm::FunctionType::get(
5424         Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5425 
5426     return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5427                                        {Arg0, PacketSize, PacketAlign}));
5428   }
5429 
5430   // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
5431   case Builtin::BIto_global:
5432   case Builtin::BIto_local:
5433   case Builtin::BIto_private: {
5434     auto Arg0 = EmitScalarExpr(E->getArg(0));
5435     auto NewArgT = llvm::PointerType::get(
5436         getLLVMContext(),
5437         CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
5438     auto NewRetT = llvm::PointerType::get(
5439         getLLVMContext(),
5440         CGM.getContext().getTargetAddressSpace(
5441             E->getType()->getPointeeType().getAddressSpace()));
5442     auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
5443     llvm::Value *NewArg;
5444     if (Arg0->getType()->getPointerAddressSpace() !=
5445         NewArgT->getPointerAddressSpace())
5446       NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
5447     else
5448       NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
5449     auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
5450     auto NewCall =
5451         EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
5452     return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
5453       ConvertType(E->getType())));
5454   }
5455 
5456   // OpenCL v2.0, s6.13.17 - Enqueue kernel function.
5457   // It contains four different overload formats specified in Table 6.13.17.1.
5458   case Builtin::BIenqueue_kernel: {
5459     StringRef Name; // Generated function call name
5460     unsigned NumArgs = E->getNumArgs();
5461 
5462     llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
5463     llvm::Type *GenericVoidPtrTy = Builder.getPtrTy(
5464         getContext().getTargetAddressSpace(LangAS::opencl_generic));
5465 
5466     llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
5467     llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
5468     LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
5469     llvm::Value *Range = NDRangeL.getAddress(*this).getPointer();
5470     llvm::Type *RangeTy = NDRangeL.getAddress(*this).getType();
5471 
5472     if (NumArgs == 4) {
5473       // The most basic form of the call with parameters:
5474       // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
5475       Name = "__enqueue_kernel_basic";
5476       llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
5477                               GenericVoidPtrTy};
5478       llvm::FunctionType *FTy = llvm::FunctionType::get(
5479           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5480 
5481       auto Info =
5482           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
5483       llvm::Value *Kernel =
5484           Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5485       llvm::Value *Block =
5486           Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5487 
5488       AttrBuilder B(Builder.getContext());
5489       B.addByValAttr(NDRangeL.getAddress(*this).getElementType());
5490       llvm::AttributeList ByValAttrSet =
5491           llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
5492 
5493       auto RTCall =
5494           EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
5495                           {Queue, Flags, Range, Kernel, Block});
5496       RTCall->setAttributes(ByValAttrSet);
5497       return RValue::get(RTCall);
5498     }
5499     assert(NumArgs >= 5 && "Invalid enqueue_kernel signature");
5500 
5501     // Create a temporary array to hold the sizes of local pointer arguments
5502     // for the block. \p First is the position of the first size argument.
5503     auto CreateArrayForSizeVar = [=](unsigned First)
5504         -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> {
5505       llvm::APInt ArraySize(32, NumArgs - First);
5506       QualType SizeArrayTy = getContext().getConstantArrayType(
5507           getContext().getSizeType(), ArraySize, nullptr,
5508           ArraySizeModifier::Normal,
5509           /*IndexTypeQuals=*/0);
5510       auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes");
5511       llvm::Value *TmpPtr = Tmp.getPointer();
5512       llvm::Value *TmpSize = EmitLifetimeStart(
5513           CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr);
5514       llvm::Value *ElemPtr;
5515       // Each of the following arguments specifies the size of the corresponding
5516       // argument passed to the enqueued block.
5517       auto *Zero = llvm::ConstantInt::get(IntTy, 0);
5518       for (unsigned I = First; I < NumArgs; ++I) {
5519         auto *Index = llvm::ConstantInt::get(IntTy, I - First);
5520         auto *GEP = Builder.CreateGEP(Tmp.getElementType(), TmpPtr,
5521                                       {Zero, Index});
5522         if (I == First)
5523           ElemPtr = GEP;
5524         auto *V =
5525             Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
5526         Builder.CreateAlignedStore(
5527             V, GEP, CGM.getDataLayout().getPrefTypeAlign(SizeTy));
5528       }
5529       return std::tie(ElemPtr, TmpSize, TmpPtr);
5530     };
5531 
5532     // Could have events and/or varargs.
5533     if (E->getArg(3)->getType()->isBlockPointerType()) {
5534       // No events passed, but has variadic arguments.
5535       Name = "__enqueue_kernel_varargs";
5536       auto Info =
5537           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
5538       llvm::Value *Kernel =
5539           Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5540       auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5541       llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
5542       std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4);
5543 
5544       // Create a vector of the arguments, as well as a constant value to
5545       // express to the runtime the number of variadic arguments.
5546       llvm::Value *const Args[] = {Queue,  Flags,
5547                                    Range,  Kernel,
5548                                    Block,  ConstantInt::get(IntTy, NumArgs - 4),
5549                                    ElemPtr};
5550       llvm::Type *const ArgTys[] = {
5551           QueueTy,          IntTy, RangeTy,           GenericVoidPtrTy,
5552           GenericVoidPtrTy, IntTy, ElemPtr->getType()};
5553 
5554       llvm::FunctionType *FTy = llvm::FunctionType::get(Int32Ty, ArgTys, false);
5555       auto Call = RValue::get(
5556           EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Args));
5557       if (TmpSize)
5558         EmitLifetimeEnd(TmpSize, TmpPtr);
5559       return Call;
5560     }
5561     // Any calls now have event arguments passed.
5562     if (NumArgs >= 7) {
5563       llvm::PointerType *PtrTy = llvm::PointerType::get(
5564           CGM.getLLVMContext(),
5565           CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
5566 
5567       llvm::Value *NumEvents =
5568           Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
5569 
5570       // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments
5571       // to be a null pointer constant (including `0` literal), we can take it
5572       // into account and emit null pointer directly.
5573       llvm::Value *EventWaitList = nullptr;
5574       if (E->getArg(4)->isNullPointerConstant(
5575               getContext(), Expr::NPC_ValueDependentIsNotNull)) {
5576         EventWaitList = llvm::ConstantPointerNull::get(PtrTy);
5577       } else {
5578         EventWaitList = E->getArg(4)->getType()->isArrayType()
5579                         ? EmitArrayToPointerDecay(E->getArg(4)).getPointer()
5580                         : EmitScalarExpr(E->getArg(4));
5581         // Convert to generic address space.
5582         EventWaitList = Builder.CreatePointerCast(EventWaitList, PtrTy);
5583       }
5584       llvm::Value *EventRet = nullptr;
5585       if (E->getArg(5)->isNullPointerConstant(
5586               getContext(), Expr::NPC_ValueDependentIsNotNull)) {
5587         EventRet = llvm::ConstantPointerNull::get(PtrTy);
5588       } else {
5589         EventRet =
5590             Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), PtrTy);
5591       }
5592 
5593       auto Info =
5594           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
5595       llvm::Value *Kernel =
5596           Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5597       llvm::Value *Block =
5598           Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5599 
5600       std::vector<llvm::Type *> ArgTys = {
5601           QueueTy, Int32Ty, RangeTy,          Int32Ty,
5602           PtrTy,   PtrTy,   GenericVoidPtrTy, GenericVoidPtrTy};
5603 
5604       std::vector<llvm::Value *> Args = {Queue,     Flags,         Range,
5605                                          NumEvents, EventWaitList, EventRet,
5606                                          Kernel,    Block};
5607 
5608       if (NumArgs == 7) {
5609         // Has events but no variadics.
5610         Name = "__enqueue_kernel_basic_events";
5611         llvm::FunctionType *FTy = llvm::FunctionType::get(
5612             Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5613         return RValue::get(
5614             EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5615                             llvm::ArrayRef<llvm::Value *>(Args)));
5616       }
5617       // Has event info and variadics
5618       // Pass the number of variadics to the runtime function too.
5619       Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
5620       ArgTys.push_back(Int32Ty);
5621       Name = "__enqueue_kernel_events_varargs";
5622 
5623       llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
5624       std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7);
5625       Args.push_back(ElemPtr);
5626       ArgTys.push_back(ElemPtr->getType());
5627 
5628       llvm::FunctionType *FTy = llvm::FunctionType::get(
5629           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5630       auto Call =
5631           RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5632                                       llvm::ArrayRef<llvm::Value *>(Args)));
5633       if (TmpSize)
5634         EmitLifetimeEnd(TmpSize, TmpPtr);
5635       return Call;
5636     }
5637     [[fallthrough]];
5638   }
5639   // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
5640   // parameter.
5641   case Builtin::BIget_kernel_work_group_size: {
5642     llvm::Type *GenericVoidPtrTy = Builder.getPtrTy(
5643         getContext().getTargetAddressSpace(LangAS::opencl_generic));
5644     auto Info =
5645         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
5646     Value *Kernel =
5647         Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5648     Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5649     return RValue::get(EmitRuntimeCall(
5650         CGM.CreateRuntimeFunction(
5651             llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
5652                                     false),
5653             "__get_kernel_work_group_size_impl"),
5654         {Kernel, Arg}));
5655   }
5656   case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
5657     llvm::Type *GenericVoidPtrTy = Builder.getPtrTy(
5658         getContext().getTargetAddressSpace(LangAS::opencl_generic));
5659     auto Info =
5660         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
5661     Value *Kernel =
5662         Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5663     Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5664     return RValue::get(EmitRuntimeCall(
5665         CGM.CreateRuntimeFunction(
5666             llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
5667                                     false),
5668             "__get_kernel_preferred_work_group_size_multiple_impl"),
5669         {Kernel, Arg}));
5670   }
5671   case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
5672   case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
5673     llvm::Type *GenericVoidPtrTy = Builder.getPtrTy(
5674         getContext().getTargetAddressSpace(LangAS::opencl_generic));
5675     LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
5676     llvm::Value *NDRange = NDRangeL.getAddress(*this).getPointer();
5677     auto Info =
5678         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
5679     Value *Kernel =
5680         Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy);
5681     Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5682     const char *Name =
5683         BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
5684             ? "__get_kernel_max_sub_group_size_for_ndrange_impl"
5685             : "__get_kernel_sub_group_count_for_ndrange_impl";
5686     return RValue::get(EmitRuntimeCall(
5687         CGM.CreateRuntimeFunction(
5688             llvm::FunctionType::get(
5689                 IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
5690                 false),
5691             Name),
5692         {NDRange, Kernel, Block}));
5693   }
5694 
5695   case Builtin::BI__builtin_store_half:
5696   case Builtin::BI__builtin_store_halff: {
5697     Value *Val = EmitScalarExpr(E->getArg(0));
5698     Address Address = EmitPointerWithAlignment(E->getArg(1));
5699     Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
5700     Builder.CreateStore(HalfVal, Address);
5701     return RValue::get(nullptr);
5702   }
5703   case Builtin::BI__builtin_load_half: {
5704     Address Address = EmitPointerWithAlignment(E->getArg(0));
5705     Value *HalfVal = Builder.CreateLoad(Address);
5706     return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
5707   }
5708   case Builtin::BI__builtin_load_halff: {
5709     Address Address = EmitPointerWithAlignment(E->getArg(0));
5710     Value *HalfVal = Builder.CreateLoad(Address);
5711     return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
5712   }
5713   case Builtin::BIprintf:
5714     if (getTarget().getTriple().isNVPTX() ||
5715         getTarget().getTriple().isAMDGCN()) {
5716       if (getLangOpts().OpenMPIsTargetDevice)
5717         return EmitOpenMPDevicePrintfCallExpr(E);
5718       if (getTarget().getTriple().isNVPTX())
5719         return EmitNVPTXDevicePrintfCallExpr(E);
5720       if (getTarget().getTriple().isAMDGCN() && getLangOpts().HIP)
5721         return EmitAMDGPUDevicePrintfCallExpr(E);
5722     }
5723 
5724     break;
5725   case Builtin::BI__builtin_canonicalize:
5726   case Builtin::BI__builtin_canonicalizef:
5727   case Builtin::BI__builtin_canonicalizef16:
5728   case Builtin::BI__builtin_canonicalizel:
5729     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize));
5730 
5731   case Builtin::BI__builtin_thread_pointer: {
5732     if (!getContext().getTargetInfo().isTLSSupported())
5733       CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
5734     // Fall through - it's already mapped to the intrinsic by ClangBuiltin.
5735     break;
5736   }
5737   case Builtin::BI__builtin_os_log_format:
5738     return emitBuiltinOSLogFormat(*E);
5739 
5740   case Builtin::BI__xray_customevent: {
5741     if (!ShouldXRayInstrumentFunction())
5742       return RValue::getIgnored();
5743 
5744     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
5745             XRayInstrKind::Custom))
5746       return RValue::getIgnored();
5747 
5748     if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
5749       if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
5750         return RValue::getIgnored();
5751 
5752     Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
5753     auto FTy = F->getFunctionType();
5754     auto Arg0 = E->getArg(0);
5755     auto Arg0Val = EmitScalarExpr(Arg0);
5756     auto Arg0Ty = Arg0->getType();
5757     auto PTy0 = FTy->getParamType(0);
5758     if (PTy0 != Arg0Val->getType()) {
5759       if (Arg0Ty->isArrayType())
5760         Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer();
5761       else
5762         Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
5763     }
5764     auto Arg1 = EmitScalarExpr(E->getArg(1));
5765     auto PTy1 = FTy->getParamType(1);
5766     if (PTy1 != Arg1->getType())
5767       Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
5768     return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
5769   }
5770 
5771   case Builtin::BI__xray_typedevent: {
5772     // TODO: There should be a way to always emit events even if the current
5773     // function is not instrumented. Losing events in a stream can cripple
5774     // a trace.
5775     if (!ShouldXRayInstrumentFunction())
5776       return RValue::getIgnored();
5777 
5778     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
5779             XRayInstrKind::Typed))
5780       return RValue::getIgnored();
5781 
5782     if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
5783       if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents())
5784         return RValue::getIgnored();
5785 
5786     Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent);
5787     auto FTy = F->getFunctionType();
5788     auto Arg0 = EmitScalarExpr(E->getArg(0));
5789     auto PTy0 = FTy->getParamType(0);
5790     if (PTy0 != Arg0->getType())
5791       Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0);
5792     auto Arg1 = E->getArg(1);
5793     auto Arg1Val = EmitScalarExpr(Arg1);
5794     auto Arg1Ty = Arg1->getType();
5795     auto PTy1 = FTy->getParamType(1);
5796     if (PTy1 != Arg1Val->getType()) {
5797       if (Arg1Ty->isArrayType())
5798         Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer();
5799       else
5800         Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1);
5801     }
5802     auto Arg2 = EmitScalarExpr(E->getArg(2));
5803     auto PTy2 = FTy->getParamType(2);
5804     if (PTy2 != Arg2->getType())
5805       Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2);
5806     return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2}));
5807   }
5808 
5809   case Builtin::BI__builtin_ms_va_start:
5810   case Builtin::BI__builtin_ms_va_end:
5811     return RValue::get(
5812         EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
5813                        BuiltinID == Builtin::BI__builtin_ms_va_start));
5814 
5815   case Builtin::BI__builtin_ms_va_copy: {
5816     // Lower this manually. We can't reliably determine whether or not any
5817     // given va_copy() is for a Win64 va_list from the calling convention
5818     // alone, because it's legal to do this from a System V ABI function.
5819     // With opaque pointer types, we won't have enough information in LLVM
5820     // IR to determine this from the argument types, either. Best to do it
5821     // now, while we have enough information.
5822     Address DestAddr = EmitMSVAListRef(E->getArg(0));
5823     Address SrcAddr = EmitMSVAListRef(E->getArg(1));
5824 
5825     DestAddr = DestAddr.withElementType(Int8PtrTy);
5826     SrcAddr = SrcAddr.withElementType(Int8PtrTy);
5827 
5828     Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
5829     return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
5830   }
5831 
5832   case Builtin::BI__builtin_get_device_side_mangled_name: {
5833     auto Name = CGM.getCUDARuntime().getDeviceSideName(
5834         cast<DeclRefExpr>(E->getArg(0)->IgnoreImpCasts())->getDecl());
5835     auto Str = CGM.GetAddrOfConstantCString(Name, "");
5836     llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0),
5837                                llvm::ConstantInt::get(SizeTy, 0)};
5838     auto *Ptr = llvm::ConstantExpr::getGetElementPtr(Str.getElementType(),
5839                                                      Str.getPointer(), Zeros);
5840     return RValue::get(Ptr);
5841   }
5842   }
5843 
5844   // If this is an alias for a lib function (e.g. __builtin_sin), emit
5845   // the call using the normal call path, but using the unmangled
5846   // version of the function name.
5847   if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
5848     return emitLibraryCall(*this, FD, E,
5849                            CGM.getBuiltinLibFunction(FD, BuiltinID));
5850 
5851   // If this is a predefined lib function (e.g. malloc), emit the call
5852   // using exactly the normal call path.
5853   if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
5854     return emitLibraryCall(*this, FD, E,
5855                       cast<llvm::Constant>(EmitScalarExpr(E->getCallee())));
5856 
5857   // Check that a call to a target specific builtin has the correct target
5858   // features.
5859   // This is down here to avoid non-target specific builtins, however, if
5860   // generic builtins start to require generic target features then we
5861   // can move this up to the beginning of the function.
5862   checkTargetFeatures(E, FD);
5863 
5864   if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID))
5865     LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth);
5866 
5867   // See if we have a target specific intrinsic.
5868   StringRef Name = getContext().BuiltinInfo.getName(BuiltinID);
5869   Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
5870   StringRef Prefix =
5871       llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
5872   if (!Prefix.empty()) {
5873     IntrinsicID = Intrinsic::getIntrinsicForClangBuiltin(Prefix.data(), Name);
5874     // NOTE we don't need to perform a compatibility flag check here since the
5875     // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
5876     // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
5877     if (IntrinsicID == Intrinsic::not_intrinsic)
5878       IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
5879   }
5880 
5881   if (IntrinsicID != Intrinsic::not_intrinsic) {
5882     SmallVector<Value*, 16> Args;
5883 
5884     // Find out if any arguments are required to be integer constant
5885     // expressions.
5886     unsigned ICEArguments = 0;
5887     ASTContext::GetBuiltinTypeError Error;
5888     getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
5889     assert(Error == ASTContext::GE_None && "Should not codegen an error");
5890 
5891     Function *F = CGM.getIntrinsic(IntrinsicID);
5892     llvm::FunctionType *FTy = F->getFunctionType();
5893 
5894     for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
5895       Value *ArgValue = EmitScalarOrConstFoldImmArg(ICEArguments, i, E);
5896       // If the intrinsic arg type is different from the builtin arg type
5897       // we need to do a bit cast.
5898       llvm::Type *PTy = FTy->getParamType(i);
5899       if (PTy != ArgValue->getType()) {
5900         // XXX - vector of pointers?
5901         if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) {
5902           if (PtrTy->getAddressSpace() !=
5903               ArgValue->getType()->getPointerAddressSpace()) {
5904             ArgValue = Builder.CreateAddrSpaceCast(
5905                 ArgValue, llvm::PointerType::get(getLLVMContext(),
5906                                                  PtrTy->getAddressSpace()));
5907           }
5908         }
5909 
5910         assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
5911                "Must be able to losslessly bit cast to param");
5912         // Cast vector type (e.g., v256i32) to x86_amx, this only happen
5913         // in amx intrinsics.
5914         if (PTy->isX86_AMXTy())
5915           ArgValue = Builder.CreateIntrinsic(Intrinsic::x86_cast_vector_to_tile,
5916                                              {ArgValue->getType()}, {ArgValue});
5917         else
5918           ArgValue = Builder.CreateBitCast(ArgValue, PTy);
5919       }
5920 
5921       Args.push_back(ArgValue);
5922     }
5923 
5924     Value *V = Builder.CreateCall(F, Args);
5925     QualType BuiltinRetType = E->getType();
5926 
5927     llvm::Type *RetTy = VoidTy;
5928     if (!BuiltinRetType->isVoidType())
5929       RetTy = ConvertType(BuiltinRetType);
5930 
5931     if (RetTy != V->getType()) {
5932       // XXX - vector of pointers?
5933       if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) {
5934         if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) {
5935           V = Builder.CreateAddrSpaceCast(
5936               V, llvm::PointerType::get(getLLVMContext(),
5937                                         PtrTy->getAddressSpace()));
5938         }
5939       }
5940 
5941       assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
5942              "Must be able to losslessly bit cast result type");
5943       // Cast x86_amx to vector type (e.g., v256i32), this only happen
5944       // in amx intrinsics.
5945       if (V->getType()->isX86_AMXTy())
5946         V = Builder.CreateIntrinsic(Intrinsic::x86_cast_tile_to_vector, {RetTy},
5947                                     {V});
5948       else
5949         V = Builder.CreateBitCast(V, RetTy);
5950     }
5951 
5952     if (RetTy->isVoidTy())
5953       return RValue::get(nullptr);
5954 
5955     return RValue::get(V);
5956   }
5957 
5958   // Some target-specific builtins can have aggregate return values, e.g.
5959   // __builtin_arm_mve_vld2q_u32. So if the result is an aggregate, force
5960   // ReturnValue to be non-null, so that the target-specific emission code can
5961   // always just emit into it.
5962   TypeEvaluationKind EvalKind = getEvaluationKind(E->getType());
5963   if (EvalKind == TEK_Aggregate && ReturnValue.isNull()) {
5964     Address DestPtr = CreateMemTemp(E->getType(), "agg.tmp");
5965     ReturnValue = ReturnValueSlot(DestPtr, false);
5966   }
5967 
5968   // Now see if we can emit a target-specific builtin.
5969   if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) {
5970     switch (EvalKind) {
5971     case TEK_Scalar:
5972       if (V->getType()->isVoidTy())
5973         return RValue::get(nullptr);
5974       return RValue::get(V);
5975     case TEK_Aggregate:
5976       return RValue::getAggregate(ReturnValue.getValue(),
5977                                   ReturnValue.isVolatile());
5978     case TEK_Complex:
5979       llvm_unreachable("No current target builtin returns complex");
5980     }
5981     llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr");
5982   }
5983 
5984   if (getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice)
5985     return EmitHipStdParUnsupportedBuiltin(this, FD);
5986 
5987   ErrorUnsupported(E, "builtin function");
5988 
5989   // Unknown builtin, for now just dump it out and return undef.
5990   return GetUndefRValue(E->getType());
5991 }
5992 
5993 static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
5994                                         unsigned BuiltinID, const CallExpr *E,
5995                                         ReturnValueSlot ReturnValue,
5996                                         llvm::Triple::ArchType Arch) {
5997   // When compiling in HipStdPar mode we have to be conservative in rejecting
5998   // target specific features in the FE, and defer the possible error to the
5999   // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is
6000   // referenced by an accelerator executable function, we emit an error.
6001   // Returning nullptr here leads to the builtin being handled in
6002   // EmitStdParUnsupportedBuiltin.
6003   if (CGF->getLangOpts().HIPStdPar && CGF->getLangOpts().CUDAIsDevice &&
6004       Arch != CGF->getTarget().getTriple().getArch())
6005     return nullptr;
6006 
6007   switch (Arch) {
6008   case llvm::Triple::arm:
6009   case llvm::Triple::armeb:
6010   case llvm::Triple::thumb:
6011   case llvm::Triple::thumbeb:
6012     return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch);
6013   case llvm::Triple::aarch64:
6014   case llvm::Triple::aarch64_32:
6015   case llvm::Triple::aarch64_be:
6016     return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
6017   case llvm::Triple::bpfeb:
6018   case llvm::Triple::bpfel:
6019     return CGF->EmitBPFBuiltinExpr(BuiltinID, E);
6020   case llvm::Triple::x86:
6021   case llvm::Triple::x86_64:
6022     return CGF->EmitX86BuiltinExpr(BuiltinID, E);
6023   case llvm::Triple::ppc:
6024   case llvm::Triple::ppcle:
6025   case llvm::Triple::ppc64:
6026   case llvm::Triple::ppc64le:
6027     return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
6028   case llvm::Triple::r600:
6029   case llvm::Triple::amdgcn:
6030     return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
6031   case llvm::Triple::systemz:
6032     return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
6033   case llvm::Triple::nvptx:
6034   case llvm::Triple::nvptx64:
6035     return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
6036   case llvm::Triple::wasm32:
6037   case llvm::Triple::wasm64:
6038     return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
6039   case llvm::Triple::hexagon:
6040     return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
6041   case llvm::Triple::riscv32:
6042   case llvm::Triple::riscv64:
6043     return CGF->EmitRISCVBuiltinExpr(BuiltinID, E, ReturnValue);
6044   default:
6045     return nullptr;
6046   }
6047 }
6048 
6049 Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
6050                                               const CallExpr *E,
6051                                               ReturnValueSlot ReturnValue) {
6052   if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
6053     assert(getContext().getAuxTargetInfo() && "Missing aux target info");
6054     return EmitTargetArchBuiltinExpr(
6055         this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
6056         ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch());
6057   }
6058 
6059   return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue,
6060                                    getTarget().getTriple().getArch());
6061 }
6062 
6063 static llvm::FixedVectorType *GetNeonType(CodeGenFunction *CGF,
6064                                           NeonTypeFlags TypeFlags,
6065                                           bool HasLegalHalfType = true,
6066                                           bool V1Ty = false,
6067                                           bool AllowBFloatArgsAndRet = true) {
6068   int IsQuad = TypeFlags.isQuad();
6069   switch (TypeFlags.getEltType()) {
6070   case NeonTypeFlags::Int8:
6071   case NeonTypeFlags::Poly8:
6072     return llvm::FixedVectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
6073   case NeonTypeFlags::Int16:
6074   case NeonTypeFlags::Poly16:
6075     return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
6076   case NeonTypeFlags::BFloat16:
6077     if (AllowBFloatArgsAndRet)
6078       return llvm::FixedVectorType::get(CGF->BFloatTy, V1Ty ? 1 : (4 << IsQuad));
6079     else
6080       return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
6081   case NeonTypeFlags::Float16:
6082     if (HasLegalHalfType)
6083       return llvm::FixedVectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
6084     else
6085       return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
6086   case NeonTypeFlags::Int32:
6087     return llvm::FixedVectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
6088   case NeonTypeFlags::Int64:
6089   case NeonTypeFlags::Poly64:
6090     return llvm::FixedVectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
6091   case NeonTypeFlags::Poly128:
6092     // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
6093     // There is a lot of i128 and f128 API missing.
6094     // so we use v16i8 to represent poly128 and get pattern matched.
6095     return llvm::FixedVectorType::get(CGF->Int8Ty, 16);
6096   case NeonTypeFlags::Float32:
6097     return llvm::FixedVectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
6098   case NeonTypeFlags::Float64:
6099     return llvm::FixedVectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
6100   }
6101   llvm_unreachable("Unknown vector element type!");
6102 }
6103 
6104 static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
6105                                           NeonTypeFlags IntTypeFlags) {
6106   int IsQuad = IntTypeFlags.isQuad();
6107   switch (IntTypeFlags.getEltType()) {
6108   case NeonTypeFlags::Int16:
6109     return llvm::FixedVectorType::get(CGF->HalfTy, (4 << IsQuad));
6110   case NeonTypeFlags::Int32:
6111     return llvm::FixedVectorType::get(CGF->FloatTy, (2 << IsQuad));
6112   case NeonTypeFlags::Int64:
6113     return llvm::FixedVectorType::get(CGF->DoubleTy, (1 << IsQuad));
6114   default:
6115     llvm_unreachable("Type can't be converted to floating-point!");
6116   }
6117 }
6118 
6119 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C,
6120                                       const ElementCount &Count) {
6121   Value *SV = llvm::ConstantVector::getSplat(Count, C);
6122   return Builder.CreateShuffleVector(V, V, SV, "lane");
6123 }
6124 
6125 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
6126   ElementCount EC = cast<llvm::VectorType>(V->getType())->getElementCount();
6127   return EmitNeonSplat(V, C, EC);
6128 }
6129 
6130 Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
6131                                      const char *name,
6132                                      unsigned shift, bool rightshift) {
6133   unsigned j = 0;
6134   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
6135        ai != ae; ++ai, ++j) {
6136     if (F->isConstrainedFPIntrinsic())
6137       if (ai->getType()->isMetadataTy())
6138         continue;
6139     if (shift > 0 && shift == j)
6140       Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
6141     else
6142       Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
6143   }
6144 
6145   if (F->isConstrainedFPIntrinsic())
6146     return Builder.CreateConstrainedFPCall(F, Ops, name);
6147   else
6148     return Builder.CreateCall(F, Ops, name);
6149 }
6150 
6151 Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
6152                                             bool neg) {
6153   int SV = cast<ConstantInt>(V)->getSExtValue();
6154   return ConstantInt::get(Ty, neg ? -SV : SV);
6155 }
6156 
6157 // Right-shift a vector by a constant.
6158 Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
6159                                           llvm::Type *Ty, bool usgn,
6160                                           const char *name) {
6161   llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
6162 
6163   int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
6164   int EltSize = VTy->getScalarSizeInBits();
6165 
6166   Vec = Builder.CreateBitCast(Vec, Ty);
6167 
6168   // lshr/ashr are undefined when the shift amount is equal to the vector
6169   // element size.
6170   if (ShiftAmt == EltSize) {
6171     if (usgn) {
6172       // Right-shifting an unsigned value by its size yields 0.
6173       return llvm::ConstantAggregateZero::get(VTy);
6174     } else {
6175       // Right-shifting a signed value by its size is equivalent
6176       // to a shift of size-1.
6177       --ShiftAmt;
6178       Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
6179     }
6180   }
6181 
6182   Shift = EmitNeonShiftVector(Shift, Ty, false);
6183   if (usgn)
6184     return Builder.CreateLShr(Vec, Shift, name);
6185   else
6186     return Builder.CreateAShr(Vec, Shift, name);
6187 }
6188 
6189 enum {
6190   AddRetType = (1 << 0),
6191   Add1ArgType = (1 << 1),
6192   Add2ArgTypes = (1 << 2),
6193 
6194   VectorizeRetType = (1 << 3),
6195   VectorizeArgTypes = (1 << 4),
6196 
6197   InventFloatType = (1 << 5),
6198   UnsignedAlts = (1 << 6),
6199 
6200   Use64BitVectors = (1 << 7),
6201   Use128BitVectors = (1 << 8),
6202 
6203   Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
6204   VectorRet = AddRetType | VectorizeRetType,
6205   VectorRetGetArgs01 =
6206       AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
6207   FpCmpzModifiers =
6208       AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
6209 };
6210 
6211 namespace {
6212 struct ARMVectorIntrinsicInfo {
6213   const char *NameHint;
6214   unsigned BuiltinID;
6215   unsigned LLVMIntrinsic;
6216   unsigned AltLLVMIntrinsic;
6217   uint64_t TypeModifier;
6218 
6219   bool operator<(unsigned RHSBuiltinID) const {
6220     return BuiltinID < RHSBuiltinID;
6221   }
6222   bool operator<(const ARMVectorIntrinsicInfo &TE) const {
6223     return BuiltinID < TE.BuiltinID;
6224   }
6225 };
6226 } // end anonymous namespace
6227 
6228 #define NEONMAP0(NameBase) \
6229   { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
6230 
6231 #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
6232   { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
6233       Intrinsic::LLVMIntrinsic, 0, TypeModifier }
6234 
6235 #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
6236   { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
6237       Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
6238       TypeModifier }
6239 
6240 static const ARMVectorIntrinsicInfo ARMSIMDIntrinsicMap [] = {
6241   NEONMAP1(__a32_vcvt_bf16_f32, arm_neon_vcvtfp2bf, 0),
6242   NEONMAP0(splat_lane_v),
6243   NEONMAP0(splat_laneq_v),
6244   NEONMAP0(splatq_lane_v),
6245   NEONMAP0(splatq_laneq_v),
6246   NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
6247   NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
6248   NEONMAP1(vabs_v, arm_neon_vabs, 0),
6249   NEONMAP1(vabsq_v, arm_neon_vabs, 0),
6250   NEONMAP0(vadd_v),
6251   NEONMAP0(vaddhn_v),
6252   NEONMAP0(vaddq_v),
6253   NEONMAP1(vaesdq_u8, arm_neon_aesd, 0),
6254   NEONMAP1(vaeseq_u8, arm_neon_aese, 0),
6255   NEONMAP1(vaesimcq_u8, arm_neon_aesimc, 0),
6256   NEONMAP1(vaesmcq_u8, arm_neon_aesmc, 0),
6257   NEONMAP1(vbfdot_f32, arm_neon_bfdot, 0),
6258   NEONMAP1(vbfdotq_f32, arm_neon_bfdot, 0),
6259   NEONMAP1(vbfmlalbq_f32, arm_neon_bfmlalb, 0),
6260   NEONMAP1(vbfmlaltq_f32, arm_neon_bfmlalt, 0),
6261   NEONMAP1(vbfmmlaq_f32, arm_neon_bfmmla, 0),
6262   NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
6263   NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
6264   NEONMAP1(vcadd_rot270_f16, arm_neon_vcadd_rot270, Add1ArgType),
6265   NEONMAP1(vcadd_rot270_f32, arm_neon_vcadd_rot270, Add1ArgType),
6266   NEONMAP1(vcadd_rot90_f16, arm_neon_vcadd_rot90, Add1ArgType),
6267   NEONMAP1(vcadd_rot90_f32, arm_neon_vcadd_rot90, Add1ArgType),
6268   NEONMAP1(vcaddq_rot270_f16, arm_neon_vcadd_rot270, Add1ArgType),
6269   NEONMAP1(vcaddq_rot270_f32, arm_neon_vcadd_rot270, Add1ArgType),
6270   NEONMAP1(vcaddq_rot270_f64, arm_neon_vcadd_rot270, Add1ArgType),
6271   NEONMAP1(vcaddq_rot90_f16, arm_neon_vcadd_rot90, Add1ArgType),
6272   NEONMAP1(vcaddq_rot90_f32, arm_neon_vcadd_rot90, Add1ArgType),
6273   NEONMAP1(vcaddq_rot90_f64, arm_neon_vcadd_rot90, Add1ArgType),
6274   NEONMAP1(vcage_v, arm_neon_vacge, 0),
6275   NEONMAP1(vcageq_v, arm_neon_vacge, 0),
6276   NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
6277   NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
6278   NEONMAP1(vcale_v, arm_neon_vacge, 0),
6279   NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
6280   NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
6281   NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
6282   NEONMAP0(vceqz_v),
6283   NEONMAP0(vceqzq_v),
6284   NEONMAP0(vcgez_v),
6285   NEONMAP0(vcgezq_v),
6286   NEONMAP0(vcgtz_v),
6287   NEONMAP0(vcgtzq_v),
6288   NEONMAP0(vclez_v),
6289   NEONMAP0(vclezq_v),
6290   NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
6291   NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
6292   NEONMAP0(vcltz_v),
6293   NEONMAP0(vcltzq_v),
6294   NEONMAP1(vclz_v, ctlz, Add1ArgType),
6295   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
6296   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
6297   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
6298   NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
6299   NEONMAP0(vcvt_f16_s16),
6300   NEONMAP0(vcvt_f16_u16),
6301   NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
6302   NEONMAP0(vcvt_f32_v),
6303   NEONMAP1(vcvt_n_f16_s16, arm_neon_vcvtfxs2fp, 0),
6304   NEONMAP1(vcvt_n_f16_u16, arm_neon_vcvtfxu2fp, 0),
6305   NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
6306   NEONMAP1(vcvt_n_s16_f16, arm_neon_vcvtfp2fxs, 0),
6307   NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
6308   NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
6309   NEONMAP1(vcvt_n_u16_f16, arm_neon_vcvtfp2fxu, 0),
6310   NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
6311   NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
6312   NEONMAP0(vcvt_s16_f16),
6313   NEONMAP0(vcvt_s32_v),
6314   NEONMAP0(vcvt_s64_v),
6315   NEONMAP0(vcvt_u16_f16),
6316   NEONMAP0(vcvt_u32_v),
6317   NEONMAP0(vcvt_u64_v),
6318   NEONMAP1(vcvta_s16_f16, arm_neon_vcvtas, 0),
6319   NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
6320   NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
6321   NEONMAP1(vcvta_u16_f16, arm_neon_vcvtau, 0),
6322   NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
6323   NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
6324   NEONMAP1(vcvtaq_s16_f16, arm_neon_vcvtas, 0),
6325   NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
6326   NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
6327   NEONMAP1(vcvtaq_u16_f16, arm_neon_vcvtau, 0),
6328   NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
6329   NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
6330   NEONMAP1(vcvth_bf16_f32, arm_neon_vcvtbfp2bf, 0),
6331   NEONMAP1(vcvtm_s16_f16, arm_neon_vcvtms, 0),
6332   NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
6333   NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
6334   NEONMAP1(vcvtm_u16_f16, arm_neon_vcvtmu, 0),
6335   NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
6336   NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
6337   NEONMAP1(vcvtmq_s16_f16, arm_neon_vcvtms, 0),
6338   NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
6339   NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
6340   NEONMAP1(vcvtmq_u16_f16, arm_neon_vcvtmu, 0),
6341   NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
6342   NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
6343   NEONMAP1(vcvtn_s16_f16, arm_neon_vcvtns, 0),
6344   NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
6345   NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
6346   NEONMAP1(vcvtn_u16_f16, arm_neon_vcvtnu, 0),
6347   NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
6348   NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
6349   NEONMAP1(vcvtnq_s16_f16, arm_neon_vcvtns, 0),
6350   NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
6351   NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
6352   NEONMAP1(vcvtnq_u16_f16, arm_neon_vcvtnu, 0),
6353   NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
6354   NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
6355   NEONMAP1(vcvtp_s16_f16, arm_neon_vcvtps, 0),
6356   NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
6357   NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
6358   NEONMAP1(vcvtp_u16_f16, arm_neon_vcvtpu, 0),
6359   NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
6360   NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
6361   NEONMAP1(vcvtpq_s16_f16, arm_neon_vcvtps, 0),
6362   NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
6363   NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
6364   NEONMAP1(vcvtpq_u16_f16, arm_neon_vcvtpu, 0),
6365   NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
6366   NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
6367   NEONMAP0(vcvtq_f16_s16),
6368   NEONMAP0(vcvtq_f16_u16),
6369   NEONMAP0(vcvtq_f32_v),
6370   NEONMAP1(vcvtq_n_f16_s16, arm_neon_vcvtfxs2fp, 0),
6371   NEONMAP1(vcvtq_n_f16_u16, arm_neon_vcvtfxu2fp, 0),
6372   NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
6373   NEONMAP1(vcvtq_n_s16_f16, arm_neon_vcvtfp2fxs, 0),
6374   NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
6375   NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
6376   NEONMAP1(vcvtq_n_u16_f16, arm_neon_vcvtfp2fxu, 0),
6377   NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
6378   NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
6379   NEONMAP0(vcvtq_s16_f16),
6380   NEONMAP0(vcvtq_s32_v),
6381   NEONMAP0(vcvtq_s64_v),
6382   NEONMAP0(vcvtq_u16_f16),
6383   NEONMAP0(vcvtq_u32_v),
6384   NEONMAP0(vcvtq_u64_v),
6385   NEONMAP1(vdot_s32, arm_neon_sdot, 0),
6386   NEONMAP1(vdot_u32, arm_neon_udot, 0),
6387   NEONMAP1(vdotq_s32, arm_neon_sdot, 0),
6388   NEONMAP1(vdotq_u32, arm_neon_udot, 0),
6389   NEONMAP0(vext_v),
6390   NEONMAP0(vextq_v),
6391   NEONMAP0(vfma_v),
6392   NEONMAP0(vfmaq_v),
6393   NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
6394   NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
6395   NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
6396   NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
6397   NEONMAP0(vld1_dup_v),
6398   NEONMAP1(vld1_v, arm_neon_vld1, 0),
6399   NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0),
6400   NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0),
6401   NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0),
6402   NEONMAP0(vld1q_dup_v),
6403   NEONMAP1(vld1q_v, arm_neon_vld1, 0),
6404   NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0),
6405   NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0),
6406   NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0),
6407   NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0),
6408   NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
6409   NEONMAP1(vld2_v, arm_neon_vld2, 0),
6410   NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0),
6411   NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
6412   NEONMAP1(vld2q_v, arm_neon_vld2, 0),
6413   NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0),
6414   NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
6415   NEONMAP1(vld3_v, arm_neon_vld3, 0),
6416   NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0),
6417   NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
6418   NEONMAP1(vld3q_v, arm_neon_vld3, 0),
6419   NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0),
6420   NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
6421   NEONMAP1(vld4_v, arm_neon_vld4, 0),
6422   NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0),
6423   NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
6424   NEONMAP1(vld4q_v, arm_neon_vld4, 0),
6425   NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
6426   NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
6427   NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
6428   NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
6429   NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
6430   NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
6431   NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
6432   NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
6433   NEONMAP1(vmmlaq_s32, arm_neon_smmla, 0),
6434   NEONMAP1(vmmlaq_u32, arm_neon_ummla, 0),
6435   NEONMAP0(vmovl_v),
6436   NEONMAP0(vmovn_v),
6437   NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
6438   NEONMAP0(vmull_v),
6439   NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
6440   NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
6441   NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
6442   NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
6443   NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
6444   NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
6445   NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
6446   NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
6447   NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
6448   NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
6449   NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
6450   NEONMAP2(vqadd_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
6451   NEONMAP2(vqaddq_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
6452   NEONMAP2(vqdmlal_v, arm_neon_vqdmull, sadd_sat, 0),
6453   NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, ssub_sat, 0),
6454   NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
6455   NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
6456   NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
6457   NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
6458   NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
6459   NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
6460   NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
6461   NEONMAP1(vqrdmlah_s16, arm_neon_vqrdmlah, Add1ArgType),
6462   NEONMAP1(vqrdmlah_s32, arm_neon_vqrdmlah, Add1ArgType),
6463   NEONMAP1(vqrdmlahq_s16, arm_neon_vqrdmlah, Add1ArgType),
6464   NEONMAP1(vqrdmlahq_s32, arm_neon_vqrdmlah, Add1ArgType),
6465   NEONMAP1(vqrdmlsh_s16, arm_neon_vqrdmlsh, Add1ArgType),
6466   NEONMAP1(vqrdmlsh_s32, arm_neon_vqrdmlsh, Add1ArgType),
6467   NEONMAP1(vqrdmlshq_s16, arm_neon_vqrdmlsh, Add1ArgType),
6468   NEONMAP1(vqrdmlshq_s32, arm_neon_vqrdmlsh, Add1ArgType),
6469   NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
6470   NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
6471   NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
6472   NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
6473   NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
6474   NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
6475   NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
6476   NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
6477   NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
6478   NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
6479   NEONMAP2(vqsub_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
6480   NEONMAP2(vqsubq_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
6481   NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
6482   NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
6483   NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
6484   NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
6485   NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
6486   NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
6487   NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
6488   NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
6489   NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
6490   NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
6491   NEONMAP0(vrndi_v),
6492   NEONMAP0(vrndiq_v),
6493   NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
6494   NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
6495   NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
6496   NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
6497   NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
6498   NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
6499   NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
6500   NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
6501   NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
6502   NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
6503   NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
6504   NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
6505   NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
6506   NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
6507   NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
6508   NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
6509   NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
6510   NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
6511   NEONMAP1(vsha1su0q_u32, arm_neon_sha1su0, 0),
6512   NEONMAP1(vsha1su1q_u32, arm_neon_sha1su1, 0),
6513   NEONMAP1(vsha256h2q_u32, arm_neon_sha256h2, 0),
6514   NEONMAP1(vsha256hq_u32, arm_neon_sha256h, 0),
6515   NEONMAP1(vsha256su0q_u32, arm_neon_sha256su0, 0),
6516   NEONMAP1(vsha256su1q_u32, arm_neon_sha256su1, 0),
6517   NEONMAP0(vshl_n_v),
6518   NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
6519   NEONMAP0(vshll_n_v),
6520   NEONMAP0(vshlq_n_v),
6521   NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
6522   NEONMAP0(vshr_n_v),
6523   NEONMAP0(vshrn_n_v),
6524   NEONMAP0(vshrq_n_v),
6525   NEONMAP1(vst1_v, arm_neon_vst1, 0),
6526   NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0),
6527   NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0),
6528   NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0),
6529   NEONMAP1(vst1q_v, arm_neon_vst1, 0),
6530   NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0),
6531   NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0),
6532   NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0),
6533   NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
6534   NEONMAP1(vst2_v, arm_neon_vst2, 0),
6535   NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
6536   NEONMAP1(vst2q_v, arm_neon_vst2, 0),
6537   NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
6538   NEONMAP1(vst3_v, arm_neon_vst3, 0),
6539   NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
6540   NEONMAP1(vst3q_v, arm_neon_vst3, 0),
6541   NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
6542   NEONMAP1(vst4_v, arm_neon_vst4, 0),
6543   NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
6544   NEONMAP1(vst4q_v, arm_neon_vst4, 0),
6545   NEONMAP0(vsubhn_v),
6546   NEONMAP0(vtrn_v),
6547   NEONMAP0(vtrnq_v),
6548   NEONMAP0(vtst_v),
6549   NEONMAP0(vtstq_v),
6550   NEONMAP1(vusdot_s32, arm_neon_usdot, 0),
6551   NEONMAP1(vusdotq_s32, arm_neon_usdot, 0),
6552   NEONMAP1(vusmmlaq_s32, arm_neon_usmmla, 0),
6553   NEONMAP0(vuzp_v),
6554   NEONMAP0(vuzpq_v),
6555   NEONMAP0(vzip_v),
6556   NEONMAP0(vzipq_v)
6557 };
6558 
6559 static const ARMVectorIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
6560   NEONMAP1(__a64_vcvtq_low_bf16_f32, aarch64_neon_bfcvtn, 0),
6561   NEONMAP0(splat_lane_v),
6562   NEONMAP0(splat_laneq_v),
6563   NEONMAP0(splatq_lane_v),
6564   NEONMAP0(splatq_laneq_v),
6565   NEONMAP1(vabs_v, aarch64_neon_abs, 0),
6566   NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
6567   NEONMAP0(vadd_v),
6568   NEONMAP0(vaddhn_v),
6569   NEONMAP0(vaddq_p128),
6570   NEONMAP0(vaddq_v),
6571   NEONMAP1(vaesdq_u8, aarch64_crypto_aesd, 0),
6572   NEONMAP1(vaeseq_u8, aarch64_crypto_aese, 0),
6573   NEONMAP1(vaesimcq_u8, aarch64_crypto_aesimc, 0),
6574   NEONMAP1(vaesmcq_u8, aarch64_crypto_aesmc, 0),
6575   NEONMAP2(vbcaxq_s16, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6576   NEONMAP2(vbcaxq_s32, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6577   NEONMAP2(vbcaxq_s64, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6578   NEONMAP2(vbcaxq_s8, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6579   NEONMAP2(vbcaxq_u16, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6580   NEONMAP2(vbcaxq_u32, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6581   NEONMAP2(vbcaxq_u64, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6582   NEONMAP2(vbcaxq_u8, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6583   NEONMAP1(vbfdot_f32, aarch64_neon_bfdot, 0),
6584   NEONMAP1(vbfdotq_f32, aarch64_neon_bfdot, 0),
6585   NEONMAP1(vbfmlalbq_f32, aarch64_neon_bfmlalb, 0),
6586   NEONMAP1(vbfmlaltq_f32, aarch64_neon_bfmlalt, 0),
6587   NEONMAP1(vbfmmlaq_f32, aarch64_neon_bfmmla, 0),
6588   NEONMAP1(vcadd_rot270_f16, aarch64_neon_vcadd_rot270, Add1ArgType),
6589   NEONMAP1(vcadd_rot270_f32, aarch64_neon_vcadd_rot270, Add1ArgType),
6590   NEONMAP1(vcadd_rot90_f16, aarch64_neon_vcadd_rot90, Add1ArgType),
6591   NEONMAP1(vcadd_rot90_f32, aarch64_neon_vcadd_rot90, Add1ArgType),
6592   NEONMAP1(vcaddq_rot270_f16, aarch64_neon_vcadd_rot270, Add1ArgType),
6593   NEONMAP1(vcaddq_rot270_f32, aarch64_neon_vcadd_rot270, Add1ArgType),
6594   NEONMAP1(vcaddq_rot270_f64, aarch64_neon_vcadd_rot270, Add1ArgType),
6595   NEONMAP1(vcaddq_rot90_f16, aarch64_neon_vcadd_rot90, Add1ArgType),
6596   NEONMAP1(vcaddq_rot90_f32, aarch64_neon_vcadd_rot90, Add1ArgType),
6597   NEONMAP1(vcaddq_rot90_f64, aarch64_neon_vcadd_rot90, Add1ArgType),
6598   NEONMAP1(vcage_v, aarch64_neon_facge, 0),
6599   NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
6600   NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
6601   NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
6602   NEONMAP1(vcale_v, aarch64_neon_facge, 0),
6603   NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
6604   NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
6605   NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
6606   NEONMAP0(vceqz_v),
6607   NEONMAP0(vceqzq_v),
6608   NEONMAP0(vcgez_v),
6609   NEONMAP0(vcgezq_v),
6610   NEONMAP0(vcgtz_v),
6611   NEONMAP0(vcgtzq_v),
6612   NEONMAP0(vclez_v),
6613   NEONMAP0(vclezq_v),
6614   NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
6615   NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
6616   NEONMAP0(vcltz_v),
6617   NEONMAP0(vcltzq_v),
6618   NEONMAP1(vclz_v, ctlz, Add1ArgType),
6619   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
6620   NEONMAP1(vcmla_f16, aarch64_neon_vcmla_rot0, Add1ArgType),
6621   NEONMAP1(vcmla_f32, aarch64_neon_vcmla_rot0, Add1ArgType),
6622   NEONMAP1(vcmla_rot180_f16, aarch64_neon_vcmla_rot180, Add1ArgType),
6623   NEONMAP1(vcmla_rot180_f32, aarch64_neon_vcmla_rot180, Add1ArgType),
6624   NEONMAP1(vcmla_rot270_f16, aarch64_neon_vcmla_rot270, Add1ArgType),
6625   NEONMAP1(vcmla_rot270_f32, aarch64_neon_vcmla_rot270, Add1ArgType),
6626   NEONMAP1(vcmla_rot90_f16, aarch64_neon_vcmla_rot90, Add1ArgType),
6627   NEONMAP1(vcmla_rot90_f32, aarch64_neon_vcmla_rot90, Add1ArgType),
6628   NEONMAP1(vcmlaq_f16, aarch64_neon_vcmla_rot0, Add1ArgType),
6629   NEONMAP1(vcmlaq_f32, aarch64_neon_vcmla_rot0, Add1ArgType),
6630   NEONMAP1(vcmlaq_f64, aarch64_neon_vcmla_rot0, Add1ArgType),
6631   NEONMAP1(vcmlaq_rot180_f16, aarch64_neon_vcmla_rot180, Add1ArgType),
6632   NEONMAP1(vcmlaq_rot180_f32, aarch64_neon_vcmla_rot180, Add1ArgType),
6633   NEONMAP1(vcmlaq_rot180_f64, aarch64_neon_vcmla_rot180, Add1ArgType),
6634   NEONMAP1(vcmlaq_rot270_f16, aarch64_neon_vcmla_rot270, Add1ArgType),
6635   NEONMAP1(vcmlaq_rot270_f32, aarch64_neon_vcmla_rot270, Add1ArgType),
6636   NEONMAP1(vcmlaq_rot270_f64, aarch64_neon_vcmla_rot270, Add1ArgType),
6637   NEONMAP1(vcmlaq_rot90_f16, aarch64_neon_vcmla_rot90, Add1ArgType),
6638   NEONMAP1(vcmlaq_rot90_f32, aarch64_neon_vcmla_rot90, Add1ArgType),
6639   NEONMAP1(vcmlaq_rot90_f64, aarch64_neon_vcmla_rot90, Add1ArgType),
6640   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
6641   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
6642   NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
6643   NEONMAP0(vcvt_f16_s16),
6644   NEONMAP0(vcvt_f16_u16),
6645   NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
6646   NEONMAP0(vcvt_f32_v),
6647   NEONMAP1(vcvt_n_f16_s16, aarch64_neon_vcvtfxs2fp, 0),
6648   NEONMAP1(vcvt_n_f16_u16, aarch64_neon_vcvtfxu2fp, 0),
6649   NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6650   NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6651   NEONMAP1(vcvt_n_s16_f16, aarch64_neon_vcvtfp2fxs, 0),
6652   NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
6653   NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
6654   NEONMAP1(vcvt_n_u16_f16, aarch64_neon_vcvtfp2fxu, 0),
6655   NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
6656   NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
6657   NEONMAP0(vcvtq_f16_s16),
6658   NEONMAP0(vcvtq_f16_u16),
6659   NEONMAP0(vcvtq_f32_v),
6660   NEONMAP1(vcvtq_high_bf16_f32, aarch64_neon_bfcvtn2, 0),
6661   NEONMAP1(vcvtq_n_f16_s16, aarch64_neon_vcvtfxs2fp, 0),
6662   NEONMAP1(vcvtq_n_f16_u16, aarch64_neon_vcvtfxu2fp, 0),
6663   NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6664   NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6665   NEONMAP1(vcvtq_n_s16_f16, aarch64_neon_vcvtfp2fxs, 0),
6666   NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
6667   NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
6668   NEONMAP1(vcvtq_n_u16_f16, aarch64_neon_vcvtfp2fxu, 0),
6669   NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
6670   NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
6671   NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
6672   NEONMAP1(vdot_s32, aarch64_neon_sdot, 0),
6673   NEONMAP1(vdot_u32, aarch64_neon_udot, 0),
6674   NEONMAP1(vdotq_s32, aarch64_neon_sdot, 0),
6675   NEONMAP1(vdotq_u32, aarch64_neon_udot, 0),
6676   NEONMAP2(veor3q_s16, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6677   NEONMAP2(veor3q_s32, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6678   NEONMAP2(veor3q_s64, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6679   NEONMAP2(veor3q_s8, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6680   NEONMAP2(veor3q_u16, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6681   NEONMAP2(veor3q_u32, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6682   NEONMAP2(veor3q_u64, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6683   NEONMAP2(veor3q_u8, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6684   NEONMAP0(vext_v),
6685   NEONMAP0(vextq_v),
6686   NEONMAP0(vfma_v),
6687   NEONMAP0(vfmaq_v),
6688   NEONMAP1(vfmlal_high_f16, aarch64_neon_fmlal2, 0),
6689   NEONMAP1(vfmlal_low_f16, aarch64_neon_fmlal, 0),
6690   NEONMAP1(vfmlalq_high_f16, aarch64_neon_fmlal2, 0),
6691   NEONMAP1(vfmlalq_low_f16, aarch64_neon_fmlal, 0),
6692   NEONMAP1(vfmlsl_high_f16, aarch64_neon_fmlsl2, 0),
6693   NEONMAP1(vfmlsl_low_f16, aarch64_neon_fmlsl, 0),
6694   NEONMAP1(vfmlslq_high_f16, aarch64_neon_fmlsl2, 0),
6695   NEONMAP1(vfmlslq_low_f16, aarch64_neon_fmlsl, 0),
6696   NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
6697   NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
6698   NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
6699   NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
6700   NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0),
6701   NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0),
6702   NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0),
6703   NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0),
6704   NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0),
6705   NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0),
6706   NEONMAP1(vmmlaq_s32, aarch64_neon_smmla, 0),
6707   NEONMAP1(vmmlaq_u32, aarch64_neon_ummla, 0),
6708   NEONMAP0(vmovl_v),
6709   NEONMAP0(vmovn_v),
6710   NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
6711   NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
6712   NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
6713   NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
6714   NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
6715   NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
6716   NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
6717   NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
6718   NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
6719   NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
6720   NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
6721   NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
6722   NEONMAP1(vqdmulh_lane_v, aarch64_neon_sqdmulh_lane, 0),
6723   NEONMAP1(vqdmulh_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
6724   NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
6725   NEONMAP1(vqdmulhq_lane_v, aarch64_neon_sqdmulh_lane, 0),
6726   NEONMAP1(vqdmulhq_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
6727   NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
6728   NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
6729   NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
6730   NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
6731   NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
6732   NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
6733   NEONMAP1(vqrdmlah_s16, aarch64_neon_sqrdmlah, Add1ArgType),
6734   NEONMAP1(vqrdmlah_s32, aarch64_neon_sqrdmlah, Add1ArgType),
6735   NEONMAP1(vqrdmlahq_s16, aarch64_neon_sqrdmlah, Add1ArgType),
6736   NEONMAP1(vqrdmlahq_s32, aarch64_neon_sqrdmlah, Add1ArgType),
6737   NEONMAP1(vqrdmlsh_s16, aarch64_neon_sqrdmlsh, Add1ArgType),
6738   NEONMAP1(vqrdmlsh_s32, aarch64_neon_sqrdmlsh, Add1ArgType),
6739   NEONMAP1(vqrdmlshq_s16, aarch64_neon_sqrdmlsh, Add1ArgType),
6740   NEONMAP1(vqrdmlshq_s32, aarch64_neon_sqrdmlsh, Add1ArgType),
6741   NEONMAP1(vqrdmulh_lane_v, aarch64_neon_sqrdmulh_lane, 0),
6742   NEONMAP1(vqrdmulh_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
6743   NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
6744   NEONMAP1(vqrdmulhq_lane_v, aarch64_neon_sqrdmulh_lane, 0),
6745   NEONMAP1(vqrdmulhq_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
6746   NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
6747   NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
6748   NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
6749   NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
6750   NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
6751   NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
6752   NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
6753   NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
6754   NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
6755   NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
6756   NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
6757   NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
6758   NEONMAP1(vrax1q_u64, aarch64_crypto_rax1, 0),
6759   NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
6760   NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
6761   NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
6762   NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
6763   NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
6764   NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
6765   NEONMAP1(vrnd32x_f32, aarch64_neon_frint32x, Add1ArgType),
6766   NEONMAP1(vrnd32x_f64, aarch64_neon_frint32x, Add1ArgType),
6767   NEONMAP1(vrnd32xq_f32, aarch64_neon_frint32x, Add1ArgType),
6768   NEONMAP1(vrnd32xq_f64, aarch64_neon_frint32x, Add1ArgType),
6769   NEONMAP1(vrnd32z_f32, aarch64_neon_frint32z, Add1ArgType),
6770   NEONMAP1(vrnd32z_f64, aarch64_neon_frint32z, Add1ArgType),
6771   NEONMAP1(vrnd32zq_f32, aarch64_neon_frint32z, Add1ArgType),
6772   NEONMAP1(vrnd32zq_f64, aarch64_neon_frint32z, Add1ArgType),
6773   NEONMAP1(vrnd64x_f32, aarch64_neon_frint64x, Add1ArgType),
6774   NEONMAP1(vrnd64x_f64, aarch64_neon_frint64x, Add1ArgType),
6775   NEONMAP1(vrnd64xq_f32, aarch64_neon_frint64x, Add1ArgType),
6776   NEONMAP1(vrnd64xq_f64, aarch64_neon_frint64x, Add1ArgType),
6777   NEONMAP1(vrnd64z_f32, aarch64_neon_frint64z, Add1ArgType),
6778   NEONMAP1(vrnd64z_f64, aarch64_neon_frint64z, Add1ArgType),
6779   NEONMAP1(vrnd64zq_f32, aarch64_neon_frint64z, Add1ArgType),
6780   NEONMAP1(vrnd64zq_f64, aarch64_neon_frint64z, Add1ArgType),
6781   NEONMAP0(vrndi_v),
6782   NEONMAP0(vrndiq_v),
6783   NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
6784   NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
6785   NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
6786   NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
6787   NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
6788   NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
6789   NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
6790   NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
6791   NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
6792   NEONMAP1(vsha1su0q_u32, aarch64_crypto_sha1su0, 0),
6793   NEONMAP1(vsha1su1q_u32, aarch64_crypto_sha1su1, 0),
6794   NEONMAP1(vsha256h2q_u32, aarch64_crypto_sha256h2, 0),
6795   NEONMAP1(vsha256hq_u32, aarch64_crypto_sha256h, 0),
6796   NEONMAP1(vsha256su0q_u32, aarch64_crypto_sha256su0, 0),
6797   NEONMAP1(vsha256su1q_u32, aarch64_crypto_sha256su1, 0),
6798   NEONMAP1(vsha512h2q_u64, aarch64_crypto_sha512h2, 0),
6799   NEONMAP1(vsha512hq_u64, aarch64_crypto_sha512h, 0),
6800   NEONMAP1(vsha512su0q_u64, aarch64_crypto_sha512su0, 0),
6801   NEONMAP1(vsha512su1q_u64, aarch64_crypto_sha512su1, 0),
6802   NEONMAP0(vshl_n_v),
6803   NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
6804   NEONMAP0(vshll_n_v),
6805   NEONMAP0(vshlq_n_v),
6806   NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
6807   NEONMAP0(vshr_n_v),
6808   NEONMAP0(vshrn_n_v),
6809   NEONMAP0(vshrq_n_v),
6810   NEONMAP1(vsm3partw1q_u32, aarch64_crypto_sm3partw1, 0),
6811   NEONMAP1(vsm3partw2q_u32, aarch64_crypto_sm3partw2, 0),
6812   NEONMAP1(vsm3ss1q_u32, aarch64_crypto_sm3ss1, 0),
6813   NEONMAP1(vsm3tt1aq_u32, aarch64_crypto_sm3tt1a, 0),
6814   NEONMAP1(vsm3tt1bq_u32, aarch64_crypto_sm3tt1b, 0),
6815   NEONMAP1(vsm3tt2aq_u32, aarch64_crypto_sm3tt2a, 0),
6816   NEONMAP1(vsm3tt2bq_u32, aarch64_crypto_sm3tt2b, 0),
6817   NEONMAP1(vsm4ekeyq_u32, aarch64_crypto_sm4ekey, 0),
6818   NEONMAP1(vsm4eq_u32, aarch64_crypto_sm4e, 0),
6819   NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0),
6820   NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0),
6821   NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0),
6822   NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0),
6823   NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0),
6824   NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0),
6825   NEONMAP0(vsubhn_v),
6826   NEONMAP0(vtst_v),
6827   NEONMAP0(vtstq_v),
6828   NEONMAP1(vusdot_s32, aarch64_neon_usdot, 0),
6829   NEONMAP1(vusdotq_s32, aarch64_neon_usdot, 0),
6830   NEONMAP1(vusmmlaq_s32, aarch64_neon_usmmla, 0),
6831   NEONMAP1(vxarq_u64, aarch64_crypto_xar, 0),
6832 };
6833 
6834 static const ARMVectorIntrinsicInfo AArch64SISDIntrinsicMap[] = {
6835   NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
6836   NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
6837   NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
6838   NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
6839   NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
6840   NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
6841   NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
6842   NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
6843   NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
6844   NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6845   NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
6846   NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
6847   NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
6848   NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
6849   NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6850   NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6851   NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
6852   NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
6853   NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
6854   NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
6855   NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
6856   NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
6857   NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
6858   NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
6859   NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6860   NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6861   NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6862   NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6863   NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6864   NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6865   NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6866   NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6867   NEONMAP1(vcvtd_s64_f64, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6868   NEONMAP1(vcvtd_u64_f64, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6869   NEONMAP1(vcvth_bf16_f32, aarch64_neon_bfcvt, 0),
6870   NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6871   NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6872   NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6873   NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6874   NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6875   NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6876   NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6877   NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6878   NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6879   NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6880   NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6881   NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6882   NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6883   NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6884   NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6885   NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6886   NEONMAP1(vcvts_s32_f32, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6887   NEONMAP1(vcvts_u32_f32, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6888   NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
6889   NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6890   NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6891   NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6892   NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6893   NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
6894   NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
6895   NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6896   NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6897   NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
6898   NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
6899   NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6900   NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6901   NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6902   NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6903   NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
6904   NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
6905   NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6906   NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
6907   NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
6908   NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
6909   NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
6910   NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
6911   NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
6912   NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6913   NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6914   NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6915   NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6916   NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6917   NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6918   NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6919   NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6920   NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
6921   NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6922   NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
6923   NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
6924   NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
6925   NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
6926   NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
6927   NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
6928   NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
6929   NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
6930   NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
6931   NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
6932   NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
6933   NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
6934   NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
6935   NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
6936   NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
6937   NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
6938   NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
6939   NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
6940   NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
6941   NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
6942   NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
6943   NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
6944   NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
6945   NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
6946   NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
6947   NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
6948   NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
6949   NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
6950   NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
6951   NEONMAP1(vqrdmlahh_s16, aarch64_neon_sqrdmlah, Vectorize1ArgType | Use64BitVectors),
6952   NEONMAP1(vqrdmlahs_s32, aarch64_neon_sqrdmlah, Add1ArgType),
6953   NEONMAP1(vqrdmlshh_s16, aarch64_neon_sqrdmlsh, Vectorize1ArgType | Use64BitVectors),
6954   NEONMAP1(vqrdmlshs_s32, aarch64_neon_sqrdmlsh, Add1ArgType),
6955   NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
6956   NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
6957   NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
6958   NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
6959   NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
6960   NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
6961   NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
6962   NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
6963   NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
6964   NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
6965   NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
6966   NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
6967   NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
6968   NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
6969   NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
6970   NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
6971   NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
6972   NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
6973   NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
6974   NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6975   NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6976   NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6977   NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6978   NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
6979   NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
6980   NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6981   NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6982   NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6983   NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6984   NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
6985   NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
6986   NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
6987   NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
6988   NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
6989   NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
6990   NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
6991   NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
6992   NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
6993   NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
6994   NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
6995   NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
6996   NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
6997   NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
6998   NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
6999   NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
7000   NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
7001   NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
7002   NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
7003   NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
7004   NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
7005   NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
7006   NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
7007   NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
7008   NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
7009   NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
7010   NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
7011   NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
7012   NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
7013   NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
7014   NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
7015   NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
7016   NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
7017   NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
7018   NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
7019   NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
7020   NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
7021   NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
7022   NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
7023   NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
7024   NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
7025   NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
7026   NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
7027   NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
7028   NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
7029   NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
7030   NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
7031   NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
7032   NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
7033   NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
7034   NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
7035   NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
7036   // FP16 scalar intrinisics go here.
7037   NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType),
7038   NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
7039   NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
7040   NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
7041   NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
7042   NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
7043   NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
7044   NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
7045   NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
7046   NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
7047   NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
7048   NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
7049   NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
7050   NEONMAP1(vcvth_s32_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
7051   NEONMAP1(vcvth_s64_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
7052   NEONMAP1(vcvth_u32_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
7053   NEONMAP1(vcvth_u64_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
7054   NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
7055   NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
7056   NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
7057   NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
7058   NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
7059   NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
7060   NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
7061   NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
7062   NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
7063   NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
7064   NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
7065   NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
7066   NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType),
7067   NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType),
7068   NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType),
7069   NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType),
7070   NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType),
7071 };
7072 
7073 // Some intrinsics are equivalent for codegen.
7074 static const std::pair<unsigned, unsigned> NEONEquivalentIntrinsicMap[] = {
7075   { NEON::BI__builtin_neon_splat_lane_bf16, NEON::BI__builtin_neon_splat_lane_v, },
7076   { NEON::BI__builtin_neon_splat_laneq_bf16, NEON::BI__builtin_neon_splat_laneq_v, },
7077   { NEON::BI__builtin_neon_splatq_lane_bf16, NEON::BI__builtin_neon_splatq_lane_v, },
7078   { NEON::BI__builtin_neon_splatq_laneq_bf16, NEON::BI__builtin_neon_splatq_laneq_v, },
7079   { NEON::BI__builtin_neon_vabd_f16, NEON::BI__builtin_neon_vabd_v, },
7080   { NEON::BI__builtin_neon_vabdq_f16, NEON::BI__builtin_neon_vabdq_v, },
7081   { NEON::BI__builtin_neon_vabs_f16, NEON::BI__builtin_neon_vabs_v, },
7082   { NEON::BI__builtin_neon_vabsq_f16, NEON::BI__builtin_neon_vabsq_v, },
7083   { NEON::BI__builtin_neon_vbsl_f16, NEON::BI__builtin_neon_vbsl_v, },
7084   { NEON::BI__builtin_neon_vbslq_f16, NEON::BI__builtin_neon_vbslq_v, },
7085   { NEON::BI__builtin_neon_vcage_f16, NEON::BI__builtin_neon_vcage_v, },
7086   { NEON::BI__builtin_neon_vcageq_f16, NEON::BI__builtin_neon_vcageq_v, },
7087   { NEON::BI__builtin_neon_vcagt_f16, NEON::BI__builtin_neon_vcagt_v, },
7088   { NEON::BI__builtin_neon_vcagtq_f16, NEON::BI__builtin_neon_vcagtq_v, },
7089   { NEON::BI__builtin_neon_vcale_f16, NEON::BI__builtin_neon_vcale_v, },
7090   { NEON::BI__builtin_neon_vcaleq_f16, NEON::BI__builtin_neon_vcaleq_v, },
7091   { NEON::BI__builtin_neon_vcalt_f16, NEON::BI__builtin_neon_vcalt_v, },
7092   { NEON::BI__builtin_neon_vcaltq_f16, NEON::BI__builtin_neon_vcaltq_v, },
7093   { NEON::BI__builtin_neon_vceqz_f16, NEON::BI__builtin_neon_vceqz_v, },
7094   { NEON::BI__builtin_neon_vceqzq_f16, NEON::BI__builtin_neon_vceqzq_v, },
7095   { NEON::BI__builtin_neon_vcgez_f16, NEON::BI__builtin_neon_vcgez_v, },
7096   { NEON::BI__builtin_neon_vcgezq_f16, NEON::BI__builtin_neon_vcgezq_v, },
7097   { NEON::BI__builtin_neon_vcgtz_f16, NEON::BI__builtin_neon_vcgtz_v, },
7098   { NEON::BI__builtin_neon_vcgtzq_f16, NEON::BI__builtin_neon_vcgtzq_v, },
7099   { NEON::BI__builtin_neon_vclez_f16, NEON::BI__builtin_neon_vclez_v, },
7100   { NEON::BI__builtin_neon_vclezq_f16, NEON::BI__builtin_neon_vclezq_v, },
7101   { NEON::BI__builtin_neon_vcltz_f16, NEON::BI__builtin_neon_vcltz_v, },
7102   { NEON::BI__builtin_neon_vcltzq_f16, NEON::BI__builtin_neon_vcltzq_v, },
7103   { NEON::BI__builtin_neon_vext_f16, NEON::BI__builtin_neon_vext_v, },
7104   { NEON::BI__builtin_neon_vextq_f16, NEON::BI__builtin_neon_vextq_v, },
7105   { NEON::BI__builtin_neon_vfma_f16, NEON::BI__builtin_neon_vfma_v, },
7106   { NEON::BI__builtin_neon_vfma_lane_f16, NEON::BI__builtin_neon_vfma_lane_v, },
7107   { NEON::BI__builtin_neon_vfma_laneq_f16, NEON::BI__builtin_neon_vfma_laneq_v, },
7108   { NEON::BI__builtin_neon_vfmaq_f16, NEON::BI__builtin_neon_vfmaq_v, },
7109   { NEON::BI__builtin_neon_vfmaq_lane_f16, NEON::BI__builtin_neon_vfmaq_lane_v, },
7110   { NEON::BI__builtin_neon_vfmaq_laneq_f16, NEON::BI__builtin_neon_vfmaq_laneq_v, },
7111   { NEON::BI__builtin_neon_vld1_bf16_x2, NEON::BI__builtin_neon_vld1_x2_v },
7112   { NEON::BI__builtin_neon_vld1_bf16_x3, NEON::BI__builtin_neon_vld1_x3_v },
7113   { NEON::BI__builtin_neon_vld1_bf16_x4, NEON::BI__builtin_neon_vld1_x4_v },
7114   { NEON::BI__builtin_neon_vld1_bf16, NEON::BI__builtin_neon_vld1_v },
7115   { NEON::BI__builtin_neon_vld1_dup_bf16, NEON::BI__builtin_neon_vld1_dup_v },
7116   { NEON::BI__builtin_neon_vld1_lane_bf16, NEON::BI__builtin_neon_vld1_lane_v },
7117   { NEON::BI__builtin_neon_vld1q_bf16_x2, NEON::BI__builtin_neon_vld1q_x2_v },
7118   { NEON::BI__builtin_neon_vld1q_bf16_x3, NEON::BI__builtin_neon_vld1q_x3_v },
7119   { NEON::BI__builtin_neon_vld1q_bf16_x4, NEON::BI__builtin_neon_vld1q_x4_v },
7120   { NEON::BI__builtin_neon_vld1q_bf16, NEON::BI__builtin_neon_vld1q_v },
7121   { NEON::BI__builtin_neon_vld1q_dup_bf16, NEON::BI__builtin_neon_vld1q_dup_v },
7122   { NEON::BI__builtin_neon_vld1q_lane_bf16, NEON::BI__builtin_neon_vld1q_lane_v },
7123   { NEON::BI__builtin_neon_vld2_bf16, NEON::BI__builtin_neon_vld2_v },
7124   { NEON::BI__builtin_neon_vld2_dup_bf16, NEON::BI__builtin_neon_vld2_dup_v },
7125   { NEON::BI__builtin_neon_vld2_lane_bf16, NEON::BI__builtin_neon_vld2_lane_v },
7126   { NEON::BI__builtin_neon_vld2q_bf16, NEON::BI__builtin_neon_vld2q_v },
7127   { NEON::BI__builtin_neon_vld2q_dup_bf16, NEON::BI__builtin_neon_vld2q_dup_v },
7128   { NEON::BI__builtin_neon_vld2q_lane_bf16, NEON::BI__builtin_neon_vld2q_lane_v },
7129   { NEON::BI__builtin_neon_vld3_bf16, NEON::BI__builtin_neon_vld3_v },
7130   { NEON::BI__builtin_neon_vld3_dup_bf16, NEON::BI__builtin_neon_vld3_dup_v },
7131   { NEON::BI__builtin_neon_vld3_lane_bf16, NEON::BI__builtin_neon_vld3_lane_v },
7132   { NEON::BI__builtin_neon_vld3q_bf16, NEON::BI__builtin_neon_vld3q_v },
7133   { NEON::BI__builtin_neon_vld3q_dup_bf16, NEON::BI__builtin_neon_vld3q_dup_v },
7134   { NEON::BI__builtin_neon_vld3q_lane_bf16, NEON::BI__builtin_neon_vld3q_lane_v },
7135   { NEON::BI__builtin_neon_vld4_bf16, NEON::BI__builtin_neon_vld4_v },
7136   { NEON::BI__builtin_neon_vld4_dup_bf16, NEON::BI__builtin_neon_vld4_dup_v },
7137   { NEON::BI__builtin_neon_vld4_lane_bf16, NEON::BI__builtin_neon_vld4_lane_v },
7138   { NEON::BI__builtin_neon_vld4q_bf16, NEON::BI__builtin_neon_vld4q_v },
7139   { NEON::BI__builtin_neon_vld4q_dup_bf16, NEON::BI__builtin_neon_vld4q_dup_v },
7140   { NEON::BI__builtin_neon_vld4q_lane_bf16, NEON::BI__builtin_neon_vld4q_lane_v },
7141   { NEON::BI__builtin_neon_vmax_f16, NEON::BI__builtin_neon_vmax_v, },
7142   { NEON::BI__builtin_neon_vmaxnm_f16, NEON::BI__builtin_neon_vmaxnm_v, },
7143   { NEON::BI__builtin_neon_vmaxnmq_f16, NEON::BI__builtin_neon_vmaxnmq_v, },
7144   { NEON::BI__builtin_neon_vmaxq_f16, NEON::BI__builtin_neon_vmaxq_v, },
7145   { NEON::BI__builtin_neon_vmin_f16, NEON::BI__builtin_neon_vmin_v, },
7146   { NEON::BI__builtin_neon_vminnm_f16, NEON::BI__builtin_neon_vminnm_v, },
7147   { NEON::BI__builtin_neon_vminnmq_f16, NEON::BI__builtin_neon_vminnmq_v, },
7148   { NEON::BI__builtin_neon_vminq_f16, NEON::BI__builtin_neon_vminq_v, },
7149   { NEON::BI__builtin_neon_vmulx_f16, NEON::BI__builtin_neon_vmulx_v, },
7150   { NEON::BI__builtin_neon_vmulxq_f16, NEON::BI__builtin_neon_vmulxq_v, },
7151   { NEON::BI__builtin_neon_vpadd_f16, NEON::BI__builtin_neon_vpadd_v, },
7152   { NEON::BI__builtin_neon_vpaddq_f16, NEON::BI__builtin_neon_vpaddq_v, },
7153   { NEON::BI__builtin_neon_vpmax_f16, NEON::BI__builtin_neon_vpmax_v, },
7154   { NEON::BI__builtin_neon_vpmaxnm_f16, NEON::BI__builtin_neon_vpmaxnm_v, },
7155   { NEON::BI__builtin_neon_vpmaxnmq_f16, NEON::BI__builtin_neon_vpmaxnmq_v, },
7156   { NEON::BI__builtin_neon_vpmaxq_f16, NEON::BI__builtin_neon_vpmaxq_v, },
7157   { NEON::BI__builtin_neon_vpmin_f16, NEON::BI__builtin_neon_vpmin_v, },
7158   { NEON::BI__builtin_neon_vpminnm_f16, NEON::BI__builtin_neon_vpminnm_v, },
7159   { NEON::BI__builtin_neon_vpminnmq_f16, NEON::BI__builtin_neon_vpminnmq_v, },
7160   { NEON::BI__builtin_neon_vpminq_f16, NEON::BI__builtin_neon_vpminq_v, },
7161   { NEON::BI__builtin_neon_vrecpe_f16, NEON::BI__builtin_neon_vrecpe_v, },
7162   { NEON::BI__builtin_neon_vrecpeq_f16, NEON::BI__builtin_neon_vrecpeq_v, },
7163   { NEON::BI__builtin_neon_vrecps_f16, NEON::BI__builtin_neon_vrecps_v, },
7164   { NEON::BI__builtin_neon_vrecpsq_f16, NEON::BI__builtin_neon_vrecpsq_v, },
7165   { NEON::BI__builtin_neon_vrnd_f16, NEON::BI__builtin_neon_vrnd_v, },
7166   { NEON::BI__builtin_neon_vrnda_f16, NEON::BI__builtin_neon_vrnda_v, },
7167   { NEON::BI__builtin_neon_vrndaq_f16, NEON::BI__builtin_neon_vrndaq_v, },
7168   { NEON::BI__builtin_neon_vrndi_f16, NEON::BI__builtin_neon_vrndi_v, },
7169   { NEON::BI__builtin_neon_vrndiq_f16, NEON::BI__builtin_neon_vrndiq_v, },
7170   { NEON::BI__builtin_neon_vrndm_f16, NEON::BI__builtin_neon_vrndm_v, },
7171   { NEON::BI__builtin_neon_vrndmq_f16, NEON::BI__builtin_neon_vrndmq_v, },
7172   { NEON::BI__builtin_neon_vrndn_f16, NEON::BI__builtin_neon_vrndn_v, },
7173   { NEON::BI__builtin_neon_vrndnq_f16, NEON::BI__builtin_neon_vrndnq_v, },
7174   { NEON::BI__builtin_neon_vrndp_f16, NEON::BI__builtin_neon_vrndp_v, },
7175   { NEON::BI__builtin_neon_vrndpq_f16, NEON::BI__builtin_neon_vrndpq_v, },
7176   { NEON::BI__builtin_neon_vrndq_f16, NEON::BI__builtin_neon_vrndq_v, },
7177   { NEON::BI__builtin_neon_vrndx_f16, NEON::BI__builtin_neon_vrndx_v, },
7178   { NEON::BI__builtin_neon_vrndxq_f16, NEON::BI__builtin_neon_vrndxq_v, },
7179   { NEON::BI__builtin_neon_vrsqrte_f16, NEON::BI__builtin_neon_vrsqrte_v, },
7180   { NEON::BI__builtin_neon_vrsqrteq_f16, NEON::BI__builtin_neon_vrsqrteq_v, },
7181   { NEON::BI__builtin_neon_vrsqrts_f16, NEON::BI__builtin_neon_vrsqrts_v, },
7182   { NEON::BI__builtin_neon_vrsqrtsq_f16, NEON::BI__builtin_neon_vrsqrtsq_v, },
7183   { NEON::BI__builtin_neon_vsqrt_f16, NEON::BI__builtin_neon_vsqrt_v, },
7184   { NEON::BI__builtin_neon_vsqrtq_f16, NEON::BI__builtin_neon_vsqrtq_v, },
7185   { NEON::BI__builtin_neon_vst1_bf16_x2, NEON::BI__builtin_neon_vst1_x2_v },
7186   { NEON::BI__builtin_neon_vst1_bf16_x3, NEON::BI__builtin_neon_vst1_x3_v },
7187   { NEON::BI__builtin_neon_vst1_bf16_x4, NEON::BI__builtin_neon_vst1_x4_v },
7188   { NEON::BI__builtin_neon_vst1_bf16, NEON::BI__builtin_neon_vst1_v },
7189   { NEON::BI__builtin_neon_vst1_lane_bf16, NEON::BI__builtin_neon_vst1_lane_v },
7190   { NEON::BI__builtin_neon_vst1q_bf16_x2, NEON::BI__builtin_neon_vst1q_x2_v },
7191   { NEON::BI__builtin_neon_vst1q_bf16_x3, NEON::BI__builtin_neon_vst1q_x3_v },
7192   { NEON::BI__builtin_neon_vst1q_bf16_x4, NEON::BI__builtin_neon_vst1q_x4_v },
7193   { NEON::BI__builtin_neon_vst1q_bf16, NEON::BI__builtin_neon_vst1q_v },
7194   { NEON::BI__builtin_neon_vst1q_lane_bf16, NEON::BI__builtin_neon_vst1q_lane_v },
7195   { NEON::BI__builtin_neon_vst2_bf16, NEON::BI__builtin_neon_vst2_v },
7196   { NEON::BI__builtin_neon_vst2_lane_bf16, NEON::BI__builtin_neon_vst2_lane_v },
7197   { NEON::BI__builtin_neon_vst2q_bf16, NEON::BI__builtin_neon_vst2q_v },
7198   { NEON::BI__builtin_neon_vst2q_lane_bf16, NEON::BI__builtin_neon_vst2q_lane_v },
7199   { NEON::BI__builtin_neon_vst3_bf16, NEON::BI__builtin_neon_vst3_v },
7200   { NEON::BI__builtin_neon_vst3_lane_bf16, NEON::BI__builtin_neon_vst3_lane_v },
7201   { NEON::BI__builtin_neon_vst3q_bf16, NEON::BI__builtin_neon_vst3q_v },
7202   { NEON::BI__builtin_neon_vst3q_lane_bf16, NEON::BI__builtin_neon_vst3q_lane_v },
7203   { NEON::BI__builtin_neon_vst4_bf16, NEON::BI__builtin_neon_vst4_v },
7204   { NEON::BI__builtin_neon_vst4_lane_bf16, NEON::BI__builtin_neon_vst4_lane_v },
7205   { NEON::BI__builtin_neon_vst4q_bf16, NEON::BI__builtin_neon_vst4q_v },
7206   { NEON::BI__builtin_neon_vst4q_lane_bf16, NEON::BI__builtin_neon_vst4q_lane_v },
7207   { NEON::BI__builtin_neon_vtrn_f16, NEON::BI__builtin_neon_vtrn_v, },
7208   { NEON::BI__builtin_neon_vtrnq_f16, NEON::BI__builtin_neon_vtrnq_v, },
7209   { NEON::BI__builtin_neon_vuzp_f16, NEON::BI__builtin_neon_vuzp_v, },
7210   { NEON::BI__builtin_neon_vuzpq_f16, NEON::BI__builtin_neon_vuzpq_v, },
7211   { NEON::BI__builtin_neon_vzip_f16, NEON::BI__builtin_neon_vzip_v, },
7212   { NEON::BI__builtin_neon_vzipq_f16, NEON::BI__builtin_neon_vzipq_v, },
7213   // The mangling rules cause us to have one ID for each type for vldap1(q)_lane
7214   // and vstl1(q)_lane, but codegen is equivalent for all of them. Choose an
7215   // arbitrary one to be handled as tha canonical variation.
7216   { NEON::BI__builtin_neon_vldap1_lane_u64, NEON::BI__builtin_neon_vldap1_lane_s64 },
7217   { NEON::BI__builtin_neon_vldap1_lane_f64, NEON::BI__builtin_neon_vldap1_lane_s64 },
7218   { NEON::BI__builtin_neon_vldap1_lane_p64, NEON::BI__builtin_neon_vldap1_lane_s64 },
7219   { NEON::BI__builtin_neon_vldap1q_lane_u64, NEON::BI__builtin_neon_vldap1q_lane_s64 },
7220   { NEON::BI__builtin_neon_vldap1q_lane_f64, NEON::BI__builtin_neon_vldap1q_lane_s64 },
7221   { NEON::BI__builtin_neon_vldap1q_lane_p64, NEON::BI__builtin_neon_vldap1q_lane_s64 },
7222   { NEON::BI__builtin_neon_vstl1_lane_u64, NEON::BI__builtin_neon_vstl1_lane_s64 },
7223   { NEON::BI__builtin_neon_vstl1_lane_f64, NEON::BI__builtin_neon_vstl1_lane_s64 },
7224   { NEON::BI__builtin_neon_vstl1_lane_p64, NEON::BI__builtin_neon_vstl1_lane_s64 },
7225   { NEON::BI__builtin_neon_vstl1q_lane_u64, NEON::BI__builtin_neon_vstl1q_lane_s64 },
7226   { NEON::BI__builtin_neon_vstl1q_lane_f64, NEON::BI__builtin_neon_vstl1q_lane_s64 },
7227   { NEON::BI__builtin_neon_vstl1q_lane_p64, NEON::BI__builtin_neon_vstl1q_lane_s64 },
7228 };
7229 
7230 #undef NEONMAP0
7231 #undef NEONMAP1
7232 #undef NEONMAP2
7233 
7234 #define SVEMAP1(NameBase, LLVMIntrinsic, TypeModifier)                         \
7235   {                                                                            \
7236     #NameBase, SVE::BI__builtin_sve_##NameBase, Intrinsic::LLVMIntrinsic, 0,   \
7237         TypeModifier                                                           \
7238   }
7239 
7240 #define SVEMAP2(NameBase, TypeModifier)                                        \
7241   { #NameBase, SVE::BI__builtin_sve_##NameBase, 0, 0, TypeModifier }
7242 static const ARMVectorIntrinsicInfo AArch64SVEIntrinsicMap[] = {
7243 #define GET_SVE_LLVM_INTRINSIC_MAP
7244 #include "clang/Basic/arm_sve_builtin_cg.inc"
7245 #include "clang/Basic/BuiltinsAArch64NeonSVEBridge_cg.def"
7246 #undef GET_SVE_LLVM_INTRINSIC_MAP
7247 };
7248 
7249 #undef SVEMAP1
7250 #undef SVEMAP2
7251 
7252 #define SMEMAP1(NameBase, LLVMIntrinsic, TypeModifier)                         \
7253   {                                                                            \
7254     #NameBase, SME::BI__builtin_sme_##NameBase, Intrinsic::LLVMIntrinsic, 0,   \
7255         TypeModifier                                                           \
7256   }
7257 
7258 #define SMEMAP2(NameBase, TypeModifier)                                        \
7259   { #NameBase, SME::BI__builtin_sme_##NameBase, 0, 0, TypeModifier }
7260 static const ARMVectorIntrinsicInfo AArch64SMEIntrinsicMap[] = {
7261 #define GET_SME_LLVM_INTRINSIC_MAP
7262 #include "clang/Basic/arm_sme_builtin_cg.inc"
7263 #undef GET_SME_LLVM_INTRINSIC_MAP
7264 };
7265 
7266 #undef SMEMAP1
7267 #undef SMEMAP2
7268 
7269 static bool NEONSIMDIntrinsicsProvenSorted = false;
7270 
7271 static bool AArch64SIMDIntrinsicsProvenSorted = false;
7272 static bool AArch64SISDIntrinsicsProvenSorted = false;
7273 static bool AArch64SVEIntrinsicsProvenSorted = false;
7274 static bool AArch64SMEIntrinsicsProvenSorted = false;
7275 
7276 static const ARMVectorIntrinsicInfo *
7277 findARMVectorIntrinsicInMap(ArrayRef<ARMVectorIntrinsicInfo> IntrinsicMap,
7278                             unsigned BuiltinID, bool &MapProvenSorted) {
7279 
7280 #ifndef NDEBUG
7281   if (!MapProvenSorted) {
7282     assert(llvm::is_sorted(IntrinsicMap));
7283     MapProvenSorted = true;
7284   }
7285 #endif
7286 
7287   const ARMVectorIntrinsicInfo *Builtin =
7288       llvm::lower_bound(IntrinsicMap, BuiltinID);
7289 
7290   if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
7291     return Builtin;
7292 
7293   return nullptr;
7294 }
7295 
7296 Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
7297                                                    unsigned Modifier,
7298                                                    llvm::Type *ArgType,
7299                                                    const CallExpr *E) {
7300   int VectorSize = 0;
7301   if (Modifier & Use64BitVectors)
7302     VectorSize = 64;
7303   else if (Modifier & Use128BitVectors)
7304     VectorSize = 128;
7305 
7306   // Return type.
7307   SmallVector<llvm::Type *, 3> Tys;
7308   if (Modifier & AddRetType) {
7309     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
7310     if (Modifier & VectorizeRetType)
7311       Ty = llvm::FixedVectorType::get(
7312           Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
7313 
7314     Tys.push_back(Ty);
7315   }
7316 
7317   // Arguments.
7318   if (Modifier & VectorizeArgTypes) {
7319     int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
7320     ArgType = llvm::FixedVectorType::get(ArgType, Elts);
7321   }
7322 
7323   if (Modifier & (Add1ArgType | Add2ArgTypes))
7324     Tys.push_back(ArgType);
7325 
7326   if (Modifier & Add2ArgTypes)
7327     Tys.push_back(ArgType);
7328 
7329   if (Modifier & InventFloatType)
7330     Tys.push_back(FloatTy);
7331 
7332   return CGM.getIntrinsic(IntrinsicID, Tys);
7333 }
7334 
7335 static Value *EmitCommonNeonSISDBuiltinExpr(
7336     CodeGenFunction &CGF, const ARMVectorIntrinsicInfo &SISDInfo,
7337     SmallVectorImpl<Value *> &Ops, const CallExpr *E) {
7338   unsigned BuiltinID = SISDInfo.BuiltinID;
7339   unsigned int Int = SISDInfo.LLVMIntrinsic;
7340   unsigned Modifier = SISDInfo.TypeModifier;
7341   const char *s = SISDInfo.NameHint;
7342 
7343   switch (BuiltinID) {
7344   case NEON::BI__builtin_neon_vcled_s64:
7345   case NEON::BI__builtin_neon_vcled_u64:
7346   case NEON::BI__builtin_neon_vcles_f32:
7347   case NEON::BI__builtin_neon_vcled_f64:
7348   case NEON::BI__builtin_neon_vcltd_s64:
7349   case NEON::BI__builtin_neon_vcltd_u64:
7350   case NEON::BI__builtin_neon_vclts_f32:
7351   case NEON::BI__builtin_neon_vcltd_f64:
7352   case NEON::BI__builtin_neon_vcales_f32:
7353   case NEON::BI__builtin_neon_vcaled_f64:
7354   case NEON::BI__builtin_neon_vcalts_f32:
7355   case NEON::BI__builtin_neon_vcaltd_f64:
7356     // Only one direction of comparisons actually exist, cmle is actually a cmge
7357     // with swapped operands. The table gives us the right intrinsic but we
7358     // still need to do the swap.
7359     std::swap(Ops[0], Ops[1]);
7360     break;
7361   }
7362 
7363   assert(Int && "Generic code assumes a valid intrinsic");
7364 
7365   // Determine the type(s) of this overloaded AArch64 intrinsic.
7366   const Expr *Arg = E->getArg(0);
7367   llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
7368   Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
7369 
7370   int j = 0;
7371   ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
7372   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
7373        ai != ae; ++ai, ++j) {
7374     llvm::Type *ArgTy = ai->getType();
7375     if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
7376              ArgTy->getPrimitiveSizeInBits())
7377       continue;
7378 
7379     assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy());
7380     // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
7381     // it before inserting.
7382     Ops[j] = CGF.Builder.CreateTruncOrBitCast(
7383         Ops[j], cast<llvm::VectorType>(ArgTy)->getElementType());
7384     Ops[j] =
7385         CGF.Builder.CreateInsertElement(PoisonValue::get(ArgTy), Ops[j], C0);
7386   }
7387 
7388   Value *Result = CGF.EmitNeonCall(F, Ops, s);
7389   llvm::Type *ResultType = CGF.ConvertType(E->getType());
7390   if (ResultType->getPrimitiveSizeInBits().getFixedValue() <
7391       Result->getType()->getPrimitiveSizeInBits().getFixedValue())
7392     return CGF.Builder.CreateExtractElement(Result, C0);
7393 
7394   return CGF.Builder.CreateBitCast(Result, ResultType, s);
7395 }
7396 
7397 Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
7398     unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
7399     const char *NameHint, unsigned Modifier, const CallExpr *E,
7400     SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1,
7401     llvm::Triple::ArchType Arch) {
7402   // Get the last argument, which specifies the vector type.
7403   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
7404   std::optional<llvm::APSInt> NeonTypeConst =
7405       Arg->getIntegerConstantExpr(getContext());
7406   if (!NeonTypeConst)
7407     return nullptr;
7408 
7409   // Determine the type of this overloaded NEON intrinsic.
7410   NeonTypeFlags Type(NeonTypeConst->getZExtValue());
7411   bool Usgn = Type.isUnsigned();
7412   bool Quad = Type.isQuad();
7413   const bool HasLegalHalfType = getTarget().hasLegalHalfType();
7414   const bool AllowBFloatArgsAndRet =
7415       getTargetHooks().getABIInfo().allowBFloatArgsAndRet();
7416 
7417   llvm::FixedVectorType *VTy =
7418       GetNeonType(this, Type, HasLegalHalfType, false, AllowBFloatArgsAndRet);
7419   llvm::Type *Ty = VTy;
7420   if (!Ty)
7421     return nullptr;
7422 
7423   auto getAlignmentValue32 = [&](Address addr) -> Value* {
7424     return Builder.getInt32(addr.getAlignment().getQuantity());
7425   };
7426 
7427   unsigned Int = LLVMIntrinsic;
7428   if ((Modifier & UnsignedAlts) && !Usgn)
7429     Int = AltLLVMIntrinsic;
7430 
7431   switch (BuiltinID) {
7432   default: break;
7433   case NEON::BI__builtin_neon_splat_lane_v:
7434   case NEON::BI__builtin_neon_splat_laneq_v:
7435   case NEON::BI__builtin_neon_splatq_lane_v:
7436   case NEON::BI__builtin_neon_splatq_laneq_v: {
7437     auto NumElements = VTy->getElementCount();
7438     if (BuiltinID == NEON::BI__builtin_neon_splatq_lane_v)
7439       NumElements = NumElements * 2;
7440     if (BuiltinID == NEON::BI__builtin_neon_splat_laneq_v)
7441       NumElements = NumElements.divideCoefficientBy(2);
7442 
7443     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
7444     return EmitNeonSplat(Ops[0], cast<ConstantInt>(Ops[1]), NumElements);
7445   }
7446   case NEON::BI__builtin_neon_vpadd_v:
7447   case NEON::BI__builtin_neon_vpaddq_v:
7448     // We don't allow fp/int overloading of intrinsics.
7449     if (VTy->getElementType()->isFloatingPointTy() &&
7450         Int == Intrinsic::aarch64_neon_addp)
7451       Int = Intrinsic::aarch64_neon_faddp;
7452     break;
7453   case NEON::BI__builtin_neon_vabs_v:
7454   case NEON::BI__builtin_neon_vabsq_v:
7455     if (VTy->getElementType()->isFloatingPointTy())
7456       return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
7457     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
7458   case NEON::BI__builtin_neon_vadd_v:
7459   case NEON::BI__builtin_neon_vaddq_v: {
7460     llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, Quad ? 16 : 8);
7461     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
7462     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
7463     Ops[0] =  Builder.CreateXor(Ops[0], Ops[1]);
7464     return Builder.CreateBitCast(Ops[0], Ty);
7465   }
7466   case NEON::BI__builtin_neon_vaddhn_v: {
7467     llvm::FixedVectorType *SrcTy =
7468         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
7469 
7470     // %sum = add <4 x i32> %lhs, %rhs
7471     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
7472     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
7473     Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
7474 
7475     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
7476     Constant *ShiftAmt =
7477         ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
7478     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
7479 
7480     // %res = trunc <4 x i32> %high to <4 x i16>
7481     return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
7482   }
7483   case NEON::BI__builtin_neon_vcale_v:
7484   case NEON::BI__builtin_neon_vcaleq_v:
7485   case NEON::BI__builtin_neon_vcalt_v:
7486   case NEON::BI__builtin_neon_vcaltq_v:
7487     std::swap(Ops[0], Ops[1]);
7488     [[fallthrough]];
7489   case NEON::BI__builtin_neon_vcage_v:
7490   case NEON::BI__builtin_neon_vcageq_v:
7491   case NEON::BI__builtin_neon_vcagt_v:
7492   case NEON::BI__builtin_neon_vcagtq_v: {
7493     llvm::Type *Ty;
7494     switch (VTy->getScalarSizeInBits()) {
7495     default: llvm_unreachable("unexpected type");
7496     case 32:
7497       Ty = FloatTy;
7498       break;
7499     case 64:
7500       Ty = DoubleTy;
7501       break;
7502     case 16:
7503       Ty = HalfTy;
7504       break;
7505     }
7506     auto *VecFlt = llvm::FixedVectorType::get(Ty, VTy->getNumElements());
7507     llvm::Type *Tys[] = { VTy, VecFlt };
7508     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
7509     return EmitNeonCall(F, Ops, NameHint);
7510   }
7511   case NEON::BI__builtin_neon_vceqz_v:
7512   case NEON::BI__builtin_neon_vceqzq_v:
7513     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
7514                                          ICmpInst::ICMP_EQ, "vceqz");
7515   case NEON::BI__builtin_neon_vcgez_v:
7516   case NEON::BI__builtin_neon_vcgezq_v:
7517     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
7518                                          ICmpInst::ICMP_SGE, "vcgez");
7519   case NEON::BI__builtin_neon_vclez_v:
7520   case NEON::BI__builtin_neon_vclezq_v:
7521     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
7522                                          ICmpInst::ICMP_SLE, "vclez");
7523   case NEON::BI__builtin_neon_vcgtz_v:
7524   case NEON::BI__builtin_neon_vcgtzq_v:
7525     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
7526                                          ICmpInst::ICMP_SGT, "vcgtz");
7527   case NEON::BI__builtin_neon_vcltz_v:
7528   case NEON::BI__builtin_neon_vcltzq_v:
7529     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
7530                                          ICmpInst::ICMP_SLT, "vcltz");
7531   case NEON::BI__builtin_neon_vclz_v:
7532   case NEON::BI__builtin_neon_vclzq_v:
7533     // We generate target-independent intrinsic, which needs a second argument
7534     // for whether or not clz of zero is undefined; on ARM it isn't.
7535     Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
7536     break;
7537   case NEON::BI__builtin_neon_vcvt_f32_v:
7538   case NEON::BI__builtin_neon_vcvtq_f32_v:
7539     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7540     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad),
7541                      HasLegalHalfType);
7542     return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
7543                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
7544   case NEON::BI__builtin_neon_vcvt_f16_s16:
7545   case NEON::BI__builtin_neon_vcvt_f16_u16:
7546   case NEON::BI__builtin_neon_vcvtq_f16_s16:
7547   case NEON::BI__builtin_neon_vcvtq_f16_u16:
7548     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7549     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad),
7550                      HasLegalHalfType);
7551     return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
7552                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
7553   case NEON::BI__builtin_neon_vcvt_n_f16_s16:
7554   case NEON::BI__builtin_neon_vcvt_n_f16_u16:
7555   case NEON::BI__builtin_neon_vcvtq_n_f16_s16:
7556   case NEON::BI__builtin_neon_vcvtq_n_f16_u16: {
7557     llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
7558     Function *F = CGM.getIntrinsic(Int, Tys);
7559     return EmitNeonCall(F, Ops, "vcvt_n");
7560   }
7561   case NEON::BI__builtin_neon_vcvt_n_f32_v:
7562   case NEON::BI__builtin_neon_vcvt_n_f64_v:
7563   case NEON::BI__builtin_neon_vcvtq_n_f32_v:
7564   case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
7565     llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
7566     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
7567     Function *F = CGM.getIntrinsic(Int, Tys);
7568     return EmitNeonCall(F, Ops, "vcvt_n");
7569   }
7570   case NEON::BI__builtin_neon_vcvt_n_s16_f16:
7571   case NEON::BI__builtin_neon_vcvt_n_s32_v:
7572   case NEON::BI__builtin_neon_vcvt_n_u16_f16:
7573   case NEON::BI__builtin_neon_vcvt_n_u32_v:
7574   case NEON::BI__builtin_neon_vcvt_n_s64_v:
7575   case NEON::BI__builtin_neon_vcvt_n_u64_v:
7576   case NEON::BI__builtin_neon_vcvtq_n_s16_f16:
7577   case NEON::BI__builtin_neon_vcvtq_n_s32_v:
7578   case NEON::BI__builtin_neon_vcvtq_n_u16_f16:
7579   case NEON::BI__builtin_neon_vcvtq_n_u32_v:
7580   case NEON::BI__builtin_neon_vcvtq_n_s64_v:
7581   case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
7582     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
7583     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
7584     return EmitNeonCall(F, Ops, "vcvt_n");
7585   }
7586   case NEON::BI__builtin_neon_vcvt_s32_v:
7587   case NEON::BI__builtin_neon_vcvt_u32_v:
7588   case NEON::BI__builtin_neon_vcvt_s64_v:
7589   case NEON::BI__builtin_neon_vcvt_u64_v:
7590   case NEON::BI__builtin_neon_vcvt_s16_f16:
7591   case NEON::BI__builtin_neon_vcvt_u16_f16:
7592   case NEON::BI__builtin_neon_vcvtq_s32_v:
7593   case NEON::BI__builtin_neon_vcvtq_u32_v:
7594   case NEON::BI__builtin_neon_vcvtq_s64_v:
7595   case NEON::BI__builtin_neon_vcvtq_u64_v:
7596   case NEON::BI__builtin_neon_vcvtq_s16_f16:
7597   case NEON::BI__builtin_neon_vcvtq_u16_f16: {
7598     Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
7599     return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
7600                 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
7601   }
7602   case NEON::BI__builtin_neon_vcvta_s16_f16:
7603   case NEON::BI__builtin_neon_vcvta_s32_v:
7604   case NEON::BI__builtin_neon_vcvta_s64_v:
7605   case NEON::BI__builtin_neon_vcvta_u16_f16:
7606   case NEON::BI__builtin_neon_vcvta_u32_v:
7607   case NEON::BI__builtin_neon_vcvta_u64_v:
7608   case NEON::BI__builtin_neon_vcvtaq_s16_f16:
7609   case NEON::BI__builtin_neon_vcvtaq_s32_v:
7610   case NEON::BI__builtin_neon_vcvtaq_s64_v:
7611   case NEON::BI__builtin_neon_vcvtaq_u16_f16:
7612   case NEON::BI__builtin_neon_vcvtaq_u32_v:
7613   case NEON::BI__builtin_neon_vcvtaq_u64_v:
7614   case NEON::BI__builtin_neon_vcvtn_s16_f16:
7615   case NEON::BI__builtin_neon_vcvtn_s32_v:
7616   case NEON::BI__builtin_neon_vcvtn_s64_v:
7617   case NEON::BI__builtin_neon_vcvtn_u16_f16:
7618   case NEON::BI__builtin_neon_vcvtn_u32_v:
7619   case NEON::BI__builtin_neon_vcvtn_u64_v:
7620   case NEON::BI__builtin_neon_vcvtnq_s16_f16:
7621   case NEON::BI__builtin_neon_vcvtnq_s32_v:
7622   case NEON::BI__builtin_neon_vcvtnq_s64_v:
7623   case NEON::BI__builtin_neon_vcvtnq_u16_f16:
7624   case NEON::BI__builtin_neon_vcvtnq_u32_v:
7625   case NEON::BI__builtin_neon_vcvtnq_u64_v:
7626   case NEON::BI__builtin_neon_vcvtp_s16_f16:
7627   case NEON::BI__builtin_neon_vcvtp_s32_v:
7628   case NEON::BI__builtin_neon_vcvtp_s64_v:
7629   case NEON::BI__builtin_neon_vcvtp_u16_f16:
7630   case NEON::BI__builtin_neon_vcvtp_u32_v:
7631   case NEON::BI__builtin_neon_vcvtp_u64_v:
7632   case NEON::BI__builtin_neon_vcvtpq_s16_f16:
7633   case NEON::BI__builtin_neon_vcvtpq_s32_v:
7634   case NEON::BI__builtin_neon_vcvtpq_s64_v:
7635   case NEON::BI__builtin_neon_vcvtpq_u16_f16:
7636   case NEON::BI__builtin_neon_vcvtpq_u32_v:
7637   case NEON::BI__builtin_neon_vcvtpq_u64_v:
7638   case NEON::BI__builtin_neon_vcvtm_s16_f16:
7639   case NEON::BI__builtin_neon_vcvtm_s32_v:
7640   case NEON::BI__builtin_neon_vcvtm_s64_v:
7641   case NEON::BI__builtin_neon_vcvtm_u16_f16:
7642   case NEON::BI__builtin_neon_vcvtm_u32_v:
7643   case NEON::BI__builtin_neon_vcvtm_u64_v:
7644   case NEON::BI__builtin_neon_vcvtmq_s16_f16:
7645   case NEON::BI__builtin_neon_vcvtmq_s32_v:
7646   case NEON::BI__builtin_neon_vcvtmq_s64_v:
7647   case NEON::BI__builtin_neon_vcvtmq_u16_f16:
7648   case NEON::BI__builtin_neon_vcvtmq_u32_v:
7649   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
7650     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
7651     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
7652   }
7653   case NEON::BI__builtin_neon_vcvtx_f32_v: {
7654     llvm::Type *Tys[2] = { VTy->getTruncatedElementVectorType(VTy), Ty};
7655     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
7656 
7657   }
7658   case NEON::BI__builtin_neon_vext_v:
7659   case NEON::BI__builtin_neon_vextq_v: {
7660     int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
7661     SmallVector<int, 16> Indices;
7662     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
7663       Indices.push_back(i+CV);
7664 
7665     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7666     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7667     return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
7668   }
7669   case NEON::BI__builtin_neon_vfma_v:
7670   case NEON::BI__builtin_neon_vfmaq_v: {
7671     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7672     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7673     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7674 
7675     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
7676     return emitCallMaybeConstrainedFPBuiltin(
7677         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
7678         {Ops[1], Ops[2], Ops[0]});
7679   }
7680   case NEON::BI__builtin_neon_vld1_v:
7681   case NEON::BI__builtin_neon_vld1q_v: {
7682     llvm::Type *Tys[] = {Ty, Int8PtrTy};
7683     Ops.push_back(getAlignmentValue32(PtrOp0));
7684     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
7685   }
7686   case NEON::BI__builtin_neon_vld1_x2_v:
7687   case NEON::BI__builtin_neon_vld1q_x2_v:
7688   case NEON::BI__builtin_neon_vld1_x3_v:
7689   case NEON::BI__builtin_neon_vld1q_x3_v:
7690   case NEON::BI__builtin_neon_vld1_x4_v:
7691   case NEON::BI__builtin_neon_vld1q_x4_v: {
7692     llvm::Type *Tys[2] = {VTy, UnqualPtrTy};
7693     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
7694     Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
7695     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7696   }
7697   case NEON::BI__builtin_neon_vld2_v:
7698   case NEON::BI__builtin_neon_vld2q_v:
7699   case NEON::BI__builtin_neon_vld3_v:
7700   case NEON::BI__builtin_neon_vld3q_v:
7701   case NEON::BI__builtin_neon_vld4_v:
7702   case NEON::BI__builtin_neon_vld4q_v:
7703   case NEON::BI__builtin_neon_vld2_dup_v:
7704   case NEON::BI__builtin_neon_vld2q_dup_v:
7705   case NEON::BI__builtin_neon_vld3_dup_v:
7706   case NEON::BI__builtin_neon_vld3q_dup_v:
7707   case NEON::BI__builtin_neon_vld4_dup_v:
7708   case NEON::BI__builtin_neon_vld4q_dup_v: {
7709     llvm::Type *Tys[] = {Ty, Int8PtrTy};
7710     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
7711     Value *Align = getAlignmentValue32(PtrOp1);
7712     Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
7713     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7714   }
7715   case NEON::BI__builtin_neon_vld1_dup_v:
7716   case NEON::BI__builtin_neon_vld1q_dup_v: {
7717     Value *V = PoisonValue::get(Ty);
7718     PtrOp0 = PtrOp0.withElementType(VTy->getElementType());
7719     LoadInst *Ld = Builder.CreateLoad(PtrOp0);
7720     llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
7721     Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
7722     return EmitNeonSplat(Ops[0], CI);
7723   }
7724   case NEON::BI__builtin_neon_vld2_lane_v:
7725   case NEON::BI__builtin_neon_vld2q_lane_v:
7726   case NEON::BI__builtin_neon_vld3_lane_v:
7727   case NEON::BI__builtin_neon_vld3q_lane_v:
7728   case NEON::BI__builtin_neon_vld4_lane_v:
7729   case NEON::BI__builtin_neon_vld4q_lane_v: {
7730     llvm::Type *Tys[] = {Ty, Int8PtrTy};
7731     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
7732     for (unsigned I = 2; I < Ops.size() - 1; ++I)
7733       Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
7734     Ops.push_back(getAlignmentValue32(PtrOp1));
7735     Ops[1] = Builder.CreateCall(F, ArrayRef(Ops).slice(1), NameHint);
7736     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7737   }
7738   case NEON::BI__builtin_neon_vmovl_v: {
7739     llvm::FixedVectorType *DTy =
7740         llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
7741     Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
7742     if (Usgn)
7743       return Builder.CreateZExt(Ops[0], Ty, "vmovl");
7744     return Builder.CreateSExt(Ops[0], Ty, "vmovl");
7745   }
7746   case NEON::BI__builtin_neon_vmovn_v: {
7747     llvm::FixedVectorType *QTy =
7748         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
7749     Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
7750     return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
7751   }
7752   case NEON::BI__builtin_neon_vmull_v:
7753     // FIXME: the integer vmull operations could be emitted in terms of pure
7754     // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
7755     // hoisting the exts outside loops. Until global ISel comes along that can
7756     // see through such movement this leads to bad CodeGen. So we need an
7757     // intrinsic for now.
7758     Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
7759     Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
7760     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
7761   case NEON::BI__builtin_neon_vpadal_v:
7762   case NEON::BI__builtin_neon_vpadalq_v: {
7763     // The source operand type has twice as many elements of half the size.
7764     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
7765     llvm::Type *EltTy =
7766       llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
7767     auto *NarrowTy =
7768         llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
7769     llvm::Type *Tys[2] = { Ty, NarrowTy };
7770     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
7771   }
7772   case NEON::BI__builtin_neon_vpaddl_v:
7773   case NEON::BI__builtin_neon_vpaddlq_v: {
7774     // The source operand type has twice as many elements of half the size.
7775     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
7776     llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
7777     auto *NarrowTy =
7778         llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
7779     llvm::Type *Tys[2] = { Ty, NarrowTy };
7780     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
7781   }
7782   case NEON::BI__builtin_neon_vqdmlal_v:
7783   case NEON::BI__builtin_neon_vqdmlsl_v: {
7784     SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
7785     Ops[1] =
7786         EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
7787     Ops.resize(2);
7788     return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
7789   }
7790   case NEON::BI__builtin_neon_vqdmulhq_lane_v:
7791   case NEON::BI__builtin_neon_vqdmulh_lane_v:
7792   case NEON::BI__builtin_neon_vqrdmulhq_lane_v:
7793   case NEON::BI__builtin_neon_vqrdmulh_lane_v: {
7794     auto *RTy = cast<llvm::FixedVectorType>(Ty);
7795     if (BuiltinID == NEON::BI__builtin_neon_vqdmulhq_lane_v ||
7796         BuiltinID == NEON::BI__builtin_neon_vqrdmulhq_lane_v)
7797       RTy = llvm::FixedVectorType::get(RTy->getElementType(),
7798                                        RTy->getNumElements() * 2);
7799     llvm::Type *Tys[2] = {
7800         RTy, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
7801                                              /*isQuad*/ false))};
7802     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
7803   }
7804   case NEON::BI__builtin_neon_vqdmulhq_laneq_v:
7805   case NEON::BI__builtin_neon_vqdmulh_laneq_v:
7806   case NEON::BI__builtin_neon_vqrdmulhq_laneq_v:
7807   case NEON::BI__builtin_neon_vqrdmulh_laneq_v: {
7808     llvm::Type *Tys[2] = {
7809         Ty, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
7810                                             /*isQuad*/ true))};
7811     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
7812   }
7813   case NEON::BI__builtin_neon_vqshl_n_v:
7814   case NEON::BI__builtin_neon_vqshlq_n_v:
7815     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
7816                         1, false);
7817   case NEON::BI__builtin_neon_vqshlu_n_v:
7818   case NEON::BI__builtin_neon_vqshluq_n_v:
7819     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
7820                         1, false);
7821   case NEON::BI__builtin_neon_vrecpe_v:
7822   case NEON::BI__builtin_neon_vrecpeq_v:
7823   case NEON::BI__builtin_neon_vrsqrte_v:
7824   case NEON::BI__builtin_neon_vrsqrteq_v:
7825     Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
7826     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
7827   case NEON::BI__builtin_neon_vrndi_v:
7828   case NEON::BI__builtin_neon_vrndiq_v:
7829     Int = Builder.getIsFPConstrained()
7830               ? Intrinsic::experimental_constrained_nearbyint
7831               : Intrinsic::nearbyint;
7832     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
7833   case NEON::BI__builtin_neon_vrshr_n_v:
7834   case NEON::BI__builtin_neon_vrshrq_n_v:
7835     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
7836                         1, true);
7837   case NEON::BI__builtin_neon_vsha512hq_u64:
7838   case NEON::BI__builtin_neon_vsha512h2q_u64:
7839   case NEON::BI__builtin_neon_vsha512su0q_u64:
7840   case NEON::BI__builtin_neon_vsha512su1q_u64: {
7841     Function *F = CGM.getIntrinsic(Int);
7842     return EmitNeonCall(F, Ops, "");
7843   }
7844   case NEON::BI__builtin_neon_vshl_n_v:
7845   case NEON::BI__builtin_neon_vshlq_n_v:
7846     Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
7847     return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
7848                              "vshl_n");
7849   case NEON::BI__builtin_neon_vshll_n_v: {
7850     llvm::FixedVectorType *SrcTy =
7851         llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
7852     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
7853     if (Usgn)
7854       Ops[0] = Builder.CreateZExt(Ops[0], VTy);
7855     else
7856       Ops[0] = Builder.CreateSExt(Ops[0], VTy);
7857     Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
7858     return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
7859   }
7860   case NEON::BI__builtin_neon_vshrn_n_v: {
7861     llvm::FixedVectorType *SrcTy =
7862         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
7863     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
7864     Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
7865     if (Usgn)
7866       Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
7867     else
7868       Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
7869     return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
7870   }
7871   case NEON::BI__builtin_neon_vshr_n_v:
7872   case NEON::BI__builtin_neon_vshrq_n_v:
7873     return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
7874   case NEON::BI__builtin_neon_vst1_v:
7875   case NEON::BI__builtin_neon_vst1q_v:
7876   case NEON::BI__builtin_neon_vst2_v:
7877   case NEON::BI__builtin_neon_vst2q_v:
7878   case NEON::BI__builtin_neon_vst3_v:
7879   case NEON::BI__builtin_neon_vst3q_v:
7880   case NEON::BI__builtin_neon_vst4_v:
7881   case NEON::BI__builtin_neon_vst4q_v:
7882   case NEON::BI__builtin_neon_vst2_lane_v:
7883   case NEON::BI__builtin_neon_vst2q_lane_v:
7884   case NEON::BI__builtin_neon_vst3_lane_v:
7885   case NEON::BI__builtin_neon_vst3q_lane_v:
7886   case NEON::BI__builtin_neon_vst4_lane_v:
7887   case NEON::BI__builtin_neon_vst4q_lane_v: {
7888     llvm::Type *Tys[] = {Int8PtrTy, Ty};
7889     Ops.push_back(getAlignmentValue32(PtrOp0));
7890     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
7891   }
7892   case NEON::BI__builtin_neon_vsm3partw1q_u32:
7893   case NEON::BI__builtin_neon_vsm3partw2q_u32:
7894   case NEON::BI__builtin_neon_vsm3ss1q_u32:
7895   case NEON::BI__builtin_neon_vsm4ekeyq_u32:
7896   case NEON::BI__builtin_neon_vsm4eq_u32: {
7897     Function *F = CGM.getIntrinsic(Int);
7898     return EmitNeonCall(F, Ops, "");
7899   }
7900   case NEON::BI__builtin_neon_vsm3tt1aq_u32:
7901   case NEON::BI__builtin_neon_vsm3tt1bq_u32:
7902   case NEON::BI__builtin_neon_vsm3tt2aq_u32:
7903   case NEON::BI__builtin_neon_vsm3tt2bq_u32: {
7904     Function *F = CGM.getIntrinsic(Int);
7905     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
7906     return EmitNeonCall(F, Ops, "");
7907   }
7908   case NEON::BI__builtin_neon_vst1_x2_v:
7909   case NEON::BI__builtin_neon_vst1q_x2_v:
7910   case NEON::BI__builtin_neon_vst1_x3_v:
7911   case NEON::BI__builtin_neon_vst1q_x3_v:
7912   case NEON::BI__builtin_neon_vst1_x4_v:
7913   case NEON::BI__builtin_neon_vst1q_x4_v: {
7914     // TODO: Currently in AArch32 mode the pointer operand comes first, whereas
7915     // in AArch64 it comes last. We may want to stick to one or another.
7916     if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be ||
7917         Arch == llvm::Triple::aarch64_32) {
7918       llvm::Type *Tys[2] = {VTy, UnqualPtrTy};
7919       std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
7920       return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
7921     }
7922     llvm::Type *Tys[2] = {UnqualPtrTy, VTy};
7923     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
7924   }
7925   case NEON::BI__builtin_neon_vsubhn_v: {
7926     llvm::FixedVectorType *SrcTy =
7927         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
7928 
7929     // %sum = add <4 x i32> %lhs, %rhs
7930     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
7931     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
7932     Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
7933 
7934     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
7935     Constant *ShiftAmt =
7936         ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
7937     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
7938 
7939     // %res = trunc <4 x i32> %high to <4 x i16>
7940     return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
7941   }
7942   case NEON::BI__builtin_neon_vtrn_v:
7943   case NEON::BI__builtin_neon_vtrnq_v: {
7944     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7945     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7946     Value *SV = nullptr;
7947 
7948     for (unsigned vi = 0; vi != 2; ++vi) {
7949       SmallVector<int, 16> Indices;
7950       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
7951         Indices.push_back(i+vi);
7952         Indices.push_back(i+e+vi);
7953       }
7954       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
7955       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
7956       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
7957     }
7958     return SV;
7959   }
7960   case NEON::BI__builtin_neon_vtst_v:
7961   case NEON::BI__builtin_neon_vtstq_v: {
7962     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7963     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7964     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
7965     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
7966                                 ConstantAggregateZero::get(Ty));
7967     return Builder.CreateSExt(Ops[0], Ty, "vtst");
7968   }
7969   case NEON::BI__builtin_neon_vuzp_v:
7970   case NEON::BI__builtin_neon_vuzpq_v: {
7971     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7972     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7973     Value *SV = nullptr;
7974 
7975     for (unsigned vi = 0; vi != 2; ++vi) {
7976       SmallVector<int, 16> Indices;
7977       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
7978         Indices.push_back(2*i+vi);
7979 
7980       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
7981       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
7982       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
7983     }
7984     return SV;
7985   }
7986   case NEON::BI__builtin_neon_vxarq_u64: {
7987     Function *F = CGM.getIntrinsic(Int);
7988     Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
7989     return EmitNeonCall(F, Ops, "");
7990   }
7991   case NEON::BI__builtin_neon_vzip_v:
7992   case NEON::BI__builtin_neon_vzipq_v: {
7993     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7994     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7995     Value *SV = nullptr;
7996 
7997     for (unsigned vi = 0; vi != 2; ++vi) {
7998       SmallVector<int, 16> Indices;
7999       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
8000         Indices.push_back((i + vi*e) >> 1);
8001         Indices.push_back(((i + vi*e) >> 1)+e);
8002       }
8003       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
8004       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
8005       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
8006     }
8007     return SV;
8008   }
8009   case NEON::BI__builtin_neon_vdot_s32:
8010   case NEON::BI__builtin_neon_vdot_u32:
8011   case NEON::BI__builtin_neon_vdotq_s32:
8012   case NEON::BI__builtin_neon_vdotq_u32: {
8013     auto *InputTy =
8014         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
8015     llvm::Type *Tys[2] = { Ty, InputTy };
8016     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot");
8017   }
8018   case NEON::BI__builtin_neon_vfmlal_low_f16:
8019   case NEON::BI__builtin_neon_vfmlalq_low_f16: {
8020     auto *InputTy =
8021         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
8022     llvm::Type *Tys[2] = { Ty, InputTy };
8023     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low");
8024   }
8025   case NEON::BI__builtin_neon_vfmlsl_low_f16:
8026   case NEON::BI__builtin_neon_vfmlslq_low_f16: {
8027     auto *InputTy =
8028         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
8029     llvm::Type *Tys[2] = { Ty, InputTy };
8030     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low");
8031   }
8032   case NEON::BI__builtin_neon_vfmlal_high_f16:
8033   case NEON::BI__builtin_neon_vfmlalq_high_f16: {
8034     auto *InputTy =
8035         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
8036     llvm::Type *Tys[2] = { Ty, InputTy };
8037     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high");
8038   }
8039   case NEON::BI__builtin_neon_vfmlsl_high_f16:
8040   case NEON::BI__builtin_neon_vfmlslq_high_f16: {
8041     auto *InputTy =
8042         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
8043     llvm::Type *Tys[2] = { Ty, InputTy };
8044     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high");
8045   }
8046   case NEON::BI__builtin_neon_vmmlaq_s32:
8047   case NEON::BI__builtin_neon_vmmlaq_u32: {
8048     auto *InputTy =
8049         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
8050     llvm::Type *Tys[2] = { Ty, InputTy };
8051     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vmmla");
8052   }
8053   case NEON::BI__builtin_neon_vusmmlaq_s32: {
8054     auto *InputTy =
8055         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
8056     llvm::Type *Tys[2] = { Ty, InputTy };
8057     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusmmla");
8058   }
8059   case NEON::BI__builtin_neon_vusdot_s32:
8060   case NEON::BI__builtin_neon_vusdotq_s32: {
8061     auto *InputTy =
8062         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
8063     llvm::Type *Tys[2] = { Ty, InputTy };
8064     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusdot");
8065   }
8066   case NEON::BI__builtin_neon_vbfdot_f32:
8067   case NEON::BI__builtin_neon_vbfdotq_f32: {
8068     llvm::Type *InputTy =
8069         llvm::FixedVectorType::get(BFloatTy, Ty->getPrimitiveSizeInBits() / 16);
8070     llvm::Type *Tys[2] = { Ty, InputTy };
8071     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfdot");
8072   }
8073   case NEON::BI__builtin_neon___a32_vcvt_bf16_f32: {
8074     llvm::Type *Tys[1] = { Ty };
8075     Function *F = CGM.getIntrinsic(Int, Tys);
8076     return EmitNeonCall(F, Ops, "vcvtfp2bf");
8077   }
8078 
8079   }
8080 
8081   assert(Int && "Expected valid intrinsic number");
8082 
8083   // Determine the type(s) of this overloaded AArch64 intrinsic.
8084   Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
8085 
8086   Value *Result = EmitNeonCall(F, Ops, NameHint);
8087   llvm::Type *ResultType = ConvertType(E->getType());
8088   // AArch64 intrinsic one-element vector type cast to
8089   // scalar type expected by the builtin
8090   return Builder.CreateBitCast(Result, ResultType, NameHint);
8091 }
8092 
8093 Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
8094     Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
8095     const CmpInst::Predicate Ip, const Twine &Name) {
8096   llvm::Type *OTy = Op->getType();
8097 
8098   // FIXME: this is utterly horrific. We should not be looking at previous
8099   // codegen context to find out what needs doing. Unfortunately TableGen
8100   // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
8101   // (etc).
8102   if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
8103     OTy = BI->getOperand(0)->getType();
8104 
8105   Op = Builder.CreateBitCast(Op, OTy);
8106   if (OTy->getScalarType()->isFloatingPointTy()) {
8107     if (Fp == CmpInst::FCMP_OEQ)
8108       Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
8109     else
8110       Op = Builder.CreateFCmpS(Fp, Op, Constant::getNullValue(OTy));
8111   } else {
8112     Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
8113   }
8114   return Builder.CreateSExt(Op, Ty, Name);
8115 }
8116 
8117 static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
8118                                  Value *ExtOp, Value *IndexOp,
8119                                  llvm::Type *ResTy, unsigned IntID,
8120                                  const char *Name) {
8121   SmallVector<Value *, 2> TblOps;
8122   if (ExtOp)
8123     TblOps.push_back(ExtOp);
8124 
8125   // Build a vector containing sequential number like (0, 1, 2, ..., 15)
8126   SmallVector<int, 16> Indices;
8127   auto *TblTy = cast<llvm::FixedVectorType>(Ops[0]->getType());
8128   for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
8129     Indices.push_back(2*i);
8130     Indices.push_back(2*i+1);
8131   }
8132 
8133   int PairPos = 0, End = Ops.size() - 1;
8134   while (PairPos < End) {
8135     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
8136                                                      Ops[PairPos+1], Indices,
8137                                                      Name));
8138     PairPos += 2;
8139   }
8140 
8141   // If there's an odd number of 64-bit lookup table, fill the high 64-bit
8142   // of the 128-bit lookup table with zero.
8143   if (PairPos == End) {
8144     Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
8145     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
8146                                                      ZeroTbl, Indices, Name));
8147   }
8148 
8149   Function *TblF;
8150   TblOps.push_back(IndexOp);
8151   TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
8152 
8153   return CGF.EmitNeonCall(TblF, TblOps, Name);
8154 }
8155 
8156 Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
8157   unsigned Value;
8158   switch (BuiltinID) {
8159   default:
8160     return nullptr;
8161   case clang::ARM::BI__builtin_arm_nop:
8162     Value = 0;
8163     break;
8164   case clang::ARM::BI__builtin_arm_yield:
8165   case clang::ARM::BI__yield:
8166     Value = 1;
8167     break;
8168   case clang::ARM::BI__builtin_arm_wfe:
8169   case clang::ARM::BI__wfe:
8170     Value = 2;
8171     break;
8172   case clang::ARM::BI__builtin_arm_wfi:
8173   case clang::ARM::BI__wfi:
8174     Value = 3;
8175     break;
8176   case clang::ARM::BI__builtin_arm_sev:
8177   case clang::ARM::BI__sev:
8178     Value = 4;
8179     break;
8180   case clang::ARM::BI__builtin_arm_sevl:
8181   case clang::ARM::BI__sevl:
8182     Value = 5;
8183     break;
8184   }
8185 
8186   return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
8187                             llvm::ConstantInt::get(Int32Ty, Value));
8188 }
8189 
8190 enum SpecialRegisterAccessKind {
8191   NormalRead,
8192   VolatileRead,
8193   Write,
8194 };
8195 
8196 // Generates the IR for __builtin_read_exec_*.
8197 // Lowers the builtin to amdgcn_ballot intrinsic.
8198 static Value *EmitAMDGCNBallotForExec(CodeGenFunction &CGF, const CallExpr *E,
8199                                       llvm::Type *RegisterType,
8200                                       llvm::Type *ValueType, bool isExecHi) {
8201   CodeGen::CGBuilderTy &Builder = CGF.Builder;
8202   CodeGen::CodeGenModule &CGM = CGF.CGM;
8203 
8204   Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_ballot, {RegisterType});
8205   llvm::Value *Call = Builder.CreateCall(F, {Builder.getInt1(true)});
8206 
8207   if (isExecHi) {
8208     Value *Rt2 = Builder.CreateLShr(Call, 32);
8209     Rt2 = Builder.CreateTrunc(Rt2, CGF.Int32Ty);
8210     return Rt2;
8211   }
8212 
8213   return Call;
8214 }
8215 
8216 // Generates the IR for the read/write special register builtin,
8217 // ValueType is the type of the value that is to be written or read,
8218 // RegisterType is the type of the register being written to or read from.
8219 static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
8220                                          const CallExpr *E,
8221                                          llvm::Type *RegisterType,
8222                                          llvm::Type *ValueType,
8223                                          SpecialRegisterAccessKind AccessKind,
8224                                          StringRef SysReg = "") {
8225   // write and register intrinsics only support 32, 64 and 128 bit operations.
8226   assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64) ||
8227           RegisterType->isIntegerTy(128)) &&
8228          "Unsupported size for register.");
8229 
8230   CodeGen::CGBuilderTy &Builder = CGF.Builder;
8231   CodeGen::CodeGenModule &CGM = CGF.CGM;
8232   LLVMContext &Context = CGM.getLLVMContext();
8233 
8234   if (SysReg.empty()) {
8235     const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
8236     SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
8237   }
8238 
8239   llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
8240   llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
8241   llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
8242 
8243   llvm::Type *Types[] = { RegisterType };
8244 
8245   bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
8246   assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))
8247             && "Can't fit 64-bit value in 32-bit register");
8248 
8249   if (AccessKind != Write) {
8250     assert(AccessKind == NormalRead || AccessKind == VolatileRead);
8251     llvm::Function *F = CGM.getIntrinsic(
8252         AccessKind == VolatileRead ? llvm::Intrinsic::read_volatile_register
8253                                    : llvm::Intrinsic::read_register,
8254         Types);
8255     llvm::Value *Call = Builder.CreateCall(F, Metadata);
8256 
8257     if (MixedTypes)
8258       // Read into 64 bit register and then truncate result to 32 bit.
8259       return Builder.CreateTrunc(Call, ValueType);
8260 
8261     if (ValueType->isPointerTy())
8262       // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
8263       return Builder.CreateIntToPtr(Call, ValueType);
8264 
8265     return Call;
8266   }
8267 
8268   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
8269   llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
8270   if (MixedTypes) {
8271     // Extend 32 bit write value to 64 bit to pass to write.
8272     ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
8273     return Builder.CreateCall(F, { Metadata, ArgValue });
8274   }
8275 
8276   if (ValueType->isPointerTy()) {
8277     // Have VoidPtrTy ArgValue but want to return an i32/i64.
8278     ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
8279     return Builder.CreateCall(F, { Metadata, ArgValue });
8280   }
8281 
8282   return Builder.CreateCall(F, { Metadata, ArgValue });
8283 }
8284 
8285 /// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
8286 /// argument that specifies the vector type.
8287 static bool HasExtraNeonArgument(unsigned BuiltinID) {
8288   switch (BuiltinID) {
8289   default: break;
8290   case NEON::BI__builtin_neon_vget_lane_i8:
8291   case NEON::BI__builtin_neon_vget_lane_i16:
8292   case NEON::BI__builtin_neon_vget_lane_bf16:
8293   case NEON::BI__builtin_neon_vget_lane_i32:
8294   case NEON::BI__builtin_neon_vget_lane_i64:
8295   case NEON::BI__builtin_neon_vget_lane_f32:
8296   case NEON::BI__builtin_neon_vgetq_lane_i8:
8297   case NEON::BI__builtin_neon_vgetq_lane_i16:
8298   case NEON::BI__builtin_neon_vgetq_lane_bf16:
8299   case NEON::BI__builtin_neon_vgetq_lane_i32:
8300   case NEON::BI__builtin_neon_vgetq_lane_i64:
8301   case NEON::BI__builtin_neon_vgetq_lane_f32:
8302   case NEON::BI__builtin_neon_vduph_lane_bf16:
8303   case NEON::BI__builtin_neon_vduph_laneq_bf16:
8304   case NEON::BI__builtin_neon_vset_lane_i8:
8305   case NEON::BI__builtin_neon_vset_lane_i16:
8306   case NEON::BI__builtin_neon_vset_lane_bf16:
8307   case NEON::BI__builtin_neon_vset_lane_i32:
8308   case NEON::BI__builtin_neon_vset_lane_i64:
8309   case NEON::BI__builtin_neon_vset_lane_f32:
8310   case NEON::BI__builtin_neon_vsetq_lane_i8:
8311   case NEON::BI__builtin_neon_vsetq_lane_i16:
8312   case NEON::BI__builtin_neon_vsetq_lane_bf16:
8313   case NEON::BI__builtin_neon_vsetq_lane_i32:
8314   case NEON::BI__builtin_neon_vsetq_lane_i64:
8315   case NEON::BI__builtin_neon_vsetq_lane_f32:
8316   case NEON::BI__builtin_neon_vsha1h_u32:
8317   case NEON::BI__builtin_neon_vsha1cq_u32:
8318   case NEON::BI__builtin_neon_vsha1pq_u32:
8319   case NEON::BI__builtin_neon_vsha1mq_u32:
8320   case NEON::BI__builtin_neon_vcvth_bf16_f32:
8321   case clang::ARM::BI_MoveToCoprocessor:
8322   case clang::ARM::BI_MoveToCoprocessor2:
8323     return false;
8324   }
8325   return true;
8326 }
8327 
8328 Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
8329                                            const CallExpr *E,
8330                                            ReturnValueSlot ReturnValue,
8331                                            llvm::Triple::ArchType Arch) {
8332   if (auto Hint = GetValueForARMHint(BuiltinID))
8333     return Hint;
8334 
8335   if (BuiltinID == clang::ARM::BI__emit) {
8336     bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
8337     llvm::FunctionType *FTy =
8338         llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
8339 
8340     Expr::EvalResult Result;
8341     if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
8342       llvm_unreachable("Sema will ensure that the parameter is constant");
8343 
8344     llvm::APSInt Value = Result.Val.getInt();
8345     uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
8346 
8347     llvm::InlineAsm *Emit =
8348         IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
8349                                  /*hasSideEffects=*/true)
8350                 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
8351                                  /*hasSideEffects=*/true);
8352 
8353     return Builder.CreateCall(Emit);
8354   }
8355 
8356   if (BuiltinID == clang::ARM::BI__builtin_arm_dbg) {
8357     Value *Option = EmitScalarExpr(E->getArg(0));
8358     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
8359   }
8360 
8361   if (BuiltinID == clang::ARM::BI__builtin_arm_prefetch) {
8362     Value *Address = EmitScalarExpr(E->getArg(0));
8363     Value *RW      = EmitScalarExpr(E->getArg(1));
8364     Value *IsData  = EmitScalarExpr(E->getArg(2));
8365 
8366     // Locality is not supported on ARM target
8367     Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
8368 
8369     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
8370     return Builder.CreateCall(F, {Address, RW, Locality, IsData});
8371   }
8372 
8373   if (BuiltinID == clang::ARM::BI__builtin_arm_rbit) {
8374     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8375     return Builder.CreateCall(
8376         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
8377   }
8378 
8379   if (BuiltinID == clang::ARM::BI__builtin_arm_clz ||
8380       BuiltinID == clang::ARM::BI__builtin_arm_clz64) {
8381     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8382     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Arg->getType());
8383     Value *Res = Builder.CreateCall(F, {Arg, Builder.getInt1(false)});
8384     if (BuiltinID == clang::ARM::BI__builtin_arm_clz64)
8385       Res = Builder.CreateTrunc(Res, Builder.getInt32Ty());
8386     return Res;
8387   }
8388 
8389 
8390   if (BuiltinID == clang::ARM::BI__builtin_arm_cls) {
8391     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8392     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls), Arg, "cls");
8393   }
8394   if (BuiltinID == clang::ARM::BI__builtin_arm_cls64) {
8395     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8396     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls64), Arg,
8397                               "cls");
8398   }
8399 
8400   if (BuiltinID == clang::ARM::BI__clear_cache) {
8401     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
8402     const FunctionDecl *FD = E->getDirectCallee();
8403     Value *Ops[2];
8404     for (unsigned i = 0; i < 2; i++)
8405       Ops[i] = EmitScalarExpr(E->getArg(i));
8406     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
8407     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
8408     StringRef Name = FD->getName();
8409     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
8410   }
8411 
8412   if (BuiltinID == clang::ARM::BI__builtin_arm_mcrr ||
8413       BuiltinID == clang::ARM::BI__builtin_arm_mcrr2) {
8414     Function *F;
8415 
8416     switch (BuiltinID) {
8417     default: llvm_unreachable("unexpected builtin");
8418     case clang::ARM::BI__builtin_arm_mcrr:
8419       F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
8420       break;
8421     case clang::ARM::BI__builtin_arm_mcrr2:
8422       F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
8423       break;
8424     }
8425 
8426     // MCRR{2} instruction has 5 operands but
8427     // the intrinsic has 4 because Rt and Rt2
8428     // are represented as a single unsigned 64
8429     // bit integer in the intrinsic definition
8430     // but internally it's represented as 2 32
8431     // bit integers.
8432 
8433     Value *Coproc = EmitScalarExpr(E->getArg(0));
8434     Value *Opc1 = EmitScalarExpr(E->getArg(1));
8435     Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
8436     Value *CRm = EmitScalarExpr(E->getArg(3));
8437 
8438     Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
8439     Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
8440     Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
8441     Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
8442 
8443     return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
8444   }
8445 
8446   if (BuiltinID == clang::ARM::BI__builtin_arm_mrrc ||
8447       BuiltinID == clang::ARM::BI__builtin_arm_mrrc2) {
8448     Function *F;
8449 
8450     switch (BuiltinID) {
8451     default: llvm_unreachable("unexpected builtin");
8452     case clang::ARM::BI__builtin_arm_mrrc:
8453       F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
8454       break;
8455     case clang::ARM::BI__builtin_arm_mrrc2:
8456       F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
8457       break;
8458     }
8459 
8460     Value *Coproc = EmitScalarExpr(E->getArg(0));
8461     Value *Opc1 = EmitScalarExpr(E->getArg(1));
8462     Value *CRm  = EmitScalarExpr(E->getArg(2));
8463     Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
8464 
8465     // Returns an unsigned 64 bit integer, represented
8466     // as two 32 bit integers.
8467 
8468     Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
8469     Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
8470     Rt = Builder.CreateZExt(Rt, Int64Ty);
8471     Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
8472 
8473     Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
8474     RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
8475     RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
8476 
8477     return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
8478   }
8479 
8480   if (BuiltinID == clang::ARM::BI__builtin_arm_ldrexd ||
8481       ((BuiltinID == clang::ARM::BI__builtin_arm_ldrex ||
8482         BuiltinID == clang::ARM::BI__builtin_arm_ldaex) &&
8483        getContext().getTypeSize(E->getType()) == 64) ||
8484       BuiltinID == clang::ARM::BI__ldrexd) {
8485     Function *F;
8486 
8487     switch (BuiltinID) {
8488     default: llvm_unreachable("unexpected builtin");
8489     case clang::ARM::BI__builtin_arm_ldaex:
8490       F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
8491       break;
8492     case clang::ARM::BI__builtin_arm_ldrexd:
8493     case clang::ARM::BI__builtin_arm_ldrex:
8494     case clang::ARM::BI__ldrexd:
8495       F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
8496       break;
8497     }
8498 
8499     Value *LdPtr = EmitScalarExpr(E->getArg(0));
8500     Value *Val = Builder.CreateCall(F, LdPtr, "ldrexd");
8501 
8502     Value *Val0 = Builder.CreateExtractValue(Val, 1);
8503     Value *Val1 = Builder.CreateExtractValue(Val, 0);
8504     Val0 = Builder.CreateZExt(Val0, Int64Ty);
8505     Val1 = Builder.CreateZExt(Val1, Int64Ty);
8506 
8507     Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
8508     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
8509     Val = Builder.CreateOr(Val, Val1);
8510     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
8511   }
8512 
8513   if (BuiltinID == clang::ARM::BI__builtin_arm_ldrex ||
8514       BuiltinID == clang::ARM::BI__builtin_arm_ldaex) {
8515     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
8516 
8517     QualType Ty = E->getType();
8518     llvm::Type *RealResTy = ConvertType(Ty);
8519     llvm::Type *IntTy =
8520         llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty));
8521 
8522     Function *F = CGM.getIntrinsic(
8523         BuiltinID == clang::ARM::BI__builtin_arm_ldaex ? Intrinsic::arm_ldaex
8524                                                        : Intrinsic::arm_ldrex,
8525         UnqualPtrTy);
8526     CallInst *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
8527     Val->addParamAttr(
8528         0, Attribute::get(getLLVMContext(), Attribute::ElementType, IntTy));
8529 
8530     if (RealResTy->isPointerTy())
8531       return Builder.CreateIntToPtr(Val, RealResTy);
8532     else {
8533       llvm::Type *IntResTy = llvm::IntegerType::get(
8534           getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
8535       return Builder.CreateBitCast(Builder.CreateTruncOrBitCast(Val, IntResTy),
8536                                    RealResTy);
8537     }
8538   }
8539 
8540   if (BuiltinID == clang::ARM::BI__builtin_arm_strexd ||
8541       ((BuiltinID == clang::ARM::BI__builtin_arm_stlex ||
8542         BuiltinID == clang::ARM::BI__builtin_arm_strex) &&
8543        getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
8544     Function *F = CGM.getIntrinsic(
8545         BuiltinID == clang::ARM::BI__builtin_arm_stlex ? Intrinsic::arm_stlexd
8546                                                        : Intrinsic::arm_strexd);
8547     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty);
8548 
8549     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
8550     Value *Val = EmitScalarExpr(E->getArg(0));
8551     Builder.CreateStore(Val, Tmp);
8552 
8553     Address LdPtr = Tmp.withElementType(STy);
8554     Val = Builder.CreateLoad(LdPtr);
8555 
8556     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
8557     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
8558     Value *StPtr = EmitScalarExpr(E->getArg(1));
8559     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
8560   }
8561 
8562   if (BuiltinID == clang::ARM::BI__builtin_arm_strex ||
8563       BuiltinID == clang::ARM::BI__builtin_arm_stlex) {
8564     Value *StoreVal = EmitScalarExpr(E->getArg(0));
8565     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
8566 
8567     QualType Ty = E->getArg(0)->getType();
8568     llvm::Type *StoreTy =
8569         llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty));
8570 
8571     if (StoreVal->getType()->isPointerTy())
8572       StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
8573     else {
8574       llvm::Type *IntTy = llvm::IntegerType::get(
8575           getLLVMContext(),
8576           CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
8577       StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
8578       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
8579     }
8580 
8581     Function *F = CGM.getIntrinsic(
8582         BuiltinID == clang::ARM::BI__builtin_arm_stlex ? Intrinsic::arm_stlex
8583                                                        : Intrinsic::arm_strex,
8584         StoreAddr->getType());
8585 
8586     CallInst *CI = Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
8587     CI->addParamAttr(
8588         1, Attribute::get(getLLVMContext(), Attribute::ElementType, StoreTy));
8589     return CI;
8590   }
8591 
8592   if (BuiltinID == clang::ARM::BI__builtin_arm_clrex) {
8593     Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
8594     return Builder.CreateCall(F);
8595   }
8596 
8597   // CRC32
8598   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
8599   switch (BuiltinID) {
8600   case clang::ARM::BI__builtin_arm_crc32b:
8601     CRCIntrinsicID = Intrinsic::arm_crc32b; break;
8602   case clang::ARM::BI__builtin_arm_crc32cb:
8603     CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
8604   case clang::ARM::BI__builtin_arm_crc32h:
8605     CRCIntrinsicID = Intrinsic::arm_crc32h; break;
8606   case clang::ARM::BI__builtin_arm_crc32ch:
8607     CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
8608   case clang::ARM::BI__builtin_arm_crc32w:
8609   case clang::ARM::BI__builtin_arm_crc32d:
8610     CRCIntrinsicID = Intrinsic::arm_crc32w; break;
8611   case clang::ARM::BI__builtin_arm_crc32cw:
8612   case clang::ARM::BI__builtin_arm_crc32cd:
8613     CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
8614   }
8615 
8616   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
8617     Value *Arg0 = EmitScalarExpr(E->getArg(0));
8618     Value *Arg1 = EmitScalarExpr(E->getArg(1));
8619 
8620     // crc32{c,}d intrinsics are implemented as two calls to crc32{c,}w
8621     // intrinsics, hence we need different codegen for these cases.
8622     if (BuiltinID == clang::ARM::BI__builtin_arm_crc32d ||
8623         BuiltinID == clang::ARM::BI__builtin_arm_crc32cd) {
8624       Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
8625       Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
8626       Value *Arg1b = Builder.CreateLShr(Arg1, C1);
8627       Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
8628 
8629       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
8630       Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
8631       return Builder.CreateCall(F, {Res, Arg1b});
8632     } else {
8633       Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
8634 
8635       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
8636       return Builder.CreateCall(F, {Arg0, Arg1});
8637     }
8638   }
8639 
8640   if (BuiltinID == clang::ARM::BI__builtin_arm_rsr ||
8641       BuiltinID == clang::ARM::BI__builtin_arm_rsr64 ||
8642       BuiltinID == clang::ARM::BI__builtin_arm_rsrp ||
8643       BuiltinID == clang::ARM::BI__builtin_arm_wsr ||
8644       BuiltinID == clang::ARM::BI__builtin_arm_wsr64 ||
8645       BuiltinID == clang::ARM::BI__builtin_arm_wsrp) {
8646 
8647     SpecialRegisterAccessKind AccessKind = Write;
8648     if (BuiltinID == clang::ARM::BI__builtin_arm_rsr ||
8649         BuiltinID == clang::ARM::BI__builtin_arm_rsr64 ||
8650         BuiltinID == clang::ARM::BI__builtin_arm_rsrp)
8651       AccessKind = VolatileRead;
8652 
8653     bool IsPointerBuiltin = BuiltinID == clang::ARM::BI__builtin_arm_rsrp ||
8654                             BuiltinID == clang::ARM::BI__builtin_arm_wsrp;
8655 
8656     bool Is64Bit = BuiltinID == clang::ARM::BI__builtin_arm_rsr64 ||
8657                    BuiltinID == clang::ARM::BI__builtin_arm_wsr64;
8658 
8659     llvm::Type *ValueType;
8660     llvm::Type *RegisterType;
8661     if (IsPointerBuiltin) {
8662       ValueType = VoidPtrTy;
8663       RegisterType = Int32Ty;
8664     } else if (Is64Bit) {
8665       ValueType = RegisterType = Int64Ty;
8666     } else {
8667       ValueType = RegisterType = Int32Ty;
8668     }
8669 
8670     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
8671                                       AccessKind);
8672   }
8673 
8674   if (BuiltinID == ARM::BI__builtin_sponentry) {
8675     llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy);
8676     return Builder.CreateCall(F);
8677   }
8678 
8679   // Handle MSVC intrinsics before argument evaluation to prevent double
8680   // evaluation.
8681   if (std::optional<MSVCIntrin> MsvcIntId = translateArmToMsvcIntrin(BuiltinID))
8682     return EmitMSVCBuiltinExpr(*MsvcIntId, E);
8683 
8684   // Deal with MVE builtins
8685   if (Value *Result = EmitARMMVEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
8686     return Result;
8687   // Handle CDE builtins
8688   if (Value *Result = EmitARMCDEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
8689     return Result;
8690 
8691   // Some intrinsics are equivalent - if they are use the base intrinsic ID.
8692   auto It = llvm::find_if(NEONEquivalentIntrinsicMap, [BuiltinID](auto &P) {
8693     return P.first == BuiltinID;
8694   });
8695   if (It != end(NEONEquivalentIntrinsicMap))
8696     BuiltinID = It->second;
8697 
8698   // Find out if any arguments are required to be integer constant
8699   // expressions.
8700   unsigned ICEArguments = 0;
8701   ASTContext::GetBuiltinTypeError Error;
8702   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
8703   assert(Error == ASTContext::GE_None && "Should not codegen an error");
8704 
8705   auto getAlignmentValue32 = [&](Address addr) -> Value* {
8706     return Builder.getInt32(addr.getAlignment().getQuantity());
8707   };
8708 
8709   Address PtrOp0 = Address::invalid();
8710   Address PtrOp1 = Address::invalid();
8711   SmallVector<Value*, 4> Ops;
8712   bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
8713   unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
8714   for (unsigned i = 0, e = NumArgs; i != e; i++) {
8715     if (i == 0) {
8716       switch (BuiltinID) {
8717       case NEON::BI__builtin_neon_vld1_v:
8718       case NEON::BI__builtin_neon_vld1q_v:
8719       case NEON::BI__builtin_neon_vld1q_lane_v:
8720       case NEON::BI__builtin_neon_vld1_lane_v:
8721       case NEON::BI__builtin_neon_vld1_dup_v:
8722       case NEON::BI__builtin_neon_vld1q_dup_v:
8723       case NEON::BI__builtin_neon_vst1_v:
8724       case NEON::BI__builtin_neon_vst1q_v:
8725       case NEON::BI__builtin_neon_vst1q_lane_v:
8726       case NEON::BI__builtin_neon_vst1_lane_v:
8727       case NEON::BI__builtin_neon_vst2_v:
8728       case NEON::BI__builtin_neon_vst2q_v:
8729       case NEON::BI__builtin_neon_vst2_lane_v:
8730       case NEON::BI__builtin_neon_vst2q_lane_v:
8731       case NEON::BI__builtin_neon_vst3_v:
8732       case NEON::BI__builtin_neon_vst3q_v:
8733       case NEON::BI__builtin_neon_vst3_lane_v:
8734       case NEON::BI__builtin_neon_vst3q_lane_v:
8735       case NEON::BI__builtin_neon_vst4_v:
8736       case NEON::BI__builtin_neon_vst4q_v:
8737       case NEON::BI__builtin_neon_vst4_lane_v:
8738       case NEON::BI__builtin_neon_vst4q_lane_v:
8739         // Get the alignment for the argument in addition to the value;
8740         // we'll use it later.
8741         PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
8742         Ops.push_back(PtrOp0.getPointer());
8743         continue;
8744       }
8745     }
8746     if (i == 1) {
8747       switch (BuiltinID) {
8748       case NEON::BI__builtin_neon_vld2_v:
8749       case NEON::BI__builtin_neon_vld2q_v:
8750       case NEON::BI__builtin_neon_vld3_v:
8751       case NEON::BI__builtin_neon_vld3q_v:
8752       case NEON::BI__builtin_neon_vld4_v:
8753       case NEON::BI__builtin_neon_vld4q_v:
8754       case NEON::BI__builtin_neon_vld2_lane_v:
8755       case NEON::BI__builtin_neon_vld2q_lane_v:
8756       case NEON::BI__builtin_neon_vld3_lane_v:
8757       case NEON::BI__builtin_neon_vld3q_lane_v:
8758       case NEON::BI__builtin_neon_vld4_lane_v:
8759       case NEON::BI__builtin_neon_vld4q_lane_v:
8760       case NEON::BI__builtin_neon_vld2_dup_v:
8761       case NEON::BI__builtin_neon_vld2q_dup_v:
8762       case NEON::BI__builtin_neon_vld3_dup_v:
8763       case NEON::BI__builtin_neon_vld3q_dup_v:
8764       case NEON::BI__builtin_neon_vld4_dup_v:
8765       case NEON::BI__builtin_neon_vld4q_dup_v:
8766         // Get the alignment for the argument in addition to the value;
8767         // we'll use it later.
8768         PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
8769         Ops.push_back(PtrOp1.getPointer());
8770         continue;
8771       }
8772     }
8773 
8774     Ops.push_back(EmitScalarOrConstFoldImmArg(ICEArguments, i, E));
8775   }
8776 
8777   switch (BuiltinID) {
8778   default: break;
8779 
8780   case NEON::BI__builtin_neon_vget_lane_i8:
8781   case NEON::BI__builtin_neon_vget_lane_i16:
8782   case NEON::BI__builtin_neon_vget_lane_i32:
8783   case NEON::BI__builtin_neon_vget_lane_i64:
8784   case NEON::BI__builtin_neon_vget_lane_bf16:
8785   case NEON::BI__builtin_neon_vget_lane_f32:
8786   case NEON::BI__builtin_neon_vgetq_lane_i8:
8787   case NEON::BI__builtin_neon_vgetq_lane_i16:
8788   case NEON::BI__builtin_neon_vgetq_lane_i32:
8789   case NEON::BI__builtin_neon_vgetq_lane_i64:
8790   case NEON::BI__builtin_neon_vgetq_lane_bf16:
8791   case NEON::BI__builtin_neon_vgetq_lane_f32:
8792   case NEON::BI__builtin_neon_vduph_lane_bf16:
8793   case NEON::BI__builtin_neon_vduph_laneq_bf16:
8794     return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
8795 
8796   case NEON::BI__builtin_neon_vrndns_f32: {
8797     Value *Arg = EmitScalarExpr(E->getArg(0));
8798     llvm::Type *Tys[] = {Arg->getType()};
8799     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys);
8800     return Builder.CreateCall(F, {Arg}, "vrndn"); }
8801 
8802   case NEON::BI__builtin_neon_vset_lane_i8:
8803   case NEON::BI__builtin_neon_vset_lane_i16:
8804   case NEON::BI__builtin_neon_vset_lane_i32:
8805   case NEON::BI__builtin_neon_vset_lane_i64:
8806   case NEON::BI__builtin_neon_vset_lane_bf16:
8807   case NEON::BI__builtin_neon_vset_lane_f32:
8808   case NEON::BI__builtin_neon_vsetq_lane_i8:
8809   case NEON::BI__builtin_neon_vsetq_lane_i16:
8810   case NEON::BI__builtin_neon_vsetq_lane_i32:
8811   case NEON::BI__builtin_neon_vsetq_lane_i64:
8812   case NEON::BI__builtin_neon_vsetq_lane_bf16:
8813   case NEON::BI__builtin_neon_vsetq_lane_f32:
8814     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
8815 
8816   case NEON::BI__builtin_neon_vsha1h_u32:
8817     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
8818                         "vsha1h");
8819   case NEON::BI__builtin_neon_vsha1cq_u32:
8820     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
8821                         "vsha1h");
8822   case NEON::BI__builtin_neon_vsha1pq_u32:
8823     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
8824                         "vsha1h");
8825   case NEON::BI__builtin_neon_vsha1mq_u32:
8826     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
8827                         "vsha1h");
8828 
8829   case NEON::BI__builtin_neon_vcvth_bf16_f32: {
8830     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vcvtbfp2bf), Ops,
8831                         "vcvtbfp2bf");
8832   }
8833 
8834   // The ARM _MoveToCoprocessor builtins put the input register value as
8835   // the first argument, but the LLVM intrinsic expects it as the third one.
8836   case clang::ARM::BI_MoveToCoprocessor:
8837   case clang::ARM::BI_MoveToCoprocessor2: {
8838     Function *F = CGM.getIntrinsic(BuiltinID == clang::ARM::BI_MoveToCoprocessor
8839                                        ? Intrinsic::arm_mcr
8840                                        : Intrinsic::arm_mcr2);
8841     return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
8842                                   Ops[3], Ops[4], Ops[5]});
8843   }
8844   }
8845 
8846   // Get the last argument, which specifies the vector type.
8847   assert(HasExtraArg);
8848   const Expr *Arg = E->getArg(E->getNumArgs()-1);
8849   std::optional<llvm::APSInt> Result =
8850       Arg->getIntegerConstantExpr(getContext());
8851   if (!Result)
8852     return nullptr;
8853 
8854   if (BuiltinID == clang::ARM::BI__builtin_arm_vcvtr_f ||
8855       BuiltinID == clang::ARM::BI__builtin_arm_vcvtr_d) {
8856     // Determine the overloaded type of this builtin.
8857     llvm::Type *Ty;
8858     if (BuiltinID == clang::ARM::BI__builtin_arm_vcvtr_f)
8859       Ty = FloatTy;
8860     else
8861       Ty = DoubleTy;
8862 
8863     // Determine whether this is an unsigned conversion or not.
8864     bool usgn = Result->getZExtValue() == 1;
8865     unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
8866 
8867     // Call the appropriate intrinsic.
8868     Function *F = CGM.getIntrinsic(Int, Ty);
8869     return Builder.CreateCall(F, Ops, "vcvtr");
8870   }
8871 
8872   // Determine the type of this overloaded NEON intrinsic.
8873   NeonTypeFlags Type = Result->getZExtValue();
8874   bool usgn = Type.isUnsigned();
8875   bool rightShift = false;
8876 
8877   llvm::FixedVectorType *VTy =
8878       GetNeonType(this, Type, getTarget().hasLegalHalfType(), false,
8879                   getTarget().hasBFloat16Type());
8880   llvm::Type *Ty = VTy;
8881   if (!Ty)
8882     return nullptr;
8883 
8884   // Many NEON builtins have identical semantics and uses in ARM and
8885   // AArch64. Emit these in a single function.
8886   auto IntrinsicMap = ArrayRef(ARMSIMDIntrinsicMap);
8887   const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
8888       IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
8889   if (Builtin)
8890     return EmitCommonNeonBuiltinExpr(
8891         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
8892         Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch);
8893 
8894   unsigned Int;
8895   switch (BuiltinID) {
8896   default: return nullptr;
8897   case NEON::BI__builtin_neon_vld1q_lane_v:
8898     // Handle 64-bit integer elements as a special case.  Use shuffles of
8899     // one-element vectors to avoid poor code for i64 in the backend.
8900     if (VTy->getElementType()->isIntegerTy(64)) {
8901       // Extract the other lane.
8902       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8903       int Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
8904       Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
8905       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
8906       // Load the value as a one-element vector.
8907       Ty = llvm::FixedVectorType::get(VTy->getElementType(), 1);
8908       llvm::Type *Tys[] = {Ty, Int8PtrTy};
8909       Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
8910       Value *Align = getAlignmentValue32(PtrOp0);
8911       Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
8912       // Combine them.
8913       int Indices[] = {1 - Lane, Lane};
8914       return Builder.CreateShuffleVector(Ops[1], Ld, Indices, "vld1q_lane");
8915     }
8916     [[fallthrough]];
8917   case NEON::BI__builtin_neon_vld1_lane_v: {
8918     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8919     PtrOp0 = PtrOp0.withElementType(VTy->getElementType());
8920     Value *Ld = Builder.CreateLoad(PtrOp0);
8921     return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
8922   }
8923   case NEON::BI__builtin_neon_vqrshrn_n_v:
8924     Int =
8925       usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
8926     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
8927                         1, true);
8928   case NEON::BI__builtin_neon_vqrshrun_n_v:
8929     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
8930                         Ops, "vqrshrun_n", 1, true);
8931   case NEON::BI__builtin_neon_vqshrn_n_v:
8932     Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
8933     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
8934                         1, true);
8935   case NEON::BI__builtin_neon_vqshrun_n_v:
8936     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
8937                         Ops, "vqshrun_n", 1, true);
8938   case NEON::BI__builtin_neon_vrecpe_v:
8939   case NEON::BI__builtin_neon_vrecpeq_v:
8940     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
8941                         Ops, "vrecpe");
8942   case NEON::BI__builtin_neon_vrshrn_n_v:
8943     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
8944                         Ops, "vrshrn_n", 1, true);
8945   case NEON::BI__builtin_neon_vrsra_n_v:
8946   case NEON::BI__builtin_neon_vrsraq_n_v:
8947     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8948     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8949     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
8950     Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
8951     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
8952     return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
8953   case NEON::BI__builtin_neon_vsri_n_v:
8954   case NEON::BI__builtin_neon_vsriq_n_v:
8955     rightShift = true;
8956     [[fallthrough]];
8957   case NEON::BI__builtin_neon_vsli_n_v:
8958   case NEON::BI__builtin_neon_vsliq_n_v:
8959     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
8960     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
8961                         Ops, "vsli_n");
8962   case NEON::BI__builtin_neon_vsra_n_v:
8963   case NEON::BI__builtin_neon_vsraq_n_v:
8964     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8965     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
8966     return Builder.CreateAdd(Ops[0], Ops[1]);
8967   case NEON::BI__builtin_neon_vst1q_lane_v:
8968     // Handle 64-bit integer elements as a special case.  Use a shuffle to get
8969     // a one-element vector and avoid poor code for i64 in the backend.
8970     if (VTy->getElementType()->isIntegerTy(64)) {
8971       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8972       Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
8973       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
8974       Ops[2] = getAlignmentValue32(PtrOp0);
8975       llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
8976       return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
8977                                                  Tys), Ops);
8978     }
8979     [[fallthrough]];
8980   case NEON::BI__builtin_neon_vst1_lane_v: {
8981     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8982     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
8983     return Builder.CreateStore(Ops[1],
8984                                PtrOp0.withElementType(Ops[1]->getType()));
8985   }
8986   case NEON::BI__builtin_neon_vtbl1_v:
8987     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
8988                         Ops, "vtbl1");
8989   case NEON::BI__builtin_neon_vtbl2_v:
8990     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
8991                         Ops, "vtbl2");
8992   case NEON::BI__builtin_neon_vtbl3_v:
8993     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
8994                         Ops, "vtbl3");
8995   case NEON::BI__builtin_neon_vtbl4_v:
8996     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
8997                         Ops, "vtbl4");
8998   case NEON::BI__builtin_neon_vtbx1_v:
8999     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
9000                         Ops, "vtbx1");
9001   case NEON::BI__builtin_neon_vtbx2_v:
9002     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
9003                         Ops, "vtbx2");
9004   case NEON::BI__builtin_neon_vtbx3_v:
9005     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
9006                         Ops, "vtbx3");
9007   case NEON::BI__builtin_neon_vtbx4_v:
9008     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
9009                         Ops, "vtbx4");
9010   }
9011 }
9012 
9013 template<typename Integer>
9014 static Integer GetIntegerConstantValue(const Expr *E, ASTContext &Context) {
9015   return E->getIntegerConstantExpr(Context)->getExtValue();
9016 }
9017 
9018 static llvm::Value *SignOrZeroExtend(CGBuilderTy &Builder, llvm::Value *V,
9019                                      llvm::Type *T, bool Unsigned) {
9020   // Helper function called by Tablegen-constructed ARM MVE builtin codegen,
9021   // which finds it convenient to specify signed/unsigned as a boolean flag.
9022   return Unsigned ? Builder.CreateZExt(V, T) : Builder.CreateSExt(V, T);
9023 }
9024 
9025 static llvm::Value *MVEImmediateShr(CGBuilderTy &Builder, llvm::Value *V,
9026                                     uint32_t Shift, bool Unsigned) {
9027   // MVE helper function for integer shift right. This must handle signed vs
9028   // unsigned, and also deal specially with the case where the shift count is
9029   // equal to the lane size. In LLVM IR, an LShr with that parameter would be
9030   // undefined behavior, but in MVE it's legal, so we must convert it to code
9031   // that is not undefined in IR.
9032   unsigned LaneBits = cast<llvm::VectorType>(V->getType())
9033                           ->getElementType()
9034                           ->getPrimitiveSizeInBits();
9035   if (Shift == LaneBits) {
9036     // An unsigned shift of the full lane size always generates zero, so we can
9037     // simply emit a zero vector. A signed shift of the full lane size does the
9038     // same thing as shifting by one bit fewer.
9039     if (Unsigned)
9040       return llvm::Constant::getNullValue(V->getType());
9041     else
9042       --Shift;
9043   }
9044   return Unsigned ? Builder.CreateLShr(V, Shift) : Builder.CreateAShr(V, Shift);
9045 }
9046 
9047 static llvm::Value *ARMMVEVectorSplat(CGBuilderTy &Builder, llvm::Value *V) {
9048   // MVE-specific helper function for a vector splat, which infers the element
9049   // count of the output vector by knowing that MVE vectors are all 128 bits
9050   // wide.
9051   unsigned Elements = 128 / V->getType()->getPrimitiveSizeInBits();
9052   return Builder.CreateVectorSplat(Elements, V);
9053 }
9054 
9055 static llvm::Value *ARMMVEVectorReinterpret(CGBuilderTy &Builder,
9056                                             CodeGenFunction *CGF,
9057                                             llvm::Value *V,
9058                                             llvm::Type *DestType) {
9059   // Convert one MVE vector type into another by reinterpreting its in-register
9060   // format.
9061   //
9062   // Little-endian, this is identical to a bitcast (which reinterprets the
9063   // memory format). But big-endian, they're not necessarily the same, because
9064   // the register and memory formats map to each other differently depending on
9065   // the lane size.
9066   //
9067   // We generate a bitcast whenever we can (if we're little-endian, or if the
9068   // lane sizes are the same anyway). Otherwise we fall back to an IR intrinsic
9069   // that performs the different kind of reinterpretation.
9070   if (CGF->getTarget().isBigEndian() &&
9071       V->getType()->getScalarSizeInBits() != DestType->getScalarSizeInBits()) {
9072     return Builder.CreateCall(
9073         CGF->CGM.getIntrinsic(Intrinsic::arm_mve_vreinterpretq,
9074                               {DestType, V->getType()}),
9075         V);
9076   } else {
9077     return Builder.CreateBitCast(V, DestType);
9078   }
9079 }
9080 
9081 static llvm::Value *VectorUnzip(CGBuilderTy &Builder, llvm::Value *V, bool Odd) {
9082   // Make a shufflevector that extracts every other element of a vector (evens
9083   // or odds, as desired).
9084   SmallVector<int, 16> Indices;
9085   unsigned InputElements =
9086       cast<llvm::FixedVectorType>(V->getType())->getNumElements();
9087   for (unsigned i = 0; i < InputElements; i += 2)
9088     Indices.push_back(i + Odd);
9089   return Builder.CreateShuffleVector(V, Indices);
9090 }
9091 
9092 static llvm::Value *VectorZip(CGBuilderTy &Builder, llvm::Value *V0,
9093                               llvm::Value *V1) {
9094   // Make a shufflevector that interleaves two vectors element by element.
9095   assert(V0->getType() == V1->getType() && "Can't zip different vector types");
9096   SmallVector<int, 16> Indices;
9097   unsigned InputElements =
9098       cast<llvm::FixedVectorType>(V0->getType())->getNumElements();
9099   for (unsigned i = 0; i < InputElements; i++) {
9100     Indices.push_back(i);
9101     Indices.push_back(i + InputElements);
9102   }
9103   return Builder.CreateShuffleVector(V0, V1, Indices);
9104 }
9105 
9106 template<unsigned HighBit, unsigned OtherBits>
9107 static llvm::Value *ARMMVEConstantSplat(CGBuilderTy &Builder, llvm::Type *VT) {
9108   // MVE-specific helper function to make a vector splat of a constant such as
9109   // UINT_MAX or INT_MIN, in which all bits below the highest one are equal.
9110   llvm::Type *T = cast<llvm::VectorType>(VT)->getElementType();
9111   unsigned LaneBits = T->getPrimitiveSizeInBits();
9112   uint32_t Value = HighBit << (LaneBits - 1);
9113   if (OtherBits)
9114     Value |= (1UL << (LaneBits - 1)) - 1;
9115   llvm::Value *Lane = llvm::ConstantInt::get(T, Value);
9116   return ARMMVEVectorSplat(Builder, Lane);
9117 }
9118 
9119 static llvm::Value *ARMMVEVectorElementReverse(CGBuilderTy &Builder,
9120                                                llvm::Value *V,
9121                                                unsigned ReverseWidth) {
9122   // MVE-specific helper function which reverses the elements of a
9123   // vector within every (ReverseWidth)-bit collection of lanes.
9124   SmallVector<int, 16> Indices;
9125   unsigned LaneSize = V->getType()->getScalarSizeInBits();
9126   unsigned Elements = 128 / LaneSize;
9127   unsigned Mask = ReverseWidth / LaneSize - 1;
9128   for (unsigned i = 0; i < Elements; i++)
9129     Indices.push_back(i ^ Mask);
9130   return Builder.CreateShuffleVector(V, Indices);
9131 }
9132 
9133 Value *CodeGenFunction::EmitARMMVEBuiltinExpr(unsigned BuiltinID,
9134                                               const CallExpr *E,
9135                                               ReturnValueSlot ReturnValue,
9136                                               llvm::Triple::ArchType Arch) {
9137   enum class CustomCodeGen { VLD24, VST24 } CustomCodeGenType;
9138   Intrinsic::ID IRIntr;
9139   unsigned NumVectors;
9140 
9141   // Code autogenerated by Tablegen will handle all the simple builtins.
9142   switch (BuiltinID) {
9143     #include "clang/Basic/arm_mve_builtin_cg.inc"
9144 
9145     // If we didn't match an MVE builtin id at all, go back to the
9146     // main EmitARMBuiltinExpr.
9147   default:
9148     return nullptr;
9149   }
9150 
9151   // Anything that breaks from that switch is an MVE builtin that
9152   // needs handwritten code to generate.
9153 
9154   switch (CustomCodeGenType) {
9155 
9156   case CustomCodeGen::VLD24: {
9157     llvm::SmallVector<Value *, 4> Ops;
9158     llvm::SmallVector<llvm::Type *, 4> Tys;
9159 
9160     auto MvecCType = E->getType();
9161     auto MvecLType = ConvertType(MvecCType);
9162     assert(MvecLType->isStructTy() &&
9163            "Return type for vld[24]q should be a struct");
9164     assert(MvecLType->getStructNumElements() == 1 &&
9165            "Return-type struct for vld[24]q should have one element");
9166     auto MvecLTypeInner = MvecLType->getStructElementType(0);
9167     assert(MvecLTypeInner->isArrayTy() &&
9168            "Return-type struct for vld[24]q should contain an array");
9169     assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
9170            "Array member of return-type struct vld[24]q has wrong length");
9171     auto VecLType = MvecLTypeInner->getArrayElementType();
9172 
9173     Tys.push_back(VecLType);
9174 
9175     auto Addr = E->getArg(0);
9176     Ops.push_back(EmitScalarExpr(Addr));
9177     Tys.push_back(ConvertType(Addr->getType()));
9178 
9179     Function *F = CGM.getIntrinsic(IRIntr, ArrayRef(Tys));
9180     Value *LoadResult = Builder.CreateCall(F, Ops);
9181     Value *MvecOut = PoisonValue::get(MvecLType);
9182     for (unsigned i = 0; i < NumVectors; ++i) {
9183       Value *Vec = Builder.CreateExtractValue(LoadResult, i);
9184       MvecOut = Builder.CreateInsertValue(MvecOut, Vec, {0, i});
9185     }
9186 
9187     if (ReturnValue.isNull())
9188       return MvecOut;
9189     else
9190       return Builder.CreateStore(MvecOut, ReturnValue.getValue());
9191   }
9192 
9193   case CustomCodeGen::VST24: {
9194     llvm::SmallVector<Value *, 4> Ops;
9195     llvm::SmallVector<llvm::Type *, 4> Tys;
9196 
9197     auto Addr = E->getArg(0);
9198     Ops.push_back(EmitScalarExpr(Addr));
9199     Tys.push_back(ConvertType(Addr->getType()));
9200 
9201     auto MvecCType = E->getArg(1)->getType();
9202     auto MvecLType = ConvertType(MvecCType);
9203     assert(MvecLType->isStructTy() && "Data type for vst2q should be a struct");
9204     assert(MvecLType->getStructNumElements() == 1 &&
9205            "Data-type struct for vst2q should have one element");
9206     auto MvecLTypeInner = MvecLType->getStructElementType(0);
9207     assert(MvecLTypeInner->isArrayTy() &&
9208            "Data-type struct for vst2q should contain an array");
9209     assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
9210            "Array member of return-type struct vld[24]q has wrong length");
9211     auto VecLType = MvecLTypeInner->getArrayElementType();
9212 
9213     Tys.push_back(VecLType);
9214 
9215     AggValueSlot MvecSlot = CreateAggTemp(MvecCType);
9216     EmitAggExpr(E->getArg(1), MvecSlot);
9217     auto Mvec = Builder.CreateLoad(MvecSlot.getAddress());
9218     for (unsigned i = 0; i < NumVectors; i++)
9219       Ops.push_back(Builder.CreateExtractValue(Mvec, {0, i}));
9220 
9221     Function *F = CGM.getIntrinsic(IRIntr, ArrayRef(Tys));
9222     Value *ToReturn = nullptr;
9223     for (unsigned i = 0; i < NumVectors; i++) {
9224       Ops.push_back(llvm::ConstantInt::get(Int32Ty, i));
9225       ToReturn = Builder.CreateCall(F, Ops);
9226       Ops.pop_back();
9227     }
9228     return ToReturn;
9229   }
9230   }
9231   llvm_unreachable("unknown custom codegen type.");
9232 }
9233 
9234 Value *CodeGenFunction::EmitARMCDEBuiltinExpr(unsigned BuiltinID,
9235                                               const CallExpr *E,
9236                                               ReturnValueSlot ReturnValue,
9237                                               llvm::Triple::ArchType Arch) {
9238   switch (BuiltinID) {
9239   default:
9240     return nullptr;
9241 #include "clang/Basic/arm_cde_builtin_cg.inc"
9242   }
9243 }
9244 
9245 static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
9246                                       const CallExpr *E,
9247                                       SmallVectorImpl<Value *> &Ops,
9248                                       llvm::Triple::ArchType Arch) {
9249   unsigned int Int = 0;
9250   const char *s = nullptr;
9251 
9252   switch (BuiltinID) {
9253   default:
9254     return nullptr;
9255   case NEON::BI__builtin_neon_vtbl1_v:
9256   case NEON::BI__builtin_neon_vqtbl1_v:
9257   case NEON::BI__builtin_neon_vqtbl1q_v:
9258   case NEON::BI__builtin_neon_vtbl2_v:
9259   case NEON::BI__builtin_neon_vqtbl2_v:
9260   case NEON::BI__builtin_neon_vqtbl2q_v:
9261   case NEON::BI__builtin_neon_vtbl3_v:
9262   case NEON::BI__builtin_neon_vqtbl3_v:
9263   case NEON::BI__builtin_neon_vqtbl3q_v:
9264   case NEON::BI__builtin_neon_vtbl4_v:
9265   case NEON::BI__builtin_neon_vqtbl4_v:
9266   case NEON::BI__builtin_neon_vqtbl4q_v:
9267     break;
9268   case NEON::BI__builtin_neon_vtbx1_v:
9269   case NEON::BI__builtin_neon_vqtbx1_v:
9270   case NEON::BI__builtin_neon_vqtbx1q_v:
9271   case NEON::BI__builtin_neon_vtbx2_v:
9272   case NEON::BI__builtin_neon_vqtbx2_v:
9273   case NEON::BI__builtin_neon_vqtbx2q_v:
9274   case NEON::BI__builtin_neon_vtbx3_v:
9275   case NEON::BI__builtin_neon_vqtbx3_v:
9276   case NEON::BI__builtin_neon_vqtbx3q_v:
9277   case NEON::BI__builtin_neon_vtbx4_v:
9278   case NEON::BI__builtin_neon_vqtbx4_v:
9279   case NEON::BI__builtin_neon_vqtbx4q_v:
9280     break;
9281   }
9282 
9283   assert(E->getNumArgs() >= 3);
9284 
9285   // Get the last argument, which specifies the vector type.
9286   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
9287   std::optional<llvm::APSInt> Result =
9288       Arg->getIntegerConstantExpr(CGF.getContext());
9289   if (!Result)
9290     return nullptr;
9291 
9292   // Determine the type of this overloaded NEON intrinsic.
9293   NeonTypeFlags Type = Result->getZExtValue();
9294   llvm::FixedVectorType *Ty = GetNeonType(&CGF, Type);
9295   if (!Ty)
9296     return nullptr;
9297 
9298   CodeGen::CGBuilderTy &Builder = CGF.Builder;
9299 
9300   // AArch64 scalar builtins are not overloaded, they do not have an extra
9301   // argument that specifies the vector type, need to handle each case.
9302   switch (BuiltinID) {
9303   case NEON::BI__builtin_neon_vtbl1_v: {
9304     return packTBLDVectorList(CGF, ArrayRef(Ops).slice(0, 1), nullptr, Ops[1],
9305                               Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
9306   }
9307   case NEON::BI__builtin_neon_vtbl2_v: {
9308     return packTBLDVectorList(CGF, ArrayRef(Ops).slice(0, 2), nullptr, Ops[2],
9309                               Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
9310   }
9311   case NEON::BI__builtin_neon_vtbl3_v: {
9312     return packTBLDVectorList(CGF, ArrayRef(Ops).slice(0, 3), nullptr, Ops[3],
9313                               Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
9314   }
9315   case NEON::BI__builtin_neon_vtbl4_v: {
9316     return packTBLDVectorList(CGF, ArrayRef(Ops).slice(0, 4), nullptr, Ops[4],
9317                               Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
9318   }
9319   case NEON::BI__builtin_neon_vtbx1_v: {
9320     Value *TblRes =
9321         packTBLDVectorList(CGF, ArrayRef(Ops).slice(1, 1), nullptr, Ops[2], Ty,
9322                            Intrinsic::aarch64_neon_tbl1, "vtbl1");
9323 
9324     llvm::Constant *EightV = ConstantInt::get(Ty, 8);
9325     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
9326     CmpRes = Builder.CreateSExt(CmpRes, Ty);
9327 
9328     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
9329     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
9330     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
9331   }
9332   case NEON::BI__builtin_neon_vtbx2_v: {
9333     return packTBLDVectorList(CGF, ArrayRef(Ops).slice(1, 2), Ops[0], Ops[3],
9334                               Ty, Intrinsic::aarch64_neon_tbx1, "vtbx1");
9335   }
9336   case NEON::BI__builtin_neon_vtbx3_v: {
9337     Value *TblRes =
9338         packTBLDVectorList(CGF, ArrayRef(Ops).slice(1, 3), nullptr, Ops[4], Ty,
9339                            Intrinsic::aarch64_neon_tbl2, "vtbl2");
9340 
9341     llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
9342     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
9343                                            TwentyFourV);
9344     CmpRes = Builder.CreateSExt(CmpRes, Ty);
9345 
9346     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
9347     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
9348     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
9349   }
9350   case NEON::BI__builtin_neon_vtbx4_v: {
9351     return packTBLDVectorList(CGF, ArrayRef(Ops).slice(1, 4), Ops[0], Ops[5],
9352                               Ty, Intrinsic::aarch64_neon_tbx2, "vtbx2");
9353   }
9354   case NEON::BI__builtin_neon_vqtbl1_v:
9355   case NEON::BI__builtin_neon_vqtbl1q_v:
9356     Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
9357   case NEON::BI__builtin_neon_vqtbl2_v:
9358   case NEON::BI__builtin_neon_vqtbl2q_v: {
9359     Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
9360   case NEON::BI__builtin_neon_vqtbl3_v:
9361   case NEON::BI__builtin_neon_vqtbl3q_v:
9362     Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
9363   case NEON::BI__builtin_neon_vqtbl4_v:
9364   case NEON::BI__builtin_neon_vqtbl4q_v:
9365     Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
9366   case NEON::BI__builtin_neon_vqtbx1_v:
9367   case NEON::BI__builtin_neon_vqtbx1q_v:
9368     Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
9369   case NEON::BI__builtin_neon_vqtbx2_v:
9370   case NEON::BI__builtin_neon_vqtbx2q_v:
9371     Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
9372   case NEON::BI__builtin_neon_vqtbx3_v:
9373   case NEON::BI__builtin_neon_vqtbx3q_v:
9374     Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
9375   case NEON::BI__builtin_neon_vqtbx4_v:
9376   case NEON::BI__builtin_neon_vqtbx4q_v:
9377     Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
9378   }
9379   }
9380 
9381   if (!Int)
9382     return nullptr;
9383 
9384   Function *F = CGF.CGM.getIntrinsic(Int, Ty);
9385   return CGF.EmitNeonCall(F, Ops, s);
9386 }
9387 
9388 Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
9389   auto *VTy = llvm::FixedVectorType::get(Int16Ty, 4);
9390   Op = Builder.CreateBitCast(Op, Int16Ty);
9391   Value *V = PoisonValue::get(VTy);
9392   llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
9393   Op = Builder.CreateInsertElement(V, Op, CI);
9394   return Op;
9395 }
9396 
9397 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
9398 /// access builtin.  Only required if it can't be inferred from the base pointer
9399 /// operand.
9400 llvm::Type *CodeGenFunction::SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags) {
9401   switch (TypeFlags.getMemEltType()) {
9402   case SVETypeFlags::MemEltTyDefault:
9403     return getEltType(TypeFlags);
9404   case SVETypeFlags::MemEltTyInt8:
9405     return Builder.getInt8Ty();
9406   case SVETypeFlags::MemEltTyInt16:
9407     return Builder.getInt16Ty();
9408   case SVETypeFlags::MemEltTyInt32:
9409     return Builder.getInt32Ty();
9410   case SVETypeFlags::MemEltTyInt64:
9411     return Builder.getInt64Ty();
9412   }
9413   llvm_unreachable("Unknown MemEltType");
9414 }
9415 
9416 llvm::Type *CodeGenFunction::getEltType(const SVETypeFlags &TypeFlags) {
9417   switch (TypeFlags.getEltType()) {
9418   default:
9419     llvm_unreachable("Invalid SVETypeFlag!");
9420 
9421   case SVETypeFlags::EltTyInt8:
9422     return Builder.getInt8Ty();
9423   case SVETypeFlags::EltTyInt16:
9424     return Builder.getInt16Ty();
9425   case SVETypeFlags::EltTyInt32:
9426     return Builder.getInt32Ty();
9427   case SVETypeFlags::EltTyInt64:
9428     return Builder.getInt64Ty();
9429   case SVETypeFlags::EltTyInt128:
9430     return Builder.getInt128Ty();
9431 
9432   case SVETypeFlags::EltTyFloat16:
9433     return Builder.getHalfTy();
9434   case SVETypeFlags::EltTyFloat32:
9435     return Builder.getFloatTy();
9436   case SVETypeFlags::EltTyFloat64:
9437     return Builder.getDoubleTy();
9438 
9439   case SVETypeFlags::EltTyBFloat16:
9440     return Builder.getBFloatTy();
9441 
9442   case SVETypeFlags::EltTyBool8:
9443   case SVETypeFlags::EltTyBool16:
9444   case SVETypeFlags::EltTyBool32:
9445   case SVETypeFlags::EltTyBool64:
9446     return Builder.getInt1Ty();
9447   }
9448 }
9449 
9450 // Return the llvm predicate vector type corresponding to the specified element
9451 // TypeFlags.
9452 llvm::ScalableVectorType *
9453 CodeGenFunction::getSVEPredType(const SVETypeFlags &TypeFlags) {
9454   switch (TypeFlags.getEltType()) {
9455   default: llvm_unreachable("Unhandled SVETypeFlag!");
9456 
9457   case SVETypeFlags::EltTyInt8:
9458     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
9459   case SVETypeFlags::EltTyInt16:
9460     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
9461   case SVETypeFlags::EltTyInt32:
9462     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
9463   case SVETypeFlags::EltTyInt64:
9464     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
9465 
9466   case SVETypeFlags::EltTyBFloat16:
9467     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
9468   case SVETypeFlags::EltTyFloat16:
9469     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
9470   case SVETypeFlags::EltTyFloat32:
9471     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
9472   case SVETypeFlags::EltTyFloat64:
9473     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
9474 
9475   case SVETypeFlags::EltTyBool8:
9476     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
9477   case SVETypeFlags::EltTyBool16:
9478     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
9479   case SVETypeFlags::EltTyBool32:
9480     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
9481   case SVETypeFlags::EltTyBool64:
9482     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
9483   }
9484 }
9485 
9486 // Return the llvm vector type corresponding to the specified element TypeFlags.
9487 llvm::ScalableVectorType *
9488 CodeGenFunction::getSVEType(const SVETypeFlags &TypeFlags) {
9489   switch (TypeFlags.getEltType()) {
9490   default:
9491     llvm_unreachable("Invalid SVETypeFlag!");
9492 
9493   case SVETypeFlags::EltTyInt8:
9494     return llvm::ScalableVectorType::get(Builder.getInt8Ty(), 16);
9495   case SVETypeFlags::EltTyInt16:
9496     return llvm::ScalableVectorType::get(Builder.getInt16Ty(), 8);
9497   case SVETypeFlags::EltTyInt32:
9498     return llvm::ScalableVectorType::get(Builder.getInt32Ty(), 4);
9499   case SVETypeFlags::EltTyInt64:
9500     return llvm::ScalableVectorType::get(Builder.getInt64Ty(), 2);
9501 
9502   case SVETypeFlags::EltTyFloat16:
9503     return llvm::ScalableVectorType::get(Builder.getHalfTy(), 8);
9504   case SVETypeFlags::EltTyBFloat16:
9505     return llvm::ScalableVectorType::get(Builder.getBFloatTy(), 8);
9506   case SVETypeFlags::EltTyFloat32:
9507     return llvm::ScalableVectorType::get(Builder.getFloatTy(), 4);
9508   case SVETypeFlags::EltTyFloat64:
9509     return llvm::ScalableVectorType::get(Builder.getDoubleTy(), 2);
9510 
9511   case SVETypeFlags::EltTyBool8:
9512     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
9513   case SVETypeFlags::EltTyBool16:
9514     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
9515   case SVETypeFlags::EltTyBool32:
9516     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
9517   case SVETypeFlags::EltTyBool64:
9518     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
9519   }
9520 }
9521 
9522 llvm::Value *
9523 CodeGenFunction::EmitSVEAllTruePred(const SVETypeFlags &TypeFlags) {
9524   Function *Ptrue =
9525       CGM.getIntrinsic(Intrinsic::aarch64_sve_ptrue, getSVEPredType(TypeFlags));
9526   return Builder.CreateCall(Ptrue, {Builder.getInt32(/*SV_ALL*/ 31)});
9527 }
9528 
9529 constexpr unsigned SVEBitsPerBlock = 128;
9530 
9531 static llvm::ScalableVectorType *getSVEVectorForElementType(llvm::Type *EltTy) {
9532   unsigned NumElts = SVEBitsPerBlock / EltTy->getScalarSizeInBits();
9533   return llvm::ScalableVectorType::get(EltTy, NumElts);
9534 }
9535 
9536 // Reinterpret the input predicate so that it can be used to correctly isolate
9537 // the elements of the specified datatype.
9538 Value *CodeGenFunction::EmitSVEPredicateCast(Value *Pred,
9539                                              llvm::ScalableVectorType *VTy) {
9540 
9541   if (isa<TargetExtType>(Pred->getType()) &&
9542       cast<TargetExtType>(Pred->getType())->getName() == "aarch64.svcount")
9543     return Pred;
9544 
9545   auto *RTy = llvm::VectorType::get(IntegerType::get(getLLVMContext(), 1), VTy);
9546   if (Pred->getType() == RTy)
9547     return Pred;
9548 
9549   unsigned IntID;
9550   llvm::Type *IntrinsicTy;
9551   switch (VTy->getMinNumElements()) {
9552   default:
9553     llvm_unreachable("unsupported element count!");
9554   case 1:
9555   case 2:
9556   case 4:
9557   case 8:
9558     IntID = Intrinsic::aarch64_sve_convert_from_svbool;
9559     IntrinsicTy = RTy;
9560     break;
9561   case 16:
9562     IntID = Intrinsic::aarch64_sve_convert_to_svbool;
9563     IntrinsicTy = Pred->getType();
9564     break;
9565   }
9566 
9567   Function *F = CGM.getIntrinsic(IntID, IntrinsicTy);
9568   Value *C = Builder.CreateCall(F, Pred);
9569   assert(C->getType() == RTy && "Unexpected return type!");
9570   return C;
9571 }
9572 
9573 Value *CodeGenFunction::EmitSVEGatherLoad(const SVETypeFlags &TypeFlags,
9574                                           SmallVectorImpl<Value *> &Ops,
9575                                           unsigned IntID) {
9576   auto *ResultTy = getSVEType(TypeFlags);
9577   auto *OverloadedTy =
9578       llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), ResultTy);
9579 
9580   Function *F = nullptr;
9581   if (Ops[1]->getType()->isVectorTy())
9582     // This is the "vector base, scalar offset" case. In order to uniquely
9583     // map this built-in to an LLVM IR intrinsic, we need both the return type
9584     // and the type of the vector base.
9585     F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[1]->getType()});
9586   else
9587     // This is the "scalar base, vector offset case". The type of the offset
9588     // is encoded in the name of the intrinsic. We only need to specify the
9589     // return type in order to uniquely map this built-in to an LLVM IR
9590     // intrinsic.
9591     F = CGM.getIntrinsic(IntID, OverloadedTy);
9592 
9593   // At the ACLE level there's only one predicate type, svbool_t, which is
9594   // mapped to <n x 16 x i1>. However, this might be incompatible with the
9595   // actual type being loaded. For example, when loading doubles (i64) the
9596   // predicate should be <n x 2 x i1> instead. At the IR level the type of
9597   // the predicate and the data being loaded must match. Cast to the type
9598   // expected by the intrinsic. The intrinsic itself should be defined in
9599   // a way than enforces relations between parameter types.
9600   Ops[0] = EmitSVEPredicateCast(
9601       Ops[0], cast<llvm::ScalableVectorType>(F->getArg(0)->getType()));
9602 
9603   // Pass 0 when the offset is missing. This can only be applied when using
9604   // the "vector base" addressing mode for which ACLE allows no offset. The
9605   // corresponding LLVM IR always requires an offset.
9606   if (Ops.size() == 2) {
9607     assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset");
9608     Ops.push_back(ConstantInt::get(Int64Ty, 0));
9609   }
9610 
9611   // For "vector base, scalar index" scale the index so that it becomes a
9612   // scalar offset.
9613   if (!TypeFlags.isByteIndexed() && Ops[1]->getType()->isVectorTy()) {
9614     unsigned BytesPerElt =
9615         OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
9616     Ops[2] = Builder.CreateShl(Ops[2], Log2_32(BytesPerElt));
9617   }
9618 
9619   Value *Call = Builder.CreateCall(F, Ops);
9620 
9621   // The following sext/zext is only needed when ResultTy != OverloadedTy. In
9622   // other cases it's folded into a nop.
9623   return TypeFlags.isZExtReturn() ? Builder.CreateZExt(Call, ResultTy)
9624                                   : Builder.CreateSExt(Call, ResultTy);
9625 }
9626 
9627 Value *CodeGenFunction::EmitSVEScatterStore(const SVETypeFlags &TypeFlags,
9628                                             SmallVectorImpl<Value *> &Ops,
9629                                             unsigned IntID) {
9630   auto *SrcDataTy = getSVEType(TypeFlags);
9631   auto *OverloadedTy =
9632       llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), SrcDataTy);
9633 
9634   // In ACLE the source data is passed in the last argument, whereas in LLVM IR
9635   // it's the first argument. Move it accordingly.
9636   Ops.insert(Ops.begin(), Ops.pop_back_val());
9637 
9638   Function *F = nullptr;
9639   if (Ops[2]->getType()->isVectorTy())
9640     // This is the "vector base, scalar offset" case. In order to uniquely
9641     // map this built-in to an LLVM IR intrinsic, we need both the return type
9642     // and the type of the vector base.
9643     F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[2]->getType()});
9644   else
9645     // This is the "scalar base, vector offset case". The type of the offset
9646     // is encoded in the name of the intrinsic. We only need to specify the
9647     // return type in order to uniquely map this built-in to an LLVM IR
9648     // intrinsic.
9649     F = CGM.getIntrinsic(IntID, OverloadedTy);
9650 
9651   // Pass 0 when the offset is missing. This can only be applied when using
9652   // the "vector base" addressing mode for which ACLE allows no offset. The
9653   // corresponding LLVM IR always requires an offset.
9654   if (Ops.size() == 3) {
9655     assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset");
9656     Ops.push_back(ConstantInt::get(Int64Ty, 0));
9657   }
9658 
9659   // Truncation is needed when SrcDataTy != OverloadedTy. In other cases it's
9660   // folded into a nop.
9661   Ops[0] = Builder.CreateTrunc(Ops[0], OverloadedTy);
9662 
9663   // At the ACLE level there's only one predicate type, svbool_t, which is
9664   // mapped to <n x 16 x i1>. However, this might be incompatible with the
9665   // actual type being stored. For example, when storing doubles (i64) the
9666   // predicated should be <n x 2 x i1> instead. At the IR level the type of
9667   // the predicate and the data being stored must match. Cast to the type
9668   // expected by the intrinsic. The intrinsic itself should be defined in
9669   // a way that enforces relations between parameter types.
9670   Ops[1] = EmitSVEPredicateCast(
9671       Ops[1], cast<llvm::ScalableVectorType>(F->getArg(1)->getType()));
9672 
9673   // For "vector base, scalar index" scale the index so that it becomes a
9674   // scalar offset.
9675   if (!TypeFlags.isByteIndexed() && Ops[2]->getType()->isVectorTy()) {
9676     unsigned BytesPerElt =
9677         OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
9678     Ops[3] = Builder.CreateShl(Ops[3], Log2_32(BytesPerElt));
9679   }
9680 
9681   return Builder.CreateCall(F, Ops);
9682 }
9683 
9684 Value *CodeGenFunction::EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags,
9685                                               SmallVectorImpl<Value *> &Ops,
9686                                               unsigned IntID) {
9687   // The gather prefetches are overloaded on the vector input - this can either
9688   // be the vector of base addresses or vector of offsets.
9689   auto *OverloadedTy = dyn_cast<llvm::ScalableVectorType>(Ops[1]->getType());
9690   if (!OverloadedTy)
9691     OverloadedTy = cast<llvm::ScalableVectorType>(Ops[2]->getType());
9692 
9693   // Cast the predicate from svbool_t to the right number of elements.
9694   Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
9695 
9696   // vector + imm addressing modes
9697   if (Ops[1]->getType()->isVectorTy()) {
9698     if (Ops.size() == 3) {
9699       // Pass 0 for 'vector+imm' when the index is omitted.
9700       Ops.push_back(ConstantInt::get(Int64Ty, 0));
9701 
9702       // The sv_prfop is the last operand in the builtin and IR intrinsic.
9703       std::swap(Ops[2], Ops[3]);
9704     } else {
9705       // Index needs to be passed as scaled offset.
9706       llvm::Type *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
9707       unsigned BytesPerElt = MemEltTy->getPrimitiveSizeInBits() / 8;
9708       if (BytesPerElt > 1)
9709         Ops[2] = Builder.CreateShl(Ops[2], Log2_32(BytesPerElt));
9710     }
9711   }
9712 
9713   Function *F = CGM.getIntrinsic(IntID, OverloadedTy);
9714   return Builder.CreateCall(F, Ops);
9715 }
9716 
9717 Value *CodeGenFunction::EmitSVEStructLoad(const SVETypeFlags &TypeFlags,
9718                                           SmallVectorImpl<Value*> &Ops,
9719                                           unsigned IntID) {
9720   llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
9721 
9722   unsigned N;
9723   switch (IntID) {
9724   case Intrinsic::aarch64_sve_ld2_sret:
9725   case Intrinsic::aarch64_sve_ld1_pn_x2:
9726   case Intrinsic::aarch64_sve_ldnt1_pn_x2:
9727   case Intrinsic::aarch64_sve_ld2q_sret:
9728     N = 2;
9729     break;
9730   case Intrinsic::aarch64_sve_ld3_sret:
9731   case Intrinsic::aarch64_sve_ld3q_sret:
9732     N = 3;
9733     break;
9734   case Intrinsic::aarch64_sve_ld4_sret:
9735   case Intrinsic::aarch64_sve_ld1_pn_x4:
9736   case Intrinsic::aarch64_sve_ldnt1_pn_x4:
9737   case Intrinsic::aarch64_sve_ld4q_sret:
9738     N = 4;
9739     break;
9740   default:
9741     llvm_unreachable("unknown intrinsic!");
9742   }
9743   auto RetTy = llvm::VectorType::get(VTy->getElementType(),
9744                                      VTy->getElementCount() * N);
9745 
9746   Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
9747   Value *BasePtr = Ops[1];
9748 
9749   // Does the load have an offset?
9750   if (Ops.size() > 2)
9751     BasePtr = Builder.CreateGEP(VTy, BasePtr, Ops[2]);
9752 
9753   Function *F = CGM.getIntrinsic(IntID, {VTy});
9754   Value *Call = Builder.CreateCall(F, {Predicate, BasePtr});
9755   unsigned MinElts = VTy->getMinNumElements();
9756   Value *Ret = llvm::PoisonValue::get(RetTy);
9757   for (unsigned I = 0; I < N; I++) {
9758     Value *Idx = ConstantInt::get(CGM.Int64Ty, I * MinElts);
9759     Value *SRet = Builder.CreateExtractValue(Call, I);
9760     Ret = Builder.CreateInsertVector(RetTy, Ret, SRet, Idx);
9761   }
9762   return Ret;
9763 }
9764 
9765 Value *CodeGenFunction::EmitSVEStructStore(const SVETypeFlags &TypeFlags,
9766                                            SmallVectorImpl<Value*> &Ops,
9767                                            unsigned IntID) {
9768   llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
9769 
9770   unsigned N;
9771   switch (IntID) {
9772   case Intrinsic::aarch64_sve_st2:
9773   case Intrinsic::aarch64_sve_st1_pn_x2:
9774   case Intrinsic::aarch64_sve_stnt1_pn_x2:
9775   case Intrinsic::aarch64_sve_st2q:
9776     N = 2;
9777     break;
9778   case Intrinsic::aarch64_sve_st3:
9779   case Intrinsic::aarch64_sve_st3q:
9780     N = 3;
9781     break;
9782   case Intrinsic::aarch64_sve_st4:
9783   case Intrinsic::aarch64_sve_st1_pn_x4:
9784   case Intrinsic::aarch64_sve_stnt1_pn_x4:
9785   case Intrinsic::aarch64_sve_st4q:
9786     N = 4;
9787     break;
9788   default:
9789     llvm_unreachable("unknown intrinsic!");
9790   }
9791 
9792   Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
9793   Value *BasePtr = Ops[1];
9794 
9795   // Does the store have an offset?
9796   if (Ops.size() > (2 + N))
9797     BasePtr = Builder.CreateGEP(VTy, BasePtr, Ops[2]);
9798 
9799   // The llvm.aarch64.sve.st2/3/4 intrinsics take legal part vectors, so we
9800   // need to break up the tuple vector.
9801   SmallVector<llvm::Value*, 5> Operands;
9802   for (unsigned I = Ops.size() - N; I < Ops.size(); ++I)
9803     Operands.push_back(Ops[I]);
9804   Operands.append({Predicate, BasePtr});
9805   Function *F = CGM.getIntrinsic(IntID, { VTy });
9806 
9807   return Builder.CreateCall(F, Operands);
9808 }
9809 
9810 // SVE2's svpmullb and svpmullt builtins are similar to the svpmullb_pair and
9811 // svpmullt_pair intrinsics, with the exception that their results are bitcast
9812 // to a wider type.
9813 Value *CodeGenFunction::EmitSVEPMull(const SVETypeFlags &TypeFlags,
9814                                      SmallVectorImpl<Value *> &Ops,
9815                                      unsigned BuiltinID) {
9816   // Splat scalar operand to vector (intrinsics with _n infix)
9817   if (TypeFlags.hasSplatOperand()) {
9818     unsigned OpNo = TypeFlags.getSplatOperand();
9819     Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
9820   }
9821 
9822   // The pair-wise function has a narrower overloaded type.
9823   Function *F = CGM.getIntrinsic(BuiltinID, Ops[0]->getType());
9824   Value *Call = Builder.CreateCall(F, {Ops[0], Ops[1]});
9825 
9826   // Now bitcast to the wider result type.
9827   llvm::ScalableVectorType *Ty = getSVEType(TypeFlags);
9828   return EmitSVEReinterpret(Call, Ty);
9829 }
9830 
9831 Value *CodeGenFunction::EmitSVEMovl(const SVETypeFlags &TypeFlags,
9832                                     ArrayRef<Value *> Ops, unsigned BuiltinID) {
9833   llvm::Type *OverloadedTy = getSVEType(TypeFlags);
9834   Function *F = CGM.getIntrinsic(BuiltinID, OverloadedTy);
9835   return Builder.CreateCall(F, {Ops[0], Builder.getInt32(0)});
9836 }
9837 
9838 Value *CodeGenFunction::EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags,
9839                                             SmallVectorImpl<Value *> &Ops,
9840                                             unsigned BuiltinID) {
9841   auto *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
9842   auto *VectorTy = getSVEVectorForElementType(MemEltTy);
9843   auto *MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
9844 
9845   Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
9846   Value *BasePtr = Ops[1];
9847 
9848   // Implement the index operand if not omitted.
9849   if (Ops.size() > 3)
9850     BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]);
9851 
9852   Value *PrfOp = Ops.back();
9853 
9854   Function *F = CGM.getIntrinsic(BuiltinID, Predicate->getType());
9855   return Builder.CreateCall(F, {Predicate, BasePtr, PrfOp});
9856 }
9857 
9858 Value *CodeGenFunction::EmitSVEMaskedLoad(const CallExpr *E,
9859                                           llvm::Type *ReturnTy,
9860                                           SmallVectorImpl<Value *> &Ops,
9861                                           unsigned IntrinsicID,
9862                                           bool IsZExtReturn) {
9863   QualType LangPTy = E->getArg(1)->getType();
9864   llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
9865       LangPTy->castAs<PointerType>()->getPointeeType());
9866 
9867   // The vector type that is returned may be different from the
9868   // eventual type loaded from memory.
9869   auto VectorTy = cast<llvm::ScalableVectorType>(ReturnTy);
9870   llvm::ScalableVectorType *MemoryTy = nullptr;
9871   llvm::ScalableVectorType *PredTy = nullptr;
9872   bool IsQuadLoad = false;
9873   switch (IntrinsicID) {
9874   case Intrinsic::aarch64_sve_ld1uwq:
9875   case Intrinsic::aarch64_sve_ld1udq:
9876     MemoryTy = llvm::ScalableVectorType::get(MemEltTy, 1);
9877     PredTy = llvm::ScalableVectorType::get(
9878         llvm::Type::getInt1Ty(getLLVMContext()), 1);
9879     IsQuadLoad = true;
9880     break;
9881   default:
9882     MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
9883     PredTy = MemoryTy;
9884     break;
9885   }
9886 
9887   Value *Predicate = EmitSVEPredicateCast(Ops[0], PredTy);
9888   Value *BasePtr = Ops[1];
9889 
9890   // Does the load have an offset?
9891   if (Ops.size() > 2)
9892     BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]);
9893 
9894   Function *F = CGM.getIntrinsic(IntrinsicID, IsQuadLoad ? VectorTy : MemoryTy);
9895   auto *Load =
9896       cast<llvm::Instruction>(Builder.CreateCall(F, {Predicate, BasePtr}));
9897   auto TBAAInfo = CGM.getTBAAAccessInfo(LangPTy->getPointeeType());
9898   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
9899 
9900   if (IsQuadLoad)
9901     return Load;
9902 
9903   return IsZExtReturn ? Builder.CreateZExt(Load, VectorTy)
9904                       : Builder.CreateSExt(Load, VectorTy);
9905 }
9906 
9907 Value *CodeGenFunction::EmitSVEMaskedStore(const CallExpr *E,
9908                                            SmallVectorImpl<Value *> &Ops,
9909                                            unsigned IntrinsicID) {
9910   QualType LangPTy = E->getArg(1)->getType();
9911   llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
9912       LangPTy->castAs<PointerType>()->getPointeeType());
9913 
9914   // The vector type that is stored may be different from the
9915   // eventual type stored to memory.
9916   auto VectorTy = cast<llvm::ScalableVectorType>(Ops.back()->getType());
9917   auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
9918 
9919   auto PredTy = MemoryTy;
9920   auto AddrMemoryTy = MemoryTy;
9921   bool IsQuadStore = false;
9922 
9923   switch (IntrinsicID) {
9924   case Intrinsic::aarch64_sve_st1wq:
9925   case Intrinsic::aarch64_sve_st1dq:
9926     AddrMemoryTy = llvm::ScalableVectorType::get(MemEltTy, 1);
9927     PredTy =
9928         llvm::ScalableVectorType::get(IntegerType::get(getLLVMContext(), 1), 1);
9929     IsQuadStore = true;
9930     break;
9931   default:
9932     break;
9933   }
9934   Value *Predicate = EmitSVEPredicateCast(Ops[0], PredTy);
9935   Value *BasePtr = Ops[1];
9936 
9937   // Does the store have an offset?
9938   if (Ops.size() == 4)
9939     BasePtr = Builder.CreateGEP(AddrMemoryTy, BasePtr, Ops[2]);
9940 
9941   // Last value is always the data
9942   Value *Val =
9943       IsQuadStore ? Ops.back() : Builder.CreateTrunc(Ops.back(), MemoryTy);
9944 
9945   Function *F =
9946       CGM.getIntrinsic(IntrinsicID, IsQuadStore ? VectorTy : MemoryTy);
9947   auto *Store =
9948       cast<llvm::Instruction>(Builder.CreateCall(F, {Val, Predicate, BasePtr}));
9949   auto TBAAInfo = CGM.getTBAAAccessInfo(LangPTy->getPointeeType());
9950   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
9951   return Store;
9952 }
9953 
9954 Value *CodeGenFunction::EmitSMELd1St1(const SVETypeFlags &TypeFlags,
9955                                       SmallVectorImpl<Value *> &Ops,
9956                                       unsigned IntID) {
9957   Ops[2] = EmitSVEPredicateCast(
9958       Ops[2], getSVEVectorForElementType(SVEBuiltinMemEltTy(TypeFlags)));
9959 
9960   SmallVector<Value *> NewOps;
9961   NewOps.push_back(Ops[2]);
9962 
9963   llvm::Value *BasePtr = Ops[3];
9964 
9965   // If the intrinsic contains the vnum parameter, multiply it with the vector
9966   // size in bytes.
9967   if (Ops.size() == 5) {
9968     Function *StreamingVectorLength =
9969         CGM.getIntrinsic(Intrinsic::aarch64_sme_cntsb);
9970     llvm::Value *StreamingVectorLengthCall =
9971         Builder.CreateCall(StreamingVectorLength);
9972     llvm::Value *Mulvl =
9973         Builder.CreateMul(StreamingVectorLengthCall, Ops[4], "mulvl");
9974     // The type of the ptr parameter is void *, so use Int8Ty here.
9975     BasePtr = Builder.CreateGEP(Int8Ty, Ops[3], Mulvl);
9976   }
9977   NewOps.push_back(BasePtr);
9978   NewOps.push_back(Ops[0]);
9979   NewOps.push_back(Ops[1]);
9980   Function *F = CGM.getIntrinsic(IntID);
9981   return Builder.CreateCall(F, NewOps);
9982 }
9983 
9984 Value *CodeGenFunction::EmitSMEReadWrite(const SVETypeFlags &TypeFlags,
9985                                          SmallVectorImpl<Value *> &Ops,
9986                                          unsigned IntID) {
9987   auto *VecTy = getSVEType(TypeFlags);
9988   Function *F = CGM.getIntrinsic(IntID, VecTy);
9989   if (TypeFlags.isReadZA())
9990     Ops[1] = EmitSVEPredicateCast(Ops[1], VecTy);
9991   else if (TypeFlags.isWriteZA())
9992     Ops[2] = EmitSVEPredicateCast(Ops[2], VecTy);
9993   return Builder.CreateCall(F, Ops);
9994 }
9995 
9996 Value *CodeGenFunction::EmitSMEZero(const SVETypeFlags &TypeFlags,
9997                                     SmallVectorImpl<Value *> &Ops,
9998                                     unsigned IntID) {
9999   // svzero_za() intrinsic zeros the entire za tile and has no paramters.
10000   if (Ops.size() == 0)
10001     Ops.push_back(llvm::ConstantInt::get(Int32Ty, 255));
10002   Function *F = CGM.getIntrinsic(IntID, {});
10003   return Builder.CreateCall(F, Ops);
10004 }
10005 
10006 Value *CodeGenFunction::EmitSMELdrStr(const SVETypeFlags &TypeFlags,
10007                                       SmallVectorImpl<Value *> &Ops,
10008                                       unsigned IntID) {
10009   if (Ops.size() == 2)
10010     Ops.push_back(Builder.getInt32(0));
10011   else
10012     Ops[2] = Builder.CreateIntCast(Ops[2], Int32Ty, true);
10013   Function *F = CGM.getIntrinsic(IntID, {});
10014   return Builder.CreateCall(F, Ops);
10015 }
10016 
10017 // Limit the usage of scalable llvm IR generated by the ACLE by using the
10018 // sve dup.x intrinsic instead of IRBuilder::CreateVectorSplat.
10019 Value *CodeGenFunction::EmitSVEDupX(Value *Scalar, llvm::Type *Ty) {
10020   return Builder.CreateVectorSplat(
10021       cast<llvm::VectorType>(Ty)->getElementCount(), Scalar);
10022 }
10023 
10024 Value *CodeGenFunction::EmitSVEDupX(Value* Scalar) {
10025   return EmitSVEDupX(Scalar, getSVEVectorForElementType(Scalar->getType()));
10026 }
10027 
10028 Value *CodeGenFunction::EmitSVEReinterpret(Value *Val, llvm::Type *Ty) {
10029   // FIXME: For big endian this needs an additional REV, or needs a separate
10030   // intrinsic that is code-generated as a no-op, because the LLVM bitcast
10031   // instruction is defined as 'bitwise' equivalent from memory point of
10032   // view (when storing/reloading), whereas the svreinterpret builtin
10033   // implements bitwise equivalent cast from register point of view.
10034   // LLVM CodeGen for a bitcast must add an explicit REV for big-endian.
10035   return Builder.CreateBitCast(Val, Ty);
10036 }
10037 
10038 static void InsertExplicitZeroOperand(CGBuilderTy &Builder, llvm::Type *Ty,
10039                                       SmallVectorImpl<Value *> &Ops) {
10040   auto *SplatZero = Constant::getNullValue(Ty);
10041   Ops.insert(Ops.begin(), SplatZero);
10042 }
10043 
10044 static void InsertExplicitUndefOperand(CGBuilderTy &Builder, llvm::Type *Ty,
10045                                        SmallVectorImpl<Value *> &Ops) {
10046   auto *SplatUndef = UndefValue::get(Ty);
10047   Ops.insert(Ops.begin(), SplatUndef);
10048 }
10049 
10050 SmallVector<llvm::Type *, 2>
10051 CodeGenFunction::getSVEOverloadTypes(const SVETypeFlags &TypeFlags,
10052                                      llvm::Type *ResultType,
10053                                      ArrayRef<Value *> Ops) {
10054   if (TypeFlags.isOverloadNone())
10055     return {};
10056 
10057   llvm::Type *DefaultType = getSVEType(TypeFlags);
10058 
10059   if (TypeFlags.isOverloadWhileOrMultiVecCvt())
10060     return {DefaultType, Ops[1]->getType()};
10061 
10062   if (TypeFlags.isOverloadWhileRW())
10063     return {getSVEPredType(TypeFlags), Ops[0]->getType()};
10064 
10065   if (TypeFlags.isOverloadCvt())
10066     return {Ops[0]->getType(), Ops.back()->getType()};
10067 
10068   if (TypeFlags.isReductionQV() && !ResultType->isScalableTy() &&
10069       ResultType->isVectorTy())
10070     return {ResultType, Ops[1]->getType()};
10071 
10072   assert(TypeFlags.isOverloadDefault() && "Unexpected value for overloads");
10073   return {DefaultType};
10074 }
10075 
10076 Value *CodeGenFunction::EmitSVETupleSetOrGet(const SVETypeFlags &TypeFlags,
10077                                              llvm::Type *Ty,
10078                                              ArrayRef<Value *> Ops) {
10079   assert((TypeFlags.isTupleSet() || TypeFlags.isTupleGet()) &&
10080          "Expects TypleFlag isTupleSet or TypeFlags.isTupleSet()");
10081 
10082   unsigned I = cast<ConstantInt>(Ops[1])->getSExtValue();
10083   auto *SingleVecTy = dyn_cast<llvm::ScalableVectorType>(
10084                       TypeFlags.isTupleSet() ? Ops[2]->getType() : Ty);
10085   Value *Idx = ConstantInt::get(CGM.Int64Ty,
10086                                 I * SingleVecTy->getMinNumElements());
10087 
10088   if (TypeFlags.isTupleSet())
10089     return Builder.CreateInsertVector(Ty, Ops[0], Ops[2], Idx);
10090   return Builder.CreateExtractVector(Ty, Ops[0], Idx);
10091 }
10092 
10093 Value *CodeGenFunction::EmitSVETupleCreate(const SVETypeFlags &TypeFlags,
10094                                              llvm::Type *Ty,
10095                                              ArrayRef<Value *> Ops) {
10096   assert(TypeFlags.isTupleCreate() && "Expects TypleFlag isTupleCreate");
10097 
10098   auto *SrcTy = dyn_cast<llvm::ScalableVectorType>(Ops[0]->getType());
10099   unsigned MinElts = SrcTy->getMinNumElements();
10100   Value *Call = llvm::PoisonValue::get(Ty);
10101   for (unsigned I = 0; I < Ops.size(); I++) {
10102     Value *Idx = ConstantInt::get(CGM.Int64Ty, I * MinElts);
10103     Call = Builder.CreateInsertVector(Ty, Call, Ops[I], Idx);
10104   }
10105 
10106   return Call;
10107 }
10108 
10109 Value *CodeGenFunction::FormSVEBuiltinResult(Value *Call) {
10110   // Multi-vector results should be broken up into a single (wide) result
10111   // vector.
10112   auto *StructTy = dyn_cast<StructType>(Call->getType());
10113   if (!StructTy)
10114     return Call;
10115 
10116   auto *VTy = dyn_cast<ScalableVectorType>(StructTy->getTypeAtIndex(0U));
10117   if (!VTy)
10118     return Call;
10119   unsigned N = StructTy->getNumElements();
10120 
10121   // We may need to emit a cast to a svbool_t
10122   bool IsPredTy = VTy->getElementType()->isIntegerTy(1);
10123   unsigned MinElts = IsPredTy ? 16 : VTy->getMinNumElements();
10124 
10125   ScalableVectorType *WideVTy =
10126       ScalableVectorType::get(VTy->getElementType(), MinElts * N);
10127   Value *Ret = llvm::PoisonValue::get(WideVTy);
10128   for (unsigned I = 0; I < N; ++I) {
10129     Value *SRet = Builder.CreateExtractValue(Call, I);
10130     assert(SRet->getType() == VTy && "Unexpected type for result value");
10131     Value *Idx = ConstantInt::get(CGM.Int64Ty, I * MinElts);
10132 
10133     if (IsPredTy)
10134       SRet = EmitSVEPredicateCast(
10135           SRet, ScalableVectorType::get(Builder.getInt1Ty(), 16));
10136 
10137     Ret = Builder.CreateInsertVector(WideVTy, Ret, SRet, Idx);
10138   }
10139   Call = Ret;
10140 
10141   return Call;
10142 }
10143 
10144 void CodeGenFunction::GetAArch64SVEProcessedOperands(
10145     unsigned BuiltinID, const CallExpr *E, SmallVectorImpl<Value *> &Ops,
10146     SVETypeFlags TypeFlags) {
10147   // Find out if any arguments are required to be integer constant expressions.
10148   unsigned ICEArguments = 0;
10149   ASTContext::GetBuiltinTypeError Error;
10150   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
10151   assert(Error == ASTContext::GE_None && "Should not codegen an error");
10152 
10153   // Tuple set/get only requires one insert/extract vector, which is
10154   // created by EmitSVETupleSetOrGet.
10155   bool IsTupleGetOrSet = TypeFlags.isTupleSet() || TypeFlags.isTupleGet();
10156 
10157   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
10158     bool IsICE = ICEArguments & (1 << i);
10159     Value *Arg = EmitScalarExpr(E->getArg(i));
10160 
10161     if (IsICE) {
10162       // If this is required to be a constant, constant fold it so that we know
10163       // that the generated intrinsic gets a ConstantInt.
10164       std::optional<llvm::APSInt> Result =
10165           E->getArg(i)->getIntegerConstantExpr(getContext());
10166       assert(Result && "Expected argument to be a constant");
10167 
10168       // Immediates for SVE llvm intrinsics are always 32bit.  We can safely
10169       // truncate because the immediate has been range checked and no valid
10170       // immediate requires more than a handful of bits.
10171       *Result = Result->extOrTrunc(32);
10172       Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), *Result));
10173       continue;
10174     }
10175 
10176     if (IsTupleGetOrSet || !isa<ScalableVectorType>(Arg->getType())) {
10177       Ops.push_back(Arg);
10178       continue;
10179     }
10180 
10181     auto *VTy = cast<ScalableVectorType>(Arg->getType());
10182     unsigned MinElts = VTy->getMinNumElements();
10183     bool IsPred = VTy->getElementType()->isIntegerTy(1);
10184     unsigned N = (MinElts * VTy->getScalarSizeInBits()) / (IsPred ? 16 : 128);
10185 
10186     if (N == 1) {
10187       Ops.push_back(Arg);
10188       continue;
10189     }
10190 
10191     for (unsigned I = 0; I < N; ++I) {
10192       Value *Idx = ConstantInt::get(CGM.Int64Ty, (I * MinElts) / N);
10193       auto *NewVTy =
10194           ScalableVectorType::get(VTy->getElementType(), MinElts / N);
10195       Ops.push_back(Builder.CreateExtractVector(NewVTy, Arg, Idx));
10196     }
10197   }
10198 }
10199 
10200 Value *CodeGenFunction::EmitAArch64SVEBuiltinExpr(unsigned BuiltinID,
10201                                                   const CallExpr *E) {
10202   llvm::Type *Ty = ConvertType(E->getType());
10203   if (BuiltinID >= SVE::BI__builtin_sve_reinterpret_s8_s8 &&
10204       BuiltinID <= SVE::BI__builtin_sve_reinterpret_f64_f64_x4) {
10205     Value *Val = EmitScalarExpr(E->getArg(0));
10206     return EmitSVEReinterpret(Val, Ty);
10207   }
10208 
10209   auto *Builtin = findARMVectorIntrinsicInMap(AArch64SVEIntrinsicMap, BuiltinID,
10210                                               AArch64SVEIntrinsicsProvenSorted);
10211 
10212   llvm::SmallVector<Value *, 4> Ops;
10213   SVETypeFlags TypeFlags(Builtin->TypeModifier);
10214   GetAArch64SVEProcessedOperands(BuiltinID, E, Ops, TypeFlags);
10215 
10216   if (TypeFlags.isLoad())
10217     return EmitSVEMaskedLoad(E, Ty, Ops, Builtin->LLVMIntrinsic,
10218                              TypeFlags.isZExtReturn());
10219   else if (TypeFlags.isStore())
10220     return EmitSVEMaskedStore(E, Ops, Builtin->LLVMIntrinsic);
10221   else if (TypeFlags.isGatherLoad())
10222     return EmitSVEGatherLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10223   else if (TypeFlags.isScatterStore())
10224     return EmitSVEScatterStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10225   else if (TypeFlags.isPrefetch())
10226     return EmitSVEPrefetchLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10227   else if (TypeFlags.isGatherPrefetch())
10228     return EmitSVEGatherPrefetch(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10229   else if (TypeFlags.isStructLoad())
10230     return EmitSVEStructLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10231   else if (TypeFlags.isStructStore())
10232     return EmitSVEStructStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10233   else if (TypeFlags.isTupleSet() || TypeFlags.isTupleGet())
10234     return EmitSVETupleSetOrGet(TypeFlags, Ty, Ops);
10235   else if (TypeFlags.isTupleCreate())
10236     return EmitSVETupleCreate(TypeFlags, Ty, Ops);
10237   else if (TypeFlags.isUndef())
10238     return UndefValue::get(Ty);
10239   else if (Builtin->LLVMIntrinsic != 0) {
10240     if (TypeFlags.getMergeType() == SVETypeFlags::MergeZeroExp)
10241       InsertExplicitZeroOperand(Builder, Ty, Ops);
10242 
10243     if (TypeFlags.getMergeType() == SVETypeFlags::MergeAnyExp)
10244       InsertExplicitUndefOperand(Builder, Ty, Ops);
10245 
10246     // Some ACLE builtins leave out the argument to specify the predicate
10247     // pattern, which is expected to be expanded to an SV_ALL pattern.
10248     if (TypeFlags.isAppendSVALL())
10249       Ops.push_back(Builder.getInt32(/*SV_ALL*/ 31));
10250     if (TypeFlags.isInsertOp1SVALL())
10251       Ops.insert(&Ops[1], Builder.getInt32(/*SV_ALL*/ 31));
10252 
10253     // Predicates must match the main datatype.
10254     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
10255       if (auto PredTy = dyn_cast<llvm::VectorType>(Ops[i]->getType()))
10256         if (PredTy->getElementType()->isIntegerTy(1))
10257           Ops[i] = EmitSVEPredicateCast(Ops[i], getSVEType(TypeFlags));
10258 
10259     // Splat scalar operand to vector (intrinsics with _n infix)
10260     if (TypeFlags.hasSplatOperand()) {
10261       unsigned OpNo = TypeFlags.getSplatOperand();
10262       Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
10263     }
10264 
10265     if (TypeFlags.isReverseCompare())
10266       std::swap(Ops[1], Ops[2]);
10267     else if (TypeFlags.isReverseUSDOT())
10268       std::swap(Ops[1], Ops[2]);
10269     else if (TypeFlags.isReverseMergeAnyBinOp() &&
10270              TypeFlags.getMergeType() == SVETypeFlags::MergeAny)
10271       std::swap(Ops[1], Ops[2]);
10272     else if (TypeFlags.isReverseMergeAnyAccOp() &&
10273              TypeFlags.getMergeType() == SVETypeFlags::MergeAny)
10274       std::swap(Ops[1], Ops[3]);
10275 
10276     // Predicated intrinsics with _z suffix need a select w/ zeroinitializer.
10277     if (TypeFlags.getMergeType() == SVETypeFlags::MergeZero) {
10278       llvm::Type *OpndTy = Ops[1]->getType();
10279       auto *SplatZero = Constant::getNullValue(OpndTy);
10280       Ops[1] = Builder.CreateSelect(Ops[0], Ops[1], SplatZero);
10281     }
10282 
10283     Function *F = CGM.getIntrinsic(Builtin->LLVMIntrinsic,
10284                                    getSVEOverloadTypes(TypeFlags, Ty, Ops));
10285     Value *Call = Builder.CreateCall(F, Ops);
10286 
10287     // Predicate results must be converted to svbool_t.
10288     if (auto PredTy = dyn_cast<llvm::VectorType>(Call->getType()))
10289       if (PredTy->getScalarType()->isIntegerTy(1))
10290         Call = EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
10291 
10292     return FormSVEBuiltinResult(Call);
10293   }
10294 
10295   switch (BuiltinID) {
10296   default:
10297     return nullptr;
10298 
10299   case SVE::BI__builtin_sve_svreinterpret_b: {
10300     auto SVCountTy =
10301         llvm::TargetExtType::get(getLLVMContext(), "aarch64.svcount");
10302     Function *CastFromSVCountF =
10303         CGM.getIntrinsic(Intrinsic::aarch64_sve_convert_to_svbool, SVCountTy);
10304     return Builder.CreateCall(CastFromSVCountF, Ops[0]);
10305   }
10306   case SVE::BI__builtin_sve_svreinterpret_c: {
10307     auto SVCountTy =
10308         llvm::TargetExtType::get(getLLVMContext(), "aarch64.svcount");
10309     Function *CastToSVCountF =
10310         CGM.getIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool, SVCountTy);
10311     return Builder.CreateCall(CastToSVCountF, Ops[0]);
10312   }
10313 
10314   case SVE::BI__builtin_sve_svpsel_lane_b8:
10315   case SVE::BI__builtin_sve_svpsel_lane_b16:
10316   case SVE::BI__builtin_sve_svpsel_lane_b32:
10317   case SVE::BI__builtin_sve_svpsel_lane_b64:
10318   case SVE::BI__builtin_sve_svpsel_lane_c8:
10319   case SVE::BI__builtin_sve_svpsel_lane_c16:
10320   case SVE::BI__builtin_sve_svpsel_lane_c32:
10321   case SVE::BI__builtin_sve_svpsel_lane_c64: {
10322     bool IsSVCount = isa<TargetExtType>(Ops[0]->getType());
10323     assert(((!IsSVCount || cast<TargetExtType>(Ops[0]->getType())->getName() ==
10324                                "aarch64.svcount")) &&
10325            "Unexpected TargetExtType");
10326     auto SVCountTy =
10327         llvm::TargetExtType::get(getLLVMContext(), "aarch64.svcount");
10328     Function *CastFromSVCountF =
10329         CGM.getIntrinsic(Intrinsic::aarch64_sve_convert_to_svbool, SVCountTy);
10330     Function *CastToSVCountF =
10331         CGM.getIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool, SVCountTy);
10332 
10333     auto OverloadedTy = getSVEType(SVETypeFlags(Builtin->TypeModifier));
10334     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_psel, OverloadedTy);
10335     llvm::Value *Ops0 =
10336         IsSVCount ? Builder.CreateCall(CastFromSVCountF, Ops[0]) : Ops[0];
10337     llvm::Value *Ops1 = EmitSVEPredicateCast(Ops[1], OverloadedTy);
10338     llvm::Value *PSel = Builder.CreateCall(F, {Ops0, Ops1, Ops[2]});
10339     return IsSVCount ? Builder.CreateCall(CastToSVCountF, PSel) : PSel;
10340   }
10341   case SVE::BI__builtin_sve_svmov_b_z: {
10342     // svmov_b_z(pg, op) <=> svand_b_z(pg, op, op)
10343     SVETypeFlags TypeFlags(Builtin->TypeModifier);
10344     llvm::Type* OverloadedTy = getSVEType(TypeFlags);
10345     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_and_z, OverloadedTy);
10346     return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[1]});
10347   }
10348 
10349   case SVE::BI__builtin_sve_svnot_b_z: {
10350     // svnot_b_z(pg, op) <=> sveor_b_z(pg, op, pg)
10351     SVETypeFlags TypeFlags(Builtin->TypeModifier);
10352     llvm::Type* OverloadedTy = getSVEType(TypeFlags);
10353     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_eor_z, OverloadedTy);
10354     return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[0]});
10355   }
10356 
10357   case SVE::BI__builtin_sve_svmovlb_u16:
10358   case SVE::BI__builtin_sve_svmovlb_u32:
10359   case SVE::BI__builtin_sve_svmovlb_u64:
10360     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllb);
10361 
10362   case SVE::BI__builtin_sve_svmovlb_s16:
10363   case SVE::BI__builtin_sve_svmovlb_s32:
10364   case SVE::BI__builtin_sve_svmovlb_s64:
10365     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllb);
10366 
10367   case SVE::BI__builtin_sve_svmovlt_u16:
10368   case SVE::BI__builtin_sve_svmovlt_u32:
10369   case SVE::BI__builtin_sve_svmovlt_u64:
10370     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllt);
10371 
10372   case SVE::BI__builtin_sve_svmovlt_s16:
10373   case SVE::BI__builtin_sve_svmovlt_s32:
10374   case SVE::BI__builtin_sve_svmovlt_s64:
10375     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllt);
10376 
10377   case SVE::BI__builtin_sve_svpmullt_u16:
10378   case SVE::BI__builtin_sve_svpmullt_u64:
10379   case SVE::BI__builtin_sve_svpmullt_n_u16:
10380   case SVE::BI__builtin_sve_svpmullt_n_u64:
10381     return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullt_pair);
10382 
10383   case SVE::BI__builtin_sve_svpmullb_u16:
10384   case SVE::BI__builtin_sve_svpmullb_u64:
10385   case SVE::BI__builtin_sve_svpmullb_n_u16:
10386   case SVE::BI__builtin_sve_svpmullb_n_u64:
10387     return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullb_pair);
10388 
10389   case SVE::BI__builtin_sve_svdup_n_b8:
10390   case SVE::BI__builtin_sve_svdup_n_b16:
10391   case SVE::BI__builtin_sve_svdup_n_b32:
10392   case SVE::BI__builtin_sve_svdup_n_b64: {
10393     Value *CmpNE =
10394         Builder.CreateICmpNE(Ops[0], Constant::getNullValue(Ops[0]->getType()));
10395     llvm::ScalableVectorType *OverloadedTy = getSVEType(TypeFlags);
10396     Value *Dup = EmitSVEDupX(CmpNE, OverloadedTy);
10397     return EmitSVEPredicateCast(Dup, cast<llvm::ScalableVectorType>(Ty));
10398   }
10399 
10400   case SVE::BI__builtin_sve_svdupq_n_b8:
10401   case SVE::BI__builtin_sve_svdupq_n_b16:
10402   case SVE::BI__builtin_sve_svdupq_n_b32:
10403   case SVE::BI__builtin_sve_svdupq_n_b64:
10404   case SVE::BI__builtin_sve_svdupq_n_u8:
10405   case SVE::BI__builtin_sve_svdupq_n_s8:
10406   case SVE::BI__builtin_sve_svdupq_n_u64:
10407   case SVE::BI__builtin_sve_svdupq_n_f64:
10408   case SVE::BI__builtin_sve_svdupq_n_s64:
10409   case SVE::BI__builtin_sve_svdupq_n_u16:
10410   case SVE::BI__builtin_sve_svdupq_n_f16:
10411   case SVE::BI__builtin_sve_svdupq_n_bf16:
10412   case SVE::BI__builtin_sve_svdupq_n_s16:
10413   case SVE::BI__builtin_sve_svdupq_n_u32:
10414   case SVE::BI__builtin_sve_svdupq_n_f32:
10415   case SVE::BI__builtin_sve_svdupq_n_s32: {
10416     // These builtins are implemented by storing each element to an array and using
10417     // ld1rq to materialize a vector.
10418     unsigned NumOpnds = Ops.size();
10419 
10420     bool IsBoolTy =
10421         cast<llvm::VectorType>(Ty)->getElementType()->isIntegerTy(1);
10422 
10423     // For svdupq_n_b* the element type of is an integer of type 128/numelts,
10424     // so that the compare can use the width that is natural for the expected
10425     // number of predicate lanes.
10426     llvm::Type *EltTy = Ops[0]->getType();
10427     if (IsBoolTy)
10428       EltTy = IntegerType::get(getLLVMContext(), SVEBitsPerBlock / NumOpnds);
10429 
10430     SmallVector<llvm::Value *, 16> VecOps;
10431     for (unsigned I = 0; I < NumOpnds; ++I)
10432         VecOps.push_back(Builder.CreateZExt(Ops[I], EltTy));
10433     Value *Vec = BuildVector(VecOps);
10434 
10435     llvm::Type *OverloadedTy = getSVEVectorForElementType(EltTy);
10436     Value *InsertSubVec = Builder.CreateInsertVector(
10437         OverloadedTy, PoisonValue::get(OverloadedTy), Vec, Builder.getInt64(0));
10438 
10439     Function *F =
10440         CGM.getIntrinsic(Intrinsic::aarch64_sve_dupq_lane, OverloadedTy);
10441     Value *DupQLane =
10442         Builder.CreateCall(F, {InsertSubVec, Builder.getInt64(0)});
10443 
10444     if (!IsBoolTy)
10445       return DupQLane;
10446 
10447     SVETypeFlags TypeFlags(Builtin->TypeModifier);
10448     Value *Pred = EmitSVEAllTruePred(TypeFlags);
10449 
10450     // For svdupq_n_b* we need to add an additional 'cmpne' with '0'.
10451     F = CGM.getIntrinsic(NumOpnds == 2 ? Intrinsic::aarch64_sve_cmpne
10452                                        : Intrinsic::aarch64_sve_cmpne_wide,
10453                          OverloadedTy);
10454     Value *Call = Builder.CreateCall(
10455         F, {Pred, DupQLane, EmitSVEDupX(Builder.getInt64(0))});
10456     return EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
10457   }
10458 
10459   case SVE::BI__builtin_sve_svpfalse_b:
10460     return ConstantInt::getFalse(Ty);
10461 
10462   case SVE::BI__builtin_sve_svpfalse_c: {
10463     auto SVBoolTy = ScalableVectorType::get(Builder.getInt1Ty(), 16);
10464     Function *CastToSVCountF =
10465         CGM.getIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool, Ty);
10466     return Builder.CreateCall(CastToSVCountF, ConstantInt::getFalse(SVBoolTy));
10467   }
10468 
10469   case SVE::BI__builtin_sve_svlen_bf16:
10470   case SVE::BI__builtin_sve_svlen_f16:
10471   case SVE::BI__builtin_sve_svlen_f32:
10472   case SVE::BI__builtin_sve_svlen_f64:
10473   case SVE::BI__builtin_sve_svlen_s8:
10474   case SVE::BI__builtin_sve_svlen_s16:
10475   case SVE::BI__builtin_sve_svlen_s32:
10476   case SVE::BI__builtin_sve_svlen_s64:
10477   case SVE::BI__builtin_sve_svlen_u8:
10478   case SVE::BI__builtin_sve_svlen_u16:
10479   case SVE::BI__builtin_sve_svlen_u32:
10480   case SVE::BI__builtin_sve_svlen_u64: {
10481     SVETypeFlags TF(Builtin->TypeModifier);
10482     auto VTy = cast<llvm::VectorType>(getSVEType(TF));
10483     auto *NumEls =
10484         llvm::ConstantInt::get(Ty, VTy->getElementCount().getKnownMinValue());
10485 
10486     Function *F = CGM.getIntrinsic(Intrinsic::vscale, Ty);
10487     return Builder.CreateMul(NumEls, Builder.CreateCall(F));
10488   }
10489 
10490   case SVE::BI__builtin_sve_svtbl2_u8:
10491   case SVE::BI__builtin_sve_svtbl2_s8:
10492   case SVE::BI__builtin_sve_svtbl2_u16:
10493   case SVE::BI__builtin_sve_svtbl2_s16:
10494   case SVE::BI__builtin_sve_svtbl2_u32:
10495   case SVE::BI__builtin_sve_svtbl2_s32:
10496   case SVE::BI__builtin_sve_svtbl2_u64:
10497   case SVE::BI__builtin_sve_svtbl2_s64:
10498   case SVE::BI__builtin_sve_svtbl2_f16:
10499   case SVE::BI__builtin_sve_svtbl2_bf16:
10500   case SVE::BI__builtin_sve_svtbl2_f32:
10501   case SVE::BI__builtin_sve_svtbl2_f64: {
10502     SVETypeFlags TF(Builtin->TypeModifier);
10503     auto VTy = cast<llvm::ScalableVectorType>(getSVEType(TF));
10504     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_tbl2, VTy);
10505     return Builder.CreateCall(F, Ops);
10506   }
10507 
10508   case SVE::BI__builtin_sve_svset_neonq_s8:
10509   case SVE::BI__builtin_sve_svset_neonq_s16:
10510   case SVE::BI__builtin_sve_svset_neonq_s32:
10511   case SVE::BI__builtin_sve_svset_neonq_s64:
10512   case SVE::BI__builtin_sve_svset_neonq_u8:
10513   case SVE::BI__builtin_sve_svset_neonq_u16:
10514   case SVE::BI__builtin_sve_svset_neonq_u32:
10515   case SVE::BI__builtin_sve_svset_neonq_u64:
10516   case SVE::BI__builtin_sve_svset_neonq_f16:
10517   case SVE::BI__builtin_sve_svset_neonq_f32:
10518   case SVE::BI__builtin_sve_svset_neonq_f64:
10519   case SVE::BI__builtin_sve_svset_neonq_bf16: {
10520     return Builder.CreateInsertVector(Ty, Ops[0], Ops[1], Builder.getInt64(0));
10521   }
10522 
10523   case SVE::BI__builtin_sve_svget_neonq_s8:
10524   case SVE::BI__builtin_sve_svget_neonq_s16:
10525   case SVE::BI__builtin_sve_svget_neonq_s32:
10526   case SVE::BI__builtin_sve_svget_neonq_s64:
10527   case SVE::BI__builtin_sve_svget_neonq_u8:
10528   case SVE::BI__builtin_sve_svget_neonq_u16:
10529   case SVE::BI__builtin_sve_svget_neonq_u32:
10530   case SVE::BI__builtin_sve_svget_neonq_u64:
10531   case SVE::BI__builtin_sve_svget_neonq_f16:
10532   case SVE::BI__builtin_sve_svget_neonq_f32:
10533   case SVE::BI__builtin_sve_svget_neonq_f64:
10534   case SVE::BI__builtin_sve_svget_neonq_bf16: {
10535     return Builder.CreateExtractVector(Ty, Ops[0], Builder.getInt64(0));
10536   }
10537 
10538   case SVE::BI__builtin_sve_svdup_neonq_s8:
10539   case SVE::BI__builtin_sve_svdup_neonq_s16:
10540   case SVE::BI__builtin_sve_svdup_neonq_s32:
10541   case SVE::BI__builtin_sve_svdup_neonq_s64:
10542   case SVE::BI__builtin_sve_svdup_neonq_u8:
10543   case SVE::BI__builtin_sve_svdup_neonq_u16:
10544   case SVE::BI__builtin_sve_svdup_neonq_u32:
10545   case SVE::BI__builtin_sve_svdup_neonq_u64:
10546   case SVE::BI__builtin_sve_svdup_neonq_f16:
10547   case SVE::BI__builtin_sve_svdup_neonq_f32:
10548   case SVE::BI__builtin_sve_svdup_neonq_f64:
10549   case SVE::BI__builtin_sve_svdup_neonq_bf16: {
10550     Value *Insert = Builder.CreateInsertVector(Ty, PoisonValue::get(Ty), Ops[0],
10551                                                Builder.getInt64(0));
10552     return Builder.CreateIntrinsic(Intrinsic::aarch64_sve_dupq_lane, {Ty},
10553                                    {Insert, Builder.getInt64(0)});
10554   }
10555   }
10556 
10557   /// Should not happen
10558   return nullptr;
10559 }
10560 
10561 static void swapCommutativeSMEOperands(unsigned BuiltinID,
10562                                        SmallVectorImpl<Value *> &Ops) {
10563   unsigned MultiVec;
10564   switch (BuiltinID) {
10565   default:
10566     return;
10567   case SME::BI__builtin_sme_svsumla_za32_s8_vg4x1:
10568     MultiVec = 1;
10569     break;
10570   case SME::BI__builtin_sme_svsumla_za32_s8_vg4x2:
10571   case SME::BI__builtin_sme_svsudot_za32_s8_vg1x2:
10572     MultiVec = 2;
10573     break;
10574   case SME::BI__builtin_sme_svsudot_za32_s8_vg1x4:
10575   case SME::BI__builtin_sme_svsumla_za32_s8_vg4x4:
10576     MultiVec = 4;
10577     break;
10578   }
10579 
10580   if (MultiVec > 0)
10581     for (unsigned I = 0; I < MultiVec; ++I)
10582       std::swap(Ops[I + 1], Ops[I + 1 + MultiVec]);
10583 }
10584 
10585 Value *CodeGenFunction::EmitAArch64SMEBuiltinExpr(unsigned BuiltinID,
10586                                                   const CallExpr *E) {
10587   auto *Builtin = findARMVectorIntrinsicInMap(AArch64SMEIntrinsicMap, BuiltinID,
10588                                               AArch64SMEIntrinsicsProvenSorted);
10589 
10590   llvm::SmallVector<Value *, 4> Ops;
10591   SVETypeFlags TypeFlags(Builtin->TypeModifier);
10592   GetAArch64SVEProcessedOperands(BuiltinID, E, Ops, TypeFlags);
10593 
10594   if (TypeFlags.isLoad() || TypeFlags.isStore())
10595     return EmitSMELd1St1(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10596   else if (TypeFlags.isReadZA() || TypeFlags.isWriteZA())
10597     return EmitSMEReadWrite(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10598   else if (BuiltinID == SME::BI__builtin_sme_svzero_mask_za ||
10599            BuiltinID == SME::BI__builtin_sme_svzero_za)
10600     return EmitSMEZero(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10601   else if (BuiltinID == SME::BI__builtin_sme_svldr_vnum_za ||
10602            BuiltinID == SME::BI__builtin_sme_svstr_vnum_za ||
10603            BuiltinID == SME::BI__builtin_sme_svldr_za ||
10604            BuiltinID == SME::BI__builtin_sme_svstr_za)
10605     return EmitSMELdrStr(TypeFlags, Ops, Builtin->LLVMIntrinsic);
10606 
10607   // Handle builtins which require their multi-vector operands to be swapped
10608   swapCommutativeSMEOperands(BuiltinID, Ops);
10609 
10610   // Should not happen!
10611   if (Builtin->LLVMIntrinsic == 0)
10612     return nullptr;
10613 
10614   // Predicates must match the main datatype.
10615   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
10616     if (auto PredTy = dyn_cast<llvm::VectorType>(Ops[i]->getType()))
10617       if (PredTy->getElementType()->isIntegerTy(1))
10618         Ops[i] = EmitSVEPredicateCast(Ops[i], getSVEType(TypeFlags));
10619 
10620   Function *F =
10621       TypeFlags.isOverloadNone()
10622           ? CGM.getIntrinsic(Builtin->LLVMIntrinsic)
10623           : CGM.getIntrinsic(Builtin->LLVMIntrinsic, {getSVEType(TypeFlags)});
10624   Value *Call = Builder.CreateCall(F, Ops);
10625 
10626   return FormSVEBuiltinResult(Call);
10627 }
10628 
10629 Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
10630                                                const CallExpr *E,
10631                                                llvm::Triple::ArchType Arch) {
10632   if (BuiltinID >= clang::AArch64::FirstSVEBuiltin &&
10633       BuiltinID <= clang::AArch64::LastSVEBuiltin)
10634     return EmitAArch64SVEBuiltinExpr(BuiltinID, E);
10635 
10636   if (BuiltinID >= clang::AArch64::FirstSMEBuiltin &&
10637       BuiltinID <= clang::AArch64::LastSMEBuiltin)
10638     return EmitAArch64SMEBuiltinExpr(BuiltinID, E);
10639 
10640   unsigned HintID = static_cast<unsigned>(-1);
10641   switch (BuiltinID) {
10642   default: break;
10643   case clang::AArch64::BI__builtin_arm_nop:
10644     HintID = 0;
10645     break;
10646   case clang::AArch64::BI__builtin_arm_yield:
10647   case clang::AArch64::BI__yield:
10648     HintID = 1;
10649     break;
10650   case clang::AArch64::BI__builtin_arm_wfe:
10651   case clang::AArch64::BI__wfe:
10652     HintID = 2;
10653     break;
10654   case clang::AArch64::BI__builtin_arm_wfi:
10655   case clang::AArch64::BI__wfi:
10656     HintID = 3;
10657     break;
10658   case clang::AArch64::BI__builtin_arm_sev:
10659   case clang::AArch64::BI__sev:
10660     HintID = 4;
10661     break;
10662   case clang::AArch64::BI__builtin_arm_sevl:
10663   case clang::AArch64::BI__sevl:
10664     HintID = 5;
10665     break;
10666   }
10667 
10668   if (HintID != static_cast<unsigned>(-1)) {
10669     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
10670     return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
10671   }
10672 
10673   if (BuiltinID == clang::AArch64::BI__builtin_arm_get_sme_state) {
10674     // Create call to __arm_sme_state and store the results to the two pointers.
10675     CallInst *CI = EmitRuntimeCall(CGM.CreateRuntimeFunction(
10676         llvm::FunctionType::get(StructType::get(CGM.Int64Ty, CGM.Int64Ty), {},
10677                                 false),
10678         "__arm_sme_state"));
10679     auto Attrs =
10680         AttributeList()
10681             .addFnAttribute(getLLVMContext(), "aarch64_pstate_sm_compatible")
10682             .addFnAttribute(getLLVMContext(), "aarch64_pstate_za_preserved");
10683     CI->setAttributes(Attrs);
10684     CI->setCallingConv(
10685         llvm::CallingConv::
10686             AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2);
10687     Builder.CreateStore(Builder.CreateExtractValue(CI, 0),
10688                         EmitPointerWithAlignment(E->getArg(0)));
10689     return Builder.CreateStore(Builder.CreateExtractValue(CI, 1),
10690                                EmitPointerWithAlignment(E->getArg(1)));
10691   }
10692 
10693   if (BuiltinID == clang::AArch64::BI__builtin_arm_rbit) {
10694     assert((getContext().getTypeSize(E->getType()) == 32) &&
10695            "rbit of unusual size!");
10696     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
10697     return Builder.CreateCall(
10698         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
10699   }
10700   if (BuiltinID == clang::AArch64::BI__builtin_arm_rbit64) {
10701     assert((getContext().getTypeSize(E->getType()) == 64) &&
10702            "rbit of unusual size!");
10703     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
10704     return Builder.CreateCall(
10705         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
10706   }
10707 
10708   if (BuiltinID == clang::AArch64::BI__builtin_arm_clz ||
10709       BuiltinID == clang::AArch64::BI__builtin_arm_clz64) {
10710     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
10711     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Arg->getType());
10712     Value *Res = Builder.CreateCall(F, {Arg, Builder.getInt1(false)});
10713     if (BuiltinID == clang::AArch64::BI__builtin_arm_clz64)
10714       Res = Builder.CreateTrunc(Res, Builder.getInt32Ty());
10715     return Res;
10716   }
10717 
10718   if (BuiltinID == clang::AArch64::BI__builtin_arm_cls) {
10719     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
10720     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls), Arg,
10721                               "cls");
10722   }
10723   if (BuiltinID == clang::AArch64::BI__builtin_arm_cls64) {
10724     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
10725     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls64), Arg,
10726                               "cls");
10727   }
10728 
10729   if (BuiltinID == clang::AArch64::BI__builtin_arm_rint32zf ||
10730       BuiltinID == clang::AArch64::BI__builtin_arm_rint32z) {
10731     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
10732     llvm::Type *Ty = Arg->getType();
10733     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32z, Ty),
10734                               Arg, "frint32z");
10735   }
10736 
10737   if (BuiltinID == clang::AArch64::BI__builtin_arm_rint64zf ||
10738       BuiltinID == clang::AArch64::BI__builtin_arm_rint64z) {
10739     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
10740     llvm::Type *Ty = Arg->getType();
10741     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64z, Ty),
10742                               Arg, "frint64z");
10743   }
10744 
10745   if (BuiltinID == clang::AArch64::BI__builtin_arm_rint32xf ||
10746       BuiltinID == clang::AArch64::BI__builtin_arm_rint32x) {
10747     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
10748     llvm::Type *Ty = Arg->getType();
10749     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32x, Ty),
10750                               Arg, "frint32x");
10751   }
10752 
10753   if (BuiltinID == clang::AArch64::BI__builtin_arm_rint64xf ||
10754       BuiltinID == clang::AArch64::BI__builtin_arm_rint64x) {
10755     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
10756     llvm::Type *Ty = Arg->getType();
10757     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64x, Ty),
10758                               Arg, "frint64x");
10759   }
10760 
10761   if (BuiltinID == clang::AArch64::BI__builtin_arm_jcvt) {
10762     assert((getContext().getTypeSize(E->getType()) == 32) &&
10763            "__jcvt of unusual size!");
10764     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
10765     return Builder.CreateCall(
10766         CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg);
10767   }
10768 
10769   if (BuiltinID == clang::AArch64::BI__builtin_arm_ld64b ||
10770       BuiltinID == clang::AArch64::BI__builtin_arm_st64b ||
10771       BuiltinID == clang::AArch64::BI__builtin_arm_st64bv ||
10772       BuiltinID == clang::AArch64::BI__builtin_arm_st64bv0) {
10773     llvm::Value *MemAddr = EmitScalarExpr(E->getArg(0));
10774     llvm::Value *ValPtr = EmitScalarExpr(E->getArg(1));
10775 
10776     if (BuiltinID == clang::AArch64::BI__builtin_arm_ld64b) {
10777       // Load from the address via an LLVM intrinsic, receiving a
10778       // tuple of 8 i64 words, and store each one to ValPtr.
10779       Function *F = CGM.getIntrinsic(Intrinsic::aarch64_ld64b);
10780       llvm::Value *Val = Builder.CreateCall(F, MemAddr);
10781       llvm::Value *ToRet;
10782       for (size_t i = 0; i < 8; i++) {
10783         llvm::Value *ValOffsetPtr =
10784             Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i));
10785         Address Addr =
10786             Address(ValOffsetPtr, Int64Ty, CharUnits::fromQuantity(8));
10787         ToRet = Builder.CreateStore(Builder.CreateExtractValue(Val, i), Addr);
10788       }
10789       return ToRet;
10790     } else {
10791       // Load 8 i64 words from ValPtr, and store them to the address
10792       // via an LLVM intrinsic.
10793       SmallVector<llvm::Value *, 9> Args;
10794       Args.push_back(MemAddr);
10795       for (size_t i = 0; i < 8; i++) {
10796         llvm::Value *ValOffsetPtr =
10797             Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i));
10798         Address Addr =
10799             Address(ValOffsetPtr, Int64Ty, CharUnits::fromQuantity(8));
10800         Args.push_back(Builder.CreateLoad(Addr));
10801       }
10802 
10803       auto Intr = (BuiltinID == clang::AArch64::BI__builtin_arm_st64b
10804                        ? Intrinsic::aarch64_st64b
10805                    : BuiltinID == clang::AArch64::BI__builtin_arm_st64bv
10806                        ? Intrinsic::aarch64_st64bv
10807                        : Intrinsic::aarch64_st64bv0);
10808       Function *F = CGM.getIntrinsic(Intr);
10809       return Builder.CreateCall(F, Args);
10810     }
10811   }
10812 
10813   if (BuiltinID == clang::AArch64::BI__builtin_arm_rndr ||
10814       BuiltinID == clang::AArch64::BI__builtin_arm_rndrrs) {
10815 
10816     auto Intr = (BuiltinID == clang::AArch64::BI__builtin_arm_rndr
10817                      ? Intrinsic::aarch64_rndr
10818                      : Intrinsic::aarch64_rndrrs);
10819     Function *F = CGM.getIntrinsic(Intr);
10820     llvm::Value *Val = Builder.CreateCall(F);
10821     Value *RandomValue = Builder.CreateExtractValue(Val, 0);
10822     Value *Status = Builder.CreateExtractValue(Val, 1);
10823 
10824     Address MemAddress = EmitPointerWithAlignment(E->getArg(0));
10825     Builder.CreateStore(RandomValue, MemAddress);
10826     Status = Builder.CreateZExt(Status, Int32Ty);
10827     return Status;
10828   }
10829 
10830   if (BuiltinID == clang::AArch64::BI__clear_cache) {
10831     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
10832     const FunctionDecl *FD = E->getDirectCallee();
10833     Value *Ops[2];
10834     for (unsigned i = 0; i < 2; i++)
10835       Ops[i] = EmitScalarExpr(E->getArg(i));
10836     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
10837     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
10838     StringRef Name = FD->getName();
10839     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
10840   }
10841 
10842   if ((BuiltinID == clang::AArch64::BI__builtin_arm_ldrex ||
10843        BuiltinID == clang::AArch64::BI__builtin_arm_ldaex) &&
10844       getContext().getTypeSize(E->getType()) == 128) {
10845     Function *F =
10846         CGM.getIntrinsic(BuiltinID == clang::AArch64::BI__builtin_arm_ldaex
10847                              ? Intrinsic::aarch64_ldaxp
10848                              : Intrinsic::aarch64_ldxp);
10849 
10850     Value *LdPtr = EmitScalarExpr(E->getArg(0));
10851     Value *Val = Builder.CreateCall(F, LdPtr, "ldxp");
10852 
10853     Value *Val0 = Builder.CreateExtractValue(Val, 1);
10854     Value *Val1 = Builder.CreateExtractValue(Val, 0);
10855     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
10856     Val0 = Builder.CreateZExt(Val0, Int128Ty);
10857     Val1 = Builder.CreateZExt(Val1, Int128Ty);
10858 
10859     Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
10860     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
10861     Val = Builder.CreateOr(Val, Val1);
10862     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
10863   } else if (BuiltinID == clang::AArch64::BI__builtin_arm_ldrex ||
10864              BuiltinID == clang::AArch64::BI__builtin_arm_ldaex) {
10865     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
10866 
10867     QualType Ty = E->getType();
10868     llvm::Type *RealResTy = ConvertType(Ty);
10869     llvm::Type *IntTy =
10870         llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty));
10871 
10872     Function *F =
10873         CGM.getIntrinsic(BuiltinID == clang::AArch64::BI__builtin_arm_ldaex
10874                              ? Intrinsic::aarch64_ldaxr
10875                              : Intrinsic::aarch64_ldxr,
10876                          UnqualPtrTy);
10877     CallInst *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
10878     Val->addParamAttr(
10879         0, Attribute::get(getLLVMContext(), Attribute::ElementType, IntTy));
10880 
10881     if (RealResTy->isPointerTy())
10882       return Builder.CreateIntToPtr(Val, RealResTy);
10883 
10884     llvm::Type *IntResTy = llvm::IntegerType::get(
10885         getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
10886     return Builder.CreateBitCast(Builder.CreateTruncOrBitCast(Val, IntResTy),
10887                                  RealResTy);
10888   }
10889 
10890   if ((BuiltinID == clang::AArch64::BI__builtin_arm_strex ||
10891        BuiltinID == clang::AArch64::BI__builtin_arm_stlex) &&
10892       getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
10893     Function *F =
10894         CGM.getIntrinsic(BuiltinID == clang::AArch64::BI__builtin_arm_stlex
10895                              ? Intrinsic::aarch64_stlxp
10896                              : Intrinsic::aarch64_stxp);
10897     llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty);
10898 
10899     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
10900     EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
10901 
10902     Tmp = Tmp.withElementType(STy);
10903     llvm::Value *Val = Builder.CreateLoad(Tmp);
10904 
10905     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
10906     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
10907     Value *StPtr = EmitScalarExpr(E->getArg(1));
10908     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
10909   }
10910 
10911   if (BuiltinID == clang::AArch64::BI__builtin_arm_strex ||
10912       BuiltinID == clang::AArch64::BI__builtin_arm_stlex) {
10913     Value *StoreVal = EmitScalarExpr(E->getArg(0));
10914     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
10915 
10916     QualType Ty = E->getArg(0)->getType();
10917     llvm::Type *StoreTy =
10918         llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty));
10919 
10920     if (StoreVal->getType()->isPointerTy())
10921       StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
10922     else {
10923       llvm::Type *IntTy = llvm::IntegerType::get(
10924           getLLVMContext(),
10925           CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
10926       StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
10927       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
10928     }
10929 
10930     Function *F =
10931         CGM.getIntrinsic(BuiltinID == clang::AArch64::BI__builtin_arm_stlex
10932                              ? Intrinsic::aarch64_stlxr
10933                              : Intrinsic::aarch64_stxr,
10934                          StoreAddr->getType());
10935     CallInst *CI = Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
10936     CI->addParamAttr(
10937         1, Attribute::get(getLLVMContext(), Attribute::ElementType, StoreTy));
10938     return CI;
10939   }
10940 
10941   if (BuiltinID == clang::AArch64::BI__getReg) {
10942     Expr::EvalResult Result;
10943     if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
10944       llvm_unreachable("Sema will ensure that the parameter is constant");
10945 
10946     llvm::APSInt Value = Result.Val.getInt();
10947     LLVMContext &Context = CGM.getLLVMContext();
10948     std::string Reg = Value == 31 ? "sp" : "x" + toString(Value, 10);
10949 
10950     llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)};
10951     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
10952     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
10953 
10954     llvm::Function *F =
10955         CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
10956     return Builder.CreateCall(F, Metadata);
10957   }
10958 
10959   if (BuiltinID == clang::AArch64::BI__break) {
10960     Expr::EvalResult Result;
10961     if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
10962       llvm_unreachable("Sema will ensure that the parameter is constant");
10963 
10964     llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::aarch64_break);
10965     return Builder.CreateCall(F, {EmitScalarExpr(E->getArg(0))});
10966   }
10967 
10968   if (BuiltinID == clang::AArch64::BI__builtin_arm_clrex) {
10969     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
10970     return Builder.CreateCall(F);
10971   }
10972 
10973   if (BuiltinID == clang::AArch64::BI_ReadWriteBarrier)
10974     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
10975                                llvm::SyncScope::SingleThread);
10976 
10977   // CRC32
10978   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
10979   switch (BuiltinID) {
10980   case clang::AArch64::BI__builtin_arm_crc32b:
10981     CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
10982   case clang::AArch64::BI__builtin_arm_crc32cb:
10983     CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
10984   case clang::AArch64::BI__builtin_arm_crc32h:
10985     CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
10986   case clang::AArch64::BI__builtin_arm_crc32ch:
10987     CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
10988   case clang::AArch64::BI__builtin_arm_crc32w:
10989     CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
10990   case clang::AArch64::BI__builtin_arm_crc32cw:
10991     CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
10992   case clang::AArch64::BI__builtin_arm_crc32d:
10993     CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
10994   case clang::AArch64::BI__builtin_arm_crc32cd:
10995     CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
10996   }
10997 
10998   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
10999     Value *Arg0 = EmitScalarExpr(E->getArg(0));
11000     Value *Arg1 = EmitScalarExpr(E->getArg(1));
11001     Function *F = CGM.getIntrinsic(CRCIntrinsicID);
11002 
11003     llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
11004     Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
11005 
11006     return Builder.CreateCall(F, {Arg0, Arg1});
11007   }
11008 
11009   // Memory Operations (MOPS)
11010   if (BuiltinID == AArch64::BI__builtin_arm_mops_memset_tag) {
11011     Value *Dst = EmitScalarExpr(E->getArg(0));
11012     Value *Val = EmitScalarExpr(E->getArg(1));
11013     Value *Size = EmitScalarExpr(E->getArg(2));
11014     Dst = Builder.CreatePointerCast(Dst, Int8PtrTy);
11015     Val = Builder.CreateTrunc(Val, Int8Ty);
11016     Size = Builder.CreateIntCast(Size, Int64Ty, false);
11017     return Builder.CreateCall(
11018         CGM.getIntrinsic(Intrinsic::aarch64_mops_memset_tag), {Dst, Val, Size});
11019   }
11020 
11021   // Memory Tagging Extensions (MTE) Intrinsics
11022   Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic;
11023   switch (BuiltinID) {
11024   case clang::AArch64::BI__builtin_arm_irg:
11025     MTEIntrinsicID = Intrinsic::aarch64_irg; break;
11026   case clang::AArch64::BI__builtin_arm_addg:
11027     MTEIntrinsicID = Intrinsic::aarch64_addg; break;
11028   case clang::AArch64::BI__builtin_arm_gmi:
11029     MTEIntrinsicID = Intrinsic::aarch64_gmi; break;
11030   case clang::AArch64::BI__builtin_arm_ldg:
11031     MTEIntrinsicID = Intrinsic::aarch64_ldg; break;
11032   case clang::AArch64::BI__builtin_arm_stg:
11033     MTEIntrinsicID = Intrinsic::aarch64_stg; break;
11034   case clang::AArch64::BI__builtin_arm_subp:
11035     MTEIntrinsicID = Intrinsic::aarch64_subp; break;
11036   }
11037 
11038   if (MTEIntrinsicID != Intrinsic::not_intrinsic) {
11039     llvm::Type *T = ConvertType(E->getType());
11040 
11041     if (MTEIntrinsicID == Intrinsic::aarch64_irg) {
11042       Value *Pointer = EmitScalarExpr(E->getArg(0));
11043       Value *Mask = EmitScalarExpr(E->getArg(1));
11044 
11045       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
11046       Mask = Builder.CreateZExt(Mask, Int64Ty);
11047       Value *RV = Builder.CreateCall(
11048                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask});
11049        return Builder.CreatePointerCast(RV, T);
11050     }
11051     if (MTEIntrinsicID == Intrinsic::aarch64_addg) {
11052       Value *Pointer = EmitScalarExpr(E->getArg(0));
11053       Value *TagOffset = EmitScalarExpr(E->getArg(1));
11054 
11055       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
11056       TagOffset = Builder.CreateZExt(TagOffset, Int64Ty);
11057       Value *RV = Builder.CreateCall(
11058                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset});
11059       return Builder.CreatePointerCast(RV, T);
11060     }
11061     if (MTEIntrinsicID == Intrinsic::aarch64_gmi) {
11062       Value *Pointer = EmitScalarExpr(E->getArg(0));
11063       Value *ExcludedMask = EmitScalarExpr(E->getArg(1));
11064 
11065       ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty);
11066       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
11067       return Builder.CreateCall(
11068                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask});
11069     }
11070     // Although it is possible to supply a different return
11071     // address (first arg) to this intrinsic, for now we set
11072     // return address same as input address.
11073     if (MTEIntrinsicID == Intrinsic::aarch64_ldg) {
11074       Value *TagAddress = EmitScalarExpr(E->getArg(0));
11075       TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
11076       Value *RV = Builder.CreateCall(
11077                     CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
11078       return Builder.CreatePointerCast(RV, T);
11079     }
11080     // Although it is possible to supply a different tag (to set)
11081     // to this intrinsic (as first arg), for now we supply
11082     // the tag that is in input address arg (common use case).
11083     if (MTEIntrinsicID == Intrinsic::aarch64_stg) {
11084         Value *TagAddress = EmitScalarExpr(E->getArg(0));
11085         TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
11086         return Builder.CreateCall(
11087                  CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
11088     }
11089     if (MTEIntrinsicID == Intrinsic::aarch64_subp) {
11090       Value *PointerA = EmitScalarExpr(E->getArg(0));
11091       Value *PointerB = EmitScalarExpr(E->getArg(1));
11092       PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy);
11093       PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy);
11094       return Builder.CreateCall(
11095                        CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB});
11096     }
11097   }
11098 
11099   if (BuiltinID == clang::AArch64::BI__builtin_arm_rsr ||
11100       BuiltinID == clang::AArch64::BI__builtin_arm_rsr64 ||
11101       BuiltinID == clang::AArch64::BI__builtin_arm_rsr128 ||
11102       BuiltinID == clang::AArch64::BI__builtin_arm_rsrp ||
11103       BuiltinID == clang::AArch64::BI__builtin_arm_wsr ||
11104       BuiltinID == clang::AArch64::BI__builtin_arm_wsr64 ||
11105       BuiltinID == clang::AArch64::BI__builtin_arm_wsr128 ||
11106       BuiltinID == clang::AArch64::BI__builtin_arm_wsrp) {
11107 
11108     SpecialRegisterAccessKind AccessKind = Write;
11109     if (BuiltinID == clang::AArch64::BI__builtin_arm_rsr ||
11110         BuiltinID == clang::AArch64::BI__builtin_arm_rsr64 ||
11111         BuiltinID == clang::AArch64::BI__builtin_arm_rsr128 ||
11112         BuiltinID == clang::AArch64::BI__builtin_arm_rsrp)
11113       AccessKind = VolatileRead;
11114 
11115     bool IsPointerBuiltin = BuiltinID == clang::AArch64::BI__builtin_arm_rsrp ||
11116                             BuiltinID == clang::AArch64::BI__builtin_arm_wsrp;
11117 
11118     bool Is32Bit = BuiltinID == clang::AArch64::BI__builtin_arm_rsr ||
11119                    BuiltinID == clang::AArch64::BI__builtin_arm_wsr;
11120 
11121     bool Is128Bit = BuiltinID == clang::AArch64::BI__builtin_arm_rsr128 ||
11122                     BuiltinID == clang::AArch64::BI__builtin_arm_wsr128;
11123 
11124     llvm::Type *ValueType;
11125     llvm::Type *RegisterType = Int64Ty;
11126     if (Is32Bit) {
11127       ValueType = Int32Ty;
11128     } else if (Is128Bit) {
11129       llvm::Type *Int128Ty =
11130           llvm::IntegerType::getInt128Ty(CGM.getLLVMContext());
11131       ValueType = Int128Ty;
11132       RegisterType = Int128Ty;
11133     } else if (IsPointerBuiltin) {
11134       ValueType = VoidPtrTy;
11135     } else {
11136       ValueType = Int64Ty;
11137     };
11138 
11139     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
11140                                       AccessKind);
11141   }
11142 
11143   if (BuiltinID == clang::AArch64::BI_ReadStatusReg ||
11144       BuiltinID == clang::AArch64::BI_WriteStatusReg) {
11145     LLVMContext &Context = CGM.getLLVMContext();
11146 
11147     unsigned SysReg =
11148       E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue();
11149 
11150     std::string SysRegStr;
11151     llvm::raw_string_ostream(SysRegStr) <<
11152                        ((1 << 1) | ((SysReg >> 14) & 1))  << ":" <<
11153                        ((SysReg >> 11) & 7)               << ":" <<
11154                        ((SysReg >> 7)  & 15)              << ":" <<
11155                        ((SysReg >> 3)  & 15)              << ":" <<
11156                        ( SysReg        & 7);
11157 
11158     llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) };
11159     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
11160     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
11161 
11162     llvm::Type *RegisterType = Int64Ty;
11163     llvm::Type *Types[] = { RegisterType };
11164 
11165     if (BuiltinID == clang::AArch64::BI_ReadStatusReg) {
11166       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
11167 
11168       return Builder.CreateCall(F, Metadata);
11169     }
11170 
11171     llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
11172     llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1));
11173 
11174     return Builder.CreateCall(F, { Metadata, ArgValue });
11175   }
11176 
11177   if (BuiltinID == clang::AArch64::BI_AddressOfReturnAddress) {
11178     llvm::Function *F =
11179         CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
11180     return Builder.CreateCall(F);
11181   }
11182 
11183   if (BuiltinID == clang::AArch64::BI__builtin_sponentry) {
11184     llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy);
11185     return Builder.CreateCall(F);
11186   }
11187 
11188   if (BuiltinID == clang::AArch64::BI__mulh ||
11189       BuiltinID == clang::AArch64::BI__umulh) {
11190     llvm::Type *ResType = ConvertType(E->getType());
11191     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
11192 
11193     bool IsSigned = BuiltinID == clang::AArch64::BI__mulh;
11194     Value *LHS =
11195         Builder.CreateIntCast(EmitScalarExpr(E->getArg(0)), Int128Ty, IsSigned);
11196     Value *RHS =
11197         Builder.CreateIntCast(EmitScalarExpr(E->getArg(1)), Int128Ty, IsSigned);
11198 
11199     Value *MulResult, *HigherBits;
11200     if (IsSigned) {
11201       MulResult = Builder.CreateNSWMul(LHS, RHS);
11202       HigherBits = Builder.CreateAShr(MulResult, 64);
11203     } else {
11204       MulResult = Builder.CreateNUWMul(LHS, RHS);
11205       HigherBits = Builder.CreateLShr(MulResult, 64);
11206     }
11207     HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
11208 
11209     return HigherBits;
11210   }
11211 
11212   if (BuiltinID == AArch64::BI__writex18byte ||
11213       BuiltinID == AArch64::BI__writex18word ||
11214       BuiltinID == AArch64::BI__writex18dword ||
11215       BuiltinID == AArch64::BI__writex18qword) {
11216     // Read x18 as i8*
11217     LLVMContext &Context = CGM.getLLVMContext();
11218     llvm::Metadata *Ops[] = {llvm::MDString::get(Context, "x18")};
11219     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
11220     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
11221     llvm::Function *F =
11222         CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
11223     llvm::Value *X18 = Builder.CreateCall(F, Metadata);
11224     X18 = Builder.CreateIntToPtr(X18, Int8PtrTy);
11225 
11226     // Store val at x18 + offset
11227     Value *Offset = Builder.CreateZExt(EmitScalarExpr(E->getArg(0)), Int64Ty);
11228     Value *Ptr = Builder.CreateGEP(Int8Ty, X18, Offset);
11229     Value *Val = EmitScalarExpr(E->getArg(1));
11230     StoreInst *Store = Builder.CreateAlignedStore(Val, Ptr, CharUnits::One());
11231     return Store;
11232   }
11233 
11234   if (BuiltinID == AArch64::BI__readx18byte ||
11235       BuiltinID == AArch64::BI__readx18word ||
11236       BuiltinID == AArch64::BI__readx18dword ||
11237       BuiltinID == AArch64::BI__readx18qword) {
11238     llvm::Type *IntTy = ConvertType(E->getType());
11239 
11240     // Read x18 as i8*
11241     LLVMContext &Context = CGM.getLLVMContext();
11242     llvm::Metadata *Ops[] = {llvm::MDString::get(Context, "x18")};
11243     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
11244     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
11245     llvm::Function *F =
11246         CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
11247     llvm::Value *X18 = Builder.CreateCall(F, Metadata);
11248     X18 = Builder.CreateIntToPtr(X18, Int8PtrTy);
11249 
11250     // Load x18 + offset
11251     Value *Offset = Builder.CreateZExt(EmitScalarExpr(E->getArg(0)), Int64Ty);
11252     Value *Ptr = Builder.CreateGEP(Int8Ty, X18, Offset);
11253     LoadInst *Load = Builder.CreateAlignedLoad(IntTy, Ptr, CharUnits::One());
11254     return Load;
11255   }
11256 
11257   if (BuiltinID == AArch64::BI_CopyDoubleFromInt64 ||
11258       BuiltinID == AArch64::BI_CopyFloatFromInt32 ||
11259       BuiltinID == AArch64::BI_CopyInt32FromFloat ||
11260       BuiltinID == AArch64::BI_CopyInt64FromDouble) {
11261     Value *Arg = EmitScalarExpr(E->getArg(0));
11262     llvm::Type *RetTy = ConvertType(E->getType());
11263     return Builder.CreateBitCast(Arg, RetTy);
11264   }
11265 
11266   if (BuiltinID == AArch64::BI_CountLeadingOnes ||
11267       BuiltinID == AArch64::BI_CountLeadingOnes64 ||
11268       BuiltinID == AArch64::BI_CountLeadingZeros ||
11269       BuiltinID == AArch64::BI_CountLeadingZeros64) {
11270     Value *Arg = EmitScalarExpr(E->getArg(0));
11271     llvm::Type *ArgType = Arg->getType();
11272 
11273     if (BuiltinID == AArch64::BI_CountLeadingOnes ||
11274         BuiltinID == AArch64::BI_CountLeadingOnes64)
11275       Arg = Builder.CreateXor(Arg, Constant::getAllOnesValue(ArgType));
11276 
11277     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
11278     Value *Result = Builder.CreateCall(F, {Arg, Builder.getInt1(false)});
11279 
11280     if (BuiltinID == AArch64::BI_CountLeadingOnes64 ||
11281         BuiltinID == AArch64::BI_CountLeadingZeros64)
11282       Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11283     return Result;
11284   }
11285 
11286   if (BuiltinID == AArch64::BI_CountLeadingSigns ||
11287       BuiltinID == AArch64::BI_CountLeadingSigns64) {
11288     Value *Arg = EmitScalarExpr(E->getArg(0));
11289 
11290     Function *F = (BuiltinID == AArch64::BI_CountLeadingSigns)
11291                       ? CGM.getIntrinsic(Intrinsic::aarch64_cls)
11292                       : CGM.getIntrinsic(Intrinsic::aarch64_cls64);
11293 
11294     Value *Result = Builder.CreateCall(F, Arg, "cls");
11295     if (BuiltinID == AArch64::BI_CountLeadingSigns64)
11296       Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11297     return Result;
11298   }
11299 
11300   if (BuiltinID == AArch64::BI_CountOneBits ||
11301       BuiltinID == AArch64::BI_CountOneBits64) {
11302     Value *ArgValue = EmitScalarExpr(E->getArg(0));
11303     llvm::Type *ArgType = ArgValue->getType();
11304     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
11305 
11306     Value *Result = Builder.CreateCall(F, ArgValue);
11307     if (BuiltinID == AArch64::BI_CountOneBits64)
11308       Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
11309     return Result;
11310   }
11311 
11312   if (BuiltinID == AArch64::BI__prefetch) {
11313     Value *Address = EmitScalarExpr(E->getArg(0));
11314     Value *RW = llvm::ConstantInt::get(Int32Ty, 0);
11315     Value *Locality = ConstantInt::get(Int32Ty, 3);
11316     Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
11317     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
11318     return Builder.CreateCall(F, {Address, RW, Locality, Data});
11319   }
11320 
11321   // Handle MSVC intrinsics before argument evaluation to prevent double
11322   // evaluation.
11323   if (std::optional<MSVCIntrin> MsvcIntId =
11324           translateAarch64ToMsvcIntrin(BuiltinID))
11325     return EmitMSVCBuiltinExpr(*MsvcIntId, E);
11326 
11327   // Some intrinsics are equivalent - if they are use the base intrinsic ID.
11328   auto It = llvm::find_if(NEONEquivalentIntrinsicMap, [BuiltinID](auto &P) {
11329     return P.first == BuiltinID;
11330   });
11331   if (It != end(NEONEquivalentIntrinsicMap))
11332     BuiltinID = It->second;
11333 
11334   // Find out if any arguments are required to be integer constant
11335   // expressions.
11336   unsigned ICEArguments = 0;
11337   ASTContext::GetBuiltinTypeError Error;
11338   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
11339   assert(Error == ASTContext::GE_None && "Should not codegen an error");
11340 
11341   llvm::SmallVector<Value*, 4> Ops;
11342   Address PtrOp0 = Address::invalid();
11343   for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
11344     if (i == 0) {
11345       switch (BuiltinID) {
11346       case NEON::BI__builtin_neon_vld1_v:
11347       case NEON::BI__builtin_neon_vld1q_v:
11348       case NEON::BI__builtin_neon_vld1_dup_v:
11349       case NEON::BI__builtin_neon_vld1q_dup_v:
11350       case NEON::BI__builtin_neon_vld1_lane_v:
11351       case NEON::BI__builtin_neon_vld1q_lane_v:
11352       case NEON::BI__builtin_neon_vst1_v:
11353       case NEON::BI__builtin_neon_vst1q_v:
11354       case NEON::BI__builtin_neon_vst1_lane_v:
11355       case NEON::BI__builtin_neon_vst1q_lane_v:
11356       case NEON::BI__builtin_neon_vldap1_lane_s64:
11357       case NEON::BI__builtin_neon_vldap1q_lane_s64:
11358       case NEON::BI__builtin_neon_vstl1_lane_s64:
11359       case NEON::BI__builtin_neon_vstl1q_lane_s64:
11360         // Get the alignment for the argument in addition to the value;
11361         // we'll use it later.
11362         PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
11363         Ops.push_back(PtrOp0.getPointer());
11364         continue;
11365       }
11366     }
11367     Ops.push_back(EmitScalarOrConstFoldImmArg(ICEArguments, i, E));
11368   }
11369 
11370   auto SISDMap = ArrayRef(AArch64SISDIntrinsicMap);
11371   const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
11372       SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
11373 
11374   if (Builtin) {
11375     Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
11376     Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
11377     assert(Result && "SISD intrinsic should have been handled");
11378     return Result;
11379   }
11380 
11381   const Expr *Arg = E->getArg(E->getNumArgs()-1);
11382   NeonTypeFlags Type(0);
11383   if (std::optional<llvm::APSInt> Result =
11384           Arg->getIntegerConstantExpr(getContext()))
11385     // Determine the type of this overloaded NEON intrinsic.
11386     Type = NeonTypeFlags(Result->getZExtValue());
11387 
11388   bool usgn = Type.isUnsigned();
11389   bool quad = Type.isQuad();
11390 
11391   // Handle non-overloaded intrinsics first.
11392   switch (BuiltinID) {
11393   default: break;
11394   case NEON::BI__builtin_neon_vabsh_f16:
11395     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11396     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs");
11397   case NEON::BI__builtin_neon_vaddq_p128: {
11398     llvm::Type *Ty = GetNeonType(this, NeonTypeFlags::Poly128);
11399     Ops.push_back(EmitScalarExpr(E->getArg(1)));
11400     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11401     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11402     Ops[0] =  Builder.CreateXor(Ops[0], Ops[1]);
11403     llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
11404     return Builder.CreateBitCast(Ops[0], Int128Ty);
11405   }
11406   case NEON::BI__builtin_neon_vldrq_p128: {
11407     llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
11408     Value *Ptr = EmitScalarExpr(E->getArg(0));
11409     return Builder.CreateAlignedLoad(Int128Ty, Ptr,
11410                                      CharUnits::fromQuantity(16));
11411   }
11412   case NEON::BI__builtin_neon_vstrq_p128: {
11413     Value *Ptr = Ops[0];
11414     return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
11415   }
11416   case NEON::BI__builtin_neon_vcvts_f32_u32:
11417   case NEON::BI__builtin_neon_vcvtd_f64_u64:
11418     usgn = true;
11419     [[fallthrough]];
11420   case NEON::BI__builtin_neon_vcvts_f32_s32:
11421   case NEON::BI__builtin_neon_vcvtd_f64_s64: {
11422     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11423     bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
11424     llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
11425     llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
11426     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
11427     if (usgn)
11428       return Builder.CreateUIToFP(Ops[0], FTy);
11429     return Builder.CreateSIToFP(Ops[0], FTy);
11430   }
11431   case NEON::BI__builtin_neon_vcvth_f16_u16:
11432   case NEON::BI__builtin_neon_vcvth_f16_u32:
11433   case NEON::BI__builtin_neon_vcvth_f16_u64:
11434     usgn = true;
11435     [[fallthrough]];
11436   case NEON::BI__builtin_neon_vcvth_f16_s16:
11437   case NEON::BI__builtin_neon_vcvth_f16_s32:
11438   case NEON::BI__builtin_neon_vcvth_f16_s64: {
11439     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11440     llvm::Type *FTy = HalfTy;
11441     llvm::Type *InTy;
11442     if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64)
11443       InTy = Int64Ty;
11444     else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32)
11445       InTy = Int32Ty;
11446     else
11447       InTy = Int16Ty;
11448     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
11449     if (usgn)
11450       return Builder.CreateUIToFP(Ops[0], FTy);
11451     return Builder.CreateSIToFP(Ops[0], FTy);
11452   }
11453   case NEON::BI__builtin_neon_vcvtah_u16_f16:
11454   case NEON::BI__builtin_neon_vcvtmh_u16_f16:
11455   case NEON::BI__builtin_neon_vcvtnh_u16_f16:
11456   case NEON::BI__builtin_neon_vcvtph_u16_f16:
11457   case NEON::BI__builtin_neon_vcvth_u16_f16:
11458   case NEON::BI__builtin_neon_vcvtah_s16_f16:
11459   case NEON::BI__builtin_neon_vcvtmh_s16_f16:
11460   case NEON::BI__builtin_neon_vcvtnh_s16_f16:
11461   case NEON::BI__builtin_neon_vcvtph_s16_f16:
11462   case NEON::BI__builtin_neon_vcvth_s16_f16: {
11463     unsigned Int;
11464     llvm::Type* InTy = Int32Ty;
11465     llvm::Type* FTy  = HalfTy;
11466     llvm::Type *Tys[2] = {InTy, FTy};
11467     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11468     switch (BuiltinID) {
11469     default: llvm_unreachable("missing builtin ID in switch!");
11470     case NEON::BI__builtin_neon_vcvtah_u16_f16:
11471       Int = Intrinsic::aarch64_neon_fcvtau; break;
11472     case NEON::BI__builtin_neon_vcvtmh_u16_f16:
11473       Int = Intrinsic::aarch64_neon_fcvtmu; break;
11474     case NEON::BI__builtin_neon_vcvtnh_u16_f16:
11475       Int = Intrinsic::aarch64_neon_fcvtnu; break;
11476     case NEON::BI__builtin_neon_vcvtph_u16_f16:
11477       Int = Intrinsic::aarch64_neon_fcvtpu; break;
11478     case NEON::BI__builtin_neon_vcvth_u16_f16:
11479       Int = Intrinsic::aarch64_neon_fcvtzu; break;
11480     case NEON::BI__builtin_neon_vcvtah_s16_f16:
11481       Int = Intrinsic::aarch64_neon_fcvtas; break;
11482     case NEON::BI__builtin_neon_vcvtmh_s16_f16:
11483       Int = Intrinsic::aarch64_neon_fcvtms; break;
11484     case NEON::BI__builtin_neon_vcvtnh_s16_f16:
11485       Int = Intrinsic::aarch64_neon_fcvtns; break;
11486     case NEON::BI__builtin_neon_vcvtph_s16_f16:
11487       Int = Intrinsic::aarch64_neon_fcvtps; break;
11488     case NEON::BI__builtin_neon_vcvth_s16_f16:
11489       Int = Intrinsic::aarch64_neon_fcvtzs; break;
11490     }
11491     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt");
11492     return Builder.CreateTrunc(Ops[0], Int16Ty);
11493   }
11494   case NEON::BI__builtin_neon_vcaleh_f16:
11495   case NEON::BI__builtin_neon_vcalth_f16:
11496   case NEON::BI__builtin_neon_vcageh_f16:
11497   case NEON::BI__builtin_neon_vcagth_f16: {
11498     unsigned Int;
11499     llvm::Type* InTy = Int32Ty;
11500     llvm::Type* FTy  = HalfTy;
11501     llvm::Type *Tys[2] = {InTy, FTy};
11502     Ops.push_back(EmitScalarExpr(E->getArg(1)));
11503     switch (BuiltinID) {
11504     default: llvm_unreachable("missing builtin ID in switch!");
11505     case NEON::BI__builtin_neon_vcageh_f16:
11506       Int = Intrinsic::aarch64_neon_facge; break;
11507     case NEON::BI__builtin_neon_vcagth_f16:
11508       Int = Intrinsic::aarch64_neon_facgt; break;
11509     case NEON::BI__builtin_neon_vcaleh_f16:
11510       Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break;
11511     case NEON::BI__builtin_neon_vcalth_f16:
11512       Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break;
11513     }
11514     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg");
11515     return Builder.CreateTrunc(Ops[0], Int16Ty);
11516   }
11517   case NEON::BI__builtin_neon_vcvth_n_s16_f16:
11518   case NEON::BI__builtin_neon_vcvth_n_u16_f16: {
11519     unsigned Int;
11520     llvm::Type* InTy = Int32Ty;
11521     llvm::Type* FTy  = HalfTy;
11522     llvm::Type *Tys[2] = {InTy, FTy};
11523     Ops.push_back(EmitScalarExpr(E->getArg(1)));
11524     switch (BuiltinID) {
11525     default: llvm_unreachable("missing builtin ID in switch!");
11526     case NEON::BI__builtin_neon_vcvth_n_s16_f16:
11527       Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break;
11528     case NEON::BI__builtin_neon_vcvth_n_u16_f16:
11529       Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break;
11530     }
11531     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
11532     return Builder.CreateTrunc(Ops[0], Int16Ty);
11533   }
11534   case NEON::BI__builtin_neon_vcvth_n_f16_s16:
11535   case NEON::BI__builtin_neon_vcvth_n_f16_u16: {
11536     unsigned Int;
11537     llvm::Type* FTy  = HalfTy;
11538     llvm::Type* InTy = Int32Ty;
11539     llvm::Type *Tys[2] = {FTy, InTy};
11540     Ops.push_back(EmitScalarExpr(E->getArg(1)));
11541     switch (BuiltinID) {
11542     default: llvm_unreachable("missing builtin ID in switch!");
11543     case NEON::BI__builtin_neon_vcvth_n_f16_s16:
11544       Int = Intrinsic::aarch64_neon_vcvtfxs2fp;
11545       Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext");
11546       break;
11547     case NEON::BI__builtin_neon_vcvth_n_f16_u16:
11548       Int = Intrinsic::aarch64_neon_vcvtfxu2fp;
11549       Ops[0] = Builder.CreateZExt(Ops[0], InTy);
11550       break;
11551     }
11552     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
11553   }
11554   case NEON::BI__builtin_neon_vpaddd_s64: {
11555     auto *Ty = llvm::FixedVectorType::get(Int64Ty, 2);
11556     Value *Vec = EmitScalarExpr(E->getArg(0));
11557     // The vector is v2f64, so make sure it's bitcast to that.
11558     Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
11559     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
11560     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
11561     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
11562     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
11563     // Pairwise addition of a v2f64 into a scalar f64.
11564     return Builder.CreateAdd(Op0, Op1, "vpaddd");
11565   }
11566   case NEON::BI__builtin_neon_vpaddd_f64: {
11567     auto *Ty = llvm::FixedVectorType::get(DoubleTy, 2);
11568     Value *Vec = EmitScalarExpr(E->getArg(0));
11569     // The vector is v2f64, so make sure it's bitcast to that.
11570     Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
11571     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
11572     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
11573     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
11574     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
11575     // Pairwise addition of a v2f64 into a scalar f64.
11576     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
11577   }
11578   case NEON::BI__builtin_neon_vpadds_f32: {
11579     auto *Ty = llvm::FixedVectorType::get(FloatTy, 2);
11580     Value *Vec = EmitScalarExpr(E->getArg(0));
11581     // The vector is v2f32, so make sure it's bitcast to that.
11582     Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
11583     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
11584     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
11585     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
11586     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
11587     // Pairwise addition of a v2f32 into a scalar f32.
11588     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
11589   }
11590   case NEON::BI__builtin_neon_vceqzd_s64:
11591   case NEON::BI__builtin_neon_vceqzd_f64:
11592   case NEON::BI__builtin_neon_vceqzs_f32:
11593   case NEON::BI__builtin_neon_vceqzh_f16:
11594     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11595     return EmitAArch64CompareBuiltinExpr(
11596         Ops[0], ConvertType(E->getCallReturnType(getContext())),
11597         ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
11598   case NEON::BI__builtin_neon_vcgezd_s64:
11599   case NEON::BI__builtin_neon_vcgezd_f64:
11600   case NEON::BI__builtin_neon_vcgezs_f32:
11601   case NEON::BI__builtin_neon_vcgezh_f16:
11602     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11603     return EmitAArch64CompareBuiltinExpr(
11604         Ops[0], ConvertType(E->getCallReturnType(getContext())),
11605         ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
11606   case NEON::BI__builtin_neon_vclezd_s64:
11607   case NEON::BI__builtin_neon_vclezd_f64:
11608   case NEON::BI__builtin_neon_vclezs_f32:
11609   case NEON::BI__builtin_neon_vclezh_f16:
11610     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11611     return EmitAArch64CompareBuiltinExpr(
11612         Ops[0], ConvertType(E->getCallReturnType(getContext())),
11613         ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
11614   case NEON::BI__builtin_neon_vcgtzd_s64:
11615   case NEON::BI__builtin_neon_vcgtzd_f64:
11616   case NEON::BI__builtin_neon_vcgtzs_f32:
11617   case NEON::BI__builtin_neon_vcgtzh_f16:
11618     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11619     return EmitAArch64CompareBuiltinExpr(
11620         Ops[0], ConvertType(E->getCallReturnType(getContext())),
11621         ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
11622   case NEON::BI__builtin_neon_vcltzd_s64:
11623   case NEON::BI__builtin_neon_vcltzd_f64:
11624   case NEON::BI__builtin_neon_vcltzs_f32:
11625   case NEON::BI__builtin_neon_vcltzh_f16:
11626     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11627     return EmitAArch64CompareBuiltinExpr(
11628         Ops[0], ConvertType(E->getCallReturnType(getContext())),
11629         ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
11630 
11631   case NEON::BI__builtin_neon_vceqzd_u64: {
11632     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11633     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
11634     Ops[0] =
11635         Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
11636     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
11637   }
11638   case NEON::BI__builtin_neon_vceqd_f64:
11639   case NEON::BI__builtin_neon_vcled_f64:
11640   case NEON::BI__builtin_neon_vcltd_f64:
11641   case NEON::BI__builtin_neon_vcged_f64:
11642   case NEON::BI__builtin_neon_vcgtd_f64: {
11643     llvm::CmpInst::Predicate P;
11644     switch (BuiltinID) {
11645     default: llvm_unreachable("missing builtin ID in switch!");
11646     case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
11647     case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
11648     case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
11649     case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
11650     case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
11651     }
11652     Ops.push_back(EmitScalarExpr(E->getArg(1)));
11653     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
11654     Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
11655     if (P == llvm::FCmpInst::FCMP_OEQ)
11656       Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
11657     else
11658       Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]);
11659     return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
11660   }
11661   case NEON::BI__builtin_neon_vceqs_f32:
11662   case NEON::BI__builtin_neon_vcles_f32:
11663   case NEON::BI__builtin_neon_vclts_f32:
11664   case NEON::BI__builtin_neon_vcges_f32:
11665   case NEON::BI__builtin_neon_vcgts_f32: {
11666     llvm::CmpInst::Predicate P;
11667     switch (BuiltinID) {
11668     default: llvm_unreachable("missing builtin ID in switch!");
11669     case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
11670     case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
11671     case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
11672     case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
11673     case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
11674     }
11675     Ops.push_back(EmitScalarExpr(E->getArg(1)));
11676     Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
11677     Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
11678     if (P == llvm::FCmpInst::FCMP_OEQ)
11679       Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
11680     else
11681       Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]);
11682     return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
11683   }
11684   case NEON::BI__builtin_neon_vceqh_f16:
11685   case NEON::BI__builtin_neon_vcleh_f16:
11686   case NEON::BI__builtin_neon_vclth_f16:
11687   case NEON::BI__builtin_neon_vcgeh_f16:
11688   case NEON::BI__builtin_neon_vcgth_f16: {
11689     llvm::CmpInst::Predicate P;
11690     switch (BuiltinID) {
11691     default: llvm_unreachable("missing builtin ID in switch!");
11692     case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break;
11693     case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break;
11694     case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break;
11695     case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break;
11696     case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break;
11697     }
11698     Ops.push_back(EmitScalarExpr(E->getArg(1)));
11699     Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
11700     Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy);
11701     if (P == llvm::FCmpInst::FCMP_OEQ)
11702       Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
11703     else
11704       Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]);
11705     return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd");
11706   }
11707   case NEON::BI__builtin_neon_vceqd_s64:
11708   case NEON::BI__builtin_neon_vceqd_u64:
11709   case NEON::BI__builtin_neon_vcgtd_s64:
11710   case NEON::BI__builtin_neon_vcgtd_u64:
11711   case NEON::BI__builtin_neon_vcltd_s64:
11712   case NEON::BI__builtin_neon_vcltd_u64:
11713   case NEON::BI__builtin_neon_vcged_u64:
11714   case NEON::BI__builtin_neon_vcged_s64:
11715   case NEON::BI__builtin_neon_vcled_u64:
11716   case NEON::BI__builtin_neon_vcled_s64: {
11717     llvm::CmpInst::Predicate P;
11718     switch (BuiltinID) {
11719     default: llvm_unreachable("missing builtin ID in switch!");
11720     case NEON::BI__builtin_neon_vceqd_s64:
11721     case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
11722     case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
11723     case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
11724     case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
11725     case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
11726     case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
11727     case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
11728     case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
11729     case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
11730     }
11731     Ops.push_back(EmitScalarExpr(E->getArg(1)));
11732     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
11733     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
11734     Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
11735     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
11736   }
11737   case NEON::BI__builtin_neon_vtstd_s64:
11738   case NEON::BI__builtin_neon_vtstd_u64: {
11739     Ops.push_back(EmitScalarExpr(E->getArg(1)));
11740     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
11741     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
11742     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
11743     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
11744                                 llvm::Constant::getNullValue(Int64Ty));
11745     return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
11746   }
11747   case NEON::BI__builtin_neon_vset_lane_i8:
11748   case NEON::BI__builtin_neon_vset_lane_i16:
11749   case NEON::BI__builtin_neon_vset_lane_i32:
11750   case NEON::BI__builtin_neon_vset_lane_i64:
11751   case NEON::BI__builtin_neon_vset_lane_bf16:
11752   case NEON::BI__builtin_neon_vset_lane_f32:
11753   case NEON::BI__builtin_neon_vsetq_lane_i8:
11754   case NEON::BI__builtin_neon_vsetq_lane_i16:
11755   case NEON::BI__builtin_neon_vsetq_lane_i32:
11756   case NEON::BI__builtin_neon_vsetq_lane_i64:
11757   case NEON::BI__builtin_neon_vsetq_lane_bf16:
11758   case NEON::BI__builtin_neon_vsetq_lane_f32:
11759     Ops.push_back(EmitScalarExpr(E->getArg(2)));
11760     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
11761   case NEON::BI__builtin_neon_vset_lane_f64:
11762     // The vector type needs a cast for the v1f64 variant.
11763     Ops[1] =
11764         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 1));
11765     Ops.push_back(EmitScalarExpr(E->getArg(2)));
11766     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
11767   case NEON::BI__builtin_neon_vsetq_lane_f64:
11768     // The vector type needs a cast for the v2f64 variant.
11769     Ops[1] =
11770         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 2));
11771     Ops.push_back(EmitScalarExpr(E->getArg(2)));
11772     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
11773 
11774   case NEON::BI__builtin_neon_vget_lane_i8:
11775   case NEON::BI__builtin_neon_vdupb_lane_i8:
11776     Ops[0] =
11777         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 8));
11778     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
11779                                         "vget_lane");
11780   case NEON::BI__builtin_neon_vgetq_lane_i8:
11781   case NEON::BI__builtin_neon_vdupb_laneq_i8:
11782     Ops[0] =
11783         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 16));
11784     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
11785                                         "vgetq_lane");
11786   case NEON::BI__builtin_neon_vget_lane_i16:
11787   case NEON::BI__builtin_neon_vduph_lane_i16:
11788     Ops[0] =
11789         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 4));
11790     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
11791                                         "vget_lane");
11792   case NEON::BI__builtin_neon_vgetq_lane_i16:
11793   case NEON::BI__builtin_neon_vduph_laneq_i16:
11794     Ops[0] =
11795         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 8));
11796     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
11797                                         "vgetq_lane");
11798   case NEON::BI__builtin_neon_vget_lane_i32:
11799   case NEON::BI__builtin_neon_vdups_lane_i32:
11800     Ops[0] =
11801         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 2));
11802     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
11803                                         "vget_lane");
11804   case NEON::BI__builtin_neon_vdups_lane_f32:
11805     Ops[0] =
11806         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
11807     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
11808                                         "vdups_lane");
11809   case NEON::BI__builtin_neon_vgetq_lane_i32:
11810   case NEON::BI__builtin_neon_vdups_laneq_i32:
11811     Ops[0] =
11812         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
11813     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
11814                                         "vgetq_lane");
11815   case NEON::BI__builtin_neon_vget_lane_i64:
11816   case NEON::BI__builtin_neon_vdupd_lane_i64:
11817     Ops[0] =
11818         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 1));
11819     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
11820                                         "vget_lane");
11821   case NEON::BI__builtin_neon_vdupd_lane_f64:
11822     Ops[0] =
11823         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
11824     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
11825                                         "vdupd_lane");
11826   case NEON::BI__builtin_neon_vgetq_lane_i64:
11827   case NEON::BI__builtin_neon_vdupd_laneq_i64:
11828     Ops[0] =
11829         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
11830     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
11831                                         "vgetq_lane");
11832   case NEON::BI__builtin_neon_vget_lane_f32:
11833     Ops[0] =
11834         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
11835     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
11836                                         "vget_lane");
11837   case NEON::BI__builtin_neon_vget_lane_f64:
11838     Ops[0] =
11839         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
11840     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
11841                                         "vget_lane");
11842   case NEON::BI__builtin_neon_vgetq_lane_f32:
11843   case NEON::BI__builtin_neon_vdups_laneq_f32:
11844     Ops[0] =
11845         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 4));
11846     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
11847                                         "vgetq_lane");
11848   case NEON::BI__builtin_neon_vgetq_lane_f64:
11849   case NEON::BI__builtin_neon_vdupd_laneq_f64:
11850     Ops[0] =
11851         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 2));
11852     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
11853                                         "vgetq_lane");
11854   case NEON::BI__builtin_neon_vaddh_f16:
11855     Ops.push_back(EmitScalarExpr(E->getArg(1)));
11856     return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh");
11857   case NEON::BI__builtin_neon_vsubh_f16:
11858     Ops.push_back(EmitScalarExpr(E->getArg(1)));
11859     return Builder.CreateFSub(Ops[0], Ops[1], "vsubh");
11860   case NEON::BI__builtin_neon_vmulh_f16:
11861     Ops.push_back(EmitScalarExpr(E->getArg(1)));
11862     return Builder.CreateFMul(Ops[0], Ops[1], "vmulh");
11863   case NEON::BI__builtin_neon_vdivh_f16:
11864     Ops.push_back(EmitScalarExpr(E->getArg(1)));
11865     return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh");
11866   case NEON::BI__builtin_neon_vfmah_f16:
11867     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
11868     return emitCallMaybeConstrainedFPBuiltin(
11869         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
11870         {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]});
11871   case NEON::BI__builtin_neon_vfmsh_f16: {
11872     Value* Neg = Builder.CreateFNeg(EmitScalarExpr(E->getArg(1)), "vsubh");
11873 
11874     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
11875     return emitCallMaybeConstrainedFPBuiltin(
11876         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
11877         {Neg, EmitScalarExpr(E->getArg(2)), Ops[0]});
11878   }
11879   case NEON::BI__builtin_neon_vaddd_s64:
11880   case NEON::BI__builtin_neon_vaddd_u64:
11881     return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
11882   case NEON::BI__builtin_neon_vsubd_s64:
11883   case NEON::BI__builtin_neon_vsubd_u64:
11884     return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
11885   case NEON::BI__builtin_neon_vqdmlalh_s16:
11886   case NEON::BI__builtin_neon_vqdmlslh_s16: {
11887     SmallVector<Value *, 2> ProductOps;
11888     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
11889     ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
11890     auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
11891     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
11892                           ProductOps, "vqdmlXl");
11893     Constant *CI = ConstantInt::get(SizeTy, 0);
11894     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
11895 
11896     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
11897                                         ? Intrinsic::aarch64_neon_sqadd
11898                                         : Intrinsic::aarch64_neon_sqsub;
11899     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
11900   }
11901   case NEON::BI__builtin_neon_vqshlud_n_s64: {
11902     Ops.push_back(EmitScalarExpr(E->getArg(1)));
11903     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
11904     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
11905                         Ops, "vqshlu_n");
11906   }
11907   case NEON::BI__builtin_neon_vqshld_n_u64:
11908   case NEON::BI__builtin_neon_vqshld_n_s64: {
11909     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
11910                                    ? Intrinsic::aarch64_neon_uqshl
11911                                    : Intrinsic::aarch64_neon_sqshl;
11912     Ops.push_back(EmitScalarExpr(E->getArg(1)));
11913     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
11914     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
11915   }
11916   case NEON::BI__builtin_neon_vrshrd_n_u64:
11917   case NEON::BI__builtin_neon_vrshrd_n_s64: {
11918     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
11919                                    ? Intrinsic::aarch64_neon_urshl
11920                                    : Intrinsic::aarch64_neon_srshl;
11921     Ops.push_back(EmitScalarExpr(E->getArg(1)));
11922     int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
11923     Ops[1] = ConstantInt::get(Int64Ty, -SV);
11924     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
11925   }
11926   case NEON::BI__builtin_neon_vrsrad_n_u64:
11927   case NEON::BI__builtin_neon_vrsrad_n_s64: {
11928     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
11929                                    ? Intrinsic::aarch64_neon_urshl
11930                                    : Intrinsic::aarch64_neon_srshl;
11931     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
11932     Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
11933     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
11934                                 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
11935     return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
11936   }
11937   case NEON::BI__builtin_neon_vshld_n_s64:
11938   case NEON::BI__builtin_neon_vshld_n_u64: {
11939     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11940     return Builder.CreateShl(
11941         Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
11942   }
11943   case NEON::BI__builtin_neon_vshrd_n_s64: {
11944     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11945     return Builder.CreateAShr(
11946         Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
11947                                                    Amt->getZExtValue())),
11948         "shrd_n");
11949   }
11950   case NEON::BI__builtin_neon_vshrd_n_u64: {
11951     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11952     uint64_t ShiftAmt = Amt->getZExtValue();
11953     // Right-shifting an unsigned value by its size yields 0.
11954     if (ShiftAmt == 64)
11955       return ConstantInt::get(Int64Ty, 0);
11956     return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
11957                               "shrd_n");
11958   }
11959   case NEON::BI__builtin_neon_vsrad_n_s64: {
11960     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
11961     Ops[1] = Builder.CreateAShr(
11962         Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
11963                                                    Amt->getZExtValue())),
11964         "shrd_n");
11965     return Builder.CreateAdd(Ops[0], Ops[1]);
11966   }
11967   case NEON::BI__builtin_neon_vsrad_n_u64: {
11968     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
11969     uint64_t ShiftAmt = Amt->getZExtValue();
11970     // Right-shifting an unsigned value by its size yields 0.
11971     // As Op + 0 = Op, return Ops[0] directly.
11972     if (ShiftAmt == 64)
11973       return Ops[0];
11974     Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
11975                                 "shrd_n");
11976     return Builder.CreateAdd(Ops[0], Ops[1]);
11977   }
11978   case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
11979   case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
11980   case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
11981   case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
11982     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
11983                                           "lane");
11984     SmallVector<Value *, 2> ProductOps;
11985     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
11986     ProductOps.push_back(vectorWrapScalar16(Ops[2]));
11987     auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
11988     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
11989                           ProductOps, "vqdmlXl");
11990     Constant *CI = ConstantInt::get(SizeTy, 0);
11991     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
11992     Ops.pop_back();
11993 
11994     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
11995                        BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
11996                           ? Intrinsic::aarch64_neon_sqadd
11997                           : Intrinsic::aarch64_neon_sqsub;
11998     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
11999   }
12000   case NEON::BI__builtin_neon_vqdmlals_s32:
12001   case NEON::BI__builtin_neon_vqdmlsls_s32: {
12002     SmallVector<Value *, 2> ProductOps;
12003     ProductOps.push_back(Ops[1]);
12004     ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
12005     Ops[1] =
12006         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
12007                      ProductOps, "vqdmlXl");
12008 
12009     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
12010                                         ? Intrinsic::aarch64_neon_sqadd
12011                                         : Intrinsic::aarch64_neon_sqsub;
12012     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
12013   }
12014   case NEON::BI__builtin_neon_vqdmlals_lane_s32:
12015   case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
12016   case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
12017   case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
12018     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
12019                                           "lane");
12020     SmallVector<Value *, 2> ProductOps;
12021     ProductOps.push_back(Ops[1]);
12022     ProductOps.push_back(Ops[2]);
12023     Ops[1] =
12024         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
12025                      ProductOps, "vqdmlXl");
12026     Ops.pop_back();
12027 
12028     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
12029                        BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
12030                           ? Intrinsic::aarch64_neon_sqadd
12031                           : Intrinsic::aarch64_neon_sqsub;
12032     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
12033   }
12034   case NEON::BI__builtin_neon_vget_lane_bf16:
12035   case NEON::BI__builtin_neon_vduph_lane_bf16:
12036   case NEON::BI__builtin_neon_vduph_lane_f16: {
12037     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12038                                         "vget_lane");
12039   }
12040   case NEON::BI__builtin_neon_vgetq_lane_bf16:
12041   case NEON::BI__builtin_neon_vduph_laneq_bf16:
12042   case NEON::BI__builtin_neon_vduph_laneq_f16: {
12043     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
12044                                         "vgetq_lane");
12045   }
12046 
12047   case clang::AArch64::BI_InterlockedAdd: {
12048     Address DestAddr = CheckAtomicAlignment(*this, E);
12049     Value *Val = EmitScalarExpr(E->getArg(1));
12050     AtomicRMWInst *RMWI =
12051         Builder.CreateAtomicRMW(AtomicRMWInst::Add, DestAddr, Val,
12052                                 llvm::AtomicOrdering::SequentiallyConsistent);
12053     return Builder.CreateAdd(RMWI, Val);
12054   }
12055   }
12056 
12057   llvm::FixedVectorType *VTy = GetNeonType(this, Type);
12058   llvm::Type *Ty = VTy;
12059   if (!Ty)
12060     return nullptr;
12061 
12062   // Not all intrinsics handled by the common case work for AArch64 yet, so only
12063   // defer to common code if it's been added to our special map.
12064   Builtin = findARMVectorIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
12065                                         AArch64SIMDIntrinsicsProvenSorted);
12066 
12067   if (Builtin)
12068     return EmitCommonNeonBuiltinExpr(
12069         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
12070         Builtin->NameHint, Builtin->TypeModifier, E, Ops,
12071         /*never use addresses*/ Address::invalid(), Address::invalid(), Arch);
12072 
12073   if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch))
12074     return V;
12075 
12076   unsigned Int;
12077   switch (BuiltinID) {
12078   default: return nullptr;
12079   case NEON::BI__builtin_neon_vbsl_v:
12080   case NEON::BI__builtin_neon_vbslq_v: {
12081     llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
12082     Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
12083     Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
12084     Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
12085 
12086     Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
12087     Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
12088     Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
12089     return Builder.CreateBitCast(Ops[0], Ty);
12090   }
12091   case NEON::BI__builtin_neon_vfma_lane_v:
12092   case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
12093     // The ARM builtins (and instructions) have the addend as the first
12094     // operand, but the 'fma' intrinsics have it last. Swap it around here.
12095     Value *Addend = Ops[0];
12096     Value *Multiplicand = Ops[1];
12097     Value *LaneSource = Ops[2];
12098     Ops[0] = Multiplicand;
12099     Ops[1] = LaneSource;
12100     Ops[2] = Addend;
12101 
12102     // Now adjust things to handle the lane access.
12103     auto *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v
12104                          ? llvm::FixedVectorType::get(VTy->getElementType(),
12105                                                       VTy->getNumElements() / 2)
12106                          : VTy;
12107     llvm::Constant *cst = cast<Constant>(Ops[3]);
12108     Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), cst);
12109     Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
12110     Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
12111 
12112     Ops.pop_back();
12113     Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_fma
12114                                        : Intrinsic::fma;
12115     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
12116   }
12117   case NEON::BI__builtin_neon_vfma_laneq_v: {
12118     auto *VTy = cast<llvm::FixedVectorType>(Ty);
12119     // v1f64 fma should be mapped to Neon scalar f64 fma
12120     if (VTy && VTy->getElementType() == DoubleTy) {
12121       Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
12122       Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
12123       llvm::FixedVectorType *VTy =
12124           GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true));
12125       Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
12126       Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
12127       Value *Result;
12128       Result = emitCallMaybeConstrainedFPBuiltin(
12129           *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma,
12130           DoubleTy, {Ops[1], Ops[2], Ops[0]});
12131       return Builder.CreateBitCast(Result, Ty);
12132     }
12133     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
12134     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
12135 
12136     auto *STy = llvm::FixedVectorType::get(VTy->getElementType(),
12137                                            VTy->getNumElements() * 2);
12138     Ops[2] = Builder.CreateBitCast(Ops[2], STy);
12139     Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(),
12140                                                cast<ConstantInt>(Ops[3]));
12141     Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
12142 
12143     return emitCallMaybeConstrainedFPBuiltin(
12144         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
12145         {Ops[2], Ops[1], Ops[0]});
12146   }
12147   case NEON::BI__builtin_neon_vfmaq_laneq_v: {
12148     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
12149     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
12150 
12151     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
12152     Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
12153     return emitCallMaybeConstrainedFPBuiltin(
12154         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
12155         {Ops[2], Ops[1], Ops[0]});
12156   }
12157   case NEON::BI__builtin_neon_vfmah_lane_f16:
12158   case NEON::BI__builtin_neon_vfmas_lane_f32:
12159   case NEON::BI__builtin_neon_vfmah_laneq_f16:
12160   case NEON::BI__builtin_neon_vfmas_laneq_f32:
12161   case NEON::BI__builtin_neon_vfmad_lane_f64:
12162   case NEON::BI__builtin_neon_vfmad_laneq_f64: {
12163     Ops.push_back(EmitScalarExpr(E->getArg(3)));
12164     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
12165     Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
12166     return emitCallMaybeConstrainedFPBuiltin(
12167         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
12168         {Ops[1], Ops[2], Ops[0]});
12169   }
12170   case NEON::BI__builtin_neon_vmull_v:
12171     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
12172     Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
12173     if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
12174     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
12175   case NEON::BI__builtin_neon_vmax_v:
12176   case NEON::BI__builtin_neon_vmaxq_v:
12177     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
12178     Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
12179     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
12180     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
12181   case NEON::BI__builtin_neon_vmaxh_f16: {
12182     Ops.push_back(EmitScalarExpr(E->getArg(1)));
12183     Int = Intrinsic::aarch64_neon_fmax;
12184     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax");
12185   }
12186   case NEON::BI__builtin_neon_vmin_v:
12187   case NEON::BI__builtin_neon_vminq_v:
12188     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
12189     Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
12190     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
12191     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
12192   case NEON::BI__builtin_neon_vminh_f16: {
12193     Ops.push_back(EmitScalarExpr(E->getArg(1)));
12194     Int = Intrinsic::aarch64_neon_fmin;
12195     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin");
12196   }
12197   case NEON::BI__builtin_neon_vabd_v:
12198   case NEON::BI__builtin_neon_vabdq_v:
12199     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
12200     Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
12201     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
12202     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
12203   case NEON::BI__builtin_neon_vpadal_v:
12204   case NEON::BI__builtin_neon_vpadalq_v: {
12205     unsigned ArgElts = VTy->getNumElements();
12206     llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
12207     unsigned BitWidth = EltTy->getBitWidth();
12208     auto *ArgTy = llvm::FixedVectorType::get(
12209         llvm::IntegerType::get(getLLVMContext(), BitWidth / 2), 2 * ArgElts);
12210     llvm::Type* Tys[2] = { VTy, ArgTy };
12211     Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
12212     SmallVector<llvm::Value*, 1> TmpOps;
12213     TmpOps.push_back(Ops[1]);
12214     Function *F = CGM.getIntrinsic(Int, Tys);
12215     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
12216     llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
12217     return Builder.CreateAdd(tmp, addend);
12218   }
12219   case NEON::BI__builtin_neon_vpmin_v:
12220   case NEON::BI__builtin_neon_vpminq_v:
12221     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
12222     Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
12223     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
12224     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
12225   case NEON::BI__builtin_neon_vpmax_v:
12226   case NEON::BI__builtin_neon_vpmaxq_v:
12227     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
12228     Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
12229     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
12230     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
12231   case NEON::BI__builtin_neon_vminnm_v:
12232   case NEON::BI__builtin_neon_vminnmq_v:
12233     Int = Intrinsic::aarch64_neon_fminnm;
12234     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
12235   case NEON::BI__builtin_neon_vminnmh_f16:
12236     Ops.push_back(EmitScalarExpr(E->getArg(1)));
12237     Int = Intrinsic::aarch64_neon_fminnm;
12238     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm");
12239   case NEON::BI__builtin_neon_vmaxnm_v:
12240   case NEON::BI__builtin_neon_vmaxnmq_v:
12241     Int = Intrinsic::aarch64_neon_fmaxnm;
12242     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
12243   case NEON::BI__builtin_neon_vmaxnmh_f16:
12244     Ops.push_back(EmitScalarExpr(E->getArg(1)));
12245     Int = Intrinsic::aarch64_neon_fmaxnm;
12246     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm");
12247   case NEON::BI__builtin_neon_vrecpss_f32: {
12248     Ops.push_back(EmitScalarExpr(E->getArg(1)));
12249     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
12250                         Ops, "vrecps");
12251   }
12252   case NEON::BI__builtin_neon_vrecpsd_f64:
12253     Ops.push_back(EmitScalarExpr(E->getArg(1)));
12254     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
12255                         Ops, "vrecps");
12256   case NEON::BI__builtin_neon_vrecpsh_f16:
12257     Ops.push_back(EmitScalarExpr(E->getArg(1)));
12258     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy),
12259                         Ops, "vrecps");
12260   case NEON::BI__builtin_neon_vqshrun_n_v:
12261     Int = Intrinsic::aarch64_neon_sqshrun;
12262     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
12263   case NEON::BI__builtin_neon_vqrshrun_n_v:
12264     Int = Intrinsic::aarch64_neon_sqrshrun;
12265     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
12266   case NEON::BI__builtin_neon_vqshrn_n_v:
12267     Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
12268     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
12269   case NEON::BI__builtin_neon_vrshrn_n_v:
12270     Int = Intrinsic::aarch64_neon_rshrn;
12271     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
12272   case NEON::BI__builtin_neon_vqrshrn_n_v:
12273     Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
12274     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
12275   case NEON::BI__builtin_neon_vrndah_f16: {
12276     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12277     Int = Builder.getIsFPConstrained()
12278               ? Intrinsic::experimental_constrained_round
12279               : Intrinsic::round;
12280     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda");
12281   }
12282   case NEON::BI__builtin_neon_vrnda_v:
12283   case NEON::BI__builtin_neon_vrndaq_v: {
12284     Int = Builder.getIsFPConstrained()
12285               ? Intrinsic::experimental_constrained_round
12286               : Intrinsic::round;
12287     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
12288   }
12289   case NEON::BI__builtin_neon_vrndih_f16: {
12290     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12291     Int = Builder.getIsFPConstrained()
12292               ? Intrinsic::experimental_constrained_nearbyint
12293               : Intrinsic::nearbyint;
12294     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi");
12295   }
12296   case NEON::BI__builtin_neon_vrndmh_f16: {
12297     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12298     Int = Builder.getIsFPConstrained()
12299               ? Intrinsic::experimental_constrained_floor
12300               : Intrinsic::floor;
12301     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm");
12302   }
12303   case NEON::BI__builtin_neon_vrndm_v:
12304   case NEON::BI__builtin_neon_vrndmq_v: {
12305     Int = Builder.getIsFPConstrained()
12306               ? Intrinsic::experimental_constrained_floor
12307               : Intrinsic::floor;
12308     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
12309   }
12310   case NEON::BI__builtin_neon_vrndnh_f16: {
12311     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12312     Int = Builder.getIsFPConstrained()
12313               ? Intrinsic::experimental_constrained_roundeven
12314               : Intrinsic::roundeven;
12315     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn");
12316   }
12317   case NEON::BI__builtin_neon_vrndn_v:
12318   case NEON::BI__builtin_neon_vrndnq_v: {
12319     Int = Builder.getIsFPConstrained()
12320               ? Intrinsic::experimental_constrained_roundeven
12321               : Intrinsic::roundeven;
12322     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
12323   }
12324   case NEON::BI__builtin_neon_vrndns_f32: {
12325     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12326     Int = Builder.getIsFPConstrained()
12327               ? Intrinsic::experimental_constrained_roundeven
12328               : Intrinsic::roundeven;
12329     return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn");
12330   }
12331   case NEON::BI__builtin_neon_vrndph_f16: {
12332     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12333     Int = Builder.getIsFPConstrained()
12334               ? Intrinsic::experimental_constrained_ceil
12335               : Intrinsic::ceil;
12336     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp");
12337   }
12338   case NEON::BI__builtin_neon_vrndp_v:
12339   case NEON::BI__builtin_neon_vrndpq_v: {
12340     Int = Builder.getIsFPConstrained()
12341               ? Intrinsic::experimental_constrained_ceil
12342               : Intrinsic::ceil;
12343     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
12344   }
12345   case NEON::BI__builtin_neon_vrndxh_f16: {
12346     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12347     Int = Builder.getIsFPConstrained()
12348               ? Intrinsic::experimental_constrained_rint
12349               : Intrinsic::rint;
12350     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx");
12351   }
12352   case NEON::BI__builtin_neon_vrndx_v:
12353   case NEON::BI__builtin_neon_vrndxq_v: {
12354     Int = Builder.getIsFPConstrained()
12355               ? Intrinsic::experimental_constrained_rint
12356               : Intrinsic::rint;
12357     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
12358   }
12359   case NEON::BI__builtin_neon_vrndh_f16: {
12360     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12361     Int = Builder.getIsFPConstrained()
12362               ? Intrinsic::experimental_constrained_trunc
12363               : Intrinsic::trunc;
12364     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz");
12365   }
12366   case NEON::BI__builtin_neon_vrnd32x_f32:
12367   case NEON::BI__builtin_neon_vrnd32xq_f32:
12368   case NEON::BI__builtin_neon_vrnd32x_f64:
12369   case NEON::BI__builtin_neon_vrnd32xq_f64: {
12370     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12371     Int = Intrinsic::aarch64_neon_frint32x;
12372     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32x");
12373   }
12374   case NEON::BI__builtin_neon_vrnd32z_f32:
12375   case NEON::BI__builtin_neon_vrnd32zq_f32:
12376   case NEON::BI__builtin_neon_vrnd32z_f64:
12377   case NEON::BI__builtin_neon_vrnd32zq_f64: {
12378     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12379     Int = Intrinsic::aarch64_neon_frint32z;
12380     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32z");
12381   }
12382   case NEON::BI__builtin_neon_vrnd64x_f32:
12383   case NEON::BI__builtin_neon_vrnd64xq_f32:
12384   case NEON::BI__builtin_neon_vrnd64x_f64:
12385   case NEON::BI__builtin_neon_vrnd64xq_f64: {
12386     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12387     Int = Intrinsic::aarch64_neon_frint64x;
12388     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64x");
12389   }
12390   case NEON::BI__builtin_neon_vrnd64z_f32:
12391   case NEON::BI__builtin_neon_vrnd64zq_f32:
12392   case NEON::BI__builtin_neon_vrnd64z_f64:
12393   case NEON::BI__builtin_neon_vrnd64zq_f64: {
12394     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12395     Int = Intrinsic::aarch64_neon_frint64z;
12396     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64z");
12397   }
12398   case NEON::BI__builtin_neon_vrnd_v:
12399   case NEON::BI__builtin_neon_vrndq_v: {
12400     Int = Builder.getIsFPConstrained()
12401               ? Intrinsic::experimental_constrained_trunc
12402               : Intrinsic::trunc;
12403     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
12404   }
12405   case NEON::BI__builtin_neon_vcvt_f64_v:
12406   case NEON::BI__builtin_neon_vcvtq_f64_v:
12407     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
12408     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
12409     return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
12410                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
12411   case NEON::BI__builtin_neon_vcvt_f64_f32: {
12412     assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&
12413            "unexpected vcvt_f64_f32 builtin");
12414     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
12415     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
12416 
12417     return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
12418   }
12419   case NEON::BI__builtin_neon_vcvt_f32_f64: {
12420     assert(Type.getEltType() == NeonTypeFlags::Float32 &&
12421            "unexpected vcvt_f32_f64 builtin");
12422     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
12423     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
12424 
12425     return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
12426   }
12427   case NEON::BI__builtin_neon_vcvt_s32_v:
12428   case NEON::BI__builtin_neon_vcvt_u32_v:
12429   case NEON::BI__builtin_neon_vcvt_s64_v:
12430   case NEON::BI__builtin_neon_vcvt_u64_v:
12431   case NEON::BI__builtin_neon_vcvt_s16_f16:
12432   case NEON::BI__builtin_neon_vcvt_u16_f16:
12433   case NEON::BI__builtin_neon_vcvtq_s32_v:
12434   case NEON::BI__builtin_neon_vcvtq_u32_v:
12435   case NEON::BI__builtin_neon_vcvtq_s64_v:
12436   case NEON::BI__builtin_neon_vcvtq_u64_v:
12437   case NEON::BI__builtin_neon_vcvtq_s16_f16:
12438   case NEON::BI__builtin_neon_vcvtq_u16_f16: {
12439     Int =
12440         usgn ? Intrinsic::aarch64_neon_fcvtzu : Intrinsic::aarch64_neon_fcvtzs;
12441     llvm::Type *Tys[2] = {Ty, GetFloatNeonType(this, Type)};
12442     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtz");
12443   }
12444   case NEON::BI__builtin_neon_vcvta_s16_f16:
12445   case NEON::BI__builtin_neon_vcvta_u16_f16:
12446   case NEON::BI__builtin_neon_vcvta_s32_v:
12447   case NEON::BI__builtin_neon_vcvtaq_s16_f16:
12448   case NEON::BI__builtin_neon_vcvtaq_s32_v:
12449   case NEON::BI__builtin_neon_vcvta_u32_v:
12450   case NEON::BI__builtin_neon_vcvtaq_u16_f16:
12451   case NEON::BI__builtin_neon_vcvtaq_u32_v:
12452   case NEON::BI__builtin_neon_vcvta_s64_v:
12453   case NEON::BI__builtin_neon_vcvtaq_s64_v:
12454   case NEON::BI__builtin_neon_vcvta_u64_v:
12455   case NEON::BI__builtin_neon_vcvtaq_u64_v: {
12456     Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
12457     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
12458     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
12459   }
12460   case NEON::BI__builtin_neon_vcvtm_s16_f16:
12461   case NEON::BI__builtin_neon_vcvtm_s32_v:
12462   case NEON::BI__builtin_neon_vcvtmq_s16_f16:
12463   case NEON::BI__builtin_neon_vcvtmq_s32_v:
12464   case NEON::BI__builtin_neon_vcvtm_u16_f16:
12465   case NEON::BI__builtin_neon_vcvtm_u32_v:
12466   case NEON::BI__builtin_neon_vcvtmq_u16_f16:
12467   case NEON::BI__builtin_neon_vcvtmq_u32_v:
12468   case NEON::BI__builtin_neon_vcvtm_s64_v:
12469   case NEON::BI__builtin_neon_vcvtmq_s64_v:
12470   case NEON::BI__builtin_neon_vcvtm_u64_v:
12471   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
12472     Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
12473     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
12474     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
12475   }
12476   case NEON::BI__builtin_neon_vcvtn_s16_f16:
12477   case NEON::BI__builtin_neon_vcvtn_s32_v:
12478   case NEON::BI__builtin_neon_vcvtnq_s16_f16:
12479   case NEON::BI__builtin_neon_vcvtnq_s32_v:
12480   case NEON::BI__builtin_neon_vcvtn_u16_f16:
12481   case NEON::BI__builtin_neon_vcvtn_u32_v:
12482   case NEON::BI__builtin_neon_vcvtnq_u16_f16:
12483   case NEON::BI__builtin_neon_vcvtnq_u32_v:
12484   case NEON::BI__builtin_neon_vcvtn_s64_v:
12485   case NEON::BI__builtin_neon_vcvtnq_s64_v:
12486   case NEON::BI__builtin_neon_vcvtn_u64_v:
12487   case NEON::BI__builtin_neon_vcvtnq_u64_v: {
12488     Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
12489     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
12490     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
12491   }
12492   case NEON::BI__builtin_neon_vcvtp_s16_f16:
12493   case NEON::BI__builtin_neon_vcvtp_s32_v:
12494   case NEON::BI__builtin_neon_vcvtpq_s16_f16:
12495   case NEON::BI__builtin_neon_vcvtpq_s32_v:
12496   case NEON::BI__builtin_neon_vcvtp_u16_f16:
12497   case NEON::BI__builtin_neon_vcvtp_u32_v:
12498   case NEON::BI__builtin_neon_vcvtpq_u16_f16:
12499   case NEON::BI__builtin_neon_vcvtpq_u32_v:
12500   case NEON::BI__builtin_neon_vcvtp_s64_v:
12501   case NEON::BI__builtin_neon_vcvtpq_s64_v:
12502   case NEON::BI__builtin_neon_vcvtp_u64_v:
12503   case NEON::BI__builtin_neon_vcvtpq_u64_v: {
12504     Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
12505     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
12506     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
12507   }
12508   case NEON::BI__builtin_neon_vmulx_v:
12509   case NEON::BI__builtin_neon_vmulxq_v: {
12510     Int = Intrinsic::aarch64_neon_fmulx;
12511     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
12512   }
12513   case NEON::BI__builtin_neon_vmulxh_lane_f16:
12514   case NEON::BI__builtin_neon_vmulxh_laneq_f16: {
12515     // vmulx_lane should be mapped to Neon scalar mulx after
12516     // extracting the scalar element
12517     Ops.push_back(EmitScalarExpr(E->getArg(2)));
12518     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
12519     Ops.pop_back();
12520     Int = Intrinsic::aarch64_neon_fmulx;
12521     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx");
12522   }
12523   case NEON::BI__builtin_neon_vmul_lane_v:
12524   case NEON::BI__builtin_neon_vmul_laneq_v: {
12525     // v1f64 vmul_lane should be mapped to Neon scalar mul lane
12526     bool Quad = false;
12527     if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
12528       Quad = true;
12529     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
12530     llvm::FixedVectorType *VTy =
12531         GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
12532     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
12533     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
12534     Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
12535     return Builder.CreateBitCast(Result, Ty);
12536   }
12537   case NEON::BI__builtin_neon_vnegd_s64:
12538     return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
12539   case NEON::BI__builtin_neon_vnegh_f16:
12540     return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh");
12541   case NEON::BI__builtin_neon_vpmaxnm_v:
12542   case NEON::BI__builtin_neon_vpmaxnmq_v: {
12543     Int = Intrinsic::aarch64_neon_fmaxnmp;
12544     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
12545   }
12546   case NEON::BI__builtin_neon_vpminnm_v:
12547   case NEON::BI__builtin_neon_vpminnmq_v: {
12548     Int = Intrinsic::aarch64_neon_fminnmp;
12549     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
12550   }
12551   case NEON::BI__builtin_neon_vsqrth_f16: {
12552     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12553     Int = Builder.getIsFPConstrained()
12554               ? Intrinsic::experimental_constrained_sqrt
12555               : Intrinsic::sqrt;
12556     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt");
12557   }
12558   case NEON::BI__builtin_neon_vsqrt_v:
12559   case NEON::BI__builtin_neon_vsqrtq_v: {
12560     Int = Builder.getIsFPConstrained()
12561               ? Intrinsic::experimental_constrained_sqrt
12562               : Intrinsic::sqrt;
12563     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
12564     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
12565   }
12566   case NEON::BI__builtin_neon_vrbit_v:
12567   case NEON::BI__builtin_neon_vrbitq_v: {
12568     Int = Intrinsic::bitreverse;
12569     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
12570   }
12571   case NEON::BI__builtin_neon_vaddv_u8:
12572     // FIXME: These are handled by the AArch64 scalar code.
12573     usgn = true;
12574     [[fallthrough]];
12575   case NEON::BI__builtin_neon_vaddv_s8: {
12576     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
12577     Ty = Int32Ty;
12578     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
12579     llvm::Type *Tys[2] = { Ty, VTy };
12580     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12581     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
12582     return Builder.CreateTrunc(Ops[0], Int8Ty);
12583   }
12584   case NEON::BI__builtin_neon_vaddv_u16:
12585     usgn = true;
12586     [[fallthrough]];
12587   case NEON::BI__builtin_neon_vaddv_s16: {
12588     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
12589     Ty = Int32Ty;
12590     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
12591     llvm::Type *Tys[2] = { Ty, VTy };
12592     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12593     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
12594     return Builder.CreateTrunc(Ops[0], Int16Ty);
12595   }
12596   case NEON::BI__builtin_neon_vaddvq_u8:
12597     usgn = true;
12598     [[fallthrough]];
12599   case NEON::BI__builtin_neon_vaddvq_s8: {
12600     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
12601     Ty = Int32Ty;
12602     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
12603     llvm::Type *Tys[2] = { Ty, VTy };
12604     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12605     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
12606     return Builder.CreateTrunc(Ops[0], Int8Ty);
12607   }
12608   case NEON::BI__builtin_neon_vaddvq_u16:
12609     usgn = true;
12610     [[fallthrough]];
12611   case NEON::BI__builtin_neon_vaddvq_s16: {
12612     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
12613     Ty = Int32Ty;
12614     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
12615     llvm::Type *Tys[2] = { Ty, VTy };
12616     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12617     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
12618     return Builder.CreateTrunc(Ops[0], Int16Ty);
12619   }
12620   case NEON::BI__builtin_neon_vmaxv_u8: {
12621     Int = Intrinsic::aarch64_neon_umaxv;
12622     Ty = Int32Ty;
12623     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
12624     llvm::Type *Tys[2] = { Ty, VTy };
12625     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12626     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12627     return Builder.CreateTrunc(Ops[0], Int8Ty);
12628   }
12629   case NEON::BI__builtin_neon_vmaxv_u16: {
12630     Int = Intrinsic::aarch64_neon_umaxv;
12631     Ty = Int32Ty;
12632     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
12633     llvm::Type *Tys[2] = { Ty, VTy };
12634     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12635     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12636     return Builder.CreateTrunc(Ops[0], Int16Ty);
12637   }
12638   case NEON::BI__builtin_neon_vmaxvq_u8: {
12639     Int = Intrinsic::aarch64_neon_umaxv;
12640     Ty = Int32Ty;
12641     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
12642     llvm::Type *Tys[2] = { Ty, VTy };
12643     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12644     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12645     return Builder.CreateTrunc(Ops[0], Int8Ty);
12646   }
12647   case NEON::BI__builtin_neon_vmaxvq_u16: {
12648     Int = Intrinsic::aarch64_neon_umaxv;
12649     Ty = Int32Ty;
12650     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
12651     llvm::Type *Tys[2] = { Ty, VTy };
12652     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12653     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12654     return Builder.CreateTrunc(Ops[0], Int16Ty);
12655   }
12656   case NEON::BI__builtin_neon_vmaxv_s8: {
12657     Int = Intrinsic::aarch64_neon_smaxv;
12658     Ty = Int32Ty;
12659     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
12660     llvm::Type *Tys[2] = { Ty, VTy };
12661     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12662     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12663     return Builder.CreateTrunc(Ops[0], Int8Ty);
12664   }
12665   case NEON::BI__builtin_neon_vmaxv_s16: {
12666     Int = Intrinsic::aarch64_neon_smaxv;
12667     Ty = Int32Ty;
12668     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
12669     llvm::Type *Tys[2] = { Ty, VTy };
12670     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12671     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12672     return Builder.CreateTrunc(Ops[0], Int16Ty);
12673   }
12674   case NEON::BI__builtin_neon_vmaxvq_s8: {
12675     Int = Intrinsic::aarch64_neon_smaxv;
12676     Ty = Int32Ty;
12677     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
12678     llvm::Type *Tys[2] = { Ty, VTy };
12679     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12680     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12681     return Builder.CreateTrunc(Ops[0], Int8Ty);
12682   }
12683   case NEON::BI__builtin_neon_vmaxvq_s16: {
12684     Int = Intrinsic::aarch64_neon_smaxv;
12685     Ty = Int32Ty;
12686     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
12687     llvm::Type *Tys[2] = { Ty, VTy };
12688     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12689     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12690     return Builder.CreateTrunc(Ops[0], Int16Ty);
12691   }
12692   case NEON::BI__builtin_neon_vmaxv_f16: {
12693     Int = Intrinsic::aarch64_neon_fmaxv;
12694     Ty = HalfTy;
12695     VTy = llvm::FixedVectorType::get(HalfTy, 4);
12696     llvm::Type *Tys[2] = { Ty, VTy };
12697     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12698     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12699     return Builder.CreateTrunc(Ops[0], HalfTy);
12700   }
12701   case NEON::BI__builtin_neon_vmaxvq_f16: {
12702     Int = Intrinsic::aarch64_neon_fmaxv;
12703     Ty = HalfTy;
12704     VTy = llvm::FixedVectorType::get(HalfTy, 8);
12705     llvm::Type *Tys[2] = { Ty, VTy };
12706     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12707     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
12708     return Builder.CreateTrunc(Ops[0], HalfTy);
12709   }
12710   case NEON::BI__builtin_neon_vminv_u8: {
12711     Int = Intrinsic::aarch64_neon_uminv;
12712     Ty = Int32Ty;
12713     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
12714     llvm::Type *Tys[2] = { Ty, VTy };
12715     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12716     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
12717     return Builder.CreateTrunc(Ops[0], Int8Ty);
12718   }
12719   case NEON::BI__builtin_neon_vminv_u16: {
12720     Int = Intrinsic::aarch64_neon_uminv;
12721     Ty = Int32Ty;
12722     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
12723     llvm::Type *Tys[2] = { Ty, VTy };
12724     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12725     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
12726     return Builder.CreateTrunc(Ops[0], Int16Ty);
12727   }
12728   case NEON::BI__builtin_neon_vminvq_u8: {
12729     Int = Intrinsic::aarch64_neon_uminv;
12730     Ty = Int32Ty;
12731     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
12732     llvm::Type *Tys[2] = { Ty, VTy };
12733     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12734     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
12735     return Builder.CreateTrunc(Ops[0], Int8Ty);
12736   }
12737   case NEON::BI__builtin_neon_vminvq_u16: {
12738     Int = Intrinsic::aarch64_neon_uminv;
12739     Ty = Int32Ty;
12740     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
12741     llvm::Type *Tys[2] = { Ty, VTy };
12742     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12743     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
12744     return Builder.CreateTrunc(Ops[0], Int16Ty);
12745   }
12746   case NEON::BI__builtin_neon_vminv_s8: {
12747     Int = Intrinsic::aarch64_neon_sminv;
12748     Ty = Int32Ty;
12749     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
12750     llvm::Type *Tys[2] = { Ty, VTy };
12751     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12752     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
12753     return Builder.CreateTrunc(Ops[0], Int8Ty);
12754   }
12755   case NEON::BI__builtin_neon_vminv_s16: {
12756     Int = Intrinsic::aarch64_neon_sminv;
12757     Ty = Int32Ty;
12758     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
12759     llvm::Type *Tys[2] = { Ty, VTy };
12760     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12761     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
12762     return Builder.CreateTrunc(Ops[0], Int16Ty);
12763   }
12764   case NEON::BI__builtin_neon_vminvq_s8: {
12765     Int = Intrinsic::aarch64_neon_sminv;
12766     Ty = Int32Ty;
12767     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
12768     llvm::Type *Tys[2] = { Ty, VTy };
12769     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12770     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
12771     return Builder.CreateTrunc(Ops[0], Int8Ty);
12772   }
12773   case NEON::BI__builtin_neon_vminvq_s16: {
12774     Int = Intrinsic::aarch64_neon_sminv;
12775     Ty = Int32Ty;
12776     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
12777     llvm::Type *Tys[2] = { Ty, VTy };
12778     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12779     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
12780     return Builder.CreateTrunc(Ops[0], Int16Ty);
12781   }
12782   case NEON::BI__builtin_neon_vminv_f16: {
12783     Int = Intrinsic::aarch64_neon_fminv;
12784     Ty = HalfTy;
12785     VTy = llvm::FixedVectorType::get(HalfTy, 4);
12786     llvm::Type *Tys[2] = { Ty, VTy };
12787     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12788     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
12789     return Builder.CreateTrunc(Ops[0], HalfTy);
12790   }
12791   case NEON::BI__builtin_neon_vminvq_f16: {
12792     Int = Intrinsic::aarch64_neon_fminv;
12793     Ty = HalfTy;
12794     VTy = llvm::FixedVectorType::get(HalfTy, 8);
12795     llvm::Type *Tys[2] = { Ty, VTy };
12796     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12797     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
12798     return Builder.CreateTrunc(Ops[0], HalfTy);
12799   }
12800   case NEON::BI__builtin_neon_vmaxnmv_f16: {
12801     Int = Intrinsic::aarch64_neon_fmaxnmv;
12802     Ty = HalfTy;
12803     VTy = llvm::FixedVectorType::get(HalfTy, 4);
12804     llvm::Type *Tys[2] = { Ty, VTy };
12805     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12806     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
12807     return Builder.CreateTrunc(Ops[0], HalfTy);
12808   }
12809   case NEON::BI__builtin_neon_vmaxnmvq_f16: {
12810     Int = Intrinsic::aarch64_neon_fmaxnmv;
12811     Ty = HalfTy;
12812     VTy = llvm::FixedVectorType::get(HalfTy, 8);
12813     llvm::Type *Tys[2] = { Ty, VTy };
12814     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12815     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
12816     return Builder.CreateTrunc(Ops[0], HalfTy);
12817   }
12818   case NEON::BI__builtin_neon_vminnmv_f16: {
12819     Int = Intrinsic::aarch64_neon_fminnmv;
12820     Ty = HalfTy;
12821     VTy = llvm::FixedVectorType::get(HalfTy, 4);
12822     llvm::Type *Tys[2] = { Ty, VTy };
12823     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12824     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
12825     return Builder.CreateTrunc(Ops[0], HalfTy);
12826   }
12827   case NEON::BI__builtin_neon_vminnmvq_f16: {
12828     Int = Intrinsic::aarch64_neon_fminnmv;
12829     Ty = HalfTy;
12830     VTy = llvm::FixedVectorType::get(HalfTy, 8);
12831     llvm::Type *Tys[2] = { Ty, VTy };
12832     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12833     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
12834     return Builder.CreateTrunc(Ops[0], HalfTy);
12835   }
12836   case NEON::BI__builtin_neon_vmul_n_f64: {
12837     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
12838     Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
12839     return Builder.CreateFMul(Ops[0], RHS);
12840   }
12841   case NEON::BI__builtin_neon_vaddlv_u8: {
12842     Int = Intrinsic::aarch64_neon_uaddlv;
12843     Ty = Int32Ty;
12844     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
12845     llvm::Type *Tys[2] = { Ty, VTy };
12846     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12847     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
12848     return Builder.CreateTrunc(Ops[0], Int16Ty);
12849   }
12850   case NEON::BI__builtin_neon_vaddlv_u16: {
12851     Int = Intrinsic::aarch64_neon_uaddlv;
12852     Ty = Int32Ty;
12853     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
12854     llvm::Type *Tys[2] = { Ty, VTy };
12855     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12856     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
12857   }
12858   case NEON::BI__builtin_neon_vaddlvq_u8: {
12859     Int = Intrinsic::aarch64_neon_uaddlv;
12860     Ty = Int32Ty;
12861     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
12862     llvm::Type *Tys[2] = { Ty, VTy };
12863     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12864     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
12865     return Builder.CreateTrunc(Ops[0], Int16Ty);
12866   }
12867   case NEON::BI__builtin_neon_vaddlvq_u16: {
12868     Int = Intrinsic::aarch64_neon_uaddlv;
12869     Ty = Int32Ty;
12870     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
12871     llvm::Type *Tys[2] = { Ty, VTy };
12872     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12873     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
12874   }
12875   case NEON::BI__builtin_neon_vaddlv_s8: {
12876     Int = Intrinsic::aarch64_neon_saddlv;
12877     Ty = Int32Ty;
12878     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
12879     llvm::Type *Tys[2] = { Ty, VTy };
12880     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12881     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
12882     return Builder.CreateTrunc(Ops[0], Int16Ty);
12883   }
12884   case NEON::BI__builtin_neon_vaddlv_s16: {
12885     Int = Intrinsic::aarch64_neon_saddlv;
12886     Ty = Int32Ty;
12887     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
12888     llvm::Type *Tys[2] = { Ty, VTy };
12889     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12890     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
12891   }
12892   case NEON::BI__builtin_neon_vaddlvq_s8: {
12893     Int = Intrinsic::aarch64_neon_saddlv;
12894     Ty = Int32Ty;
12895     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
12896     llvm::Type *Tys[2] = { Ty, VTy };
12897     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12898     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
12899     return Builder.CreateTrunc(Ops[0], Int16Ty);
12900   }
12901   case NEON::BI__builtin_neon_vaddlvq_s16: {
12902     Int = Intrinsic::aarch64_neon_saddlv;
12903     Ty = Int32Ty;
12904     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
12905     llvm::Type *Tys[2] = { Ty, VTy };
12906     Ops.push_back(EmitScalarExpr(E->getArg(0)));
12907     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
12908   }
12909   case NEON::BI__builtin_neon_vsri_n_v:
12910   case NEON::BI__builtin_neon_vsriq_n_v: {
12911     Int = Intrinsic::aarch64_neon_vsri;
12912     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
12913     return EmitNeonCall(Intrin, Ops, "vsri_n");
12914   }
12915   case NEON::BI__builtin_neon_vsli_n_v:
12916   case NEON::BI__builtin_neon_vsliq_n_v: {
12917     Int = Intrinsic::aarch64_neon_vsli;
12918     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
12919     return EmitNeonCall(Intrin, Ops, "vsli_n");
12920   }
12921   case NEON::BI__builtin_neon_vsra_n_v:
12922   case NEON::BI__builtin_neon_vsraq_n_v:
12923     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
12924     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
12925     return Builder.CreateAdd(Ops[0], Ops[1]);
12926   case NEON::BI__builtin_neon_vrsra_n_v:
12927   case NEON::BI__builtin_neon_vrsraq_n_v: {
12928     Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
12929     SmallVector<llvm::Value*,2> TmpOps;
12930     TmpOps.push_back(Ops[1]);
12931     TmpOps.push_back(Ops[2]);
12932     Function* F = CGM.getIntrinsic(Int, Ty);
12933     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
12934     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
12935     return Builder.CreateAdd(Ops[0], tmp);
12936   }
12937   case NEON::BI__builtin_neon_vld1_v:
12938   case NEON::BI__builtin_neon_vld1q_v: {
12939     return Builder.CreateAlignedLoad(VTy, Ops[0], PtrOp0.getAlignment());
12940   }
12941   case NEON::BI__builtin_neon_vst1_v:
12942   case NEON::BI__builtin_neon_vst1q_v:
12943     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
12944     return Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment());
12945   case NEON::BI__builtin_neon_vld1_lane_v:
12946   case NEON::BI__builtin_neon_vld1q_lane_v: {
12947     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
12948     Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
12949                                        PtrOp0.getAlignment());
12950     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
12951   }
12952   case NEON::BI__builtin_neon_vldap1_lane_s64:
12953   case NEON::BI__builtin_neon_vldap1q_lane_s64: {
12954     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
12955     llvm::LoadInst *LI = Builder.CreateAlignedLoad(
12956         VTy->getElementType(), Ops[0], PtrOp0.getAlignment());
12957     LI->setAtomic(llvm::AtomicOrdering::Acquire);
12958     Ops[0] = LI;
12959     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vldap1_lane");
12960   }
12961   case NEON::BI__builtin_neon_vld1_dup_v:
12962   case NEON::BI__builtin_neon_vld1q_dup_v: {
12963     Value *V = PoisonValue::get(Ty);
12964     Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
12965                                        PtrOp0.getAlignment());
12966     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
12967     Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
12968     return EmitNeonSplat(Ops[0], CI);
12969   }
12970   case NEON::BI__builtin_neon_vst1_lane_v:
12971   case NEON::BI__builtin_neon_vst1q_lane_v:
12972     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
12973     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
12974     return Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment());
12975   case NEON::BI__builtin_neon_vstl1_lane_s64:
12976   case NEON::BI__builtin_neon_vstl1q_lane_s64: {
12977     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
12978     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
12979     llvm::StoreInst *SI =
12980         Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment());
12981     SI->setAtomic(llvm::AtomicOrdering::Release);
12982     return SI;
12983   }
12984   case NEON::BI__builtin_neon_vld2_v:
12985   case NEON::BI__builtin_neon_vld2q_v: {
12986     llvm::Type *Tys[2] = {VTy, UnqualPtrTy};
12987     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
12988     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
12989     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
12990   }
12991   case NEON::BI__builtin_neon_vld3_v:
12992   case NEON::BI__builtin_neon_vld3q_v: {
12993     llvm::Type *Tys[2] = {VTy, UnqualPtrTy};
12994     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
12995     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
12996     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
12997   }
12998   case NEON::BI__builtin_neon_vld4_v:
12999   case NEON::BI__builtin_neon_vld4q_v: {
13000     llvm::Type *Tys[2] = {VTy, UnqualPtrTy};
13001     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
13002     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
13003     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13004   }
13005   case NEON::BI__builtin_neon_vld2_dup_v:
13006   case NEON::BI__builtin_neon_vld2q_dup_v: {
13007     llvm::Type *Tys[2] = {VTy, UnqualPtrTy};
13008     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
13009     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
13010     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13011   }
13012   case NEON::BI__builtin_neon_vld3_dup_v:
13013   case NEON::BI__builtin_neon_vld3q_dup_v: {
13014     llvm::Type *Tys[2] = {VTy, UnqualPtrTy};
13015     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
13016     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
13017     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13018   }
13019   case NEON::BI__builtin_neon_vld4_dup_v:
13020   case NEON::BI__builtin_neon_vld4q_dup_v: {
13021     llvm::Type *Tys[2] = {VTy, UnqualPtrTy};
13022     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
13023     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
13024     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13025   }
13026   case NEON::BI__builtin_neon_vld2_lane_v:
13027   case NEON::BI__builtin_neon_vld2q_lane_v: {
13028     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
13029     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
13030     std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
13031     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13032     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
13033     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
13034     Ops[1] = Builder.CreateCall(F, ArrayRef(Ops).slice(1), "vld2_lane");
13035     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13036   }
13037   case NEON::BI__builtin_neon_vld3_lane_v:
13038   case NEON::BI__builtin_neon_vld3q_lane_v: {
13039     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
13040     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
13041     std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
13042     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13043     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
13044     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
13045     Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
13046     Ops[1] = Builder.CreateCall(F, ArrayRef(Ops).slice(1), "vld3_lane");
13047     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13048   }
13049   case NEON::BI__builtin_neon_vld4_lane_v:
13050   case NEON::BI__builtin_neon_vld4q_lane_v: {
13051     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
13052     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
13053     std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
13054     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13055     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
13056     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
13057     Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
13058     Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
13059     Ops[1] = Builder.CreateCall(F, ArrayRef(Ops).slice(1), "vld4_lane");
13060     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
13061   }
13062   case NEON::BI__builtin_neon_vst2_v:
13063   case NEON::BI__builtin_neon_vst2q_v: {
13064     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
13065     llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
13066     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
13067                         Ops, "");
13068   }
13069   case NEON::BI__builtin_neon_vst2_lane_v:
13070   case NEON::BI__builtin_neon_vst2q_lane_v: {
13071     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
13072     Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
13073     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
13074     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
13075                         Ops, "");
13076   }
13077   case NEON::BI__builtin_neon_vst3_v:
13078   case NEON::BI__builtin_neon_vst3q_v: {
13079     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
13080     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
13081     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
13082                         Ops, "");
13083   }
13084   case NEON::BI__builtin_neon_vst3_lane_v:
13085   case NEON::BI__builtin_neon_vst3q_lane_v: {
13086     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
13087     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
13088     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
13089     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
13090                         Ops, "");
13091   }
13092   case NEON::BI__builtin_neon_vst4_v:
13093   case NEON::BI__builtin_neon_vst4q_v: {
13094     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
13095     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
13096     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
13097                         Ops, "");
13098   }
13099   case NEON::BI__builtin_neon_vst4_lane_v:
13100   case NEON::BI__builtin_neon_vst4q_lane_v: {
13101     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
13102     Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
13103     llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
13104     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
13105                         Ops, "");
13106   }
13107   case NEON::BI__builtin_neon_vtrn_v:
13108   case NEON::BI__builtin_neon_vtrnq_v: {
13109     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13110     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
13111     Value *SV = nullptr;
13112 
13113     for (unsigned vi = 0; vi != 2; ++vi) {
13114       SmallVector<int, 16> Indices;
13115       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
13116         Indices.push_back(i+vi);
13117         Indices.push_back(i+e+vi);
13118       }
13119       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
13120       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
13121       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
13122     }
13123     return SV;
13124   }
13125   case NEON::BI__builtin_neon_vuzp_v:
13126   case NEON::BI__builtin_neon_vuzpq_v: {
13127     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13128     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
13129     Value *SV = nullptr;
13130 
13131     for (unsigned vi = 0; vi != 2; ++vi) {
13132       SmallVector<int, 16> Indices;
13133       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
13134         Indices.push_back(2*i+vi);
13135 
13136       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
13137       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
13138       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
13139     }
13140     return SV;
13141   }
13142   case NEON::BI__builtin_neon_vzip_v:
13143   case NEON::BI__builtin_neon_vzipq_v: {
13144     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
13145     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
13146     Value *SV = nullptr;
13147 
13148     for (unsigned vi = 0; vi != 2; ++vi) {
13149       SmallVector<int, 16> Indices;
13150       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
13151         Indices.push_back((i + vi*e) >> 1);
13152         Indices.push_back(((i + vi*e) >> 1)+e);
13153       }
13154       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
13155       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
13156       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
13157     }
13158     return SV;
13159   }
13160   case NEON::BI__builtin_neon_vqtbl1q_v: {
13161     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
13162                         Ops, "vtbl1");
13163   }
13164   case NEON::BI__builtin_neon_vqtbl2q_v: {
13165     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
13166                         Ops, "vtbl2");
13167   }
13168   case NEON::BI__builtin_neon_vqtbl3q_v: {
13169     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
13170                         Ops, "vtbl3");
13171   }
13172   case NEON::BI__builtin_neon_vqtbl4q_v: {
13173     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
13174                         Ops, "vtbl4");
13175   }
13176   case NEON::BI__builtin_neon_vqtbx1q_v: {
13177     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
13178                         Ops, "vtbx1");
13179   }
13180   case NEON::BI__builtin_neon_vqtbx2q_v: {
13181     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
13182                         Ops, "vtbx2");
13183   }
13184   case NEON::BI__builtin_neon_vqtbx3q_v: {
13185     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
13186                         Ops, "vtbx3");
13187   }
13188   case NEON::BI__builtin_neon_vqtbx4q_v: {
13189     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
13190                         Ops, "vtbx4");
13191   }
13192   case NEON::BI__builtin_neon_vsqadd_v:
13193   case NEON::BI__builtin_neon_vsqaddq_v: {
13194     Int = Intrinsic::aarch64_neon_usqadd;
13195     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
13196   }
13197   case NEON::BI__builtin_neon_vuqadd_v:
13198   case NEON::BI__builtin_neon_vuqaddq_v: {
13199     Int = Intrinsic::aarch64_neon_suqadd;
13200     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
13201   }
13202   }
13203 }
13204 
13205 Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID,
13206                                            const CallExpr *E) {
13207   assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||
13208           BuiltinID == BPF::BI__builtin_btf_type_id ||
13209           BuiltinID == BPF::BI__builtin_preserve_type_info ||
13210           BuiltinID == BPF::BI__builtin_preserve_enum_value) &&
13211          "unexpected BPF builtin");
13212 
13213   // A sequence number, injected into IR builtin functions, to
13214   // prevent CSE given the only difference of the function
13215   // may just be the debuginfo metadata.
13216   static uint32_t BuiltinSeqNum;
13217 
13218   switch (BuiltinID) {
13219   default:
13220     llvm_unreachable("Unexpected BPF builtin");
13221   case BPF::BI__builtin_preserve_field_info: {
13222     const Expr *Arg = E->getArg(0);
13223     bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField;
13224 
13225     if (!getDebugInfo()) {
13226       CGM.Error(E->getExprLoc(),
13227                 "using __builtin_preserve_field_info() without -g");
13228       return IsBitField ? EmitLValue(Arg).getBitFieldPointer()
13229                         : EmitLValue(Arg).getPointer(*this);
13230     }
13231 
13232     // Enable underlying preserve_*_access_index() generation.
13233     bool OldIsInPreservedAIRegion = IsInPreservedAIRegion;
13234     IsInPreservedAIRegion = true;
13235     Value *FieldAddr = IsBitField ? EmitLValue(Arg).getBitFieldPointer()
13236                                   : EmitLValue(Arg).getPointer(*this);
13237     IsInPreservedAIRegion = OldIsInPreservedAIRegion;
13238 
13239     ConstantInt *C = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
13240     Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue());
13241 
13242     // Built the IR for the preserve_field_info intrinsic.
13243     llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getDeclaration(
13244         &CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info,
13245         {FieldAddr->getType()});
13246     return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind});
13247   }
13248   case BPF::BI__builtin_btf_type_id:
13249   case BPF::BI__builtin_preserve_type_info: {
13250     if (!getDebugInfo()) {
13251       CGM.Error(E->getExprLoc(), "using builtin function without -g");
13252       return nullptr;
13253     }
13254 
13255     const Expr *Arg0 = E->getArg(0);
13256     llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
13257         Arg0->getType(), Arg0->getExprLoc());
13258 
13259     ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
13260     Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
13261     Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
13262 
13263     llvm::Function *FnDecl;
13264     if (BuiltinID == BPF::BI__builtin_btf_type_id)
13265       FnDecl = llvm::Intrinsic::getDeclaration(
13266           &CGM.getModule(), llvm::Intrinsic::bpf_btf_type_id, {});
13267     else
13268       FnDecl = llvm::Intrinsic::getDeclaration(
13269           &CGM.getModule(), llvm::Intrinsic::bpf_preserve_type_info, {});
13270     CallInst *Fn = Builder.CreateCall(FnDecl, {SeqNumVal, FlagValue});
13271     Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
13272     return Fn;
13273   }
13274   case BPF::BI__builtin_preserve_enum_value: {
13275     if (!getDebugInfo()) {
13276       CGM.Error(E->getExprLoc(), "using builtin function without -g");
13277       return nullptr;
13278     }
13279 
13280     const Expr *Arg0 = E->getArg(0);
13281     llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
13282         Arg0->getType(), Arg0->getExprLoc());
13283 
13284     // Find enumerator
13285     const auto *UO = cast<UnaryOperator>(Arg0->IgnoreParens());
13286     const auto *CE = cast<CStyleCastExpr>(UO->getSubExpr());
13287     const auto *DR = cast<DeclRefExpr>(CE->getSubExpr());
13288     const auto *Enumerator = cast<EnumConstantDecl>(DR->getDecl());
13289 
13290     auto InitVal = Enumerator->getInitVal();
13291     std::string InitValStr;
13292     if (InitVal.isNegative() || InitVal > uint64_t(INT64_MAX))
13293       InitValStr = std::to_string(InitVal.getSExtValue());
13294     else
13295       InitValStr = std::to_string(InitVal.getZExtValue());
13296     std::string EnumStr = Enumerator->getNameAsString() + ":" + InitValStr;
13297     Value *EnumStrVal = Builder.CreateGlobalStringPtr(EnumStr);
13298 
13299     ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
13300     Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
13301     Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
13302 
13303     llvm::Function *IntrinsicFn = llvm::Intrinsic::getDeclaration(
13304         &CGM.getModule(), llvm::Intrinsic::bpf_preserve_enum_value, {});
13305     CallInst *Fn =
13306         Builder.CreateCall(IntrinsicFn, {SeqNumVal, EnumStrVal, FlagValue});
13307     Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
13308     return Fn;
13309   }
13310   }
13311 }
13312 
13313 llvm::Value *CodeGenFunction::
13314 BuildVector(ArrayRef<llvm::Value*> Ops) {
13315   assert((Ops.size() & (Ops.size() - 1)) == 0 &&
13316          "Not a power-of-two sized vector!");
13317   bool AllConstants = true;
13318   for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
13319     AllConstants &= isa<Constant>(Ops[i]);
13320 
13321   // If this is a constant vector, create a ConstantVector.
13322   if (AllConstants) {
13323     SmallVector<llvm::Constant*, 16> CstOps;
13324     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
13325       CstOps.push_back(cast<Constant>(Ops[i]));
13326     return llvm::ConstantVector::get(CstOps);
13327   }
13328 
13329   // Otherwise, insertelement the values to build the vector.
13330   Value *Result = llvm::PoisonValue::get(
13331       llvm::FixedVectorType::get(Ops[0]->getType(), Ops.size()));
13332 
13333   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
13334     Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt64(i));
13335 
13336   return Result;
13337 }
13338 
13339 // Convert the mask from an integer type to a vector of i1.
13340 static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
13341                               unsigned NumElts) {
13342 
13343   auto *MaskTy = llvm::FixedVectorType::get(
13344       CGF.Builder.getInt1Ty(),
13345       cast<IntegerType>(Mask->getType())->getBitWidth());
13346   Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
13347 
13348   // If we have less than 8 elements, then the starting mask was an i8 and
13349   // we need to extract down to the right number of elements.
13350   if (NumElts < 8) {
13351     int Indices[4];
13352     for (unsigned i = 0; i != NumElts; ++i)
13353       Indices[i] = i;
13354     MaskVec = CGF.Builder.CreateShuffleVector(
13355         MaskVec, MaskVec, ArrayRef(Indices, NumElts), "extract");
13356   }
13357   return MaskVec;
13358 }
13359 
13360 static Value *EmitX86MaskedStore(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
13361                                  Align Alignment) {
13362   Value *Ptr = Ops[0];
13363 
13364   Value *MaskVec = getMaskVecValue(
13365       CGF, Ops[2],
13366       cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements());
13367 
13368   return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Alignment, MaskVec);
13369 }
13370 
13371 static Value *EmitX86MaskedLoad(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
13372                                 Align Alignment) {
13373   llvm::Type *Ty = Ops[1]->getType();
13374   Value *Ptr = Ops[0];
13375 
13376   Value *MaskVec = getMaskVecValue(
13377       CGF, Ops[2], cast<llvm::FixedVectorType>(Ty)->getNumElements());
13378 
13379   return CGF.Builder.CreateMaskedLoad(Ty, Ptr, Alignment, MaskVec, Ops[1]);
13380 }
13381 
13382 static Value *EmitX86ExpandLoad(CodeGenFunction &CGF,
13383                                 ArrayRef<Value *> Ops) {
13384   auto *ResultTy = cast<llvm::VectorType>(Ops[1]->getType());
13385   Value *Ptr = Ops[0];
13386 
13387   Value *MaskVec = getMaskVecValue(
13388       CGF, Ops[2], cast<FixedVectorType>(ResultTy)->getNumElements());
13389 
13390   llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload,
13391                                            ResultTy);
13392   return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] });
13393 }
13394 
13395 static Value *EmitX86CompressExpand(CodeGenFunction &CGF,
13396                                     ArrayRef<Value *> Ops,
13397                                     bool IsCompress) {
13398   auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
13399 
13400   Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
13401 
13402   Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress
13403                                  : Intrinsic::x86_avx512_mask_expand;
13404   llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy);
13405   return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec });
13406 }
13407 
13408 static Value *EmitX86CompressStore(CodeGenFunction &CGF,
13409                                    ArrayRef<Value *> Ops) {
13410   auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
13411   Value *Ptr = Ops[0];
13412 
13413   Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
13414 
13415   llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore,
13416                                            ResultTy);
13417   return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec });
13418 }
13419 
13420 static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
13421                               ArrayRef<Value *> Ops,
13422                               bool InvertLHS = false) {
13423   unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13424   Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts);
13425   Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts);
13426 
13427   if (InvertLHS)
13428     LHS = CGF.Builder.CreateNot(LHS);
13429 
13430   return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS),
13431                                    Ops[0]->getType());
13432 }
13433 
13434 static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1,
13435                                  Value *Amt, bool IsRight) {
13436   llvm::Type *Ty = Op0->getType();
13437 
13438   // Amount may be scalar immediate, in which case create a splat vector.
13439   // Funnel shifts amounts are treated as modulo and types are all power-of-2 so
13440   // we only care about the lowest log2 bits anyway.
13441   if (Amt->getType() != Ty) {
13442     unsigned NumElts = cast<llvm::FixedVectorType>(Ty)->getNumElements();
13443     Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false);
13444     Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt);
13445   }
13446 
13447   unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl;
13448   Function *F = CGF.CGM.getIntrinsic(IID, Ty);
13449   return CGF.Builder.CreateCall(F, {Op0, Op1, Amt});
13450 }
13451 
13452 static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
13453                            bool IsSigned) {
13454   Value *Op0 = Ops[0];
13455   Value *Op1 = Ops[1];
13456   llvm::Type *Ty = Op0->getType();
13457   uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
13458 
13459   CmpInst::Predicate Pred;
13460   switch (Imm) {
13461   case 0x0:
13462     Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
13463     break;
13464   case 0x1:
13465     Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
13466     break;
13467   case 0x2:
13468     Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
13469     break;
13470   case 0x3:
13471     Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
13472     break;
13473   case 0x4:
13474     Pred = ICmpInst::ICMP_EQ;
13475     break;
13476   case 0x5:
13477     Pred = ICmpInst::ICMP_NE;
13478     break;
13479   case 0x6:
13480     return llvm::Constant::getNullValue(Ty); // FALSE
13481   case 0x7:
13482     return llvm::Constant::getAllOnesValue(Ty); // TRUE
13483   default:
13484     llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate");
13485   }
13486 
13487   Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1);
13488   Value *Res = CGF.Builder.CreateSExt(Cmp, Ty);
13489   return Res;
13490 }
13491 
13492 static Value *EmitX86Select(CodeGenFunction &CGF,
13493                             Value *Mask, Value *Op0, Value *Op1) {
13494 
13495   // If the mask is all ones just return first argument.
13496   if (const auto *C = dyn_cast<Constant>(Mask))
13497     if (C->isAllOnesValue())
13498       return Op0;
13499 
13500   Mask = getMaskVecValue(
13501       CGF, Mask, cast<llvm::FixedVectorType>(Op0->getType())->getNumElements());
13502 
13503   return CGF.Builder.CreateSelect(Mask, Op0, Op1);
13504 }
13505 
13506 static Value *EmitX86ScalarSelect(CodeGenFunction &CGF,
13507                                   Value *Mask, Value *Op0, Value *Op1) {
13508   // If the mask is all ones just return first argument.
13509   if (const auto *C = dyn_cast<Constant>(Mask))
13510     if (C->isAllOnesValue())
13511       return Op0;
13512 
13513   auto *MaskTy = llvm::FixedVectorType::get(
13514       CGF.Builder.getInt1Ty(), Mask->getType()->getIntegerBitWidth());
13515   Mask = CGF.Builder.CreateBitCast(Mask, MaskTy);
13516   Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0);
13517   return CGF.Builder.CreateSelect(Mask, Op0, Op1);
13518 }
13519 
13520 static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp,
13521                                          unsigned NumElts, Value *MaskIn) {
13522   if (MaskIn) {
13523     const auto *C = dyn_cast<Constant>(MaskIn);
13524     if (!C || !C->isAllOnesValue())
13525       Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts));
13526   }
13527 
13528   if (NumElts < 8) {
13529     int Indices[8];
13530     for (unsigned i = 0; i != NumElts; ++i)
13531       Indices[i] = i;
13532     for (unsigned i = NumElts; i != 8; ++i)
13533       Indices[i] = i % NumElts + NumElts;
13534     Cmp = CGF.Builder.CreateShuffleVector(
13535         Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
13536   }
13537 
13538   return CGF.Builder.CreateBitCast(Cmp,
13539                                    IntegerType::get(CGF.getLLVMContext(),
13540                                                     std::max(NumElts, 8U)));
13541 }
13542 
13543 static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
13544                                    bool Signed, ArrayRef<Value *> Ops) {
13545   assert((Ops.size() == 2 || Ops.size() == 4) &&
13546          "Unexpected number of arguments");
13547   unsigned NumElts =
13548       cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13549   Value *Cmp;
13550 
13551   if (CC == 3) {
13552     Cmp = Constant::getNullValue(
13553         llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
13554   } else if (CC == 7) {
13555     Cmp = Constant::getAllOnesValue(
13556         llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
13557   } else {
13558     ICmpInst::Predicate Pred;
13559     switch (CC) {
13560     default: llvm_unreachable("Unknown condition code");
13561     case 0: Pred = ICmpInst::ICMP_EQ;  break;
13562     case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
13563     case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
13564     case 4: Pred = ICmpInst::ICMP_NE;  break;
13565     case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
13566     case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
13567     }
13568     Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
13569   }
13570 
13571   Value *MaskIn = nullptr;
13572   if (Ops.size() == 4)
13573     MaskIn = Ops[3];
13574 
13575   return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn);
13576 }
13577 
13578 static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) {
13579   Value *Zero = Constant::getNullValue(In->getType());
13580   return EmitX86MaskedCompare(CGF, 1, true, { In, Zero });
13581 }
13582 
13583 static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF, const CallExpr *E,
13584                                     ArrayRef<Value *> Ops, bool IsSigned) {
13585   unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue();
13586   llvm::Type *Ty = Ops[1]->getType();
13587 
13588   Value *Res;
13589   if (Rnd != 4) {
13590     Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round
13591                                  : Intrinsic::x86_avx512_uitofp_round;
13592     Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() });
13593     Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] });
13594   } else {
13595     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
13596     Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty)
13597                    : CGF.Builder.CreateUIToFP(Ops[0], Ty);
13598   }
13599 
13600   return EmitX86Select(CGF, Ops[2], Res, Ops[1]);
13601 }
13602 
13603 // Lowers X86 FMA intrinsics to IR.
13604 static Value *EmitX86FMAExpr(CodeGenFunction &CGF, const CallExpr *E,
13605                              ArrayRef<Value *> Ops, unsigned BuiltinID,
13606                              bool IsAddSub) {
13607 
13608   bool Subtract = false;
13609   Intrinsic::ID IID = Intrinsic::not_intrinsic;
13610   switch (BuiltinID) {
13611   default: break;
13612   case clang::X86::BI__builtin_ia32_vfmsubph512_mask3:
13613     Subtract = true;
13614     [[fallthrough]];
13615   case clang::X86::BI__builtin_ia32_vfmaddph512_mask:
13616   case clang::X86::BI__builtin_ia32_vfmaddph512_maskz:
13617   case clang::X86::BI__builtin_ia32_vfmaddph512_mask3:
13618     IID = llvm::Intrinsic::x86_avx512fp16_vfmadd_ph_512;
13619     break;
13620   case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3:
13621     Subtract = true;
13622     [[fallthrough]];
13623   case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask:
13624   case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz:
13625   case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3:
13626     IID = llvm::Intrinsic::x86_avx512fp16_vfmaddsub_ph_512;
13627     break;
13628   case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
13629     Subtract = true;
13630     [[fallthrough]];
13631   case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
13632   case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
13633   case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
13634     IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break;
13635   case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
13636     Subtract = true;
13637     [[fallthrough]];
13638   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
13639   case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
13640   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
13641     IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break;
13642   case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
13643     Subtract = true;
13644     [[fallthrough]];
13645   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
13646   case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
13647   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
13648     IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512;
13649     break;
13650   case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
13651     Subtract = true;
13652     [[fallthrough]];
13653   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
13654   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
13655   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
13656     IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512;
13657     break;
13658   }
13659 
13660   Value *A = Ops[0];
13661   Value *B = Ops[1];
13662   Value *C = Ops[2];
13663 
13664   if (Subtract)
13665     C = CGF.Builder.CreateFNeg(C);
13666 
13667   Value *Res;
13668 
13669   // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding).
13670   if (IID != Intrinsic::not_intrinsic &&
13671       (cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4 ||
13672        IsAddSub)) {
13673     Function *Intr = CGF.CGM.getIntrinsic(IID);
13674     Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() });
13675   } else {
13676     llvm::Type *Ty = A->getType();
13677     Function *FMA;
13678     if (CGF.Builder.getIsFPConstrained()) {
13679       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
13680       FMA = CGF.CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, Ty);
13681       Res = CGF.Builder.CreateConstrainedFPCall(FMA, {A, B, C});
13682     } else {
13683       FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
13684       Res = CGF.Builder.CreateCall(FMA, {A, B, C});
13685     }
13686   }
13687 
13688   // Handle any required masking.
13689   Value *MaskFalseVal = nullptr;
13690   switch (BuiltinID) {
13691   case clang::X86::BI__builtin_ia32_vfmaddph512_mask:
13692   case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
13693   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
13694   case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask:
13695   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
13696   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
13697     MaskFalseVal = Ops[0];
13698     break;
13699   case clang::X86::BI__builtin_ia32_vfmaddph512_maskz:
13700   case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
13701   case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
13702   case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz:
13703   case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
13704   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
13705     MaskFalseVal = Constant::getNullValue(Ops[0]->getType());
13706     break;
13707   case clang::X86::BI__builtin_ia32_vfmsubph512_mask3:
13708   case clang::X86::BI__builtin_ia32_vfmaddph512_mask3:
13709   case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
13710   case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
13711   case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
13712   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
13713   case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3:
13714   case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3:
13715   case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
13716   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
13717   case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
13718   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
13719     MaskFalseVal = Ops[2];
13720     break;
13721   }
13722 
13723   if (MaskFalseVal)
13724     return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal);
13725 
13726   return Res;
13727 }
13728 
13729 static Value *EmitScalarFMAExpr(CodeGenFunction &CGF, const CallExpr *E,
13730                                 MutableArrayRef<Value *> Ops, Value *Upper,
13731                                 bool ZeroMask = false, unsigned PTIdx = 0,
13732                                 bool NegAcc = false) {
13733   unsigned Rnd = 4;
13734   if (Ops.size() > 4)
13735     Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
13736 
13737   if (NegAcc)
13738     Ops[2] = CGF.Builder.CreateFNeg(Ops[2]);
13739 
13740   Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0);
13741   Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0);
13742   Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0);
13743   Value *Res;
13744   if (Rnd != 4) {
13745     Intrinsic::ID IID;
13746 
13747     switch (Ops[0]->getType()->getPrimitiveSizeInBits()) {
13748     case 16:
13749       IID = Intrinsic::x86_avx512fp16_vfmadd_f16;
13750       break;
13751     case 32:
13752       IID = Intrinsic::x86_avx512_vfmadd_f32;
13753       break;
13754     case 64:
13755       IID = Intrinsic::x86_avx512_vfmadd_f64;
13756       break;
13757     default:
13758       llvm_unreachable("Unexpected size");
13759     }
13760     Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
13761                                  {Ops[0], Ops[1], Ops[2], Ops[4]});
13762   } else if (CGF.Builder.getIsFPConstrained()) {
13763     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
13764     Function *FMA = CGF.CGM.getIntrinsic(
13765         Intrinsic::experimental_constrained_fma, Ops[0]->getType());
13766     Res = CGF.Builder.CreateConstrainedFPCall(FMA, Ops.slice(0, 3));
13767   } else {
13768     Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType());
13769     Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3));
13770   }
13771   // If we have more than 3 arguments, we need to do masking.
13772   if (Ops.size() > 3) {
13773     Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType())
13774                                : Ops[PTIdx];
13775 
13776     // If we negated the accumulator and the its the PassThru value we need to
13777     // bypass the negate. Conveniently Upper should be the same thing in this
13778     // case.
13779     if (NegAcc && PTIdx == 2)
13780       PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0);
13781 
13782     Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru);
13783   }
13784   return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0);
13785 }
13786 
13787 static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned,
13788                            ArrayRef<Value *> Ops) {
13789   llvm::Type *Ty = Ops[0]->getType();
13790   // Arguments have a vXi32 type so cast to vXi64.
13791   Ty = llvm::FixedVectorType::get(CGF.Int64Ty,
13792                                   Ty->getPrimitiveSizeInBits() / 64);
13793   Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty);
13794   Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty);
13795 
13796   if (IsSigned) {
13797     // Shift left then arithmetic shift right.
13798     Constant *ShiftAmt = ConstantInt::get(Ty, 32);
13799     LHS = CGF.Builder.CreateShl(LHS, ShiftAmt);
13800     LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt);
13801     RHS = CGF.Builder.CreateShl(RHS, ShiftAmt);
13802     RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt);
13803   } else {
13804     // Clear the upper bits.
13805     Constant *Mask = ConstantInt::get(Ty, 0xffffffff);
13806     LHS = CGF.Builder.CreateAnd(LHS, Mask);
13807     RHS = CGF.Builder.CreateAnd(RHS, Mask);
13808   }
13809 
13810   return CGF.Builder.CreateMul(LHS, RHS);
13811 }
13812 
13813 // Emit a masked pternlog intrinsic. This only exists because the header has to
13814 // use a macro and we aren't able to pass the input argument to a pternlog
13815 // builtin and a select builtin without evaluating it twice.
13816 static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask,
13817                              ArrayRef<Value *> Ops) {
13818   llvm::Type *Ty = Ops[0]->getType();
13819 
13820   unsigned VecWidth = Ty->getPrimitiveSizeInBits();
13821   unsigned EltWidth = Ty->getScalarSizeInBits();
13822   Intrinsic::ID IID;
13823   if (VecWidth == 128 && EltWidth == 32)
13824     IID = Intrinsic::x86_avx512_pternlog_d_128;
13825   else if (VecWidth == 256 && EltWidth == 32)
13826     IID = Intrinsic::x86_avx512_pternlog_d_256;
13827   else if (VecWidth == 512 && EltWidth == 32)
13828     IID = Intrinsic::x86_avx512_pternlog_d_512;
13829   else if (VecWidth == 128 && EltWidth == 64)
13830     IID = Intrinsic::x86_avx512_pternlog_q_128;
13831   else if (VecWidth == 256 && EltWidth == 64)
13832     IID = Intrinsic::x86_avx512_pternlog_q_256;
13833   else if (VecWidth == 512 && EltWidth == 64)
13834     IID = Intrinsic::x86_avx512_pternlog_q_512;
13835   else
13836     llvm_unreachable("Unexpected intrinsic");
13837 
13838   Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
13839                                           Ops.drop_back());
13840   Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0];
13841   return EmitX86Select(CGF, Ops[4], Ternlog, PassThru);
13842 }
13843 
13844 static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
13845                               llvm::Type *DstTy) {
13846   unsigned NumberOfElements =
13847       cast<llvm::FixedVectorType>(DstTy)->getNumElements();
13848   Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements);
13849   return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2");
13850 }
13851 
13852 Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
13853   const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
13854   StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
13855   return EmitX86CpuIs(CPUStr);
13856 }
13857 
13858 // Convert F16 halfs to floats.
13859 static Value *EmitX86CvtF16ToFloatExpr(CodeGenFunction &CGF,
13860                                        ArrayRef<Value *> Ops,
13861                                        llvm::Type *DstTy) {
13862   assert((Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) &&
13863          "Unknown cvtph2ps intrinsic");
13864 
13865   // If the SAE intrinsic doesn't use default rounding then we can't upgrade.
13866   if (Ops.size() == 4 && cast<llvm::ConstantInt>(Ops[3])->getZExtValue() != 4) {
13867     Function *F =
13868         CGF.CGM.getIntrinsic(Intrinsic::x86_avx512_mask_vcvtph2ps_512);
13869     return CGF.Builder.CreateCall(F, {Ops[0], Ops[1], Ops[2], Ops[3]});
13870   }
13871 
13872   unsigned NumDstElts = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
13873   Value *Src = Ops[0];
13874 
13875   // Extract the subvector.
13876   if (NumDstElts !=
13877       cast<llvm::FixedVectorType>(Src->getType())->getNumElements()) {
13878     assert(NumDstElts == 4 && "Unexpected vector size");
13879     Src = CGF.Builder.CreateShuffleVector(Src, ArrayRef<int>{0, 1, 2, 3});
13880   }
13881 
13882   // Bitcast from vXi16 to vXf16.
13883   auto *HalfTy = llvm::FixedVectorType::get(
13884       llvm::Type::getHalfTy(CGF.getLLVMContext()), NumDstElts);
13885   Src = CGF.Builder.CreateBitCast(Src, HalfTy);
13886 
13887   // Perform the fp-extension.
13888   Value *Res = CGF.Builder.CreateFPExt(Src, DstTy, "cvtph2ps");
13889 
13890   if (Ops.size() >= 3)
13891     Res = EmitX86Select(CGF, Ops[2], Res, Ops[1]);
13892   return Res;
13893 }
13894 
13895 Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
13896 
13897   llvm::Type *Int32Ty = Builder.getInt32Ty();
13898 
13899   // Matching the struct layout from the compiler-rt/libgcc structure that is
13900   // filled in:
13901   // unsigned int __cpu_vendor;
13902   // unsigned int __cpu_type;
13903   // unsigned int __cpu_subtype;
13904   // unsigned int __cpu_features[1];
13905   llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
13906                                           llvm::ArrayType::get(Int32Ty, 1));
13907 
13908   // Grab the global __cpu_model.
13909   llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
13910   cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
13911 
13912   // Calculate the index needed to access the correct field based on the
13913   // range. Also adjust the expected value.
13914   unsigned Index;
13915   unsigned Value;
13916   std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
13917 #define X86_VENDOR(ENUM, STRING)                                               \
13918   .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
13919 #define X86_CPU_TYPE_ALIAS(ENUM, ALIAS)                                        \
13920   .Case(ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
13921 #define X86_CPU_TYPE(ENUM, STR)                                                \
13922   .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
13923 #define X86_CPU_SUBTYPE_ALIAS(ENUM, ALIAS)                                     \
13924   .Case(ALIAS, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
13925 #define X86_CPU_SUBTYPE(ENUM, STR)                                             \
13926   .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
13927 #include "llvm/TargetParser/X86TargetParser.def"
13928                                .Default({0, 0});
13929   assert(Value != 0 && "Invalid CPUStr passed to CpuIs");
13930 
13931   // Grab the appropriate field from __cpu_model.
13932   llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
13933                          ConstantInt::get(Int32Ty, Index)};
13934   llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs);
13935   CpuValue = Builder.CreateAlignedLoad(Int32Ty, CpuValue,
13936                                        CharUnits::fromQuantity(4));
13937 
13938   // Check the value of the field against the requested value.
13939   return Builder.CreateICmpEQ(CpuValue,
13940                                   llvm::ConstantInt::get(Int32Ty, Value));
13941 }
13942 
13943 Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
13944   const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
13945   StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
13946   return EmitX86CpuSupports(FeatureStr);
13947 }
13948 
13949 Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
13950   return EmitX86CpuSupports(llvm::X86::getCpuSupportsMask(FeatureStrs));
13951 }
13952 
13953 llvm::Value *
13954 CodeGenFunction::EmitX86CpuSupports(std::array<uint32_t, 4> FeatureMask) {
13955   Value *Result = Builder.getTrue();
13956   if (FeatureMask[0] != 0) {
13957     // Matching the struct layout from the compiler-rt/libgcc structure that is
13958     // filled in:
13959     // unsigned int __cpu_vendor;
13960     // unsigned int __cpu_type;
13961     // unsigned int __cpu_subtype;
13962     // unsigned int __cpu_features[1];
13963     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
13964                                             llvm::ArrayType::get(Int32Ty, 1));
13965 
13966     // Grab the global __cpu_model.
13967     llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
13968     cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
13969 
13970     // Grab the first (0th) element from the field __cpu_features off of the
13971     // global in the struct STy.
13972     Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3),
13973                      Builder.getInt32(0)};
13974     Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
13975     Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures,
13976                                                 CharUnits::fromQuantity(4));
13977 
13978     // Check the value of the bit corresponding to the feature requested.
13979     Value *Mask = Builder.getInt32(FeatureMask[0]);
13980     Value *Bitset = Builder.CreateAnd(Features, Mask);
13981     Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
13982     Result = Builder.CreateAnd(Result, Cmp);
13983   }
13984 
13985   llvm::Type *ATy = llvm::ArrayType::get(Int32Ty, 3);
13986   llvm::Constant *CpuFeatures2 =
13987       CGM.CreateRuntimeVariable(ATy, "__cpu_features2");
13988   cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true);
13989   for (int i = 1; i != 4; ++i) {
13990     const uint32_t M = FeatureMask[i];
13991     if (!M)
13992       continue;
13993     Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(i - 1)};
13994     Value *Features = Builder.CreateAlignedLoad(
13995         Int32Ty, Builder.CreateGEP(ATy, CpuFeatures2, Idxs),
13996         CharUnits::fromQuantity(4));
13997     // Check the value of the bit corresponding to the feature requested.
13998     Value *Mask = Builder.getInt32(M);
13999     Value *Bitset = Builder.CreateAnd(Features, Mask);
14000     Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
14001     Result = Builder.CreateAnd(Result, Cmp);
14002   }
14003 
14004   return Result;
14005 }
14006 
14007 Value *CodeGenFunction::EmitAArch64CpuInit() {
14008   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
14009   llvm::FunctionCallee Func =
14010       CGM.CreateRuntimeFunction(FTy, "__init_cpu_features_resolver");
14011   cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
14012   cast<llvm::GlobalValue>(Func.getCallee())
14013       ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
14014   return Builder.CreateCall(Func);
14015 }
14016 
14017 Value *CodeGenFunction::EmitX86CpuInit() {
14018   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy,
14019                                                     /*Variadic*/ false);
14020   llvm::FunctionCallee Func =
14021       CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init");
14022   cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
14023   cast<llvm::GlobalValue>(Func.getCallee())
14024       ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
14025   return Builder.CreateCall(Func);
14026 }
14027 
14028 llvm::Value *
14029 CodeGenFunction::EmitAArch64CpuSupports(ArrayRef<StringRef> FeaturesStrs) {
14030   uint64_t FeaturesMask = llvm::AArch64::getCpuSupportsMask(FeaturesStrs);
14031   Value *Result = Builder.getTrue();
14032   if (FeaturesMask != 0) {
14033     // Get features from structure in runtime library
14034     // struct {
14035     //   unsigned long long features;
14036     // } __aarch64_cpu_features;
14037     llvm::Type *STy = llvm::StructType::get(Int64Ty);
14038     llvm::Constant *AArch64CPUFeatures =
14039         CGM.CreateRuntimeVariable(STy, "__aarch64_cpu_features");
14040     cast<llvm::GlobalValue>(AArch64CPUFeatures)->setDSOLocal(true);
14041     llvm::Value *CpuFeatures = Builder.CreateGEP(
14042         STy, AArch64CPUFeatures,
14043         {ConstantInt::get(Int32Ty, 0), ConstantInt::get(Int32Ty, 0)});
14044     Value *Features = Builder.CreateAlignedLoad(Int64Ty, CpuFeatures,
14045                                                 CharUnits::fromQuantity(8));
14046     Value *Mask = Builder.getInt64(FeaturesMask);
14047     Value *Bitset = Builder.CreateAnd(Features, Mask);
14048     Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
14049     Result = Builder.CreateAnd(Result, Cmp);
14050   }
14051   return Result;
14052 }
14053 
14054 Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
14055                                            const CallExpr *E) {
14056   if (BuiltinID == X86::BI__builtin_cpu_is)
14057     return EmitX86CpuIs(E);
14058   if (BuiltinID == X86::BI__builtin_cpu_supports)
14059     return EmitX86CpuSupports(E);
14060   if (BuiltinID == X86::BI__builtin_cpu_init)
14061     return EmitX86CpuInit();
14062 
14063   // Handle MSVC intrinsics before argument evaluation to prevent double
14064   // evaluation.
14065   if (std::optional<MSVCIntrin> MsvcIntId = translateX86ToMsvcIntrin(BuiltinID))
14066     return EmitMSVCBuiltinExpr(*MsvcIntId, E);
14067 
14068   SmallVector<Value*, 4> Ops;
14069   bool IsMaskFCmp = false;
14070   bool IsConjFMA = false;
14071 
14072   // Find out if any arguments are required to be integer constant expressions.
14073   unsigned ICEArguments = 0;
14074   ASTContext::GetBuiltinTypeError Error;
14075   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
14076   assert(Error == ASTContext::GE_None && "Should not codegen an error");
14077 
14078   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
14079     Ops.push_back(EmitScalarOrConstFoldImmArg(ICEArguments, i, E));
14080   }
14081 
14082   // These exist so that the builtin that takes an immediate can be bounds
14083   // checked by clang to avoid passing bad immediates to the backend. Since
14084   // AVX has a larger immediate than SSE we would need separate builtins to
14085   // do the different bounds checking. Rather than create a clang specific
14086   // SSE only builtin, this implements eight separate builtins to match gcc
14087   // implementation.
14088   auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
14089     Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
14090     llvm::Function *F = CGM.getIntrinsic(ID);
14091     return Builder.CreateCall(F, Ops);
14092   };
14093 
14094   // For the vector forms of FP comparisons, translate the builtins directly to
14095   // IR.
14096   // TODO: The builtins could be removed if the SSE header files used vector
14097   // extension comparisons directly (vector ordered/unordered may need
14098   // additional support via __builtin_isnan()).
14099   auto getVectorFCmpIR = [this, &Ops, E](CmpInst::Predicate Pred,
14100                                          bool IsSignaling) {
14101     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14102     Value *Cmp;
14103     if (IsSignaling)
14104       Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
14105     else
14106       Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
14107     llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
14108     llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
14109     Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
14110     return Builder.CreateBitCast(Sext, FPVecTy);
14111   };
14112 
14113   switch (BuiltinID) {
14114   default: return nullptr;
14115   case X86::BI_mm_prefetch: {
14116     Value *Address = Ops[0];
14117     ConstantInt *C = cast<ConstantInt>(Ops[1]);
14118     Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1);
14119     Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3);
14120     Value *Data = ConstantInt::get(Int32Ty, 1);
14121     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
14122     return Builder.CreateCall(F, {Address, RW, Locality, Data});
14123   }
14124   case X86::BI_mm_clflush: {
14125     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
14126                               Ops[0]);
14127   }
14128   case X86::BI_mm_lfence: {
14129     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
14130   }
14131   case X86::BI_mm_mfence: {
14132     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
14133   }
14134   case X86::BI_mm_sfence: {
14135     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
14136   }
14137   case X86::BI_mm_pause: {
14138     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
14139   }
14140   case X86::BI__rdtsc: {
14141     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
14142   }
14143   case X86::BI__builtin_ia32_rdtscp: {
14144     Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp));
14145     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
14146                                       Ops[0]);
14147     return Builder.CreateExtractValue(Call, 0);
14148   }
14149   case X86::BI__builtin_ia32_lzcnt_u16:
14150   case X86::BI__builtin_ia32_lzcnt_u32:
14151   case X86::BI__builtin_ia32_lzcnt_u64: {
14152     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
14153     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
14154   }
14155   case X86::BI__builtin_ia32_tzcnt_u16:
14156   case X86::BI__builtin_ia32_tzcnt_u32:
14157   case X86::BI__builtin_ia32_tzcnt_u64: {
14158     Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
14159     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
14160   }
14161   case X86::BI__builtin_ia32_undef128:
14162   case X86::BI__builtin_ia32_undef256:
14163   case X86::BI__builtin_ia32_undef512:
14164     // The x86 definition of "undef" is not the same as the LLVM definition
14165     // (PR32176). We leave optimizing away an unnecessary zero constant to the
14166     // IR optimizer and backend.
14167     // TODO: If we had a "freeze" IR instruction to generate a fixed undef
14168     // value, we should use that here instead of a zero.
14169     return llvm::Constant::getNullValue(ConvertType(E->getType()));
14170   case X86::BI__builtin_ia32_vec_init_v8qi:
14171   case X86::BI__builtin_ia32_vec_init_v4hi:
14172   case X86::BI__builtin_ia32_vec_init_v2si:
14173     return Builder.CreateBitCast(BuildVector(Ops),
14174                                  llvm::Type::getX86_MMXTy(getLLVMContext()));
14175   case X86::BI__builtin_ia32_vec_ext_v2si:
14176   case X86::BI__builtin_ia32_vec_ext_v16qi:
14177   case X86::BI__builtin_ia32_vec_ext_v8hi:
14178   case X86::BI__builtin_ia32_vec_ext_v4si:
14179   case X86::BI__builtin_ia32_vec_ext_v4sf:
14180   case X86::BI__builtin_ia32_vec_ext_v2di:
14181   case X86::BI__builtin_ia32_vec_ext_v32qi:
14182   case X86::BI__builtin_ia32_vec_ext_v16hi:
14183   case X86::BI__builtin_ia32_vec_ext_v8si:
14184   case X86::BI__builtin_ia32_vec_ext_v4di: {
14185     unsigned NumElts =
14186         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14187     uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue();
14188     Index &= NumElts - 1;
14189     // These builtins exist so we can ensure the index is an ICE and in range.
14190     // Otherwise we could just do this in the header file.
14191     return Builder.CreateExtractElement(Ops[0], Index);
14192   }
14193   case X86::BI__builtin_ia32_vec_set_v16qi:
14194   case X86::BI__builtin_ia32_vec_set_v8hi:
14195   case X86::BI__builtin_ia32_vec_set_v4si:
14196   case X86::BI__builtin_ia32_vec_set_v2di:
14197   case X86::BI__builtin_ia32_vec_set_v32qi:
14198   case X86::BI__builtin_ia32_vec_set_v16hi:
14199   case X86::BI__builtin_ia32_vec_set_v8si:
14200   case X86::BI__builtin_ia32_vec_set_v4di: {
14201     unsigned NumElts =
14202         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14203     unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
14204     Index &= NumElts - 1;
14205     // These builtins exist so we can ensure the index is an ICE and in range.
14206     // Otherwise we could just do this in the header file.
14207     return Builder.CreateInsertElement(Ops[0], Ops[1], Index);
14208   }
14209   case X86::BI_mm_setcsr:
14210   case X86::BI__builtin_ia32_ldmxcsr: {
14211     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
14212     Builder.CreateStore(Ops[0], Tmp);
14213     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
14214                               Tmp.getPointer());
14215   }
14216   case X86::BI_mm_getcsr:
14217   case X86::BI__builtin_ia32_stmxcsr: {
14218     Address Tmp = CreateMemTemp(E->getType());
14219     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
14220                        Tmp.getPointer());
14221     return Builder.CreateLoad(Tmp, "stmxcsr");
14222   }
14223   case X86::BI__builtin_ia32_xsave:
14224   case X86::BI__builtin_ia32_xsave64:
14225   case X86::BI__builtin_ia32_xrstor:
14226   case X86::BI__builtin_ia32_xrstor64:
14227   case X86::BI__builtin_ia32_xsaveopt:
14228   case X86::BI__builtin_ia32_xsaveopt64:
14229   case X86::BI__builtin_ia32_xrstors:
14230   case X86::BI__builtin_ia32_xrstors64:
14231   case X86::BI__builtin_ia32_xsavec:
14232   case X86::BI__builtin_ia32_xsavec64:
14233   case X86::BI__builtin_ia32_xsaves:
14234   case X86::BI__builtin_ia32_xsaves64:
14235   case X86::BI__builtin_ia32_xsetbv:
14236   case X86::BI_xsetbv: {
14237     Intrinsic::ID ID;
14238 #define INTRINSIC_X86_XSAVE_ID(NAME) \
14239     case X86::BI__builtin_ia32_##NAME: \
14240       ID = Intrinsic::x86_##NAME; \
14241       break
14242     switch (BuiltinID) {
14243     default: llvm_unreachable("Unsupported intrinsic!");
14244     INTRINSIC_X86_XSAVE_ID(xsave);
14245     INTRINSIC_X86_XSAVE_ID(xsave64);
14246     INTRINSIC_X86_XSAVE_ID(xrstor);
14247     INTRINSIC_X86_XSAVE_ID(xrstor64);
14248     INTRINSIC_X86_XSAVE_ID(xsaveopt);
14249     INTRINSIC_X86_XSAVE_ID(xsaveopt64);
14250     INTRINSIC_X86_XSAVE_ID(xrstors);
14251     INTRINSIC_X86_XSAVE_ID(xrstors64);
14252     INTRINSIC_X86_XSAVE_ID(xsavec);
14253     INTRINSIC_X86_XSAVE_ID(xsavec64);
14254     INTRINSIC_X86_XSAVE_ID(xsaves);
14255     INTRINSIC_X86_XSAVE_ID(xsaves64);
14256     INTRINSIC_X86_XSAVE_ID(xsetbv);
14257     case X86::BI_xsetbv:
14258       ID = Intrinsic::x86_xsetbv;
14259       break;
14260     }
14261 #undef INTRINSIC_X86_XSAVE_ID
14262     Value *Mhi = Builder.CreateTrunc(
14263       Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
14264     Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
14265     Ops[1] = Mhi;
14266     Ops.push_back(Mlo);
14267     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14268   }
14269   case X86::BI__builtin_ia32_xgetbv:
14270   case X86::BI_xgetbv:
14271     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops);
14272   case X86::BI__builtin_ia32_storedqudi128_mask:
14273   case X86::BI__builtin_ia32_storedqusi128_mask:
14274   case X86::BI__builtin_ia32_storedquhi128_mask:
14275   case X86::BI__builtin_ia32_storedquqi128_mask:
14276   case X86::BI__builtin_ia32_storeupd128_mask:
14277   case X86::BI__builtin_ia32_storeups128_mask:
14278   case X86::BI__builtin_ia32_storedqudi256_mask:
14279   case X86::BI__builtin_ia32_storedqusi256_mask:
14280   case X86::BI__builtin_ia32_storedquhi256_mask:
14281   case X86::BI__builtin_ia32_storedquqi256_mask:
14282   case X86::BI__builtin_ia32_storeupd256_mask:
14283   case X86::BI__builtin_ia32_storeups256_mask:
14284   case X86::BI__builtin_ia32_storedqudi512_mask:
14285   case X86::BI__builtin_ia32_storedqusi512_mask:
14286   case X86::BI__builtin_ia32_storedquhi512_mask:
14287   case X86::BI__builtin_ia32_storedquqi512_mask:
14288   case X86::BI__builtin_ia32_storeupd512_mask:
14289   case X86::BI__builtin_ia32_storeups512_mask:
14290     return EmitX86MaskedStore(*this, Ops, Align(1));
14291 
14292   case X86::BI__builtin_ia32_storesh128_mask:
14293   case X86::BI__builtin_ia32_storess128_mask:
14294   case X86::BI__builtin_ia32_storesd128_mask:
14295     return EmitX86MaskedStore(*this, Ops, Align(1));
14296 
14297   case X86::BI__builtin_ia32_vpopcntb_128:
14298   case X86::BI__builtin_ia32_vpopcntd_128:
14299   case X86::BI__builtin_ia32_vpopcntq_128:
14300   case X86::BI__builtin_ia32_vpopcntw_128:
14301   case X86::BI__builtin_ia32_vpopcntb_256:
14302   case X86::BI__builtin_ia32_vpopcntd_256:
14303   case X86::BI__builtin_ia32_vpopcntq_256:
14304   case X86::BI__builtin_ia32_vpopcntw_256:
14305   case X86::BI__builtin_ia32_vpopcntb_512:
14306   case X86::BI__builtin_ia32_vpopcntd_512:
14307   case X86::BI__builtin_ia32_vpopcntq_512:
14308   case X86::BI__builtin_ia32_vpopcntw_512: {
14309     llvm::Type *ResultType = ConvertType(E->getType());
14310     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
14311     return Builder.CreateCall(F, Ops);
14312   }
14313   case X86::BI__builtin_ia32_cvtmask2b128:
14314   case X86::BI__builtin_ia32_cvtmask2b256:
14315   case X86::BI__builtin_ia32_cvtmask2b512:
14316   case X86::BI__builtin_ia32_cvtmask2w128:
14317   case X86::BI__builtin_ia32_cvtmask2w256:
14318   case X86::BI__builtin_ia32_cvtmask2w512:
14319   case X86::BI__builtin_ia32_cvtmask2d128:
14320   case X86::BI__builtin_ia32_cvtmask2d256:
14321   case X86::BI__builtin_ia32_cvtmask2d512:
14322   case X86::BI__builtin_ia32_cvtmask2q128:
14323   case X86::BI__builtin_ia32_cvtmask2q256:
14324   case X86::BI__builtin_ia32_cvtmask2q512:
14325     return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType()));
14326 
14327   case X86::BI__builtin_ia32_cvtb2mask128:
14328   case X86::BI__builtin_ia32_cvtb2mask256:
14329   case X86::BI__builtin_ia32_cvtb2mask512:
14330   case X86::BI__builtin_ia32_cvtw2mask128:
14331   case X86::BI__builtin_ia32_cvtw2mask256:
14332   case X86::BI__builtin_ia32_cvtw2mask512:
14333   case X86::BI__builtin_ia32_cvtd2mask128:
14334   case X86::BI__builtin_ia32_cvtd2mask256:
14335   case X86::BI__builtin_ia32_cvtd2mask512:
14336   case X86::BI__builtin_ia32_cvtq2mask128:
14337   case X86::BI__builtin_ia32_cvtq2mask256:
14338   case X86::BI__builtin_ia32_cvtq2mask512:
14339     return EmitX86ConvertToMask(*this, Ops[0]);
14340 
14341   case X86::BI__builtin_ia32_cvtdq2ps512_mask:
14342   case X86::BI__builtin_ia32_cvtqq2ps512_mask:
14343   case X86::BI__builtin_ia32_cvtqq2pd512_mask:
14344   case X86::BI__builtin_ia32_vcvtw2ph512_mask:
14345   case X86::BI__builtin_ia32_vcvtdq2ph512_mask:
14346   case X86::BI__builtin_ia32_vcvtqq2ph512_mask:
14347     return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ true);
14348   case X86::BI__builtin_ia32_cvtudq2ps512_mask:
14349   case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
14350   case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
14351   case X86::BI__builtin_ia32_vcvtuw2ph512_mask:
14352   case X86::BI__builtin_ia32_vcvtudq2ph512_mask:
14353   case X86::BI__builtin_ia32_vcvtuqq2ph512_mask:
14354     return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ false);
14355 
14356   case X86::BI__builtin_ia32_vfmaddss3:
14357   case X86::BI__builtin_ia32_vfmaddsd3:
14358   case X86::BI__builtin_ia32_vfmaddsh3_mask:
14359   case X86::BI__builtin_ia32_vfmaddss3_mask:
14360   case X86::BI__builtin_ia32_vfmaddsd3_mask:
14361     return EmitScalarFMAExpr(*this, E, Ops, Ops[0]);
14362   case X86::BI__builtin_ia32_vfmaddss:
14363   case X86::BI__builtin_ia32_vfmaddsd:
14364     return EmitScalarFMAExpr(*this, E, Ops,
14365                              Constant::getNullValue(Ops[0]->getType()));
14366   case X86::BI__builtin_ia32_vfmaddsh3_maskz:
14367   case X86::BI__builtin_ia32_vfmaddss3_maskz:
14368   case X86::BI__builtin_ia32_vfmaddsd3_maskz:
14369     return EmitScalarFMAExpr(*this, E, Ops, Ops[0], /*ZeroMask*/ true);
14370   case X86::BI__builtin_ia32_vfmaddsh3_mask3:
14371   case X86::BI__builtin_ia32_vfmaddss3_mask3:
14372   case X86::BI__builtin_ia32_vfmaddsd3_mask3:
14373     return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2);
14374   case X86::BI__builtin_ia32_vfmsubsh3_mask3:
14375   case X86::BI__builtin_ia32_vfmsubss3_mask3:
14376   case X86::BI__builtin_ia32_vfmsubsd3_mask3:
14377     return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2,
14378                              /*NegAcc*/ true);
14379   case X86::BI__builtin_ia32_vfmaddph:
14380   case X86::BI__builtin_ia32_vfmaddps:
14381   case X86::BI__builtin_ia32_vfmaddpd:
14382   case X86::BI__builtin_ia32_vfmaddph256:
14383   case X86::BI__builtin_ia32_vfmaddps256:
14384   case X86::BI__builtin_ia32_vfmaddpd256:
14385   case X86::BI__builtin_ia32_vfmaddph512_mask:
14386   case X86::BI__builtin_ia32_vfmaddph512_maskz:
14387   case X86::BI__builtin_ia32_vfmaddph512_mask3:
14388   case X86::BI__builtin_ia32_vfmaddps512_mask:
14389   case X86::BI__builtin_ia32_vfmaddps512_maskz:
14390   case X86::BI__builtin_ia32_vfmaddps512_mask3:
14391   case X86::BI__builtin_ia32_vfmsubps512_mask3:
14392   case X86::BI__builtin_ia32_vfmaddpd512_mask:
14393   case X86::BI__builtin_ia32_vfmaddpd512_maskz:
14394   case X86::BI__builtin_ia32_vfmaddpd512_mask3:
14395   case X86::BI__builtin_ia32_vfmsubpd512_mask3:
14396   case X86::BI__builtin_ia32_vfmsubph512_mask3:
14397     return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ false);
14398   case X86::BI__builtin_ia32_vfmaddsubph512_mask:
14399   case X86::BI__builtin_ia32_vfmaddsubph512_maskz:
14400   case X86::BI__builtin_ia32_vfmaddsubph512_mask3:
14401   case X86::BI__builtin_ia32_vfmsubaddph512_mask3:
14402   case X86::BI__builtin_ia32_vfmaddsubps512_mask:
14403   case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
14404   case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
14405   case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
14406   case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
14407   case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
14408   case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
14409   case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
14410     return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ true);
14411 
14412   case X86::BI__builtin_ia32_movdqa32store128_mask:
14413   case X86::BI__builtin_ia32_movdqa64store128_mask:
14414   case X86::BI__builtin_ia32_storeaps128_mask:
14415   case X86::BI__builtin_ia32_storeapd128_mask:
14416   case X86::BI__builtin_ia32_movdqa32store256_mask:
14417   case X86::BI__builtin_ia32_movdqa64store256_mask:
14418   case X86::BI__builtin_ia32_storeaps256_mask:
14419   case X86::BI__builtin_ia32_storeapd256_mask:
14420   case X86::BI__builtin_ia32_movdqa32store512_mask:
14421   case X86::BI__builtin_ia32_movdqa64store512_mask:
14422   case X86::BI__builtin_ia32_storeaps512_mask:
14423   case X86::BI__builtin_ia32_storeapd512_mask:
14424     return EmitX86MaskedStore(
14425         *this, Ops,
14426         getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
14427 
14428   case X86::BI__builtin_ia32_loadups128_mask:
14429   case X86::BI__builtin_ia32_loadups256_mask:
14430   case X86::BI__builtin_ia32_loadups512_mask:
14431   case X86::BI__builtin_ia32_loadupd128_mask:
14432   case X86::BI__builtin_ia32_loadupd256_mask:
14433   case X86::BI__builtin_ia32_loadupd512_mask:
14434   case X86::BI__builtin_ia32_loaddquqi128_mask:
14435   case X86::BI__builtin_ia32_loaddquqi256_mask:
14436   case X86::BI__builtin_ia32_loaddquqi512_mask:
14437   case X86::BI__builtin_ia32_loaddquhi128_mask:
14438   case X86::BI__builtin_ia32_loaddquhi256_mask:
14439   case X86::BI__builtin_ia32_loaddquhi512_mask:
14440   case X86::BI__builtin_ia32_loaddqusi128_mask:
14441   case X86::BI__builtin_ia32_loaddqusi256_mask:
14442   case X86::BI__builtin_ia32_loaddqusi512_mask:
14443   case X86::BI__builtin_ia32_loaddqudi128_mask:
14444   case X86::BI__builtin_ia32_loaddqudi256_mask:
14445   case X86::BI__builtin_ia32_loaddqudi512_mask:
14446     return EmitX86MaskedLoad(*this, Ops, Align(1));
14447 
14448   case X86::BI__builtin_ia32_loadsh128_mask:
14449   case X86::BI__builtin_ia32_loadss128_mask:
14450   case X86::BI__builtin_ia32_loadsd128_mask:
14451     return EmitX86MaskedLoad(*this, Ops, Align(1));
14452 
14453   case X86::BI__builtin_ia32_loadaps128_mask:
14454   case X86::BI__builtin_ia32_loadaps256_mask:
14455   case X86::BI__builtin_ia32_loadaps512_mask:
14456   case X86::BI__builtin_ia32_loadapd128_mask:
14457   case X86::BI__builtin_ia32_loadapd256_mask:
14458   case X86::BI__builtin_ia32_loadapd512_mask:
14459   case X86::BI__builtin_ia32_movdqa32load128_mask:
14460   case X86::BI__builtin_ia32_movdqa32load256_mask:
14461   case X86::BI__builtin_ia32_movdqa32load512_mask:
14462   case X86::BI__builtin_ia32_movdqa64load128_mask:
14463   case X86::BI__builtin_ia32_movdqa64load256_mask:
14464   case X86::BI__builtin_ia32_movdqa64load512_mask:
14465     return EmitX86MaskedLoad(
14466         *this, Ops,
14467         getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
14468 
14469   case X86::BI__builtin_ia32_expandloaddf128_mask:
14470   case X86::BI__builtin_ia32_expandloaddf256_mask:
14471   case X86::BI__builtin_ia32_expandloaddf512_mask:
14472   case X86::BI__builtin_ia32_expandloadsf128_mask:
14473   case X86::BI__builtin_ia32_expandloadsf256_mask:
14474   case X86::BI__builtin_ia32_expandloadsf512_mask:
14475   case X86::BI__builtin_ia32_expandloaddi128_mask:
14476   case X86::BI__builtin_ia32_expandloaddi256_mask:
14477   case X86::BI__builtin_ia32_expandloaddi512_mask:
14478   case X86::BI__builtin_ia32_expandloadsi128_mask:
14479   case X86::BI__builtin_ia32_expandloadsi256_mask:
14480   case X86::BI__builtin_ia32_expandloadsi512_mask:
14481   case X86::BI__builtin_ia32_expandloadhi128_mask:
14482   case X86::BI__builtin_ia32_expandloadhi256_mask:
14483   case X86::BI__builtin_ia32_expandloadhi512_mask:
14484   case X86::BI__builtin_ia32_expandloadqi128_mask:
14485   case X86::BI__builtin_ia32_expandloadqi256_mask:
14486   case X86::BI__builtin_ia32_expandloadqi512_mask:
14487     return EmitX86ExpandLoad(*this, Ops);
14488 
14489   case X86::BI__builtin_ia32_compressstoredf128_mask:
14490   case X86::BI__builtin_ia32_compressstoredf256_mask:
14491   case X86::BI__builtin_ia32_compressstoredf512_mask:
14492   case X86::BI__builtin_ia32_compressstoresf128_mask:
14493   case X86::BI__builtin_ia32_compressstoresf256_mask:
14494   case X86::BI__builtin_ia32_compressstoresf512_mask:
14495   case X86::BI__builtin_ia32_compressstoredi128_mask:
14496   case X86::BI__builtin_ia32_compressstoredi256_mask:
14497   case X86::BI__builtin_ia32_compressstoredi512_mask:
14498   case X86::BI__builtin_ia32_compressstoresi128_mask:
14499   case X86::BI__builtin_ia32_compressstoresi256_mask:
14500   case X86::BI__builtin_ia32_compressstoresi512_mask:
14501   case X86::BI__builtin_ia32_compressstorehi128_mask:
14502   case X86::BI__builtin_ia32_compressstorehi256_mask:
14503   case X86::BI__builtin_ia32_compressstorehi512_mask:
14504   case X86::BI__builtin_ia32_compressstoreqi128_mask:
14505   case X86::BI__builtin_ia32_compressstoreqi256_mask:
14506   case X86::BI__builtin_ia32_compressstoreqi512_mask:
14507     return EmitX86CompressStore(*this, Ops);
14508 
14509   case X86::BI__builtin_ia32_expanddf128_mask:
14510   case X86::BI__builtin_ia32_expanddf256_mask:
14511   case X86::BI__builtin_ia32_expanddf512_mask:
14512   case X86::BI__builtin_ia32_expandsf128_mask:
14513   case X86::BI__builtin_ia32_expandsf256_mask:
14514   case X86::BI__builtin_ia32_expandsf512_mask:
14515   case X86::BI__builtin_ia32_expanddi128_mask:
14516   case X86::BI__builtin_ia32_expanddi256_mask:
14517   case X86::BI__builtin_ia32_expanddi512_mask:
14518   case X86::BI__builtin_ia32_expandsi128_mask:
14519   case X86::BI__builtin_ia32_expandsi256_mask:
14520   case X86::BI__builtin_ia32_expandsi512_mask:
14521   case X86::BI__builtin_ia32_expandhi128_mask:
14522   case X86::BI__builtin_ia32_expandhi256_mask:
14523   case X86::BI__builtin_ia32_expandhi512_mask:
14524   case X86::BI__builtin_ia32_expandqi128_mask:
14525   case X86::BI__builtin_ia32_expandqi256_mask:
14526   case X86::BI__builtin_ia32_expandqi512_mask:
14527     return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false);
14528 
14529   case X86::BI__builtin_ia32_compressdf128_mask:
14530   case X86::BI__builtin_ia32_compressdf256_mask:
14531   case X86::BI__builtin_ia32_compressdf512_mask:
14532   case X86::BI__builtin_ia32_compresssf128_mask:
14533   case X86::BI__builtin_ia32_compresssf256_mask:
14534   case X86::BI__builtin_ia32_compresssf512_mask:
14535   case X86::BI__builtin_ia32_compressdi128_mask:
14536   case X86::BI__builtin_ia32_compressdi256_mask:
14537   case X86::BI__builtin_ia32_compressdi512_mask:
14538   case X86::BI__builtin_ia32_compresssi128_mask:
14539   case X86::BI__builtin_ia32_compresssi256_mask:
14540   case X86::BI__builtin_ia32_compresssi512_mask:
14541   case X86::BI__builtin_ia32_compresshi128_mask:
14542   case X86::BI__builtin_ia32_compresshi256_mask:
14543   case X86::BI__builtin_ia32_compresshi512_mask:
14544   case X86::BI__builtin_ia32_compressqi128_mask:
14545   case X86::BI__builtin_ia32_compressqi256_mask:
14546   case X86::BI__builtin_ia32_compressqi512_mask:
14547     return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true);
14548 
14549   case X86::BI__builtin_ia32_gather3div2df:
14550   case X86::BI__builtin_ia32_gather3div2di:
14551   case X86::BI__builtin_ia32_gather3div4df:
14552   case X86::BI__builtin_ia32_gather3div4di:
14553   case X86::BI__builtin_ia32_gather3div4sf:
14554   case X86::BI__builtin_ia32_gather3div4si:
14555   case X86::BI__builtin_ia32_gather3div8sf:
14556   case X86::BI__builtin_ia32_gather3div8si:
14557   case X86::BI__builtin_ia32_gather3siv2df:
14558   case X86::BI__builtin_ia32_gather3siv2di:
14559   case X86::BI__builtin_ia32_gather3siv4df:
14560   case X86::BI__builtin_ia32_gather3siv4di:
14561   case X86::BI__builtin_ia32_gather3siv4sf:
14562   case X86::BI__builtin_ia32_gather3siv4si:
14563   case X86::BI__builtin_ia32_gather3siv8sf:
14564   case X86::BI__builtin_ia32_gather3siv8si:
14565   case X86::BI__builtin_ia32_gathersiv8df:
14566   case X86::BI__builtin_ia32_gathersiv16sf:
14567   case X86::BI__builtin_ia32_gatherdiv8df:
14568   case X86::BI__builtin_ia32_gatherdiv16sf:
14569   case X86::BI__builtin_ia32_gathersiv8di:
14570   case X86::BI__builtin_ia32_gathersiv16si:
14571   case X86::BI__builtin_ia32_gatherdiv8di:
14572   case X86::BI__builtin_ia32_gatherdiv16si: {
14573     Intrinsic::ID IID;
14574     switch (BuiltinID) {
14575     default: llvm_unreachable("Unexpected builtin");
14576     case X86::BI__builtin_ia32_gather3div2df:
14577       IID = Intrinsic::x86_avx512_mask_gather3div2_df;
14578       break;
14579     case X86::BI__builtin_ia32_gather3div2di:
14580       IID = Intrinsic::x86_avx512_mask_gather3div2_di;
14581       break;
14582     case X86::BI__builtin_ia32_gather3div4df:
14583       IID = Intrinsic::x86_avx512_mask_gather3div4_df;
14584       break;
14585     case X86::BI__builtin_ia32_gather3div4di:
14586       IID = Intrinsic::x86_avx512_mask_gather3div4_di;
14587       break;
14588     case X86::BI__builtin_ia32_gather3div4sf:
14589       IID = Intrinsic::x86_avx512_mask_gather3div4_sf;
14590       break;
14591     case X86::BI__builtin_ia32_gather3div4si:
14592       IID = Intrinsic::x86_avx512_mask_gather3div4_si;
14593       break;
14594     case X86::BI__builtin_ia32_gather3div8sf:
14595       IID = Intrinsic::x86_avx512_mask_gather3div8_sf;
14596       break;
14597     case X86::BI__builtin_ia32_gather3div8si:
14598       IID = Intrinsic::x86_avx512_mask_gather3div8_si;
14599       break;
14600     case X86::BI__builtin_ia32_gather3siv2df:
14601       IID = Intrinsic::x86_avx512_mask_gather3siv2_df;
14602       break;
14603     case X86::BI__builtin_ia32_gather3siv2di:
14604       IID = Intrinsic::x86_avx512_mask_gather3siv2_di;
14605       break;
14606     case X86::BI__builtin_ia32_gather3siv4df:
14607       IID = Intrinsic::x86_avx512_mask_gather3siv4_df;
14608       break;
14609     case X86::BI__builtin_ia32_gather3siv4di:
14610       IID = Intrinsic::x86_avx512_mask_gather3siv4_di;
14611       break;
14612     case X86::BI__builtin_ia32_gather3siv4sf:
14613       IID = Intrinsic::x86_avx512_mask_gather3siv4_sf;
14614       break;
14615     case X86::BI__builtin_ia32_gather3siv4si:
14616       IID = Intrinsic::x86_avx512_mask_gather3siv4_si;
14617       break;
14618     case X86::BI__builtin_ia32_gather3siv8sf:
14619       IID = Intrinsic::x86_avx512_mask_gather3siv8_sf;
14620       break;
14621     case X86::BI__builtin_ia32_gather3siv8si:
14622       IID = Intrinsic::x86_avx512_mask_gather3siv8_si;
14623       break;
14624     case X86::BI__builtin_ia32_gathersiv8df:
14625       IID = Intrinsic::x86_avx512_mask_gather_dpd_512;
14626       break;
14627     case X86::BI__builtin_ia32_gathersiv16sf:
14628       IID = Intrinsic::x86_avx512_mask_gather_dps_512;
14629       break;
14630     case X86::BI__builtin_ia32_gatherdiv8df:
14631       IID = Intrinsic::x86_avx512_mask_gather_qpd_512;
14632       break;
14633     case X86::BI__builtin_ia32_gatherdiv16sf:
14634       IID = Intrinsic::x86_avx512_mask_gather_qps_512;
14635       break;
14636     case X86::BI__builtin_ia32_gathersiv8di:
14637       IID = Intrinsic::x86_avx512_mask_gather_dpq_512;
14638       break;
14639     case X86::BI__builtin_ia32_gathersiv16si:
14640       IID = Intrinsic::x86_avx512_mask_gather_dpi_512;
14641       break;
14642     case X86::BI__builtin_ia32_gatherdiv8di:
14643       IID = Intrinsic::x86_avx512_mask_gather_qpq_512;
14644       break;
14645     case X86::BI__builtin_ia32_gatherdiv16si:
14646       IID = Intrinsic::x86_avx512_mask_gather_qpi_512;
14647       break;
14648     }
14649 
14650     unsigned MinElts = std::min(
14651         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(),
14652         cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements());
14653     Ops[3] = getMaskVecValue(*this, Ops[3], MinElts);
14654     Function *Intr = CGM.getIntrinsic(IID);
14655     return Builder.CreateCall(Intr, Ops);
14656   }
14657 
14658   case X86::BI__builtin_ia32_scattersiv8df:
14659   case X86::BI__builtin_ia32_scattersiv16sf:
14660   case X86::BI__builtin_ia32_scatterdiv8df:
14661   case X86::BI__builtin_ia32_scatterdiv16sf:
14662   case X86::BI__builtin_ia32_scattersiv8di:
14663   case X86::BI__builtin_ia32_scattersiv16si:
14664   case X86::BI__builtin_ia32_scatterdiv8di:
14665   case X86::BI__builtin_ia32_scatterdiv16si:
14666   case X86::BI__builtin_ia32_scatterdiv2df:
14667   case X86::BI__builtin_ia32_scatterdiv2di:
14668   case X86::BI__builtin_ia32_scatterdiv4df:
14669   case X86::BI__builtin_ia32_scatterdiv4di:
14670   case X86::BI__builtin_ia32_scatterdiv4sf:
14671   case X86::BI__builtin_ia32_scatterdiv4si:
14672   case X86::BI__builtin_ia32_scatterdiv8sf:
14673   case X86::BI__builtin_ia32_scatterdiv8si:
14674   case X86::BI__builtin_ia32_scattersiv2df:
14675   case X86::BI__builtin_ia32_scattersiv2di:
14676   case X86::BI__builtin_ia32_scattersiv4df:
14677   case X86::BI__builtin_ia32_scattersiv4di:
14678   case X86::BI__builtin_ia32_scattersiv4sf:
14679   case X86::BI__builtin_ia32_scattersiv4si:
14680   case X86::BI__builtin_ia32_scattersiv8sf:
14681   case X86::BI__builtin_ia32_scattersiv8si: {
14682     Intrinsic::ID IID;
14683     switch (BuiltinID) {
14684     default: llvm_unreachable("Unexpected builtin");
14685     case X86::BI__builtin_ia32_scattersiv8df:
14686       IID = Intrinsic::x86_avx512_mask_scatter_dpd_512;
14687       break;
14688     case X86::BI__builtin_ia32_scattersiv16sf:
14689       IID = Intrinsic::x86_avx512_mask_scatter_dps_512;
14690       break;
14691     case X86::BI__builtin_ia32_scatterdiv8df:
14692       IID = Intrinsic::x86_avx512_mask_scatter_qpd_512;
14693       break;
14694     case X86::BI__builtin_ia32_scatterdiv16sf:
14695       IID = Intrinsic::x86_avx512_mask_scatter_qps_512;
14696       break;
14697     case X86::BI__builtin_ia32_scattersiv8di:
14698       IID = Intrinsic::x86_avx512_mask_scatter_dpq_512;
14699       break;
14700     case X86::BI__builtin_ia32_scattersiv16si:
14701       IID = Intrinsic::x86_avx512_mask_scatter_dpi_512;
14702       break;
14703     case X86::BI__builtin_ia32_scatterdiv8di:
14704       IID = Intrinsic::x86_avx512_mask_scatter_qpq_512;
14705       break;
14706     case X86::BI__builtin_ia32_scatterdiv16si:
14707       IID = Intrinsic::x86_avx512_mask_scatter_qpi_512;
14708       break;
14709     case X86::BI__builtin_ia32_scatterdiv2df:
14710       IID = Intrinsic::x86_avx512_mask_scatterdiv2_df;
14711       break;
14712     case X86::BI__builtin_ia32_scatterdiv2di:
14713       IID = Intrinsic::x86_avx512_mask_scatterdiv2_di;
14714       break;
14715     case X86::BI__builtin_ia32_scatterdiv4df:
14716       IID = Intrinsic::x86_avx512_mask_scatterdiv4_df;
14717       break;
14718     case X86::BI__builtin_ia32_scatterdiv4di:
14719       IID = Intrinsic::x86_avx512_mask_scatterdiv4_di;
14720       break;
14721     case X86::BI__builtin_ia32_scatterdiv4sf:
14722       IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf;
14723       break;
14724     case X86::BI__builtin_ia32_scatterdiv4si:
14725       IID = Intrinsic::x86_avx512_mask_scatterdiv4_si;
14726       break;
14727     case X86::BI__builtin_ia32_scatterdiv8sf:
14728       IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf;
14729       break;
14730     case X86::BI__builtin_ia32_scatterdiv8si:
14731       IID = Intrinsic::x86_avx512_mask_scatterdiv8_si;
14732       break;
14733     case X86::BI__builtin_ia32_scattersiv2df:
14734       IID = Intrinsic::x86_avx512_mask_scattersiv2_df;
14735       break;
14736     case X86::BI__builtin_ia32_scattersiv2di:
14737       IID = Intrinsic::x86_avx512_mask_scattersiv2_di;
14738       break;
14739     case X86::BI__builtin_ia32_scattersiv4df:
14740       IID = Intrinsic::x86_avx512_mask_scattersiv4_df;
14741       break;
14742     case X86::BI__builtin_ia32_scattersiv4di:
14743       IID = Intrinsic::x86_avx512_mask_scattersiv4_di;
14744       break;
14745     case X86::BI__builtin_ia32_scattersiv4sf:
14746       IID = Intrinsic::x86_avx512_mask_scattersiv4_sf;
14747       break;
14748     case X86::BI__builtin_ia32_scattersiv4si:
14749       IID = Intrinsic::x86_avx512_mask_scattersiv4_si;
14750       break;
14751     case X86::BI__builtin_ia32_scattersiv8sf:
14752       IID = Intrinsic::x86_avx512_mask_scattersiv8_sf;
14753       break;
14754     case X86::BI__builtin_ia32_scattersiv8si:
14755       IID = Intrinsic::x86_avx512_mask_scattersiv8_si;
14756       break;
14757     }
14758 
14759     unsigned MinElts = std::min(
14760         cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements(),
14761         cast<llvm::FixedVectorType>(Ops[3]->getType())->getNumElements());
14762     Ops[1] = getMaskVecValue(*this, Ops[1], MinElts);
14763     Function *Intr = CGM.getIntrinsic(IID);
14764     return Builder.CreateCall(Intr, Ops);
14765   }
14766 
14767   case X86::BI__builtin_ia32_vextractf128_pd256:
14768   case X86::BI__builtin_ia32_vextractf128_ps256:
14769   case X86::BI__builtin_ia32_vextractf128_si256:
14770   case X86::BI__builtin_ia32_extract128i256:
14771   case X86::BI__builtin_ia32_extractf64x4_mask:
14772   case X86::BI__builtin_ia32_extractf32x4_mask:
14773   case X86::BI__builtin_ia32_extracti64x4_mask:
14774   case X86::BI__builtin_ia32_extracti32x4_mask:
14775   case X86::BI__builtin_ia32_extractf32x8_mask:
14776   case X86::BI__builtin_ia32_extracti32x8_mask:
14777   case X86::BI__builtin_ia32_extractf32x4_256_mask:
14778   case X86::BI__builtin_ia32_extracti32x4_256_mask:
14779   case X86::BI__builtin_ia32_extractf64x2_256_mask:
14780   case X86::BI__builtin_ia32_extracti64x2_256_mask:
14781   case X86::BI__builtin_ia32_extractf64x2_512_mask:
14782   case X86::BI__builtin_ia32_extracti64x2_512_mask: {
14783     auto *DstTy = cast<llvm::FixedVectorType>(ConvertType(E->getType()));
14784     unsigned NumElts = DstTy->getNumElements();
14785     unsigned SrcNumElts =
14786         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14787     unsigned SubVectors = SrcNumElts / NumElts;
14788     unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue();
14789     assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
14790     Index &= SubVectors - 1; // Remove any extra bits.
14791     Index *= NumElts;
14792 
14793     int Indices[16];
14794     for (unsigned i = 0; i != NumElts; ++i)
14795       Indices[i] = i + Index;
14796 
14797     Value *Res = Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts),
14798                                              "extract");
14799 
14800     if (Ops.size() == 4)
14801       Res = EmitX86Select(*this, Ops[3], Res, Ops[2]);
14802 
14803     return Res;
14804   }
14805   case X86::BI__builtin_ia32_vinsertf128_pd256:
14806   case X86::BI__builtin_ia32_vinsertf128_ps256:
14807   case X86::BI__builtin_ia32_vinsertf128_si256:
14808   case X86::BI__builtin_ia32_insert128i256:
14809   case X86::BI__builtin_ia32_insertf64x4:
14810   case X86::BI__builtin_ia32_insertf32x4:
14811   case X86::BI__builtin_ia32_inserti64x4:
14812   case X86::BI__builtin_ia32_inserti32x4:
14813   case X86::BI__builtin_ia32_insertf32x8:
14814   case X86::BI__builtin_ia32_inserti32x8:
14815   case X86::BI__builtin_ia32_insertf32x4_256:
14816   case X86::BI__builtin_ia32_inserti32x4_256:
14817   case X86::BI__builtin_ia32_insertf64x2_256:
14818   case X86::BI__builtin_ia32_inserti64x2_256:
14819   case X86::BI__builtin_ia32_insertf64x2_512:
14820   case X86::BI__builtin_ia32_inserti64x2_512: {
14821     unsigned DstNumElts =
14822         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14823     unsigned SrcNumElts =
14824         cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements();
14825     unsigned SubVectors = DstNumElts / SrcNumElts;
14826     unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
14827     assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
14828     Index &= SubVectors - 1; // Remove any extra bits.
14829     Index *= SrcNumElts;
14830 
14831     int Indices[16];
14832     for (unsigned i = 0; i != DstNumElts; ++i)
14833       Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i;
14834 
14835     Value *Op1 = Builder.CreateShuffleVector(
14836         Ops[1], ArrayRef(Indices, DstNumElts), "widen");
14837 
14838     for (unsigned i = 0; i != DstNumElts; ++i) {
14839       if (i >= Index && i < (Index + SrcNumElts))
14840         Indices[i] = (i - Index) + DstNumElts;
14841       else
14842         Indices[i] = i;
14843     }
14844 
14845     return Builder.CreateShuffleVector(Ops[0], Op1,
14846                                        ArrayRef(Indices, DstNumElts), "insert");
14847   }
14848   case X86::BI__builtin_ia32_pmovqd512_mask:
14849   case X86::BI__builtin_ia32_pmovwb512_mask: {
14850     Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType());
14851     return EmitX86Select(*this, Ops[2], Res, Ops[1]);
14852   }
14853   case X86::BI__builtin_ia32_pmovdb512_mask:
14854   case X86::BI__builtin_ia32_pmovdw512_mask:
14855   case X86::BI__builtin_ia32_pmovqw512_mask: {
14856     if (const auto *C = dyn_cast<Constant>(Ops[2]))
14857       if (C->isAllOnesValue())
14858         return Builder.CreateTrunc(Ops[0], Ops[1]->getType());
14859 
14860     Intrinsic::ID IID;
14861     switch (BuiltinID) {
14862     default: llvm_unreachable("Unsupported intrinsic!");
14863     case X86::BI__builtin_ia32_pmovdb512_mask:
14864       IID = Intrinsic::x86_avx512_mask_pmov_db_512;
14865       break;
14866     case X86::BI__builtin_ia32_pmovdw512_mask:
14867       IID = Intrinsic::x86_avx512_mask_pmov_dw_512;
14868       break;
14869     case X86::BI__builtin_ia32_pmovqw512_mask:
14870       IID = Intrinsic::x86_avx512_mask_pmov_qw_512;
14871       break;
14872     }
14873 
14874     Function *Intr = CGM.getIntrinsic(IID);
14875     return Builder.CreateCall(Intr, Ops);
14876   }
14877   case X86::BI__builtin_ia32_pblendw128:
14878   case X86::BI__builtin_ia32_blendpd:
14879   case X86::BI__builtin_ia32_blendps:
14880   case X86::BI__builtin_ia32_blendpd256:
14881   case X86::BI__builtin_ia32_blendps256:
14882   case X86::BI__builtin_ia32_pblendw256:
14883   case X86::BI__builtin_ia32_pblendd128:
14884   case X86::BI__builtin_ia32_pblendd256: {
14885     unsigned NumElts =
14886         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14887     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
14888 
14889     int Indices[16];
14890     // If there are more than 8 elements, the immediate is used twice so make
14891     // sure we handle that.
14892     for (unsigned i = 0; i != NumElts; ++i)
14893       Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i;
14894 
14895     return Builder.CreateShuffleVector(Ops[0], Ops[1],
14896                                        ArrayRef(Indices, NumElts), "blend");
14897   }
14898   case X86::BI__builtin_ia32_pshuflw:
14899   case X86::BI__builtin_ia32_pshuflw256:
14900   case X86::BI__builtin_ia32_pshuflw512: {
14901     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
14902     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
14903     unsigned NumElts = Ty->getNumElements();
14904 
14905     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
14906     Imm = (Imm & 0xff) * 0x01010101;
14907 
14908     int Indices[32];
14909     for (unsigned l = 0; l != NumElts; l += 8) {
14910       for (unsigned i = 0; i != 4; ++i) {
14911         Indices[l + i] = l + (Imm & 3);
14912         Imm >>= 2;
14913       }
14914       for (unsigned i = 4; i != 8; ++i)
14915         Indices[l + i] = l + i;
14916     }
14917 
14918     return Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts),
14919                                        "pshuflw");
14920   }
14921   case X86::BI__builtin_ia32_pshufhw:
14922   case X86::BI__builtin_ia32_pshufhw256:
14923   case X86::BI__builtin_ia32_pshufhw512: {
14924     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
14925     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
14926     unsigned NumElts = Ty->getNumElements();
14927 
14928     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
14929     Imm = (Imm & 0xff) * 0x01010101;
14930 
14931     int Indices[32];
14932     for (unsigned l = 0; l != NumElts; l += 8) {
14933       for (unsigned i = 0; i != 4; ++i)
14934         Indices[l + i] = l + i;
14935       for (unsigned i = 4; i != 8; ++i) {
14936         Indices[l + i] = l + 4 + (Imm & 3);
14937         Imm >>= 2;
14938       }
14939     }
14940 
14941     return Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts),
14942                                        "pshufhw");
14943   }
14944   case X86::BI__builtin_ia32_pshufd:
14945   case X86::BI__builtin_ia32_pshufd256:
14946   case X86::BI__builtin_ia32_pshufd512:
14947   case X86::BI__builtin_ia32_vpermilpd:
14948   case X86::BI__builtin_ia32_vpermilps:
14949   case X86::BI__builtin_ia32_vpermilpd256:
14950   case X86::BI__builtin_ia32_vpermilps256:
14951   case X86::BI__builtin_ia32_vpermilpd512:
14952   case X86::BI__builtin_ia32_vpermilps512: {
14953     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
14954     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
14955     unsigned NumElts = Ty->getNumElements();
14956     unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
14957     unsigned NumLaneElts = NumElts / NumLanes;
14958 
14959     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
14960     Imm = (Imm & 0xff) * 0x01010101;
14961 
14962     int Indices[16];
14963     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
14964       for (unsigned i = 0; i != NumLaneElts; ++i) {
14965         Indices[i + l] = (Imm % NumLaneElts) + l;
14966         Imm /= NumLaneElts;
14967       }
14968     }
14969 
14970     return Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts),
14971                                        "permil");
14972   }
14973   case X86::BI__builtin_ia32_shufpd:
14974   case X86::BI__builtin_ia32_shufpd256:
14975   case X86::BI__builtin_ia32_shufpd512:
14976   case X86::BI__builtin_ia32_shufps:
14977   case X86::BI__builtin_ia32_shufps256:
14978   case X86::BI__builtin_ia32_shufps512: {
14979     uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
14980     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
14981     unsigned NumElts = Ty->getNumElements();
14982     unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
14983     unsigned NumLaneElts = NumElts / NumLanes;
14984 
14985     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
14986     Imm = (Imm & 0xff) * 0x01010101;
14987 
14988     int Indices[16];
14989     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
14990       for (unsigned i = 0; i != NumLaneElts; ++i) {
14991         unsigned Index = Imm % NumLaneElts;
14992         Imm /= NumLaneElts;
14993         if (i >= (NumLaneElts / 2))
14994           Index += NumElts;
14995         Indices[l + i] = l + Index;
14996       }
14997     }
14998 
14999     return Builder.CreateShuffleVector(Ops[0], Ops[1],
15000                                        ArrayRef(Indices, NumElts), "shufp");
15001   }
15002   case X86::BI__builtin_ia32_permdi256:
15003   case X86::BI__builtin_ia32_permdf256:
15004   case X86::BI__builtin_ia32_permdi512:
15005   case X86::BI__builtin_ia32_permdf512: {
15006     unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
15007     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
15008     unsigned NumElts = Ty->getNumElements();
15009 
15010     // These intrinsics operate on 256-bit lanes of four 64-bit elements.
15011     int Indices[8];
15012     for (unsigned l = 0; l != NumElts; l += 4)
15013       for (unsigned i = 0; i != 4; ++i)
15014         Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3);
15015 
15016     return Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts),
15017                                        "perm");
15018   }
15019   case X86::BI__builtin_ia32_palignr128:
15020   case X86::BI__builtin_ia32_palignr256:
15021   case X86::BI__builtin_ia32_palignr512: {
15022     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
15023 
15024     unsigned NumElts =
15025         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
15026     assert(NumElts % 16 == 0);
15027 
15028     // If palignr is shifting the pair of vectors more than the size of two
15029     // lanes, emit zero.
15030     if (ShiftVal >= 32)
15031       return llvm::Constant::getNullValue(ConvertType(E->getType()));
15032 
15033     // If palignr is shifting the pair of input vectors more than one lane,
15034     // but less than two lanes, convert to shifting in zeroes.
15035     if (ShiftVal > 16) {
15036       ShiftVal -= 16;
15037       Ops[1] = Ops[0];
15038       Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
15039     }
15040 
15041     int Indices[64];
15042     // 256-bit palignr operates on 128-bit lanes so we need to handle that
15043     for (unsigned l = 0; l != NumElts; l += 16) {
15044       for (unsigned i = 0; i != 16; ++i) {
15045         unsigned Idx = ShiftVal + i;
15046         if (Idx >= 16)
15047           Idx += NumElts - 16; // End of lane, switch operand.
15048         Indices[l + i] = Idx + l;
15049       }
15050     }
15051 
15052     return Builder.CreateShuffleVector(Ops[1], Ops[0],
15053                                        ArrayRef(Indices, NumElts), "palignr");
15054   }
15055   case X86::BI__builtin_ia32_alignd128:
15056   case X86::BI__builtin_ia32_alignd256:
15057   case X86::BI__builtin_ia32_alignd512:
15058   case X86::BI__builtin_ia32_alignq128:
15059   case X86::BI__builtin_ia32_alignq256:
15060   case X86::BI__builtin_ia32_alignq512: {
15061     unsigned NumElts =
15062         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
15063     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
15064 
15065     // Mask the shift amount to width of a vector.
15066     ShiftVal &= NumElts - 1;
15067 
15068     int Indices[16];
15069     for (unsigned i = 0; i != NumElts; ++i)
15070       Indices[i] = i + ShiftVal;
15071 
15072     return Builder.CreateShuffleVector(Ops[1], Ops[0],
15073                                        ArrayRef(Indices, NumElts), "valign");
15074   }
15075   case X86::BI__builtin_ia32_shuf_f32x4_256:
15076   case X86::BI__builtin_ia32_shuf_f64x2_256:
15077   case X86::BI__builtin_ia32_shuf_i32x4_256:
15078   case X86::BI__builtin_ia32_shuf_i64x2_256:
15079   case X86::BI__builtin_ia32_shuf_f32x4:
15080   case X86::BI__builtin_ia32_shuf_f64x2:
15081   case X86::BI__builtin_ia32_shuf_i32x4:
15082   case X86::BI__builtin_ia32_shuf_i64x2: {
15083     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
15084     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
15085     unsigned NumElts = Ty->getNumElements();
15086     unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2;
15087     unsigned NumLaneElts = NumElts / NumLanes;
15088 
15089     int Indices[16];
15090     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
15091       unsigned Index = (Imm % NumLanes) * NumLaneElts;
15092       Imm /= NumLanes; // Discard the bits we just used.
15093       if (l >= (NumElts / 2))
15094         Index += NumElts; // Switch to other source.
15095       for (unsigned i = 0; i != NumLaneElts; ++i) {
15096         Indices[l + i] = Index + i;
15097       }
15098     }
15099 
15100     return Builder.CreateShuffleVector(Ops[0], Ops[1],
15101                                        ArrayRef(Indices, NumElts), "shuf");
15102   }
15103 
15104   case X86::BI__builtin_ia32_vperm2f128_pd256:
15105   case X86::BI__builtin_ia32_vperm2f128_ps256:
15106   case X86::BI__builtin_ia32_vperm2f128_si256:
15107   case X86::BI__builtin_ia32_permti256: {
15108     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
15109     unsigned NumElts =
15110         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
15111 
15112     // This takes a very simple approach since there are two lanes and a
15113     // shuffle can have 2 inputs. So we reserve the first input for the first
15114     // lane and the second input for the second lane. This may result in
15115     // duplicate sources, but this can be dealt with in the backend.
15116 
15117     Value *OutOps[2];
15118     int Indices[8];
15119     for (unsigned l = 0; l != 2; ++l) {
15120       // Determine the source for this lane.
15121       if (Imm & (1 << ((l * 4) + 3)))
15122         OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType());
15123       else if (Imm & (1 << ((l * 4) + 1)))
15124         OutOps[l] = Ops[1];
15125       else
15126         OutOps[l] = Ops[0];
15127 
15128       for (unsigned i = 0; i != NumElts/2; ++i) {
15129         // Start with ith element of the source for this lane.
15130         unsigned Idx = (l * NumElts) + i;
15131         // If bit 0 of the immediate half is set, switch to the high half of
15132         // the source.
15133         if (Imm & (1 << (l * 4)))
15134           Idx += NumElts/2;
15135         Indices[(l * (NumElts/2)) + i] = Idx;
15136       }
15137     }
15138 
15139     return Builder.CreateShuffleVector(OutOps[0], OutOps[1],
15140                                        ArrayRef(Indices, NumElts), "vperm");
15141   }
15142 
15143   case X86::BI__builtin_ia32_pslldqi128_byteshift:
15144   case X86::BI__builtin_ia32_pslldqi256_byteshift:
15145   case X86::BI__builtin_ia32_pslldqi512_byteshift: {
15146     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
15147     auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
15148     // Builtin type is vXi64 so multiply by 8 to get bytes.
15149     unsigned NumElts = ResultType->getNumElements() * 8;
15150 
15151     // If pslldq is shifting the vector more than 15 bytes, emit zero.
15152     if (ShiftVal >= 16)
15153       return llvm::Constant::getNullValue(ResultType);
15154 
15155     int Indices[64];
15156     // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that
15157     for (unsigned l = 0; l != NumElts; l += 16) {
15158       for (unsigned i = 0; i != 16; ++i) {
15159         unsigned Idx = NumElts + i - ShiftVal;
15160         if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand.
15161         Indices[l + i] = Idx + l;
15162       }
15163     }
15164 
15165     auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
15166     Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
15167     Value *Zero = llvm::Constant::getNullValue(VecTy);
15168     Value *SV = Builder.CreateShuffleVector(
15169         Zero, Cast, ArrayRef(Indices, NumElts), "pslldq");
15170     return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast");
15171   }
15172   case X86::BI__builtin_ia32_psrldqi128_byteshift:
15173   case X86::BI__builtin_ia32_psrldqi256_byteshift:
15174   case X86::BI__builtin_ia32_psrldqi512_byteshift: {
15175     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
15176     auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
15177     // Builtin type is vXi64 so multiply by 8 to get bytes.
15178     unsigned NumElts = ResultType->getNumElements() * 8;
15179 
15180     // If psrldq is shifting the vector more than 15 bytes, emit zero.
15181     if (ShiftVal >= 16)
15182       return llvm::Constant::getNullValue(ResultType);
15183 
15184     int Indices[64];
15185     // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that
15186     for (unsigned l = 0; l != NumElts; l += 16) {
15187       for (unsigned i = 0; i != 16; ++i) {
15188         unsigned Idx = i + ShiftVal;
15189         if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand.
15190         Indices[l + i] = Idx + l;
15191       }
15192     }
15193 
15194     auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
15195     Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
15196     Value *Zero = llvm::Constant::getNullValue(VecTy);
15197     Value *SV = Builder.CreateShuffleVector(
15198         Cast, Zero, ArrayRef(Indices, NumElts), "psrldq");
15199     return Builder.CreateBitCast(SV, ResultType, "cast");
15200   }
15201   case X86::BI__builtin_ia32_kshiftliqi:
15202   case X86::BI__builtin_ia32_kshiftlihi:
15203   case X86::BI__builtin_ia32_kshiftlisi:
15204   case X86::BI__builtin_ia32_kshiftlidi: {
15205     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
15206     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
15207 
15208     if (ShiftVal >= NumElts)
15209       return llvm::Constant::getNullValue(Ops[0]->getType());
15210 
15211     Value *In = getMaskVecValue(*this, Ops[0], NumElts);
15212 
15213     int Indices[64];
15214     for (unsigned i = 0; i != NumElts; ++i)
15215       Indices[i] = NumElts + i - ShiftVal;
15216 
15217     Value *Zero = llvm::Constant::getNullValue(In->getType());
15218     Value *SV = Builder.CreateShuffleVector(
15219         Zero, In, ArrayRef(Indices, NumElts), "kshiftl");
15220     return Builder.CreateBitCast(SV, Ops[0]->getType());
15221   }
15222   case X86::BI__builtin_ia32_kshiftriqi:
15223   case X86::BI__builtin_ia32_kshiftrihi:
15224   case X86::BI__builtin_ia32_kshiftrisi:
15225   case X86::BI__builtin_ia32_kshiftridi: {
15226     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
15227     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
15228 
15229     if (ShiftVal >= NumElts)
15230       return llvm::Constant::getNullValue(Ops[0]->getType());
15231 
15232     Value *In = getMaskVecValue(*this, Ops[0], NumElts);
15233 
15234     int Indices[64];
15235     for (unsigned i = 0; i != NumElts; ++i)
15236       Indices[i] = i + ShiftVal;
15237 
15238     Value *Zero = llvm::Constant::getNullValue(In->getType());
15239     Value *SV = Builder.CreateShuffleVector(
15240         In, Zero, ArrayRef(Indices, NumElts), "kshiftr");
15241     return Builder.CreateBitCast(SV, Ops[0]->getType());
15242   }
15243   case X86::BI__builtin_ia32_movnti:
15244   case X86::BI__builtin_ia32_movnti64:
15245   case X86::BI__builtin_ia32_movntsd:
15246   case X86::BI__builtin_ia32_movntss: {
15247     llvm::MDNode *Node = llvm::MDNode::get(
15248         getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
15249 
15250     Value *Ptr = Ops[0];
15251     Value *Src = Ops[1];
15252 
15253     // Extract the 0'th element of the source vector.
15254     if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
15255         BuiltinID == X86::BI__builtin_ia32_movntss)
15256       Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
15257 
15258     // Unaligned nontemporal store of the scalar value.
15259     StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, Ptr);
15260     SI->setMetadata(llvm::LLVMContext::MD_nontemporal, Node);
15261     SI->setAlignment(llvm::Align(1));
15262     return SI;
15263   }
15264   // Rotate is a special case of funnel shift - 1st 2 args are the same.
15265   case X86::BI__builtin_ia32_vprotb:
15266   case X86::BI__builtin_ia32_vprotw:
15267   case X86::BI__builtin_ia32_vprotd:
15268   case X86::BI__builtin_ia32_vprotq:
15269   case X86::BI__builtin_ia32_vprotbi:
15270   case X86::BI__builtin_ia32_vprotwi:
15271   case X86::BI__builtin_ia32_vprotdi:
15272   case X86::BI__builtin_ia32_vprotqi:
15273   case X86::BI__builtin_ia32_prold128:
15274   case X86::BI__builtin_ia32_prold256:
15275   case X86::BI__builtin_ia32_prold512:
15276   case X86::BI__builtin_ia32_prolq128:
15277   case X86::BI__builtin_ia32_prolq256:
15278   case X86::BI__builtin_ia32_prolq512:
15279   case X86::BI__builtin_ia32_prolvd128:
15280   case X86::BI__builtin_ia32_prolvd256:
15281   case X86::BI__builtin_ia32_prolvd512:
15282   case X86::BI__builtin_ia32_prolvq128:
15283   case X86::BI__builtin_ia32_prolvq256:
15284   case X86::BI__builtin_ia32_prolvq512:
15285     return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false);
15286   case X86::BI__builtin_ia32_prord128:
15287   case X86::BI__builtin_ia32_prord256:
15288   case X86::BI__builtin_ia32_prord512:
15289   case X86::BI__builtin_ia32_prorq128:
15290   case X86::BI__builtin_ia32_prorq256:
15291   case X86::BI__builtin_ia32_prorq512:
15292   case X86::BI__builtin_ia32_prorvd128:
15293   case X86::BI__builtin_ia32_prorvd256:
15294   case X86::BI__builtin_ia32_prorvd512:
15295   case X86::BI__builtin_ia32_prorvq128:
15296   case X86::BI__builtin_ia32_prorvq256:
15297   case X86::BI__builtin_ia32_prorvq512:
15298     return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true);
15299   case X86::BI__builtin_ia32_selectb_128:
15300   case X86::BI__builtin_ia32_selectb_256:
15301   case X86::BI__builtin_ia32_selectb_512:
15302   case X86::BI__builtin_ia32_selectw_128:
15303   case X86::BI__builtin_ia32_selectw_256:
15304   case X86::BI__builtin_ia32_selectw_512:
15305   case X86::BI__builtin_ia32_selectd_128:
15306   case X86::BI__builtin_ia32_selectd_256:
15307   case X86::BI__builtin_ia32_selectd_512:
15308   case X86::BI__builtin_ia32_selectq_128:
15309   case X86::BI__builtin_ia32_selectq_256:
15310   case X86::BI__builtin_ia32_selectq_512:
15311   case X86::BI__builtin_ia32_selectph_128:
15312   case X86::BI__builtin_ia32_selectph_256:
15313   case X86::BI__builtin_ia32_selectph_512:
15314   case X86::BI__builtin_ia32_selectpbf_128:
15315   case X86::BI__builtin_ia32_selectpbf_256:
15316   case X86::BI__builtin_ia32_selectpbf_512:
15317   case X86::BI__builtin_ia32_selectps_128:
15318   case X86::BI__builtin_ia32_selectps_256:
15319   case X86::BI__builtin_ia32_selectps_512:
15320   case X86::BI__builtin_ia32_selectpd_128:
15321   case X86::BI__builtin_ia32_selectpd_256:
15322   case X86::BI__builtin_ia32_selectpd_512:
15323     return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
15324   case X86::BI__builtin_ia32_selectsh_128:
15325   case X86::BI__builtin_ia32_selectsbf_128:
15326   case X86::BI__builtin_ia32_selectss_128:
15327   case X86::BI__builtin_ia32_selectsd_128: {
15328     Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
15329     Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
15330     A = EmitX86ScalarSelect(*this, Ops[0], A, B);
15331     return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0);
15332   }
15333   case X86::BI__builtin_ia32_cmpb128_mask:
15334   case X86::BI__builtin_ia32_cmpb256_mask:
15335   case X86::BI__builtin_ia32_cmpb512_mask:
15336   case X86::BI__builtin_ia32_cmpw128_mask:
15337   case X86::BI__builtin_ia32_cmpw256_mask:
15338   case X86::BI__builtin_ia32_cmpw512_mask:
15339   case X86::BI__builtin_ia32_cmpd128_mask:
15340   case X86::BI__builtin_ia32_cmpd256_mask:
15341   case X86::BI__builtin_ia32_cmpd512_mask:
15342   case X86::BI__builtin_ia32_cmpq128_mask:
15343   case X86::BI__builtin_ia32_cmpq256_mask:
15344   case X86::BI__builtin_ia32_cmpq512_mask: {
15345     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
15346     return EmitX86MaskedCompare(*this, CC, true, Ops);
15347   }
15348   case X86::BI__builtin_ia32_ucmpb128_mask:
15349   case X86::BI__builtin_ia32_ucmpb256_mask:
15350   case X86::BI__builtin_ia32_ucmpb512_mask:
15351   case X86::BI__builtin_ia32_ucmpw128_mask:
15352   case X86::BI__builtin_ia32_ucmpw256_mask:
15353   case X86::BI__builtin_ia32_ucmpw512_mask:
15354   case X86::BI__builtin_ia32_ucmpd128_mask:
15355   case X86::BI__builtin_ia32_ucmpd256_mask:
15356   case X86::BI__builtin_ia32_ucmpd512_mask:
15357   case X86::BI__builtin_ia32_ucmpq128_mask:
15358   case X86::BI__builtin_ia32_ucmpq256_mask:
15359   case X86::BI__builtin_ia32_ucmpq512_mask: {
15360     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
15361     return EmitX86MaskedCompare(*this, CC, false, Ops);
15362   }
15363   case X86::BI__builtin_ia32_vpcomb:
15364   case X86::BI__builtin_ia32_vpcomw:
15365   case X86::BI__builtin_ia32_vpcomd:
15366   case X86::BI__builtin_ia32_vpcomq:
15367     return EmitX86vpcom(*this, Ops, true);
15368   case X86::BI__builtin_ia32_vpcomub:
15369   case X86::BI__builtin_ia32_vpcomuw:
15370   case X86::BI__builtin_ia32_vpcomud:
15371   case X86::BI__builtin_ia32_vpcomuq:
15372     return EmitX86vpcom(*this, Ops, false);
15373 
15374   case X86::BI__builtin_ia32_kortestcqi:
15375   case X86::BI__builtin_ia32_kortestchi:
15376   case X86::BI__builtin_ia32_kortestcsi:
15377   case X86::BI__builtin_ia32_kortestcdi: {
15378     Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
15379     Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType());
15380     Value *Cmp = Builder.CreateICmpEQ(Or, C);
15381     return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
15382   }
15383   case X86::BI__builtin_ia32_kortestzqi:
15384   case X86::BI__builtin_ia32_kortestzhi:
15385   case X86::BI__builtin_ia32_kortestzsi:
15386   case X86::BI__builtin_ia32_kortestzdi: {
15387     Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
15388     Value *C = llvm::Constant::getNullValue(Ops[0]->getType());
15389     Value *Cmp = Builder.CreateICmpEQ(Or, C);
15390     return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
15391   }
15392 
15393   case X86::BI__builtin_ia32_ktestcqi:
15394   case X86::BI__builtin_ia32_ktestzqi:
15395   case X86::BI__builtin_ia32_ktestchi:
15396   case X86::BI__builtin_ia32_ktestzhi:
15397   case X86::BI__builtin_ia32_ktestcsi:
15398   case X86::BI__builtin_ia32_ktestzsi:
15399   case X86::BI__builtin_ia32_ktestcdi:
15400   case X86::BI__builtin_ia32_ktestzdi: {
15401     Intrinsic::ID IID;
15402     switch (BuiltinID) {
15403     default: llvm_unreachable("Unsupported intrinsic!");
15404     case X86::BI__builtin_ia32_ktestcqi:
15405       IID = Intrinsic::x86_avx512_ktestc_b;
15406       break;
15407     case X86::BI__builtin_ia32_ktestzqi:
15408       IID = Intrinsic::x86_avx512_ktestz_b;
15409       break;
15410     case X86::BI__builtin_ia32_ktestchi:
15411       IID = Intrinsic::x86_avx512_ktestc_w;
15412       break;
15413     case X86::BI__builtin_ia32_ktestzhi:
15414       IID = Intrinsic::x86_avx512_ktestz_w;
15415       break;
15416     case X86::BI__builtin_ia32_ktestcsi:
15417       IID = Intrinsic::x86_avx512_ktestc_d;
15418       break;
15419     case X86::BI__builtin_ia32_ktestzsi:
15420       IID = Intrinsic::x86_avx512_ktestz_d;
15421       break;
15422     case X86::BI__builtin_ia32_ktestcdi:
15423       IID = Intrinsic::x86_avx512_ktestc_q;
15424       break;
15425     case X86::BI__builtin_ia32_ktestzdi:
15426       IID = Intrinsic::x86_avx512_ktestz_q;
15427       break;
15428     }
15429 
15430     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
15431     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
15432     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
15433     Function *Intr = CGM.getIntrinsic(IID);
15434     return Builder.CreateCall(Intr, {LHS, RHS});
15435   }
15436 
15437   case X86::BI__builtin_ia32_kaddqi:
15438   case X86::BI__builtin_ia32_kaddhi:
15439   case X86::BI__builtin_ia32_kaddsi:
15440   case X86::BI__builtin_ia32_kadddi: {
15441     Intrinsic::ID IID;
15442     switch (BuiltinID) {
15443     default: llvm_unreachable("Unsupported intrinsic!");
15444     case X86::BI__builtin_ia32_kaddqi:
15445       IID = Intrinsic::x86_avx512_kadd_b;
15446       break;
15447     case X86::BI__builtin_ia32_kaddhi:
15448       IID = Intrinsic::x86_avx512_kadd_w;
15449       break;
15450     case X86::BI__builtin_ia32_kaddsi:
15451       IID = Intrinsic::x86_avx512_kadd_d;
15452       break;
15453     case X86::BI__builtin_ia32_kadddi:
15454       IID = Intrinsic::x86_avx512_kadd_q;
15455       break;
15456     }
15457 
15458     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
15459     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
15460     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
15461     Function *Intr = CGM.getIntrinsic(IID);
15462     Value *Res = Builder.CreateCall(Intr, {LHS, RHS});
15463     return Builder.CreateBitCast(Res, Ops[0]->getType());
15464   }
15465   case X86::BI__builtin_ia32_kandqi:
15466   case X86::BI__builtin_ia32_kandhi:
15467   case X86::BI__builtin_ia32_kandsi:
15468   case X86::BI__builtin_ia32_kanddi:
15469     return EmitX86MaskLogic(*this, Instruction::And, Ops);
15470   case X86::BI__builtin_ia32_kandnqi:
15471   case X86::BI__builtin_ia32_kandnhi:
15472   case X86::BI__builtin_ia32_kandnsi:
15473   case X86::BI__builtin_ia32_kandndi:
15474     return EmitX86MaskLogic(*this, Instruction::And, Ops, true);
15475   case X86::BI__builtin_ia32_korqi:
15476   case X86::BI__builtin_ia32_korhi:
15477   case X86::BI__builtin_ia32_korsi:
15478   case X86::BI__builtin_ia32_kordi:
15479     return EmitX86MaskLogic(*this, Instruction::Or, Ops);
15480   case X86::BI__builtin_ia32_kxnorqi:
15481   case X86::BI__builtin_ia32_kxnorhi:
15482   case X86::BI__builtin_ia32_kxnorsi:
15483   case X86::BI__builtin_ia32_kxnordi:
15484     return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true);
15485   case X86::BI__builtin_ia32_kxorqi:
15486   case X86::BI__builtin_ia32_kxorhi:
15487   case X86::BI__builtin_ia32_kxorsi:
15488   case X86::BI__builtin_ia32_kxordi:
15489     return EmitX86MaskLogic(*this, Instruction::Xor,  Ops);
15490   case X86::BI__builtin_ia32_knotqi:
15491   case X86::BI__builtin_ia32_knothi:
15492   case X86::BI__builtin_ia32_knotsi:
15493   case X86::BI__builtin_ia32_knotdi: {
15494     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
15495     Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
15496     return Builder.CreateBitCast(Builder.CreateNot(Res),
15497                                  Ops[0]->getType());
15498   }
15499   case X86::BI__builtin_ia32_kmovb:
15500   case X86::BI__builtin_ia32_kmovw:
15501   case X86::BI__builtin_ia32_kmovd:
15502   case X86::BI__builtin_ia32_kmovq: {
15503     // Bitcast to vXi1 type and then back to integer. This gets the mask
15504     // register type into the IR, but might be optimized out depending on
15505     // what's around it.
15506     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
15507     Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
15508     return Builder.CreateBitCast(Res, Ops[0]->getType());
15509   }
15510 
15511   case X86::BI__builtin_ia32_kunpckdi:
15512   case X86::BI__builtin_ia32_kunpcksi:
15513   case X86::BI__builtin_ia32_kunpckhi: {
15514     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
15515     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
15516     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
15517     int Indices[64];
15518     for (unsigned i = 0; i != NumElts; ++i)
15519       Indices[i] = i;
15520 
15521     // First extract half of each vector. This gives better codegen than
15522     // doing it in a single shuffle.
15523     LHS = Builder.CreateShuffleVector(LHS, LHS, ArrayRef(Indices, NumElts / 2));
15524     RHS = Builder.CreateShuffleVector(RHS, RHS, ArrayRef(Indices, NumElts / 2));
15525     // Concat the vectors.
15526     // NOTE: Operands are swapped to match the intrinsic definition.
15527     Value *Res =
15528         Builder.CreateShuffleVector(RHS, LHS, ArrayRef(Indices, NumElts));
15529     return Builder.CreateBitCast(Res, Ops[0]->getType());
15530   }
15531 
15532   case X86::BI__builtin_ia32_vplzcntd_128:
15533   case X86::BI__builtin_ia32_vplzcntd_256:
15534   case X86::BI__builtin_ia32_vplzcntd_512:
15535   case X86::BI__builtin_ia32_vplzcntq_128:
15536   case X86::BI__builtin_ia32_vplzcntq_256:
15537   case X86::BI__builtin_ia32_vplzcntq_512: {
15538     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
15539     return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)});
15540   }
15541   case X86::BI__builtin_ia32_sqrtss:
15542   case X86::BI__builtin_ia32_sqrtsd: {
15543     Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0);
15544     Function *F;
15545     if (Builder.getIsFPConstrained()) {
15546       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
15547       F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
15548                            A->getType());
15549       A = Builder.CreateConstrainedFPCall(F, {A});
15550     } else {
15551       F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
15552       A = Builder.CreateCall(F, {A});
15553     }
15554     return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
15555   }
15556   case X86::BI__builtin_ia32_sqrtsh_round_mask:
15557   case X86::BI__builtin_ia32_sqrtsd_round_mask:
15558   case X86::BI__builtin_ia32_sqrtss_round_mask: {
15559     unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
15560     // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
15561     // otherwise keep the intrinsic.
15562     if (CC != 4) {
15563       Intrinsic::ID IID;
15564 
15565       switch (BuiltinID) {
15566       default:
15567         llvm_unreachable("Unsupported intrinsic!");
15568       case X86::BI__builtin_ia32_sqrtsh_round_mask:
15569         IID = Intrinsic::x86_avx512fp16_mask_sqrt_sh;
15570         break;
15571       case X86::BI__builtin_ia32_sqrtsd_round_mask:
15572         IID = Intrinsic::x86_avx512_mask_sqrt_sd;
15573         break;
15574       case X86::BI__builtin_ia32_sqrtss_round_mask:
15575         IID = Intrinsic::x86_avx512_mask_sqrt_ss;
15576         break;
15577       }
15578       return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
15579     }
15580     Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
15581     Function *F;
15582     if (Builder.getIsFPConstrained()) {
15583       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
15584       F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
15585                            A->getType());
15586       A = Builder.CreateConstrainedFPCall(F, A);
15587     } else {
15588       F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
15589       A = Builder.CreateCall(F, A);
15590     }
15591     Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
15592     A = EmitX86ScalarSelect(*this, Ops[3], A, Src);
15593     return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
15594   }
15595   case X86::BI__builtin_ia32_sqrtpd256:
15596   case X86::BI__builtin_ia32_sqrtpd:
15597   case X86::BI__builtin_ia32_sqrtps256:
15598   case X86::BI__builtin_ia32_sqrtps:
15599   case X86::BI__builtin_ia32_sqrtph256:
15600   case X86::BI__builtin_ia32_sqrtph:
15601   case X86::BI__builtin_ia32_sqrtph512:
15602   case X86::BI__builtin_ia32_sqrtps512:
15603   case X86::BI__builtin_ia32_sqrtpd512: {
15604     if (Ops.size() == 2) {
15605       unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
15606       // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
15607       // otherwise keep the intrinsic.
15608       if (CC != 4) {
15609         Intrinsic::ID IID;
15610 
15611         switch (BuiltinID) {
15612         default:
15613           llvm_unreachable("Unsupported intrinsic!");
15614         case X86::BI__builtin_ia32_sqrtph512:
15615           IID = Intrinsic::x86_avx512fp16_sqrt_ph_512;
15616           break;
15617         case X86::BI__builtin_ia32_sqrtps512:
15618           IID = Intrinsic::x86_avx512_sqrt_ps_512;
15619           break;
15620         case X86::BI__builtin_ia32_sqrtpd512:
15621           IID = Intrinsic::x86_avx512_sqrt_pd_512;
15622           break;
15623         }
15624         return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
15625       }
15626     }
15627     if (Builder.getIsFPConstrained()) {
15628       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
15629       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
15630                                      Ops[0]->getType());
15631       return Builder.CreateConstrainedFPCall(F, Ops[0]);
15632     } else {
15633       Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType());
15634       return Builder.CreateCall(F, Ops[0]);
15635     }
15636   }
15637 
15638   case X86::BI__builtin_ia32_pmuludq128:
15639   case X86::BI__builtin_ia32_pmuludq256:
15640   case X86::BI__builtin_ia32_pmuludq512:
15641     return EmitX86Muldq(*this, /*IsSigned*/false, Ops);
15642 
15643   case X86::BI__builtin_ia32_pmuldq128:
15644   case X86::BI__builtin_ia32_pmuldq256:
15645   case X86::BI__builtin_ia32_pmuldq512:
15646     return EmitX86Muldq(*this, /*IsSigned*/true, Ops);
15647 
15648   case X86::BI__builtin_ia32_pternlogd512_mask:
15649   case X86::BI__builtin_ia32_pternlogq512_mask:
15650   case X86::BI__builtin_ia32_pternlogd128_mask:
15651   case X86::BI__builtin_ia32_pternlogd256_mask:
15652   case X86::BI__builtin_ia32_pternlogq128_mask:
15653   case X86::BI__builtin_ia32_pternlogq256_mask:
15654     return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops);
15655 
15656   case X86::BI__builtin_ia32_pternlogd512_maskz:
15657   case X86::BI__builtin_ia32_pternlogq512_maskz:
15658   case X86::BI__builtin_ia32_pternlogd128_maskz:
15659   case X86::BI__builtin_ia32_pternlogd256_maskz:
15660   case X86::BI__builtin_ia32_pternlogq128_maskz:
15661   case X86::BI__builtin_ia32_pternlogq256_maskz:
15662     return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops);
15663 
15664   case X86::BI__builtin_ia32_vpshldd128:
15665   case X86::BI__builtin_ia32_vpshldd256:
15666   case X86::BI__builtin_ia32_vpshldd512:
15667   case X86::BI__builtin_ia32_vpshldq128:
15668   case X86::BI__builtin_ia32_vpshldq256:
15669   case X86::BI__builtin_ia32_vpshldq512:
15670   case X86::BI__builtin_ia32_vpshldw128:
15671   case X86::BI__builtin_ia32_vpshldw256:
15672   case X86::BI__builtin_ia32_vpshldw512:
15673     return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
15674 
15675   case X86::BI__builtin_ia32_vpshrdd128:
15676   case X86::BI__builtin_ia32_vpshrdd256:
15677   case X86::BI__builtin_ia32_vpshrdd512:
15678   case X86::BI__builtin_ia32_vpshrdq128:
15679   case X86::BI__builtin_ia32_vpshrdq256:
15680   case X86::BI__builtin_ia32_vpshrdq512:
15681   case X86::BI__builtin_ia32_vpshrdw128:
15682   case X86::BI__builtin_ia32_vpshrdw256:
15683   case X86::BI__builtin_ia32_vpshrdw512:
15684     // Ops 0 and 1 are swapped.
15685     return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
15686 
15687   case X86::BI__builtin_ia32_vpshldvd128:
15688   case X86::BI__builtin_ia32_vpshldvd256:
15689   case X86::BI__builtin_ia32_vpshldvd512:
15690   case X86::BI__builtin_ia32_vpshldvq128:
15691   case X86::BI__builtin_ia32_vpshldvq256:
15692   case X86::BI__builtin_ia32_vpshldvq512:
15693   case X86::BI__builtin_ia32_vpshldvw128:
15694   case X86::BI__builtin_ia32_vpshldvw256:
15695   case X86::BI__builtin_ia32_vpshldvw512:
15696     return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
15697 
15698   case X86::BI__builtin_ia32_vpshrdvd128:
15699   case X86::BI__builtin_ia32_vpshrdvd256:
15700   case X86::BI__builtin_ia32_vpshrdvd512:
15701   case X86::BI__builtin_ia32_vpshrdvq128:
15702   case X86::BI__builtin_ia32_vpshrdvq256:
15703   case X86::BI__builtin_ia32_vpshrdvq512:
15704   case X86::BI__builtin_ia32_vpshrdvw128:
15705   case X86::BI__builtin_ia32_vpshrdvw256:
15706   case X86::BI__builtin_ia32_vpshrdvw512:
15707     // Ops 0 and 1 are swapped.
15708     return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
15709 
15710   // Reductions
15711   case X86::BI__builtin_ia32_reduce_fadd_pd512:
15712   case X86::BI__builtin_ia32_reduce_fadd_ps512:
15713   case X86::BI__builtin_ia32_reduce_fadd_ph512:
15714   case X86::BI__builtin_ia32_reduce_fadd_ph256:
15715   case X86::BI__builtin_ia32_reduce_fadd_ph128: {
15716     Function *F =
15717         CGM.getIntrinsic(Intrinsic::vector_reduce_fadd, Ops[1]->getType());
15718     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
15719     Builder.getFastMathFlags().setAllowReassoc();
15720     return Builder.CreateCall(F, {Ops[0], Ops[1]});
15721   }
15722   case X86::BI__builtin_ia32_reduce_fmul_pd512:
15723   case X86::BI__builtin_ia32_reduce_fmul_ps512:
15724   case X86::BI__builtin_ia32_reduce_fmul_ph512:
15725   case X86::BI__builtin_ia32_reduce_fmul_ph256:
15726   case X86::BI__builtin_ia32_reduce_fmul_ph128: {
15727     Function *F =
15728         CGM.getIntrinsic(Intrinsic::vector_reduce_fmul, Ops[1]->getType());
15729     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
15730     Builder.getFastMathFlags().setAllowReassoc();
15731     return Builder.CreateCall(F, {Ops[0], Ops[1]});
15732   }
15733   case X86::BI__builtin_ia32_reduce_fmax_pd512:
15734   case X86::BI__builtin_ia32_reduce_fmax_ps512:
15735   case X86::BI__builtin_ia32_reduce_fmax_ph512:
15736   case X86::BI__builtin_ia32_reduce_fmax_ph256:
15737   case X86::BI__builtin_ia32_reduce_fmax_ph128: {
15738     Function *F =
15739         CGM.getIntrinsic(Intrinsic::vector_reduce_fmax, Ops[0]->getType());
15740     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
15741     Builder.getFastMathFlags().setNoNaNs();
15742     return Builder.CreateCall(F, {Ops[0]});
15743   }
15744   case X86::BI__builtin_ia32_reduce_fmin_pd512:
15745   case X86::BI__builtin_ia32_reduce_fmin_ps512:
15746   case X86::BI__builtin_ia32_reduce_fmin_ph512:
15747   case X86::BI__builtin_ia32_reduce_fmin_ph256:
15748   case X86::BI__builtin_ia32_reduce_fmin_ph128: {
15749     Function *F =
15750         CGM.getIntrinsic(Intrinsic::vector_reduce_fmin, Ops[0]->getType());
15751     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
15752     Builder.getFastMathFlags().setNoNaNs();
15753     return Builder.CreateCall(F, {Ops[0]});
15754   }
15755 
15756   // 3DNow!
15757   case X86::BI__builtin_ia32_pswapdsf:
15758   case X86::BI__builtin_ia32_pswapdsi: {
15759     llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
15760     Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
15761     llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
15762     return Builder.CreateCall(F, Ops, "pswapd");
15763   }
15764   case X86::BI__builtin_ia32_rdrand16_step:
15765   case X86::BI__builtin_ia32_rdrand32_step:
15766   case X86::BI__builtin_ia32_rdrand64_step:
15767   case X86::BI__builtin_ia32_rdseed16_step:
15768   case X86::BI__builtin_ia32_rdseed32_step:
15769   case X86::BI__builtin_ia32_rdseed64_step: {
15770     Intrinsic::ID ID;
15771     switch (BuiltinID) {
15772     default: llvm_unreachable("Unsupported intrinsic!");
15773     case X86::BI__builtin_ia32_rdrand16_step:
15774       ID = Intrinsic::x86_rdrand_16;
15775       break;
15776     case X86::BI__builtin_ia32_rdrand32_step:
15777       ID = Intrinsic::x86_rdrand_32;
15778       break;
15779     case X86::BI__builtin_ia32_rdrand64_step:
15780       ID = Intrinsic::x86_rdrand_64;
15781       break;
15782     case X86::BI__builtin_ia32_rdseed16_step:
15783       ID = Intrinsic::x86_rdseed_16;
15784       break;
15785     case X86::BI__builtin_ia32_rdseed32_step:
15786       ID = Intrinsic::x86_rdseed_32;
15787       break;
15788     case X86::BI__builtin_ia32_rdseed64_step:
15789       ID = Intrinsic::x86_rdseed_64;
15790       break;
15791     }
15792 
15793     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
15794     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
15795                                       Ops[0]);
15796     return Builder.CreateExtractValue(Call, 1);
15797   }
15798   case X86::BI__builtin_ia32_addcarryx_u32:
15799   case X86::BI__builtin_ia32_addcarryx_u64:
15800   case X86::BI__builtin_ia32_subborrow_u32:
15801   case X86::BI__builtin_ia32_subborrow_u64: {
15802     Intrinsic::ID IID;
15803     switch (BuiltinID) {
15804     default: llvm_unreachable("Unsupported intrinsic!");
15805     case X86::BI__builtin_ia32_addcarryx_u32:
15806       IID = Intrinsic::x86_addcarry_32;
15807       break;
15808     case X86::BI__builtin_ia32_addcarryx_u64:
15809       IID = Intrinsic::x86_addcarry_64;
15810       break;
15811     case X86::BI__builtin_ia32_subborrow_u32:
15812       IID = Intrinsic::x86_subborrow_32;
15813       break;
15814     case X86::BI__builtin_ia32_subborrow_u64:
15815       IID = Intrinsic::x86_subborrow_64;
15816       break;
15817     }
15818 
15819     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID),
15820                                      { Ops[0], Ops[1], Ops[2] });
15821     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
15822                                       Ops[3]);
15823     return Builder.CreateExtractValue(Call, 0);
15824   }
15825 
15826   case X86::BI__builtin_ia32_fpclassps128_mask:
15827   case X86::BI__builtin_ia32_fpclassps256_mask:
15828   case X86::BI__builtin_ia32_fpclassps512_mask:
15829   case X86::BI__builtin_ia32_fpclassph128_mask:
15830   case X86::BI__builtin_ia32_fpclassph256_mask:
15831   case X86::BI__builtin_ia32_fpclassph512_mask:
15832   case X86::BI__builtin_ia32_fpclasspd128_mask:
15833   case X86::BI__builtin_ia32_fpclasspd256_mask:
15834   case X86::BI__builtin_ia32_fpclasspd512_mask: {
15835     unsigned NumElts =
15836         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
15837     Value *MaskIn = Ops[2];
15838     Ops.erase(&Ops[2]);
15839 
15840     Intrinsic::ID ID;
15841     switch (BuiltinID) {
15842     default: llvm_unreachable("Unsupported intrinsic!");
15843     case X86::BI__builtin_ia32_fpclassph128_mask:
15844       ID = Intrinsic::x86_avx512fp16_fpclass_ph_128;
15845       break;
15846     case X86::BI__builtin_ia32_fpclassph256_mask:
15847       ID = Intrinsic::x86_avx512fp16_fpclass_ph_256;
15848       break;
15849     case X86::BI__builtin_ia32_fpclassph512_mask:
15850       ID = Intrinsic::x86_avx512fp16_fpclass_ph_512;
15851       break;
15852     case X86::BI__builtin_ia32_fpclassps128_mask:
15853       ID = Intrinsic::x86_avx512_fpclass_ps_128;
15854       break;
15855     case X86::BI__builtin_ia32_fpclassps256_mask:
15856       ID = Intrinsic::x86_avx512_fpclass_ps_256;
15857       break;
15858     case X86::BI__builtin_ia32_fpclassps512_mask:
15859       ID = Intrinsic::x86_avx512_fpclass_ps_512;
15860       break;
15861     case X86::BI__builtin_ia32_fpclasspd128_mask:
15862       ID = Intrinsic::x86_avx512_fpclass_pd_128;
15863       break;
15864     case X86::BI__builtin_ia32_fpclasspd256_mask:
15865       ID = Intrinsic::x86_avx512_fpclass_pd_256;
15866       break;
15867     case X86::BI__builtin_ia32_fpclasspd512_mask:
15868       ID = Intrinsic::x86_avx512_fpclass_pd_512;
15869       break;
15870     }
15871 
15872     Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
15873     return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn);
15874   }
15875 
15876   case X86::BI__builtin_ia32_vp2intersect_q_512:
15877   case X86::BI__builtin_ia32_vp2intersect_q_256:
15878   case X86::BI__builtin_ia32_vp2intersect_q_128:
15879   case X86::BI__builtin_ia32_vp2intersect_d_512:
15880   case X86::BI__builtin_ia32_vp2intersect_d_256:
15881   case X86::BI__builtin_ia32_vp2intersect_d_128: {
15882     unsigned NumElts =
15883         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
15884     Intrinsic::ID ID;
15885 
15886     switch (BuiltinID) {
15887     default: llvm_unreachable("Unsupported intrinsic!");
15888     case X86::BI__builtin_ia32_vp2intersect_q_512:
15889       ID = Intrinsic::x86_avx512_vp2intersect_q_512;
15890       break;
15891     case X86::BI__builtin_ia32_vp2intersect_q_256:
15892       ID = Intrinsic::x86_avx512_vp2intersect_q_256;
15893       break;
15894     case X86::BI__builtin_ia32_vp2intersect_q_128:
15895       ID = Intrinsic::x86_avx512_vp2intersect_q_128;
15896       break;
15897     case X86::BI__builtin_ia32_vp2intersect_d_512:
15898       ID = Intrinsic::x86_avx512_vp2intersect_d_512;
15899       break;
15900     case X86::BI__builtin_ia32_vp2intersect_d_256:
15901       ID = Intrinsic::x86_avx512_vp2intersect_d_256;
15902       break;
15903     case X86::BI__builtin_ia32_vp2intersect_d_128:
15904       ID = Intrinsic::x86_avx512_vp2intersect_d_128;
15905       break;
15906     }
15907 
15908     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]});
15909     Value *Result = Builder.CreateExtractValue(Call, 0);
15910     Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
15911     Builder.CreateDefaultAlignedStore(Result, Ops[2]);
15912 
15913     Result = Builder.CreateExtractValue(Call, 1);
15914     Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
15915     return Builder.CreateDefaultAlignedStore(Result, Ops[3]);
15916   }
15917 
15918   case X86::BI__builtin_ia32_vpmultishiftqb128:
15919   case X86::BI__builtin_ia32_vpmultishiftqb256:
15920   case X86::BI__builtin_ia32_vpmultishiftqb512: {
15921     Intrinsic::ID ID;
15922     switch (BuiltinID) {
15923     default: llvm_unreachable("Unsupported intrinsic!");
15924     case X86::BI__builtin_ia32_vpmultishiftqb128:
15925       ID = Intrinsic::x86_avx512_pmultishift_qb_128;
15926       break;
15927     case X86::BI__builtin_ia32_vpmultishiftqb256:
15928       ID = Intrinsic::x86_avx512_pmultishift_qb_256;
15929       break;
15930     case X86::BI__builtin_ia32_vpmultishiftqb512:
15931       ID = Intrinsic::x86_avx512_pmultishift_qb_512;
15932       break;
15933     }
15934 
15935     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
15936   }
15937 
15938   case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
15939   case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
15940   case X86::BI__builtin_ia32_vpshufbitqmb512_mask: {
15941     unsigned NumElts =
15942         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
15943     Value *MaskIn = Ops[2];
15944     Ops.erase(&Ops[2]);
15945 
15946     Intrinsic::ID ID;
15947     switch (BuiltinID) {
15948     default: llvm_unreachable("Unsupported intrinsic!");
15949     case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
15950       ID = Intrinsic::x86_avx512_vpshufbitqmb_128;
15951       break;
15952     case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
15953       ID = Intrinsic::x86_avx512_vpshufbitqmb_256;
15954       break;
15955     case X86::BI__builtin_ia32_vpshufbitqmb512_mask:
15956       ID = Intrinsic::x86_avx512_vpshufbitqmb_512;
15957       break;
15958     }
15959 
15960     Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
15961     return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn);
15962   }
15963 
15964   // packed comparison intrinsics
15965   case X86::BI__builtin_ia32_cmpeqps:
15966   case X86::BI__builtin_ia32_cmpeqpd:
15967     return getVectorFCmpIR(CmpInst::FCMP_OEQ, /*IsSignaling*/false);
15968   case X86::BI__builtin_ia32_cmpltps:
15969   case X86::BI__builtin_ia32_cmpltpd:
15970     return getVectorFCmpIR(CmpInst::FCMP_OLT, /*IsSignaling*/true);
15971   case X86::BI__builtin_ia32_cmpleps:
15972   case X86::BI__builtin_ia32_cmplepd:
15973     return getVectorFCmpIR(CmpInst::FCMP_OLE, /*IsSignaling*/true);
15974   case X86::BI__builtin_ia32_cmpunordps:
15975   case X86::BI__builtin_ia32_cmpunordpd:
15976     return getVectorFCmpIR(CmpInst::FCMP_UNO, /*IsSignaling*/false);
15977   case X86::BI__builtin_ia32_cmpneqps:
15978   case X86::BI__builtin_ia32_cmpneqpd:
15979     return getVectorFCmpIR(CmpInst::FCMP_UNE, /*IsSignaling*/false);
15980   case X86::BI__builtin_ia32_cmpnltps:
15981   case X86::BI__builtin_ia32_cmpnltpd:
15982     return getVectorFCmpIR(CmpInst::FCMP_UGE, /*IsSignaling*/true);
15983   case X86::BI__builtin_ia32_cmpnleps:
15984   case X86::BI__builtin_ia32_cmpnlepd:
15985     return getVectorFCmpIR(CmpInst::FCMP_UGT, /*IsSignaling*/true);
15986   case X86::BI__builtin_ia32_cmpordps:
15987   case X86::BI__builtin_ia32_cmpordpd:
15988     return getVectorFCmpIR(CmpInst::FCMP_ORD, /*IsSignaling*/false);
15989   case X86::BI__builtin_ia32_cmpph128_mask:
15990   case X86::BI__builtin_ia32_cmpph256_mask:
15991   case X86::BI__builtin_ia32_cmpph512_mask:
15992   case X86::BI__builtin_ia32_cmpps128_mask:
15993   case X86::BI__builtin_ia32_cmpps256_mask:
15994   case X86::BI__builtin_ia32_cmpps512_mask:
15995   case X86::BI__builtin_ia32_cmppd128_mask:
15996   case X86::BI__builtin_ia32_cmppd256_mask:
15997   case X86::BI__builtin_ia32_cmppd512_mask:
15998     IsMaskFCmp = true;
15999     [[fallthrough]];
16000   case X86::BI__builtin_ia32_cmpps:
16001   case X86::BI__builtin_ia32_cmpps256:
16002   case X86::BI__builtin_ia32_cmppd:
16003   case X86::BI__builtin_ia32_cmppd256: {
16004     // Lowering vector comparisons to fcmp instructions, while
16005     // ignoring signalling behaviour requested
16006     // ignoring rounding mode requested
16007     // This is only possible if fp-model is not strict and FENV_ACCESS is off.
16008 
16009     // The third argument is the comparison condition, and integer in the
16010     // range [0, 31]
16011     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f;
16012 
16013     // Lowering to IR fcmp instruction.
16014     // Ignoring requested signaling behaviour,
16015     // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT.
16016     FCmpInst::Predicate Pred;
16017     bool IsSignaling;
16018     // Predicates for 16-31 repeat the 0-15 predicates. Only the signalling
16019     // behavior is inverted. We'll handle that after the switch.
16020     switch (CC & 0xf) {
16021     case 0x00: Pred = FCmpInst::FCMP_OEQ;   IsSignaling = false; break;
16022     case 0x01: Pred = FCmpInst::FCMP_OLT;   IsSignaling = true;  break;
16023     case 0x02: Pred = FCmpInst::FCMP_OLE;   IsSignaling = true;  break;
16024     case 0x03: Pred = FCmpInst::FCMP_UNO;   IsSignaling = false; break;
16025     case 0x04: Pred = FCmpInst::FCMP_UNE;   IsSignaling = false; break;
16026     case 0x05: Pred = FCmpInst::FCMP_UGE;   IsSignaling = true;  break;
16027     case 0x06: Pred = FCmpInst::FCMP_UGT;   IsSignaling = true;  break;
16028     case 0x07: Pred = FCmpInst::FCMP_ORD;   IsSignaling = false; break;
16029     case 0x08: Pred = FCmpInst::FCMP_UEQ;   IsSignaling = false; break;
16030     case 0x09: Pred = FCmpInst::FCMP_ULT;   IsSignaling = true;  break;
16031     case 0x0a: Pred = FCmpInst::FCMP_ULE;   IsSignaling = true;  break;
16032     case 0x0b: Pred = FCmpInst::FCMP_FALSE; IsSignaling = false; break;
16033     case 0x0c: Pred = FCmpInst::FCMP_ONE;   IsSignaling = false; break;
16034     case 0x0d: Pred = FCmpInst::FCMP_OGE;   IsSignaling = true;  break;
16035     case 0x0e: Pred = FCmpInst::FCMP_OGT;   IsSignaling = true;  break;
16036     case 0x0f: Pred = FCmpInst::FCMP_TRUE;  IsSignaling = false; break;
16037     default: llvm_unreachable("Unhandled CC");
16038     }
16039 
16040     // Invert the signalling behavior for 16-31.
16041     if (CC & 0x10)
16042       IsSignaling = !IsSignaling;
16043 
16044     // If the predicate is true or false and we're using constrained intrinsics,
16045     // we don't have a compare intrinsic we can use. Just use the legacy X86
16046     // specific intrinsic.
16047     // If the intrinsic is mask enabled and we're using constrained intrinsics,
16048     // use the legacy X86 specific intrinsic.
16049     if (Builder.getIsFPConstrained() &&
16050         (Pred == FCmpInst::FCMP_TRUE || Pred == FCmpInst::FCMP_FALSE ||
16051          IsMaskFCmp)) {
16052 
16053       Intrinsic::ID IID;
16054       switch (BuiltinID) {
16055       default: llvm_unreachable("Unexpected builtin");
16056       case X86::BI__builtin_ia32_cmpps:
16057         IID = Intrinsic::x86_sse_cmp_ps;
16058         break;
16059       case X86::BI__builtin_ia32_cmpps256:
16060         IID = Intrinsic::x86_avx_cmp_ps_256;
16061         break;
16062       case X86::BI__builtin_ia32_cmppd:
16063         IID = Intrinsic::x86_sse2_cmp_pd;
16064         break;
16065       case X86::BI__builtin_ia32_cmppd256:
16066         IID = Intrinsic::x86_avx_cmp_pd_256;
16067         break;
16068       case X86::BI__builtin_ia32_cmpph128_mask:
16069         IID = Intrinsic::x86_avx512fp16_mask_cmp_ph_128;
16070         break;
16071       case X86::BI__builtin_ia32_cmpph256_mask:
16072         IID = Intrinsic::x86_avx512fp16_mask_cmp_ph_256;
16073         break;
16074       case X86::BI__builtin_ia32_cmpph512_mask:
16075         IID = Intrinsic::x86_avx512fp16_mask_cmp_ph_512;
16076         break;
16077       case X86::BI__builtin_ia32_cmpps512_mask:
16078         IID = Intrinsic::x86_avx512_mask_cmp_ps_512;
16079         break;
16080       case X86::BI__builtin_ia32_cmppd512_mask:
16081         IID = Intrinsic::x86_avx512_mask_cmp_pd_512;
16082         break;
16083       case X86::BI__builtin_ia32_cmpps128_mask:
16084         IID = Intrinsic::x86_avx512_mask_cmp_ps_128;
16085         break;
16086       case X86::BI__builtin_ia32_cmpps256_mask:
16087         IID = Intrinsic::x86_avx512_mask_cmp_ps_256;
16088         break;
16089       case X86::BI__builtin_ia32_cmppd128_mask:
16090         IID = Intrinsic::x86_avx512_mask_cmp_pd_128;
16091         break;
16092       case X86::BI__builtin_ia32_cmppd256_mask:
16093         IID = Intrinsic::x86_avx512_mask_cmp_pd_256;
16094         break;
16095       }
16096 
16097       Function *Intr = CGM.getIntrinsic(IID);
16098       if (IsMaskFCmp) {
16099         unsigned NumElts =
16100             cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
16101         Ops[3] = getMaskVecValue(*this, Ops[3], NumElts);
16102         Value *Cmp = Builder.CreateCall(Intr, Ops);
16103         return EmitX86MaskedCompareResult(*this, Cmp, NumElts, nullptr);
16104       }
16105 
16106       return Builder.CreateCall(Intr, Ops);
16107     }
16108 
16109     // Builtins without the _mask suffix return a vector of integers
16110     // of the same width as the input vectors
16111     if (IsMaskFCmp) {
16112       // We ignore SAE if strict FP is disabled. We only keep precise
16113       // exception behavior under strict FP.
16114       // NOTE: If strict FP does ever go through here a CGFPOptionsRAII
16115       // object will be required.
16116       unsigned NumElts =
16117           cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
16118       Value *Cmp;
16119       if (IsSignaling)
16120         Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
16121       else
16122         Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
16123       return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]);
16124     }
16125 
16126     return getVectorFCmpIR(Pred, IsSignaling);
16127   }
16128 
16129   // SSE scalar comparison intrinsics
16130   case X86::BI__builtin_ia32_cmpeqss:
16131     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
16132   case X86::BI__builtin_ia32_cmpltss:
16133     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
16134   case X86::BI__builtin_ia32_cmpless:
16135     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
16136   case X86::BI__builtin_ia32_cmpunordss:
16137     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
16138   case X86::BI__builtin_ia32_cmpneqss:
16139     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
16140   case X86::BI__builtin_ia32_cmpnltss:
16141     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
16142   case X86::BI__builtin_ia32_cmpnless:
16143     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
16144   case X86::BI__builtin_ia32_cmpordss:
16145     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
16146   case X86::BI__builtin_ia32_cmpeqsd:
16147     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
16148   case X86::BI__builtin_ia32_cmpltsd:
16149     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
16150   case X86::BI__builtin_ia32_cmplesd:
16151     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
16152   case X86::BI__builtin_ia32_cmpunordsd:
16153     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
16154   case X86::BI__builtin_ia32_cmpneqsd:
16155     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
16156   case X86::BI__builtin_ia32_cmpnltsd:
16157     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
16158   case X86::BI__builtin_ia32_cmpnlesd:
16159     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
16160   case X86::BI__builtin_ia32_cmpordsd:
16161     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
16162 
16163   // f16c half2float intrinsics
16164   case X86::BI__builtin_ia32_vcvtph2ps:
16165   case X86::BI__builtin_ia32_vcvtph2ps256:
16166   case X86::BI__builtin_ia32_vcvtph2ps_mask:
16167   case X86::BI__builtin_ia32_vcvtph2ps256_mask:
16168   case X86::BI__builtin_ia32_vcvtph2ps512_mask: {
16169     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
16170     return EmitX86CvtF16ToFloatExpr(*this, Ops, ConvertType(E->getType()));
16171   }
16172 
16173   // AVX512 bf16 intrinsics
16174   case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: {
16175     Ops[2] = getMaskVecValue(
16176         *this, Ops[2],
16177         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements());
16178     Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128;
16179     return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
16180   }
16181   case X86::BI__builtin_ia32_cvtsbf162ss_32:
16182     return Builder.CreateFPExt(Ops[0], Builder.getFloatTy());
16183 
16184   case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
16185   case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: {
16186     Intrinsic::ID IID;
16187     switch (BuiltinID) {
16188     default: llvm_unreachable("Unsupported intrinsic!");
16189     case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
16190       IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256;
16191       break;
16192     case X86::BI__builtin_ia32_cvtneps2bf16_512_mask:
16193       IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512;
16194       break;
16195     }
16196     Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]);
16197     return EmitX86Select(*this, Ops[2], Res, Ops[1]);
16198   }
16199 
16200   case X86::BI__cpuid:
16201   case X86::BI__cpuidex: {
16202     Value *FuncId = EmitScalarExpr(E->getArg(1));
16203     Value *SubFuncId = BuiltinID == X86::BI__cpuidex
16204                            ? EmitScalarExpr(E->getArg(2))
16205                            : llvm::ConstantInt::get(Int32Ty, 0);
16206 
16207     llvm::StructType *CpuidRetTy =
16208         llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty, Int32Ty);
16209     llvm::FunctionType *FTy =
16210         llvm::FunctionType::get(CpuidRetTy, {Int32Ty, Int32Ty}, false);
16211 
16212     StringRef Asm, Constraints;
16213     if (getTarget().getTriple().getArch() == llvm::Triple::x86) {
16214       Asm = "cpuid";
16215       Constraints = "={ax},={bx},={cx},={dx},{ax},{cx}";
16216     } else {
16217       // x86-64 uses %rbx as the base register, so preserve it.
16218       Asm = "xchgq %rbx, ${1:q}\n"
16219             "cpuid\n"
16220             "xchgq %rbx, ${1:q}";
16221       Constraints = "={ax},=r,={cx},={dx},0,2";
16222     }
16223 
16224     llvm::InlineAsm *IA = llvm::InlineAsm::get(FTy, Asm, Constraints,
16225                                                /*hasSideEffects=*/false);
16226     Value *IACall = Builder.CreateCall(IA, {FuncId, SubFuncId});
16227     Value *BasePtr = EmitScalarExpr(E->getArg(0));
16228     Value *Store = nullptr;
16229     for (unsigned i = 0; i < 4; i++) {
16230       Value *Extracted = Builder.CreateExtractValue(IACall, i);
16231       Value *StorePtr = Builder.CreateConstInBoundsGEP1_32(Int32Ty, BasePtr, i);
16232       Store = Builder.CreateAlignedStore(Extracted, StorePtr, getIntAlign());
16233     }
16234 
16235     // Return the last store instruction to signal that we have emitted the
16236     // the intrinsic.
16237     return Store;
16238   }
16239 
16240   case X86::BI__emul:
16241   case X86::BI__emulu: {
16242     llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
16243     bool isSigned = (BuiltinID == X86::BI__emul);
16244     Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
16245     Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
16246     return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
16247   }
16248   case X86::BI__mulh:
16249   case X86::BI__umulh:
16250   case X86::BI_mul128:
16251   case X86::BI_umul128: {
16252     llvm::Type *ResType = ConvertType(E->getType());
16253     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
16254 
16255     bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
16256     Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
16257     Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
16258 
16259     Value *MulResult, *HigherBits;
16260     if (IsSigned) {
16261       MulResult = Builder.CreateNSWMul(LHS, RHS);
16262       HigherBits = Builder.CreateAShr(MulResult, 64);
16263     } else {
16264       MulResult = Builder.CreateNUWMul(LHS, RHS);
16265       HigherBits = Builder.CreateLShr(MulResult, 64);
16266     }
16267     HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
16268 
16269     if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
16270       return HigherBits;
16271 
16272     Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
16273     Builder.CreateStore(HigherBits, HighBitsAddress);
16274     return Builder.CreateIntCast(MulResult, ResType, IsSigned);
16275   }
16276 
16277   case X86::BI__faststorefence: {
16278     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
16279                                llvm::SyncScope::System);
16280   }
16281   case X86::BI__shiftleft128:
16282   case X86::BI__shiftright128: {
16283     llvm::Function *F = CGM.getIntrinsic(
16284         BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr,
16285         Int64Ty);
16286     // Flip low/high ops and zero-extend amount to matching type.
16287     // shiftleft128(Low, High, Amt) -> fshl(High, Low, Amt)
16288     // shiftright128(Low, High, Amt) -> fshr(High, Low, Amt)
16289     std::swap(Ops[0], Ops[1]);
16290     Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
16291     return Builder.CreateCall(F, Ops);
16292   }
16293   case X86::BI_ReadWriteBarrier:
16294   case X86::BI_ReadBarrier:
16295   case X86::BI_WriteBarrier: {
16296     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
16297                                llvm::SyncScope::SingleThread);
16298   }
16299 
16300   case X86::BI_AddressOfReturnAddress: {
16301     Function *F =
16302         CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
16303     return Builder.CreateCall(F);
16304   }
16305   case X86::BI__stosb: {
16306     // We treat __stosb as a volatile memset - it may not generate "rep stosb"
16307     // instruction, but it will create a memset that won't be optimized away.
16308     return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], Align(1), true);
16309   }
16310   case X86::BI__ud2:
16311     // llvm.trap makes a ud2a instruction on x86.
16312     return EmitTrapCall(Intrinsic::trap);
16313   case X86::BI__int2c: {
16314     // This syscall signals a driver assertion failure in x86 NT kernels.
16315     llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
16316     llvm::InlineAsm *IA =
16317         llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true);
16318     llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
16319         getLLVMContext(), llvm::AttributeList::FunctionIndex,
16320         llvm::Attribute::NoReturn);
16321     llvm::CallInst *CI = Builder.CreateCall(IA);
16322     CI->setAttributes(NoReturnAttr);
16323     return CI;
16324   }
16325   case X86::BI__readfsbyte:
16326   case X86::BI__readfsword:
16327   case X86::BI__readfsdword:
16328   case X86::BI__readfsqword: {
16329     llvm::Type *IntTy = ConvertType(E->getType());
16330     Value *Ptr = Builder.CreateIntToPtr(
16331         Ops[0], llvm::PointerType::get(getLLVMContext(), 257));
16332     LoadInst *Load = Builder.CreateAlignedLoad(
16333         IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
16334     Load->setVolatile(true);
16335     return Load;
16336   }
16337   case X86::BI__readgsbyte:
16338   case X86::BI__readgsword:
16339   case X86::BI__readgsdword:
16340   case X86::BI__readgsqword: {
16341     llvm::Type *IntTy = ConvertType(E->getType());
16342     Value *Ptr = Builder.CreateIntToPtr(
16343         Ops[0], llvm::PointerType::get(getLLVMContext(), 256));
16344     LoadInst *Load = Builder.CreateAlignedLoad(
16345         IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
16346     Load->setVolatile(true);
16347     return Load;
16348   }
16349   case X86::BI__builtin_ia32_encodekey128_u32: {
16350     Intrinsic::ID IID = Intrinsic::x86_encodekey128;
16351 
16352     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1]});
16353 
16354     for (int i = 0; i < 3; ++i) {
16355       Value *Extract = Builder.CreateExtractValue(Call, i + 1);
16356       Value *Ptr = Builder.CreateConstGEP1_32(Int8Ty, Ops[2], i * 16);
16357       Builder.CreateAlignedStore(Extract, Ptr, Align(1));
16358     }
16359 
16360     return Builder.CreateExtractValue(Call, 0);
16361   }
16362   case X86::BI__builtin_ia32_encodekey256_u32: {
16363     Intrinsic::ID IID = Intrinsic::x86_encodekey256;
16364 
16365     Value *Call =
16366         Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1], Ops[2]});
16367 
16368     for (int i = 0; i < 4; ++i) {
16369       Value *Extract = Builder.CreateExtractValue(Call, i + 1);
16370       Value *Ptr = Builder.CreateConstGEP1_32(Int8Ty, Ops[3], i * 16);
16371       Builder.CreateAlignedStore(Extract, Ptr, Align(1));
16372     }
16373 
16374     return Builder.CreateExtractValue(Call, 0);
16375   }
16376   case X86::BI__builtin_ia32_aesenc128kl_u8:
16377   case X86::BI__builtin_ia32_aesdec128kl_u8:
16378   case X86::BI__builtin_ia32_aesenc256kl_u8:
16379   case X86::BI__builtin_ia32_aesdec256kl_u8: {
16380     Intrinsic::ID IID;
16381     StringRef BlockName;
16382     switch (BuiltinID) {
16383     default:
16384       llvm_unreachable("Unexpected builtin");
16385     case X86::BI__builtin_ia32_aesenc128kl_u8:
16386       IID = Intrinsic::x86_aesenc128kl;
16387       BlockName = "aesenc128kl";
16388       break;
16389     case X86::BI__builtin_ia32_aesdec128kl_u8:
16390       IID = Intrinsic::x86_aesdec128kl;
16391       BlockName = "aesdec128kl";
16392       break;
16393     case X86::BI__builtin_ia32_aesenc256kl_u8:
16394       IID = Intrinsic::x86_aesenc256kl;
16395       BlockName = "aesenc256kl";
16396       break;
16397     case X86::BI__builtin_ia32_aesdec256kl_u8:
16398       IID = Intrinsic::x86_aesdec256kl;
16399       BlockName = "aesdec256kl";
16400       break;
16401     }
16402 
16403     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[1], Ops[2]});
16404 
16405     BasicBlock *NoError =
16406         createBasicBlock(BlockName + "_no_error", this->CurFn);
16407     BasicBlock *Error = createBasicBlock(BlockName + "_error", this->CurFn);
16408     BasicBlock *End = createBasicBlock(BlockName + "_end", this->CurFn);
16409 
16410     Value *Ret = Builder.CreateExtractValue(Call, 0);
16411     Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty());
16412     Value *Out = Builder.CreateExtractValue(Call, 1);
16413     Builder.CreateCondBr(Succ, NoError, Error);
16414 
16415     Builder.SetInsertPoint(NoError);
16416     Builder.CreateDefaultAlignedStore(Out, Ops[0]);
16417     Builder.CreateBr(End);
16418 
16419     Builder.SetInsertPoint(Error);
16420     Constant *Zero = llvm::Constant::getNullValue(Out->getType());
16421     Builder.CreateDefaultAlignedStore(Zero, Ops[0]);
16422     Builder.CreateBr(End);
16423 
16424     Builder.SetInsertPoint(End);
16425     return Builder.CreateExtractValue(Call, 0);
16426   }
16427   case X86::BI__builtin_ia32_aesencwide128kl_u8:
16428   case X86::BI__builtin_ia32_aesdecwide128kl_u8:
16429   case X86::BI__builtin_ia32_aesencwide256kl_u8:
16430   case X86::BI__builtin_ia32_aesdecwide256kl_u8: {
16431     Intrinsic::ID IID;
16432     StringRef BlockName;
16433     switch (BuiltinID) {
16434     case X86::BI__builtin_ia32_aesencwide128kl_u8:
16435       IID = Intrinsic::x86_aesencwide128kl;
16436       BlockName = "aesencwide128kl";
16437       break;
16438     case X86::BI__builtin_ia32_aesdecwide128kl_u8:
16439       IID = Intrinsic::x86_aesdecwide128kl;
16440       BlockName = "aesdecwide128kl";
16441       break;
16442     case X86::BI__builtin_ia32_aesencwide256kl_u8:
16443       IID = Intrinsic::x86_aesencwide256kl;
16444       BlockName = "aesencwide256kl";
16445       break;
16446     case X86::BI__builtin_ia32_aesdecwide256kl_u8:
16447       IID = Intrinsic::x86_aesdecwide256kl;
16448       BlockName = "aesdecwide256kl";
16449       break;
16450     }
16451 
16452     llvm::Type *Ty = FixedVectorType::get(Builder.getInt64Ty(), 2);
16453     Value *InOps[9];
16454     InOps[0] = Ops[2];
16455     for (int i = 0; i != 8; ++i) {
16456       Value *Ptr = Builder.CreateConstGEP1_32(Ty, Ops[1], i);
16457       InOps[i + 1] = Builder.CreateAlignedLoad(Ty, Ptr, Align(16));
16458     }
16459 
16460     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), InOps);
16461 
16462     BasicBlock *NoError =
16463         createBasicBlock(BlockName + "_no_error", this->CurFn);
16464     BasicBlock *Error = createBasicBlock(BlockName + "_error", this->CurFn);
16465     BasicBlock *End = createBasicBlock(BlockName + "_end", this->CurFn);
16466 
16467     Value *Ret = Builder.CreateExtractValue(Call, 0);
16468     Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty());
16469     Builder.CreateCondBr(Succ, NoError, Error);
16470 
16471     Builder.SetInsertPoint(NoError);
16472     for (int i = 0; i != 8; ++i) {
16473       Value *Extract = Builder.CreateExtractValue(Call, i + 1);
16474       Value *Ptr = Builder.CreateConstGEP1_32(Extract->getType(), Ops[0], i);
16475       Builder.CreateAlignedStore(Extract, Ptr, Align(16));
16476     }
16477     Builder.CreateBr(End);
16478 
16479     Builder.SetInsertPoint(Error);
16480     for (int i = 0; i != 8; ++i) {
16481       Value *Out = Builder.CreateExtractValue(Call, i + 1);
16482       Constant *Zero = llvm::Constant::getNullValue(Out->getType());
16483       Value *Ptr = Builder.CreateConstGEP1_32(Out->getType(), Ops[0], i);
16484       Builder.CreateAlignedStore(Zero, Ptr, Align(16));
16485     }
16486     Builder.CreateBr(End);
16487 
16488     Builder.SetInsertPoint(End);
16489     return Builder.CreateExtractValue(Call, 0);
16490   }
16491   case X86::BI__builtin_ia32_vfcmaddcph512_mask:
16492     IsConjFMA = true;
16493     [[fallthrough]];
16494   case X86::BI__builtin_ia32_vfmaddcph512_mask: {
16495     Intrinsic::ID IID = IsConjFMA
16496                             ? Intrinsic::x86_avx512fp16_mask_vfcmadd_cph_512
16497                             : Intrinsic::x86_avx512fp16_mask_vfmadd_cph_512;
16498     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
16499     return EmitX86Select(*this, Ops[3], Call, Ops[0]);
16500   }
16501   case X86::BI__builtin_ia32_vfcmaddcsh_round_mask:
16502     IsConjFMA = true;
16503     [[fallthrough]];
16504   case X86::BI__builtin_ia32_vfmaddcsh_round_mask: {
16505     Intrinsic::ID IID = IsConjFMA ? Intrinsic::x86_avx512fp16_mask_vfcmadd_csh
16506                                   : Intrinsic::x86_avx512fp16_mask_vfmadd_csh;
16507     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
16508     Value *And = Builder.CreateAnd(Ops[3], llvm::ConstantInt::get(Int8Ty, 1));
16509     return EmitX86Select(*this, And, Call, Ops[0]);
16510   }
16511   case X86::BI__builtin_ia32_vfcmaddcsh_round_mask3:
16512     IsConjFMA = true;
16513     [[fallthrough]];
16514   case X86::BI__builtin_ia32_vfmaddcsh_round_mask3: {
16515     Intrinsic::ID IID = IsConjFMA ? Intrinsic::x86_avx512fp16_mask_vfcmadd_csh
16516                                   : Intrinsic::x86_avx512fp16_mask_vfmadd_csh;
16517     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
16518     static constexpr int Mask[] = {0, 5, 6, 7};
16519     return Builder.CreateShuffleVector(Call, Ops[2], Mask);
16520   }
16521   case X86::BI__builtin_ia32_prefetchi:
16522     return Builder.CreateCall(
16523         CGM.getIntrinsic(Intrinsic::prefetch, Ops[0]->getType()),
16524         {Ops[0], llvm::ConstantInt::get(Int32Ty, 0), Ops[1],
16525          llvm::ConstantInt::get(Int32Ty, 0)});
16526   }
16527 }
16528 
16529 Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
16530                                            const CallExpr *E) {
16531   // Do not emit the builtin arguments in the arguments of a function call,
16532   // because the evaluation order of function arguments is not specified in C++.
16533   // This is important when testing to ensure the arguments are emitted in the
16534   // same order every time. Eg:
16535   // Instead of:
16536   //   return Builder.CreateFDiv(EmitScalarExpr(E->getArg(0)),
16537   //                             EmitScalarExpr(E->getArg(1)), "swdiv");
16538   // Use:
16539   //   Value *Op0 = EmitScalarExpr(E->getArg(0));
16540   //   Value *Op1 = EmitScalarExpr(E->getArg(1));
16541   //   return Builder.CreateFDiv(Op0, Op1, "swdiv")
16542 
16543   Intrinsic::ID ID = Intrinsic::not_intrinsic;
16544 
16545   switch (BuiltinID) {
16546   default: return nullptr;
16547 
16548   // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
16549   // call __builtin_readcyclecounter.
16550   case PPC::BI__builtin_ppc_get_timebase:
16551     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
16552 
16553   // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
16554   case PPC::BI__builtin_altivec_lvx:
16555   case PPC::BI__builtin_altivec_lvxl:
16556   case PPC::BI__builtin_altivec_lvebx:
16557   case PPC::BI__builtin_altivec_lvehx:
16558   case PPC::BI__builtin_altivec_lvewx:
16559   case PPC::BI__builtin_altivec_lvsl:
16560   case PPC::BI__builtin_altivec_lvsr:
16561   case PPC::BI__builtin_vsx_lxvd2x:
16562   case PPC::BI__builtin_vsx_lxvw4x:
16563   case PPC::BI__builtin_vsx_lxvd2x_be:
16564   case PPC::BI__builtin_vsx_lxvw4x_be:
16565   case PPC::BI__builtin_vsx_lxvl:
16566   case PPC::BI__builtin_vsx_lxvll:
16567   {
16568     SmallVector<Value *, 2> Ops;
16569     Ops.push_back(EmitScalarExpr(E->getArg(0)));
16570     Ops.push_back(EmitScalarExpr(E->getArg(1)));
16571     if (!(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
16572           BuiltinID == PPC::BI__builtin_vsx_lxvll)) {
16573       Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]);
16574       Ops.pop_back();
16575     }
16576 
16577     switch (BuiltinID) {
16578     default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
16579     case PPC::BI__builtin_altivec_lvx:
16580       ID = Intrinsic::ppc_altivec_lvx;
16581       break;
16582     case PPC::BI__builtin_altivec_lvxl:
16583       ID = Intrinsic::ppc_altivec_lvxl;
16584       break;
16585     case PPC::BI__builtin_altivec_lvebx:
16586       ID = Intrinsic::ppc_altivec_lvebx;
16587       break;
16588     case PPC::BI__builtin_altivec_lvehx:
16589       ID = Intrinsic::ppc_altivec_lvehx;
16590       break;
16591     case PPC::BI__builtin_altivec_lvewx:
16592       ID = Intrinsic::ppc_altivec_lvewx;
16593       break;
16594     case PPC::BI__builtin_altivec_lvsl:
16595       ID = Intrinsic::ppc_altivec_lvsl;
16596       break;
16597     case PPC::BI__builtin_altivec_lvsr:
16598       ID = Intrinsic::ppc_altivec_lvsr;
16599       break;
16600     case PPC::BI__builtin_vsx_lxvd2x:
16601       ID = Intrinsic::ppc_vsx_lxvd2x;
16602       break;
16603     case PPC::BI__builtin_vsx_lxvw4x:
16604       ID = Intrinsic::ppc_vsx_lxvw4x;
16605       break;
16606     case PPC::BI__builtin_vsx_lxvd2x_be:
16607       ID = Intrinsic::ppc_vsx_lxvd2x_be;
16608       break;
16609     case PPC::BI__builtin_vsx_lxvw4x_be:
16610       ID = Intrinsic::ppc_vsx_lxvw4x_be;
16611       break;
16612     case PPC::BI__builtin_vsx_lxvl:
16613       ID = Intrinsic::ppc_vsx_lxvl;
16614       break;
16615     case PPC::BI__builtin_vsx_lxvll:
16616       ID = Intrinsic::ppc_vsx_lxvll;
16617       break;
16618     }
16619     llvm::Function *F = CGM.getIntrinsic(ID);
16620     return Builder.CreateCall(F, Ops, "");
16621   }
16622 
16623   // vec_st, vec_xst_be
16624   case PPC::BI__builtin_altivec_stvx:
16625   case PPC::BI__builtin_altivec_stvxl:
16626   case PPC::BI__builtin_altivec_stvebx:
16627   case PPC::BI__builtin_altivec_stvehx:
16628   case PPC::BI__builtin_altivec_stvewx:
16629   case PPC::BI__builtin_vsx_stxvd2x:
16630   case PPC::BI__builtin_vsx_stxvw4x:
16631   case PPC::BI__builtin_vsx_stxvd2x_be:
16632   case PPC::BI__builtin_vsx_stxvw4x_be:
16633   case PPC::BI__builtin_vsx_stxvl:
16634   case PPC::BI__builtin_vsx_stxvll:
16635   {
16636     SmallVector<Value *, 3> Ops;
16637     Ops.push_back(EmitScalarExpr(E->getArg(0)));
16638     Ops.push_back(EmitScalarExpr(E->getArg(1)));
16639     Ops.push_back(EmitScalarExpr(E->getArg(2)));
16640     if (!(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
16641           BuiltinID == PPC::BI__builtin_vsx_stxvll)) {
16642       Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]);
16643       Ops.pop_back();
16644     }
16645 
16646     switch (BuiltinID) {
16647     default: llvm_unreachable("Unsupported st intrinsic!");
16648     case PPC::BI__builtin_altivec_stvx:
16649       ID = Intrinsic::ppc_altivec_stvx;
16650       break;
16651     case PPC::BI__builtin_altivec_stvxl:
16652       ID = Intrinsic::ppc_altivec_stvxl;
16653       break;
16654     case PPC::BI__builtin_altivec_stvebx:
16655       ID = Intrinsic::ppc_altivec_stvebx;
16656       break;
16657     case PPC::BI__builtin_altivec_stvehx:
16658       ID = Intrinsic::ppc_altivec_stvehx;
16659       break;
16660     case PPC::BI__builtin_altivec_stvewx:
16661       ID = Intrinsic::ppc_altivec_stvewx;
16662       break;
16663     case PPC::BI__builtin_vsx_stxvd2x:
16664       ID = Intrinsic::ppc_vsx_stxvd2x;
16665       break;
16666     case PPC::BI__builtin_vsx_stxvw4x:
16667       ID = Intrinsic::ppc_vsx_stxvw4x;
16668       break;
16669     case PPC::BI__builtin_vsx_stxvd2x_be:
16670       ID = Intrinsic::ppc_vsx_stxvd2x_be;
16671       break;
16672     case PPC::BI__builtin_vsx_stxvw4x_be:
16673       ID = Intrinsic::ppc_vsx_stxvw4x_be;
16674       break;
16675     case PPC::BI__builtin_vsx_stxvl:
16676       ID = Intrinsic::ppc_vsx_stxvl;
16677       break;
16678     case PPC::BI__builtin_vsx_stxvll:
16679       ID = Intrinsic::ppc_vsx_stxvll;
16680       break;
16681     }
16682     llvm::Function *F = CGM.getIntrinsic(ID);
16683     return Builder.CreateCall(F, Ops, "");
16684   }
16685   case PPC::BI__builtin_vsx_ldrmb: {
16686     // Essentially boils down to performing an unaligned VMX load sequence so
16687     // as to avoid crossing a page boundary and then shuffling the elements
16688     // into the right side of the vector register.
16689     Value *Op0 = EmitScalarExpr(E->getArg(0));
16690     Value *Op1 = EmitScalarExpr(E->getArg(1));
16691     int64_t NumBytes = cast<ConstantInt>(Op1)->getZExtValue();
16692     llvm::Type *ResTy = ConvertType(E->getType());
16693     bool IsLE = getTarget().isLittleEndian();
16694 
16695     // If the user wants the entire vector, just load the entire vector.
16696     if (NumBytes == 16) {
16697       Value *LD =
16698           Builder.CreateLoad(Address(Op0, ResTy, CharUnits::fromQuantity(1)));
16699       if (!IsLE)
16700         return LD;
16701 
16702       // Reverse the bytes on LE.
16703       SmallVector<int, 16> RevMask;
16704       for (int Idx = 0; Idx < 16; Idx++)
16705         RevMask.push_back(15 - Idx);
16706       return Builder.CreateShuffleVector(LD, LD, RevMask);
16707     }
16708 
16709     llvm::Function *Lvx = CGM.getIntrinsic(Intrinsic::ppc_altivec_lvx);
16710     llvm::Function *Lvs = CGM.getIntrinsic(IsLE ? Intrinsic::ppc_altivec_lvsr
16711                                                 : Intrinsic::ppc_altivec_lvsl);
16712     llvm::Function *Vperm = CGM.getIntrinsic(Intrinsic::ppc_altivec_vperm);
16713     Value *HiMem = Builder.CreateGEP(
16714         Int8Ty, Op0, ConstantInt::get(Op1->getType(), NumBytes - 1));
16715     Value *LoLd = Builder.CreateCall(Lvx, Op0, "ld.lo");
16716     Value *HiLd = Builder.CreateCall(Lvx, HiMem, "ld.hi");
16717     Value *Mask1 = Builder.CreateCall(Lvs, Op0, "mask1");
16718 
16719     Op0 = IsLE ? HiLd : LoLd;
16720     Op1 = IsLE ? LoLd : HiLd;
16721     Value *AllElts = Builder.CreateCall(Vperm, {Op0, Op1, Mask1}, "shuffle1");
16722     Constant *Zero = llvm::Constant::getNullValue(IsLE ? ResTy : AllElts->getType());
16723 
16724     if (IsLE) {
16725       SmallVector<int, 16> Consts;
16726       for (int Idx = 0; Idx < 16; Idx++) {
16727         int Val = (NumBytes - Idx - 1 >= 0) ? (NumBytes - Idx - 1)
16728                                             : 16 - (NumBytes - Idx);
16729         Consts.push_back(Val);
16730       }
16731       return Builder.CreateShuffleVector(Builder.CreateBitCast(AllElts, ResTy),
16732                                          Zero, Consts);
16733     }
16734     SmallVector<Constant *, 16> Consts;
16735     for (int Idx = 0; Idx < 16; Idx++)
16736       Consts.push_back(Builder.getInt8(NumBytes + Idx));
16737     Value *Mask2 = ConstantVector::get(Consts);
16738     return Builder.CreateBitCast(
16739         Builder.CreateCall(Vperm, {Zero, AllElts, Mask2}, "shuffle2"), ResTy);
16740   }
16741   case PPC::BI__builtin_vsx_strmb: {
16742     Value *Op0 = EmitScalarExpr(E->getArg(0));
16743     Value *Op1 = EmitScalarExpr(E->getArg(1));
16744     Value *Op2 = EmitScalarExpr(E->getArg(2));
16745     int64_t NumBytes = cast<ConstantInt>(Op1)->getZExtValue();
16746     bool IsLE = getTarget().isLittleEndian();
16747     auto StoreSubVec = [&](unsigned Width, unsigned Offset, unsigned EltNo) {
16748       // Storing the whole vector, simply store it on BE and reverse bytes and
16749       // store on LE.
16750       if (Width == 16) {
16751         Value *StVec = Op2;
16752         if (IsLE) {
16753           SmallVector<int, 16> RevMask;
16754           for (int Idx = 0; Idx < 16; Idx++)
16755             RevMask.push_back(15 - Idx);
16756           StVec = Builder.CreateShuffleVector(Op2, Op2, RevMask);
16757         }
16758         return Builder.CreateStore(
16759             StVec, Address(Op0, Op2->getType(), CharUnits::fromQuantity(1)));
16760       }
16761       auto *ConvTy = Int64Ty;
16762       unsigned NumElts = 0;
16763       switch (Width) {
16764       default:
16765         llvm_unreachable("width for stores must be a power of 2");
16766       case 8:
16767         ConvTy = Int64Ty;
16768         NumElts = 2;
16769         break;
16770       case 4:
16771         ConvTy = Int32Ty;
16772         NumElts = 4;
16773         break;
16774       case 2:
16775         ConvTy = Int16Ty;
16776         NumElts = 8;
16777         break;
16778       case 1:
16779         ConvTy = Int8Ty;
16780         NumElts = 16;
16781         break;
16782       }
16783       Value *Vec = Builder.CreateBitCast(
16784           Op2, llvm::FixedVectorType::get(ConvTy, NumElts));
16785       Value *Ptr =
16786           Builder.CreateGEP(Int8Ty, Op0, ConstantInt::get(Int64Ty, Offset));
16787       Value *Elt = Builder.CreateExtractElement(Vec, EltNo);
16788       if (IsLE && Width > 1) {
16789         Function *F = CGM.getIntrinsic(Intrinsic::bswap, ConvTy);
16790         Elt = Builder.CreateCall(F, Elt);
16791       }
16792       return Builder.CreateStore(
16793           Elt, Address(Ptr, ConvTy, CharUnits::fromQuantity(1)));
16794     };
16795     unsigned Stored = 0;
16796     unsigned RemainingBytes = NumBytes;
16797     Value *Result;
16798     if (NumBytes == 16)
16799       return StoreSubVec(16, 0, 0);
16800     if (NumBytes >= 8) {
16801       Result = StoreSubVec(8, NumBytes - 8, IsLE ? 0 : 1);
16802       RemainingBytes -= 8;
16803       Stored += 8;
16804     }
16805     if (RemainingBytes >= 4) {
16806       Result = StoreSubVec(4, NumBytes - Stored - 4,
16807                            IsLE ? (Stored >> 2) : 3 - (Stored >> 2));
16808       RemainingBytes -= 4;
16809       Stored += 4;
16810     }
16811     if (RemainingBytes >= 2) {
16812       Result = StoreSubVec(2, NumBytes - Stored - 2,
16813                            IsLE ? (Stored >> 1) : 7 - (Stored >> 1));
16814       RemainingBytes -= 2;
16815       Stored += 2;
16816     }
16817     if (RemainingBytes)
16818       Result =
16819           StoreSubVec(1, NumBytes - Stored - 1, IsLE ? Stored : 15 - Stored);
16820     return Result;
16821   }
16822   // Square root
16823   case PPC::BI__builtin_vsx_xvsqrtsp:
16824   case PPC::BI__builtin_vsx_xvsqrtdp: {
16825     llvm::Type *ResultType = ConvertType(E->getType());
16826     Value *X = EmitScalarExpr(E->getArg(0));
16827     if (Builder.getIsFPConstrained()) {
16828       llvm::Function *F = CGM.getIntrinsic(
16829           Intrinsic::experimental_constrained_sqrt, ResultType);
16830       return Builder.CreateConstrainedFPCall(F, X);
16831     } else {
16832       llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
16833       return Builder.CreateCall(F, X);
16834     }
16835   }
16836   // Count leading zeros
16837   case PPC::BI__builtin_altivec_vclzb:
16838   case PPC::BI__builtin_altivec_vclzh:
16839   case PPC::BI__builtin_altivec_vclzw:
16840   case PPC::BI__builtin_altivec_vclzd: {
16841     llvm::Type *ResultType = ConvertType(E->getType());
16842     Value *X = EmitScalarExpr(E->getArg(0));
16843     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
16844     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
16845     return Builder.CreateCall(F, {X, Undef});
16846   }
16847   case PPC::BI__builtin_altivec_vctzb:
16848   case PPC::BI__builtin_altivec_vctzh:
16849   case PPC::BI__builtin_altivec_vctzw:
16850   case PPC::BI__builtin_altivec_vctzd: {
16851     llvm::Type *ResultType = ConvertType(E->getType());
16852     Value *X = EmitScalarExpr(E->getArg(0));
16853     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
16854     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
16855     return Builder.CreateCall(F, {X, Undef});
16856   }
16857   case PPC::BI__builtin_altivec_vinsd:
16858   case PPC::BI__builtin_altivec_vinsw:
16859   case PPC::BI__builtin_altivec_vinsd_elt:
16860   case PPC::BI__builtin_altivec_vinsw_elt: {
16861     llvm::Type *ResultType = ConvertType(E->getType());
16862     Value *Op0 = EmitScalarExpr(E->getArg(0));
16863     Value *Op1 = EmitScalarExpr(E->getArg(1));
16864     Value *Op2 = EmitScalarExpr(E->getArg(2));
16865 
16866     bool IsUnaligned = (BuiltinID == PPC::BI__builtin_altivec_vinsw ||
16867                         BuiltinID == PPC::BI__builtin_altivec_vinsd);
16868 
16869     bool Is32bit = (BuiltinID == PPC::BI__builtin_altivec_vinsw ||
16870                     BuiltinID == PPC::BI__builtin_altivec_vinsw_elt);
16871 
16872     // The third argument must be a compile time constant.
16873     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
16874     assert(ArgCI &&
16875            "Third Arg to vinsw/vinsd intrinsic must be a constant integer!");
16876 
16877     // Valid value for the third argument is dependent on the input type and
16878     // builtin called.
16879     int ValidMaxValue = 0;
16880     if (IsUnaligned)
16881       ValidMaxValue = (Is32bit) ? 12 : 8;
16882     else
16883       ValidMaxValue = (Is32bit) ? 3 : 1;
16884 
16885     // Get value of third argument.
16886     int64_t ConstArg = ArgCI->getSExtValue();
16887 
16888     // Compose range checking error message.
16889     std::string RangeErrMsg = IsUnaligned ? "byte" : "element";
16890     RangeErrMsg += " number " + llvm::to_string(ConstArg);
16891     RangeErrMsg += " is outside of the valid range [0, ";
16892     RangeErrMsg += llvm::to_string(ValidMaxValue) + "]";
16893 
16894     // Issue error if third argument is not within the valid range.
16895     if (ConstArg < 0 || ConstArg > ValidMaxValue)
16896       CGM.Error(E->getExprLoc(), RangeErrMsg);
16897 
16898     // Input to vec_replace_elt is an element index, convert to byte index.
16899     if (!IsUnaligned) {
16900       ConstArg *= Is32bit ? 4 : 8;
16901       // Fix the constant according to endianess.
16902       if (getTarget().isLittleEndian())
16903         ConstArg = (Is32bit ? 12 : 8) - ConstArg;
16904     }
16905 
16906     ID = Is32bit ? Intrinsic::ppc_altivec_vinsw : Intrinsic::ppc_altivec_vinsd;
16907     Op2 = ConstantInt::getSigned(Int32Ty, ConstArg);
16908     // Casting input to vector int as per intrinsic definition.
16909     Op0 =
16910         Is32bit
16911             ? Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4))
16912             : Builder.CreateBitCast(Op0,
16913                                     llvm::FixedVectorType::get(Int64Ty, 2));
16914     return Builder.CreateBitCast(
16915         Builder.CreateCall(CGM.getIntrinsic(ID), {Op0, Op1, Op2}), ResultType);
16916   }
16917   case PPC::BI__builtin_altivec_vpopcntb:
16918   case PPC::BI__builtin_altivec_vpopcnth:
16919   case PPC::BI__builtin_altivec_vpopcntw:
16920   case PPC::BI__builtin_altivec_vpopcntd: {
16921     llvm::Type *ResultType = ConvertType(E->getType());
16922     Value *X = EmitScalarExpr(E->getArg(0));
16923     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
16924     return Builder.CreateCall(F, X);
16925   }
16926   case PPC::BI__builtin_altivec_vadduqm:
16927   case PPC::BI__builtin_altivec_vsubuqm: {
16928     Value *Op0 = EmitScalarExpr(E->getArg(0));
16929     Value *Op1 = EmitScalarExpr(E->getArg(1));
16930     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
16931     Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int128Ty, 1));
16932     Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int128Ty, 1));
16933     if (BuiltinID == PPC::BI__builtin_altivec_vadduqm)
16934       return Builder.CreateAdd(Op0, Op1, "vadduqm");
16935     else
16936       return Builder.CreateSub(Op0, Op1, "vsubuqm");
16937   }
16938   case PPC::BI__builtin_altivec_vaddcuq_c:
16939   case PPC::BI__builtin_altivec_vsubcuq_c: {
16940     SmallVector<Value *, 2> Ops;
16941     Value *Op0 = EmitScalarExpr(E->getArg(0));
16942     Value *Op1 = EmitScalarExpr(E->getArg(1));
16943     llvm::Type *V1I128Ty = llvm::FixedVectorType::get(
16944         llvm::IntegerType::get(getLLVMContext(), 128), 1);
16945     Ops.push_back(Builder.CreateBitCast(Op0, V1I128Ty));
16946     Ops.push_back(Builder.CreateBitCast(Op1, V1I128Ty));
16947     ID = (BuiltinID == PPC::BI__builtin_altivec_vaddcuq_c)
16948              ? Intrinsic::ppc_altivec_vaddcuq
16949              : Intrinsic::ppc_altivec_vsubcuq;
16950     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops, "");
16951   }
16952   case PPC::BI__builtin_altivec_vaddeuqm_c:
16953   case PPC::BI__builtin_altivec_vaddecuq_c:
16954   case PPC::BI__builtin_altivec_vsubeuqm_c:
16955   case PPC::BI__builtin_altivec_vsubecuq_c: {
16956     SmallVector<Value *, 3> Ops;
16957     Value *Op0 = EmitScalarExpr(E->getArg(0));
16958     Value *Op1 = EmitScalarExpr(E->getArg(1));
16959     Value *Op2 = EmitScalarExpr(E->getArg(2));
16960     llvm::Type *V1I128Ty = llvm::FixedVectorType::get(
16961         llvm::IntegerType::get(getLLVMContext(), 128), 1);
16962     Ops.push_back(Builder.CreateBitCast(Op0, V1I128Ty));
16963     Ops.push_back(Builder.CreateBitCast(Op1, V1I128Ty));
16964     Ops.push_back(Builder.CreateBitCast(Op2, V1I128Ty));
16965     switch (BuiltinID) {
16966     default:
16967       llvm_unreachable("Unsupported intrinsic!");
16968     case PPC::BI__builtin_altivec_vaddeuqm_c:
16969       ID = Intrinsic::ppc_altivec_vaddeuqm;
16970       break;
16971     case PPC::BI__builtin_altivec_vaddecuq_c:
16972       ID = Intrinsic::ppc_altivec_vaddecuq;
16973       break;
16974     case PPC::BI__builtin_altivec_vsubeuqm_c:
16975       ID = Intrinsic::ppc_altivec_vsubeuqm;
16976       break;
16977     case PPC::BI__builtin_altivec_vsubecuq_c:
16978       ID = Intrinsic::ppc_altivec_vsubecuq;
16979       break;
16980     }
16981     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops, "");
16982   }
16983   // Rotate and insert under mask operation.
16984   // __rldimi(rs, is, shift, mask)
16985   // (rotl64(rs, shift) & mask) | (is & ~mask)
16986   // __rlwimi(rs, is, shift, mask)
16987   // (rotl(rs, shift) & mask) | (is & ~mask)
16988   case PPC::BI__builtin_ppc_rldimi:
16989   case PPC::BI__builtin_ppc_rlwimi: {
16990     Value *Op0 = EmitScalarExpr(E->getArg(0));
16991     Value *Op1 = EmitScalarExpr(E->getArg(1));
16992     Value *Op2 = EmitScalarExpr(E->getArg(2));
16993     Value *Op3 = EmitScalarExpr(E->getArg(3));
16994     llvm::Type *Ty = Op0->getType();
16995     Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
16996     if (BuiltinID == PPC::BI__builtin_ppc_rldimi)
16997       Op2 = Builder.CreateZExt(Op2, Int64Ty);
16998     Value *Shift = Builder.CreateCall(F, {Op0, Op0, Op2});
16999     Value *X = Builder.CreateAnd(Shift, Op3);
17000     Value *Y = Builder.CreateAnd(Op1, Builder.CreateNot(Op3));
17001     return Builder.CreateOr(X, Y);
17002   }
17003   // Rotate and insert under mask operation.
17004   // __rlwnm(rs, shift, mask)
17005   // rotl(rs, shift) & mask
17006   case PPC::BI__builtin_ppc_rlwnm: {
17007     Value *Op0 = EmitScalarExpr(E->getArg(0));
17008     Value *Op1 = EmitScalarExpr(E->getArg(1));
17009     Value *Op2 = EmitScalarExpr(E->getArg(2));
17010     llvm::Type *Ty = Op0->getType();
17011     Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
17012     Value *Shift = Builder.CreateCall(F, {Op0, Op0, Op1});
17013     return Builder.CreateAnd(Shift, Op2);
17014   }
17015   case PPC::BI__builtin_ppc_poppar4:
17016   case PPC::BI__builtin_ppc_poppar8: {
17017     Value *Op0 = EmitScalarExpr(E->getArg(0));
17018     llvm::Type *ArgType = Op0->getType();
17019     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
17020     Value *Tmp = Builder.CreateCall(F, Op0);
17021 
17022     llvm::Type *ResultType = ConvertType(E->getType());
17023     Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
17024     if (Result->getType() != ResultType)
17025       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
17026                                      "cast");
17027     return Result;
17028   }
17029   case PPC::BI__builtin_ppc_cmpb: {
17030     Value *Op0 = EmitScalarExpr(E->getArg(0));
17031     Value *Op1 = EmitScalarExpr(E->getArg(1));
17032     if (getTarget().getTriple().isPPC64()) {
17033       Function *F =
17034           CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int64Ty, Int64Ty, Int64Ty});
17035       return Builder.CreateCall(F, {Op0, Op1}, "cmpb");
17036     }
17037     // For 32 bit, emit the code as below:
17038     // %conv = trunc i64 %a to i32
17039     // %conv1 = trunc i64 %b to i32
17040     // %shr = lshr i64 %a, 32
17041     // %conv2 = trunc i64 %shr to i32
17042     // %shr3 = lshr i64 %b, 32
17043     // %conv4 = trunc i64 %shr3 to i32
17044     // %0 = tail call i32 @llvm.ppc.cmpb32(i32 %conv, i32 %conv1)
17045     // %conv5 = zext i32 %0 to i64
17046     // %1 = tail call i32 @llvm.ppc.cmpb32(i32 %conv2, i32 %conv4)
17047     // %conv614 = zext i32 %1 to i64
17048     // %shl = shl nuw i64 %conv614, 32
17049     // %or = or i64 %shl, %conv5
17050     // ret i64 %or
17051     Function *F =
17052         CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int32Ty, Int32Ty, Int32Ty});
17053     Value *ArgOneLo = Builder.CreateTrunc(Op0, Int32Ty);
17054     Value *ArgTwoLo = Builder.CreateTrunc(Op1, Int32Ty);
17055     Constant *ShiftAmt = ConstantInt::get(Int64Ty, 32);
17056     Value *ArgOneHi =
17057         Builder.CreateTrunc(Builder.CreateLShr(Op0, ShiftAmt), Int32Ty);
17058     Value *ArgTwoHi =
17059         Builder.CreateTrunc(Builder.CreateLShr(Op1, ShiftAmt), Int32Ty);
17060     Value *ResLo = Builder.CreateZExt(
17061         Builder.CreateCall(F, {ArgOneLo, ArgTwoLo}, "cmpb"), Int64Ty);
17062     Value *ResHiShift = Builder.CreateZExt(
17063         Builder.CreateCall(F, {ArgOneHi, ArgTwoHi}, "cmpb"), Int64Ty);
17064     Value *ResHi = Builder.CreateShl(ResHiShift, ShiftAmt);
17065     return Builder.CreateOr(ResLo, ResHi);
17066   }
17067   // Copy sign
17068   case PPC::BI__builtin_vsx_xvcpsgnsp:
17069   case PPC::BI__builtin_vsx_xvcpsgndp: {
17070     llvm::Type *ResultType = ConvertType(E->getType());
17071     Value *X = EmitScalarExpr(E->getArg(0));
17072     Value *Y = EmitScalarExpr(E->getArg(1));
17073     ID = Intrinsic::copysign;
17074     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
17075     return Builder.CreateCall(F, {X, Y});
17076   }
17077   // Rounding/truncation
17078   case PPC::BI__builtin_vsx_xvrspip:
17079   case PPC::BI__builtin_vsx_xvrdpip:
17080   case PPC::BI__builtin_vsx_xvrdpim:
17081   case PPC::BI__builtin_vsx_xvrspim:
17082   case PPC::BI__builtin_vsx_xvrdpi:
17083   case PPC::BI__builtin_vsx_xvrspi:
17084   case PPC::BI__builtin_vsx_xvrdpic:
17085   case PPC::BI__builtin_vsx_xvrspic:
17086   case PPC::BI__builtin_vsx_xvrdpiz:
17087   case PPC::BI__builtin_vsx_xvrspiz: {
17088     llvm::Type *ResultType = ConvertType(E->getType());
17089     Value *X = EmitScalarExpr(E->getArg(0));
17090     if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
17091         BuiltinID == PPC::BI__builtin_vsx_xvrspim)
17092       ID = Builder.getIsFPConstrained()
17093                ? Intrinsic::experimental_constrained_floor
17094                : Intrinsic::floor;
17095     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
17096              BuiltinID == PPC::BI__builtin_vsx_xvrspi)
17097       ID = Builder.getIsFPConstrained()
17098                ? Intrinsic::experimental_constrained_round
17099                : Intrinsic::round;
17100     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
17101              BuiltinID == PPC::BI__builtin_vsx_xvrspic)
17102       ID = Builder.getIsFPConstrained()
17103                ? Intrinsic::experimental_constrained_rint
17104                : Intrinsic::rint;
17105     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
17106              BuiltinID == PPC::BI__builtin_vsx_xvrspip)
17107       ID = Builder.getIsFPConstrained()
17108                ? Intrinsic::experimental_constrained_ceil
17109                : Intrinsic::ceil;
17110     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
17111              BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
17112       ID = Builder.getIsFPConstrained()
17113                ? Intrinsic::experimental_constrained_trunc
17114                : Intrinsic::trunc;
17115     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
17116     return Builder.getIsFPConstrained() ? Builder.CreateConstrainedFPCall(F, X)
17117                                         : Builder.CreateCall(F, X);
17118   }
17119 
17120   // Absolute value
17121   case PPC::BI__builtin_vsx_xvabsdp:
17122   case PPC::BI__builtin_vsx_xvabssp: {
17123     llvm::Type *ResultType = ConvertType(E->getType());
17124     Value *X = EmitScalarExpr(E->getArg(0));
17125     llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
17126     return Builder.CreateCall(F, X);
17127   }
17128 
17129   // Fastmath by default
17130   case PPC::BI__builtin_ppc_recipdivf:
17131   case PPC::BI__builtin_ppc_recipdivd:
17132   case PPC::BI__builtin_ppc_rsqrtf:
17133   case PPC::BI__builtin_ppc_rsqrtd: {
17134     FastMathFlags FMF = Builder.getFastMathFlags();
17135     Builder.getFastMathFlags().setFast();
17136     llvm::Type *ResultType = ConvertType(E->getType());
17137     Value *X = EmitScalarExpr(E->getArg(0));
17138 
17139     if (BuiltinID == PPC::BI__builtin_ppc_recipdivf ||
17140         BuiltinID == PPC::BI__builtin_ppc_recipdivd) {
17141       Value *Y = EmitScalarExpr(E->getArg(1));
17142       Value *FDiv = Builder.CreateFDiv(X, Y, "recipdiv");
17143       Builder.getFastMathFlags() &= (FMF);
17144       return FDiv;
17145     }
17146     auto *One = ConstantFP::get(ResultType, 1.0);
17147     llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
17148     Value *FDiv = Builder.CreateFDiv(One, Builder.CreateCall(F, X), "rsqrt");
17149     Builder.getFastMathFlags() &= (FMF);
17150     return FDiv;
17151   }
17152   case PPC::BI__builtin_ppc_alignx: {
17153     Value *Op0 = EmitScalarExpr(E->getArg(0));
17154     Value *Op1 = EmitScalarExpr(E->getArg(1));
17155     ConstantInt *AlignmentCI = cast<ConstantInt>(Op0);
17156     if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
17157       AlignmentCI = ConstantInt::get(AlignmentCI->getIntegerType(),
17158                                      llvm::Value::MaximumAlignment);
17159 
17160     emitAlignmentAssumption(Op1, E->getArg(1),
17161                             /*The expr loc is sufficient.*/ SourceLocation(),
17162                             AlignmentCI, nullptr);
17163     return Op1;
17164   }
17165   case PPC::BI__builtin_ppc_rdlam: {
17166     Value *Op0 = EmitScalarExpr(E->getArg(0));
17167     Value *Op1 = EmitScalarExpr(E->getArg(1));
17168     Value *Op2 = EmitScalarExpr(E->getArg(2));
17169     llvm::Type *Ty = Op0->getType();
17170     Value *ShiftAmt = Builder.CreateIntCast(Op1, Ty, false);
17171     Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
17172     Value *Rotate = Builder.CreateCall(F, {Op0, Op0, ShiftAmt});
17173     return Builder.CreateAnd(Rotate, Op2);
17174   }
17175   case PPC::BI__builtin_ppc_load2r: {
17176     Function *F = CGM.getIntrinsic(Intrinsic::ppc_load2r);
17177     Value *Op0 = EmitScalarExpr(E->getArg(0));
17178     Value *LoadIntrinsic = Builder.CreateCall(F, {Op0});
17179     return Builder.CreateTrunc(LoadIntrinsic, Int16Ty);
17180   }
17181   // FMA variations
17182   case PPC::BI__builtin_ppc_fnmsub:
17183   case PPC::BI__builtin_ppc_fnmsubs:
17184   case PPC::BI__builtin_vsx_xvmaddadp:
17185   case PPC::BI__builtin_vsx_xvmaddasp:
17186   case PPC::BI__builtin_vsx_xvnmaddadp:
17187   case PPC::BI__builtin_vsx_xvnmaddasp:
17188   case PPC::BI__builtin_vsx_xvmsubadp:
17189   case PPC::BI__builtin_vsx_xvmsubasp:
17190   case PPC::BI__builtin_vsx_xvnmsubadp:
17191   case PPC::BI__builtin_vsx_xvnmsubasp: {
17192     llvm::Type *ResultType = ConvertType(E->getType());
17193     Value *X = EmitScalarExpr(E->getArg(0));
17194     Value *Y = EmitScalarExpr(E->getArg(1));
17195     Value *Z = EmitScalarExpr(E->getArg(2));
17196     llvm::Function *F;
17197     if (Builder.getIsFPConstrained())
17198       F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
17199     else
17200       F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
17201     switch (BuiltinID) {
17202       case PPC::BI__builtin_vsx_xvmaddadp:
17203       case PPC::BI__builtin_vsx_xvmaddasp:
17204         if (Builder.getIsFPConstrained())
17205           return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
17206         else
17207           return Builder.CreateCall(F, {X, Y, Z});
17208       case PPC::BI__builtin_vsx_xvnmaddadp:
17209       case PPC::BI__builtin_vsx_xvnmaddasp:
17210         if (Builder.getIsFPConstrained())
17211           return Builder.CreateFNeg(
17212               Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg");
17213         else
17214           return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
17215       case PPC::BI__builtin_vsx_xvmsubadp:
17216       case PPC::BI__builtin_vsx_xvmsubasp:
17217         if (Builder.getIsFPConstrained())
17218           return Builder.CreateConstrainedFPCall(
17219               F, {X, Y, Builder.CreateFNeg(Z, "neg")});
17220         else
17221           return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
17222       case PPC::BI__builtin_ppc_fnmsub:
17223       case PPC::BI__builtin_ppc_fnmsubs:
17224       case PPC::BI__builtin_vsx_xvnmsubadp:
17225       case PPC::BI__builtin_vsx_xvnmsubasp:
17226         if (Builder.getIsFPConstrained())
17227           return Builder.CreateFNeg(
17228               Builder.CreateConstrainedFPCall(
17229                   F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
17230               "neg");
17231         else
17232           return Builder.CreateCall(
17233               CGM.getIntrinsic(Intrinsic::ppc_fnmsub, ResultType), {X, Y, Z});
17234       }
17235     llvm_unreachable("Unknown FMA operation");
17236     return nullptr; // Suppress no-return warning
17237   }
17238 
17239   case PPC::BI__builtin_vsx_insertword: {
17240     Value *Op0 = EmitScalarExpr(E->getArg(0));
17241     Value *Op1 = EmitScalarExpr(E->getArg(1));
17242     Value *Op2 = EmitScalarExpr(E->getArg(2));
17243     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
17244 
17245     // Third argument is a compile time constant int. It must be clamped to
17246     // to the range [0, 12].
17247     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
17248     assert(ArgCI &&
17249            "Third arg to xxinsertw intrinsic must be constant integer");
17250     const int64_t MaxIndex = 12;
17251     int64_t Index = std::clamp(ArgCI->getSExtValue(), (int64_t)0, MaxIndex);
17252 
17253     // The builtin semantics don't exactly match the xxinsertw instructions
17254     // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
17255     // word from the first argument, and inserts it in the second argument. The
17256     // instruction extracts the word from its second input register and inserts
17257     // it into its first input register, so swap the first and second arguments.
17258     std::swap(Op0, Op1);
17259 
17260     // Need to cast the second argument from a vector of unsigned int to a
17261     // vector of long long.
17262     Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int64Ty, 2));
17263 
17264     if (getTarget().isLittleEndian()) {
17265       // Reverse the double words in the vector we will extract from.
17266       Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2));
17267       Op0 = Builder.CreateShuffleVector(Op0, Op0, ArrayRef<int>{1, 0});
17268 
17269       // Reverse the index.
17270       Index = MaxIndex - Index;
17271     }
17272 
17273     // Intrinsic expects the first arg to be a vector of int.
17274     Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4));
17275     Op2 = ConstantInt::getSigned(Int32Ty, Index);
17276     return Builder.CreateCall(F, {Op0, Op1, Op2});
17277   }
17278 
17279   case PPC::BI__builtin_vsx_extractuword: {
17280     Value *Op0 = EmitScalarExpr(E->getArg(0));
17281     Value *Op1 = EmitScalarExpr(E->getArg(1));
17282     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
17283 
17284     // Intrinsic expects the first argument to be a vector of doublewords.
17285     Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2));
17286 
17287     // The second argument is a compile time constant int that needs to
17288     // be clamped to the range [0, 12].
17289     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op1);
17290     assert(ArgCI &&
17291            "Second Arg to xxextractuw intrinsic must be a constant integer!");
17292     const int64_t MaxIndex = 12;
17293     int64_t Index = std::clamp(ArgCI->getSExtValue(), (int64_t)0, MaxIndex);
17294 
17295     if (getTarget().isLittleEndian()) {
17296       // Reverse the index.
17297       Index = MaxIndex - Index;
17298       Op1 = ConstantInt::getSigned(Int32Ty, Index);
17299 
17300       // Emit the call, then reverse the double words of the results vector.
17301       Value *Call = Builder.CreateCall(F, {Op0, Op1});
17302 
17303       Value *ShuffleCall =
17304           Builder.CreateShuffleVector(Call, Call, ArrayRef<int>{1, 0});
17305       return ShuffleCall;
17306     } else {
17307       Op1 = ConstantInt::getSigned(Int32Ty, Index);
17308       return Builder.CreateCall(F, {Op0, Op1});
17309     }
17310   }
17311 
17312   case PPC::BI__builtin_vsx_xxpermdi: {
17313     Value *Op0 = EmitScalarExpr(E->getArg(0));
17314     Value *Op1 = EmitScalarExpr(E->getArg(1));
17315     Value *Op2 = EmitScalarExpr(E->getArg(2));
17316     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
17317     assert(ArgCI && "Third arg must be constant integer!");
17318 
17319     unsigned Index = ArgCI->getZExtValue();
17320     Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2));
17321     Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int64Ty, 2));
17322 
17323     // Account for endianness by treating this as just a shuffle. So we use the
17324     // same indices for both LE and BE in order to produce expected results in
17325     // both cases.
17326     int ElemIdx0 = (Index & 2) >> 1;
17327     int ElemIdx1 = 2 + (Index & 1);
17328 
17329     int ShuffleElts[2] = {ElemIdx0, ElemIdx1};
17330     Value *ShuffleCall = Builder.CreateShuffleVector(Op0, Op1, ShuffleElts);
17331     QualType BIRetType = E->getType();
17332     auto RetTy = ConvertType(BIRetType);
17333     return Builder.CreateBitCast(ShuffleCall, RetTy);
17334   }
17335 
17336   case PPC::BI__builtin_vsx_xxsldwi: {
17337     Value *Op0 = EmitScalarExpr(E->getArg(0));
17338     Value *Op1 = EmitScalarExpr(E->getArg(1));
17339     Value *Op2 = EmitScalarExpr(E->getArg(2));
17340     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
17341     assert(ArgCI && "Third argument must be a compile time constant");
17342     unsigned Index = ArgCI->getZExtValue() & 0x3;
17343     Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4));
17344     Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int32Ty, 4));
17345 
17346     // Create a shuffle mask
17347     int ElemIdx0;
17348     int ElemIdx1;
17349     int ElemIdx2;
17350     int ElemIdx3;
17351     if (getTarget().isLittleEndian()) {
17352       // Little endian element N comes from element 8+N-Index of the
17353       // concatenated wide vector (of course, using modulo arithmetic on
17354       // the total number of elements).
17355       ElemIdx0 = (8 - Index) % 8;
17356       ElemIdx1 = (9 - Index) % 8;
17357       ElemIdx2 = (10 - Index) % 8;
17358       ElemIdx3 = (11 - Index) % 8;
17359     } else {
17360       // Big endian ElemIdx<N> = Index + N
17361       ElemIdx0 = Index;
17362       ElemIdx1 = Index + 1;
17363       ElemIdx2 = Index + 2;
17364       ElemIdx3 = Index + 3;
17365     }
17366 
17367     int ShuffleElts[4] = {ElemIdx0, ElemIdx1, ElemIdx2, ElemIdx3};
17368     Value *ShuffleCall = Builder.CreateShuffleVector(Op0, Op1, ShuffleElts);
17369     QualType BIRetType = E->getType();
17370     auto RetTy = ConvertType(BIRetType);
17371     return Builder.CreateBitCast(ShuffleCall, RetTy);
17372   }
17373 
17374   case PPC::BI__builtin_pack_vector_int128: {
17375     Value *Op0 = EmitScalarExpr(E->getArg(0));
17376     Value *Op1 = EmitScalarExpr(E->getArg(1));
17377     bool isLittleEndian = getTarget().isLittleEndian();
17378     Value *PoisonValue =
17379         llvm::PoisonValue::get(llvm::FixedVectorType::get(Op0->getType(), 2));
17380     Value *Res = Builder.CreateInsertElement(
17381         PoisonValue, Op0, (uint64_t)(isLittleEndian ? 1 : 0));
17382     Res = Builder.CreateInsertElement(Res, Op1,
17383                                       (uint64_t)(isLittleEndian ? 0 : 1));
17384     return Builder.CreateBitCast(Res, ConvertType(E->getType()));
17385   }
17386 
17387   case PPC::BI__builtin_unpack_vector_int128: {
17388     Value *Op0 = EmitScalarExpr(E->getArg(0));
17389     Value *Op1 = EmitScalarExpr(E->getArg(1));
17390     ConstantInt *Index = cast<ConstantInt>(Op1);
17391     Value *Unpacked = Builder.CreateBitCast(
17392         Op0, llvm::FixedVectorType::get(ConvertType(E->getType()), 2));
17393 
17394     if (getTarget().isLittleEndian())
17395       Index =
17396           ConstantInt::get(Index->getIntegerType(), 1 - Index->getZExtValue());
17397 
17398     return Builder.CreateExtractElement(Unpacked, Index);
17399   }
17400 
17401   case PPC::BI__builtin_ppc_sthcx: {
17402     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_sthcx);
17403     Value *Op0 = EmitScalarExpr(E->getArg(0));
17404     Value *Op1 = Builder.CreateSExt(EmitScalarExpr(E->getArg(1)), Int32Ty);
17405     return Builder.CreateCall(F, {Op0, Op1});
17406   }
17407 
17408   // The PPC MMA builtins take a pointer to a __vector_quad as an argument.
17409   // Some of the MMA instructions accumulate their result into an existing
17410   // accumulator whereas the others generate a new accumulator. So we need to
17411   // use custom code generation to expand a builtin call with a pointer to a
17412   // load (if the corresponding instruction accumulates its result) followed by
17413   // the call to the intrinsic and a store of the result.
17414 #define CUSTOM_BUILTIN(Name, Intr, Types, Accumulate, Feature) \
17415   case PPC::BI__builtin_##Name:
17416 #include "clang/Basic/BuiltinsPPC.def"
17417   {
17418     SmallVector<Value *, 4> Ops;
17419     for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
17420       if (E->getArg(i)->getType()->isArrayType())
17421         Ops.push_back(EmitArrayToPointerDecay(E->getArg(i)).getPointer());
17422       else
17423         Ops.push_back(EmitScalarExpr(E->getArg(i)));
17424     // The first argument of these two builtins is a pointer used to store their
17425     // result. However, the llvm intrinsics return their result in multiple
17426     // return values. So, here we emit code extracting these values from the
17427     // intrinsic results and storing them using that pointer.
17428     if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc ||
17429         BuiltinID == PPC::BI__builtin_vsx_disassemble_pair ||
17430         BuiltinID == PPC::BI__builtin_mma_disassemble_pair) {
17431       unsigned NumVecs = 2;
17432       auto Intrinsic = Intrinsic::ppc_vsx_disassemble_pair;
17433       if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc) {
17434         NumVecs = 4;
17435         Intrinsic = Intrinsic::ppc_mma_disassemble_acc;
17436       }
17437       llvm::Function *F = CGM.getIntrinsic(Intrinsic);
17438       Address Addr = EmitPointerWithAlignment(E->getArg(1));
17439       Value *Vec = Builder.CreateLoad(Addr);
17440       Value *Call = Builder.CreateCall(F, {Vec});
17441       llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, 16);
17442       Value *Ptr = Ops[0];
17443       for (unsigned i=0; i<NumVecs; i++) {
17444         Value *Vec = Builder.CreateExtractValue(Call, i);
17445         llvm::ConstantInt* Index = llvm::ConstantInt::get(IntTy, i);
17446         Value *GEP = Builder.CreateInBoundsGEP(VTy, Ptr, Index);
17447         Builder.CreateAlignedStore(Vec, GEP, MaybeAlign(16));
17448       }
17449       return Call;
17450     }
17451     if (BuiltinID == PPC::BI__builtin_vsx_build_pair ||
17452         BuiltinID == PPC::BI__builtin_mma_build_acc) {
17453       // Reverse the order of the operands for LE, so the
17454       // same builtin call can be used on both LE and BE
17455       // without the need for the programmer to swap operands.
17456       // The operands are reversed starting from the second argument,
17457       // the first operand is the pointer to the pair/accumulator
17458       // that is being built.
17459       if (getTarget().isLittleEndian())
17460         std::reverse(Ops.begin() + 1, Ops.end());
17461     }
17462     bool Accumulate;
17463     switch (BuiltinID) {
17464   #define CUSTOM_BUILTIN(Name, Intr, Types, Acc, Feature) \
17465     case PPC::BI__builtin_##Name: \
17466       ID = Intrinsic::ppc_##Intr; \
17467       Accumulate = Acc; \
17468       break;
17469   #include "clang/Basic/BuiltinsPPC.def"
17470     }
17471     if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
17472         BuiltinID == PPC::BI__builtin_vsx_stxvp ||
17473         BuiltinID == PPC::BI__builtin_mma_lxvp ||
17474         BuiltinID == PPC::BI__builtin_mma_stxvp) {
17475       if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
17476           BuiltinID == PPC::BI__builtin_mma_lxvp) {
17477         Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]);
17478       } else {
17479         Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]);
17480       }
17481       Ops.pop_back();
17482       llvm::Function *F = CGM.getIntrinsic(ID);
17483       return Builder.CreateCall(F, Ops, "");
17484     }
17485     SmallVector<Value*, 4> CallOps;
17486     if (Accumulate) {
17487       Address Addr = EmitPointerWithAlignment(E->getArg(0));
17488       Value *Acc = Builder.CreateLoad(Addr);
17489       CallOps.push_back(Acc);
17490     }
17491     for (unsigned i=1; i<Ops.size(); i++)
17492       CallOps.push_back(Ops[i]);
17493     llvm::Function *F = CGM.getIntrinsic(ID);
17494     Value *Call = Builder.CreateCall(F, CallOps);
17495     return Builder.CreateAlignedStore(Call, Ops[0], MaybeAlign(64));
17496   }
17497 
17498   case PPC::BI__builtin_ppc_compare_and_swap:
17499   case PPC::BI__builtin_ppc_compare_and_swaplp: {
17500     Address Addr = EmitPointerWithAlignment(E->getArg(0));
17501     Address OldValAddr = EmitPointerWithAlignment(E->getArg(1));
17502     Value *OldVal = Builder.CreateLoad(OldValAddr);
17503     QualType AtomicTy = E->getArg(0)->getType()->getPointeeType();
17504     LValue LV = MakeAddrLValue(Addr, AtomicTy);
17505     Value *Op2 = EmitScalarExpr(E->getArg(2));
17506     auto Pair = EmitAtomicCompareExchange(
17507         LV, RValue::get(OldVal), RValue::get(Op2), E->getExprLoc(),
17508         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Monotonic, true);
17509     // Unlike c11's atomic_compare_exchange, according to
17510     // https://www.ibm.com/docs/en/xl-c-and-cpp-aix/16.1?topic=functions-compare-swap-compare-swaplp
17511     // > In either case, the contents of the memory location specified by addr
17512     // > are copied into the memory location specified by old_val_addr.
17513     // But it hasn't specified storing to OldValAddr is atomic or not and
17514     // which order to use. Now following XL's codegen, treat it as a normal
17515     // store.
17516     Value *LoadedVal = Pair.first.getScalarVal();
17517     Builder.CreateStore(LoadedVal, OldValAddr);
17518     return Builder.CreateZExt(Pair.second, Builder.getInt32Ty());
17519   }
17520   case PPC::BI__builtin_ppc_fetch_and_add:
17521   case PPC::BI__builtin_ppc_fetch_and_addlp: {
17522     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
17523                                  llvm::AtomicOrdering::Monotonic);
17524   }
17525   case PPC::BI__builtin_ppc_fetch_and_and:
17526   case PPC::BI__builtin_ppc_fetch_and_andlp: {
17527     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
17528                                  llvm::AtomicOrdering::Monotonic);
17529   }
17530 
17531   case PPC::BI__builtin_ppc_fetch_and_or:
17532   case PPC::BI__builtin_ppc_fetch_and_orlp: {
17533     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
17534                                  llvm::AtomicOrdering::Monotonic);
17535   }
17536   case PPC::BI__builtin_ppc_fetch_and_swap:
17537   case PPC::BI__builtin_ppc_fetch_and_swaplp: {
17538     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
17539                                  llvm::AtomicOrdering::Monotonic);
17540   }
17541   case PPC::BI__builtin_ppc_ldarx:
17542   case PPC::BI__builtin_ppc_lwarx:
17543   case PPC::BI__builtin_ppc_lharx:
17544   case PPC::BI__builtin_ppc_lbarx:
17545     return emitPPCLoadReserveIntrinsic(*this, BuiltinID, E);
17546   case PPC::BI__builtin_ppc_mfspr: {
17547     Value *Op0 = EmitScalarExpr(E->getArg(0));
17548     llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32
17549                               ? Int32Ty
17550                               : Int64Ty;
17551     Function *F = CGM.getIntrinsic(Intrinsic::ppc_mfspr, RetType);
17552     return Builder.CreateCall(F, {Op0});
17553   }
17554   case PPC::BI__builtin_ppc_mtspr: {
17555     Value *Op0 = EmitScalarExpr(E->getArg(0));
17556     Value *Op1 = EmitScalarExpr(E->getArg(1));
17557     llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32
17558                               ? Int32Ty
17559                               : Int64Ty;
17560     Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtspr, RetType);
17561     return Builder.CreateCall(F, {Op0, Op1});
17562   }
17563   case PPC::BI__builtin_ppc_popcntb: {
17564     Value *ArgValue = EmitScalarExpr(E->getArg(0));
17565     llvm::Type *ArgType = ArgValue->getType();
17566     Function *F = CGM.getIntrinsic(Intrinsic::ppc_popcntb, {ArgType, ArgType});
17567     return Builder.CreateCall(F, {ArgValue}, "popcntb");
17568   }
17569   case PPC::BI__builtin_ppc_mtfsf: {
17570     // The builtin takes a uint32 that needs to be cast to an
17571     // f64 to be passed to the intrinsic.
17572     Value *Op0 = EmitScalarExpr(E->getArg(0));
17573     Value *Op1 = EmitScalarExpr(E->getArg(1));
17574     Value *Cast = Builder.CreateUIToFP(Op1, DoubleTy);
17575     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtfsf);
17576     return Builder.CreateCall(F, {Op0, Cast}, "");
17577   }
17578 
17579   case PPC::BI__builtin_ppc_swdiv_nochk:
17580   case PPC::BI__builtin_ppc_swdivs_nochk: {
17581     Value *Op0 = EmitScalarExpr(E->getArg(0));
17582     Value *Op1 = EmitScalarExpr(E->getArg(1));
17583     FastMathFlags FMF = Builder.getFastMathFlags();
17584     Builder.getFastMathFlags().setFast();
17585     Value *FDiv = Builder.CreateFDiv(Op0, Op1, "swdiv_nochk");
17586     Builder.getFastMathFlags() &= (FMF);
17587     return FDiv;
17588   }
17589   case PPC::BI__builtin_ppc_fric:
17590     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
17591                            *this, E, Intrinsic::rint,
17592                            Intrinsic::experimental_constrained_rint))
17593         .getScalarVal();
17594   case PPC::BI__builtin_ppc_frim:
17595   case PPC::BI__builtin_ppc_frims:
17596     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
17597                            *this, E, Intrinsic::floor,
17598                            Intrinsic::experimental_constrained_floor))
17599         .getScalarVal();
17600   case PPC::BI__builtin_ppc_frin:
17601   case PPC::BI__builtin_ppc_frins:
17602     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
17603                            *this, E, Intrinsic::round,
17604                            Intrinsic::experimental_constrained_round))
17605         .getScalarVal();
17606   case PPC::BI__builtin_ppc_frip:
17607   case PPC::BI__builtin_ppc_frips:
17608     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
17609                            *this, E, Intrinsic::ceil,
17610                            Intrinsic::experimental_constrained_ceil))
17611         .getScalarVal();
17612   case PPC::BI__builtin_ppc_friz:
17613   case PPC::BI__builtin_ppc_frizs:
17614     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
17615                            *this, E, Intrinsic::trunc,
17616                            Intrinsic::experimental_constrained_trunc))
17617         .getScalarVal();
17618   case PPC::BI__builtin_ppc_fsqrt:
17619   case PPC::BI__builtin_ppc_fsqrts:
17620     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
17621                            *this, E, Intrinsic::sqrt,
17622                            Intrinsic::experimental_constrained_sqrt))
17623         .getScalarVal();
17624   case PPC::BI__builtin_ppc_test_data_class: {
17625     Value *Op0 = EmitScalarExpr(E->getArg(0));
17626     Value *Op1 = EmitScalarExpr(E->getArg(1));
17627     return Builder.CreateCall(
17628         CGM.getIntrinsic(Intrinsic::ppc_test_data_class, Op0->getType()),
17629         {Op0, Op1}, "test_data_class");
17630   }
17631   case PPC::BI__builtin_ppc_maxfe: {
17632     Value *Op0 = EmitScalarExpr(E->getArg(0));
17633     Value *Op1 = EmitScalarExpr(E->getArg(1));
17634     Value *Op2 = EmitScalarExpr(E->getArg(2));
17635     Value *Op3 = EmitScalarExpr(E->getArg(3));
17636     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfe),
17637                               {Op0, Op1, Op2, Op3});
17638   }
17639   case PPC::BI__builtin_ppc_maxfl: {
17640     Value *Op0 = EmitScalarExpr(E->getArg(0));
17641     Value *Op1 = EmitScalarExpr(E->getArg(1));
17642     Value *Op2 = EmitScalarExpr(E->getArg(2));
17643     Value *Op3 = EmitScalarExpr(E->getArg(3));
17644     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfl),
17645                               {Op0, Op1, Op2, Op3});
17646   }
17647   case PPC::BI__builtin_ppc_maxfs: {
17648     Value *Op0 = EmitScalarExpr(E->getArg(0));
17649     Value *Op1 = EmitScalarExpr(E->getArg(1));
17650     Value *Op2 = EmitScalarExpr(E->getArg(2));
17651     Value *Op3 = EmitScalarExpr(E->getArg(3));
17652     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfs),
17653                               {Op0, Op1, Op2, Op3});
17654   }
17655   case PPC::BI__builtin_ppc_minfe: {
17656     Value *Op0 = EmitScalarExpr(E->getArg(0));
17657     Value *Op1 = EmitScalarExpr(E->getArg(1));
17658     Value *Op2 = EmitScalarExpr(E->getArg(2));
17659     Value *Op3 = EmitScalarExpr(E->getArg(3));
17660     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfe),
17661                               {Op0, Op1, Op2, Op3});
17662   }
17663   case PPC::BI__builtin_ppc_minfl: {
17664     Value *Op0 = EmitScalarExpr(E->getArg(0));
17665     Value *Op1 = EmitScalarExpr(E->getArg(1));
17666     Value *Op2 = EmitScalarExpr(E->getArg(2));
17667     Value *Op3 = EmitScalarExpr(E->getArg(3));
17668     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfl),
17669                               {Op0, Op1, Op2, Op3});
17670   }
17671   case PPC::BI__builtin_ppc_minfs: {
17672     Value *Op0 = EmitScalarExpr(E->getArg(0));
17673     Value *Op1 = EmitScalarExpr(E->getArg(1));
17674     Value *Op2 = EmitScalarExpr(E->getArg(2));
17675     Value *Op3 = EmitScalarExpr(E->getArg(3));
17676     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfs),
17677                               {Op0, Op1, Op2, Op3});
17678   }
17679   case PPC::BI__builtin_ppc_swdiv:
17680   case PPC::BI__builtin_ppc_swdivs: {
17681     Value *Op0 = EmitScalarExpr(E->getArg(0));
17682     Value *Op1 = EmitScalarExpr(E->getArg(1));
17683     return Builder.CreateFDiv(Op0, Op1, "swdiv");
17684   }
17685   case PPC::BI__builtin_ppc_set_fpscr_rn:
17686     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_setrnd),
17687                               {EmitScalarExpr(E->getArg(0))});
17688   case PPC::BI__builtin_ppc_mffs:
17689     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_readflm));
17690   }
17691 }
17692 
17693 namespace {
17694 // If \p E is not null pointer, insert address space cast to match return
17695 // type of \p E if necessary.
17696 Value *EmitAMDGPUDispatchPtr(CodeGenFunction &CGF,
17697                              const CallExpr *E = nullptr) {
17698   auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_dispatch_ptr);
17699   auto *Call = CGF.Builder.CreateCall(F);
17700   Call->addRetAttr(
17701       Attribute::getWithDereferenceableBytes(Call->getContext(), 64));
17702   Call->addRetAttr(Attribute::getWithAlignment(Call->getContext(), Align(4)));
17703   if (!E)
17704     return Call;
17705   QualType BuiltinRetType = E->getType();
17706   auto *RetTy = cast<llvm::PointerType>(CGF.ConvertType(BuiltinRetType));
17707   if (RetTy == Call->getType())
17708     return Call;
17709   return CGF.Builder.CreateAddrSpaceCast(Call, RetTy);
17710 }
17711 
17712 Value *EmitAMDGPUImplicitArgPtr(CodeGenFunction &CGF) {
17713   auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_implicitarg_ptr);
17714   auto *Call = CGF.Builder.CreateCall(F);
17715   Call->addRetAttr(
17716       Attribute::getWithDereferenceableBytes(Call->getContext(), 256));
17717   Call->addRetAttr(Attribute::getWithAlignment(Call->getContext(), Align(8)));
17718   return Call;
17719 }
17720 
17721 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
17722 /// Emit code based on Code Object ABI version.
17723 /// COV_4    : Emit code to use dispatch ptr
17724 /// COV_5    : Emit code to use implicitarg ptr
17725 /// COV_NONE : Emit code to load a global variable "__oclc_ABI_version"
17726 ///            and use its value for COV_4 or COV_5 approach. It is used for
17727 ///            compiling device libraries in an ABI-agnostic way.
17728 ///
17729 /// Note: "__oclc_ABI_version" is supposed to be emitted and intialized by
17730 ///       clang during compilation of user code.
17731 Value *EmitAMDGPUWorkGroupSize(CodeGenFunction &CGF, unsigned Index) {
17732   llvm::LoadInst *LD;
17733 
17734   auto Cov = CGF.getTarget().getTargetOpts().CodeObjectVersion;
17735 
17736   if (Cov == CodeObjectVersionKind::COV_None) {
17737     StringRef Name = "__oclc_ABI_version";
17738     auto *ABIVersionC = CGF.CGM.getModule().getNamedGlobal(Name);
17739     if (!ABIVersionC)
17740       ABIVersionC = new llvm::GlobalVariable(
17741           CGF.CGM.getModule(), CGF.Int32Ty, false,
17742           llvm::GlobalValue::ExternalLinkage, nullptr, Name, nullptr,
17743           llvm::GlobalVariable::NotThreadLocal,
17744           CGF.CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant));
17745 
17746     // This load will be eliminated by the IPSCCP because it is constant
17747     // weak_odr without externally_initialized. Either changing it to weak or
17748     // adding externally_initialized will keep the load.
17749     Value *ABIVersion = CGF.Builder.CreateAlignedLoad(CGF.Int32Ty, ABIVersionC,
17750                                                       CGF.CGM.getIntAlign());
17751 
17752     Value *IsCOV5 = CGF.Builder.CreateICmpSGE(
17753         ABIVersion,
17754         llvm::ConstantInt::get(CGF.Int32Ty, CodeObjectVersionKind::COV_5));
17755 
17756     // Indexing the implicit kernarg segment.
17757     Value *ImplicitGEP = CGF.Builder.CreateConstGEP1_32(
17758         CGF.Int8Ty, EmitAMDGPUImplicitArgPtr(CGF), 12 + Index * 2);
17759 
17760     // Indexing the HSA kernel_dispatch_packet struct.
17761     Value *DispatchGEP = CGF.Builder.CreateConstGEP1_32(
17762         CGF.Int8Ty, EmitAMDGPUDispatchPtr(CGF), 4 + Index * 2);
17763 
17764     auto Result = CGF.Builder.CreateSelect(IsCOV5, ImplicitGEP, DispatchGEP);
17765     LD = CGF.Builder.CreateLoad(
17766         Address(Result, CGF.Int16Ty, CharUnits::fromQuantity(2)));
17767   } else {
17768     Value *GEP = nullptr;
17769     if (Cov == CodeObjectVersionKind::COV_5) {
17770       // Indexing the implicit kernarg segment.
17771       GEP = CGF.Builder.CreateConstGEP1_32(
17772           CGF.Int8Ty, EmitAMDGPUImplicitArgPtr(CGF), 12 + Index * 2);
17773     } else {
17774       // Indexing the HSA kernel_dispatch_packet struct.
17775       GEP = CGF.Builder.CreateConstGEP1_32(
17776           CGF.Int8Ty, EmitAMDGPUDispatchPtr(CGF), 4 + Index * 2);
17777     }
17778     LD = CGF.Builder.CreateLoad(
17779         Address(GEP, CGF.Int16Ty, CharUnits::fromQuantity(2)));
17780   }
17781 
17782   llvm::MDBuilder MDHelper(CGF.getLLVMContext());
17783   llvm::MDNode *RNode = MDHelper.createRange(APInt(16, 1),
17784       APInt(16, CGF.getTarget().getMaxOpenCLWorkGroupSize() + 1));
17785   LD->setMetadata(llvm::LLVMContext::MD_range, RNode);
17786   LD->setMetadata(llvm::LLVMContext::MD_noundef,
17787                   llvm::MDNode::get(CGF.getLLVMContext(), std::nullopt));
17788   LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
17789                   llvm::MDNode::get(CGF.getLLVMContext(), std::nullopt));
17790   return LD;
17791 }
17792 
17793 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
17794 Value *EmitAMDGPUGridSize(CodeGenFunction &CGF, unsigned Index) {
17795   const unsigned XOffset = 12;
17796   auto *DP = EmitAMDGPUDispatchPtr(CGF);
17797   // Indexing the HSA kernel_dispatch_packet struct.
17798   auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 4);
17799   auto *GEP = CGF.Builder.CreateGEP(CGF.Int8Ty, DP, Offset);
17800   auto *LD = CGF.Builder.CreateLoad(
17801       Address(GEP, CGF.Int32Ty, CharUnits::fromQuantity(4)));
17802   LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
17803                   llvm::MDNode::get(CGF.getLLVMContext(), std::nullopt));
17804   return LD;
17805 }
17806 } // namespace
17807 
17808 // For processing memory ordering and memory scope arguments of various
17809 // amdgcn builtins.
17810 // \p Order takes a C++11 comptabile memory-ordering specifier and converts
17811 // it into LLVM's memory ordering specifier using atomic C ABI, and writes
17812 // to \p AO. \p Scope takes a const char * and converts it into AMDGCN
17813 // specific SyncScopeID and writes it to \p SSID.
17814 void CodeGenFunction::ProcessOrderScopeAMDGCN(Value *Order, Value *Scope,
17815                                               llvm::AtomicOrdering &AO,
17816                                               llvm::SyncScope::ID &SSID) {
17817   int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
17818 
17819   // Map C11/C++11 memory ordering to LLVM memory ordering
17820   assert(llvm::isValidAtomicOrderingCABI(ord));
17821   switch (static_cast<llvm::AtomicOrderingCABI>(ord)) {
17822   case llvm::AtomicOrderingCABI::acquire:
17823   case llvm::AtomicOrderingCABI::consume:
17824     AO = llvm::AtomicOrdering::Acquire;
17825     break;
17826   case llvm::AtomicOrderingCABI::release:
17827     AO = llvm::AtomicOrdering::Release;
17828     break;
17829   case llvm::AtomicOrderingCABI::acq_rel:
17830     AO = llvm::AtomicOrdering::AcquireRelease;
17831     break;
17832   case llvm::AtomicOrderingCABI::seq_cst:
17833     AO = llvm::AtomicOrdering::SequentiallyConsistent;
17834     break;
17835   case llvm::AtomicOrderingCABI::relaxed:
17836     AO = llvm::AtomicOrdering::Monotonic;
17837     break;
17838   }
17839 
17840   StringRef scp;
17841   llvm::getConstantStringInfo(Scope, scp);
17842   SSID = getLLVMContext().getOrInsertSyncScopeID(scp);
17843 }
17844 
17845 llvm::Value *CodeGenFunction::EmitScalarOrConstFoldImmArg(unsigned ICEArguments,
17846                                                           unsigned Idx,
17847                                                           const CallExpr *E) {
17848   llvm::Value *Arg = nullptr;
17849   if ((ICEArguments & (1 << Idx)) == 0) {
17850     Arg = EmitScalarExpr(E->getArg(Idx));
17851   } else {
17852     // If this is required to be a constant, constant fold it so that we
17853     // know that the generated intrinsic gets a ConstantInt.
17854     std::optional<llvm::APSInt> Result =
17855         E->getArg(Idx)->getIntegerConstantExpr(getContext());
17856     assert(Result && "Expected argument to be a constant");
17857     Arg = llvm::ConstantInt::get(getLLVMContext(), *Result);
17858   }
17859   return Arg;
17860 }
17861 
17862 Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
17863                                               const CallExpr *E) {
17864   llvm::AtomicOrdering AO = llvm::AtomicOrdering::SequentiallyConsistent;
17865   llvm::SyncScope::ID SSID;
17866   switch (BuiltinID) {
17867   case AMDGPU::BI__builtin_amdgcn_div_scale:
17868   case AMDGPU::BI__builtin_amdgcn_div_scalef: {
17869     // Translate from the intrinsics's struct return to the builtin's out
17870     // argument.
17871 
17872     Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
17873 
17874     llvm::Value *X = EmitScalarExpr(E->getArg(0));
17875     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
17876     llvm::Value *Z = EmitScalarExpr(E->getArg(2));
17877 
17878     llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
17879                                            X->getType());
17880 
17881     llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
17882 
17883     llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
17884     llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
17885 
17886     llvm::Type *RealFlagType = FlagOutPtr.getElementType();
17887 
17888     llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
17889     Builder.CreateStore(FlagExt, FlagOutPtr);
17890     return Result;
17891   }
17892   case AMDGPU::BI__builtin_amdgcn_div_fmas:
17893   case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
17894     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
17895     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
17896     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
17897     llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
17898 
17899     llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
17900                                       Src0->getType());
17901     llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
17902     return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
17903   }
17904 
17905   case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
17906     return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle);
17907   case AMDGPU::BI__builtin_amdgcn_mov_dpp8:
17908     return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_mov_dpp8);
17909   case AMDGPU::BI__builtin_amdgcn_mov_dpp:
17910   case AMDGPU::BI__builtin_amdgcn_update_dpp: {
17911     llvm::SmallVector<llvm::Value *, 6> Args;
17912     // Find out if any arguments are required to be integer constant
17913     // expressions.
17914     unsigned ICEArguments = 0;
17915     ASTContext::GetBuiltinTypeError Error;
17916     getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
17917     assert(Error == ASTContext::GE_None && "Should not codegen an error");
17918     for (unsigned I = 0; I != E->getNumArgs(); ++I) {
17919       Args.push_back(EmitScalarOrConstFoldImmArg(ICEArguments, I, E));
17920     }
17921     assert(Args.size() == 5 || Args.size() == 6);
17922     if (Args.size() == 5)
17923       Args.insert(Args.begin(), llvm::PoisonValue::get(Args[0]->getType()));
17924     Function *F =
17925         CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType());
17926     return Builder.CreateCall(F, Args);
17927   }
17928   case AMDGPU::BI__builtin_amdgcn_div_fixup:
17929   case AMDGPU::BI__builtin_amdgcn_div_fixupf:
17930   case AMDGPU::BI__builtin_amdgcn_div_fixuph:
17931     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup);
17932   case AMDGPU::BI__builtin_amdgcn_trig_preop:
17933   case AMDGPU::BI__builtin_amdgcn_trig_preopf:
17934     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
17935   case AMDGPU::BI__builtin_amdgcn_rcp:
17936   case AMDGPU::BI__builtin_amdgcn_rcpf:
17937   case AMDGPU::BI__builtin_amdgcn_rcph:
17938     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp);
17939   case AMDGPU::BI__builtin_amdgcn_sqrt:
17940   case AMDGPU::BI__builtin_amdgcn_sqrtf:
17941   case AMDGPU::BI__builtin_amdgcn_sqrth:
17942     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sqrt);
17943   case AMDGPU::BI__builtin_amdgcn_rsq:
17944   case AMDGPU::BI__builtin_amdgcn_rsqf:
17945   case AMDGPU::BI__builtin_amdgcn_rsqh:
17946     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq);
17947   case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
17948   case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
17949     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp);
17950   case AMDGPU::BI__builtin_amdgcn_sinf:
17951   case AMDGPU::BI__builtin_amdgcn_sinh:
17952     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin);
17953   case AMDGPU::BI__builtin_amdgcn_cosf:
17954   case AMDGPU::BI__builtin_amdgcn_cosh:
17955     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos);
17956   case AMDGPU::BI__builtin_amdgcn_dispatch_ptr:
17957     return EmitAMDGPUDispatchPtr(*this, E);
17958   case AMDGPU::BI__builtin_amdgcn_logf:
17959     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log);
17960   case AMDGPU::BI__builtin_amdgcn_exp2f:
17961     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_exp2);
17962   case AMDGPU::BI__builtin_amdgcn_log_clampf:
17963     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp);
17964   case AMDGPU::BI__builtin_amdgcn_ldexp:
17965   case AMDGPU::BI__builtin_amdgcn_ldexpf: {
17966     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
17967     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
17968     llvm::Function *F =
17969         CGM.getIntrinsic(Intrinsic::ldexp, {Src0->getType(), Src1->getType()});
17970     return Builder.CreateCall(F, {Src0, Src1});
17971   }
17972   case AMDGPU::BI__builtin_amdgcn_ldexph: {
17973     // The raw instruction has a different behavior for out of bounds exponent
17974     // values (implicit truncation instead of saturate to short_min/short_max).
17975     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
17976     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
17977     llvm::Function *F =
17978         CGM.getIntrinsic(Intrinsic::ldexp, {Src0->getType(), Int16Ty});
17979     return Builder.CreateCall(F, {Src0, Builder.CreateTrunc(Src1, Int16Ty)});
17980   }
17981   case AMDGPU::BI__builtin_amdgcn_frexp_mant:
17982   case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
17983   case AMDGPU::BI__builtin_amdgcn_frexp_manth:
17984     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant);
17985   case AMDGPU::BI__builtin_amdgcn_frexp_exp:
17986   case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
17987     Value *Src0 = EmitScalarExpr(E->getArg(0));
17988     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
17989                                 { Builder.getInt32Ty(), Src0->getType() });
17990     return Builder.CreateCall(F, Src0);
17991   }
17992   case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
17993     Value *Src0 = EmitScalarExpr(E->getArg(0));
17994     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
17995                                 { Builder.getInt16Ty(), Src0->getType() });
17996     return Builder.CreateCall(F, Src0);
17997   }
17998   case AMDGPU::BI__builtin_amdgcn_fract:
17999   case AMDGPU::BI__builtin_amdgcn_fractf:
18000   case AMDGPU::BI__builtin_amdgcn_fracth:
18001     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract);
18002   case AMDGPU::BI__builtin_amdgcn_lerp:
18003     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp);
18004   case AMDGPU::BI__builtin_amdgcn_ubfe:
18005     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_ubfe);
18006   case AMDGPU::BI__builtin_amdgcn_sbfe:
18007     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_sbfe);
18008   case AMDGPU::BI__builtin_amdgcn_ballot_w32:
18009   case AMDGPU::BI__builtin_amdgcn_ballot_w64: {
18010     llvm::Type *ResultType = ConvertType(E->getType());
18011     llvm::Value *Src = EmitScalarExpr(E->getArg(0));
18012     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_ballot, { ResultType });
18013     return Builder.CreateCall(F, { Src });
18014   }
18015   case AMDGPU::BI__builtin_amdgcn_uicmp:
18016   case AMDGPU::BI__builtin_amdgcn_uicmpl:
18017   case AMDGPU::BI__builtin_amdgcn_sicmp:
18018   case AMDGPU::BI__builtin_amdgcn_sicmpl: {
18019     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
18020     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
18021     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
18022 
18023     // FIXME-GFX10: How should 32 bit mask be handled?
18024     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp,
18025       { Builder.getInt64Ty(), Src0->getType() });
18026     return Builder.CreateCall(F, { Src0, Src1, Src2 });
18027   }
18028   case AMDGPU::BI__builtin_amdgcn_fcmp:
18029   case AMDGPU::BI__builtin_amdgcn_fcmpf: {
18030     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
18031     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
18032     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
18033 
18034     // FIXME-GFX10: How should 32 bit mask be handled?
18035     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp,
18036       { Builder.getInt64Ty(), Src0->getType() });
18037     return Builder.CreateCall(F, { Src0, Src1, Src2 });
18038   }
18039   case AMDGPU::BI__builtin_amdgcn_class:
18040   case AMDGPU::BI__builtin_amdgcn_classf:
18041   case AMDGPU::BI__builtin_amdgcn_classh:
18042     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
18043   case AMDGPU::BI__builtin_amdgcn_fmed3f:
18044   case AMDGPU::BI__builtin_amdgcn_fmed3h:
18045     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3);
18046   case AMDGPU::BI__builtin_amdgcn_ds_append:
18047   case AMDGPU::BI__builtin_amdgcn_ds_consume: {
18048     Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ?
18049       Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume;
18050     Value *Src0 = EmitScalarExpr(E->getArg(0));
18051     Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() });
18052     return Builder.CreateCall(F, { Src0, Builder.getFalse() });
18053   }
18054   case AMDGPU::BI__builtin_amdgcn_ds_faddf:
18055   case AMDGPU::BI__builtin_amdgcn_ds_fminf:
18056   case AMDGPU::BI__builtin_amdgcn_ds_fmaxf: {
18057     Intrinsic::ID Intrin;
18058     switch (BuiltinID) {
18059     case AMDGPU::BI__builtin_amdgcn_ds_faddf:
18060       Intrin = Intrinsic::amdgcn_ds_fadd;
18061       break;
18062     case AMDGPU::BI__builtin_amdgcn_ds_fminf:
18063       Intrin = Intrinsic::amdgcn_ds_fmin;
18064       break;
18065     case AMDGPU::BI__builtin_amdgcn_ds_fmaxf:
18066       Intrin = Intrinsic::amdgcn_ds_fmax;
18067       break;
18068     }
18069     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
18070     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
18071     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
18072     llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
18073     llvm::Value *Src4 = EmitScalarExpr(E->getArg(4));
18074     llvm::Function *F = CGM.getIntrinsic(Intrin, { Src1->getType() });
18075     llvm::FunctionType *FTy = F->getFunctionType();
18076     llvm::Type *PTy = FTy->getParamType(0);
18077     Src0 = Builder.CreatePointerBitCastOrAddrSpaceCast(Src0, PTy);
18078     return Builder.CreateCall(F, { Src0, Src1, Src2, Src3, Src4 });
18079   }
18080   case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f64:
18081   case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f32:
18082   case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2f16:
18083   case AMDGPU::BI__builtin_amdgcn_global_atomic_fmin_f64:
18084   case AMDGPU::BI__builtin_amdgcn_global_atomic_fmax_f64:
18085   case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f64:
18086   case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmin_f64:
18087   case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmax_f64:
18088   case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f32:
18089   case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2f16: {
18090     Intrinsic::ID IID;
18091     llvm::Type *ArgTy = llvm::Type::getDoubleTy(getLLVMContext());
18092     switch (BuiltinID) {
18093     case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f32:
18094       ArgTy = llvm::Type::getFloatTy(getLLVMContext());
18095       IID = Intrinsic::amdgcn_global_atomic_fadd;
18096       break;
18097     case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2f16:
18098       ArgTy = llvm::FixedVectorType::get(
18099           llvm::Type::getHalfTy(getLLVMContext()), 2);
18100       IID = Intrinsic::amdgcn_global_atomic_fadd;
18101       break;
18102     case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f64:
18103       IID = Intrinsic::amdgcn_global_atomic_fadd;
18104       break;
18105     case AMDGPU::BI__builtin_amdgcn_global_atomic_fmin_f64:
18106       IID = Intrinsic::amdgcn_global_atomic_fmin;
18107       break;
18108     case AMDGPU::BI__builtin_amdgcn_global_atomic_fmax_f64:
18109       IID = Intrinsic::amdgcn_global_atomic_fmax;
18110       break;
18111     case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f64:
18112       IID = Intrinsic::amdgcn_flat_atomic_fadd;
18113       break;
18114     case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmin_f64:
18115       IID = Intrinsic::amdgcn_flat_atomic_fmin;
18116       break;
18117     case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmax_f64:
18118       IID = Intrinsic::amdgcn_flat_atomic_fmax;
18119       break;
18120     case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f32:
18121       ArgTy = llvm::Type::getFloatTy(getLLVMContext());
18122       IID = Intrinsic::amdgcn_flat_atomic_fadd;
18123       break;
18124     case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2f16:
18125       ArgTy = llvm::FixedVectorType::get(
18126           llvm::Type::getHalfTy(getLLVMContext()), 2);
18127       IID = Intrinsic::amdgcn_flat_atomic_fadd;
18128       break;
18129     }
18130     llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
18131     llvm::Value *Val = EmitScalarExpr(E->getArg(1));
18132     llvm::Function *F =
18133         CGM.getIntrinsic(IID, {ArgTy, Addr->getType(), Val->getType()});
18134     return Builder.CreateCall(F, {Addr, Val});
18135   }
18136   case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2bf16:
18137   case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2bf16: {
18138     Intrinsic::ID IID;
18139     switch (BuiltinID) {
18140     case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2bf16:
18141       IID = Intrinsic::amdgcn_global_atomic_fadd_v2bf16;
18142       break;
18143     case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2bf16:
18144       IID = Intrinsic::amdgcn_flat_atomic_fadd_v2bf16;
18145       break;
18146     }
18147     llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
18148     llvm::Value *Val = EmitScalarExpr(E->getArg(1));
18149     llvm::Function *F = CGM.getIntrinsic(IID, {Addr->getType()});
18150     return Builder.CreateCall(F, {Addr, Val});
18151   }
18152   case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f64:
18153   case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f32:
18154   case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_v2f16: {
18155     Intrinsic::ID IID;
18156     llvm::Type *ArgTy;
18157     switch (BuiltinID) {
18158     case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f32:
18159       ArgTy = llvm::Type::getFloatTy(getLLVMContext());
18160       IID = Intrinsic::amdgcn_ds_fadd;
18161       break;
18162     case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f64:
18163       ArgTy = llvm::Type::getDoubleTy(getLLVMContext());
18164       IID = Intrinsic::amdgcn_ds_fadd;
18165       break;
18166     case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_v2f16:
18167       ArgTy = llvm::FixedVectorType::get(
18168           llvm::Type::getHalfTy(getLLVMContext()), 2);
18169       IID = Intrinsic::amdgcn_ds_fadd;
18170       break;
18171     }
18172     llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
18173     llvm::Value *Val = EmitScalarExpr(E->getArg(1));
18174     llvm::Constant *ZeroI32 = llvm::ConstantInt::getIntegerValue(
18175         llvm::Type::getInt32Ty(getLLVMContext()), APInt(32, 0, true));
18176     llvm::Constant *ZeroI1 = llvm::ConstantInt::getIntegerValue(
18177         llvm::Type::getInt1Ty(getLLVMContext()), APInt(1, 0));
18178     llvm::Function *F = CGM.getIntrinsic(IID, {ArgTy});
18179     return Builder.CreateCall(F, {Addr, Val, ZeroI32, ZeroI32, ZeroI1});
18180   }
18181   case AMDGPU::BI__builtin_amdgcn_global_load_tr_i32:
18182   case AMDGPU::BI__builtin_amdgcn_global_load_tr_v2i32:
18183   case AMDGPU::BI__builtin_amdgcn_global_load_tr_v4f16:
18184   case AMDGPU::BI__builtin_amdgcn_global_load_tr_v4i16:
18185   case AMDGPU::BI__builtin_amdgcn_global_load_tr_v8f16:
18186   case AMDGPU::BI__builtin_amdgcn_global_load_tr_v8i16: {
18187 
18188     llvm::Type *ArgTy;
18189     switch (BuiltinID) {
18190     case AMDGPU::BI__builtin_amdgcn_global_load_tr_i32:
18191       ArgTy = llvm::Type::getInt32Ty(getLLVMContext());
18192       break;
18193     case AMDGPU::BI__builtin_amdgcn_global_load_tr_v2i32:
18194       ArgTy = llvm::FixedVectorType::get(
18195           llvm::Type::getInt32Ty(getLLVMContext()), 2);
18196       break;
18197     case AMDGPU::BI__builtin_amdgcn_global_load_tr_v4f16:
18198       ArgTy = llvm::FixedVectorType::get(
18199           llvm::Type::getHalfTy(getLLVMContext()), 4);
18200       break;
18201     case AMDGPU::BI__builtin_amdgcn_global_load_tr_v4i16:
18202       ArgTy = llvm::FixedVectorType::get(
18203           llvm::Type::getInt16Ty(getLLVMContext()), 4);
18204       break;
18205     case AMDGPU::BI__builtin_amdgcn_global_load_tr_v8f16:
18206       ArgTy = llvm::FixedVectorType::get(
18207           llvm::Type::getHalfTy(getLLVMContext()), 8);
18208       break;
18209     case AMDGPU::BI__builtin_amdgcn_global_load_tr_v8i16:
18210       ArgTy = llvm::FixedVectorType::get(
18211           llvm::Type::getInt16Ty(getLLVMContext()), 8);
18212       break;
18213     }
18214 
18215     llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
18216     llvm::Function *F =
18217         CGM.getIntrinsic(Intrinsic::amdgcn_global_load_tr, {ArgTy});
18218     return Builder.CreateCall(F, {Addr});
18219   }
18220   case AMDGPU::BI__builtin_amdgcn_read_exec:
18221     return EmitAMDGCNBallotForExec(*this, E, Int64Ty, Int64Ty, false);
18222   case AMDGPU::BI__builtin_amdgcn_read_exec_lo:
18223     return EmitAMDGCNBallotForExec(*this, E, Int32Ty, Int32Ty, false);
18224   case AMDGPU::BI__builtin_amdgcn_read_exec_hi:
18225     return EmitAMDGCNBallotForExec(*this, E, Int64Ty, Int64Ty, true);
18226   case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray:
18227   case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_h:
18228   case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_l:
18229   case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_lh: {
18230     llvm::Value *NodePtr = EmitScalarExpr(E->getArg(0));
18231     llvm::Value *RayExtent = EmitScalarExpr(E->getArg(1));
18232     llvm::Value *RayOrigin = EmitScalarExpr(E->getArg(2));
18233     llvm::Value *RayDir = EmitScalarExpr(E->getArg(3));
18234     llvm::Value *RayInverseDir = EmitScalarExpr(E->getArg(4));
18235     llvm::Value *TextureDescr = EmitScalarExpr(E->getArg(5));
18236 
18237     // The builtins take these arguments as vec4 where the last element is
18238     // ignored. The intrinsic takes them as vec3.
18239     RayOrigin = Builder.CreateShuffleVector(RayOrigin, RayOrigin,
18240                                             ArrayRef<int>{0, 1, 2});
18241     RayDir =
18242         Builder.CreateShuffleVector(RayDir, RayDir, ArrayRef<int>{0, 1, 2});
18243     RayInverseDir = Builder.CreateShuffleVector(RayInverseDir, RayInverseDir,
18244                                                 ArrayRef<int>{0, 1, 2});
18245 
18246     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_image_bvh_intersect_ray,
18247                                    {NodePtr->getType(), RayDir->getType()});
18248     return Builder.CreateCall(F, {NodePtr, RayExtent, RayOrigin, RayDir,
18249                                   RayInverseDir, TextureDescr});
18250   }
18251 
18252   case AMDGPU::BI__builtin_amdgcn_ds_bvh_stack_rtn: {
18253     SmallVector<Value *, 4> Args;
18254     for (int i = 0, e = E->getNumArgs(); i != e; ++i)
18255       Args.push_back(EmitScalarExpr(E->getArg(i)));
18256 
18257     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_ds_bvh_stack_rtn);
18258     Value *Call = Builder.CreateCall(F, Args);
18259     Value *Rtn = Builder.CreateExtractValue(Call, 0);
18260     Value *A = Builder.CreateExtractValue(Call, 1);
18261     llvm::Type *RetTy = ConvertType(E->getType());
18262     Value *I0 = Builder.CreateInsertElement(PoisonValue::get(RetTy), Rtn,
18263                                             (uint64_t)0);
18264     return Builder.CreateInsertElement(I0, A, 1);
18265   }
18266 
18267   case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32:
18268   case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_tied_w32:
18269   case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64:
18270   case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_tied_w64:
18271   case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w32:
18272   case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_tied_w32:
18273   case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w64:
18274   case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_tied_w64:
18275   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32:
18276   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w64:
18277   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w32:
18278   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w64:
18279   case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w32:
18280   case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w64:
18281   case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32:
18282   case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w64:
18283   case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32_gfx12:
18284   case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64_gfx12:
18285   case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w32_gfx12:
18286   case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w64_gfx12:
18287   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32_gfx12:
18288   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w64_gfx12:
18289   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w32_gfx12:
18290   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w64_gfx12:
18291   case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w32_gfx12:
18292   case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w64_gfx12:
18293   case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32_gfx12:
18294   case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w64_gfx12:
18295   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_fp8_w32_gfx12:
18296   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_fp8_w64_gfx12:
18297   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_bf8_w32_gfx12:
18298   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_bf8_w64_gfx12:
18299   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_fp8_w32_gfx12:
18300   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_fp8_w64_gfx12:
18301   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_bf8_w32_gfx12:
18302   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_bf8_w64_gfx12:
18303   case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x32_iu4_w32_gfx12:
18304   case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x32_iu4_w64_gfx12:
18305   case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_f16_w32:
18306   case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_f16_w64:
18307   case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf16_w32:
18308   case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf16_w64:
18309   case AMDGPU::BI__builtin_amdgcn_swmmac_f16_16x16x32_f16_w32:
18310   case AMDGPU::BI__builtin_amdgcn_swmmac_f16_16x16x32_f16_w64:
18311   case AMDGPU::BI__builtin_amdgcn_swmmac_bf16_16x16x32_bf16_w32:
18312   case AMDGPU::BI__builtin_amdgcn_swmmac_bf16_16x16x32_bf16_w64:
18313   case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu8_w32:
18314   case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu8_w64:
18315   case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu4_w32:
18316   case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu4_w64:
18317   case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x64_iu4_w32:
18318   case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x64_iu4_w64:
18319   case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_fp8_w32:
18320   case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_fp8_w64:
18321   case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_bf8_w32:
18322   case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_bf8_w64:
18323   case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_fp8_w32:
18324   case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_fp8_w64:
18325   case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_bf8_w32:
18326   case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_bf8_w64: {
18327 
18328     // These operations perform a matrix multiplication and accumulation of
18329     // the form:
18330     //             D = A * B + C
18331     // We need to specify one type for matrices AB and one for matrices CD.
18332     // Sparse matrix operations can have different types for A and B as well as
18333     // an additional type for sparsity index.
18334     // Destination type should be put before types used for source operands.
18335     SmallVector<unsigned, 2> ArgsForMatchingMatrixTypes;
18336     // On GFX12, the intrinsics with 16-bit accumulator use a packed layout.
18337     // There is no need for the variable opsel argument, so always set it to
18338     // "false".
18339     bool AppendFalseForOpselArg = false;
18340     unsigned BuiltinWMMAOp;
18341 
18342     switch (BuiltinID) {
18343     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w32:
18344     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w64:
18345     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w32_gfx12:
18346     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w64_gfx12:
18347       ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
18348       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_f16;
18349       break;
18350     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32:
18351     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w64:
18352     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32_gfx12:
18353     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w64_gfx12:
18354       ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
18355       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_bf16;
18356       break;
18357     case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w32_gfx12:
18358     case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w64_gfx12:
18359       AppendFalseForOpselArg = true;
18360       LLVM_FALLTHROUGH;
18361     case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w32:
18362     case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w64:
18363       ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
18364       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f16_16x16x16_f16;
18365       break;
18366     case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32_gfx12:
18367     case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64_gfx12:
18368       AppendFalseForOpselArg = true;
18369       LLVM_FALLTHROUGH;
18370     case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32:
18371     case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64:
18372       ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
18373       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_bf16_16x16x16_bf16;
18374       break;
18375     case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_tied_w32:
18376     case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_tied_w64:
18377       ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
18378       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f16_16x16x16_f16_tied;
18379       break;
18380     case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_tied_w32:
18381     case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_tied_w64:
18382       ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
18383       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_bf16_16x16x16_bf16_tied;
18384       break;
18385     case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32:
18386     case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w64:
18387     case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32_gfx12:
18388     case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w64_gfx12:
18389       ArgsForMatchingMatrixTypes = {4, 1}; // CD, AB
18390       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_i32_16x16x16_iu8;
18391       break;
18392     case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w32:
18393     case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w64:
18394     case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w32_gfx12:
18395     case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w64_gfx12:
18396       ArgsForMatchingMatrixTypes = {4, 1}; // CD, AB
18397       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_i32_16x16x16_iu4;
18398       break;
18399     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_fp8_w32_gfx12:
18400     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_fp8_w64_gfx12:
18401       ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
18402       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_fp8_fp8;
18403       break;
18404     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_bf8_w32_gfx12:
18405     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_bf8_w64_gfx12:
18406       ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
18407       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_fp8_bf8;
18408       break;
18409     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_fp8_w32_gfx12:
18410     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_fp8_w64_gfx12:
18411       ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
18412       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_bf8_fp8;
18413       break;
18414     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_bf8_w32_gfx12:
18415     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_bf8_w64_gfx12:
18416       ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB
18417       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_bf8_bf8;
18418       break;
18419     case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x32_iu4_w32_gfx12:
18420     case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x32_iu4_w64_gfx12:
18421       ArgsForMatchingMatrixTypes = {4, 1}; // CD, AB
18422       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_i32_16x16x32_iu4;
18423       break;
18424     case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_f16_w32:
18425     case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_f16_w64:
18426       ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index
18427       BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f32_16x16x32_f16;
18428       break;
18429     case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf16_w32:
18430     case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf16_w64:
18431       ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index
18432       BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f32_16x16x32_bf16;
18433       break;
18434     case AMDGPU::BI__builtin_amdgcn_swmmac_f16_16x16x32_f16_w32:
18435     case AMDGPU::BI__builtin_amdgcn_swmmac_f16_16x16x32_f16_w64:
18436       ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index
18437       BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f16_16x16x32_f16;
18438       break;
18439     case AMDGPU::BI__builtin_amdgcn_swmmac_bf16_16x16x32_bf16_w32:
18440     case AMDGPU::BI__builtin_amdgcn_swmmac_bf16_16x16x32_bf16_w64:
18441       ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index
18442       BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_bf16_16x16x32_bf16;
18443       break;
18444     case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu8_w32:
18445     case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu8_w64:
18446       ArgsForMatchingMatrixTypes = {4, 1, 3, 5}; // CD, A, B, Index
18447       BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_i32_16x16x32_iu8;
18448       break;
18449     case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu4_w32:
18450     case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu4_w64:
18451       ArgsForMatchingMatrixTypes = {4, 1, 3, 5}; // CD, A, B, Index
18452       BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_i32_16x16x32_iu4;
18453       break;
18454     case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x64_iu4_w32:
18455     case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x64_iu4_w64:
18456       ArgsForMatchingMatrixTypes = {4, 1, 3, 5}; // CD, A, B, Index
18457       BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_i32_16x16x64_iu4;
18458       break;
18459     case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_fp8_w32:
18460     case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_fp8_w64:
18461       ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index
18462       BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_fp8;
18463       break;
18464     case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_bf8_w32:
18465     case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_bf8_w64:
18466       ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index
18467       BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_bf8;
18468       break;
18469     case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_fp8_w32:
18470     case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_fp8_w64:
18471       ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index
18472       BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_fp8;
18473       break;
18474     case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_bf8_w32:
18475     case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_bf8_w64:
18476       ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index
18477       BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_bf8;
18478       break;
18479     }
18480 
18481     SmallVector<Value *, 6> Args;
18482     for (int i = 0, e = E->getNumArgs(); i != e; ++i)
18483       Args.push_back(EmitScalarExpr(E->getArg(i)));
18484     if (AppendFalseForOpselArg)
18485       Args.push_back(Builder.getFalse());
18486 
18487     SmallVector<llvm::Type *, 6> ArgTypes;
18488     for (auto ArgIdx : ArgsForMatchingMatrixTypes)
18489       ArgTypes.push_back(Args[ArgIdx]->getType());
18490 
18491     Function *F = CGM.getIntrinsic(BuiltinWMMAOp, ArgTypes);
18492     return Builder.CreateCall(F, Args);
18493   }
18494 
18495   // amdgcn workitem
18496   case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
18497     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
18498   case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
18499     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
18500   case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
18501     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
18502 
18503   // amdgcn workgroup size
18504   case AMDGPU::BI__builtin_amdgcn_workgroup_size_x:
18505     return EmitAMDGPUWorkGroupSize(*this, 0);
18506   case AMDGPU::BI__builtin_amdgcn_workgroup_size_y:
18507     return EmitAMDGPUWorkGroupSize(*this, 1);
18508   case AMDGPU::BI__builtin_amdgcn_workgroup_size_z:
18509     return EmitAMDGPUWorkGroupSize(*this, 2);
18510 
18511   // amdgcn grid size
18512   case AMDGPU::BI__builtin_amdgcn_grid_size_x:
18513     return EmitAMDGPUGridSize(*this, 0);
18514   case AMDGPU::BI__builtin_amdgcn_grid_size_y:
18515     return EmitAMDGPUGridSize(*this, 1);
18516   case AMDGPU::BI__builtin_amdgcn_grid_size_z:
18517     return EmitAMDGPUGridSize(*this, 2);
18518 
18519   // r600 intrinsics
18520   case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
18521   case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
18522     return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee);
18523   case AMDGPU::BI__builtin_r600_read_tidig_x:
18524     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
18525   case AMDGPU::BI__builtin_r600_read_tidig_y:
18526     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
18527   case AMDGPU::BI__builtin_r600_read_tidig_z:
18528     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
18529   case AMDGPU::BI__builtin_amdgcn_alignbit: {
18530     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
18531     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
18532     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
18533     Function *F = CGM.getIntrinsic(Intrinsic::fshr, Src0->getType());
18534     return Builder.CreateCall(F, { Src0, Src1, Src2 });
18535   }
18536   case AMDGPU::BI__builtin_amdgcn_fence: {
18537     ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(0)),
18538                             EmitScalarExpr(E->getArg(1)), AO, SSID);
18539     return Builder.CreateFence(AO, SSID);
18540   }
18541   case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
18542   case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
18543   case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
18544   case AMDGPU::BI__builtin_amdgcn_atomic_dec64: {
18545     llvm::AtomicRMWInst::BinOp BinOp;
18546     switch (BuiltinID) {
18547     case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
18548     case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
18549       BinOp = llvm::AtomicRMWInst::UIncWrap;
18550       break;
18551     case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
18552     case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
18553       BinOp = llvm::AtomicRMWInst::UDecWrap;
18554       break;
18555     }
18556 
18557     Address Ptr = CheckAtomicAlignment(*this, E);
18558     Value *Val = EmitScalarExpr(E->getArg(1));
18559 
18560     ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(2)),
18561                             EmitScalarExpr(E->getArg(3)), AO, SSID);
18562 
18563     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
18564     bool Volatile =
18565         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
18566 
18567     llvm::AtomicRMWInst *RMW =
18568         Builder.CreateAtomicRMW(BinOp, Ptr, Val, AO, SSID);
18569     if (Volatile)
18570       RMW->setVolatile(true);
18571     return RMW;
18572   }
18573   case AMDGPU::BI__builtin_amdgcn_s_sendmsg_rtn:
18574   case AMDGPU::BI__builtin_amdgcn_s_sendmsg_rtnl: {
18575     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
18576     llvm::Type *ResultType = ConvertType(E->getType());
18577     // s_sendmsg_rtn is mangled using return type only.
18578     Function *F =
18579         CGM.getIntrinsic(Intrinsic::amdgcn_s_sendmsg_rtn, {ResultType});
18580     return Builder.CreateCall(F, {Arg});
18581   }
18582   default:
18583     return nullptr;
18584   }
18585 }
18586 
18587 /// Handle a SystemZ function in which the final argument is a pointer
18588 /// to an int that receives the post-instruction CC value.  At the LLVM level
18589 /// this is represented as a function that returns a {result, cc} pair.
18590 static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
18591                                          unsigned IntrinsicID,
18592                                          const CallExpr *E) {
18593   unsigned NumArgs = E->getNumArgs() - 1;
18594   SmallVector<Value *, 8> Args(NumArgs);
18595   for (unsigned I = 0; I < NumArgs; ++I)
18596     Args[I] = CGF.EmitScalarExpr(E->getArg(I));
18597   Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
18598   Function *F = CGF.CGM.getIntrinsic(IntrinsicID);
18599   Value *Call = CGF.Builder.CreateCall(F, Args);
18600   Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
18601   CGF.Builder.CreateStore(CC, CCPtr);
18602   return CGF.Builder.CreateExtractValue(Call, 0);
18603 }
18604 
18605 Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
18606                                                const CallExpr *E) {
18607   switch (BuiltinID) {
18608   case SystemZ::BI__builtin_tbegin: {
18609     Value *TDB = EmitScalarExpr(E->getArg(0));
18610     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
18611     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
18612     return Builder.CreateCall(F, {TDB, Control});
18613   }
18614   case SystemZ::BI__builtin_tbegin_nofloat: {
18615     Value *TDB = EmitScalarExpr(E->getArg(0));
18616     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
18617     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
18618     return Builder.CreateCall(F, {TDB, Control});
18619   }
18620   case SystemZ::BI__builtin_tbeginc: {
18621     Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
18622     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
18623     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
18624     return Builder.CreateCall(F, {TDB, Control});
18625   }
18626   case SystemZ::BI__builtin_tabort: {
18627     Value *Data = EmitScalarExpr(E->getArg(0));
18628     Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
18629     return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
18630   }
18631   case SystemZ::BI__builtin_non_tx_store: {
18632     Value *Address = EmitScalarExpr(E->getArg(0));
18633     Value *Data = EmitScalarExpr(E->getArg(1));
18634     Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
18635     return Builder.CreateCall(F, {Data, Address});
18636   }
18637 
18638   // Vector builtins.  Note that most vector builtins are mapped automatically
18639   // to target-specific LLVM intrinsics.  The ones handled specially here can
18640   // be represented via standard LLVM IR, which is preferable to enable common
18641   // LLVM optimizations.
18642 
18643   case SystemZ::BI__builtin_s390_vpopctb:
18644   case SystemZ::BI__builtin_s390_vpopcth:
18645   case SystemZ::BI__builtin_s390_vpopctf:
18646   case SystemZ::BI__builtin_s390_vpopctg: {
18647     llvm::Type *ResultType = ConvertType(E->getType());
18648     Value *X = EmitScalarExpr(E->getArg(0));
18649     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
18650     return Builder.CreateCall(F, X);
18651   }
18652 
18653   case SystemZ::BI__builtin_s390_vclzb:
18654   case SystemZ::BI__builtin_s390_vclzh:
18655   case SystemZ::BI__builtin_s390_vclzf:
18656   case SystemZ::BI__builtin_s390_vclzg: {
18657     llvm::Type *ResultType = ConvertType(E->getType());
18658     Value *X = EmitScalarExpr(E->getArg(0));
18659     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
18660     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
18661     return Builder.CreateCall(F, {X, Undef});
18662   }
18663 
18664   case SystemZ::BI__builtin_s390_vctzb:
18665   case SystemZ::BI__builtin_s390_vctzh:
18666   case SystemZ::BI__builtin_s390_vctzf:
18667   case SystemZ::BI__builtin_s390_vctzg: {
18668     llvm::Type *ResultType = ConvertType(E->getType());
18669     Value *X = EmitScalarExpr(E->getArg(0));
18670     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
18671     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
18672     return Builder.CreateCall(F, {X, Undef});
18673   }
18674 
18675   case SystemZ::BI__builtin_s390_verllb:
18676   case SystemZ::BI__builtin_s390_verllh:
18677   case SystemZ::BI__builtin_s390_verllf:
18678   case SystemZ::BI__builtin_s390_verllg: {
18679     llvm::Type *ResultType = ConvertType(E->getType());
18680     llvm::Value *Src = EmitScalarExpr(E->getArg(0));
18681     llvm::Value *Amt = EmitScalarExpr(E->getArg(1));
18682     // Splat scalar rotate amount to vector type.
18683     unsigned NumElts = cast<llvm::FixedVectorType>(ResultType)->getNumElements();
18684     Amt = Builder.CreateIntCast(Amt, ResultType->getScalarType(), false);
18685     Amt = Builder.CreateVectorSplat(NumElts, Amt);
18686     Function *F = CGM.getIntrinsic(Intrinsic::fshl, ResultType);
18687     return Builder.CreateCall(F, { Src, Src, Amt });
18688   }
18689 
18690   case SystemZ::BI__builtin_s390_verllvb:
18691   case SystemZ::BI__builtin_s390_verllvh:
18692   case SystemZ::BI__builtin_s390_verllvf:
18693   case SystemZ::BI__builtin_s390_verllvg: {
18694     llvm::Type *ResultType = ConvertType(E->getType());
18695     llvm::Value *Src = EmitScalarExpr(E->getArg(0));
18696     llvm::Value *Amt = EmitScalarExpr(E->getArg(1));
18697     Function *F = CGM.getIntrinsic(Intrinsic::fshl, ResultType);
18698     return Builder.CreateCall(F, { Src, Src, Amt });
18699   }
18700 
18701   case SystemZ::BI__builtin_s390_vfsqsb:
18702   case SystemZ::BI__builtin_s390_vfsqdb: {
18703     llvm::Type *ResultType = ConvertType(E->getType());
18704     Value *X = EmitScalarExpr(E->getArg(0));
18705     if (Builder.getIsFPConstrained()) {
18706       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, ResultType);
18707       return Builder.CreateConstrainedFPCall(F, { X });
18708     } else {
18709       Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
18710       return Builder.CreateCall(F, X);
18711     }
18712   }
18713   case SystemZ::BI__builtin_s390_vfmasb:
18714   case SystemZ::BI__builtin_s390_vfmadb: {
18715     llvm::Type *ResultType = ConvertType(E->getType());
18716     Value *X = EmitScalarExpr(E->getArg(0));
18717     Value *Y = EmitScalarExpr(E->getArg(1));
18718     Value *Z = EmitScalarExpr(E->getArg(2));
18719     if (Builder.getIsFPConstrained()) {
18720       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
18721       return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
18722     } else {
18723       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
18724       return Builder.CreateCall(F, {X, Y, Z});
18725     }
18726   }
18727   case SystemZ::BI__builtin_s390_vfmssb:
18728   case SystemZ::BI__builtin_s390_vfmsdb: {
18729     llvm::Type *ResultType = ConvertType(E->getType());
18730     Value *X = EmitScalarExpr(E->getArg(0));
18731     Value *Y = EmitScalarExpr(E->getArg(1));
18732     Value *Z = EmitScalarExpr(E->getArg(2));
18733     if (Builder.getIsFPConstrained()) {
18734       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
18735       return Builder.CreateConstrainedFPCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
18736     } else {
18737       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
18738       return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
18739     }
18740   }
18741   case SystemZ::BI__builtin_s390_vfnmasb:
18742   case SystemZ::BI__builtin_s390_vfnmadb: {
18743     llvm::Type *ResultType = ConvertType(E->getType());
18744     Value *X = EmitScalarExpr(E->getArg(0));
18745     Value *Y = EmitScalarExpr(E->getArg(1));
18746     Value *Z = EmitScalarExpr(E->getArg(2));
18747     if (Builder.getIsFPConstrained()) {
18748       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
18749       return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y,  Z}), "neg");
18750     } else {
18751       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
18752       return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
18753     }
18754   }
18755   case SystemZ::BI__builtin_s390_vfnmssb:
18756   case SystemZ::BI__builtin_s390_vfnmsdb: {
18757     llvm::Type *ResultType = ConvertType(E->getType());
18758     Value *X = EmitScalarExpr(E->getArg(0));
18759     Value *Y = EmitScalarExpr(E->getArg(1));
18760     Value *Z = EmitScalarExpr(E->getArg(2));
18761     if (Builder.getIsFPConstrained()) {
18762       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
18763       Value *NegZ = Builder.CreateFNeg(Z, "sub");
18764       return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, NegZ}));
18765     } else {
18766       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
18767       Value *NegZ = Builder.CreateFNeg(Z, "neg");
18768       return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, NegZ}));
18769     }
18770   }
18771   case SystemZ::BI__builtin_s390_vflpsb:
18772   case SystemZ::BI__builtin_s390_vflpdb: {
18773     llvm::Type *ResultType = ConvertType(E->getType());
18774     Value *X = EmitScalarExpr(E->getArg(0));
18775     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
18776     return Builder.CreateCall(F, X);
18777   }
18778   case SystemZ::BI__builtin_s390_vflnsb:
18779   case SystemZ::BI__builtin_s390_vflndb: {
18780     llvm::Type *ResultType = ConvertType(E->getType());
18781     Value *X = EmitScalarExpr(E->getArg(0));
18782     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
18783     return Builder.CreateFNeg(Builder.CreateCall(F, X), "neg");
18784   }
18785   case SystemZ::BI__builtin_s390_vfisb:
18786   case SystemZ::BI__builtin_s390_vfidb: {
18787     llvm::Type *ResultType = ConvertType(E->getType());
18788     Value *X = EmitScalarExpr(E->getArg(0));
18789     // Constant-fold the M4 and M5 mask arguments.
18790     llvm::APSInt M4 = *E->getArg(1)->getIntegerConstantExpr(getContext());
18791     llvm::APSInt M5 = *E->getArg(2)->getIntegerConstantExpr(getContext());
18792     // Check whether this instance can be represented via a LLVM standard
18793     // intrinsic.  We only support some combinations of M4 and M5.
18794     Intrinsic::ID ID = Intrinsic::not_intrinsic;
18795     Intrinsic::ID CI;
18796     switch (M4.getZExtValue()) {
18797     default: break;
18798     case 0:  // IEEE-inexact exception allowed
18799       switch (M5.getZExtValue()) {
18800       default: break;
18801       case 0: ID = Intrinsic::rint;
18802               CI = Intrinsic::experimental_constrained_rint; break;
18803       }
18804       break;
18805     case 4:  // IEEE-inexact exception suppressed
18806       switch (M5.getZExtValue()) {
18807       default: break;
18808       case 0: ID = Intrinsic::nearbyint;
18809               CI = Intrinsic::experimental_constrained_nearbyint; break;
18810       case 1: ID = Intrinsic::round;
18811               CI = Intrinsic::experimental_constrained_round; break;
18812       case 5: ID = Intrinsic::trunc;
18813               CI = Intrinsic::experimental_constrained_trunc; break;
18814       case 6: ID = Intrinsic::ceil;
18815               CI = Intrinsic::experimental_constrained_ceil; break;
18816       case 7: ID = Intrinsic::floor;
18817               CI = Intrinsic::experimental_constrained_floor; break;
18818       }
18819       break;
18820     }
18821     if (ID != Intrinsic::not_intrinsic) {
18822       if (Builder.getIsFPConstrained()) {
18823         Function *F = CGM.getIntrinsic(CI, ResultType);
18824         return Builder.CreateConstrainedFPCall(F, X);
18825       } else {
18826         Function *F = CGM.getIntrinsic(ID, ResultType);
18827         return Builder.CreateCall(F, X);
18828       }
18829     }
18830     switch (BuiltinID) { // FIXME: constrained version?
18831       case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break;
18832       case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break;
18833       default: llvm_unreachable("Unknown BuiltinID");
18834     }
18835     Function *F = CGM.getIntrinsic(ID);
18836     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
18837     Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
18838     return Builder.CreateCall(F, {X, M4Value, M5Value});
18839   }
18840   case SystemZ::BI__builtin_s390_vfmaxsb:
18841   case SystemZ::BI__builtin_s390_vfmaxdb: {
18842     llvm::Type *ResultType = ConvertType(E->getType());
18843     Value *X = EmitScalarExpr(E->getArg(0));
18844     Value *Y = EmitScalarExpr(E->getArg(1));
18845     // Constant-fold the M4 mask argument.
18846     llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
18847     // Check whether this instance can be represented via a LLVM standard
18848     // intrinsic.  We only support some values of M4.
18849     Intrinsic::ID ID = Intrinsic::not_intrinsic;
18850     Intrinsic::ID CI;
18851     switch (M4.getZExtValue()) {
18852     default: break;
18853     case 4: ID = Intrinsic::maxnum;
18854             CI = Intrinsic::experimental_constrained_maxnum; break;
18855     }
18856     if (ID != Intrinsic::not_intrinsic) {
18857       if (Builder.getIsFPConstrained()) {
18858         Function *F = CGM.getIntrinsic(CI, ResultType);
18859         return Builder.CreateConstrainedFPCall(F, {X, Y});
18860       } else {
18861         Function *F = CGM.getIntrinsic(ID, ResultType);
18862         return Builder.CreateCall(F, {X, Y});
18863       }
18864     }
18865     switch (BuiltinID) {
18866       case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break;
18867       case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break;
18868       default: llvm_unreachable("Unknown BuiltinID");
18869     }
18870     Function *F = CGM.getIntrinsic(ID);
18871     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
18872     return Builder.CreateCall(F, {X, Y, M4Value});
18873   }
18874   case SystemZ::BI__builtin_s390_vfminsb:
18875   case SystemZ::BI__builtin_s390_vfmindb: {
18876     llvm::Type *ResultType = ConvertType(E->getType());
18877     Value *X = EmitScalarExpr(E->getArg(0));
18878     Value *Y = EmitScalarExpr(E->getArg(1));
18879     // Constant-fold the M4 mask argument.
18880     llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
18881     // Check whether this instance can be represented via a LLVM standard
18882     // intrinsic.  We only support some values of M4.
18883     Intrinsic::ID ID = Intrinsic::not_intrinsic;
18884     Intrinsic::ID CI;
18885     switch (M4.getZExtValue()) {
18886     default: break;
18887     case 4: ID = Intrinsic::minnum;
18888             CI = Intrinsic::experimental_constrained_minnum; break;
18889     }
18890     if (ID != Intrinsic::not_intrinsic) {
18891       if (Builder.getIsFPConstrained()) {
18892         Function *F = CGM.getIntrinsic(CI, ResultType);
18893         return Builder.CreateConstrainedFPCall(F, {X, Y});
18894       } else {
18895         Function *F = CGM.getIntrinsic(ID, ResultType);
18896         return Builder.CreateCall(F, {X, Y});
18897       }
18898     }
18899     switch (BuiltinID) {
18900       case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break;
18901       case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break;
18902       default: llvm_unreachable("Unknown BuiltinID");
18903     }
18904     Function *F = CGM.getIntrinsic(ID);
18905     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
18906     return Builder.CreateCall(F, {X, Y, M4Value});
18907   }
18908 
18909   case SystemZ::BI__builtin_s390_vlbrh:
18910   case SystemZ::BI__builtin_s390_vlbrf:
18911   case SystemZ::BI__builtin_s390_vlbrg: {
18912     llvm::Type *ResultType = ConvertType(E->getType());
18913     Value *X = EmitScalarExpr(E->getArg(0));
18914     Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType);
18915     return Builder.CreateCall(F, X);
18916   }
18917 
18918   // Vector intrinsics that output the post-instruction CC value.
18919 
18920 #define INTRINSIC_WITH_CC(NAME) \
18921     case SystemZ::BI__builtin_##NAME: \
18922       return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
18923 
18924   INTRINSIC_WITH_CC(s390_vpkshs);
18925   INTRINSIC_WITH_CC(s390_vpksfs);
18926   INTRINSIC_WITH_CC(s390_vpksgs);
18927 
18928   INTRINSIC_WITH_CC(s390_vpklshs);
18929   INTRINSIC_WITH_CC(s390_vpklsfs);
18930   INTRINSIC_WITH_CC(s390_vpklsgs);
18931 
18932   INTRINSIC_WITH_CC(s390_vceqbs);
18933   INTRINSIC_WITH_CC(s390_vceqhs);
18934   INTRINSIC_WITH_CC(s390_vceqfs);
18935   INTRINSIC_WITH_CC(s390_vceqgs);
18936 
18937   INTRINSIC_WITH_CC(s390_vchbs);
18938   INTRINSIC_WITH_CC(s390_vchhs);
18939   INTRINSIC_WITH_CC(s390_vchfs);
18940   INTRINSIC_WITH_CC(s390_vchgs);
18941 
18942   INTRINSIC_WITH_CC(s390_vchlbs);
18943   INTRINSIC_WITH_CC(s390_vchlhs);
18944   INTRINSIC_WITH_CC(s390_vchlfs);
18945   INTRINSIC_WITH_CC(s390_vchlgs);
18946 
18947   INTRINSIC_WITH_CC(s390_vfaebs);
18948   INTRINSIC_WITH_CC(s390_vfaehs);
18949   INTRINSIC_WITH_CC(s390_vfaefs);
18950 
18951   INTRINSIC_WITH_CC(s390_vfaezbs);
18952   INTRINSIC_WITH_CC(s390_vfaezhs);
18953   INTRINSIC_WITH_CC(s390_vfaezfs);
18954 
18955   INTRINSIC_WITH_CC(s390_vfeebs);
18956   INTRINSIC_WITH_CC(s390_vfeehs);
18957   INTRINSIC_WITH_CC(s390_vfeefs);
18958 
18959   INTRINSIC_WITH_CC(s390_vfeezbs);
18960   INTRINSIC_WITH_CC(s390_vfeezhs);
18961   INTRINSIC_WITH_CC(s390_vfeezfs);
18962 
18963   INTRINSIC_WITH_CC(s390_vfenebs);
18964   INTRINSIC_WITH_CC(s390_vfenehs);
18965   INTRINSIC_WITH_CC(s390_vfenefs);
18966 
18967   INTRINSIC_WITH_CC(s390_vfenezbs);
18968   INTRINSIC_WITH_CC(s390_vfenezhs);
18969   INTRINSIC_WITH_CC(s390_vfenezfs);
18970 
18971   INTRINSIC_WITH_CC(s390_vistrbs);
18972   INTRINSIC_WITH_CC(s390_vistrhs);
18973   INTRINSIC_WITH_CC(s390_vistrfs);
18974 
18975   INTRINSIC_WITH_CC(s390_vstrcbs);
18976   INTRINSIC_WITH_CC(s390_vstrchs);
18977   INTRINSIC_WITH_CC(s390_vstrcfs);
18978 
18979   INTRINSIC_WITH_CC(s390_vstrczbs);
18980   INTRINSIC_WITH_CC(s390_vstrczhs);
18981   INTRINSIC_WITH_CC(s390_vstrczfs);
18982 
18983   INTRINSIC_WITH_CC(s390_vfcesbs);
18984   INTRINSIC_WITH_CC(s390_vfcedbs);
18985   INTRINSIC_WITH_CC(s390_vfchsbs);
18986   INTRINSIC_WITH_CC(s390_vfchdbs);
18987   INTRINSIC_WITH_CC(s390_vfchesbs);
18988   INTRINSIC_WITH_CC(s390_vfchedbs);
18989 
18990   INTRINSIC_WITH_CC(s390_vftcisb);
18991   INTRINSIC_WITH_CC(s390_vftcidb);
18992 
18993   INTRINSIC_WITH_CC(s390_vstrsb);
18994   INTRINSIC_WITH_CC(s390_vstrsh);
18995   INTRINSIC_WITH_CC(s390_vstrsf);
18996 
18997   INTRINSIC_WITH_CC(s390_vstrszb);
18998   INTRINSIC_WITH_CC(s390_vstrszh);
18999   INTRINSIC_WITH_CC(s390_vstrszf);
19000 
19001 #undef INTRINSIC_WITH_CC
19002 
19003   default:
19004     return nullptr;
19005   }
19006 }
19007 
19008 namespace {
19009 // Helper classes for mapping MMA builtins to particular LLVM intrinsic variant.
19010 struct NVPTXMmaLdstInfo {
19011   unsigned NumResults;  // Number of elements to load/store
19012   // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported.
19013   unsigned IID_col;
19014   unsigned IID_row;
19015 };
19016 
19017 #define MMA_INTR(geom_op_type, layout) \
19018   Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride
19019 #define MMA_LDST(n, geom_op_type)                                              \
19020   { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) }
19021 
19022 static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) {
19023   switch (BuiltinID) {
19024   // FP MMA loads
19025   case NVPTX::BI__hmma_m16n16k16_ld_a:
19026     return MMA_LDST(8, m16n16k16_load_a_f16);
19027   case NVPTX::BI__hmma_m16n16k16_ld_b:
19028     return MMA_LDST(8, m16n16k16_load_b_f16);
19029   case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
19030     return MMA_LDST(4, m16n16k16_load_c_f16);
19031   case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
19032     return MMA_LDST(8, m16n16k16_load_c_f32);
19033   case NVPTX::BI__hmma_m32n8k16_ld_a:
19034     return MMA_LDST(8, m32n8k16_load_a_f16);
19035   case NVPTX::BI__hmma_m32n8k16_ld_b:
19036     return MMA_LDST(8, m32n8k16_load_b_f16);
19037   case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
19038     return MMA_LDST(4, m32n8k16_load_c_f16);
19039   case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
19040     return MMA_LDST(8, m32n8k16_load_c_f32);
19041   case NVPTX::BI__hmma_m8n32k16_ld_a:
19042     return MMA_LDST(8, m8n32k16_load_a_f16);
19043   case NVPTX::BI__hmma_m8n32k16_ld_b:
19044     return MMA_LDST(8, m8n32k16_load_b_f16);
19045   case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
19046     return MMA_LDST(4, m8n32k16_load_c_f16);
19047   case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
19048     return MMA_LDST(8, m8n32k16_load_c_f32);
19049 
19050   // Integer MMA loads
19051   case NVPTX::BI__imma_m16n16k16_ld_a_s8:
19052     return MMA_LDST(2, m16n16k16_load_a_s8);
19053   case NVPTX::BI__imma_m16n16k16_ld_a_u8:
19054     return MMA_LDST(2, m16n16k16_load_a_u8);
19055   case NVPTX::BI__imma_m16n16k16_ld_b_s8:
19056     return MMA_LDST(2, m16n16k16_load_b_s8);
19057   case NVPTX::BI__imma_m16n16k16_ld_b_u8:
19058     return MMA_LDST(2, m16n16k16_load_b_u8);
19059   case NVPTX::BI__imma_m16n16k16_ld_c:
19060     return MMA_LDST(8, m16n16k16_load_c_s32);
19061   case NVPTX::BI__imma_m32n8k16_ld_a_s8:
19062     return MMA_LDST(4, m32n8k16_load_a_s8);
19063   case NVPTX::BI__imma_m32n8k16_ld_a_u8:
19064     return MMA_LDST(4, m32n8k16_load_a_u8);
19065   case NVPTX::BI__imma_m32n8k16_ld_b_s8:
19066     return MMA_LDST(1, m32n8k16_load_b_s8);
19067   case NVPTX::BI__imma_m32n8k16_ld_b_u8:
19068     return MMA_LDST(1, m32n8k16_load_b_u8);
19069   case NVPTX::BI__imma_m32n8k16_ld_c:
19070     return MMA_LDST(8, m32n8k16_load_c_s32);
19071   case NVPTX::BI__imma_m8n32k16_ld_a_s8:
19072     return MMA_LDST(1, m8n32k16_load_a_s8);
19073   case NVPTX::BI__imma_m8n32k16_ld_a_u8:
19074     return MMA_LDST(1, m8n32k16_load_a_u8);
19075   case NVPTX::BI__imma_m8n32k16_ld_b_s8:
19076     return MMA_LDST(4, m8n32k16_load_b_s8);
19077   case NVPTX::BI__imma_m8n32k16_ld_b_u8:
19078     return MMA_LDST(4, m8n32k16_load_b_u8);
19079   case NVPTX::BI__imma_m8n32k16_ld_c:
19080     return MMA_LDST(8, m8n32k16_load_c_s32);
19081 
19082   // Sub-integer MMA loads.
19083   // Only row/col layout is supported by A/B fragments.
19084   case NVPTX::BI__imma_m8n8k32_ld_a_s4:
19085     return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)};
19086   case NVPTX::BI__imma_m8n8k32_ld_a_u4:
19087     return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)};
19088   case NVPTX::BI__imma_m8n8k32_ld_b_s4:
19089     return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0};
19090   case NVPTX::BI__imma_m8n8k32_ld_b_u4:
19091     return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0};
19092   case NVPTX::BI__imma_m8n8k32_ld_c:
19093     return MMA_LDST(2, m8n8k32_load_c_s32);
19094   case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
19095     return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)};
19096   case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
19097     return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0};
19098   case NVPTX::BI__bmma_m8n8k128_ld_c:
19099     return MMA_LDST(2, m8n8k128_load_c_s32);
19100 
19101   // Double MMA loads
19102   case NVPTX::BI__dmma_m8n8k4_ld_a:
19103     return MMA_LDST(1, m8n8k4_load_a_f64);
19104   case NVPTX::BI__dmma_m8n8k4_ld_b:
19105     return MMA_LDST(1, m8n8k4_load_b_f64);
19106   case NVPTX::BI__dmma_m8n8k4_ld_c:
19107     return MMA_LDST(2, m8n8k4_load_c_f64);
19108 
19109   // Alternate float MMA loads
19110   case NVPTX::BI__mma_bf16_m16n16k16_ld_a:
19111     return MMA_LDST(4, m16n16k16_load_a_bf16);
19112   case NVPTX::BI__mma_bf16_m16n16k16_ld_b:
19113     return MMA_LDST(4, m16n16k16_load_b_bf16);
19114   case NVPTX::BI__mma_bf16_m8n32k16_ld_a:
19115     return MMA_LDST(2, m8n32k16_load_a_bf16);
19116   case NVPTX::BI__mma_bf16_m8n32k16_ld_b:
19117     return MMA_LDST(8, m8n32k16_load_b_bf16);
19118   case NVPTX::BI__mma_bf16_m32n8k16_ld_a:
19119     return MMA_LDST(8, m32n8k16_load_a_bf16);
19120   case NVPTX::BI__mma_bf16_m32n8k16_ld_b:
19121     return MMA_LDST(2, m32n8k16_load_b_bf16);
19122   case NVPTX::BI__mma_tf32_m16n16k8_ld_a:
19123     return MMA_LDST(4, m16n16k8_load_a_tf32);
19124   case NVPTX::BI__mma_tf32_m16n16k8_ld_b:
19125     return MMA_LDST(4, m16n16k8_load_b_tf32);
19126   case NVPTX::BI__mma_tf32_m16n16k8_ld_c:
19127     return MMA_LDST(8, m16n16k8_load_c_f32);
19128 
19129   // NOTE: We need to follow inconsitent naming scheme used by NVCC.  Unlike
19130   // PTX and LLVM IR where stores always use fragment D, NVCC builtins always
19131   // use fragment C for both loads and stores.
19132   // FP MMA stores.
19133   case NVPTX::BI__hmma_m16n16k16_st_c_f16:
19134     return MMA_LDST(4, m16n16k16_store_d_f16);
19135   case NVPTX::BI__hmma_m16n16k16_st_c_f32:
19136     return MMA_LDST(8, m16n16k16_store_d_f32);
19137   case NVPTX::BI__hmma_m32n8k16_st_c_f16:
19138     return MMA_LDST(4, m32n8k16_store_d_f16);
19139   case NVPTX::BI__hmma_m32n8k16_st_c_f32:
19140     return MMA_LDST(8, m32n8k16_store_d_f32);
19141   case NVPTX::BI__hmma_m8n32k16_st_c_f16:
19142     return MMA_LDST(4, m8n32k16_store_d_f16);
19143   case NVPTX::BI__hmma_m8n32k16_st_c_f32:
19144     return MMA_LDST(8, m8n32k16_store_d_f32);
19145 
19146   // Integer and sub-integer MMA stores.
19147   // Another naming quirk. Unlike other MMA builtins that use PTX types in the
19148   // name, integer loads/stores use LLVM's i32.
19149   case NVPTX::BI__imma_m16n16k16_st_c_i32:
19150     return MMA_LDST(8, m16n16k16_store_d_s32);
19151   case NVPTX::BI__imma_m32n8k16_st_c_i32:
19152     return MMA_LDST(8, m32n8k16_store_d_s32);
19153   case NVPTX::BI__imma_m8n32k16_st_c_i32:
19154     return MMA_LDST(8, m8n32k16_store_d_s32);
19155   case NVPTX::BI__imma_m8n8k32_st_c_i32:
19156     return MMA_LDST(2, m8n8k32_store_d_s32);
19157   case NVPTX::BI__bmma_m8n8k128_st_c_i32:
19158     return MMA_LDST(2, m8n8k128_store_d_s32);
19159 
19160   // Double MMA store
19161   case NVPTX::BI__dmma_m8n8k4_st_c_f64:
19162     return MMA_LDST(2, m8n8k4_store_d_f64);
19163 
19164   // Alternate float MMA store
19165   case NVPTX::BI__mma_m16n16k8_st_c_f32:
19166     return MMA_LDST(8, m16n16k8_store_d_f32);
19167 
19168   default:
19169     llvm_unreachable("Unknown MMA builtin");
19170   }
19171 }
19172 #undef MMA_LDST
19173 #undef MMA_INTR
19174 
19175 
19176 struct NVPTXMmaInfo {
19177   unsigned NumEltsA;
19178   unsigned NumEltsB;
19179   unsigned NumEltsC;
19180   unsigned NumEltsD;
19181 
19182   // Variants are ordered by layout-A/layout-B/satf, where 'row' has priority
19183   // over 'col' for layout. The index of non-satf variants is expected to match
19184   // the undocumented layout constants used by CUDA's mma.hpp.
19185   std::array<unsigned, 8> Variants;
19186 
19187   unsigned getMMAIntrinsic(int Layout, bool Satf) {
19188     unsigned Index = Layout + 4 * Satf;
19189     if (Index >= Variants.size())
19190       return 0;
19191     return Variants[Index];
19192   }
19193 };
19194 
19195   // Returns an intrinsic that matches Layout and Satf for valid combinations of
19196   // Layout and Satf, 0 otherwise.
19197 static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) {
19198   // clang-format off
19199 #define MMA_VARIANTS(geom, type)                                    \
19200       Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type,             \
19201       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
19202       Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type,             \
19203       Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type
19204 #define MMA_SATF_VARIANTS(geom, type)                               \
19205       MMA_VARIANTS(geom, type),                                     \
19206       Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \
19207       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
19208       Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \
19209       Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite
19210 // Sub-integer MMA only supports row.col layout.
19211 #define MMA_VARIANTS_I4(geom, type) \
19212       0, \
19213       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
19214       0, \
19215       0, \
19216       0, \
19217       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
19218       0, \
19219       0
19220 // b1 MMA does not support .satfinite.
19221 #define MMA_VARIANTS_B1_XOR(geom, type) \
19222       0, \
19223       Intrinsic::nvvm_wmma_##geom##_mma_xor_popc_row_col_##type,             \
19224       0, \
19225       0, \
19226       0, \
19227       0, \
19228       0, \
19229       0
19230 #define MMA_VARIANTS_B1_AND(geom, type) \
19231       0, \
19232       Intrinsic::nvvm_wmma_##geom##_mma_and_popc_row_col_##type,             \
19233       0, \
19234       0, \
19235       0, \
19236       0, \
19237       0, \
19238       0
19239   // clang-format on
19240   switch (BuiltinID) {
19241   // FP MMA
19242   // Note that 'type' argument of MMA_SATF_VARIANTS uses D_C notation, while
19243   // NumEltsN of return value are ordered as A,B,C,D.
19244   case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
19245     return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m16n16k16, f16_f16)}}};
19246   case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
19247     return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m16n16k16, f32_f16)}}};
19248   case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
19249     return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m16n16k16, f16_f32)}}};
19250   case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
19251     return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, f32_f32)}}};
19252   case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
19253     return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m32n8k16, f16_f16)}}};
19254   case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
19255     return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m32n8k16, f32_f16)}}};
19256   case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
19257     return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m32n8k16, f16_f32)}}};
19258   case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
19259     return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, f32_f32)}}};
19260   case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
19261     return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m8n32k16, f16_f16)}}};
19262   case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
19263     return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m8n32k16, f32_f16)}}};
19264   case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
19265     return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m8n32k16, f16_f32)}}};
19266   case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
19267     return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, f32_f32)}}};
19268 
19269   // Integer MMA
19270   case NVPTX::BI__imma_m16n16k16_mma_s8:
19271     return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, s8)}}};
19272   case NVPTX::BI__imma_m16n16k16_mma_u8:
19273     return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, u8)}}};
19274   case NVPTX::BI__imma_m32n8k16_mma_s8:
19275     return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, s8)}}};
19276   case NVPTX::BI__imma_m32n8k16_mma_u8:
19277     return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, u8)}}};
19278   case NVPTX::BI__imma_m8n32k16_mma_s8:
19279     return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, s8)}}};
19280   case NVPTX::BI__imma_m8n32k16_mma_u8:
19281     return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, u8)}}};
19282 
19283   // Sub-integer MMA
19284   case NVPTX::BI__imma_m8n8k32_mma_s4:
19285     return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32, s4)}}};
19286   case NVPTX::BI__imma_m8n8k32_mma_u4:
19287     return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32, u4)}}};
19288   case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
19289     return {1, 1, 2, 2, {{MMA_VARIANTS_B1_XOR(m8n8k128, b1)}}};
19290   case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1:
19291     return {1, 1, 2, 2, {{MMA_VARIANTS_B1_AND(m8n8k128, b1)}}};
19292 
19293   // Double MMA
19294   case NVPTX::BI__dmma_m8n8k4_mma_f64:
19295     return {1, 1, 2, 2, {{MMA_VARIANTS(m8n8k4, f64)}}};
19296 
19297   // Alternate FP MMA
19298   case NVPTX::BI__mma_bf16_m16n16k16_mma_f32:
19299     return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k16, bf16)}}};
19300   case NVPTX::BI__mma_bf16_m8n32k16_mma_f32:
19301     return {2, 8, 8, 8, {{MMA_VARIANTS(m8n32k16, bf16)}}};
19302   case NVPTX::BI__mma_bf16_m32n8k16_mma_f32:
19303     return {8, 2, 8, 8, {{MMA_VARIANTS(m32n8k16, bf16)}}};
19304   case NVPTX::BI__mma_tf32_m16n16k8_mma_f32:
19305     return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k8, tf32)}}};
19306   default:
19307     llvm_unreachable("Unexpected builtin ID.");
19308   }
19309 #undef MMA_VARIANTS
19310 #undef MMA_SATF_VARIANTS
19311 #undef MMA_VARIANTS_I4
19312 #undef MMA_VARIANTS_B1_AND
19313 #undef MMA_VARIANTS_B1_XOR
19314 }
19315 
19316 static Value *MakeLdgLdu(unsigned IntrinsicID, CodeGenFunction &CGF,
19317                          const CallExpr *E) {
19318   Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
19319   QualType ArgType = E->getArg(0)->getType();
19320   clang::CharUnits Align = CGF.CGM.getNaturalPointeeTypeAlignment(ArgType);
19321   llvm::Type *ElemTy = CGF.ConvertTypeForMem(ArgType->getPointeeType());
19322   return CGF.Builder.CreateCall(
19323       CGF.CGM.getIntrinsic(IntrinsicID, {ElemTy, Ptr->getType()}),
19324       {Ptr, ConstantInt::get(CGF.Builder.getInt32Ty(), Align.getQuantity())});
19325 }
19326 
19327 static Value *MakeScopedAtomic(unsigned IntrinsicID, CodeGenFunction &CGF,
19328                                const CallExpr *E) {
19329   Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
19330   llvm::Type *ElemTy =
19331       CGF.ConvertTypeForMem(E->getArg(0)->getType()->getPointeeType());
19332   return CGF.Builder.CreateCall(
19333       CGF.CGM.getIntrinsic(IntrinsicID, {ElemTy, Ptr->getType()}),
19334       {Ptr, CGF.EmitScalarExpr(E->getArg(1))});
19335 }
19336 
19337 static Value *MakeCpAsync(unsigned IntrinsicID, unsigned IntrinsicIDS,
19338                           CodeGenFunction &CGF, const CallExpr *E,
19339                           int SrcSize) {
19340   return E->getNumArgs() == 3
19341              ? CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IntrinsicIDS),
19342                                       {CGF.EmitScalarExpr(E->getArg(0)),
19343                                        CGF.EmitScalarExpr(E->getArg(1)),
19344                                        CGF.EmitScalarExpr(E->getArg(2))})
19345              : CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IntrinsicID),
19346                                       {CGF.EmitScalarExpr(E->getArg(0)),
19347                                        CGF.EmitScalarExpr(E->getArg(1))});
19348 }
19349 
19350 static Value *MakeHalfType(unsigned IntrinsicID, unsigned BuiltinID,
19351                            const CallExpr *E, CodeGenFunction &CGF) {
19352   auto &C = CGF.CGM.getContext();
19353   if (!(C.getLangOpts().NativeHalfType ||
19354         !C.getTargetInfo().useFP16ConversionIntrinsics())) {
19355     CGF.CGM.Error(E->getExprLoc(), C.BuiltinInfo.getName(BuiltinID).str() +
19356                                        " requires native half type support.");
19357     return nullptr;
19358   }
19359 
19360   if (IntrinsicID == Intrinsic::nvvm_ldg_global_f ||
19361       IntrinsicID == Intrinsic::nvvm_ldu_global_f)
19362     return MakeLdgLdu(IntrinsicID, CGF, E);
19363 
19364   SmallVector<Value *, 16> Args;
19365   auto *F = CGF.CGM.getIntrinsic(IntrinsicID);
19366   auto *FTy = F->getFunctionType();
19367   unsigned ICEArguments = 0;
19368   ASTContext::GetBuiltinTypeError Error;
19369   C.GetBuiltinType(BuiltinID, Error, &ICEArguments);
19370   assert(Error == ASTContext::GE_None && "Should not codegen an error");
19371   for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
19372     assert((ICEArguments & (1 << i)) == 0);
19373     auto *ArgValue = CGF.EmitScalarExpr(E->getArg(i));
19374     auto *PTy = FTy->getParamType(i);
19375     if (PTy != ArgValue->getType())
19376       ArgValue = CGF.Builder.CreateBitCast(ArgValue, PTy);
19377     Args.push_back(ArgValue);
19378   }
19379 
19380   return CGF.Builder.CreateCall(F, Args);
19381 }
19382 } // namespace
19383 
19384 Value *CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID,
19385                                              const CallExpr *E) {
19386   switch (BuiltinID) {
19387   case NVPTX::BI__nvvm_atom_add_gen_i:
19388   case NVPTX::BI__nvvm_atom_add_gen_l:
19389   case NVPTX::BI__nvvm_atom_add_gen_ll:
19390     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
19391 
19392   case NVPTX::BI__nvvm_atom_sub_gen_i:
19393   case NVPTX::BI__nvvm_atom_sub_gen_l:
19394   case NVPTX::BI__nvvm_atom_sub_gen_ll:
19395     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
19396 
19397   case NVPTX::BI__nvvm_atom_and_gen_i:
19398   case NVPTX::BI__nvvm_atom_and_gen_l:
19399   case NVPTX::BI__nvvm_atom_and_gen_ll:
19400     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
19401 
19402   case NVPTX::BI__nvvm_atom_or_gen_i:
19403   case NVPTX::BI__nvvm_atom_or_gen_l:
19404   case NVPTX::BI__nvvm_atom_or_gen_ll:
19405     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
19406 
19407   case NVPTX::BI__nvvm_atom_xor_gen_i:
19408   case NVPTX::BI__nvvm_atom_xor_gen_l:
19409   case NVPTX::BI__nvvm_atom_xor_gen_ll:
19410     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
19411 
19412   case NVPTX::BI__nvvm_atom_xchg_gen_i:
19413   case NVPTX::BI__nvvm_atom_xchg_gen_l:
19414   case NVPTX::BI__nvvm_atom_xchg_gen_ll:
19415     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
19416 
19417   case NVPTX::BI__nvvm_atom_max_gen_i:
19418   case NVPTX::BI__nvvm_atom_max_gen_l:
19419   case NVPTX::BI__nvvm_atom_max_gen_ll:
19420     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
19421 
19422   case NVPTX::BI__nvvm_atom_max_gen_ui:
19423   case NVPTX::BI__nvvm_atom_max_gen_ul:
19424   case NVPTX::BI__nvvm_atom_max_gen_ull:
19425     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
19426 
19427   case NVPTX::BI__nvvm_atom_min_gen_i:
19428   case NVPTX::BI__nvvm_atom_min_gen_l:
19429   case NVPTX::BI__nvvm_atom_min_gen_ll:
19430     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
19431 
19432   case NVPTX::BI__nvvm_atom_min_gen_ui:
19433   case NVPTX::BI__nvvm_atom_min_gen_ul:
19434   case NVPTX::BI__nvvm_atom_min_gen_ull:
19435     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
19436 
19437   case NVPTX::BI__nvvm_atom_cas_gen_i:
19438   case NVPTX::BI__nvvm_atom_cas_gen_l:
19439   case NVPTX::BI__nvvm_atom_cas_gen_ll:
19440     // __nvvm_atom_cas_gen_* should return the old value rather than the
19441     // success flag.
19442     return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
19443 
19444   case NVPTX::BI__nvvm_atom_add_gen_f:
19445   case NVPTX::BI__nvvm_atom_add_gen_d: {
19446     Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
19447     Value *Val = EmitScalarExpr(E->getArg(1));
19448 
19449     return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, DestAddr, Val,
19450                                    AtomicOrdering::SequentiallyConsistent);
19451   }
19452 
19453   case NVPTX::BI__nvvm_atom_inc_gen_ui: {
19454     Value *Ptr = EmitScalarExpr(E->getArg(0));
19455     Value *Val = EmitScalarExpr(E->getArg(1));
19456     Function *FnALI32 =
19457         CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
19458     return Builder.CreateCall(FnALI32, {Ptr, Val});
19459   }
19460 
19461   case NVPTX::BI__nvvm_atom_dec_gen_ui: {
19462     Value *Ptr = EmitScalarExpr(E->getArg(0));
19463     Value *Val = EmitScalarExpr(E->getArg(1));
19464     Function *FnALD32 =
19465         CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
19466     return Builder.CreateCall(FnALD32, {Ptr, Val});
19467   }
19468 
19469   case NVPTX::BI__nvvm_ldg_c:
19470   case NVPTX::BI__nvvm_ldg_sc:
19471   case NVPTX::BI__nvvm_ldg_c2:
19472   case NVPTX::BI__nvvm_ldg_sc2:
19473   case NVPTX::BI__nvvm_ldg_c4:
19474   case NVPTX::BI__nvvm_ldg_sc4:
19475   case NVPTX::BI__nvvm_ldg_s:
19476   case NVPTX::BI__nvvm_ldg_s2:
19477   case NVPTX::BI__nvvm_ldg_s4:
19478   case NVPTX::BI__nvvm_ldg_i:
19479   case NVPTX::BI__nvvm_ldg_i2:
19480   case NVPTX::BI__nvvm_ldg_i4:
19481   case NVPTX::BI__nvvm_ldg_l:
19482   case NVPTX::BI__nvvm_ldg_l2:
19483   case NVPTX::BI__nvvm_ldg_ll:
19484   case NVPTX::BI__nvvm_ldg_ll2:
19485   case NVPTX::BI__nvvm_ldg_uc:
19486   case NVPTX::BI__nvvm_ldg_uc2:
19487   case NVPTX::BI__nvvm_ldg_uc4:
19488   case NVPTX::BI__nvvm_ldg_us:
19489   case NVPTX::BI__nvvm_ldg_us2:
19490   case NVPTX::BI__nvvm_ldg_us4:
19491   case NVPTX::BI__nvvm_ldg_ui:
19492   case NVPTX::BI__nvvm_ldg_ui2:
19493   case NVPTX::BI__nvvm_ldg_ui4:
19494   case NVPTX::BI__nvvm_ldg_ul:
19495   case NVPTX::BI__nvvm_ldg_ul2:
19496   case NVPTX::BI__nvvm_ldg_ull:
19497   case NVPTX::BI__nvvm_ldg_ull2:
19498     // PTX Interoperability section 2.2: "For a vector with an even number of
19499     // elements, its alignment is set to number of elements times the alignment
19500     // of its member: n*alignof(t)."
19501     return MakeLdgLdu(Intrinsic::nvvm_ldg_global_i, *this, E);
19502   case NVPTX::BI__nvvm_ldg_f:
19503   case NVPTX::BI__nvvm_ldg_f2:
19504   case NVPTX::BI__nvvm_ldg_f4:
19505   case NVPTX::BI__nvvm_ldg_d:
19506   case NVPTX::BI__nvvm_ldg_d2:
19507     return MakeLdgLdu(Intrinsic::nvvm_ldg_global_f, *this, E);
19508 
19509   case NVPTX::BI__nvvm_ldu_c:
19510   case NVPTX::BI__nvvm_ldu_sc:
19511   case NVPTX::BI__nvvm_ldu_c2:
19512   case NVPTX::BI__nvvm_ldu_sc2:
19513   case NVPTX::BI__nvvm_ldu_c4:
19514   case NVPTX::BI__nvvm_ldu_sc4:
19515   case NVPTX::BI__nvvm_ldu_s:
19516   case NVPTX::BI__nvvm_ldu_s2:
19517   case NVPTX::BI__nvvm_ldu_s4:
19518   case NVPTX::BI__nvvm_ldu_i:
19519   case NVPTX::BI__nvvm_ldu_i2:
19520   case NVPTX::BI__nvvm_ldu_i4:
19521   case NVPTX::BI__nvvm_ldu_l:
19522   case NVPTX::BI__nvvm_ldu_l2:
19523   case NVPTX::BI__nvvm_ldu_ll:
19524   case NVPTX::BI__nvvm_ldu_ll2:
19525   case NVPTX::BI__nvvm_ldu_uc:
19526   case NVPTX::BI__nvvm_ldu_uc2:
19527   case NVPTX::BI__nvvm_ldu_uc4:
19528   case NVPTX::BI__nvvm_ldu_us:
19529   case NVPTX::BI__nvvm_ldu_us2:
19530   case NVPTX::BI__nvvm_ldu_us4:
19531   case NVPTX::BI__nvvm_ldu_ui:
19532   case NVPTX::BI__nvvm_ldu_ui2:
19533   case NVPTX::BI__nvvm_ldu_ui4:
19534   case NVPTX::BI__nvvm_ldu_ul:
19535   case NVPTX::BI__nvvm_ldu_ul2:
19536   case NVPTX::BI__nvvm_ldu_ull:
19537   case NVPTX::BI__nvvm_ldu_ull2:
19538     return MakeLdgLdu(Intrinsic::nvvm_ldu_global_i, *this, E);
19539   case NVPTX::BI__nvvm_ldu_f:
19540   case NVPTX::BI__nvvm_ldu_f2:
19541   case NVPTX::BI__nvvm_ldu_f4:
19542   case NVPTX::BI__nvvm_ldu_d:
19543   case NVPTX::BI__nvvm_ldu_d2:
19544     return MakeLdgLdu(Intrinsic::nvvm_ldu_global_f, *this, E);
19545 
19546   case NVPTX::BI__nvvm_atom_cta_add_gen_i:
19547   case NVPTX::BI__nvvm_atom_cta_add_gen_l:
19548   case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
19549     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta, *this, E);
19550   case NVPTX::BI__nvvm_atom_sys_add_gen_i:
19551   case NVPTX::BI__nvvm_atom_sys_add_gen_l:
19552   case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
19553     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys, *this, E);
19554   case NVPTX::BI__nvvm_atom_cta_add_gen_f:
19555   case NVPTX::BI__nvvm_atom_cta_add_gen_d:
19556     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta, *this, E);
19557   case NVPTX::BI__nvvm_atom_sys_add_gen_f:
19558   case NVPTX::BI__nvvm_atom_sys_add_gen_d:
19559     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys, *this, E);
19560   case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
19561   case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
19562   case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
19563     return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta, *this, E);
19564   case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
19565   case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
19566   case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
19567     return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys, *this, E);
19568   case NVPTX::BI__nvvm_atom_cta_max_gen_i:
19569   case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
19570   case NVPTX::BI__nvvm_atom_cta_max_gen_l:
19571   case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
19572   case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
19573   case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
19574     return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta, *this, E);
19575   case NVPTX::BI__nvvm_atom_sys_max_gen_i:
19576   case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
19577   case NVPTX::BI__nvvm_atom_sys_max_gen_l:
19578   case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
19579   case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
19580   case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
19581     return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys, *this, E);
19582   case NVPTX::BI__nvvm_atom_cta_min_gen_i:
19583   case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
19584   case NVPTX::BI__nvvm_atom_cta_min_gen_l:
19585   case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
19586   case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
19587   case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
19588     return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta, *this, E);
19589   case NVPTX::BI__nvvm_atom_sys_min_gen_i:
19590   case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
19591   case NVPTX::BI__nvvm_atom_sys_min_gen_l:
19592   case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
19593   case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
19594   case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
19595     return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys, *this, E);
19596   case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
19597     return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta, *this, E);
19598   case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
19599     return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta, *this, E);
19600   case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
19601     return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys, *this, E);
19602   case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
19603     return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys, *this, E);
19604   case NVPTX::BI__nvvm_atom_cta_and_gen_i:
19605   case NVPTX::BI__nvvm_atom_cta_and_gen_l:
19606   case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
19607     return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta, *this, E);
19608   case NVPTX::BI__nvvm_atom_sys_and_gen_i:
19609   case NVPTX::BI__nvvm_atom_sys_and_gen_l:
19610   case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
19611     return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys, *this, E);
19612   case NVPTX::BI__nvvm_atom_cta_or_gen_i:
19613   case NVPTX::BI__nvvm_atom_cta_or_gen_l:
19614   case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
19615     return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta, *this, E);
19616   case NVPTX::BI__nvvm_atom_sys_or_gen_i:
19617   case NVPTX::BI__nvvm_atom_sys_or_gen_l:
19618   case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
19619     return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys, *this, E);
19620   case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
19621   case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
19622   case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
19623     return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta, *this, E);
19624   case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
19625   case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
19626   case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
19627     return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys, *this, E);
19628   case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
19629   case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
19630   case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
19631     Value *Ptr = EmitScalarExpr(E->getArg(0));
19632     llvm::Type *ElemTy =
19633         ConvertTypeForMem(E->getArg(0)->getType()->getPointeeType());
19634     return Builder.CreateCall(
19635         CGM.getIntrinsic(
19636             Intrinsic::nvvm_atomic_cas_gen_i_cta, {ElemTy, Ptr->getType()}),
19637         {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
19638   }
19639   case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
19640   case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
19641   case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
19642     Value *Ptr = EmitScalarExpr(E->getArg(0));
19643     llvm::Type *ElemTy =
19644         ConvertTypeForMem(E->getArg(0)->getType()->getPointeeType());
19645     return Builder.CreateCall(
19646         CGM.getIntrinsic(
19647             Intrinsic::nvvm_atomic_cas_gen_i_sys, {ElemTy, Ptr->getType()}),
19648         {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
19649   }
19650   case NVPTX::BI__nvvm_match_all_sync_i32p:
19651   case NVPTX::BI__nvvm_match_all_sync_i64p: {
19652     Value *Mask = EmitScalarExpr(E->getArg(0));
19653     Value *Val = EmitScalarExpr(E->getArg(1));
19654     Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2));
19655     Value *ResultPair = Builder.CreateCall(
19656         CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p
19657                              ? Intrinsic::nvvm_match_all_sync_i32p
19658                              : Intrinsic::nvvm_match_all_sync_i64p),
19659         {Mask, Val});
19660     Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1),
19661                                      PredOutPtr.getElementType());
19662     Builder.CreateStore(Pred, PredOutPtr);
19663     return Builder.CreateExtractValue(ResultPair, 0);
19664   }
19665 
19666   // FP MMA loads
19667   case NVPTX::BI__hmma_m16n16k16_ld_a:
19668   case NVPTX::BI__hmma_m16n16k16_ld_b:
19669   case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
19670   case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
19671   case NVPTX::BI__hmma_m32n8k16_ld_a:
19672   case NVPTX::BI__hmma_m32n8k16_ld_b:
19673   case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
19674   case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
19675   case NVPTX::BI__hmma_m8n32k16_ld_a:
19676   case NVPTX::BI__hmma_m8n32k16_ld_b:
19677   case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
19678   case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
19679   // Integer MMA loads.
19680   case NVPTX::BI__imma_m16n16k16_ld_a_s8:
19681   case NVPTX::BI__imma_m16n16k16_ld_a_u8:
19682   case NVPTX::BI__imma_m16n16k16_ld_b_s8:
19683   case NVPTX::BI__imma_m16n16k16_ld_b_u8:
19684   case NVPTX::BI__imma_m16n16k16_ld_c:
19685   case NVPTX::BI__imma_m32n8k16_ld_a_s8:
19686   case NVPTX::BI__imma_m32n8k16_ld_a_u8:
19687   case NVPTX::BI__imma_m32n8k16_ld_b_s8:
19688   case NVPTX::BI__imma_m32n8k16_ld_b_u8:
19689   case NVPTX::BI__imma_m32n8k16_ld_c:
19690   case NVPTX::BI__imma_m8n32k16_ld_a_s8:
19691   case NVPTX::BI__imma_m8n32k16_ld_a_u8:
19692   case NVPTX::BI__imma_m8n32k16_ld_b_s8:
19693   case NVPTX::BI__imma_m8n32k16_ld_b_u8:
19694   case NVPTX::BI__imma_m8n32k16_ld_c:
19695   // Sub-integer MMA loads.
19696   case NVPTX::BI__imma_m8n8k32_ld_a_s4:
19697   case NVPTX::BI__imma_m8n8k32_ld_a_u4:
19698   case NVPTX::BI__imma_m8n8k32_ld_b_s4:
19699   case NVPTX::BI__imma_m8n8k32_ld_b_u4:
19700   case NVPTX::BI__imma_m8n8k32_ld_c:
19701   case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
19702   case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
19703   case NVPTX::BI__bmma_m8n8k128_ld_c:
19704   // Double MMA loads.
19705   case NVPTX::BI__dmma_m8n8k4_ld_a:
19706   case NVPTX::BI__dmma_m8n8k4_ld_b:
19707   case NVPTX::BI__dmma_m8n8k4_ld_c:
19708   // Alternate float MMA loads.
19709   case NVPTX::BI__mma_bf16_m16n16k16_ld_a:
19710   case NVPTX::BI__mma_bf16_m16n16k16_ld_b:
19711   case NVPTX::BI__mma_bf16_m8n32k16_ld_a:
19712   case NVPTX::BI__mma_bf16_m8n32k16_ld_b:
19713   case NVPTX::BI__mma_bf16_m32n8k16_ld_a:
19714   case NVPTX::BI__mma_bf16_m32n8k16_ld_b:
19715   case NVPTX::BI__mma_tf32_m16n16k8_ld_a:
19716   case NVPTX::BI__mma_tf32_m16n16k8_ld_b:
19717   case NVPTX::BI__mma_tf32_m16n16k8_ld_c: {
19718     Address Dst = EmitPointerWithAlignment(E->getArg(0));
19719     Value *Src = EmitScalarExpr(E->getArg(1));
19720     Value *Ldm = EmitScalarExpr(E->getArg(2));
19721     std::optional<llvm::APSInt> isColMajorArg =
19722         E->getArg(3)->getIntegerConstantExpr(getContext());
19723     if (!isColMajorArg)
19724       return nullptr;
19725     bool isColMajor = isColMajorArg->getSExtValue();
19726     NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
19727     unsigned IID = isColMajor ? II.IID_col : II.IID_row;
19728     if (IID == 0)
19729       return nullptr;
19730 
19731     Value *Result =
19732         Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm});
19733 
19734     // Save returned values.
19735     assert(II.NumResults);
19736     if (II.NumResults == 1) {
19737       Builder.CreateAlignedStore(Result, Dst.getPointer(),
19738                                  CharUnits::fromQuantity(4));
19739     } else {
19740       for (unsigned i = 0; i < II.NumResults; ++i) {
19741         Builder.CreateAlignedStore(
19742             Builder.CreateBitCast(Builder.CreateExtractValue(Result, i),
19743                                   Dst.getElementType()),
19744             Builder.CreateGEP(Dst.getElementType(), Dst.getPointer(),
19745                               llvm::ConstantInt::get(IntTy, i)),
19746             CharUnits::fromQuantity(4));
19747       }
19748     }
19749     return Result;
19750   }
19751 
19752   case NVPTX::BI__hmma_m16n16k16_st_c_f16:
19753   case NVPTX::BI__hmma_m16n16k16_st_c_f32:
19754   case NVPTX::BI__hmma_m32n8k16_st_c_f16:
19755   case NVPTX::BI__hmma_m32n8k16_st_c_f32:
19756   case NVPTX::BI__hmma_m8n32k16_st_c_f16:
19757   case NVPTX::BI__hmma_m8n32k16_st_c_f32:
19758   case NVPTX::BI__imma_m16n16k16_st_c_i32:
19759   case NVPTX::BI__imma_m32n8k16_st_c_i32:
19760   case NVPTX::BI__imma_m8n32k16_st_c_i32:
19761   case NVPTX::BI__imma_m8n8k32_st_c_i32:
19762   case NVPTX::BI__bmma_m8n8k128_st_c_i32:
19763   case NVPTX::BI__dmma_m8n8k4_st_c_f64:
19764   case NVPTX::BI__mma_m16n16k8_st_c_f32: {
19765     Value *Dst = EmitScalarExpr(E->getArg(0));
19766     Address Src = EmitPointerWithAlignment(E->getArg(1));
19767     Value *Ldm = EmitScalarExpr(E->getArg(2));
19768     std::optional<llvm::APSInt> isColMajorArg =
19769         E->getArg(3)->getIntegerConstantExpr(getContext());
19770     if (!isColMajorArg)
19771       return nullptr;
19772     bool isColMajor = isColMajorArg->getSExtValue();
19773     NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
19774     unsigned IID = isColMajor ? II.IID_col : II.IID_row;
19775     if (IID == 0)
19776       return nullptr;
19777     Function *Intrinsic =
19778         CGM.getIntrinsic(IID, Dst->getType());
19779     llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1);
19780     SmallVector<Value *, 10> Values = {Dst};
19781     for (unsigned i = 0; i < II.NumResults; ++i) {
19782       Value *V = Builder.CreateAlignedLoad(
19783           Src.getElementType(),
19784           Builder.CreateGEP(Src.getElementType(), Src.getPointer(),
19785                             llvm::ConstantInt::get(IntTy, i)),
19786           CharUnits::fromQuantity(4));
19787       Values.push_back(Builder.CreateBitCast(V, ParamType));
19788     }
19789     Values.push_back(Ldm);
19790     Value *Result = Builder.CreateCall(Intrinsic, Values);
19791     return Result;
19792   }
19793 
19794   // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) -->
19795   // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf>
19796   case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
19797   case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
19798   case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
19799   case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
19800   case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
19801   case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
19802   case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
19803   case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
19804   case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
19805   case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
19806   case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
19807   case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
19808   case NVPTX::BI__imma_m16n16k16_mma_s8:
19809   case NVPTX::BI__imma_m16n16k16_mma_u8:
19810   case NVPTX::BI__imma_m32n8k16_mma_s8:
19811   case NVPTX::BI__imma_m32n8k16_mma_u8:
19812   case NVPTX::BI__imma_m8n32k16_mma_s8:
19813   case NVPTX::BI__imma_m8n32k16_mma_u8:
19814   case NVPTX::BI__imma_m8n8k32_mma_s4:
19815   case NVPTX::BI__imma_m8n8k32_mma_u4:
19816   case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
19817   case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1:
19818   case NVPTX::BI__dmma_m8n8k4_mma_f64:
19819   case NVPTX::BI__mma_bf16_m16n16k16_mma_f32:
19820   case NVPTX::BI__mma_bf16_m8n32k16_mma_f32:
19821   case NVPTX::BI__mma_bf16_m32n8k16_mma_f32:
19822   case NVPTX::BI__mma_tf32_m16n16k8_mma_f32: {
19823     Address Dst = EmitPointerWithAlignment(E->getArg(0));
19824     Address SrcA = EmitPointerWithAlignment(E->getArg(1));
19825     Address SrcB = EmitPointerWithAlignment(E->getArg(2));
19826     Address SrcC = EmitPointerWithAlignment(E->getArg(3));
19827     std::optional<llvm::APSInt> LayoutArg =
19828         E->getArg(4)->getIntegerConstantExpr(getContext());
19829     if (!LayoutArg)
19830       return nullptr;
19831     int Layout = LayoutArg->getSExtValue();
19832     if (Layout < 0 || Layout > 3)
19833       return nullptr;
19834     llvm::APSInt SatfArg;
19835     if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1 ||
19836         BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1)
19837       SatfArg = 0;  // .b1 does not have satf argument.
19838     else if (std::optional<llvm::APSInt> OptSatfArg =
19839                  E->getArg(5)->getIntegerConstantExpr(getContext()))
19840       SatfArg = *OptSatfArg;
19841     else
19842       return nullptr;
19843     bool Satf = SatfArg.getSExtValue();
19844     NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID);
19845     unsigned IID = MI.getMMAIntrinsic(Layout, Satf);
19846     if (IID == 0)  // Unsupported combination of Layout/Satf.
19847       return nullptr;
19848 
19849     SmallVector<Value *, 24> Values;
19850     Function *Intrinsic = CGM.getIntrinsic(IID);
19851     llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0);
19852     // Load A
19853     for (unsigned i = 0; i < MI.NumEltsA; ++i) {
19854       Value *V = Builder.CreateAlignedLoad(
19855           SrcA.getElementType(),
19856           Builder.CreateGEP(SrcA.getElementType(), SrcA.getPointer(),
19857                             llvm::ConstantInt::get(IntTy, i)),
19858           CharUnits::fromQuantity(4));
19859       Values.push_back(Builder.CreateBitCast(V, AType));
19860     }
19861     // Load B
19862     llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA);
19863     for (unsigned i = 0; i < MI.NumEltsB; ++i) {
19864       Value *V = Builder.CreateAlignedLoad(
19865           SrcB.getElementType(),
19866           Builder.CreateGEP(SrcB.getElementType(), SrcB.getPointer(),
19867                             llvm::ConstantInt::get(IntTy, i)),
19868           CharUnits::fromQuantity(4));
19869       Values.push_back(Builder.CreateBitCast(V, BType));
19870     }
19871     // Load C
19872     llvm::Type *CType =
19873         Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB);
19874     for (unsigned i = 0; i < MI.NumEltsC; ++i) {
19875       Value *V = Builder.CreateAlignedLoad(
19876           SrcC.getElementType(),
19877           Builder.CreateGEP(SrcC.getElementType(), SrcC.getPointer(),
19878                             llvm::ConstantInt::get(IntTy, i)),
19879           CharUnits::fromQuantity(4));
19880       Values.push_back(Builder.CreateBitCast(V, CType));
19881     }
19882     Value *Result = Builder.CreateCall(Intrinsic, Values);
19883     llvm::Type *DType = Dst.getElementType();
19884     for (unsigned i = 0; i < MI.NumEltsD; ++i)
19885       Builder.CreateAlignedStore(
19886           Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType),
19887           Builder.CreateGEP(Dst.getElementType(), Dst.getPointer(),
19888                             llvm::ConstantInt::get(IntTy, i)),
19889           CharUnits::fromQuantity(4));
19890     return Result;
19891   }
19892   // The following builtins require half type support
19893   case NVPTX::BI__nvvm_ex2_approx_f16:
19894     return MakeHalfType(Intrinsic::nvvm_ex2_approx_f16, BuiltinID, E, *this);
19895   case NVPTX::BI__nvvm_ex2_approx_f16x2:
19896     return MakeHalfType(Intrinsic::nvvm_ex2_approx_f16x2, BuiltinID, E, *this);
19897   case NVPTX::BI__nvvm_ff2f16x2_rn:
19898     return MakeHalfType(Intrinsic::nvvm_ff2f16x2_rn, BuiltinID, E, *this);
19899   case NVPTX::BI__nvvm_ff2f16x2_rn_relu:
19900     return MakeHalfType(Intrinsic::nvvm_ff2f16x2_rn_relu, BuiltinID, E, *this);
19901   case NVPTX::BI__nvvm_ff2f16x2_rz:
19902     return MakeHalfType(Intrinsic::nvvm_ff2f16x2_rz, BuiltinID, E, *this);
19903   case NVPTX::BI__nvvm_ff2f16x2_rz_relu:
19904     return MakeHalfType(Intrinsic::nvvm_ff2f16x2_rz_relu, BuiltinID, E, *this);
19905   case NVPTX::BI__nvvm_fma_rn_f16:
19906     return MakeHalfType(Intrinsic::nvvm_fma_rn_f16, BuiltinID, E, *this);
19907   case NVPTX::BI__nvvm_fma_rn_f16x2:
19908     return MakeHalfType(Intrinsic::nvvm_fma_rn_f16x2, BuiltinID, E, *this);
19909   case NVPTX::BI__nvvm_fma_rn_ftz_f16:
19910     return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_f16, BuiltinID, E, *this);
19911   case NVPTX::BI__nvvm_fma_rn_ftz_f16x2:
19912     return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_f16x2, BuiltinID, E, *this);
19913   case NVPTX::BI__nvvm_fma_rn_ftz_relu_f16:
19914     return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_relu_f16, BuiltinID, E,
19915                         *this);
19916   case NVPTX::BI__nvvm_fma_rn_ftz_relu_f16x2:
19917     return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_relu_f16x2, BuiltinID, E,
19918                         *this);
19919   case NVPTX::BI__nvvm_fma_rn_ftz_sat_f16:
19920     return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_sat_f16, BuiltinID, E,
19921                         *this);
19922   case NVPTX::BI__nvvm_fma_rn_ftz_sat_f16x2:
19923     return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_sat_f16x2, BuiltinID, E,
19924                         *this);
19925   case NVPTX::BI__nvvm_fma_rn_relu_f16:
19926     return MakeHalfType(Intrinsic::nvvm_fma_rn_relu_f16, BuiltinID, E, *this);
19927   case NVPTX::BI__nvvm_fma_rn_relu_f16x2:
19928     return MakeHalfType(Intrinsic::nvvm_fma_rn_relu_f16x2, BuiltinID, E, *this);
19929   case NVPTX::BI__nvvm_fma_rn_sat_f16:
19930     return MakeHalfType(Intrinsic::nvvm_fma_rn_sat_f16, BuiltinID, E, *this);
19931   case NVPTX::BI__nvvm_fma_rn_sat_f16x2:
19932     return MakeHalfType(Intrinsic::nvvm_fma_rn_sat_f16x2, BuiltinID, E, *this);
19933   case NVPTX::BI__nvvm_fmax_f16:
19934     return MakeHalfType(Intrinsic::nvvm_fmax_f16, BuiltinID, E, *this);
19935   case NVPTX::BI__nvvm_fmax_f16x2:
19936     return MakeHalfType(Intrinsic::nvvm_fmax_f16x2, BuiltinID, E, *this);
19937   case NVPTX::BI__nvvm_fmax_ftz_f16:
19938     return MakeHalfType(Intrinsic::nvvm_fmax_ftz_f16, BuiltinID, E, *this);
19939   case NVPTX::BI__nvvm_fmax_ftz_f16x2:
19940     return MakeHalfType(Intrinsic::nvvm_fmax_ftz_f16x2, BuiltinID, E, *this);
19941   case NVPTX::BI__nvvm_fmax_ftz_nan_f16:
19942     return MakeHalfType(Intrinsic::nvvm_fmax_ftz_nan_f16, BuiltinID, E, *this);
19943   case NVPTX::BI__nvvm_fmax_ftz_nan_f16x2:
19944     return MakeHalfType(Intrinsic::nvvm_fmax_ftz_nan_f16x2, BuiltinID, E,
19945                         *this);
19946   case NVPTX::BI__nvvm_fmax_ftz_nan_xorsign_abs_f16:
19947     return MakeHalfType(Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f16, BuiltinID,
19948                         E, *this);
19949   case NVPTX::BI__nvvm_fmax_ftz_nan_xorsign_abs_f16x2:
19950     return MakeHalfType(Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f16x2,
19951                         BuiltinID, E, *this);
19952   case NVPTX::BI__nvvm_fmax_ftz_xorsign_abs_f16:
19953     return MakeHalfType(Intrinsic::nvvm_fmax_ftz_xorsign_abs_f16, BuiltinID, E,
19954                         *this);
19955   case NVPTX::BI__nvvm_fmax_ftz_xorsign_abs_f16x2:
19956     return MakeHalfType(Intrinsic::nvvm_fmax_ftz_xorsign_abs_f16x2, BuiltinID,
19957                         E, *this);
19958   case NVPTX::BI__nvvm_fmax_nan_f16:
19959     return MakeHalfType(Intrinsic::nvvm_fmax_nan_f16, BuiltinID, E, *this);
19960   case NVPTX::BI__nvvm_fmax_nan_f16x2:
19961     return MakeHalfType(Intrinsic::nvvm_fmax_nan_f16x2, BuiltinID, E, *this);
19962   case NVPTX::BI__nvvm_fmax_nan_xorsign_abs_f16:
19963     return MakeHalfType(Intrinsic::nvvm_fmax_nan_xorsign_abs_f16, BuiltinID, E,
19964                         *this);
19965   case NVPTX::BI__nvvm_fmax_nan_xorsign_abs_f16x2:
19966     return MakeHalfType(Intrinsic::nvvm_fmax_nan_xorsign_abs_f16x2, BuiltinID,
19967                         E, *this);
19968   case NVPTX::BI__nvvm_fmax_xorsign_abs_f16:
19969     return MakeHalfType(Intrinsic::nvvm_fmax_xorsign_abs_f16, BuiltinID, E,
19970                         *this);
19971   case NVPTX::BI__nvvm_fmax_xorsign_abs_f16x2:
19972     return MakeHalfType(Intrinsic::nvvm_fmax_xorsign_abs_f16x2, BuiltinID, E,
19973                         *this);
19974   case NVPTX::BI__nvvm_fmin_f16:
19975     return MakeHalfType(Intrinsic::nvvm_fmin_f16, BuiltinID, E, *this);
19976   case NVPTX::BI__nvvm_fmin_f16x2:
19977     return MakeHalfType(Intrinsic::nvvm_fmin_f16x2, BuiltinID, E, *this);
19978   case NVPTX::BI__nvvm_fmin_ftz_f16:
19979     return MakeHalfType(Intrinsic::nvvm_fmin_ftz_f16, BuiltinID, E, *this);
19980   case NVPTX::BI__nvvm_fmin_ftz_f16x2:
19981     return MakeHalfType(Intrinsic::nvvm_fmin_ftz_f16x2, BuiltinID, E, *this);
19982   case NVPTX::BI__nvvm_fmin_ftz_nan_f16:
19983     return MakeHalfType(Intrinsic::nvvm_fmin_ftz_nan_f16, BuiltinID, E, *this);
19984   case NVPTX::BI__nvvm_fmin_ftz_nan_f16x2:
19985     return MakeHalfType(Intrinsic::nvvm_fmin_ftz_nan_f16x2, BuiltinID, E,
19986                         *this);
19987   case NVPTX::BI__nvvm_fmin_ftz_nan_xorsign_abs_f16:
19988     return MakeHalfType(Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f16, BuiltinID,
19989                         E, *this);
19990   case NVPTX::BI__nvvm_fmin_ftz_nan_xorsign_abs_f16x2:
19991     return MakeHalfType(Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f16x2,
19992                         BuiltinID, E, *this);
19993   case NVPTX::BI__nvvm_fmin_ftz_xorsign_abs_f16:
19994     return MakeHalfType(Intrinsic::nvvm_fmin_ftz_xorsign_abs_f16, BuiltinID, E,
19995                         *this);
19996   case NVPTX::BI__nvvm_fmin_ftz_xorsign_abs_f16x2:
19997     return MakeHalfType(Intrinsic::nvvm_fmin_ftz_xorsign_abs_f16x2, BuiltinID,
19998                         E, *this);
19999   case NVPTX::BI__nvvm_fmin_nan_f16:
20000     return MakeHalfType(Intrinsic::nvvm_fmin_nan_f16, BuiltinID, E, *this);
20001   case NVPTX::BI__nvvm_fmin_nan_f16x2:
20002     return MakeHalfType(Intrinsic::nvvm_fmin_nan_f16x2, BuiltinID, E, *this);
20003   case NVPTX::BI__nvvm_fmin_nan_xorsign_abs_f16:
20004     return MakeHalfType(Intrinsic::nvvm_fmin_nan_xorsign_abs_f16, BuiltinID, E,
20005                         *this);
20006   case NVPTX::BI__nvvm_fmin_nan_xorsign_abs_f16x2:
20007     return MakeHalfType(Intrinsic::nvvm_fmin_nan_xorsign_abs_f16x2, BuiltinID,
20008                         E, *this);
20009   case NVPTX::BI__nvvm_fmin_xorsign_abs_f16:
20010     return MakeHalfType(Intrinsic::nvvm_fmin_xorsign_abs_f16, BuiltinID, E,
20011                         *this);
20012   case NVPTX::BI__nvvm_fmin_xorsign_abs_f16x2:
20013     return MakeHalfType(Intrinsic::nvvm_fmin_xorsign_abs_f16x2, BuiltinID, E,
20014                         *this);
20015   case NVPTX::BI__nvvm_ldg_h:
20016     return MakeHalfType(Intrinsic::nvvm_ldg_global_f, BuiltinID, E, *this);
20017   case NVPTX::BI__nvvm_ldg_h2:
20018     return MakeHalfType(Intrinsic::nvvm_ldg_global_f, BuiltinID, E, *this);
20019   case NVPTX::BI__nvvm_ldu_h:
20020     return MakeHalfType(Intrinsic::nvvm_ldu_global_f, BuiltinID, E, *this);
20021   case NVPTX::BI__nvvm_ldu_h2: {
20022     return MakeHalfType(Intrinsic::nvvm_ldu_global_f, BuiltinID, E, *this);
20023   }
20024   case NVPTX::BI__nvvm_cp_async_ca_shared_global_4:
20025     return MakeCpAsync(Intrinsic::nvvm_cp_async_ca_shared_global_4,
20026                        Intrinsic::nvvm_cp_async_ca_shared_global_4_s, *this, E,
20027                        4);
20028   case NVPTX::BI__nvvm_cp_async_ca_shared_global_8:
20029     return MakeCpAsync(Intrinsic::nvvm_cp_async_ca_shared_global_8,
20030                        Intrinsic::nvvm_cp_async_ca_shared_global_8_s, *this, E,
20031                        8);
20032   case NVPTX::BI__nvvm_cp_async_ca_shared_global_16:
20033     return MakeCpAsync(Intrinsic::nvvm_cp_async_ca_shared_global_16,
20034                        Intrinsic::nvvm_cp_async_ca_shared_global_16_s, *this, E,
20035                        16);
20036   case NVPTX::BI__nvvm_cp_async_cg_shared_global_16:
20037     return MakeCpAsync(Intrinsic::nvvm_cp_async_cg_shared_global_16,
20038                        Intrinsic::nvvm_cp_async_cg_shared_global_16_s, *this, E,
20039                        16);
20040   case NVPTX::BI__nvvm_read_ptx_sreg_clusterid_x:
20041     return Builder.CreateCall(
20042         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_clusterid_x));
20043   case NVPTX::BI__nvvm_read_ptx_sreg_clusterid_y:
20044     return Builder.CreateCall(
20045         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_clusterid_y));
20046   case NVPTX::BI__nvvm_read_ptx_sreg_clusterid_z:
20047     return Builder.CreateCall(
20048         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_clusterid_z));
20049   case NVPTX::BI__nvvm_read_ptx_sreg_clusterid_w:
20050     return Builder.CreateCall(
20051         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_clusterid_w));
20052   case NVPTX::BI__nvvm_read_ptx_sreg_nclusterid_x:
20053     return Builder.CreateCall(
20054         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_nclusterid_x));
20055   case NVPTX::BI__nvvm_read_ptx_sreg_nclusterid_y:
20056     return Builder.CreateCall(
20057         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_nclusterid_y));
20058   case NVPTX::BI__nvvm_read_ptx_sreg_nclusterid_z:
20059     return Builder.CreateCall(
20060         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_nclusterid_z));
20061   case NVPTX::BI__nvvm_read_ptx_sreg_nclusterid_w:
20062     return Builder.CreateCall(
20063         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_nclusterid_w));
20064   case NVPTX::BI__nvvm_read_ptx_sreg_cluster_ctaid_x:
20065     return Builder.CreateCall(
20066         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_ctaid_x));
20067   case NVPTX::BI__nvvm_read_ptx_sreg_cluster_ctaid_y:
20068     return Builder.CreateCall(
20069         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_ctaid_y));
20070   case NVPTX::BI__nvvm_read_ptx_sreg_cluster_ctaid_z:
20071     return Builder.CreateCall(
20072         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_ctaid_z));
20073   case NVPTX::BI__nvvm_read_ptx_sreg_cluster_ctaid_w:
20074     return Builder.CreateCall(
20075         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_ctaid_w));
20076   case NVPTX::BI__nvvm_read_ptx_sreg_cluster_nctaid_x:
20077     return Builder.CreateCall(
20078         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_nctaid_x));
20079   case NVPTX::BI__nvvm_read_ptx_sreg_cluster_nctaid_y:
20080     return Builder.CreateCall(
20081         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_nctaid_y));
20082   case NVPTX::BI__nvvm_read_ptx_sreg_cluster_nctaid_z:
20083     return Builder.CreateCall(
20084         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_nctaid_z));
20085   case NVPTX::BI__nvvm_read_ptx_sreg_cluster_nctaid_w:
20086     return Builder.CreateCall(
20087         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_nctaid_w));
20088   case NVPTX::BI__nvvm_read_ptx_sreg_cluster_ctarank:
20089     return Builder.CreateCall(
20090         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_ctarank));
20091   case NVPTX::BI__nvvm_read_ptx_sreg_cluster_nctarank:
20092     return Builder.CreateCall(
20093         CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_nctarank));
20094   case NVPTX::BI__nvvm_is_explicit_cluster:
20095     return Builder.CreateCall(
20096         CGM.getIntrinsic(Intrinsic::nvvm_is_explicit_cluster));
20097   case NVPTX::BI__nvvm_isspacep_shared_cluster:
20098     return Builder.CreateCall(
20099         CGM.getIntrinsic(Intrinsic::nvvm_isspacep_shared_cluster),
20100         EmitScalarExpr(E->getArg(0)));
20101   case NVPTX::BI__nvvm_mapa:
20102     return Builder.CreateCall(
20103         CGM.getIntrinsic(Intrinsic::nvvm_mapa),
20104         {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1))});
20105   case NVPTX::BI__nvvm_mapa_shared_cluster:
20106     return Builder.CreateCall(
20107         CGM.getIntrinsic(Intrinsic::nvvm_mapa_shared_cluster),
20108         {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1))});
20109   case NVPTX::BI__nvvm_getctarank:
20110     return Builder.CreateCall(
20111         CGM.getIntrinsic(Intrinsic::nvvm_getctarank),
20112         EmitScalarExpr(E->getArg(0)));
20113   case NVPTX::BI__nvvm_getctarank_shared_cluster:
20114     return Builder.CreateCall(
20115         CGM.getIntrinsic(Intrinsic::nvvm_getctarank_shared_cluster),
20116         EmitScalarExpr(E->getArg(0)));
20117   case NVPTX::BI__nvvm_barrier_cluster_arrive:
20118     return Builder.CreateCall(
20119         CGM.getIntrinsic(Intrinsic::nvvm_barrier_cluster_arrive));
20120   case NVPTX::BI__nvvm_barrier_cluster_arrive_relaxed:
20121     return Builder.CreateCall(
20122         CGM.getIntrinsic(Intrinsic::nvvm_barrier_cluster_arrive_relaxed));
20123   case NVPTX::BI__nvvm_barrier_cluster_wait:
20124     return Builder.CreateCall(
20125         CGM.getIntrinsic(Intrinsic::nvvm_barrier_cluster_wait));
20126   case NVPTX::BI__nvvm_fence_sc_cluster:
20127     return Builder.CreateCall(
20128         CGM.getIntrinsic(Intrinsic::nvvm_fence_sc_cluster));
20129   default:
20130     return nullptr;
20131   }
20132 }
20133 
20134 namespace {
20135 struct BuiltinAlignArgs {
20136   llvm::Value *Src = nullptr;
20137   llvm::Type *SrcType = nullptr;
20138   llvm::Value *Alignment = nullptr;
20139   llvm::Value *Mask = nullptr;
20140   llvm::IntegerType *IntType = nullptr;
20141 
20142   BuiltinAlignArgs(const CallExpr *E, CodeGenFunction &CGF) {
20143     QualType AstType = E->getArg(0)->getType();
20144     if (AstType->isArrayType())
20145       Src = CGF.EmitArrayToPointerDecay(E->getArg(0)).getPointer();
20146     else
20147       Src = CGF.EmitScalarExpr(E->getArg(0));
20148     SrcType = Src->getType();
20149     if (SrcType->isPointerTy()) {
20150       IntType = IntegerType::get(
20151           CGF.getLLVMContext(),
20152           CGF.CGM.getDataLayout().getIndexTypeSizeInBits(SrcType));
20153     } else {
20154       assert(SrcType->isIntegerTy());
20155       IntType = cast<llvm::IntegerType>(SrcType);
20156     }
20157     Alignment = CGF.EmitScalarExpr(E->getArg(1));
20158     Alignment = CGF.Builder.CreateZExtOrTrunc(Alignment, IntType, "alignment");
20159     auto *One = llvm::ConstantInt::get(IntType, 1);
20160     Mask = CGF.Builder.CreateSub(Alignment, One, "mask");
20161   }
20162 };
20163 } // namespace
20164 
20165 /// Generate (x & (y-1)) == 0.
20166 RValue CodeGenFunction::EmitBuiltinIsAligned(const CallExpr *E) {
20167   BuiltinAlignArgs Args(E, *this);
20168   llvm::Value *SrcAddress = Args.Src;
20169   if (Args.SrcType->isPointerTy())
20170     SrcAddress =
20171         Builder.CreateBitOrPointerCast(Args.Src, Args.IntType, "src_addr");
20172   return RValue::get(Builder.CreateICmpEQ(
20173       Builder.CreateAnd(SrcAddress, Args.Mask, "set_bits"),
20174       llvm::Constant::getNullValue(Args.IntType), "is_aligned"));
20175 }
20176 
20177 /// Generate (x & ~(y-1)) to align down or ((x+(y-1)) & ~(y-1)) to align up.
20178 /// Note: For pointer types we can avoid ptrtoint/inttoptr pairs by using the
20179 /// llvm.ptrmask intrinsic (with a GEP before in the align_up case).
20180 RValue CodeGenFunction::EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp) {
20181   BuiltinAlignArgs Args(E, *this);
20182   llvm::Value *SrcForMask = Args.Src;
20183   if (AlignUp) {
20184     // When aligning up we have to first add the mask to ensure we go over the
20185     // next alignment value and then align down to the next valid multiple.
20186     // By adding the mask, we ensure that align_up on an already aligned
20187     // value will not change the value.
20188     if (Args.Src->getType()->isPointerTy()) {
20189       if (getLangOpts().isSignedOverflowDefined())
20190         SrcForMask =
20191             Builder.CreateGEP(Int8Ty, SrcForMask, Args.Mask, "over_boundary");
20192       else
20193         SrcForMask = EmitCheckedInBoundsGEP(Int8Ty, SrcForMask, Args.Mask,
20194                                             /*SignedIndices=*/true,
20195                                             /*isSubtraction=*/false,
20196                                             E->getExprLoc(), "over_boundary");
20197     } else {
20198       SrcForMask = Builder.CreateAdd(SrcForMask, Args.Mask, "over_boundary");
20199     }
20200   }
20201   // Invert the mask to only clear the lower bits.
20202   llvm::Value *InvertedMask = Builder.CreateNot(Args.Mask, "inverted_mask");
20203   llvm::Value *Result = nullptr;
20204   if (Args.Src->getType()->isPointerTy()) {
20205     Result = Builder.CreateIntrinsic(
20206         Intrinsic::ptrmask, {Args.SrcType, Args.IntType},
20207         {SrcForMask, InvertedMask}, nullptr, "aligned_result");
20208   } else {
20209     Result = Builder.CreateAnd(SrcForMask, InvertedMask, "aligned_result");
20210   }
20211   assert(Result->getType() == Args.SrcType);
20212   return RValue::get(Result);
20213 }
20214 
20215 Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
20216                                                    const CallExpr *E) {
20217   switch (BuiltinID) {
20218   case WebAssembly::BI__builtin_wasm_memory_size: {
20219     llvm::Type *ResultType = ConvertType(E->getType());
20220     Value *I = EmitScalarExpr(E->getArg(0));
20221     Function *Callee =
20222         CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
20223     return Builder.CreateCall(Callee, I);
20224   }
20225   case WebAssembly::BI__builtin_wasm_memory_grow: {
20226     llvm::Type *ResultType = ConvertType(E->getType());
20227     Value *Args[] = {EmitScalarExpr(E->getArg(0)),
20228                      EmitScalarExpr(E->getArg(1))};
20229     Function *Callee =
20230         CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType);
20231     return Builder.CreateCall(Callee, Args);
20232   }
20233   case WebAssembly::BI__builtin_wasm_tls_size: {
20234     llvm::Type *ResultType = ConvertType(E->getType());
20235     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType);
20236     return Builder.CreateCall(Callee);
20237   }
20238   case WebAssembly::BI__builtin_wasm_tls_align: {
20239     llvm::Type *ResultType = ConvertType(E->getType());
20240     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType);
20241     return Builder.CreateCall(Callee);
20242   }
20243   case WebAssembly::BI__builtin_wasm_tls_base: {
20244     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base);
20245     return Builder.CreateCall(Callee);
20246   }
20247   case WebAssembly::BI__builtin_wasm_throw: {
20248     Value *Tag = EmitScalarExpr(E->getArg(0));
20249     Value *Obj = EmitScalarExpr(E->getArg(1));
20250     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw);
20251     return Builder.CreateCall(Callee, {Tag, Obj});
20252   }
20253   case WebAssembly::BI__builtin_wasm_rethrow: {
20254     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow);
20255     return Builder.CreateCall(Callee);
20256   }
20257   case WebAssembly::BI__builtin_wasm_memory_atomic_wait32: {
20258     Value *Addr = EmitScalarExpr(E->getArg(0));
20259     Value *Expected = EmitScalarExpr(E->getArg(1));
20260     Value *Timeout = EmitScalarExpr(E->getArg(2));
20261     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait32);
20262     return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
20263   }
20264   case WebAssembly::BI__builtin_wasm_memory_atomic_wait64: {
20265     Value *Addr = EmitScalarExpr(E->getArg(0));
20266     Value *Expected = EmitScalarExpr(E->getArg(1));
20267     Value *Timeout = EmitScalarExpr(E->getArg(2));
20268     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait64);
20269     return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
20270   }
20271   case WebAssembly::BI__builtin_wasm_memory_atomic_notify: {
20272     Value *Addr = EmitScalarExpr(E->getArg(0));
20273     Value *Count = EmitScalarExpr(E->getArg(1));
20274     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_notify);
20275     return Builder.CreateCall(Callee, {Addr, Count});
20276   }
20277   case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32:
20278   case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64:
20279   case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32:
20280   case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: {
20281     Value *Src = EmitScalarExpr(E->getArg(0));
20282     llvm::Type *ResT = ConvertType(E->getType());
20283     Function *Callee =
20284         CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()});
20285     return Builder.CreateCall(Callee, {Src});
20286   }
20287   case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32:
20288   case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64:
20289   case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32:
20290   case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: {
20291     Value *Src = EmitScalarExpr(E->getArg(0));
20292     llvm::Type *ResT = ConvertType(E->getType());
20293     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned,
20294                                         {ResT, Src->getType()});
20295     return Builder.CreateCall(Callee, {Src});
20296   }
20297   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32:
20298   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64:
20299   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32:
20300   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64:
20301   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4: {
20302     Value *Src = EmitScalarExpr(E->getArg(0));
20303     llvm::Type *ResT = ConvertType(E->getType());
20304     Function *Callee =
20305         CGM.getIntrinsic(Intrinsic::fptosi_sat, {ResT, Src->getType()});
20306     return Builder.CreateCall(Callee, {Src});
20307   }
20308   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32:
20309   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64:
20310   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32:
20311   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64:
20312   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4: {
20313     Value *Src = EmitScalarExpr(E->getArg(0));
20314     llvm::Type *ResT = ConvertType(E->getType());
20315     Function *Callee =
20316         CGM.getIntrinsic(Intrinsic::fptoui_sat, {ResT, Src->getType()});
20317     return Builder.CreateCall(Callee, {Src});
20318   }
20319   case WebAssembly::BI__builtin_wasm_min_f32:
20320   case WebAssembly::BI__builtin_wasm_min_f64:
20321   case WebAssembly::BI__builtin_wasm_min_f32x4:
20322   case WebAssembly::BI__builtin_wasm_min_f64x2: {
20323     Value *LHS = EmitScalarExpr(E->getArg(0));
20324     Value *RHS = EmitScalarExpr(E->getArg(1));
20325     Function *Callee =
20326         CGM.getIntrinsic(Intrinsic::minimum, ConvertType(E->getType()));
20327     return Builder.CreateCall(Callee, {LHS, RHS});
20328   }
20329   case WebAssembly::BI__builtin_wasm_max_f32:
20330   case WebAssembly::BI__builtin_wasm_max_f64:
20331   case WebAssembly::BI__builtin_wasm_max_f32x4:
20332   case WebAssembly::BI__builtin_wasm_max_f64x2: {
20333     Value *LHS = EmitScalarExpr(E->getArg(0));
20334     Value *RHS = EmitScalarExpr(E->getArg(1));
20335     Function *Callee =
20336         CGM.getIntrinsic(Intrinsic::maximum, ConvertType(E->getType()));
20337     return Builder.CreateCall(Callee, {LHS, RHS});
20338   }
20339   case WebAssembly::BI__builtin_wasm_pmin_f32x4:
20340   case WebAssembly::BI__builtin_wasm_pmin_f64x2: {
20341     Value *LHS = EmitScalarExpr(E->getArg(0));
20342     Value *RHS = EmitScalarExpr(E->getArg(1));
20343     Function *Callee =
20344         CGM.getIntrinsic(Intrinsic::wasm_pmin, ConvertType(E->getType()));
20345     return Builder.CreateCall(Callee, {LHS, RHS});
20346   }
20347   case WebAssembly::BI__builtin_wasm_pmax_f32x4:
20348   case WebAssembly::BI__builtin_wasm_pmax_f64x2: {
20349     Value *LHS = EmitScalarExpr(E->getArg(0));
20350     Value *RHS = EmitScalarExpr(E->getArg(1));
20351     Function *Callee =
20352         CGM.getIntrinsic(Intrinsic::wasm_pmax, ConvertType(E->getType()));
20353     return Builder.CreateCall(Callee, {LHS, RHS});
20354   }
20355   case WebAssembly::BI__builtin_wasm_ceil_f32x4:
20356   case WebAssembly::BI__builtin_wasm_floor_f32x4:
20357   case WebAssembly::BI__builtin_wasm_trunc_f32x4:
20358   case WebAssembly::BI__builtin_wasm_nearest_f32x4:
20359   case WebAssembly::BI__builtin_wasm_ceil_f64x2:
20360   case WebAssembly::BI__builtin_wasm_floor_f64x2:
20361   case WebAssembly::BI__builtin_wasm_trunc_f64x2:
20362   case WebAssembly::BI__builtin_wasm_nearest_f64x2: {
20363     unsigned IntNo;
20364     switch (BuiltinID) {
20365     case WebAssembly::BI__builtin_wasm_ceil_f32x4:
20366     case WebAssembly::BI__builtin_wasm_ceil_f64x2:
20367       IntNo = Intrinsic::ceil;
20368       break;
20369     case WebAssembly::BI__builtin_wasm_floor_f32x4:
20370     case WebAssembly::BI__builtin_wasm_floor_f64x2:
20371       IntNo = Intrinsic::floor;
20372       break;
20373     case WebAssembly::BI__builtin_wasm_trunc_f32x4:
20374     case WebAssembly::BI__builtin_wasm_trunc_f64x2:
20375       IntNo = Intrinsic::trunc;
20376       break;
20377     case WebAssembly::BI__builtin_wasm_nearest_f32x4:
20378     case WebAssembly::BI__builtin_wasm_nearest_f64x2:
20379       IntNo = Intrinsic::nearbyint;
20380       break;
20381     default:
20382       llvm_unreachable("unexpected builtin ID");
20383     }
20384     Value *Value = EmitScalarExpr(E->getArg(0));
20385     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
20386     return Builder.CreateCall(Callee, Value);
20387   }
20388   case WebAssembly::BI__builtin_wasm_ref_null_extern: {
20389     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_ref_null_extern);
20390     return Builder.CreateCall(Callee);
20391   }
20392   case WebAssembly::BI__builtin_wasm_ref_null_func: {
20393     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_ref_null_func);
20394     return Builder.CreateCall(Callee);
20395   }
20396   case WebAssembly::BI__builtin_wasm_swizzle_i8x16: {
20397     Value *Src = EmitScalarExpr(E->getArg(0));
20398     Value *Indices = EmitScalarExpr(E->getArg(1));
20399     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle);
20400     return Builder.CreateCall(Callee, {Src, Indices});
20401   }
20402   case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16:
20403   case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16:
20404   case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8:
20405   case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8:
20406   case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16:
20407   case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16:
20408   case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8:
20409   case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8: {
20410     unsigned IntNo;
20411     switch (BuiltinID) {
20412     case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16:
20413     case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8:
20414       IntNo = Intrinsic::sadd_sat;
20415       break;
20416     case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16:
20417     case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8:
20418       IntNo = Intrinsic::uadd_sat;
20419       break;
20420     case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16:
20421     case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8:
20422       IntNo = Intrinsic::wasm_sub_sat_signed;
20423       break;
20424     case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16:
20425     case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8:
20426       IntNo = Intrinsic::wasm_sub_sat_unsigned;
20427       break;
20428     default:
20429       llvm_unreachable("unexpected builtin ID");
20430     }
20431     Value *LHS = EmitScalarExpr(E->getArg(0));
20432     Value *RHS = EmitScalarExpr(E->getArg(1));
20433     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
20434     return Builder.CreateCall(Callee, {LHS, RHS});
20435   }
20436   case WebAssembly::BI__builtin_wasm_abs_i8x16:
20437   case WebAssembly::BI__builtin_wasm_abs_i16x8:
20438   case WebAssembly::BI__builtin_wasm_abs_i32x4:
20439   case WebAssembly::BI__builtin_wasm_abs_i64x2: {
20440     Value *Vec = EmitScalarExpr(E->getArg(0));
20441     Value *Neg = Builder.CreateNeg(Vec, "neg");
20442     Constant *Zero = llvm::Constant::getNullValue(Vec->getType());
20443     Value *ICmp = Builder.CreateICmpSLT(Vec, Zero, "abscond");
20444     return Builder.CreateSelect(ICmp, Neg, Vec, "abs");
20445   }
20446   case WebAssembly::BI__builtin_wasm_min_s_i8x16:
20447   case WebAssembly::BI__builtin_wasm_min_u_i8x16:
20448   case WebAssembly::BI__builtin_wasm_max_s_i8x16:
20449   case WebAssembly::BI__builtin_wasm_max_u_i8x16:
20450   case WebAssembly::BI__builtin_wasm_min_s_i16x8:
20451   case WebAssembly::BI__builtin_wasm_min_u_i16x8:
20452   case WebAssembly::BI__builtin_wasm_max_s_i16x8:
20453   case WebAssembly::BI__builtin_wasm_max_u_i16x8:
20454   case WebAssembly::BI__builtin_wasm_min_s_i32x4:
20455   case WebAssembly::BI__builtin_wasm_min_u_i32x4:
20456   case WebAssembly::BI__builtin_wasm_max_s_i32x4:
20457   case WebAssembly::BI__builtin_wasm_max_u_i32x4: {
20458     Value *LHS = EmitScalarExpr(E->getArg(0));
20459     Value *RHS = EmitScalarExpr(E->getArg(1));
20460     Value *ICmp;
20461     switch (BuiltinID) {
20462     case WebAssembly::BI__builtin_wasm_min_s_i8x16:
20463     case WebAssembly::BI__builtin_wasm_min_s_i16x8:
20464     case WebAssembly::BI__builtin_wasm_min_s_i32x4:
20465       ICmp = Builder.CreateICmpSLT(LHS, RHS);
20466       break;
20467     case WebAssembly::BI__builtin_wasm_min_u_i8x16:
20468     case WebAssembly::BI__builtin_wasm_min_u_i16x8:
20469     case WebAssembly::BI__builtin_wasm_min_u_i32x4:
20470       ICmp = Builder.CreateICmpULT(LHS, RHS);
20471       break;
20472     case WebAssembly::BI__builtin_wasm_max_s_i8x16:
20473     case WebAssembly::BI__builtin_wasm_max_s_i16x8:
20474     case WebAssembly::BI__builtin_wasm_max_s_i32x4:
20475       ICmp = Builder.CreateICmpSGT(LHS, RHS);
20476       break;
20477     case WebAssembly::BI__builtin_wasm_max_u_i8x16:
20478     case WebAssembly::BI__builtin_wasm_max_u_i16x8:
20479     case WebAssembly::BI__builtin_wasm_max_u_i32x4:
20480       ICmp = Builder.CreateICmpUGT(LHS, RHS);
20481       break;
20482     default:
20483       llvm_unreachable("unexpected builtin ID");
20484     }
20485     return Builder.CreateSelect(ICmp, LHS, RHS);
20486   }
20487   case WebAssembly::BI__builtin_wasm_avgr_u_i8x16:
20488   case WebAssembly::BI__builtin_wasm_avgr_u_i16x8: {
20489     Value *LHS = EmitScalarExpr(E->getArg(0));
20490     Value *RHS = EmitScalarExpr(E->getArg(1));
20491     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_avgr_unsigned,
20492                                         ConvertType(E->getType()));
20493     return Builder.CreateCall(Callee, {LHS, RHS});
20494   }
20495   case WebAssembly::BI__builtin_wasm_q15mulr_sat_s_i16x8: {
20496     Value *LHS = EmitScalarExpr(E->getArg(0));
20497     Value *RHS = EmitScalarExpr(E->getArg(1));
20498     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_q15mulr_sat_signed);
20499     return Builder.CreateCall(Callee, {LHS, RHS});
20500   }
20501   case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
20502   case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
20503   case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
20504   case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4: {
20505     Value *Vec = EmitScalarExpr(E->getArg(0));
20506     unsigned IntNo;
20507     switch (BuiltinID) {
20508     case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
20509     case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
20510       IntNo = Intrinsic::wasm_extadd_pairwise_signed;
20511       break;
20512     case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
20513     case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4:
20514       IntNo = Intrinsic::wasm_extadd_pairwise_unsigned;
20515       break;
20516     default:
20517       llvm_unreachable("unexpected builtin ID");
20518     }
20519 
20520     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
20521     return Builder.CreateCall(Callee, Vec);
20522   }
20523   case WebAssembly::BI__builtin_wasm_bitselect: {
20524     Value *V1 = EmitScalarExpr(E->getArg(0));
20525     Value *V2 = EmitScalarExpr(E->getArg(1));
20526     Value *C = EmitScalarExpr(E->getArg(2));
20527     Function *Callee =
20528         CGM.getIntrinsic(Intrinsic::wasm_bitselect, ConvertType(E->getType()));
20529     return Builder.CreateCall(Callee, {V1, V2, C});
20530   }
20531   case WebAssembly::BI__builtin_wasm_dot_s_i32x4_i16x8: {
20532     Value *LHS = EmitScalarExpr(E->getArg(0));
20533     Value *RHS = EmitScalarExpr(E->getArg(1));
20534     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_dot);
20535     return Builder.CreateCall(Callee, {LHS, RHS});
20536   }
20537   case WebAssembly::BI__builtin_wasm_popcnt_i8x16: {
20538     Value *Vec = EmitScalarExpr(E->getArg(0));
20539     Function *Callee =
20540         CGM.getIntrinsic(Intrinsic::ctpop, ConvertType(E->getType()));
20541     return Builder.CreateCall(Callee, {Vec});
20542   }
20543   case WebAssembly::BI__builtin_wasm_any_true_v128:
20544   case WebAssembly::BI__builtin_wasm_all_true_i8x16:
20545   case WebAssembly::BI__builtin_wasm_all_true_i16x8:
20546   case WebAssembly::BI__builtin_wasm_all_true_i32x4:
20547   case WebAssembly::BI__builtin_wasm_all_true_i64x2: {
20548     unsigned IntNo;
20549     switch (BuiltinID) {
20550     case WebAssembly::BI__builtin_wasm_any_true_v128:
20551       IntNo = Intrinsic::wasm_anytrue;
20552       break;
20553     case WebAssembly::BI__builtin_wasm_all_true_i8x16:
20554     case WebAssembly::BI__builtin_wasm_all_true_i16x8:
20555     case WebAssembly::BI__builtin_wasm_all_true_i32x4:
20556     case WebAssembly::BI__builtin_wasm_all_true_i64x2:
20557       IntNo = Intrinsic::wasm_alltrue;
20558       break;
20559     default:
20560       llvm_unreachable("unexpected builtin ID");
20561     }
20562     Value *Vec = EmitScalarExpr(E->getArg(0));
20563     Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType());
20564     return Builder.CreateCall(Callee, {Vec});
20565   }
20566   case WebAssembly::BI__builtin_wasm_bitmask_i8x16:
20567   case WebAssembly::BI__builtin_wasm_bitmask_i16x8:
20568   case WebAssembly::BI__builtin_wasm_bitmask_i32x4:
20569   case WebAssembly::BI__builtin_wasm_bitmask_i64x2: {
20570     Value *Vec = EmitScalarExpr(E->getArg(0));
20571     Function *Callee =
20572         CGM.getIntrinsic(Intrinsic::wasm_bitmask, Vec->getType());
20573     return Builder.CreateCall(Callee, {Vec});
20574   }
20575   case WebAssembly::BI__builtin_wasm_abs_f32x4:
20576   case WebAssembly::BI__builtin_wasm_abs_f64x2: {
20577     Value *Vec = EmitScalarExpr(E->getArg(0));
20578     Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType());
20579     return Builder.CreateCall(Callee, {Vec});
20580   }
20581   case WebAssembly::BI__builtin_wasm_sqrt_f32x4:
20582   case WebAssembly::BI__builtin_wasm_sqrt_f64x2: {
20583     Value *Vec = EmitScalarExpr(E->getArg(0));
20584     Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType());
20585     return Builder.CreateCall(Callee, {Vec});
20586   }
20587   case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
20588   case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
20589   case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
20590   case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: {
20591     Value *Low = EmitScalarExpr(E->getArg(0));
20592     Value *High = EmitScalarExpr(E->getArg(1));
20593     unsigned IntNo;
20594     switch (BuiltinID) {
20595     case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
20596     case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
20597       IntNo = Intrinsic::wasm_narrow_signed;
20598       break;
20599     case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
20600     case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4:
20601       IntNo = Intrinsic::wasm_narrow_unsigned;
20602       break;
20603     default:
20604       llvm_unreachable("unexpected builtin ID");
20605     }
20606     Function *Callee =
20607         CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()});
20608     return Builder.CreateCall(Callee, {Low, High});
20609   }
20610   case WebAssembly::BI__builtin_wasm_trunc_sat_s_zero_f64x2_i32x4:
20611   case WebAssembly::BI__builtin_wasm_trunc_sat_u_zero_f64x2_i32x4: {
20612     Value *Vec = EmitScalarExpr(E->getArg(0));
20613     unsigned IntNo;
20614     switch (BuiltinID) {
20615     case WebAssembly::BI__builtin_wasm_trunc_sat_s_zero_f64x2_i32x4:
20616       IntNo = Intrinsic::fptosi_sat;
20617       break;
20618     case WebAssembly::BI__builtin_wasm_trunc_sat_u_zero_f64x2_i32x4:
20619       IntNo = Intrinsic::fptoui_sat;
20620       break;
20621     default:
20622       llvm_unreachable("unexpected builtin ID");
20623     }
20624     llvm::Type *SrcT = Vec->getType();
20625     llvm::Type *TruncT = SrcT->getWithNewType(Builder.getInt32Ty());
20626     Function *Callee = CGM.getIntrinsic(IntNo, {TruncT, SrcT});
20627     Value *Trunc = Builder.CreateCall(Callee, Vec);
20628     Value *Splat = Constant::getNullValue(TruncT);
20629     return Builder.CreateShuffleVector(Trunc, Splat, ArrayRef<int>{0, 1, 2, 3});
20630   }
20631   case WebAssembly::BI__builtin_wasm_shuffle_i8x16: {
20632     Value *Ops[18];
20633     size_t OpIdx = 0;
20634     Ops[OpIdx++] = EmitScalarExpr(E->getArg(0));
20635     Ops[OpIdx++] = EmitScalarExpr(E->getArg(1));
20636     while (OpIdx < 18) {
20637       std::optional<llvm::APSInt> LaneConst =
20638           E->getArg(OpIdx)->getIntegerConstantExpr(getContext());
20639       assert(LaneConst && "Constant arg isn't actually constant?");
20640       Ops[OpIdx++] = llvm::ConstantInt::get(getLLVMContext(), *LaneConst);
20641     }
20642     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_shuffle);
20643     return Builder.CreateCall(Callee, Ops);
20644   }
20645   case WebAssembly::BI__builtin_wasm_relaxed_madd_f32x4:
20646   case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f32x4:
20647   case WebAssembly::BI__builtin_wasm_relaxed_madd_f64x2:
20648   case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f64x2: {
20649     Value *A = EmitScalarExpr(E->getArg(0));
20650     Value *B = EmitScalarExpr(E->getArg(1));
20651     Value *C = EmitScalarExpr(E->getArg(2));
20652     unsigned IntNo;
20653     switch (BuiltinID) {
20654     case WebAssembly::BI__builtin_wasm_relaxed_madd_f32x4:
20655     case WebAssembly::BI__builtin_wasm_relaxed_madd_f64x2:
20656       IntNo = Intrinsic::wasm_relaxed_madd;
20657       break;
20658     case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f32x4:
20659     case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f64x2:
20660       IntNo = Intrinsic::wasm_relaxed_nmadd;
20661       break;
20662     default:
20663       llvm_unreachable("unexpected builtin ID");
20664     }
20665     Function *Callee = CGM.getIntrinsic(IntNo, A->getType());
20666     return Builder.CreateCall(Callee, {A, B, C});
20667   }
20668   case WebAssembly::BI__builtin_wasm_relaxed_laneselect_i8x16:
20669   case WebAssembly::BI__builtin_wasm_relaxed_laneselect_i16x8:
20670   case WebAssembly::BI__builtin_wasm_relaxed_laneselect_i32x4:
20671   case WebAssembly::BI__builtin_wasm_relaxed_laneselect_i64x2: {
20672     Value *A = EmitScalarExpr(E->getArg(0));
20673     Value *B = EmitScalarExpr(E->getArg(1));
20674     Value *C = EmitScalarExpr(E->getArg(2));
20675     Function *Callee =
20676         CGM.getIntrinsic(Intrinsic::wasm_relaxed_laneselect, A->getType());
20677     return Builder.CreateCall(Callee, {A, B, C});
20678   }
20679   case WebAssembly::BI__builtin_wasm_relaxed_swizzle_i8x16: {
20680     Value *Src = EmitScalarExpr(E->getArg(0));
20681     Value *Indices = EmitScalarExpr(E->getArg(1));
20682     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_relaxed_swizzle);
20683     return Builder.CreateCall(Callee, {Src, Indices});
20684   }
20685   case WebAssembly::BI__builtin_wasm_relaxed_min_f32x4:
20686   case WebAssembly::BI__builtin_wasm_relaxed_max_f32x4:
20687   case WebAssembly::BI__builtin_wasm_relaxed_min_f64x2:
20688   case WebAssembly::BI__builtin_wasm_relaxed_max_f64x2: {
20689     Value *LHS = EmitScalarExpr(E->getArg(0));
20690     Value *RHS = EmitScalarExpr(E->getArg(1));
20691     unsigned IntNo;
20692     switch (BuiltinID) {
20693     case WebAssembly::BI__builtin_wasm_relaxed_min_f32x4:
20694     case WebAssembly::BI__builtin_wasm_relaxed_min_f64x2:
20695       IntNo = Intrinsic::wasm_relaxed_min;
20696       break;
20697     case WebAssembly::BI__builtin_wasm_relaxed_max_f32x4:
20698     case WebAssembly::BI__builtin_wasm_relaxed_max_f64x2:
20699       IntNo = Intrinsic::wasm_relaxed_max;
20700       break;
20701     default:
20702       llvm_unreachable("unexpected builtin ID");
20703     }
20704     Function *Callee = CGM.getIntrinsic(IntNo, LHS->getType());
20705     return Builder.CreateCall(Callee, {LHS, RHS});
20706   }
20707   case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_i32x4_f32x4:
20708   case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_i32x4_f32x4:
20709   case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_zero_i32x4_f64x2:
20710   case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_zero_i32x4_f64x2: {
20711     Value *Vec = EmitScalarExpr(E->getArg(0));
20712     unsigned IntNo;
20713     switch (BuiltinID) {
20714     case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_i32x4_f32x4:
20715       IntNo = Intrinsic::wasm_relaxed_trunc_signed;
20716       break;
20717     case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_i32x4_f32x4:
20718       IntNo = Intrinsic::wasm_relaxed_trunc_unsigned;
20719       break;
20720     case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_zero_i32x4_f64x2:
20721       IntNo = Intrinsic::wasm_relaxed_trunc_signed_zero;
20722       break;
20723     case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_zero_i32x4_f64x2:
20724       IntNo = Intrinsic::wasm_relaxed_trunc_unsigned_zero;
20725       break;
20726     default:
20727       llvm_unreachable("unexpected builtin ID");
20728     }
20729     Function *Callee = CGM.getIntrinsic(IntNo);
20730     return Builder.CreateCall(Callee, {Vec});
20731   }
20732   case WebAssembly::BI__builtin_wasm_relaxed_q15mulr_s_i16x8: {
20733     Value *LHS = EmitScalarExpr(E->getArg(0));
20734     Value *RHS = EmitScalarExpr(E->getArg(1));
20735     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_relaxed_q15mulr_signed);
20736     return Builder.CreateCall(Callee, {LHS, RHS});
20737   }
20738   case WebAssembly::BI__builtin_wasm_relaxed_dot_i8x16_i7x16_s_i16x8: {
20739     Value *LHS = EmitScalarExpr(E->getArg(0));
20740     Value *RHS = EmitScalarExpr(E->getArg(1));
20741     Function *Callee =
20742         CGM.getIntrinsic(Intrinsic::wasm_relaxed_dot_i8x16_i7x16_signed);
20743     return Builder.CreateCall(Callee, {LHS, RHS});
20744   }
20745   case WebAssembly::BI__builtin_wasm_relaxed_dot_i8x16_i7x16_add_s_i32x4: {
20746     Value *LHS = EmitScalarExpr(E->getArg(0));
20747     Value *RHS = EmitScalarExpr(E->getArg(1));
20748     Value *Acc = EmitScalarExpr(E->getArg(2));
20749     Function *Callee =
20750         CGM.getIntrinsic(Intrinsic::wasm_relaxed_dot_i8x16_i7x16_add_signed);
20751     return Builder.CreateCall(Callee, {LHS, RHS, Acc});
20752   }
20753   case WebAssembly::BI__builtin_wasm_relaxed_dot_bf16x8_add_f32_f32x4: {
20754     Value *LHS = EmitScalarExpr(E->getArg(0));
20755     Value *RHS = EmitScalarExpr(E->getArg(1));
20756     Value *Acc = EmitScalarExpr(E->getArg(2));
20757     Function *Callee =
20758         CGM.getIntrinsic(Intrinsic::wasm_relaxed_dot_bf16x8_add_f32);
20759     return Builder.CreateCall(Callee, {LHS, RHS, Acc});
20760   }
20761   case WebAssembly::BI__builtin_wasm_table_get: {
20762     assert(E->getArg(0)->getType()->isArrayType());
20763     Value *Table = EmitArrayToPointerDecay(E->getArg(0)).getPointer();
20764     Value *Index = EmitScalarExpr(E->getArg(1));
20765     Function *Callee;
20766     if (E->getType().isWebAssemblyExternrefType())
20767       Callee = CGM.getIntrinsic(Intrinsic::wasm_table_get_externref);
20768     else if (E->getType().isWebAssemblyFuncrefType())
20769       Callee = CGM.getIntrinsic(Intrinsic::wasm_table_get_funcref);
20770     else
20771       llvm_unreachable(
20772           "Unexpected reference type for __builtin_wasm_table_get");
20773     return Builder.CreateCall(Callee, {Table, Index});
20774   }
20775   case WebAssembly::BI__builtin_wasm_table_set: {
20776     assert(E->getArg(0)->getType()->isArrayType());
20777     Value *Table = EmitArrayToPointerDecay(E->getArg(0)).getPointer();
20778     Value *Index = EmitScalarExpr(E->getArg(1));
20779     Value *Val = EmitScalarExpr(E->getArg(2));
20780     Function *Callee;
20781     if (E->getArg(2)->getType().isWebAssemblyExternrefType())
20782       Callee = CGM.getIntrinsic(Intrinsic::wasm_table_set_externref);
20783     else if (E->getArg(2)->getType().isWebAssemblyFuncrefType())
20784       Callee = CGM.getIntrinsic(Intrinsic::wasm_table_set_funcref);
20785     else
20786       llvm_unreachable(
20787           "Unexpected reference type for __builtin_wasm_table_set");
20788     return Builder.CreateCall(Callee, {Table, Index, Val});
20789   }
20790   case WebAssembly::BI__builtin_wasm_table_size: {
20791     assert(E->getArg(0)->getType()->isArrayType());
20792     Value *Value = EmitArrayToPointerDecay(E->getArg(0)).getPointer();
20793     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_table_size);
20794     return Builder.CreateCall(Callee, Value);
20795   }
20796   case WebAssembly::BI__builtin_wasm_table_grow: {
20797     assert(E->getArg(0)->getType()->isArrayType());
20798     Value *Table = EmitArrayToPointerDecay(E->getArg(0)).getPointer();
20799     Value *Val = EmitScalarExpr(E->getArg(1));
20800     Value *NElems = EmitScalarExpr(E->getArg(2));
20801 
20802     Function *Callee;
20803     if (E->getArg(1)->getType().isWebAssemblyExternrefType())
20804       Callee = CGM.getIntrinsic(Intrinsic::wasm_table_grow_externref);
20805     else if (E->getArg(2)->getType().isWebAssemblyFuncrefType())
20806       Callee = CGM.getIntrinsic(Intrinsic::wasm_table_fill_funcref);
20807     else
20808       llvm_unreachable(
20809           "Unexpected reference type for __builtin_wasm_table_grow");
20810 
20811     return Builder.CreateCall(Callee, {Table, Val, NElems});
20812   }
20813   case WebAssembly::BI__builtin_wasm_table_fill: {
20814     assert(E->getArg(0)->getType()->isArrayType());
20815     Value *Table = EmitArrayToPointerDecay(E->getArg(0)).getPointer();
20816     Value *Index = EmitScalarExpr(E->getArg(1));
20817     Value *Val = EmitScalarExpr(E->getArg(2));
20818     Value *NElems = EmitScalarExpr(E->getArg(3));
20819 
20820     Function *Callee;
20821     if (E->getArg(2)->getType().isWebAssemblyExternrefType())
20822       Callee = CGM.getIntrinsic(Intrinsic::wasm_table_fill_externref);
20823     else if (E->getArg(2)->getType().isWebAssemblyFuncrefType())
20824       Callee = CGM.getIntrinsic(Intrinsic::wasm_table_fill_funcref);
20825     else
20826       llvm_unreachable(
20827           "Unexpected reference type for __builtin_wasm_table_fill");
20828 
20829     return Builder.CreateCall(Callee, {Table, Index, Val, NElems});
20830   }
20831   case WebAssembly::BI__builtin_wasm_table_copy: {
20832     assert(E->getArg(0)->getType()->isArrayType());
20833     Value *TableX = EmitArrayToPointerDecay(E->getArg(0)).getPointer();
20834     Value *TableY = EmitArrayToPointerDecay(E->getArg(1)).getPointer();
20835     Value *DstIdx = EmitScalarExpr(E->getArg(2));
20836     Value *SrcIdx = EmitScalarExpr(E->getArg(3));
20837     Value *NElems = EmitScalarExpr(E->getArg(4));
20838 
20839     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_table_copy);
20840 
20841     return Builder.CreateCall(Callee, {TableX, TableY, SrcIdx, DstIdx, NElems});
20842   }
20843   default:
20844     return nullptr;
20845   }
20846 }
20847 
20848 static std::pair<Intrinsic::ID, unsigned>
20849 getIntrinsicForHexagonNonClangBuiltin(unsigned BuiltinID) {
20850   struct Info {
20851     unsigned BuiltinID;
20852     Intrinsic::ID IntrinsicID;
20853     unsigned VecLen;
20854   };
20855   static Info Infos[] = {
20856 #define CUSTOM_BUILTIN_MAPPING(x,s) \
20857   { Hexagon::BI__builtin_HEXAGON_##x, Intrinsic::hexagon_##x, s },
20858     CUSTOM_BUILTIN_MAPPING(L2_loadrub_pci, 0)
20859     CUSTOM_BUILTIN_MAPPING(L2_loadrb_pci, 0)
20860     CUSTOM_BUILTIN_MAPPING(L2_loadruh_pci, 0)
20861     CUSTOM_BUILTIN_MAPPING(L2_loadrh_pci, 0)
20862     CUSTOM_BUILTIN_MAPPING(L2_loadri_pci, 0)
20863     CUSTOM_BUILTIN_MAPPING(L2_loadrd_pci, 0)
20864     CUSTOM_BUILTIN_MAPPING(L2_loadrub_pcr, 0)
20865     CUSTOM_BUILTIN_MAPPING(L2_loadrb_pcr, 0)
20866     CUSTOM_BUILTIN_MAPPING(L2_loadruh_pcr, 0)
20867     CUSTOM_BUILTIN_MAPPING(L2_loadrh_pcr, 0)
20868     CUSTOM_BUILTIN_MAPPING(L2_loadri_pcr, 0)
20869     CUSTOM_BUILTIN_MAPPING(L2_loadrd_pcr, 0)
20870     CUSTOM_BUILTIN_MAPPING(S2_storerb_pci, 0)
20871     CUSTOM_BUILTIN_MAPPING(S2_storerh_pci, 0)
20872     CUSTOM_BUILTIN_MAPPING(S2_storerf_pci, 0)
20873     CUSTOM_BUILTIN_MAPPING(S2_storeri_pci, 0)
20874     CUSTOM_BUILTIN_MAPPING(S2_storerd_pci, 0)
20875     CUSTOM_BUILTIN_MAPPING(S2_storerb_pcr, 0)
20876     CUSTOM_BUILTIN_MAPPING(S2_storerh_pcr, 0)
20877     CUSTOM_BUILTIN_MAPPING(S2_storerf_pcr, 0)
20878     CUSTOM_BUILTIN_MAPPING(S2_storeri_pcr, 0)
20879     CUSTOM_BUILTIN_MAPPING(S2_storerd_pcr, 0)
20880     // Legacy builtins that take a vector in place of a vector predicate.
20881     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq, 64)
20882     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq, 64)
20883     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq, 64)
20884     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq, 64)
20885     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq_128B, 128)
20886     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq_128B, 128)
20887     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq_128B, 128)
20888     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq_128B, 128)
20889 #include "clang/Basic/BuiltinsHexagonMapCustomDep.def"
20890 #undef CUSTOM_BUILTIN_MAPPING
20891   };
20892 
20893   auto CmpInfo = [] (Info A, Info B) { return A.BuiltinID < B.BuiltinID; };
20894   static const bool SortOnce = (llvm::sort(Infos, CmpInfo), true);
20895   (void)SortOnce;
20896 
20897   const Info *F = llvm::lower_bound(Infos, Info{BuiltinID, 0, 0}, CmpInfo);
20898   if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
20899     return {Intrinsic::not_intrinsic, 0};
20900 
20901   return {F->IntrinsicID, F->VecLen};
20902 }
20903 
20904 Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID,
20905                                                const CallExpr *E) {
20906   Intrinsic::ID ID;
20907   unsigned VecLen;
20908   std::tie(ID, VecLen) = getIntrinsicForHexagonNonClangBuiltin(BuiltinID);
20909 
20910   auto MakeCircOp = [this, E](unsigned IntID, bool IsLoad) {
20911     // The base pointer is passed by address, so it needs to be loaded.
20912     Address A = EmitPointerWithAlignment(E->getArg(0));
20913     Address BP = Address(A.getPointer(), Int8PtrTy, A.getAlignment());
20914     llvm::Value *Base = Builder.CreateLoad(BP);
20915     // The treatment of both loads and stores is the same: the arguments for
20916     // the builtin are the same as the arguments for the intrinsic.
20917     // Load:
20918     //   builtin(Base, Inc, Mod, Start) -> intr(Base, Inc, Mod, Start)
20919     //   builtin(Base, Mod, Start)      -> intr(Base, Mod, Start)
20920     // Store:
20921     //   builtin(Base, Inc, Mod, Val, Start) -> intr(Base, Inc, Mod, Val, Start)
20922     //   builtin(Base, Mod, Val, Start)      -> intr(Base, Mod, Val, Start)
20923     SmallVector<llvm::Value*,5> Ops = { Base };
20924     for (unsigned i = 1, e = E->getNumArgs(); i != e; ++i)
20925       Ops.push_back(EmitScalarExpr(E->getArg(i)));
20926 
20927     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
20928     // The load intrinsics generate two results (Value, NewBase), stores
20929     // generate one (NewBase). The new base address needs to be stored.
20930     llvm::Value *NewBase = IsLoad ? Builder.CreateExtractValue(Result, 1)
20931                                   : Result;
20932     llvm::Value *LV = EmitScalarExpr(E->getArg(0));
20933     Address Dest = EmitPointerWithAlignment(E->getArg(0));
20934     llvm::Value *RetVal =
20935         Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
20936     if (IsLoad)
20937       RetVal = Builder.CreateExtractValue(Result, 0);
20938     return RetVal;
20939   };
20940 
20941   // Handle the conversion of bit-reverse load intrinsics to bit code.
20942   // The intrinsic call after this function only reads from memory and the
20943   // write to memory is dealt by the store instruction.
20944   auto MakeBrevLd = [this, E](unsigned IntID, llvm::Type *DestTy) {
20945     // The intrinsic generates one result, which is the new value for the base
20946     // pointer. It needs to be returned. The result of the load instruction is
20947     // passed to intrinsic by address, so the value needs to be stored.
20948     llvm::Value *BaseAddress = EmitScalarExpr(E->getArg(0));
20949 
20950     // Expressions like &(*pt++) will be incremented per evaluation.
20951     // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression
20952     // per call.
20953     Address DestAddr = EmitPointerWithAlignment(E->getArg(1));
20954     DestAddr = Address(DestAddr.getPointer(), Int8Ty, DestAddr.getAlignment());
20955     llvm::Value *DestAddress = DestAddr.getPointer();
20956 
20957     // Operands are Base, Dest, Modifier.
20958     // The intrinsic format in LLVM IR is defined as
20959     // { ValueType, i8* } (i8*, i32).
20960     llvm::Value *Result = Builder.CreateCall(
20961         CGM.getIntrinsic(IntID), {BaseAddress, EmitScalarExpr(E->getArg(2))});
20962 
20963     // The value needs to be stored as the variable is passed by reference.
20964     llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0);
20965 
20966     // The store needs to be truncated to fit the destination type.
20967     // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs
20968     // to be handled with stores of respective destination type.
20969     DestVal = Builder.CreateTrunc(DestVal, DestTy);
20970 
20971     Builder.CreateAlignedStore(DestVal, DestAddress, DestAddr.getAlignment());
20972     // The updated value of the base pointer is returned.
20973     return Builder.CreateExtractValue(Result, 1);
20974   };
20975 
20976   auto V2Q = [this, VecLen] (llvm::Value *Vec) {
20977     Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandvrt_128B
20978                                      : Intrinsic::hexagon_V6_vandvrt;
20979     return Builder.CreateCall(CGM.getIntrinsic(ID),
20980                               {Vec, Builder.getInt32(-1)});
20981   };
20982   auto Q2V = [this, VecLen] (llvm::Value *Pred) {
20983     Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandqrt_128B
20984                                      : Intrinsic::hexagon_V6_vandqrt;
20985     return Builder.CreateCall(CGM.getIntrinsic(ID),
20986                               {Pred, Builder.getInt32(-1)});
20987   };
20988 
20989   switch (BuiltinID) {
20990   // These intrinsics return a tuple {Vector, VectorPred} in LLVM IR,
20991   // and the corresponding C/C++ builtins use loads/stores to update
20992   // the predicate.
20993   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry:
20994   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B:
20995   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry:
20996   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: {
20997     // Get the type from the 0-th argument.
20998     llvm::Type *VecType = ConvertType(E->getArg(0)->getType());
20999     Address PredAddr =
21000         EmitPointerWithAlignment(E->getArg(2)).withElementType(VecType);
21001     llvm::Value *PredIn = V2Q(Builder.CreateLoad(PredAddr));
21002     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID),
21003         {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), PredIn});
21004 
21005     llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1);
21006     Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.getPointer(),
21007         PredAddr.getAlignment());
21008     return Builder.CreateExtractValue(Result, 0);
21009   }
21010   // These are identical to the builtins above, except they don't consume
21011   // input carry, only generate carry-out. Since they still produce two
21012   // outputs, generate the store of the predicate, but no load.
21013   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarryo:
21014   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarryo_128B:
21015   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarryo:
21016   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarryo_128B: {
21017     // Get the type from the 0-th argument.
21018     llvm::Type *VecType = ConvertType(E->getArg(0)->getType());
21019     Address PredAddr =
21020         EmitPointerWithAlignment(E->getArg(2)).withElementType(VecType);
21021     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID),
21022         {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1))});
21023 
21024     llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1);
21025     Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.getPointer(),
21026         PredAddr.getAlignment());
21027     return Builder.CreateExtractValue(Result, 0);
21028   }
21029 
21030   case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstoreq:
21031   case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorenq:
21032   case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentq:
21033   case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentnq:
21034   case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstoreq_128B:
21035   case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorenq_128B:
21036   case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentq_128B:
21037   case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentnq_128B: {
21038     SmallVector<llvm::Value*,4> Ops;
21039     const Expr *PredOp = E->getArg(0);
21040     // There will be an implicit cast to a boolean vector. Strip it.
21041     if (auto *Cast = dyn_cast<ImplicitCastExpr>(PredOp)) {
21042       if (Cast->getCastKind() == CK_BitCast)
21043         PredOp = Cast->getSubExpr();
21044       Ops.push_back(V2Q(EmitScalarExpr(PredOp)));
21045     }
21046     for (int i = 1, e = E->getNumArgs(); i != e; ++i)
21047       Ops.push_back(EmitScalarExpr(E->getArg(i)));
21048     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
21049   }
21050 
21051   case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci:
21052   case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci:
21053   case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci:
21054   case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci:
21055   case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci:
21056   case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci:
21057   case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr:
21058   case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr:
21059   case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr:
21060   case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr:
21061   case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr:
21062   case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr:
21063     return MakeCircOp(ID, /*IsLoad=*/true);
21064   case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci:
21065   case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci:
21066   case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci:
21067   case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci:
21068   case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci:
21069   case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr:
21070   case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr:
21071   case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr:
21072   case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr:
21073   case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr:
21074     return MakeCircOp(ID, /*IsLoad=*/false);
21075   case Hexagon::BI__builtin_brev_ldub:
21076     return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty);
21077   case Hexagon::BI__builtin_brev_ldb:
21078     return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty);
21079   case Hexagon::BI__builtin_brev_lduh:
21080     return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty);
21081   case Hexagon::BI__builtin_brev_ldh:
21082     return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty);
21083   case Hexagon::BI__builtin_brev_ldw:
21084     return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty);
21085   case Hexagon::BI__builtin_brev_ldd:
21086     return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty);
21087   } // switch
21088 
21089   return nullptr;
21090 }
21091 
21092 Value *CodeGenFunction::EmitRISCVBuiltinExpr(unsigned BuiltinID,
21093                                              const CallExpr *E,
21094                                              ReturnValueSlot ReturnValue) {
21095   SmallVector<Value *, 4> Ops;
21096   llvm::Type *ResultType = ConvertType(E->getType());
21097 
21098   // Find out if any arguments are required to be integer constant expressions.
21099   unsigned ICEArguments = 0;
21100   ASTContext::GetBuiltinTypeError Error;
21101   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
21102   if (Error == ASTContext::GE_Missing_type) {
21103     // Vector intrinsics don't have a type string.
21104     assert(BuiltinID >= clang::RISCV::FirstRVVBuiltin &&
21105            BuiltinID <= clang::RISCV::LastRVVBuiltin);
21106     ICEArguments = 0;
21107     if (BuiltinID == RISCVVector::BI__builtin_rvv_vget_v ||
21108         BuiltinID == RISCVVector::BI__builtin_rvv_vset_v)
21109       ICEArguments = 1 << 1;
21110   } else {
21111     assert(Error == ASTContext::GE_None && "Unexpected error");
21112   }
21113 
21114   if (BuiltinID == RISCV::BI__builtin_riscv_ntl_load)
21115     ICEArguments |= (1 << 1);
21116   if (BuiltinID == RISCV::BI__builtin_riscv_ntl_store)
21117     ICEArguments |= (1 << 2);
21118 
21119   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
21120     // Handle aggregate argument, namely RVV tuple types in segment load/store
21121     if (hasAggregateEvaluationKind(E->getArg(i)->getType())) {
21122       LValue L = EmitAggExprToLValue(E->getArg(i));
21123       llvm::Value *AggValue = Builder.CreateLoad(L.getAddress(*this));
21124       Ops.push_back(AggValue);
21125       continue;
21126     }
21127     Ops.push_back(EmitScalarOrConstFoldImmArg(ICEArguments, i, E));
21128   }
21129 
21130   Intrinsic::ID ID = Intrinsic::not_intrinsic;
21131   unsigned NF = 1;
21132   // The 0th bit simulates the `vta` of RVV
21133   // The 1st bit simulates the `vma` of RVV
21134   constexpr unsigned RVV_VTA = 0x1;
21135   constexpr unsigned RVV_VMA = 0x2;
21136   int PolicyAttrs = 0;
21137   bool IsMasked = false;
21138 
21139   // Required for overloaded intrinsics.
21140   llvm::SmallVector<llvm::Type *, 2> IntrinsicTypes;
21141   switch (BuiltinID) {
21142   default: llvm_unreachable("unexpected builtin ID");
21143   case RISCV::BI__builtin_riscv_orc_b_32:
21144   case RISCV::BI__builtin_riscv_orc_b_64:
21145   case RISCV::BI__builtin_riscv_clz_32:
21146   case RISCV::BI__builtin_riscv_clz_64:
21147   case RISCV::BI__builtin_riscv_ctz_32:
21148   case RISCV::BI__builtin_riscv_ctz_64:
21149   case RISCV::BI__builtin_riscv_clmul_32:
21150   case RISCV::BI__builtin_riscv_clmul_64:
21151   case RISCV::BI__builtin_riscv_clmulh_32:
21152   case RISCV::BI__builtin_riscv_clmulh_64:
21153   case RISCV::BI__builtin_riscv_clmulr_32:
21154   case RISCV::BI__builtin_riscv_clmulr_64:
21155   case RISCV::BI__builtin_riscv_xperm4_32:
21156   case RISCV::BI__builtin_riscv_xperm4_64:
21157   case RISCV::BI__builtin_riscv_xperm8_32:
21158   case RISCV::BI__builtin_riscv_xperm8_64:
21159   case RISCV::BI__builtin_riscv_brev8_32:
21160   case RISCV::BI__builtin_riscv_brev8_64:
21161   case RISCV::BI__builtin_riscv_zip_32:
21162   case RISCV::BI__builtin_riscv_unzip_32: {
21163     switch (BuiltinID) {
21164     default: llvm_unreachable("unexpected builtin ID");
21165     // Zbb
21166     case RISCV::BI__builtin_riscv_orc_b_32:
21167     case RISCV::BI__builtin_riscv_orc_b_64:
21168       ID = Intrinsic::riscv_orc_b;
21169       break;
21170     case RISCV::BI__builtin_riscv_clz_32:
21171     case RISCV::BI__builtin_riscv_clz_64: {
21172       Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
21173       Value *Result = Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
21174       if (Result->getType() != ResultType)
21175         Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
21176                                        "cast");
21177       return Result;
21178     }
21179     case RISCV::BI__builtin_riscv_ctz_32:
21180     case RISCV::BI__builtin_riscv_ctz_64: {
21181       Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
21182       Value *Result = Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
21183       if (Result->getType() != ResultType)
21184         Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
21185                                        "cast");
21186       return Result;
21187     }
21188 
21189     // Zbc
21190     case RISCV::BI__builtin_riscv_clmul_32:
21191     case RISCV::BI__builtin_riscv_clmul_64:
21192       ID = Intrinsic::riscv_clmul;
21193       break;
21194     case RISCV::BI__builtin_riscv_clmulh_32:
21195     case RISCV::BI__builtin_riscv_clmulh_64:
21196       ID = Intrinsic::riscv_clmulh;
21197       break;
21198     case RISCV::BI__builtin_riscv_clmulr_32:
21199     case RISCV::BI__builtin_riscv_clmulr_64:
21200       ID = Intrinsic::riscv_clmulr;
21201       break;
21202 
21203     // Zbkx
21204     case RISCV::BI__builtin_riscv_xperm8_32:
21205     case RISCV::BI__builtin_riscv_xperm8_64:
21206       ID = Intrinsic::riscv_xperm8;
21207       break;
21208     case RISCV::BI__builtin_riscv_xperm4_32:
21209     case RISCV::BI__builtin_riscv_xperm4_64:
21210       ID = Intrinsic::riscv_xperm4;
21211       break;
21212 
21213     // Zbkb
21214     case RISCV::BI__builtin_riscv_brev8_32:
21215     case RISCV::BI__builtin_riscv_brev8_64:
21216       ID = Intrinsic::riscv_brev8;
21217       break;
21218     case RISCV::BI__builtin_riscv_zip_32:
21219       ID = Intrinsic::riscv_zip;
21220       break;
21221     case RISCV::BI__builtin_riscv_unzip_32:
21222       ID = Intrinsic::riscv_unzip;
21223       break;
21224     }
21225 
21226     IntrinsicTypes = {ResultType};
21227     break;
21228   }
21229 
21230   // Zk builtins
21231 
21232   // Zknh
21233   case RISCV::BI__builtin_riscv_sha256sig0:
21234     ID = Intrinsic::riscv_sha256sig0;
21235     break;
21236   case RISCV::BI__builtin_riscv_sha256sig1:
21237     ID = Intrinsic::riscv_sha256sig1;
21238     break;
21239   case RISCV::BI__builtin_riscv_sha256sum0:
21240     ID = Intrinsic::riscv_sha256sum0;
21241     break;
21242   case RISCV::BI__builtin_riscv_sha256sum1:
21243     ID = Intrinsic::riscv_sha256sum1;
21244     break;
21245 
21246   // Zksed
21247   case RISCV::BI__builtin_riscv_sm4ks:
21248     ID = Intrinsic::riscv_sm4ks;
21249     break;
21250   case RISCV::BI__builtin_riscv_sm4ed:
21251     ID = Intrinsic::riscv_sm4ed;
21252     break;
21253 
21254   // Zksh
21255   case RISCV::BI__builtin_riscv_sm3p0:
21256     ID = Intrinsic::riscv_sm3p0;
21257     break;
21258   case RISCV::BI__builtin_riscv_sm3p1:
21259     ID = Intrinsic::riscv_sm3p1;
21260     break;
21261 
21262   // Zihintntl
21263   case RISCV::BI__builtin_riscv_ntl_load: {
21264     llvm::Type *ResTy = ConvertType(E->getType());
21265     unsigned DomainVal = 5; // Default __RISCV_NTLH_ALL
21266     if (Ops.size() == 2)
21267       DomainVal = cast<ConstantInt>(Ops[1])->getZExtValue();
21268 
21269     llvm::MDNode *RISCVDomainNode = llvm::MDNode::get(
21270         getLLVMContext(),
21271         llvm::ConstantAsMetadata::get(Builder.getInt32(DomainVal)));
21272     llvm::MDNode *NontemporalNode = llvm::MDNode::get(
21273         getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
21274 
21275     int Width;
21276     if(ResTy->isScalableTy()) {
21277       const ScalableVectorType *SVTy = cast<ScalableVectorType>(ResTy);
21278       llvm::Type *ScalarTy = ResTy->getScalarType();
21279       Width = ScalarTy->getPrimitiveSizeInBits() *
21280               SVTy->getElementCount().getKnownMinValue();
21281     } else
21282       Width = ResTy->getPrimitiveSizeInBits();
21283     LoadInst *Load = Builder.CreateLoad(
21284         Address(Ops[0], ResTy, CharUnits::fromQuantity(Width / 8)));
21285 
21286     Load->setMetadata(llvm::LLVMContext::MD_nontemporal, NontemporalNode);
21287     Load->setMetadata(CGM.getModule().getMDKindID("riscv-nontemporal-domain"),
21288                       RISCVDomainNode);
21289 
21290     return Load;
21291   }
21292   case RISCV::BI__builtin_riscv_ntl_store: {
21293     unsigned DomainVal = 5; // Default __RISCV_NTLH_ALL
21294     if (Ops.size() == 3)
21295       DomainVal = cast<ConstantInt>(Ops[2])->getZExtValue();
21296 
21297     llvm::MDNode *RISCVDomainNode = llvm::MDNode::get(
21298         getLLVMContext(),
21299         llvm::ConstantAsMetadata::get(Builder.getInt32(DomainVal)));
21300     llvm::MDNode *NontemporalNode = llvm::MDNode::get(
21301         getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
21302 
21303     StoreInst *Store = Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
21304     Store->setMetadata(llvm::LLVMContext::MD_nontemporal, NontemporalNode);
21305     Store->setMetadata(CGM.getModule().getMDKindID("riscv-nontemporal-domain"),
21306                        RISCVDomainNode);
21307 
21308     return Store;
21309   }
21310 
21311   // Vector builtins are handled from here.
21312 #include "clang/Basic/riscv_vector_builtin_cg.inc"
21313   // SiFive Vector builtins are handled from here.
21314 #include "clang/Basic/riscv_sifive_vector_builtin_cg.inc"
21315   }
21316 
21317   assert(ID != Intrinsic::not_intrinsic);
21318 
21319   llvm::Function *F = CGM.getIntrinsic(ID, IntrinsicTypes);
21320   return Builder.CreateCall(F, Ops, "");
21321 }
21322