1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Builtin calls as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCUDARuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGObjCRuntime.h"
16 #include "CGOpenCLRuntime.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "PatternInit.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/Attr.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/OSLog.h"
27 #include "clang/Basic/TargetBuiltins.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/CodeGen/CGFunctionInfo.h"
30 #include "llvm/ADT/APFloat.h"
31 #include "llvm/ADT/APInt.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/StringExtras.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/InlineAsm.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/IntrinsicsAArch64.h"
39 #include "llvm/IR/IntrinsicsAMDGPU.h"
40 #include "llvm/IR/IntrinsicsARM.h"
41 #include "llvm/IR/IntrinsicsBPF.h"
42 #include "llvm/IR/IntrinsicsHexagon.h"
43 #include "llvm/IR/IntrinsicsNVPTX.h"
44 #include "llvm/IR/IntrinsicsPowerPC.h"
45 #include "llvm/IR/IntrinsicsR600.h"
46 #include "llvm/IR/IntrinsicsRISCV.h"
47 #include "llvm/IR/IntrinsicsS390.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/MDBuilder.h"
51 #include "llvm/IR/MatrixBuilder.h"
52 #include "llvm/Support/ConvertUTF.h"
53 #include "llvm/Support/ScopedPrinter.h"
54 #include "llvm/Support/X86TargetParser.h"
55 #include <sstream>
56 
57 using namespace clang;
58 using namespace CodeGen;
59 using namespace llvm;
60 
61 static
62 int64_t clamp(int64_t Value, int64_t Low, int64_t High) {
63   return std::min(High, std::max(Low, Value));
64 }
65 
66 static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size,
67                              Align AlignmentInBytes) {
68   ConstantInt *Byte;
69   switch (CGF.getLangOpts().getTrivialAutoVarInit()) {
70   case LangOptions::TrivialAutoVarInitKind::Uninitialized:
71     // Nothing to initialize.
72     return;
73   case LangOptions::TrivialAutoVarInitKind::Zero:
74     Byte = CGF.Builder.getInt8(0x00);
75     break;
76   case LangOptions::TrivialAutoVarInitKind::Pattern: {
77     llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext());
78     Byte = llvm::dyn_cast<llvm::ConstantInt>(
79         initializationPatternFor(CGF.CGM, Int8));
80     break;
81   }
82   }
83   if (CGF.CGM.stopAutoInit())
84     return;
85   auto *I = CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes);
86   I->addAnnotationMetadata("auto-init");
87 }
88 
89 /// getBuiltinLibFunction - Given a builtin id for a function like
90 /// "__builtin_fabsf", return a Function* for "fabsf".
91 llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
92                                                      unsigned BuiltinID) {
93   assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
94 
95   // Get the name, skip over the __builtin_ prefix (if necessary).
96   StringRef Name;
97   GlobalDecl D(FD);
98 
99   // If the builtin has been declared explicitly with an assembler label,
100   // use the mangled name. This differs from the plain label on platforms
101   // that prefix labels.
102   if (FD->hasAttr<AsmLabelAttr>())
103     Name = getMangledName(D);
104   else
105     Name = Context.BuiltinInfo.getName(BuiltinID) + 10;
106 
107   llvm::FunctionType *Ty =
108     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
109 
110   return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
111 }
112 
113 /// Emit the conversions required to turn the given value into an
114 /// integer of the given size.
115 static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
116                         QualType T, llvm::IntegerType *IntType) {
117   V = CGF.EmitToMemory(V, T);
118 
119   if (V->getType()->isPointerTy())
120     return CGF.Builder.CreatePtrToInt(V, IntType);
121 
122   assert(V->getType() == IntType);
123   return V;
124 }
125 
126 static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
127                           QualType T, llvm::Type *ResultType) {
128   V = CGF.EmitFromMemory(V, T);
129 
130   if (ResultType->isPointerTy())
131     return CGF.Builder.CreateIntToPtr(V, ResultType);
132 
133   assert(V->getType() == ResultType);
134   return V;
135 }
136 
137 /// Utility to insert an atomic instruction based on Intrinsic::ID
138 /// and the expression node.
139 static Value *MakeBinaryAtomicValue(
140     CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
141     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
142   QualType T = E->getType();
143   assert(E->getArg(0)->getType()->isPointerType());
144   assert(CGF.getContext().hasSameUnqualifiedType(T,
145                                   E->getArg(0)->getType()->getPointeeType()));
146   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
147 
148   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
149   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
150 
151   llvm::IntegerType *IntType =
152     llvm::IntegerType::get(CGF.getLLVMContext(),
153                            CGF.getContext().getTypeSize(T));
154   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
155 
156   llvm::Value *Args[2];
157   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
158   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
159   llvm::Type *ValueType = Args[1]->getType();
160   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
161 
162   llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
163       Kind, Args[0], Args[1], Ordering);
164   return EmitFromInt(CGF, Result, T, ValueType);
165 }
166 
167 static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
168   Value *Val = CGF.EmitScalarExpr(E->getArg(0));
169   Value *Address = CGF.EmitScalarExpr(E->getArg(1));
170 
171   // Convert the type of the pointer to a pointer to the stored type.
172   Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
173   Value *BC = CGF.Builder.CreateBitCast(
174       Address, llvm::PointerType::getUnqual(Val->getType()), "cast");
175   LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
176   LV.setNontemporal(true);
177   CGF.EmitStoreOfScalar(Val, LV, false);
178   return nullptr;
179 }
180 
181 static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
182   Value *Address = CGF.EmitScalarExpr(E->getArg(0));
183 
184   LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
185   LV.setNontemporal(true);
186   return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
187 }
188 
189 static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
190                                llvm::AtomicRMWInst::BinOp Kind,
191                                const CallExpr *E) {
192   return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
193 }
194 
195 /// Utility to insert an atomic instruction based Intrinsic::ID and
196 /// the expression node, where the return value is the result of the
197 /// operation.
198 static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
199                                    llvm::AtomicRMWInst::BinOp Kind,
200                                    const CallExpr *E,
201                                    Instruction::BinaryOps Op,
202                                    bool Invert = false) {
203   QualType T = E->getType();
204   assert(E->getArg(0)->getType()->isPointerType());
205   assert(CGF.getContext().hasSameUnqualifiedType(T,
206                                   E->getArg(0)->getType()->getPointeeType()));
207   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
208 
209   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
210   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
211 
212   llvm::IntegerType *IntType =
213     llvm::IntegerType::get(CGF.getLLVMContext(),
214                            CGF.getContext().getTypeSize(T));
215   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
216 
217   llvm::Value *Args[2];
218   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
219   llvm::Type *ValueType = Args[1]->getType();
220   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
221   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
222 
223   llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
224       Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
225   Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
226   if (Invert)
227     Result =
228         CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
229                                 llvm::ConstantInt::getAllOnesValue(IntType));
230   Result = EmitFromInt(CGF, Result, T, ValueType);
231   return RValue::get(Result);
232 }
233 
234 /// Utility to insert an atomic cmpxchg instruction.
235 ///
236 /// @param CGF The current codegen function.
237 /// @param E   Builtin call expression to convert to cmpxchg.
238 ///            arg0 - address to operate on
239 ///            arg1 - value to compare with
240 ///            arg2 - new value
241 /// @param ReturnBool Specifies whether to return success flag of
242 ///                   cmpxchg result or the old value.
243 ///
244 /// @returns result of cmpxchg, according to ReturnBool
245 ///
246 /// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
247 /// invoke the function EmitAtomicCmpXchgForMSIntrin.
248 static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
249                                      bool ReturnBool) {
250   QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
251   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
252   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
253 
254   llvm::IntegerType *IntType = llvm::IntegerType::get(
255       CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
256   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
257 
258   Value *Args[3];
259   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
260   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
261   llvm::Type *ValueType = Args[1]->getType();
262   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
263   Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
264 
265   Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
266       Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent,
267       llvm::AtomicOrdering::SequentiallyConsistent);
268   if (ReturnBool)
269     // Extract boolean success flag and zext it to int.
270     return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
271                                   CGF.ConvertType(E->getType()));
272   else
273     // Extract old value and emit it using the same type as compare value.
274     return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
275                        ValueType);
276 }
277 
278 /// This function should be invoked to emit atomic cmpxchg for Microsoft's
279 /// _InterlockedCompareExchange* intrinsics which have the following signature:
280 /// T _InterlockedCompareExchange(T volatile *Destination,
281 ///                               T Exchange,
282 ///                               T Comparand);
283 ///
284 /// Whereas the llvm 'cmpxchg' instruction has the following syntax:
285 /// cmpxchg *Destination, Comparand, Exchange.
286 /// So we need to swap Comparand and Exchange when invoking
287 /// CreateAtomicCmpXchg. That is the reason we could not use the above utility
288 /// function MakeAtomicCmpXchgValue since it expects the arguments to be
289 /// already swapped.
290 
291 static
292 Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E,
293     AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
294   assert(E->getArg(0)->getType()->isPointerType());
295   assert(CGF.getContext().hasSameUnqualifiedType(
296       E->getType(), E->getArg(0)->getType()->getPointeeType()));
297   assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
298                                                  E->getArg(1)->getType()));
299   assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
300                                                  E->getArg(2)->getType()));
301 
302   auto *Destination = CGF.EmitScalarExpr(E->getArg(0));
303   auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
304   auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
305 
306   // For Release ordering, the failure ordering should be Monotonic.
307   auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
308                          AtomicOrdering::Monotonic :
309                          SuccessOrdering;
310 
311   // The atomic instruction is marked volatile for consistency with MSVC. This
312   // blocks the few atomics optimizations that LLVM has. If we want to optimize
313   // _Interlocked* operations in the future, we will have to remove the volatile
314   // marker.
315   auto *Result = CGF.Builder.CreateAtomicCmpXchg(
316                    Destination, Comparand, Exchange,
317                    SuccessOrdering, FailureOrdering);
318   Result->setVolatile(true);
319   return CGF.Builder.CreateExtractValue(Result, 0);
320 }
321 
322 // 64-bit Microsoft platforms support 128 bit cmpxchg operations. They are
323 // prototyped like this:
324 //
325 // unsigned char _InterlockedCompareExchange128...(
326 //     __int64 volatile * _Destination,
327 //     __int64 _ExchangeHigh,
328 //     __int64 _ExchangeLow,
329 //     __int64 * _ComparandResult);
330 static Value *EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction &CGF,
331                                               const CallExpr *E,
332                                               AtomicOrdering SuccessOrdering) {
333   assert(E->getNumArgs() == 4);
334   llvm::Value *Destination = CGF.EmitScalarExpr(E->getArg(0));
335   llvm::Value *ExchangeHigh = CGF.EmitScalarExpr(E->getArg(1));
336   llvm::Value *ExchangeLow = CGF.EmitScalarExpr(E->getArg(2));
337   llvm::Value *ComparandPtr = CGF.EmitScalarExpr(E->getArg(3));
338 
339   assert(Destination->getType()->isPointerTy());
340   assert(!ExchangeHigh->getType()->isPointerTy());
341   assert(!ExchangeLow->getType()->isPointerTy());
342   assert(ComparandPtr->getType()->isPointerTy());
343 
344   // For Release ordering, the failure ordering should be Monotonic.
345   auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release
346                              ? AtomicOrdering::Monotonic
347                              : SuccessOrdering;
348 
349   // Convert to i128 pointers and values.
350   llvm::Type *Int128Ty = llvm::IntegerType::get(CGF.getLLVMContext(), 128);
351   llvm::Type *Int128PtrTy = Int128Ty->getPointerTo();
352   Destination = CGF.Builder.CreateBitCast(Destination, Int128PtrTy);
353   Address ComparandResult(CGF.Builder.CreateBitCast(ComparandPtr, Int128PtrTy),
354                           CGF.getContext().toCharUnitsFromBits(128));
355 
356   // (((i128)hi) << 64) | ((i128)lo)
357   ExchangeHigh = CGF.Builder.CreateZExt(ExchangeHigh, Int128Ty);
358   ExchangeLow = CGF.Builder.CreateZExt(ExchangeLow, Int128Ty);
359   ExchangeHigh =
360       CGF.Builder.CreateShl(ExchangeHigh, llvm::ConstantInt::get(Int128Ty, 64));
361   llvm::Value *Exchange = CGF.Builder.CreateOr(ExchangeHigh, ExchangeLow);
362 
363   // Load the comparand for the instruction.
364   llvm::Value *Comparand = CGF.Builder.CreateLoad(ComparandResult);
365 
366   auto *CXI = CGF.Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
367                                               SuccessOrdering, FailureOrdering);
368 
369   // The atomic instruction is marked volatile for consistency with MSVC. This
370   // blocks the few atomics optimizations that LLVM has. If we want to optimize
371   // _Interlocked* operations in the future, we will have to remove the volatile
372   // marker.
373   CXI->setVolatile(true);
374 
375   // Store the result as an outparameter.
376   CGF.Builder.CreateStore(CGF.Builder.CreateExtractValue(CXI, 0),
377                           ComparandResult);
378 
379   // Get the success boolean and zero extend it to i8.
380   Value *Success = CGF.Builder.CreateExtractValue(CXI, 1);
381   return CGF.Builder.CreateZExt(Success, CGF.Int8Ty);
382 }
383 
384 static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E,
385     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
386   assert(E->getArg(0)->getType()->isPointerType());
387 
388   auto *IntTy = CGF.ConvertType(E->getType());
389   auto *Result = CGF.Builder.CreateAtomicRMW(
390                    AtomicRMWInst::Add,
391                    CGF.EmitScalarExpr(E->getArg(0)),
392                    ConstantInt::get(IntTy, 1),
393                    Ordering);
394   return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
395 }
396 
397 static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E,
398     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
399   assert(E->getArg(0)->getType()->isPointerType());
400 
401   auto *IntTy = CGF.ConvertType(E->getType());
402   auto *Result = CGF.Builder.CreateAtomicRMW(
403                    AtomicRMWInst::Sub,
404                    CGF.EmitScalarExpr(E->getArg(0)),
405                    ConstantInt::get(IntTy, 1),
406                    Ordering);
407   return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
408 }
409 
410 // Build a plain volatile load.
411 static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) {
412   Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
413   QualType ElTy = E->getArg(0)->getType()->getPointeeType();
414   CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy);
415   llvm::Type *ITy =
416       llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8);
417   Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
418   llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(ITy, Ptr, LoadSize);
419   Load->setVolatile(true);
420   return Load;
421 }
422 
423 // Build a plain volatile store.
424 static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) {
425   Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
426   Value *Value = CGF.EmitScalarExpr(E->getArg(1));
427   QualType ElTy = E->getArg(0)->getType()->getPointeeType();
428   CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy);
429   llvm::Type *ITy =
430       llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8);
431   Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
432   llvm::StoreInst *Store =
433       CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize);
434   Store->setVolatile(true);
435   return Store;
436 }
437 
438 // Emit a simple mangled intrinsic that has 1 argument and a return type
439 // matching the argument type. Depending on mode, this may be a constrained
440 // floating-point intrinsic.
441 static Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
442                                 const CallExpr *E, unsigned IntrinsicID,
443                                 unsigned ConstrainedIntrinsicID) {
444   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
445 
446   if (CGF.Builder.getIsFPConstrained()) {
447     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
448     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
449     return CGF.Builder.CreateConstrainedFPCall(F, { Src0 });
450   } else {
451     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
452     return CGF.Builder.CreateCall(F, Src0);
453   }
454 }
455 
456 // Emit an intrinsic that has 2 operands of the same type as its result.
457 // Depending on mode, this may be a constrained floating-point intrinsic.
458 static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
459                                 const CallExpr *E, unsigned IntrinsicID,
460                                 unsigned ConstrainedIntrinsicID) {
461   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
462   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
463 
464   if (CGF.Builder.getIsFPConstrained()) {
465     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
466     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
467     return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1 });
468   } else {
469     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
470     return CGF.Builder.CreateCall(F, { Src0, Src1 });
471   }
472 }
473 
474 // Emit an intrinsic that has 3 operands of the same type as its result.
475 // Depending on mode, this may be a constrained floating-point intrinsic.
476 static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
477                                  const CallExpr *E, unsigned IntrinsicID,
478                                  unsigned ConstrainedIntrinsicID) {
479   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
480   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
481   llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
482 
483   if (CGF.Builder.getIsFPConstrained()) {
484     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
485     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
486     return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1, Src2 });
487   } else {
488     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
489     return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
490   }
491 }
492 
493 // Emit an intrinsic where all operands are of the same type as the result.
494 // Depending on mode, this may be a constrained floating-point intrinsic.
495 static Value *emitCallMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
496                                                 unsigned IntrinsicID,
497                                                 unsigned ConstrainedIntrinsicID,
498                                                 llvm::Type *Ty,
499                                                 ArrayRef<Value *> Args) {
500   Function *F;
501   if (CGF.Builder.getIsFPConstrained())
502     F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Ty);
503   else
504     F = CGF.CGM.getIntrinsic(IntrinsicID, Ty);
505 
506   if (CGF.Builder.getIsFPConstrained())
507     return CGF.Builder.CreateConstrainedFPCall(F, Args);
508   else
509     return CGF.Builder.CreateCall(F, Args);
510 }
511 
512 // Emit a simple mangled intrinsic that has 1 argument and a return type
513 // matching the argument type.
514 static Value *emitUnaryBuiltin(CodeGenFunction &CGF,
515                                const CallExpr *E,
516                                unsigned IntrinsicID) {
517   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
518 
519   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
520   return CGF.Builder.CreateCall(F, Src0);
521 }
522 
523 // Emit an intrinsic that has 2 operands of the same type as its result.
524 static Value *emitBinaryBuiltin(CodeGenFunction &CGF,
525                                 const CallExpr *E,
526                                 unsigned IntrinsicID) {
527   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
528   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
529 
530   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
531   return CGF.Builder.CreateCall(F, { Src0, Src1 });
532 }
533 
534 // Emit an intrinsic that has 3 operands of the same type as its result.
535 static Value *emitTernaryBuiltin(CodeGenFunction &CGF,
536                                  const CallExpr *E,
537                                  unsigned IntrinsicID) {
538   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
539   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
540   llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
541 
542   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
543   return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
544 }
545 
546 // Emit an intrinsic that has 1 float or double operand, and 1 integer.
547 static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
548                                const CallExpr *E,
549                                unsigned IntrinsicID) {
550   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
551   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
552 
553   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
554   return CGF.Builder.CreateCall(F, {Src0, Src1});
555 }
556 
557 // Emit an intrinsic that has overloaded integer result and fp operand.
558 static Value *
559 emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E,
560                                         unsigned IntrinsicID,
561                                         unsigned ConstrainedIntrinsicID) {
562   llvm::Type *ResultType = CGF.ConvertType(E->getType());
563   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
564 
565   if (CGF.Builder.getIsFPConstrained()) {
566     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
567     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID,
568                                        {ResultType, Src0->getType()});
569     return CGF.Builder.CreateConstrainedFPCall(F, {Src0});
570   } else {
571     Function *F =
572         CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()});
573     return CGF.Builder.CreateCall(F, Src0);
574   }
575 }
576 
577 /// EmitFAbs - Emit a call to @llvm.fabs().
578 static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
579   Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
580   llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
581   Call->setDoesNotAccessMemory();
582   return Call;
583 }
584 
585 /// Emit the computation of the sign bit for a floating point value. Returns
586 /// the i1 sign bit value.
587 static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
588   LLVMContext &C = CGF.CGM.getLLVMContext();
589 
590   llvm::Type *Ty = V->getType();
591   int Width = Ty->getPrimitiveSizeInBits();
592   llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
593   V = CGF.Builder.CreateBitCast(V, IntTy);
594   if (Ty->isPPC_FP128Ty()) {
595     // We want the sign bit of the higher-order double. The bitcast we just
596     // did works as if the double-double was stored to memory and then
597     // read as an i128. The "store" will put the higher-order double in the
598     // lower address in both little- and big-Endian modes, but the "load"
599     // will treat those bits as a different part of the i128: the low bits in
600     // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
601     // we need to shift the high bits down to the low before truncating.
602     Width >>= 1;
603     if (CGF.getTarget().isBigEndian()) {
604       Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
605       V = CGF.Builder.CreateLShr(V, ShiftCst);
606     }
607     // We are truncating value in order to extract the higher-order
608     // double, which we will be using to extract the sign from.
609     IntTy = llvm::IntegerType::get(C, Width);
610     V = CGF.Builder.CreateTrunc(V, IntTy);
611   }
612   Value *Zero = llvm::Constant::getNullValue(IntTy);
613   return CGF.Builder.CreateICmpSLT(V, Zero);
614 }
615 
616 static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
617                               const CallExpr *E, llvm::Constant *calleeValue) {
618   CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
619   return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
620 }
621 
622 /// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
623 /// depending on IntrinsicID.
624 ///
625 /// \arg CGF The current codegen function.
626 /// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
627 /// \arg X The first argument to the llvm.*.with.overflow.*.
628 /// \arg Y The second argument to the llvm.*.with.overflow.*.
629 /// \arg Carry The carry returned by the llvm.*.with.overflow.*.
630 /// \returns The result (i.e. sum/product) returned by the intrinsic.
631 static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
632                                           const llvm::Intrinsic::ID IntrinsicID,
633                                           llvm::Value *X, llvm::Value *Y,
634                                           llvm::Value *&Carry) {
635   // Make sure we have integers of the same width.
636   assert(X->getType() == Y->getType() &&
637          "Arguments must be the same type. (Did you forget to make sure both "
638          "arguments have the same integer width?)");
639 
640   Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
641   llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
642   Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
643   return CGF.Builder.CreateExtractValue(Tmp, 0);
644 }
645 
646 static Value *emitRangedBuiltin(CodeGenFunction &CGF,
647                                 unsigned IntrinsicID,
648                                 int low, int high) {
649     llvm::MDBuilder MDHelper(CGF.getLLVMContext());
650     llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high));
651     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
652     llvm::Instruction *Call = CGF.Builder.CreateCall(F);
653     Call->setMetadata(llvm::LLVMContext::MD_range, RNode);
654     return Call;
655 }
656 
657 namespace {
658   struct WidthAndSignedness {
659     unsigned Width;
660     bool Signed;
661   };
662 }
663 
664 static WidthAndSignedness
665 getIntegerWidthAndSignedness(const clang::ASTContext &context,
666                              const clang::QualType Type) {
667   assert(Type->isIntegerType() && "Given type is not an integer.");
668   unsigned Width = Type->isBooleanType()  ? 1
669                    : Type->isExtIntType() ? context.getIntWidth(Type)
670                                           : context.getTypeInfo(Type).Width;
671   bool Signed = Type->isSignedIntegerType();
672   return {Width, Signed};
673 }
674 
675 // Given one or more integer types, this function produces an integer type that
676 // encompasses them: any value in one of the given types could be expressed in
677 // the encompassing type.
678 static struct WidthAndSignedness
679 EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
680   assert(Types.size() > 0 && "Empty list of types.");
681 
682   // If any of the given types is signed, we must return a signed type.
683   bool Signed = false;
684   for (const auto &Type : Types) {
685     Signed |= Type.Signed;
686   }
687 
688   // The encompassing type must have a width greater than or equal to the width
689   // of the specified types.  Additionally, if the encompassing type is signed,
690   // its width must be strictly greater than the width of any unsigned types
691   // given.
692   unsigned Width = 0;
693   for (const auto &Type : Types) {
694     unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
695     if (Width < MinWidth) {
696       Width = MinWidth;
697     }
698   }
699 
700   return {Width, Signed};
701 }
702 
703 Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
704   llvm::Type *DestType = Int8PtrTy;
705   if (ArgValue->getType() != DestType)
706     ArgValue =
707         Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
708 
709   Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
710   return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
711 }
712 
713 /// Checks if using the result of __builtin_object_size(p, @p From) in place of
714 /// __builtin_object_size(p, @p To) is correct
715 static bool areBOSTypesCompatible(int From, int To) {
716   // Note: Our __builtin_object_size implementation currently treats Type=0 and
717   // Type=2 identically. Encoding this implementation detail here may make
718   // improving __builtin_object_size difficult in the future, so it's omitted.
719   return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
720 }
721 
722 static llvm::Value *
723 getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
724   return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
725 }
726 
727 llvm::Value *
728 CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
729                                                  llvm::IntegerType *ResType,
730                                                  llvm::Value *EmittedE,
731                                                  bool IsDynamic) {
732   uint64_t ObjectSize;
733   if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
734     return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic);
735   return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
736 }
737 
738 /// Returns a Value corresponding to the size of the given expression.
739 /// This Value may be either of the following:
740 ///   - A llvm::Argument (if E is a param with the pass_object_size attribute on
741 ///     it)
742 ///   - A call to the @llvm.objectsize intrinsic
743 ///
744 /// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
745 /// and we wouldn't otherwise try to reference a pass_object_size parameter,
746 /// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
747 llvm::Value *
748 CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
749                                        llvm::IntegerType *ResType,
750                                        llvm::Value *EmittedE, bool IsDynamic) {
751   // We need to reference an argument if the pointer is a parameter with the
752   // pass_object_size attribute.
753   if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
754     auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
755     auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
756     if (Param != nullptr && PS != nullptr &&
757         areBOSTypesCompatible(PS->getType(), Type)) {
758       auto Iter = SizeArguments.find(Param);
759       assert(Iter != SizeArguments.end());
760 
761       const ImplicitParamDecl *D = Iter->second;
762       auto DIter = LocalDeclMap.find(D);
763       assert(DIter != LocalDeclMap.end());
764 
765       return EmitLoadOfScalar(DIter->second, /*Volatile=*/false,
766                               getContext().getSizeType(), E->getBeginLoc());
767     }
768   }
769 
770   // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
771   // evaluate E for side-effects. In either case, we shouldn't lower to
772   // @llvm.objectsize.
773   if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
774     return getDefaultBuiltinObjectSizeResult(Type, ResType);
775 
776   Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
777   assert(Ptr->getType()->isPointerTy() &&
778          "Non-pointer passed to __builtin_object_size?");
779 
780   Function *F =
781       CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
782 
783   // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
784   Value *Min = Builder.getInt1((Type & 2) != 0);
785   // For GCC compatibility, __builtin_object_size treat NULL as unknown size.
786   Value *NullIsUnknown = Builder.getTrue();
787   Value *Dynamic = Builder.getInt1(IsDynamic);
788   return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic});
789 }
790 
791 namespace {
792 /// A struct to generically describe a bit test intrinsic.
793 struct BitTest {
794   enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
795   enum InterlockingKind : uint8_t {
796     Unlocked,
797     Sequential,
798     Acquire,
799     Release,
800     NoFence
801   };
802 
803   ActionKind Action;
804   InterlockingKind Interlocking;
805   bool Is64Bit;
806 
807   static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
808 };
809 } // namespace
810 
811 BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
812   switch (BuiltinID) {
813     // Main portable variants.
814   case Builtin::BI_bittest:
815     return {TestOnly, Unlocked, false};
816   case Builtin::BI_bittestandcomplement:
817     return {Complement, Unlocked, false};
818   case Builtin::BI_bittestandreset:
819     return {Reset, Unlocked, false};
820   case Builtin::BI_bittestandset:
821     return {Set, Unlocked, false};
822   case Builtin::BI_interlockedbittestandreset:
823     return {Reset, Sequential, false};
824   case Builtin::BI_interlockedbittestandset:
825     return {Set, Sequential, false};
826 
827     // X86-specific 64-bit variants.
828   case Builtin::BI_bittest64:
829     return {TestOnly, Unlocked, true};
830   case Builtin::BI_bittestandcomplement64:
831     return {Complement, Unlocked, true};
832   case Builtin::BI_bittestandreset64:
833     return {Reset, Unlocked, true};
834   case Builtin::BI_bittestandset64:
835     return {Set, Unlocked, true};
836   case Builtin::BI_interlockedbittestandreset64:
837     return {Reset, Sequential, true};
838   case Builtin::BI_interlockedbittestandset64:
839     return {Set, Sequential, true};
840 
841     // ARM/AArch64-specific ordering variants.
842   case Builtin::BI_interlockedbittestandset_acq:
843     return {Set, Acquire, false};
844   case Builtin::BI_interlockedbittestandset_rel:
845     return {Set, Release, false};
846   case Builtin::BI_interlockedbittestandset_nf:
847     return {Set, NoFence, false};
848   case Builtin::BI_interlockedbittestandreset_acq:
849     return {Reset, Acquire, false};
850   case Builtin::BI_interlockedbittestandreset_rel:
851     return {Reset, Release, false};
852   case Builtin::BI_interlockedbittestandreset_nf:
853     return {Reset, NoFence, false};
854   }
855   llvm_unreachable("expected only bittest intrinsics");
856 }
857 
858 static char bitActionToX86BTCode(BitTest::ActionKind A) {
859   switch (A) {
860   case BitTest::TestOnly:   return '\0';
861   case BitTest::Complement: return 'c';
862   case BitTest::Reset:      return 'r';
863   case BitTest::Set:        return 's';
864   }
865   llvm_unreachable("invalid action");
866 }
867 
868 static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF,
869                                             BitTest BT,
870                                             const CallExpr *E, Value *BitBase,
871                                             Value *BitPos) {
872   char Action = bitActionToX86BTCode(BT.Action);
873   char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
874 
875   // Build the assembly.
876   SmallString<64> Asm;
877   raw_svector_ostream AsmOS(Asm);
878   if (BT.Interlocking != BitTest::Unlocked)
879     AsmOS << "lock ";
880   AsmOS << "bt";
881   if (Action)
882     AsmOS << Action;
883   AsmOS << SizeSuffix << " $2, ($1)";
884 
885   // Build the constraints. FIXME: We should support immediates when possible.
886   std::string Constraints = "={@ccc},r,r,~{cc},~{memory}";
887   std::string MachineClobbers = CGF.getTarget().getClobbers();
888   if (!MachineClobbers.empty()) {
889     Constraints += ',';
890     Constraints += MachineClobbers;
891   }
892   llvm::IntegerType *IntType = llvm::IntegerType::get(
893       CGF.getLLVMContext(),
894       CGF.getContext().getTypeSize(E->getArg(1)->getType()));
895   llvm::Type *IntPtrType = IntType->getPointerTo();
896   llvm::FunctionType *FTy =
897       llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false);
898 
899   llvm::InlineAsm *IA =
900       llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
901   return CGF.Builder.CreateCall(IA, {BitBase, BitPos});
902 }
903 
904 static llvm::AtomicOrdering
905 getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
906   switch (I) {
907   case BitTest::Unlocked:   return llvm::AtomicOrdering::NotAtomic;
908   case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
909   case BitTest::Acquire:    return llvm::AtomicOrdering::Acquire;
910   case BitTest::Release:    return llvm::AtomicOrdering::Release;
911   case BitTest::NoFence:    return llvm::AtomicOrdering::Monotonic;
912   }
913   llvm_unreachable("invalid interlocking");
914 }
915 
916 /// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
917 /// bits and a bit position and read and optionally modify the bit at that
918 /// position. The position index can be arbitrarily large, i.e. it can be larger
919 /// than 31 or 63, so we need an indexed load in the general case.
920 static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
921                                          unsigned BuiltinID,
922                                          const CallExpr *E) {
923   Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
924   Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
925 
926   BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
927 
928   // X86 has special BT, BTC, BTR, and BTS instructions that handle the array
929   // indexing operation internally. Use them if possible.
930   if (CGF.getTarget().getTriple().isX86())
931     return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
932 
933   // Otherwise, use generic code to load one byte and test the bit. Use all but
934   // the bottom three bits as the array index, and the bottom three bits to form
935   // a mask.
936   // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
937   Value *ByteIndex = CGF.Builder.CreateAShr(
938       BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx");
939   Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy);
940   Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
941                                                  ByteIndex, "bittest.byteaddr"),
942                    CharUnits::One());
943   Value *PosLow =
944       CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty),
945                             llvm::ConstantInt::get(CGF.Int8Ty, 0x7));
946 
947   // The updating instructions will need a mask.
948   Value *Mask = nullptr;
949   if (BT.Action != BitTest::TestOnly) {
950     Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow,
951                                  "bittest.mask");
952   }
953 
954   // Check the action and ordering of the interlocked intrinsics.
955   llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking);
956 
957   Value *OldByte = nullptr;
958   if (Ordering != llvm::AtomicOrdering::NotAtomic) {
959     // Emit a combined atomicrmw load/store operation for the interlocked
960     // intrinsics.
961     llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
962     if (BT.Action == BitTest::Reset) {
963       Mask = CGF.Builder.CreateNot(Mask);
964       RMWOp = llvm::AtomicRMWInst::And;
965     }
966     OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask,
967                                           Ordering);
968   } else {
969     // Emit a plain load for the non-interlocked intrinsics.
970     OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte");
971     Value *NewByte = nullptr;
972     switch (BT.Action) {
973     case BitTest::TestOnly:
974       // Don't store anything.
975       break;
976     case BitTest::Complement:
977       NewByte = CGF.Builder.CreateXor(OldByte, Mask);
978       break;
979     case BitTest::Reset:
980       NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask));
981       break;
982     case BitTest::Set:
983       NewByte = CGF.Builder.CreateOr(OldByte, Mask);
984       break;
985     }
986     if (NewByte)
987       CGF.Builder.CreateStore(NewByte, ByteAddr);
988   }
989 
990   // However we loaded the old byte, either by plain load or atomicrmw, shift
991   // the bit into the low position and mask it to 0 or 1.
992   Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr");
993   return CGF.Builder.CreateAnd(
994       ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res");
995 }
996 
997 static llvm::Value *emitPPCLoadReserveIntrinsic(CodeGenFunction &CGF,
998                                                 unsigned BuiltinID,
999                                                 const CallExpr *E) {
1000   Value *Addr = CGF.EmitScalarExpr(E->getArg(0));
1001 
1002   SmallString<64> Asm;
1003   raw_svector_ostream AsmOS(Asm);
1004   llvm::IntegerType *RetType = CGF.Int32Ty;
1005 
1006   switch (BuiltinID) {
1007   case clang::PPC::BI__builtin_ppc_ldarx:
1008     AsmOS << "ldarx ";
1009     RetType = CGF.Int64Ty;
1010     break;
1011   case clang::PPC::BI__builtin_ppc_lwarx:
1012     AsmOS << "lwarx ";
1013     RetType = CGF.Int32Ty;
1014     break;
1015   case clang::PPC::BI__builtin_ppc_lharx:
1016     AsmOS << "lharx ";
1017     RetType = CGF.Int16Ty;
1018     break;
1019   case clang::PPC::BI__builtin_ppc_lbarx:
1020     AsmOS << "lbarx ";
1021     RetType = CGF.Int8Ty;
1022     break;
1023   default:
1024     llvm_unreachable("Expected only PowerPC load reserve intrinsics");
1025   }
1026 
1027   AsmOS << "$0, ${1:y}";
1028 
1029   std::string Constraints = "=r,*Z,~{memory}";
1030   std::string MachineClobbers = CGF.getTarget().getClobbers();
1031   if (!MachineClobbers.empty()) {
1032     Constraints += ',';
1033     Constraints += MachineClobbers;
1034   }
1035 
1036   llvm::Type *IntPtrType = RetType->getPointerTo();
1037   llvm::FunctionType *FTy =
1038       llvm::FunctionType::get(RetType, {IntPtrType}, false);
1039 
1040   llvm::InlineAsm *IA =
1041       llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1042   return CGF.Builder.CreateCall(IA, {Addr});
1043 }
1044 
1045 namespace {
1046 enum class MSVCSetJmpKind {
1047   _setjmpex,
1048   _setjmp3,
1049   _setjmp
1050 };
1051 }
1052 
1053 /// MSVC handles setjmp a bit differently on different platforms. On every
1054 /// architecture except 32-bit x86, the frame address is passed. On x86, extra
1055 /// parameters can be passed as variadic arguments, but we always pass none.
1056 static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
1057                                const CallExpr *E) {
1058   llvm::Value *Arg1 = nullptr;
1059   llvm::Type *Arg1Ty = nullptr;
1060   StringRef Name;
1061   bool IsVarArg = false;
1062   if (SJKind == MSVCSetJmpKind::_setjmp3) {
1063     Name = "_setjmp3";
1064     Arg1Ty = CGF.Int32Ty;
1065     Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0);
1066     IsVarArg = true;
1067   } else {
1068     Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
1069     Arg1Ty = CGF.Int8PtrTy;
1070     if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
1071       Arg1 = CGF.Builder.CreateCall(
1072           CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy));
1073     } else
1074       Arg1 = CGF.Builder.CreateCall(
1075           CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy),
1076           llvm::ConstantInt::get(CGF.Int32Ty, 0));
1077   }
1078 
1079   // Mark the call site and declaration with ReturnsTwice.
1080   llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
1081   llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
1082       CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
1083       llvm::Attribute::ReturnsTwice);
1084   llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction(
1085       llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name,
1086       ReturnsTwiceAttr, /*Local=*/true);
1087 
1088   llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
1089       CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
1090   llvm::Value *Args[] = {Buf, Arg1};
1091   llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
1092   CB->setAttributes(ReturnsTwiceAttr);
1093   return RValue::get(CB);
1094 }
1095 
1096 // Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
1097 // we handle them here.
1098 enum class CodeGenFunction::MSVCIntrin {
1099   _BitScanForward,
1100   _BitScanReverse,
1101   _InterlockedAnd,
1102   _InterlockedDecrement,
1103   _InterlockedExchange,
1104   _InterlockedExchangeAdd,
1105   _InterlockedExchangeSub,
1106   _InterlockedIncrement,
1107   _InterlockedOr,
1108   _InterlockedXor,
1109   _InterlockedExchangeAdd_acq,
1110   _InterlockedExchangeAdd_rel,
1111   _InterlockedExchangeAdd_nf,
1112   _InterlockedExchange_acq,
1113   _InterlockedExchange_rel,
1114   _InterlockedExchange_nf,
1115   _InterlockedCompareExchange_acq,
1116   _InterlockedCompareExchange_rel,
1117   _InterlockedCompareExchange_nf,
1118   _InterlockedCompareExchange128,
1119   _InterlockedCompareExchange128_acq,
1120   _InterlockedCompareExchange128_rel,
1121   _InterlockedCompareExchange128_nf,
1122   _InterlockedOr_acq,
1123   _InterlockedOr_rel,
1124   _InterlockedOr_nf,
1125   _InterlockedXor_acq,
1126   _InterlockedXor_rel,
1127   _InterlockedXor_nf,
1128   _InterlockedAnd_acq,
1129   _InterlockedAnd_rel,
1130   _InterlockedAnd_nf,
1131   _InterlockedIncrement_acq,
1132   _InterlockedIncrement_rel,
1133   _InterlockedIncrement_nf,
1134   _InterlockedDecrement_acq,
1135   _InterlockedDecrement_rel,
1136   _InterlockedDecrement_nf,
1137   __fastfail,
1138 };
1139 
1140 static Optional<CodeGenFunction::MSVCIntrin>
1141 translateArmToMsvcIntrin(unsigned BuiltinID) {
1142   using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1143   switch (BuiltinID) {
1144   default:
1145     return None;
1146   case ARM::BI_BitScanForward:
1147   case ARM::BI_BitScanForward64:
1148     return MSVCIntrin::_BitScanForward;
1149   case ARM::BI_BitScanReverse:
1150   case ARM::BI_BitScanReverse64:
1151     return MSVCIntrin::_BitScanReverse;
1152   case ARM::BI_InterlockedAnd64:
1153     return MSVCIntrin::_InterlockedAnd;
1154   case ARM::BI_InterlockedExchange64:
1155     return MSVCIntrin::_InterlockedExchange;
1156   case ARM::BI_InterlockedExchangeAdd64:
1157     return MSVCIntrin::_InterlockedExchangeAdd;
1158   case ARM::BI_InterlockedExchangeSub64:
1159     return MSVCIntrin::_InterlockedExchangeSub;
1160   case ARM::BI_InterlockedOr64:
1161     return MSVCIntrin::_InterlockedOr;
1162   case ARM::BI_InterlockedXor64:
1163     return MSVCIntrin::_InterlockedXor;
1164   case ARM::BI_InterlockedDecrement64:
1165     return MSVCIntrin::_InterlockedDecrement;
1166   case ARM::BI_InterlockedIncrement64:
1167     return MSVCIntrin::_InterlockedIncrement;
1168   case ARM::BI_InterlockedExchangeAdd8_acq:
1169   case ARM::BI_InterlockedExchangeAdd16_acq:
1170   case ARM::BI_InterlockedExchangeAdd_acq:
1171   case ARM::BI_InterlockedExchangeAdd64_acq:
1172     return MSVCIntrin::_InterlockedExchangeAdd_acq;
1173   case ARM::BI_InterlockedExchangeAdd8_rel:
1174   case ARM::BI_InterlockedExchangeAdd16_rel:
1175   case ARM::BI_InterlockedExchangeAdd_rel:
1176   case ARM::BI_InterlockedExchangeAdd64_rel:
1177     return MSVCIntrin::_InterlockedExchangeAdd_rel;
1178   case ARM::BI_InterlockedExchangeAdd8_nf:
1179   case ARM::BI_InterlockedExchangeAdd16_nf:
1180   case ARM::BI_InterlockedExchangeAdd_nf:
1181   case ARM::BI_InterlockedExchangeAdd64_nf:
1182     return MSVCIntrin::_InterlockedExchangeAdd_nf;
1183   case ARM::BI_InterlockedExchange8_acq:
1184   case ARM::BI_InterlockedExchange16_acq:
1185   case ARM::BI_InterlockedExchange_acq:
1186   case ARM::BI_InterlockedExchange64_acq:
1187     return MSVCIntrin::_InterlockedExchange_acq;
1188   case ARM::BI_InterlockedExchange8_rel:
1189   case ARM::BI_InterlockedExchange16_rel:
1190   case ARM::BI_InterlockedExchange_rel:
1191   case ARM::BI_InterlockedExchange64_rel:
1192     return MSVCIntrin::_InterlockedExchange_rel;
1193   case ARM::BI_InterlockedExchange8_nf:
1194   case ARM::BI_InterlockedExchange16_nf:
1195   case ARM::BI_InterlockedExchange_nf:
1196   case ARM::BI_InterlockedExchange64_nf:
1197     return MSVCIntrin::_InterlockedExchange_nf;
1198   case ARM::BI_InterlockedCompareExchange8_acq:
1199   case ARM::BI_InterlockedCompareExchange16_acq:
1200   case ARM::BI_InterlockedCompareExchange_acq:
1201   case ARM::BI_InterlockedCompareExchange64_acq:
1202     return MSVCIntrin::_InterlockedCompareExchange_acq;
1203   case ARM::BI_InterlockedCompareExchange8_rel:
1204   case ARM::BI_InterlockedCompareExchange16_rel:
1205   case ARM::BI_InterlockedCompareExchange_rel:
1206   case ARM::BI_InterlockedCompareExchange64_rel:
1207     return MSVCIntrin::_InterlockedCompareExchange_rel;
1208   case ARM::BI_InterlockedCompareExchange8_nf:
1209   case ARM::BI_InterlockedCompareExchange16_nf:
1210   case ARM::BI_InterlockedCompareExchange_nf:
1211   case ARM::BI_InterlockedCompareExchange64_nf:
1212     return MSVCIntrin::_InterlockedCompareExchange_nf;
1213   case ARM::BI_InterlockedOr8_acq:
1214   case ARM::BI_InterlockedOr16_acq:
1215   case ARM::BI_InterlockedOr_acq:
1216   case ARM::BI_InterlockedOr64_acq:
1217     return MSVCIntrin::_InterlockedOr_acq;
1218   case ARM::BI_InterlockedOr8_rel:
1219   case ARM::BI_InterlockedOr16_rel:
1220   case ARM::BI_InterlockedOr_rel:
1221   case ARM::BI_InterlockedOr64_rel:
1222     return MSVCIntrin::_InterlockedOr_rel;
1223   case ARM::BI_InterlockedOr8_nf:
1224   case ARM::BI_InterlockedOr16_nf:
1225   case ARM::BI_InterlockedOr_nf:
1226   case ARM::BI_InterlockedOr64_nf:
1227     return MSVCIntrin::_InterlockedOr_nf;
1228   case ARM::BI_InterlockedXor8_acq:
1229   case ARM::BI_InterlockedXor16_acq:
1230   case ARM::BI_InterlockedXor_acq:
1231   case ARM::BI_InterlockedXor64_acq:
1232     return MSVCIntrin::_InterlockedXor_acq;
1233   case ARM::BI_InterlockedXor8_rel:
1234   case ARM::BI_InterlockedXor16_rel:
1235   case ARM::BI_InterlockedXor_rel:
1236   case ARM::BI_InterlockedXor64_rel:
1237     return MSVCIntrin::_InterlockedXor_rel;
1238   case ARM::BI_InterlockedXor8_nf:
1239   case ARM::BI_InterlockedXor16_nf:
1240   case ARM::BI_InterlockedXor_nf:
1241   case ARM::BI_InterlockedXor64_nf:
1242     return MSVCIntrin::_InterlockedXor_nf;
1243   case ARM::BI_InterlockedAnd8_acq:
1244   case ARM::BI_InterlockedAnd16_acq:
1245   case ARM::BI_InterlockedAnd_acq:
1246   case ARM::BI_InterlockedAnd64_acq:
1247     return MSVCIntrin::_InterlockedAnd_acq;
1248   case ARM::BI_InterlockedAnd8_rel:
1249   case ARM::BI_InterlockedAnd16_rel:
1250   case ARM::BI_InterlockedAnd_rel:
1251   case ARM::BI_InterlockedAnd64_rel:
1252     return MSVCIntrin::_InterlockedAnd_rel;
1253   case ARM::BI_InterlockedAnd8_nf:
1254   case ARM::BI_InterlockedAnd16_nf:
1255   case ARM::BI_InterlockedAnd_nf:
1256   case ARM::BI_InterlockedAnd64_nf:
1257     return MSVCIntrin::_InterlockedAnd_nf;
1258   case ARM::BI_InterlockedIncrement16_acq:
1259   case ARM::BI_InterlockedIncrement_acq:
1260   case ARM::BI_InterlockedIncrement64_acq:
1261     return MSVCIntrin::_InterlockedIncrement_acq;
1262   case ARM::BI_InterlockedIncrement16_rel:
1263   case ARM::BI_InterlockedIncrement_rel:
1264   case ARM::BI_InterlockedIncrement64_rel:
1265     return MSVCIntrin::_InterlockedIncrement_rel;
1266   case ARM::BI_InterlockedIncrement16_nf:
1267   case ARM::BI_InterlockedIncrement_nf:
1268   case ARM::BI_InterlockedIncrement64_nf:
1269     return MSVCIntrin::_InterlockedIncrement_nf;
1270   case ARM::BI_InterlockedDecrement16_acq:
1271   case ARM::BI_InterlockedDecrement_acq:
1272   case ARM::BI_InterlockedDecrement64_acq:
1273     return MSVCIntrin::_InterlockedDecrement_acq;
1274   case ARM::BI_InterlockedDecrement16_rel:
1275   case ARM::BI_InterlockedDecrement_rel:
1276   case ARM::BI_InterlockedDecrement64_rel:
1277     return MSVCIntrin::_InterlockedDecrement_rel;
1278   case ARM::BI_InterlockedDecrement16_nf:
1279   case ARM::BI_InterlockedDecrement_nf:
1280   case ARM::BI_InterlockedDecrement64_nf:
1281     return MSVCIntrin::_InterlockedDecrement_nf;
1282   }
1283   llvm_unreachable("must return from switch");
1284 }
1285 
1286 static Optional<CodeGenFunction::MSVCIntrin>
1287 translateAarch64ToMsvcIntrin(unsigned BuiltinID) {
1288   using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1289   switch (BuiltinID) {
1290   default:
1291     return None;
1292   case AArch64::BI_BitScanForward:
1293   case AArch64::BI_BitScanForward64:
1294     return MSVCIntrin::_BitScanForward;
1295   case AArch64::BI_BitScanReverse:
1296   case AArch64::BI_BitScanReverse64:
1297     return MSVCIntrin::_BitScanReverse;
1298   case AArch64::BI_InterlockedAnd64:
1299     return MSVCIntrin::_InterlockedAnd;
1300   case AArch64::BI_InterlockedExchange64:
1301     return MSVCIntrin::_InterlockedExchange;
1302   case AArch64::BI_InterlockedExchangeAdd64:
1303     return MSVCIntrin::_InterlockedExchangeAdd;
1304   case AArch64::BI_InterlockedExchangeSub64:
1305     return MSVCIntrin::_InterlockedExchangeSub;
1306   case AArch64::BI_InterlockedOr64:
1307     return MSVCIntrin::_InterlockedOr;
1308   case AArch64::BI_InterlockedXor64:
1309     return MSVCIntrin::_InterlockedXor;
1310   case AArch64::BI_InterlockedDecrement64:
1311     return MSVCIntrin::_InterlockedDecrement;
1312   case AArch64::BI_InterlockedIncrement64:
1313     return MSVCIntrin::_InterlockedIncrement;
1314   case AArch64::BI_InterlockedExchangeAdd8_acq:
1315   case AArch64::BI_InterlockedExchangeAdd16_acq:
1316   case AArch64::BI_InterlockedExchangeAdd_acq:
1317   case AArch64::BI_InterlockedExchangeAdd64_acq:
1318     return MSVCIntrin::_InterlockedExchangeAdd_acq;
1319   case AArch64::BI_InterlockedExchangeAdd8_rel:
1320   case AArch64::BI_InterlockedExchangeAdd16_rel:
1321   case AArch64::BI_InterlockedExchangeAdd_rel:
1322   case AArch64::BI_InterlockedExchangeAdd64_rel:
1323     return MSVCIntrin::_InterlockedExchangeAdd_rel;
1324   case AArch64::BI_InterlockedExchangeAdd8_nf:
1325   case AArch64::BI_InterlockedExchangeAdd16_nf:
1326   case AArch64::BI_InterlockedExchangeAdd_nf:
1327   case AArch64::BI_InterlockedExchangeAdd64_nf:
1328     return MSVCIntrin::_InterlockedExchangeAdd_nf;
1329   case AArch64::BI_InterlockedExchange8_acq:
1330   case AArch64::BI_InterlockedExchange16_acq:
1331   case AArch64::BI_InterlockedExchange_acq:
1332   case AArch64::BI_InterlockedExchange64_acq:
1333     return MSVCIntrin::_InterlockedExchange_acq;
1334   case AArch64::BI_InterlockedExchange8_rel:
1335   case AArch64::BI_InterlockedExchange16_rel:
1336   case AArch64::BI_InterlockedExchange_rel:
1337   case AArch64::BI_InterlockedExchange64_rel:
1338     return MSVCIntrin::_InterlockedExchange_rel;
1339   case AArch64::BI_InterlockedExchange8_nf:
1340   case AArch64::BI_InterlockedExchange16_nf:
1341   case AArch64::BI_InterlockedExchange_nf:
1342   case AArch64::BI_InterlockedExchange64_nf:
1343     return MSVCIntrin::_InterlockedExchange_nf;
1344   case AArch64::BI_InterlockedCompareExchange8_acq:
1345   case AArch64::BI_InterlockedCompareExchange16_acq:
1346   case AArch64::BI_InterlockedCompareExchange_acq:
1347   case AArch64::BI_InterlockedCompareExchange64_acq:
1348     return MSVCIntrin::_InterlockedCompareExchange_acq;
1349   case AArch64::BI_InterlockedCompareExchange8_rel:
1350   case AArch64::BI_InterlockedCompareExchange16_rel:
1351   case AArch64::BI_InterlockedCompareExchange_rel:
1352   case AArch64::BI_InterlockedCompareExchange64_rel:
1353     return MSVCIntrin::_InterlockedCompareExchange_rel;
1354   case AArch64::BI_InterlockedCompareExchange8_nf:
1355   case AArch64::BI_InterlockedCompareExchange16_nf:
1356   case AArch64::BI_InterlockedCompareExchange_nf:
1357   case AArch64::BI_InterlockedCompareExchange64_nf:
1358     return MSVCIntrin::_InterlockedCompareExchange_nf;
1359   case AArch64::BI_InterlockedCompareExchange128:
1360     return MSVCIntrin::_InterlockedCompareExchange128;
1361   case AArch64::BI_InterlockedCompareExchange128_acq:
1362     return MSVCIntrin::_InterlockedCompareExchange128_acq;
1363   case AArch64::BI_InterlockedCompareExchange128_nf:
1364     return MSVCIntrin::_InterlockedCompareExchange128_nf;
1365   case AArch64::BI_InterlockedCompareExchange128_rel:
1366     return MSVCIntrin::_InterlockedCompareExchange128_rel;
1367   case AArch64::BI_InterlockedOr8_acq:
1368   case AArch64::BI_InterlockedOr16_acq:
1369   case AArch64::BI_InterlockedOr_acq:
1370   case AArch64::BI_InterlockedOr64_acq:
1371     return MSVCIntrin::_InterlockedOr_acq;
1372   case AArch64::BI_InterlockedOr8_rel:
1373   case AArch64::BI_InterlockedOr16_rel:
1374   case AArch64::BI_InterlockedOr_rel:
1375   case AArch64::BI_InterlockedOr64_rel:
1376     return MSVCIntrin::_InterlockedOr_rel;
1377   case AArch64::BI_InterlockedOr8_nf:
1378   case AArch64::BI_InterlockedOr16_nf:
1379   case AArch64::BI_InterlockedOr_nf:
1380   case AArch64::BI_InterlockedOr64_nf:
1381     return MSVCIntrin::_InterlockedOr_nf;
1382   case AArch64::BI_InterlockedXor8_acq:
1383   case AArch64::BI_InterlockedXor16_acq:
1384   case AArch64::BI_InterlockedXor_acq:
1385   case AArch64::BI_InterlockedXor64_acq:
1386     return MSVCIntrin::_InterlockedXor_acq;
1387   case AArch64::BI_InterlockedXor8_rel:
1388   case AArch64::BI_InterlockedXor16_rel:
1389   case AArch64::BI_InterlockedXor_rel:
1390   case AArch64::BI_InterlockedXor64_rel:
1391     return MSVCIntrin::_InterlockedXor_rel;
1392   case AArch64::BI_InterlockedXor8_nf:
1393   case AArch64::BI_InterlockedXor16_nf:
1394   case AArch64::BI_InterlockedXor_nf:
1395   case AArch64::BI_InterlockedXor64_nf:
1396     return MSVCIntrin::_InterlockedXor_nf;
1397   case AArch64::BI_InterlockedAnd8_acq:
1398   case AArch64::BI_InterlockedAnd16_acq:
1399   case AArch64::BI_InterlockedAnd_acq:
1400   case AArch64::BI_InterlockedAnd64_acq:
1401     return MSVCIntrin::_InterlockedAnd_acq;
1402   case AArch64::BI_InterlockedAnd8_rel:
1403   case AArch64::BI_InterlockedAnd16_rel:
1404   case AArch64::BI_InterlockedAnd_rel:
1405   case AArch64::BI_InterlockedAnd64_rel:
1406     return MSVCIntrin::_InterlockedAnd_rel;
1407   case AArch64::BI_InterlockedAnd8_nf:
1408   case AArch64::BI_InterlockedAnd16_nf:
1409   case AArch64::BI_InterlockedAnd_nf:
1410   case AArch64::BI_InterlockedAnd64_nf:
1411     return MSVCIntrin::_InterlockedAnd_nf;
1412   case AArch64::BI_InterlockedIncrement16_acq:
1413   case AArch64::BI_InterlockedIncrement_acq:
1414   case AArch64::BI_InterlockedIncrement64_acq:
1415     return MSVCIntrin::_InterlockedIncrement_acq;
1416   case AArch64::BI_InterlockedIncrement16_rel:
1417   case AArch64::BI_InterlockedIncrement_rel:
1418   case AArch64::BI_InterlockedIncrement64_rel:
1419     return MSVCIntrin::_InterlockedIncrement_rel;
1420   case AArch64::BI_InterlockedIncrement16_nf:
1421   case AArch64::BI_InterlockedIncrement_nf:
1422   case AArch64::BI_InterlockedIncrement64_nf:
1423     return MSVCIntrin::_InterlockedIncrement_nf;
1424   case AArch64::BI_InterlockedDecrement16_acq:
1425   case AArch64::BI_InterlockedDecrement_acq:
1426   case AArch64::BI_InterlockedDecrement64_acq:
1427     return MSVCIntrin::_InterlockedDecrement_acq;
1428   case AArch64::BI_InterlockedDecrement16_rel:
1429   case AArch64::BI_InterlockedDecrement_rel:
1430   case AArch64::BI_InterlockedDecrement64_rel:
1431     return MSVCIntrin::_InterlockedDecrement_rel;
1432   case AArch64::BI_InterlockedDecrement16_nf:
1433   case AArch64::BI_InterlockedDecrement_nf:
1434   case AArch64::BI_InterlockedDecrement64_nf:
1435     return MSVCIntrin::_InterlockedDecrement_nf;
1436   }
1437   llvm_unreachable("must return from switch");
1438 }
1439 
1440 static Optional<CodeGenFunction::MSVCIntrin>
1441 translateX86ToMsvcIntrin(unsigned BuiltinID) {
1442   using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1443   switch (BuiltinID) {
1444   default:
1445     return None;
1446   case clang::X86::BI_BitScanForward:
1447   case clang::X86::BI_BitScanForward64:
1448     return MSVCIntrin::_BitScanForward;
1449   case clang::X86::BI_BitScanReverse:
1450   case clang::X86::BI_BitScanReverse64:
1451     return MSVCIntrin::_BitScanReverse;
1452   case clang::X86::BI_InterlockedAnd64:
1453     return MSVCIntrin::_InterlockedAnd;
1454   case clang::X86::BI_InterlockedCompareExchange128:
1455     return MSVCIntrin::_InterlockedCompareExchange128;
1456   case clang::X86::BI_InterlockedExchange64:
1457     return MSVCIntrin::_InterlockedExchange;
1458   case clang::X86::BI_InterlockedExchangeAdd64:
1459     return MSVCIntrin::_InterlockedExchangeAdd;
1460   case clang::X86::BI_InterlockedExchangeSub64:
1461     return MSVCIntrin::_InterlockedExchangeSub;
1462   case clang::X86::BI_InterlockedOr64:
1463     return MSVCIntrin::_InterlockedOr;
1464   case clang::X86::BI_InterlockedXor64:
1465     return MSVCIntrin::_InterlockedXor;
1466   case clang::X86::BI_InterlockedDecrement64:
1467     return MSVCIntrin::_InterlockedDecrement;
1468   case clang::X86::BI_InterlockedIncrement64:
1469     return MSVCIntrin::_InterlockedIncrement;
1470   }
1471   llvm_unreachable("must return from switch");
1472 }
1473 
1474 // Emit an MSVC intrinsic. Assumes that arguments have *not* been evaluated.
1475 Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
1476                                             const CallExpr *E) {
1477   switch (BuiltinID) {
1478   case MSVCIntrin::_BitScanForward:
1479   case MSVCIntrin::_BitScanReverse: {
1480     Address IndexAddress(EmitPointerWithAlignment(E->getArg(0)));
1481     Value *ArgValue = EmitScalarExpr(E->getArg(1));
1482 
1483     llvm::Type *ArgType = ArgValue->getType();
1484     llvm::Type *IndexType =
1485         IndexAddress.getPointer()->getType()->getPointerElementType();
1486     llvm::Type *ResultType = ConvertType(E->getType());
1487 
1488     Value *ArgZero = llvm::Constant::getNullValue(ArgType);
1489     Value *ResZero = llvm::Constant::getNullValue(ResultType);
1490     Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
1491 
1492     BasicBlock *Begin = Builder.GetInsertBlock();
1493     BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
1494     Builder.SetInsertPoint(End);
1495     PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
1496 
1497     Builder.SetInsertPoint(Begin);
1498     Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
1499     BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
1500     Builder.CreateCondBr(IsZero, End, NotZero);
1501     Result->addIncoming(ResZero, Begin);
1502 
1503     Builder.SetInsertPoint(NotZero);
1504 
1505     if (BuiltinID == MSVCIntrin::_BitScanForward) {
1506       Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1507       Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1508       ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1509       Builder.CreateStore(ZeroCount, IndexAddress, false);
1510     } else {
1511       unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
1512       Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
1513 
1514       Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1515       Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1516       ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1517       Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
1518       Builder.CreateStore(Index, IndexAddress, false);
1519     }
1520     Builder.CreateBr(End);
1521     Result->addIncoming(ResOne, NotZero);
1522 
1523     Builder.SetInsertPoint(End);
1524     return Result;
1525   }
1526   case MSVCIntrin::_InterlockedAnd:
1527     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
1528   case MSVCIntrin::_InterlockedExchange:
1529     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
1530   case MSVCIntrin::_InterlockedExchangeAdd:
1531     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
1532   case MSVCIntrin::_InterlockedExchangeSub:
1533     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
1534   case MSVCIntrin::_InterlockedOr:
1535     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
1536   case MSVCIntrin::_InterlockedXor:
1537     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
1538   case MSVCIntrin::_InterlockedExchangeAdd_acq:
1539     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1540                                  AtomicOrdering::Acquire);
1541   case MSVCIntrin::_InterlockedExchangeAdd_rel:
1542     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1543                                  AtomicOrdering::Release);
1544   case MSVCIntrin::_InterlockedExchangeAdd_nf:
1545     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1546                                  AtomicOrdering::Monotonic);
1547   case MSVCIntrin::_InterlockedExchange_acq:
1548     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1549                                  AtomicOrdering::Acquire);
1550   case MSVCIntrin::_InterlockedExchange_rel:
1551     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1552                                  AtomicOrdering::Release);
1553   case MSVCIntrin::_InterlockedExchange_nf:
1554     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1555                                  AtomicOrdering::Monotonic);
1556   case MSVCIntrin::_InterlockedCompareExchange_acq:
1557     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
1558   case MSVCIntrin::_InterlockedCompareExchange_rel:
1559     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
1560   case MSVCIntrin::_InterlockedCompareExchange_nf:
1561     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1562   case MSVCIntrin::_InterlockedCompareExchange128:
1563     return EmitAtomicCmpXchg128ForMSIntrin(
1564         *this, E, AtomicOrdering::SequentiallyConsistent);
1565   case MSVCIntrin::_InterlockedCompareExchange128_acq:
1566     return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Acquire);
1567   case MSVCIntrin::_InterlockedCompareExchange128_rel:
1568     return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Release);
1569   case MSVCIntrin::_InterlockedCompareExchange128_nf:
1570     return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1571   case MSVCIntrin::_InterlockedOr_acq:
1572     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1573                                  AtomicOrdering::Acquire);
1574   case MSVCIntrin::_InterlockedOr_rel:
1575     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1576                                  AtomicOrdering::Release);
1577   case MSVCIntrin::_InterlockedOr_nf:
1578     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1579                                  AtomicOrdering::Monotonic);
1580   case MSVCIntrin::_InterlockedXor_acq:
1581     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1582                                  AtomicOrdering::Acquire);
1583   case MSVCIntrin::_InterlockedXor_rel:
1584     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1585                                  AtomicOrdering::Release);
1586   case MSVCIntrin::_InterlockedXor_nf:
1587     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1588                                  AtomicOrdering::Monotonic);
1589   case MSVCIntrin::_InterlockedAnd_acq:
1590     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1591                                  AtomicOrdering::Acquire);
1592   case MSVCIntrin::_InterlockedAnd_rel:
1593     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1594                                  AtomicOrdering::Release);
1595   case MSVCIntrin::_InterlockedAnd_nf:
1596     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1597                                  AtomicOrdering::Monotonic);
1598   case MSVCIntrin::_InterlockedIncrement_acq:
1599     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
1600   case MSVCIntrin::_InterlockedIncrement_rel:
1601     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
1602   case MSVCIntrin::_InterlockedIncrement_nf:
1603     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
1604   case MSVCIntrin::_InterlockedDecrement_acq:
1605     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
1606   case MSVCIntrin::_InterlockedDecrement_rel:
1607     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
1608   case MSVCIntrin::_InterlockedDecrement_nf:
1609     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
1610 
1611   case MSVCIntrin::_InterlockedDecrement:
1612     return EmitAtomicDecrementValue(*this, E);
1613   case MSVCIntrin::_InterlockedIncrement:
1614     return EmitAtomicIncrementValue(*this, E);
1615 
1616   case MSVCIntrin::__fastfail: {
1617     // Request immediate process termination from the kernel. The instruction
1618     // sequences to do this are documented on MSDN:
1619     // https://msdn.microsoft.com/en-us/library/dn774154.aspx
1620     llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
1621     StringRef Asm, Constraints;
1622     switch (ISA) {
1623     default:
1624       ErrorUnsupported(E, "__fastfail call for this architecture");
1625       break;
1626     case llvm::Triple::x86:
1627     case llvm::Triple::x86_64:
1628       Asm = "int $$0x29";
1629       Constraints = "{cx}";
1630       break;
1631     case llvm::Triple::thumb:
1632       Asm = "udf #251";
1633       Constraints = "{r0}";
1634       break;
1635     case llvm::Triple::aarch64:
1636       Asm = "brk #0xF003";
1637       Constraints = "{w0}";
1638     }
1639     llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
1640     llvm::InlineAsm *IA =
1641         llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1642     llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
1643         getLLVMContext(), llvm::AttributeList::FunctionIndex,
1644         llvm::Attribute::NoReturn);
1645     llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
1646     CI->setAttributes(NoReturnAttr);
1647     return CI;
1648   }
1649   }
1650   llvm_unreachable("Incorrect MSVC intrinsic!");
1651 }
1652 
1653 namespace {
1654 // ARC cleanup for __builtin_os_log_format
1655 struct CallObjCArcUse final : EHScopeStack::Cleanup {
1656   CallObjCArcUse(llvm::Value *object) : object(object) {}
1657   llvm::Value *object;
1658 
1659   void Emit(CodeGenFunction &CGF, Flags flags) override {
1660     CGF.EmitARCIntrinsicUse(object);
1661   }
1662 };
1663 }
1664 
1665 Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
1666                                                  BuiltinCheckKind Kind) {
1667   assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)
1668           && "Unsupported builtin check kind");
1669 
1670   Value *ArgValue = EmitScalarExpr(E);
1671   if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef())
1672     return ArgValue;
1673 
1674   SanitizerScope SanScope(this);
1675   Value *Cond = Builder.CreateICmpNE(
1676       ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
1677   EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
1678             SanitizerHandler::InvalidBuiltin,
1679             {EmitCheckSourceLocation(E->getExprLoc()),
1680              llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
1681             None);
1682   return ArgValue;
1683 }
1684 
1685 /// Get the argument type for arguments to os_log_helper.
1686 static CanQualType getOSLogArgType(ASTContext &C, int Size) {
1687   QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
1688   return C.getCanonicalType(UnsignedTy);
1689 }
1690 
1691 llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
1692     const analyze_os_log::OSLogBufferLayout &Layout,
1693     CharUnits BufferAlignment) {
1694   ASTContext &Ctx = getContext();
1695 
1696   llvm::SmallString<64> Name;
1697   {
1698     raw_svector_ostream OS(Name);
1699     OS << "__os_log_helper";
1700     OS << "_" << BufferAlignment.getQuantity();
1701     OS << "_" << int(Layout.getSummaryByte());
1702     OS << "_" << int(Layout.getNumArgsByte());
1703     for (const auto &Item : Layout.Items)
1704       OS << "_" << int(Item.getSizeByte()) << "_"
1705          << int(Item.getDescriptorByte());
1706   }
1707 
1708   if (llvm::Function *F = CGM.getModule().getFunction(Name))
1709     return F;
1710 
1711   llvm::SmallVector<QualType, 4> ArgTys;
1712   FunctionArgList Args;
1713   Args.push_back(ImplicitParamDecl::Create(
1714       Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy,
1715       ImplicitParamDecl::Other));
1716   ArgTys.emplace_back(Ctx.VoidPtrTy);
1717 
1718   for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
1719     char Size = Layout.Items[I].getSizeByte();
1720     if (!Size)
1721       continue;
1722 
1723     QualType ArgTy = getOSLogArgType(Ctx, Size);
1724     Args.push_back(ImplicitParamDecl::Create(
1725         Ctx, nullptr, SourceLocation(),
1726         &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
1727         ImplicitParamDecl::Other));
1728     ArgTys.emplace_back(ArgTy);
1729   }
1730 
1731   QualType ReturnTy = Ctx.VoidTy;
1732 
1733   // The helper function has linkonce_odr linkage to enable the linker to merge
1734   // identical functions. To ensure the merging always happens, 'noinline' is
1735   // attached to the function when compiling with -Oz.
1736   const CGFunctionInfo &FI =
1737       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args);
1738   llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
1739   llvm::Function *Fn = llvm::Function::Create(
1740       FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
1741   Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
1742   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn, /*IsThunk=*/false);
1743   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
1744   Fn->setDoesNotThrow();
1745 
1746   // Attach 'noinline' at -Oz.
1747   if (CGM.getCodeGenOpts().OptimizeSize == 2)
1748     Fn->addFnAttr(llvm::Attribute::NoInline);
1749 
1750   auto NL = ApplyDebugLocation::CreateEmpty(*this);
1751   StartFunction(GlobalDecl(), ReturnTy, Fn, FI, Args);
1752 
1753   // Create a scope with an artificial location for the body of this function.
1754   auto AL = ApplyDebugLocation::CreateArtificial(*this);
1755 
1756   CharUnits Offset;
1757   Address BufAddr(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"),
1758                   BufferAlignment);
1759   Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
1760                       Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
1761   Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
1762                       Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
1763 
1764   unsigned I = 1;
1765   for (const auto &Item : Layout.Items) {
1766     Builder.CreateStore(
1767         Builder.getInt8(Item.getDescriptorByte()),
1768         Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
1769     Builder.CreateStore(
1770         Builder.getInt8(Item.getSizeByte()),
1771         Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
1772 
1773     CharUnits Size = Item.size();
1774     if (!Size.getQuantity())
1775       continue;
1776 
1777     Address Arg = GetAddrOfLocalVar(Args[I]);
1778     Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
1779     Addr = Builder.CreateBitCast(Addr, Arg.getPointer()->getType(),
1780                                  "argDataCast");
1781     Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
1782     Offset += Size;
1783     ++I;
1784   }
1785 
1786   FinishFunction();
1787 
1788   return Fn;
1789 }
1790 
1791 RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
1792   assert(E.getNumArgs() >= 2 &&
1793          "__builtin_os_log_format takes at least 2 arguments");
1794   ASTContext &Ctx = getContext();
1795   analyze_os_log::OSLogBufferLayout Layout;
1796   analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
1797   Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
1798   llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
1799 
1800   // Ignore argument 1, the format string. It is not currently used.
1801   CallArgList Args;
1802   Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy);
1803 
1804   for (const auto &Item : Layout.Items) {
1805     int Size = Item.getSizeByte();
1806     if (!Size)
1807       continue;
1808 
1809     llvm::Value *ArgVal;
1810 
1811     if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
1812       uint64_t Val = 0;
1813       for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
1814         Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
1815       ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
1816     } else if (const Expr *TheExpr = Item.getExpr()) {
1817       ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
1818 
1819       // If a temporary object that requires destruction after the full
1820       // expression is passed, push a lifetime-extended cleanup to extend its
1821       // lifetime to the end of the enclosing block scope.
1822       auto LifetimeExtendObject = [&](const Expr *E) {
1823         E = E->IgnoreParenCasts();
1824         // Extend lifetimes of objects returned by function calls and message
1825         // sends.
1826 
1827         // FIXME: We should do this in other cases in which temporaries are
1828         //        created including arguments of non-ARC types (e.g., C++
1829         //        temporaries).
1830         if (isa<CallExpr>(E) || isa<ObjCMessageExpr>(E))
1831           return true;
1832         return false;
1833       };
1834 
1835       if (TheExpr->getType()->isObjCRetainableType() &&
1836           getLangOpts().ObjCAutoRefCount && LifetimeExtendObject(TheExpr)) {
1837         assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&
1838                "Only scalar can be a ObjC retainable type");
1839         if (!isa<Constant>(ArgVal)) {
1840           CleanupKind Cleanup = getARCCleanupKind();
1841           QualType Ty = TheExpr->getType();
1842           Address Alloca = Address::invalid();
1843           Address Addr = CreateMemTemp(Ty, "os.log.arg", &Alloca);
1844           ArgVal = EmitARCRetain(Ty, ArgVal);
1845           Builder.CreateStore(ArgVal, Addr);
1846           pushLifetimeExtendedDestroy(Cleanup, Alloca, Ty,
1847                                       CodeGenFunction::destroyARCStrongPrecise,
1848                                       Cleanup & EHCleanup);
1849 
1850           // Push a clang.arc.use call to ensure ARC optimizer knows that the
1851           // argument has to be alive.
1852           if (CGM.getCodeGenOpts().OptimizationLevel != 0)
1853             pushCleanupAfterFullExpr<CallObjCArcUse>(Cleanup, ArgVal);
1854         }
1855       }
1856     } else {
1857       ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
1858     }
1859 
1860     unsigned ArgValSize =
1861         CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
1862     llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
1863                                                      ArgValSize);
1864     ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
1865     CanQualType ArgTy = getOSLogArgType(Ctx, Size);
1866     // If ArgVal has type x86_fp80, zero-extend ArgVal.
1867     ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
1868     Args.add(RValue::get(ArgVal), ArgTy);
1869   }
1870 
1871   const CGFunctionInfo &FI =
1872       CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
1873   llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
1874       Layout, BufAddr.getAlignment());
1875   EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
1876   return RValue::get(BufAddr.getPointer());
1877 }
1878 
1879 static bool isSpecialUnsignedMultiplySignedResult(
1880     unsigned BuiltinID, WidthAndSignedness Op1Info, WidthAndSignedness Op2Info,
1881     WidthAndSignedness ResultInfo) {
1882   return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1883          Op1Info.Width == Op2Info.Width && Op2Info.Width == ResultInfo.Width &&
1884          !Op1Info.Signed && !Op2Info.Signed && ResultInfo.Signed;
1885 }
1886 
1887 static RValue EmitCheckedUnsignedMultiplySignedResult(
1888     CodeGenFunction &CGF, const clang::Expr *Op1, WidthAndSignedness Op1Info,
1889     const clang::Expr *Op2, WidthAndSignedness Op2Info,
1890     const clang::Expr *ResultArg, QualType ResultQTy,
1891     WidthAndSignedness ResultInfo) {
1892   assert(isSpecialUnsignedMultiplySignedResult(
1893              Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
1894          "Cannot specialize this multiply");
1895 
1896   llvm::Value *V1 = CGF.EmitScalarExpr(Op1);
1897   llvm::Value *V2 = CGF.EmitScalarExpr(Op2);
1898 
1899   llvm::Value *HasOverflow;
1900   llvm::Value *Result = EmitOverflowIntrinsic(
1901       CGF, llvm::Intrinsic::umul_with_overflow, V1, V2, HasOverflow);
1902 
1903   // The intrinsic call will detect overflow when the value is > UINT_MAX,
1904   // however, since the original builtin had a signed result, we need to report
1905   // an overflow when the result is greater than INT_MAX.
1906   auto IntMax = llvm::APInt::getSignedMaxValue(ResultInfo.Width);
1907   llvm::Value *IntMaxValue = llvm::ConstantInt::get(Result->getType(), IntMax);
1908 
1909   llvm::Value *IntMaxOverflow = CGF.Builder.CreateICmpUGT(Result, IntMaxValue);
1910   HasOverflow = CGF.Builder.CreateOr(HasOverflow, IntMaxOverflow);
1911 
1912   bool isVolatile =
1913       ResultArg->getType()->getPointeeType().isVolatileQualified();
1914   Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1915   CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
1916                           isVolatile);
1917   return RValue::get(HasOverflow);
1918 }
1919 
1920 /// Determine if a binop is a checked mixed-sign multiply we can specialize.
1921 static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
1922                                        WidthAndSignedness Op1Info,
1923                                        WidthAndSignedness Op2Info,
1924                                        WidthAndSignedness ResultInfo) {
1925   return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1926          std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
1927          Op1Info.Signed != Op2Info.Signed;
1928 }
1929 
1930 /// Emit a checked mixed-sign multiply. This is a cheaper specialization of
1931 /// the generic checked-binop irgen.
1932 static RValue
1933 EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
1934                              WidthAndSignedness Op1Info, const clang::Expr *Op2,
1935                              WidthAndSignedness Op2Info,
1936                              const clang::Expr *ResultArg, QualType ResultQTy,
1937                              WidthAndSignedness ResultInfo) {
1938   assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,
1939                                     Op2Info, ResultInfo) &&
1940          "Not a mixed-sign multipliction we can specialize");
1941 
1942   // Emit the signed and unsigned operands.
1943   const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
1944   const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
1945   llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
1946   llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
1947   unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
1948   unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
1949 
1950   // One of the operands may be smaller than the other. If so, [s|z]ext it.
1951   if (SignedOpWidth < UnsignedOpWidth)
1952     Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext");
1953   if (UnsignedOpWidth < SignedOpWidth)
1954     Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext");
1955 
1956   llvm::Type *OpTy = Signed->getType();
1957   llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
1958   Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1959   llvm::Type *ResTy = ResultPtr.getElementType();
1960   unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width);
1961 
1962   // Take the absolute value of the signed operand.
1963   llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
1964   llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
1965   llvm::Value *AbsSigned =
1966       CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
1967 
1968   // Perform a checked unsigned multiplication.
1969   llvm::Value *UnsignedOverflow;
1970   llvm::Value *UnsignedResult =
1971       EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
1972                             Unsigned, UnsignedOverflow);
1973 
1974   llvm::Value *Overflow, *Result;
1975   if (ResultInfo.Signed) {
1976     // Signed overflow occurs if the result is greater than INT_MAX or lesser
1977     // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
1978     auto IntMax =
1979         llvm::APInt::getSignedMaxValue(ResultInfo.Width).zextOrSelf(OpWidth);
1980     llvm::Value *MaxResult =
1981         CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
1982                               CGF.Builder.CreateZExt(IsNegative, OpTy));
1983     llvm::Value *SignedOverflow =
1984         CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
1985     Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
1986 
1987     // Prepare the signed result (possibly by negating it).
1988     llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
1989     llvm::Value *SignedResult =
1990         CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
1991     Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
1992   } else {
1993     // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
1994     llvm::Value *Underflow = CGF.Builder.CreateAnd(
1995         IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
1996     Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
1997     if (ResultInfo.Width < OpWidth) {
1998       auto IntMax =
1999           llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth);
2000       llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
2001           UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
2002       Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
2003     }
2004 
2005     // Negate the product if it would be negative in infinite precision.
2006     Result = CGF.Builder.CreateSelect(
2007         IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
2008 
2009     Result = CGF.Builder.CreateTrunc(Result, ResTy);
2010   }
2011   assert(Overflow && Result && "Missing overflow or result");
2012 
2013   bool isVolatile =
2014       ResultArg->getType()->getPointeeType().isVolatileQualified();
2015   CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
2016                           isVolatile);
2017   return RValue::get(Overflow);
2018 }
2019 
2020 static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType,
2021                                Value *&RecordPtr, CharUnits Align,
2022                                llvm::FunctionCallee Func, int Lvl) {
2023   ASTContext &Context = CGF.getContext();
2024   RecordDecl *RD = RType->castAs<RecordType>()->getDecl()->getDefinition();
2025   std::string Pad = std::string(Lvl * 4, ' ');
2026 
2027   Value *GString =
2028       CGF.Builder.CreateGlobalStringPtr(RType.getAsString() + " {\n");
2029   Value *Res = CGF.Builder.CreateCall(Func, {GString});
2030 
2031   static llvm::DenseMap<QualType, const char *> Types;
2032   if (Types.empty()) {
2033     Types[Context.CharTy] = "%c";
2034     Types[Context.BoolTy] = "%d";
2035     Types[Context.SignedCharTy] = "%hhd";
2036     Types[Context.UnsignedCharTy] = "%hhu";
2037     Types[Context.IntTy] = "%d";
2038     Types[Context.UnsignedIntTy] = "%u";
2039     Types[Context.LongTy] = "%ld";
2040     Types[Context.UnsignedLongTy] = "%lu";
2041     Types[Context.LongLongTy] = "%lld";
2042     Types[Context.UnsignedLongLongTy] = "%llu";
2043     Types[Context.ShortTy] = "%hd";
2044     Types[Context.UnsignedShortTy] = "%hu";
2045     Types[Context.VoidPtrTy] = "%p";
2046     Types[Context.FloatTy] = "%f";
2047     Types[Context.DoubleTy] = "%f";
2048     Types[Context.LongDoubleTy] = "%Lf";
2049     Types[Context.getPointerType(Context.CharTy)] = "%s";
2050     Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s";
2051   }
2052 
2053   for (const auto *FD : RD->fields()) {
2054     Value *FieldPtr = RecordPtr;
2055     if (RD->isUnion())
2056       FieldPtr = CGF.Builder.CreatePointerCast(
2057           FieldPtr, CGF.ConvertType(Context.getPointerType(FD->getType())));
2058     else
2059       FieldPtr = CGF.Builder.CreateStructGEP(CGF.ConvertType(RType), FieldPtr,
2060                                              FD->getFieldIndex());
2061 
2062     GString = CGF.Builder.CreateGlobalStringPtr(
2063         llvm::Twine(Pad)
2064             .concat(FD->getType().getAsString())
2065             .concat(llvm::Twine(' '))
2066             .concat(FD->getNameAsString())
2067             .concat(" : ")
2068             .str());
2069     Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
2070     Res = CGF.Builder.CreateAdd(Res, TmpRes);
2071 
2072     QualType CanonicalType =
2073         FD->getType().getUnqualifiedType().getCanonicalType();
2074 
2075     // We check whether we are in a recursive type
2076     if (CanonicalType->isRecordType()) {
2077       TmpRes = dumpRecord(CGF, CanonicalType, FieldPtr, Align, Func, Lvl + 1);
2078       Res = CGF.Builder.CreateAdd(TmpRes, Res);
2079       continue;
2080     }
2081 
2082     // We try to determine the best format to print the current field
2083     llvm::Twine Format = Types.find(CanonicalType) == Types.end()
2084                              ? Types[Context.VoidPtrTy]
2085                              : Types[CanonicalType];
2086 
2087     Address FieldAddress = Address(FieldPtr, Align);
2088     FieldPtr = CGF.Builder.CreateLoad(FieldAddress);
2089 
2090     // FIXME Need to handle bitfield here
2091     GString = CGF.Builder.CreateGlobalStringPtr(
2092         Format.concat(llvm::Twine('\n')).str());
2093     TmpRes = CGF.Builder.CreateCall(Func, {GString, FieldPtr});
2094     Res = CGF.Builder.CreateAdd(Res, TmpRes);
2095   }
2096 
2097   GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n");
2098   Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
2099   Res = CGF.Builder.CreateAdd(Res, TmpRes);
2100   return Res;
2101 }
2102 
2103 static bool
2104 TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty,
2105                               llvm::SmallPtrSetImpl<const Decl *> &Seen) {
2106   if (const auto *Arr = Ctx.getAsArrayType(Ty))
2107     Ty = Ctx.getBaseElementType(Arr);
2108 
2109   const auto *Record = Ty->getAsCXXRecordDecl();
2110   if (!Record)
2111     return false;
2112 
2113   // We've already checked this type, or are in the process of checking it.
2114   if (!Seen.insert(Record).second)
2115     return false;
2116 
2117   assert(Record->hasDefinition() &&
2118          "Incomplete types should already be diagnosed");
2119 
2120   if (Record->isDynamicClass())
2121     return true;
2122 
2123   for (FieldDecl *F : Record->fields()) {
2124     if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
2125       return true;
2126   }
2127   return false;
2128 }
2129 
2130 /// Determine if the specified type requires laundering by checking if it is a
2131 /// dynamic class type or contains a subobject which is a dynamic class type.
2132 static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) {
2133   if (!CGM.getCodeGenOpts().StrictVTablePointers)
2134     return false;
2135   llvm::SmallPtrSet<const Decl *, 16> Seen;
2136   return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
2137 }
2138 
2139 RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
2140   llvm::Value *Src = EmitScalarExpr(E->getArg(0));
2141   llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
2142 
2143   // The builtin's shift arg may have a different type than the source arg and
2144   // result, but the LLVM intrinsic uses the same type for all values.
2145   llvm::Type *Ty = Src->getType();
2146   ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false);
2147 
2148   // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
2149   unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
2150   Function *F = CGM.getIntrinsic(IID, Ty);
2151   return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt }));
2152 }
2153 
2154 // Map math builtins for long-double to f128 version.
2155 static unsigned mutateLongDoubleBuiltin(unsigned BuiltinID) {
2156   switch (BuiltinID) {
2157 #define MUTATE_LDBL(func) \
2158   case Builtin::BI__builtin_##func##l: \
2159     return Builtin::BI__builtin_##func##f128;
2160   MUTATE_LDBL(sqrt)
2161   MUTATE_LDBL(cbrt)
2162   MUTATE_LDBL(fabs)
2163   MUTATE_LDBL(log)
2164   MUTATE_LDBL(log2)
2165   MUTATE_LDBL(log10)
2166   MUTATE_LDBL(log1p)
2167   MUTATE_LDBL(logb)
2168   MUTATE_LDBL(exp)
2169   MUTATE_LDBL(exp2)
2170   MUTATE_LDBL(expm1)
2171   MUTATE_LDBL(fdim)
2172   MUTATE_LDBL(hypot)
2173   MUTATE_LDBL(ilogb)
2174   MUTATE_LDBL(pow)
2175   MUTATE_LDBL(fmin)
2176   MUTATE_LDBL(fmax)
2177   MUTATE_LDBL(ceil)
2178   MUTATE_LDBL(trunc)
2179   MUTATE_LDBL(rint)
2180   MUTATE_LDBL(nearbyint)
2181   MUTATE_LDBL(round)
2182   MUTATE_LDBL(floor)
2183   MUTATE_LDBL(lround)
2184   MUTATE_LDBL(llround)
2185   MUTATE_LDBL(lrint)
2186   MUTATE_LDBL(llrint)
2187   MUTATE_LDBL(fmod)
2188   MUTATE_LDBL(modf)
2189   MUTATE_LDBL(nan)
2190   MUTATE_LDBL(nans)
2191   MUTATE_LDBL(inf)
2192   MUTATE_LDBL(fma)
2193   MUTATE_LDBL(sin)
2194   MUTATE_LDBL(cos)
2195   MUTATE_LDBL(tan)
2196   MUTATE_LDBL(sinh)
2197   MUTATE_LDBL(cosh)
2198   MUTATE_LDBL(tanh)
2199   MUTATE_LDBL(asin)
2200   MUTATE_LDBL(acos)
2201   MUTATE_LDBL(atan)
2202   MUTATE_LDBL(asinh)
2203   MUTATE_LDBL(acosh)
2204   MUTATE_LDBL(atanh)
2205   MUTATE_LDBL(atan2)
2206   MUTATE_LDBL(erf)
2207   MUTATE_LDBL(erfc)
2208   MUTATE_LDBL(ldexp)
2209   MUTATE_LDBL(frexp)
2210   MUTATE_LDBL(huge_val)
2211   MUTATE_LDBL(copysign)
2212   MUTATE_LDBL(nextafter)
2213   MUTATE_LDBL(nexttoward)
2214   MUTATE_LDBL(remainder)
2215   MUTATE_LDBL(remquo)
2216   MUTATE_LDBL(scalbln)
2217   MUTATE_LDBL(scalbn)
2218   MUTATE_LDBL(tgamma)
2219   MUTATE_LDBL(lgamma)
2220 #undef MUTATE_LDBL
2221   default:
2222     return BuiltinID;
2223   }
2224 }
2225 
2226 RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
2227                                         const CallExpr *E,
2228                                         ReturnValueSlot ReturnValue) {
2229   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
2230   // See if we can constant fold this builtin.  If so, don't emit it at all.
2231   Expr::EvalResult Result;
2232   if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
2233       !Result.hasSideEffects()) {
2234     if (Result.Val.isInt())
2235       return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
2236                                                 Result.Val.getInt()));
2237     if (Result.Val.isFloat())
2238       return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
2239                                                Result.Val.getFloat()));
2240   }
2241 
2242   // If current long-double semantics is IEEE 128-bit, replace math builtins
2243   // of long-double with f128 equivalent.
2244   // TODO: This mutation should also be applied to other targets other than PPC,
2245   // after backend supports IEEE 128-bit style libcalls.
2246   if (getTarget().getTriple().isPPC64() &&
2247       &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
2248     BuiltinID = mutateLongDoubleBuiltin(BuiltinID);
2249 
2250   // If the builtin has been declared explicitly with an assembler label,
2251   // disable the specialized emitting below. Ideally we should communicate the
2252   // rename in IR, or at least avoid generating the intrinsic calls that are
2253   // likely to get lowered to the renamed library functions.
2254   const unsigned BuiltinIDIfNoAsmLabel =
2255       FD->hasAttr<AsmLabelAttr>() ? 0 : BuiltinID;
2256 
2257   // There are LLVM math intrinsics/instructions corresponding to math library
2258   // functions except the LLVM op will never set errno while the math library
2259   // might. Also, math builtins have the same semantics as their math library
2260   // twins. Thus, we can transform math library and builtin calls to their
2261   // LLVM counterparts if the call is marked 'const' (known to never set errno).
2262   if (FD->hasAttr<ConstAttr>()) {
2263     switch (BuiltinIDIfNoAsmLabel) {
2264     case Builtin::BIceil:
2265     case Builtin::BIceilf:
2266     case Builtin::BIceill:
2267     case Builtin::BI__builtin_ceil:
2268     case Builtin::BI__builtin_ceilf:
2269     case Builtin::BI__builtin_ceilf16:
2270     case Builtin::BI__builtin_ceill:
2271     case Builtin::BI__builtin_ceilf128:
2272       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2273                                    Intrinsic::ceil,
2274                                    Intrinsic::experimental_constrained_ceil));
2275 
2276     case Builtin::BIcopysign:
2277     case Builtin::BIcopysignf:
2278     case Builtin::BIcopysignl:
2279     case Builtin::BI__builtin_copysign:
2280     case Builtin::BI__builtin_copysignf:
2281     case Builtin::BI__builtin_copysignf16:
2282     case Builtin::BI__builtin_copysignl:
2283     case Builtin::BI__builtin_copysignf128:
2284       return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
2285 
2286     case Builtin::BIcos:
2287     case Builtin::BIcosf:
2288     case Builtin::BIcosl:
2289     case Builtin::BI__builtin_cos:
2290     case Builtin::BI__builtin_cosf:
2291     case Builtin::BI__builtin_cosf16:
2292     case Builtin::BI__builtin_cosl:
2293     case Builtin::BI__builtin_cosf128:
2294       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2295                                    Intrinsic::cos,
2296                                    Intrinsic::experimental_constrained_cos));
2297 
2298     case Builtin::BIexp:
2299     case Builtin::BIexpf:
2300     case Builtin::BIexpl:
2301     case Builtin::BI__builtin_exp:
2302     case Builtin::BI__builtin_expf:
2303     case Builtin::BI__builtin_expf16:
2304     case Builtin::BI__builtin_expl:
2305     case Builtin::BI__builtin_expf128:
2306       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2307                                    Intrinsic::exp,
2308                                    Intrinsic::experimental_constrained_exp));
2309 
2310     case Builtin::BIexp2:
2311     case Builtin::BIexp2f:
2312     case Builtin::BIexp2l:
2313     case Builtin::BI__builtin_exp2:
2314     case Builtin::BI__builtin_exp2f:
2315     case Builtin::BI__builtin_exp2f16:
2316     case Builtin::BI__builtin_exp2l:
2317     case Builtin::BI__builtin_exp2f128:
2318       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2319                                    Intrinsic::exp2,
2320                                    Intrinsic::experimental_constrained_exp2));
2321 
2322     case Builtin::BIfabs:
2323     case Builtin::BIfabsf:
2324     case Builtin::BIfabsl:
2325     case Builtin::BI__builtin_fabs:
2326     case Builtin::BI__builtin_fabsf:
2327     case Builtin::BI__builtin_fabsf16:
2328     case Builtin::BI__builtin_fabsl:
2329     case Builtin::BI__builtin_fabsf128:
2330       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
2331 
2332     case Builtin::BIfloor:
2333     case Builtin::BIfloorf:
2334     case Builtin::BIfloorl:
2335     case Builtin::BI__builtin_floor:
2336     case Builtin::BI__builtin_floorf:
2337     case Builtin::BI__builtin_floorf16:
2338     case Builtin::BI__builtin_floorl:
2339     case Builtin::BI__builtin_floorf128:
2340       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2341                                    Intrinsic::floor,
2342                                    Intrinsic::experimental_constrained_floor));
2343 
2344     case Builtin::BIfma:
2345     case Builtin::BIfmaf:
2346     case Builtin::BIfmal:
2347     case Builtin::BI__builtin_fma:
2348     case Builtin::BI__builtin_fmaf:
2349     case Builtin::BI__builtin_fmaf16:
2350     case Builtin::BI__builtin_fmal:
2351     case Builtin::BI__builtin_fmaf128:
2352       return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E,
2353                                    Intrinsic::fma,
2354                                    Intrinsic::experimental_constrained_fma));
2355 
2356     case Builtin::BIfmax:
2357     case Builtin::BIfmaxf:
2358     case Builtin::BIfmaxl:
2359     case Builtin::BI__builtin_fmax:
2360     case Builtin::BI__builtin_fmaxf:
2361     case Builtin::BI__builtin_fmaxf16:
2362     case Builtin::BI__builtin_fmaxl:
2363     case Builtin::BI__builtin_fmaxf128:
2364       return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2365                                    Intrinsic::maxnum,
2366                                    Intrinsic::experimental_constrained_maxnum));
2367 
2368     case Builtin::BIfmin:
2369     case Builtin::BIfminf:
2370     case Builtin::BIfminl:
2371     case Builtin::BI__builtin_fmin:
2372     case Builtin::BI__builtin_fminf:
2373     case Builtin::BI__builtin_fminf16:
2374     case Builtin::BI__builtin_fminl:
2375     case Builtin::BI__builtin_fminf128:
2376       return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2377                                    Intrinsic::minnum,
2378                                    Intrinsic::experimental_constrained_minnum));
2379 
2380     // fmod() is a special-case. It maps to the frem instruction rather than an
2381     // LLVM intrinsic.
2382     case Builtin::BIfmod:
2383     case Builtin::BIfmodf:
2384     case Builtin::BIfmodl:
2385     case Builtin::BI__builtin_fmod:
2386     case Builtin::BI__builtin_fmodf:
2387     case Builtin::BI__builtin_fmodf16:
2388     case Builtin::BI__builtin_fmodl:
2389     case Builtin::BI__builtin_fmodf128: {
2390       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2391       Value *Arg1 = EmitScalarExpr(E->getArg(0));
2392       Value *Arg2 = EmitScalarExpr(E->getArg(1));
2393       return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
2394     }
2395 
2396     case Builtin::BIlog:
2397     case Builtin::BIlogf:
2398     case Builtin::BIlogl:
2399     case Builtin::BI__builtin_log:
2400     case Builtin::BI__builtin_logf:
2401     case Builtin::BI__builtin_logf16:
2402     case Builtin::BI__builtin_logl:
2403     case Builtin::BI__builtin_logf128:
2404       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2405                                    Intrinsic::log,
2406                                    Intrinsic::experimental_constrained_log));
2407 
2408     case Builtin::BIlog10:
2409     case Builtin::BIlog10f:
2410     case Builtin::BIlog10l:
2411     case Builtin::BI__builtin_log10:
2412     case Builtin::BI__builtin_log10f:
2413     case Builtin::BI__builtin_log10f16:
2414     case Builtin::BI__builtin_log10l:
2415     case Builtin::BI__builtin_log10f128:
2416       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2417                                    Intrinsic::log10,
2418                                    Intrinsic::experimental_constrained_log10));
2419 
2420     case Builtin::BIlog2:
2421     case Builtin::BIlog2f:
2422     case Builtin::BIlog2l:
2423     case Builtin::BI__builtin_log2:
2424     case Builtin::BI__builtin_log2f:
2425     case Builtin::BI__builtin_log2f16:
2426     case Builtin::BI__builtin_log2l:
2427     case Builtin::BI__builtin_log2f128:
2428       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2429                                    Intrinsic::log2,
2430                                    Intrinsic::experimental_constrained_log2));
2431 
2432     case Builtin::BInearbyint:
2433     case Builtin::BInearbyintf:
2434     case Builtin::BInearbyintl:
2435     case Builtin::BI__builtin_nearbyint:
2436     case Builtin::BI__builtin_nearbyintf:
2437     case Builtin::BI__builtin_nearbyintl:
2438     case Builtin::BI__builtin_nearbyintf128:
2439       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2440                                 Intrinsic::nearbyint,
2441                                 Intrinsic::experimental_constrained_nearbyint));
2442 
2443     case Builtin::BIpow:
2444     case Builtin::BIpowf:
2445     case Builtin::BIpowl:
2446     case Builtin::BI__builtin_pow:
2447     case Builtin::BI__builtin_powf:
2448     case Builtin::BI__builtin_powf16:
2449     case Builtin::BI__builtin_powl:
2450     case Builtin::BI__builtin_powf128:
2451       return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2452                                    Intrinsic::pow,
2453                                    Intrinsic::experimental_constrained_pow));
2454 
2455     case Builtin::BIrint:
2456     case Builtin::BIrintf:
2457     case Builtin::BIrintl:
2458     case Builtin::BI__builtin_rint:
2459     case Builtin::BI__builtin_rintf:
2460     case Builtin::BI__builtin_rintf16:
2461     case Builtin::BI__builtin_rintl:
2462     case Builtin::BI__builtin_rintf128:
2463       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2464                                    Intrinsic::rint,
2465                                    Intrinsic::experimental_constrained_rint));
2466 
2467     case Builtin::BIround:
2468     case Builtin::BIroundf:
2469     case Builtin::BIroundl:
2470     case Builtin::BI__builtin_round:
2471     case Builtin::BI__builtin_roundf:
2472     case Builtin::BI__builtin_roundf16:
2473     case Builtin::BI__builtin_roundl:
2474     case Builtin::BI__builtin_roundf128:
2475       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2476                                    Intrinsic::round,
2477                                    Intrinsic::experimental_constrained_round));
2478 
2479     case Builtin::BIsin:
2480     case Builtin::BIsinf:
2481     case Builtin::BIsinl:
2482     case Builtin::BI__builtin_sin:
2483     case Builtin::BI__builtin_sinf:
2484     case Builtin::BI__builtin_sinf16:
2485     case Builtin::BI__builtin_sinl:
2486     case Builtin::BI__builtin_sinf128:
2487       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2488                                    Intrinsic::sin,
2489                                    Intrinsic::experimental_constrained_sin));
2490 
2491     case Builtin::BIsqrt:
2492     case Builtin::BIsqrtf:
2493     case Builtin::BIsqrtl:
2494     case Builtin::BI__builtin_sqrt:
2495     case Builtin::BI__builtin_sqrtf:
2496     case Builtin::BI__builtin_sqrtf16:
2497     case Builtin::BI__builtin_sqrtl:
2498     case Builtin::BI__builtin_sqrtf128:
2499       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2500                                    Intrinsic::sqrt,
2501                                    Intrinsic::experimental_constrained_sqrt));
2502 
2503     case Builtin::BItrunc:
2504     case Builtin::BItruncf:
2505     case Builtin::BItruncl:
2506     case Builtin::BI__builtin_trunc:
2507     case Builtin::BI__builtin_truncf:
2508     case Builtin::BI__builtin_truncf16:
2509     case Builtin::BI__builtin_truncl:
2510     case Builtin::BI__builtin_truncf128:
2511       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2512                                    Intrinsic::trunc,
2513                                    Intrinsic::experimental_constrained_trunc));
2514 
2515     case Builtin::BIlround:
2516     case Builtin::BIlroundf:
2517     case Builtin::BIlroundl:
2518     case Builtin::BI__builtin_lround:
2519     case Builtin::BI__builtin_lroundf:
2520     case Builtin::BI__builtin_lroundl:
2521     case Builtin::BI__builtin_lroundf128:
2522       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2523           *this, E, Intrinsic::lround,
2524           Intrinsic::experimental_constrained_lround));
2525 
2526     case Builtin::BIllround:
2527     case Builtin::BIllroundf:
2528     case Builtin::BIllroundl:
2529     case Builtin::BI__builtin_llround:
2530     case Builtin::BI__builtin_llroundf:
2531     case Builtin::BI__builtin_llroundl:
2532     case Builtin::BI__builtin_llroundf128:
2533       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2534           *this, E, Intrinsic::llround,
2535           Intrinsic::experimental_constrained_llround));
2536 
2537     case Builtin::BIlrint:
2538     case Builtin::BIlrintf:
2539     case Builtin::BIlrintl:
2540     case Builtin::BI__builtin_lrint:
2541     case Builtin::BI__builtin_lrintf:
2542     case Builtin::BI__builtin_lrintl:
2543     case Builtin::BI__builtin_lrintf128:
2544       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2545           *this, E, Intrinsic::lrint,
2546           Intrinsic::experimental_constrained_lrint));
2547 
2548     case Builtin::BIllrint:
2549     case Builtin::BIllrintf:
2550     case Builtin::BIllrintl:
2551     case Builtin::BI__builtin_llrint:
2552     case Builtin::BI__builtin_llrintf:
2553     case Builtin::BI__builtin_llrintl:
2554     case Builtin::BI__builtin_llrintf128:
2555       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2556           *this, E, Intrinsic::llrint,
2557           Intrinsic::experimental_constrained_llrint));
2558 
2559     default:
2560       break;
2561     }
2562   }
2563 
2564   switch (BuiltinIDIfNoAsmLabel) {
2565   default: break;
2566   case Builtin::BI__builtin___CFStringMakeConstantString:
2567   case Builtin::BI__builtin___NSStringMakeConstantString:
2568     return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
2569   case Builtin::BI__builtin_stdarg_start:
2570   case Builtin::BI__builtin_va_start:
2571   case Builtin::BI__va_start:
2572   case Builtin::BI__builtin_va_end:
2573     return RValue::get(
2574         EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
2575                            ? EmitScalarExpr(E->getArg(0))
2576                            : EmitVAListRef(E->getArg(0)).getPointer(),
2577                        BuiltinID != Builtin::BI__builtin_va_end));
2578   case Builtin::BI__builtin_va_copy: {
2579     Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
2580     Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
2581 
2582     llvm::Type *Type = Int8PtrTy;
2583 
2584     DstPtr = Builder.CreateBitCast(DstPtr, Type);
2585     SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
2586     return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
2587                                           {DstPtr, SrcPtr}));
2588   }
2589   case Builtin::BI__builtin_abs:
2590   case Builtin::BI__builtin_labs:
2591   case Builtin::BI__builtin_llabs: {
2592     // X < 0 ? -X : X
2593     // The negation has 'nsw' because abs of INT_MIN is undefined.
2594     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2595     Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg");
2596     Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType());
2597     Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond");
2598     Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs");
2599     return RValue::get(Result);
2600   }
2601   case Builtin::BI__builtin_complex: {
2602     Value *Real = EmitScalarExpr(E->getArg(0));
2603     Value *Imag = EmitScalarExpr(E->getArg(1));
2604     return RValue::getComplex({Real, Imag});
2605   }
2606   case Builtin::BI__builtin_conj:
2607   case Builtin::BI__builtin_conjf:
2608   case Builtin::BI__builtin_conjl:
2609   case Builtin::BIconj:
2610   case Builtin::BIconjf:
2611   case Builtin::BIconjl: {
2612     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2613     Value *Real = ComplexVal.first;
2614     Value *Imag = ComplexVal.second;
2615     Imag = Builder.CreateFNeg(Imag, "neg");
2616     return RValue::getComplex(std::make_pair(Real, Imag));
2617   }
2618   case Builtin::BI__builtin_creal:
2619   case Builtin::BI__builtin_crealf:
2620   case Builtin::BI__builtin_creall:
2621   case Builtin::BIcreal:
2622   case Builtin::BIcrealf:
2623   case Builtin::BIcreall: {
2624     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2625     return RValue::get(ComplexVal.first);
2626   }
2627 
2628   case Builtin::BI__builtin_dump_struct: {
2629     llvm::Type *LLVMIntTy = getTypes().ConvertType(getContext().IntTy);
2630     llvm::FunctionType *LLVMFuncType = llvm::FunctionType::get(
2631         LLVMIntTy, {llvm::Type::getInt8PtrTy(getLLVMContext())}, true);
2632 
2633     Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts());
2634     CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment();
2635 
2636     const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts();
2637     QualType Arg0Type = Arg0->getType()->getPointeeType();
2638 
2639     Value *RecordPtr = EmitScalarExpr(Arg0);
2640     Value *Res = dumpRecord(*this, Arg0Type, RecordPtr, Arg0Align,
2641                             {LLVMFuncType, Func}, 0);
2642     return RValue::get(Res);
2643   }
2644 
2645   case Builtin::BI__builtin_preserve_access_index: {
2646     // Only enabled preserved access index region when debuginfo
2647     // is available as debuginfo is needed to preserve user-level
2648     // access pattern.
2649     if (!getDebugInfo()) {
2650       CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g");
2651       return RValue::get(EmitScalarExpr(E->getArg(0)));
2652     }
2653 
2654     // Nested builtin_preserve_access_index() not supported
2655     if (IsInPreservedAIRegion) {
2656       CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported");
2657       return RValue::get(EmitScalarExpr(E->getArg(0)));
2658     }
2659 
2660     IsInPreservedAIRegion = true;
2661     Value *Res = EmitScalarExpr(E->getArg(0));
2662     IsInPreservedAIRegion = false;
2663     return RValue::get(Res);
2664   }
2665 
2666   case Builtin::BI__builtin_cimag:
2667   case Builtin::BI__builtin_cimagf:
2668   case Builtin::BI__builtin_cimagl:
2669   case Builtin::BIcimag:
2670   case Builtin::BIcimagf:
2671   case Builtin::BIcimagl: {
2672     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2673     return RValue::get(ComplexVal.second);
2674   }
2675 
2676   case Builtin::BI__builtin_clrsb:
2677   case Builtin::BI__builtin_clrsbl:
2678   case Builtin::BI__builtin_clrsbll: {
2679     // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
2680     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2681 
2682     llvm::Type *ArgType = ArgValue->getType();
2683     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2684 
2685     llvm::Type *ResultType = ConvertType(E->getType());
2686     Value *Zero = llvm::Constant::getNullValue(ArgType);
2687     Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg");
2688     Value *Inverse = Builder.CreateNot(ArgValue, "not");
2689     Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue);
2690     Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()});
2691     Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1));
2692     Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2693                                    "cast");
2694     return RValue::get(Result);
2695   }
2696   case Builtin::BI__builtin_ctzs:
2697   case Builtin::BI__builtin_ctz:
2698   case Builtin::BI__builtin_ctzl:
2699   case Builtin::BI__builtin_ctzll: {
2700     Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
2701 
2702     llvm::Type *ArgType = ArgValue->getType();
2703     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2704 
2705     llvm::Type *ResultType = ConvertType(E->getType());
2706     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2707     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2708     if (Result->getType() != ResultType)
2709       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2710                                      "cast");
2711     return RValue::get(Result);
2712   }
2713   case Builtin::BI__builtin_clzs:
2714   case Builtin::BI__builtin_clz:
2715   case Builtin::BI__builtin_clzl:
2716   case Builtin::BI__builtin_clzll: {
2717     Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
2718 
2719     llvm::Type *ArgType = ArgValue->getType();
2720     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2721 
2722     llvm::Type *ResultType = ConvertType(E->getType());
2723     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2724     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2725     if (Result->getType() != ResultType)
2726       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2727                                      "cast");
2728     return RValue::get(Result);
2729   }
2730   case Builtin::BI__builtin_ffs:
2731   case Builtin::BI__builtin_ffsl:
2732   case Builtin::BI__builtin_ffsll: {
2733     // ffs(x) -> x ? cttz(x) + 1 : 0
2734     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2735 
2736     llvm::Type *ArgType = ArgValue->getType();
2737     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2738 
2739     llvm::Type *ResultType = ConvertType(E->getType());
2740     Value *Tmp =
2741         Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
2742                           llvm::ConstantInt::get(ArgType, 1));
2743     Value *Zero = llvm::Constant::getNullValue(ArgType);
2744     Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
2745     Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
2746     if (Result->getType() != ResultType)
2747       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2748                                      "cast");
2749     return RValue::get(Result);
2750   }
2751   case Builtin::BI__builtin_parity:
2752   case Builtin::BI__builtin_parityl:
2753   case Builtin::BI__builtin_parityll: {
2754     // parity(x) -> ctpop(x) & 1
2755     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2756 
2757     llvm::Type *ArgType = ArgValue->getType();
2758     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2759 
2760     llvm::Type *ResultType = ConvertType(E->getType());
2761     Value *Tmp = Builder.CreateCall(F, ArgValue);
2762     Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
2763     if (Result->getType() != ResultType)
2764       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2765                                      "cast");
2766     return RValue::get(Result);
2767   }
2768   case Builtin::BI__lzcnt16:
2769   case Builtin::BI__lzcnt:
2770   case Builtin::BI__lzcnt64: {
2771     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2772 
2773     llvm::Type *ArgType = ArgValue->getType();
2774     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2775 
2776     llvm::Type *ResultType = ConvertType(E->getType());
2777     Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()});
2778     if (Result->getType() != ResultType)
2779       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2780                                      "cast");
2781     return RValue::get(Result);
2782   }
2783   case Builtin::BI__popcnt16:
2784   case Builtin::BI__popcnt:
2785   case Builtin::BI__popcnt64:
2786   case Builtin::BI__builtin_popcount:
2787   case Builtin::BI__builtin_popcountl:
2788   case Builtin::BI__builtin_popcountll: {
2789     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2790 
2791     llvm::Type *ArgType = ArgValue->getType();
2792     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2793 
2794     llvm::Type *ResultType = ConvertType(E->getType());
2795     Value *Result = Builder.CreateCall(F, ArgValue);
2796     if (Result->getType() != ResultType)
2797       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2798                                      "cast");
2799     return RValue::get(Result);
2800   }
2801   case Builtin::BI__builtin_unpredictable: {
2802     // Always return the argument of __builtin_unpredictable. LLVM does not
2803     // handle this builtin. Metadata for this builtin should be added directly
2804     // to instructions such as branches or switches that use it.
2805     return RValue::get(EmitScalarExpr(E->getArg(0)));
2806   }
2807   case Builtin::BI__builtin_expect: {
2808     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2809     llvm::Type *ArgType = ArgValue->getType();
2810 
2811     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2812     // Don't generate llvm.expect on -O0 as the backend won't use it for
2813     // anything.
2814     // Note, we still IRGen ExpectedValue because it could have side-effects.
2815     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2816       return RValue::get(ArgValue);
2817 
2818     Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
2819     Value *Result =
2820         Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
2821     return RValue::get(Result);
2822   }
2823   case Builtin::BI__builtin_expect_with_probability: {
2824     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2825     llvm::Type *ArgType = ArgValue->getType();
2826 
2827     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2828     llvm::APFloat Probability(0.0);
2829     const Expr *ProbArg = E->getArg(2);
2830     bool EvalSucceed = ProbArg->EvaluateAsFloat(Probability, CGM.getContext());
2831     assert(EvalSucceed && "probability should be able to evaluate as float");
2832     (void)EvalSucceed;
2833     bool LoseInfo = false;
2834     Probability.convert(llvm::APFloat::IEEEdouble(),
2835                         llvm::RoundingMode::Dynamic, &LoseInfo);
2836     llvm::Type *Ty = ConvertType(ProbArg->getType());
2837     Constant *Confidence = ConstantFP::get(Ty, Probability);
2838     // Don't generate llvm.expect.with.probability on -O0 as the backend
2839     // won't use it for anything.
2840     // Note, we still IRGen ExpectedValue because it could have side-effects.
2841     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2842       return RValue::get(ArgValue);
2843 
2844     Function *FnExpect =
2845         CGM.getIntrinsic(Intrinsic::expect_with_probability, ArgType);
2846     Value *Result = Builder.CreateCall(
2847         FnExpect, {ArgValue, ExpectedValue, Confidence}, "expval");
2848     return RValue::get(Result);
2849   }
2850   case Builtin::BI__builtin_assume_aligned: {
2851     const Expr *Ptr = E->getArg(0);
2852     Value *PtrValue = EmitScalarExpr(Ptr);
2853     Value *OffsetValue =
2854       (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
2855 
2856     Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
2857     ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
2858     if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
2859       AlignmentCI = ConstantInt::get(AlignmentCI->getType(),
2860                                      llvm::Value::MaximumAlignment);
2861 
2862     emitAlignmentAssumption(PtrValue, Ptr,
2863                             /*The expr loc is sufficient.*/ SourceLocation(),
2864                             AlignmentCI, OffsetValue);
2865     return RValue::get(PtrValue);
2866   }
2867   case Builtin::BI__assume:
2868   case Builtin::BI__builtin_assume: {
2869     if (E->getArg(0)->HasSideEffects(getContext()))
2870       return RValue::get(nullptr);
2871 
2872     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2873     Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
2874     return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
2875   }
2876   case Builtin::BI__arithmetic_fence: {
2877     // Create the builtin call if FastMath is selected, and the target
2878     // supports the builtin, otherwise just return the argument.
2879     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2880     llvm::FastMathFlags FMF = Builder.getFastMathFlags();
2881     bool isArithmeticFenceEnabled =
2882         FMF.allowReassoc() &&
2883         getContext().getTargetInfo().checkArithmeticFenceSupported();
2884     QualType ArgType = E->getArg(0)->getType();
2885     if (ArgType->isComplexType()) {
2886       if (isArithmeticFenceEnabled) {
2887         QualType ElementType = ArgType->castAs<ComplexType>()->getElementType();
2888         ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2889         Value *Real = Builder.CreateArithmeticFence(ComplexVal.first,
2890                                                     ConvertType(ElementType));
2891         Value *Imag = Builder.CreateArithmeticFence(ComplexVal.second,
2892                                                     ConvertType(ElementType));
2893         return RValue::getComplex(std::make_pair(Real, Imag));
2894       }
2895       ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2896       Value *Real = ComplexVal.first;
2897       Value *Imag = ComplexVal.second;
2898       return RValue::getComplex(std::make_pair(Real, Imag));
2899     }
2900     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2901     if (isArithmeticFenceEnabled)
2902       return RValue::get(
2903           Builder.CreateArithmeticFence(ArgValue, ConvertType(ArgType)));
2904     return RValue::get(ArgValue);
2905   }
2906   case Builtin::BI__builtin_bswap16:
2907   case Builtin::BI__builtin_bswap32:
2908   case Builtin::BI__builtin_bswap64: {
2909     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
2910   }
2911   case Builtin::BI__builtin_bitreverse8:
2912   case Builtin::BI__builtin_bitreverse16:
2913   case Builtin::BI__builtin_bitreverse32:
2914   case Builtin::BI__builtin_bitreverse64: {
2915     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
2916   }
2917   case Builtin::BI__builtin_rotateleft8:
2918   case Builtin::BI__builtin_rotateleft16:
2919   case Builtin::BI__builtin_rotateleft32:
2920   case Builtin::BI__builtin_rotateleft64:
2921   case Builtin::BI_rotl8: // Microsoft variants of rotate left
2922   case Builtin::BI_rotl16:
2923   case Builtin::BI_rotl:
2924   case Builtin::BI_lrotl:
2925   case Builtin::BI_rotl64:
2926     return emitRotate(E, false);
2927 
2928   case Builtin::BI__builtin_rotateright8:
2929   case Builtin::BI__builtin_rotateright16:
2930   case Builtin::BI__builtin_rotateright32:
2931   case Builtin::BI__builtin_rotateright64:
2932   case Builtin::BI_rotr8: // Microsoft variants of rotate right
2933   case Builtin::BI_rotr16:
2934   case Builtin::BI_rotr:
2935   case Builtin::BI_lrotr:
2936   case Builtin::BI_rotr64:
2937     return emitRotate(E, true);
2938 
2939   case Builtin::BI__builtin_constant_p: {
2940     llvm::Type *ResultType = ConvertType(E->getType());
2941 
2942     const Expr *Arg = E->getArg(0);
2943     QualType ArgType = Arg->getType();
2944     // FIXME: The allowance for Obj-C pointers and block pointers is historical
2945     // and likely a mistake.
2946     if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() &&
2947         !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType())
2948       // Per the GCC documentation, only numeric constants are recognized after
2949       // inlining.
2950       return RValue::get(ConstantInt::get(ResultType, 0));
2951 
2952     if (Arg->HasSideEffects(getContext()))
2953       // The argument is unevaluated, so be conservative if it might have
2954       // side-effects.
2955       return RValue::get(ConstantInt::get(ResultType, 0));
2956 
2957     Value *ArgValue = EmitScalarExpr(Arg);
2958     if (ArgType->isObjCObjectPointerType()) {
2959       // Convert Objective-C objects to id because we cannot distinguish between
2960       // LLVM types for Obj-C classes as they are opaque.
2961       ArgType = CGM.getContext().getObjCIdType();
2962       ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType));
2963     }
2964     Function *F =
2965         CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType));
2966     Value *Result = Builder.CreateCall(F, ArgValue);
2967     if (Result->getType() != ResultType)
2968       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false);
2969     return RValue::get(Result);
2970   }
2971   case Builtin::BI__builtin_dynamic_object_size:
2972   case Builtin::BI__builtin_object_size: {
2973     unsigned Type =
2974         E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
2975     auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
2976 
2977     // We pass this builtin onto the optimizer so that it can figure out the
2978     // object size in more complex cases.
2979     bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size;
2980     return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
2981                                              /*EmittedE=*/nullptr, IsDynamic));
2982   }
2983   case Builtin::BI__builtin_prefetch: {
2984     Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
2985     // FIXME: Technically these constants should of type 'int', yes?
2986     RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
2987       llvm::ConstantInt::get(Int32Ty, 0);
2988     Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
2989       llvm::ConstantInt::get(Int32Ty, 3);
2990     Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
2991     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
2992     return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data}));
2993   }
2994   case Builtin::BI__builtin_readcyclecounter: {
2995     Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
2996     return RValue::get(Builder.CreateCall(F));
2997   }
2998   case Builtin::BI__builtin___clear_cache: {
2999     Value *Begin = EmitScalarExpr(E->getArg(0));
3000     Value *End = EmitScalarExpr(E->getArg(1));
3001     Function *F = CGM.getIntrinsic(Intrinsic::clear_cache);
3002     return RValue::get(Builder.CreateCall(F, {Begin, End}));
3003   }
3004   case Builtin::BI__builtin_trap:
3005     return RValue::get(EmitTrapCall(Intrinsic::trap));
3006   case Builtin::BI__debugbreak:
3007     return RValue::get(EmitTrapCall(Intrinsic::debugtrap));
3008   case Builtin::BI__builtin_unreachable: {
3009     EmitUnreachable(E->getExprLoc());
3010 
3011     // We do need to preserve an insertion point.
3012     EmitBlock(createBasicBlock("unreachable.cont"));
3013 
3014     return RValue::get(nullptr);
3015   }
3016 
3017   case Builtin::BI__builtin_powi:
3018   case Builtin::BI__builtin_powif:
3019   case Builtin::BI__builtin_powil: {
3020     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
3021     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
3022 
3023     if (Builder.getIsFPConstrained()) {
3024       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3025       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_powi,
3026                                      Src0->getType());
3027       return RValue::get(Builder.CreateConstrainedFPCall(F, { Src0, Src1 }));
3028     }
3029 
3030     Function *F = CGM.getIntrinsic(Intrinsic::powi,
3031                                    { Src0->getType(), Src1->getType() });
3032     return RValue::get(Builder.CreateCall(F, { Src0, Src1 }));
3033   }
3034   case Builtin::BI__builtin_isgreater:
3035   case Builtin::BI__builtin_isgreaterequal:
3036   case Builtin::BI__builtin_isless:
3037   case Builtin::BI__builtin_islessequal:
3038   case Builtin::BI__builtin_islessgreater:
3039   case Builtin::BI__builtin_isunordered: {
3040     // Ordered comparisons: we know the arguments to these are matching scalar
3041     // floating point values.
3042     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3043     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3044     Value *LHS = EmitScalarExpr(E->getArg(0));
3045     Value *RHS = EmitScalarExpr(E->getArg(1));
3046 
3047     switch (BuiltinID) {
3048     default: llvm_unreachable("Unknown ordered comparison");
3049     case Builtin::BI__builtin_isgreater:
3050       LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
3051       break;
3052     case Builtin::BI__builtin_isgreaterequal:
3053       LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
3054       break;
3055     case Builtin::BI__builtin_isless:
3056       LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
3057       break;
3058     case Builtin::BI__builtin_islessequal:
3059       LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
3060       break;
3061     case Builtin::BI__builtin_islessgreater:
3062       LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
3063       break;
3064     case Builtin::BI__builtin_isunordered:
3065       LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
3066       break;
3067     }
3068     // ZExt bool to int type.
3069     return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
3070   }
3071   case Builtin::BI__builtin_isnan: {
3072     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3073     Value *V = EmitScalarExpr(E->getArg(0));
3074     llvm::Type *Ty = V->getType();
3075     const llvm::fltSemantics &Semantics = Ty->getFltSemantics();
3076     if (!Builder.getIsFPConstrained() ||
3077         Builder.getDefaultConstrainedExcept() == fp::ebIgnore ||
3078         !Ty->isIEEE()) {
3079       V = Builder.CreateFCmpUNO(V, V, "cmp");
3080       return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3081     }
3082 
3083     if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM))
3084       return RValue::get(Result);
3085 
3086     // NaN has all exp bits set and a non zero significand. Therefore:
3087     // isnan(V) == ((exp mask - (abs(V) & exp mask)) < 0)
3088     unsigned bitsize = Ty->getScalarSizeInBits();
3089     llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize);
3090     Value *IntV = Builder.CreateBitCast(V, IntTy);
3091     APInt AndMask = APInt::getSignedMaxValue(bitsize);
3092     Value *AbsV =
3093         Builder.CreateAnd(IntV, llvm::ConstantInt::get(IntTy, AndMask));
3094     APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt();
3095     Value *Sub =
3096         Builder.CreateSub(llvm::ConstantInt::get(IntTy, ExpMask), AbsV);
3097     // V = sign bit (Sub) <=> V = (Sub < 0)
3098     V = Builder.CreateLShr(Sub, llvm::ConstantInt::get(IntTy, bitsize - 1));
3099     if (bitsize > 32)
3100       V = Builder.CreateTrunc(V, ConvertType(E->getType()));
3101     return RValue::get(V);
3102   }
3103 
3104   case Builtin::BI__builtin_matrix_transpose: {
3105     const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>();
3106     Value *MatValue = EmitScalarExpr(E->getArg(0));
3107     MatrixBuilder<CGBuilderTy> MB(Builder);
3108     Value *Result = MB.CreateMatrixTranspose(MatValue, MatrixTy->getNumRows(),
3109                                              MatrixTy->getNumColumns());
3110     return RValue::get(Result);
3111   }
3112 
3113   case Builtin::BI__builtin_matrix_column_major_load: {
3114     MatrixBuilder<CGBuilderTy> MB(Builder);
3115     // Emit everything that isn't dependent on the first parameter type
3116     Value *Stride = EmitScalarExpr(E->getArg(3));
3117     const auto *ResultTy = E->getType()->getAs<ConstantMatrixType>();
3118     auto *PtrTy = E->getArg(0)->getType()->getAs<PointerType>();
3119     assert(PtrTy && "arg0 must be of pointer type");
3120     bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
3121 
3122     Address Src = EmitPointerWithAlignment(E->getArg(0));
3123     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(0)->getType(),
3124                         E->getArg(0)->getExprLoc(), FD, 0);
3125     Value *Result = MB.CreateColumnMajorLoad(
3126         Src.getPointer(), Align(Src.getAlignment().getQuantity()), Stride,
3127         IsVolatile, ResultTy->getNumRows(), ResultTy->getNumColumns(),
3128         "matrix");
3129     return RValue::get(Result);
3130   }
3131 
3132   case Builtin::BI__builtin_matrix_column_major_store: {
3133     MatrixBuilder<CGBuilderTy> MB(Builder);
3134     Value *Matrix = EmitScalarExpr(E->getArg(0));
3135     Address Dst = EmitPointerWithAlignment(E->getArg(1));
3136     Value *Stride = EmitScalarExpr(E->getArg(2));
3137 
3138     const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>();
3139     auto *PtrTy = E->getArg(1)->getType()->getAs<PointerType>();
3140     assert(PtrTy && "arg1 must be of pointer type");
3141     bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
3142 
3143     EmitNonNullArgCheck(RValue::get(Dst.getPointer()), E->getArg(1)->getType(),
3144                         E->getArg(1)->getExprLoc(), FD, 0);
3145     Value *Result = MB.CreateColumnMajorStore(
3146         Matrix, Dst.getPointer(), Align(Dst.getAlignment().getQuantity()),
3147         Stride, IsVolatile, MatrixTy->getNumRows(), MatrixTy->getNumColumns());
3148     return RValue::get(Result);
3149   }
3150 
3151   case Builtin::BIfinite:
3152   case Builtin::BI__finite:
3153   case Builtin::BIfinitef:
3154   case Builtin::BI__finitef:
3155   case Builtin::BIfinitel:
3156   case Builtin::BI__finitel:
3157   case Builtin::BI__builtin_isinf:
3158   case Builtin::BI__builtin_isfinite: {
3159     // isinf(x)    --> fabs(x) == infinity
3160     // isfinite(x) --> fabs(x) != infinity
3161     // x != NaN via the ordered compare in either case.
3162     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3163     Value *V = EmitScalarExpr(E->getArg(0));
3164     llvm::Type *Ty = V->getType();
3165     if (!Builder.getIsFPConstrained() ||
3166         Builder.getDefaultConstrainedExcept() == fp::ebIgnore ||
3167         !Ty->isIEEE()) {
3168       Value *Fabs = EmitFAbs(*this, V);
3169       Constant *Infinity = ConstantFP::getInfinity(V->getType());
3170       CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf)
3171                                     ? CmpInst::FCMP_OEQ
3172                                     : CmpInst::FCMP_ONE;
3173       Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf");
3174       return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType())));
3175     }
3176 
3177     if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM))
3178       return RValue::get(Result);
3179 
3180     // Inf values have all exp bits set and a zero significand. Therefore:
3181     // isinf(V) == ((V << 1) == ((exp mask) << 1))
3182     // isfinite(V) == ((V << 1) < ((exp mask) << 1)) using unsigned comparison
3183     unsigned bitsize = Ty->getScalarSizeInBits();
3184     llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize);
3185     Value *IntV = Builder.CreateBitCast(V, IntTy);
3186     Value *Shl1 = Builder.CreateShl(IntV, 1);
3187     const llvm::fltSemantics &Semantics = Ty->getFltSemantics();
3188     APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt();
3189     Value *ExpMaskShl1 = llvm::ConstantInt::get(IntTy, ExpMask.shl(1));
3190     if (BuiltinID == Builtin::BI__builtin_isinf)
3191       V = Builder.CreateICmpEQ(Shl1, ExpMaskShl1);
3192     else
3193       V = Builder.CreateICmpULT(Shl1, ExpMaskShl1);
3194     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3195   }
3196 
3197   case Builtin::BI__builtin_isinf_sign: {
3198     // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
3199     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3200     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3201     Value *Arg = EmitScalarExpr(E->getArg(0));
3202     Value *AbsArg = EmitFAbs(*this, Arg);
3203     Value *IsInf = Builder.CreateFCmpOEQ(
3204         AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
3205     Value *IsNeg = EmitSignBit(*this, Arg);
3206 
3207     llvm::Type *IntTy = ConvertType(E->getType());
3208     Value *Zero = Constant::getNullValue(IntTy);
3209     Value *One = ConstantInt::get(IntTy, 1);
3210     Value *NegativeOne = ConstantInt::get(IntTy, -1);
3211     Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
3212     Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
3213     return RValue::get(Result);
3214   }
3215 
3216   case Builtin::BI__builtin_isnormal: {
3217     // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
3218     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3219     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3220     Value *V = EmitScalarExpr(E->getArg(0));
3221     Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
3222 
3223     Value *Abs = EmitFAbs(*this, V);
3224     Value *IsLessThanInf =
3225       Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
3226     APFloat Smallest = APFloat::getSmallestNormalized(
3227                    getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
3228     Value *IsNormal =
3229       Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
3230                             "isnormal");
3231     V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
3232     V = Builder.CreateAnd(V, IsNormal, "and");
3233     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3234   }
3235 
3236   case Builtin::BI__builtin_flt_rounds: {
3237     Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds);
3238 
3239     llvm::Type *ResultType = ConvertType(E->getType());
3240     Value *Result = Builder.CreateCall(F);
3241     if (Result->getType() != ResultType)
3242       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3243                                      "cast");
3244     return RValue::get(Result);
3245   }
3246 
3247   case Builtin::BI__builtin_fpclassify: {
3248     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3249     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3250     Value *V = EmitScalarExpr(E->getArg(5));
3251     llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
3252 
3253     // Create Result
3254     BasicBlock *Begin = Builder.GetInsertBlock();
3255     BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
3256     Builder.SetInsertPoint(End);
3257     PHINode *Result =
3258       Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
3259                         "fpclassify_result");
3260 
3261     // if (V==0) return FP_ZERO
3262     Builder.SetInsertPoint(Begin);
3263     Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
3264                                           "iszero");
3265     Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
3266     BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
3267     Builder.CreateCondBr(IsZero, End, NotZero);
3268     Result->addIncoming(ZeroLiteral, Begin);
3269 
3270     // if (V != V) return FP_NAN
3271     Builder.SetInsertPoint(NotZero);
3272     Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
3273     Value *NanLiteral = EmitScalarExpr(E->getArg(0));
3274     BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
3275     Builder.CreateCondBr(IsNan, End, NotNan);
3276     Result->addIncoming(NanLiteral, NotZero);
3277 
3278     // if (fabs(V) == infinity) return FP_INFINITY
3279     Builder.SetInsertPoint(NotNan);
3280     Value *VAbs = EmitFAbs(*this, V);
3281     Value *IsInf =
3282       Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
3283                             "isinf");
3284     Value *InfLiteral = EmitScalarExpr(E->getArg(1));
3285     BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
3286     Builder.CreateCondBr(IsInf, End, NotInf);
3287     Result->addIncoming(InfLiteral, NotNan);
3288 
3289     // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
3290     Builder.SetInsertPoint(NotInf);
3291     APFloat Smallest = APFloat::getSmallestNormalized(
3292         getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
3293     Value *IsNormal =
3294       Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
3295                             "isnormal");
3296     Value *NormalResult =
3297       Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
3298                            EmitScalarExpr(E->getArg(3)));
3299     Builder.CreateBr(End);
3300     Result->addIncoming(NormalResult, NotInf);
3301 
3302     // return Result
3303     Builder.SetInsertPoint(End);
3304     return RValue::get(Result);
3305   }
3306 
3307   case Builtin::BIalloca:
3308   case Builtin::BI_alloca:
3309   case Builtin::BI__builtin_alloca: {
3310     Value *Size = EmitScalarExpr(E->getArg(0));
3311     const TargetInfo &TI = getContext().getTargetInfo();
3312     // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
3313     const Align SuitableAlignmentInBytes =
3314         CGM.getContext()
3315             .toCharUnitsFromBits(TI.getSuitableAlign())
3316             .getAsAlign();
3317     AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
3318     AI->setAlignment(SuitableAlignmentInBytes);
3319     initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes);
3320     return RValue::get(AI);
3321   }
3322 
3323   case Builtin::BI__builtin_alloca_with_align: {
3324     Value *Size = EmitScalarExpr(E->getArg(0));
3325     Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
3326     auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
3327     unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
3328     const Align AlignmentInBytes =
3329         CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getAsAlign();
3330     AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
3331     AI->setAlignment(AlignmentInBytes);
3332     initializeAlloca(*this, AI, Size, AlignmentInBytes);
3333     return RValue::get(AI);
3334   }
3335 
3336   case Builtin::BIbzero:
3337   case Builtin::BI__builtin_bzero: {
3338     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3339     Value *SizeVal = EmitScalarExpr(E->getArg(1));
3340     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3341                         E->getArg(0)->getExprLoc(), FD, 0);
3342     Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
3343     return RValue::get(nullptr);
3344   }
3345   case Builtin::BImemcpy:
3346   case Builtin::BI__builtin_memcpy:
3347   case Builtin::BImempcpy:
3348   case Builtin::BI__builtin_mempcpy: {
3349     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3350     Address Src = EmitPointerWithAlignment(E->getArg(1));
3351     Value *SizeVal = EmitScalarExpr(E->getArg(2));
3352     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3353                         E->getArg(0)->getExprLoc(), FD, 0);
3354     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3355                         E->getArg(1)->getExprLoc(), FD, 1);
3356     Builder.CreateMemCpy(Dest, Src, SizeVal, false);
3357     if (BuiltinID == Builtin::BImempcpy ||
3358         BuiltinID == Builtin::BI__builtin_mempcpy)
3359       return RValue::get(Builder.CreateInBoundsGEP(Dest.getElementType(),
3360                                                    Dest.getPointer(), SizeVal));
3361     else
3362       return RValue::get(Dest.getPointer());
3363   }
3364 
3365   case Builtin::BI__builtin_memcpy_inline: {
3366     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3367     Address Src = EmitPointerWithAlignment(E->getArg(1));
3368     uint64_t Size =
3369         E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
3370     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3371                         E->getArg(0)->getExprLoc(), FD, 0);
3372     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3373                         E->getArg(1)->getExprLoc(), FD, 1);
3374     Builder.CreateMemCpyInline(Dest, Src, Size);
3375     return RValue::get(nullptr);
3376   }
3377 
3378   case Builtin::BI__builtin_char_memchr:
3379     BuiltinID = Builtin::BI__builtin_memchr;
3380     break;
3381 
3382   case Builtin::BI__builtin___memcpy_chk: {
3383     // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
3384     Expr::EvalResult SizeResult, DstSizeResult;
3385     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3386         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3387       break;
3388     llvm::APSInt Size = SizeResult.Val.getInt();
3389     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3390     if (Size.ugt(DstSize))
3391       break;
3392     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3393     Address Src = EmitPointerWithAlignment(E->getArg(1));
3394     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3395     Builder.CreateMemCpy(Dest, Src, SizeVal, false);
3396     return RValue::get(Dest.getPointer());
3397   }
3398 
3399   case Builtin::BI__builtin_objc_memmove_collectable: {
3400     Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
3401     Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
3402     Value *SizeVal = EmitScalarExpr(E->getArg(2));
3403     CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
3404                                                   DestAddr, SrcAddr, SizeVal);
3405     return RValue::get(DestAddr.getPointer());
3406   }
3407 
3408   case Builtin::BI__builtin___memmove_chk: {
3409     // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
3410     Expr::EvalResult SizeResult, DstSizeResult;
3411     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3412         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3413       break;
3414     llvm::APSInt Size = SizeResult.Val.getInt();
3415     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3416     if (Size.ugt(DstSize))
3417       break;
3418     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3419     Address Src = EmitPointerWithAlignment(E->getArg(1));
3420     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3421     Builder.CreateMemMove(Dest, Src, SizeVal, false);
3422     return RValue::get(Dest.getPointer());
3423   }
3424 
3425   case Builtin::BImemmove:
3426   case Builtin::BI__builtin_memmove: {
3427     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3428     Address Src = EmitPointerWithAlignment(E->getArg(1));
3429     Value *SizeVal = EmitScalarExpr(E->getArg(2));
3430     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3431                         E->getArg(0)->getExprLoc(), FD, 0);
3432     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3433                         E->getArg(1)->getExprLoc(), FD, 1);
3434     Builder.CreateMemMove(Dest, Src, SizeVal, false);
3435     return RValue::get(Dest.getPointer());
3436   }
3437   case Builtin::BImemset:
3438   case Builtin::BI__builtin_memset: {
3439     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3440     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
3441                                          Builder.getInt8Ty());
3442     Value *SizeVal = EmitScalarExpr(E->getArg(2));
3443     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3444                         E->getArg(0)->getExprLoc(), FD, 0);
3445     Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
3446     return RValue::get(Dest.getPointer());
3447   }
3448   case Builtin::BI__builtin___memset_chk: {
3449     // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
3450     Expr::EvalResult SizeResult, DstSizeResult;
3451     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3452         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3453       break;
3454     llvm::APSInt Size = SizeResult.Val.getInt();
3455     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3456     if (Size.ugt(DstSize))
3457       break;
3458     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3459     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
3460                                          Builder.getInt8Ty());
3461     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3462     Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
3463     return RValue::get(Dest.getPointer());
3464   }
3465   case Builtin::BI__builtin_wmemchr: {
3466     // The MSVC runtime library does not provide a definition of wmemchr, so we
3467     // need an inline implementation.
3468     if (!getTarget().getTriple().isOSMSVCRT())
3469       break;
3470 
3471     llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
3472     Value *Str = EmitScalarExpr(E->getArg(0));
3473     Value *Chr = EmitScalarExpr(E->getArg(1));
3474     Value *Size = EmitScalarExpr(E->getArg(2));
3475 
3476     BasicBlock *Entry = Builder.GetInsertBlock();
3477     BasicBlock *CmpEq = createBasicBlock("wmemchr.eq");
3478     BasicBlock *Next = createBasicBlock("wmemchr.next");
3479     BasicBlock *Exit = createBasicBlock("wmemchr.exit");
3480     Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
3481     Builder.CreateCondBr(SizeEq0, Exit, CmpEq);
3482 
3483     EmitBlock(CmpEq);
3484     PHINode *StrPhi = Builder.CreatePHI(Str->getType(), 2);
3485     StrPhi->addIncoming(Str, Entry);
3486     PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
3487     SizePhi->addIncoming(Size, Entry);
3488     CharUnits WCharAlign =
3489         getContext().getTypeAlignInChars(getContext().WCharTy);
3490     Value *StrCh = Builder.CreateAlignedLoad(WCharTy, StrPhi, WCharAlign);
3491     Value *FoundChr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 0);
3492     Value *StrEqChr = Builder.CreateICmpEQ(StrCh, Chr);
3493     Builder.CreateCondBr(StrEqChr, Exit, Next);
3494 
3495     EmitBlock(Next);
3496     Value *NextStr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 1);
3497     Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
3498     Value *NextSizeEq0 =
3499         Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
3500     Builder.CreateCondBr(NextSizeEq0, Exit, CmpEq);
3501     StrPhi->addIncoming(NextStr, Next);
3502     SizePhi->addIncoming(NextSize, Next);
3503 
3504     EmitBlock(Exit);
3505     PHINode *Ret = Builder.CreatePHI(Str->getType(), 3);
3506     Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Entry);
3507     Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Next);
3508     Ret->addIncoming(FoundChr, CmpEq);
3509     return RValue::get(Ret);
3510   }
3511   case Builtin::BI__builtin_wmemcmp: {
3512     // The MSVC runtime library does not provide a definition of wmemcmp, so we
3513     // need an inline implementation.
3514     if (!getTarget().getTriple().isOSMSVCRT())
3515       break;
3516 
3517     llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
3518 
3519     Value *Dst = EmitScalarExpr(E->getArg(0));
3520     Value *Src = EmitScalarExpr(E->getArg(1));
3521     Value *Size = EmitScalarExpr(E->getArg(2));
3522 
3523     BasicBlock *Entry = Builder.GetInsertBlock();
3524     BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
3525     BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
3526     BasicBlock *Next = createBasicBlock("wmemcmp.next");
3527     BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
3528     Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
3529     Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
3530 
3531     EmitBlock(CmpGT);
3532     PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
3533     DstPhi->addIncoming(Dst, Entry);
3534     PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
3535     SrcPhi->addIncoming(Src, Entry);
3536     PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
3537     SizePhi->addIncoming(Size, Entry);
3538     CharUnits WCharAlign =
3539         getContext().getTypeAlignInChars(getContext().WCharTy);
3540     Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
3541     Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
3542     Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
3543     Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
3544 
3545     EmitBlock(CmpLT);
3546     Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
3547     Builder.CreateCondBr(DstLtSrc, Exit, Next);
3548 
3549     EmitBlock(Next);
3550     Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
3551     Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
3552     Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
3553     Value *NextSizeEq0 =
3554         Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
3555     Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
3556     DstPhi->addIncoming(NextDst, Next);
3557     SrcPhi->addIncoming(NextSrc, Next);
3558     SizePhi->addIncoming(NextSize, Next);
3559 
3560     EmitBlock(Exit);
3561     PHINode *Ret = Builder.CreatePHI(IntTy, 4);
3562     Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
3563     Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
3564     Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
3565     Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
3566     return RValue::get(Ret);
3567   }
3568   case Builtin::BI__builtin_dwarf_cfa: {
3569     // The offset in bytes from the first argument to the CFA.
3570     //
3571     // Why on earth is this in the frontend?  Is there any reason at
3572     // all that the backend can't reasonably determine this while
3573     // lowering llvm.eh.dwarf.cfa()?
3574     //
3575     // TODO: If there's a satisfactory reason, add a target hook for
3576     // this instead of hard-coding 0, which is correct for most targets.
3577     int32_t Offset = 0;
3578 
3579     Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
3580     return RValue::get(Builder.CreateCall(F,
3581                                       llvm::ConstantInt::get(Int32Ty, Offset)));
3582   }
3583   case Builtin::BI__builtin_return_address: {
3584     Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
3585                                                    getContext().UnsignedIntTy);
3586     Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
3587     return RValue::get(Builder.CreateCall(F, Depth));
3588   }
3589   case Builtin::BI_ReturnAddress: {
3590     Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
3591     return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
3592   }
3593   case Builtin::BI__builtin_frame_address: {
3594     Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
3595                                                    getContext().UnsignedIntTy);
3596     Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy);
3597     return RValue::get(Builder.CreateCall(F, Depth));
3598   }
3599   case Builtin::BI__builtin_extract_return_addr: {
3600     Value *Address = EmitScalarExpr(E->getArg(0));
3601     Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
3602     return RValue::get(Result);
3603   }
3604   case Builtin::BI__builtin_frob_return_addr: {
3605     Value *Address = EmitScalarExpr(E->getArg(0));
3606     Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
3607     return RValue::get(Result);
3608   }
3609   case Builtin::BI__builtin_dwarf_sp_column: {
3610     llvm::IntegerType *Ty
3611       = cast<llvm::IntegerType>(ConvertType(E->getType()));
3612     int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
3613     if (Column == -1) {
3614       CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
3615       return RValue::get(llvm::UndefValue::get(Ty));
3616     }
3617     return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
3618   }
3619   case Builtin::BI__builtin_init_dwarf_reg_size_table: {
3620     Value *Address = EmitScalarExpr(E->getArg(0));
3621     if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
3622       CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
3623     return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
3624   }
3625   case Builtin::BI__builtin_eh_return: {
3626     Value *Int = EmitScalarExpr(E->getArg(0));
3627     Value *Ptr = EmitScalarExpr(E->getArg(1));
3628 
3629     llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
3630     assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
3631            "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
3632     Function *F =
3633         CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32
3634                                                     : Intrinsic::eh_return_i64);
3635     Builder.CreateCall(F, {Int, Ptr});
3636     Builder.CreateUnreachable();
3637 
3638     // We do need to preserve an insertion point.
3639     EmitBlock(createBasicBlock("builtin_eh_return.cont"));
3640 
3641     return RValue::get(nullptr);
3642   }
3643   case Builtin::BI__builtin_unwind_init: {
3644     Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
3645     return RValue::get(Builder.CreateCall(F));
3646   }
3647   case Builtin::BI__builtin_extend_pointer: {
3648     // Extends a pointer to the size of an _Unwind_Word, which is
3649     // uint64_t on all platforms.  Generally this gets poked into a
3650     // register and eventually used as an address, so if the
3651     // addressing registers are wider than pointers and the platform
3652     // doesn't implicitly ignore high-order bits when doing
3653     // addressing, we need to make sure we zext / sext based on
3654     // the platform's expectations.
3655     //
3656     // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
3657 
3658     // Cast the pointer to intptr_t.
3659     Value *Ptr = EmitScalarExpr(E->getArg(0));
3660     Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
3661 
3662     // If that's 64 bits, we're done.
3663     if (IntPtrTy->getBitWidth() == 64)
3664       return RValue::get(Result);
3665 
3666     // Otherwise, ask the codegen data what to do.
3667     if (getTargetHooks().extendPointerWithSExt())
3668       return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
3669     else
3670       return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
3671   }
3672   case Builtin::BI__builtin_setjmp: {
3673     // Buffer is a void**.
3674     Address Buf = EmitPointerWithAlignment(E->getArg(0));
3675 
3676     // Store the frame pointer to the setjmp buffer.
3677     Value *FrameAddr = Builder.CreateCall(
3678         CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy),
3679         ConstantInt::get(Int32Ty, 0));
3680     Builder.CreateStore(FrameAddr, Buf);
3681 
3682     // Store the stack pointer to the setjmp buffer.
3683     Value *StackAddr =
3684         Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
3685     Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2);
3686     Builder.CreateStore(StackAddr, StackSaveSlot);
3687 
3688     // Call LLVM's EH setjmp, which is lightweight.
3689     Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
3690     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
3691     return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
3692   }
3693   case Builtin::BI__builtin_longjmp: {
3694     Value *Buf = EmitScalarExpr(E->getArg(0));
3695     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
3696 
3697     // Call LLVM's EH longjmp, which is lightweight.
3698     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
3699 
3700     // longjmp doesn't return; mark this as unreachable.
3701     Builder.CreateUnreachable();
3702 
3703     // We do need to preserve an insertion point.
3704     EmitBlock(createBasicBlock("longjmp.cont"));
3705 
3706     return RValue::get(nullptr);
3707   }
3708   case Builtin::BI__builtin_launder: {
3709     const Expr *Arg = E->getArg(0);
3710     QualType ArgTy = Arg->getType()->getPointeeType();
3711     Value *Ptr = EmitScalarExpr(Arg);
3712     if (TypeRequiresBuiltinLaunder(CGM, ArgTy))
3713       Ptr = Builder.CreateLaunderInvariantGroup(Ptr);
3714 
3715     return RValue::get(Ptr);
3716   }
3717   case Builtin::BI__sync_fetch_and_add:
3718   case Builtin::BI__sync_fetch_and_sub:
3719   case Builtin::BI__sync_fetch_and_or:
3720   case Builtin::BI__sync_fetch_and_and:
3721   case Builtin::BI__sync_fetch_and_xor:
3722   case Builtin::BI__sync_fetch_and_nand:
3723   case Builtin::BI__sync_add_and_fetch:
3724   case Builtin::BI__sync_sub_and_fetch:
3725   case Builtin::BI__sync_and_and_fetch:
3726   case Builtin::BI__sync_or_and_fetch:
3727   case Builtin::BI__sync_xor_and_fetch:
3728   case Builtin::BI__sync_nand_and_fetch:
3729   case Builtin::BI__sync_val_compare_and_swap:
3730   case Builtin::BI__sync_bool_compare_and_swap:
3731   case Builtin::BI__sync_lock_test_and_set:
3732   case Builtin::BI__sync_lock_release:
3733   case Builtin::BI__sync_swap:
3734     llvm_unreachable("Shouldn't make it through sema");
3735   case Builtin::BI__sync_fetch_and_add_1:
3736   case Builtin::BI__sync_fetch_and_add_2:
3737   case Builtin::BI__sync_fetch_and_add_4:
3738   case Builtin::BI__sync_fetch_and_add_8:
3739   case Builtin::BI__sync_fetch_and_add_16:
3740     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
3741   case Builtin::BI__sync_fetch_and_sub_1:
3742   case Builtin::BI__sync_fetch_and_sub_2:
3743   case Builtin::BI__sync_fetch_and_sub_4:
3744   case Builtin::BI__sync_fetch_and_sub_8:
3745   case Builtin::BI__sync_fetch_and_sub_16:
3746     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
3747   case Builtin::BI__sync_fetch_and_or_1:
3748   case Builtin::BI__sync_fetch_and_or_2:
3749   case Builtin::BI__sync_fetch_and_or_4:
3750   case Builtin::BI__sync_fetch_and_or_8:
3751   case Builtin::BI__sync_fetch_and_or_16:
3752     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
3753   case Builtin::BI__sync_fetch_and_and_1:
3754   case Builtin::BI__sync_fetch_and_and_2:
3755   case Builtin::BI__sync_fetch_and_and_4:
3756   case Builtin::BI__sync_fetch_and_and_8:
3757   case Builtin::BI__sync_fetch_and_and_16:
3758     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
3759   case Builtin::BI__sync_fetch_and_xor_1:
3760   case Builtin::BI__sync_fetch_and_xor_2:
3761   case Builtin::BI__sync_fetch_and_xor_4:
3762   case Builtin::BI__sync_fetch_and_xor_8:
3763   case Builtin::BI__sync_fetch_and_xor_16:
3764     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
3765   case Builtin::BI__sync_fetch_and_nand_1:
3766   case Builtin::BI__sync_fetch_and_nand_2:
3767   case Builtin::BI__sync_fetch_and_nand_4:
3768   case Builtin::BI__sync_fetch_and_nand_8:
3769   case Builtin::BI__sync_fetch_and_nand_16:
3770     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
3771 
3772   // Clang extensions: not overloaded yet.
3773   case Builtin::BI__sync_fetch_and_min:
3774     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
3775   case Builtin::BI__sync_fetch_and_max:
3776     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
3777   case Builtin::BI__sync_fetch_and_umin:
3778     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
3779   case Builtin::BI__sync_fetch_and_umax:
3780     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
3781 
3782   case Builtin::BI__sync_add_and_fetch_1:
3783   case Builtin::BI__sync_add_and_fetch_2:
3784   case Builtin::BI__sync_add_and_fetch_4:
3785   case Builtin::BI__sync_add_and_fetch_8:
3786   case Builtin::BI__sync_add_and_fetch_16:
3787     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
3788                                 llvm::Instruction::Add);
3789   case Builtin::BI__sync_sub_and_fetch_1:
3790   case Builtin::BI__sync_sub_and_fetch_2:
3791   case Builtin::BI__sync_sub_and_fetch_4:
3792   case Builtin::BI__sync_sub_and_fetch_8:
3793   case Builtin::BI__sync_sub_and_fetch_16:
3794     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
3795                                 llvm::Instruction::Sub);
3796   case Builtin::BI__sync_and_and_fetch_1:
3797   case Builtin::BI__sync_and_and_fetch_2:
3798   case Builtin::BI__sync_and_and_fetch_4:
3799   case Builtin::BI__sync_and_and_fetch_8:
3800   case Builtin::BI__sync_and_and_fetch_16:
3801     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
3802                                 llvm::Instruction::And);
3803   case Builtin::BI__sync_or_and_fetch_1:
3804   case Builtin::BI__sync_or_and_fetch_2:
3805   case Builtin::BI__sync_or_and_fetch_4:
3806   case Builtin::BI__sync_or_and_fetch_8:
3807   case Builtin::BI__sync_or_and_fetch_16:
3808     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
3809                                 llvm::Instruction::Or);
3810   case Builtin::BI__sync_xor_and_fetch_1:
3811   case Builtin::BI__sync_xor_and_fetch_2:
3812   case Builtin::BI__sync_xor_and_fetch_4:
3813   case Builtin::BI__sync_xor_and_fetch_8:
3814   case Builtin::BI__sync_xor_and_fetch_16:
3815     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
3816                                 llvm::Instruction::Xor);
3817   case Builtin::BI__sync_nand_and_fetch_1:
3818   case Builtin::BI__sync_nand_and_fetch_2:
3819   case Builtin::BI__sync_nand_and_fetch_4:
3820   case Builtin::BI__sync_nand_and_fetch_8:
3821   case Builtin::BI__sync_nand_and_fetch_16:
3822     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
3823                                 llvm::Instruction::And, true);
3824 
3825   case Builtin::BI__sync_val_compare_and_swap_1:
3826   case Builtin::BI__sync_val_compare_and_swap_2:
3827   case Builtin::BI__sync_val_compare_and_swap_4:
3828   case Builtin::BI__sync_val_compare_and_swap_8:
3829   case Builtin::BI__sync_val_compare_and_swap_16:
3830     return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
3831 
3832   case Builtin::BI__sync_bool_compare_and_swap_1:
3833   case Builtin::BI__sync_bool_compare_and_swap_2:
3834   case Builtin::BI__sync_bool_compare_and_swap_4:
3835   case Builtin::BI__sync_bool_compare_and_swap_8:
3836   case Builtin::BI__sync_bool_compare_and_swap_16:
3837     return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
3838 
3839   case Builtin::BI__sync_swap_1:
3840   case Builtin::BI__sync_swap_2:
3841   case Builtin::BI__sync_swap_4:
3842   case Builtin::BI__sync_swap_8:
3843   case Builtin::BI__sync_swap_16:
3844     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
3845 
3846   case Builtin::BI__sync_lock_test_and_set_1:
3847   case Builtin::BI__sync_lock_test_and_set_2:
3848   case Builtin::BI__sync_lock_test_and_set_4:
3849   case Builtin::BI__sync_lock_test_and_set_8:
3850   case Builtin::BI__sync_lock_test_and_set_16:
3851     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
3852 
3853   case Builtin::BI__sync_lock_release_1:
3854   case Builtin::BI__sync_lock_release_2:
3855   case Builtin::BI__sync_lock_release_4:
3856   case Builtin::BI__sync_lock_release_8:
3857   case Builtin::BI__sync_lock_release_16: {
3858     Value *Ptr = EmitScalarExpr(E->getArg(0));
3859     QualType ElTy = E->getArg(0)->getType()->getPointeeType();
3860     CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
3861     llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
3862                                              StoreSize.getQuantity() * 8);
3863     Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
3864     llvm::StoreInst *Store =
3865       Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
3866                                  StoreSize);
3867     Store->setAtomic(llvm::AtomicOrdering::Release);
3868     return RValue::get(nullptr);
3869   }
3870 
3871   case Builtin::BI__sync_synchronize: {
3872     // We assume this is supposed to correspond to a C++0x-style
3873     // sequentially-consistent fence (i.e. this is only usable for
3874     // synchronization, not device I/O or anything like that). This intrinsic
3875     // is really badly designed in the sense that in theory, there isn't
3876     // any way to safely use it... but in practice, it mostly works
3877     // to use it with non-atomic loads and stores to get acquire/release
3878     // semantics.
3879     Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
3880     return RValue::get(nullptr);
3881   }
3882 
3883   case Builtin::BI__builtin_nontemporal_load:
3884     return RValue::get(EmitNontemporalLoad(*this, E));
3885   case Builtin::BI__builtin_nontemporal_store:
3886     return RValue::get(EmitNontemporalStore(*this, E));
3887   case Builtin::BI__c11_atomic_is_lock_free:
3888   case Builtin::BI__atomic_is_lock_free: {
3889     // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
3890     // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
3891     // _Atomic(T) is always properly-aligned.
3892     const char *LibCallName = "__atomic_is_lock_free";
3893     CallArgList Args;
3894     Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
3895              getContext().getSizeType());
3896     if (BuiltinID == Builtin::BI__atomic_is_lock_free)
3897       Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
3898                getContext().VoidPtrTy);
3899     else
3900       Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
3901                getContext().VoidPtrTy);
3902     const CGFunctionInfo &FuncInfo =
3903         CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
3904     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
3905     llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
3906     return EmitCall(FuncInfo, CGCallee::forDirect(Func),
3907                     ReturnValueSlot(), Args);
3908   }
3909 
3910   case Builtin::BI__atomic_test_and_set: {
3911     // Look at the argument type to determine whether this is a volatile
3912     // operation. The parameter type is always volatile.
3913     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
3914     bool Volatile =
3915         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
3916 
3917     Value *Ptr = EmitScalarExpr(E->getArg(0));
3918     unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
3919     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
3920     Value *NewVal = Builder.getInt8(1);
3921     Value *Order = EmitScalarExpr(E->getArg(1));
3922     if (isa<llvm::ConstantInt>(Order)) {
3923       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3924       AtomicRMWInst *Result = nullptr;
3925       switch (ord) {
3926       case 0:  // memory_order_relaxed
3927       default: // invalid order
3928         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3929                                          llvm::AtomicOrdering::Monotonic);
3930         break;
3931       case 1: // memory_order_consume
3932       case 2: // memory_order_acquire
3933         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3934                                          llvm::AtomicOrdering::Acquire);
3935         break;
3936       case 3: // memory_order_release
3937         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3938                                          llvm::AtomicOrdering::Release);
3939         break;
3940       case 4: // memory_order_acq_rel
3941 
3942         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3943                                          llvm::AtomicOrdering::AcquireRelease);
3944         break;
3945       case 5: // memory_order_seq_cst
3946         Result = Builder.CreateAtomicRMW(
3947             llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3948             llvm::AtomicOrdering::SequentiallyConsistent);
3949         break;
3950       }
3951       Result->setVolatile(Volatile);
3952       return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
3953     }
3954 
3955     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3956 
3957     llvm::BasicBlock *BBs[5] = {
3958       createBasicBlock("monotonic", CurFn),
3959       createBasicBlock("acquire", CurFn),
3960       createBasicBlock("release", CurFn),
3961       createBasicBlock("acqrel", CurFn),
3962       createBasicBlock("seqcst", CurFn)
3963     };
3964     llvm::AtomicOrdering Orders[5] = {
3965         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
3966         llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
3967         llvm::AtomicOrdering::SequentiallyConsistent};
3968 
3969     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3970     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
3971 
3972     Builder.SetInsertPoint(ContBB);
3973     PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
3974 
3975     for (unsigned i = 0; i < 5; ++i) {
3976       Builder.SetInsertPoint(BBs[i]);
3977       AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
3978                                                    Ptr, NewVal, Orders[i]);
3979       RMW->setVolatile(Volatile);
3980       Result->addIncoming(RMW, BBs[i]);
3981       Builder.CreateBr(ContBB);
3982     }
3983 
3984     SI->addCase(Builder.getInt32(0), BBs[0]);
3985     SI->addCase(Builder.getInt32(1), BBs[1]);
3986     SI->addCase(Builder.getInt32(2), BBs[1]);
3987     SI->addCase(Builder.getInt32(3), BBs[2]);
3988     SI->addCase(Builder.getInt32(4), BBs[3]);
3989     SI->addCase(Builder.getInt32(5), BBs[4]);
3990 
3991     Builder.SetInsertPoint(ContBB);
3992     return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
3993   }
3994 
3995   case Builtin::BI__atomic_clear: {
3996     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
3997     bool Volatile =
3998         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
3999 
4000     Address Ptr = EmitPointerWithAlignment(E->getArg(0));
4001     unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace();
4002     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
4003     Value *NewVal = Builder.getInt8(0);
4004     Value *Order = EmitScalarExpr(E->getArg(1));
4005     if (isa<llvm::ConstantInt>(Order)) {
4006       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4007       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
4008       switch (ord) {
4009       case 0:  // memory_order_relaxed
4010       default: // invalid order
4011         Store->setOrdering(llvm::AtomicOrdering::Monotonic);
4012         break;
4013       case 3:  // memory_order_release
4014         Store->setOrdering(llvm::AtomicOrdering::Release);
4015         break;
4016       case 5:  // memory_order_seq_cst
4017         Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
4018         break;
4019       }
4020       return RValue::get(nullptr);
4021     }
4022 
4023     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4024 
4025     llvm::BasicBlock *BBs[3] = {
4026       createBasicBlock("monotonic", CurFn),
4027       createBasicBlock("release", CurFn),
4028       createBasicBlock("seqcst", CurFn)
4029     };
4030     llvm::AtomicOrdering Orders[3] = {
4031         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
4032         llvm::AtomicOrdering::SequentiallyConsistent};
4033 
4034     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4035     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
4036 
4037     for (unsigned i = 0; i < 3; ++i) {
4038       Builder.SetInsertPoint(BBs[i]);
4039       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
4040       Store->setOrdering(Orders[i]);
4041       Builder.CreateBr(ContBB);
4042     }
4043 
4044     SI->addCase(Builder.getInt32(0), BBs[0]);
4045     SI->addCase(Builder.getInt32(3), BBs[1]);
4046     SI->addCase(Builder.getInt32(5), BBs[2]);
4047 
4048     Builder.SetInsertPoint(ContBB);
4049     return RValue::get(nullptr);
4050   }
4051 
4052   case Builtin::BI__atomic_thread_fence:
4053   case Builtin::BI__atomic_signal_fence:
4054   case Builtin::BI__c11_atomic_thread_fence:
4055   case Builtin::BI__c11_atomic_signal_fence: {
4056     llvm::SyncScope::ID SSID;
4057     if (BuiltinID == Builtin::BI__atomic_signal_fence ||
4058         BuiltinID == Builtin::BI__c11_atomic_signal_fence)
4059       SSID = llvm::SyncScope::SingleThread;
4060     else
4061       SSID = llvm::SyncScope::System;
4062     Value *Order = EmitScalarExpr(E->getArg(0));
4063     if (isa<llvm::ConstantInt>(Order)) {
4064       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4065       switch (ord) {
4066       case 0:  // memory_order_relaxed
4067       default: // invalid order
4068         break;
4069       case 1:  // memory_order_consume
4070       case 2:  // memory_order_acquire
4071         Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
4072         break;
4073       case 3:  // memory_order_release
4074         Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
4075         break;
4076       case 4:  // memory_order_acq_rel
4077         Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
4078         break;
4079       case 5:  // memory_order_seq_cst
4080         Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4081         break;
4082       }
4083       return RValue::get(nullptr);
4084     }
4085 
4086     llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
4087     AcquireBB = createBasicBlock("acquire", CurFn);
4088     ReleaseBB = createBasicBlock("release", CurFn);
4089     AcqRelBB = createBasicBlock("acqrel", CurFn);
4090     SeqCstBB = createBasicBlock("seqcst", CurFn);
4091     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4092 
4093     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4094     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
4095 
4096     Builder.SetInsertPoint(AcquireBB);
4097     Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
4098     Builder.CreateBr(ContBB);
4099     SI->addCase(Builder.getInt32(1), AcquireBB);
4100     SI->addCase(Builder.getInt32(2), AcquireBB);
4101 
4102     Builder.SetInsertPoint(ReleaseBB);
4103     Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
4104     Builder.CreateBr(ContBB);
4105     SI->addCase(Builder.getInt32(3), ReleaseBB);
4106 
4107     Builder.SetInsertPoint(AcqRelBB);
4108     Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
4109     Builder.CreateBr(ContBB);
4110     SI->addCase(Builder.getInt32(4), AcqRelBB);
4111 
4112     Builder.SetInsertPoint(SeqCstBB);
4113     Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4114     Builder.CreateBr(ContBB);
4115     SI->addCase(Builder.getInt32(5), SeqCstBB);
4116 
4117     Builder.SetInsertPoint(ContBB);
4118     return RValue::get(nullptr);
4119   }
4120 
4121   case Builtin::BI__builtin_signbit:
4122   case Builtin::BI__builtin_signbitf:
4123   case Builtin::BI__builtin_signbitl: {
4124     return RValue::get(
4125         Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
4126                            ConvertType(E->getType())));
4127   }
4128   case Builtin::BI__warn_memset_zero_len:
4129     return RValue::getIgnored();
4130   case Builtin::BI__annotation: {
4131     // Re-encode each wide string to UTF8 and make an MDString.
4132     SmallVector<Metadata *, 1> Strings;
4133     for (const Expr *Arg : E->arguments()) {
4134       const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
4135       assert(Str->getCharByteWidth() == 2);
4136       StringRef WideBytes = Str->getBytes();
4137       std::string StrUtf8;
4138       if (!convertUTF16ToUTF8String(
4139               makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
4140         CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
4141         continue;
4142       }
4143       Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
4144     }
4145 
4146     // Build and MDTuple of MDStrings and emit the intrinsic call.
4147     llvm::Function *F =
4148         CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
4149     MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
4150     Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
4151     return RValue::getIgnored();
4152   }
4153   case Builtin::BI__builtin_annotation: {
4154     llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
4155     llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
4156                                       AnnVal->getType());
4157 
4158     // Get the annotation string, go through casts. Sema requires this to be a
4159     // non-wide string literal, potentially casted, so the cast<> is safe.
4160     const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
4161     StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
4162     return RValue::get(
4163         EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc(), nullptr));
4164   }
4165   case Builtin::BI__builtin_addcb:
4166   case Builtin::BI__builtin_addcs:
4167   case Builtin::BI__builtin_addc:
4168   case Builtin::BI__builtin_addcl:
4169   case Builtin::BI__builtin_addcll:
4170   case Builtin::BI__builtin_subcb:
4171   case Builtin::BI__builtin_subcs:
4172   case Builtin::BI__builtin_subc:
4173   case Builtin::BI__builtin_subcl:
4174   case Builtin::BI__builtin_subcll: {
4175 
4176     // We translate all of these builtins from expressions of the form:
4177     //   int x = ..., y = ..., carryin = ..., carryout, result;
4178     //   result = __builtin_addc(x, y, carryin, &carryout);
4179     //
4180     // to LLVM IR of the form:
4181     //
4182     //   %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
4183     //   %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
4184     //   %carry1 = extractvalue {i32, i1} %tmp1, 1
4185     //   %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
4186     //                                                       i32 %carryin)
4187     //   %result = extractvalue {i32, i1} %tmp2, 0
4188     //   %carry2 = extractvalue {i32, i1} %tmp2, 1
4189     //   %tmp3 = or i1 %carry1, %carry2
4190     //   %tmp4 = zext i1 %tmp3 to i32
4191     //   store i32 %tmp4, i32* %carryout
4192 
4193     // Scalarize our inputs.
4194     llvm::Value *X = EmitScalarExpr(E->getArg(0));
4195     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
4196     llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
4197     Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
4198 
4199     // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
4200     llvm::Intrinsic::ID IntrinsicId;
4201     switch (BuiltinID) {
4202     default: llvm_unreachable("Unknown multiprecision builtin id.");
4203     case Builtin::BI__builtin_addcb:
4204     case Builtin::BI__builtin_addcs:
4205     case Builtin::BI__builtin_addc:
4206     case Builtin::BI__builtin_addcl:
4207     case Builtin::BI__builtin_addcll:
4208       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
4209       break;
4210     case Builtin::BI__builtin_subcb:
4211     case Builtin::BI__builtin_subcs:
4212     case Builtin::BI__builtin_subc:
4213     case Builtin::BI__builtin_subcl:
4214     case Builtin::BI__builtin_subcll:
4215       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
4216       break;
4217     }
4218 
4219     // Construct our resulting LLVM IR expression.
4220     llvm::Value *Carry1;
4221     llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
4222                                               X, Y, Carry1);
4223     llvm::Value *Carry2;
4224     llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
4225                                               Sum1, Carryin, Carry2);
4226     llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
4227                                                X->getType());
4228     Builder.CreateStore(CarryOut, CarryOutPtr);
4229     return RValue::get(Sum2);
4230   }
4231 
4232   case Builtin::BI__builtin_add_overflow:
4233   case Builtin::BI__builtin_sub_overflow:
4234   case Builtin::BI__builtin_mul_overflow: {
4235     const clang::Expr *LeftArg = E->getArg(0);
4236     const clang::Expr *RightArg = E->getArg(1);
4237     const clang::Expr *ResultArg = E->getArg(2);
4238 
4239     clang::QualType ResultQTy =
4240         ResultArg->getType()->castAs<PointerType>()->getPointeeType();
4241 
4242     WidthAndSignedness LeftInfo =
4243         getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
4244     WidthAndSignedness RightInfo =
4245         getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
4246     WidthAndSignedness ResultInfo =
4247         getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
4248 
4249     // Handle mixed-sign multiplication as a special case, because adding
4250     // runtime or backend support for our generic irgen would be too expensive.
4251     if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
4252       return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
4253                                           RightInfo, ResultArg, ResultQTy,
4254                                           ResultInfo);
4255 
4256     if (isSpecialUnsignedMultiplySignedResult(BuiltinID, LeftInfo, RightInfo,
4257                                               ResultInfo))
4258       return EmitCheckedUnsignedMultiplySignedResult(
4259           *this, LeftArg, LeftInfo, RightArg, RightInfo, ResultArg, ResultQTy,
4260           ResultInfo);
4261 
4262     WidthAndSignedness EncompassingInfo =
4263         EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
4264 
4265     llvm::Type *EncompassingLLVMTy =
4266         llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
4267 
4268     llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
4269 
4270     llvm::Intrinsic::ID IntrinsicId;
4271     switch (BuiltinID) {
4272     default:
4273       llvm_unreachable("Unknown overflow builtin id.");
4274     case Builtin::BI__builtin_add_overflow:
4275       IntrinsicId = EncompassingInfo.Signed
4276                         ? llvm::Intrinsic::sadd_with_overflow
4277                         : llvm::Intrinsic::uadd_with_overflow;
4278       break;
4279     case Builtin::BI__builtin_sub_overflow:
4280       IntrinsicId = EncompassingInfo.Signed
4281                         ? llvm::Intrinsic::ssub_with_overflow
4282                         : llvm::Intrinsic::usub_with_overflow;
4283       break;
4284     case Builtin::BI__builtin_mul_overflow:
4285       IntrinsicId = EncompassingInfo.Signed
4286                         ? llvm::Intrinsic::smul_with_overflow
4287                         : llvm::Intrinsic::umul_with_overflow;
4288       break;
4289     }
4290 
4291     llvm::Value *Left = EmitScalarExpr(LeftArg);
4292     llvm::Value *Right = EmitScalarExpr(RightArg);
4293     Address ResultPtr = EmitPointerWithAlignment(ResultArg);
4294 
4295     // Extend each operand to the encompassing type.
4296     Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
4297     Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
4298 
4299     // Perform the operation on the extended values.
4300     llvm::Value *Overflow, *Result;
4301     Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
4302 
4303     if (EncompassingInfo.Width > ResultInfo.Width) {
4304       // The encompassing type is wider than the result type, so we need to
4305       // truncate it.
4306       llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
4307 
4308       // To see if the truncation caused an overflow, we will extend
4309       // the result and then compare it to the original result.
4310       llvm::Value *ResultTruncExt = Builder.CreateIntCast(
4311           ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
4312       llvm::Value *TruncationOverflow =
4313           Builder.CreateICmpNE(Result, ResultTruncExt);
4314 
4315       Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
4316       Result = ResultTrunc;
4317     }
4318 
4319     // Finally, store the result using the pointer.
4320     bool isVolatile =
4321       ResultArg->getType()->getPointeeType().isVolatileQualified();
4322     Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
4323 
4324     return RValue::get(Overflow);
4325   }
4326 
4327   case Builtin::BI__builtin_uadd_overflow:
4328   case Builtin::BI__builtin_uaddl_overflow:
4329   case Builtin::BI__builtin_uaddll_overflow:
4330   case Builtin::BI__builtin_usub_overflow:
4331   case Builtin::BI__builtin_usubl_overflow:
4332   case Builtin::BI__builtin_usubll_overflow:
4333   case Builtin::BI__builtin_umul_overflow:
4334   case Builtin::BI__builtin_umull_overflow:
4335   case Builtin::BI__builtin_umulll_overflow:
4336   case Builtin::BI__builtin_sadd_overflow:
4337   case Builtin::BI__builtin_saddl_overflow:
4338   case Builtin::BI__builtin_saddll_overflow:
4339   case Builtin::BI__builtin_ssub_overflow:
4340   case Builtin::BI__builtin_ssubl_overflow:
4341   case Builtin::BI__builtin_ssubll_overflow:
4342   case Builtin::BI__builtin_smul_overflow:
4343   case Builtin::BI__builtin_smull_overflow:
4344   case Builtin::BI__builtin_smulll_overflow: {
4345 
4346     // We translate all of these builtins directly to the relevant llvm IR node.
4347 
4348     // Scalarize our inputs.
4349     llvm::Value *X = EmitScalarExpr(E->getArg(0));
4350     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
4351     Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
4352 
4353     // Decide which of the overflow intrinsics we are lowering to:
4354     llvm::Intrinsic::ID IntrinsicId;
4355     switch (BuiltinID) {
4356     default: llvm_unreachable("Unknown overflow builtin id.");
4357     case Builtin::BI__builtin_uadd_overflow:
4358     case Builtin::BI__builtin_uaddl_overflow:
4359     case Builtin::BI__builtin_uaddll_overflow:
4360       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
4361       break;
4362     case Builtin::BI__builtin_usub_overflow:
4363     case Builtin::BI__builtin_usubl_overflow:
4364     case Builtin::BI__builtin_usubll_overflow:
4365       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
4366       break;
4367     case Builtin::BI__builtin_umul_overflow:
4368     case Builtin::BI__builtin_umull_overflow:
4369     case Builtin::BI__builtin_umulll_overflow:
4370       IntrinsicId = llvm::Intrinsic::umul_with_overflow;
4371       break;
4372     case Builtin::BI__builtin_sadd_overflow:
4373     case Builtin::BI__builtin_saddl_overflow:
4374     case Builtin::BI__builtin_saddll_overflow:
4375       IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
4376       break;
4377     case Builtin::BI__builtin_ssub_overflow:
4378     case Builtin::BI__builtin_ssubl_overflow:
4379     case Builtin::BI__builtin_ssubll_overflow:
4380       IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
4381       break;
4382     case Builtin::BI__builtin_smul_overflow:
4383     case Builtin::BI__builtin_smull_overflow:
4384     case Builtin::BI__builtin_smulll_overflow:
4385       IntrinsicId = llvm::Intrinsic::smul_with_overflow;
4386       break;
4387     }
4388 
4389 
4390     llvm::Value *Carry;
4391     llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
4392     Builder.CreateStore(Sum, SumOutPtr);
4393 
4394     return RValue::get(Carry);
4395   }
4396   case Builtin::BI__builtin_addressof:
4397     return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this));
4398   case Builtin::BI__builtin_operator_new:
4399     return EmitBuiltinNewDeleteCall(
4400         E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false);
4401   case Builtin::BI__builtin_operator_delete:
4402     return EmitBuiltinNewDeleteCall(
4403         E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true);
4404 
4405   case Builtin::BI__builtin_is_aligned:
4406     return EmitBuiltinIsAligned(E);
4407   case Builtin::BI__builtin_align_up:
4408     return EmitBuiltinAlignTo(E, true);
4409   case Builtin::BI__builtin_align_down:
4410     return EmitBuiltinAlignTo(E, false);
4411 
4412   case Builtin::BI__noop:
4413     // __noop always evaluates to an integer literal zero.
4414     return RValue::get(ConstantInt::get(IntTy, 0));
4415   case Builtin::BI__builtin_call_with_static_chain: {
4416     const CallExpr *Call = cast<CallExpr>(E->getArg(0));
4417     const Expr *Chain = E->getArg(1);
4418     return EmitCall(Call->getCallee()->getType(),
4419                     EmitCallee(Call->getCallee()), Call, ReturnValue,
4420                     EmitScalarExpr(Chain));
4421   }
4422   case Builtin::BI_InterlockedExchange8:
4423   case Builtin::BI_InterlockedExchange16:
4424   case Builtin::BI_InterlockedExchange:
4425   case Builtin::BI_InterlockedExchangePointer:
4426     return RValue::get(
4427         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
4428   case Builtin::BI_InterlockedCompareExchangePointer:
4429   case Builtin::BI_InterlockedCompareExchangePointer_nf: {
4430     llvm::Type *RTy;
4431     llvm::IntegerType *IntType =
4432       IntegerType::get(getLLVMContext(),
4433                        getContext().getTypeSize(E->getType()));
4434     llvm::Type *IntPtrType = IntType->getPointerTo();
4435 
4436     llvm::Value *Destination =
4437       Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
4438 
4439     llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
4440     RTy = Exchange->getType();
4441     Exchange = Builder.CreatePtrToInt(Exchange, IntType);
4442 
4443     llvm::Value *Comparand =
4444       Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
4445 
4446     auto Ordering =
4447       BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ?
4448       AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent;
4449 
4450     auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
4451                                               Ordering, Ordering);
4452     Result->setVolatile(true);
4453 
4454     return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
4455                                                                          0),
4456                                               RTy));
4457   }
4458   case Builtin::BI_InterlockedCompareExchange8:
4459   case Builtin::BI_InterlockedCompareExchange16:
4460   case Builtin::BI_InterlockedCompareExchange:
4461   case Builtin::BI_InterlockedCompareExchange64:
4462     return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E));
4463   case Builtin::BI_InterlockedIncrement16:
4464   case Builtin::BI_InterlockedIncrement:
4465     return RValue::get(
4466         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
4467   case Builtin::BI_InterlockedDecrement16:
4468   case Builtin::BI_InterlockedDecrement:
4469     return RValue::get(
4470         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
4471   case Builtin::BI_InterlockedAnd8:
4472   case Builtin::BI_InterlockedAnd16:
4473   case Builtin::BI_InterlockedAnd:
4474     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
4475   case Builtin::BI_InterlockedExchangeAdd8:
4476   case Builtin::BI_InterlockedExchangeAdd16:
4477   case Builtin::BI_InterlockedExchangeAdd:
4478     return RValue::get(
4479         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
4480   case Builtin::BI_InterlockedExchangeSub8:
4481   case Builtin::BI_InterlockedExchangeSub16:
4482   case Builtin::BI_InterlockedExchangeSub:
4483     return RValue::get(
4484         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
4485   case Builtin::BI_InterlockedOr8:
4486   case Builtin::BI_InterlockedOr16:
4487   case Builtin::BI_InterlockedOr:
4488     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
4489   case Builtin::BI_InterlockedXor8:
4490   case Builtin::BI_InterlockedXor16:
4491   case Builtin::BI_InterlockedXor:
4492     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
4493 
4494   case Builtin::BI_bittest64:
4495   case Builtin::BI_bittest:
4496   case Builtin::BI_bittestandcomplement64:
4497   case Builtin::BI_bittestandcomplement:
4498   case Builtin::BI_bittestandreset64:
4499   case Builtin::BI_bittestandreset:
4500   case Builtin::BI_bittestandset64:
4501   case Builtin::BI_bittestandset:
4502   case Builtin::BI_interlockedbittestandreset:
4503   case Builtin::BI_interlockedbittestandreset64:
4504   case Builtin::BI_interlockedbittestandset64:
4505   case Builtin::BI_interlockedbittestandset:
4506   case Builtin::BI_interlockedbittestandset_acq:
4507   case Builtin::BI_interlockedbittestandset_rel:
4508   case Builtin::BI_interlockedbittestandset_nf:
4509   case Builtin::BI_interlockedbittestandreset_acq:
4510   case Builtin::BI_interlockedbittestandreset_rel:
4511   case Builtin::BI_interlockedbittestandreset_nf:
4512     return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E));
4513 
4514     // These builtins exist to emit regular volatile loads and stores not
4515     // affected by the -fms-volatile setting.
4516   case Builtin::BI__iso_volatile_load8:
4517   case Builtin::BI__iso_volatile_load16:
4518   case Builtin::BI__iso_volatile_load32:
4519   case Builtin::BI__iso_volatile_load64:
4520     return RValue::get(EmitISOVolatileLoad(*this, E));
4521   case Builtin::BI__iso_volatile_store8:
4522   case Builtin::BI__iso_volatile_store16:
4523   case Builtin::BI__iso_volatile_store32:
4524   case Builtin::BI__iso_volatile_store64:
4525     return RValue::get(EmitISOVolatileStore(*this, E));
4526 
4527   case Builtin::BI__exception_code:
4528   case Builtin::BI_exception_code:
4529     return RValue::get(EmitSEHExceptionCode());
4530   case Builtin::BI__exception_info:
4531   case Builtin::BI_exception_info:
4532     return RValue::get(EmitSEHExceptionInfo());
4533   case Builtin::BI__abnormal_termination:
4534   case Builtin::BI_abnormal_termination:
4535     return RValue::get(EmitSEHAbnormalTermination());
4536   case Builtin::BI_setjmpex:
4537     if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
4538         E->getArg(0)->getType()->isPointerType())
4539       return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
4540     break;
4541   case Builtin::BI_setjmp:
4542     if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
4543         E->getArg(0)->getType()->isPointerType()) {
4544       if (getTarget().getTriple().getArch() == llvm::Triple::x86)
4545         return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E);
4546       else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64)
4547         return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
4548       return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E);
4549     }
4550     break;
4551 
4552   case Builtin::BI__GetExceptionInfo: {
4553     if (llvm::GlobalVariable *GV =
4554             CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
4555       return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
4556     break;
4557   }
4558 
4559   case Builtin::BI__fastfail:
4560     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
4561 
4562   case Builtin::BI__builtin_coro_size: {
4563     auto & Context = getContext();
4564     auto SizeTy = Context.getSizeType();
4565     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
4566     Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T);
4567     return RValue::get(Builder.CreateCall(F));
4568   }
4569 
4570   case Builtin::BI__builtin_coro_id:
4571     return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
4572   case Builtin::BI__builtin_coro_promise:
4573     return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
4574   case Builtin::BI__builtin_coro_resume:
4575     return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
4576   case Builtin::BI__builtin_coro_frame:
4577     return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
4578   case Builtin::BI__builtin_coro_noop:
4579     return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop);
4580   case Builtin::BI__builtin_coro_free:
4581     return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
4582   case Builtin::BI__builtin_coro_destroy:
4583     return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
4584   case Builtin::BI__builtin_coro_done:
4585     return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
4586   case Builtin::BI__builtin_coro_alloc:
4587     return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
4588   case Builtin::BI__builtin_coro_begin:
4589     return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
4590   case Builtin::BI__builtin_coro_end:
4591     return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
4592   case Builtin::BI__builtin_coro_suspend:
4593     return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
4594   case Builtin::BI__builtin_coro_param:
4595     return EmitCoroutineIntrinsic(E, Intrinsic::coro_param);
4596 
4597   // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
4598   case Builtin::BIread_pipe:
4599   case Builtin::BIwrite_pipe: {
4600     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4601           *Arg1 = EmitScalarExpr(E->getArg(1));
4602     CGOpenCLRuntime OpenCLRT(CGM);
4603     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4604     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4605 
4606     // Type of the generic packet parameter.
4607     unsigned GenericAS =
4608         getContext().getTargetAddressSpace(LangAS::opencl_generic);
4609     llvm::Type *I8PTy = llvm::PointerType::get(
4610         llvm::Type::getInt8Ty(getLLVMContext()), GenericAS);
4611 
4612     // Testing which overloaded version we should generate the call for.
4613     if (2U == E->getNumArgs()) {
4614       const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
4615                                                              : "__write_pipe_2";
4616       // Creating a generic function type to be able to call with any builtin or
4617       // user defined type.
4618       llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
4619       llvm::FunctionType *FTy = llvm::FunctionType::get(
4620           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4621       Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
4622       return RValue::get(
4623           EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4624                           {Arg0, BCast, PacketSize, PacketAlign}));
4625     } else {
4626       assert(4 == E->getNumArgs() &&
4627              "Illegal number of parameters to pipe function");
4628       const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
4629                                                              : "__write_pipe_4";
4630 
4631       llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
4632                               Int32Ty, Int32Ty};
4633       Value *Arg2 = EmitScalarExpr(E->getArg(2)),
4634             *Arg3 = EmitScalarExpr(E->getArg(3));
4635       llvm::FunctionType *FTy = llvm::FunctionType::get(
4636           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4637       Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
4638       // We know the third argument is an integer type, but we may need to cast
4639       // it to i32.
4640       if (Arg2->getType() != Int32Ty)
4641         Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
4642       return RValue::get(
4643           EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4644                           {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
4645     }
4646   }
4647   // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
4648   // functions
4649   case Builtin::BIreserve_read_pipe:
4650   case Builtin::BIreserve_write_pipe:
4651   case Builtin::BIwork_group_reserve_read_pipe:
4652   case Builtin::BIwork_group_reserve_write_pipe:
4653   case Builtin::BIsub_group_reserve_read_pipe:
4654   case Builtin::BIsub_group_reserve_write_pipe: {
4655     // Composing the mangled name for the function.
4656     const char *Name;
4657     if (BuiltinID == Builtin::BIreserve_read_pipe)
4658       Name = "__reserve_read_pipe";
4659     else if (BuiltinID == Builtin::BIreserve_write_pipe)
4660       Name = "__reserve_write_pipe";
4661     else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
4662       Name = "__work_group_reserve_read_pipe";
4663     else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
4664       Name = "__work_group_reserve_write_pipe";
4665     else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
4666       Name = "__sub_group_reserve_read_pipe";
4667     else
4668       Name = "__sub_group_reserve_write_pipe";
4669 
4670     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4671           *Arg1 = EmitScalarExpr(E->getArg(1));
4672     llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
4673     CGOpenCLRuntime OpenCLRT(CGM);
4674     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4675     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4676 
4677     // Building the generic function prototype.
4678     llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
4679     llvm::FunctionType *FTy = llvm::FunctionType::get(
4680         ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4681     // We know the second argument is an integer type, but we may need to cast
4682     // it to i32.
4683     if (Arg1->getType() != Int32Ty)
4684       Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
4685     return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4686                                        {Arg0, Arg1, PacketSize, PacketAlign}));
4687   }
4688   // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
4689   // functions
4690   case Builtin::BIcommit_read_pipe:
4691   case Builtin::BIcommit_write_pipe:
4692   case Builtin::BIwork_group_commit_read_pipe:
4693   case Builtin::BIwork_group_commit_write_pipe:
4694   case Builtin::BIsub_group_commit_read_pipe:
4695   case Builtin::BIsub_group_commit_write_pipe: {
4696     const char *Name;
4697     if (BuiltinID == Builtin::BIcommit_read_pipe)
4698       Name = "__commit_read_pipe";
4699     else if (BuiltinID == Builtin::BIcommit_write_pipe)
4700       Name = "__commit_write_pipe";
4701     else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
4702       Name = "__work_group_commit_read_pipe";
4703     else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
4704       Name = "__work_group_commit_write_pipe";
4705     else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
4706       Name = "__sub_group_commit_read_pipe";
4707     else
4708       Name = "__sub_group_commit_write_pipe";
4709 
4710     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4711           *Arg1 = EmitScalarExpr(E->getArg(1));
4712     CGOpenCLRuntime OpenCLRT(CGM);
4713     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4714     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4715 
4716     // Building the generic function prototype.
4717     llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
4718     llvm::FunctionType *FTy =
4719         llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
4720                                 llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4721 
4722     return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4723                                        {Arg0, Arg1, PacketSize, PacketAlign}));
4724   }
4725   // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
4726   case Builtin::BIget_pipe_num_packets:
4727   case Builtin::BIget_pipe_max_packets: {
4728     const char *BaseName;
4729     const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>();
4730     if (BuiltinID == Builtin::BIget_pipe_num_packets)
4731       BaseName = "__get_pipe_num_packets";
4732     else
4733       BaseName = "__get_pipe_max_packets";
4734     std::string Name = std::string(BaseName) +
4735                        std::string(PipeTy->isReadOnly() ? "_ro" : "_wo");
4736 
4737     // Building the generic function prototype.
4738     Value *Arg0 = EmitScalarExpr(E->getArg(0));
4739     CGOpenCLRuntime OpenCLRT(CGM);
4740     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4741     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4742     llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
4743     llvm::FunctionType *FTy = llvm::FunctionType::get(
4744         Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4745 
4746     return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4747                                        {Arg0, PacketSize, PacketAlign}));
4748   }
4749 
4750   // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
4751   case Builtin::BIto_global:
4752   case Builtin::BIto_local:
4753   case Builtin::BIto_private: {
4754     auto Arg0 = EmitScalarExpr(E->getArg(0));
4755     auto NewArgT = llvm::PointerType::get(Int8Ty,
4756       CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
4757     auto NewRetT = llvm::PointerType::get(Int8Ty,
4758       CGM.getContext().getTargetAddressSpace(
4759         E->getType()->getPointeeType().getAddressSpace()));
4760     auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
4761     llvm::Value *NewArg;
4762     if (Arg0->getType()->getPointerAddressSpace() !=
4763         NewArgT->getPointerAddressSpace())
4764       NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
4765     else
4766       NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
4767     auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
4768     auto NewCall =
4769         EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
4770     return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
4771       ConvertType(E->getType())));
4772   }
4773 
4774   // OpenCL v2.0, s6.13.17 - Enqueue kernel function.
4775   // It contains four different overload formats specified in Table 6.13.17.1.
4776   case Builtin::BIenqueue_kernel: {
4777     StringRef Name; // Generated function call name
4778     unsigned NumArgs = E->getNumArgs();
4779 
4780     llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
4781     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4782         getContext().getTargetAddressSpace(LangAS::opencl_generic));
4783 
4784     llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
4785     llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
4786     LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
4787     llvm::Value *Range = NDRangeL.getAddress(*this).getPointer();
4788     llvm::Type *RangeTy = NDRangeL.getAddress(*this).getType();
4789 
4790     if (NumArgs == 4) {
4791       // The most basic form of the call with parameters:
4792       // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
4793       Name = "__enqueue_kernel_basic";
4794       llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
4795                               GenericVoidPtrTy};
4796       llvm::FunctionType *FTy = llvm::FunctionType::get(
4797           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4798 
4799       auto Info =
4800           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
4801       llvm::Value *Kernel =
4802           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4803       llvm::Value *Block =
4804           Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4805 
4806       AttrBuilder B;
4807       B.addByValAttr(NDRangeL.getAddress(*this).getElementType());
4808       llvm::AttributeList ByValAttrSet =
4809           llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
4810 
4811       auto RTCall =
4812           EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
4813                           {Queue, Flags, Range, Kernel, Block});
4814       RTCall->setAttributes(ByValAttrSet);
4815       return RValue::get(RTCall);
4816     }
4817     assert(NumArgs >= 5 && "Invalid enqueue_kernel signature");
4818 
4819     // Create a temporary array to hold the sizes of local pointer arguments
4820     // for the block. \p First is the position of the first size argument.
4821     auto CreateArrayForSizeVar = [=](unsigned First)
4822         -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> {
4823       llvm::APInt ArraySize(32, NumArgs - First);
4824       QualType SizeArrayTy = getContext().getConstantArrayType(
4825           getContext().getSizeType(), ArraySize, nullptr, ArrayType::Normal,
4826           /*IndexTypeQuals=*/0);
4827       auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes");
4828       llvm::Value *TmpPtr = Tmp.getPointer();
4829       llvm::Value *TmpSize = EmitLifetimeStart(
4830           CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr);
4831       llvm::Value *ElemPtr;
4832       // Each of the following arguments specifies the size of the corresponding
4833       // argument passed to the enqueued block.
4834       auto *Zero = llvm::ConstantInt::get(IntTy, 0);
4835       for (unsigned I = First; I < NumArgs; ++I) {
4836         auto *Index = llvm::ConstantInt::get(IntTy, I - First);
4837         auto *GEP = Builder.CreateGEP(Tmp.getElementType(), TmpPtr,
4838                                       {Zero, Index});
4839         if (I == First)
4840           ElemPtr = GEP;
4841         auto *V =
4842             Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
4843         Builder.CreateAlignedStore(
4844             V, GEP, CGM.getDataLayout().getPrefTypeAlign(SizeTy));
4845       }
4846       return std::tie(ElemPtr, TmpSize, TmpPtr);
4847     };
4848 
4849     // Could have events and/or varargs.
4850     if (E->getArg(3)->getType()->isBlockPointerType()) {
4851       // No events passed, but has variadic arguments.
4852       Name = "__enqueue_kernel_varargs";
4853       auto Info =
4854           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
4855       llvm::Value *Kernel =
4856           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4857       auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4858       llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
4859       std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4);
4860 
4861       // Create a vector of the arguments, as well as a constant value to
4862       // express to the runtime the number of variadic arguments.
4863       llvm::Value *const Args[] = {Queue,  Flags,
4864                                    Range,  Kernel,
4865                                    Block,  ConstantInt::get(IntTy, NumArgs - 4),
4866                                    ElemPtr};
4867       llvm::Type *const ArgTys[] = {
4868           QueueTy,          IntTy, RangeTy,           GenericVoidPtrTy,
4869           GenericVoidPtrTy, IntTy, ElemPtr->getType()};
4870 
4871       llvm::FunctionType *FTy = llvm::FunctionType::get(Int32Ty, ArgTys, false);
4872       auto Call = RValue::get(
4873           EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Args));
4874       if (TmpSize)
4875         EmitLifetimeEnd(TmpSize, TmpPtr);
4876       return Call;
4877     }
4878     // Any calls now have event arguments passed.
4879     if (NumArgs >= 7) {
4880       llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy);
4881       llvm::PointerType *EventPtrTy = EventTy->getPointerTo(
4882           CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
4883 
4884       llvm::Value *NumEvents =
4885           Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
4886 
4887       // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments
4888       // to be a null pointer constant (including `0` literal), we can take it
4889       // into account and emit null pointer directly.
4890       llvm::Value *EventWaitList = nullptr;
4891       if (E->getArg(4)->isNullPointerConstant(
4892               getContext(), Expr::NPC_ValueDependentIsNotNull)) {
4893         EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy);
4894       } else {
4895         EventWaitList = E->getArg(4)->getType()->isArrayType()
4896                         ? EmitArrayToPointerDecay(E->getArg(4)).getPointer()
4897                         : EmitScalarExpr(E->getArg(4));
4898         // Convert to generic address space.
4899         EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy);
4900       }
4901       llvm::Value *EventRet = nullptr;
4902       if (E->getArg(5)->isNullPointerConstant(
4903               getContext(), Expr::NPC_ValueDependentIsNotNull)) {
4904         EventRet = llvm::ConstantPointerNull::get(EventPtrTy);
4905       } else {
4906         EventRet =
4907             Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy);
4908       }
4909 
4910       auto Info =
4911           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
4912       llvm::Value *Kernel =
4913           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4914       llvm::Value *Block =
4915           Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4916 
4917       std::vector<llvm::Type *> ArgTys = {
4918           QueueTy,    Int32Ty,    RangeTy,          Int32Ty,
4919           EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy};
4920 
4921       std::vector<llvm::Value *> Args = {Queue,     Flags,         Range,
4922                                          NumEvents, EventWaitList, EventRet,
4923                                          Kernel,    Block};
4924 
4925       if (NumArgs == 7) {
4926         // Has events but no variadics.
4927         Name = "__enqueue_kernel_basic_events";
4928         llvm::FunctionType *FTy = llvm::FunctionType::get(
4929             Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4930         return RValue::get(
4931             EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4932                             llvm::ArrayRef<llvm::Value *>(Args)));
4933       }
4934       // Has event info and variadics
4935       // Pass the number of variadics to the runtime function too.
4936       Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
4937       ArgTys.push_back(Int32Ty);
4938       Name = "__enqueue_kernel_events_varargs";
4939 
4940       llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
4941       std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7);
4942       Args.push_back(ElemPtr);
4943       ArgTys.push_back(ElemPtr->getType());
4944 
4945       llvm::FunctionType *FTy = llvm::FunctionType::get(
4946           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4947       auto Call =
4948           RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4949                                       llvm::ArrayRef<llvm::Value *>(Args)));
4950       if (TmpSize)
4951         EmitLifetimeEnd(TmpSize, TmpPtr);
4952       return Call;
4953     }
4954     LLVM_FALLTHROUGH;
4955   }
4956   // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
4957   // parameter.
4958   case Builtin::BIget_kernel_work_group_size: {
4959     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4960         getContext().getTargetAddressSpace(LangAS::opencl_generic));
4961     auto Info =
4962         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
4963     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4964     Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4965     return RValue::get(EmitRuntimeCall(
4966         CGM.CreateRuntimeFunction(
4967             llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
4968                                     false),
4969             "__get_kernel_work_group_size_impl"),
4970         {Kernel, Arg}));
4971   }
4972   case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
4973     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4974         getContext().getTargetAddressSpace(LangAS::opencl_generic));
4975     auto Info =
4976         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
4977     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4978     Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4979     return RValue::get(EmitRuntimeCall(
4980         CGM.CreateRuntimeFunction(
4981             llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
4982                                     false),
4983             "__get_kernel_preferred_work_group_size_multiple_impl"),
4984         {Kernel, Arg}));
4985   }
4986   case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
4987   case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
4988     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4989         getContext().getTargetAddressSpace(LangAS::opencl_generic));
4990     LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
4991     llvm::Value *NDRange = NDRangeL.getAddress(*this).getPointer();
4992     auto Info =
4993         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
4994     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4995     Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4996     const char *Name =
4997         BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
4998             ? "__get_kernel_max_sub_group_size_for_ndrange_impl"
4999             : "__get_kernel_sub_group_count_for_ndrange_impl";
5000     return RValue::get(EmitRuntimeCall(
5001         CGM.CreateRuntimeFunction(
5002             llvm::FunctionType::get(
5003                 IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
5004                 false),
5005             Name),
5006         {NDRange, Kernel, Block}));
5007   }
5008 
5009   case Builtin::BI__builtin_store_half:
5010   case Builtin::BI__builtin_store_halff: {
5011     Value *Val = EmitScalarExpr(E->getArg(0));
5012     Address Address = EmitPointerWithAlignment(E->getArg(1));
5013     Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
5014     return RValue::get(Builder.CreateStore(HalfVal, Address));
5015   }
5016   case Builtin::BI__builtin_load_half: {
5017     Address Address = EmitPointerWithAlignment(E->getArg(0));
5018     Value *HalfVal = Builder.CreateLoad(Address);
5019     return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
5020   }
5021   case Builtin::BI__builtin_load_halff: {
5022     Address Address = EmitPointerWithAlignment(E->getArg(0));
5023     Value *HalfVal = Builder.CreateLoad(Address);
5024     return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
5025   }
5026   case Builtin::BIprintf:
5027     if (getTarget().getTriple().isNVPTX())
5028       return EmitNVPTXDevicePrintfCallExpr(E, ReturnValue);
5029     if (getTarget().getTriple().getArch() == Triple::amdgcn &&
5030         getLangOpts().HIP)
5031       return EmitAMDGPUDevicePrintfCallExpr(E, ReturnValue);
5032     break;
5033   case Builtin::BI__builtin_canonicalize:
5034   case Builtin::BI__builtin_canonicalizef:
5035   case Builtin::BI__builtin_canonicalizef16:
5036   case Builtin::BI__builtin_canonicalizel:
5037     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize));
5038 
5039   case Builtin::BI__builtin_thread_pointer: {
5040     if (!getContext().getTargetInfo().isTLSSupported())
5041       CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
5042     // Fall through - it's already mapped to the intrinsic by GCCBuiltin.
5043     break;
5044   }
5045   case Builtin::BI__builtin_os_log_format:
5046     return emitBuiltinOSLogFormat(*E);
5047 
5048   case Builtin::BI__xray_customevent: {
5049     if (!ShouldXRayInstrumentFunction())
5050       return RValue::getIgnored();
5051 
5052     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
5053             XRayInstrKind::Custom))
5054       return RValue::getIgnored();
5055 
5056     if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
5057       if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
5058         return RValue::getIgnored();
5059 
5060     Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
5061     auto FTy = F->getFunctionType();
5062     auto Arg0 = E->getArg(0);
5063     auto Arg0Val = EmitScalarExpr(Arg0);
5064     auto Arg0Ty = Arg0->getType();
5065     auto PTy0 = FTy->getParamType(0);
5066     if (PTy0 != Arg0Val->getType()) {
5067       if (Arg0Ty->isArrayType())
5068         Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer();
5069       else
5070         Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
5071     }
5072     auto Arg1 = EmitScalarExpr(E->getArg(1));
5073     auto PTy1 = FTy->getParamType(1);
5074     if (PTy1 != Arg1->getType())
5075       Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
5076     return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
5077   }
5078 
5079   case Builtin::BI__xray_typedevent: {
5080     // TODO: There should be a way to always emit events even if the current
5081     // function is not instrumented. Losing events in a stream can cripple
5082     // a trace.
5083     if (!ShouldXRayInstrumentFunction())
5084       return RValue::getIgnored();
5085 
5086     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
5087             XRayInstrKind::Typed))
5088       return RValue::getIgnored();
5089 
5090     if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
5091       if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents())
5092         return RValue::getIgnored();
5093 
5094     Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent);
5095     auto FTy = F->getFunctionType();
5096     auto Arg0 = EmitScalarExpr(E->getArg(0));
5097     auto PTy0 = FTy->getParamType(0);
5098     if (PTy0 != Arg0->getType())
5099       Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0);
5100     auto Arg1 = E->getArg(1);
5101     auto Arg1Val = EmitScalarExpr(Arg1);
5102     auto Arg1Ty = Arg1->getType();
5103     auto PTy1 = FTy->getParamType(1);
5104     if (PTy1 != Arg1Val->getType()) {
5105       if (Arg1Ty->isArrayType())
5106         Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer();
5107       else
5108         Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1);
5109     }
5110     auto Arg2 = EmitScalarExpr(E->getArg(2));
5111     auto PTy2 = FTy->getParamType(2);
5112     if (PTy2 != Arg2->getType())
5113       Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2);
5114     return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2}));
5115   }
5116 
5117   case Builtin::BI__builtin_ms_va_start:
5118   case Builtin::BI__builtin_ms_va_end:
5119     return RValue::get(
5120         EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
5121                        BuiltinID == Builtin::BI__builtin_ms_va_start));
5122 
5123   case Builtin::BI__builtin_ms_va_copy: {
5124     // Lower this manually. We can't reliably determine whether or not any
5125     // given va_copy() is for a Win64 va_list from the calling convention
5126     // alone, because it's legal to do this from a System V ABI function.
5127     // With opaque pointer types, we won't have enough information in LLVM
5128     // IR to determine this from the argument types, either. Best to do it
5129     // now, while we have enough information.
5130     Address DestAddr = EmitMSVAListRef(E->getArg(0));
5131     Address SrcAddr = EmitMSVAListRef(E->getArg(1));
5132 
5133     llvm::Type *BPP = Int8PtrPtrTy;
5134 
5135     DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
5136                        DestAddr.getAlignment());
5137     SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
5138                       SrcAddr.getAlignment());
5139 
5140     Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
5141     return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
5142   }
5143 
5144   case Builtin::BI__builtin_get_device_side_mangled_name: {
5145     auto Name = CGM.getCUDARuntime().getDeviceSideName(
5146         cast<DeclRefExpr>(E->getArg(0)->IgnoreImpCasts())->getDecl());
5147     auto Str = CGM.GetAddrOfConstantCString(Name, "");
5148     llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0),
5149                                llvm::ConstantInt::get(SizeTy, 0)};
5150     auto *Ptr = llvm::ConstantExpr::getGetElementPtr(Str.getElementType(),
5151                                                      Str.getPointer(), Zeros);
5152     return RValue::get(Ptr);
5153   }
5154   }
5155 
5156   // If this is an alias for a lib function (e.g. __builtin_sin), emit
5157   // the call using the normal call path, but using the unmangled
5158   // version of the function name.
5159   if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
5160     return emitLibraryCall(*this, FD, E,
5161                            CGM.getBuiltinLibFunction(FD, BuiltinID));
5162 
5163   // If this is a predefined lib function (e.g. malloc), emit the call
5164   // using exactly the normal call path.
5165   if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
5166     return emitLibraryCall(*this, FD, E,
5167                       cast<llvm::Constant>(EmitScalarExpr(E->getCallee())));
5168 
5169   // Check that a call to a target specific builtin has the correct target
5170   // features.
5171   // This is down here to avoid non-target specific builtins, however, if
5172   // generic builtins start to require generic target features then we
5173   // can move this up to the beginning of the function.
5174   checkTargetFeatures(E, FD);
5175 
5176   if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID))
5177     LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth);
5178 
5179   // See if we have a target specific intrinsic.
5180   const char *Name = getContext().BuiltinInfo.getName(BuiltinID);
5181   Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
5182   StringRef Prefix =
5183       llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
5184   if (!Prefix.empty()) {
5185     IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name);
5186     // NOTE we don't need to perform a compatibility flag check here since the
5187     // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
5188     // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
5189     if (IntrinsicID == Intrinsic::not_intrinsic)
5190       IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
5191   }
5192 
5193   if (IntrinsicID != Intrinsic::not_intrinsic) {
5194     SmallVector<Value*, 16> Args;
5195 
5196     // Find out if any arguments are required to be integer constant
5197     // expressions.
5198     unsigned ICEArguments = 0;
5199     ASTContext::GetBuiltinTypeError Error;
5200     getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
5201     assert(Error == ASTContext::GE_None && "Should not codegen an error");
5202 
5203     Function *F = CGM.getIntrinsic(IntrinsicID);
5204     llvm::FunctionType *FTy = F->getFunctionType();
5205 
5206     for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
5207       Value *ArgValue;
5208       // If this is a normal argument, just emit it as a scalar.
5209       if ((ICEArguments & (1 << i)) == 0) {
5210         ArgValue = EmitScalarExpr(E->getArg(i));
5211       } else {
5212         // If this is required to be a constant, constant fold it so that we
5213         // know that the generated intrinsic gets a ConstantInt.
5214         ArgValue = llvm::ConstantInt::get(
5215             getLLVMContext(),
5216             *E->getArg(i)->getIntegerConstantExpr(getContext()));
5217       }
5218 
5219       // If the intrinsic arg type is different from the builtin arg type
5220       // we need to do a bit cast.
5221       llvm::Type *PTy = FTy->getParamType(i);
5222       if (PTy != ArgValue->getType()) {
5223         // XXX - vector of pointers?
5224         if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) {
5225           if (PtrTy->getAddressSpace() !=
5226               ArgValue->getType()->getPointerAddressSpace()) {
5227             ArgValue = Builder.CreateAddrSpaceCast(
5228               ArgValue,
5229               ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace()));
5230           }
5231         }
5232 
5233         assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
5234                "Must be able to losslessly bit cast to param");
5235         ArgValue = Builder.CreateBitCast(ArgValue, PTy);
5236       }
5237 
5238       Args.push_back(ArgValue);
5239     }
5240 
5241     Value *V = Builder.CreateCall(F, Args);
5242     QualType BuiltinRetType = E->getType();
5243 
5244     llvm::Type *RetTy = VoidTy;
5245     if (!BuiltinRetType->isVoidType())
5246       RetTy = ConvertType(BuiltinRetType);
5247 
5248     if (RetTy != V->getType()) {
5249       // XXX - vector of pointers?
5250       if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) {
5251         if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) {
5252           V = Builder.CreateAddrSpaceCast(
5253             V, V->getType()->getPointerTo(PtrTy->getAddressSpace()));
5254         }
5255       }
5256 
5257       assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
5258              "Must be able to losslessly bit cast result type");
5259       V = Builder.CreateBitCast(V, RetTy);
5260     }
5261 
5262     return RValue::get(V);
5263   }
5264 
5265   // Some target-specific builtins can have aggregate return values, e.g.
5266   // __builtin_arm_mve_vld2q_u32. So if the result is an aggregate, force
5267   // ReturnValue to be non-null, so that the target-specific emission code can
5268   // always just emit into it.
5269   TypeEvaluationKind EvalKind = getEvaluationKind(E->getType());
5270   if (EvalKind == TEK_Aggregate && ReturnValue.isNull()) {
5271     Address DestPtr = CreateMemTemp(E->getType(), "agg.tmp");
5272     ReturnValue = ReturnValueSlot(DestPtr, false);
5273   }
5274 
5275   // Now see if we can emit a target-specific builtin.
5276   if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) {
5277     switch (EvalKind) {
5278     case TEK_Scalar:
5279       return RValue::get(V);
5280     case TEK_Aggregate:
5281       return RValue::getAggregate(ReturnValue.getValue(),
5282                                   ReturnValue.isVolatile());
5283     case TEK_Complex:
5284       llvm_unreachable("No current target builtin returns complex");
5285     }
5286     llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr");
5287   }
5288 
5289   ErrorUnsupported(E, "builtin function");
5290 
5291   // Unknown builtin, for now just dump it out and return undef.
5292   return GetUndefRValue(E->getType());
5293 }
5294 
5295 static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
5296                                         unsigned BuiltinID, const CallExpr *E,
5297                                         ReturnValueSlot ReturnValue,
5298                                         llvm::Triple::ArchType Arch) {
5299   switch (Arch) {
5300   case llvm::Triple::arm:
5301   case llvm::Triple::armeb:
5302   case llvm::Triple::thumb:
5303   case llvm::Triple::thumbeb:
5304     return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch);
5305   case llvm::Triple::aarch64:
5306   case llvm::Triple::aarch64_32:
5307   case llvm::Triple::aarch64_be:
5308     return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
5309   case llvm::Triple::bpfeb:
5310   case llvm::Triple::bpfel:
5311     return CGF->EmitBPFBuiltinExpr(BuiltinID, E);
5312   case llvm::Triple::x86:
5313   case llvm::Triple::x86_64:
5314     return CGF->EmitX86BuiltinExpr(BuiltinID, E);
5315   case llvm::Triple::ppc:
5316   case llvm::Triple::ppcle:
5317   case llvm::Triple::ppc64:
5318   case llvm::Triple::ppc64le:
5319     return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
5320   case llvm::Triple::r600:
5321   case llvm::Triple::amdgcn:
5322     return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
5323   case llvm::Triple::systemz:
5324     return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
5325   case llvm::Triple::nvptx:
5326   case llvm::Triple::nvptx64:
5327     return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
5328   case llvm::Triple::wasm32:
5329   case llvm::Triple::wasm64:
5330     return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
5331   case llvm::Triple::hexagon:
5332     return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
5333   case llvm::Triple::riscv32:
5334   case llvm::Triple::riscv64:
5335     return CGF->EmitRISCVBuiltinExpr(BuiltinID, E, ReturnValue);
5336   default:
5337     return nullptr;
5338   }
5339 }
5340 
5341 Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
5342                                               const CallExpr *E,
5343                                               ReturnValueSlot ReturnValue) {
5344   if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
5345     assert(getContext().getAuxTargetInfo() && "Missing aux target info");
5346     return EmitTargetArchBuiltinExpr(
5347         this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
5348         ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch());
5349   }
5350 
5351   return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue,
5352                                    getTarget().getTriple().getArch());
5353 }
5354 
5355 static llvm::FixedVectorType *GetNeonType(CodeGenFunction *CGF,
5356                                           NeonTypeFlags TypeFlags,
5357                                           bool HasLegalHalfType = true,
5358                                           bool V1Ty = false,
5359                                           bool AllowBFloatArgsAndRet = true) {
5360   int IsQuad = TypeFlags.isQuad();
5361   switch (TypeFlags.getEltType()) {
5362   case NeonTypeFlags::Int8:
5363   case NeonTypeFlags::Poly8:
5364     return llvm::FixedVectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
5365   case NeonTypeFlags::Int16:
5366   case NeonTypeFlags::Poly16:
5367     return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5368   case NeonTypeFlags::BFloat16:
5369     if (AllowBFloatArgsAndRet)
5370       return llvm::FixedVectorType::get(CGF->BFloatTy, V1Ty ? 1 : (4 << IsQuad));
5371     else
5372       return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5373   case NeonTypeFlags::Float16:
5374     if (HasLegalHalfType)
5375       return llvm::FixedVectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
5376     else
5377       return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5378   case NeonTypeFlags::Int32:
5379     return llvm::FixedVectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
5380   case NeonTypeFlags::Int64:
5381   case NeonTypeFlags::Poly64:
5382     return llvm::FixedVectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
5383   case NeonTypeFlags::Poly128:
5384     // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
5385     // There is a lot of i128 and f128 API missing.
5386     // so we use v16i8 to represent poly128 and get pattern matched.
5387     return llvm::FixedVectorType::get(CGF->Int8Ty, 16);
5388   case NeonTypeFlags::Float32:
5389     return llvm::FixedVectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
5390   case NeonTypeFlags::Float64:
5391     return llvm::FixedVectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
5392   }
5393   llvm_unreachable("Unknown vector element type!");
5394 }
5395 
5396 static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
5397                                           NeonTypeFlags IntTypeFlags) {
5398   int IsQuad = IntTypeFlags.isQuad();
5399   switch (IntTypeFlags.getEltType()) {
5400   case NeonTypeFlags::Int16:
5401     return llvm::FixedVectorType::get(CGF->HalfTy, (4 << IsQuad));
5402   case NeonTypeFlags::Int32:
5403     return llvm::FixedVectorType::get(CGF->FloatTy, (2 << IsQuad));
5404   case NeonTypeFlags::Int64:
5405     return llvm::FixedVectorType::get(CGF->DoubleTy, (1 << IsQuad));
5406   default:
5407     llvm_unreachable("Type can't be converted to floating-point!");
5408   }
5409 }
5410 
5411 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C,
5412                                       const ElementCount &Count) {
5413   Value *SV = llvm::ConstantVector::getSplat(Count, C);
5414   return Builder.CreateShuffleVector(V, V, SV, "lane");
5415 }
5416 
5417 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
5418   ElementCount EC = cast<llvm::VectorType>(V->getType())->getElementCount();
5419   return EmitNeonSplat(V, C, EC);
5420 }
5421 
5422 Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
5423                                      const char *name,
5424                                      unsigned shift, bool rightshift) {
5425   unsigned j = 0;
5426   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
5427        ai != ae; ++ai, ++j) {
5428     if (F->isConstrainedFPIntrinsic())
5429       if (ai->getType()->isMetadataTy())
5430         continue;
5431     if (shift > 0 && shift == j)
5432       Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
5433     else
5434       Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
5435   }
5436 
5437   if (F->isConstrainedFPIntrinsic())
5438     return Builder.CreateConstrainedFPCall(F, Ops, name);
5439   else
5440     return Builder.CreateCall(F, Ops, name);
5441 }
5442 
5443 Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
5444                                             bool neg) {
5445   int SV = cast<ConstantInt>(V)->getSExtValue();
5446   return ConstantInt::get(Ty, neg ? -SV : SV);
5447 }
5448 
5449 // Right-shift a vector by a constant.
5450 Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
5451                                           llvm::Type *Ty, bool usgn,
5452                                           const char *name) {
5453   llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
5454 
5455   int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
5456   int EltSize = VTy->getScalarSizeInBits();
5457 
5458   Vec = Builder.CreateBitCast(Vec, Ty);
5459 
5460   // lshr/ashr are undefined when the shift amount is equal to the vector
5461   // element size.
5462   if (ShiftAmt == EltSize) {
5463     if (usgn) {
5464       // Right-shifting an unsigned value by its size yields 0.
5465       return llvm::ConstantAggregateZero::get(VTy);
5466     } else {
5467       // Right-shifting a signed value by its size is equivalent
5468       // to a shift of size-1.
5469       --ShiftAmt;
5470       Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
5471     }
5472   }
5473 
5474   Shift = EmitNeonShiftVector(Shift, Ty, false);
5475   if (usgn)
5476     return Builder.CreateLShr(Vec, Shift, name);
5477   else
5478     return Builder.CreateAShr(Vec, Shift, name);
5479 }
5480 
5481 enum {
5482   AddRetType = (1 << 0),
5483   Add1ArgType = (1 << 1),
5484   Add2ArgTypes = (1 << 2),
5485 
5486   VectorizeRetType = (1 << 3),
5487   VectorizeArgTypes = (1 << 4),
5488 
5489   InventFloatType = (1 << 5),
5490   UnsignedAlts = (1 << 6),
5491 
5492   Use64BitVectors = (1 << 7),
5493   Use128BitVectors = (1 << 8),
5494 
5495   Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
5496   VectorRet = AddRetType | VectorizeRetType,
5497   VectorRetGetArgs01 =
5498       AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
5499   FpCmpzModifiers =
5500       AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
5501 };
5502 
5503 namespace {
5504 struct ARMVectorIntrinsicInfo {
5505   const char *NameHint;
5506   unsigned BuiltinID;
5507   unsigned LLVMIntrinsic;
5508   unsigned AltLLVMIntrinsic;
5509   uint64_t TypeModifier;
5510 
5511   bool operator<(unsigned RHSBuiltinID) const {
5512     return BuiltinID < RHSBuiltinID;
5513   }
5514   bool operator<(const ARMVectorIntrinsicInfo &TE) const {
5515     return BuiltinID < TE.BuiltinID;
5516   }
5517 };
5518 } // end anonymous namespace
5519 
5520 #define NEONMAP0(NameBase) \
5521   { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
5522 
5523 #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
5524   { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
5525       Intrinsic::LLVMIntrinsic, 0, TypeModifier }
5526 
5527 #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
5528   { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
5529       Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
5530       TypeModifier }
5531 
5532 static const ARMVectorIntrinsicInfo ARMSIMDIntrinsicMap [] = {
5533   NEONMAP1(__a32_vcvt_bf16_v, arm_neon_vcvtfp2bf, 0),
5534   NEONMAP0(splat_lane_v),
5535   NEONMAP0(splat_laneq_v),
5536   NEONMAP0(splatq_lane_v),
5537   NEONMAP0(splatq_laneq_v),
5538   NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
5539   NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
5540   NEONMAP1(vabs_v, arm_neon_vabs, 0),
5541   NEONMAP1(vabsq_v, arm_neon_vabs, 0),
5542   NEONMAP0(vadd_v),
5543   NEONMAP0(vaddhn_v),
5544   NEONMAP0(vaddq_v),
5545   NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
5546   NEONMAP1(vaeseq_v, arm_neon_aese, 0),
5547   NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
5548   NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
5549   NEONMAP1(vbfdot_v, arm_neon_bfdot, 0),
5550   NEONMAP1(vbfdotq_v, arm_neon_bfdot, 0),
5551   NEONMAP1(vbfmlalbq_v, arm_neon_bfmlalb, 0),
5552   NEONMAP1(vbfmlaltq_v, arm_neon_bfmlalt, 0),
5553   NEONMAP1(vbfmmlaq_v, arm_neon_bfmmla, 0),
5554   NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
5555   NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
5556   NEONMAP1(vcadd_rot270_v, arm_neon_vcadd_rot270, Add1ArgType),
5557   NEONMAP1(vcadd_rot90_v, arm_neon_vcadd_rot90, Add1ArgType),
5558   NEONMAP1(vcaddq_rot270_v, arm_neon_vcadd_rot270, Add1ArgType),
5559   NEONMAP1(vcaddq_rot90_v, arm_neon_vcadd_rot90, Add1ArgType),
5560   NEONMAP1(vcage_v, arm_neon_vacge, 0),
5561   NEONMAP1(vcageq_v, arm_neon_vacge, 0),
5562   NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
5563   NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
5564   NEONMAP1(vcale_v, arm_neon_vacge, 0),
5565   NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
5566   NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
5567   NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
5568   NEONMAP0(vceqz_v),
5569   NEONMAP0(vceqzq_v),
5570   NEONMAP0(vcgez_v),
5571   NEONMAP0(vcgezq_v),
5572   NEONMAP0(vcgtz_v),
5573   NEONMAP0(vcgtzq_v),
5574   NEONMAP0(vclez_v),
5575   NEONMAP0(vclezq_v),
5576   NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
5577   NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
5578   NEONMAP0(vcltz_v),
5579   NEONMAP0(vcltzq_v),
5580   NEONMAP1(vclz_v, ctlz, Add1ArgType),
5581   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
5582   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
5583   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
5584   NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
5585   NEONMAP0(vcvt_f16_v),
5586   NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
5587   NEONMAP0(vcvt_f32_v),
5588   NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5589   NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5590   NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0),
5591   NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
5592   NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
5593   NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0),
5594   NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
5595   NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
5596   NEONMAP0(vcvt_s16_v),
5597   NEONMAP0(vcvt_s32_v),
5598   NEONMAP0(vcvt_s64_v),
5599   NEONMAP0(vcvt_u16_v),
5600   NEONMAP0(vcvt_u32_v),
5601   NEONMAP0(vcvt_u64_v),
5602   NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0),
5603   NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
5604   NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
5605   NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0),
5606   NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
5607   NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
5608   NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0),
5609   NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
5610   NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
5611   NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0),
5612   NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
5613   NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
5614   NEONMAP1(vcvth_bf16_f32, arm_neon_vcvtbfp2bf, 0),
5615   NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0),
5616   NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
5617   NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
5618   NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0),
5619   NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
5620   NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
5621   NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0),
5622   NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
5623   NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
5624   NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0),
5625   NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
5626   NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
5627   NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0),
5628   NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
5629   NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
5630   NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0),
5631   NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
5632   NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
5633   NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0),
5634   NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
5635   NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
5636   NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0),
5637   NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
5638   NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
5639   NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0),
5640   NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
5641   NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
5642   NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0),
5643   NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
5644   NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
5645   NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0),
5646   NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
5647   NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
5648   NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0),
5649   NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
5650   NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
5651   NEONMAP0(vcvtq_f16_v),
5652   NEONMAP0(vcvtq_f32_v),
5653   NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5654   NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5655   NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0),
5656   NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
5657   NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
5658   NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0),
5659   NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
5660   NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
5661   NEONMAP0(vcvtq_s16_v),
5662   NEONMAP0(vcvtq_s32_v),
5663   NEONMAP0(vcvtq_s64_v),
5664   NEONMAP0(vcvtq_u16_v),
5665   NEONMAP0(vcvtq_u32_v),
5666   NEONMAP0(vcvtq_u64_v),
5667   NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0),
5668   NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0),
5669   NEONMAP0(vext_v),
5670   NEONMAP0(vextq_v),
5671   NEONMAP0(vfma_v),
5672   NEONMAP0(vfmaq_v),
5673   NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
5674   NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
5675   NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
5676   NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
5677   NEONMAP0(vld1_dup_v),
5678   NEONMAP1(vld1_v, arm_neon_vld1, 0),
5679   NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0),
5680   NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0),
5681   NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0),
5682   NEONMAP0(vld1q_dup_v),
5683   NEONMAP1(vld1q_v, arm_neon_vld1, 0),
5684   NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0),
5685   NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0),
5686   NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0),
5687   NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0),
5688   NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
5689   NEONMAP1(vld2_v, arm_neon_vld2, 0),
5690   NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0),
5691   NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
5692   NEONMAP1(vld2q_v, arm_neon_vld2, 0),
5693   NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0),
5694   NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
5695   NEONMAP1(vld3_v, arm_neon_vld3, 0),
5696   NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0),
5697   NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
5698   NEONMAP1(vld3q_v, arm_neon_vld3, 0),
5699   NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0),
5700   NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
5701   NEONMAP1(vld4_v, arm_neon_vld4, 0),
5702   NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0),
5703   NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
5704   NEONMAP1(vld4q_v, arm_neon_vld4, 0),
5705   NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
5706   NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
5707   NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
5708   NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
5709   NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
5710   NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
5711   NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
5712   NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
5713   NEONMAP2(vmmlaq_v, arm_neon_ummla, arm_neon_smmla, 0),
5714   NEONMAP0(vmovl_v),
5715   NEONMAP0(vmovn_v),
5716   NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
5717   NEONMAP0(vmull_v),
5718   NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
5719   NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
5720   NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
5721   NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
5722   NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
5723   NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
5724   NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
5725   NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
5726   NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
5727   NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
5728   NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
5729   NEONMAP2(vqadd_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
5730   NEONMAP2(vqaddq_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
5731   NEONMAP2(vqdmlal_v, arm_neon_vqdmull, sadd_sat, 0),
5732   NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, ssub_sat, 0),
5733   NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
5734   NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
5735   NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
5736   NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
5737   NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
5738   NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
5739   NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
5740   NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
5741   NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
5742   NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
5743   NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
5744   NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
5745   NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
5746   NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
5747   NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
5748   NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
5749   NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
5750   NEONMAP2(vqsub_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
5751   NEONMAP2(vqsubq_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
5752   NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
5753   NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
5754   NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
5755   NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
5756   NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
5757   NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
5758   NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
5759   NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
5760   NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
5761   NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
5762   NEONMAP0(vrndi_v),
5763   NEONMAP0(vrndiq_v),
5764   NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
5765   NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
5766   NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
5767   NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
5768   NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
5769   NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
5770   NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
5771   NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
5772   NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
5773   NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
5774   NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
5775   NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
5776   NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
5777   NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
5778   NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
5779   NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
5780   NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
5781   NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
5782   NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
5783   NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
5784   NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
5785   NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
5786   NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
5787   NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
5788   NEONMAP0(vshl_n_v),
5789   NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
5790   NEONMAP0(vshll_n_v),
5791   NEONMAP0(vshlq_n_v),
5792   NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
5793   NEONMAP0(vshr_n_v),
5794   NEONMAP0(vshrn_n_v),
5795   NEONMAP0(vshrq_n_v),
5796   NEONMAP1(vst1_v, arm_neon_vst1, 0),
5797   NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0),
5798   NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0),
5799   NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0),
5800   NEONMAP1(vst1q_v, arm_neon_vst1, 0),
5801   NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0),
5802   NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0),
5803   NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0),
5804   NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
5805   NEONMAP1(vst2_v, arm_neon_vst2, 0),
5806   NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
5807   NEONMAP1(vst2q_v, arm_neon_vst2, 0),
5808   NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
5809   NEONMAP1(vst3_v, arm_neon_vst3, 0),
5810   NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
5811   NEONMAP1(vst3q_v, arm_neon_vst3, 0),
5812   NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
5813   NEONMAP1(vst4_v, arm_neon_vst4, 0),
5814   NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
5815   NEONMAP1(vst4q_v, arm_neon_vst4, 0),
5816   NEONMAP0(vsubhn_v),
5817   NEONMAP0(vtrn_v),
5818   NEONMAP0(vtrnq_v),
5819   NEONMAP0(vtst_v),
5820   NEONMAP0(vtstq_v),
5821   NEONMAP1(vusdot_v, arm_neon_usdot, 0),
5822   NEONMAP1(vusdotq_v, arm_neon_usdot, 0),
5823   NEONMAP1(vusmmlaq_v, arm_neon_usmmla, 0),
5824   NEONMAP0(vuzp_v),
5825   NEONMAP0(vuzpq_v),
5826   NEONMAP0(vzip_v),
5827   NEONMAP0(vzipq_v)
5828 };
5829 
5830 static const ARMVectorIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
5831   NEONMAP1(__a64_vcvtq_low_bf16_v, aarch64_neon_bfcvtn, 0),
5832   NEONMAP0(splat_lane_v),
5833   NEONMAP0(splat_laneq_v),
5834   NEONMAP0(splatq_lane_v),
5835   NEONMAP0(splatq_laneq_v),
5836   NEONMAP1(vabs_v, aarch64_neon_abs, 0),
5837   NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
5838   NEONMAP0(vadd_v),
5839   NEONMAP0(vaddhn_v),
5840   NEONMAP0(vaddq_p128),
5841   NEONMAP0(vaddq_v),
5842   NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
5843   NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
5844   NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
5845   NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
5846   NEONMAP2(vbcaxq_v, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
5847   NEONMAP1(vbfdot_v, aarch64_neon_bfdot, 0),
5848   NEONMAP1(vbfdotq_v, aarch64_neon_bfdot, 0),
5849   NEONMAP1(vbfmlalbq_v, aarch64_neon_bfmlalb, 0),
5850   NEONMAP1(vbfmlaltq_v, aarch64_neon_bfmlalt, 0),
5851   NEONMAP1(vbfmmlaq_v, aarch64_neon_bfmmla, 0),
5852   NEONMAP1(vcadd_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType),
5853   NEONMAP1(vcadd_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType),
5854   NEONMAP1(vcaddq_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType),
5855   NEONMAP1(vcaddq_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType),
5856   NEONMAP1(vcage_v, aarch64_neon_facge, 0),
5857   NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
5858   NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
5859   NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
5860   NEONMAP1(vcale_v, aarch64_neon_facge, 0),
5861   NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
5862   NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
5863   NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
5864   NEONMAP0(vceqz_v),
5865   NEONMAP0(vceqzq_v),
5866   NEONMAP0(vcgez_v),
5867   NEONMAP0(vcgezq_v),
5868   NEONMAP0(vcgtz_v),
5869   NEONMAP0(vcgtzq_v),
5870   NEONMAP0(vclez_v),
5871   NEONMAP0(vclezq_v),
5872   NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
5873   NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
5874   NEONMAP0(vcltz_v),
5875   NEONMAP0(vcltzq_v),
5876   NEONMAP1(vclz_v, ctlz, Add1ArgType),
5877   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
5878   NEONMAP1(vcmla_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType),
5879   NEONMAP1(vcmla_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType),
5880   NEONMAP1(vcmla_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType),
5881   NEONMAP1(vcmla_v, aarch64_neon_vcmla_rot0, Add1ArgType),
5882   NEONMAP1(vcmlaq_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType),
5883   NEONMAP1(vcmlaq_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType),
5884   NEONMAP1(vcmlaq_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType),
5885   NEONMAP1(vcmlaq_v, aarch64_neon_vcmla_rot0, Add1ArgType),
5886   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
5887   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
5888   NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
5889   NEONMAP0(vcvt_f16_v),
5890   NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
5891   NEONMAP0(vcvt_f32_v),
5892   NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5893   NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5894   NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5895   NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
5896   NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
5897   NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
5898   NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
5899   NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
5900   NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
5901   NEONMAP0(vcvtq_f16_v),
5902   NEONMAP0(vcvtq_f32_v),
5903   NEONMAP1(vcvtq_high_bf16_v, aarch64_neon_bfcvtn2, 0),
5904   NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5905   NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5906   NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5907   NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
5908   NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
5909   NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
5910   NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
5911   NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
5912   NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
5913   NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
5914   NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
5915   NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
5916   NEONMAP2(veor3q_v, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
5917   NEONMAP0(vext_v),
5918   NEONMAP0(vextq_v),
5919   NEONMAP0(vfma_v),
5920   NEONMAP0(vfmaq_v),
5921   NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0),
5922   NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0),
5923   NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0),
5924   NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0),
5925   NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0),
5926   NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0),
5927   NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0),
5928   NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0),
5929   NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
5930   NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
5931   NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
5932   NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
5933   NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0),
5934   NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0),
5935   NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0),
5936   NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0),
5937   NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0),
5938   NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0),
5939   NEONMAP2(vmmlaq_v, aarch64_neon_ummla, aarch64_neon_smmla, 0),
5940   NEONMAP0(vmovl_v),
5941   NEONMAP0(vmovn_v),
5942   NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
5943   NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
5944   NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
5945   NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
5946   NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
5947   NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
5948   NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
5949   NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
5950   NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
5951   NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
5952   NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
5953   NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
5954   NEONMAP1(vqdmulh_lane_v, aarch64_neon_sqdmulh_lane, 0),
5955   NEONMAP1(vqdmulh_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
5956   NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
5957   NEONMAP1(vqdmulhq_lane_v, aarch64_neon_sqdmulh_lane, 0),
5958   NEONMAP1(vqdmulhq_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
5959   NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
5960   NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
5961   NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
5962   NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
5963   NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
5964   NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
5965   NEONMAP1(vqrdmulh_lane_v, aarch64_neon_sqrdmulh_lane, 0),
5966   NEONMAP1(vqrdmulh_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
5967   NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
5968   NEONMAP1(vqrdmulhq_lane_v, aarch64_neon_sqrdmulh_lane, 0),
5969   NEONMAP1(vqrdmulhq_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
5970   NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
5971   NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
5972   NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
5973   NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
5974   NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
5975   NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
5976   NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
5977   NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
5978   NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
5979   NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
5980   NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
5981   NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
5982   NEONMAP1(vrax1q_v, aarch64_crypto_rax1, 0),
5983   NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
5984   NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
5985   NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
5986   NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
5987   NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
5988   NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
5989   NEONMAP1(vrnd32x_v, aarch64_neon_frint32x, Add1ArgType),
5990   NEONMAP1(vrnd32xq_v, aarch64_neon_frint32x, Add1ArgType),
5991   NEONMAP1(vrnd32z_v, aarch64_neon_frint32z, Add1ArgType),
5992   NEONMAP1(vrnd32zq_v, aarch64_neon_frint32z, Add1ArgType),
5993   NEONMAP1(vrnd64x_v, aarch64_neon_frint64x, Add1ArgType),
5994   NEONMAP1(vrnd64xq_v, aarch64_neon_frint64x, Add1ArgType),
5995   NEONMAP1(vrnd64z_v, aarch64_neon_frint64z, Add1ArgType),
5996   NEONMAP1(vrnd64zq_v, aarch64_neon_frint64z, Add1ArgType),
5997   NEONMAP0(vrndi_v),
5998   NEONMAP0(vrndiq_v),
5999   NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
6000   NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
6001   NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
6002   NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
6003   NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
6004   NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
6005   NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
6006   NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
6007   NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
6008   NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
6009   NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
6010   NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
6011   NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
6012   NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
6013   NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
6014   NEONMAP1(vsha512h2q_v, aarch64_crypto_sha512h2, 0),
6015   NEONMAP1(vsha512hq_v, aarch64_crypto_sha512h, 0),
6016   NEONMAP1(vsha512su0q_v, aarch64_crypto_sha512su0, 0),
6017   NEONMAP1(vsha512su1q_v, aarch64_crypto_sha512su1, 0),
6018   NEONMAP0(vshl_n_v),
6019   NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
6020   NEONMAP0(vshll_n_v),
6021   NEONMAP0(vshlq_n_v),
6022   NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
6023   NEONMAP0(vshr_n_v),
6024   NEONMAP0(vshrn_n_v),
6025   NEONMAP0(vshrq_n_v),
6026   NEONMAP1(vsm3partw1q_v, aarch64_crypto_sm3partw1, 0),
6027   NEONMAP1(vsm3partw2q_v, aarch64_crypto_sm3partw2, 0),
6028   NEONMAP1(vsm3ss1q_v, aarch64_crypto_sm3ss1, 0),
6029   NEONMAP1(vsm3tt1aq_v, aarch64_crypto_sm3tt1a, 0),
6030   NEONMAP1(vsm3tt1bq_v, aarch64_crypto_sm3tt1b, 0),
6031   NEONMAP1(vsm3tt2aq_v, aarch64_crypto_sm3tt2a, 0),
6032   NEONMAP1(vsm3tt2bq_v, aarch64_crypto_sm3tt2b, 0),
6033   NEONMAP1(vsm4ekeyq_v, aarch64_crypto_sm4ekey, 0),
6034   NEONMAP1(vsm4eq_v, aarch64_crypto_sm4e, 0),
6035   NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0),
6036   NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0),
6037   NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0),
6038   NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0),
6039   NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0),
6040   NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0),
6041   NEONMAP0(vsubhn_v),
6042   NEONMAP0(vtst_v),
6043   NEONMAP0(vtstq_v),
6044   NEONMAP1(vusdot_v, aarch64_neon_usdot, 0),
6045   NEONMAP1(vusdotq_v, aarch64_neon_usdot, 0),
6046   NEONMAP1(vusmmlaq_v, aarch64_neon_usmmla, 0),
6047   NEONMAP1(vxarq_v, aarch64_crypto_xar, 0),
6048 };
6049 
6050 static const ARMVectorIntrinsicInfo AArch64SISDIntrinsicMap[] = {
6051   NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
6052   NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
6053   NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
6054   NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
6055   NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
6056   NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
6057   NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
6058   NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
6059   NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
6060   NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6061   NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
6062   NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
6063   NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
6064   NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
6065   NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6066   NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6067   NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
6068   NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
6069   NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
6070   NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
6071   NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
6072   NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
6073   NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
6074   NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
6075   NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6076   NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6077   NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6078   NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6079   NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6080   NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6081   NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6082   NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6083   NEONMAP1(vcvtd_s64_f64, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6084   NEONMAP1(vcvtd_u64_f64, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6085   NEONMAP1(vcvth_bf16_f32, aarch64_neon_bfcvt, 0),
6086   NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6087   NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6088   NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6089   NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6090   NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6091   NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6092   NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6093   NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6094   NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6095   NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6096   NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6097   NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6098   NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6099   NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6100   NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6101   NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6102   NEONMAP1(vcvts_s32_f32, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6103   NEONMAP1(vcvts_u32_f32, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6104   NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
6105   NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6106   NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6107   NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6108   NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6109   NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
6110   NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
6111   NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6112   NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6113   NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
6114   NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
6115   NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6116   NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6117   NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6118   NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6119   NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
6120   NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
6121   NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6122   NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
6123   NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
6124   NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
6125   NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
6126   NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
6127   NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
6128   NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6129   NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6130   NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6131   NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6132   NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6133   NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6134   NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6135   NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6136   NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
6137   NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6138   NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
6139   NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
6140   NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
6141   NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
6142   NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
6143   NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
6144   NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
6145   NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
6146   NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
6147   NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
6148   NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
6149   NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
6150   NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
6151   NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
6152   NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
6153   NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
6154   NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
6155   NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
6156   NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
6157   NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
6158   NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
6159   NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
6160   NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
6161   NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
6162   NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
6163   NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
6164   NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
6165   NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
6166   NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
6167   NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
6168   NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
6169   NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
6170   NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
6171   NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
6172   NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
6173   NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
6174   NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
6175   NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
6176   NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
6177   NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
6178   NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
6179   NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
6180   NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
6181   NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
6182   NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
6183   NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
6184   NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
6185   NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
6186   NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6187   NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6188   NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6189   NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6190   NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
6191   NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
6192   NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6193   NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6194   NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6195   NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6196   NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
6197   NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
6198   NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
6199   NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
6200   NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
6201   NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
6202   NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
6203   NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
6204   NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
6205   NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
6206   NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
6207   NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
6208   NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
6209   NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
6210   NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
6211   NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
6212   NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
6213   NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
6214   NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
6215   NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
6216   NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
6217   NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
6218   NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
6219   NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
6220   NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
6221   NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
6222   NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
6223   NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
6224   NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
6225   NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
6226   NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
6227   NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
6228   NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
6229   NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
6230   NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
6231   NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
6232   NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
6233   NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
6234   NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
6235   NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
6236   NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
6237   NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
6238   NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
6239   NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
6240   NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
6241   NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
6242   NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
6243   NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
6244   NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
6245   NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
6246   NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
6247   NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
6248   // FP16 scalar intrinisics go here.
6249   NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType),
6250   NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6251   NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6252   NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6253   NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6254   NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6255   NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6256   NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6257   NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6258   NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6259   NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6260   NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6261   NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6262   NEONMAP1(vcvth_s32_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6263   NEONMAP1(vcvth_s64_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6264   NEONMAP1(vcvth_u32_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6265   NEONMAP1(vcvth_u64_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6266   NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6267   NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6268   NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6269   NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6270   NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6271   NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6272   NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6273   NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6274   NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6275   NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6276   NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6277   NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6278   NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType),
6279   NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType),
6280   NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType),
6281   NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType),
6282   NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType),
6283 };
6284 
6285 #undef NEONMAP0
6286 #undef NEONMAP1
6287 #undef NEONMAP2
6288 
6289 #define SVEMAP1(NameBase, LLVMIntrinsic, TypeModifier)                         \
6290   {                                                                            \
6291     #NameBase, SVE::BI__builtin_sve_##NameBase, Intrinsic::LLVMIntrinsic, 0,   \
6292         TypeModifier                                                           \
6293   }
6294 
6295 #define SVEMAP2(NameBase, TypeModifier)                                        \
6296   { #NameBase, SVE::BI__builtin_sve_##NameBase, 0, 0, TypeModifier }
6297 static const ARMVectorIntrinsicInfo AArch64SVEIntrinsicMap[] = {
6298 #define GET_SVE_LLVM_INTRINSIC_MAP
6299 #include "clang/Basic/arm_sve_builtin_cg.inc"
6300 #undef GET_SVE_LLVM_INTRINSIC_MAP
6301 };
6302 
6303 #undef SVEMAP1
6304 #undef SVEMAP2
6305 
6306 static bool NEONSIMDIntrinsicsProvenSorted = false;
6307 
6308 static bool AArch64SIMDIntrinsicsProvenSorted = false;
6309 static bool AArch64SISDIntrinsicsProvenSorted = false;
6310 static bool AArch64SVEIntrinsicsProvenSorted = false;
6311 
6312 static const ARMVectorIntrinsicInfo *
6313 findARMVectorIntrinsicInMap(ArrayRef<ARMVectorIntrinsicInfo> IntrinsicMap,
6314                             unsigned BuiltinID, bool &MapProvenSorted) {
6315 
6316 #ifndef NDEBUG
6317   if (!MapProvenSorted) {
6318     assert(llvm::is_sorted(IntrinsicMap));
6319     MapProvenSorted = true;
6320   }
6321 #endif
6322 
6323   const ARMVectorIntrinsicInfo *Builtin =
6324       llvm::lower_bound(IntrinsicMap, BuiltinID);
6325 
6326   if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
6327     return Builtin;
6328 
6329   return nullptr;
6330 }
6331 
6332 Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
6333                                                    unsigned Modifier,
6334                                                    llvm::Type *ArgType,
6335                                                    const CallExpr *E) {
6336   int VectorSize = 0;
6337   if (Modifier & Use64BitVectors)
6338     VectorSize = 64;
6339   else if (Modifier & Use128BitVectors)
6340     VectorSize = 128;
6341 
6342   // Return type.
6343   SmallVector<llvm::Type *, 3> Tys;
6344   if (Modifier & AddRetType) {
6345     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
6346     if (Modifier & VectorizeRetType)
6347       Ty = llvm::FixedVectorType::get(
6348           Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
6349 
6350     Tys.push_back(Ty);
6351   }
6352 
6353   // Arguments.
6354   if (Modifier & VectorizeArgTypes) {
6355     int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
6356     ArgType = llvm::FixedVectorType::get(ArgType, Elts);
6357   }
6358 
6359   if (Modifier & (Add1ArgType | Add2ArgTypes))
6360     Tys.push_back(ArgType);
6361 
6362   if (Modifier & Add2ArgTypes)
6363     Tys.push_back(ArgType);
6364 
6365   if (Modifier & InventFloatType)
6366     Tys.push_back(FloatTy);
6367 
6368   return CGM.getIntrinsic(IntrinsicID, Tys);
6369 }
6370 
6371 static Value *EmitCommonNeonSISDBuiltinExpr(
6372     CodeGenFunction &CGF, const ARMVectorIntrinsicInfo &SISDInfo,
6373     SmallVectorImpl<Value *> &Ops, const CallExpr *E) {
6374   unsigned BuiltinID = SISDInfo.BuiltinID;
6375   unsigned int Int = SISDInfo.LLVMIntrinsic;
6376   unsigned Modifier = SISDInfo.TypeModifier;
6377   const char *s = SISDInfo.NameHint;
6378 
6379   switch (BuiltinID) {
6380   case NEON::BI__builtin_neon_vcled_s64:
6381   case NEON::BI__builtin_neon_vcled_u64:
6382   case NEON::BI__builtin_neon_vcles_f32:
6383   case NEON::BI__builtin_neon_vcled_f64:
6384   case NEON::BI__builtin_neon_vcltd_s64:
6385   case NEON::BI__builtin_neon_vcltd_u64:
6386   case NEON::BI__builtin_neon_vclts_f32:
6387   case NEON::BI__builtin_neon_vcltd_f64:
6388   case NEON::BI__builtin_neon_vcales_f32:
6389   case NEON::BI__builtin_neon_vcaled_f64:
6390   case NEON::BI__builtin_neon_vcalts_f32:
6391   case NEON::BI__builtin_neon_vcaltd_f64:
6392     // Only one direction of comparisons actually exist, cmle is actually a cmge
6393     // with swapped operands. The table gives us the right intrinsic but we
6394     // still need to do the swap.
6395     std::swap(Ops[0], Ops[1]);
6396     break;
6397   }
6398 
6399   assert(Int && "Generic code assumes a valid intrinsic");
6400 
6401   // Determine the type(s) of this overloaded AArch64 intrinsic.
6402   const Expr *Arg = E->getArg(0);
6403   llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
6404   Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
6405 
6406   int j = 0;
6407   ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
6408   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
6409        ai != ae; ++ai, ++j) {
6410     llvm::Type *ArgTy = ai->getType();
6411     if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
6412              ArgTy->getPrimitiveSizeInBits())
6413       continue;
6414 
6415     assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy());
6416     // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
6417     // it before inserting.
6418     Ops[j] = CGF.Builder.CreateTruncOrBitCast(
6419         Ops[j], cast<llvm::VectorType>(ArgTy)->getElementType());
6420     Ops[j] =
6421         CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
6422   }
6423 
6424   Value *Result = CGF.EmitNeonCall(F, Ops, s);
6425   llvm::Type *ResultType = CGF.ConvertType(E->getType());
6426   if (ResultType->getPrimitiveSizeInBits().getFixedSize() <
6427       Result->getType()->getPrimitiveSizeInBits().getFixedSize())
6428     return CGF.Builder.CreateExtractElement(Result, C0);
6429 
6430   return CGF.Builder.CreateBitCast(Result, ResultType, s);
6431 }
6432 
6433 Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
6434     unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
6435     const char *NameHint, unsigned Modifier, const CallExpr *E,
6436     SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1,
6437     llvm::Triple::ArchType Arch) {
6438   // Get the last argument, which specifies the vector type.
6439   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
6440   Optional<llvm::APSInt> NeonTypeConst =
6441       Arg->getIntegerConstantExpr(getContext());
6442   if (!NeonTypeConst)
6443     return nullptr;
6444 
6445   // Determine the type of this overloaded NEON intrinsic.
6446   NeonTypeFlags Type(NeonTypeConst->getZExtValue());
6447   bool Usgn = Type.isUnsigned();
6448   bool Quad = Type.isQuad();
6449   const bool HasLegalHalfType = getTarget().hasLegalHalfType();
6450   const bool AllowBFloatArgsAndRet =
6451       getTargetHooks().getABIInfo().allowBFloatArgsAndRet();
6452 
6453   llvm::FixedVectorType *VTy =
6454       GetNeonType(this, Type, HasLegalHalfType, false, AllowBFloatArgsAndRet);
6455   llvm::Type *Ty = VTy;
6456   if (!Ty)
6457     return nullptr;
6458 
6459   auto getAlignmentValue32 = [&](Address addr) -> Value* {
6460     return Builder.getInt32(addr.getAlignment().getQuantity());
6461   };
6462 
6463   unsigned Int = LLVMIntrinsic;
6464   if ((Modifier & UnsignedAlts) && !Usgn)
6465     Int = AltLLVMIntrinsic;
6466 
6467   switch (BuiltinID) {
6468   default: break;
6469   case NEON::BI__builtin_neon_splat_lane_v:
6470   case NEON::BI__builtin_neon_splat_laneq_v:
6471   case NEON::BI__builtin_neon_splatq_lane_v:
6472   case NEON::BI__builtin_neon_splatq_laneq_v: {
6473     auto NumElements = VTy->getElementCount();
6474     if (BuiltinID == NEON::BI__builtin_neon_splatq_lane_v)
6475       NumElements = NumElements * 2;
6476     if (BuiltinID == NEON::BI__builtin_neon_splat_laneq_v)
6477       NumElements = NumElements.divideCoefficientBy(2);
6478 
6479     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
6480     return EmitNeonSplat(Ops[0], cast<ConstantInt>(Ops[1]), NumElements);
6481   }
6482   case NEON::BI__builtin_neon_vpadd_v:
6483   case NEON::BI__builtin_neon_vpaddq_v:
6484     // We don't allow fp/int overloading of intrinsics.
6485     if (VTy->getElementType()->isFloatingPointTy() &&
6486         Int == Intrinsic::aarch64_neon_addp)
6487       Int = Intrinsic::aarch64_neon_faddp;
6488     break;
6489   case NEON::BI__builtin_neon_vabs_v:
6490   case NEON::BI__builtin_neon_vabsq_v:
6491     if (VTy->getElementType()->isFloatingPointTy())
6492       return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
6493     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
6494   case NEON::BI__builtin_neon_vadd_v:
6495   case NEON::BI__builtin_neon_vaddq_v: {
6496     llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, Quad ? 16 : 8);
6497     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
6498     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
6499     Ops[0] =  Builder.CreateXor(Ops[0], Ops[1]);
6500     return Builder.CreateBitCast(Ops[0], Ty);
6501   }
6502   case NEON::BI__builtin_neon_vaddhn_v: {
6503     llvm::FixedVectorType *SrcTy =
6504         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6505 
6506     // %sum = add <4 x i32> %lhs, %rhs
6507     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6508     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
6509     Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
6510 
6511     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
6512     Constant *ShiftAmt =
6513         ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
6514     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
6515 
6516     // %res = trunc <4 x i32> %high to <4 x i16>
6517     return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
6518   }
6519   case NEON::BI__builtin_neon_vcale_v:
6520   case NEON::BI__builtin_neon_vcaleq_v:
6521   case NEON::BI__builtin_neon_vcalt_v:
6522   case NEON::BI__builtin_neon_vcaltq_v:
6523     std::swap(Ops[0], Ops[1]);
6524     LLVM_FALLTHROUGH;
6525   case NEON::BI__builtin_neon_vcage_v:
6526   case NEON::BI__builtin_neon_vcageq_v:
6527   case NEON::BI__builtin_neon_vcagt_v:
6528   case NEON::BI__builtin_neon_vcagtq_v: {
6529     llvm::Type *Ty;
6530     switch (VTy->getScalarSizeInBits()) {
6531     default: llvm_unreachable("unexpected type");
6532     case 32:
6533       Ty = FloatTy;
6534       break;
6535     case 64:
6536       Ty = DoubleTy;
6537       break;
6538     case 16:
6539       Ty = HalfTy;
6540       break;
6541     }
6542     auto *VecFlt = llvm::FixedVectorType::get(Ty, VTy->getNumElements());
6543     llvm::Type *Tys[] = { VTy, VecFlt };
6544     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6545     return EmitNeonCall(F, Ops, NameHint);
6546   }
6547   case NEON::BI__builtin_neon_vceqz_v:
6548   case NEON::BI__builtin_neon_vceqzq_v:
6549     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
6550                                          ICmpInst::ICMP_EQ, "vceqz");
6551   case NEON::BI__builtin_neon_vcgez_v:
6552   case NEON::BI__builtin_neon_vcgezq_v:
6553     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
6554                                          ICmpInst::ICMP_SGE, "vcgez");
6555   case NEON::BI__builtin_neon_vclez_v:
6556   case NEON::BI__builtin_neon_vclezq_v:
6557     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
6558                                          ICmpInst::ICMP_SLE, "vclez");
6559   case NEON::BI__builtin_neon_vcgtz_v:
6560   case NEON::BI__builtin_neon_vcgtzq_v:
6561     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
6562                                          ICmpInst::ICMP_SGT, "vcgtz");
6563   case NEON::BI__builtin_neon_vcltz_v:
6564   case NEON::BI__builtin_neon_vcltzq_v:
6565     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
6566                                          ICmpInst::ICMP_SLT, "vcltz");
6567   case NEON::BI__builtin_neon_vclz_v:
6568   case NEON::BI__builtin_neon_vclzq_v:
6569     // We generate target-independent intrinsic, which needs a second argument
6570     // for whether or not clz of zero is undefined; on ARM it isn't.
6571     Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
6572     break;
6573   case NEON::BI__builtin_neon_vcvt_f32_v:
6574   case NEON::BI__builtin_neon_vcvtq_f32_v:
6575     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6576     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad),
6577                      HasLegalHalfType);
6578     return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
6579                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
6580   case NEON::BI__builtin_neon_vcvt_f16_v:
6581   case NEON::BI__builtin_neon_vcvtq_f16_v:
6582     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6583     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad),
6584                      HasLegalHalfType);
6585     return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
6586                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
6587   case NEON::BI__builtin_neon_vcvt_n_f16_v:
6588   case NEON::BI__builtin_neon_vcvt_n_f32_v:
6589   case NEON::BI__builtin_neon_vcvt_n_f64_v:
6590   case NEON::BI__builtin_neon_vcvtq_n_f16_v:
6591   case NEON::BI__builtin_neon_vcvtq_n_f32_v:
6592   case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
6593     llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
6594     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
6595     Function *F = CGM.getIntrinsic(Int, Tys);
6596     return EmitNeonCall(F, Ops, "vcvt_n");
6597   }
6598   case NEON::BI__builtin_neon_vcvt_n_s16_v:
6599   case NEON::BI__builtin_neon_vcvt_n_s32_v:
6600   case NEON::BI__builtin_neon_vcvt_n_u16_v:
6601   case NEON::BI__builtin_neon_vcvt_n_u32_v:
6602   case NEON::BI__builtin_neon_vcvt_n_s64_v:
6603   case NEON::BI__builtin_neon_vcvt_n_u64_v:
6604   case NEON::BI__builtin_neon_vcvtq_n_s16_v:
6605   case NEON::BI__builtin_neon_vcvtq_n_s32_v:
6606   case NEON::BI__builtin_neon_vcvtq_n_u16_v:
6607   case NEON::BI__builtin_neon_vcvtq_n_u32_v:
6608   case NEON::BI__builtin_neon_vcvtq_n_s64_v:
6609   case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
6610     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
6611     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6612     return EmitNeonCall(F, Ops, "vcvt_n");
6613   }
6614   case NEON::BI__builtin_neon_vcvt_s32_v:
6615   case NEON::BI__builtin_neon_vcvt_u32_v:
6616   case NEON::BI__builtin_neon_vcvt_s64_v:
6617   case NEON::BI__builtin_neon_vcvt_u64_v:
6618   case NEON::BI__builtin_neon_vcvt_s16_v:
6619   case NEON::BI__builtin_neon_vcvt_u16_v:
6620   case NEON::BI__builtin_neon_vcvtq_s32_v:
6621   case NEON::BI__builtin_neon_vcvtq_u32_v:
6622   case NEON::BI__builtin_neon_vcvtq_s64_v:
6623   case NEON::BI__builtin_neon_vcvtq_u64_v:
6624   case NEON::BI__builtin_neon_vcvtq_s16_v:
6625   case NEON::BI__builtin_neon_vcvtq_u16_v: {
6626     Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
6627     return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
6628                 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
6629   }
6630   case NEON::BI__builtin_neon_vcvta_s16_v:
6631   case NEON::BI__builtin_neon_vcvta_s32_v:
6632   case NEON::BI__builtin_neon_vcvta_s64_v:
6633   case NEON::BI__builtin_neon_vcvta_u16_v:
6634   case NEON::BI__builtin_neon_vcvta_u32_v:
6635   case NEON::BI__builtin_neon_vcvta_u64_v:
6636   case NEON::BI__builtin_neon_vcvtaq_s16_v:
6637   case NEON::BI__builtin_neon_vcvtaq_s32_v:
6638   case NEON::BI__builtin_neon_vcvtaq_s64_v:
6639   case NEON::BI__builtin_neon_vcvtaq_u16_v:
6640   case NEON::BI__builtin_neon_vcvtaq_u32_v:
6641   case NEON::BI__builtin_neon_vcvtaq_u64_v:
6642   case NEON::BI__builtin_neon_vcvtn_s16_v:
6643   case NEON::BI__builtin_neon_vcvtn_s32_v:
6644   case NEON::BI__builtin_neon_vcvtn_s64_v:
6645   case NEON::BI__builtin_neon_vcvtn_u16_v:
6646   case NEON::BI__builtin_neon_vcvtn_u32_v:
6647   case NEON::BI__builtin_neon_vcvtn_u64_v:
6648   case NEON::BI__builtin_neon_vcvtnq_s16_v:
6649   case NEON::BI__builtin_neon_vcvtnq_s32_v:
6650   case NEON::BI__builtin_neon_vcvtnq_s64_v:
6651   case NEON::BI__builtin_neon_vcvtnq_u16_v:
6652   case NEON::BI__builtin_neon_vcvtnq_u32_v:
6653   case NEON::BI__builtin_neon_vcvtnq_u64_v:
6654   case NEON::BI__builtin_neon_vcvtp_s16_v:
6655   case NEON::BI__builtin_neon_vcvtp_s32_v:
6656   case NEON::BI__builtin_neon_vcvtp_s64_v:
6657   case NEON::BI__builtin_neon_vcvtp_u16_v:
6658   case NEON::BI__builtin_neon_vcvtp_u32_v:
6659   case NEON::BI__builtin_neon_vcvtp_u64_v:
6660   case NEON::BI__builtin_neon_vcvtpq_s16_v:
6661   case NEON::BI__builtin_neon_vcvtpq_s32_v:
6662   case NEON::BI__builtin_neon_vcvtpq_s64_v:
6663   case NEON::BI__builtin_neon_vcvtpq_u16_v:
6664   case NEON::BI__builtin_neon_vcvtpq_u32_v:
6665   case NEON::BI__builtin_neon_vcvtpq_u64_v:
6666   case NEON::BI__builtin_neon_vcvtm_s16_v:
6667   case NEON::BI__builtin_neon_vcvtm_s32_v:
6668   case NEON::BI__builtin_neon_vcvtm_s64_v:
6669   case NEON::BI__builtin_neon_vcvtm_u16_v:
6670   case NEON::BI__builtin_neon_vcvtm_u32_v:
6671   case NEON::BI__builtin_neon_vcvtm_u64_v:
6672   case NEON::BI__builtin_neon_vcvtmq_s16_v:
6673   case NEON::BI__builtin_neon_vcvtmq_s32_v:
6674   case NEON::BI__builtin_neon_vcvtmq_s64_v:
6675   case NEON::BI__builtin_neon_vcvtmq_u16_v:
6676   case NEON::BI__builtin_neon_vcvtmq_u32_v:
6677   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
6678     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
6679     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
6680   }
6681   case NEON::BI__builtin_neon_vcvtx_f32_v: {
6682     llvm::Type *Tys[2] = { VTy->getTruncatedElementVectorType(VTy), Ty};
6683     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
6684 
6685   }
6686   case NEON::BI__builtin_neon_vext_v:
6687   case NEON::BI__builtin_neon_vextq_v: {
6688     int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
6689     SmallVector<int, 16> Indices;
6690     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
6691       Indices.push_back(i+CV);
6692 
6693     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6694     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6695     return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
6696   }
6697   case NEON::BI__builtin_neon_vfma_v:
6698   case NEON::BI__builtin_neon_vfmaq_v: {
6699     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6700     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6701     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6702 
6703     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
6704     return emitCallMaybeConstrainedFPBuiltin(
6705         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
6706         {Ops[1], Ops[2], Ops[0]});
6707   }
6708   case NEON::BI__builtin_neon_vld1_v:
6709   case NEON::BI__builtin_neon_vld1q_v: {
6710     llvm::Type *Tys[] = {Ty, Int8PtrTy};
6711     Ops.push_back(getAlignmentValue32(PtrOp0));
6712     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
6713   }
6714   case NEON::BI__builtin_neon_vld1_x2_v:
6715   case NEON::BI__builtin_neon_vld1q_x2_v:
6716   case NEON::BI__builtin_neon_vld1_x3_v:
6717   case NEON::BI__builtin_neon_vld1q_x3_v:
6718   case NEON::BI__builtin_neon_vld1_x4_v:
6719   case NEON::BI__builtin_neon_vld1q_x4_v: {
6720     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
6721     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
6722     llvm::Type *Tys[2] = { VTy, PTy };
6723     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6724     Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
6725     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6726     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6727     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6728   }
6729   case NEON::BI__builtin_neon_vld2_v:
6730   case NEON::BI__builtin_neon_vld2q_v:
6731   case NEON::BI__builtin_neon_vld3_v:
6732   case NEON::BI__builtin_neon_vld3q_v:
6733   case NEON::BI__builtin_neon_vld4_v:
6734   case NEON::BI__builtin_neon_vld4q_v:
6735   case NEON::BI__builtin_neon_vld2_dup_v:
6736   case NEON::BI__builtin_neon_vld2q_dup_v:
6737   case NEON::BI__builtin_neon_vld3_dup_v:
6738   case NEON::BI__builtin_neon_vld3q_dup_v:
6739   case NEON::BI__builtin_neon_vld4_dup_v:
6740   case NEON::BI__builtin_neon_vld4q_dup_v: {
6741     llvm::Type *Tys[] = {Ty, Int8PtrTy};
6742     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6743     Value *Align = getAlignmentValue32(PtrOp1);
6744     Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
6745     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6746     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6747     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6748   }
6749   case NEON::BI__builtin_neon_vld1_dup_v:
6750   case NEON::BI__builtin_neon_vld1q_dup_v: {
6751     Value *V = UndefValue::get(Ty);
6752     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
6753     PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty);
6754     LoadInst *Ld = Builder.CreateLoad(PtrOp0);
6755     llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
6756     Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
6757     return EmitNeonSplat(Ops[0], CI);
6758   }
6759   case NEON::BI__builtin_neon_vld2_lane_v:
6760   case NEON::BI__builtin_neon_vld2q_lane_v:
6761   case NEON::BI__builtin_neon_vld3_lane_v:
6762   case NEON::BI__builtin_neon_vld3q_lane_v:
6763   case NEON::BI__builtin_neon_vld4_lane_v:
6764   case NEON::BI__builtin_neon_vld4q_lane_v: {
6765     llvm::Type *Tys[] = {Ty, Int8PtrTy};
6766     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6767     for (unsigned I = 2; I < Ops.size() - 1; ++I)
6768       Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
6769     Ops.push_back(getAlignmentValue32(PtrOp1));
6770     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
6771     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6772     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6773     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6774   }
6775   case NEON::BI__builtin_neon_vmovl_v: {
6776     llvm::FixedVectorType *DTy =
6777         llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
6778     Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
6779     if (Usgn)
6780       return Builder.CreateZExt(Ops[0], Ty, "vmovl");
6781     return Builder.CreateSExt(Ops[0], Ty, "vmovl");
6782   }
6783   case NEON::BI__builtin_neon_vmovn_v: {
6784     llvm::FixedVectorType *QTy =
6785         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6786     Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
6787     return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
6788   }
6789   case NEON::BI__builtin_neon_vmull_v:
6790     // FIXME: the integer vmull operations could be emitted in terms of pure
6791     // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
6792     // hoisting the exts outside loops. Until global ISel comes along that can
6793     // see through such movement this leads to bad CodeGen. So we need an
6794     // intrinsic for now.
6795     Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
6796     Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
6797     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
6798   case NEON::BI__builtin_neon_vpadal_v:
6799   case NEON::BI__builtin_neon_vpadalq_v: {
6800     // The source operand type has twice as many elements of half the size.
6801     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
6802     llvm::Type *EltTy =
6803       llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
6804     auto *NarrowTy =
6805         llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
6806     llvm::Type *Tys[2] = { Ty, NarrowTy };
6807     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
6808   }
6809   case NEON::BI__builtin_neon_vpaddl_v:
6810   case NEON::BI__builtin_neon_vpaddlq_v: {
6811     // The source operand type has twice as many elements of half the size.
6812     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
6813     llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
6814     auto *NarrowTy =
6815         llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
6816     llvm::Type *Tys[2] = { Ty, NarrowTy };
6817     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
6818   }
6819   case NEON::BI__builtin_neon_vqdmlal_v:
6820   case NEON::BI__builtin_neon_vqdmlsl_v: {
6821     SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
6822     Ops[1] =
6823         EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
6824     Ops.resize(2);
6825     return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
6826   }
6827   case NEON::BI__builtin_neon_vqdmulhq_lane_v:
6828   case NEON::BI__builtin_neon_vqdmulh_lane_v:
6829   case NEON::BI__builtin_neon_vqrdmulhq_lane_v:
6830   case NEON::BI__builtin_neon_vqrdmulh_lane_v: {
6831     auto *RTy = cast<llvm::FixedVectorType>(Ty);
6832     if (BuiltinID == NEON::BI__builtin_neon_vqdmulhq_lane_v ||
6833         BuiltinID == NEON::BI__builtin_neon_vqrdmulhq_lane_v)
6834       RTy = llvm::FixedVectorType::get(RTy->getElementType(),
6835                                        RTy->getNumElements() * 2);
6836     llvm::Type *Tys[2] = {
6837         RTy, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
6838                                              /*isQuad*/ false))};
6839     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
6840   }
6841   case NEON::BI__builtin_neon_vqdmulhq_laneq_v:
6842   case NEON::BI__builtin_neon_vqdmulh_laneq_v:
6843   case NEON::BI__builtin_neon_vqrdmulhq_laneq_v:
6844   case NEON::BI__builtin_neon_vqrdmulh_laneq_v: {
6845     llvm::Type *Tys[2] = {
6846         Ty, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
6847                                             /*isQuad*/ true))};
6848     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
6849   }
6850   case NEON::BI__builtin_neon_vqshl_n_v:
6851   case NEON::BI__builtin_neon_vqshlq_n_v:
6852     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
6853                         1, false);
6854   case NEON::BI__builtin_neon_vqshlu_n_v:
6855   case NEON::BI__builtin_neon_vqshluq_n_v:
6856     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
6857                         1, false);
6858   case NEON::BI__builtin_neon_vrecpe_v:
6859   case NEON::BI__builtin_neon_vrecpeq_v:
6860   case NEON::BI__builtin_neon_vrsqrte_v:
6861   case NEON::BI__builtin_neon_vrsqrteq_v:
6862     Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
6863     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
6864   case NEON::BI__builtin_neon_vrndi_v:
6865   case NEON::BI__builtin_neon_vrndiq_v:
6866     Int = Builder.getIsFPConstrained()
6867               ? Intrinsic::experimental_constrained_nearbyint
6868               : Intrinsic::nearbyint;
6869     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
6870   case NEON::BI__builtin_neon_vrshr_n_v:
6871   case NEON::BI__builtin_neon_vrshrq_n_v:
6872     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
6873                         1, true);
6874   case NEON::BI__builtin_neon_vsha512hq_v:
6875   case NEON::BI__builtin_neon_vsha512h2q_v:
6876   case NEON::BI__builtin_neon_vsha512su0q_v:
6877   case NEON::BI__builtin_neon_vsha512su1q_v: {
6878     Function *F = CGM.getIntrinsic(Int);
6879     return EmitNeonCall(F, Ops, "");
6880   }
6881   case NEON::BI__builtin_neon_vshl_n_v:
6882   case NEON::BI__builtin_neon_vshlq_n_v:
6883     Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
6884     return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
6885                              "vshl_n");
6886   case NEON::BI__builtin_neon_vshll_n_v: {
6887     llvm::FixedVectorType *SrcTy =
6888         llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
6889     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6890     if (Usgn)
6891       Ops[0] = Builder.CreateZExt(Ops[0], VTy);
6892     else
6893       Ops[0] = Builder.CreateSExt(Ops[0], VTy);
6894     Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
6895     return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
6896   }
6897   case NEON::BI__builtin_neon_vshrn_n_v: {
6898     llvm::FixedVectorType *SrcTy =
6899         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6900     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6901     Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
6902     if (Usgn)
6903       Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
6904     else
6905       Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
6906     return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
6907   }
6908   case NEON::BI__builtin_neon_vshr_n_v:
6909   case NEON::BI__builtin_neon_vshrq_n_v:
6910     return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
6911   case NEON::BI__builtin_neon_vst1_v:
6912   case NEON::BI__builtin_neon_vst1q_v:
6913   case NEON::BI__builtin_neon_vst2_v:
6914   case NEON::BI__builtin_neon_vst2q_v:
6915   case NEON::BI__builtin_neon_vst3_v:
6916   case NEON::BI__builtin_neon_vst3q_v:
6917   case NEON::BI__builtin_neon_vst4_v:
6918   case NEON::BI__builtin_neon_vst4q_v:
6919   case NEON::BI__builtin_neon_vst2_lane_v:
6920   case NEON::BI__builtin_neon_vst2q_lane_v:
6921   case NEON::BI__builtin_neon_vst3_lane_v:
6922   case NEON::BI__builtin_neon_vst3q_lane_v:
6923   case NEON::BI__builtin_neon_vst4_lane_v:
6924   case NEON::BI__builtin_neon_vst4q_lane_v: {
6925     llvm::Type *Tys[] = {Int8PtrTy, Ty};
6926     Ops.push_back(getAlignmentValue32(PtrOp0));
6927     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
6928   }
6929   case NEON::BI__builtin_neon_vsm3partw1q_v:
6930   case NEON::BI__builtin_neon_vsm3partw2q_v:
6931   case NEON::BI__builtin_neon_vsm3ss1q_v:
6932   case NEON::BI__builtin_neon_vsm4ekeyq_v:
6933   case NEON::BI__builtin_neon_vsm4eq_v: {
6934     Function *F = CGM.getIntrinsic(Int);
6935     return EmitNeonCall(F, Ops, "");
6936   }
6937   case NEON::BI__builtin_neon_vsm3tt1aq_v:
6938   case NEON::BI__builtin_neon_vsm3tt1bq_v:
6939   case NEON::BI__builtin_neon_vsm3tt2aq_v:
6940   case NEON::BI__builtin_neon_vsm3tt2bq_v: {
6941     Function *F = CGM.getIntrinsic(Int);
6942     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
6943     return EmitNeonCall(F, Ops, "");
6944   }
6945   case NEON::BI__builtin_neon_vst1_x2_v:
6946   case NEON::BI__builtin_neon_vst1q_x2_v:
6947   case NEON::BI__builtin_neon_vst1_x3_v:
6948   case NEON::BI__builtin_neon_vst1q_x3_v:
6949   case NEON::BI__builtin_neon_vst1_x4_v:
6950   case NEON::BI__builtin_neon_vst1q_x4_v: {
6951     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
6952     // TODO: Currently in AArch32 mode the pointer operand comes first, whereas
6953     // in AArch64 it comes last. We may want to stick to one or another.
6954     if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be ||
6955         Arch == llvm::Triple::aarch64_32) {
6956       llvm::Type *Tys[2] = { VTy, PTy };
6957       std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
6958       return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
6959     }
6960     llvm::Type *Tys[2] = { PTy, VTy };
6961     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
6962   }
6963   case NEON::BI__builtin_neon_vsubhn_v: {
6964     llvm::FixedVectorType *SrcTy =
6965         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6966 
6967     // %sum = add <4 x i32> %lhs, %rhs
6968     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6969     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
6970     Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
6971 
6972     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
6973     Constant *ShiftAmt =
6974         ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
6975     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
6976 
6977     // %res = trunc <4 x i32> %high to <4 x i16>
6978     return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
6979   }
6980   case NEON::BI__builtin_neon_vtrn_v:
6981   case NEON::BI__builtin_neon_vtrnq_v: {
6982     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
6983     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6984     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6985     Value *SV = nullptr;
6986 
6987     for (unsigned vi = 0; vi != 2; ++vi) {
6988       SmallVector<int, 16> Indices;
6989       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
6990         Indices.push_back(i+vi);
6991         Indices.push_back(i+e+vi);
6992       }
6993       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
6994       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
6995       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
6996     }
6997     return SV;
6998   }
6999   case NEON::BI__builtin_neon_vtst_v:
7000   case NEON::BI__builtin_neon_vtstq_v: {
7001     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7002     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7003     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
7004     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
7005                                 ConstantAggregateZero::get(Ty));
7006     return Builder.CreateSExt(Ops[0], Ty, "vtst");
7007   }
7008   case NEON::BI__builtin_neon_vuzp_v:
7009   case NEON::BI__builtin_neon_vuzpq_v: {
7010     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
7011     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7012     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7013     Value *SV = nullptr;
7014 
7015     for (unsigned vi = 0; vi != 2; ++vi) {
7016       SmallVector<int, 16> Indices;
7017       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
7018         Indices.push_back(2*i+vi);
7019 
7020       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
7021       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
7022       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
7023     }
7024     return SV;
7025   }
7026   case NEON::BI__builtin_neon_vxarq_v: {
7027     Function *F = CGM.getIntrinsic(Int);
7028     Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
7029     return EmitNeonCall(F, Ops, "");
7030   }
7031   case NEON::BI__builtin_neon_vzip_v:
7032   case NEON::BI__builtin_neon_vzipq_v: {
7033     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
7034     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7035     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7036     Value *SV = nullptr;
7037 
7038     for (unsigned vi = 0; vi != 2; ++vi) {
7039       SmallVector<int, 16> Indices;
7040       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
7041         Indices.push_back((i + vi*e) >> 1);
7042         Indices.push_back(((i + vi*e) >> 1)+e);
7043       }
7044       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
7045       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
7046       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
7047     }
7048     return SV;
7049   }
7050   case NEON::BI__builtin_neon_vdot_v:
7051   case NEON::BI__builtin_neon_vdotq_v: {
7052     auto *InputTy =
7053         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7054     llvm::Type *Tys[2] = { Ty, InputTy };
7055     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
7056     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot");
7057   }
7058   case NEON::BI__builtin_neon_vfmlal_low_v:
7059   case NEON::BI__builtin_neon_vfmlalq_low_v: {
7060     auto *InputTy =
7061         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7062     llvm::Type *Tys[2] = { Ty, InputTy };
7063     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low");
7064   }
7065   case NEON::BI__builtin_neon_vfmlsl_low_v:
7066   case NEON::BI__builtin_neon_vfmlslq_low_v: {
7067     auto *InputTy =
7068         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7069     llvm::Type *Tys[2] = { Ty, InputTy };
7070     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low");
7071   }
7072   case NEON::BI__builtin_neon_vfmlal_high_v:
7073   case NEON::BI__builtin_neon_vfmlalq_high_v: {
7074     auto *InputTy =
7075         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7076     llvm::Type *Tys[2] = { Ty, InputTy };
7077     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high");
7078   }
7079   case NEON::BI__builtin_neon_vfmlsl_high_v:
7080   case NEON::BI__builtin_neon_vfmlslq_high_v: {
7081     auto *InputTy =
7082         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7083     llvm::Type *Tys[2] = { Ty, InputTy };
7084     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high");
7085   }
7086   case NEON::BI__builtin_neon_vmmlaq_v: {
7087     auto *InputTy =
7088         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7089     llvm::Type *Tys[2] = { Ty, InputTy };
7090     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
7091     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmmla");
7092   }
7093   case NEON::BI__builtin_neon_vusmmlaq_v: {
7094     auto *InputTy =
7095         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7096     llvm::Type *Tys[2] = { Ty, InputTy };
7097     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusmmla");
7098   }
7099   case NEON::BI__builtin_neon_vusdot_v:
7100   case NEON::BI__builtin_neon_vusdotq_v: {
7101     auto *InputTy =
7102         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7103     llvm::Type *Tys[2] = { Ty, InputTy };
7104     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusdot");
7105   }
7106   case NEON::BI__builtin_neon_vbfdot_v:
7107   case NEON::BI__builtin_neon_vbfdotq_v: {
7108     llvm::Type *InputTy =
7109         llvm::FixedVectorType::get(BFloatTy, Ty->getPrimitiveSizeInBits() / 16);
7110     llvm::Type *Tys[2] = { Ty, InputTy };
7111     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfdot");
7112   }
7113   case NEON::BI__builtin_neon___a32_vcvt_bf16_v: {
7114     llvm::Type *Tys[1] = { Ty };
7115     Function *F = CGM.getIntrinsic(Int, Tys);
7116     return EmitNeonCall(F, Ops, "vcvtfp2bf");
7117   }
7118 
7119   }
7120 
7121   assert(Int && "Expected valid intrinsic number");
7122 
7123   // Determine the type(s) of this overloaded AArch64 intrinsic.
7124   Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
7125 
7126   Value *Result = EmitNeonCall(F, Ops, NameHint);
7127   llvm::Type *ResultType = ConvertType(E->getType());
7128   // AArch64 intrinsic one-element vector type cast to
7129   // scalar type expected by the builtin
7130   return Builder.CreateBitCast(Result, ResultType, NameHint);
7131 }
7132 
7133 Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
7134     Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
7135     const CmpInst::Predicate Ip, const Twine &Name) {
7136   llvm::Type *OTy = Op->getType();
7137 
7138   // FIXME: this is utterly horrific. We should not be looking at previous
7139   // codegen context to find out what needs doing. Unfortunately TableGen
7140   // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
7141   // (etc).
7142   if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
7143     OTy = BI->getOperand(0)->getType();
7144 
7145   Op = Builder.CreateBitCast(Op, OTy);
7146   if (OTy->getScalarType()->isFloatingPointTy()) {
7147     Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
7148   } else {
7149     Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
7150   }
7151   return Builder.CreateSExt(Op, Ty, Name);
7152 }
7153 
7154 static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
7155                                  Value *ExtOp, Value *IndexOp,
7156                                  llvm::Type *ResTy, unsigned IntID,
7157                                  const char *Name) {
7158   SmallVector<Value *, 2> TblOps;
7159   if (ExtOp)
7160     TblOps.push_back(ExtOp);
7161 
7162   // Build a vector containing sequential number like (0, 1, 2, ..., 15)
7163   SmallVector<int, 16> Indices;
7164   auto *TblTy = cast<llvm::FixedVectorType>(Ops[0]->getType());
7165   for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
7166     Indices.push_back(2*i);
7167     Indices.push_back(2*i+1);
7168   }
7169 
7170   int PairPos = 0, End = Ops.size() - 1;
7171   while (PairPos < End) {
7172     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
7173                                                      Ops[PairPos+1], Indices,
7174                                                      Name));
7175     PairPos += 2;
7176   }
7177 
7178   // If there's an odd number of 64-bit lookup table, fill the high 64-bit
7179   // of the 128-bit lookup table with zero.
7180   if (PairPos == End) {
7181     Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
7182     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
7183                                                      ZeroTbl, Indices, Name));
7184   }
7185 
7186   Function *TblF;
7187   TblOps.push_back(IndexOp);
7188   TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
7189 
7190   return CGF.EmitNeonCall(TblF, TblOps, Name);
7191 }
7192 
7193 Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
7194   unsigned Value;
7195   switch (BuiltinID) {
7196   default:
7197     return nullptr;
7198   case ARM::BI__builtin_arm_nop:
7199     Value = 0;
7200     break;
7201   case ARM::BI__builtin_arm_yield:
7202   case ARM::BI__yield:
7203     Value = 1;
7204     break;
7205   case ARM::BI__builtin_arm_wfe:
7206   case ARM::BI__wfe:
7207     Value = 2;
7208     break;
7209   case ARM::BI__builtin_arm_wfi:
7210   case ARM::BI__wfi:
7211     Value = 3;
7212     break;
7213   case ARM::BI__builtin_arm_sev:
7214   case ARM::BI__sev:
7215     Value = 4;
7216     break;
7217   case ARM::BI__builtin_arm_sevl:
7218   case ARM::BI__sevl:
7219     Value = 5;
7220     break;
7221   }
7222 
7223   return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
7224                             llvm::ConstantInt::get(Int32Ty, Value));
7225 }
7226 
7227 enum SpecialRegisterAccessKind {
7228   NormalRead,
7229   VolatileRead,
7230   Write,
7231 };
7232 
7233 // Generates the IR for the read/write special register builtin,
7234 // ValueType is the type of the value that is to be written or read,
7235 // RegisterType is the type of the register being written to or read from.
7236 static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
7237                                          const CallExpr *E,
7238                                          llvm::Type *RegisterType,
7239                                          llvm::Type *ValueType,
7240                                          SpecialRegisterAccessKind AccessKind,
7241                                          StringRef SysReg = "") {
7242   // write and register intrinsics only support 32 and 64 bit operations.
7243   assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64))
7244           && "Unsupported size for register.");
7245 
7246   CodeGen::CGBuilderTy &Builder = CGF.Builder;
7247   CodeGen::CodeGenModule &CGM = CGF.CGM;
7248   LLVMContext &Context = CGM.getLLVMContext();
7249 
7250   if (SysReg.empty()) {
7251     const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
7252     SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
7253   }
7254 
7255   llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
7256   llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
7257   llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
7258 
7259   llvm::Type *Types[] = { RegisterType };
7260 
7261   bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
7262   assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))
7263             && "Can't fit 64-bit value in 32-bit register");
7264 
7265   if (AccessKind != Write) {
7266     assert(AccessKind == NormalRead || AccessKind == VolatileRead);
7267     llvm::Function *F = CGM.getIntrinsic(
7268         AccessKind == VolatileRead ? llvm::Intrinsic::read_volatile_register
7269                                    : llvm::Intrinsic::read_register,
7270         Types);
7271     llvm::Value *Call = Builder.CreateCall(F, Metadata);
7272 
7273     if (MixedTypes)
7274       // Read into 64 bit register and then truncate result to 32 bit.
7275       return Builder.CreateTrunc(Call, ValueType);
7276 
7277     if (ValueType->isPointerTy())
7278       // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
7279       return Builder.CreateIntToPtr(Call, ValueType);
7280 
7281     return Call;
7282   }
7283 
7284   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
7285   llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
7286   if (MixedTypes) {
7287     // Extend 32 bit write value to 64 bit to pass to write.
7288     ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
7289     return Builder.CreateCall(F, { Metadata, ArgValue });
7290   }
7291 
7292   if (ValueType->isPointerTy()) {
7293     // Have VoidPtrTy ArgValue but want to return an i32/i64.
7294     ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
7295     return Builder.CreateCall(F, { Metadata, ArgValue });
7296   }
7297 
7298   return Builder.CreateCall(F, { Metadata, ArgValue });
7299 }
7300 
7301 /// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
7302 /// argument that specifies the vector type.
7303 static bool HasExtraNeonArgument(unsigned BuiltinID) {
7304   switch (BuiltinID) {
7305   default: break;
7306   case NEON::BI__builtin_neon_vget_lane_i8:
7307   case NEON::BI__builtin_neon_vget_lane_i16:
7308   case NEON::BI__builtin_neon_vget_lane_bf16:
7309   case NEON::BI__builtin_neon_vget_lane_i32:
7310   case NEON::BI__builtin_neon_vget_lane_i64:
7311   case NEON::BI__builtin_neon_vget_lane_f32:
7312   case NEON::BI__builtin_neon_vgetq_lane_i8:
7313   case NEON::BI__builtin_neon_vgetq_lane_i16:
7314   case NEON::BI__builtin_neon_vgetq_lane_bf16:
7315   case NEON::BI__builtin_neon_vgetq_lane_i32:
7316   case NEON::BI__builtin_neon_vgetq_lane_i64:
7317   case NEON::BI__builtin_neon_vgetq_lane_f32:
7318   case NEON::BI__builtin_neon_vduph_lane_bf16:
7319   case NEON::BI__builtin_neon_vduph_laneq_bf16:
7320   case NEON::BI__builtin_neon_vset_lane_i8:
7321   case NEON::BI__builtin_neon_vset_lane_i16:
7322   case NEON::BI__builtin_neon_vset_lane_bf16:
7323   case NEON::BI__builtin_neon_vset_lane_i32:
7324   case NEON::BI__builtin_neon_vset_lane_i64:
7325   case NEON::BI__builtin_neon_vset_lane_f32:
7326   case NEON::BI__builtin_neon_vsetq_lane_i8:
7327   case NEON::BI__builtin_neon_vsetq_lane_i16:
7328   case NEON::BI__builtin_neon_vsetq_lane_bf16:
7329   case NEON::BI__builtin_neon_vsetq_lane_i32:
7330   case NEON::BI__builtin_neon_vsetq_lane_i64:
7331   case NEON::BI__builtin_neon_vsetq_lane_f32:
7332   case NEON::BI__builtin_neon_vsha1h_u32:
7333   case NEON::BI__builtin_neon_vsha1cq_u32:
7334   case NEON::BI__builtin_neon_vsha1pq_u32:
7335   case NEON::BI__builtin_neon_vsha1mq_u32:
7336   case NEON::BI__builtin_neon_vcvth_bf16_f32:
7337   case clang::ARM::BI_MoveToCoprocessor:
7338   case clang::ARM::BI_MoveToCoprocessor2:
7339     return false;
7340   }
7341   return true;
7342 }
7343 
7344 Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
7345                                            const CallExpr *E,
7346                                            ReturnValueSlot ReturnValue,
7347                                            llvm::Triple::ArchType Arch) {
7348   if (auto Hint = GetValueForARMHint(BuiltinID))
7349     return Hint;
7350 
7351   if (BuiltinID == ARM::BI__emit) {
7352     bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
7353     llvm::FunctionType *FTy =
7354         llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
7355 
7356     Expr::EvalResult Result;
7357     if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
7358       llvm_unreachable("Sema will ensure that the parameter is constant");
7359 
7360     llvm::APSInt Value = Result.Val.getInt();
7361     uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
7362 
7363     llvm::InlineAsm *Emit =
7364         IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
7365                                  /*hasSideEffects=*/true)
7366                 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
7367                                  /*hasSideEffects=*/true);
7368 
7369     return Builder.CreateCall(Emit);
7370   }
7371 
7372   if (BuiltinID == ARM::BI__builtin_arm_dbg) {
7373     Value *Option = EmitScalarExpr(E->getArg(0));
7374     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
7375   }
7376 
7377   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
7378     Value *Address = EmitScalarExpr(E->getArg(0));
7379     Value *RW      = EmitScalarExpr(E->getArg(1));
7380     Value *IsData  = EmitScalarExpr(E->getArg(2));
7381 
7382     // Locality is not supported on ARM target
7383     Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
7384 
7385     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
7386     return Builder.CreateCall(F, {Address, RW, Locality, IsData});
7387   }
7388 
7389   if (BuiltinID == ARM::BI__builtin_arm_rbit) {
7390     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7391     return Builder.CreateCall(
7392         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
7393   }
7394 
7395   if (BuiltinID == ARM::BI__builtin_arm_cls) {
7396     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7397     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls), Arg, "cls");
7398   }
7399   if (BuiltinID == ARM::BI__builtin_arm_cls64) {
7400     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7401     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls64), Arg,
7402                               "cls");
7403   }
7404 
7405   if (BuiltinID == ARM::BI__clear_cache) {
7406     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
7407     const FunctionDecl *FD = E->getDirectCallee();
7408     Value *Ops[2];
7409     for (unsigned i = 0; i < 2; i++)
7410       Ops[i] = EmitScalarExpr(E->getArg(i));
7411     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
7412     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
7413     StringRef Name = FD->getName();
7414     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
7415   }
7416 
7417   if (BuiltinID == ARM::BI__builtin_arm_mcrr ||
7418       BuiltinID == ARM::BI__builtin_arm_mcrr2) {
7419     Function *F;
7420 
7421     switch (BuiltinID) {
7422     default: llvm_unreachable("unexpected builtin");
7423     case ARM::BI__builtin_arm_mcrr:
7424       F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
7425       break;
7426     case ARM::BI__builtin_arm_mcrr2:
7427       F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
7428       break;
7429     }
7430 
7431     // MCRR{2} instruction has 5 operands but
7432     // the intrinsic has 4 because Rt and Rt2
7433     // are represented as a single unsigned 64
7434     // bit integer in the intrinsic definition
7435     // but internally it's represented as 2 32
7436     // bit integers.
7437 
7438     Value *Coproc = EmitScalarExpr(E->getArg(0));
7439     Value *Opc1 = EmitScalarExpr(E->getArg(1));
7440     Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
7441     Value *CRm = EmitScalarExpr(E->getArg(3));
7442 
7443     Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
7444     Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
7445     Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
7446     Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
7447 
7448     return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
7449   }
7450 
7451   if (BuiltinID == ARM::BI__builtin_arm_mrrc ||
7452       BuiltinID == ARM::BI__builtin_arm_mrrc2) {
7453     Function *F;
7454 
7455     switch (BuiltinID) {
7456     default: llvm_unreachable("unexpected builtin");
7457     case ARM::BI__builtin_arm_mrrc:
7458       F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
7459       break;
7460     case ARM::BI__builtin_arm_mrrc2:
7461       F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
7462       break;
7463     }
7464 
7465     Value *Coproc = EmitScalarExpr(E->getArg(0));
7466     Value *Opc1 = EmitScalarExpr(E->getArg(1));
7467     Value *CRm  = EmitScalarExpr(E->getArg(2));
7468     Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
7469 
7470     // Returns an unsigned 64 bit integer, represented
7471     // as two 32 bit integers.
7472 
7473     Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
7474     Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
7475     Rt = Builder.CreateZExt(Rt, Int64Ty);
7476     Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
7477 
7478     Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
7479     RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
7480     RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
7481 
7482     return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
7483   }
7484 
7485   if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
7486       ((BuiltinID == ARM::BI__builtin_arm_ldrex ||
7487         BuiltinID == ARM::BI__builtin_arm_ldaex) &&
7488        getContext().getTypeSize(E->getType()) == 64) ||
7489       BuiltinID == ARM::BI__ldrexd) {
7490     Function *F;
7491 
7492     switch (BuiltinID) {
7493     default: llvm_unreachable("unexpected builtin");
7494     case ARM::BI__builtin_arm_ldaex:
7495       F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
7496       break;
7497     case ARM::BI__builtin_arm_ldrexd:
7498     case ARM::BI__builtin_arm_ldrex:
7499     case ARM::BI__ldrexd:
7500       F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
7501       break;
7502     }
7503 
7504     Value *LdPtr = EmitScalarExpr(E->getArg(0));
7505     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
7506                                     "ldrexd");
7507 
7508     Value *Val0 = Builder.CreateExtractValue(Val, 1);
7509     Value *Val1 = Builder.CreateExtractValue(Val, 0);
7510     Val0 = Builder.CreateZExt(Val0, Int64Ty);
7511     Val1 = Builder.CreateZExt(Val1, Int64Ty);
7512 
7513     Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
7514     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
7515     Val = Builder.CreateOr(Val, Val1);
7516     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
7517   }
7518 
7519   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
7520       BuiltinID == ARM::BI__builtin_arm_ldaex) {
7521     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
7522 
7523     QualType Ty = E->getType();
7524     llvm::Type *RealResTy = ConvertType(Ty);
7525     llvm::Type *PtrTy = llvm::IntegerType::get(
7526         getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
7527     LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
7528 
7529     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex
7530                                        ? Intrinsic::arm_ldaex
7531                                        : Intrinsic::arm_ldrex,
7532                                    PtrTy);
7533     Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
7534 
7535     if (RealResTy->isPointerTy())
7536       return Builder.CreateIntToPtr(Val, RealResTy);
7537     else {
7538       llvm::Type *IntResTy = llvm::IntegerType::get(
7539           getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
7540       Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
7541       return Builder.CreateBitCast(Val, RealResTy);
7542     }
7543   }
7544 
7545   if (BuiltinID == ARM::BI__builtin_arm_strexd ||
7546       ((BuiltinID == ARM::BI__builtin_arm_stlex ||
7547         BuiltinID == ARM::BI__builtin_arm_strex) &&
7548        getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
7549     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
7550                                        ? Intrinsic::arm_stlexd
7551                                        : Intrinsic::arm_strexd);
7552     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty);
7553 
7554     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
7555     Value *Val = EmitScalarExpr(E->getArg(0));
7556     Builder.CreateStore(Val, Tmp);
7557 
7558     Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
7559     Val = Builder.CreateLoad(LdPtr);
7560 
7561     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
7562     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
7563     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
7564     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
7565   }
7566 
7567   if (BuiltinID == ARM::BI__builtin_arm_strex ||
7568       BuiltinID == ARM::BI__builtin_arm_stlex) {
7569     Value *StoreVal = EmitScalarExpr(E->getArg(0));
7570     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
7571 
7572     QualType Ty = E->getArg(0)->getType();
7573     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
7574                                                  getContext().getTypeSize(Ty));
7575     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
7576 
7577     if (StoreVal->getType()->isPointerTy())
7578       StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
7579     else {
7580       llvm::Type *IntTy = llvm::IntegerType::get(
7581           getLLVMContext(),
7582           CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
7583       StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
7584       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
7585     }
7586 
7587     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
7588                                        ? Intrinsic::arm_stlex
7589                                        : Intrinsic::arm_strex,
7590                                    StoreAddr->getType());
7591     return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
7592   }
7593 
7594   if (BuiltinID == ARM::BI__builtin_arm_clrex) {
7595     Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
7596     return Builder.CreateCall(F);
7597   }
7598 
7599   // CRC32
7600   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
7601   switch (BuiltinID) {
7602   case ARM::BI__builtin_arm_crc32b:
7603     CRCIntrinsicID = Intrinsic::arm_crc32b; break;
7604   case ARM::BI__builtin_arm_crc32cb:
7605     CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
7606   case ARM::BI__builtin_arm_crc32h:
7607     CRCIntrinsicID = Intrinsic::arm_crc32h; break;
7608   case ARM::BI__builtin_arm_crc32ch:
7609     CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
7610   case ARM::BI__builtin_arm_crc32w:
7611   case ARM::BI__builtin_arm_crc32d:
7612     CRCIntrinsicID = Intrinsic::arm_crc32w; break;
7613   case ARM::BI__builtin_arm_crc32cw:
7614   case ARM::BI__builtin_arm_crc32cd:
7615     CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
7616   }
7617 
7618   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
7619     Value *Arg0 = EmitScalarExpr(E->getArg(0));
7620     Value *Arg1 = EmitScalarExpr(E->getArg(1));
7621 
7622     // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
7623     // intrinsics, hence we need different codegen for these cases.
7624     if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
7625         BuiltinID == ARM::BI__builtin_arm_crc32cd) {
7626       Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
7627       Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
7628       Value *Arg1b = Builder.CreateLShr(Arg1, C1);
7629       Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
7630 
7631       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
7632       Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
7633       return Builder.CreateCall(F, {Res, Arg1b});
7634     } else {
7635       Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
7636 
7637       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
7638       return Builder.CreateCall(F, {Arg0, Arg1});
7639     }
7640   }
7641 
7642   if (BuiltinID == ARM::BI__builtin_arm_rsr ||
7643       BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7644       BuiltinID == ARM::BI__builtin_arm_rsrp ||
7645       BuiltinID == ARM::BI__builtin_arm_wsr ||
7646       BuiltinID == ARM::BI__builtin_arm_wsr64 ||
7647       BuiltinID == ARM::BI__builtin_arm_wsrp) {
7648 
7649     SpecialRegisterAccessKind AccessKind = Write;
7650     if (BuiltinID == ARM::BI__builtin_arm_rsr ||
7651         BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7652         BuiltinID == ARM::BI__builtin_arm_rsrp)
7653       AccessKind = VolatileRead;
7654 
7655     bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp ||
7656                             BuiltinID == ARM::BI__builtin_arm_wsrp;
7657 
7658     bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7659                    BuiltinID == ARM::BI__builtin_arm_wsr64;
7660 
7661     llvm::Type *ValueType;
7662     llvm::Type *RegisterType;
7663     if (IsPointerBuiltin) {
7664       ValueType = VoidPtrTy;
7665       RegisterType = Int32Ty;
7666     } else if (Is64Bit) {
7667       ValueType = RegisterType = Int64Ty;
7668     } else {
7669       ValueType = RegisterType = Int32Ty;
7670     }
7671 
7672     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
7673                                       AccessKind);
7674   }
7675 
7676   // Handle MSVC intrinsics before argument evaluation to prevent double
7677   // evaluation.
7678   if (Optional<MSVCIntrin> MsvcIntId = translateArmToMsvcIntrin(BuiltinID))
7679     return EmitMSVCBuiltinExpr(*MsvcIntId, E);
7680 
7681   // Deal with MVE builtins
7682   if (Value *Result = EmitARMMVEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
7683     return Result;
7684   // Handle CDE builtins
7685   if (Value *Result = EmitARMCDEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
7686     return Result;
7687 
7688   // Find out if any arguments are required to be integer constant
7689   // expressions.
7690   unsigned ICEArguments = 0;
7691   ASTContext::GetBuiltinTypeError Error;
7692   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
7693   assert(Error == ASTContext::GE_None && "Should not codegen an error");
7694 
7695   auto getAlignmentValue32 = [&](Address addr) -> Value* {
7696     return Builder.getInt32(addr.getAlignment().getQuantity());
7697   };
7698 
7699   Address PtrOp0 = Address::invalid();
7700   Address PtrOp1 = Address::invalid();
7701   SmallVector<Value*, 4> Ops;
7702   bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
7703   unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
7704   for (unsigned i = 0, e = NumArgs; i != e; i++) {
7705     if (i == 0) {
7706       switch (BuiltinID) {
7707       case NEON::BI__builtin_neon_vld1_v:
7708       case NEON::BI__builtin_neon_vld1q_v:
7709       case NEON::BI__builtin_neon_vld1q_lane_v:
7710       case NEON::BI__builtin_neon_vld1_lane_v:
7711       case NEON::BI__builtin_neon_vld1_dup_v:
7712       case NEON::BI__builtin_neon_vld1q_dup_v:
7713       case NEON::BI__builtin_neon_vst1_v:
7714       case NEON::BI__builtin_neon_vst1q_v:
7715       case NEON::BI__builtin_neon_vst1q_lane_v:
7716       case NEON::BI__builtin_neon_vst1_lane_v:
7717       case NEON::BI__builtin_neon_vst2_v:
7718       case NEON::BI__builtin_neon_vst2q_v:
7719       case NEON::BI__builtin_neon_vst2_lane_v:
7720       case NEON::BI__builtin_neon_vst2q_lane_v:
7721       case NEON::BI__builtin_neon_vst3_v:
7722       case NEON::BI__builtin_neon_vst3q_v:
7723       case NEON::BI__builtin_neon_vst3_lane_v:
7724       case NEON::BI__builtin_neon_vst3q_lane_v:
7725       case NEON::BI__builtin_neon_vst4_v:
7726       case NEON::BI__builtin_neon_vst4q_v:
7727       case NEON::BI__builtin_neon_vst4_lane_v:
7728       case NEON::BI__builtin_neon_vst4q_lane_v:
7729         // Get the alignment for the argument in addition to the value;
7730         // we'll use it later.
7731         PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
7732         Ops.push_back(PtrOp0.getPointer());
7733         continue;
7734       }
7735     }
7736     if (i == 1) {
7737       switch (BuiltinID) {
7738       case NEON::BI__builtin_neon_vld2_v:
7739       case NEON::BI__builtin_neon_vld2q_v:
7740       case NEON::BI__builtin_neon_vld3_v:
7741       case NEON::BI__builtin_neon_vld3q_v:
7742       case NEON::BI__builtin_neon_vld4_v:
7743       case NEON::BI__builtin_neon_vld4q_v:
7744       case NEON::BI__builtin_neon_vld2_lane_v:
7745       case NEON::BI__builtin_neon_vld2q_lane_v:
7746       case NEON::BI__builtin_neon_vld3_lane_v:
7747       case NEON::BI__builtin_neon_vld3q_lane_v:
7748       case NEON::BI__builtin_neon_vld4_lane_v:
7749       case NEON::BI__builtin_neon_vld4q_lane_v:
7750       case NEON::BI__builtin_neon_vld2_dup_v:
7751       case NEON::BI__builtin_neon_vld2q_dup_v:
7752       case NEON::BI__builtin_neon_vld3_dup_v:
7753       case NEON::BI__builtin_neon_vld3q_dup_v:
7754       case NEON::BI__builtin_neon_vld4_dup_v:
7755       case NEON::BI__builtin_neon_vld4q_dup_v:
7756         // Get the alignment for the argument in addition to the value;
7757         // we'll use it later.
7758         PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
7759         Ops.push_back(PtrOp1.getPointer());
7760         continue;
7761       }
7762     }
7763 
7764     if ((ICEArguments & (1 << i)) == 0) {
7765       Ops.push_back(EmitScalarExpr(E->getArg(i)));
7766     } else {
7767       // If this is required to be a constant, constant fold it so that we know
7768       // that the generated intrinsic gets a ConstantInt.
7769       Ops.push_back(llvm::ConstantInt::get(
7770           getLLVMContext(),
7771           *E->getArg(i)->getIntegerConstantExpr(getContext())));
7772     }
7773   }
7774 
7775   switch (BuiltinID) {
7776   default: break;
7777 
7778   case NEON::BI__builtin_neon_vget_lane_i8:
7779   case NEON::BI__builtin_neon_vget_lane_i16:
7780   case NEON::BI__builtin_neon_vget_lane_i32:
7781   case NEON::BI__builtin_neon_vget_lane_i64:
7782   case NEON::BI__builtin_neon_vget_lane_bf16:
7783   case NEON::BI__builtin_neon_vget_lane_f32:
7784   case NEON::BI__builtin_neon_vgetq_lane_i8:
7785   case NEON::BI__builtin_neon_vgetq_lane_i16:
7786   case NEON::BI__builtin_neon_vgetq_lane_i32:
7787   case NEON::BI__builtin_neon_vgetq_lane_i64:
7788   case NEON::BI__builtin_neon_vgetq_lane_bf16:
7789   case NEON::BI__builtin_neon_vgetq_lane_f32:
7790   case NEON::BI__builtin_neon_vduph_lane_bf16:
7791   case NEON::BI__builtin_neon_vduph_laneq_bf16:
7792     return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
7793 
7794   case NEON::BI__builtin_neon_vrndns_f32: {
7795     Value *Arg = EmitScalarExpr(E->getArg(0));
7796     llvm::Type *Tys[] = {Arg->getType()};
7797     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys);
7798     return Builder.CreateCall(F, {Arg}, "vrndn"); }
7799 
7800   case NEON::BI__builtin_neon_vset_lane_i8:
7801   case NEON::BI__builtin_neon_vset_lane_i16:
7802   case NEON::BI__builtin_neon_vset_lane_i32:
7803   case NEON::BI__builtin_neon_vset_lane_i64:
7804   case NEON::BI__builtin_neon_vset_lane_bf16:
7805   case NEON::BI__builtin_neon_vset_lane_f32:
7806   case NEON::BI__builtin_neon_vsetq_lane_i8:
7807   case NEON::BI__builtin_neon_vsetq_lane_i16:
7808   case NEON::BI__builtin_neon_vsetq_lane_i32:
7809   case NEON::BI__builtin_neon_vsetq_lane_i64:
7810   case NEON::BI__builtin_neon_vsetq_lane_bf16:
7811   case NEON::BI__builtin_neon_vsetq_lane_f32:
7812     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
7813 
7814   case NEON::BI__builtin_neon_vsha1h_u32:
7815     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
7816                         "vsha1h");
7817   case NEON::BI__builtin_neon_vsha1cq_u32:
7818     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
7819                         "vsha1h");
7820   case NEON::BI__builtin_neon_vsha1pq_u32:
7821     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
7822                         "vsha1h");
7823   case NEON::BI__builtin_neon_vsha1mq_u32:
7824     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
7825                         "vsha1h");
7826 
7827   case NEON::BI__builtin_neon_vcvth_bf16_f32: {
7828     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vcvtbfp2bf), Ops,
7829                         "vcvtbfp2bf");
7830   }
7831 
7832   // The ARM _MoveToCoprocessor builtins put the input register value as
7833   // the first argument, but the LLVM intrinsic expects it as the third one.
7834   case ARM::BI_MoveToCoprocessor:
7835   case ARM::BI_MoveToCoprocessor2: {
7836     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ?
7837                                    Intrinsic::arm_mcr : Intrinsic::arm_mcr2);
7838     return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
7839                                   Ops[3], Ops[4], Ops[5]});
7840   }
7841   }
7842 
7843   // Get the last argument, which specifies the vector type.
7844   assert(HasExtraArg);
7845   const Expr *Arg = E->getArg(E->getNumArgs()-1);
7846   Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext());
7847   if (!Result)
7848     return nullptr;
7849 
7850   if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
7851       BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
7852     // Determine the overloaded type of this builtin.
7853     llvm::Type *Ty;
7854     if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
7855       Ty = FloatTy;
7856     else
7857       Ty = DoubleTy;
7858 
7859     // Determine whether this is an unsigned conversion or not.
7860     bool usgn = Result->getZExtValue() == 1;
7861     unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
7862 
7863     // Call the appropriate intrinsic.
7864     Function *F = CGM.getIntrinsic(Int, Ty);
7865     return Builder.CreateCall(F, Ops, "vcvtr");
7866   }
7867 
7868   // Determine the type of this overloaded NEON intrinsic.
7869   NeonTypeFlags Type = Result->getZExtValue();
7870   bool usgn = Type.isUnsigned();
7871   bool rightShift = false;
7872 
7873   llvm::FixedVectorType *VTy =
7874       GetNeonType(this, Type, getTarget().hasLegalHalfType(), false,
7875                   getTarget().hasBFloat16Type());
7876   llvm::Type *Ty = VTy;
7877   if (!Ty)
7878     return nullptr;
7879 
7880   // Many NEON builtins have identical semantics and uses in ARM and
7881   // AArch64. Emit these in a single function.
7882   auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
7883   const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
7884       IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
7885   if (Builtin)
7886     return EmitCommonNeonBuiltinExpr(
7887         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
7888         Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch);
7889 
7890   unsigned Int;
7891   switch (BuiltinID) {
7892   default: return nullptr;
7893   case NEON::BI__builtin_neon_vld1q_lane_v:
7894     // Handle 64-bit integer elements as a special case.  Use shuffles of
7895     // one-element vectors to avoid poor code for i64 in the backend.
7896     if (VTy->getElementType()->isIntegerTy(64)) {
7897       // Extract the other lane.
7898       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7899       int Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
7900       Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
7901       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
7902       // Load the value as a one-element vector.
7903       Ty = llvm::FixedVectorType::get(VTy->getElementType(), 1);
7904       llvm::Type *Tys[] = {Ty, Int8PtrTy};
7905       Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
7906       Value *Align = getAlignmentValue32(PtrOp0);
7907       Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
7908       // Combine them.
7909       int Indices[] = {1 - Lane, Lane};
7910       return Builder.CreateShuffleVector(Ops[1], Ld, Indices, "vld1q_lane");
7911     }
7912     LLVM_FALLTHROUGH;
7913   case NEON::BI__builtin_neon_vld1_lane_v: {
7914     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7915     PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
7916     Value *Ld = Builder.CreateLoad(PtrOp0);
7917     return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
7918   }
7919   case NEON::BI__builtin_neon_vqrshrn_n_v:
7920     Int =
7921       usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
7922     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
7923                         1, true);
7924   case NEON::BI__builtin_neon_vqrshrun_n_v:
7925     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
7926                         Ops, "vqrshrun_n", 1, true);
7927   case NEON::BI__builtin_neon_vqshrn_n_v:
7928     Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
7929     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
7930                         1, true);
7931   case NEON::BI__builtin_neon_vqshrun_n_v:
7932     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
7933                         Ops, "vqshrun_n", 1, true);
7934   case NEON::BI__builtin_neon_vrecpe_v:
7935   case NEON::BI__builtin_neon_vrecpeq_v:
7936     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
7937                         Ops, "vrecpe");
7938   case NEON::BI__builtin_neon_vrshrn_n_v:
7939     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
7940                         Ops, "vrshrn_n", 1, true);
7941   case NEON::BI__builtin_neon_vrsra_n_v:
7942   case NEON::BI__builtin_neon_vrsraq_n_v:
7943     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7944     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7945     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
7946     Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
7947     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
7948     return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
7949   case NEON::BI__builtin_neon_vsri_n_v:
7950   case NEON::BI__builtin_neon_vsriq_n_v:
7951     rightShift = true;
7952     LLVM_FALLTHROUGH;
7953   case NEON::BI__builtin_neon_vsli_n_v:
7954   case NEON::BI__builtin_neon_vsliq_n_v:
7955     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
7956     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
7957                         Ops, "vsli_n");
7958   case NEON::BI__builtin_neon_vsra_n_v:
7959   case NEON::BI__builtin_neon_vsraq_n_v:
7960     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7961     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
7962     return Builder.CreateAdd(Ops[0], Ops[1]);
7963   case NEON::BI__builtin_neon_vst1q_lane_v:
7964     // Handle 64-bit integer elements as a special case.  Use a shuffle to get
7965     // a one-element vector and avoid poor code for i64 in the backend.
7966     if (VTy->getElementType()->isIntegerTy(64)) {
7967       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7968       Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
7969       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
7970       Ops[2] = getAlignmentValue32(PtrOp0);
7971       llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
7972       return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
7973                                                  Tys), Ops);
7974     }
7975     LLVM_FALLTHROUGH;
7976   case NEON::BI__builtin_neon_vst1_lane_v: {
7977     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7978     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
7979     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
7980     auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty));
7981     return St;
7982   }
7983   case NEON::BI__builtin_neon_vtbl1_v:
7984     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
7985                         Ops, "vtbl1");
7986   case NEON::BI__builtin_neon_vtbl2_v:
7987     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
7988                         Ops, "vtbl2");
7989   case NEON::BI__builtin_neon_vtbl3_v:
7990     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
7991                         Ops, "vtbl3");
7992   case NEON::BI__builtin_neon_vtbl4_v:
7993     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
7994                         Ops, "vtbl4");
7995   case NEON::BI__builtin_neon_vtbx1_v:
7996     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
7997                         Ops, "vtbx1");
7998   case NEON::BI__builtin_neon_vtbx2_v:
7999     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
8000                         Ops, "vtbx2");
8001   case NEON::BI__builtin_neon_vtbx3_v:
8002     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
8003                         Ops, "vtbx3");
8004   case NEON::BI__builtin_neon_vtbx4_v:
8005     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
8006                         Ops, "vtbx4");
8007   }
8008 }
8009 
8010 template<typename Integer>
8011 static Integer GetIntegerConstantValue(const Expr *E, ASTContext &Context) {
8012   return E->getIntegerConstantExpr(Context)->getExtValue();
8013 }
8014 
8015 static llvm::Value *SignOrZeroExtend(CGBuilderTy &Builder, llvm::Value *V,
8016                                      llvm::Type *T, bool Unsigned) {
8017   // Helper function called by Tablegen-constructed ARM MVE builtin codegen,
8018   // which finds it convenient to specify signed/unsigned as a boolean flag.
8019   return Unsigned ? Builder.CreateZExt(V, T) : Builder.CreateSExt(V, T);
8020 }
8021 
8022 static llvm::Value *MVEImmediateShr(CGBuilderTy &Builder, llvm::Value *V,
8023                                     uint32_t Shift, bool Unsigned) {
8024   // MVE helper function for integer shift right. This must handle signed vs
8025   // unsigned, and also deal specially with the case where the shift count is
8026   // equal to the lane size. In LLVM IR, an LShr with that parameter would be
8027   // undefined behavior, but in MVE it's legal, so we must convert it to code
8028   // that is not undefined in IR.
8029   unsigned LaneBits = cast<llvm::VectorType>(V->getType())
8030                           ->getElementType()
8031                           ->getPrimitiveSizeInBits();
8032   if (Shift == LaneBits) {
8033     // An unsigned shift of the full lane size always generates zero, so we can
8034     // simply emit a zero vector. A signed shift of the full lane size does the
8035     // same thing as shifting by one bit fewer.
8036     if (Unsigned)
8037       return llvm::Constant::getNullValue(V->getType());
8038     else
8039       --Shift;
8040   }
8041   return Unsigned ? Builder.CreateLShr(V, Shift) : Builder.CreateAShr(V, Shift);
8042 }
8043 
8044 static llvm::Value *ARMMVEVectorSplat(CGBuilderTy &Builder, llvm::Value *V) {
8045   // MVE-specific helper function for a vector splat, which infers the element
8046   // count of the output vector by knowing that MVE vectors are all 128 bits
8047   // wide.
8048   unsigned Elements = 128 / V->getType()->getPrimitiveSizeInBits();
8049   return Builder.CreateVectorSplat(Elements, V);
8050 }
8051 
8052 static llvm::Value *ARMMVEVectorReinterpret(CGBuilderTy &Builder,
8053                                             CodeGenFunction *CGF,
8054                                             llvm::Value *V,
8055                                             llvm::Type *DestType) {
8056   // Convert one MVE vector type into another by reinterpreting its in-register
8057   // format.
8058   //
8059   // Little-endian, this is identical to a bitcast (which reinterprets the
8060   // memory format). But big-endian, they're not necessarily the same, because
8061   // the register and memory formats map to each other differently depending on
8062   // the lane size.
8063   //
8064   // We generate a bitcast whenever we can (if we're little-endian, or if the
8065   // lane sizes are the same anyway). Otherwise we fall back to an IR intrinsic
8066   // that performs the different kind of reinterpretation.
8067   if (CGF->getTarget().isBigEndian() &&
8068       V->getType()->getScalarSizeInBits() != DestType->getScalarSizeInBits()) {
8069     return Builder.CreateCall(
8070         CGF->CGM.getIntrinsic(Intrinsic::arm_mve_vreinterpretq,
8071                               {DestType, V->getType()}),
8072         V);
8073   } else {
8074     return Builder.CreateBitCast(V, DestType);
8075   }
8076 }
8077 
8078 static llvm::Value *VectorUnzip(CGBuilderTy &Builder, llvm::Value *V, bool Odd) {
8079   // Make a shufflevector that extracts every other element of a vector (evens
8080   // or odds, as desired).
8081   SmallVector<int, 16> Indices;
8082   unsigned InputElements =
8083       cast<llvm::FixedVectorType>(V->getType())->getNumElements();
8084   for (unsigned i = 0; i < InputElements; i += 2)
8085     Indices.push_back(i + Odd);
8086   return Builder.CreateShuffleVector(V, Indices);
8087 }
8088 
8089 static llvm::Value *VectorZip(CGBuilderTy &Builder, llvm::Value *V0,
8090                               llvm::Value *V1) {
8091   // Make a shufflevector that interleaves two vectors element by element.
8092   assert(V0->getType() == V1->getType() && "Can't zip different vector types");
8093   SmallVector<int, 16> Indices;
8094   unsigned InputElements =
8095       cast<llvm::FixedVectorType>(V0->getType())->getNumElements();
8096   for (unsigned i = 0; i < InputElements; i++) {
8097     Indices.push_back(i);
8098     Indices.push_back(i + InputElements);
8099   }
8100   return Builder.CreateShuffleVector(V0, V1, Indices);
8101 }
8102 
8103 template<unsigned HighBit, unsigned OtherBits>
8104 static llvm::Value *ARMMVEConstantSplat(CGBuilderTy &Builder, llvm::Type *VT) {
8105   // MVE-specific helper function to make a vector splat of a constant such as
8106   // UINT_MAX or INT_MIN, in which all bits below the highest one are equal.
8107   llvm::Type *T = cast<llvm::VectorType>(VT)->getElementType();
8108   unsigned LaneBits = T->getPrimitiveSizeInBits();
8109   uint32_t Value = HighBit << (LaneBits - 1);
8110   if (OtherBits)
8111     Value |= (1UL << (LaneBits - 1)) - 1;
8112   llvm::Value *Lane = llvm::ConstantInt::get(T, Value);
8113   return ARMMVEVectorSplat(Builder, Lane);
8114 }
8115 
8116 static llvm::Value *ARMMVEVectorElementReverse(CGBuilderTy &Builder,
8117                                                llvm::Value *V,
8118                                                unsigned ReverseWidth) {
8119   // MVE-specific helper function which reverses the elements of a
8120   // vector within every (ReverseWidth)-bit collection of lanes.
8121   SmallVector<int, 16> Indices;
8122   unsigned LaneSize = V->getType()->getScalarSizeInBits();
8123   unsigned Elements = 128 / LaneSize;
8124   unsigned Mask = ReverseWidth / LaneSize - 1;
8125   for (unsigned i = 0; i < Elements; i++)
8126     Indices.push_back(i ^ Mask);
8127   return Builder.CreateShuffleVector(V, Indices);
8128 }
8129 
8130 Value *CodeGenFunction::EmitARMMVEBuiltinExpr(unsigned BuiltinID,
8131                                               const CallExpr *E,
8132                                               ReturnValueSlot ReturnValue,
8133                                               llvm::Triple::ArchType Arch) {
8134   enum class CustomCodeGen { VLD24, VST24 } CustomCodeGenType;
8135   Intrinsic::ID IRIntr;
8136   unsigned NumVectors;
8137 
8138   // Code autogenerated by Tablegen will handle all the simple builtins.
8139   switch (BuiltinID) {
8140     #include "clang/Basic/arm_mve_builtin_cg.inc"
8141 
8142     // If we didn't match an MVE builtin id at all, go back to the
8143     // main EmitARMBuiltinExpr.
8144   default:
8145     return nullptr;
8146   }
8147 
8148   // Anything that breaks from that switch is an MVE builtin that
8149   // needs handwritten code to generate.
8150 
8151   switch (CustomCodeGenType) {
8152 
8153   case CustomCodeGen::VLD24: {
8154     llvm::SmallVector<Value *, 4> Ops;
8155     llvm::SmallVector<llvm::Type *, 4> Tys;
8156 
8157     auto MvecCType = E->getType();
8158     auto MvecLType = ConvertType(MvecCType);
8159     assert(MvecLType->isStructTy() &&
8160            "Return type for vld[24]q should be a struct");
8161     assert(MvecLType->getStructNumElements() == 1 &&
8162            "Return-type struct for vld[24]q should have one element");
8163     auto MvecLTypeInner = MvecLType->getStructElementType(0);
8164     assert(MvecLTypeInner->isArrayTy() &&
8165            "Return-type struct for vld[24]q should contain an array");
8166     assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
8167            "Array member of return-type struct vld[24]q has wrong length");
8168     auto VecLType = MvecLTypeInner->getArrayElementType();
8169 
8170     Tys.push_back(VecLType);
8171 
8172     auto Addr = E->getArg(0);
8173     Ops.push_back(EmitScalarExpr(Addr));
8174     Tys.push_back(ConvertType(Addr->getType()));
8175 
8176     Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
8177     Value *LoadResult = Builder.CreateCall(F, Ops);
8178     Value *MvecOut = UndefValue::get(MvecLType);
8179     for (unsigned i = 0; i < NumVectors; ++i) {
8180       Value *Vec = Builder.CreateExtractValue(LoadResult, i);
8181       MvecOut = Builder.CreateInsertValue(MvecOut, Vec, {0, i});
8182     }
8183 
8184     if (ReturnValue.isNull())
8185       return MvecOut;
8186     else
8187       return Builder.CreateStore(MvecOut, ReturnValue.getValue());
8188   }
8189 
8190   case CustomCodeGen::VST24: {
8191     llvm::SmallVector<Value *, 4> Ops;
8192     llvm::SmallVector<llvm::Type *, 4> Tys;
8193 
8194     auto Addr = E->getArg(0);
8195     Ops.push_back(EmitScalarExpr(Addr));
8196     Tys.push_back(ConvertType(Addr->getType()));
8197 
8198     auto MvecCType = E->getArg(1)->getType();
8199     auto MvecLType = ConvertType(MvecCType);
8200     assert(MvecLType->isStructTy() && "Data type for vst2q should be a struct");
8201     assert(MvecLType->getStructNumElements() == 1 &&
8202            "Data-type struct for vst2q should have one element");
8203     auto MvecLTypeInner = MvecLType->getStructElementType(0);
8204     assert(MvecLTypeInner->isArrayTy() &&
8205            "Data-type struct for vst2q should contain an array");
8206     assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
8207            "Array member of return-type struct vld[24]q has wrong length");
8208     auto VecLType = MvecLTypeInner->getArrayElementType();
8209 
8210     Tys.push_back(VecLType);
8211 
8212     AggValueSlot MvecSlot = CreateAggTemp(MvecCType);
8213     EmitAggExpr(E->getArg(1), MvecSlot);
8214     auto Mvec = Builder.CreateLoad(MvecSlot.getAddress());
8215     for (unsigned i = 0; i < NumVectors; i++)
8216       Ops.push_back(Builder.CreateExtractValue(Mvec, {0, i}));
8217 
8218     Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
8219     Value *ToReturn = nullptr;
8220     for (unsigned i = 0; i < NumVectors; i++) {
8221       Ops.push_back(llvm::ConstantInt::get(Int32Ty, i));
8222       ToReturn = Builder.CreateCall(F, Ops);
8223       Ops.pop_back();
8224     }
8225     return ToReturn;
8226   }
8227   }
8228   llvm_unreachable("unknown custom codegen type.");
8229 }
8230 
8231 Value *CodeGenFunction::EmitARMCDEBuiltinExpr(unsigned BuiltinID,
8232                                               const CallExpr *E,
8233                                               ReturnValueSlot ReturnValue,
8234                                               llvm::Triple::ArchType Arch) {
8235   switch (BuiltinID) {
8236   default:
8237     return nullptr;
8238 #include "clang/Basic/arm_cde_builtin_cg.inc"
8239   }
8240 }
8241 
8242 static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
8243                                       const CallExpr *E,
8244                                       SmallVectorImpl<Value *> &Ops,
8245                                       llvm::Triple::ArchType Arch) {
8246   unsigned int Int = 0;
8247   const char *s = nullptr;
8248 
8249   switch (BuiltinID) {
8250   default:
8251     return nullptr;
8252   case NEON::BI__builtin_neon_vtbl1_v:
8253   case NEON::BI__builtin_neon_vqtbl1_v:
8254   case NEON::BI__builtin_neon_vqtbl1q_v:
8255   case NEON::BI__builtin_neon_vtbl2_v:
8256   case NEON::BI__builtin_neon_vqtbl2_v:
8257   case NEON::BI__builtin_neon_vqtbl2q_v:
8258   case NEON::BI__builtin_neon_vtbl3_v:
8259   case NEON::BI__builtin_neon_vqtbl3_v:
8260   case NEON::BI__builtin_neon_vqtbl3q_v:
8261   case NEON::BI__builtin_neon_vtbl4_v:
8262   case NEON::BI__builtin_neon_vqtbl4_v:
8263   case NEON::BI__builtin_neon_vqtbl4q_v:
8264     break;
8265   case NEON::BI__builtin_neon_vtbx1_v:
8266   case NEON::BI__builtin_neon_vqtbx1_v:
8267   case NEON::BI__builtin_neon_vqtbx1q_v:
8268   case NEON::BI__builtin_neon_vtbx2_v:
8269   case NEON::BI__builtin_neon_vqtbx2_v:
8270   case NEON::BI__builtin_neon_vqtbx2q_v:
8271   case NEON::BI__builtin_neon_vtbx3_v:
8272   case NEON::BI__builtin_neon_vqtbx3_v:
8273   case NEON::BI__builtin_neon_vqtbx3q_v:
8274   case NEON::BI__builtin_neon_vtbx4_v:
8275   case NEON::BI__builtin_neon_vqtbx4_v:
8276   case NEON::BI__builtin_neon_vqtbx4q_v:
8277     break;
8278   }
8279 
8280   assert(E->getNumArgs() >= 3);
8281 
8282   // Get the last argument, which specifies the vector type.
8283   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
8284   Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(CGF.getContext());
8285   if (!Result)
8286     return nullptr;
8287 
8288   // Determine the type of this overloaded NEON intrinsic.
8289   NeonTypeFlags Type = Result->getZExtValue();
8290   llvm::FixedVectorType *Ty = GetNeonType(&CGF, Type);
8291   if (!Ty)
8292     return nullptr;
8293 
8294   CodeGen::CGBuilderTy &Builder = CGF.Builder;
8295 
8296   // AArch64 scalar builtins are not overloaded, they do not have an extra
8297   // argument that specifies the vector type, need to handle each case.
8298   switch (BuiltinID) {
8299   case NEON::BI__builtin_neon_vtbl1_v: {
8300     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr,
8301                               Ops[1], Ty, Intrinsic::aarch64_neon_tbl1,
8302                               "vtbl1");
8303   }
8304   case NEON::BI__builtin_neon_vtbl2_v: {
8305     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr,
8306                               Ops[2], Ty, Intrinsic::aarch64_neon_tbl1,
8307                               "vtbl1");
8308   }
8309   case NEON::BI__builtin_neon_vtbl3_v: {
8310     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr,
8311                               Ops[3], Ty, Intrinsic::aarch64_neon_tbl2,
8312                               "vtbl2");
8313   }
8314   case NEON::BI__builtin_neon_vtbl4_v: {
8315     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr,
8316                               Ops[4], Ty, Intrinsic::aarch64_neon_tbl2,
8317                               "vtbl2");
8318   }
8319   case NEON::BI__builtin_neon_vtbx1_v: {
8320     Value *TblRes =
8321         packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2],
8322                            Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
8323 
8324     llvm::Constant *EightV = ConstantInt::get(Ty, 8);
8325     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
8326     CmpRes = Builder.CreateSExt(CmpRes, Ty);
8327 
8328     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
8329     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
8330     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
8331   }
8332   case NEON::BI__builtin_neon_vtbx2_v: {
8333     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0],
8334                               Ops[3], Ty, Intrinsic::aarch64_neon_tbx1,
8335                               "vtbx1");
8336   }
8337   case NEON::BI__builtin_neon_vtbx3_v: {
8338     Value *TblRes =
8339         packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4],
8340                            Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
8341 
8342     llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
8343     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
8344                                            TwentyFourV);
8345     CmpRes = Builder.CreateSExt(CmpRes, Ty);
8346 
8347     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
8348     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
8349     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
8350   }
8351   case NEON::BI__builtin_neon_vtbx4_v: {
8352     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0],
8353                               Ops[5], Ty, Intrinsic::aarch64_neon_tbx2,
8354                               "vtbx2");
8355   }
8356   case NEON::BI__builtin_neon_vqtbl1_v:
8357   case NEON::BI__builtin_neon_vqtbl1q_v:
8358     Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
8359   case NEON::BI__builtin_neon_vqtbl2_v:
8360   case NEON::BI__builtin_neon_vqtbl2q_v: {
8361     Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
8362   case NEON::BI__builtin_neon_vqtbl3_v:
8363   case NEON::BI__builtin_neon_vqtbl3q_v:
8364     Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
8365   case NEON::BI__builtin_neon_vqtbl4_v:
8366   case NEON::BI__builtin_neon_vqtbl4q_v:
8367     Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
8368   case NEON::BI__builtin_neon_vqtbx1_v:
8369   case NEON::BI__builtin_neon_vqtbx1q_v:
8370     Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
8371   case NEON::BI__builtin_neon_vqtbx2_v:
8372   case NEON::BI__builtin_neon_vqtbx2q_v:
8373     Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
8374   case NEON::BI__builtin_neon_vqtbx3_v:
8375   case NEON::BI__builtin_neon_vqtbx3q_v:
8376     Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
8377   case NEON::BI__builtin_neon_vqtbx4_v:
8378   case NEON::BI__builtin_neon_vqtbx4q_v:
8379     Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
8380   }
8381   }
8382 
8383   if (!Int)
8384     return nullptr;
8385 
8386   Function *F = CGF.CGM.getIntrinsic(Int, Ty);
8387   return CGF.EmitNeonCall(F, Ops, s);
8388 }
8389 
8390 Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
8391   auto *VTy = llvm::FixedVectorType::get(Int16Ty, 4);
8392   Op = Builder.CreateBitCast(Op, Int16Ty);
8393   Value *V = UndefValue::get(VTy);
8394   llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
8395   Op = Builder.CreateInsertElement(V, Op, CI);
8396   return Op;
8397 }
8398 
8399 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
8400 /// access builtin.  Only required if it can't be inferred from the base pointer
8401 /// operand.
8402 llvm::Type *CodeGenFunction::SVEBuiltinMemEltTy(SVETypeFlags TypeFlags) {
8403   switch (TypeFlags.getMemEltType()) {
8404   case SVETypeFlags::MemEltTyDefault:
8405     return getEltType(TypeFlags);
8406   case SVETypeFlags::MemEltTyInt8:
8407     return Builder.getInt8Ty();
8408   case SVETypeFlags::MemEltTyInt16:
8409     return Builder.getInt16Ty();
8410   case SVETypeFlags::MemEltTyInt32:
8411     return Builder.getInt32Ty();
8412   case SVETypeFlags::MemEltTyInt64:
8413     return Builder.getInt64Ty();
8414   }
8415   llvm_unreachable("Unknown MemEltType");
8416 }
8417 
8418 llvm::Type *CodeGenFunction::getEltType(SVETypeFlags TypeFlags) {
8419   switch (TypeFlags.getEltType()) {
8420   default:
8421     llvm_unreachable("Invalid SVETypeFlag!");
8422 
8423   case SVETypeFlags::EltTyInt8:
8424     return Builder.getInt8Ty();
8425   case SVETypeFlags::EltTyInt16:
8426     return Builder.getInt16Ty();
8427   case SVETypeFlags::EltTyInt32:
8428     return Builder.getInt32Ty();
8429   case SVETypeFlags::EltTyInt64:
8430     return Builder.getInt64Ty();
8431 
8432   case SVETypeFlags::EltTyFloat16:
8433     return Builder.getHalfTy();
8434   case SVETypeFlags::EltTyFloat32:
8435     return Builder.getFloatTy();
8436   case SVETypeFlags::EltTyFloat64:
8437     return Builder.getDoubleTy();
8438 
8439   case SVETypeFlags::EltTyBFloat16:
8440     return Builder.getBFloatTy();
8441 
8442   case SVETypeFlags::EltTyBool8:
8443   case SVETypeFlags::EltTyBool16:
8444   case SVETypeFlags::EltTyBool32:
8445   case SVETypeFlags::EltTyBool64:
8446     return Builder.getInt1Ty();
8447   }
8448 }
8449 
8450 // Return the llvm predicate vector type corresponding to the specified element
8451 // TypeFlags.
8452 llvm::ScalableVectorType *
8453 CodeGenFunction::getSVEPredType(SVETypeFlags TypeFlags) {
8454   switch (TypeFlags.getEltType()) {
8455   default: llvm_unreachable("Unhandled SVETypeFlag!");
8456 
8457   case SVETypeFlags::EltTyInt8:
8458     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8459   case SVETypeFlags::EltTyInt16:
8460     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8461   case SVETypeFlags::EltTyInt32:
8462     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8463   case SVETypeFlags::EltTyInt64:
8464     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8465 
8466   case SVETypeFlags::EltTyBFloat16:
8467     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8468   case SVETypeFlags::EltTyFloat16:
8469     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8470   case SVETypeFlags::EltTyFloat32:
8471     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8472   case SVETypeFlags::EltTyFloat64:
8473     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8474 
8475   case SVETypeFlags::EltTyBool8:
8476     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8477   case SVETypeFlags::EltTyBool16:
8478     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8479   case SVETypeFlags::EltTyBool32:
8480     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8481   case SVETypeFlags::EltTyBool64:
8482     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8483   }
8484 }
8485 
8486 // Return the llvm vector type corresponding to the specified element TypeFlags.
8487 llvm::ScalableVectorType *
8488 CodeGenFunction::getSVEType(const SVETypeFlags &TypeFlags) {
8489   switch (TypeFlags.getEltType()) {
8490   default:
8491     llvm_unreachable("Invalid SVETypeFlag!");
8492 
8493   case SVETypeFlags::EltTyInt8:
8494     return llvm::ScalableVectorType::get(Builder.getInt8Ty(), 16);
8495   case SVETypeFlags::EltTyInt16:
8496     return llvm::ScalableVectorType::get(Builder.getInt16Ty(), 8);
8497   case SVETypeFlags::EltTyInt32:
8498     return llvm::ScalableVectorType::get(Builder.getInt32Ty(), 4);
8499   case SVETypeFlags::EltTyInt64:
8500     return llvm::ScalableVectorType::get(Builder.getInt64Ty(), 2);
8501 
8502   case SVETypeFlags::EltTyFloat16:
8503     return llvm::ScalableVectorType::get(Builder.getHalfTy(), 8);
8504   case SVETypeFlags::EltTyBFloat16:
8505     return llvm::ScalableVectorType::get(Builder.getBFloatTy(), 8);
8506   case SVETypeFlags::EltTyFloat32:
8507     return llvm::ScalableVectorType::get(Builder.getFloatTy(), 4);
8508   case SVETypeFlags::EltTyFloat64:
8509     return llvm::ScalableVectorType::get(Builder.getDoubleTy(), 2);
8510 
8511   case SVETypeFlags::EltTyBool8:
8512     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8513   case SVETypeFlags::EltTyBool16:
8514     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8515   case SVETypeFlags::EltTyBool32:
8516     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8517   case SVETypeFlags::EltTyBool64:
8518     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8519   }
8520 }
8521 
8522 llvm::Value *CodeGenFunction::EmitSVEAllTruePred(SVETypeFlags TypeFlags) {
8523   Function *Ptrue =
8524       CGM.getIntrinsic(Intrinsic::aarch64_sve_ptrue, getSVEPredType(TypeFlags));
8525   return Builder.CreateCall(Ptrue, {Builder.getInt32(/*SV_ALL*/ 31)});
8526 }
8527 
8528 constexpr unsigned SVEBitsPerBlock = 128;
8529 
8530 static llvm::ScalableVectorType *getSVEVectorForElementType(llvm::Type *EltTy) {
8531   unsigned NumElts = SVEBitsPerBlock / EltTy->getScalarSizeInBits();
8532   return llvm::ScalableVectorType::get(EltTy, NumElts);
8533 }
8534 
8535 // Reinterpret the input predicate so that it can be used to correctly isolate
8536 // the elements of the specified datatype.
8537 Value *CodeGenFunction::EmitSVEPredicateCast(Value *Pred,
8538                                              llvm::ScalableVectorType *VTy) {
8539   auto *RTy = llvm::VectorType::get(IntegerType::get(getLLVMContext(), 1), VTy);
8540   if (Pred->getType() == RTy)
8541     return Pred;
8542 
8543   unsigned IntID;
8544   llvm::Type *IntrinsicTy;
8545   switch (VTy->getMinNumElements()) {
8546   default:
8547     llvm_unreachable("unsupported element count!");
8548   case 2:
8549   case 4:
8550   case 8:
8551     IntID = Intrinsic::aarch64_sve_convert_from_svbool;
8552     IntrinsicTy = RTy;
8553     break;
8554   case 16:
8555     IntID = Intrinsic::aarch64_sve_convert_to_svbool;
8556     IntrinsicTy = Pred->getType();
8557     break;
8558   }
8559 
8560   Function *F = CGM.getIntrinsic(IntID, IntrinsicTy);
8561   Value *C = Builder.CreateCall(F, Pred);
8562   assert(C->getType() == RTy && "Unexpected return type!");
8563   return C;
8564 }
8565 
8566 Value *CodeGenFunction::EmitSVEGatherLoad(SVETypeFlags TypeFlags,
8567                                           SmallVectorImpl<Value *> &Ops,
8568                                           unsigned IntID) {
8569   auto *ResultTy = getSVEType(TypeFlags);
8570   auto *OverloadedTy =
8571       llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), ResultTy);
8572 
8573   // At the ACLE level there's only one predicate type, svbool_t, which is
8574   // mapped to <n x 16 x i1>. However, this might be incompatible with the
8575   // actual type being loaded. For example, when loading doubles (i64) the
8576   // predicated should be <n x 2 x i1> instead. At the IR level the type of
8577   // the predicate and the data being loaded must match. Cast accordingly.
8578   Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
8579 
8580   Function *F = nullptr;
8581   if (Ops[1]->getType()->isVectorTy())
8582     // This is the "vector base, scalar offset" case. In order to uniquely
8583     // map this built-in to an LLVM IR intrinsic, we need both the return type
8584     // and the type of the vector base.
8585     F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[1]->getType()});
8586   else
8587     // This is the "scalar base, vector offset case". The type of the offset
8588     // is encoded in the name of the intrinsic. We only need to specify the
8589     // return type in order to uniquely map this built-in to an LLVM IR
8590     // intrinsic.
8591     F = CGM.getIntrinsic(IntID, OverloadedTy);
8592 
8593   // Pass 0 when the offset is missing. This can only be applied when using
8594   // the "vector base" addressing mode for which ACLE allows no offset. The
8595   // corresponding LLVM IR always requires an offset.
8596   if (Ops.size() == 2) {
8597     assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset");
8598     Ops.push_back(ConstantInt::get(Int64Ty, 0));
8599   }
8600 
8601   // For "vector base, scalar index" scale the index so that it becomes a
8602   // scalar offset.
8603   if (!TypeFlags.isByteIndexed() && Ops[1]->getType()->isVectorTy()) {
8604     unsigned BytesPerElt =
8605         OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
8606     Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8607     Ops[2] = Builder.CreateMul(Ops[2], Scale);
8608   }
8609 
8610   Value *Call = Builder.CreateCall(F, Ops);
8611 
8612   // The following sext/zext is only needed when ResultTy != OverloadedTy. In
8613   // other cases it's folded into a nop.
8614   return TypeFlags.isZExtReturn() ? Builder.CreateZExt(Call, ResultTy)
8615                                   : Builder.CreateSExt(Call, ResultTy);
8616 }
8617 
8618 Value *CodeGenFunction::EmitSVEScatterStore(SVETypeFlags TypeFlags,
8619                                             SmallVectorImpl<Value *> &Ops,
8620                                             unsigned IntID) {
8621   auto *SrcDataTy = getSVEType(TypeFlags);
8622   auto *OverloadedTy =
8623       llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), SrcDataTy);
8624 
8625   // In ACLE the source data is passed in the last argument, whereas in LLVM IR
8626   // it's the first argument. Move it accordingly.
8627   Ops.insert(Ops.begin(), Ops.pop_back_val());
8628 
8629   Function *F = nullptr;
8630   if (Ops[2]->getType()->isVectorTy())
8631     // This is the "vector base, scalar offset" case. In order to uniquely
8632     // map this built-in to an LLVM IR intrinsic, we need both the return type
8633     // and the type of the vector base.
8634     F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[2]->getType()});
8635   else
8636     // This is the "scalar base, vector offset case". The type of the offset
8637     // is encoded in the name of the intrinsic. We only need to specify the
8638     // return type in order to uniquely map this built-in to an LLVM IR
8639     // intrinsic.
8640     F = CGM.getIntrinsic(IntID, OverloadedTy);
8641 
8642   // Pass 0 when the offset is missing. This can only be applied when using
8643   // the "vector base" addressing mode for which ACLE allows no offset. The
8644   // corresponding LLVM IR always requires an offset.
8645   if (Ops.size() == 3) {
8646     assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset");
8647     Ops.push_back(ConstantInt::get(Int64Ty, 0));
8648   }
8649 
8650   // Truncation is needed when SrcDataTy != OverloadedTy. In other cases it's
8651   // folded into a nop.
8652   Ops[0] = Builder.CreateTrunc(Ops[0], OverloadedTy);
8653 
8654   // At the ACLE level there's only one predicate type, svbool_t, which is
8655   // mapped to <n x 16 x i1>. However, this might be incompatible with the
8656   // actual type being stored. For example, when storing doubles (i64) the
8657   // predicated should be <n x 2 x i1> instead. At the IR level the type of
8658   // the predicate and the data being stored must match. Cast accordingly.
8659   Ops[1] = EmitSVEPredicateCast(Ops[1], OverloadedTy);
8660 
8661   // For "vector base, scalar index" scale the index so that it becomes a
8662   // scalar offset.
8663   if (!TypeFlags.isByteIndexed() && Ops[2]->getType()->isVectorTy()) {
8664     unsigned BytesPerElt =
8665         OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
8666     Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8667     Ops[3] = Builder.CreateMul(Ops[3], Scale);
8668   }
8669 
8670   return Builder.CreateCall(F, Ops);
8671 }
8672 
8673 Value *CodeGenFunction::EmitSVEGatherPrefetch(SVETypeFlags TypeFlags,
8674                                               SmallVectorImpl<Value *> &Ops,
8675                                               unsigned IntID) {
8676   // The gather prefetches are overloaded on the vector input - this can either
8677   // be the vector of base addresses or vector of offsets.
8678   auto *OverloadedTy = dyn_cast<llvm::ScalableVectorType>(Ops[1]->getType());
8679   if (!OverloadedTy)
8680     OverloadedTy = cast<llvm::ScalableVectorType>(Ops[2]->getType());
8681 
8682   // Cast the predicate from svbool_t to the right number of elements.
8683   Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
8684 
8685   // vector + imm addressing modes
8686   if (Ops[1]->getType()->isVectorTy()) {
8687     if (Ops.size() == 3) {
8688       // Pass 0 for 'vector+imm' when the index is omitted.
8689       Ops.push_back(ConstantInt::get(Int64Ty, 0));
8690 
8691       // The sv_prfop is the last operand in the builtin and IR intrinsic.
8692       std::swap(Ops[2], Ops[3]);
8693     } else {
8694       // Index needs to be passed as scaled offset.
8695       llvm::Type *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
8696       unsigned BytesPerElt = MemEltTy->getPrimitiveSizeInBits() / 8;
8697       Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8698       Ops[2] = Builder.CreateMul(Ops[2], Scale);
8699     }
8700   }
8701 
8702   Function *F = CGM.getIntrinsic(IntID, OverloadedTy);
8703   return Builder.CreateCall(F, Ops);
8704 }
8705 
8706 Value *CodeGenFunction::EmitSVEStructLoad(SVETypeFlags TypeFlags,
8707                                           SmallVectorImpl<Value*> &Ops,
8708                                           unsigned IntID) {
8709   llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
8710   auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
8711   auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
8712 
8713   unsigned N;
8714   switch (IntID) {
8715   case Intrinsic::aarch64_sve_ld2:
8716     N = 2;
8717     break;
8718   case Intrinsic::aarch64_sve_ld3:
8719     N = 3;
8720     break;
8721   case Intrinsic::aarch64_sve_ld4:
8722     N = 4;
8723     break;
8724   default:
8725     llvm_unreachable("unknown intrinsic!");
8726   }
8727   auto RetTy = llvm::VectorType::get(VTy->getElementType(),
8728                                      VTy->getElementCount() * N);
8729 
8730 	Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
8731   Value *BasePtr= Builder.CreateBitCast(Ops[1], VecPtrTy);
8732   Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0);
8733   BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset);
8734   BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
8735 
8736   Function *F = CGM.getIntrinsic(IntID, {RetTy, Predicate->getType()});
8737   return Builder.CreateCall(F, { Predicate, BasePtr });
8738 }
8739 
8740 Value *CodeGenFunction::EmitSVEStructStore(SVETypeFlags TypeFlags,
8741                                            SmallVectorImpl<Value*> &Ops,
8742                                            unsigned IntID) {
8743   llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
8744   auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
8745   auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
8746 
8747   unsigned N;
8748   switch (IntID) {
8749   case Intrinsic::aarch64_sve_st2:
8750     N = 2;
8751     break;
8752   case Intrinsic::aarch64_sve_st3:
8753     N = 3;
8754     break;
8755   case Intrinsic::aarch64_sve_st4:
8756     N = 4;
8757     break;
8758   default:
8759     llvm_unreachable("unknown intrinsic!");
8760   }
8761   auto TupleTy =
8762       llvm::VectorType::get(VTy->getElementType(), VTy->getElementCount() * N);
8763 
8764   Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
8765   Value *BasePtr = Builder.CreateBitCast(Ops[1], VecPtrTy);
8766   Value *Offset = Ops.size() > 3 ? Ops[2] : Builder.getInt32(0);
8767   Value *Val = Ops.back();
8768   BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset);
8769   BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
8770 
8771   // The llvm.aarch64.sve.st2/3/4 intrinsics take legal part vectors, so we
8772   // need to break up the tuple vector.
8773   SmallVector<llvm::Value*, 5> Operands;
8774   Function *FExtr =
8775       CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy});
8776   for (unsigned I = 0; I < N; ++I)
8777     Operands.push_back(Builder.CreateCall(FExtr, {Val, Builder.getInt32(I)}));
8778   Operands.append({Predicate, BasePtr});
8779 
8780   Function *F = CGM.getIntrinsic(IntID, { VTy });
8781   return Builder.CreateCall(F, Operands);
8782 }
8783 
8784 // SVE2's svpmullb and svpmullt builtins are similar to the svpmullb_pair and
8785 // svpmullt_pair intrinsics, with the exception that their results are bitcast
8786 // to a wider type.
8787 Value *CodeGenFunction::EmitSVEPMull(SVETypeFlags TypeFlags,
8788                                      SmallVectorImpl<Value *> &Ops,
8789                                      unsigned BuiltinID) {
8790   // Splat scalar operand to vector (intrinsics with _n infix)
8791   if (TypeFlags.hasSplatOperand()) {
8792     unsigned OpNo = TypeFlags.getSplatOperand();
8793     Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
8794   }
8795 
8796   // The pair-wise function has a narrower overloaded type.
8797   Function *F = CGM.getIntrinsic(BuiltinID, Ops[0]->getType());
8798   Value *Call = Builder.CreateCall(F, {Ops[0], Ops[1]});
8799 
8800   // Now bitcast to the wider result type.
8801   llvm::ScalableVectorType *Ty = getSVEType(TypeFlags);
8802   return EmitSVEReinterpret(Call, Ty);
8803 }
8804 
8805 Value *CodeGenFunction::EmitSVEMovl(SVETypeFlags TypeFlags,
8806                                     ArrayRef<Value *> Ops, unsigned BuiltinID) {
8807   llvm::Type *OverloadedTy = getSVEType(TypeFlags);
8808   Function *F = CGM.getIntrinsic(BuiltinID, OverloadedTy);
8809   return Builder.CreateCall(F, {Ops[0], Builder.getInt32(0)});
8810 }
8811 
8812 Value *CodeGenFunction::EmitSVEPrefetchLoad(SVETypeFlags TypeFlags,
8813                                             SmallVectorImpl<Value *> &Ops,
8814                                             unsigned BuiltinID) {
8815   auto *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
8816   auto *VectorTy = getSVEVectorForElementType(MemEltTy);
8817   auto *MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
8818 
8819   Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
8820   Value *BasePtr = Ops[1];
8821 
8822   // Implement the index operand if not omitted.
8823   if (Ops.size() > 3) {
8824     BasePtr = Builder.CreateBitCast(BasePtr, MemoryTy->getPointerTo());
8825     BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]);
8826   }
8827 
8828   // Prefetch intriniscs always expect an i8*
8829   BasePtr = Builder.CreateBitCast(BasePtr, llvm::PointerType::getUnqual(Int8Ty));
8830   Value *PrfOp = Ops.back();
8831 
8832   Function *F = CGM.getIntrinsic(BuiltinID, Predicate->getType());
8833   return Builder.CreateCall(F, {Predicate, BasePtr, PrfOp});
8834 }
8835 
8836 Value *CodeGenFunction::EmitSVEMaskedLoad(const CallExpr *E,
8837                                           llvm::Type *ReturnTy,
8838                                           SmallVectorImpl<Value *> &Ops,
8839                                           unsigned BuiltinID,
8840                                           bool IsZExtReturn) {
8841   QualType LangPTy = E->getArg(1)->getType();
8842   llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
8843       LangPTy->castAs<PointerType>()->getPointeeType());
8844 
8845   // The vector type that is returned may be different from the
8846   // eventual type loaded from memory.
8847   auto VectorTy = cast<llvm::ScalableVectorType>(ReturnTy);
8848   auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
8849 
8850   Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
8851   Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
8852   Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0);
8853   BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset);
8854 
8855   BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
8856   Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
8857   Value *Load = Builder.CreateCall(F, {Predicate, BasePtr});
8858 
8859   return IsZExtReturn ? Builder.CreateZExt(Load, VectorTy)
8860                      : Builder.CreateSExt(Load, VectorTy);
8861 }
8862 
8863 Value *CodeGenFunction::EmitSVEMaskedStore(const CallExpr *E,
8864                                            SmallVectorImpl<Value *> &Ops,
8865                                            unsigned BuiltinID) {
8866   QualType LangPTy = E->getArg(1)->getType();
8867   llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
8868       LangPTy->castAs<PointerType>()->getPointeeType());
8869 
8870   // The vector type that is stored may be different from the
8871   // eventual type stored to memory.
8872   auto VectorTy = cast<llvm::ScalableVectorType>(Ops.back()->getType());
8873   auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
8874 
8875   Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
8876   Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
8877   Value *Offset = Ops.size() == 4 ? Ops[2] : Builder.getInt32(0);
8878   BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset);
8879 
8880   // Last value is always the data
8881   llvm::Value *Val = Builder.CreateTrunc(Ops.back(), MemoryTy);
8882 
8883   BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
8884   Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
8885   return Builder.CreateCall(F, {Val, Predicate, BasePtr});
8886 }
8887 
8888 // Limit the usage of scalable llvm IR generated by the ACLE by using the
8889 // sve dup.x intrinsic instead of IRBuilder::CreateVectorSplat.
8890 Value *CodeGenFunction::EmitSVEDupX(Value *Scalar, llvm::Type *Ty) {
8891   auto F = CGM.getIntrinsic(Intrinsic::aarch64_sve_dup_x, Ty);
8892   return Builder.CreateCall(F, Scalar);
8893 }
8894 
8895 Value *CodeGenFunction::EmitSVEDupX(Value* Scalar) {
8896   return EmitSVEDupX(Scalar, getSVEVectorForElementType(Scalar->getType()));
8897 }
8898 
8899 Value *CodeGenFunction::EmitSVEReinterpret(Value *Val, llvm::Type *Ty) {
8900   // FIXME: For big endian this needs an additional REV, or needs a separate
8901   // intrinsic that is code-generated as a no-op, because the LLVM bitcast
8902   // instruction is defined as 'bitwise' equivalent from memory point of
8903   // view (when storing/reloading), whereas the svreinterpret builtin
8904   // implements bitwise equivalent cast from register point of view.
8905   // LLVM CodeGen for a bitcast must add an explicit REV for big-endian.
8906   return Builder.CreateBitCast(Val, Ty);
8907 }
8908 
8909 static void InsertExplicitZeroOperand(CGBuilderTy &Builder, llvm::Type *Ty,
8910                                       SmallVectorImpl<Value *> &Ops) {
8911   auto *SplatZero = Constant::getNullValue(Ty);
8912   Ops.insert(Ops.begin(), SplatZero);
8913 }
8914 
8915 static void InsertExplicitUndefOperand(CGBuilderTy &Builder, llvm::Type *Ty,
8916                                        SmallVectorImpl<Value *> &Ops) {
8917   auto *SplatUndef = UndefValue::get(Ty);
8918   Ops.insert(Ops.begin(), SplatUndef);
8919 }
8920 
8921 SmallVector<llvm::Type *, 2> CodeGenFunction::getSVEOverloadTypes(
8922     SVETypeFlags TypeFlags, llvm::Type *ResultType, ArrayRef<Value *> Ops) {
8923   if (TypeFlags.isOverloadNone())
8924     return {};
8925 
8926   llvm::Type *DefaultType = getSVEType(TypeFlags);
8927 
8928   if (TypeFlags.isOverloadWhile())
8929     return {DefaultType, Ops[1]->getType()};
8930 
8931   if (TypeFlags.isOverloadWhileRW())
8932     return {getSVEPredType(TypeFlags), Ops[0]->getType()};
8933 
8934   if (TypeFlags.isOverloadCvt() || TypeFlags.isTupleSet())
8935     return {Ops[0]->getType(), Ops.back()->getType()};
8936 
8937   if (TypeFlags.isTupleCreate() || TypeFlags.isTupleGet())
8938     return {ResultType, Ops[0]->getType()};
8939 
8940   assert(TypeFlags.isOverloadDefault() && "Unexpected value for overloads");
8941   return {DefaultType};
8942 }
8943 
8944 Value *CodeGenFunction::EmitAArch64SVEBuiltinExpr(unsigned BuiltinID,
8945                                                   const CallExpr *E) {
8946   // Find out if any arguments are required to be integer constant expressions.
8947   unsigned ICEArguments = 0;
8948   ASTContext::GetBuiltinTypeError Error;
8949   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
8950   assert(Error == ASTContext::GE_None && "Should not codegen an error");
8951 
8952   llvm::Type *Ty = ConvertType(E->getType());
8953   if (BuiltinID >= SVE::BI__builtin_sve_reinterpret_s8_s8 &&
8954       BuiltinID <= SVE::BI__builtin_sve_reinterpret_f64_f64) {
8955     Value *Val = EmitScalarExpr(E->getArg(0));
8956     return EmitSVEReinterpret(Val, Ty);
8957   }
8958 
8959   llvm::SmallVector<Value *, 4> Ops;
8960   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
8961     if ((ICEArguments & (1 << i)) == 0)
8962       Ops.push_back(EmitScalarExpr(E->getArg(i)));
8963     else {
8964       // If this is required to be a constant, constant fold it so that we know
8965       // that the generated intrinsic gets a ConstantInt.
8966       Optional<llvm::APSInt> Result =
8967           E->getArg(i)->getIntegerConstantExpr(getContext());
8968       assert(Result && "Expected argument to be a constant");
8969 
8970       // Immediates for SVE llvm intrinsics are always 32bit.  We can safely
8971       // truncate because the immediate has been range checked and no valid
8972       // immediate requires more than a handful of bits.
8973       *Result = Result->extOrTrunc(32);
8974       Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), *Result));
8975     }
8976   }
8977 
8978   auto *Builtin = findARMVectorIntrinsicInMap(AArch64SVEIntrinsicMap, BuiltinID,
8979                                               AArch64SVEIntrinsicsProvenSorted);
8980   SVETypeFlags TypeFlags(Builtin->TypeModifier);
8981   if (TypeFlags.isLoad())
8982     return EmitSVEMaskedLoad(E, Ty, Ops, Builtin->LLVMIntrinsic,
8983                              TypeFlags.isZExtReturn());
8984   else if (TypeFlags.isStore())
8985     return EmitSVEMaskedStore(E, Ops, Builtin->LLVMIntrinsic);
8986   else if (TypeFlags.isGatherLoad())
8987     return EmitSVEGatherLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8988   else if (TypeFlags.isScatterStore())
8989     return EmitSVEScatterStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8990   else if (TypeFlags.isPrefetch())
8991     return EmitSVEPrefetchLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8992   else if (TypeFlags.isGatherPrefetch())
8993     return EmitSVEGatherPrefetch(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8994 	else if (TypeFlags.isStructLoad())
8995 		return EmitSVEStructLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8996 	else if (TypeFlags.isStructStore())
8997 		return EmitSVEStructStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8998   else if (TypeFlags.isUndef())
8999     return UndefValue::get(Ty);
9000   else if (Builtin->LLVMIntrinsic != 0) {
9001     if (TypeFlags.getMergeType() == SVETypeFlags::MergeZeroExp)
9002       InsertExplicitZeroOperand(Builder, Ty, Ops);
9003 
9004     if (TypeFlags.getMergeType() == SVETypeFlags::MergeAnyExp)
9005       InsertExplicitUndefOperand(Builder, Ty, Ops);
9006 
9007     // Some ACLE builtins leave out the argument to specify the predicate
9008     // pattern, which is expected to be expanded to an SV_ALL pattern.
9009     if (TypeFlags.isAppendSVALL())
9010       Ops.push_back(Builder.getInt32(/*SV_ALL*/ 31));
9011     if (TypeFlags.isInsertOp1SVALL())
9012       Ops.insert(&Ops[1], Builder.getInt32(/*SV_ALL*/ 31));
9013 
9014     // Predicates must match the main datatype.
9015     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
9016       if (auto PredTy = dyn_cast<llvm::VectorType>(Ops[i]->getType()))
9017         if (PredTy->getElementType()->isIntegerTy(1))
9018           Ops[i] = EmitSVEPredicateCast(Ops[i], getSVEType(TypeFlags));
9019 
9020     // Splat scalar operand to vector (intrinsics with _n infix)
9021     if (TypeFlags.hasSplatOperand()) {
9022       unsigned OpNo = TypeFlags.getSplatOperand();
9023       Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
9024     }
9025 
9026     if (TypeFlags.isReverseCompare())
9027       std::swap(Ops[1], Ops[2]);
9028 
9029     if (TypeFlags.isReverseUSDOT())
9030       std::swap(Ops[1], Ops[2]);
9031 
9032     // Predicated intrinsics with _z suffix need a select w/ zeroinitializer.
9033     if (TypeFlags.getMergeType() == SVETypeFlags::MergeZero) {
9034       llvm::Type *OpndTy = Ops[1]->getType();
9035       auto *SplatZero = Constant::getNullValue(OpndTy);
9036       Function *Sel = CGM.getIntrinsic(Intrinsic::aarch64_sve_sel, OpndTy);
9037       Ops[1] = Builder.CreateCall(Sel, {Ops[0], Ops[1], SplatZero});
9038     }
9039 
9040     Function *F = CGM.getIntrinsic(Builtin->LLVMIntrinsic,
9041                                    getSVEOverloadTypes(TypeFlags, Ty, Ops));
9042     Value *Call = Builder.CreateCall(F, Ops);
9043 
9044     // Predicate results must be converted to svbool_t.
9045     if (auto PredTy = dyn_cast<llvm::VectorType>(Call->getType()))
9046       if (PredTy->getScalarType()->isIntegerTy(1))
9047         Call = EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
9048 
9049     return Call;
9050   }
9051 
9052   switch (BuiltinID) {
9053   default:
9054     return nullptr;
9055 
9056   case SVE::BI__builtin_sve_svmov_b_z: {
9057     // svmov_b_z(pg, op) <=> svand_b_z(pg, op, op)
9058     SVETypeFlags TypeFlags(Builtin->TypeModifier);
9059     llvm::Type* OverloadedTy = getSVEType(TypeFlags);
9060     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_and_z, OverloadedTy);
9061     return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[1]});
9062   }
9063 
9064   case SVE::BI__builtin_sve_svnot_b_z: {
9065     // svnot_b_z(pg, op) <=> sveor_b_z(pg, op, pg)
9066     SVETypeFlags TypeFlags(Builtin->TypeModifier);
9067     llvm::Type* OverloadedTy = getSVEType(TypeFlags);
9068     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_eor_z, OverloadedTy);
9069     return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[0]});
9070   }
9071 
9072   case SVE::BI__builtin_sve_svmovlb_u16:
9073   case SVE::BI__builtin_sve_svmovlb_u32:
9074   case SVE::BI__builtin_sve_svmovlb_u64:
9075     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllb);
9076 
9077   case SVE::BI__builtin_sve_svmovlb_s16:
9078   case SVE::BI__builtin_sve_svmovlb_s32:
9079   case SVE::BI__builtin_sve_svmovlb_s64:
9080     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllb);
9081 
9082   case SVE::BI__builtin_sve_svmovlt_u16:
9083   case SVE::BI__builtin_sve_svmovlt_u32:
9084   case SVE::BI__builtin_sve_svmovlt_u64:
9085     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllt);
9086 
9087   case SVE::BI__builtin_sve_svmovlt_s16:
9088   case SVE::BI__builtin_sve_svmovlt_s32:
9089   case SVE::BI__builtin_sve_svmovlt_s64:
9090     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllt);
9091 
9092   case SVE::BI__builtin_sve_svpmullt_u16:
9093   case SVE::BI__builtin_sve_svpmullt_u64:
9094   case SVE::BI__builtin_sve_svpmullt_n_u16:
9095   case SVE::BI__builtin_sve_svpmullt_n_u64:
9096     return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullt_pair);
9097 
9098   case SVE::BI__builtin_sve_svpmullb_u16:
9099   case SVE::BI__builtin_sve_svpmullb_u64:
9100   case SVE::BI__builtin_sve_svpmullb_n_u16:
9101   case SVE::BI__builtin_sve_svpmullb_n_u64:
9102     return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullb_pair);
9103 
9104   case SVE::BI__builtin_sve_svdup_n_b8:
9105   case SVE::BI__builtin_sve_svdup_n_b16:
9106   case SVE::BI__builtin_sve_svdup_n_b32:
9107   case SVE::BI__builtin_sve_svdup_n_b64: {
9108     Value *CmpNE =
9109         Builder.CreateICmpNE(Ops[0], Constant::getNullValue(Ops[0]->getType()));
9110     llvm::ScalableVectorType *OverloadedTy = getSVEType(TypeFlags);
9111     Value *Dup = EmitSVEDupX(CmpNE, OverloadedTy);
9112     return EmitSVEPredicateCast(Dup, cast<llvm::ScalableVectorType>(Ty));
9113   }
9114 
9115   case SVE::BI__builtin_sve_svdupq_n_b8:
9116   case SVE::BI__builtin_sve_svdupq_n_b16:
9117   case SVE::BI__builtin_sve_svdupq_n_b32:
9118   case SVE::BI__builtin_sve_svdupq_n_b64:
9119   case SVE::BI__builtin_sve_svdupq_n_u8:
9120   case SVE::BI__builtin_sve_svdupq_n_s8:
9121   case SVE::BI__builtin_sve_svdupq_n_u64:
9122   case SVE::BI__builtin_sve_svdupq_n_f64:
9123   case SVE::BI__builtin_sve_svdupq_n_s64:
9124   case SVE::BI__builtin_sve_svdupq_n_u16:
9125   case SVE::BI__builtin_sve_svdupq_n_f16:
9126   case SVE::BI__builtin_sve_svdupq_n_bf16:
9127   case SVE::BI__builtin_sve_svdupq_n_s16:
9128   case SVE::BI__builtin_sve_svdupq_n_u32:
9129   case SVE::BI__builtin_sve_svdupq_n_f32:
9130   case SVE::BI__builtin_sve_svdupq_n_s32: {
9131     // These builtins are implemented by storing each element to an array and using
9132     // ld1rq to materialize a vector.
9133     unsigned NumOpnds = Ops.size();
9134 
9135     bool IsBoolTy =
9136         cast<llvm::VectorType>(Ty)->getElementType()->isIntegerTy(1);
9137 
9138     // For svdupq_n_b* the element type of is an integer of type 128/numelts,
9139     // so that the compare can use the width that is natural for the expected
9140     // number of predicate lanes.
9141     llvm::Type *EltTy = Ops[0]->getType();
9142     if (IsBoolTy)
9143       EltTy = IntegerType::get(getLLVMContext(), SVEBitsPerBlock / NumOpnds);
9144 
9145     SmallVector<llvm::Value *, 16> VecOps;
9146     for (unsigned I = 0; I < NumOpnds; ++I)
9147         VecOps.push_back(Builder.CreateZExt(Ops[I], EltTy));
9148     Value *Vec = BuildVector(VecOps);
9149 
9150     SVETypeFlags TypeFlags(Builtin->TypeModifier);
9151     Value *Pred = EmitSVEAllTruePred(TypeFlags);
9152 
9153     llvm::Type *OverloadedTy = getSVEVectorForElementType(EltTy);
9154     Value *InsertSubVec = Builder.CreateInsertVector(
9155         OverloadedTy, UndefValue::get(OverloadedTy), Vec, Builder.getInt64(0));
9156 
9157     Function *F =
9158         CGM.getIntrinsic(Intrinsic::aarch64_sve_dupq_lane, OverloadedTy);
9159     Value *DupQLane =
9160         Builder.CreateCall(F, {InsertSubVec, Builder.getInt64(0)});
9161 
9162     if (!IsBoolTy)
9163       return DupQLane;
9164 
9165     // For svdupq_n_b* we need to add an additional 'cmpne' with '0'.
9166     F = CGM.getIntrinsic(NumOpnds == 2 ? Intrinsic::aarch64_sve_cmpne
9167                                        : Intrinsic::aarch64_sve_cmpne_wide,
9168                          OverloadedTy);
9169     Value *Call = Builder.CreateCall(
9170         F, {Pred, DupQLane, EmitSVEDupX(Builder.getInt64(0))});
9171     return EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
9172   }
9173 
9174   case SVE::BI__builtin_sve_svpfalse_b:
9175     return ConstantInt::getFalse(Ty);
9176 
9177   case SVE::BI__builtin_sve_svlen_bf16:
9178   case SVE::BI__builtin_sve_svlen_f16:
9179   case SVE::BI__builtin_sve_svlen_f32:
9180   case SVE::BI__builtin_sve_svlen_f64:
9181   case SVE::BI__builtin_sve_svlen_s8:
9182   case SVE::BI__builtin_sve_svlen_s16:
9183   case SVE::BI__builtin_sve_svlen_s32:
9184   case SVE::BI__builtin_sve_svlen_s64:
9185   case SVE::BI__builtin_sve_svlen_u8:
9186   case SVE::BI__builtin_sve_svlen_u16:
9187   case SVE::BI__builtin_sve_svlen_u32:
9188   case SVE::BI__builtin_sve_svlen_u64: {
9189     SVETypeFlags TF(Builtin->TypeModifier);
9190     auto VTy = cast<llvm::VectorType>(getSVEType(TF));
9191     auto *NumEls =
9192         llvm::ConstantInt::get(Ty, VTy->getElementCount().getKnownMinValue());
9193 
9194     Function *F = CGM.getIntrinsic(Intrinsic::vscale, Ty);
9195     return Builder.CreateMul(NumEls, Builder.CreateCall(F));
9196   }
9197 
9198   case SVE::BI__builtin_sve_svtbl2_u8:
9199   case SVE::BI__builtin_sve_svtbl2_s8:
9200   case SVE::BI__builtin_sve_svtbl2_u16:
9201   case SVE::BI__builtin_sve_svtbl2_s16:
9202   case SVE::BI__builtin_sve_svtbl2_u32:
9203   case SVE::BI__builtin_sve_svtbl2_s32:
9204   case SVE::BI__builtin_sve_svtbl2_u64:
9205   case SVE::BI__builtin_sve_svtbl2_s64:
9206   case SVE::BI__builtin_sve_svtbl2_f16:
9207   case SVE::BI__builtin_sve_svtbl2_bf16:
9208   case SVE::BI__builtin_sve_svtbl2_f32:
9209   case SVE::BI__builtin_sve_svtbl2_f64: {
9210     SVETypeFlags TF(Builtin->TypeModifier);
9211     auto VTy = cast<llvm::VectorType>(getSVEType(TF));
9212     auto TupleTy = llvm::VectorType::getDoubleElementsVectorType(VTy);
9213     Function *FExtr =
9214         CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy});
9215     Value *V0 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(0)});
9216     Value *V1 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(1)});
9217     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_tbl2, VTy);
9218     return Builder.CreateCall(F, {V0, V1, Ops[1]});
9219   }
9220   }
9221 
9222   /// Should not happen
9223   return nullptr;
9224 }
9225 
9226 Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
9227                                                const CallExpr *E,
9228                                                llvm::Triple::ArchType Arch) {
9229   if (BuiltinID >= AArch64::FirstSVEBuiltin &&
9230       BuiltinID <= AArch64::LastSVEBuiltin)
9231     return EmitAArch64SVEBuiltinExpr(BuiltinID, E);
9232 
9233   unsigned HintID = static_cast<unsigned>(-1);
9234   switch (BuiltinID) {
9235   default: break;
9236   case AArch64::BI__builtin_arm_nop:
9237     HintID = 0;
9238     break;
9239   case AArch64::BI__builtin_arm_yield:
9240   case AArch64::BI__yield:
9241     HintID = 1;
9242     break;
9243   case AArch64::BI__builtin_arm_wfe:
9244   case AArch64::BI__wfe:
9245     HintID = 2;
9246     break;
9247   case AArch64::BI__builtin_arm_wfi:
9248   case AArch64::BI__wfi:
9249     HintID = 3;
9250     break;
9251   case AArch64::BI__builtin_arm_sev:
9252   case AArch64::BI__sev:
9253     HintID = 4;
9254     break;
9255   case AArch64::BI__builtin_arm_sevl:
9256   case AArch64::BI__sevl:
9257     HintID = 5;
9258     break;
9259   }
9260 
9261   if (HintID != static_cast<unsigned>(-1)) {
9262     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
9263     return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
9264   }
9265 
9266   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
9267     Value *Address         = EmitScalarExpr(E->getArg(0));
9268     Value *RW              = EmitScalarExpr(E->getArg(1));
9269     Value *CacheLevel      = EmitScalarExpr(E->getArg(2));
9270     Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
9271     Value *IsData          = EmitScalarExpr(E->getArg(4));
9272 
9273     Value *Locality = nullptr;
9274     if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
9275       // Temporal fetch, needs to convert cache level to locality.
9276       Locality = llvm::ConstantInt::get(Int32Ty,
9277         -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
9278     } else {
9279       // Streaming fetch.
9280       Locality = llvm::ConstantInt::get(Int32Ty, 0);
9281     }
9282 
9283     // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
9284     // PLDL3STRM or PLDL2STRM.
9285     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
9286     return Builder.CreateCall(F, {Address, RW, Locality, IsData});
9287   }
9288 
9289   if (BuiltinID == AArch64::BI__builtin_arm_rbit) {
9290     assert((getContext().getTypeSize(E->getType()) == 32) &&
9291            "rbit of unusual size!");
9292     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9293     return Builder.CreateCall(
9294         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
9295   }
9296   if (BuiltinID == AArch64::BI__builtin_arm_rbit64) {
9297     assert((getContext().getTypeSize(E->getType()) == 64) &&
9298            "rbit of unusual size!");
9299     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9300     return Builder.CreateCall(
9301         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
9302   }
9303 
9304   if (BuiltinID == AArch64::BI__builtin_arm_cls) {
9305     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9306     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls), Arg,
9307                               "cls");
9308   }
9309   if (BuiltinID == AArch64::BI__builtin_arm_cls64) {
9310     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9311     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls64), Arg,
9312                               "cls");
9313   }
9314 
9315   if (BuiltinID == AArch64::BI__builtin_arm_frint32zf ||
9316       BuiltinID == AArch64::BI__builtin_arm_frint32z) {
9317     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9318     llvm::Type *Ty = Arg->getType();
9319     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32z, Ty),
9320                               Arg, "frint32z");
9321   }
9322 
9323   if (BuiltinID == AArch64::BI__builtin_arm_frint64zf ||
9324       BuiltinID == AArch64::BI__builtin_arm_frint64z) {
9325     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9326     llvm::Type *Ty = Arg->getType();
9327     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64z, Ty),
9328                               Arg, "frint64z");
9329   }
9330 
9331   if (BuiltinID == AArch64::BI__builtin_arm_frint32xf ||
9332       BuiltinID == AArch64::BI__builtin_arm_frint32x) {
9333     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9334     llvm::Type *Ty = Arg->getType();
9335     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32x, Ty),
9336                               Arg, "frint32x");
9337   }
9338 
9339   if (BuiltinID == AArch64::BI__builtin_arm_frint64xf ||
9340       BuiltinID == AArch64::BI__builtin_arm_frint64x) {
9341     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9342     llvm::Type *Ty = Arg->getType();
9343     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64x, Ty),
9344                               Arg, "frint64x");
9345   }
9346 
9347   if (BuiltinID == AArch64::BI__builtin_arm_jcvt) {
9348     assert((getContext().getTypeSize(E->getType()) == 32) &&
9349            "__jcvt of unusual size!");
9350     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9351     return Builder.CreateCall(
9352         CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg);
9353   }
9354 
9355   if (BuiltinID == AArch64::BI__builtin_arm_ld64b ||
9356       BuiltinID == AArch64::BI__builtin_arm_st64b ||
9357       BuiltinID == AArch64::BI__builtin_arm_st64bv ||
9358       BuiltinID == AArch64::BI__builtin_arm_st64bv0) {
9359     llvm::Value *MemAddr = EmitScalarExpr(E->getArg(0));
9360     llvm::Value *ValPtr = EmitScalarExpr(E->getArg(1));
9361 
9362     if (BuiltinID == AArch64::BI__builtin_arm_ld64b) {
9363       // Load from the address via an LLVM intrinsic, receiving a
9364       // tuple of 8 i64 words, and store each one to ValPtr.
9365       Function *F = CGM.getIntrinsic(Intrinsic::aarch64_ld64b);
9366       llvm::Value *Val = Builder.CreateCall(F, MemAddr);
9367       llvm::Value *ToRet;
9368       for (size_t i = 0; i < 8; i++) {
9369         llvm::Value *ValOffsetPtr =
9370             Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i));
9371         Address Addr(ValOffsetPtr, CharUnits::fromQuantity(8));
9372         ToRet = Builder.CreateStore(Builder.CreateExtractValue(Val, i), Addr);
9373       }
9374       return ToRet;
9375     } else {
9376       // Load 8 i64 words from ValPtr, and store them to the address
9377       // via an LLVM intrinsic.
9378       SmallVector<llvm::Value *, 9> Args;
9379       Args.push_back(MemAddr);
9380       for (size_t i = 0; i < 8; i++) {
9381         llvm::Value *ValOffsetPtr =
9382             Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i));
9383         Address Addr(ValOffsetPtr, CharUnits::fromQuantity(8));
9384         Args.push_back(Builder.CreateLoad(Addr));
9385       }
9386 
9387       auto Intr = (BuiltinID == AArch64::BI__builtin_arm_st64b
9388                        ? Intrinsic::aarch64_st64b
9389                        : BuiltinID == AArch64::BI__builtin_arm_st64bv
9390                              ? Intrinsic::aarch64_st64bv
9391                              : Intrinsic::aarch64_st64bv0);
9392       Function *F = CGM.getIntrinsic(Intr);
9393       return Builder.CreateCall(F, Args);
9394     }
9395   }
9396 
9397   if (BuiltinID == AArch64::BI__builtin_arm_rndr ||
9398       BuiltinID == AArch64::BI__builtin_arm_rndrrs) {
9399 
9400     auto Intr = (BuiltinID == AArch64::BI__builtin_arm_rndr
9401                      ? Intrinsic::aarch64_rndr
9402                      : Intrinsic::aarch64_rndrrs);
9403     Function *F = CGM.getIntrinsic(Intr);
9404     llvm::Value *Val = Builder.CreateCall(F);
9405     Value *RandomValue = Builder.CreateExtractValue(Val, 0);
9406     Value *Status = Builder.CreateExtractValue(Val, 1);
9407 
9408     Address MemAddress = EmitPointerWithAlignment(E->getArg(0));
9409     Builder.CreateStore(RandomValue, MemAddress);
9410     Status = Builder.CreateZExt(Status, Int32Ty);
9411     return Status;
9412   }
9413 
9414   if (BuiltinID == AArch64::BI__clear_cache) {
9415     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
9416     const FunctionDecl *FD = E->getDirectCallee();
9417     Value *Ops[2];
9418     for (unsigned i = 0; i < 2; i++)
9419       Ops[i] = EmitScalarExpr(E->getArg(i));
9420     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
9421     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
9422     StringRef Name = FD->getName();
9423     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
9424   }
9425 
9426   if ((BuiltinID == AArch64::BI__builtin_arm_ldrex ||
9427       BuiltinID == AArch64::BI__builtin_arm_ldaex) &&
9428       getContext().getTypeSize(E->getType()) == 128) {
9429     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
9430                                        ? Intrinsic::aarch64_ldaxp
9431                                        : Intrinsic::aarch64_ldxp);
9432 
9433     Value *LdPtr = EmitScalarExpr(E->getArg(0));
9434     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
9435                                     "ldxp");
9436 
9437     Value *Val0 = Builder.CreateExtractValue(Val, 1);
9438     Value *Val1 = Builder.CreateExtractValue(Val, 0);
9439     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
9440     Val0 = Builder.CreateZExt(Val0, Int128Ty);
9441     Val1 = Builder.CreateZExt(Val1, Int128Ty);
9442 
9443     Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
9444     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
9445     Val = Builder.CreateOr(Val, Val1);
9446     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
9447   } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
9448              BuiltinID == AArch64::BI__builtin_arm_ldaex) {
9449     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
9450 
9451     QualType Ty = E->getType();
9452     llvm::Type *RealResTy = ConvertType(Ty);
9453     llvm::Type *PtrTy = llvm::IntegerType::get(
9454         getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
9455     LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
9456 
9457     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
9458                                        ? Intrinsic::aarch64_ldaxr
9459                                        : Intrinsic::aarch64_ldxr,
9460                                    PtrTy);
9461     Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
9462 
9463     if (RealResTy->isPointerTy())
9464       return Builder.CreateIntToPtr(Val, RealResTy);
9465 
9466     llvm::Type *IntResTy = llvm::IntegerType::get(
9467         getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
9468     Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
9469     return Builder.CreateBitCast(Val, RealResTy);
9470   }
9471 
9472   if ((BuiltinID == AArch64::BI__builtin_arm_strex ||
9473        BuiltinID == AArch64::BI__builtin_arm_stlex) &&
9474       getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
9475     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
9476                                        ? Intrinsic::aarch64_stlxp
9477                                        : Intrinsic::aarch64_stxp);
9478     llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty);
9479 
9480     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
9481     EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
9482 
9483     Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy));
9484     llvm::Value *Val = Builder.CreateLoad(Tmp);
9485 
9486     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
9487     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
9488     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
9489                                          Int8PtrTy);
9490     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
9491   }
9492 
9493   if (BuiltinID == AArch64::BI__builtin_arm_strex ||
9494       BuiltinID == AArch64::BI__builtin_arm_stlex) {
9495     Value *StoreVal = EmitScalarExpr(E->getArg(0));
9496     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
9497 
9498     QualType Ty = E->getArg(0)->getType();
9499     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
9500                                                  getContext().getTypeSize(Ty));
9501     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
9502 
9503     if (StoreVal->getType()->isPointerTy())
9504       StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
9505     else {
9506       llvm::Type *IntTy = llvm::IntegerType::get(
9507           getLLVMContext(),
9508           CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
9509       StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
9510       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
9511     }
9512 
9513     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
9514                                        ? Intrinsic::aarch64_stlxr
9515                                        : Intrinsic::aarch64_stxr,
9516                                    StoreAddr->getType());
9517     return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
9518   }
9519 
9520   if (BuiltinID == AArch64::BI__getReg) {
9521     Expr::EvalResult Result;
9522     if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
9523       llvm_unreachable("Sema will ensure that the parameter is constant");
9524 
9525     llvm::APSInt Value = Result.Val.getInt();
9526     LLVMContext &Context = CGM.getLLVMContext();
9527     std::string Reg = Value == 31 ? "sp" : "x" + toString(Value, 10);
9528 
9529     llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)};
9530     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
9531     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
9532 
9533     llvm::Function *F =
9534         CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
9535     return Builder.CreateCall(F, Metadata);
9536   }
9537 
9538   if (BuiltinID == AArch64::BI__builtin_arm_clrex) {
9539     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
9540     return Builder.CreateCall(F);
9541   }
9542 
9543   if (BuiltinID == AArch64::BI_ReadWriteBarrier)
9544     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
9545                                llvm::SyncScope::SingleThread);
9546 
9547   // CRC32
9548   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
9549   switch (BuiltinID) {
9550   case AArch64::BI__builtin_arm_crc32b:
9551     CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
9552   case AArch64::BI__builtin_arm_crc32cb:
9553     CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
9554   case AArch64::BI__builtin_arm_crc32h:
9555     CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
9556   case AArch64::BI__builtin_arm_crc32ch:
9557     CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
9558   case AArch64::BI__builtin_arm_crc32w:
9559     CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
9560   case AArch64::BI__builtin_arm_crc32cw:
9561     CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
9562   case AArch64::BI__builtin_arm_crc32d:
9563     CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
9564   case AArch64::BI__builtin_arm_crc32cd:
9565     CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
9566   }
9567 
9568   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
9569     Value *Arg0 = EmitScalarExpr(E->getArg(0));
9570     Value *Arg1 = EmitScalarExpr(E->getArg(1));
9571     Function *F = CGM.getIntrinsic(CRCIntrinsicID);
9572 
9573     llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
9574     Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
9575 
9576     return Builder.CreateCall(F, {Arg0, Arg1});
9577   }
9578 
9579   // Memory Tagging Extensions (MTE) Intrinsics
9580   Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic;
9581   switch (BuiltinID) {
9582   case AArch64::BI__builtin_arm_irg:
9583     MTEIntrinsicID = Intrinsic::aarch64_irg; break;
9584   case  AArch64::BI__builtin_arm_addg:
9585     MTEIntrinsicID = Intrinsic::aarch64_addg; break;
9586   case  AArch64::BI__builtin_arm_gmi:
9587     MTEIntrinsicID = Intrinsic::aarch64_gmi; break;
9588   case  AArch64::BI__builtin_arm_ldg:
9589     MTEIntrinsicID = Intrinsic::aarch64_ldg; break;
9590   case AArch64::BI__builtin_arm_stg:
9591     MTEIntrinsicID = Intrinsic::aarch64_stg; break;
9592   case AArch64::BI__builtin_arm_subp:
9593     MTEIntrinsicID = Intrinsic::aarch64_subp; break;
9594   }
9595 
9596   if (MTEIntrinsicID != Intrinsic::not_intrinsic) {
9597     llvm::Type *T = ConvertType(E->getType());
9598 
9599     if (MTEIntrinsicID == Intrinsic::aarch64_irg) {
9600       Value *Pointer = EmitScalarExpr(E->getArg(0));
9601       Value *Mask = EmitScalarExpr(E->getArg(1));
9602 
9603       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
9604       Mask = Builder.CreateZExt(Mask, Int64Ty);
9605       Value *RV = Builder.CreateCall(
9606                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask});
9607        return Builder.CreatePointerCast(RV, T);
9608     }
9609     if (MTEIntrinsicID == Intrinsic::aarch64_addg) {
9610       Value *Pointer = EmitScalarExpr(E->getArg(0));
9611       Value *TagOffset = EmitScalarExpr(E->getArg(1));
9612 
9613       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
9614       TagOffset = Builder.CreateZExt(TagOffset, Int64Ty);
9615       Value *RV = Builder.CreateCall(
9616                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset});
9617       return Builder.CreatePointerCast(RV, T);
9618     }
9619     if (MTEIntrinsicID == Intrinsic::aarch64_gmi) {
9620       Value *Pointer = EmitScalarExpr(E->getArg(0));
9621       Value *ExcludedMask = EmitScalarExpr(E->getArg(1));
9622 
9623       ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty);
9624       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
9625       return Builder.CreateCall(
9626                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask});
9627     }
9628     // Although it is possible to supply a different return
9629     // address (first arg) to this intrinsic, for now we set
9630     // return address same as input address.
9631     if (MTEIntrinsicID == Intrinsic::aarch64_ldg) {
9632       Value *TagAddress = EmitScalarExpr(E->getArg(0));
9633       TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
9634       Value *RV = Builder.CreateCall(
9635                     CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
9636       return Builder.CreatePointerCast(RV, T);
9637     }
9638     // Although it is possible to supply a different tag (to set)
9639     // to this intrinsic (as first arg), for now we supply
9640     // the tag that is in input address arg (common use case).
9641     if (MTEIntrinsicID == Intrinsic::aarch64_stg) {
9642         Value *TagAddress = EmitScalarExpr(E->getArg(0));
9643         TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
9644         return Builder.CreateCall(
9645                  CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
9646     }
9647     if (MTEIntrinsicID == Intrinsic::aarch64_subp) {
9648       Value *PointerA = EmitScalarExpr(E->getArg(0));
9649       Value *PointerB = EmitScalarExpr(E->getArg(1));
9650       PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy);
9651       PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy);
9652       return Builder.CreateCall(
9653                        CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB});
9654     }
9655   }
9656 
9657   if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
9658       BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
9659       BuiltinID == AArch64::BI__builtin_arm_rsrp ||
9660       BuiltinID == AArch64::BI__builtin_arm_wsr ||
9661       BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
9662       BuiltinID == AArch64::BI__builtin_arm_wsrp) {
9663 
9664     SpecialRegisterAccessKind AccessKind = Write;
9665     if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
9666         BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
9667         BuiltinID == AArch64::BI__builtin_arm_rsrp)
9668       AccessKind = VolatileRead;
9669 
9670     bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp ||
9671                             BuiltinID == AArch64::BI__builtin_arm_wsrp;
9672 
9673     bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr &&
9674                    BuiltinID != AArch64::BI__builtin_arm_wsr;
9675 
9676     llvm::Type *ValueType;
9677     llvm::Type *RegisterType = Int64Ty;
9678     if (IsPointerBuiltin) {
9679       ValueType = VoidPtrTy;
9680     } else if (Is64Bit) {
9681       ValueType = Int64Ty;
9682     } else {
9683       ValueType = Int32Ty;
9684     }
9685 
9686     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
9687                                       AccessKind);
9688   }
9689 
9690   if (BuiltinID == AArch64::BI_ReadStatusReg ||
9691       BuiltinID == AArch64::BI_WriteStatusReg) {
9692     LLVMContext &Context = CGM.getLLVMContext();
9693 
9694     unsigned SysReg =
9695       E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue();
9696 
9697     std::string SysRegStr;
9698     llvm::raw_string_ostream(SysRegStr) <<
9699                        ((1 << 1) | ((SysReg >> 14) & 1))  << ":" <<
9700                        ((SysReg >> 11) & 7)               << ":" <<
9701                        ((SysReg >> 7)  & 15)              << ":" <<
9702                        ((SysReg >> 3)  & 15)              << ":" <<
9703                        ( SysReg        & 7);
9704 
9705     llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) };
9706     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
9707     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
9708 
9709     llvm::Type *RegisterType = Int64Ty;
9710     llvm::Type *Types[] = { RegisterType };
9711 
9712     if (BuiltinID == AArch64::BI_ReadStatusReg) {
9713       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
9714 
9715       return Builder.CreateCall(F, Metadata);
9716     }
9717 
9718     llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
9719     llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1));
9720 
9721     return Builder.CreateCall(F, { Metadata, ArgValue });
9722   }
9723 
9724   if (BuiltinID == AArch64::BI_AddressOfReturnAddress) {
9725     llvm::Function *F =
9726         CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
9727     return Builder.CreateCall(F);
9728   }
9729 
9730   if (BuiltinID == AArch64::BI__builtin_sponentry) {
9731     llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy);
9732     return Builder.CreateCall(F);
9733   }
9734 
9735   if (BuiltinID == AArch64::BI__mulh || BuiltinID == AArch64::BI__umulh) {
9736     llvm::Type *ResType = ConvertType(E->getType());
9737     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
9738 
9739     bool IsSigned = BuiltinID == AArch64::BI__mulh;
9740     Value *LHS =
9741         Builder.CreateIntCast(EmitScalarExpr(E->getArg(0)), Int128Ty, IsSigned);
9742     Value *RHS =
9743         Builder.CreateIntCast(EmitScalarExpr(E->getArg(1)), Int128Ty, IsSigned);
9744 
9745     Value *MulResult, *HigherBits;
9746     if (IsSigned) {
9747       MulResult = Builder.CreateNSWMul(LHS, RHS);
9748       HigherBits = Builder.CreateAShr(MulResult, 64);
9749     } else {
9750       MulResult = Builder.CreateNUWMul(LHS, RHS);
9751       HigherBits = Builder.CreateLShr(MulResult, 64);
9752     }
9753     HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
9754 
9755     return HigherBits;
9756   }
9757 
9758   // Handle MSVC intrinsics before argument evaluation to prevent double
9759   // evaluation.
9760   if (Optional<MSVCIntrin> MsvcIntId = translateAarch64ToMsvcIntrin(BuiltinID))
9761     return EmitMSVCBuiltinExpr(*MsvcIntId, E);
9762 
9763   // Find out if any arguments are required to be integer constant
9764   // expressions.
9765   unsigned ICEArguments = 0;
9766   ASTContext::GetBuiltinTypeError Error;
9767   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
9768   assert(Error == ASTContext::GE_None && "Should not codegen an error");
9769 
9770   llvm::SmallVector<Value*, 4> Ops;
9771   Address PtrOp0 = Address::invalid();
9772   for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
9773     if (i == 0) {
9774       switch (BuiltinID) {
9775       case NEON::BI__builtin_neon_vld1_v:
9776       case NEON::BI__builtin_neon_vld1q_v:
9777       case NEON::BI__builtin_neon_vld1_dup_v:
9778       case NEON::BI__builtin_neon_vld1q_dup_v:
9779       case NEON::BI__builtin_neon_vld1_lane_v:
9780       case NEON::BI__builtin_neon_vld1q_lane_v:
9781       case NEON::BI__builtin_neon_vst1_v:
9782       case NEON::BI__builtin_neon_vst1q_v:
9783       case NEON::BI__builtin_neon_vst1_lane_v:
9784       case NEON::BI__builtin_neon_vst1q_lane_v:
9785         // Get the alignment for the argument in addition to the value;
9786         // we'll use it later.
9787         PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
9788         Ops.push_back(PtrOp0.getPointer());
9789         continue;
9790       }
9791     }
9792     if ((ICEArguments & (1 << i)) == 0) {
9793       Ops.push_back(EmitScalarExpr(E->getArg(i)));
9794     } else {
9795       // If this is required to be a constant, constant fold it so that we know
9796       // that the generated intrinsic gets a ConstantInt.
9797       Ops.push_back(llvm::ConstantInt::get(
9798           getLLVMContext(),
9799           *E->getArg(i)->getIntegerConstantExpr(getContext())));
9800     }
9801   }
9802 
9803   auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
9804   const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
9805       SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
9806 
9807   if (Builtin) {
9808     Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
9809     Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
9810     assert(Result && "SISD intrinsic should have been handled");
9811     return Result;
9812   }
9813 
9814   const Expr *Arg = E->getArg(E->getNumArgs()-1);
9815   NeonTypeFlags Type(0);
9816   if (Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext()))
9817     // Determine the type of this overloaded NEON intrinsic.
9818     Type = NeonTypeFlags(Result->getZExtValue());
9819 
9820   bool usgn = Type.isUnsigned();
9821   bool quad = Type.isQuad();
9822 
9823   // Handle non-overloaded intrinsics first.
9824   switch (BuiltinID) {
9825   default: break;
9826   case NEON::BI__builtin_neon_vabsh_f16:
9827     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9828     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs");
9829   case NEON::BI__builtin_neon_vaddq_p128: {
9830     llvm::Type *Ty = GetNeonType(this, NeonTypeFlags::Poly128);
9831     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9832     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9833     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9834     Ops[0] =  Builder.CreateXor(Ops[0], Ops[1]);
9835     llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
9836     return Builder.CreateBitCast(Ops[0], Int128Ty);
9837   }
9838   case NEON::BI__builtin_neon_vldrq_p128: {
9839     llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
9840     llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0);
9841     Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
9842     return Builder.CreateAlignedLoad(Int128Ty, Ptr,
9843                                      CharUnits::fromQuantity(16));
9844   }
9845   case NEON::BI__builtin_neon_vstrq_p128: {
9846     llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
9847     Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
9848     return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
9849   }
9850   case NEON::BI__builtin_neon_vcvts_f32_u32:
9851   case NEON::BI__builtin_neon_vcvtd_f64_u64:
9852     usgn = true;
9853     LLVM_FALLTHROUGH;
9854   case NEON::BI__builtin_neon_vcvts_f32_s32:
9855   case NEON::BI__builtin_neon_vcvtd_f64_s64: {
9856     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9857     bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
9858     llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
9859     llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
9860     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
9861     if (usgn)
9862       return Builder.CreateUIToFP(Ops[0], FTy);
9863     return Builder.CreateSIToFP(Ops[0], FTy);
9864   }
9865   case NEON::BI__builtin_neon_vcvth_f16_u16:
9866   case NEON::BI__builtin_neon_vcvth_f16_u32:
9867   case NEON::BI__builtin_neon_vcvth_f16_u64:
9868     usgn = true;
9869     LLVM_FALLTHROUGH;
9870   case NEON::BI__builtin_neon_vcvth_f16_s16:
9871   case NEON::BI__builtin_neon_vcvth_f16_s32:
9872   case NEON::BI__builtin_neon_vcvth_f16_s64: {
9873     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9874     llvm::Type *FTy = HalfTy;
9875     llvm::Type *InTy;
9876     if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64)
9877       InTy = Int64Ty;
9878     else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32)
9879       InTy = Int32Ty;
9880     else
9881       InTy = Int16Ty;
9882     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
9883     if (usgn)
9884       return Builder.CreateUIToFP(Ops[0], FTy);
9885     return Builder.CreateSIToFP(Ops[0], FTy);
9886   }
9887   case NEON::BI__builtin_neon_vcvtah_u16_f16:
9888   case NEON::BI__builtin_neon_vcvtmh_u16_f16:
9889   case NEON::BI__builtin_neon_vcvtnh_u16_f16:
9890   case NEON::BI__builtin_neon_vcvtph_u16_f16:
9891   case NEON::BI__builtin_neon_vcvth_u16_f16:
9892   case NEON::BI__builtin_neon_vcvtah_s16_f16:
9893   case NEON::BI__builtin_neon_vcvtmh_s16_f16:
9894   case NEON::BI__builtin_neon_vcvtnh_s16_f16:
9895   case NEON::BI__builtin_neon_vcvtph_s16_f16:
9896   case NEON::BI__builtin_neon_vcvth_s16_f16: {
9897     unsigned Int;
9898     llvm::Type* InTy = Int32Ty;
9899     llvm::Type* FTy  = HalfTy;
9900     llvm::Type *Tys[2] = {InTy, FTy};
9901     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9902     switch (BuiltinID) {
9903     default: llvm_unreachable("missing builtin ID in switch!");
9904     case NEON::BI__builtin_neon_vcvtah_u16_f16:
9905       Int = Intrinsic::aarch64_neon_fcvtau; break;
9906     case NEON::BI__builtin_neon_vcvtmh_u16_f16:
9907       Int = Intrinsic::aarch64_neon_fcvtmu; break;
9908     case NEON::BI__builtin_neon_vcvtnh_u16_f16:
9909       Int = Intrinsic::aarch64_neon_fcvtnu; break;
9910     case NEON::BI__builtin_neon_vcvtph_u16_f16:
9911       Int = Intrinsic::aarch64_neon_fcvtpu; break;
9912     case NEON::BI__builtin_neon_vcvth_u16_f16:
9913       Int = Intrinsic::aarch64_neon_fcvtzu; break;
9914     case NEON::BI__builtin_neon_vcvtah_s16_f16:
9915       Int = Intrinsic::aarch64_neon_fcvtas; break;
9916     case NEON::BI__builtin_neon_vcvtmh_s16_f16:
9917       Int = Intrinsic::aarch64_neon_fcvtms; break;
9918     case NEON::BI__builtin_neon_vcvtnh_s16_f16:
9919       Int = Intrinsic::aarch64_neon_fcvtns; break;
9920     case NEON::BI__builtin_neon_vcvtph_s16_f16:
9921       Int = Intrinsic::aarch64_neon_fcvtps; break;
9922     case NEON::BI__builtin_neon_vcvth_s16_f16:
9923       Int = Intrinsic::aarch64_neon_fcvtzs; break;
9924     }
9925     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt");
9926     return Builder.CreateTrunc(Ops[0], Int16Ty);
9927   }
9928   case NEON::BI__builtin_neon_vcaleh_f16:
9929   case NEON::BI__builtin_neon_vcalth_f16:
9930   case NEON::BI__builtin_neon_vcageh_f16:
9931   case NEON::BI__builtin_neon_vcagth_f16: {
9932     unsigned Int;
9933     llvm::Type* InTy = Int32Ty;
9934     llvm::Type* FTy  = HalfTy;
9935     llvm::Type *Tys[2] = {InTy, FTy};
9936     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9937     switch (BuiltinID) {
9938     default: llvm_unreachable("missing builtin ID in switch!");
9939     case NEON::BI__builtin_neon_vcageh_f16:
9940       Int = Intrinsic::aarch64_neon_facge; break;
9941     case NEON::BI__builtin_neon_vcagth_f16:
9942       Int = Intrinsic::aarch64_neon_facgt; break;
9943     case NEON::BI__builtin_neon_vcaleh_f16:
9944       Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break;
9945     case NEON::BI__builtin_neon_vcalth_f16:
9946       Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break;
9947     }
9948     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg");
9949     return Builder.CreateTrunc(Ops[0], Int16Ty);
9950   }
9951   case NEON::BI__builtin_neon_vcvth_n_s16_f16:
9952   case NEON::BI__builtin_neon_vcvth_n_u16_f16: {
9953     unsigned Int;
9954     llvm::Type* InTy = Int32Ty;
9955     llvm::Type* FTy  = HalfTy;
9956     llvm::Type *Tys[2] = {InTy, FTy};
9957     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9958     switch (BuiltinID) {
9959     default: llvm_unreachable("missing builtin ID in switch!");
9960     case NEON::BI__builtin_neon_vcvth_n_s16_f16:
9961       Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break;
9962     case NEON::BI__builtin_neon_vcvth_n_u16_f16:
9963       Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break;
9964     }
9965     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
9966     return Builder.CreateTrunc(Ops[0], Int16Ty);
9967   }
9968   case NEON::BI__builtin_neon_vcvth_n_f16_s16:
9969   case NEON::BI__builtin_neon_vcvth_n_f16_u16: {
9970     unsigned Int;
9971     llvm::Type* FTy  = HalfTy;
9972     llvm::Type* InTy = Int32Ty;
9973     llvm::Type *Tys[2] = {FTy, InTy};
9974     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9975     switch (BuiltinID) {
9976     default: llvm_unreachable("missing builtin ID in switch!");
9977     case NEON::BI__builtin_neon_vcvth_n_f16_s16:
9978       Int = Intrinsic::aarch64_neon_vcvtfxs2fp;
9979       Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext");
9980       break;
9981     case NEON::BI__builtin_neon_vcvth_n_f16_u16:
9982       Int = Intrinsic::aarch64_neon_vcvtfxu2fp;
9983       Ops[0] = Builder.CreateZExt(Ops[0], InTy);
9984       break;
9985     }
9986     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
9987   }
9988   case NEON::BI__builtin_neon_vpaddd_s64: {
9989     auto *Ty = llvm::FixedVectorType::get(Int64Ty, 2);
9990     Value *Vec = EmitScalarExpr(E->getArg(0));
9991     // The vector is v2f64, so make sure it's bitcast to that.
9992     Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
9993     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
9994     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
9995     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
9996     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
9997     // Pairwise addition of a v2f64 into a scalar f64.
9998     return Builder.CreateAdd(Op0, Op1, "vpaddd");
9999   }
10000   case NEON::BI__builtin_neon_vpaddd_f64: {
10001     auto *Ty = llvm::FixedVectorType::get(DoubleTy, 2);
10002     Value *Vec = EmitScalarExpr(E->getArg(0));
10003     // The vector is v2f64, so make sure it's bitcast to that.
10004     Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
10005     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
10006     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
10007     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
10008     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
10009     // Pairwise addition of a v2f64 into a scalar f64.
10010     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
10011   }
10012   case NEON::BI__builtin_neon_vpadds_f32: {
10013     auto *Ty = llvm::FixedVectorType::get(FloatTy, 2);
10014     Value *Vec = EmitScalarExpr(E->getArg(0));
10015     // The vector is v2f32, so make sure it's bitcast to that.
10016     Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
10017     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
10018     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
10019     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
10020     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
10021     // Pairwise addition of a v2f32 into a scalar f32.
10022     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
10023   }
10024   case NEON::BI__builtin_neon_vceqzd_s64:
10025   case NEON::BI__builtin_neon_vceqzd_f64:
10026   case NEON::BI__builtin_neon_vceqzs_f32:
10027   case NEON::BI__builtin_neon_vceqzh_f16:
10028     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10029     return EmitAArch64CompareBuiltinExpr(
10030         Ops[0], ConvertType(E->getCallReturnType(getContext())),
10031         ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
10032   case NEON::BI__builtin_neon_vcgezd_s64:
10033   case NEON::BI__builtin_neon_vcgezd_f64:
10034   case NEON::BI__builtin_neon_vcgezs_f32:
10035   case NEON::BI__builtin_neon_vcgezh_f16:
10036     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10037     return EmitAArch64CompareBuiltinExpr(
10038         Ops[0], ConvertType(E->getCallReturnType(getContext())),
10039         ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
10040   case NEON::BI__builtin_neon_vclezd_s64:
10041   case NEON::BI__builtin_neon_vclezd_f64:
10042   case NEON::BI__builtin_neon_vclezs_f32:
10043   case NEON::BI__builtin_neon_vclezh_f16:
10044     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10045     return EmitAArch64CompareBuiltinExpr(
10046         Ops[0], ConvertType(E->getCallReturnType(getContext())),
10047         ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
10048   case NEON::BI__builtin_neon_vcgtzd_s64:
10049   case NEON::BI__builtin_neon_vcgtzd_f64:
10050   case NEON::BI__builtin_neon_vcgtzs_f32:
10051   case NEON::BI__builtin_neon_vcgtzh_f16:
10052     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10053     return EmitAArch64CompareBuiltinExpr(
10054         Ops[0], ConvertType(E->getCallReturnType(getContext())),
10055         ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
10056   case NEON::BI__builtin_neon_vcltzd_s64:
10057   case NEON::BI__builtin_neon_vcltzd_f64:
10058   case NEON::BI__builtin_neon_vcltzs_f32:
10059   case NEON::BI__builtin_neon_vcltzh_f16:
10060     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10061     return EmitAArch64CompareBuiltinExpr(
10062         Ops[0], ConvertType(E->getCallReturnType(getContext())),
10063         ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
10064 
10065   case NEON::BI__builtin_neon_vceqzd_u64: {
10066     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10067     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
10068     Ops[0] =
10069         Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
10070     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
10071   }
10072   case NEON::BI__builtin_neon_vceqd_f64:
10073   case NEON::BI__builtin_neon_vcled_f64:
10074   case NEON::BI__builtin_neon_vcltd_f64:
10075   case NEON::BI__builtin_neon_vcged_f64:
10076   case NEON::BI__builtin_neon_vcgtd_f64: {
10077     llvm::CmpInst::Predicate P;
10078     switch (BuiltinID) {
10079     default: llvm_unreachable("missing builtin ID in switch!");
10080     case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
10081     case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
10082     case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
10083     case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
10084     case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
10085     }
10086     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10087     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10088     Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
10089     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
10090     return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
10091   }
10092   case NEON::BI__builtin_neon_vceqs_f32:
10093   case NEON::BI__builtin_neon_vcles_f32:
10094   case NEON::BI__builtin_neon_vclts_f32:
10095   case NEON::BI__builtin_neon_vcges_f32:
10096   case NEON::BI__builtin_neon_vcgts_f32: {
10097     llvm::CmpInst::Predicate P;
10098     switch (BuiltinID) {
10099     default: llvm_unreachable("missing builtin ID in switch!");
10100     case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
10101     case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
10102     case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
10103     case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
10104     case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
10105     }
10106     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10107     Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
10108     Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
10109     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
10110     return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
10111   }
10112   case NEON::BI__builtin_neon_vceqh_f16:
10113   case NEON::BI__builtin_neon_vcleh_f16:
10114   case NEON::BI__builtin_neon_vclth_f16:
10115   case NEON::BI__builtin_neon_vcgeh_f16:
10116   case NEON::BI__builtin_neon_vcgth_f16: {
10117     llvm::CmpInst::Predicate P;
10118     switch (BuiltinID) {
10119     default: llvm_unreachable("missing builtin ID in switch!");
10120     case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break;
10121     case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break;
10122     case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break;
10123     case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break;
10124     case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break;
10125     }
10126     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10127     Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
10128     Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy);
10129     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
10130     return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd");
10131   }
10132   case NEON::BI__builtin_neon_vceqd_s64:
10133   case NEON::BI__builtin_neon_vceqd_u64:
10134   case NEON::BI__builtin_neon_vcgtd_s64:
10135   case NEON::BI__builtin_neon_vcgtd_u64:
10136   case NEON::BI__builtin_neon_vcltd_s64:
10137   case NEON::BI__builtin_neon_vcltd_u64:
10138   case NEON::BI__builtin_neon_vcged_u64:
10139   case NEON::BI__builtin_neon_vcged_s64:
10140   case NEON::BI__builtin_neon_vcled_u64:
10141   case NEON::BI__builtin_neon_vcled_s64: {
10142     llvm::CmpInst::Predicate P;
10143     switch (BuiltinID) {
10144     default: llvm_unreachable("missing builtin ID in switch!");
10145     case NEON::BI__builtin_neon_vceqd_s64:
10146     case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
10147     case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
10148     case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
10149     case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
10150     case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
10151     case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
10152     case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
10153     case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
10154     case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
10155     }
10156     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10157     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
10158     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
10159     Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
10160     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
10161   }
10162   case NEON::BI__builtin_neon_vtstd_s64:
10163   case NEON::BI__builtin_neon_vtstd_u64: {
10164     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10165     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
10166     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
10167     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
10168     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
10169                                 llvm::Constant::getNullValue(Int64Ty));
10170     return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
10171   }
10172   case NEON::BI__builtin_neon_vset_lane_i8:
10173   case NEON::BI__builtin_neon_vset_lane_i16:
10174   case NEON::BI__builtin_neon_vset_lane_i32:
10175   case NEON::BI__builtin_neon_vset_lane_i64:
10176   case NEON::BI__builtin_neon_vset_lane_bf16:
10177   case NEON::BI__builtin_neon_vset_lane_f32:
10178   case NEON::BI__builtin_neon_vsetq_lane_i8:
10179   case NEON::BI__builtin_neon_vsetq_lane_i16:
10180   case NEON::BI__builtin_neon_vsetq_lane_i32:
10181   case NEON::BI__builtin_neon_vsetq_lane_i64:
10182   case NEON::BI__builtin_neon_vsetq_lane_bf16:
10183   case NEON::BI__builtin_neon_vsetq_lane_f32:
10184     Ops.push_back(EmitScalarExpr(E->getArg(2)));
10185     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
10186   case NEON::BI__builtin_neon_vset_lane_f64:
10187     // The vector type needs a cast for the v1f64 variant.
10188     Ops[1] =
10189         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 1));
10190     Ops.push_back(EmitScalarExpr(E->getArg(2)));
10191     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
10192   case NEON::BI__builtin_neon_vsetq_lane_f64:
10193     // The vector type needs a cast for the v2f64 variant.
10194     Ops[1] =
10195         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 2));
10196     Ops.push_back(EmitScalarExpr(E->getArg(2)));
10197     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
10198 
10199   case NEON::BI__builtin_neon_vget_lane_i8:
10200   case NEON::BI__builtin_neon_vdupb_lane_i8:
10201     Ops[0] =
10202         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 8));
10203     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10204                                         "vget_lane");
10205   case NEON::BI__builtin_neon_vgetq_lane_i8:
10206   case NEON::BI__builtin_neon_vdupb_laneq_i8:
10207     Ops[0] =
10208         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 16));
10209     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10210                                         "vgetq_lane");
10211   case NEON::BI__builtin_neon_vget_lane_i16:
10212   case NEON::BI__builtin_neon_vduph_lane_i16:
10213     Ops[0] =
10214         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 4));
10215     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10216                                         "vget_lane");
10217   case NEON::BI__builtin_neon_vgetq_lane_i16:
10218   case NEON::BI__builtin_neon_vduph_laneq_i16:
10219     Ops[0] =
10220         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 8));
10221     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10222                                         "vgetq_lane");
10223   case NEON::BI__builtin_neon_vget_lane_i32:
10224   case NEON::BI__builtin_neon_vdups_lane_i32:
10225     Ops[0] =
10226         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 2));
10227     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10228                                         "vget_lane");
10229   case NEON::BI__builtin_neon_vdups_lane_f32:
10230     Ops[0] =
10231         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
10232     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10233                                         "vdups_lane");
10234   case NEON::BI__builtin_neon_vgetq_lane_i32:
10235   case NEON::BI__builtin_neon_vdups_laneq_i32:
10236     Ops[0] =
10237         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
10238     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10239                                         "vgetq_lane");
10240   case NEON::BI__builtin_neon_vget_lane_i64:
10241   case NEON::BI__builtin_neon_vdupd_lane_i64:
10242     Ops[0] =
10243         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 1));
10244     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10245                                         "vget_lane");
10246   case NEON::BI__builtin_neon_vdupd_lane_f64:
10247     Ops[0] =
10248         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
10249     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10250                                         "vdupd_lane");
10251   case NEON::BI__builtin_neon_vgetq_lane_i64:
10252   case NEON::BI__builtin_neon_vdupd_laneq_i64:
10253     Ops[0] =
10254         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
10255     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10256                                         "vgetq_lane");
10257   case NEON::BI__builtin_neon_vget_lane_f32:
10258     Ops[0] =
10259         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
10260     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10261                                         "vget_lane");
10262   case NEON::BI__builtin_neon_vget_lane_f64:
10263     Ops[0] =
10264         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
10265     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10266                                         "vget_lane");
10267   case NEON::BI__builtin_neon_vgetq_lane_f32:
10268   case NEON::BI__builtin_neon_vdups_laneq_f32:
10269     Ops[0] =
10270         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 4));
10271     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10272                                         "vgetq_lane");
10273   case NEON::BI__builtin_neon_vgetq_lane_f64:
10274   case NEON::BI__builtin_neon_vdupd_laneq_f64:
10275     Ops[0] =
10276         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 2));
10277     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10278                                         "vgetq_lane");
10279   case NEON::BI__builtin_neon_vaddh_f16:
10280     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10281     return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh");
10282   case NEON::BI__builtin_neon_vsubh_f16:
10283     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10284     return Builder.CreateFSub(Ops[0], Ops[1], "vsubh");
10285   case NEON::BI__builtin_neon_vmulh_f16:
10286     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10287     return Builder.CreateFMul(Ops[0], Ops[1], "vmulh");
10288   case NEON::BI__builtin_neon_vdivh_f16:
10289     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10290     return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh");
10291   case NEON::BI__builtin_neon_vfmah_f16:
10292     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
10293     return emitCallMaybeConstrainedFPBuiltin(
10294         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
10295         {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]});
10296   case NEON::BI__builtin_neon_vfmsh_f16: {
10297     // FIXME: This should be an fneg instruction:
10298     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy);
10299     Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh");
10300 
10301     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
10302     return emitCallMaybeConstrainedFPBuiltin(
10303         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
10304         {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]});
10305   }
10306   case NEON::BI__builtin_neon_vaddd_s64:
10307   case NEON::BI__builtin_neon_vaddd_u64:
10308     return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
10309   case NEON::BI__builtin_neon_vsubd_s64:
10310   case NEON::BI__builtin_neon_vsubd_u64:
10311     return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
10312   case NEON::BI__builtin_neon_vqdmlalh_s16:
10313   case NEON::BI__builtin_neon_vqdmlslh_s16: {
10314     SmallVector<Value *, 2> ProductOps;
10315     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
10316     ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
10317     auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
10318     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
10319                           ProductOps, "vqdmlXl");
10320     Constant *CI = ConstantInt::get(SizeTy, 0);
10321     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
10322 
10323     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
10324                                         ? Intrinsic::aarch64_neon_sqadd
10325                                         : Intrinsic::aarch64_neon_sqsub;
10326     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
10327   }
10328   case NEON::BI__builtin_neon_vqshlud_n_s64: {
10329     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10330     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
10331     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
10332                         Ops, "vqshlu_n");
10333   }
10334   case NEON::BI__builtin_neon_vqshld_n_u64:
10335   case NEON::BI__builtin_neon_vqshld_n_s64: {
10336     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
10337                                    ? Intrinsic::aarch64_neon_uqshl
10338                                    : Intrinsic::aarch64_neon_sqshl;
10339     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10340     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
10341     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
10342   }
10343   case NEON::BI__builtin_neon_vrshrd_n_u64:
10344   case NEON::BI__builtin_neon_vrshrd_n_s64: {
10345     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
10346                                    ? Intrinsic::aarch64_neon_urshl
10347                                    : Intrinsic::aarch64_neon_srshl;
10348     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10349     int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
10350     Ops[1] = ConstantInt::get(Int64Ty, -SV);
10351     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
10352   }
10353   case NEON::BI__builtin_neon_vrsrad_n_u64:
10354   case NEON::BI__builtin_neon_vrsrad_n_s64: {
10355     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
10356                                    ? Intrinsic::aarch64_neon_urshl
10357                                    : Intrinsic::aarch64_neon_srshl;
10358     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
10359     Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
10360     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
10361                                 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
10362     return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
10363   }
10364   case NEON::BI__builtin_neon_vshld_n_s64:
10365   case NEON::BI__builtin_neon_vshld_n_u64: {
10366     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10367     return Builder.CreateShl(
10368         Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
10369   }
10370   case NEON::BI__builtin_neon_vshrd_n_s64: {
10371     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10372     return Builder.CreateAShr(
10373         Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
10374                                                    Amt->getZExtValue())),
10375         "shrd_n");
10376   }
10377   case NEON::BI__builtin_neon_vshrd_n_u64: {
10378     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10379     uint64_t ShiftAmt = Amt->getZExtValue();
10380     // Right-shifting an unsigned value by its size yields 0.
10381     if (ShiftAmt == 64)
10382       return ConstantInt::get(Int64Ty, 0);
10383     return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
10384                               "shrd_n");
10385   }
10386   case NEON::BI__builtin_neon_vsrad_n_s64: {
10387     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
10388     Ops[1] = Builder.CreateAShr(
10389         Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
10390                                                    Amt->getZExtValue())),
10391         "shrd_n");
10392     return Builder.CreateAdd(Ops[0], Ops[1]);
10393   }
10394   case NEON::BI__builtin_neon_vsrad_n_u64: {
10395     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
10396     uint64_t ShiftAmt = Amt->getZExtValue();
10397     // Right-shifting an unsigned value by its size yields 0.
10398     // As Op + 0 = Op, return Ops[0] directly.
10399     if (ShiftAmt == 64)
10400       return Ops[0];
10401     Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
10402                                 "shrd_n");
10403     return Builder.CreateAdd(Ops[0], Ops[1]);
10404   }
10405   case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
10406   case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
10407   case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
10408   case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
10409     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
10410                                           "lane");
10411     SmallVector<Value *, 2> ProductOps;
10412     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
10413     ProductOps.push_back(vectorWrapScalar16(Ops[2]));
10414     auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
10415     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
10416                           ProductOps, "vqdmlXl");
10417     Constant *CI = ConstantInt::get(SizeTy, 0);
10418     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
10419     Ops.pop_back();
10420 
10421     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
10422                        BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
10423                           ? Intrinsic::aarch64_neon_sqadd
10424                           : Intrinsic::aarch64_neon_sqsub;
10425     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
10426   }
10427   case NEON::BI__builtin_neon_vqdmlals_s32:
10428   case NEON::BI__builtin_neon_vqdmlsls_s32: {
10429     SmallVector<Value *, 2> ProductOps;
10430     ProductOps.push_back(Ops[1]);
10431     ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
10432     Ops[1] =
10433         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
10434                      ProductOps, "vqdmlXl");
10435 
10436     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
10437                                         ? Intrinsic::aarch64_neon_sqadd
10438                                         : Intrinsic::aarch64_neon_sqsub;
10439     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
10440   }
10441   case NEON::BI__builtin_neon_vqdmlals_lane_s32:
10442   case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
10443   case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
10444   case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
10445     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
10446                                           "lane");
10447     SmallVector<Value *, 2> ProductOps;
10448     ProductOps.push_back(Ops[1]);
10449     ProductOps.push_back(Ops[2]);
10450     Ops[1] =
10451         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
10452                      ProductOps, "vqdmlXl");
10453     Ops.pop_back();
10454 
10455     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
10456                        BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
10457                           ? Intrinsic::aarch64_neon_sqadd
10458                           : Intrinsic::aarch64_neon_sqsub;
10459     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
10460   }
10461   case NEON::BI__builtin_neon_vget_lane_bf16:
10462   case NEON::BI__builtin_neon_vduph_lane_bf16:
10463   case NEON::BI__builtin_neon_vduph_lane_f16: {
10464     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10465                                         "vget_lane");
10466   }
10467   case NEON::BI__builtin_neon_vgetq_lane_bf16:
10468   case NEON::BI__builtin_neon_vduph_laneq_bf16:
10469   case NEON::BI__builtin_neon_vduph_laneq_f16: {
10470     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10471                                         "vgetq_lane");
10472   }
10473 
10474   case AArch64::BI_InterlockedAdd: {
10475     Value *Arg0 = EmitScalarExpr(E->getArg(0));
10476     Value *Arg1 = EmitScalarExpr(E->getArg(1));
10477     AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
10478       AtomicRMWInst::Add, Arg0, Arg1,
10479       llvm::AtomicOrdering::SequentiallyConsistent);
10480     return Builder.CreateAdd(RMWI, Arg1);
10481   }
10482   }
10483 
10484   llvm::FixedVectorType *VTy = GetNeonType(this, Type);
10485   llvm::Type *Ty = VTy;
10486   if (!Ty)
10487     return nullptr;
10488 
10489   // Not all intrinsics handled by the common case work for AArch64 yet, so only
10490   // defer to common code if it's been added to our special map.
10491   Builtin = findARMVectorIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
10492                                         AArch64SIMDIntrinsicsProvenSorted);
10493 
10494   if (Builtin)
10495     return EmitCommonNeonBuiltinExpr(
10496         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
10497         Builtin->NameHint, Builtin->TypeModifier, E, Ops,
10498         /*never use addresses*/ Address::invalid(), Address::invalid(), Arch);
10499 
10500   if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch))
10501     return V;
10502 
10503   unsigned Int;
10504   switch (BuiltinID) {
10505   default: return nullptr;
10506   case NEON::BI__builtin_neon_vbsl_v:
10507   case NEON::BI__builtin_neon_vbslq_v: {
10508     llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
10509     Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
10510     Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
10511     Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
10512 
10513     Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
10514     Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
10515     Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
10516     return Builder.CreateBitCast(Ops[0], Ty);
10517   }
10518   case NEON::BI__builtin_neon_vfma_lane_v:
10519   case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
10520     // The ARM builtins (and instructions) have the addend as the first
10521     // operand, but the 'fma' intrinsics have it last. Swap it around here.
10522     Value *Addend = Ops[0];
10523     Value *Multiplicand = Ops[1];
10524     Value *LaneSource = Ops[2];
10525     Ops[0] = Multiplicand;
10526     Ops[1] = LaneSource;
10527     Ops[2] = Addend;
10528 
10529     // Now adjust things to handle the lane access.
10530     auto *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v
10531                          ? llvm::FixedVectorType::get(VTy->getElementType(),
10532                                                       VTy->getNumElements() / 2)
10533                          : VTy;
10534     llvm::Constant *cst = cast<Constant>(Ops[3]);
10535     Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), cst);
10536     Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
10537     Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
10538 
10539     Ops.pop_back();
10540     Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_fma
10541                                        : Intrinsic::fma;
10542     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
10543   }
10544   case NEON::BI__builtin_neon_vfma_laneq_v: {
10545     auto *VTy = cast<llvm::FixedVectorType>(Ty);
10546     // v1f64 fma should be mapped to Neon scalar f64 fma
10547     if (VTy && VTy->getElementType() == DoubleTy) {
10548       Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10549       Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
10550       llvm::FixedVectorType *VTy =
10551           GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true));
10552       Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
10553       Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
10554       Value *Result;
10555       Result = emitCallMaybeConstrainedFPBuiltin(
10556           *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma,
10557           DoubleTy, {Ops[1], Ops[2], Ops[0]});
10558       return Builder.CreateBitCast(Result, Ty);
10559     }
10560     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10561     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10562 
10563     auto *STy = llvm::FixedVectorType::get(VTy->getElementType(),
10564                                            VTy->getNumElements() * 2);
10565     Ops[2] = Builder.CreateBitCast(Ops[2], STy);
10566     Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(),
10567                                                cast<ConstantInt>(Ops[3]));
10568     Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
10569 
10570     return emitCallMaybeConstrainedFPBuiltin(
10571         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
10572         {Ops[2], Ops[1], Ops[0]});
10573   }
10574   case NEON::BI__builtin_neon_vfmaq_laneq_v: {
10575     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10576     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10577 
10578     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
10579     Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
10580     return emitCallMaybeConstrainedFPBuiltin(
10581         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
10582         {Ops[2], Ops[1], Ops[0]});
10583   }
10584   case NEON::BI__builtin_neon_vfmah_lane_f16:
10585   case NEON::BI__builtin_neon_vfmas_lane_f32:
10586   case NEON::BI__builtin_neon_vfmah_laneq_f16:
10587   case NEON::BI__builtin_neon_vfmas_laneq_f32:
10588   case NEON::BI__builtin_neon_vfmad_lane_f64:
10589   case NEON::BI__builtin_neon_vfmad_laneq_f64: {
10590     Ops.push_back(EmitScalarExpr(E->getArg(3)));
10591     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
10592     Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
10593     return emitCallMaybeConstrainedFPBuiltin(
10594         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
10595         {Ops[1], Ops[2], Ops[0]});
10596   }
10597   case NEON::BI__builtin_neon_vmull_v:
10598     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10599     Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
10600     if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
10601     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
10602   case NEON::BI__builtin_neon_vmax_v:
10603   case NEON::BI__builtin_neon_vmaxq_v:
10604     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10605     Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
10606     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
10607     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
10608   case NEON::BI__builtin_neon_vmaxh_f16: {
10609     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10610     Int = Intrinsic::aarch64_neon_fmax;
10611     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax");
10612   }
10613   case NEON::BI__builtin_neon_vmin_v:
10614   case NEON::BI__builtin_neon_vminq_v:
10615     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10616     Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
10617     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
10618     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
10619   case NEON::BI__builtin_neon_vminh_f16: {
10620     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10621     Int = Intrinsic::aarch64_neon_fmin;
10622     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin");
10623   }
10624   case NEON::BI__builtin_neon_vabd_v:
10625   case NEON::BI__builtin_neon_vabdq_v:
10626     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10627     Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
10628     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
10629     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
10630   case NEON::BI__builtin_neon_vpadal_v:
10631   case NEON::BI__builtin_neon_vpadalq_v: {
10632     unsigned ArgElts = VTy->getNumElements();
10633     llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
10634     unsigned BitWidth = EltTy->getBitWidth();
10635     auto *ArgTy = llvm::FixedVectorType::get(
10636         llvm::IntegerType::get(getLLVMContext(), BitWidth / 2), 2 * ArgElts);
10637     llvm::Type* Tys[2] = { VTy, ArgTy };
10638     Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
10639     SmallVector<llvm::Value*, 1> TmpOps;
10640     TmpOps.push_back(Ops[1]);
10641     Function *F = CGM.getIntrinsic(Int, Tys);
10642     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
10643     llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
10644     return Builder.CreateAdd(tmp, addend);
10645   }
10646   case NEON::BI__builtin_neon_vpmin_v:
10647   case NEON::BI__builtin_neon_vpminq_v:
10648     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10649     Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
10650     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
10651     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
10652   case NEON::BI__builtin_neon_vpmax_v:
10653   case NEON::BI__builtin_neon_vpmaxq_v:
10654     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10655     Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
10656     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
10657     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
10658   case NEON::BI__builtin_neon_vminnm_v:
10659   case NEON::BI__builtin_neon_vminnmq_v:
10660     Int = Intrinsic::aarch64_neon_fminnm;
10661     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
10662   case NEON::BI__builtin_neon_vminnmh_f16:
10663     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10664     Int = Intrinsic::aarch64_neon_fminnm;
10665     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm");
10666   case NEON::BI__builtin_neon_vmaxnm_v:
10667   case NEON::BI__builtin_neon_vmaxnmq_v:
10668     Int = Intrinsic::aarch64_neon_fmaxnm;
10669     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
10670   case NEON::BI__builtin_neon_vmaxnmh_f16:
10671     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10672     Int = Intrinsic::aarch64_neon_fmaxnm;
10673     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm");
10674   case NEON::BI__builtin_neon_vrecpss_f32: {
10675     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10676     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
10677                         Ops, "vrecps");
10678   }
10679   case NEON::BI__builtin_neon_vrecpsd_f64:
10680     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10681     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
10682                         Ops, "vrecps");
10683   case NEON::BI__builtin_neon_vrecpsh_f16:
10684     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10685     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy),
10686                         Ops, "vrecps");
10687   case NEON::BI__builtin_neon_vqshrun_n_v:
10688     Int = Intrinsic::aarch64_neon_sqshrun;
10689     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
10690   case NEON::BI__builtin_neon_vqrshrun_n_v:
10691     Int = Intrinsic::aarch64_neon_sqrshrun;
10692     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
10693   case NEON::BI__builtin_neon_vqshrn_n_v:
10694     Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
10695     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
10696   case NEON::BI__builtin_neon_vrshrn_n_v:
10697     Int = Intrinsic::aarch64_neon_rshrn;
10698     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
10699   case NEON::BI__builtin_neon_vqrshrn_n_v:
10700     Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
10701     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
10702   case NEON::BI__builtin_neon_vrndah_f16: {
10703     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10704     Int = Builder.getIsFPConstrained()
10705               ? Intrinsic::experimental_constrained_round
10706               : Intrinsic::round;
10707     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda");
10708   }
10709   case NEON::BI__builtin_neon_vrnda_v:
10710   case NEON::BI__builtin_neon_vrndaq_v: {
10711     Int = Builder.getIsFPConstrained()
10712               ? Intrinsic::experimental_constrained_round
10713               : Intrinsic::round;
10714     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
10715   }
10716   case NEON::BI__builtin_neon_vrndih_f16: {
10717     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10718     Int = Builder.getIsFPConstrained()
10719               ? Intrinsic::experimental_constrained_nearbyint
10720               : Intrinsic::nearbyint;
10721     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi");
10722   }
10723   case NEON::BI__builtin_neon_vrndmh_f16: {
10724     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10725     Int = Builder.getIsFPConstrained()
10726               ? Intrinsic::experimental_constrained_floor
10727               : Intrinsic::floor;
10728     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm");
10729   }
10730   case NEON::BI__builtin_neon_vrndm_v:
10731   case NEON::BI__builtin_neon_vrndmq_v: {
10732     Int = Builder.getIsFPConstrained()
10733               ? Intrinsic::experimental_constrained_floor
10734               : Intrinsic::floor;
10735     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
10736   }
10737   case NEON::BI__builtin_neon_vrndnh_f16: {
10738     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10739     Int = Builder.getIsFPConstrained()
10740               ? Intrinsic::experimental_constrained_roundeven
10741               : Intrinsic::roundeven;
10742     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn");
10743   }
10744   case NEON::BI__builtin_neon_vrndn_v:
10745   case NEON::BI__builtin_neon_vrndnq_v: {
10746     Int = Builder.getIsFPConstrained()
10747               ? Intrinsic::experimental_constrained_roundeven
10748               : Intrinsic::roundeven;
10749     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
10750   }
10751   case NEON::BI__builtin_neon_vrndns_f32: {
10752     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10753     Int = Builder.getIsFPConstrained()
10754               ? Intrinsic::experimental_constrained_roundeven
10755               : Intrinsic::roundeven;
10756     return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn");
10757   }
10758   case NEON::BI__builtin_neon_vrndph_f16: {
10759     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10760     Int = Builder.getIsFPConstrained()
10761               ? Intrinsic::experimental_constrained_ceil
10762               : Intrinsic::ceil;
10763     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp");
10764   }
10765   case NEON::BI__builtin_neon_vrndp_v:
10766   case NEON::BI__builtin_neon_vrndpq_v: {
10767     Int = Builder.getIsFPConstrained()
10768               ? Intrinsic::experimental_constrained_ceil
10769               : Intrinsic::ceil;
10770     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
10771   }
10772   case NEON::BI__builtin_neon_vrndxh_f16: {
10773     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10774     Int = Builder.getIsFPConstrained()
10775               ? Intrinsic::experimental_constrained_rint
10776               : Intrinsic::rint;
10777     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx");
10778   }
10779   case NEON::BI__builtin_neon_vrndx_v:
10780   case NEON::BI__builtin_neon_vrndxq_v: {
10781     Int = Builder.getIsFPConstrained()
10782               ? Intrinsic::experimental_constrained_rint
10783               : Intrinsic::rint;
10784     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
10785   }
10786   case NEON::BI__builtin_neon_vrndh_f16: {
10787     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10788     Int = Builder.getIsFPConstrained()
10789               ? Intrinsic::experimental_constrained_trunc
10790               : Intrinsic::trunc;
10791     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz");
10792   }
10793   case NEON::BI__builtin_neon_vrnd32x_v:
10794   case NEON::BI__builtin_neon_vrnd32xq_v: {
10795     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10796     Int = Intrinsic::aarch64_neon_frint32x;
10797     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32x");
10798   }
10799   case NEON::BI__builtin_neon_vrnd32z_v:
10800   case NEON::BI__builtin_neon_vrnd32zq_v: {
10801     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10802     Int = Intrinsic::aarch64_neon_frint32z;
10803     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32z");
10804   }
10805   case NEON::BI__builtin_neon_vrnd64x_v:
10806   case NEON::BI__builtin_neon_vrnd64xq_v: {
10807     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10808     Int = Intrinsic::aarch64_neon_frint64x;
10809     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64x");
10810   }
10811   case NEON::BI__builtin_neon_vrnd64z_v:
10812   case NEON::BI__builtin_neon_vrnd64zq_v: {
10813     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10814     Int = Intrinsic::aarch64_neon_frint64z;
10815     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64z");
10816   }
10817   case NEON::BI__builtin_neon_vrnd_v:
10818   case NEON::BI__builtin_neon_vrndq_v: {
10819     Int = Builder.getIsFPConstrained()
10820               ? Intrinsic::experimental_constrained_trunc
10821               : Intrinsic::trunc;
10822     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
10823   }
10824   case NEON::BI__builtin_neon_vcvt_f64_v:
10825   case NEON::BI__builtin_neon_vcvtq_f64_v:
10826     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10827     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
10828     return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
10829                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
10830   case NEON::BI__builtin_neon_vcvt_f64_f32: {
10831     assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&
10832            "unexpected vcvt_f64_f32 builtin");
10833     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
10834     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
10835 
10836     return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
10837   }
10838   case NEON::BI__builtin_neon_vcvt_f32_f64: {
10839     assert(Type.getEltType() == NeonTypeFlags::Float32 &&
10840            "unexpected vcvt_f32_f64 builtin");
10841     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
10842     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
10843 
10844     return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
10845   }
10846   case NEON::BI__builtin_neon_vcvt_s32_v:
10847   case NEON::BI__builtin_neon_vcvt_u32_v:
10848   case NEON::BI__builtin_neon_vcvt_s64_v:
10849   case NEON::BI__builtin_neon_vcvt_u64_v:
10850   case NEON::BI__builtin_neon_vcvt_s16_v:
10851   case NEON::BI__builtin_neon_vcvt_u16_v:
10852   case NEON::BI__builtin_neon_vcvtq_s32_v:
10853   case NEON::BI__builtin_neon_vcvtq_u32_v:
10854   case NEON::BI__builtin_neon_vcvtq_s64_v:
10855   case NEON::BI__builtin_neon_vcvtq_u64_v:
10856   case NEON::BI__builtin_neon_vcvtq_s16_v:
10857   case NEON::BI__builtin_neon_vcvtq_u16_v: {
10858     Int =
10859         usgn ? Intrinsic::aarch64_neon_fcvtzu : Intrinsic::aarch64_neon_fcvtzs;
10860     llvm::Type *Tys[2] = {Ty, GetFloatNeonType(this, Type)};
10861     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtz");
10862   }
10863   case NEON::BI__builtin_neon_vcvta_s16_v:
10864   case NEON::BI__builtin_neon_vcvta_u16_v:
10865   case NEON::BI__builtin_neon_vcvta_s32_v:
10866   case NEON::BI__builtin_neon_vcvtaq_s16_v:
10867   case NEON::BI__builtin_neon_vcvtaq_s32_v:
10868   case NEON::BI__builtin_neon_vcvta_u32_v:
10869   case NEON::BI__builtin_neon_vcvtaq_u16_v:
10870   case NEON::BI__builtin_neon_vcvtaq_u32_v:
10871   case NEON::BI__builtin_neon_vcvta_s64_v:
10872   case NEON::BI__builtin_neon_vcvtaq_s64_v:
10873   case NEON::BI__builtin_neon_vcvta_u64_v:
10874   case NEON::BI__builtin_neon_vcvtaq_u64_v: {
10875     Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
10876     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10877     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
10878   }
10879   case NEON::BI__builtin_neon_vcvtm_s16_v:
10880   case NEON::BI__builtin_neon_vcvtm_s32_v:
10881   case NEON::BI__builtin_neon_vcvtmq_s16_v:
10882   case NEON::BI__builtin_neon_vcvtmq_s32_v:
10883   case NEON::BI__builtin_neon_vcvtm_u16_v:
10884   case NEON::BI__builtin_neon_vcvtm_u32_v:
10885   case NEON::BI__builtin_neon_vcvtmq_u16_v:
10886   case NEON::BI__builtin_neon_vcvtmq_u32_v:
10887   case NEON::BI__builtin_neon_vcvtm_s64_v:
10888   case NEON::BI__builtin_neon_vcvtmq_s64_v:
10889   case NEON::BI__builtin_neon_vcvtm_u64_v:
10890   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
10891     Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
10892     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10893     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
10894   }
10895   case NEON::BI__builtin_neon_vcvtn_s16_v:
10896   case NEON::BI__builtin_neon_vcvtn_s32_v:
10897   case NEON::BI__builtin_neon_vcvtnq_s16_v:
10898   case NEON::BI__builtin_neon_vcvtnq_s32_v:
10899   case NEON::BI__builtin_neon_vcvtn_u16_v:
10900   case NEON::BI__builtin_neon_vcvtn_u32_v:
10901   case NEON::BI__builtin_neon_vcvtnq_u16_v:
10902   case NEON::BI__builtin_neon_vcvtnq_u32_v:
10903   case NEON::BI__builtin_neon_vcvtn_s64_v:
10904   case NEON::BI__builtin_neon_vcvtnq_s64_v:
10905   case NEON::BI__builtin_neon_vcvtn_u64_v:
10906   case NEON::BI__builtin_neon_vcvtnq_u64_v: {
10907     Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
10908     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10909     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
10910   }
10911   case NEON::BI__builtin_neon_vcvtp_s16_v:
10912   case NEON::BI__builtin_neon_vcvtp_s32_v:
10913   case NEON::BI__builtin_neon_vcvtpq_s16_v:
10914   case NEON::BI__builtin_neon_vcvtpq_s32_v:
10915   case NEON::BI__builtin_neon_vcvtp_u16_v:
10916   case NEON::BI__builtin_neon_vcvtp_u32_v:
10917   case NEON::BI__builtin_neon_vcvtpq_u16_v:
10918   case NEON::BI__builtin_neon_vcvtpq_u32_v:
10919   case NEON::BI__builtin_neon_vcvtp_s64_v:
10920   case NEON::BI__builtin_neon_vcvtpq_s64_v:
10921   case NEON::BI__builtin_neon_vcvtp_u64_v:
10922   case NEON::BI__builtin_neon_vcvtpq_u64_v: {
10923     Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
10924     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10925     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
10926   }
10927   case NEON::BI__builtin_neon_vmulx_v:
10928   case NEON::BI__builtin_neon_vmulxq_v: {
10929     Int = Intrinsic::aarch64_neon_fmulx;
10930     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
10931   }
10932   case NEON::BI__builtin_neon_vmulxh_lane_f16:
10933   case NEON::BI__builtin_neon_vmulxh_laneq_f16: {
10934     // vmulx_lane should be mapped to Neon scalar mulx after
10935     // extracting the scalar element
10936     Ops.push_back(EmitScalarExpr(E->getArg(2)));
10937     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
10938     Ops.pop_back();
10939     Int = Intrinsic::aarch64_neon_fmulx;
10940     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx");
10941   }
10942   case NEON::BI__builtin_neon_vmul_lane_v:
10943   case NEON::BI__builtin_neon_vmul_laneq_v: {
10944     // v1f64 vmul_lane should be mapped to Neon scalar mul lane
10945     bool Quad = false;
10946     if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
10947       Quad = true;
10948     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10949     llvm::FixedVectorType *VTy =
10950         GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
10951     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
10952     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
10953     Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
10954     return Builder.CreateBitCast(Result, Ty);
10955   }
10956   case NEON::BI__builtin_neon_vnegd_s64:
10957     return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
10958   case NEON::BI__builtin_neon_vnegh_f16:
10959     return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh");
10960   case NEON::BI__builtin_neon_vpmaxnm_v:
10961   case NEON::BI__builtin_neon_vpmaxnmq_v: {
10962     Int = Intrinsic::aarch64_neon_fmaxnmp;
10963     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
10964   }
10965   case NEON::BI__builtin_neon_vpminnm_v:
10966   case NEON::BI__builtin_neon_vpminnmq_v: {
10967     Int = Intrinsic::aarch64_neon_fminnmp;
10968     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
10969   }
10970   case NEON::BI__builtin_neon_vsqrth_f16: {
10971     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10972     Int = Builder.getIsFPConstrained()
10973               ? Intrinsic::experimental_constrained_sqrt
10974               : Intrinsic::sqrt;
10975     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt");
10976   }
10977   case NEON::BI__builtin_neon_vsqrt_v:
10978   case NEON::BI__builtin_neon_vsqrtq_v: {
10979     Int = Builder.getIsFPConstrained()
10980               ? Intrinsic::experimental_constrained_sqrt
10981               : Intrinsic::sqrt;
10982     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10983     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
10984   }
10985   case NEON::BI__builtin_neon_vrbit_v:
10986   case NEON::BI__builtin_neon_vrbitq_v: {
10987     Int = Intrinsic::bitreverse;
10988     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
10989   }
10990   case NEON::BI__builtin_neon_vaddv_u8:
10991     // FIXME: These are handled by the AArch64 scalar code.
10992     usgn = true;
10993     LLVM_FALLTHROUGH;
10994   case NEON::BI__builtin_neon_vaddv_s8: {
10995     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10996     Ty = Int32Ty;
10997     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10998     llvm::Type *Tys[2] = { Ty, VTy };
10999     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11000     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
11001     return Builder.CreateTrunc(Ops[0], Int8Ty);
11002   }
11003   case NEON::BI__builtin_neon_vaddv_u16:
11004     usgn = true;
11005     LLVM_FALLTHROUGH;
11006   case NEON::BI__builtin_neon_vaddv_s16: {
11007     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
11008     Ty = Int32Ty;
11009     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11010     llvm::Type *Tys[2] = { Ty, VTy };
11011     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11012     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
11013     return Builder.CreateTrunc(Ops[0], Int16Ty);
11014   }
11015   case NEON::BI__builtin_neon_vaddvq_u8:
11016     usgn = true;
11017     LLVM_FALLTHROUGH;
11018   case NEON::BI__builtin_neon_vaddvq_s8: {
11019     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
11020     Ty = Int32Ty;
11021     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11022     llvm::Type *Tys[2] = { Ty, VTy };
11023     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11024     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
11025     return Builder.CreateTrunc(Ops[0], Int8Ty);
11026   }
11027   case NEON::BI__builtin_neon_vaddvq_u16:
11028     usgn = true;
11029     LLVM_FALLTHROUGH;
11030   case NEON::BI__builtin_neon_vaddvq_s16: {
11031     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
11032     Ty = Int32Ty;
11033     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11034     llvm::Type *Tys[2] = { Ty, VTy };
11035     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11036     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
11037     return Builder.CreateTrunc(Ops[0], Int16Ty);
11038   }
11039   case NEON::BI__builtin_neon_vmaxv_u8: {
11040     Int = Intrinsic::aarch64_neon_umaxv;
11041     Ty = Int32Ty;
11042     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11043     llvm::Type *Tys[2] = { Ty, VTy };
11044     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11045     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11046     return Builder.CreateTrunc(Ops[0], Int8Ty);
11047   }
11048   case NEON::BI__builtin_neon_vmaxv_u16: {
11049     Int = Intrinsic::aarch64_neon_umaxv;
11050     Ty = Int32Ty;
11051     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11052     llvm::Type *Tys[2] = { Ty, VTy };
11053     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11054     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11055     return Builder.CreateTrunc(Ops[0], Int16Ty);
11056   }
11057   case NEON::BI__builtin_neon_vmaxvq_u8: {
11058     Int = Intrinsic::aarch64_neon_umaxv;
11059     Ty = Int32Ty;
11060     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11061     llvm::Type *Tys[2] = { Ty, VTy };
11062     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11063     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11064     return Builder.CreateTrunc(Ops[0], Int8Ty);
11065   }
11066   case NEON::BI__builtin_neon_vmaxvq_u16: {
11067     Int = Intrinsic::aarch64_neon_umaxv;
11068     Ty = Int32Ty;
11069     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11070     llvm::Type *Tys[2] = { Ty, VTy };
11071     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11072     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11073     return Builder.CreateTrunc(Ops[0], Int16Ty);
11074   }
11075   case NEON::BI__builtin_neon_vmaxv_s8: {
11076     Int = Intrinsic::aarch64_neon_smaxv;
11077     Ty = Int32Ty;
11078     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11079     llvm::Type *Tys[2] = { Ty, VTy };
11080     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11081     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11082     return Builder.CreateTrunc(Ops[0], Int8Ty);
11083   }
11084   case NEON::BI__builtin_neon_vmaxv_s16: {
11085     Int = Intrinsic::aarch64_neon_smaxv;
11086     Ty = Int32Ty;
11087     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11088     llvm::Type *Tys[2] = { Ty, VTy };
11089     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11090     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11091     return Builder.CreateTrunc(Ops[0], Int16Ty);
11092   }
11093   case NEON::BI__builtin_neon_vmaxvq_s8: {
11094     Int = Intrinsic::aarch64_neon_smaxv;
11095     Ty = Int32Ty;
11096     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11097     llvm::Type *Tys[2] = { Ty, VTy };
11098     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11099     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11100     return Builder.CreateTrunc(Ops[0], Int8Ty);
11101   }
11102   case NEON::BI__builtin_neon_vmaxvq_s16: {
11103     Int = Intrinsic::aarch64_neon_smaxv;
11104     Ty = Int32Ty;
11105     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11106     llvm::Type *Tys[2] = { Ty, VTy };
11107     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11108     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11109     return Builder.CreateTrunc(Ops[0], Int16Ty);
11110   }
11111   case NEON::BI__builtin_neon_vmaxv_f16: {
11112     Int = Intrinsic::aarch64_neon_fmaxv;
11113     Ty = HalfTy;
11114     VTy = llvm::FixedVectorType::get(HalfTy, 4);
11115     llvm::Type *Tys[2] = { Ty, VTy };
11116     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11117     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11118     return Builder.CreateTrunc(Ops[0], HalfTy);
11119   }
11120   case NEON::BI__builtin_neon_vmaxvq_f16: {
11121     Int = Intrinsic::aarch64_neon_fmaxv;
11122     Ty = HalfTy;
11123     VTy = llvm::FixedVectorType::get(HalfTy, 8);
11124     llvm::Type *Tys[2] = { Ty, VTy };
11125     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11126     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11127     return Builder.CreateTrunc(Ops[0], HalfTy);
11128   }
11129   case NEON::BI__builtin_neon_vminv_u8: {
11130     Int = Intrinsic::aarch64_neon_uminv;
11131     Ty = Int32Ty;
11132     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11133     llvm::Type *Tys[2] = { Ty, VTy };
11134     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11135     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11136     return Builder.CreateTrunc(Ops[0], Int8Ty);
11137   }
11138   case NEON::BI__builtin_neon_vminv_u16: {
11139     Int = Intrinsic::aarch64_neon_uminv;
11140     Ty = Int32Ty;
11141     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11142     llvm::Type *Tys[2] = { Ty, VTy };
11143     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11144     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11145     return Builder.CreateTrunc(Ops[0], Int16Ty);
11146   }
11147   case NEON::BI__builtin_neon_vminvq_u8: {
11148     Int = Intrinsic::aarch64_neon_uminv;
11149     Ty = Int32Ty;
11150     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11151     llvm::Type *Tys[2] = { Ty, VTy };
11152     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11153     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11154     return Builder.CreateTrunc(Ops[0], Int8Ty);
11155   }
11156   case NEON::BI__builtin_neon_vminvq_u16: {
11157     Int = Intrinsic::aarch64_neon_uminv;
11158     Ty = Int32Ty;
11159     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11160     llvm::Type *Tys[2] = { Ty, VTy };
11161     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11162     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11163     return Builder.CreateTrunc(Ops[0], Int16Ty);
11164   }
11165   case NEON::BI__builtin_neon_vminv_s8: {
11166     Int = Intrinsic::aarch64_neon_sminv;
11167     Ty = Int32Ty;
11168     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11169     llvm::Type *Tys[2] = { Ty, VTy };
11170     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11171     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11172     return Builder.CreateTrunc(Ops[0], Int8Ty);
11173   }
11174   case NEON::BI__builtin_neon_vminv_s16: {
11175     Int = Intrinsic::aarch64_neon_sminv;
11176     Ty = Int32Ty;
11177     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11178     llvm::Type *Tys[2] = { Ty, VTy };
11179     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11180     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11181     return Builder.CreateTrunc(Ops[0], Int16Ty);
11182   }
11183   case NEON::BI__builtin_neon_vminvq_s8: {
11184     Int = Intrinsic::aarch64_neon_sminv;
11185     Ty = Int32Ty;
11186     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11187     llvm::Type *Tys[2] = { Ty, VTy };
11188     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11189     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11190     return Builder.CreateTrunc(Ops[0], Int8Ty);
11191   }
11192   case NEON::BI__builtin_neon_vminvq_s16: {
11193     Int = Intrinsic::aarch64_neon_sminv;
11194     Ty = Int32Ty;
11195     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11196     llvm::Type *Tys[2] = { Ty, VTy };
11197     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11198     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11199     return Builder.CreateTrunc(Ops[0], Int16Ty);
11200   }
11201   case NEON::BI__builtin_neon_vminv_f16: {
11202     Int = Intrinsic::aarch64_neon_fminv;
11203     Ty = HalfTy;
11204     VTy = llvm::FixedVectorType::get(HalfTy, 4);
11205     llvm::Type *Tys[2] = { Ty, VTy };
11206     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11207     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11208     return Builder.CreateTrunc(Ops[0], HalfTy);
11209   }
11210   case NEON::BI__builtin_neon_vminvq_f16: {
11211     Int = Intrinsic::aarch64_neon_fminv;
11212     Ty = HalfTy;
11213     VTy = llvm::FixedVectorType::get(HalfTy, 8);
11214     llvm::Type *Tys[2] = { Ty, VTy };
11215     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11216     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11217     return Builder.CreateTrunc(Ops[0], HalfTy);
11218   }
11219   case NEON::BI__builtin_neon_vmaxnmv_f16: {
11220     Int = Intrinsic::aarch64_neon_fmaxnmv;
11221     Ty = HalfTy;
11222     VTy = llvm::FixedVectorType::get(HalfTy, 4);
11223     llvm::Type *Tys[2] = { Ty, VTy };
11224     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11225     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
11226     return Builder.CreateTrunc(Ops[0], HalfTy);
11227   }
11228   case NEON::BI__builtin_neon_vmaxnmvq_f16: {
11229     Int = Intrinsic::aarch64_neon_fmaxnmv;
11230     Ty = HalfTy;
11231     VTy = llvm::FixedVectorType::get(HalfTy, 8);
11232     llvm::Type *Tys[2] = { Ty, VTy };
11233     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11234     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
11235     return Builder.CreateTrunc(Ops[0], HalfTy);
11236   }
11237   case NEON::BI__builtin_neon_vminnmv_f16: {
11238     Int = Intrinsic::aarch64_neon_fminnmv;
11239     Ty = HalfTy;
11240     VTy = llvm::FixedVectorType::get(HalfTy, 4);
11241     llvm::Type *Tys[2] = { Ty, VTy };
11242     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11243     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
11244     return Builder.CreateTrunc(Ops[0], HalfTy);
11245   }
11246   case NEON::BI__builtin_neon_vminnmvq_f16: {
11247     Int = Intrinsic::aarch64_neon_fminnmv;
11248     Ty = HalfTy;
11249     VTy = llvm::FixedVectorType::get(HalfTy, 8);
11250     llvm::Type *Tys[2] = { Ty, VTy };
11251     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11252     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
11253     return Builder.CreateTrunc(Ops[0], HalfTy);
11254   }
11255   case NEON::BI__builtin_neon_vmul_n_f64: {
11256     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
11257     Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
11258     return Builder.CreateFMul(Ops[0], RHS);
11259   }
11260   case NEON::BI__builtin_neon_vaddlv_u8: {
11261     Int = Intrinsic::aarch64_neon_uaddlv;
11262     Ty = Int32Ty;
11263     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11264     llvm::Type *Tys[2] = { Ty, VTy };
11265     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11266     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11267     return Builder.CreateTrunc(Ops[0], Int16Ty);
11268   }
11269   case NEON::BI__builtin_neon_vaddlv_u16: {
11270     Int = Intrinsic::aarch64_neon_uaddlv;
11271     Ty = Int32Ty;
11272     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11273     llvm::Type *Tys[2] = { Ty, VTy };
11274     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11275     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11276   }
11277   case NEON::BI__builtin_neon_vaddlvq_u8: {
11278     Int = Intrinsic::aarch64_neon_uaddlv;
11279     Ty = Int32Ty;
11280     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11281     llvm::Type *Tys[2] = { Ty, VTy };
11282     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11283     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11284     return Builder.CreateTrunc(Ops[0], Int16Ty);
11285   }
11286   case NEON::BI__builtin_neon_vaddlvq_u16: {
11287     Int = Intrinsic::aarch64_neon_uaddlv;
11288     Ty = Int32Ty;
11289     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11290     llvm::Type *Tys[2] = { Ty, VTy };
11291     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11292     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11293   }
11294   case NEON::BI__builtin_neon_vaddlv_s8: {
11295     Int = Intrinsic::aarch64_neon_saddlv;
11296     Ty = Int32Ty;
11297     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11298     llvm::Type *Tys[2] = { Ty, VTy };
11299     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11300     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11301     return Builder.CreateTrunc(Ops[0], Int16Ty);
11302   }
11303   case NEON::BI__builtin_neon_vaddlv_s16: {
11304     Int = Intrinsic::aarch64_neon_saddlv;
11305     Ty = Int32Ty;
11306     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11307     llvm::Type *Tys[2] = { Ty, VTy };
11308     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11309     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11310   }
11311   case NEON::BI__builtin_neon_vaddlvq_s8: {
11312     Int = Intrinsic::aarch64_neon_saddlv;
11313     Ty = Int32Ty;
11314     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11315     llvm::Type *Tys[2] = { Ty, VTy };
11316     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11317     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11318     return Builder.CreateTrunc(Ops[0], Int16Ty);
11319   }
11320   case NEON::BI__builtin_neon_vaddlvq_s16: {
11321     Int = Intrinsic::aarch64_neon_saddlv;
11322     Ty = Int32Ty;
11323     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11324     llvm::Type *Tys[2] = { Ty, VTy };
11325     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11326     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11327   }
11328   case NEON::BI__builtin_neon_vsri_n_v:
11329   case NEON::BI__builtin_neon_vsriq_n_v: {
11330     Int = Intrinsic::aarch64_neon_vsri;
11331     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
11332     return EmitNeonCall(Intrin, Ops, "vsri_n");
11333   }
11334   case NEON::BI__builtin_neon_vsli_n_v:
11335   case NEON::BI__builtin_neon_vsliq_n_v: {
11336     Int = Intrinsic::aarch64_neon_vsli;
11337     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
11338     return EmitNeonCall(Intrin, Ops, "vsli_n");
11339   }
11340   case NEON::BI__builtin_neon_vsra_n_v:
11341   case NEON::BI__builtin_neon_vsraq_n_v:
11342     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11343     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
11344     return Builder.CreateAdd(Ops[0], Ops[1]);
11345   case NEON::BI__builtin_neon_vrsra_n_v:
11346   case NEON::BI__builtin_neon_vrsraq_n_v: {
11347     Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
11348     SmallVector<llvm::Value*,2> TmpOps;
11349     TmpOps.push_back(Ops[1]);
11350     TmpOps.push_back(Ops[2]);
11351     Function* F = CGM.getIntrinsic(Int, Ty);
11352     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
11353     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
11354     return Builder.CreateAdd(Ops[0], tmp);
11355   }
11356   case NEON::BI__builtin_neon_vld1_v:
11357   case NEON::BI__builtin_neon_vld1q_v: {
11358     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
11359     return Builder.CreateAlignedLoad(VTy, Ops[0], PtrOp0.getAlignment());
11360   }
11361   case NEON::BI__builtin_neon_vst1_v:
11362   case NEON::BI__builtin_neon_vst1q_v:
11363     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
11364     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
11365     return Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment());
11366   case NEON::BI__builtin_neon_vld1_lane_v:
11367   case NEON::BI__builtin_neon_vld1q_lane_v: {
11368     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11369     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
11370     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11371     Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
11372                                        PtrOp0.getAlignment());
11373     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
11374   }
11375   case NEON::BI__builtin_neon_vld1_dup_v:
11376   case NEON::BI__builtin_neon_vld1q_dup_v: {
11377     Value *V = UndefValue::get(Ty);
11378     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
11379     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11380     Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
11381                                        PtrOp0.getAlignment());
11382     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
11383     Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
11384     return EmitNeonSplat(Ops[0], CI);
11385   }
11386   case NEON::BI__builtin_neon_vst1_lane_v:
11387   case NEON::BI__builtin_neon_vst1q_lane_v:
11388     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11389     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
11390     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11391     return Builder.CreateAlignedStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty),
11392                                       PtrOp0.getAlignment());
11393   case NEON::BI__builtin_neon_vld2_v:
11394   case NEON::BI__builtin_neon_vld2q_v: {
11395     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
11396     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11397     llvm::Type *Tys[2] = { VTy, PTy };
11398     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
11399     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
11400     Ops[0] = Builder.CreateBitCast(Ops[0],
11401                 llvm::PointerType::getUnqual(Ops[1]->getType()));
11402     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11403   }
11404   case NEON::BI__builtin_neon_vld3_v:
11405   case NEON::BI__builtin_neon_vld3q_v: {
11406     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
11407     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11408     llvm::Type *Tys[2] = { VTy, PTy };
11409     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
11410     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
11411     Ops[0] = Builder.CreateBitCast(Ops[0],
11412                 llvm::PointerType::getUnqual(Ops[1]->getType()));
11413     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11414   }
11415   case NEON::BI__builtin_neon_vld4_v:
11416   case NEON::BI__builtin_neon_vld4q_v: {
11417     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
11418     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11419     llvm::Type *Tys[2] = { VTy, PTy };
11420     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
11421     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
11422     Ops[0] = Builder.CreateBitCast(Ops[0],
11423                 llvm::PointerType::getUnqual(Ops[1]->getType()));
11424     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11425   }
11426   case NEON::BI__builtin_neon_vld2_dup_v:
11427   case NEON::BI__builtin_neon_vld2q_dup_v: {
11428     llvm::Type *PTy =
11429       llvm::PointerType::getUnqual(VTy->getElementType());
11430     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11431     llvm::Type *Tys[2] = { VTy, PTy };
11432     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
11433     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
11434     Ops[0] = Builder.CreateBitCast(Ops[0],
11435                 llvm::PointerType::getUnqual(Ops[1]->getType()));
11436     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11437   }
11438   case NEON::BI__builtin_neon_vld3_dup_v:
11439   case NEON::BI__builtin_neon_vld3q_dup_v: {
11440     llvm::Type *PTy =
11441       llvm::PointerType::getUnqual(VTy->getElementType());
11442     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11443     llvm::Type *Tys[2] = { VTy, PTy };
11444     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
11445     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
11446     Ops[0] = Builder.CreateBitCast(Ops[0],
11447                 llvm::PointerType::getUnqual(Ops[1]->getType()));
11448     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11449   }
11450   case NEON::BI__builtin_neon_vld4_dup_v:
11451   case NEON::BI__builtin_neon_vld4q_dup_v: {
11452     llvm::Type *PTy =
11453       llvm::PointerType::getUnqual(VTy->getElementType());
11454     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11455     llvm::Type *Tys[2] = { VTy, PTy };
11456     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
11457     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
11458     Ops[0] = Builder.CreateBitCast(Ops[0],
11459                 llvm::PointerType::getUnqual(Ops[1]->getType()));
11460     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11461   }
11462   case NEON::BI__builtin_neon_vld2_lane_v:
11463   case NEON::BI__builtin_neon_vld2q_lane_v: {
11464     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
11465     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
11466     std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
11467     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11468     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11469     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
11470     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
11471     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11472     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11473     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11474   }
11475   case NEON::BI__builtin_neon_vld3_lane_v:
11476   case NEON::BI__builtin_neon_vld3q_lane_v: {
11477     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
11478     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
11479     std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
11480     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11481     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11482     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
11483     Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
11484     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
11485     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11486     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11487     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11488   }
11489   case NEON::BI__builtin_neon_vld4_lane_v:
11490   case NEON::BI__builtin_neon_vld4q_lane_v: {
11491     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
11492     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
11493     std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
11494     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11495     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11496     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
11497     Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
11498     Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
11499     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
11500     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11501     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11502     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11503   }
11504   case NEON::BI__builtin_neon_vst2_v:
11505   case NEON::BI__builtin_neon_vst2q_v: {
11506     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11507     llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
11508     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
11509                         Ops, "");
11510   }
11511   case NEON::BI__builtin_neon_vst2_lane_v:
11512   case NEON::BI__builtin_neon_vst2q_lane_v: {
11513     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11514     Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
11515     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
11516     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
11517                         Ops, "");
11518   }
11519   case NEON::BI__builtin_neon_vst3_v:
11520   case NEON::BI__builtin_neon_vst3q_v: {
11521     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11522     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
11523     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
11524                         Ops, "");
11525   }
11526   case NEON::BI__builtin_neon_vst3_lane_v:
11527   case NEON::BI__builtin_neon_vst3q_lane_v: {
11528     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11529     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
11530     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
11531     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
11532                         Ops, "");
11533   }
11534   case NEON::BI__builtin_neon_vst4_v:
11535   case NEON::BI__builtin_neon_vst4q_v: {
11536     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11537     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
11538     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
11539                         Ops, "");
11540   }
11541   case NEON::BI__builtin_neon_vst4_lane_v:
11542   case NEON::BI__builtin_neon_vst4q_lane_v: {
11543     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11544     Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
11545     llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
11546     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
11547                         Ops, "");
11548   }
11549   case NEON::BI__builtin_neon_vtrn_v:
11550   case NEON::BI__builtin_neon_vtrnq_v: {
11551     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11552     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11553     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11554     Value *SV = nullptr;
11555 
11556     for (unsigned vi = 0; vi != 2; ++vi) {
11557       SmallVector<int, 16> Indices;
11558       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
11559         Indices.push_back(i+vi);
11560         Indices.push_back(i+e+vi);
11561       }
11562       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
11563       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
11564       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
11565     }
11566     return SV;
11567   }
11568   case NEON::BI__builtin_neon_vuzp_v:
11569   case NEON::BI__builtin_neon_vuzpq_v: {
11570     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11571     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11572     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11573     Value *SV = nullptr;
11574 
11575     for (unsigned vi = 0; vi != 2; ++vi) {
11576       SmallVector<int, 16> Indices;
11577       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
11578         Indices.push_back(2*i+vi);
11579 
11580       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
11581       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
11582       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
11583     }
11584     return SV;
11585   }
11586   case NEON::BI__builtin_neon_vzip_v:
11587   case NEON::BI__builtin_neon_vzipq_v: {
11588     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11589     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11590     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11591     Value *SV = nullptr;
11592 
11593     for (unsigned vi = 0; vi != 2; ++vi) {
11594       SmallVector<int, 16> Indices;
11595       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
11596         Indices.push_back((i + vi*e) >> 1);
11597         Indices.push_back(((i + vi*e) >> 1)+e);
11598       }
11599       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
11600       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
11601       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
11602     }
11603     return SV;
11604   }
11605   case NEON::BI__builtin_neon_vqtbl1q_v: {
11606     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
11607                         Ops, "vtbl1");
11608   }
11609   case NEON::BI__builtin_neon_vqtbl2q_v: {
11610     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
11611                         Ops, "vtbl2");
11612   }
11613   case NEON::BI__builtin_neon_vqtbl3q_v: {
11614     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
11615                         Ops, "vtbl3");
11616   }
11617   case NEON::BI__builtin_neon_vqtbl4q_v: {
11618     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
11619                         Ops, "vtbl4");
11620   }
11621   case NEON::BI__builtin_neon_vqtbx1q_v: {
11622     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
11623                         Ops, "vtbx1");
11624   }
11625   case NEON::BI__builtin_neon_vqtbx2q_v: {
11626     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
11627                         Ops, "vtbx2");
11628   }
11629   case NEON::BI__builtin_neon_vqtbx3q_v: {
11630     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
11631                         Ops, "vtbx3");
11632   }
11633   case NEON::BI__builtin_neon_vqtbx4q_v: {
11634     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
11635                         Ops, "vtbx4");
11636   }
11637   case NEON::BI__builtin_neon_vsqadd_v:
11638   case NEON::BI__builtin_neon_vsqaddq_v: {
11639     Int = Intrinsic::aarch64_neon_usqadd;
11640     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
11641   }
11642   case NEON::BI__builtin_neon_vuqadd_v:
11643   case NEON::BI__builtin_neon_vuqaddq_v: {
11644     Int = Intrinsic::aarch64_neon_suqadd;
11645     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
11646   }
11647   }
11648 }
11649 
11650 Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID,
11651                                            const CallExpr *E) {
11652   assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||
11653           BuiltinID == BPF::BI__builtin_btf_type_id ||
11654           BuiltinID == BPF::BI__builtin_preserve_type_info ||
11655           BuiltinID == BPF::BI__builtin_preserve_enum_value) &&
11656          "unexpected BPF builtin");
11657 
11658   // A sequence number, injected into IR builtin functions, to
11659   // prevent CSE given the only difference of the funciton
11660   // may just be the debuginfo metadata.
11661   static uint32_t BuiltinSeqNum;
11662 
11663   switch (BuiltinID) {
11664   default:
11665     llvm_unreachable("Unexpected BPF builtin");
11666   case BPF::BI__builtin_preserve_field_info: {
11667     const Expr *Arg = E->getArg(0);
11668     bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField;
11669 
11670     if (!getDebugInfo()) {
11671       CGM.Error(E->getExprLoc(),
11672                 "using __builtin_preserve_field_info() without -g");
11673       return IsBitField ? EmitLValue(Arg).getBitFieldPointer()
11674                         : EmitLValue(Arg).getPointer(*this);
11675     }
11676 
11677     // Enable underlying preserve_*_access_index() generation.
11678     bool OldIsInPreservedAIRegion = IsInPreservedAIRegion;
11679     IsInPreservedAIRegion = true;
11680     Value *FieldAddr = IsBitField ? EmitLValue(Arg).getBitFieldPointer()
11681                                   : EmitLValue(Arg).getPointer(*this);
11682     IsInPreservedAIRegion = OldIsInPreservedAIRegion;
11683 
11684     ConstantInt *C = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11685     Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue());
11686 
11687     // Built the IR for the preserve_field_info intrinsic.
11688     llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getDeclaration(
11689         &CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info,
11690         {FieldAddr->getType()});
11691     return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind});
11692   }
11693   case BPF::BI__builtin_btf_type_id:
11694   case BPF::BI__builtin_preserve_type_info: {
11695     if (!getDebugInfo()) {
11696       CGM.Error(E->getExprLoc(), "using builtin function without -g");
11697       return nullptr;
11698     }
11699 
11700     const Expr *Arg0 = E->getArg(0);
11701     llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
11702         Arg0->getType(), Arg0->getExprLoc());
11703 
11704     ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11705     Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
11706     Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
11707 
11708     llvm::Function *FnDecl;
11709     if (BuiltinID == BPF::BI__builtin_btf_type_id)
11710       FnDecl = llvm::Intrinsic::getDeclaration(
11711           &CGM.getModule(), llvm::Intrinsic::bpf_btf_type_id, {});
11712     else
11713       FnDecl = llvm::Intrinsic::getDeclaration(
11714           &CGM.getModule(), llvm::Intrinsic::bpf_preserve_type_info, {});
11715     CallInst *Fn = Builder.CreateCall(FnDecl, {SeqNumVal, FlagValue});
11716     Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
11717     return Fn;
11718   }
11719   case BPF::BI__builtin_preserve_enum_value: {
11720     if (!getDebugInfo()) {
11721       CGM.Error(E->getExprLoc(), "using builtin function without -g");
11722       return nullptr;
11723     }
11724 
11725     const Expr *Arg0 = E->getArg(0);
11726     llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
11727         Arg0->getType(), Arg0->getExprLoc());
11728 
11729     // Find enumerator
11730     const auto *UO = cast<UnaryOperator>(Arg0->IgnoreParens());
11731     const auto *CE = cast<CStyleCastExpr>(UO->getSubExpr());
11732     const auto *DR = cast<DeclRefExpr>(CE->getSubExpr());
11733     const auto *Enumerator = cast<EnumConstantDecl>(DR->getDecl());
11734 
11735     auto &InitVal = Enumerator->getInitVal();
11736     std::string InitValStr;
11737     if (InitVal.isNegative() || InitVal > uint64_t(INT64_MAX))
11738       InitValStr = std::to_string(InitVal.getSExtValue());
11739     else
11740       InitValStr = std::to_string(InitVal.getZExtValue());
11741     std::string EnumStr = Enumerator->getNameAsString() + ":" + InitValStr;
11742     Value *EnumStrVal = Builder.CreateGlobalStringPtr(EnumStr);
11743 
11744     ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11745     Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
11746     Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
11747 
11748     llvm::Function *IntrinsicFn = llvm::Intrinsic::getDeclaration(
11749         &CGM.getModule(), llvm::Intrinsic::bpf_preserve_enum_value, {});
11750     CallInst *Fn =
11751         Builder.CreateCall(IntrinsicFn, {SeqNumVal, EnumStrVal, FlagValue});
11752     Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
11753     return Fn;
11754   }
11755   }
11756 }
11757 
11758 llvm::Value *CodeGenFunction::
11759 BuildVector(ArrayRef<llvm::Value*> Ops) {
11760   assert((Ops.size() & (Ops.size() - 1)) == 0 &&
11761          "Not a power-of-two sized vector!");
11762   bool AllConstants = true;
11763   for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
11764     AllConstants &= isa<Constant>(Ops[i]);
11765 
11766   // If this is a constant vector, create a ConstantVector.
11767   if (AllConstants) {
11768     SmallVector<llvm::Constant*, 16> CstOps;
11769     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
11770       CstOps.push_back(cast<Constant>(Ops[i]));
11771     return llvm::ConstantVector::get(CstOps);
11772   }
11773 
11774   // Otherwise, insertelement the values to build the vector.
11775   Value *Result = llvm::UndefValue::get(
11776       llvm::FixedVectorType::get(Ops[0]->getType(), Ops.size()));
11777 
11778   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
11779     Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
11780 
11781   return Result;
11782 }
11783 
11784 // Convert the mask from an integer type to a vector of i1.
11785 static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
11786                               unsigned NumElts) {
11787 
11788   auto *MaskTy = llvm::FixedVectorType::get(
11789       CGF.Builder.getInt1Ty(),
11790       cast<IntegerType>(Mask->getType())->getBitWidth());
11791   Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
11792 
11793   // If we have less than 8 elements, then the starting mask was an i8 and
11794   // we need to extract down to the right number of elements.
11795   if (NumElts < 8) {
11796     int Indices[4];
11797     for (unsigned i = 0; i != NumElts; ++i)
11798       Indices[i] = i;
11799     MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec,
11800                                              makeArrayRef(Indices, NumElts),
11801                                              "extract");
11802   }
11803   return MaskVec;
11804 }
11805 
11806 static Value *EmitX86MaskedStore(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11807                                  Align Alignment) {
11808   // Cast the pointer to right type.
11809   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11810                                llvm::PointerType::getUnqual(Ops[1]->getType()));
11811 
11812   Value *MaskVec = getMaskVecValue(
11813       CGF, Ops[2],
11814       cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements());
11815 
11816   return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Alignment, MaskVec);
11817 }
11818 
11819 static Value *EmitX86MaskedLoad(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11820                                 Align Alignment) {
11821   // Cast the pointer to right type.
11822   llvm::Type *Ty = Ops[1]->getType();
11823   Value *Ptr =
11824       CGF.Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11825 
11826   Value *MaskVec = getMaskVecValue(
11827       CGF, Ops[2], cast<llvm::FixedVectorType>(Ty)->getNumElements());
11828 
11829   return CGF.Builder.CreateMaskedLoad(Ty, Ptr, Alignment, MaskVec, Ops[1]);
11830 }
11831 
11832 static Value *EmitX86ExpandLoad(CodeGenFunction &CGF,
11833                                 ArrayRef<Value *> Ops) {
11834   auto *ResultTy = cast<llvm::VectorType>(Ops[1]->getType());
11835   llvm::Type *PtrTy = ResultTy->getElementType();
11836 
11837   // Cast the pointer to element type.
11838   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11839                                          llvm::PointerType::getUnqual(PtrTy));
11840 
11841   Value *MaskVec = getMaskVecValue(
11842       CGF, Ops[2], cast<FixedVectorType>(ResultTy)->getNumElements());
11843 
11844   llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload,
11845                                            ResultTy);
11846   return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] });
11847 }
11848 
11849 static Value *EmitX86CompressExpand(CodeGenFunction &CGF,
11850                                     ArrayRef<Value *> Ops,
11851                                     bool IsCompress) {
11852   auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
11853 
11854   Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
11855 
11856   Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress
11857                                  : Intrinsic::x86_avx512_mask_expand;
11858   llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy);
11859   return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec });
11860 }
11861 
11862 static Value *EmitX86CompressStore(CodeGenFunction &CGF,
11863                                    ArrayRef<Value *> Ops) {
11864   auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
11865   llvm::Type *PtrTy = ResultTy->getElementType();
11866 
11867   // Cast the pointer to element type.
11868   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11869                                          llvm::PointerType::getUnqual(PtrTy));
11870 
11871   Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
11872 
11873   llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore,
11874                                            ResultTy);
11875   return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec });
11876 }
11877 
11878 static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
11879                               ArrayRef<Value *> Ops,
11880                               bool InvertLHS = false) {
11881   unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11882   Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts);
11883   Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts);
11884 
11885   if (InvertLHS)
11886     LHS = CGF.Builder.CreateNot(LHS);
11887 
11888   return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS),
11889                                    Ops[0]->getType());
11890 }
11891 
11892 static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1,
11893                                  Value *Amt, bool IsRight) {
11894   llvm::Type *Ty = Op0->getType();
11895 
11896   // Amount may be scalar immediate, in which case create a splat vector.
11897   // Funnel shifts amounts are treated as modulo and types are all power-of-2 so
11898   // we only care about the lowest log2 bits anyway.
11899   if (Amt->getType() != Ty) {
11900     unsigned NumElts = cast<llvm::FixedVectorType>(Ty)->getNumElements();
11901     Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false);
11902     Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt);
11903   }
11904 
11905   unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl;
11906   Function *F = CGF.CGM.getIntrinsic(IID, Ty);
11907   return CGF.Builder.CreateCall(F, {Op0, Op1, Amt});
11908 }
11909 
11910 static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11911                            bool IsSigned) {
11912   Value *Op0 = Ops[0];
11913   Value *Op1 = Ops[1];
11914   llvm::Type *Ty = Op0->getType();
11915   uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
11916 
11917   CmpInst::Predicate Pred;
11918   switch (Imm) {
11919   case 0x0:
11920     Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
11921     break;
11922   case 0x1:
11923     Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
11924     break;
11925   case 0x2:
11926     Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
11927     break;
11928   case 0x3:
11929     Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
11930     break;
11931   case 0x4:
11932     Pred = ICmpInst::ICMP_EQ;
11933     break;
11934   case 0x5:
11935     Pred = ICmpInst::ICMP_NE;
11936     break;
11937   case 0x6:
11938     return llvm::Constant::getNullValue(Ty); // FALSE
11939   case 0x7:
11940     return llvm::Constant::getAllOnesValue(Ty); // TRUE
11941   default:
11942     llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate");
11943   }
11944 
11945   Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1);
11946   Value *Res = CGF.Builder.CreateSExt(Cmp, Ty);
11947   return Res;
11948 }
11949 
11950 static Value *EmitX86Select(CodeGenFunction &CGF,
11951                             Value *Mask, Value *Op0, Value *Op1) {
11952 
11953   // If the mask is all ones just return first argument.
11954   if (const auto *C = dyn_cast<Constant>(Mask))
11955     if (C->isAllOnesValue())
11956       return Op0;
11957 
11958   Mask = getMaskVecValue(
11959       CGF, Mask, cast<llvm::FixedVectorType>(Op0->getType())->getNumElements());
11960 
11961   return CGF.Builder.CreateSelect(Mask, Op0, Op1);
11962 }
11963 
11964 static Value *EmitX86ScalarSelect(CodeGenFunction &CGF,
11965                                   Value *Mask, Value *Op0, Value *Op1) {
11966   // If the mask is all ones just return first argument.
11967   if (const auto *C = dyn_cast<Constant>(Mask))
11968     if (C->isAllOnesValue())
11969       return Op0;
11970 
11971   auto *MaskTy = llvm::FixedVectorType::get(
11972       CGF.Builder.getInt1Ty(), Mask->getType()->getIntegerBitWidth());
11973   Mask = CGF.Builder.CreateBitCast(Mask, MaskTy);
11974   Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0);
11975   return CGF.Builder.CreateSelect(Mask, Op0, Op1);
11976 }
11977 
11978 static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp,
11979                                          unsigned NumElts, Value *MaskIn) {
11980   if (MaskIn) {
11981     const auto *C = dyn_cast<Constant>(MaskIn);
11982     if (!C || !C->isAllOnesValue())
11983       Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts));
11984   }
11985 
11986   if (NumElts < 8) {
11987     int Indices[8];
11988     for (unsigned i = 0; i != NumElts; ++i)
11989       Indices[i] = i;
11990     for (unsigned i = NumElts; i != 8; ++i)
11991       Indices[i] = i % NumElts + NumElts;
11992     Cmp = CGF.Builder.CreateShuffleVector(
11993         Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
11994   }
11995 
11996   return CGF.Builder.CreateBitCast(Cmp,
11997                                    IntegerType::get(CGF.getLLVMContext(),
11998                                                     std::max(NumElts, 8U)));
11999 }
12000 
12001 static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
12002                                    bool Signed, ArrayRef<Value *> Ops) {
12003   assert((Ops.size() == 2 || Ops.size() == 4) &&
12004          "Unexpected number of arguments");
12005   unsigned NumElts =
12006       cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12007   Value *Cmp;
12008 
12009   if (CC == 3) {
12010     Cmp = Constant::getNullValue(
12011         llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
12012   } else if (CC == 7) {
12013     Cmp = Constant::getAllOnesValue(
12014         llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
12015   } else {
12016     ICmpInst::Predicate Pred;
12017     switch (CC) {
12018     default: llvm_unreachable("Unknown condition code");
12019     case 0: Pred = ICmpInst::ICMP_EQ;  break;
12020     case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
12021     case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
12022     case 4: Pred = ICmpInst::ICMP_NE;  break;
12023     case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
12024     case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
12025     }
12026     Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
12027   }
12028 
12029   Value *MaskIn = nullptr;
12030   if (Ops.size() == 4)
12031     MaskIn = Ops[3];
12032 
12033   return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn);
12034 }
12035 
12036 static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) {
12037   Value *Zero = Constant::getNullValue(In->getType());
12038   return EmitX86MaskedCompare(CGF, 1, true, { In, Zero });
12039 }
12040 
12041 static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF, const CallExpr *E,
12042                                     ArrayRef<Value *> Ops, bool IsSigned) {
12043   unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue();
12044   llvm::Type *Ty = Ops[1]->getType();
12045 
12046   Value *Res;
12047   if (Rnd != 4) {
12048     Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round
12049                                  : Intrinsic::x86_avx512_uitofp_round;
12050     Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() });
12051     Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] });
12052   } else {
12053     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
12054     Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty)
12055                    : CGF.Builder.CreateUIToFP(Ops[0], Ty);
12056   }
12057 
12058   return EmitX86Select(CGF, Ops[2], Res, Ops[1]);
12059 }
12060 
12061 // Lowers X86 FMA intrinsics to IR.
12062 static Value *EmitX86FMAExpr(CodeGenFunction &CGF, const CallExpr *E,
12063                              ArrayRef<Value *> Ops, unsigned BuiltinID,
12064                              bool IsAddSub) {
12065 
12066   bool Subtract = false;
12067   Intrinsic::ID IID = Intrinsic::not_intrinsic;
12068   switch (BuiltinID) {
12069   default: break;
12070   case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
12071     Subtract = true;
12072     LLVM_FALLTHROUGH;
12073   case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
12074   case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
12075   case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
12076     IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break;
12077   case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
12078     Subtract = true;
12079     LLVM_FALLTHROUGH;
12080   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
12081   case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
12082   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
12083     IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break;
12084   case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
12085     Subtract = true;
12086     LLVM_FALLTHROUGH;
12087   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
12088   case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
12089   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
12090     IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512;
12091     break;
12092   case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
12093     Subtract = true;
12094     LLVM_FALLTHROUGH;
12095   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
12096   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
12097   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
12098     IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512;
12099     break;
12100   }
12101 
12102   Value *A = Ops[0];
12103   Value *B = Ops[1];
12104   Value *C = Ops[2];
12105 
12106   if (Subtract)
12107     C = CGF.Builder.CreateFNeg(C);
12108 
12109   Value *Res;
12110 
12111   // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding).
12112   if (IID != Intrinsic::not_intrinsic &&
12113       (cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4 ||
12114        IsAddSub)) {
12115     Function *Intr = CGF.CGM.getIntrinsic(IID);
12116     Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() });
12117   } else {
12118     llvm::Type *Ty = A->getType();
12119     Function *FMA;
12120     if (CGF.Builder.getIsFPConstrained()) {
12121       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
12122       FMA = CGF.CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, Ty);
12123       Res = CGF.Builder.CreateConstrainedFPCall(FMA, {A, B, C});
12124     } else {
12125       FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
12126       Res = CGF.Builder.CreateCall(FMA, {A, B, C});
12127     }
12128   }
12129 
12130   // Handle any required masking.
12131   Value *MaskFalseVal = nullptr;
12132   switch (BuiltinID) {
12133   case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
12134   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
12135   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
12136   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
12137     MaskFalseVal = Ops[0];
12138     break;
12139   case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
12140   case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
12141   case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
12142   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
12143     MaskFalseVal = Constant::getNullValue(Ops[0]->getType());
12144     break;
12145   case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
12146   case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
12147   case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
12148   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
12149   case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
12150   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
12151   case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
12152   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
12153     MaskFalseVal = Ops[2];
12154     break;
12155   }
12156 
12157   if (MaskFalseVal)
12158     return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal);
12159 
12160   return Res;
12161 }
12162 
12163 static Value *EmitScalarFMAExpr(CodeGenFunction &CGF, const CallExpr *E,
12164                                 MutableArrayRef<Value *> Ops, Value *Upper,
12165                                 bool ZeroMask = false, unsigned PTIdx = 0,
12166                                 bool NegAcc = false) {
12167   unsigned Rnd = 4;
12168   if (Ops.size() > 4)
12169     Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
12170 
12171   if (NegAcc)
12172     Ops[2] = CGF.Builder.CreateFNeg(Ops[2]);
12173 
12174   Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0);
12175   Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0);
12176   Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0);
12177   Value *Res;
12178   if (Rnd != 4) {
12179     Intrinsic::ID IID = Ops[0]->getType()->getPrimitiveSizeInBits() == 32 ?
12180                         Intrinsic::x86_avx512_vfmadd_f32 :
12181                         Intrinsic::x86_avx512_vfmadd_f64;
12182     Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
12183                                  {Ops[0], Ops[1], Ops[2], Ops[4]});
12184   } else if (CGF.Builder.getIsFPConstrained()) {
12185     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
12186     Function *FMA = CGF.CGM.getIntrinsic(
12187         Intrinsic::experimental_constrained_fma, Ops[0]->getType());
12188     Res = CGF.Builder.CreateConstrainedFPCall(FMA, Ops.slice(0, 3));
12189   } else {
12190     Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType());
12191     Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3));
12192   }
12193   // If we have more than 3 arguments, we need to do masking.
12194   if (Ops.size() > 3) {
12195     Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType())
12196                                : Ops[PTIdx];
12197 
12198     // If we negated the accumulator and the its the PassThru value we need to
12199     // bypass the negate. Conveniently Upper should be the same thing in this
12200     // case.
12201     if (NegAcc && PTIdx == 2)
12202       PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0);
12203 
12204     Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru);
12205   }
12206   return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0);
12207 }
12208 
12209 static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned,
12210                            ArrayRef<Value *> Ops) {
12211   llvm::Type *Ty = Ops[0]->getType();
12212   // Arguments have a vXi32 type so cast to vXi64.
12213   Ty = llvm::FixedVectorType::get(CGF.Int64Ty,
12214                                   Ty->getPrimitiveSizeInBits() / 64);
12215   Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty);
12216   Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty);
12217 
12218   if (IsSigned) {
12219     // Shift left then arithmetic shift right.
12220     Constant *ShiftAmt = ConstantInt::get(Ty, 32);
12221     LHS = CGF.Builder.CreateShl(LHS, ShiftAmt);
12222     LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt);
12223     RHS = CGF.Builder.CreateShl(RHS, ShiftAmt);
12224     RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt);
12225   } else {
12226     // Clear the upper bits.
12227     Constant *Mask = ConstantInt::get(Ty, 0xffffffff);
12228     LHS = CGF.Builder.CreateAnd(LHS, Mask);
12229     RHS = CGF.Builder.CreateAnd(RHS, Mask);
12230   }
12231 
12232   return CGF.Builder.CreateMul(LHS, RHS);
12233 }
12234 
12235 // Emit a masked pternlog intrinsic. This only exists because the header has to
12236 // use a macro and we aren't able to pass the input argument to a pternlog
12237 // builtin and a select builtin without evaluating it twice.
12238 static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask,
12239                              ArrayRef<Value *> Ops) {
12240   llvm::Type *Ty = Ops[0]->getType();
12241 
12242   unsigned VecWidth = Ty->getPrimitiveSizeInBits();
12243   unsigned EltWidth = Ty->getScalarSizeInBits();
12244   Intrinsic::ID IID;
12245   if (VecWidth == 128 && EltWidth == 32)
12246     IID = Intrinsic::x86_avx512_pternlog_d_128;
12247   else if (VecWidth == 256 && EltWidth == 32)
12248     IID = Intrinsic::x86_avx512_pternlog_d_256;
12249   else if (VecWidth == 512 && EltWidth == 32)
12250     IID = Intrinsic::x86_avx512_pternlog_d_512;
12251   else if (VecWidth == 128 && EltWidth == 64)
12252     IID = Intrinsic::x86_avx512_pternlog_q_128;
12253   else if (VecWidth == 256 && EltWidth == 64)
12254     IID = Intrinsic::x86_avx512_pternlog_q_256;
12255   else if (VecWidth == 512 && EltWidth == 64)
12256     IID = Intrinsic::x86_avx512_pternlog_q_512;
12257   else
12258     llvm_unreachable("Unexpected intrinsic");
12259 
12260   Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
12261                                           Ops.drop_back());
12262   Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0];
12263   return EmitX86Select(CGF, Ops[4], Ternlog, PassThru);
12264 }
12265 
12266 static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
12267                               llvm::Type *DstTy) {
12268   unsigned NumberOfElements =
12269       cast<llvm::FixedVectorType>(DstTy)->getNumElements();
12270   Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements);
12271   return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2");
12272 }
12273 
12274 // Emit binary intrinsic with the same type used in result/args.
12275 static Value *EmitX86BinaryIntrinsic(CodeGenFunction &CGF,
12276                                      ArrayRef<Value *> Ops, Intrinsic::ID IID) {
12277   llvm::Function *F = CGF.CGM.getIntrinsic(IID, Ops[0]->getType());
12278   return CGF.Builder.CreateCall(F, {Ops[0], Ops[1]});
12279 }
12280 
12281 Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
12282   const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
12283   StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
12284   return EmitX86CpuIs(CPUStr);
12285 }
12286 
12287 // Convert F16 halfs to floats.
12288 static Value *EmitX86CvtF16ToFloatExpr(CodeGenFunction &CGF,
12289                                        ArrayRef<Value *> Ops,
12290                                        llvm::Type *DstTy) {
12291   assert((Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) &&
12292          "Unknown cvtph2ps intrinsic");
12293 
12294   // If the SAE intrinsic doesn't use default rounding then we can't upgrade.
12295   if (Ops.size() == 4 && cast<llvm::ConstantInt>(Ops[3])->getZExtValue() != 4) {
12296     Function *F =
12297         CGF.CGM.getIntrinsic(Intrinsic::x86_avx512_mask_vcvtph2ps_512);
12298     return CGF.Builder.CreateCall(F, {Ops[0], Ops[1], Ops[2], Ops[3]});
12299   }
12300 
12301   unsigned NumDstElts = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
12302   Value *Src = Ops[0];
12303 
12304   // Extract the subvector.
12305   if (NumDstElts !=
12306       cast<llvm::FixedVectorType>(Src->getType())->getNumElements()) {
12307     assert(NumDstElts == 4 && "Unexpected vector size");
12308     Src = CGF.Builder.CreateShuffleVector(Src, ArrayRef<int>{0, 1, 2, 3});
12309   }
12310 
12311   // Bitcast from vXi16 to vXf16.
12312   auto *HalfTy = llvm::FixedVectorType::get(
12313       llvm::Type::getHalfTy(CGF.getLLVMContext()), NumDstElts);
12314   Src = CGF.Builder.CreateBitCast(Src, HalfTy);
12315 
12316   // Perform the fp-extension.
12317   Value *Res = CGF.Builder.CreateFPExt(Src, DstTy, "cvtph2ps");
12318 
12319   if (Ops.size() >= 3)
12320     Res = EmitX86Select(CGF, Ops[2], Res, Ops[1]);
12321   return Res;
12322 }
12323 
12324 // Convert a BF16 to a float.
12325 static Value *EmitX86CvtBF16ToFloatExpr(CodeGenFunction &CGF,
12326                                         const CallExpr *E,
12327                                         ArrayRef<Value *> Ops) {
12328   llvm::Type *Int32Ty = CGF.Builder.getInt32Ty();
12329   Value *ZeroExt = CGF.Builder.CreateZExt(Ops[0], Int32Ty);
12330   Value *Shl = CGF.Builder.CreateShl(ZeroExt, 16);
12331   llvm::Type *ResultType = CGF.ConvertType(E->getType());
12332   Value *BitCast = CGF.Builder.CreateBitCast(Shl, ResultType);
12333   return BitCast;
12334 }
12335 
12336 Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
12337 
12338   llvm::Type *Int32Ty = Builder.getInt32Ty();
12339 
12340   // Matching the struct layout from the compiler-rt/libgcc structure that is
12341   // filled in:
12342   // unsigned int __cpu_vendor;
12343   // unsigned int __cpu_type;
12344   // unsigned int __cpu_subtype;
12345   // unsigned int __cpu_features[1];
12346   llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
12347                                           llvm::ArrayType::get(Int32Ty, 1));
12348 
12349   // Grab the global __cpu_model.
12350   llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
12351   cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
12352 
12353   // Calculate the index needed to access the correct field based on the
12354   // range. Also adjust the expected value.
12355   unsigned Index;
12356   unsigned Value;
12357   std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
12358 #define X86_VENDOR(ENUM, STRING)                                               \
12359   .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
12360 #define X86_CPU_TYPE_ALIAS(ENUM, ALIAS)                                        \
12361   .Case(ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
12362 #define X86_CPU_TYPE(ENUM, STR)                                                \
12363   .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
12364 #define X86_CPU_SUBTYPE(ENUM, STR)                                             \
12365   .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
12366 #include "llvm/Support/X86TargetParser.def"
12367                                .Default({0, 0});
12368   assert(Value != 0 && "Invalid CPUStr passed to CpuIs");
12369 
12370   // Grab the appropriate field from __cpu_model.
12371   llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
12372                          ConstantInt::get(Int32Ty, Index)};
12373   llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs);
12374   CpuValue = Builder.CreateAlignedLoad(Int32Ty, CpuValue,
12375                                        CharUnits::fromQuantity(4));
12376 
12377   // Check the value of the field against the requested value.
12378   return Builder.CreateICmpEQ(CpuValue,
12379                                   llvm::ConstantInt::get(Int32Ty, Value));
12380 }
12381 
12382 Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
12383   const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
12384   StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
12385   return EmitX86CpuSupports(FeatureStr);
12386 }
12387 
12388 uint64_t
12389 CodeGenFunction::GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs) {
12390   // Processor features and mapping to processor feature value.
12391   uint64_t FeaturesMask = 0;
12392   for (const StringRef &FeatureStr : FeatureStrs) {
12393     unsigned Feature =
12394         StringSwitch<unsigned>(FeatureStr)
12395 #define X86_FEATURE_COMPAT(ENUM, STR) .Case(STR, llvm::X86::FEATURE_##ENUM)
12396 #include "llvm/Support/X86TargetParser.def"
12397         ;
12398     FeaturesMask |= (1ULL << Feature);
12399   }
12400   return FeaturesMask;
12401 }
12402 
12403 Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
12404   return EmitX86CpuSupports(GetX86CpuSupportsMask(FeatureStrs));
12405 }
12406 
12407 llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) {
12408   uint32_t Features1 = Lo_32(FeaturesMask);
12409   uint32_t Features2 = Hi_32(FeaturesMask);
12410 
12411   Value *Result = Builder.getTrue();
12412 
12413   if (Features1 != 0) {
12414     // Matching the struct layout from the compiler-rt/libgcc structure that is
12415     // filled in:
12416     // unsigned int __cpu_vendor;
12417     // unsigned int __cpu_type;
12418     // unsigned int __cpu_subtype;
12419     // unsigned int __cpu_features[1];
12420     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
12421                                             llvm::ArrayType::get(Int32Ty, 1));
12422 
12423     // Grab the global __cpu_model.
12424     llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
12425     cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
12426 
12427     // Grab the first (0th) element from the field __cpu_features off of the
12428     // global in the struct STy.
12429     Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3),
12430                      Builder.getInt32(0)};
12431     Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
12432     Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures,
12433                                                 CharUnits::fromQuantity(4));
12434 
12435     // Check the value of the bit corresponding to the feature requested.
12436     Value *Mask = Builder.getInt32(Features1);
12437     Value *Bitset = Builder.CreateAnd(Features, Mask);
12438     Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
12439     Result = Builder.CreateAnd(Result, Cmp);
12440   }
12441 
12442   if (Features2 != 0) {
12443     llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty,
12444                                                              "__cpu_features2");
12445     cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true);
12446 
12447     Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures2,
12448                                                 CharUnits::fromQuantity(4));
12449 
12450     // Check the value of the bit corresponding to the feature requested.
12451     Value *Mask = Builder.getInt32(Features2);
12452     Value *Bitset = Builder.CreateAnd(Features, Mask);
12453     Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
12454     Result = Builder.CreateAnd(Result, Cmp);
12455   }
12456 
12457   return Result;
12458 }
12459 
12460 Value *CodeGenFunction::EmitX86CpuInit() {
12461   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy,
12462                                                     /*Variadic*/ false);
12463   llvm::FunctionCallee Func =
12464       CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init");
12465   cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
12466   cast<llvm::GlobalValue>(Func.getCallee())
12467       ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
12468   return Builder.CreateCall(Func);
12469 }
12470 
12471 Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
12472                                            const CallExpr *E) {
12473   if (BuiltinID == X86::BI__builtin_cpu_is)
12474     return EmitX86CpuIs(E);
12475   if (BuiltinID == X86::BI__builtin_cpu_supports)
12476     return EmitX86CpuSupports(E);
12477   if (BuiltinID == X86::BI__builtin_cpu_init)
12478     return EmitX86CpuInit();
12479 
12480   // Handle MSVC intrinsics before argument evaluation to prevent double
12481   // evaluation.
12482   if (Optional<MSVCIntrin> MsvcIntId = translateX86ToMsvcIntrin(BuiltinID))
12483     return EmitMSVCBuiltinExpr(*MsvcIntId, E);
12484 
12485   SmallVector<Value*, 4> Ops;
12486   bool IsMaskFCmp = false;
12487 
12488   // Find out if any arguments are required to be integer constant expressions.
12489   unsigned ICEArguments = 0;
12490   ASTContext::GetBuiltinTypeError Error;
12491   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
12492   assert(Error == ASTContext::GE_None && "Should not codegen an error");
12493 
12494   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
12495     // If this is a normal argument, just emit it as a scalar.
12496     if ((ICEArguments & (1 << i)) == 0) {
12497       Ops.push_back(EmitScalarExpr(E->getArg(i)));
12498       continue;
12499     }
12500 
12501     // If this is required to be a constant, constant fold it so that we know
12502     // that the generated intrinsic gets a ConstantInt.
12503     Ops.push_back(llvm::ConstantInt::get(
12504         getLLVMContext(), *E->getArg(i)->getIntegerConstantExpr(getContext())));
12505   }
12506 
12507   // These exist so that the builtin that takes an immediate can be bounds
12508   // checked by clang to avoid passing bad immediates to the backend. Since
12509   // AVX has a larger immediate than SSE we would need separate builtins to
12510   // do the different bounds checking. Rather than create a clang specific
12511   // SSE only builtin, this implements eight separate builtins to match gcc
12512   // implementation.
12513   auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
12514     Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
12515     llvm::Function *F = CGM.getIntrinsic(ID);
12516     return Builder.CreateCall(F, Ops);
12517   };
12518 
12519   // For the vector forms of FP comparisons, translate the builtins directly to
12520   // IR.
12521   // TODO: The builtins could be removed if the SSE header files used vector
12522   // extension comparisons directly (vector ordered/unordered may need
12523   // additional support via __builtin_isnan()).
12524   auto getVectorFCmpIR = [this, &Ops, E](CmpInst::Predicate Pred,
12525                                          bool IsSignaling) {
12526     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
12527     Value *Cmp;
12528     if (IsSignaling)
12529       Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
12530     else
12531       Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
12532     llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
12533     llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
12534     Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
12535     return Builder.CreateBitCast(Sext, FPVecTy);
12536   };
12537 
12538   switch (BuiltinID) {
12539   default: return nullptr;
12540   case X86::BI_mm_prefetch: {
12541     Value *Address = Ops[0];
12542     ConstantInt *C = cast<ConstantInt>(Ops[1]);
12543     Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1);
12544     Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3);
12545     Value *Data = ConstantInt::get(Int32Ty, 1);
12546     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
12547     return Builder.CreateCall(F, {Address, RW, Locality, Data});
12548   }
12549   case X86::BI_mm_clflush: {
12550     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
12551                               Ops[0]);
12552   }
12553   case X86::BI_mm_lfence: {
12554     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
12555   }
12556   case X86::BI_mm_mfence: {
12557     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
12558   }
12559   case X86::BI_mm_sfence: {
12560     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
12561   }
12562   case X86::BI_mm_pause: {
12563     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
12564   }
12565   case X86::BI__rdtsc: {
12566     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
12567   }
12568   case X86::BI__builtin_ia32_rdtscp: {
12569     Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp));
12570     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
12571                                       Ops[0]);
12572     return Builder.CreateExtractValue(Call, 0);
12573   }
12574   case X86::BI__builtin_ia32_lzcnt_u16:
12575   case X86::BI__builtin_ia32_lzcnt_u32:
12576   case X86::BI__builtin_ia32_lzcnt_u64: {
12577     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
12578     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
12579   }
12580   case X86::BI__builtin_ia32_tzcnt_u16:
12581   case X86::BI__builtin_ia32_tzcnt_u32:
12582   case X86::BI__builtin_ia32_tzcnt_u64: {
12583     Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
12584     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
12585   }
12586   case X86::BI__builtin_ia32_undef128:
12587   case X86::BI__builtin_ia32_undef256:
12588   case X86::BI__builtin_ia32_undef512:
12589     // The x86 definition of "undef" is not the same as the LLVM definition
12590     // (PR32176). We leave optimizing away an unnecessary zero constant to the
12591     // IR optimizer and backend.
12592     // TODO: If we had a "freeze" IR instruction to generate a fixed undef
12593     // value, we should use that here instead of a zero.
12594     return llvm::Constant::getNullValue(ConvertType(E->getType()));
12595   case X86::BI__builtin_ia32_vec_init_v8qi:
12596   case X86::BI__builtin_ia32_vec_init_v4hi:
12597   case X86::BI__builtin_ia32_vec_init_v2si:
12598     return Builder.CreateBitCast(BuildVector(Ops),
12599                                  llvm::Type::getX86_MMXTy(getLLVMContext()));
12600   case X86::BI__builtin_ia32_vec_ext_v2si:
12601   case X86::BI__builtin_ia32_vec_ext_v16qi:
12602   case X86::BI__builtin_ia32_vec_ext_v8hi:
12603   case X86::BI__builtin_ia32_vec_ext_v4si:
12604   case X86::BI__builtin_ia32_vec_ext_v4sf:
12605   case X86::BI__builtin_ia32_vec_ext_v2di:
12606   case X86::BI__builtin_ia32_vec_ext_v32qi:
12607   case X86::BI__builtin_ia32_vec_ext_v16hi:
12608   case X86::BI__builtin_ia32_vec_ext_v8si:
12609   case X86::BI__builtin_ia32_vec_ext_v4di: {
12610     unsigned NumElts =
12611         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12612     uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue();
12613     Index &= NumElts - 1;
12614     // These builtins exist so we can ensure the index is an ICE and in range.
12615     // Otherwise we could just do this in the header file.
12616     return Builder.CreateExtractElement(Ops[0], Index);
12617   }
12618   case X86::BI__builtin_ia32_vec_set_v16qi:
12619   case X86::BI__builtin_ia32_vec_set_v8hi:
12620   case X86::BI__builtin_ia32_vec_set_v4si:
12621   case X86::BI__builtin_ia32_vec_set_v2di:
12622   case X86::BI__builtin_ia32_vec_set_v32qi:
12623   case X86::BI__builtin_ia32_vec_set_v16hi:
12624   case X86::BI__builtin_ia32_vec_set_v8si:
12625   case X86::BI__builtin_ia32_vec_set_v4di: {
12626     unsigned NumElts =
12627         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12628     unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
12629     Index &= NumElts - 1;
12630     // These builtins exist so we can ensure the index is an ICE and in range.
12631     // Otherwise we could just do this in the header file.
12632     return Builder.CreateInsertElement(Ops[0], Ops[1], Index);
12633   }
12634   case X86::BI_mm_setcsr:
12635   case X86::BI__builtin_ia32_ldmxcsr: {
12636     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
12637     Builder.CreateStore(Ops[0], Tmp);
12638     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
12639                           Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
12640   }
12641   case X86::BI_mm_getcsr:
12642   case X86::BI__builtin_ia32_stmxcsr: {
12643     Address Tmp = CreateMemTemp(E->getType());
12644     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
12645                        Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
12646     return Builder.CreateLoad(Tmp, "stmxcsr");
12647   }
12648   case X86::BI__builtin_ia32_xsave:
12649   case X86::BI__builtin_ia32_xsave64:
12650   case X86::BI__builtin_ia32_xrstor:
12651   case X86::BI__builtin_ia32_xrstor64:
12652   case X86::BI__builtin_ia32_xsaveopt:
12653   case X86::BI__builtin_ia32_xsaveopt64:
12654   case X86::BI__builtin_ia32_xrstors:
12655   case X86::BI__builtin_ia32_xrstors64:
12656   case X86::BI__builtin_ia32_xsavec:
12657   case X86::BI__builtin_ia32_xsavec64:
12658   case X86::BI__builtin_ia32_xsaves:
12659   case X86::BI__builtin_ia32_xsaves64:
12660   case X86::BI__builtin_ia32_xsetbv:
12661   case X86::BI_xsetbv: {
12662     Intrinsic::ID ID;
12663 #define INTRINSIC_X86_XSAVE_ID(NAME) \
12664     case X86::BI__builtin_ia32_##NAME: \
12665       ID = Intrinsic::x86_##NAME; \
12666       break
12667     switch (BuiltinID) {
12668     default: llvm_unreachable("Unsupported intrinsic!");
12669     INTRINSIC_X86_XSAVE_ID(xsave);
12670     INTRINSIC_X86_XSAVE_ID(xsave64);
12671     INTRINSIC_X86_XSAVE_ID(xrstor);
12672     INTRINSIC_X86_XSAVE_ID(xrstor64);
12673     INTRINSIC_X86_XSAVE_ID(xsaveopt);
12674     INTRINSIC_X86_XSAVE_ID(xsaveopt64);
12675     INTRINSIC_X86_XSAVE_ID(xrstors);
12676     INTRINSIC_X86_XSAVE_ID(xrstors64);
12677     INTRINSIC_X86_XSAVE_ID(xsavec);
12678     INTRINSIC_X86_XSAVE_ID(xsavec64);
12679     INTRINSIC_X86_XSAVE_ID(xsaves);
12680     INTRINSIC_X86_XSAVE_ID(xsaves64);
12681     INTRINSIC_X86_XSAVE_ID(xsetbv);
12682     case X86::BI_xsetbv:
12683       ID = Intrinsic::x86_xsetbv;
12684       break;
12685     }
12686 #undef INTRINSIC_X86_XSAVE_ID
12687     Value *Mhi = Builder.CreateTrunc(
12688       Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
12689     Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
12690     Ops[1] = Mhi;
12691     Ops.push_back(Mlo);
12692     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
12693   }
12694   case X86::BI__builtin_ia32_xgetbv:
12695   case X86::BI_xgetbv:
12696     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops);
12697   case X86::BI__builtin_ia32_storedqudi128_mask:
12698   case X86::BI__builtin_ia32_storedqusi128_mask:
12699   case X86::BI__builtin_ia32_storedquhi128_mask:
12700   case X86::BI__builtin_ia32_storedquqi128_mask:
12701   case X86::BI__builtin_ia32_storeupd128_mask:
12702   case X86::BI__builtin_ia32_storeups128_mask:
12703   case X86::BI__builtin_ia32_storedqudi256_mask:
12704   case X86::BI__builtin_ia32_storedqusi256_mask:
12705   case X86::BI__builtin_ia32_storedquhi256_mask:
12706   case X86::BI__builtin_ia32_storedquqi256_mask:
12707   case X86::BI__builtin_ia32_storeupd256_mask:
12708   case X86::BI__builtin_ia32_storeups256_mask:
12709   case X86::BI__builtin_ia32_storedqudi512_mask:
12710   case X86::BI__builtin_ia32_storedqusi512_mask:
12711   case X86::BI__builtin_ia32_storedquhi512_mask:
12712   case X86::BI__builtin_ia32_storedquqi512_mask:
12713   case X86::BI__builtin_ia32_storeupd512_mask:
12714   case X86::BI__builtin_ia32_storeups512_mask:
12715     return EmitX86MaskedStore(*this, Ops, Align(1));
12716 
12717   case X86::BI__builtin_ia32_storess128_mask:
12718   case X86::BI__builtin_ia32_storesd128_mask:
12719     return EmitX86MaskedStore(*this, Ops, Align(1));
12720 
12721   case X86::BI__builtin_ia32_vpopcntb_128:
12722   case X86::BI__builtin_ia32_vpopcntd_128:
12723   case X86::BI__builtin_ia32_vpopcntq_128:
12724   case X86::BI__builtin_ia32_vpopcntw_128:
12725   case X86::BI__builtin_ia32_vpopcntb_256:
12726   case X86::BI__builtin_ia32_vpopcntd_256:
12727   case X86::BI__builtin_ia32_vpopcntq_256:
12728   case X86::BI__builtin_ia32_vpopcntw_256:
12729   case X86::BI__builtin_ia32_vpopcntb_512:
12730   case X86::BI__builtin_ia32_vpopcntd_512:
12731   case X86::BI__builtin_ia32_vpopcntq_512:
12732   case X86::BI__builtin_ia32_vpopcntw_512: {
12733     llvm::Type *ResultType = ConvertType(E->getType());
12734     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
12735     return Builder.CreateCall(F, Ops);
12736   }
12737   case X86::BI__builtin_ia32_cvtmask2b128:
12738   case X86::BI__builtin_ia32_cvtmask2b256:
12739   case X86::BI__builtin_ia32_cvtmask2b512:
12740   case X86::BI__builtin_ia32_cvtmask2w128:
12741   case X86::BI__builtin_ia32_cvtmask2w256:
12742   case X86::BI__builtin_ia32_cvtmask2w512:
12743   case X86::BI__builtin_ia32_cvtmask2d128:
12744   case X86::BI__builtin_ia32_cvtmask2d256:
12745   case X86::BI__builtin_ia32_cvtmask2d512:
12746   case X86::BI__builtin_ia32_cvtmask2q128:
12747   case X86::BI__builtin_ia32_cvtmask2q256:
12748   case X86::BI__builtin_ia32_cvtmask2q512:
12749     return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType()));
12750 
12751   case X86::BI__builtin_ia32_cvtb2mask128:
12752   case X86::BI__builtin_ia32_cvtb2mask256:
12753   case X86::BI__builtin_ia32_cvtb2mask512:
12754   case X86::BI__builtin_ia32_cvtw2mask128:
12755   case X86::BI__builtin_ia32_cvtw2mask256:
12756   case X86::BI__builtin_ia32_cvtw2mask512:
12757   case X86::BI__builtin_ia32_cvtd2mask128:
12758   case X86::BI__builtin_ia32_cvtd2mask256:
12759   case X86::BI__builtin_ia32_cvtd2mask512:
12760   case X86::BI__builtin_ia32_cvtq2mask128:
12761   case X86::BI__builtin_ia32_cvtq2mask256:
12762   case X86::BI__builtin_ia32_cvtq2mask512:
12763     return EmitX86ConvertToMask(*this, Ops[0]);
12764 
12765   case X86::BI__builtin_ia32_cvtdq2ps512_mask:
12766   case X86::BI__builtin_ia32_cvtqq2ps512_mask:
12767   case X86::BI__builtin_ia32_cvtqq2pd512_mask:
12768     return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ true);
12769   case X86::BI__builtin_ia32_cvtudq2ps512_mask:
12770   case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
12771   case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
12772     return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ false);
12773 
12774   case X86::BI__builtin_ia32_vfmaddss3:
12775   case X86::BI__builtin_ia32_vfmaddsd3:
12776   case X86::BI__builtin_ia32_vfmaddss3_mask:
12777   case X86::BI__builtin_ia32_vfmaddsd3_mask:
12778     return EmitScalarFMAExpr(*this, E, Ops, Ops[0]);
12779   case X86::BI__builtin_ia32_vfmaddss:
12780   case X86::BI__builtin_ia32_vfmaddsd:
12781     return EmitScalarFMAExpr(*this, E, Ops,
12782                              Constant::getNullValue(Ops[0]->getType()));
12783   case X86::BI__builtin_ia32_vfmaddss3_maskz:
12784   case X86::BI__builtin_ia32_vfmaddsd3_maskz:
12785     return EmitScalarFMAExpr(*this, E, Ops, Ops[0], /*ZeroMask*/ true);
12786   case X86::BI__builtin_ia32_vfmaddss3_mask3:
12787   case X86::BI__builtin_ia32_vfmaddsd3_mask3:
12788     return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2);
12789   case X86::BI__builtin_ia32_vfmsubss3_mask3:
12790   case X86::BI__builtin_ia32_vfmsubsd3_mask3:
12791     return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2,
12792                              /*NegAcc*/ true);
12793   case X86::BI__builtin_ia32_vfmaddps:
12794   case X86::BI__builtin_ia32_vfmaddpd:
12795   case X86::BI__builtin_ia32_vfmaddps256:
12796   case X86::BI__builtin_ia32_vfmaddpd256:
12797   case X86::BI__builtin_ia32_vfmaddps512_mask:
12798   case X86::BI__builtin_ia32_vfmaddps512_maskz:
12799   case X86::BI__builtin_ia32_vfmaddps512_mask3:
12800   case X86::BI__builtin_ia32_vfmsubps512_mask3:
12801   case X86::BI__builtin_ia32_vfmaddpd512_mask:
12802   case X86::BI__builtin_ia32_vfmaddpd512_maskz:
12803   case X86::BI__builtin_ia32_vfmaddpd512_mask3:
12804   case X86::BI__builtin_ia32_vfmsubpd512_mask3:
12805     return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ false);
12806   case X86::BI__builtin_ia32_vfmaddsubps512_mask:
12807   case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
12808   case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
12809   case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
12810   case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
12811   case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
12812   case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
12813   case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
12814     return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ true);
12815 
12816   case X86::BI__builtin_ia32_movdqa32store128_mask:
12817   case X86::BI__builtin_ia32_movdqa64store128_mask:
12818   case X86::BI__builtin_ia32_storeaps128_mask:
12819   case X86::BI__builtin_ia32_storeapd128_mask:
12820   case X86::BI__builtin_ia32_movdqa32store256_mask:
12821   case X86::BI__builtin_ia32_movdqa64store256_mask:
12822   case X86::BI__builtin_ia32_storeaps256_mask:
12823   case X86::BI__builtin_ia32_storeapd256_mask:
12824   case X86::BI__builtin_ia32_movdqa32store512_mask:
12825   case X86::BI__builtin_ia32_movdqa64store512_mask:
12826   case X86::BI__builtin_ia32_storeaps512_mask:
12827   case X86::BI__builtin_ia32_storeapd512_mask:
12828     return EmitX86MaskedStore(
12829         *this, Ops,
12830         getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
12831 
12832   case X86::BI__builtin_ia32_loadups128_mask:
12833   case X86::BI__builtin_ia32_loadups256_mask:
12834   case X86::BI__builtin_ia32_loadups512_mask:
12835   case X86::BI__builtin_ia32_loadupd128_mask:
12836   case X86::BI__builtin_ia32_loadupd256_mask:
12837   case X86::BI__builtin_ia32_loadupd512_mask:
12838   case X86::BI__builtin_ia32_loaddquqi128_mask:
12839   case X86::BI__builtin_ia32_loaddquqi256_mask:
12840   case X86::BI__builtin_ia32_loaddquqi512_mask:
12841   case X86::BI__builtin_ia32_loaddquhi128_mask:
12842   case X86::BI__builtin_ia32_loaddquhi256_mask:
12843   case X86::BI__builtin_ia32_loaddquhi512_mask:
12844   case X86::BI__builtin_ia32_loaddqusi128_mask:
12845   case X86::BI__builtin_ia32_loaddqusi256_mask:
12846   case X86::BI__builtin_ia32_loaddqusi512_mask:
12847   case X86::BI__builtin_ia32_loaddqudi128_mask:
12848   case X86::BI__builtin_ia32_loaddqudi256_mask:
12849   case X86::BI__builtin_ia32_loaddqudi512_mask:
12850     return EmitX86MaskedLoad(*this, Ops, Align(1));
12851 
12852   case X86::BI__builtin_ia32_loadss128_mask:
12853   case X86::BI__builtin_ia32_loadsd128_mask:
12854     return EmitX86MaskedLoad(*this, Ops, Align(1));
12855 
12856   case X86::BI__builtin_ia32_loadaps128_mask:
12857   case X86::BI__builtin_ia32_loadaps256_mask:
12858   case X86::BI__builtin_ia32_loadaps512_mask:
12859   case X86::BI__builtin_ia32_loadapd128_mask:
12860   case X86::BI__builtin_ia32_loadapd256_mask:
12861   case X86::BI__builtin_ia32_loadapd512_mask:
12862   case X86::BI__builtin_ia32_movdqa32load128_mask:
12863   case X86::BI__builtin_ia32_movdqa32load256_mask:
12864   case X86::BI__builtin_ia32_movdqa32load512_mask:
12865   case X86::BI__builtin_ia32_movdqa64load128_mask:
12866   case X86::BI__builtin_ia32_movdqa64load256_mask:
12867   case X86::BI__builtin_ia32_movdqa64load512_mask:
12868     return EmitX86MaskedLoad(
12869         *this, Ops,
12870         getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
12871 
12872   case X86::BI__builtin_ia32_expandloaddf128_mask:
12873   case X86::BI__builtin_ia32_expandloaddf256_mask:
12874   case X86::BI__builtin_ia32_expandloaddf512_mask:
12875   case X86::BI__builtin_ia32_expandloadsf128_mask:
12876   case X86::BI__builtin_ia32_expandloadsf256_mask:
12877   case X86::BI__builtin_ia32_expandloadsf512_mask:
12878   case X86::BI__builtin_ia32_expandloaddi128_mask:
12879   case X86::BI__builtin_ia32_expandloaddi256_mask:
12880   case X86::BI__builtin_ia32_expandloaddi512_mask:
12881   case X86::BI__builtin_ia32_expandloadsi128_mask:
12882   case X86::BI__builtin_ia32_expandloadsi256_mask:
12883   case X86::BI__builtin_ia32_expandloadsi512_mask:
12884   case X86::BI__builtin_ia32_expandloadhi128_mask:
12885   case X86::BI__builtin_ia32_expandloadhi256_mask:
12886   case X86::BI__builtin_ia32_expandloadhi512_mask:
12887   case X86::BI__builtin_ia32_expandloadqi128_mask:
12888   case X86::BI__builtin_ia32_expandloadqi256_mask:
12889   case X86::BI__builtin_ia32_expandloadqi512_mask:
12890     return EmitX86ExpandLoad(*this, Ops);
12891 
12892   case X86::BI__builtin_ia32_compressstoredf128_mask:
12893   case X86::BI__builtin_ia32_compressstoredf256_mask:
12894   case X86::BI__builtin_ia32_compressstoredf512_mask:
12895   case X86::BI__builtin_ia32_compressstoresf128_mask:
12896   case X86::BI__builtin_ia32_compressstoresf256_mask:
12897   case X86::BI__builtin_ia32_compressstoresf512_mask:
12898   case X86::BI__builtin_ia32_compressstoredi128_mask:
12899   case X86::BI__builtin_ia32_compressstoredi256_mask:
12900   case X86::BI__builtin_ia32_compressstoredi512_mask:
12901   case X86::BI__builtin_ia32_compressstoresi128_mask:
12902   case X86::BI__builtin_ia32_compressstoresi256_mask:
12903   case X86::BI__builtin_ia32_compressstoresi512_mask:
12904   case X86::BI__builtin_ia32_compressstorehi128_mask:
12905   case X86::BI__builtin_ia32_compressstorehi256_mask:
12906   case X86::BI__builtin_ia32_compressstorehi512_mask:
12907   case X86::BI__builtin_ia32_compressstoreqi128_mask:
12908   case X86::BI__builtin_ia32_compressstoreqi256_mask:
12909   case X86::BI__builtin_ia32_compressstoreqi512_mask:
12910     return EmitX86CompressStore(*this, Ops);
12911 
12912   case X86::BI__builtin_ia32_expanddf128_mask:
12913   case X86::BI__builtin_ia32_expanddf256_mask:
12914   case X86::BI__builtin_ia32_expanddf512_mask:
12915   case X86::BI__builtin_ia32_expandsf128_mask:
12916   case X86::BI__builtin_ia32_expandsf256_mask:
12917   case X86::BI__builtin_ia32_expandsf512_mask:
12918   case X86::BI__builtin_ia32_expanddi128_mask:
12919   case X86::BI__builtin_ia32_expanddi256_mask:
12920   case X86::BI__builtin_ia32_expanddi512_mask:
12921   case X86::BI__builtin_ia32_expandsi128_mask:
12922   case X86::BI__builtin_ia32_expandsi256_mask:
12923   case X86::BI__builtin_ia32_expandsi512_mask:
12924   case X86::BI__builtin_ia32_expandhi128_mask:
12925   case X86::BI__builtin_ia32_expandhi256_mask:
12926   case X86::BI__builtin_ia32_expandhi512_mask:
12927   case X86::BI__builtin_ia32_expandqi128_mask:
12928   case X86::BI__builtin_ia32_expandqi256_mask:
12929   case X86::BI__builtin_ia32_expandqi512_mask:
12930     return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false);
12931 
12932   case X86::BI__builtin_ia32_compressdf128_mask:
12933   case X86::BI__builtin_ia32_compressdf256_mask:
12934   case X86::BI__builtin_ia32_compressdf512_mask:
12935   case X86::BI__builtin_ia32_compresssf128_mask:
12936   case X86::BI__builtin_ia32_compresssf256_mask:
12937   case X86::BI__builtin_ia32_compresssf512_mask:
12938   case X86::BI__builtin_ia32_compressdi128_mask:
12939   case X86::BI__builtin_ia32_compressdi256_mask:
12940   case X86::BI__builtin_ia32_compressdi512_mask:
12941   case X86::BI__builtin_ia32_compresssi128_mask:
12942   case X86::BI__builtin_ia32_compresssi256_mask:
12943   case X86::BI__builtin_ia32_compresssi512_mask:
12944   case X86::BI__builtin_ia32_compresshi128_mask:
12945   case X86::BI__builtin_ia32_compresshi256_mask:
12946   case X86::BI__builtin_ia32_compresshi512_mask:
12947   case X86::BI__builtin_ia32_compressqi128_mask:
12948   case X86::BI__builtin_ia32_compressqi256_mask:
12949   case X86::BI__builtin_ia32_compressqi512_mask:
12950     return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true);
12951 
12952   case X86::BI__builtin_ia32_gather3div2df:
12953   case X86::BI__builtin_ia32_gather3div2di:
12954   case X86::BI__builtin_ia32_gather3div4df:
12955   case X86::BI__builtin_ia32_gather3div4di:
12956   case X86::BI__builtin_ia32_gather3div4sf:
12957   case X86::BI__builtin_ia32_gather3div4si:
12958   case X86::BI__builtin_ia32_gather3div8sf:
12959   case X86::BI__builtin_ia32_gather3div8si:
12960   case X86::BI__builtin_ia32_gather3siv2df:
12961   case X86::BI__builtin_ia32_gather3siv2di:
12962   case X86::BI__builtin_ia32_gather3siv4df:
12963   case X86::BI__builtin_ia32_gather3siv4di:
12964   case X86::BI__builtin_ia32_gather3siv4sf:
12965   case X86::BI__builtin_ia32_gather3siv4si:
12966   case X86::BI__builtin_ia32_gather3siv8sf:
12967   case X86::BI__builtin_ia32_gather3siv8si:
12968   case X86::BI__builtin_ia32_gathersiv8df:
12969   case X86::BI__builtin_ia32_gathersiv16sf:
12970   case X86::BI__builtin_ia32_gatherdiv8df:
12971   case X86::BI__builtin_ia32_gatherdiv16sf:
12972   case X86::BI__builtin_ia32_gathersiv8di:
12973   case X86::BI__builtin_ia32_gathersiv16si:
12974   case X86::BI__builtin_ia32_gatherdiv8di:
12975   case X86::BI__builtin_ia32_gatherdiv16si: {
12976     Intrinsic::ID IID;
12977     switch (BuiltinID) {
12978     default: llvm_unreachable("Unexpected builtin");
12979     case X86::BI__builtin_ia32_gather3div2df:
12980       IID = Intrinsic::x86_avx512_mask_gather3div2_df;
12981       break;
12982     case X86::BI__builtin_ia32_gather3div2di:
12983       IID = Intrinsic::x86_avx512_mask_gather3div2_di;
12984       break;
12985     case X86::BI__builtin_ia32_gather3div4df:
12986       IID = Intrinsic::x86_avx512_mask_gather3div4_df;
12987       break;
12988     case X86::BI__builtin_ia32_gather3div4di:
12989       IID = Intrinsic::x86_avx512_mask_gather3div4_di;
12990       break;
12991     case X86::BI__builtin_ia32_gather3div4sf:
12992       IID = Intrinsic::x86_avx512_mask_gather3div4_sf;
12993       break;
12994     case X86::BI__builtin_ia32_gather3div4si:
12995       IID = Intrinsic::x86_avx512_mask_gather3div4_si;
12996       break;
12997     case X86::BI__builtin_ia32_gather3div8sf:
12998       IID = Intrinsic::x86_avx512_mask_gather3div8_sf;
12999       break;
13000     case X86::BI__builtin_ia32_gather3div8si:
13001       IID = Intrinsic::x86_avx512_mask_gather3div8_si;
13002       break;
13003     case X86::BI__builtin_ia32_gather3siv2df:
13004       IID = Intrinsic::x86_avx512_mask_gather3siv2_df;
13005       break;
13006     case X86::BI__builtin_ia32_gather3siv2di:
13007       IID = Intrinsic::x86_avx512_mask_gather3siv2_di;
13008       break;
13009     case X86::BI__builtin_ia32_gather3siv4df:
13010       IID = Intrinsic::x86_avx512_mask_gather3siv4_df;
13011       break;
13012     case X86::BI__builtin_ia32_gather3siv4di:
13013       IID = Intrinsic::x86_avx512_mask_gather3siv4_di;
13014       break;
13015     case X86::BI__builtin_ia32_gather3siv4sf:
13016       IID = Intrinsic::x86_avx512_mask_gather3siv4_sf;
13017       break;
13018     case X86::BI__builtin_ia32_gather3siv4si:
13019       IID = Intrinsic::x86_avx512_mask_gather3siv4_si;
13020       break;
13021     case X86::BI__builtin_ia32_gather3siv8sf:
13022       IID = Intrinsic::x86_avx512_mask_gather3siv8_sf;
13023       break;
13024     case X86::BI__builtin_ia32_gather3siv8si:
13025       IID = Intrinsic::x86_avx512_mask_gather3siv8_si;
13026       break;
13027     case X86::BI__builtin_ia32_gathersiv8df:
13028       IID = Intrinsic::x86_avx512_mask_gather_dpd_512;
13029       break;
13030     case X86::BI__builtin_ia32_gathersiv16sf:
13031       IID = Intrinsic::x86_avx512_mask_gather_dps_512;
13032       break;
13033     case X86::BI__builtin_ia32_gatherdiv8df:
13034       IID = Intrinsic::x86_avx512_mask_gather_qpd_512;
13035       break;
13036     case X86::BI__builtin_ia32_gatherdiv16sf:
13037       IID = Intrinsic::x86_avx512_mask_gather_qps_512;
13038       break;
13039     case X86::BI__builtin_ia32_gathersiv8di:
13040       IID = Intrinsic::x86_avx512_mask_gather_dpq_512;
13041       break;
13042     case X86::BI__builtin_ia32_gathersiv16si:
13043       IID = Intrinsic::x86_avx512_mask_gather_dpi_512;
13044       break;
13045     case X86::BI__builtin_ia32_gatherdiv8di:
13046       IID = Intrinsic::x86_avx512_mask_gather_qpq_512;
13047       break;
13048     case X86::BI__builtin_ia32_gatherdiv16si:
13049       IID = Intrinsic::x86_avx512_mask_gather_qpi_512;
13050       break;
13051     }
13052 
13053     unsigned MinElts = std::min(
13054         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(),
13055         cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements());
13056     Ops[3] = getMaskVecValue(*this, Ops[3], MinElts);
13057     Function *Intr = CGM.getIntrinsic(IID);
13058     return Builder.CreateCall(Intr, Ops);
13059   }
13060 
13061   case X86::BI__builtin_ia32_scattersiv8df:
13062   case X86::BI__builtin_ia32_scattersiv16sf:
13063   case X86::BI__builtin_ia32_scatterdiv8df:
13064   case X86::BI__builtin_ia32_scatterdiv16sf:
13065   case X86::BI__builtin_ia32_scattersiv8di:
13066   case X86::BI__builtin_ia32_scattersiv16si:
13067   case X86::BI__builtin_ia32_scatterdiv8di:
13068   case X86::BI__builtin_ia32_scatterdiv16si:
13069   case X86::BI__builtin_ia32_scatterdiv2df:
13070   case X86::BI__builtin_ia32_scatterdiv2di:
13071   case X86::BI__builtin_ia32_scatterdiv4df:
13072   case X86::BI__builtin_ia32_scatterdiv4di:
13073   case X86::BI__builtin_ia32_scatterdiv4sf:
13074   case X86::BI__builtin_ia32_scatterdiv4si:
13075   case X86::BI__builtin_ia32_scatterdiv8sf:
13076   case X86::BI__builtin_ia32_scatterdiv8si:
13077   case X86::BI__builtin_ia32_scattersiv2df:
13078   case X86::BI__builtin_ia32_scattersiv2di:
13079   case X86::BI__builtin_ia32_scattersiv4df:
13080   case X86::BI__builtin_ia32_scattersiv4di:
13081   case X86::BI__builtin_ia32_scattersiv4sf:
13082   case X86::BI__builtin_ia32_scattersiv4si:
13083   case X86::BI__builtin_ia32_scattersiv8sf:
13084   case X86::BI__builtin_ia32_scattersiv8si: {
13085     Intrinsic::ID IID;
13086     switch (BuiltinID) {
13087     default: llvm_unreachable("Unexpected builtin");
13088     case X86::BI__builtin_ia32_scattersiv8df:
13089       IID = Intrinsic::x86_avx512_mask_scatter_dpd_512;
13090       break;
13091     case X86::BI__builtin_ia32_scattersiv16sf:
13092       IID = Intrinsic::x86_avx512_mask_scatter_dps_512;
13093       break;
13094     case X86::BI__builtin_ia32_scatterdiv8df:
13095       IID = Intrinsic::x86_avx512_mask_scatter_qpd_512;
13096       break;
13097     case X86::BI__builtin_ia32_scatterdiv16sf:
13098       IID = Intrinsic::x86_avx512_mask_scatter_qps_512;
13099       break;
13100     case X86::BI__builtin_ia32_scattersiv8di:
13101       IID = Intrinsic::x86_avx512_mask_scatter_dpq_512;
13102       break;
13103     case X86::BI__builtin_ia32_scattersiv16si:
13104       IID = Intrinsic::x86_avx512_mask_scatter_dpi_512;
13105       break;
13106     case X86::BI__builtin_ia32_scatterdiv8di:
13107       IID = Intrinsic::x86_avx512_mask_scatter_qpq_512;
13108       break;
13109     case X86::BI__builtin_ia32_scatterdiv16si:
13110       IID = Intrinsic::x86_avx512_mask_scatter_qpi_512;
13111       break;
13112     case X86::BI__builtin_ia32_scatterdiv2df:
13113       IID = Intrinsic::x86_avx512_mask_scatterdiv2_df;
13114       break;
13115     case X86::BI__builtin_ia32_scatterdiv2di:
13116       IID = Intrinsic::x86_avx512_mask_scatterdiv2_di;
13117       break;
13118     case X86::BI__builtin_ia32_scatterdiv4df:
13119       IID = Intrinsic::x86_avx512_mask_scatterdiv4_df;
13120       break;
13121     case X86::BI__builtin_ia32_scatterdiv4di:
13122       IID = Intrinsic::x86_avx512_mask_scatterdiv4_di;
13123       break;
13124     case X86::BI__builtin_ia32_scatterdiv4sf:
13125       IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf;
13126       break;
13127     case X86::BI__builtin_ia32_scatterdiv4si:
13128       IID = Intrinsic::x86_avx512_mask_scatterdiv4_si;
13129       break;
13130     case X86::BI__builtin_ia32_scatterdiv8sf:
13131       IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf;
13132       break;
13133     case X86::BI__builtin_ia32_scatterdiv8si:
13134       IID = Intrinsic::x86_avx512_mask_scatterdiv8_si;
13135       break;
13136     case X86::BI__builtin_ia32_scattersiv2df:
13137       IID = Intrinsic::x86_avx512_mask_scattersiv2_df;
13138       break;
13139     case X86::BI__builtin_ia32_scattersiv2di:
13140       IID = Intrinsic::x86_avx512_mask_scattersiv2_di;
13141       break;
13142     case X86::BI__builtin_ia32_scattersiv4df:
13143       IID = Intrinsic::x86_avx512_mask_scattersiv4_df;
13144       break;
13145     case X86::BI__builtin_ia32_scattersiv4di:
13146       IID = Intrinsic::x86_avx512_mask_scattersiv4_di;
13147       break;
13148     case X86::BI__builtin_ia32_scattersiv4sf:
13149       IID = Intrinsic::x86_avx512_mask_scattersiv4_sf;
13150       break;
13151     case X86::BI__builtin_ia32_scattersiv4si:
13152       IID = Intrinsic::x86_avx512_mask_scattersiv4_si;
13153       break;
13154     case X86::BI__builtin_ia32_scattersiv8sf:
13155       IID = Intrinsic::x86_avx512_mask_scattersiv8_sf;
13156       break;
13157     case X86::BI__builtin_ia32_scattersiv8si:
13158       IID = Intrinsic::x86_avx512_mask_scattersiv8_si;
13159       break;
13160     }
13161 
13162     unsigned MinElts = std::min(
13163         cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements(),
13164         cast<llvm::FixedVectorType>(Ops[3]->getType())->getNumElements());
13165     Ops[1] = getMaskVecValue(*this, Ops[1], MinElts);
13166     Function *Intr = CGM.getIntrinsic(IID);
13167     return Builder.CreateCall(Intr, Ops);
13168   }
13169 
13170   case X86::BI__builtin_ia32_vextractf128_pd256:
13171   case X86::BI__builtin_ia32_vextractf128_ps256:
13172   case X86::BI__builtin_ia32_vextractf128_si256:
13173   case X86::BI__builtin_ia32_extract128i256:
13174   case X86::BI__builtin_ia32_extractf64x4_mask:
13175   case X86::BI__builtin_ia32_extractf32x4_mask:
13176   case X86::BI__builtin_ia32_extracti64x4_mask:
13177   case X86::BI__builtin_ia32_extracti32x4_mask:
13178   case X86::BI__builtin_ia32_extractf32x8_mask:
13179   case X86::BI__builtin_ia32_extracti32x8_mask:
13180   case X86::BI__builtin_ia32_extractf32x4_256_mask:
13181   case X86::BI__builtin_ia32_extracti32x4_256_mask:
13182   case X86::BI__builtin_ia32_extractf64x2_256_mask:
13183   case X86::BI__builtin_ia32_extracti64x2_256_mask:
13184   case X86::BI__builtin_ia32_extractf64x2_512_mask:
13185   case X86::BI__builtin_ia32_extracti64x2_512_mask: {
13186     auto *DstTy = cast<llvm::FixedVectorType>(ConvertType(E->getType()));
13187     unsigned NumElts = DstTy->getNumElements();
13188     unsigned SrcNumElts =
13189         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13190     unsigned SubVectors = SrcNumElts / NumElts;
13191     unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue();
13192     assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
13193     Index &= SubVectors - 1; // Remove any extra bits.
13194     Index *= NumElts;
13195 
13196     int Indices[16];
13197     for (unsigned i = 0; i != NumElts; ++i)
13198       Indices[i] = i + Index;
13199 
13200     Value *Res = Builder.CreateShuffleVector(Ops[0],
13201                                              makeArrayRef(Indices, NumElts),
13202                                              "extract");
13203 
13204     if (Ops.size() == 4)
13205       Res = EmitX86Select(*this, Ops[3], Res, Ops[2]);
13206 
13207     return Res;
13208   }
13209   case X86::BI__builtin_ia32_vinsertf128_pd256:
13210   case X86::BI__builtin_ia32_vinsertf128_ps256:
13211   case X86::BI__builtin_ia32_vinsertf128_si256:
13212   case X86::BI__builtin_ia32_insert128i256:
13213   case X86::BI__builtin_ia32_insertf64x4:
13214   case X86::BI__builtin_ia32_insertf32x4:
13215   case X86::BI__builtin_ia32_inserti64x4:
13216   case X86::BI__builtin_ia32_inserti32x4:
13217   case X86::BI__builtin_ia32_insertf32x8:
13218   case X86::BI__builtin_ia32_inserti32x8:
13219   case X86::BI__builtin_ia32_insertf32x4_256:
13220   case X86::BI__builtin_ia32_inserti32x4_256:
13221   case X86::BI__builtin_ia32_insertf64x2_256:
13222   case X86::BI__builtin_ia32_inserti64x2_256:
13223   case X86::BI__builtin_ia32_insertf64x2_512:
13224   case X86::BI__builtin_ia32_inserti64x2_512: {
13225     unsigned DstNumElts =
13226         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13227     unsigned SrcNumElts =
13228         cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements();
13229     unsigned SubVectors = DstNumElts / SrcNumElts;
13230     unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
13231     assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
13232     Index &= SubVectors - 1; // Remove any extra bits.
13233     Index *= SrcNumElts;
13234 
13235     int Indices[16];
13236     for (unsigned i = 0; i != DstNumElts; ++i)
13237       Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i;
13238 
13239     Value *Op1 = Builder.CreateShuffleVector(Ops[1],
13240                                              makeArrayRef(Indices, DstNumElts),
13241                                              "widen");
13242 
13243     for (unsigned i = 0; i != DstNumElts; ++i) {
13244       if (i >= Index && i < (Index + SrcNumElts))
13245         Indices[i] = (i - Index) + DstNumElts;
13246       else
13247         Indices[i] = i;
13248     }
13249 
13250     return Builder.CreateShuffleVector(Ops[0], Op1,
13251                                        makeArrayRef(Indices, DstNumElts),
13252                                        "insert");
13253   }
13254   case X86::BI__builtin_ia32_pmovqd512_mask:
13255   case X86::BI__builtin_ia32_pmovwb512_mask: {
13256     Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType());
13257     return EmitX86Select(*this, Ops[2], Res, Ops[1]);
13258   }
13259   case X86::BI__builtin_ia32_pmovdb512_mask:
13260   case X86::BI__builtin_ia32_pmovdw512_mask:
13261   case X86::BI__builtin_ia32_pmovqw512_mask: {
13262     if (const auto *C = dyn_cast<Constant>(Ops[2]))
13263       if (C->isAllOnesValue())
13264         return Builder.CreateTrunc(Ops[0], Ops[1]->getType());
13265 
13266     Intrinsic::ID IID;
13267     switch (BuiltinID) {
13268     default: llvm_unreachable("Unsupported intrinsic!");
13269     case X86::BI__builtin_ia32_pmovdb512_mask:
13270       IID = Intrinsic::x86_avx512_mask_pmov_db_512;
13271       break;
13272     case X86::BI__builtin_ia32_pmovdw512_mask:
13273       IID = Intrinsic::x86_avx512_mask_pmov_dw_512;
13274       break;
13275     case X86::BI__builtin_ia32_pmovqw512_mask:
13276       IID = Intrinsic::x86_avx512_mask_pmov_qw_512;
13277       break;
13278     }
13279 
13280     Function *Intr = CGM.getIntrinsic(IID);
13281     return Builder.CreateCall(Intr, Ops);
13282   }
13283   case X86::BI__builtin_ia32_pblendw128:
13284   case X86::BI__builtin_ia32_blendpd:
13285   case X86::BI__builtin_ia32_blendps:
13286   case X86::BI__builtin_ia32_blendpd256:
13287   case X86::BI__builtin_ia32_blendps256:
13288   case X86::BI__builtin_ia32_pblendw256:
13289   case X86::BI__builtin_ia32_pblendd128:
13290   case X86::BI__builtin_ia32_pblendd256: {
13291     unsigned NumElts =
13292         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13293     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13294 
13295     int Indices[16];
13296     // If there are more than 8 elements, the immediate is used twice so make
13297     // sure we handle that.
13298     for (unsigned i = 0; i != NumElts; ++i)
13299       Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i;
13300 
13301     return Builder.CreateShuffleVector(Ops[0], Ops[1],
13302                                        makeArrayRef(Indices, NumElts),
13303                                        "blend");
13304   }
13305   case X86::BI__builtin_ia32_pshuflw:
13306   case X86::BI__builtin_ia32_pshuflw256:
13307   case X86::BI__builtin_ia32_pshuflw512: {
13308     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13309     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13310     unsigned NumElts = Ty->getNumElements();
13311 
13312     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13313     Imm = (Imm & 0xff) * 0x01010101;
13314 
13315     int Indices[32];
13316     for (unsigned l = 0; l != NumElts; l += 8) {
13317       for (unsigned i = 0; i != 4; ++i) {
13318         Indices[l + i] = l + (Imm & 3);
13319         Imm >>= 2;
13320       }
13321       for (unsigned i = 4; i != 8; ++i)
13322         Indices[l + i] = l + i;
13323     }
13324 
13325     return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13326                                        "pshuflw");
13327   }
13328   case X86::BI__builtin_ia32_pshufhw:
13329   case X86::BI__builtin_ia32_pshufhw256:
13330   case X86::BI__builtin_ia32_pshufhw512: {
13331     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13332     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13333     unsigned NumElts = Ty->getNumElements();
13334 
13335     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13336     Imm = (Imm & 0xff) * 0x01010101;
13337 
13338     int Indices[32];
13339     for (unsigned l = 0; l != NumElts; l += 8) {
13340       for (unsigned i = 0; i != 4; ++i)
13341         Indices[l + i] = l + i;
13342       for (unsigned i = 4; i != 8; ++i) {
13343         Indices[l + i] = l + 4 + (Imm & 3);
13344         Imm >>= 2;
13345       }
13346     }
13347 
13348     return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13349                                        "pshufhw");
13350   }
13351   case X86::BI__builtin_ia32_pshufd:
13352   case X86::BI__builtin_ia32_pshufd256:
13353   case X86::BI__builtin_ia32_pshufd512:
13354   case X86::BI__builtin_ia32_vpermilpd:
13355   case X86::BI__builtin_ia32_vpermilps:
13356   case X86::BI__builtin_ia32_vpermilpd256:
13357   case X86::BI__builtin_ia32_vpermilps256:
13358   case X86::BI__builtin_ia32_vpermilpd512:
13359   case X86::BI__builtin_ia32_vpermilps512: {
13360     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13361     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13362     unsigned NumElts = Ty->getNumElements();
13363     unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
13364     unsigned NumLaneElts = NumElts / NumLanes;
13365 
13366     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13367     Imm = (Imm & 0xff) * 0x01010101;
13368 
13369     int Indices[16];
13370     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
13371       for (unsigned i = 0; i != NumLaneElts; ++i) {
13372         Indices[i + l] = (Imm % NumLaneElts) + l;
13373         Imm /= NumLaneElts;
13374       }
13375     }
13376 
13377     return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13378                                        "permil");
13379   }
13380   case X86::BI__builtin_ia32_shufpd:
13381   case X86::BI__builtin_ia32_shufpd256:
13382   case X86::BI__builtin_ia32_shufpd512:
13383   case X86::BI__builtin_ia32_shufps:
13384   case X86::BI__builtin_ia32_shufps256:
13385   case X86::BI__builtin_ia32_shufps512: {
13386     uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13387     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13388     unsigned NumElts = Ty->getNumElements();
13389     unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
13390     unsigned NumLaneElts = NumElts / NumLanes;
13391 
13392     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13393     Imm = (Imm & 0xff) * 0x01010101;
13394 
13395     int Indices[16];
13396     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
13397       for (unsigned i = 0; i != NumLaneElts; ++i) {
13398         unsigned Index = Imm % NumLaneElts;
13399         Imm /= NumLaneElts;
13400         if (i >= (NumLaneElts / 2))
13401           Index += NumElts;
13402         Indices[l + i] = l + Index;
13403       }
13404     }
13405 
13406     return Builder.CreateShuffleVector(Ops[0], Ops[1],
13407                                        makeArrayRef(Indices, NumElts),
13408                                        "shufp");
13409   }
13410   case X86::BI__builtin_ia32_permdi256:
13411   case X86::BI__builtin_ia32_permdf256:
13412   case X86::BI__builtin_ia32_permdi512:
13413   case X86::BI__builtin_ia32_permdf512: {
13414     unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13415     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13416     unsigned NumElts = Ty->getNumElements();
13417 
13418     // These intrinsics operate on 256-bit lanes of four 64-bit elements.
13419     int Indices[8];
13420     for (unsigned l = 0; l != NumElts; l += 4)
13421       for (unsigned i = 0; i != 4; ++i)
13422         Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3);
13423 
13424     return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13425                                        "perm");
13426   }
13427   case X86::BI__builtin_ia32_palignr128:
13428   case X86::BI__builtin_ia32_palignr256:
13429   case X86::BI__builtin_ia32_palignr512: {
13430     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
13431 
13432     unsigned NumElts =
13433         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13434     assert(NumElts % 16 == 0);
13435 
13436     // If palignr is shifting the pair of vectors more than the size of two
13437     // lanes, emit zero.
13438     if (ShiftVal >= 32)
13439       return llvm::Constant::getNullValue(ConvertType(E->getType()));
13440 
13441     // If palignr is shifting the pair of input vectors more than one lane,
13442     // but less than two lanes, convert to shifting in zeroes.
13443     if (ShiftVal > 16) {
13444       ShiftVal -= 16;
13445       Ops[1] = Ops[0];
13446       Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
13447     }
13448 
13449     int Indices[64];
13450     // 256-bit palignr operates on 128-bit lanes so we need to handle that
13451     for (unsigned l = 0; l != NumElts; l += 16) {
13452       for (unsigned i = 0; i != 16; ++i) {
13453         unsigned Idx = ShiftVal + i;
13454         if (Idx >= 16)
13455           Idx += NumElts - 16; // End of lane, switch operand.
13456         Indices[l + i] = Idx + l;
13457       }
13458     }
13459 
13460     return Builder.CreateShuffleVector(Ops[1], Ops[0],
13461                                        makeArrayRef(Indices, NumElts),
13462                                        "palignr");
13463   }
13464   case X86::BI__builtin_ia32_alignd128:
13465   case X86::BI__builtin_ia32_alignd256:
13466   case X86::BI__builtin_ia32_alignd512:
13467   case X86::BI__builtin_ia32_alignq128:
13468   case X86::BI__builtin_ia32_alignq256:
13469   case X86::BI__builtin_ia32_alignq512: {
13470     unsigned NumElts =
13471         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13472     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
13473 
13474     // Mask the shift amount to width of a vector.
13475     ShiftVal &= NumElts - 1;
13476 
13477     int Indices[16];
13478     for (unsigned i = 0; i != NumElts; ++i)
13479       Indices[i] = i + ShiftVal;
13480 
13481     return Builder.CreateShuffleVector(Ops[1], Ops[0],
13482                                        makeArrayRef(Indices, NumElts),
13483                                        "valign");
13484   }
13485   case X86::BI__builtin_ia32_shuf_f32x4_256:
13486   case X86::BI__builtin_ia32_shuf_f64x2_256:
13487   case X86::BI__builtin_ia32_shuf_i32x4_256:
13488   case X86::BI__builtin_ia32_shuf_i64x2_256:
13489   case X86::BI__builtin_ia32_shuf_f32x4:
13490   case X86::BI__builtin_ia32_shuf_f64x2:
13491   case X86::BI__builtin_ia32_shuf_i32x4:
13492   case X86::BI__builtin_ia32_shuf_i64x2: {
13493     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13494     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13495     unsigned NumElts = Ty->getNumElements();
13496     unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2;
13497     unsigned NumLaneElts = NumElts / NumLanes;
13498 
13499     int Indices[16];
13500     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
13501       unsigned Index = (Imm % NumLanes) * NumLaneElts;
13502       Imm /= NumLanes; // Discard the bits we just used.
13503       if (l >= (NumElts / 2))
13504         Index += NumElts; // Switch to other source.
13505       for (unsigned i = 0; i != NumLaneElts; ++i) {
13506         Indices[l + i] = Index + i;
13507       }
13508     }
13509 
13510     return Builder.CreateShuffleVector(Ops[0], Ops[1],
13511                                        makeArrayRef(Indices, NumElts),
13512                                        "shuf");
13513   }
13514 
13515   case X86::BI__builtin_ia32_vperm2f128_pd256:
13516   case X86::BI__builtin_ia32_vperm2f128_ps256:
13517   case X86::BI__builtin_ia32_vperm2f128_si256:
13518   case X86::BI__builtin_ia32_permti256: {
13519     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13520     unsigned NumElts =
13521         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13522 
13523     // This takes a very simple approach since there are two lanes and a
13524     // shuffle can have 2 inputs. So we reserve the first input for the first
13525     // lane and the second input for the second lane. This may result in
13526     // duplicate sources, but this can be dealt with in the backend.
13527 
13528     Value *OutOps[2];
13529     int Indices[8];
13530     for (unsigned l = 0; l != 2; ++l) {
13531       // Determine the source for this lane.
13532       if (Imm & (1 << ((l * 4) + 3)))
13533         OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType());
13534       else if (Imm & (1 << ((l * 4) + 1)))
13535         OutOps[l] = Ops[1];
13536       else
13537         OutOps[l] = Ops[0];
13538 
13539       for (unsigned i = 0; i != NumElts/2; ++i) {
13540         // Start with ith element of the source for this lane.
13541         unsigned Idx = (l * NumElts) + i;
13542         // If bit 0 of the immediate half is set, switch to the high half of
13543         // the source.
13544         if (Imm & (1 << (l * 4)))
13545           Idx += NumElts/2;
13546         Indices[(l * (NumElts/2)) + i] = Idx;
13547       }
13548     }
13549 
13550     return Builder.CreateShuffleVector(OutOps[0], OutOps[1],
13551                                        makeArrayRef(Indices, NumElts),
13552                                        "vperm");
13553   }
13554 
13555   case X86::BI__builtin_ia32_pslldqi128_byteshift:
13556   case X86::BI__builtin_ia32_pslldqi256_byteshift:
13557   case X86::BI__builtin_ia32_pslldqi512_byteshift: {
13558     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13559     auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
13560     // Builtin type is vXi64 so multiply by 8 to get bytes.
13561     unsigned NumElts = ResultType->getNumElements() * 8;
13562 
13563     // If pslldq is shifting the vector more than 15 bytes, emit zero.
13564     if (ShiftVal >= 16)
13565       return llvm::Constant::getNullValue(ResultType);
13566 
13567     int Indices[64];
13568     // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that
13569     for (unsigned l = 0; l != NumElts; l += 16) {
13570       for (unsigned i = 0; i != 16; ++i) {
13571         unsigned Idx = NumElts + i - ShiftVal;
13572         if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand.
13573         Indices[l + i] = Idx + l;
13574       }
13575     }
13576 
13577     auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
13578     Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
13579     Value *Zero = llvm::Constant::getNullValue(VecTy);
13580     Value *SV = Builder.CreateShuffleVector(Zero, Cast,
13581                                             makeArrayRef(Indices, NumElts),
13582                                             "pslldq");
13583     return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast");
13584   }
13585   case X86::BI__builtin_ia32_psrldqi128_byteshift:
13586   case X86::BI__builtin_ia32_psrldqi256_byteshift:
13587   case X86::BI__builtin_ia32_psrldqi512_byteshift: {
13588     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13589     auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
13590     // Builtin type is vXi64 so multiply by 8 to get bytes.
13591     unsigned NumElts = ResultType->getNumElements() * 8;
13592 
13593     // If psrldq is shifting the vector more than 15 bytes, emit zero.
13594     if (ShiftVal >= 16)
13595       return llvm::Constant::getNullValue(ResultType);
13596 
13597     int Indices[64];
13598     // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that
13599     for (unsigned l = 0; l != NumElts; l += 16) {
13600       for (unsigned i = 0; i != 16; ++i) {
13601         unsigned Idx = i + ShiftVal;
13602         if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand.
13603         Indices[l + i] = Idx + l;
13604       }
13605     }
13606 
13607     auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
13608     Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
13609     Value *Zero = llvm::Constant::getNullValue(VecTy);
13610     Value *SV = Builder.CreateShuffleVector(Cast, Zero,
13611                                             makeArrayRef(Indices, NumElts),
13612                                             "psrldq");
13613     return Builder.CreateBitCast(SV, ResultType, "cast");
13614   }
13615   case X86::BI__builtin_ia32_kshiftliqi:
13616   case X86::BI__builtin_ia32_kshiftlihi:
13617   case X86::BI__builtin_ia32_kshiftlisi:
13618   case X86::BI__builtin_ia32_kshiftlidi: {
13619     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13620     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13621 
13622     if (ShiftVal >= NumElts)
13623       return llvm::Constant::getNullValue(Ops[0]->getType());
13624 
13625     Value *In = getMaskVecValue(*this, Ops[0], NumElts);
13626 
13627     int Indices[64];
13628     for (unsigned i = 0; i != NumElts; ++i)
13629       Indices[i] = NumElts + i - ShiftVal;
13630 
13631     Value *Zero = llvm::Constant::getNullValue(In->getType());
13632     Value *SV = Builder.CreateShuffleVector(Zero, In,
13633                                             makeArrayRef(Indices, NumElts),
13634                                             "kshiftl");
13635     return Builder.CreateBitCast(SV, Ops[0]->getType());
13636   }
13637   case X86::BI__builtin_ia32_kshiftriqi:
13638   case X86::BI__builtin_ia32_kshiftrihi:
13639   case X86::BI__builtin_ia32_kshiftrisi:
13640   case X86::BI__builtin_ia32_kshiftridi: {
13641     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13642     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13643 
13644     if (ShiftVal >= NumElts)
13645       return llvm::Constant::getNullValue(Ops[0]->getType());
13646 
13647     Value *In = getMaskVecValue(*this, Ops[0], NumElts);
13648 
13649     int Indices[64];
13650     for (unsigned i = 0; i != NumElts; ++i)
13651       Indices[i] = i + ShiftVal;
13652 
13653     Value *Zero = llvm::Constant::getNullValue(In->getType());
13654     Value *SV = Builder.CreateShuffleVector(In, Zero,
13655                                             makeArrayRef(Indices, NumElts),
13656                                             "kshiftr");
13657     return Builder.CreateBitCast(SV, Ops[0]->getType());
13658   }
13659   case X86::BI__builtin_ia32_movnti:
13660   case X86::BI__builtin_ia32_movnti64:
13661   case X86::BI__builtin_ia32_movntsd:
13662   case X86::BI__builtin_ia32_movntss: {
13663     llvm::MDNode *Node = llvm::MDNode::get(
13664         getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
13665 
13666     Value *Ptr = Ops[0];
13667     Value *Src = Ops[1];
13668 
13669     // Extract the 0'th element of the source vector.
13670     if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
13671         BuiltinID == X86::BI__builtin_ia32_movntss)
13672       Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
13673 
13674     // Convert the type of the pointer to a pointer to the stored type.
13675     Value *BC = Builder.CreateBitCast(
13676         Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast");
13677 
13678     // Unaligned nontemporal store of the scalar value.
13679     StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC);
13680     SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
13681     SI->setAlignment(llvm::Align(1));
13682     return SI;
13683   }
13684   // Rotate is a special case of funnel shift - 1st 2 args are the same.
13685   case X86::BI__builtin_ia32_vprotb:
13686   case X86::BI__builtin_ia32_vprotw:
13687   case X86::BI__builtin_ia32_vprotd:
13688   case X86::BI__builtin_ia32_vprotq:
13689   case X86::BI__builtin_ia32_vprotbi:
13690   case X86::BI__builtin_ia32_vprotwi:
13691   case X86::BI__builtin_ia32_vprotdi:
13692   case X86::BI__builtin_ia32_vprotqi:
13693   case X86::BI__builtin_ia32_prold128:
13694   case X86::BI__builtin_ia32_prold256:
13695   case X86::BI__builtin_ia32_prold512:
13696   case X86::BI__builtin_ia32_prolq128:
13697   case X86::BI__builtin_ia32_prolq256:
13698   case X86::BI__builtin_ia32_prolq512:
13699   case X86::BI__builtin_ia32_prolvd128:
13700   case X86::BI__builtin_ia32_prolvd256:
13701   case X86::BI__builtin_ia32_prolvd512:
13702   case X86::BI__builtin_ia32_prolvq128:
13703   case X86::BI__builtin_ia32_prolvq256:
13704   case X86::BI__builtin_ia32_prolvq512:
13705     return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false);
13706   case X86::BI__builtin_ia32_prord128:
13707   case X86::BI__builtin_ia32_prord256:
13708   case X86::BI__builtin_ia32_prord512:
13709   case X86::BI__builtin_ia32_prorq128:
13710   case X86::BI__builtin_ia32_prorq256:
13711   case X86::BI__builtin_ia32_prorq512:
13712   case X86::BI__builtin_ia32_prorvd128:
13713   case X86::BI__builtin_ia32_prorvd256:
13714   case X86::BI__builtin_ia32_prorvd512:
13715   case X86::BI__builtin_ia32_prorvq128:
13716   case X86::BI__builtin_ia32_prorvq256:
13717   case X86::BI__builtin_ia32_prorvq512:
13718     return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true);
13719   case X86::BI__builtin_ia32_selectb_128:
13720   case X86::BI__builtin_ia32_selectb_256:
13721   case X86::BI__builtin_ia32_selectb_512:
13722   case X86::BI__builtin_ia32_selectw_128:
13723   case X86::BI__builtin_ia32_selectw_256:
13724   case X86::BI__builtin_ia32_selectw_512:
13725   case X86::BI__builtin_ia32_selectd_128:
13726   case X86::BI__builtin_ia32_selectd_256:
13727   case X86::BI__builtin_ia32_selectd_512:
13728   case X86::BI__builtin_ia32_selectq_128:
13729   case X86::BI__builtin_ia32_selectq_256:
13730   case X86::BI__builtin_ia32_selectq_512:
13731   case X86::BI__builtin_ia32_selectps_128:
13732   case X86::BI__builtin_ia32_selectps_256:
13733   case X86::BI__builtin_ia32_selectps_512:
13734   case X86::BI__builtin_ia32_selectpd_128:
13735   case X86::BI__builtin_ia32_selectpd_256:
13736   case X86::BI__builtin_ia32_selectpd_512:
13737     return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
13738   case X86::BI__builtin_ia32_selectss_128:
13739   case X86::BI__builtin_ia32_selectsd_128: {
13740     Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
13741     Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
13742     A = EmitX86ScalarSelect(*this, Ops[0], A, B);
13743     return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0);
13744   }
13745   case X86::BI__builtin_ia32_cmpb128_mask:
13746   case X86::BI__builtin_ia32_cmpb256_mask:
13747   case X86::BI__builtin_ia32_cmpb512_mask:
13748   case X86::BI__builtin_ia32_cmpw128_mask:
13749   case X86::BI__builtin_ia32_cmpw256_mask:
13750   case X86::BI__builtin_ia32_cmpw512_mask:
13751   case X86::BI__builtin_ia32_cmpd128_mask:
13752   case X86::BI__builtin_ia32_cmpd256_mask:
13753   case X86::BI__builtin_ia32_cmpd512_mask:
13754   case X86::BI__builtin_ia32_cmpq128_mask:
13755   case X86::BI__builtin_ia32_cmpq256_mask:
13756   case X86::BI__builtin_ia32_cmpq512_mask: {
13757     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
13758     return EmitX86MaskedCompare(*this, CC, true, Ops);
13759   }
13760   case X86::BI__builtin_ia32_ucmpb128_mask:
13761   case X86::BI__builtin_ia32_ucmpb256_mask:
13762   case X86::BI__builtin_ia32_ucmpb512_mask:
13763   case X86::BI__builtin_ia32_ucmpw128_mask:
13764   case X86::BI__builtin_ia32_ucmpw256_mask:
13765   case X86::BI__builtin_ia32_ucmpw512_mask:
13766   case X86::BI__builtin_ia32_ucmpd128_mask:
13767   case X86::BI__builtin_ia32_ucmpd256_mask:
13768   case X86::BI__builtin_ia32_ucmpd512_mask:
13769   case X86::BI__builtin_ia32_ucmpq128_mask:
13770   case X86::BI__builtin_ia32_ucmpq256_mask:
13771   case X86::BI__builtin_ia32_ucmpq512_mask: {
13772     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
13773     return EmitX86MaskedCompare(*this, CC, false, Ops);
13774   }
13775   case X86::BI__builtin_ia32_vpcomb:
13776   case X86::BI__builtin_ia32_vpcomw:
13777   case X86::BI__builtin_ia32_vpcomd:
13778   case X86::BI__builtin_ia32_vpcomq:
13779     return EmitX86vpcom(*this, Ops, true);
13780   case X86::BI__builtin_ia32_vpcomub:
13781   case X86::BI__builtin_ia32_vpcomuw:
13782   case X86::BI__builtin_ia32_vpcomud:
13783   case X86::BI__builtin_ia32_vpcomuq:
13784     return EmitX86vpcom(*this, Ops, false);
13785 
13786   case X86::BI__builtin_ia32_kortestcqi:
13787   case X86::BI__builtin_ia32_kortestchi:
13788   case X86::BI__builtin_ia32_kortestcsi:
13789   case X86::BI__builtin_ia32_kortestcdi: {
13790     Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
13791     Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType());
13792     Value *Cmp = Builder.CreateICmpEQ(Or, C);
13793     return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
13794   }
13795   case X86::BI__builtin_ia32_kortestzqi:
13796   case X86::BI__builtin_ia32_kortestzhi:
13797   case X86::BI__builtin_ia32_kortestzsi:
13798   case X86::BI__builtin_ia32_kortestzdi: {
13799     Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
13800     Value *C = llvm::Constant::getNullValue(Ops[0]->getType());
13801     Value *Cmp = Builder.CreateICmpEQ(Or, C);
13802     return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
13803   }
13804 
13805   case X86::BI__builtin_ia32_ktestcqi:
13806   case X86::BI__builtin_ia32_ktestzqi:
13807   case X86::BI__builtin_ia32_ktestchi:
13808   case X86::BI__builtin_ia32_ktestzhi:
13809   case X86::BI__builtin_ia32_ktestcsi:
13810   case X86::BI__builtin_ia32_ktestzsi:
13811   case X86::BI__builtin_ia32_ktestcdi:
13812   case X86::BI__builtin_ia32_ktestzdi: {
13813     Intrinsic::ID IID;
13814     switch (BuiltinID) {
13815     default: llvm_unreachable("Unsupported intrinsic!");
13816     case X86::BI__builtin_ia32_ktestcqi:
13817       IID = Intrinsic::x86_avx512_ktestc_b;
13818       break;
13819     case X86::BI__builtin_ia32_ktestzqi:
13820       IID = Intrinsic::x86_avx512_ktestz_b;
13821       break;
13822     case X86::BI__builtin_ia32_ktestchi:
13823       IID = Intrinsic::x86_avx512_ktestc_w;
13824       break;
13825     case X86::BI__builtin_ia32_ktestzhi:
13826       IID = Intrinsic::x86_avx512_ktestz_w;
13827       break;
13828     case X86::BI__builtin_ia32_ktestcsi:
13829       IID = Intrinsic::x86_avx512_ktestc_d;
13830       break;
13831     case X86::BI__builtin_ia32_ktestzsi:
13832       IID = Intrinsic::x86_avx512_ktestz_d;
13833       break;
13834     case X86::BI__builtin_ia32_ktestcdi:
13835       IID = Intrinsic::x86_avx512_ktestc_q;
13836       break;
13837     case X86::BI__builtin_ia32_ktestzdi:
13838       IID = Intrinsic::x86_avx512_ktestz_q;
13839       break;
13840     }
13841 
13842     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13843     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
13844     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
13845     Function *Intr = CGM.getIntrinsic(IID);
13846     return Builder.CreateCall(Intr, {LHS, RHS});
13847   }
13848 
13849   case X86::BI__builtin_ia32_kaddqi:
13850   case X86::BI__builtin_ia32_kaddhi:
13851   case X86::BI__builtin_ia32_kaddsi:
13852   case X86::BI__builtin_ia32_kadddi: {
13853     Intrinsic::ID IID;
13854     switch (BuiltinID) {
13855     default: llvm_unreachable("Unsupported intrinsic!");
13856     case X86::BI__builtin_ia32_kaddqi:
13857       IID = Intrinsic::x86_avx512_kadd_b;
13858       break;
13859     case X86::BI__builtin_ia32_kaddhi:
13860       IID = Intrinsic::x86_avx512_kadd_w;
13861       break;
13862     case X86::BI__builtin_ia32_kaddsi:
13863       IID = Intrinsic::x86_avx512_kadd_d;
13864       break;
13865     case X86::BI__builtin_ia32_kadddi:
13866       IID = Intrinsic::x86_avx512_kadd_q;
13867       break;
13868     }
13869 
13870     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13871     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
13872     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
13873     Function *Intr = CGM.getIntrinsic(IID);
13874     Value *Res = Builder.CreateCall(Intr, {LHS, RHS});
13875     return Builder.CreateBitCast(Res, Ops[0]->getType());
13876   }
13877   case X86::BI__builtin_ia32_kandqi:
13878   case X86::BI__builtin_ia32_kandhi:
13879   case X86::BI__builtin_ia32_kandsi:
13880   case X86::BI__builtin_ia32_kanddi:
13881     return EmitX86MaskLogic(*this, Instruction::And, Ops);
13882   case X86::BI__builtin_ia32_kandnqi:
13883   case X86::BI__builtin_ia32_kandnhi:
13884   case X86::BI__builtin_ia32_kandnsi:
13885   case X86::BI__builtin_ia32_kandndi:
13886     return EmitX86MaskLogic(*this, Instruction::And, Ops, true);
13887   case X86::BI__builtin_ia32_korqi:
13888   case X86::BI__builtin_ia32_korhi:
13889   case X86::BI__builtin_ia32_korsi:
13890   case X86::BI__builtin_ia32_kordi:
13891     return EmitX86MaskLogic(*this, Instruction::Or, Ops);
13892   case X86::BI__builtin_ia32_kxnorqi:
13893   case X86::BI__builtin_ia32_kxnorhi:
13894   case X86::BI__builtin_ia32_kxnorsi:
13895   case X86::BI__builtin_ia32_kxnordi:
13896     return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true);
13897   case X86::BI__builtin_ia32_kxorqi:
13898   case X86::BI__builtin_ia32_kxorhi:
13899   case X86::BI__builtin_ia32_kxorsi:
13900   case X86::BI__builtin_ia32_kxordi:
13901     return EmitX86MaskLogic(*this, Instruction::Xor,  Ops);
13902   case X86::BI__builtin_ia32_knotqi:
13903   case X86::BI__builtin_ia32_knothi:
13904   case X86::BI__builtin_ia32_knotsi:
13905   case X86::BI__builtin_ia32_knotdi: {
13906     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13907     Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
13908     return Builder.CreateBitCast(Builder.CreateNot(Res),
13909                                  Ops[0]->getType());
13910   }
13911   case X86::BI__builtin_ia32_kmovb:
13912   case X86::BI__builtin_ia32_kmovw:
13913   case X86::BI__builtin_ia32_kmovd:
13914   case X86::BI__builtin_ia32_kmovq: {
13915     // Bitcast to vXi1 type and then back to integer. This gets the mask
13916     // register type into the IR, but might be optimized out depending on
13917     // what's around it.
13918     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13919     Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
13920     return Builder.CreateBitCast(Res, Ops[0]->getType());
13921   }
13922 
13923   case X86::BI__builtin_ia32_kunpckdi:
13924   case X86::BI__builtin_ia32_kunpcksi:
13925   case X86::BI__builtin_ia32_kunpckhi: {
13926     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13927     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
13928     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
13929     int Indices[64];
13930     for (unsigned i = 0; i != NumElts; ++i)
13931       Indices[i] = i;
13932 
13933     // First extract half of each vector. This gives better codegen than
13934     // doing it in a single shuffle.
13935     LHS = Builder.CreateShuffleVector(LHS, LHS,
13936                                       makeArrayRef(Indices, NumElts / 2));
13937     RHS = Builder.CreateShuffleVector(RHS, RHS,
13938                                       makeArrayRef(Indices, NumElts / 2));
13939     // Concat the vectors.
13940     // NOTE: Operands are swapped to match the intrinsic definition.
13941     Value *Res = Builder.CreateShuffleVector(RHS, LHS,
13942                                              makeArrayRef(Indices, NumElts));
13943     return Builder.CreateBitCast(Res, Ops[0]->getType());
13944   }
13945 
13946   case X86::BI__builtin_ia32_vplzcntd_128:
13947   case X86::BI__builtin_ia32_vplzcntd_256:
13948   case X86::BI__builtin_ia32_vplzcntd_512:
13949   case X86::BI__builtin_ia32_vplzcntq_128:
13950   case X86::BI__builtin_ia32_vplzcntq_256:
13951   case X86::BI__builtin_ia32_vplzcntq_512: {
13952     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
13953     return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)});
13954   }
13955   case X86::BI__builtin_ia32_sqrtss:
13956   case X86::BI__builtin_ia32_sqrtsd: {
13957     Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0);
13958     Function *F;
13959     if (Builder.getIsFPConstrained()) {
13960       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
13961       F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
13962                            A->getType());
13963       A = Builder.CreateConstrainedFPCall(F, {A});
13964     } else {
13965       F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
13966       A = Builder.CreateCall(F, {A});
13967     }
13968     return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
13969   }
13970   case X86::BI__builtin_ia32_sqrtsd_round_mask:
13971   case X86::BI__builtin_ia32_sqrtss_round_mask: {
13972     unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
13973     // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
13974     // otherwise keep the intrinsic.
13975     if (CC != 4) {
13976       Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtsd_round_mask ?
13977                           Intrinsic::x86_avx512_mask_sqrt_sd :
13978                           Intrinsic::x86_avx512_mask_sqrt_ss;
13979       return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
13980     }
13981     Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
13982     Function *F;
13983     if (Builder.getIsFPConstrained()) {
13984       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
13985       F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
13986                            A->getType());
13987       A = Builder.CreateConstrainedFPCall(F, A);
13988     } else {
13989       F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
13990       A = Builder.CreateCall(F, A);
13991     }
13992     Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
13993     A = EmitX86ScalarSelect(*this, Ops[3], A, Src);
13994     return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
13995   }
13996   case X86::BI__builtin_ia32_sqrtpd256:
13997   case X86::BI__builtin_ia32_sqrtpd:
13998   case X86::BI__builtin_ia32_sqrtps256:
13999   case X86::BI__builtin_ia32_sqrtps:
14000   case X86::BI__builtin_ia32_sqrtps512:
14001   case X86::BI__builtin_ia32_sqrtpd512: {
14002     if (Ops.size() == 2) {
14003       unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
14004       // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
14005       // otherwise keep the intrinsic.
14006       if (CC != 4) {
14007         Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtps512 ?
14008                             Intrinsic::x86_avx512_sqrt_ps_512 :
14009                             Intrinsic::x86_avx512_sqrt_pd_512;
14010         return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
14011       }
14012     }
14013     if (Builder.getIsFPConstrained()) {
14014       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14015       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
14016                                      Ops[0]->getType());
14017       return Builder.CreateConstrainedFPCall(F, Ops[0]);
14018     } else {
14019       Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType());
14020       return Builder.CreateCall(F, Ops[0]);
14021     }
14022   }
14023   case X86::BI__builtin_ia32_pabsb128:
14024   case X86::BI__builtin_ia32_pabsw128:
14025   case X86::BI__builtin_ia32_pabsd128:
14026   case X86::BI__builtin_ia32_pabsb256:
14027   case X86::BI__builtin_ia32_pabsw256:
14028   case X86::BI__builtin_ia32_pabsd256:
14029   case X86::BI__builtin_ia32_pabsq128:
14030   case X86::BI__builtin_ia32_pabsq256:
14031   case X86::BI__builtin_ia32_pabsb512:
14032   case X86::BI__builtin_ia32_pabsw512:
14033   case X86::BI__builtin_ia32_pabsd512:
14034   case X86::BI__builtin_ia32_pabsq512: {
14035     Function *F = CGM.getIntrinsic(Intrinsic::abs, Ops[0]->getType());
14036     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
14037   }
14038   case X86::BI__builtin_ia32_pmaxsb128:
14039   case X86::BI__builtin_ia32_pmaxsw128:
14040   case X86::BI__builtin_ia32_pmaxsd128:
14041   case X86::BI__builtin_ia32_pmaxsq128:
14042   case X86::BI__builtin_ia32_pmaxsb256:
14043   case X86::BI__builtin_ia32_pmaxsw256:
14044   case X86::BI__builtin_ia32_pmaxsd256:
14045   case X86::BI__builtin_ia32_pmaxsq256:
14046   case X86::BI__builtin_ia32_pmaxsb512:
14047   case X86::BI__builtin_ia32_pmaxsw512:
14048   case X86::BI__builtin_ia32_pmaxsd512:
14049   case X86::BI__builtin_ia32_pmaxsq512:
14050     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::smax);
14051   case X86::BI__builtin_ia32_pmaxub128:
14052   case X86::BI__builtin_ia32_pmaxuw128:
14053   case X86::BI__builtin_ia32_pmaxud128:
14054   case X86::BI__builtin_ia32_pmaxuq128:
14055   case X86::BI__builtin_ia32_pmaxub256:
14056   case X86::BI__builtin_ia32_pmaxuw256:
14057   case X86::BI__builtin_ia32_pmaxud256:
14058   case X86::BI__builtin_ia32_pmaxuq256:
14059   case X86::BI__builtin_ia32_pmaxub512:
14060   case X86::BI__builtin_ia32_pmaxuw512:
14061   case X86::BI__builtin_ia32_pmaxud512:
14062   case X86::BI__builtin_ia32_pmaxuq512:
14063     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::umax);
14064   case X86::BI__builtin_ia32_pminsb128:
14065   case X86::BI__builtin_ia32_pminsw128:
14066   case X86::BI__builtin_ia32_pminsd128:
14067   case X86::BI__builtin_ia32_pminsq128:
14068   case X86::BI__builtin_ia32_pminsb256:
14069   case X86::BI__builtin_ia32_pminsw256:
14070   case X86::BI__builtin_ia32_pminsd256:
14071   case X86::BI__builtin_ia32_pminsq256:
14072   case X86::BI__builtin_ia32_pminsb512:
14073   case X86::BI__builtin_ia32_pminsw512:
14074   case X86::BI__builtin_ia32_pminsd512:
14075   case X86::BI__builtin_ia32_pminsq512:
14076     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::smin);
14077   case X86::BI__builtin_ia32_pminub128:
14078   case X86::BI__builtin_ia32_pminuw128:
14079   case X86::BI__builtin_ia32_pminud128:
14080   case X86::BI__builtin_ia32_pminuq128:
14081   case X86::BI__builtin_ia32_pminub256:
14082   case X86::BI__builtin_ia32_pminuw256:
14083   case X86::BI__builtin_ia32_pminud256:
14084   case X86::BI__builtin_ia32_pminuq256:
14085   case X86::BI__builtin_ia32_pminub512:
14086   case X86::BI__builtin_ia32_pminuw512:
14087   case X86::BI__builtin_ia32_pminud512:
14088   case X86::BI__builtin_ia32_pminuq512:
14089     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::umin);
14090 
14091   case X86::BI__builtin_ia32_pmuludq128:
14092   case X86::BI__builtin_ia32_pmuludq256:
14093   case X86::BI__builtin_ia32_pmuludq512:
14094     return EmitX86Muldq(*this, /*IsSigned*/false, Ops);
14095 
14096   case X86::BI__builtin_ia32_pmuldq128:
14097   case X86::BI__builtin_ia32_pmuldq256:
14098   case X86::BI__builtin_ia32_pmuldq512:
14099     return EmitX86Muldq(*this, /*IsSigned*/true, Ops);
14100 
14101   case X86::BI__builtin_ia32_pternlogd512_mask:
14102   case X86::BI__builtin_ia32_pternlogq512_mask:
14103   case X86::BI__builtin_ia32_pternlogd128_mask:
14104   case X86::BI__builtin_ia32_pternlogd256_mask:
14105   case X86::BI__builtin_ia32_pternlogq128_mask:
14106   case X86::BI__builtin_ia32_pternlogq256_mask:
14107     return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops);
14108 
14109   case X86::BI__builtin_ia32_pternlogd512_maskz:
14110   case X86::BI__builtin_ia32_pternlogq512_maskz:
14111   case X86::BI__builtin_ia32_pternlogd128_maskz:
14112   case X86::BI__builtin_ia32_pternlogd256_maskz:
14113   case X86::BI__builtin_ia32_pternlogq128_maskz:
14114   case X86::BI__builtin_ia32_pternlogq256_maskz:
14115     return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops);
14116 
14117   case X86::BI__builtin_ia32_vpshldd128:
14118   case X86::BI__builtin_ia32_vpshldd256:
14119   case X86::BI__builtin_ia32_vpshldd512:
14120   case X86::BI__builtin_ia32_vpshldq128:
14121   case X86::BI__builtin_ia32_vpshldq256:
14122   case X86::BI__builtin_ia32_vpshldq512:
14123   case X86::BI__builtin_ia32_vpshldw128:
14124   case X86::BI__builtin_ia32_vpshldw256:
14125   case X86::BI__builtin_ia32_vpshldw512:
14126     return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
14127 
14128   case X86::BI__builtin_ia32_vpshrdd128:
14129   case X86::BI__builtin_ia32_vpshrdd256:
14130   case X86::BI__builtin_ia32_vpshrdd512:
14131   case X86::BI__builtin_ia32_vpshrdq128:
14132   case X86::BI__builtin_ia32_vpshrdq256:
14133   case X86::BI__builtin_ia32_vpshrdq512:
14134   case X86::BI__builtin_ia32_vpshrdw128:
14135   case X86::BI__builtin_ia32_vpshrdw256:
14136   case X86::BI__builtin_ia32_vpshrdw512:
14137     // Ops 0 and 1 are swapped.
14138     return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
14139 
14140   case X86::BI__builtin_ia32_vpshldvd128:
14141   case X86::BI__builtin_ia32_vpshldvd256:
14142   case X86::BI__builtin_ia32_vpshldvd512:
14143   case X86::BI__builtin_ia32_vpshldvq128:
14144   case X86::BI__builtin_ia32_vpshldvq256:
14145   case X86::BI__builtin_ia32_vpshldvq512:
14146   case X86::BI__builtin_ia32_vpshldvw128:
14147   case X86::BI__builtin_ia32_vpshldvw256:
14148   case X86::BI__builtin_ia32_vpshldvw512:
14149     return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
14150 
14151   case X86::BI__builtin_ia32_vpshrdvd128:
14152   case X86::BI__builtin_ia32_vpshrdvd256:
14153   case X86::BI__builtin_ia32_vpshrdvd512:
14154   case X86::BI__builtin_ia32_vpshrdvq128:
14155   case X86::BI__builtin_ia32_vpshrdvq256:
14156   case X86::BI__builtin_ia32_vpshrdvq512:
14157   case X86::BI__builtin_ia32_vpshrdvw128:
14158   case X86::BI__builtin_ia32_vpshrdvw256:
14159   case X86::BI__builtin_ia32_vpshrdvw512:
14160     // Ops 0 and 1 are swapped.
14161     return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
14162 
14163   // Reductions
14164   case X86::BI__builtin_ia32_reduce_add_d512:
14165   case X86::BI__builtin_ia32_reduce_add_q512: {
14166     Function *F =
14167         CGM.getIntrinsic(Intrinsic::vector_reduce_add, Ops[0]->getType());
14168     return Builder.CreateCall(F, {Ops[0]});
14169   }
14170   case X86::BI__builtin_ia32_reduce_and_d512:
14171   case X86::BI__builtin_ia32_reduce_and_q512: {
14172     Function *F =
14173         CGM.getIntrinsic(Intrinsic::vector_reduce_and, Ops[0]->getType());
14174     return Builder.CreateCall(F, {Ops[0]});
14175   }
14176   case X86::BI__builtin_ia32_reduce_fadd_pd512:
14177   case X86::BI__builtin_ia32_reduce_fadd_ps512: {
14178     Function *F =
14179         CGM.getIntrinsic(Intrinsic::vector_reduce_fadd, Ops[1]->getType());
14180     Builder.getFastMathFlags().setAllowReassoc();
14181     return Builder.CreateCall(F, {Ops[0], Ops[1]});
14182   }
14183   case X86::BI__builtin_ia32_reduce_fmul_pd512:
14184   case X86::BI__builtin_ia32_reduce_fmul_ps512: {
14185     Function *F =
14186         CGM.getIntrinsic(Intrinsic::vector_reduce_fmul, Ops[1]->getType());
14187     Builder.getFastMathFlags().setAllowReassoc();
14188     return Builder.CreateCall(F, {Ops[0], Ops[1]});
14189   }
14190   case X86::BI__builtin_ia32_reduce_fmax_pd512:
14191   case X86::BI__builtin_ia32_reduce_fmax_ps512: {
14192     Function *F =
14193         CGM.getIntrinsic(Intrinsic::vector_reduce_fmax, Ops[0]->getType());
14194     Builder.getFastMathFlags().setNoNaNs();
14195     return Builder.CreateCall(F, {Ops[0]});
14196   }
14197   case X86::BI__builtin_ia32_reduce_fmin_pd512:
14198   case X86::BI__builtin_ia32_reduce_fmin_ps512: {
14199     Function *F =
14200         CGM.getIntrinsic(Intrinsic::vector_reduce_fmin, Ops[0]->getType());
14201     Builder.getFastMathFlags().setNoNaNs();
14202     return Builder.CreateCall(F, {Ops[0]});
14203   }
14204   case X86::BI__builtin_ia32_reduce_mul_d512:
14205   case X86::BI__builtin_ia32_reduce_mul_q512: {
14206     Function *F =
14207         CGM.getIntrinsic(Intrinsic::vector_reduce_mul, Ops[0]->getType());
14208     return Builder.CreateCall(F, {Ops[0]});
14209   }
14210   case X86::BI__builtin_ia32_reduce_or_d512:
14211   case X86::BI__builtin_ia32_reduce_or_q512: {
14212     Function *F =
14213         CGM.getIntrinsic(Intrinsic::vector_reduce_or, Ops[0]->getType());
14214     return Builder.CreateCall(F, {Ops[0]});
14215   }
14216   case X86::BI__builtin_ia32_reduce_smax_d512:
14217   case X86::BI__builtin_ia32_reduce_smax_q512: {
14218     Function *F =
14219         CGM.getIntrinsic(Intrinsic::vector_reduce_smax, Ops[0]->getType());
14220     return Builder.CreateCall(F, {Ops[0]});
14221   }
14222   case X86::BI__builtin_ia32_reduce_smin_d512:
14223   case X86::BI__builtin_ia32_reduce_smin_q512: {
14224     Function *F =
14225         CGM.getIntrinsic(Intrinsic::vector_reduce_smin, Ops[0]->getType());
14226     return Builder.CreateCall(F, {Ops[0]});
14227   }
14228   case X86::BI__builtin_ia32_reduce_umax_d512:
14229   case X86::BI__builtin_ia32_reduce_umax_q512: {
14230     Function *F =
14231         CGM.getIntrinsic(Intrinsic::vector_reduce_umax, Ops[0]->getType());
14232     return Builder.CreateCall(F, {Ops[0]});
14233   }
14234   case X86::BI__builtin_ia32_reduce_umin_d512:
14235   case X86::BI__builtin_ia32_reduce_umin_q512: {
14236     Function *F =
14237         CGM.getIntrinsic(Intrinsic::vector_reduce_umin, Ops[0]->getType());
14238     return Builder.CreateCall(F, {Ops[0]});
14239   }
14240 
14241   // 3DNow!
14242   case X86::BI__builtin_ia32_pswapdsf:
14243   case X86::BI__builtin_ia32_pswapdsi: {
14244     llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
14245     Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
14246     llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
14247     return Builder.CreateCall(F, Ops, "pswapd");
14248   }
14249   case X86::BI__builtin_ia32_rdrand16_step:
14250   case X86::BI__builtin_ia32_rdrand32_step:
14251   case X86::BI__builtin_ia32_rdrand64_step:
14252   case X86::BI__builtin_ia32_rdseed16_step:
14253   case X86::BI__builtin_ia32_rdseed32_step:
14254   case X86::BI__builtin_ia32_rdseed64_step: {
14255     Intrinsic::ID ID;
14256     switch (BuiltinID) {
14257     default: llvm_unreachable("Unsupported intrinsic!");
14258     case X86::BI__builtin_ia32_rdrand16_step:
14259       ID = Intrinsic::x86_rdrand_16;
14260       break;
14261     case X86::BI__builtin_ia32_rdrand32_step:
14262       ID = Intrinsic::x86_rdrand_32;
14263       break;
14264     case X86::BI__builtin_ia32_rdrand64_step:
14265       ID = Intrinsic::x86_rdrand_64;
14266       break;
14267     case X86::BI__builtin_ia32_rdseed16_step:
14268       ID = Intrinsic::x86_rdseed_16;
14269       break;
14270     case X86::BI__builtin_ia32_rdseed32_step:
14271       ID = Intrinsic::x86_rdseed_32;
14272       break;
14273     case X86::BI__builtin_ia32_rdseed64_step:
14274       ID = Intrinsic::x86_rdseed_64;
14275       break;
14276     }
14277 
14278     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
14279     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
14280                                       Ops[0]);
14281     return Builder.CreateExtractValue(Call, 1);
14282   }
14283   case X86::BI__builtin_ia32_addcarryx_u32:
14284   case X86::BI__builtin_ia32_addcarryx_u64:
14285   case X86::BI__builtin_ia32_subborrow_u32:
14286   case X86::BI__builtin_ia32_subborrow_u64: {
14287     Intrinsic::ID IID;
14288     switch (BuiltinID) {
14289     default: llvm_unreachable("Unsupported intrinsic!");
14290     case X86::BI__builtin_ia32_addcarryx_u32:
14291       IID = Intrinsic::x86_addcarry_32;
14292       break;
14293     case X86::BI__builtin_ia32_addcarryx_u64:
14294       IID = Intrinsic::x86_addcarry_64;
14295       break;
14296     case X86::BI__builtin_ia32_subborrow_u32:
14297       IID = Intrinsic::x86_subborrow_32;
14298       break;
14299     case X86::BI__builtin_ia32_subborrow_u64:
14300       IID = Intrinsic::x86_subborrow_64;
14301       break;
14302     }
14303 
14304     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID),
14305                                      { Ops[0], Ops[1], Ops[2] });
14306     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
14307                                       Ops[3]);
14308     return Builder.CreateExtractValue(Call, 0);
14309   }
14310 
14311   case X86::BI__builtin_ia32_fpclassps128_mask:
14312   case X86::BI__builtin_ia32_fpclassps256_mask:
14313   case X86::BI__builtin_ia32_fpclassps512_mask:
14314   case X86::BI__builtin_ia32_fpclasspd128_mask:
14315   case X86::BI__builtin_ia32_fpclasspd256_mask:
14316   case X86::BI__builtin_ia32_fpclasspd512_mask: {
14317     unsigned NumElts =
14318         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14319     Value *MaskIn = Ops[2];
14320     Ops.erase(&Ops[2]);
14321 
14322     Intrinsic::ID ID;
14323     switch (BuiltinID) {
14324     default: llvm_unreachable("Unsupported intrinsic!");
14325     case X86::BI__builtin_ia32_fpclassps128_mask:
14326       ID = Intrinsic::x86_avx512_fpclass_ps_128;
14327       break;
14328     case X86::BI__builtin_ia32_fpclassps256_mask:
14329       ID = Intrinsic::x86_avx512_fpclass_ps_256;
14330       break;
14331     case X86::BI__builtin_ia32_fpclassps512_mask:
14332       ID = Intrinsic::x86_avx512_fpclass_ps_512;
14333       break;
14334     case X86::BI__builtin_ia32_fpclasspd128_mask:
14335       ID = Intrinsic::x86_avx512_fpclass_pd_128;
14336       break;
14337     case X86::BI__builtin_ia32_fpclasspd256_mask:
14338       ID = Intrinsic::x86_avx512_fpclass_pd_256;
14339       break;
14340     case X86::BI__builtin_ia32_fpclasspd512_mask:
14341       ID = Intrinsic::x86_avx512_fpclass_pd_512;
14342       break;
14343     }
14344 
14345     Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14346     return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn);
14347   }
14348 
14349   case X86::BI__builtin_ia32_vp2intersect_q_512:
14350   case X86::BI__builtin_ia32_vp2intersect_q_256:
14351   case X86::BI__builtin_ia32_vp2intersect_q_128:
14352   case X86::BI__builtin_ia32_vp2intersect_d_512:
14353   case X86::BI__builtin_ia32_vp2intersect_d_256:
14354   case X86::BI__builtin_ia32_vp2intersect_d_128: {
14355     unsigned NumElts =
14356         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14357     Intrinsic::ID ID;
14358 
14359     switch (BuiltinID) {
14360     default: llvm_unreachable("Unsupported intrinsic!");
14361     case X86::BI__builtin_ia32_vp2intersect_q_512:
14362       ID = Intrinsic::x86_avx512_vp2intersect_q_512;
14363       break;
14364     case X86::BI__builtin_ia32_vp2intersect_q_256:
14365       ID = Intrinsic::x86_avx512_vp2intersect_q_256;
14366       break;
14367     case X86::BI__builtin_ia32_vp2intersect_q_128:
14368       ID = Intrinsic::x86_avx512_vp2intersect_q_128;
14369       break;
14370     case X86::BI__builtin_ia32_vp2intersect_d_512:
14371       ID = Intrinsic::x86_avx512_vp2intersect_d_512;
14372       break;
14373     case X86::BI__builtin_ia32_vp2intersect_d_256:
14374       ID = Intrinsic::x86_avx512_vp2intersect_d_256;
14375       break;
14376     case X86::BI__builtin_ia32_vp2intersect_d_128:
14377       ID = Intrinsic::x86_avx512_vp2intersect_d_128;
14378       break;
14379     }
14380 
14381     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]});
14382     Value *Result = Builder.CreateExtractValue(Call, 0);
14383     Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
14384     Builder.CreateDefaultAlignedStore(Result, Ops[2]);
14385 
14386     Result = Builder.CreateExtractValue(Call, 1);
14387     Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
14388     return Builder.CreateDefaultAlignedStore(Result, Ops[3]);
14389   }
14390 
14391   case X86::BI__builtin_ia32_vpmultishiftqb128:
14392   case X86::BI__builtin_ia32_vpmultishiftqb256:
14393   case X86::BI__builtin_ia32_vpmultishiftqb512: {
14394     Intrinsic::ID ID;
14395     switch (BuiltinID) {
14396     default: llvm_unreachable("Unsupported intrinsic!");
14397     case X86::BI__builtin_ia32_vpmultishiftqb128:
14398       ID = Intrinsic::x86_avx512_pmultishift_qb_128;
14399       break;
14400     case X86::BI__builtin_ia32_vpmultishiftqb256:
14401       ID = Intrinsic::x86_avx512_pmultishift_qb_256;
14402       break;
14403     case X86::BI__builtin_ia32_vpmultishiftqb512:
14404       ID = Intrinsic::x86_avx512_pmultishift_qb_512;
14405       break;
14406     }
14407 
14408     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14409   }
14410 
14411   case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
14412   case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
14413   case X86::BI__builtin_ia32_vpshufbitqmb512_mask: {
14414     unsigned NumElts =
14415         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14416     Value *MaskIn = Ops[2];
14417     Ops.erase(&Ops[2]);
14418 
14419     Intrinsic::ID ID;
14420     switch (BuiltinID) {
14421     default: llvm_unreachable("Unsupported intrinsic!");
14422     case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
14423       ID = Intrinsic::x86_avx512_vpshufbitqmb_128;
14424       break;
14425     case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
14426       ID = Intrinsic::x86_avx512_vpshufbitqmb_256;
14427       break;
14428     case X86::BI__builtin_ia32_vpshufbitqmb512_mask:
14429       ID = Intrinsic::x86_avx512_vpshufbitqmb_512;
14430       break;
14431     }
14432 
14433     Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14434     return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn);
14435   }
14436 
14437   // packed comparison intrinsics
14438   case X86::BI__builtin_ia32_cmpeqps:
14439   case X86::BI__builtin_ia32_cmpeqpd:
14440     return getVectorFCmpIR(CmpInst::FCMP_OEQ, /*IsSignaling*/false);
14441   case X86::BI__builtin_ia32_cmpltps:
14442   case X86::BI__builtin_ia32_cmpltpd:
14443     return getVectorFCmpIR(CmpInst::FCMP_OLT, /*IsSignaling*/true);
14444   case X86::BI__builtin_ia32_cmpleps:
14445   case X86::BI__builtin_ia32_cmplepd:
14446     return getVectorFCmpIR(CmpInst::FCMP_OLE, /*IsSignaling*/true);
14447   case X86::BI__builtin_ia32_cmpunordps:
14448   case X86::BI__builtin_ia32_cmpunordpd:
14449     return getVectorFCmpIR(CmpInst::FCMP_UNO, /*IsSignaling*/false);
14450   case X86::BI__builtin_ia32_cmpneqps:
14451   case X86::BI__builtin_ia32_cmpneqpd:
14452     return getVectorFCmpIR(CmpInst::FCMP_UNE, /*IsSignaling*/false);
14453   case X86::BI__builtin_ia32_cmpnltps:
14454   case X86::BI__builtin_ia32_cmpnltpd:
14455     return getVectorFCmpIR(CmpInst::FCMP_UGE, /*IsSignaling*/true);
14456   case X86::BI__builtin_ia32_cmpnleps:
14457   case X86::BI__builtin_ia32_cmpnlepd:
14458     return getVectorFCmpIR(CmpInst::FCMP_UGT, /*IsSignaling*/true);
14459   case X86::BI__builtin_ia32_cmpordps:
14460   case X86::BI__builtin_ia32_cmpordpd:
14461     return getVectorFCmpIR(CmpInst::FCMP_ORD, /*IsSignaling*/false);
14462   case X86::BI__builtin_ia32_cmpps128_mask:
14463   case X86::BI__builtin_ia32_cmpps256_mask:
14464   case X86::BI__builtin_ia32_cmpps512_mask:
14465   case X86::BI__builtin_ia32_cmppd128_mask:
14466   case X86::BI__builtin_ia32_cmppd256_mask:
14467   case X86::BI__builtin_ia32_cmppd512_mask:
14468     IsMaskFCmp = true;
14469     LLVM_FALLTHROUGH;
14470   case X86::BI__builtin_ia32_cmpps:
14471   case X86::BI__builtin_ia32_cmpps256:
14472   case X86::BI__builtin_ia32_cmppd:
14473   case X86::BI__builtin_ia32_cmppd256: {
14474     // Lowering vector comparisons to fcmp instructions, while
14475     // ignoring signalling behaviour requested
14476     // ignoring rounding mode requested
14477     // This is only possible if fp-model is not strict and FENV_ACCESS is off.
14478 
14479     // The third argument is the comparison condition, and integer in the
14480     // range [0, 31]
14481     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f;
14482 
14483     // Lowering to IR fcmp instruction.
14484     // Ignoring requested signaling behaviour,
14485     // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT.
14486     FCmpInst::Predicate Pred;
14487     bool IsSignaling;
14488     // Predicates for 16-31 repeat the 0-15 predicates. Only the signalling
14489     // behavior is inverted. We'll handle that after the switch.
14490     switch (CC & 0xf) {
14491     case 0x00: Pred = FCmpInst::FCMP_OEQ;   IsSignaling = false; break;
14492     case 0x01: Pred = FCmpInst::FCMP_OLT;   IsSignaling = true;  break;
14493     case 0x02: Pred = FCmpInst::FCMP_OLE;   IsSignaling = true;  break;
14494     case 0x03: Pred = FCmpInst::FCMP_UNO;   IsSignaling = false; break;
14495     case 0x04: Pred = FCmpInst::FCMP_UNE;   IsSignaling = false; break;
14496     case 0x05: Pred = FCmpInst::FCMP_UGE;   IsSignaling = true;  break;
14497     case 0x06: Pred = FCmpInst::FCMP_UGT;   IsSignaling = true;  break;
14498     case 0x07: Pred = FCmpInst::FCMP_ORD;   IsSignaling = false; break;
14499     case 0x08: Pred = FCmpInst::FCMP_UEQ;   IsSignaling = false; break;
14500     case 0x09: Pred = FCmpInst::FCMP_ULT;   IsSignaling = true;  break;
14501     case 0x0a: Pred = FCmpInst::FCMP_ULE;   IsSignaling = true;  break;
14502     case 0x0b: Pred = FCmpInst::FCMP_FALSE; IsSignaling = false; break;
14503     case 0x0c: Pred = FCmpInst::FCMP_ONE;   IsSignaling = false; break;
14504     case 0x0d: Pred = FCmpInst::FCMP_OGE;   IsSignaling = true;  break;
14505     case 0x0e: Pred = FCmpInst::FCMP_OGT;   IsSignaling = true;  break;
14506     case 0x0f: Pred = FCmpInst::FCMP_TRUE;  IsSignaling = false; break;
14507     default: llvm_unreachable("Unhandled CC");
14508     }
14509 
14510     // Invert the signalling behavior for 16-31.
14511     if (CC & 0x10)
14512       IsSignaling = !IsSignaling;
14513 
14514     // If the predicate is true or false and we're using constrained intrinsics,
14515     // we don't have a compare intrinsic we can use. Just use the legacy X86
14516     // specific intrinsic.
14517     // If the intrinsic is mask enabled and we're using constrained intrinsics,
14518     // use the legacy X86 specific intrinsic.
14519     if (Builder.getIsFPConstrained() &&
14520         (Pred == FCmpInst::FCMP_TRUE || Pred == FCmpInst::FCMP_FALSE ||
14521          IsMaskFCmp)) {
14522 
14523       Intrinsic::ID IID;
14524       switch (BuiltinID) {
14525       default: llvm_unreachable("Unexpected builtin");
14526       case X86::BI__builtin_ia32_cmpps:
14527         IID = Intrinsic::x86_sse_cmp_ps;
14528         break;
14529       case X86::BI__builtin_ia32_cmpps256:
14530         IID = Intrinsic::x86_avx_cmp_ps_256;
14531         break;
14532       case X86::BI__builtin_ia32_cmppd:
14533         IID = Intrinsic::x86_sse2_cmp_pd;
14534         break;
14535       case X86::BI__builtin_ia32_cmppd256:
14536         IID = Intrinsic::x86_avx_cmp_pd_256;
14537         break;
14538       case X86::BI__builtin_ia32_cmpps512_mask:
14539         IID = Intrinsic::x86_avx512_mask_cmp_ps_512;
14540         break;
14541       case X86::BI__builtin_ia32_cmppd512_mask:
14542         IID = Intrinsic::x86_avx512_mask_cmp_pd_512;
14543         break;
14544       case X86::BI__builtin_ia32_cmpps128_mask:
14545         IID = Intrinsic::x86_avx512_mask_cmp_ps_128;
14546         break;
14547       case X86::BI__builtin_ia32_cmpps256_mask:
14548         IID = Intrinsic::x86_avx512_mask_cmp_ps_256;
14549         break;
14550       case X86::BI__builtin_ia32_cmppd128_mask:
14551         IID = Intrinsic::x86_avx512_mask_cmp_pd_128;
14552         break;
14553       case X86::BI__builtin_ia32_cmppd256_mask:
14554         IID = Intrinsic::x86_avx512_mask_cmp_pd_256;
14555         break;
14556       }
14557 
14558       Function *Intr = CGM.getIntrinsic(IID);
14559       if (IsMaskFCmp) {
14560         unsigned NumElts =
14561             cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14562         Ops[3] = getMaskVecValue(*this, Ops[3], NumElts);
14563         Value *Cmp = Builder.CreateCall(Intr, Ops);
14564         return EmitX86MaskedCompareResult(*this, Cmp, NumElts, nullptr);
14565       }
14566 
14567       return Builder.CreateCall(Intr, Ops);
14568     }
14569 
14570     // Builtins without the _mask suffix return a vector of integers
14571     // of the same width as the input vectors
14572     if (IsMaskFCmp) {
14573       // We ignore SAE if strict FP is disabled. We only keep precise
14574       // exception behavior under strict FP.
14575       // NOTE: If strict FP does ever go through here a CGFPOptionsRAII
14576       // object will be required.
14577       unsigned NumElts =
14578           cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14579       Value *Cmp;
14580       if (IsSignaling)
14581         Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
14582       else
14583         Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
14584       return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]);
14585     }
14586 
14587     return getVectorFCmpIR(Pred, IsSignaling);
14588   }
14589 
14590   // SSE scalar comparison intrinsics
14591   case X86::BI__builtin_ia32_cmpeqss:
14592     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
14593   case X86::BI__builtin_ia32_cmpltss:
14594     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
14595   case X86::BI__builtin_ia32_cmpless:
14596     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
14597   case X86::BI__builtin_ia32_cmpunordss:
14598     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
14599   case X86::BI__builtin_ia32_cmpneqss:
14600     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
14601   case X86::BI__builtin_ia32_cmpnltss:
14602     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
14603   case X86::BI__builtin_ia32_cmpnless:
14604     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
14605   case X86::BI__builtin_ia32_cmpordss:
14606     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
14607   case X86::BI__builtin_ia32_cmpeqsd:
14608     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
14609   case X86::BI__builtin_ia32_cmpltsd:
14610     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
14611   case X86::BI__builtin_ia32_cmplesd:
14612     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
14613   case X86::BI__builtin_ia32_cmpunordsd:
14614     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
14615   case X86::BI__builtin_ia32_cmpneqsd:
14616     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
14617   case X86::BI__builtin_ia32_cmpnltsd:
14618     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
14619   case X86::BI__builtin_ia32_cmpnlesd:
14620     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
14621   case X86::BI__builtin_ia32_cmpordsd:
14622     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
14623 
14624   // f16c half2float intrinsics
14625   case X86::BI__builtin_ia32_vcvtph2ps:
14626   case X86::BI__builtin_ia32_vcvtph2ps256:
14627   case X86::BI__builtin_ia32_vcvtph2ps_mask:
14628   case X86::BI__builtin_ia32_vcvtph2ps256_mask:
14629   case X86::BI__builtin_ia32_vcvtph2ps512_mask: {
14630     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14631     return EmitX86CvtF16ToFloatExpr(*this, Ops, ConvertType(E->getType()));
14632   }
14633 
14634 // AVX512 bf16 intrinsics
14635   case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: {
14636     Ops[2] = getMaskVecValue(
14637         *this, Ops[2],
14638         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements());
14639     Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128;
14640     return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
14641   }
14642   case X86::BI__builtin_ia32_cvtsbf162ss_32:
14643     return EmitX86CvtBF16ToFloatExpr(*this, E, Ops);
14644 
14645   case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
14646   case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: {
14647     Intrinsic::ID IID;
14648     switch (BuiltinID) {
14649     default: llvm_unreachable("Unsupported intrinsic!");
14650     case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
14651       IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256;
14652       break;
14653     case X86::BI__builtin_ia32_cvtneps2bf16_512_mask:
14654       IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512;
14655       break;
14656     }
14657     Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]);
14658     return EmitX86Select(*this, Ops[2], Res, Ops[1]);
14659   }
14660 
14661   case X86::BI__emul:
14662   case X86::BI__emulu: {
14663     llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
14664     bool isSigned = (BuiltinID == X86::BI__emul);
14665     Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
14666     Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
14667     return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
14668   }
14669   case X86::BI__mulh:
14670   case X86::BI__umulh:
14671   case X86::BI_mul128:
14672   case X86::BI_umul128: {
14673     llvm::Type *ResType = ConvertType(E->getType());
14674     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
14675 
14676     bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
14677     Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
14678     Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
14679 
14680     Value *MulResult, *HigherBits;
14681     if (IsSigned) {
14682       MulResult = Builder.CreateNSWMul(LHS, RHS);
14683       HigherBits = Builder.CreateAShr(MulResult, 64);
14684     } else {
14685       MulResult = Builder.CreateNUWMul(LHS, RHS);
14686       HigherBits = Builder.CreateLShr(MulResult, 64);
14687     }
14688     HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
14689 
14690     if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
14691       return HigherBits;
14692 
14693     Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
14694     Builder.CreateStore(HigherBits, HighBitsAddress);
14695     return Builder.CreateIntCast(MulResult, ResType, IsSigned);
14696   }
14697 
14698   case X86::BI__faststorefence: {
14699     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
14700                                llvm::SyncScope::System);
14701   }
14702   case X86::BI__shiftleft128:
14703   case X86::BI__shiftright128: {
14704     llvm::Function *F = CGM.getIntrinsic(
14705         BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr,
14706         Int64Ty);
14707     // Flip low/high ops and zero-extend amount to matching type.
14708     // shiftleft128(Low, High, Amt) -> fshl(High, Low, Amt)
14709     // shiftright128(Low, High, Amt) -> fshr(High, Low, Amt)
14710     std::swap(Ops[0], Ops[1]);
14711     Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
14712     return Builder.CreateCall(F, Ops);
14713   }
14714   case X86::BI_ReadWriteBarrier:
14715   case X86::BI_ReadBarrier:
14716   case X86::BI_WriteBarrier: {
14717     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
14718                                llvm::SyncScope::SingleThread);
14719   }
14720 
14721   case X86::BI_AddressOfReturnAddress: {
14722     Function *F =
14723         CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
14724     return Builder.CreateCall(F);
14725   }
14726   case X86::BI__stosb: {
14727     // We treat __stosb as a volatile memset - it may not generate "rep stosb"
14728     // instruction, but it will create a memset that won't be optimized away.
14729     return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], Align(1), true);
14730   }
14731   case X86::BI__ud2:
14732     // llvm.trap makes a ud2a instruction on x86.
14733     return EmitTrapCall(Intrinsic::trap);
14734   case X86::BI__int2c: {
14735     // This syscall signals a driver assertion failure in x86 NT kernels.
14736     llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
14737     llvm::InlineAsm *IA =
14738         llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true);
14739     llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
14740         getLLVMContext(), llvm::AttributeList::FunctionIndex,
14741         llvm::Attribute::NoReturn);
14742     llvm::CallInst *CI = Builder.CreateCall(IA);
14743     CI->setAttributes(NoReturnAttr);
14744     return CI;
14745   }
14746   case X86::BI__readfsbyte:
14747   case X86::BI__readfsword:
14748   case X86::BI__readfsdword:
14749   case X86::BI__readfsqword: {
14750     llvm::Type *IntTy = ConvertType(E->getType());
14751     Value *Ptr =
14752         Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257));
14753     LoadInst *Load = Builder.CreateAlignedLoad(
14754         IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
14755     Load->setVolatile(true);
14756     return Load;
14757   }
14758   case X86::BI__readgsbyte:
14759   case X86::BI__readgsword:
14760   case X86::BI__readgsdword:
14761   case X86::BI__readgsqword: {
14762     llvm::Type *IntTy = ConvertType(E->getType());
14763     Value *Ptr =
14764         Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256));
14765     LoadInst *Load = Builder.CreateAlignedLoad(
14766         IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
14767     Load->setVolatile(true);
14768     return Load;
14769   }
14770   case X86::BI__builtin_ia32_paddsb512:
14771   case X86::BI__builtin_ia32_paddsw512:
14772   case X86::BI__builtin_ia32_paddsb256:
14773   case X86::BI__builtin_ia32_paddsw256:
14774   case X86::BI__builtin_ia32_paddsb128:
14775   case X86::BI__builtin_ia32_paddsw128:
14776     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::sadd_sat);
14777   case X86::BI__builtin_ia32_paddusb512:
14778   case X86::BI__builtin_ia32_paddusw512:
14779   case X86::BI__builtin_ia32_paddusb256:
14780   case X86::BI__builtin_ia32_paddusw256:
14781   case X86::BI__builtin_ia32_paddusb128:
14782   case X86::BI__builtin_ia32_paddusw128:
14783     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::uadd_sat);
14784   case X86::BI__builtin_ia32_psubsb512:
14785   case X86::BI__builtin_ia32_psubsw512:
14786   case X86::BI__builtin_ia32_psubsb256:
14787   case X86::BI__builtin_ia32_psubsw256:
14788   case X86::BI__builtin_ia32_psubsb128:
14789   case X86::BI__builtin_ia32_psubsw128:
14790     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::ssub_sat);
14791   case X86::BI__builtin_ia32_psubusb512:
14792   case X86::BI__builtin_ia32_psubusw512:
14793   case X86::BI__builtin_ia32_psubusb256:
14794   case X86::BI__builtin_ia32_psubusw256:
14795   case X86::BI__builtin_ia32_psubusb128:
14796   case X86::BI__builtin_ia32_psubusw128:
14797     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::usub_sat);
14798   case X86::BI__builtin_ia32_encodekey128_u32: {
14799     Intrinsic::ID IID = Intrinsic::x86_encodekey128;
14800 
14801     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1]});
14802 
14803     for (int i = 0; i < 6; ++i) {
14804       Value *Extract = Builder.CreateExtractValue(Call, i + 1);
14805       Value *Ptr = Builder.CreateConstGEP1_32(Int8Ty, Ops[2], i * 16);
14806       Ptr = Builder.CreateBitCast(
14807           Ptr, llvm::PointerType::getUnqual(Extract->getType()));
14808       Builder.CreateAlignedStore(Extract, Ptr, Align(1));
14809     }
14810 
14811     return Builder.CreateExtractValue(Call, 0);
14812   }
14813   case X86::BI__builtin_ia32_encodekey256_u32: {
14814     Intrinsic::ID IID = Intrinsic::x86_encodekey256;
14815 
14816     Value *Call =
14817         Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1], Ops[2]});
14818 
14819     for (int i = 0; i < 7; ++i) {
14820       Value *Extract = Builder.CreateExtractValue(Call, i + 1);
14821       Value *Ptr = Builder.CreateConstGEP1_32(Int8Ty, Ops[3], i * 16);
14822       Ptr = Builder.CreateBitCast(
14823           Ptr, llvm::PointerType::getUnqual(Extract->getType()));
14824       Builder.CreateAlignedStore(Extract, Ptr, Align(1));
14825     }
14826 
14827     return Builder.CreateExtractValue(Call, 0);
14828   }
14829   case X86::BI__builtin_ia32_aesenc128kl_u8:
14830   case X86::BI__builtin_ia32_aesdec128kl_u8:
14831   case X86::BI__builtin_ia32_aesenc256kl_u8:
14832   case X86::BI__builtin_ia32_aesdec256kl_u8: {
14833     Intrinsic::ID IID;
14834     StringRef BlockName;
14835     switch (BuiltinID) {
14836     default:
14837       llvm_unreachable("Unexpected builtin");
14838     case X86::BI__builtin_ia32_aesenc128kl_u8:
14839       IID = Intrinsic::x86_aesenc128kl;
14840       BlockName = "aesenc128kl";
14841       break;
14842     case X86::BI__builtin_ia32_aesdec128kl_u8:
14843       IID = Intrinsic::x86_aesdec128kl;
14844       BlockName = "aesdec128kl";
14845       break;
14846     case X86::BI__builtin_ia32_aesenc256kl_u8:
14847       IID = Intrinsic::x86_aesenc256kl;
14848       BlockName = "aesenc256kl";
14849       break;
14850     case X86::BI__builtin_ia32_aesdec256kl_u8:
14851       IID = Intrinsic::x86_aesdec256kl;
14852       BlockName = "aesdec256kl";
14853       break;
14854     }
14855 
14856     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[1], Ops[2]});
14857 
14858     BasicBlock *NoError =
14859         createBasicBlock(BlockName + "_no_error", this->CurFn);
14860     BasicBlock *Error = createBasicBlock(BlockName + "_error", this->CurFn);
14861     BasicBlock *End = createBasicBlock(BlockName + "_end", this->CurFn);
14862 
14863     Value *Ret = Builder.CreateExtractValue(Call, 0);
14864     Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty());
14865     Value *Out = Builder.CreateExtractValue(Call, 1);
14866     Builder.CreateCondBr(Succ, NoError, Error);
14867 
14868     Builder.SetInsertPoint(NoError);
14869     Builder.CreateDefaultAlignedStore(Out, Ops[0]);
14870     Builder.CreateBr(End);
14871 
14872     Builder.SetInsertPoint(Error);
14873     Constant *Zero = llvm::Constant::getNullValue(Out->getType());
14874     Builder.CreateDefaultAlignedStore(Zero, Ops[0]);
14875     Builder.CreateBr(End);
14876 
14877     Builder.SetInsertPoint(End);
14878     return Builder.CreateExtractValue(Call, 0);
14879   }
14880   case X86::BI__builtin_ia32_aesencwide128kl_u8:
14881   case X86::BI__builtin_ia32_aesdecwide128kl_u8:
14882   case X86::BI__builtin_ia32_aesencwide256kl_u8:
14883   case X86::BI__builtin_ia32_aesdecwide256kl_u8: {
14884     Intrinsic::ID IID;
14885     StringRef BlockName;
14886     switch (BuiltinID) {
14887     case X86::BI__builtin_ia32_aesencwide128kl_u8:
14888       IID = Intrinsic::x86_aesencwide128kl;
14889       BlockName = "aesencwide128kl";
14890       break;
14891     case X86::BI__builtin_ia32_aesdecwide128kl_u8:
14892       IID = Intrinsic::x86_aesdecwide128kl;
14893       BlockName = "aesdecwide128kl";
14894       break;
14895     case X86::BI__builtin_ia32_aesencwide256kl_u8:
14896       IID = Intrinsic::x86_aesencwide256kl;
14897       BlockName = "aesencwide256kl";
14898       break;
14899     case X86::BI__builtin_ia32_aesdecwide256kl_u8:
14900       IID = Intrinsic::x86_aesdecwide256kl;
14901       BlockName = "aesdecwide256kl";
14902       break;
14903     }
14904 
14905     llvm::Type *Ty = FixedVectorType::get(Builder.getInt64Ty(), 2);
14906     Value *InOps[9];
14907     InOps[0] = Ops[2];
14908     for (int i = 0; i != 8; ++i) {
14909       Value *Ptr = Builder.CreateConstGEP1_32(Ty, Ops[1], i);
14910       InOps[i + 1] = Builder.CreateAlignedLoad(Ty, Ptr, Align(16));
14911     }
14912 
14913     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), InOps);
14914 
14915     BasicBlock *NoError =
14916         createBasicBlock(BlockName + "_no_error", this->CurFn);
14917     BasicBlock *Error = createBasicBlock(BlockName + "_error", this->CurFn);
14918     BasicBlock *End = createBasicBlock(BlockName + "_end", this->CurFn);
14919 
14920     Value *Ret = Builder.CreateExtractValue(Call, 0);
14921     Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty());
14922     Builder.CreateCondBr(Succ, NoError, Error);
14923 
14924     Builder.SetInsertPoint(NoError);
14925     for (int i = 0; i != 8; ++i) {
14926       Value *Extract = Builder.CreateExtractValue(Call, i + 1);
14927       Value *Ptr = Builder.CreateConstGEP1_32(Extract->getType(), Ops[0], i);
14928       Builder.CreateAlignedStore(Extract, Ptr, Align(16));
14929     }
14930     Builder.CreateBr(End);
14931 
14932     Builder.SetInsertPoint(Error);
14933     for (int i = 0; i != 8; ++i) {
14934       Value *Out = Builder.CreateExtractValue(Call, i + 1);
14935       Constant *Zero = llvm::Constant::getNullValue(Out->getType());
14936       Value *Ptr = Builder.CreateConstGEP1_32(Out->getType(), Ops[0], i);
14937       Builder.CreateAlignedStore(Zero, Ptr, Align(16));
14938     }
14939     Builder.CreateBr(End);
14940 
14941     Builder.SetInsertPoint(End);
14942     return Builder.CreateExtractValue(Call, 0);
14943   }
14944   }
14945 }
14946 
14947 Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
14948                                            const CallExpr *E) {
14949   SmallVector<Value*, 4> Ops;
14950 
14951   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
14952     Ops.push_back(EmitScalarExpr(E->getArg(i)));
14953 
14954   Intrinsic::ID ID = Intrinsic::not_intrinsic;
14955 
14956   switch (BuiltinID) {
14957   default: return nullptr;
14958 
14959   // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
14960   // call __builtin_readcyclecounter.
14961   case PPC::BI__builtin_ppc_get_timebase:
14962     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
14963 
14964   // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
14965   case PPC::BI__builtin_altivec_lvx:
14966   case PPC::BI__builtin_altivec_lvxl:
14967   case PPC::BI__builtin_altivec_lvebx:
14968   case PPC::BI__builtin_altivec_lvehx:
14969   case PPC::BI__builtin_altivec_lvewx:
14970   case PPC::BI__builtin_altivec_lvsl:
14971   case PPC::BI__builtin_altivec_lvsr:
14972   case PPC::BI__builtin_vsx_lxvd2x:
14973   case PPC::BI__builtin_vsx_lxvw4x:
14974   case PPC::BI__builtin_vsx_lxvd2x_be:
14975   case PPC::BI__builtin_vsx_lxvw4x_be:
14976   case PPC::BI__builtin_vsx_lxvl:
14977   case PPC::BI__builtin_vsx_lxvll:
14978   {
14979     if(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
14980        BuiltinID == PPC::BI__builtin_vsx_lxvll){
14981       Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
14982     }else {
14983       Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
14984       Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]);
14985       Ops.pop_back();
14986     }
14987 
14988     switch (BuiltinID) {
14989     default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
14990     case PPC::BI__builtin_altivec_lvx:
14991       ID = Intrinsic::ppc_altivec_lvx;
14992       break;
14993     case PPC::BI__builtin_altivec_lvxl:
14994       ID = Intrinsic::ppc_altivec_lvxl;
14995       break;
14996     case PPC::BI__builtin_altivec_lvebx:
14997       ID = Intrinsic::ppc_altivec_lvebx;
14998       break;
14999     case PPC::BI__builtin_altivec_lvehx:
15000       ID = Intrinsic::ppc_altivec_lvehx;
15001       break;
15002     case PPC::BI__builtin_altivec_lvewx:
15003       ID = Intrinsic::ppc_altivec_lvewx;
15004       break;
15005     case PPC::BI__builtin_altivec_lvsl:
15006       ID = Intrinsic::ppc_altivec_lvsl;
15007       break;
15008     case PPC::BI__builtin_altivec_lvsr:
15009       ID = Intrinsic::ppc_altivec_lvsr;
15010       break;
15011     case PPC::BI__builtin_vsx_lxvd2x:
15012       ID = Intrinsic::ppc_vsx_lxvd2x;
15013       break;
15014     case PPC::BI__builtin_vsx_lxvw4x:
15015       ID = Intrinsic::ppc_vsx_lxvw4x;
15016       break;
15017     case PPC::BI__builtin_vsx_lxvd2x_be:
15018       ID = Intrinsic::ppc_vsx_lxvd2x_be;
15019       break;
15020     case PPC::BI__builtin_vsx_lxvw4x_be:
15021       ID = Intrinsic::ppc_vsx_lxvw4x_be;
15022       break;
15023     case PPC::BI__builtin_vsx_lxvl:
15024       ID = Intrinsic::ppc_vsx_lxvl;
15025       break;
15026     case PPC::BI__builtin_vsx_lxvll:
15027       ID = Intrinsic::ppc_vsx_lxvll;
15028       break;
15029     }
15030     llvm::Function *F = CGM.getIntrinsic(ID);
15031     return Builder.CreateCall(F, Ops, "");
15032   }
15033 
15034   // vec_st, vec_xst_be
15035   case PPC::BI__builtin_altivec_stvx:
15036   case PPC::BI__builtin_altivec_stvxl:
15037   case PPC::BI__builtin_altivec_stvebx:
15038   case PPC::BI__builtin_altivec_stvehx:
15039   case PPC::BI__builtin_altivec_stvewx:
15040   case PPC::BI__builtin_vsx_stxvd2x:
15041   case PPC::BI__builtin_vsx_stxvw4x:
15042   case PPC::BI__builtin_vsx_stxvd2x_be:
15043   case PPC::BI__builtin_vsx_stxvw4x_be:
15044   case PPC::BI__builtin_vsx_stxvl:
15045   case PPC::BI__builtin_vsx_stxvll:
15046   {
15047     if(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
15048       BuiltinID == PPC::BI__builtin_vsx_stxvll ){
15049       Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
15050     }else {
15051       Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
15052       Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]);
15053       Ops.pop_back();
15054     }
15055 
15056     switch (BuiltinID) {
15057     default: llvm_unreachable("Unsupported st intrinsic!");
15058     case PPC::BI__builtin_altivec_stvx:
15059       ID = Intrinsic::ppc_altivec_stvx;
15060       break;
15061     case PPC::BI__builtin_altivec_stvxl:
15062       ID = Intrinsic::ppc_altivec_stvxl;
15063       break;
15064     case PPC::BI__builtin_altivec_stvebx:
15065       ID = Intrinsic::ppc_altivec_stvebx;
15066       break;
15067     case PPC::BI__builtin_altivec_stvehx:
15068       ID = Intrinsic::ppc_altivec_stvehx;
15069       break;
15070     case PPC::BI__builtin_altivec_stvewx:
15071       ID = Intrinsic::ppc_altivec_stvewx;
15072       break;
15073     case PPC::BI__builtin_vsx_stxvd2x:
15074       ID = Intrinsic::ppc_vsx_stxvd2x;
15075       break;
15076     case PPC::BI__builtin_vsx_stxvw4x:
15077       ID = Intrinsic::ppc_vsx_stxvw4x;
15078       break;
15079     case PPC::BI__builtin_vsx_stxvd2x_be:
15080       ID = Intrinsic::ppc_vsx_stxvd2x_be;
15081       break;
15082     case PPC::BI__builtin_vsx_stxvw4x_be:
15083       ID = Intrinsic::ppc_vsx_stxvw4x_be;
15084       break;
15085     case PPC::BI__builtin_vsx_stxvl:
15086       ID = Intrinsic::ppc_vsx_stxvl;
15087       break;
15088     case PPC::BI__builtin_vsx_stxvll:
15089       ID = Intrinsic::ppc_vsx_stxvll;
15090       break;
15091     }
15092     llvm::Function *F = CGM.getIntrinsic(ID);
15093     return Builder.CreateCall(F, Ops, "");
15094   }
15095   case PPC::BI__builtin_vsx_ldrmb: {
15096     // Essentially boils down to performing an unaligned VMX load sequence so
15097     // as to avoid crossing a page boundary and then shuffling the elements
15098     // into the right side of the vector register.
15099     int64_t NumBytes = cast<ConstantInt>(Ops[1])->getZExtValue();
15100     llvm::Type *ResTy = ConvertType(E->getType());
15101     bool IsLE = getTarget().isLittleEndian();
15102 
15103     // If the user wants the entire vector, just load the entire vector.
15104     if (NumBytes == 16) {
15105       Value *BC = Builder.CreateBitCast(Ops[0], ResTy->getPointerTo());
15106       Value *LD = Builder.CreateLoad(Address(BC, CharUnits::fromQuantity(1)));
15107       if (!IsLE)
15108         return LD;
15109 
15110       // Reverse the bytes on LE.
15111       SmallVector<int, 16> RevMask;
15112       for (int Idx = 0; Idx < 16; Idx++)
15113         RevMask.push_back(15 - Idx);
15114       return Builder.CreateShuffleVector(LD, LD, RevMask);
15115     }
15116 
15117     llvm::Function *Lvx = CGM.getIntrinsic(Intrinsic::ppc_altivec_lvx);
15118     llvm::Function *Lvs = CGM.getIntrinsic(IsLE ? Intrinsic::ppc_altivec_lvsr
15119                                                 : Intrinsic::ppc_altivec_lvsl);
15120     llvm::Function *Vperm = CGM.getIntrinsic(Intrinsic::ppc_altivec_vperm);
15121     Value *HiMem = Builder.CreateGEP(
15122         Int8Ty, Ops[0], ConstantInt::get(Ops[1]->getType(), NumBytes - 1));
15123     Value *LoLd = Builder.CreateCall(Lvx, Ops[0], "ld.lo");
15124     Value *HiLd = Builder.CreateCall(Lvx, HiMem, "ld.hi");
15125     Value *Mask1 = Builder.CreateCall(Lvs, Ops[0], "mask1");
15126 
15127     Ops.clear();
15128     Ops.push_back(IsLE ? HiLd : LoLd);
15129     Ops.push_back(IsLE ? LoLd : HiLd);
15130     Ops.push_back(Mask1);
15131     Value *AllElts = Builder.CreateCall(Vperm, Ops, "shuffle1");
15132     Constant *Zero = llvm::Constant::getNullValue(IsLE ? ResTy : AllElts->getType());
15133 
15134     if (IsLE) {
15135       SmallVector<int, 16> Consts;
15136       for (int Idx = 0; Idx < 16; Idx++) {
15137         int Val = (NumBytes - Idx - 1 >= 0) ? (NumBytes - Idx - 1)
15138                                             : 16 - (NumBytes - Idx);
15139         Consts.push_back(Val);
15140       }
15141       return Builder.CreateShuffleVector(Builder.CreateBitCast(AllElts, ResTy),
15142                                          Zero, Consts);
15143     }
15144     SmallVector<Constant *, 16> Consts;
15145     for (int Idx = 0; Idx < 16; Idx++)
15146       Consts.push_back(Builder.getInt8(NumBytes + Idx));
15147     Value *Mask2 = ConstantVector::get(Consts);
15148     return Builder.CreateBitCast(
15149         Builder.CreateCall(Vperm, {Zero, AllElts, Mask2}, "shuffle2"), ResTy);
15150   }
15151   case PPC::BI__builtin_vsx_strmb: {
15152     int64_t NumBytes = cast<ConstantInt>(Ops[1])->getZExtValue();
15153     bool IsLE = getTarget().isLittleEndian();
15154     auto StoreSubVec = [&](unsigned Width, unsigned Offset, unsigned EltNo) {
15155       // Storing the whole vector, simply store it on BE and reverse bytes and
15156       // store on LE.
15157       if (Width == 16) {
15158         Value *BC =
15159             Builder.CreateBitCast(Ops[0], Ops[2]->getType()->getPointerTo());
15160         Value *StVec = Ops[2];
15161         if (IsLE) {
15162           SmallVector<int, 16> RevMask;
15163           for (int Idx = 0; Idx < 16; Idx++)
15164             RevMask.push_back(15 - Idx);
15165           StVec = Builder.CreateShuffleVector(Ops[2], Ops[2], RevMask);
15166         }
15167         return Builder.CreateStore(StVec,
15168                                    Address(BC, CharUnits::fromQuantity(1)));
15169       }
15170       auto *ConvTy = Int64Ty;
15171       unsigned NumElts = 0;
15172       switch (Width) {
15173       default:
15174         llvm_unreachable("width for stores must be a power of 2");
15175       case 8:
15176         ConvTy = Int64Ty;
15177         NumElts = 2;
15178         break;
15179       case 4:
15180         ConvTy = Int32Ty;
15181         NumElts = 4;
15182         break;
15183       case 2:
15184         ConvTy = Int16Ty;
15185         NumElts = 8;
15186         break;
15187       case 1:
15188         ConvTy = Int8Ty;
15189         NumElts = 16;
15190         break;
15191       }
15192       Value *Vec = Builder.CreateBitCast(
15193           Ops[2], llvm::FixedVectorType::get(ConvTy, NumElts));
15194       Value *Ptr = Builder.CreateGEP(Int8Ty, Ops[0],
15195                                      ConstantInt::get(Int64Ty, Offset));
15196       Value *PtrBC = Builder.CreateBitCast(Ptr, ConvTy->getPointerTo());
15197       Value *Elt = Builder.CreateExtractElement(Vec, EltNo);
15198       if (IsLE && Width > 1) {
15199         Function *F = CGM.getIntrinsic(Intrinsic::bswap, ConvTy);
15200         Elt = Builder.CreateCall(F, Elt);
15201       }
15202       return Builder.CreateStore(Elt,
15203                                  Address(PtrBC, CharUnits::fromQuantity(1)));
15204     };
15205     unsigned Stored = 0;
15206     unsigned RemainingBytes = NumBytes;
15207     Value *Result;
15208     if (NumBytes == 16)
15209       return StoreSubVec(16, 0, 0);
15210     if (NumBytes >= 8) {
15211       Result = StoreSubVec(8, NumBytes - 8, IsLE ? 0 : 1);
15212       RemainingBytes -= 8;
15213       Stored += 8;
15214     }
15215     if (RemainingBytes >= 4) {
15216       Result = StoreSubVec(4, NumBytes - Stored - 4,
15217                            IsLE ? (Stored >> 2) : 3 - (Stored >> 2));
15218       RemainingBytes -= 4;
15219       Stored += 4;
15220     }
15221     if (RemainingBytes >= 2) {
15222       Result = StoreSubVec(2, NumBytes - Stored - 2,
15223                            IsLE ? (Stored >> 1) : 7 - (Stored >> 1));
15224       RemainingBytes -= 2;
15225       Stored += 2;
15226     }
15227     if (RemainingBytes)
15228       Result =
15229           StoreSubVec(1, NumBytes - Stored - 1, IsLE ? Stored : 15 - Stored);
15230     return Result;
15231   }
15232   // Square root
15233   case PPC::BI__builtin_vsx_xvsqrtsp:
15234   case PPC::BI__builtin_vsx_xvsqrtdp: {
15235     llvm::Type *ResultType = ConvertType(E->getType());
15236     Value *X = EmitScalarExpr(E->getArg(0));
15237     if (Builder.getIsFPConstrained()) {
15238       llvm::Function *F = CGM.getIntrinsic(
15239           Intrinsic::experimental_constrained_sqrt, ResultType);
15240       return Builder.CreateConstrainedFPCall(F, X);
15241     } else {
15242       llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
15243       return Builder.CreateCall(F, X);
15244     }
15245   }
15246   // Count leading zeros
15247   case PPC::BI__builtin_altivec_vclzb:
15248   case PPC::BI__builtin_altivec_vclzh:
15249   case PPC::BI__builtin_altivec_vclzw:
15250   case PPC::BI__builtin_altivec_vclzd: {
15251     llvm::Type *ResultType = ConvertType(E->getType());
15252     Value *X = EmitScalarExpr(E->getArg(0));
15253     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
15254     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
15255     return Builder.CreateCall(F, {X, Undef});
15256   }
15257   case PPC::BI__builtin_altivec_vctzb:
15258   case PPC::BI__builtin_altivec_vctzh:
15259   case PPC::BI__builtin_altivec_vctzw:
15260   case PPC::BI__builtin_altivec_vctzd: {
15261     llvm::Type *ResultType = ConvertType(E->getType());
15262     Value *X = EmitScalarExpr(E->getArg(0));
15263     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
15264     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
15265     return Builder.CreateCall(F, {X, Undef});
15266   }
15267   case PPC::BI__builtin_altivec_vec_replace_elt:
15268   case PPC::BI__builtin_altivec_vec_replace_unaligned: {
15269     // The third argument of vec_replace_elt and vec_replace_unaligned must
15270     // be a compile time constant and will be emitted either to the vinsw
15271     // or vinsd instruction.
15272     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
15273     assert(ArgCI &&
15274            "Third Arg to vinsw/vinsd intrinsic must be a constant integer!");
15275     llvm::Type *ResultType = ConvertType(E->getType());
15276     llvm::Function *F = nullptr;
15277     Value *Call = nullptr;
15278     int64_t ConstArg = ArgCI->getSExtValue();
15279     unsigned ArgWidth = Ops[1]->getType()->getPrimitiveSizeInBits();
15280     bool Is32Bit = false;
15281     assert((ArgWidth == 32 || ArgWidth == 64) && "Invalid argument width");
15282     // The input to vec_replace_elt is an element index, not a byte index.
15283     if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt)
15284       ConstArg *= ArgWidth / 8;
15285     if (ArgWidth == 32) {
15286       Is32Bit = true;
15287       // When the second argument is 32 bits, it can either be an integer or
15288       // a float. The vinsw intrinsic is used in this case.
15289       F = CGM.getIntrinsic(Intrinsic::ppc_altivec_vinsw);
15290       // Fix the constant according to endianess.
15291       if (getTarget().isLittleEndian())
15292         ConstArg = 12 - ConstArg;
15293     } else {
15294       // When the second argument is 64 bits, it can either be a long long or
15295       // a double. The vinsd intrinsic is used in this case.
15296       F = CGM.getIntrinsic(Intrinsic::ppc_altivec_vinsd);
15297       // Fix the constant for little endian.
15298       if (getTarget().isLittleEndian())
15299         ConstArg = 8 - ConstArg;
15300     }
15301     Ops[2] = ConstantInt::getSigned(Int32Ty, ConstArg);
15302     // Depending on ArgWidth, the input vector could be a float or a double.
15303     // If the input vector is a float type, bitcast the inputs to integers. Or,
15304     // if the input vector is a double, bitcast the inputs to 64-bit integers.
15305     if (!Ops[1]->getType()->isIntegerTy(ArgWidth)) {
15306       Ops[0] = Builder.CreateBitCast(
15307           Ops[0], Is32Bit ? llvm::FixedVectorType::get(Int32Ty, 4)
15308                           : llvm::FixedVectorType::get(Int64Ty, 2));
15309       Ops[1] = Builder.CreateBitCast(Ops[1], Is32Bit ? Int32Ty : Int64Ty);
15310     }
15311     // Emit the call to vinsw or vinsd.
15312     Call = Builder.CreateCall(F, Ops);
15313     // Depending on the builtin, bitcast to the approriate result type.
15314     if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt &&
15315         !Ops[1]->getType()->isIntegerTy())
15316       return Builder.CreateBitCast(Call, ResultType);
15317     else if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt &&
15318              Ops[1]->getType()->isIntegerTy())
15319       return Call;
15320     else
15321       return Builder.CreateBitCast(Call,
15322                                    llvm::FixedVectorType::get(Int8Ty, 16));
15323   }
15324   case PPC::BI__builtin_altivec_vpopcntb:
15325   case PPC::BI__builtin_altivec_vpopcnth:
15326   case PPC::BI__builtin_altivec_vpopcntw:
15327   case PPC::BI__builtin_altivec_vpopcntd: {
15328     llvm::Type *ResultType = ConvertType(E->getType());
15329     Value *X = EmitScalarExpr(E->getArg(0));
15330     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
15331     return Builder.CreateCall(F, X);
15332   }
15333   case PPC::BI__builtin_altivec_vadduqm:
15334   case PPC::BI__builtin_altivec_vsubuqm: {
15335     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
15336     Ops[0] =
15337         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int128Ty, 1));
15338     Ops[1] =
15339         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int128Ty, 1));
15340     if (BuiltinID == PPC::BI__builtin_altivec_vadduqm)
15341       return Builder.CreateAdd(Ops[0], Ops[1], "vadduqm");
15342     else
15343       return Builder.CreateSub(Ops[0], Ops[1], "vsubuqm");
15344   }
15345   // Rotate and insert under mask operation.
15346   // __rldimi(rs, is, shift, mask)
15347   // (rotl64(rs, shift) & mask) | (is & ~mask)
15348   // __rlwimi(rs, is, shift, mask)
15349   // (rotl(rs, shift) & mask) | (is & ~mask)
15350   case PPC::BI__builtin_ppc_rldimi:
15351   case PPC::BI__builtin_ppc_rlwimi: {
15352     llvm::Type *Ty = Ops[0]->getType();
15353     Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
15354     if (BuiltinID == PPC::BI__builtin_ppc_rldimi)
15355       Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
15356     Value *Shift = Builder.CreateCall(F, {Ops[0], Ops[0], Ops[2]});
15357     Value *X = Builder.CreateAnd(Shift, Ops[3]);
15358     Value *Y = Builder.CreateAnd(Ops[1], Builder.CreateNot(Ops[3]));
15359     return Builder.CreateOr(X, Y);
15360   }
15361   // Rotate and insert under mask operation.
15362   // __rlwnm(rs, shift, mask)
15363   // rotl(rs, shift) & mask
15364   case PPC::BI__builtin_ppc_rlwnm: {
15365     llvm::Type *Ty = Ops[0]->getType();
15366     Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
15367     Value *Shift = Builder.CreateCall(F, {Ops[0], Ops[0], Ops[1]});
15368     return Builder.CreateAnd(Shift, Ops[2]);
15369   }
15370   case PPC::BI__builtin_ppc_poppar4:
15371   case PPC::BI__builtin_ppc_poppar8: {
15372     llvm::Type *ArgType = Ops[0]->getType();
15373     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
15374     Value *Tmp = Builder.CreateCall(F, Ops[0]);
15375 
15376     llvm::Type *ResultType = ConvertType(E->getType());
15377     Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
15378     if (Result->getType() != ResultType)
15379       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
15380                                      "cast");
15381     return Result;
15382   }
15383   case PPC::BI__builtin_ppc_cmpb: {
15384     if (getTarget().getTriple().isPPC64()) {
15385       Function *F =
15386           CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int64Ty, Int64Ty, Int64Ty});
15387       return Builder.CreateCall(F, Ops, "cmpb");
15388     }
15389     // For 32 bit, emit the code as below:
15390     // %conv = trunc i64 %a to i32
15391     // %conv1 = trunc i64 %b to i32
15392     // %shr = lshr i64 %a, 32
15393     // %conv2 = trunc i64 %shr to i32
15394     // %shr3 = lshr i64 %b, 32
15395     // %conv4 = trunc i64 %shr3 to i32
15396     // %0 = tail call i32 @llvm.ppc.cmpb32(i32 %conv, i32 %conv1)
15397     // %conv5 = zext i32 %0 to i64
15398     // %1 = tail call i32 @llvm.ppc.cmpb32(i32 %conv2, i32 %conv4)
15399     // %conv614 = zext i32 %1 to i64
15400     // %shl = shl nuw i64 %conv614, 32
15401     // %or = or i64 %shl, %conv5
15402     // ret i64 %or
15403     Function *F =
15404         CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int32Ty, Int32Ty, Int32Ty});
15405     Value *ArgOneLo = Builder.CreateTrunc(Ops[0], Int32Ty);
15406     Value *ArgTwoLo = Builder.CreateTrunc(Ops[1], Int32Ty);
15407     Constant *ShiftAmt = ConstantInt::get(Int64Ty, 32);
15408     Value *ArgOneHi =
15409         Builder.CreateTrunc(Builder.CreateLShr(Ops[0], ShiftAmt), Int32Ty);
15410     Value *ArgTwoHi =
15411         Builder.CreateTrunc(Builder.CreateLShr(Ops[1], ShiftAmt), Int32Ty);
15412     Value *ResLo = Builder.CreateZExt(
15413         Builder.CreateCall(F, {ArgOneLo, ArgTwoLo}, "cmpb"), Int64Ty);
15414     Value *ResHiShift = Builder.CreateZExt(
15415         Builder.CreateCall(F, {ArgOneHi, ArgTwoHi}, "cmpb"), Int64Ty);
15416     Value *ResHi = Builder.CreateShl(ResHiShift, ShiftAmt);
15417     return Builder.CreateOr(ResLo, ResHi);
15418   }
15419   // Copy sign
15420   case PPC::BI__builtin_vsx_xvcpsgnsp:
15421   case PPC::BI__builtin_vsx_xvcpsgndp: {
15422     llvm::Type *ResultType = ConvertType(E->getType());
15423     Value *X = EmitScalarExpr(E->getArg(0));
15424     Value *Y = EmitScalarExpr(E->getArg(1));
15425     ID = Intrinsic::copysign;
15426     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
15427     return Builder.CreateCall(F, {X, Y});
15428   }
15429   // Rounding/truncation
15430   case PPC::BI__builtin_vsx_xvrspip:
15431   case PPC::BI__builtin_vsx_xvrdpip:
15432   case PPC::BI__builtin_vsx_xvrdpim:
15433   case PPC::BI__builtin_vsx_xvrspim:
15434   case PPC::BI__builtin_vsx_xvrdpi:
15435   case PPC::BI__builtin_vsx_xvrspi:
15436   case PPC::BI__builtin_vsx_xvrdpic:
15437   case PPC::BI__builtin_vsx_xvrspic:
15438   case PPC::BI__builtin_vsx_xvrdpiz:
15439   case PPC::BI__builtin_vsx_xvrspiz: {
15440     llvm::Type *ResultType = ConvertType(E->getType());
15441     Value *X = EmitScalarExpr(E->getArg(0));
15442     if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
15443         BuiltinID == PPC::BI__builtin_vsx_xvrspim)
15444       ID = Builder.getIsFPConstrained()
15445                ? Intrinsic::experimental_constrained_floor
15446                : Intrinsic::floor;
15447     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
15448              BuiltinID == PPC::BI__builtin_vsx_xvrspi)
15449       ID = Builder.getIsFPConstrained()
15450                ? Intrinsic::experimental_constrained_round
15451                : Intrinsic::round;
15452     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
15453              BuiltinID == PPC::BI__builtin_vsx_xvrspic)
15454       ID = Builder.getIsFPConstrained()
15455                ? Intrinsic::experimental_constrained_rint
15456                : Intrinsic::rint;
15457     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
15458              BuiltinID == PPC::BI__builtin_vsx_xvrspip)
15459       ID = Builder.getIsFPConstrained()
15460                ? Intrinsic::experimental_constrained_ceil
15461                : Intrinsic::ceil;
15462     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
15463              BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
15464       ID = Builder.getIsFPConstrained()
15465                ? Intrinsic::experimental_constrained_trunc
15466                : Intrinsic::trunc;
15467     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
15468     return Builder.getIsFPConstrained() ? Builder.CreateConstrainedFPCall(F, X)
15469                                         : Builder.CreateCall(F, X);
15470   }
15471 
15472   // Absolute value
15473   case PPC::BI__builtin_vsx_xvabsdp:
15474   case PPC::BI__builtin_vsx_xvabssp: {
15475     llvm::Type *ResultType = ConvertType(E->getType());
15476     Value *X = EmitScalarExpr(E->getArg(0));
15477     llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
15478     return Builder.CreateCall(F, X);
15479   }
15480 
15481   // Fastmath by default
15482   case PPC::BI__builtin_ppc_recipdivf:
15483   case PPC::BI__builtin_ppc_recipdivd:
15484   case PPC::BI__builtin_ppc_rsqrtf:
15485   case PPC::BI__builtin_ppc_rsqrtd: {
15486     FastMathFlags FMF = Builder.getFastMathFlags();
15487     Builder.getFastMathFlags().setFast();
15488     llvm::Type *ResultType = ConvertType(E->getType());
15489     Value *X = EmitScalarExpr(E->getArg(0));
15490 
15491     if (BuiltinID == PPC::BI__builtin_ppc_recipdivf ||
15492         BuiltinID == PPC::BI__builtin_ppc_recipdivd) {
15493       Value *Y = EmitScalarExpr(E->getArg(1));
15494       Value *FDiv = Builder.CreateFDiv(X, Y, "recipdiv");
15495       Builder.getFastMathFlags() &= (FMF);
15496       return FDiv;
15497     }
15498     auto *One = ConstantFP::get(ResultType, 1.0);
15499     llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
15500     Value *FDiv = Builder.CreateFDiv(One, Builder.CreateCall(F, X), "rsqrt");
15501     Builder.getFastMathFlags() &= (FMF);
15502     return FDiv;
15503   }
15504   case PPC::BI__builtin_ppc_alignx: {
15505     ConstantInt *AlignmentCI = cast<ConstantInt>(Ops[0]);
15506     if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
15507       AlignmentCI = ConstantInt::get(AlignmentCI->getType(),
15508                                      llvm::Value::MaximumAlignment);
15509 
15510     emitAlignmentAssumption(Ops[1], E->getArg(1),
15511                             /*The expr loc is sufficient.*/ SourceLocation(),
15512                             AlignmentCI, nullptr);
15513     return Ops[1];
15514   }
15515   case PPC::BI__builtin_ppc_rdlam: {
15516     llvm::Type *Ty = Ops[0]->getType();
15517     Value *ShiftAmt = Builder.CreateIntCast(Ops[1], Ty, false);
15518     Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
15519     Value *Rotate = Builder.CreateCall(F, {Ops[0], Ops[0], ShiftAmt});
15520     return Builder.CreateAnd(Rotate, Ops[2]);
15521   }
15522   // FMA variations
15523   case PPC::BI__builtin_vsx_xvmaddadp:
15524   case PPC::BI__builtin_vsx_xvmaddasp:
15525   case PPC::BI__builtin_vsx_xvnmaddadp:
15526   case PPC::BI__builtin_vsx_xvnmaddasp:
15527   case PPC::BI__builtin_vsx_xvmsubadp:
15528   case PPC::BI__builtin_vsx_xvmsubasp:
15529   case PPC::BI__builtin_vsx_xvnmsubadp:
15530   case PPC::BI__builtin_vsx_xvnmsubasp: {
15531     llvm::Type *ResultType = ConvertType(E->getType());
15532     Value *X = EmitScalarExpr(E->getArg(0));
15533     Value *Y = EmitScalarExpr(E->getArg(1));
15534     Value *Z = EmitScalarExpr(E->getArg(2));
15535     llvm::Function *F;
15536     if (Builder.getIsFPConstrained())
15537       F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15538     else
15539       F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15540     switch (BuiltinID) {
15541       case PPC::BI__builtin_vsx_xvmaddadp:
15542       case PPC::BI__builtin_vsx_xvmaddasp:
15543         if (Builder.getIsFPConstrained())
15544           return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
15545         else
15546           return Builder.CreateCall(F, {X, Y, Z});
15547       case PPC::BI__builtin_vsx_xvnmaddadp:
15548       case PPC::BI__builtin_vsx_xvnmaddasp:
15549         if (Builder.getIsFPConstrained())
15550           return Builder.CreateFNeg(
15551               Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg");
15552         else
15553           return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
15554       case PPC::BI__builtin_vsx_xvmsubadp:
15555       case PPC::BI__builtin_vsx_xvmsubasp:
15556         if (Builder.getIsFPConstrained())
15557           return Builder.CreateConstrainedFPCall(
15558               F, {X, Y, Builder.CreateFNeg(Z, "neg")});
15559         else
15560           return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
15561       case PPC::BI__builtin_vsx_xvnmsubadp:
15562       case PPC::BI__builtin_vsx_xvnmsubasp:
15563         if (Builder.getIsFPConstrained())
15564           return Builder.CreateFNeg(
15565               Builder.CreateConstrainedFPCall(
15566                   F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
15567               "neg");
15568         else
15569           return Builder.CreateFNeg(
15570               Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
15571               "neg");
15572     }
15573     llvm_unreachable("Unknown FMA operation");
15574     return nullptr; // Suppress no-return warning
15575   }
15576 
15577   case PPC::BI__builtin_vsx_insertword: {
15578     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
15579 
15580     // Third argument is a compile time constant int. It must be clamped to
15581     // to the range [0, 12].
15582     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
15583     assert(ArgCI &&
15584            "Third arg to xxinsertw intrinsic must be constant integer");
15585     const int64_t MaxIndex = 12;
15586     int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
15587 
15588     // The builtin semantics don't exactly match the xxinsertw instructions
15589     // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
15590     // word from the first argument, and inserts it in the second argument. The
15591     // instruction extracts the word from its second input register and inserts
15592     // it into its first input register, so swap the first and second arguments.
15593     std::swap(Ops[0], Ops[1]);
15594 
15595     // Need to cast the second argument from a vector of unsigned int to a
15596     // vector of long long.
15597     Ops[1] =
15598         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2));
15599 
15600     if (getTarget().isLittleEndian()) {
15601       // Reverse the double words in the vector we will extract from.
15602       Ops[0] =
15603           Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
15604       Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ArrayRef<int>{1, 0});
15605 
15606       // Reverse the index.
15607       Index = MaxIndex - Index;
15608     }
15609 
15610     // Intrinsic expects the first arg to be a vector of int.
15611     Ops[0] =
15612         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
15613     Ops[2] = ConstantInt::getSigned(Int32Ty, Index);
15614     return Builder.CreateCall(F, Ops);
15615   }
15616 
15617   case PPC::BI__builtin_vsx_extractuword: {
15618     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
15619 
15620     // Intrinsic expects the first argument to be a vector of doublewords.
15621     Ops[0] =
15622         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
15623 
15624     // The second argument is a compile time constant int that needs to
15625     // be clamped to the range [0, 12].
15626     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[1]);
15627     assert(ArgCI &&
15628            "Second Arg to xxextractuw intrinsic must be a constant integer!");
15629     const int64_t MaxIndex = 12;
15630     int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
15631 
15632     if (getTarget().isLittleEndian()) {
15633       // Reverse the index.
15634       Index = MaxIndex - Index;
15635       Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
15636 
15637       // Emit the call, then reverse the double words of the results vector.
15638       Value *Call = Builder.CreateCall(F, Ops);
15639 
15640       Value *ShuffleCall =
15641           Builder.CreateShuffleVector(Call, Call, ArrayRef<int>{1, 0});
15642       return ShuffleCall;
15643     } else {
15644       Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
15645       return Builder.CreateCall(F, Ops);
15646     }
15647   }
15648 
15649   case PPC::BI__builtin_vsx_xxpermdi: {
15650     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
15651     assert(ArgCI && "Third arg must be constant integer!");
15652 
15653     unsigned Index = ArgCI->getZExtValue();
15654     Ops[0] =
15655         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
15656     Ops[1] =
15657         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2));
15658 
15659     // Account for endianness by treating this as just a shuffle. So we use the
15660     // same indices for both LE and BE in order to produce expected results in
15661     // both cases.
15662     int ElemIdx0 = (Index & 2) >> 1;
15663     int ElemIdx1 = 2 + (Index & 1);
15664 
15665     int ShuffleElts[2] = {ElemIdx0, ElemIdx1};
15666     Value *ShuffleCall =
15667         Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts);
15668     QualType BIRetType = E->getType();
15669     auto RetTy = ConvertType(BIRetType);
15670     return Builder.CreateBitCast(ShuffleCall, RetTy);
15671   }
15672 
15673   case PPC::BI__builtin_vsx_xxsldwi: {
15674     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
15675     assert(ArgCI && "Third argument must be a compile time constant");
15676     unsigned Index = ArgCI->getZExtValue() & 0x3;
15677     Ops[0] =
15678         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
15679     Ops[1] =
15680         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int32Ty, 4));
15681 
15682     // Create a shuffle mask
15683     int ElemIdx0;
15684     int ElemIdx1;
15685     int ElemIdx2;
15686     int ElemIdx3;
15687     if (getTarget().isLittleEndian()) {
15688       // Little endian element N comes from element 8+N-Index of the
15689       // concatenated wide vector (of course, using modulo arithmetic on
15690       // the total number of elements).
15691       ElemIdx0 = (8 - Index) % 8;
15692       ElemIdx1 = (9 - Index) % 8;
15693       ElemIdx2 = (10 - Index) % 8;
15694       ElemIdx3 = (11 - Index) % 8;
15695     } else {
15696       // Big endian ElemIdx<N> = Index + N
15697       ElemIdx0 = Index;
15698       ElemIdx1 = Index + 1;
15699       ElemIdx2 = Index + 2;
15700       ElemIdx3 = Index + 3;
15701     }
15702 
15703     int ShuffleElts[4] = {ElemIdx0, ElemIdx1, ElemIdx2, ElemIdx3};
15704     Value *ShuffleCall =
15705         Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts);
15706     QualType BIRetType = E->getType();
15707     auto RetTy = ConvertType(BIRetType);
15708     return Builder.CreateBitCast(ShuffleCall, RetTy);
15709   }
15710 
15711   case PPC::BI__builtin_pack_vector_int128: {
15712     bool isLittleEndian = getTarget().isLittleEndian();
15713     Value *UndefValue =
15714         llvm::UndefValue::get(llvm::FixedVectorType::get(Ops[0]->getType(), 2));
15715     Value *Res = Builder.CreateInsertElement(
15716         UndefValue, Ops[0], (uint64_t)(isLittleEndian ? 1 : 0));
15717     Res = Builder.CreateInsertElement(Res, Ops[1],
15718                                       (uint64_t)(isLittleEndian ? 0 : 1));
15719     return Builder.CreateBitCast(Res, ConvertType(E->getType()));
15720   }
15721 
15722   case PPC::BI__builtin_unpack_vector_int128: {
15723     ConstantInt *Index = cast<ConstantInt>(Ops[1]);
15724     Value *Unpacked = Builder.CreateBitCast(
15725         Ops[0], llvm::FixedVectorType::get(ConvertType(E->getType()), 2));
15726 
15727     if (getTarget().isLittleEndian())
15728       Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue());
15729 
15730     return Builder.CreateExtractElement(Unpacked, Index);
15731   }
15732 
15733   case PPC::BI__builtin_ppc_sthcx: {
15734     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_sthcx);
15735     Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
15736     Ops[1] = Builder.CreateSExt(Ops[1], Int32Ty);
15737     return Builder.CreateCall(F, Ops);
15738   }
15739 
15740   // The PPC MMA builtins take a pointer to a __vector_quad as an argument.
15741   // Some of the MMA instructions accumulate their result into an existing
15742   // accumulator whereas the others generate a new accumulator. So we need to
15743   // use custom code generation to expand a builtin call with a pointer to a
15744   // load (if the corresponding instruction accumulates its result) followed by
15745   // the call to the intrinsic and a store of the result.
15746 #define CUSTOM_BUILTIN(Name, Intr, Types, Accumulate) \
15747   case PPC::BI__builtin_##Name:
15748 #include "clang/Basic/BuiltinsPPC.def"
15749   {
15750     // The first argument of these two builtins is a pointer used to store their
15751     // result. However, the llvm intrinsics return their result in multiple
15752     // return values. So, here we emit code extracting these values from the
15753     // intrinsic results and storing them using that pointer.
15754     if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc ||
15755         BuiltinID == PPC::BI__builtin_vsx_disassemble_pair ||
15756         BuiltinID == PPC::BI__builtin_mma_disassemble_pair) {
15757       unsigned NumVecs = 2;
15758       auto Intrinsic = Intrinsic::ppc_vsx_disassemble_pair;
15759       if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc) {
15760         NumVecs = 4;
15761         Intrinsic = Intrinsic::ppc_mma_disassemble_acc;
15762       }
15763       llvm::Function *F = CGM.getIntrinsic(Intrinsic);
15764       Address Addr = EmitPointerWithAlignment(E->getArg(1));
15765       Value *Vec = Builder.CreateLoad(Addr);
15766       Value *Call = Builder.CreateCall(F, {Vec});
15767       llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, 16);
15768       Value *Ptr = Builder.CreateBitCast(Ops[0], VTy->getPointerTo());
15769       for (unsigned i=0; i<NumVecs; i++) {
15770         Value *Vec = Builder.CreateExtractValue(Call, i);
15771         llvm::ConstantInt* Index = llvm::ConstantInt::get(IntTy, i);
15772         Value *GEP = Builder.CreateInBoundsGEP(VTy, Ptr, Index);
15773         Builder.CreateAlignedStore(Vec, GEP, MaybeAlign(16));
15774       }
15775       return Call;
15776     }
15777     bool Accumulate;
15778     switch (BuiltinID) {
15779   #define CUSTOM_BUILTIN(Name, Intr, Types, Acc) \
15780     case PPC::BI__builtin_##Name: \
15781       ID = Intrinsic::ppc_##Intr; \
15782       Accumulate = Acc; \
15783       break;
15784   #include "clang/Basic/BuiltinsPPC.def"
15785     }
15786     if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
15787         BuiltinID == PPC::BI__builtin_vsx_stxvp ||
15788         BuiltinID == PPC::BI__builtin_mma_lxvp ||
15789         BuiltinID == PPC::BI__builtin_mma_stxvp) {
15790       if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
15791           BuiltinID == PPC::BI__builtin_mma_lxvp) {
15792         Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
15793         Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]);
15794       } else {
15795         Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
15796         Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]);
15797       }
15798       Ops.pop_back();
15799       llvm::Function *F = CGM.getIntrinsic(ID);
15800       return Builder.CreateCall(F, Ops, "");
15801     }
15802     SmallVector<Value*, 4> CallOps;
15803     if (Accumulate) {
15804       Address Addr = EmitPointerWithAlignment(E->getArg(0));
15805       Value *Acc = Builder.CreateLoad(Addr);
15806       CallOps.push_back(Acc);
15807     }
15808     for (unsigned i=1; i<Ops.size(); i++)
15809       CallOps.push_back(Ops[i]);
15810     llvm::Function *F = CGM.getIntrinsic(ID);
15811     Value *Call = Builder.CreateCall(F, CallOps);
15812     return Builder.CreateAlignedStore(Call, Ops[0], MaybeAlign(64));
15813   }
15814 
15815   case PPC::BI__builtin_ppc_compare_and_swap:
15816   case PPC::BI__builtin_ppc_compare_and_swaplp: {
15817     Address Addr = EmitPointerWithAlignment(E->getArg(0));
15818     Address OldValAddr = EmitPointerWithAlignment(E->getArg(1));
15819     Value *OldVal = Builder.CreateLoad(OldValAddr);
15820     QualType AtomicTy = E->getArg(0)->getType()->getPointeeType();
15821     LValue LV = MakeAddrLValue(Addr, AtomicTy);
15822     auto Pair = EmitAtomicCompareExchange(
15823         LV, RValue::get(OldVal), RValue::get(Ops[2]), E->getExprLoc(),
15824         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Monotonic, true);
15825     // Unlike c11's atomic_compare_exchange, accroding to
15826     // https://www.ibm.com/docs/en/xl-c-and-cpp-aix/16.1?topic=functions-compare-swap-compare-swaplp
15827     // > In either case, the contents of the memory location specified by addr
15828     // > are copied into the memory location specified by old_val_addr.
15829     // But it hasn't specified storing to OldValAddr is atomic or not and
15830     // which order to use. Now following XL's codegen, treat it as a normal
15831     // store.
15832     Value *LoadedVal = Pair.first.getScalarVal();
15833     Builder.CreateStore(LoadedVal, OldValAddr);
15834     return Pair.second;
15835   }
15836   case PPC::BI__builtin_ppc_fetch_and_add:
15837   case PPC::BI__builtin_ppc_fetch_and_addlp: {
15838     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
15839                                  llvm::AtomicOrdering::Monotonic);
15840   }
15841   case PPC::BI__builtin_ppc_fetch_and_and:
15842   case PPC::BI__builtin_ppc_fetch_and_andlp: {
15843     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
15844                                  llvm::AtomicOrdering::Monotonic);
15845   }
15846 
15847   case PPC::BI__builtin_ppc_fetch_and_or:
15848   case PPC::BI__builtin_ppc_fetch_and_orlp: {
15849     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
15850                                  llvm::AtomicOrdering::Monotonic);
15851   }
15852   case PPC::BI__builtin_ppc_fetch_and_swap:
15853   case PPC::BI__builtin_ppc_fetch_and_swaplp: {
15854     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
15855                                  llvm::AtomicOrdering::Monotonic);
15856   }
15857   case PPC::BI__builtin_ppc_ldarx:
15858   case PPC::BI__builtin_ppc_lwarx:
15859   case PPC::BI__builtin_ppc_lharx:
15860   case PPC::BI__builtin_ppc_lbarx:
15861     return emitPPCLoadReserveIntrinsic(*this, BuiltinID, E);
15862   case PPC::BI__builtin_ppc_mfspr: {
15863     llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32
15864                               ? Int32Ty
15865                               : Int64Ty;
15866     Function *F = CGM.getIntrinsic(Intrinsic::ppc_mfspr, RetType);
15867     return Builder.CreateCall(F, Ops);
15868   }
15869   case PPC::BI__builtin_ppc_mtspr: {
15870     llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32
15871                               ? Int32Ty
15872                               : Int64Ty;
15873     Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtspr, RetType);
15874     return Builder.CreateCall(F, Ops);
15875   }
15876   case PPC::BI__builtin_ppc_popcntb: {
15877     Value *ArgValue = EmitScalarExpr(E->getArg(0));
15878     llvm::Type *ArgType = ArgValue->getType();
15879     Function *F = CGM.getIntrinsic(Intrinsic::ppc_popcntb, {ArgType, ArgType});
15880     return Builder.CreateCall(F, Ops, "popcntb");
15881   }
15882   case PPC::BI__builtin_ppc_mtfsf: {
15883     // The builtin takes a uint32 that needs to be cast to an
15884     // f64 to be passed to the intrinsic.
15885     Value *Cast = Builder.CreateUIToFP(Ops[1], DoubleTy);
15886     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtfsf);
15887     return Builder.CreateCall(F, {Ops[0], Cast}, "");
15888   }
15889 
15890   case PPC::BI__builtin_ppc_swdiv_nochk:
15891   case PPC::BI__builtin_ppc_swdivs_nochk: {
15892     FastMathFlags FMF = Builder.getFastMathFlags();
15893     Builder.getFastMathFlags().setFast();
15894     Value *FDiv = Builder.CreateFDiv(Ops[0], Ops[1], "swdiv_nochk");
15895     Builder.getFastMathFlags() &= (FMF);
15896     return FDiv;
15897   }
15898   case PPC::BI__builtin_ppc_fric:
15899     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
15900                            *this, E, Intrinsic::rint,
15901                            Intrinsic::experimental_constrained_rint))
15902         .getScalarVal();
15903   case PPC::BI__builtin_ppc_frim:
15904   case PPC::BI__builtin_ppc_frims:
15905     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
15906                            *this, E, Intrinsic::floor,
15907                            Intrinsic::experimental_constrained_floor))
15908         .getScalarVal();
15909   case PPC::BI__builtin_ppc_frin:
15910   case PPC::BI__builtin_ppc_frins:
15911     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
15912                            *this, E, Intrinsic::round,
15913                            Intrinsic::experimental_constrained_round))
15914         .getScalarVal();
15915   case PPC::BI__builtin_ppc_frip:
15916   case PPC::BI__builtin_ppc_frips:
15917     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
15918                            *this, E, Intrinsic::ceil,
15919                            Intrinsic::experimental_constrained_ceil))
15920         .getScalarVal();
15921   case PPC::BI__builtin_ppc_friz:
15922   case PPC::BI__builtin_ppc_frizs:
15923     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
15924                            *this, E, Intrinsic::trunc,
15925                            Intrinsic::experimental_constrained_trunc))
15926         .getScalarVal();
15927   case PPC::BI__builtin_ppc_fsqrt:
15928   case PPC::BI__builtin_ppc_fsqrts:
15929     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
15930                            *this, E, Intrinsic::sqrt,
15931                            Intrinsic::experimental_constrained_sqrt))
15932         .getScalarVal();
15933   }
15934 }
15935 
15936 namespace {
15937 // If \p E is not null pointer, insert address space cast to match return
15938 // type of \p E if necessary.
15939 Value *EmitAMDGPUDispatchPtr(CodeGenFunction &CGF,
15940                              const CallExpr *E = nullptr) {
15941   auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_dispatch_ptr);
15942   auto *Call = CGF.Builder.CreateCall(F);
15943   Call->addAttribute(
15944       AttributeList::ReturnIndex,
15945       Attribute::getWithDereferenceableBytes(Call->getContext(), 64));
15946   Call->addAttribute(AttributeList::ReturnIndex,
15947                      Attribute::getWithAlignment(Call->getContext(), Align(4)));
15948   if (!E)
15949     return Call;
15950   QualType BuiltinRetType = E->getType();
15951   auto *RetTy = cast<llvm::PointerType>(CGF.ConvertType(BuiltinRetType));
15952   if (RetTy == Call->getType())
15953     return Call;
15954   return CGF.Builder.CreateAddrSpaceCast(Call, RetTy);
15955 }
15956 
15957 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
15958 Value *EmitAMDGPUWorkGroupSize(CodeGenFunction &CGF, unsigned Index) {
15959   const unsigned XOffset = 4;
15960   auto *DP = EmitAMDGPUDispatchPtr(CGF);
15961   // Indexing the HSA kernel_dispatch_packet struct.
15962   auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 2);
15963   auto *GEP = CGF.Builder.CreateGEP(CGF.Int8Ty, DP, Offset);
15964   auto *DstTy =
15965       CGF.Int16Ty->getPointerTo(GEP->getType()->getPointerAddressSpace());
15966   auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy);
15967   auto *LD = CGF.Builder.CreateLoad(Address(Cast, CharUnits::fromQuantity(2)));
15968   llvm::MDBuilder MDHelper(CGF.getLLVMContext());
15969   llvm::MDNode *RNode = MDHelper.createRange(APInt(16, 1),
15970       APInt(16, CGF.getTarget().getMaxOpenCLWorkGroupSize() + 1));
15971   LD->setMetadata(llvm::LLVMContext::MD_range, RNode);
15972   LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
15973       llvm::MDNode::get(CGF.getLLVMContext(), None));
15974   return LD;
15975 }
15976 
15977 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
15978 Value *EmitAMDGPUGridSize(CodeGenFunction &CGF, unsigned Index) {
15979   const unsigned XOffset = 12;
15980   auto *DP = EmitAMDGPUDispatchPtr(CGF);
15981   // Indexing the HSA kernel_dispatch_packet struct.
15982   auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 4);
15983   auto *GEP = CGF.Builder.CreateGEP(CGF.Int8Ty, DP, Offset);
15984   auto *DstTy =
15985       CGF.Int32Ty->getPointerTo(GEP->getType()->getPointerAddressSpace());
15986   auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy);
15987   auto *LD = CGF.Builder.CreateLoad(Address(Cast, CharUnits::fromQuantity(4)));
15988   LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
15989                   llvm::MDNode::get(CGF.getLLVMContext(), None));
15990   return LD;
15991 }
15992 } // namespace
15993 
15994 // For processing memory ordering and memory scope arguments of various
15995 // amdgcn builtins.
15996 // \p Order takes a C++11 comptabile memory-ordering specifier and converts
15997 // it into LLVM's memory ordering specifier using atomic C ABI, and writes
15998 // to \p AO. \p Scope takes a const char * and converts it into AMDGCN
15999 // specific SyncScopeID and writes it to \p SSID.
16000 bool CodeGenFunction::ProcessOrderScopeAMDGCN(Value *Order, Value *Scope,
16001                                               llvm::AtomicOrdering &AO,
16002                                               llvm::SyncScope::ID &SSID) {
16003   if (isa<llvm::ConstantInt>(Order)) {
16004     int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
16005 
16006     // Map C11/C++11 memory ordering to LLVM memory ordering
16007     assert(llvm::isValidAtomicOrderingCABI(ord));
16008     switch (static_cast<llvm::AtomicOrderingCABI>(ord)) {
16009     case llvm::AtomicOrderingCABI::acquire:
16010     case llvm::AtomicOrderingCABI::consume:
16011       AO = llvm::AtomicOrdering::Acquire;
16012       break;
16013     case llvm::AtomicOrderingCABI::release:
16014       AO = llvm::AtomicOrdering::Release;
16015       break;
16016     case llvm::AtomicOrderingCABI::acq_rel:
16017       AO = llvm::AtomicOrdering::AcquireRelease;
16018       break;
16019     case llvm::AtomicOrderingCABI::seq_cst:
16020       AO = llvm::AtomicOrdering::SequentiallyConsistent;
16021       break;
16022     case llvm::AtomicOrderingCABI::relaxed:
16023       AO = llvm::AtomicOrdering::Monotonic;
16024       break;
16025     }
16026 
16027     StringRef scp;
16028     llvm::getConstantStringInfo(Scope, scp);
16029     SSID = getLLVMContext().getOrInsertSyncScopeID(scp);
16030     return true;
16031   }
16032   return false;
16033 }
16034 
16035 Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
16036                                               const CallExpr *E) {
16037   llvm::AtomicOrdering AO = llvm::AtomicOrdering::SequentiallyConsistent;
16038   llvm::SyncScope::ID SSID;
16039   switch (BuiltinID) {
16040   case AMDGPU::BI__builtin_amdgcn_div_scale:
16041   case AMDGPU::BI__builtin_amdgcn_div_scalef: {
16042     // Translate from the intrinsics's struct return to the builtin's out
16043     // argument.
16044 
16045     Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
16046 
16047     llvm::Value *X = EmitScalarExpr(E->getArg(0));
16048     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
16049     llvm::Value *Z = EmitScalarExpr(E->getArg(2));
16050 
16051     llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
16052                                            X->getType());
16053 
16054     llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
16055 
16056     llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
16057     llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
16058 
16059     llvm::Type *RealFlagType
16060       = FlagOutPtr.getPointer()->getType()->getPointerElementType();
16061 
16062     llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
16063     Builder.CreateStore(FlagExt, FlagOutPtr);
16064     return Result;
16065   }
16066   case AMDGPU::BI__builtin_amdgcn_div_fmas:
16067   case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
16068     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
16069     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
16070     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
16071     llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
16072 
16073     llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
16074                                       Src0->getType());
16075     llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
16076     return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
16077   }
16078 
16079   case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
16080     return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle);
16081   case AMDGPU::BI__builtin_amdgcn_mov_dpp8:
16082     return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_mov_dpp8);
16083   case AMDGPU::BI__builtin_amdgcn_mov_dpp:
16084   case AMDGPU::BI__builtin_amdgcn_update_dpp: {
16085     llvm::SmallVector<llvm::Value *, 6> Args;
16086     for (unsigned I = 0; I != E->getNumArgs(); ++I)
16087       Args.push_back(EmitScalarExpr(E->getArg(I)));
16088     assert(Args.size() == 5 || Args.size() == 6);
16089     if (Args.size() == 5)
16090       Args.insert(Args.begin(), llvm::UndefValue::get(Args[0]->getType()));
16091     Function *F =
16092         CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType());
16093     return Builder.CreateCall(F, Args);
16094   }
16095   case AMDGPU::BI__builtin_amdgcn_div_fixup:
16096   case AMDGPU::BI__builtin_amdgcn_div_fixupf:
16097   case AMDGPU::BI__builtin_amdgcn_div_fixuph:
16098     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup);
16099   case AMDGPU::BI__builtin_amdgcn_trig_preop:
16100   case AMDGPU::BI__builtin_amdgcn_trig_preopf:
16101     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
16102   case AMDGPU::BI__builtin_amdgcn_rcp:
16103   case AMDGPU::BI__builtin_amdgcn_rcpf:
16104   case AMDGPU::BI__builtin_amdgcn_rcph:
16105     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp);
16106   case AMDGPU::BI__builtin_amdgcn_sqrt:
16107   case AMDGPU::BI__builtin_amdgcn_sqrtf:
16108   case AMDGPU::BI__builtin_amdgcn_sqrth:
16109     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sqrt);
16110   case AMDGPU::BI__builtin_amdgcn_rsq:
16111   case AMDGPU::BI__builtin_amdgcn_rsqf:
16112   case AMDGPU::BI__builtin_amdgcn_rsqh:
16113     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq);
16114   case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
16115   case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
16116     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp);
16117   case AMDGPU::BI__builtin_amdgcn_sinf:
16118   case AMDGPU::BI__builtin_amdgcn_sinh:
16119     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin);
16120   case AMDGPU::BI__builtin_amdgcn_cosf:
16121   case AMDGPU::BI__builtin_amdgcn_cosh:
16122     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos);
16123   case AMDGPU::BI__builtin_amdgcn_dispatch_ptr:
16124     return EmitAMDGPUDispatchPtr(*this, E);
16125   case AMDGPU::BI__builtin_amdgcn_log_clampf:
16126     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp);
16127   case AMDGPU::BI__builtin_amdgcn_ldexp:
16128   case AMDGPU::BI__builtin_amdgcn_ldexpf:
16129   case AMDGPU::BI__builtin_amdgcn_ldexph:
16130     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp);
16131   case AMDGPU::BI__builtin_amdgcn_frexp_mant:
16132   case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
16133   case AMDGPU::BI__builtin_amdgcn_frexp_manth:
16134     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant);
16135   case AMDGPU::BI__builtin_amdgcn_frexp_exp:
16136   case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
16137     Value *Src0 = EmitScalarExpr(E->getArg(0));
16138     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
16139                                 { Builder.getInt32Ty(), Src0->getType() });
16140     return Builder.CreateCall(F, Src0);
16141   }
16142   case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
16143     Value *Src0 = EmitScalarExpr(E->getArg(0));
16144     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
16145                                 { Builder.getInt16Ty(), Src0->getType() });
16146     return Builder.CreateCall(F, Src0);
16147   }
16148   case AMDGPU::BI__builtin_amdgcn_fract:
16149   case AMDGPU::BI__builtin_amdgcn_fractf:
16150   case AMDGPU::BI__builtin_amdgcn_fracth:
16151     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract);
16152   case AMDGPU::BI__builtin_amdgcn_lerp:
16153     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp);
16154   case AMDGPU::BI__builtin_amdgcn_ubfe:
16155     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_ubfe);
16156   case AMDGPU::BI__builtin_amdgcn_sbfe:
16157     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_sbfe);
16158   case AMDGPU::BI__builtin_amdgcn_uicmp:
16159   case AMDGPU::BI__builtin_amdgcn_uicmpl:
16160   case AMDGPU::BI__builtin_amdgcn_sicmp:
16161   case AMDGPU::BI__builtin_amdgcn_sicmpl: {
16162     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
16163     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
16164     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
16165 
16166     // FIXME-GFX10: How should 32 bit mask be handled?
16167     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp,
16168       { Builder.getInt64Ty(), Src0->getType() });
16169     return Builder.CreateCall(F, { Src0, Src1, Src2 });
16170   }
16171   case AMDGPU::BI__builtin_amdgcn_fcmp:
16172   case AMDGPU::BI__builtin_amdgcn_fcmpf: {
16173     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
16174     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
16175     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
16176 
16177     // FIXME-GFX10: How should 32 bit mask be handled?
16178     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp,
16179       { Builder.getInt64Ty(), Src0->getType() });
16180     return Builder.CreateCall(F, { Src0, Src1, Src2 });
16181   }
16182   case AMDGPU::BI__builtin_amdgcn_class:
16183   case AMDGPU::BI__builtin_amdgcn_classf:
16184   case AMDGPU::BI__builtin_amdgcn_classh:
16185     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
16186   case AMDGPU::BI__builtin_amdgcn_fmed3f:
16187   case AMDGPU::BI__builtin_amdgcn_fmed3h:
16188     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3);
16189   case AMDGPU::BI__builtin_amdgcn_ds_append:
16190   case AMDGPU::BI__builtin_amdgcn_ds_consume: {
16191     Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ?
16192       Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume;
16193     Value *Src0 = EmitScalarExpr(E->getArg(0));
16194     Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() });
16195     return Builder.CreateCall(F, { Src0, Builder.getFalse() });
16196   }
16197   case AMDGPU::BI__builtin_amdgcn_ds_faddf:
16198   case AMDGPU::BI__builtin_amdgcn_ds_fminf:
16199   case AMDGPU::BI__builtin_amdgcn_ds_fmaxf: {
16200     Intrinsic::ID Intrin;
16201     switch (BuiltinID) {
16202     case AMDGPU::BI__builtin_amdgcn_ds_faddf:
16203       Intrin = Intrinsic::amdgcn_ds_fadd;
16204       break;
16205     case AMDGPU::BI__builtin_amdgcn_ds_fminf:
16206       Intrin = Intrinsic::amdgcn_ds_fmin;
16207       break;
16208     case AMDGPU::BI__builtin_amdgcn_ds_fmaxf:
16209       Intrin = Intrinsic::amdgcn_ds_fmax;
16210       break;
16211     }
16212     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
16213     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
16214     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
16215     llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
16216     llvm::Value *Src4 = EmitScalarExpr(E->getArg(4));
16217     llvm::Function *F = CGM.getIntrinsic(Intrin, { Src1->getType() });
16218     llvm::FunctionType *FTy = F->getFunctionType();
16219     llvm::Type *PTy = FTy->getParamType(0);
16220     Src0 = Builder.CreatePointerBitCastOrAddrSpaceCast(Src0, PTy);
16221     return Builder.CreateCall(F, { Src0, Src1, Src2, Src3, Src4 });
16222   }
16223   case AMDGPU::BI__builtin_amdgcn_read_exec: {
16224     CallInst *CI = cast<CallInst>(
16225       EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, NormalRead, "exec"));
16226     CI->setConvergent();
16227     return CI;
16228   }
16229   case AMDGPU::BI__builtin_amdgcn_read_exec_lo:
16230   case AMDGPU::BI__builtin_amdgcn_read_exec_hi: {
16231     StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ?
16232       "exec_lo" : "exec_hi";
16233     CallInst *CI = cast<CallInst>(
16234       EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, NormalRead, RegName));
16235     CI->setConvergent();
16236     return CI;
16237   }
16238   case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray:
16239   case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_h:
16240   case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_l:
16241   case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_lh: {
16242     llvm::Value *NodePtr = EmitScalarExpr(E->getArg(0));
16243     llvm::Value *RayExtent = EmitScalarExpr(E->getArg(1));
16244     llvm::Value *RayOrigin = EmitScalarExpr(E->getArg(2));
16245     llvm::Value *RayDir = EmitScalarExpr(E->getArg(3));
16246     llvm::Value *RayInverseDir = EmitScalarExpr(E->getArg(4));
16247     llvm::Value *TextureDescr = EmitScalarExpr(E->getArg(5));
16248 
16249     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_image_bvh_intersect_ray,
16250                                    {NodePtr->getType(), RayDir->getType()});
16251     return Builder.CreateCall(F, {NodePtr, RayExtent, RayOrigin, RayDir,
16252                                   RayInverseDir, TextureDescr});
16253   }
16254 
16255   // amdgcn workitem
16256   case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
16257     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
16258   case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
16259     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
16260   case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
16261     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
16262 
16263   // amdgcn workgroup size
16264   case AMDGPU::BI__builtin_amdgcn_workgroup_size_x:
16265     return EmitAMDGPUWorkGroupSize(*this, 0);
16266   case AMDGPU::BI__builtin_amdgcn_workgroup_size_y:
16267     return EmitAMDGPUWorkGroupSize(*this, 1);
16268   case AMDGPU::BI__builtin_amdgcn_workgroup_size_z:
16269     return EmitAMDGPUWorkGroupSize(*this, 2);
16270 
16271   // amdgcn grid size
16272   case AMDGPU::BI__builtin_amdgcn_grid_size_x:
16273     return EmitAMDGPUGridSize(*this, 0);
16274   case AMDGPU::BI__builtin_amdgcn_grid_size_y:
16275     return EmitAMDGPUGridSize(*this, 1);
16276   case AMDGPU::BI__builtin_amdgcn_grid_size_z:
16277     return EmitAMDGPUGridSize(*this, 2);
16278 
16279   // r600 intrinsics
16280   case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
16281   case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
16282     return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee);
16283   case AMDGPU::BI__builtin_r600_read_tidig_x:
16284     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
16285   case AMDGPU::BI__builtin_r600_read_tidig_y:
16286     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
16287   case AMDGPU::BI__builtin_r600_read_tidig_z:
16288     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
16289   case AMDGPU::BI__builtin_amdgcn_alignbit: {
16290     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
16291     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
16292     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
16293     Function *F = CGM.getIntrinsic(Intrinsic::fshr, Src0->getType());
16294     return Builder.CreateCall(F, { Src0, Src1, Src2 });
16295   }
16296 
16297   case AMDGPU::BI__builtin_amdgcn_fence: {
16298     if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(0)),
16299                                 EmitScalarExpr(E->getArg(1)), AO, SSID))
16300       return Builder.CreateFence(AO, SSID);
16301     LLVM_FALLTHROUGH;
16302   }
16303   case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
16304   case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
16305   case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
16306   case AMDGPU::BI__builtin_amdgcn_atomic_dec64: {
16307     unsigned BuiltinAtomicOp;
16308     llvm::Type *ResultType = ConvertType(E->getType());
16309 
16310     switch (BuiltinID) {
16311     case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
16312     case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
16313       BuiltinAtomicOp = Intrinsic::amdgcn_atomic_inc;
16314       break;
16315     case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
16316     case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
16317       BuiltinAtomicOp = Intrinsic::amdgcn_atomic_dec;
16318       break;
16319     }
16320 
16321     Value *Ptr = EmitScalarExpr(E->getArg(0));
16322     Value *Val = EmitScalarExpr(E->getArg(1));
16323 
16324     llvm::Function *F =
16325         CGM.getIntrinsic(BuiltinAtomicOp, {ResultType, Ptr->getType()});
16326 
16327     if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(2)),
16328                                 EmitScalarExpr(E->getArg(3)), AO, SSID)) {
16329 
16330       // llvm.amdgcn.atomic.inc and llvm.amdgcn.atomic.dec expects ordering and
16331       // scope as unsigned values
16332       Value *MemOrder = Builder.getInt32(static_cast<int>(AO));
16333       Value *MemScope = Builder.getInt32(static_cast<int>(SSID));
16334 
16335       QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
16336       bool Volatile =
16337           PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
16338       Value *IsVolatile = Builder.getInt1(static_cast<bool>(Volatile));
16339 
16340       return Builder.CreateCall(F, {Ptr, Val, MemOrder, MemScope, IsVolatile});
16341     }
16342     LLVM_FALLTHROUGH;
16343   }
16344   default:
16345     return nullptr;
16346   }
16347 }
16348 
16349 /// Handle a SystemZ function in which the final argument is a pointer
16350 /// to an int that receives the post-instruction CC value.  At the LLVM level
16351 /// this is represented as a function that returns a {result, cc} pair.
16352 static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
16353                                          unsigned IntrinsicID,
16354                                          const CallExpr *E) {
16355   unsigned NumArgs = E->getNumArgs() - 1;
16356   SmallVector<Value *, 8> Args(NumArgs);
16357   for (unsigned I = 0; I < NumArgs; ++I)
16358     Args[I] = CGF.EmitScalarExpr(E->getArg(I));
16359   Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
16360   Function *F = CGF.CGM.getIntrinsic(IntrinsicID);
16361   Value *Call = CGF.Builder.CreateCall(F, Args);
16362   Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
16363   CGF.Builder.CreateStore(CC, CCPtr);
16364   return CGF.Builder.CreateExtractValue(Call, 0);
16365 }
16366 
16367 Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
16368                                                const CallExpr *E) {
16369   switch (BuiltinID) {
16370   case SystemZ::BI__builtin_tbegin: {
16371     Value *TDB = EmitScalarExpr(E->getArg(0));
16372     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
16373     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
16374     return Builder.CreateCall(F, {TDB, Control});
16375   }
16376   case SystemZ::BI__builtin_tbegin_nofloat: {
16377     Value *TDB = EmitScalarExpr(E->getArg(0));
16378     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
16379     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
16380     return Builder.CreateCall(F, {TDB, Control});
16381   }
16382   case SystemZ::BI__builtin_tbeginc: {
16383     Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
16384     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
16385     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
16386     return Builder.CreateCall(F, {TDB, Control});
16387   }
16388   case SystemZ::BI__builtin_tabort: {
16389     Value *Data = EmitScalarExpr(E->getArg(0));
16390     Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
16391     return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
16392   }
16393   case SystemZ::BI__builtin_non_tx_store: {
16394     Value *Address = EmitScalarExpr(E->getArg(0));
16395     Value *Data = EmitScalarExpr(E->getArg(1));
16396     Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
16397     return Builder.CreateCall(F, {Data, Address});
16398   }
16399 
16400   // Vector builtins.  Note that most vector builtins are mapped automatically
16401   // to target-specific LLVM intrinsics.  The ones handled specially here can
16402   // be represented via standard LLVM IR, which is preferable to enable common
16403   // LLVM optimizations.
16404 
16405   case SystemZ::BI__builtin_s390_vpopctb:
16406   case SystemZ::BI__builtin_s390_vpopcth:
16407   case SystemZ::BI__builtin_s390_vpopctf:
16408   case SystemZ::BI__builtin_s390_vpopctg: {
16409     llvm::Type *ResultType = ConvertType(E->getType());
16410     Value *X = EmitScalarExpr(E->getArg(0));
16411     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
16412     return Builder.CreateCall(F, X);
16413   }
16414 
16415   case SystemZ::BI__builtin_s390_vclzb:
16416   case SystemZ::BI__builtin_s390_vclzh:
16417   case SystemZ::BI__builtin_s390_vclzf:
16418   case SystemZ::BI__builtin_s390_vclzg: {
16419     llvm::Type *ResultType = ConvertType(E->getType());
16420     Value *X = EmitScalarExpr(E->getArg(0));
16421     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
16422     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
16423     return Builder.CreateCall(F, {X, Undef});
16424   }
16425 
16426   case SystemZ::BI__builtin_s390_vctzb:
16427   case SystemZ::BI__builtin_s390_vctzh:
16428   case SystemZ::BI__builtin_s390_vctzf:
16429   case SystemZ::BI__builtin_s390_vctzg: {
16430     llvm::Type *ResultType = ConvertType(E->getType());
16431     Value *X = EmitScalarExpr(E->getArg(0));
16432     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
16433     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
16434     return Builder.CreateCall(F, {X, Undef});
16435   }
16436 
16437   case SystemZ::BI__builtin_s390_vfsqsb:
16438   case SystemZ::BI__builtin_s390_vfsqdb: {
16439     llvm::Type *ResultType = ConvertType(E->getType());
16440     Value *X = EmitScalarExpr(E->getArg(0));
16441     if (Builder.getIsFPConstrained()) {
16442       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, ResultType);
16443       return Builder.CreateConstrainedFPCall(F, { X });
16444     } else {
16445       Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
16446       return Builder.CreateCall(F, X);
16447     }
16448   }
16449   case SystemZ::BI__builtin_s390_vfmasb:
16450   case SystemZ::BI__builtin_s390_vfmadb: {
16451     llvm::Type *ResultType = ConvertType(E->getType());
16452     Value *X = EmitScalarExpr(E->getArg(0));
16453     Value *Y = EmitScalarExpr(E->getArg(1));
16454     Value *Z = EmitScalarExpr(E->getArg(2));
16455     if (Builder.getIsFPConstrained()) {
16456       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
16457       return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
16458     } else {
16459       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
16460       return Builder.CreateCall(F, {X, Y, Z});
16461     }
16462   }
16463   case SystemZ::BI__builtin_s390_vfmssb:
16464   case SystemZ::BI__builtin_s390_vfmsdb: {
16465     llvm::Type *ResultType = ConvertType(E->getType());
16466     Value *X = EmitScalarExpr(E->getArg(0));
16467     Value *Y = EmitScalarExpr(E->getArg(1));
16468     Value *Z = EmitScalarExpr(E->getArg(2));
16469     if (Builder.getIsFPConstrained()) {
16470       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
16471       return Builder.CreateConstrainedFPCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
16472     } else {
16473       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
16474       return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
16475     }
16476   }
16477   case SystemZ::BI__builtin_s390_vfnmasb:
16478   case SystemZ::BI__builtin_s390_vfnmadb: {
16479     llvm::Type *ResultType = ConvertType(E->getType());
16480     Value *X = EmitScalarExpr(E->getArg(0));
16481     Value *Y = EmitScalarExpr(E->getArg(1));
16482     Value *Z = EmitScalarExpr(E->getArg(2));
16483     if (Builder.getIsFPConstrained()) {
16484       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
16485       return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y,  Z}), "neg");
16486     } else {
16487       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
16488       return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
16489     }
16490   }
16491   case SystemZ::BI__builtin_s390_vfnmssb:
16492   case SystemZ::BI__builtin_s390_vfnmsdb: {
16493     llvm::Type *ResultType = ConvertType(E->getType());
16494     Value *X = EmitScalarExpr(E->getArg(0));
16495     Value *Y = EmitScalarExpr(E->getArg(1));
16496     Value *Z = EmitScalarExpr(E->getArg(2));
16497     if (Builder.getIsFPConstrained()) {
16498       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
16499       Value *NegZ = Builder.CreateFNeg(Z, "sub");
16500       return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, NegZ}));
16501     } else {
16502       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
16503       Value *NegZ = Builder.CreateFNeg(Z, "neg");
16504       return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, NegZ}));
16505     }
16506   }
16507   case SystemZ::BI__builtin_s390_vflpsb:
16508   case SystemZ::BI__builtin_s390_vflpdb: {
16509     llvm::Type *ResultType = ConvertType(E->getType());
16510     Value *X = EmitScalarExpr(E->getArg(0));
16511     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
16512     return Builder.CreateCall(F, X);
16513   }
16514   case SystemZ::BI__builtin_s390_vflnsb:
16515   case SystemZ::BI__builtin_s390_vflndb: {
16516     llvm::Type *ResultType = ConvertType(E->getType());
16517     Value *X = EmitScalarExpr(E->getArg(0));
16518     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
16519     return Builder.CreateFNeg(Builder.CreateCall(F, X), "neg");
16520   }
16521   case SystemZ::BI__builtin_s390_vfisb:
16522   case SystemZ::BI__builtin_s390_vfidb: {
16523     llvm::Type *ResultType = ConvertType(E->getType());
16524     Value *X = EmitScalarExpr(E->getArg(0));
16525     // Constant-fold the M4 and M5 mask arguments.
16526     llvm::APSInt M4 = *E->getArg(1)->getIntegerConstantExpr(getContext());
16527     llvm::APSInt M5 = *E->getArg(2)->getIntegerConstantExpr(getContext());
16528     // Check whether this instance can be represented via a LLVM standard
16529     // intrinsic.  We only support some combinations of M4 and M5.
16530     Intrinsic::ID ID = Intrinsic::not_intrinsic;
16531     Intrinsic::ID CI;
16532     switch (M4.getZExtValue()) {
16533     default: break;
16534     case 0:  // IEEE-inexact exception allowed
16535       switch (M5.getZExtValue()) {
16536       default: break;
16537       case 0: ID = Intrinsic::rint;
16538               CI = Intrinsic::experimental_constrained_rint; break;
16539       }
16540       break;
16541     case 4:  // IEEE-inexact exception suppressed
16542       switch (M5.getZExtValue()) {
16543       default: break;
16544       case 0: ID = Intrinsic::nearbyint;
16545               CI = Intrinsic::experimental_constrained_nearbyint; break;
16546       case 1: ID = Intrinsic::round;
16547               CI = Intrinsic::experimental_constrained_round; break;
16548       case 5: ID = Intrinsic::trunc;
16549               CI = Intrinsic::experimental_constrained_trunc; break;
16550       case 6: ID = Intrinsic::ceil;
16551               CI = Intrinsic::experimental_constrained_ceil; break;
16552       case 7: ID = Intrinsic::floor;
16553               CI = Intrinsic::experimental_constrained_floor; break;
16554       }
16555       break;
16556     }
16557     if (ID != Intrinsic::not_intrinsic) {
16558       if (Builder.getIsFPConstrained()) {
16559         Function *F = CGM.getIntrinsic(CI, ResultType);
16560         return Builder.CreateConstrainedFPCall(F, X);
16561       } else {
16562         Function *F = CGM.getIntrinsic(ID, ResultType);
16563         return Builder.CreateCall(F, X);
16564       }
16565     }
16566     switch (BuiltinID) { // FIXME: constrained version?
16567       case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break;
16568       case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break;
16569       default: llvm_unreachable("Unknown BuiltinID");
16570     }
16571     Function *F = CGM.getIntrinsic(ID);
16572     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
16573     Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
16574     return Builder.CreateCall(F, {X, M4Value, M5Value});
16575   }
16576   case SystemZ::BI__builtin_s390_vfmaxsb:
16577   case SystemZ::BI__builtin_s390_vfmaxdb: {
16578     llvm::Type *ResultType = ConvertType(E->getType());
16579     Value *X = EmitScalarExpr(E->getArg(0));
16580     Value *Y = EmitScalarExpr(E->getArg(1));
16581     // Constant-fold the M4 mask argument.
16582     llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
16583     // Check whether this instance can be represented via a LLVM standard
16584     // intrinsic.  We only support some values of M4.
16585     Intrinsic::ID ID = Intrinsic::not_intrinsic;
16586     Intrinsic::ID CI;
16587     switch (M4.getZExtValue()) {
16588     default: break;
16589     case 4: ID = Intrinsic::maxnum;
16590             CI = Intrinsic::experimental_constrained_maxnum; break;
16591     }
16592     if (ID != Intrinsic::not_intrinsic) {
16593       if (Builder.getIsFPConstrained()) {
16594         Function *F = CGM.getIntrinsic(CI, ResultType);
16595         return Builder.CreateConstrainedFPCall(F, {X, Y});
16596       } else {
16597         Function *F = CGM.getIntrinsic(ID, ResultType);
16598         return Builder.CreateCall(F, {X, Y});
16599       }
16600     }
16601     switch (BuiltinID) {
16602       case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break;
16603       case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break;
16604       default: llvm_unreachable("Unknown BuiltinID");
16605     }
16606     Function *F = CGM.getIntrinsic(ID);
16607     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
16608     return Builder.CreateCall(F, {X, Y, M4Value});
16609   }
16610   case SystemZ::BI__builtin_s390_vfminsb:
16611   case SystemZ::BI__builtin_s390_vfmindb: {
16612     llvm::Type *ResultType = ConvertType(E->getType());
16613     Value *X = EmitScalarExpr(E->getArg(0));
16614     Value *Y = EmitScalarExpr(E->getArg(1));
16615     // Constant-fold the M4 mask argument.
16616     llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
16617     // Check whether this instance can be represented via a LLVM standard
16618     // intrinsic.  We only support some values of M4.
16619     Intrinsic::ID ID = Intrinsic::not_intrinsic;
16620     Intrinsic::ID CI;
16621     switch (M4.getZExtValue()) {
16622     default: break;
16623     case 4: ID = Intrinsic::minnum;
16624             CI = Intrinsic::experimental_constrained_minnum; break;
16625     }
16626     if (ID != Intrinsic::not_intrinsic) {
16627       if (Builder.getIsFPConstrained()) {
16628         Function *F = CGM.getIntrinsic(CI, ResultType);
16629         return Builder.CreateConstrainedFPCall(F, {X, Y});
16630       } else {
16631         Function *F = CGM.getIntrinsic(ID, ResultType);
16632         return Builder.CreateCall(F, {X, Y});
16633       }
16634     }
16635     switch (BuiltinID) {
16636       case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break;
16637       case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break;
16638       default: llvm_unreachable("Unknown BuiltinID");
16639     }
16640     Function *F = CGM.getIntrinsic(ID);
16641     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
16642     return Builder.CreateCall(F, {X, Y, M4Value});
16643   }
16644 
16645   case SystemZ::BI__builtin_s390_vlbrh:
16646   case SystemZ::BI__builtin_s390_vlbrf:
16647   case SystemZ::BI__builtin_s390_vlbrg: {
16648     llvm::Type *ResultType = ConvertType(E->getType());
16649     Value *X = EmitScalarExpr(E->getArg(0));
16650     Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType);
16651     return Builder.CreateCall(F, X);
16652   }
16653 
16654   // Vector intrinsics that output the post-instruction CC value.
16655 
16656 #define INTRINSIC_WITH_CC(NAME) \
16657     case SystemZ::BI__builtin_##NAME: \
16658       return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
16659 
16660   INTRINSIC_WITH_CC(s390_vpkshs);
16661   INTRINSIC_WITH_CC(s390_vpksfs);
16662   INTRINSIC_WITH_CC(s390_vpksgs);
16663 
16664   INTRINSIC_WITH_CC(s390_vpklshs);
16665   INTRINSIC_WITH_CC(s390_vpklsfs);
16666   INTRINSIC_WITH_CC(s390_vpklsgs);
16667 
16668   INTRINSIC_WITH_CC(s390_vceqbs);
16669   INTRINSIC_WITH_CC(s390_vceqhs);
16670   INTRINSIC_WITH_CC(s390_vceqfs);
16671   INTRINSIC_WITH_CC(s390_vceqgs);
16672 
16673   INTRINSIC_WITH_CC(s390_vchbs);
16674   INTRINSIC_WITH_CC(s390_vchhs);
16675   INTRINSIC_WITH_CC(s390_vchfs);
16676   INTRINSIC_WITH_CC(s390_vchgs);
16677 
16678   INTRINSIC_WITH_CC(s390_vchlbs);
16679   INTRINSIC_WITH_CC(s390_vchlhs);
16680   INTRINSIC_WITH_CC(s390_vchlfs);
16681   INTRINSIC_WITH_CC(s390_vchlgs);
16682 
16683   INTRINSIC_WITH_CC(s390_vfaebs);
16684   INTRINSIC_WITH_CC(s390_vfaehs);
16685   INTRINSIC_WITH_CC(s390_vfaefs);
16686 
16687   INTRINSIC_WITH_CC(s390_vfaezbs);
16688   INTRINSIC_WITH_CC(s390_vfaezhs);
16689   INTRINSIC_WITH_CC(s390_vfaezfs);
16690 
16691   INTRINSIC_WITH_CC(s390_vfeebs);
16692   INTRINSIC_WITH_CC(s390_vfeehs);
16693   INTRINSIC_WITH_CC(s390_vfeefs);
16694 
16695   INTRINSIC_WITH_CC(s390_vfeezbs);
16696   INTRINSIC_WITH_CC(s390_vfeezhs);
16697   INTRINSIC_WITH_CC(s390_vfeezfs);
16698 
16699   INTRINSIC_WITH_CC(s390_vfenebs);
16700   INTRINSIC_WITH_CC(s390_vfenehs);
16701   INTRINSIC_WITH_CC(s390_vfenefs);
16702 
16703   INTRINSIC_WITH_CC(s390_vfenezbs);
16704   INTRINSIC_WITH_CC(s390_vfenezhs);
16705   INTRINSIC_WITH_CC(s390_vfenezfs);
16706 
16707   INTRINSIC_WITH_CC(s390_vistrbs);
16708   INTRINSIC_WITH_CC(s390_vistrhs);
16709   INTRINSIC_WITH_CC(s390_vistrfs);
16710 
16711   INTRINSIC_WITH_CC(s390_vstrcbs);
16712   INTRINSIC_WITH_CC(s390_vstrchs);
16713   INTRINSIC_WITH_CC(s390_vstrcfs);
16714 
16715   INTRINSIC_WITH_CC(s390_vstrczbs);
16716   INTRINSIC_WITH_CC(s390_vstrczhs);
16717   INTRINSIC_WITH_CC(s390_vstrczfs);
16718 
16719   INTRINSIC_WITH_CC(s390_vfcesbs);
16720   INTRINSIC_WITH_CC(s390_vfcedbs);
16721   INTRINSIC_WITH_CC(s390_vfchsbs);
16722   INTRINSIC_WITH_CC(s390_vfchdbs);
16723   INTRINSIC_WITH_CC(s390_vfchesbs);
16724   INTRINSIC_WITH_CC(s390_vfchedbs);
16725 
16726   INTRINSIC_WITH_CC(s390_vftcisb);
16727   INTRINSIC_WITH_CC(s390_vftcidb);
16728 
16729   INTRINSIC_WITH_CC(s390_vstrsb);
16730   INTRINSIC_WITH_CC(s390_vstrsh);
16731   INTRINSIC_WITH_CC(s390_vstrsf);
16732 
16733   INTRINSIC_WITH_CC(s390_vstrszb);
16734   INTRINSIC_WITH_CC(s390_vstrszh);
16735   INTRINSIC_WITH_CC(s390_vstrszf);
16736 
16737 #undef INTRINSIC_WITH_CC
16738 
16739   default:
16740     return nullptr;
16741   }
16742 }
16743 
16744 namespace {
16745 // Helper classes for mapping MMA builtins to particular LLVM intrinsic variant.
16746 struct NVPTXMmaLdstInfo {
16747   unsigned NumResults;  // Number of elements to load/store
16748   // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported.
16749   unsigned IID_col;
16750   unsigned IID_row;
16751 };
16752 
16753 #define MMA_INTR(geom_op_type, layout) \
16754   Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride
16755 #define MMA_LDST(n, geom_op_type)                                              \
16756   { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) }
16757 
16758 static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) {
16759   switch (BuiltinID) {
16760   // FP MMA loads
16761   case NVPTX::BI__hmma_m16n16k16_ld_a:
16762     return MMA_LDST(8, m16n16k16_load_a_f16);
16763   case NVPTX::BI__hmma_m16n16k16_ld_b:
16764     return MMA_LDST(8, m16n16k16_load_b_f16);
16765   case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
16766     return MMA_LDST(4, m16n16k16_load_c_f16);
16767   case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
16768     return MMA_LDST(8, m16n16k16_load_c_f32);
16769   case NVPTX::BI__hmma_m32n8k16_ld_a:
16770     return MMA_LDST(8, m32n8k16_load_a_f16);
16771   case NVPTX::BI__hmma_m32n8k16_ld_b:
16772     return MMA_LDST(8, m32n8k16_load_b_f16);
16773   case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
16774     return MMA_LDST(4, m32n8k16_load_c_f16);
16775   case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
16776     return MMA_LDST(8, m32n8k16_load_c_f32);
16777   case NVPTX::BI__hmma_m8n32k16_ld_a:
16778     return MMA_LDST(8, m8n32k16_load_a_f16);
16779   case NVPTX::BI__hmma_m8n32k16_ld_b:
16780     return MMA_LDST(8, m8n32k16_load_b_f16);
16781   case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
16782     return MMA_LDST(4, m8n32k16_load_c_f16);
16783   case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
16784     return MMA_LDST(8, m8n32k16_load_c_f32);
16785 
16786   // Integer MMA loads
16787   case NVPTX::BI__imma_m16n16k16_ld_a_s8:
16788     return MMA_LDST(2, m16n16k16_load_a_s8);
16789   case NVPTX::BI__imma_m16n16k16_ld_a_u8:
16790     return MMA_LDST(2, m16n16k16_load_a_u8);
16791   case NVPTX::BI__imma_m16n16k16_ld_b_s8:
16792     return MMA_LDST(2, m16n16k16_load_b_s8);
16793   case NVPTX::BI__imma_m16n16k16_ld_b_u8:
16794     return MMA_LDST(2, m16n16k16_load_b_u8);
16795   case NVPTX::BI__imma_m16n16k16_ld_c:
16796     return MMA_LDST(8, m16n16k16_load_c_s32);
16797   case NVPTX::BI__imma_m32n8k16_ld_a_s8:
16798     return MMA_LDST(4, m32n8k16_load_a_s8);
16799   case NVPTX::BI__imma_m32n8k16_ld_a_u8:
16800     return MMA_LDST(4, m32n8k16_load_a_u8);
16801   case NVPTX::BI__imma_m32n8k16_ld_b_s8:
16802     return MMA_LDST(1, m32n8k16_load_b_s8);
16803   case NVPTX::BI__imma_m32n8k16_ld_b_u8:
16804     return MMA_LDST(1, m32n8k16_load_b_u8);
16805   case NVPTX::BI__imma_m32n8k16_ld_c:
16806     return MMA_LDST(8, m32n8k16_load_c_s32);
16807   case NVPTX::BI__imma_m8n32k16_ld_a_s8:
16808     return MMA_LDST(1, m8n32k16_load_a_s8);
16809   case NVPTX::BI__imma_m8n32k16_ld_a_u8:
16810     return MMA_LDST(1, m8n32k16_load_a_u8);
16811   case NVPTX::BI__imma_m8n32k16_ld_b_s8:
16812     return MMA_LDST(4, m8n32k16_load_b_s8);
16813   case NVPTX::BI__imma_m8n32k16_ld_b_u8:
16814     return MMA_LDST(4, m8n32k16_load_b_u8);
16815   case NVPTX::BI__imma_m8n32k16_ld_c:
16816     return MMA_LDST(8, m8n32k16_load_c_s32);
16817 
16818   // Sub-integer MMA loads.
16819   // Only row/col layout is supported by A/B fragments.
16820   case NVPTX::BI__imma_m8n8k32_ld_a_s4:
16821     return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)};
16822   case NVPTX::BI__imma_m8n8k32_ld_a_u4:
16823     return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)};
16824   case NVPTX::BI__imma_m8n8k32_ld_b_s4:
16825     return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0};
16826   case NVPTX::BI__imma_m8n8k32_ld_b_u4:
16827     return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0};
16828   case NVPTX::BI__imma_m8n8k32_ld_c:
16829     return MMA_LDST(2, m8n8k32_load_c_s32);
16830   case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
16831     return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)};
16832   case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
16833     return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0};
16834   case NVPTX::BI__bmma_m8n8k128_ld_c:
16835     return MMA_LDST(2, m8n8k128_load_c_s32);
16836 
16837   // Double MMA loads
16838   case NVPTX::BI__dmma_m8n8k4_ld_a:
16839     return MMA_LDST(1, m8n8k4_load_a_f64);
16840   case NVPTX::BI__dmma_m8n8k4_ld_b:
16841     return MMA_LDST(1, m8n8k4_load_b_f64);
16842   case NVPTX::BI__dmma_m8n8k4_ld_c:
16843     return MMA_LDST(2, m8n8k4_load_c_f64);
16844 
16845   // Alternate float MMA loads
16846   case NVPTX::BI__mma_bf16_m16n16k16_ld_a:
16847     return MMA_LDST(4, m16n16k16_load_a_bf16);
16848   case NVPTX::BI__mma_bf16_m16n16k16_ld_b:
16849     return MMA_LDST(4, m16n16k16_load_b_bf16);
16850   case NVPTX::BI__mma_bf16_m8n32k16_ld_a:
16851     return MMA_LDST(2, m8n32k16_load_a_bf16);
16852   case NVPTX::BI__mma_bf16_m8n32k16_ld_b:
16853     return MMA_LDST(8, m8n32k16_load_b_bf16);
16854   case NVPTX::BI__mma_bf16_m32n8k16_ld_a:
16855     return MMA_LDST(8, m32n8k16_load_a_bf16);
16856   case NVPTX::BI__mma_bf16_m32n8k16_ld_b:
16857     return MMA_LDST(2, m32n8k16_load_b_bf16);
16858   case NVPTX::BI__mma_tf32_m16n16k8_ld_a:
16859     return MMA_LDST(4, m16n16k8_load_a_tf32);
16860   case NVPTX::BI__mma_tf32_m16n16k8_ld_b:
16861     return MMA_LDST(2, m16n16k8_load_b_tf32);
16862   case NVPTX::BI__mma_tf32_m16n16k8_ld_c:
16863     return MMA_LDST(8, m16n16k8_load_c_f32);
16864 
16865   // NOTE: We need to follow inconsitent naming scheme used by NVCC.  Unlike
16866   // PTX and LLVM IR where stores always use fragment D, NVCC builtins always
16867   // use fragment C for both loads and stores.
16868   // FP MMA stores.
16869   case NVPTX::BI__hmma_m16n16k16_st_c_f16:
16870     return MMA_LDST(4, m16n16k16_store_d_f16);
16871   case NVPTX::BI__hmma_m16n16k16_st_c_f32:
16872     return MMA_LDST(8, m16n16k16_store_d_f32);
16873   case NVPTX::BI__hmma_m32n8k16_st_c_f16:
16874     return MMA_LDST(4, m32n8k16_store_d_f16);
16875   case NVPTX::BI__hmma_m32n8k16_st_c_f32:
16876     return MMA_LDST(8, m32n8k16_store_d_f32);
16877   case NVPTX::BI__hmma_m8n32k16_st_c_f16:
16878     return MMA_LDST(4, m8n32k16_store_d_f16);
16879   case NVPTX::BI__hmma_m8n32k16_st_c_f32:
16880     return MMA_LDST(8, m8n32k16_store_d_f32);
16881 
16882   // Integer and sub-integer MMA stores.
16883   // Another naming quirk. Unlike other MMA builtins that use PTX types in the
16884   // name, integer loads/stores use LLVM's i32.
16885   case NVPTX::BI__imma_m16n16k16_st_c_i32:
16886     return MMA_LDST(8, m16n16k16_store_d_s32);
16887   case NVPTX::BI__imma_m32n8k16_st_c_i32:
16888     return MMA_LDST(8, m32n8k16_store_d_s32);
16889   case NVPTX::BI__imma_m8n32k16_st_c_i32:
16890     return MMA_LDST(8, m8n32k16_store_d_s32);
16891   case NVPTX::BI__imma_m8n8k32_st_c_i32:
16892     return MMA_LDST(2, m8n8k32_store_d_s32);
16893   case NVPTX::BI__bmma_m8n8k128_st_c_i32:
16894     return MMA_LDST(2, m8n8k128_store_d_s32);
16895 
16896   // Double MMA store
16897   case NVPTX::BI__dmma_m8n8k4_st_c_f64:
16898     return MMA_LDST(2, m8n8k4_store_d_f64);
16899 
16900   // Alternate float MMA store
16901   case NVPTX::BI__mma_m16n16k8_st_c_f32:
16902     return MMA_LDST(8, m16n16k8_store_d_f32);
16903 
16904   default:
16905     llvm_unreachable("Unknown MMA builtin");
16906   }
16907 }
16908 #undef MMA_LDST
16909 #undef MMA_INTR
16910 
16911 
16912 struct NVPTXMmaInfo {
16913   unsigned NumEltsA;
16914   unsigned NumEltsB;
16915   unsigned NumEltsC;
16916   unsigned NumEltsD;
16917 
16918   // Variants are ordered by layout-A/layout-B/satf, where 'row' has priority
16919   // over 'col' for layout. The index of non-satf variants is expected to match
16920   // the undocumented layout constants used by CUDA's mma.hpp.
16921   std::array<unsigned, 8> Variants;
16922 
16923   unsigned getMMAIntrinsic(int Layout, bool Satf) {
16924     unsigned Index = Layout + 4 * Satf;
16925     if (Index >= Variants.size())
16926       return 0;
16927     return Variants[Index];
16928   }
16929 };
16930 
16931   // Returns an intrinsic that matches Layout and Satf for valid combinations of
16932   // Layout and Satf, 0 otherwise.
16933 static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) {
16934   // clang-format off
16935 #define MMA_VARIANTS(geom, type)                                    \
16936       Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type,             \
16937       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
16938       Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type,             \
16939       Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type
16940 #define MMA_SATF_VARIANTS(geom, type)                               \
16941       MMA_VARIANTS(geom, type),                                     \
16942       Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \
16943       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
16944       Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \
16945       Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite
16946 // Sub-integer MMA only supports row.col layout.
16947 #define MMA_VARIANTS_I4(geom, type) \
16948       0, \
16949       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
16950       0, \
16951       0, \
16952       0, \
16953       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
16954       0, \
16955       0
16956 // b1 MMA does not support .satfinite.
16957 #define MMA_VARIANTS_B1_XOR(geom, type) \
16958       0, \
16959       Intrinsic::nvvm_wmma_##geom##_mma_xor_popc_row_col_##type,             \
16960       0, \
16961       0, \
16962       0, \
16963       0, \
16964       0, \
16965       0
16966 #define MMA_VARIANTS_B1_AND(geom, type) \
16967       0, \
16968       Intrinsic::nvvm_wmma_##geom##_mma_and_popc_row_col_##type,             \
16969       0, \
16970       0, \
16971       0, \
16972       0, \
16973       0, \
16974       0
16975   // clang-format on
16976   switch (BuiltinID) {
16977   // FP MMA
16978   // Note that 'type' argument of MMA_SATF_VARIANTS uses D_C notation, while
16979   // NumEltsN of return value are ordered as A,B,C,D.
16980   case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
16981     return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m16n16k16, f16_f16)}}};
16982   case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
16983     return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m16n16k16, f32_f16)}}};
16984   case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
16985     return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m16n16k16, f16_f32)}}};
16986   case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
16987     return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, f32_f32)}}};
16988   case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
16989     return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m32n8k16, f16_f16)}}};
16990   case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
16991     return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m32n8k16, f32_f16)}}};
16992   case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
16993     return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m32n8k16, f16_f32)}}};
16994   case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
16995     return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, f32_f32)}}};
16996   case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
16997     return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m8n32k16, f16_f16)}}};
16998   case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
16999     return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m8n32k16, f32_f16)}}};
17000   case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
17001     return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m8n32k16, f16_f32)}}};
17002   case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
17003     return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, f32_f32)}}};
17004 
17005   // Integer MMA
17006   case NVPTX::BI__imma_m16n16k16_mma_s8:
17007     return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, s8)}}};
17008   case NVPTX::BI__imma_m16n16k16_mma_u8:
17009     return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, u8)}}};
17010   case NVPTX::BI__imma_m32n8k16_mma_s8:
17011     return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, s8)}}};
17012   case NVPTX::BI__imma_m32n8k16_mma_u8:
17013     return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, u8)}}};
17014   case NVPTX::BI__imma_m8n32k16_mma_s8:
17015     return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, s8)}}};
17016   case NVPTX::BI__imma_m8n32k16_mma_u8:
17017     return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, u8)}}};
17018 
17019   // Sub-integer MMA
17020   case NVPTX::BI__imma_m8n8k32_mma_s4:
17021     return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32, s4)}}};
17022   case NVPTX::BI__imma_m8n8k32_mma_u4:
17023     return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32, u4)}}};
17024   case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
17025     return {1, 1, 2, 2, {{MMA_VARIANTS_B1_XOR(m8n8k128, b1)}}};
17026   case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1:
17027     return {1, 1, 2, 2, {{MMA_VARIANTS_B1_AND(m8n8k128, b1)}}};
17028 
17029   // Double MMA
17030   case NVPTX::BI__dmma_m8n8k4_mma_f64:
17031     return {1, 1, 2, 2, {{MMA_VARIANTS(m8n8k4, f64)}}};
17032 
17033   // Alternate FP MMA
17034   case NVPTX::BI__mma_bf16_m16n16k16_mma_f32:
17035     return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k16, bf16)}}};
17036   case NVPTX::BI__mma_bf16_m8n32k16_mma_f32:
17037     return {2, 8, 8, 8, {{MMA_VARIANTS(m8n32k16, bf16)}}};
17038   case NVPTX::BI__mma_bf16_m32n8k16_mma_f32:
17039     return {8, 2, 8, 8, {{MMA_VARIANTS(m32n8k16, bf16)}}};
17040   case NVPTX::BI__mma_tf32_m16n16k8_mma_f32:
17041     return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k8, tf32)}}};
17042   default:
17043     llvm_unreachable("Unexpected builtin ID.");
17044   }
17045 #undef MMA_VARIANTS
17046 #undef MMA_SATF_VARIANTS
17047 #undef MMA_VARIANTS_I4
17048 #undef MMA_VARIANTS_B1_AND
17049 #undef MMA_VARIANTS_B1_XOR
17050 }
17051 
17052 } // namespace
17053 
17054 Value *
17055 CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E) {
17056   auto MakeLdg = [&](unsigned IntrinsicID) {
17057     Value *Ptr = EmitScalarExpr(E->getArg(0));
17058     clang::CharUnits Align =
17059         CGM.getNaturalPointeeTypeAlignment(E->getArg(0)->getType());
17060     return Builder.CreateCall(
17061         CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
17062                                        Ptr->getType()}),
17063         {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())});
17064   };
17065   auto MakeScopedAtomic = [&](unsigned IntrinsicID) {
17066     Value *Ptr = EmitScalarExpr(E->getArg(0));
17067     return Builder.CreateCall(
17068         CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
17069                                        Ptr->getType()}),
17070         {Ptr, EmitScalarExpr(E->getArg(1))});
17071   };
17072   switch (BuiltinID) {
17073   case NVPTX::BI__nvvm_atom_add_gen_i:
17074   case NVPTX::BI__nvvm_atom_add_gen_l:
17075   case NVPTX::BI__nvvm_atom_add_gen_ll:
17076     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
17077 
17078   case NVPTX::BI__nvvm_atom_sub_gen_i:
17079   case NVPTX::BI__nvvm_atom_sub_gen_l:
17080   case NVPTX::BI__nvvm_atom_sub_gen_ll:
17081     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
17082 
17083   case NVPTX::BI__nvvm_atom_and_gen_i:
17084   case NVPTX::BI__nvvm_atom_and_gen_l:
17085   case NVPTX::BI__nvvm_atom_and_gen_ll:
17086     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
17087 
17088   case NVPTX::BI__nvvm_atom_or_gen_i:
17089   case NVPTX::BI__nvvm_atom_or_gen_l:
17090   case NVPTX::BI__nvvm_atom_or_gen_ll:
17091     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
17092 
17093   case NVPTX::BI__nvvm_atom_xor_gen_i:
17094   case NVPTX::BI__nvvm_atom_xor_gen_l:
17095   case NVPTX::BI__nvvm_atom_xor_gen_ll:
17096     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
17097 
17098   case NVPTX::BI__nvvm_atom_xchg_gen_i:
17099   case NVPTX::BI__nvvm_atom_xchg_gen_l:
17100   case NVPTX::BI__nvvm_atom_xchg_gen_ll:
17101     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
17102 
17103   case NVPTX::BI__nvvm_atom_max_gen_i:
17104   case NVPTX::BI__nvvm_atom_max_gen_l:
17105   case NVPTX::BI__nvvm_atom_max_gen_ll:
17106     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
17107 
17108   case NVPTX::BI__nvvm_atom_max_gen_ui:
17109   case NVPTX::BI__nvvm_atom_max_gen_ul:
17110   case NVPTX::BI__nvvm_atom_max_gen_ull:
17111     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
17112 
17113   case NVPTX::BI__nvvm_atom_min_gen_i:
17114   case NVPTX::BI__nvvm_atom_min_gen_l:
17115   case NVPTX::BI__nvvm_atom_min_gen_ll:
17116     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
17117 
17118   case NVPTX::BI__nvvm_atom_min_gen_ui:
17119   case NVPTX::BI__nvvm_atom_min_gen_ul:
17120   case NVPTX::BI__nvvm_atom_min_gen_ull:
17121     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
17122 
17123   case NVPTX::BI__nvvm_atom_cas_gen_i:
17124   case NVPTX::BI__nvvm_atom_cas_gen_l:
17125   case NVPTX::BI__nvvm_atom_cas_gen_ll:
17126     // __nvvm_atom_cas_gen_* should return the old value rather than the
17127     // success flag.
17128     return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
17129 
17130   case NVPTX::BI__nvvm_atom_add_gen_f:
17131   case NVPTX::BI__nvvm_atom_add_gen_d: {
17132     Value *Ptr = EmitScalarExpr(E->getArg(0));
17133     Value *Val = EmitScalarExpr(E->getArg(1));
17134     return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, Ptr, Val,
17135                                    AtomicOrdering::SequentiallyConsistent);
17136   }
17137 
17138   case NVPTX::BI__nvvm_atom_inc_gen_ui: {
17139     Value *Ptr = EmitScalarExpr(E->getArg(0));
17140     Value *Val = EmitScalarExpr(E->getArg(1));
17141     Function *FnALI32 =
17142         CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
17143     return Builder.CreateCall(FnALI32, {Ptr, Val});
17144   }
17145 
17146   case NVPTX::BI__nvvm_atom_dec_gen_ui: {
17147     Value *Ptr = EmitScalarExpr(E->getArg(0));
17148     Value *Val = EmitScalarExpr(E->getArg(1));
17149     Function *FnALD32 =
17150         CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
17151     return Builder.CreateCall(FnALD32, {Ptr, Val});
17152   }
17153 
17154   case NVPTX::BI__nvvm_ldg_c:
17155   case NVPTX::BI__nvvm_ldg_c2:
17156   case NVPTX::BI__nvvm_ldg_c4:
17157   case NVPTX::BI__nvvm_ldg_s:
17158   case NVPTX::BI__nvvm_ldg_s2:
17159   case NVPTX::BI__nvvm_ldg_s4:
17160   case NVPTX::BI__nvvm_ldg_i:
17161   case NVPTX::BI__nvvm_ldg_i2:
17162   case NVPTX::BI__nvvm_ldg_i4:
17163   case NVPTX::BI__nvvm_ldg_l:
17164   case NVPTX::BI__nvvm_ldg_ll:
17165   case NVPTX::BI__nvvm_ldg_ll2:
17166   case NVPTX::BI__nvvm_ldg_uc:
17167   case NVPTX::BI__nvvm_ldg_uc2:
17168   case NVPTX::BI__nvvm_ldg_uc4:
17169   case NVPTX::BI__nvvm_ldg_us:
17170   case NVPTX::BI__nvvm_ldg_us2:
17171   case NVPTX::BI__nvvm_ldg_us4:
17172   case NVPTX::BI__nvvm_ldg_ui:
17173   case NVPTX::BI__nvvm_ldg_ui2:
17174   case NVPTX::BI__nvvm_ldg_ui4:
17175   case NVPTX::BI__nvvm_ldg_ul:
17176   case NVPTX::BI__nvvm_ldg_ull:
17177   case NVPTX::BI__nvvm_ldg_ull2:
17178     // PTX Interoperability section 2.2: "For a vector with an even number of
17179     // elements, its alignment is set to number of elements times the alignment
17180     // of its member: n*alignof(t)."
17181     return MakeLdg(Intrinsic::nvvm_ldg_global_i);
17182   case NVPTX::BI__nvvm_ldg_f:
17183   case NVPTX::BI__nvvm_ldg_f2:
17184   case NVPTX::BI__nvvm_ldg_f4:
17185   case NVPTX::BI__nvvm_ldg_d:
17186   case NVPTX::BI__nvvm_ldg_d2:
17187     return MakeLdg(Intrinsic::nvvm_ldg_global_f);
17188 
17189   case NVPTX::BI__nvvm_atom_cta_add_gen_i:
17190   case NVPTX::BI__nvvm_atom_cta_add_gen_l:
17191   case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
17192     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta);
17193   case NVPTX::BI__nvvm_atom_sys_add_gen_i:
17194   case NVPTX::BI__nvvm_atom_sys_add_gen_l:
17195   case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
17196     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys);
17197   case NVPTX::BI__nvvm_atom_cta_add_gen_f:
17198   case NVPTX::BI__nvvm_atom_cta_add_gen_d:
17199     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta);
17200   case NVPTX::BI__nvvm_atom_sys_add_gen_f:
17201   case NVPTX::BI__nvvm_atom_sys_add_gen_d:
17202     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys);
17203   case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
17204   case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
17205   case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
17206     return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta);
17207   case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
17208   case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
17209   case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
17210     return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys);
17211   case NVPTX::BI__nvvm_atom_cta_max_gen_i:
17212   case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
17213   case NVPTX::BI__nvvm_atom_cta_max_gen_l:
17214   case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
17215   case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
17216   case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
17217     return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta);
17218   case NVPTX::BI__nvvm_atom_sys_max_gen_i:
17219   case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
17220   case NVPTX::BI__nvvm_atom_sys_max_gen_l:
17221   case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
17222   case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
17223   case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
17224     return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys);
17225   case NVPTX::BI__nvvm_atom_cta_min_gen_i:
17226   case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
17227   case NVPTX::BI__nvvm_atom_cta_min_gen_l:
17228   case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
17229   case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
17230   case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
17231     return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta);
17232   case NVPTX::BI__nvvm_atom_sys_min_gen_i:
17233   case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
17234   case NVPTX::BI__nvvm_atom_sys_min_gen_l:
17235   case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
17236   case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
17237   case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
17238     return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys);
17239   case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
17240     return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta);
17241   case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
17242     return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta);
17243   case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
17244     return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys);
17245   case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
17246     return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys);
17247   case NVPTX::BI__nvvm_atom_cta_and_gen_i:
17248   case NVPTX::BI__nvvm_atom_cta_and_gen_l:
17249   case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
17250     return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta);
17251   case NVPTX::BI__nvvm_atom_sys_and_gen_i:
17252   case NVPTX::BI__nvvm_atom_sys_and_gen_l:
17253   case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
17254     return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys);
17255   case NVPTX::BI__nvvm_atom_cta_or_gen_i:
17256   case NVPTX::BI__nvvm_atom_cta_or_gen_l:
17257   case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
17258     return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta);
17259   case NVPTX::BI__nvvm_atom_sys_or_gen_i:
17260   case NVPTX::BI__nvvm_atom_sys_or_gen_l:
17261   case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
17262     return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys);
17263   case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
17264   case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
17265   case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
17266     return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta);
17267   case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
17268   case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
17269   case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
17270     return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys);
17271   case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
17272   case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
17273   case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
17274     Value *Ptr = EmitScalarExpr(E->getArg(0));
17275     return Builder.CreateCall(
17276         CGM.getIntrinsic(
17277             Intrinsic::nvvm_atomic_cas_gen_i_cta,
17278             {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
17279         {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
17280   }
17281   case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
17282   case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
17283   case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
17284     Value *Ptr = EmitScalarExpr(E->getArg(0));
17285     return Builder.CreateCall(
17286         CGM.getIntrinsic(
17287             Intrinsic::nvvm_atomic_cas_gen_i_sys,
17288             {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
17289         {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
17290   }
17291   case NVPTX::BI__nvvm_match_all_sync_i32p:
17292   case NVPTX::BI__nvvm_match_all_sync_i64p: {
17293     Value *Mask = EmitScalarExpr(E->getArg(0));
17294     Value *Val = EmitScalarExpr(E->getArg(1));
17295     Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2));
17296     Value *ResultPair = Builder.CreateCall(
17297         CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p
17298                              ? Intrinsic::nvvm_match_all_sync_i32p
17299                              : Intrinsic::nvvm_match_all_sync_i64p),
17300         {Mask, Val});
17301     Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1),
17302                                      PredOutPtr.getElementType());
17303     Builder.CreateStore(Pred, PredOutPtr);
17304     return Builder.CreateExtractValue(ResultPair, 0);
17305   }
17306 
17307   // FP MMA loads
17308   case NVPTX::BI__hmma_m16n16k16_ld_a:
17309   case NVPTX::BI__hmma_m16n16k16_ld_b:
17310   case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
17311   case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
17312   case NVPTX::BI__hmma_m32n8k16_ld_a:
17313   case NVPTX::BI__hmma_m32n8k16_ld_b:
17314   case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
17315   case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
17316   case NVPTX::BI__hmma_m8n32k16_ld_a:
17317   case NVPTX::BI__hmma_m8n32k16_ld_b:
17318   case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
17319   case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
17320   // Integer MMA loads.
17321   case NVPTX::BI__imma_m16n16k16_ld_a_s8:
17322   case NVPTX::BI__imma_m16n16k16_ld_a_u8:
17323   case NVPTX::BI__imma_m16n16k16_ld_b_s8:
17324   case NVPTX::BI__imma_m16n16k16_ld_b_u8:
17325   case NVPTX::BI__imma_m16n16k16_ld_c:
17326   case NVPTX::BI__imma_m32n8k16_ld_a_s8:
17327   case NVPTX::BI__imma_m32n8k16_ld_a_u8:
17328   case NVPTX::BI__imma_m32n8k16_ld_b_s8:
17329   case NVPTX::BI__imma_m32n8k16_ld_b_u8:
17330   case NVPTX::BI__imma_m32n8k16_ld_c:
17331   case NVPTX::BI__imma_m8n32k16_ld_a_s8:
17332   case NVPTX::BI__imma_m8n32k16_ld_a_u8:
17333   case NVPTX::BI__imma_m8n32k16_ld_b_s8:
17334   case NVPTX::BI__imma_m8n32k16_ld_b_u8:
17335   case NVPTX::BI__imma_m8n32k16_ld_c:
17336   // Sub-integer MMA loads.
17337   case NVPTX::BI__imma_m8n8k32_ld_a_s4:
17338   case NVPTX::BI__imma_m8n8k32_ld_a_u4:
17339   case NVPTX::BI__imma_m8n8k32_ld_b_s4:
17340   case NVPTX::BI__imma_m8n8k32_ld_b_u4:
17341   case NVPTX::BI__imma_m8n8k32_ld_c:
17342   case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
17343   case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
17344   case NVPTX::BI__bmma_m8n8k128_ld_c:
17345   // Double MMA loads.
17346   case NVPTX::BI__dmma_m8n8k4_ld_a:
17347   case NVPTX::BI__dmma_m8n8k4_ld_b:
17348   case NVPTX::BI__dmma_m8n8k4_ld_c:
17349   // Alternate float MMA loads.
17350   case NVPTX::BI__mma_bf16_m16n16k16_ld_a:
17351   case NVPTX::BI__mma_bf16_m16n16k16_ld_b:
17352   case NVPTX::BI__mma_bf16_m8n32k16_ld_a:
17353   case NVPTX::BI__mma_bf16_m8n32k16_ld_b:
17354   case NVPTX::BI__mma_bf16_m32n8k16_ld_a:
17355   case NVPTX::BI__mma_bf16_m32n8k16_ld_b:
17356   case NVPTX::BI__mma_tf32_m16n16k8_ld_a:
17357   case NVPTX::BI__mma_tf32_m16n16k8_ld_b:
17358   case NVPTX::BI__mma_tf32_m16n16k8_ld_c: {
17359     Address Dst = EmitPointerWithAlignment(E->getArg(0));
17360     Value *Src = EmitScalarExpr(E->getArg(1));
17361     Value *Ldm = EmitScalarExpr(E->getArg(2));
17362     Optional<llvm::APSInt> isColMajorArg =
17363         E->getArg(3)->getIntegerConstantExpr(getContext());
17364     if (!isColMajorArg)
17365       return nullptr;
17366     bool isColMajor = isColMajorArg->getSExtValue();
17367     NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
17368     unsigned IID = isColMajor ? II.IID_col : II.IID_row;
17369     if (IID == 0)
17370       return nullptr;
17371 
17372     Value *Result =
17373         Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm});
17374 
17375     // Save returned values.
17376     assert(II.NumResults);
17377     if (II.NumResults == 1) {
17378       Builder.CreateAlignedStore(Result, Dst.getPointer(),
17379                                  CharUnits::fromQuantity(4));
17380     } else {
17381       for (unsigned i = 0; i < II.NumResults; ++i) {
17382         Builder.CreateAlignedStore(
17383             Builder.CreateBitCast(Builder.CreateExtractValue(Result, i),
17384                                   Dst.getElementType()),
17385             Builder.CreateGEP(Dst.getElementType(), Dst.getPointer(),
17386                               llvm::ConstantInt::get(IntTy, i)),
17387             CharUnits::fromQuantity(4));
17388       }
17389     }
17390     return Result;
17391   }
17392 
17393   case NVPTX::BI__hmma_m16n16k16_st_c_f16:
17394   case NVPTX::BI__hmma_m16n16k16_st_c_f32:
17395   case NVPTX::BI__hmma_m32n8k16_st_c_f16:
17396   case NVPTX::BI__hmma_m32n8k16_st_c_f32:
17397   case NVPTX::BI__hmma_m8n32k16_st_c_f16:
17398   case NVPTX::BI__hmma_m8n32k16_st_c_f32:
17399   case NVPTX::BI__imma_m16n16k16_st_c_i32:
17400   case NVPTX::BI__imma_m32n8k16_st_c_i32:
17401   case NVPTX::BI__imma_m8n32k16_st_c_i32:
17402   case NVPTX::BI__imma_m8n8k32_st_c_i32:
17403   case NVPTX::BI__bmma_m8n8k128_st_c_i32:
17404   case NVPTX::BI__dmma_m8n8k4_st_c_f64:
17405   case NVPTX::BI__mma_m16n16k8_st_c_f32: {
17406     Value *Dst = EmitScalarExpr(E->getArg(0));
17407     Address Src = EmitPointerWithAlignment(E->getArg(1));
17408     Value *Ldm = EmitScalarExpr(E->getArg(2));
17409     Optional<llvm::APSInt> isColMajorArg =
17410         E->getArg(3)->getIntegerConstantExpr(getContext());
17411     if (!isColMajorArg)
17412       return nullptr;
17413     bool isColMajor = isColMajorArg->getSExtValue();
17414     NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
17415     unsigned IID = isColMajor ? II.IID_col : II.IID_row;
17416     if (IID == 0)
17417       return nullptr;
17418     Function *Intrinsic =
17419         CGM.getIntrinsic(IID, Dst->getType());
17420     llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1);
17421     SmallVector<Value *, 10> Values = {Dst};
17422     for (unsigned i = 0; i < II.NumResults; ++i) {
17423       Value *V = Builder.CreateAlignedLoad(
17424           Src.getElementType(),
17425           Builder.CreateGEP(Src.getElementType(), Src.getPointer(),
17426                             llvm::ConstantInt::get(IntTy, i)),
17427           CharUnits::fromQuantity(4));
17428       Values.push_back(Builder.CreateBitCast(V, ParamType));
17429     }
17430     Values.push_back(Ldm);
17431     Value *Result = Builder.CreateCall(Intrinsic, Values);
17432     return Result;
17433   }
17434 
17435   // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) -->
17436   // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf>
17437   case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
17438   case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
17439   case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
17440   case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
17441   case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
17442   case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
17443   case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
17444   case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
17445   case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
17446   case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
17447   case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
17448   case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
17449   case NVPTX::BI__imma_m16n16k16_mma_s8:
17450   case NVPTX::BI__imma_m16n16k16_mma_u8:
17451   case NVPTX::BI__imma_m32n8k16_mma_s8:
17452   case NVPTX::BI__imma_m32n8k16_mma_u8:
17453   case NVPTX::BI__imma_m8n32k16_mma_s8:
17454   case NVPTX::BI__imma_m8n32k16_mma_u8:
17455   case NVPTX::BI__imma_m8n8k32_mma_s4:
17456   case NVPTX::BI__imma_m8n8k32_mma_u4:
17457   case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
17458   case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1:
17459   case NVPTX::BI__dmma_m8n8k4_mma_f64:
17460   case NVPTX::BI__mma_bf16_m16n16k16_mma_f32:
17461   case NVPTX::BI__mma_bf16_m8n32k16_mma_f32:
17462   case NVPTX::BI__mma_bf16_m32n8k16_mma_f32:
17463   case NVPTX::BI__mma_tf32_m16n16k8_mma_f32: {
17464     Address Dst = EmitPointerWithAlignment(E->getArg(0));
17465     Address SrcA = EmitPointerWithAlignment(E->getArg(1));
17466     Address SrcB = EmitPointerWithAlignment(E->getArg(2));
17467     Address SrcC = EmitPointerWithAlignment(E->getArg(3));
17468     Optional<llvm::APSInt> LayoutArg =
17469         E->getArg(4)->getIntegerConstantExpr(getContext());
17470     if (!LayoutArg)
17471       return nullptr;
17472     int Layout = LayoutArg->getSExtValue();
17473     if (Layout < 0 || Layout > 3)
17474       return nullptr;
17475     llvm::APSInt SatfArg;
17476     if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1 ||
17477         BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1)
17478       SatfArg = 0;  // .b1 does not have satf argument.
17479     else if (Optional<llvm::APSInt> OptSatfArg =
17480                  E->getArg(5)->getIntegerConstantExpr(getContext()))
17481       SatfArg = *OptSatfArg;
17482     else
17483       return nullptr;
17484     bool Satf = SatfArg.getSExtValue();
17485     NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID);
17486     unsigned IID = MI.getMMAIntrinsic(Layout, Satf);
17487     if (IID == 0)  // Unsupported combination of Layout/Satf.
17488       return nullptr;
17489 
17490     SmallVector<Value *, 24> Values;
17491     Function *Intrinsic = CGM.getIntrinsic(IID);
17492     llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0);
17493     // Load A
17494     for (unsigned i = 0; i < MI.NumEltsA; ++i) {
17495       Value *V = Builder.CreateAlignedLoad(
17496           SrcA.getElementType(),
17497           Builder.CreateGEP(SrcA.getElementType(), SrcA.getPointer(),
17498                             llvm::ConstantInt::get(IntTy, i)),
17499           CharUnits::fromQuantity(4));
17500       Values.push_back(Builder.CreateBitCast(V, AType));
17501     }
17502     // Load B
17503     llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA);
17504     for (unsigned i = 0; i < MI.NumEltsB; ++i) {
17505       Value *V = Builder.CreateAlignedLoad(
17506           SrcB.getElementType(),
17507           Builder.CreateGEP(SrcB.getElementType(), SrcB.getPointer(),
17508                             llvm::ConstantInt::get(IntTy, i)),
17509           CharUnits::fromQuantity(4));
17510       Values.push_back(Builder.CreateBitCast(V, BType));
17511     }
17512     // Load C
17513     llvm::Type *CType =
17514         Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB);
17515     for (unsigned i = 0; i < MI.NumEltsC; ++i) {
17516       Value *V = Builder.CreateAlignedLoad(
17517           SrcC.getElementType(),
17518           Builder.CreateGEP(SrcC.getElementType(), SrcC.getPointer(),
17519                             llvm::ConstantInt::get(IntTy, i)),
17520           CharUnits::fromQuantity(4));
17521       Values.push_back(Builder.CreateBitCast(V, CType));
17522     }
17523     Value *Result = Builder.CreateCall(Intrinsic, Values);
17524     llvm::Type *DType = Dst.getElementType();
17525     for (unsigned i = 0; i < MI.NumEltsD; ++i)
17526       Builder.CreateAlignedStore(
17527           Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType),
17528           Builder.CreateGEP(Dst.getElementType(), Dst.getPointer(),
17529                             llvm::ConstantInt::get(IntTy, i)),
17530           CharUnits::fromQuantity(4));
17531     return Result;
17532   }
17533   default:
17534     return nullptr;
17535   }
17536 }
17537 
17538 namespace {
17539 struct BuiltinAlignArgs {
17540   llvm::Value *Src = nullptr;
17541   llvm::Type *SrcType = nullptr;
17542   llvm::Value *Alignment = nullptr;
17543   llvm::Value *Mask = nullptr;
17544   llvm::IntegerType *IntType = nullptr;
17545 
17546   BuiltinAlignArgs(const CallExpr *E, CodeGenFunction &CGF) {
17547     QualType AstType = E->getArg(0)->getType();
17548     if (AstType->isArrayType())
17549       Src = CGF.EmitArrayToPointerDecay(E->getArg(0)).getPointer();
17550     else
17551       Src = CGF.EmitScalarExpr(E->getArg(0));
17552     SrcType = Src->getType();
17553     if (SrcType->isPointerTy()) {
17554       IntType = IntegerType::get(
17555           CGF.getLLVMContext(),
17556           CGF.CGM.getDataLayout().getIndexTypeSizeInBits(SrcType));
17557     } else {
17558       assert(SrcType->isIntegerTy());
17559       IntType = cast<llvm::IntegerType>(SrcType);
17560     }
17561     Alignment = CGF.EmitScalarExpr(E->getArg(1));
17562     Alignment = CGF.Builder.CreateZExtOrTrunc(Alignment, IntType, "alignment");
17563     auto *One = llvm::ConstantInt::get(IntType, 1);
17564     Mask = CGF.Builder.CreateSub(Alignment, One, "mask");
17565   }
17566 };
17567 } // namespace
17568 
17569 /// Generate (x & (y-1)) == 0.
17570 RValue CodeGenFunction::EmitBuiltinIsAligned(const CallExpr *E) {
17571   BuiltinAlignArgs Args(E, *this);
17572   llvm::Value *SrcAddress = Args.Src;
17573   if (Args.SrcType->isPointerTy())
17574     SrcAddress =
17575         Builder.CreateBitOrPointerCast(Args.Src, Args.IntType, "src_addr");
17576   return RValue::get(Builder.CreateICmpEQ(
17577       Builder.CreateAnd(SrcAddress, Args.Mask, "set_bits"),
17578       llvm::Constant::getNullValue(Args.IntType), "is_aligned"));
17579 }
17580 
17581 /// Generate (x & ~(y-1)) to align down or ((x+(y-1)) & ~(y-1)) to align up.
17582 /// Note: For pointer types we can avoid ptrtoint/inttoptr pairs by using the
17583 /// llvm.ptrmask instrinsic (with a GEP before in the align_up case).
17584 /// TODO: actually use ptrmask once most optimization passes know about it.
17585 RValue CodeGenFunction::EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp) {
17586   BuiltinAlignArgs Args(E, *this);
17587   llvm::Value *SrcAddr = Args.Src;
17588   if (Args.Src->getType()->isPointerTy())
17589     SrcAddr = Builder.CreatePtrToInt(Args.Src, Args.IntType, "intptr");
17590   llvm::Value *SrcForMask = SrcAddr;
17591   if (AlignUp) {
17592     // When aligning up we have to first add the mask to ensure we go over the
17593     // next alignment value and then align down to the next valid multiple.
17594     // By adding the mask, we ensure that align_up on an already aligned
17595     // value will not change the value.
17596     SrcForMask = Builder.CreateAdd(SrcForMask, Args.Mask, "over_boundary");
17597   }
17598   // Invert the mask to only clear the lower bits.
17599   llvm::Value *InvertedMask = Builder.CreateNot(Args.Mask, "inverted_mask");
17600   llvm::Value *Result =
17601       Builder.CreateAnd(SrcForMask, InvertedMask, "aligned_result");
17602   if (Args.Src->getType()->isPointerTy()) {
17603     /// TODO: Use ptrmask instead of ptrtoint+gep once it is optimized well.
17604     // Result = Builder.CreateIntrinsic(
17605     //  Intrinsic::ptrmask, {Args.SrcType, SrcForMask->getType(), Args.IntType},
17606     //  {SrcForMask, NegatedMask}, nullptr, "aligned_result");
17607     Result->setName("aligned_intptr");
17608     llvm::Value *Difference = Builder.CreateSub(Result, SrcAddr, "diff");
17609     // The result must point to the same underlying allocation. This means we
17610     // can use an inbounds GEP to enable better optimization.
17611     Value *Base = EmitCastToVoidPtr(Args.Src);
17612     if (getLangOpts().isSignedOverflowDefined())
17613       Result = Builder.CreateGEP(Int8Ty, Base, Difference, "aligned_result");
17614     else
17615       Result = EmitCheckedInBoundsGEP(Base, Difference,
17616                                       /*SignedIndices=*/true,
17617                                       /*isSubtraction=*/!AlignUp,
17618                                       E->getExprLoc(), "aligned_result");
17619     Result = Builder.CreatePointerCast(Result, Args.SrcType);
17620     // Emit an alignment assumption to ensure that the new alignment is
17621     // propagated to loads/stores, etc.
17622     emitAlignmentAssumption(Result, E, E->getExprLoc(), Args.Alignment);
17623   }
17624   assert(Result->getType() == Args.SrcType);
17625   return RValue::get(Result);
17626 }
17627 
17628 Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
17629                                                    const CallExpr *E) {
17630   switch (BuiltinID) {
17631   case WebAssembly::BI__builtin_wasm_memory_size: {
17632     llvm::Type *ResultType = ConvertType(E->getType());
17633     Value *I = EmitScalarExpr(E->getArg(0));
17634     Function *Callee =
17635         CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
17636     return Builder.CreateCall(Callee, I);
17637   }
17638   case WebAssembly::BI__builtin_wasm_memory_grow: {
17639     llvm::Type *ResultType = ConvertType(E->getType());
17640     Value *Args[] = {EmitScalarExpr(E->getArg(0)),
17641                      EmitScalarExpr(E->getArg(1))};
17642     Function *Callee =
17643         CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType);
17644     return Builder.CreateCall(Callee, Args);
17645   }
17646   case WebAssembly::BI__builtin_wasm_tls_size: {
17647     llvm::Type *ResultType = ConvertType(E->getType());
17648     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType);
17649     return Builder.CreateCall(Callee);
17650   }
17651   case WebAssembly::BI__builtin_wasm_tls_align: {
17652     llvm::Type *ResultType = ConvertType(E->getType());
17653     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType);
17654     return Builder.CreateCall(Callee);
17655   }
17656   case WebAssembly::BI__builtin_wasm_tls_base: {
17657     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base);
17658     return Builder.CreateCall(Callee);
17659   }
17660   case WebAssembly::BI__builtin_wasm_throw: {
17661     Value *Tag = EmitScalarExpr(E->getArg(0));
17662     Value *Obj = EmitScalarExpr(E->getArg(1));
17663     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw);
17664     return Builder.CreateCall(Callee, {Tag, Obj});
17665   }
17666   case WebAssembly::BI__builtin_wasm_rethrow: {
17667     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow);
17668     return Builder.CreateCall(Callee);
17669   }
17670   case WebAssembly::BI__builtin_wasm_memory_atomic_wait32: {
17671     Value *Addr = EmitScalarExpr(E->getArg(0));
17672     Value *Expected = EmitScalarExpr(E->getArg(1));
17673     Value *Timeout = EmitScalarExpr(E->getArg(2));
17674     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait32);
17675     return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
17676   }
17677   case WebAssembly::BI__builtin_wasm_memory_atomic_wait64: {
17678     Value *Addr = EmitScalarExpr(E->getArg(0));
17679     Value *Expected = EmitScalarExpr(E->getArg(1));
17680     Value *Timeout = EmitScalarExpr(E->getArg(2));
17681     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait64);
17682     return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
17683   }
17684   case WebAssembly::BI__builtin_wasm_memory_atomic_notify: {
17685     Value *Addr = EmitScalarExpr(E->getArg(0));
17686     Value *Count = EmitScalarExpr(E->getArg(1));
17687     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_notify);
17688     return Builder.CreateCall(Callee, {Addr, Count});
17689   }
17690   case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32:
17691   case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64:
17692   case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32:
17693   case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: {
17694     Value *Src = EmitScalarExpr(E->getArg(0));
17695     llvm::Type *ResT = ConvertType(E->getType());
17696     Function *Callee =
17697         CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()});
17698     return Builder.CreateCall(Callee, {Src});
17699   }
17700   case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32:
17701   case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64:
17702   case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32:
17703   case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: {
17704     Value *Src = EmitScalarExpr(E->getArg(0));
17705     llvm::Type *ResT = ConvertType(E->getType());
17706     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned,
17707                                         {ResT, Src->getType()});
17708     return Builder.CreateCall(Callee, {Src});
17709   }
17710   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32:
17711   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64:
17712   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32:
17713   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64:
17714   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4: {
17715     Value *Src = EmitScalarExpr(E->getArg(0));
17716     llvm::Type *ResT = ConvertType(E->getType());
17717     Function *Callee =
17718         CGM.getIntrinsic(Intrinsic::fptosi_sat, {ResT, Src->getType()});
17719     return Builder.CreateCall(Callee, {Src});
17720   }
17721   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32:
17722   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64:
17723   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32:
17724   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64:
17725   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4: {
17726     Value *Src = EmitScalarExpr(E->getArg(0));
17727     llvm::Type *ResT = ConvertType(E->getType());
17728     Function *Callee =
17729         CGM.getIntrinsic(Intrinsic::fptoui_sat, {ResT, Src->getType()});
17730     return Builder.CreateCall(Callee, {Src});
17731   }
17732   case WebAssembly::BI__builtin_wasm_min_f32:
17733   case WebAssembly::BI__builtin_wasm_min_f64:
17734   case WebAssembly::BI__builtin_wasm_min_f32x4:
17735   case WebAssembly::BI__builtin_wasm_min_f64x2: {
17736     Value *LHS = EmitScalarExpr(E->getArg(0));
17737     Value *RHS = EmitScalarExpr(E->getArg(1));
17738     Function *Callee =
17739         CGM.getIntrinsic(Intrinsic::minimum, ConvertType(E->getType()));
17740     return Builder.CreateCall(Callee, {LHS, RHS});
17741   }
17742   case WebAssembly::BI__builtin_wasm_max_f32:
17743   case WebAssembly::BI__builtin_wasm_max_f64:
17744   case WebAssembly::BI__builtin_wasm_max_f32x4:
17745   case WebAssembly::BI__builtin_wasm_max_f64x2: {
17746     Value *LHS = EmitScalarExpr(E->getArg(0));
17747     Value *RHS = EmitScalarExpr(E->getArg(1));
17748     Function *Callee =
17749         CGM.getIntrinsic(Intrinsic::maximum, ConvertType(E->getType()));
17750     return Builder.CreateCall(Callee, {LHS, RHS});
17751   }
17752   case WebAssembly::BI__builtin_wasm_ceil_f32x4:
17753   case WebAssembly::BI__builtin_wasm_floor_f32x4:
17754   case WebAssembly::BI__builtin_wasm_trunc_f32x4:
17755   case WebAssembly::BI__builtin_wasm_nearest_f32x4:
17756   case WebAssembly::BI__builtin_wasm_ceil_f64x2:
17757   case WebAssembly::BI__builtin_wasm_floor_f64x2:
17758   case WebAssembly::BI__builtin_wasm_trunc_f64x2:
17759   case WebAssembly::BI__builtin_wasm_nearest_f64x2: {
17760     unsigned IntNo;
17761     switch (BuiltinID) {
17762     case WebAssembly::BI__builtin_wasm_ceil_f32x4:
17763     case WebAssembly::BI__builtin_wasm_ceil_f64x2:
17764       IntNo = Intrinsic::ceil;
17765       break;
17766     case WebAssembly::BI__builtin_wasm_floor_f32x4:
17767     case WebAssembly::BI__builtin_wasm_floor_f64x2:
17768       IntNo = Intrinsic::floor;
17769       break;
17770     case WebAssembly::BI__builtin_wasm_trunc_f32x4:
17771     case WebAssembly::BI__builtin_wasm_trunc_f64x2:
17772       IntNo = Intrinsic::trunc;
17773       break;
17774     case WebAssembly::BI__builtin_wasm_nearest_f32x4:
17775     case WebAssembly::BI__builtin_wasm_nearest_f64x2:
17776       IntNo = Intrinsic::nearbyint;
17777       break;
17778     default:
17779       llvm_unreachable("unexpected builtin ID");
17780     }
17781     Value *Value = EmitScalarExpr(E->getArg(0));
17782     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
17783     return Builder.CreateCall(Callee, Value);
17784   }
17785   case WebAssembly::BI__builtin_wasm_swizzle_i8x16: {
17786     Value *Src = EmitScalarExpr(E->getArg(0));
17787     Value *Indices = EmitScalarExpr(E->getArg(1));
17788     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle);
17789     return Builder.CreateCall(Callee, {Src, Indices});
17790   }
17791   case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16:
17792   case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16:
17793   case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8:
17794   case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8:
17795   case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16:
17796   case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16:
17797   case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8:
17798   case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8: {
17799     unsigned IntNo;
17800     switch (BuiltinID) {
17801     case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16:
17802     case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8:
17803       IntNo = Intrinsic::sadd_sat;
17804       break;
17805     case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16:
17806     case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8:
17807       IntNo = Intrinsic::uadd_sat;
17808       break;
17809     case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16:
17810     case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8:
17811       IntNo = Intrinsic::wasm_sub_sat_signed;
17812       break;
17813     case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16:
17814     case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8:
17815       IntNo = Intrinsic::wasm_sub_sat_unsigned;
17816       break;
17817     default:
17818       llvm_unreachable("unexpected builtin ID");
17819     }
17820     Value *LHS = EmitScalarExpr(E->getArg(0));
17821     Value *RHS = EmitScalarExpr(E->getArg(1));
17822     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
17823     return Builder.CreateCall(Callee, {LHS, RHS});
17824   }
17825   case WebAssembly::BI__builtin_wasm_abs_i8x16:
17826   case WebAssembly::BI__builtin_wasm_abs_i16x8:
17827   case WebAssembly::BI__builtin_wasm_abs_i32x4:
17828   case WebAssembly::BI__builtin_wasm_abs_i64x2: {
17829     Value *Vec = EmitScalarExpr(E->getArg(0));
17830     Value *Neg = Builder.CreateNeg(Vec, "neg");
17831     Constant *Zero = llvm::Constant::getNullValue(Vec->getType());
17832     Value *ICmp = Builder.CreateICmpSLT(Vec, Zero, "abscond");
17833     return Builder.CreateSelect(ICmp, Neg, Vec, "abs");
17834   }
17835   case WebAssembly::BI__builtin_wasm_min_s_i8x16:
17836   case WebAssembly::BI__builtin_wasm_min_u_i8x16:
17837   case WebAssembly::BI__builtin_wasm_max_s_i8x16:
17838   case WebAssembly::BI__builtin_wasm_max_u_i8x16:
17839   case WebAssembly::BI__builtin_wasm_min_s_i16x8:
17840   case WebAssembly::BI__builtin_wasm_min_u_i16x8:
17841   case WebAssembly::BI__builtin_wasm_max_s_i16x8:
17842   case WebAssembly::BI__builtin_wasm_max_u_i16x8:
17843   case WebAssembly::BI__builtin_wasm_min_s_i32x4:
17844   case WebAssembly::BI__builtin_wasm_min_u_i32x4:
17845   case WebAssembly::BI__builtin_wasm_max_s_i32x4:
17846   case WebAssembly::BI__builtin_wasm_max_u_i32x4: {
17847     Value *LHS = EmitScalarExpr(E->getArg(0));
17848     Value *RHS = EmitScalarExpr(E->getArg(1));
17849     Value *ICmp;
17850     switch (BuiltinID) {
17851     case WebAssembly::BI__builtin_wasm_min_s_i8x16:
17852     case WebAssembly::BI__builtin_wasm_min_s_i16x8:
17853     case WebAssembly::BI__builtin_wasm_min_s_i32x4:
17854       ICmp = Builder.CreateICmpSLT(LHS, RHS);
17855       break;
17856     case WebAssembly::BI__builtin_wasm_min_u_i8x16:
17857     case WebAssembly::BI__builtin_wasm_min_u_i16x8:
17858     case WebAssembly::BI__builtin_wasm_min_u_i32x4:
17859       ICmp = Builder.CreateICmpULT(LHS, RHS);
17860       break;
17861     case WebAssembly::BI__builtin_wasm_max_s_i8x16:
17862     case WebAssembly::BI__builtin_wasm_max_s_i16x8:
17863     case WebAssembly::BI__builtin_wasm_max_s_i32x4:
17864       ICmp = Builder.CreateICmpSGT(LHS, RHS);
17865       break;
17866     case WebAssembly::BI__builtin_wasm_max_u_i8x16:
17867     case WebAssembly::BI__builtin_wasm_max_u_i16x8:
17868     case WebAssembly::BI__builtin_wasm_max_u_i32x4:
17869       ICmp = Builder.CreateICmpUGT(LHS, RHS);
17870       break;
17871     default:
17872       llvm_unreachable("unexpected builtin ID");
17873     }
17874     return Builder.CreateSelect(ICmp, LHS, RHS);
17875   }
17876   case WebAssembly::BI__builtin_wasm_avgr_u_i8x16:
17877   case WebAssembly::BI__builtin_wasm_avgr_u_i16x8: {
17878     Value *LHS = EmitScalarExpr(E->getArg(0));
17879     Value *RHS = EmitScalarExpr(E->getArg(1));
17880     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_avgr_unsigned,
17881                                         ConvertType(E->getType()));
17882     return Builder.CreateCall(Callee, {LHS, RHS});
17883   }
17884   case WebAssembly::BI__builtin_wasm_q15mulr_sat_s_i16x8: {
17885     Value *LHS = EmitScalarExpr(E->getArg(0));
17886     Value *RHS = EmitScalarExpr(E->getArg(1));
17887     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_q15mulr_sat_signed);
17888     return Builder.CreateCall(Callee, {LHS, RHS});
17889   }
17890   case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
17891   case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
17892   case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
17893   case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4: {
17894     Value *Vec = EmitScalarExpr(E->getArg(0));
17895     unsigned IntNo;
17896     switch (BuiltinID) {
17897     case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
17898     case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
17899       IntNo = Intrinsic::wasm_extadd_pairwise_signed;
17900       break;
17901     case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
17902     case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4:
17903       IntNo = Intrinsic::wasm_extadd_pairwise_unsigned;
17904       break;
17905     default:
17906       llvm_unreachable("unexptected builtin ID");
17907     }
17908 
17909     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
17910     return Builder.CreateCall(Callee, Vec);
17911   }
17912   case WebAssembly::BI__builtin_wasm_bitselect: {
17913     Value *V1 = EmitScalarExpr(E->getArg(0));
17914     Value *V2 = EmitScalarExpr(E->getArg(1));
17915     Value *C = EmitScalarExpr(E->getArg(2));
17916     Function *Callee =
17917         CGM.getIntrinsic(Intrinsic::wasm_bitselect, ConvertType(E->getType()));
17918     return Builder.CreateCall(Callee, {V1, V2, C});
17919   }
17920   case WebAssembly::BI__builtin_wasm_dot_s_i32x4_i16x8: {
17921     Value *LHS = EmitScalarExpr(E->getArg(0));
17922     Value *RHS = EmitScalarExpr(E->getArg(1));
17923     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_dot);
17924     return Builder.CreateCall(Callee, {LHS, RHS});
17925   }
17926   case WebAssembly::BI__builtin_wasm_popcnt_i8x16: {
17927     Value *Vec = EmitScalarExpr(E->getArg(0));
17928     Function *Callee =
17929         CGM.getIntrinsic(Intrinsic::ctpop, ConvertType(E->getType()));
17930     return Builder.CreateCall(Callee, {Vec});
17931   }
17932   case WebAssembly::BI__builtin_wasm_any_true_v128:
17933   case WebAssembly::BI__builtin_wasm_all_true_i8x16:
17934   case WebAssembly::BI__builtin_wasm_all_true_i16x8:
17935   case WebAssembly::BI__builtin_wasm_all_true_i32x4:
17936   case WebAssembly::BI__builtin_wasm_all_true_i64x2: {
17937     unsigned IntNo;
17938     switch (BuiltinID) {
17939     case WebAssembly::BI__builtin_wasm_any_true_v128:
17940       IntNo = Intrinsic::wasm_anytrue;
17941       break;
17942     case WebAssembly::BI__builtin_wasm_all_true_i8x16:
17943     case WebAssembly::BI__builtin_wasm_all_true_i16x8:
17944     case WebAssembly::BI__builtin_wasm_all_true_i32x4:
17945     case WebAssembly::BI__builtin_wasm_all_true_i64x2:
17946       IntNo = Intrinsic::wasm_alltrue;
17947       break;
17948     default:
17949       llvm_unreachable("unexpected builtin ID");
17950     }
17951     Value *Vec = EmitScalarExpr(E->getArg(0));
17952     Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType());
17953     return Builder.CreateCall(Callee, {Vec});
17954   }
17955   case WebAssembly::BI__builtin_wasm_bitmask_i8x16:
17956   case WebAssembly::BI__builtin_wasm_bitmask_i16x8:
17957   case WebAssembly::BI__builtin_wasm_bitmask_i32x4:
17958   case WebAssembly::BI__builtin_wasm_bitmask_i64x2: {
17959     Value *Vec = EmitScalarExpr(E->getArg(0));
17960     Function *Callee =
17961         CGM.getIntrinsic(Intrinsic::wasm_bitmask, Vec->getType());
17962     return Builder.CreateCall(Callee, {Vec});
17963   }
17964   case WebAssembly::BI__builtin_wasm_abs_f32x4:
17965   case WebAssembly::BI__builtin_wasm_abs_f64x2: {
17966     Value *Vec = EmitScalarExpr(E->getArg(0));
17967     Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType());
17968     return Builder.CreateCall(Callee, {Vec});
17969   }
17970   case WebAssembly::BI__builtin_wasm_sqrt_f32x4:
17971   case WebAssembly::BI__builtin_wasm_sqrt_f64x2: {
17972     Value *Vec = EmitScalarExpr(E->getArg(0));
17973     Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType());
17974     return Builder.CreateCall(Callee, {Vec});
17975   }
17976   case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
17977   case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
17978   case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
17979   case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: {
17980     Value *Low = EmitScalarExpr(E->getArg(0));
17981     Value *High = EmitScalarExpr(E->getArg(1));
17982     unsigned IntNo;
17983     switch (BuiltinID) {
17984     case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
17985     case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
17986       IntNo = Intrinsic::wasm_narrow_signed;
17987       break;
17988     case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
17989     case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4:
17990       IntNo = Intrinsic::wasm_narrow_unsigned;
17991       break;
17992     default:
17993       llvm_unreachable("unexpected builtin ID");
17994     }
17995     Function *Callee =
17996         CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()});
17997     return Builder.CreateCall(Callee, {Low, High});
17998   }
17999   case WebAssembly::BI__builtin_wasm_trunc_sat_zero_s_f64x2_i32x4:
18000   case WebAssembly::BI__builtin_wasm_trunc_sat_zero_u_f64x2_i32x4: {
18001     Value *Vec = EmitScalarExpr(E->getArg(0));
18002     unsigned IntNo;
18003     switch (BuiltinID) {
18004     case WebAssembly::BI__builtin_wasm_trunc_sat_zero_s_f64x2_i32x4:
18005       IntNo = Intrinsic::fptosi_sat;
18006       break;
18007     case WebAssembly::BI__builtin_wasm_trunc_sat_zero_u_f64x2_i32x4:
18008       IntNo = Intrinsic::fptoui_sat;
18009       break;
18010     default:
18011       llvm_unreachable("unexpected builtin ID");
18012     }
18013     llvm::Type *SrcT = Vec->getType();
18014     llvm::Type *TruncT =
18015         SrcT->getWithNewType(llvm::IntegerType::get(getLLVMContext(), 32));
18016     Function *Callee = CGM.getIntrinsic(IntNo, {TruncT, SrcT});
18017     Value *Trunc = Builder.CreateCall(Callee, Vec);
18018     Value *Splat = Builder.CreateVectorSplat(2, Builder.getInt32(0));
18019     Value *ConcatMask =
18020         llvm::ConstantVector::get({Builder.getInt32(0), Builder.getInt32(1),
18021                                    Builder.getInt32(2), Builder.getInt32(3)});
18022     return Builder.CreateShuffleVector(Trunc, Splat, ConcatMask);
18023   }
18024   case WebAssembly::BI__builtin_wasm_shuffle_i8x16: {
18025     Value *Ops[18];
18026     size_t OpIdx = 0;
18027     Ops[OpIdx++] = EmitScalarExpr(E->getArg(0));
18028     Ops[OpIdx++] = EmitScalarExpr(E->getArg(1));
18029     while (OpIdx < 18) {
18030       Optional<llvm::APSInt> LaneConst =
18031           E->getArg(OpIdx)->getIntegerConstantExpr(getContext());
18032       assert(LaneConst && "Constant arg isn't actually constant?");
18033       Ops[OpIdx++] = llvm::ConstantInt::get(getLLVMContext(), *LaneConst);
18034     }
18035     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_shuffle);
18036     return Builder.CreateCall(Callee, Ops);
18037   }
18038   default:
18039     return nullptr;
18040   }
18041 }
18042 
18043 static std::pair<Intrinsic::ID, unsigned>
18044 getIntrinsicForHexagonNonGCCBuiltin(unsigned BuiltinID) {
18045   struct Info {
18046     unsigned BuiltinID;
18047     Intrinsic::ID IntrinsicID;
18048     unsigned VecLen;
18049   };
18050   Info Infos[] = {
18051 #define CUSTOM_BUILTIN_MAPPING(x,s) \
18052   { Hexagon::BI__builtin_HEXAGON_##x, Intrinsic::hexagon_##x, s },
18053     CUSTOM_BUILTIN_MAPPING(L2_loadrub_pci, 0)
18054     CUSTOM_BUILTIN_MAPPING(L2_loadrb_pci, 0)
18055     CUSTOM_BUILTIN_MAPPING(L2_loadruh_pci, 0)
18056     CUSTOM_BUILTIN_MAPPING(L2_loadrh_pci, 0)
18057     CUSTOM_BUILTIN_MAPPING(L2_loadri_pci, 0)
18058     CUSTOM_BUILTIN_MAPPING(L2_loadrd_pci, 0)
18059     CUSTOM_BUILTIN_MAPPING(L2_loadrub_pcr, 0)
18060     CUSTOM_BUILTIN_MAPPING(L2_loadrb_pcr, 0)
18061     CUSTOM_BUILTIN_MAPPING(L2_loadruh_pcr, 0)
18062     CUSTOM_BUILTIN_MAPPING(L2_loadrh_pcr, 0)
18063     CUSTOM_BUILTIN_MAPPING(L2_loadri_pcr, 0)
18064     CUSTOM_BUILTIN_MAPPING(L2_loadrd_pcr, 0)
18065     CUSTOM_BUILTIN_MAPPING(S2_storerb_pci, 0)
18066     CUSTOM_BUILTIN_MAPPING(S2_storerh_pci, 0)
18067     CUSTOM_BUILTIN_MAPPING(S2_storerf_pci, 0)
18068     CUSTOM_BUILTIN_MAPPING(S2_storeri_pci, 0)
18069     CUSTOM_BUILTIN_MAPPING(S2_storerd_pci, 0)
18070     CUSTOM_BUILTIN_MAPPING(S2_storerb_pcr, 0)
18071     CUSTOM_BUILTIN_MAPPING(S2_storerh_pcr, 0)
18072     CUSTOM_BUILTIN_MAPPING(S2_storerf_pcr, 0)
18073     CUSTOM_BUILTIN_MAPPING(S2_storeri_pcr, 0)
18074     CUSTOM_BUILTIN_MAPPING(S2_storerd_pcr, 0)
18075     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq, 64)
18076     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq, 64)
18077     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq, 64)
18078     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq, 64)
18079     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq_128B, 128)
18080     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq_128B, 128)
18081     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq_128B, 128)
18082     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq_128B, 128)
18083 #include "clang/Basic/BuiltinsHexagonMapCustomDep.def"
18084 #undef CUSTOM_BUILTIN_MAPPING
18085   };
18086 
18087   auto CmpInfo = [] (Info A, Info B) { return A.BuiltinID < B.BuiltinID; };
18088   static const bool SortOnce = (llvm::sort(Infos, CmpInfo), true);
18089   (void)SortOnce;
18090 
18091   const Info *F = std::lower_bound(std::begin(Infos), std::end(Infos),
18092                                    Info{BuiltinID, 0, 0}, CmpInfo);
18093   if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
18094     return {Intrinsic::not_intrinsic, 0};
18095 
18096   return {F->IntrinsicID, F->VecLen};
18097 }
18098 
18099 Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID,
18100                                                const CallExpr *E) {
18101   Intrinsic::ID ID;
18102   unsigned VecLen;
18103   std::tie(ID, VecLen) = getIntrinsicForHexagonNonGCCBuiltin(BuiltinID);
18104 
18105   auto MakeCircOp = [this, E](unsigned IntID, bool IsLoad) {
18106     // The base pointer is passed by address, so it needs to be loaded.
18107     Address A = EmitPointerWithAlignment(E->getArg(0));
18108     Address BP = Address(
18109         Builder.CreateBitCast(A.getPointer(), Int8PtrPtrTy), A.getAlignment());
18110     llvm::Value *Base = Builder.CreateLoad(BP);
18111     // The treatment of both loads and stores is the same: the arguments for
18112     // the builtin are the same as the arguments for the intrinsic.
18113     // Load:
18114     //   builtin(Base, Inc, Mod, Start) -> intr(Base, Inc, Mod, Start)
18115     //   builtin(Base, Mod, Start)      -> intr(Base, Mod, Start)
18116     // Store:
18117     //   builtin(Base, Inc, Mod, Val, Start) -> intr(Base, Inc, Mod, Val, Start)
18118     //   builtin(Base, Mod, Val, Start)      -> intr(Base, Mod, Val, Start)
18119     SmallVector<llvm::Value*,5> Ops = { Base };
18120     for (unsigned i = 1, e = E->getNumArgs(); i != e; ++i)
18121       Ops.push_back(EmitScalarExpr(E->getArg(i)));
18122 
18123     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
18124     // The load intrinsics generate two results (Value, NewBase), stores
18125     // generate one (NewBase). The new base address needs to be stored.
18126     llvm::Value *NewBase = IsLoad ? Builder.CreateExtractValue(Result, 1)
18127                                   : Result;
18128     llvm::Value *LV = Builder.CreateBitCast(
18129         EmitScalarExpr(E->getArg(0)), NewBase->getType()->getPointerTo());
18130     Address Dest = EmitPointerWithAlignment(E->getArg(0));
18131     llvm::Value *RetVal =
18132         Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
18133     if (IsLoad)
18134       RetVal = Builder.CreateExtractValue(Result, 0);
18135     return RetVal;
18136   };
18137 
18138   // Handle the conversion of bit-reverse load intrinsics to bit code.
18139   // The intrinsic call after this function only reads from memory and the
18140   // write to memory is dealt by the store instruction.
18141   auto MakeBrevLd = [this, E](unsigned IntID, llvm::Type *DestTy) {
18142     // The intrinsic generates one result, which is the new value for the base
18143     // pointer. It needs to be returned. The result of the load instruction is
18144     // passed to intrinsic by address, so the value needs to be stored.
18145     llvm::Value *BaseAddress =
18146         Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
18147 
18148     // Expressions like &(*pt++) will be incremented per evaluation.
18149     // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression
18150     // per call.
18151     Address DestAddr = EmitPointerWithAlignment(E->getArg(1));
18152     DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy),
18153                        DestAddr.getAlignment());
18154     llvm::Value *DestAddress = DestAddr.getPointer();
18155 
18156     // Operands are Base, Dest, Modifier.
18157     // The intrinsic format in LLVM IR is defined as
18158     // { ValueType, i8* } (i8*, i32).
18159     llvm::Value *Result = Builder.CreateCall(
18160         CGM.getIntrinsic(IntID), {BaseAddress, EmitScalarExpr(E->getArg(2))});
18161 
18162     // The value needs to be stored as the variable is passed by reference.
18163     llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0);
18164 
18165     // The store needs to be truncated to fit the destination type.
18166     // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs
18167     // to be handled with stores of respective destination type.
18168     DestVal = Builder.CreateTrunc(DestVal, DestTy);
18169 
18170     llvm::Value *DestForStore =
18171         Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo());
18172     Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment());
18173     // The updated value of the base pointer is returned.
18174     return Builder.CreateExtractValue(Result, 1);
18175   };
18176 
18177   auto V2Q = [this, VecLen] (llvm::Value *Vec) {
18178     Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandvrt_128B
18179                                      : Intrinsic::hexagon_V6_vandvrt;
18180     return Builder.CreateCall(CGM.getIntrinsic(ID),
18181                               {Vec, Builder.getInt32(-1)});
18182   };
18183   auto Q2V = [this, VecLen] (llvm::Value *Pred) {
18184     Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandqrt_128B
18185                                      : Intrinsic::hexagon_V6_vandqrt;
18186     return Builder.CreateCall(CGM.getIntrinsic(ID),
18187                               {Pred, Builder.getInt32(-1)});
18188   };
18189 
18190   switch (BuiltinID) {
18191   // These intrinsics return a tuple {Vector, VectorPred} in LLVM IR,
18192   // and the corresponding C/C++ builtins use loads/stores to update
18193   // the predicate.
18194   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry:
18195   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B:
18196   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry:
18197   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: {
18198     // Get the type from the 0-th argument.
18199     llvm::Type *VecType = ConvertType(E->getArg(0)->getType());
18200     Address PredAddr = Builder.CreateBitCast(
18201         EmitPointerWithAlignment(E->getArg(2)), VecType->getPointerTo(0));
18202     llvm::Value *PredIn = V2Q(Builder.CreateLoad(PredAddr));
18203     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID),
18204         {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), PredIn});
18205 
18206     llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1);
18207     Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.getPointer(),
18208         PredAddr.getAlignment());
18209     return Builder.CreateExtractValue(Result, 0);
18210   }
18211 
18212   case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci:
18213   case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci:
18214   case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci:
18215   case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci:
18216   case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci:
18217   case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci:
18218   case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr:
18219   case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr:
18220   case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr:
18221   case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr:
18222   case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr:
18223   case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr:
18224     return MakeCircOp(ID, /*IsLoad=*/true);
18225   case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci:
18226   case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci:
18227   case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci:
18228   case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci:
18229   case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci:
18230   case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr:
18231   case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr:
18232   case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr:
18233   case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr:
18234   case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr:
18235     return MakeCircOp(ID, /*IsLoad=*/false);
18236   case Hexagon::BI__builtin_brev_ldub:
18237     return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty);
18238   case Hexagon::BI__builtin_brev_ldb:
18239     return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty);
18240   case Hexagon::BI__builtin_brev_lduh:
18241     return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty);
18242   case Hexagon::BI__builtin_brev_ldh:
18243     return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty);
18244   case Hexagon::BI__builtin_brev_ldw:
18245     return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty);
18246   case Hexagon::BI__builtin_brev_ldd:
18247     return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty);
18248 
18249   default: {
18250     if (ID == Intrinsic::not_intrinsic)
18251       return nullptr;
18252 
18253     auto IsVectorPredTy = [](llvm::Type *T) {
18254       return T->isVectorTy() &&
18255              cast<llvm::VectorType>(T)->getElementType()->isIntegerTy(1);
18256     };
18257 
18258     llvm::Function *IntrFn = CGM.getIntrinsic(ID);
18259     llvm::FunctionType *IntrTy = IntrFn->getFunctionType();
18260     SmallVector<llvm::Value*,4> Ops;
18261     for (unsigned i = 0, e = IntrTy->getNumParams(); i != e; ++i) {
18262       llvm::Type *T = IntrTy->getParamType(i);
18263       const Expr *A = E->getArg(i);
18264       if (IsVectorPredTy(T)) {
18265         // There will be an implicit cast to a boolean vector. Strip it.
18266         if (auto *Cast = dyn_cast<ImplicitCastExpr>(A)) {
18267           if (Cast->getCastKind() == CK_BitCast)
18268             A = Cast->getSubExpr();
18269         }
18270         Ops.push_back(V2Q(EmitScalarExpr(A)));
18271       } else {
18272         Ops.push_back(EmitScalarExpr(A));
18273       }
18274     }
18275 
18276     llvm::Value *Call = Builder.CreateCall(IntrFn, Ops);
18277     if (IsVectorPredTy(IntrTy->getReturnType()))
18278       Call = Q2V(Call);
18279 
18280     return Call;
18281   } // default
18282   } // switch
18283 
18284   return nullptr;
18285 }
18286 
18287 Value *CodeGenFunction::EmitRISCVBuiltinExpr(unsigned BuiltinID,
18288                                              const CallExpr *E,
18289                                              ReturnValueSlot ReturnValue) {
18290   SmallVector<Value *, 4> Ops;
18291   llvm::Type *ResultType = ConvertType(E->getType());
18292 
18293   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
18294     Ops.push_back(EmitScalarExpr(E->getArg(i)));
18295 
18296   Intrinsic::ID ID = Intrinsic::not_intrinsic;
18297   unsigned NF = 1;
18298 
18299   // Required for overloaded intrinsics.
18300   llvm::SmallVector<llvm::Type *, 2> IntrinsicTypes;
18301   switch (BuiltinID) {
18302   default: llvm_unreachable("unexpected builtin ID");
18303   case RISCV::BI__builtin_riscv_orc_b_32:
18304   case RISCV::BI__builtin_riscv_orc_b_64:
18305   case RISCV::BI__builtin_riscv_clmul:
18306   case RISCV::BI__builtin_riscv_clmulh:
18307   case RISCV::BI__builtin_riscv_clmulr:
18308   case RISCV::BI__builtin_riscv_bcompress_32:
18309   case RISCV::BI__builtin_riscv_bcompress_64:
18310   case RISCV::BI__builtin_riscv_bdecompress_32:
18311   case RISCV::BI__builtin_riscv_bdecompress_64:
18312   case RISCV::BI__builtin_riscv_grev_32:
18313   case RISCV::BI__builtin_riscv_grev_64:
18314   case RISCV::BI__builtin_riscv_gorc_32:
18315   case RISCV::BI__builtin_riscv_gorc_64:
18316   case RISCV::BI__builtin_riscv_shfl_32:
18317   case RISCV::BI__builtin_riscv_shfl_64:
18318   case RISCV::BI__builtin_riscv_unshfl_32:
18319   case RISCV::BI__builtin_riscv_unshfl_64:
18320   case RISCV::BI__builtin_riscv_xperm_n:
18321   case RISCV::BI__builtin_riscv_xperm_b:
18322   case RISCV::BI__builtin_riscv_xperm_h:
18323   case RISCV::BI__builtin_riscv_xperm_w:
18324   case RISCV::BI__builtin_riscv_crc32_b:
18325   case RISCV::BI__builtin_riscv_crc32_h:
18326   case RISCV::BI__builtin_riscv_crc32_w:
18327   case RISCV::BI__builtin_riscv_crc32_d:
18328   case RISCV::BI__builtin_riscv_crc32c_b:
18329   case RISCV::BI__builtin_riscv_crc32c_h:
18330   case RISCV::BI__builtin_riscv_crc32c_w:
18331   case RISCV::BI__builtin_riscv_crc32c_d: {
18332     switch (BuiltinID) {
18333     default: llvm_unreachable("unexpected builtin ID");
18334     // Zbb
18335     case RISCV::BI__builtin_riscv_orc_b_32:
18336     case RISCV::BI__builtin_riscv_orc_b_64:
18337       ID = Intrinsic::riscv_orc_b;
18338       break;
18339 
18340     // Zbc
18341     case RISCV::BI__builtin_riscv_clmul:
18342       ID = Intrinsic::riscv_clmul;
18343       break;
18344     case RISCV::BI__builtin_riscv_clmulh:
18345       ID = Intrinsic::riscv_clmulh;
18346       break;
18347     case RISCV::BI__builtin_riscv_clmulr:
18348       ID = Intrinsic::riscv_clmulr;
18349       break;
18350 
18351     // Zbe
18352     case RISCV::BI__builtin_riscv_bcompress_32:
18353     case RISCV::BI__builtin_riscv_bcompress_64:
18354       ID = Intrinsic::riscv_bcompress;
18355       break;
18356     case RISCV::BI__builtin_riscv_bdecompress_32:
18357     case RISCV::BI__builtin_riscv_bdecompress_64:
18358       ID = Intrinsic::riscv_bdecompress;
18359       break;
18360 
18361     // Zbp
18362     case RISCV::BI__builtin_riscv_grev_32:
18363     case RISCV::BI__builtin_riscv_grev_64:
18364       ID = Intrinsic::riscv_grev;
18365       break;
18366     case RISCV::BI__builtin_riscv_gorc_32:
18367     case RISCV::BI__builtin_riscv_gorc_64:
18368       ID = Intrinsic::riscv_gorc;
18369       break;
18370     case RISCV::BI__builtin_riscv_shfl_32:
18371     case RISCV::BI__builtin_riscv_shfl_64:
18372       ID = Intrinsic::riscv_shfl;
18373       break;
18374     case RISCV::BI__builtin_riscv_unshfl_32:
18375     case RISCV::BI__builtin_riscv_unshfl_64:
18376       ID = Intrinsic::riscv_unshfl;
18377       break;
18378     case RISCV::BI__builtin_riscv_xperm_n:
18379       ID = Intrinsic::riscv_xperm_n;
18380       break;
18381     case RISCV::BI__builtin_riscv_xperm_b:
18382       ID = Intrinsic::riscv_xperm_b;
18383       break;
18384     case RISCV::BI__builtin_riscv_xperm_h:
18385       ID = Intrinsic::riscv_xperm_h;
18386       break;
18387     case RISCV::BI__builtin_riscv_xperm_w:
18388       ID = Intrinsic::riscv_xperm_w;
18389       break;
18390 
18391     // Zbr
18392     case RISCV::BI__builtin_riscv_crc32_b:
18393       ID = Intrinsic::riscv_crc32_b;
18394       break;
18395     case RISCV::BI__builtin_riscv_crc32_h:
18396       ID = Intrinsic::riscv_crc32_h;
18397       break;
18398     case RISCV::BI__builtin_riscv_crc32_w:
18399       ID = Intrinsic::riscv_crc32_w;
18400       break;
18401     case RISCV::BI__builtin_riscv_crc32_d:
18402       ID = Intrinsic::riscv_crc32_d;
18403       break;
18404     case RISCV::BI__builtin_riscv_crc32c_b:
18405       ID = Intrinsic::riscv_crc32c_b;
18406       break;
18407     case RISCV::BI__builtin_riscv_crc32c_h:
18408       ID = Intrinsic::riscv_crc32c_h;
18409       break;
18410     case RISCV::BI__builtin_riscv_crc32c_w:
18411       ID = Intrinsic::riscv_crc32c_w;
18412       break;
18413     case RISCV::BI__builtin_riscv_crc32c_d:
18414       ID = Intrinsic::riscv_crc32c_d;
18415       break;
18416     }
18417 
18418     IntrinsicTypes = {ResultType};
18419     break;
18420   }
18421   // Vector builtins are handled from here.
18422 #include "clang/Basic/riscv_vector_builtin_cg.inc"
18423   }
18424 
18425   assert(ID != Intrinsic::not_intrinsic);
18426 
18427   llvm::Function *F = CGM.getIntrinsic(ID, IntrinsicTypes);
18428   return Builder.CreateCall(F, Ops, "");
18429 }
18430