1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Builtin calls as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ABIInfo.h"
14 #include "CGCUDARuntime.h"
15 #include "CGCXXABI.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CGRecordLayout.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "ConstantEmitter.h"
22 #include "PatternInit.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/OSLog.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "llvm/ADT/APFloat.h"
32 #include "llvm/ADT/APInt.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/StringExtras.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/IntrinsicsAArch64.h"
40 #include "llvm/IR/IntrinsicsAMDGPU.h"
41 #include "llvm/IR/IntrinsicsARM.h"
42 #include "llvm/IR/IntrinsicsBPF.h"
43 #include "llvm/IR/IntrinsicsHexagon.h"
44 #include "llvm/IR/IntrinsicsLoongArch.h"
45 #include "llvm/IR/IntrinsicsNVPTX.h"
46 #include "llvm/IR/IntrinsicsPowerPC.h"
47 #include "llvm/IR/IntrinsicsR600.h"
48 #include "llvm/IR/IntrinsicsRISCV.h"
49 #include "llvm/IR/IntrinsicsS390.h"
50 #include "llvm/IR/IntrinsicsVE.h"
51 #include "llvm/IR/IntrinsicsWebAssembly.h"
52 #include "llvm/IR/IntrinsicsX86.h"
53 #include "llvm/IR/MDBuilder.h"
54 #include "llvm/IR/MatrixBuilder.h"
55 #include "llvm/Support/AArch64TargetParser.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/ScopedPrinter.h"
58 #include "llvm/Support/X86TargetParser.h"
59 #include <optional>
60 #include <sstream>
61 
62 using namespace clang;
63 using namespace CodeGen;
64 using namespace llvm;
65 
66 static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size,
67                              Align AlignmentInBytes) {
68   ConstantInt *Byte;
69   switch (CGF.getLangOpts().getTrivialAutoVarInit()) {
70   case LangOptions::TrivialAutoVarInitKind::Uninitialized:
71     // Nothing to initialize.
72     return;
73   case LangOptions::TrivialAutoVarInitKind::Zero:
74     Byte = CGF.Builder.getInt8(0x00);
75     break;
76   case LangOptions::TrivialAutoVarInitKind::Pattern: {
77     llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext());
78     Byte = llvm::dyn_cast<llvm::ConstantInt>(
79         initializationPatternFor(CGF.CGM, Int8));
80     break;
81   }
82   }
83   if (CGF.CGM.stopAutoInit())
84     return;
85   auto *I = CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes);
86   I->addAnnotationMetadata("auto-init");
87 }
88 
89 /// getBuiltinLibFunction - Given a builtin id for a function like
90 /// "__builtin_fabsf", return a Function* for "fabsf".
91 llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
92                                                      unsigned BuiltinID) {
93   assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
94 
95   // Get the name, skip over the __builtin_ prefix (if necessary).
96   StringRef Name;
97   GlobalDecl D(FD);
98 
99   // TODO: This list should be expanded or refactored after all GCC-compatible
100   // std libcall builtins are implemented.
101   static SmallDenseMap<unsigned, StringRef, 8> F128Builtins{
102       {Builtin::BI__builtin_printf, "__printfieee128"},
103       {Builtin::BI__builtin_vsnprintf, "__vsnprintfieee128"},
104       {Builtin::BI__builtin_vsprintf, "__vsprintfieee128"},
105       {Builtin::BI__builtin_sprintf, "__sprintfieee128"},
106       {Builtin::BI__builtin_snprintf, "__snprintfieee128"},
107       {Builtin::BI__builtin_fprintf, "__fprintfieee128"},
108       {Builtin::BI__builtin_nexttowardf128, "__nexttowardieee128"},
109   };
110 
111   // The AIX library functions frexpl, ldexpl, and modfl are for 128-bit
112   // IBM 'long double' (i.e. __ibm128). Map to the 'double' versions
113   // if it is 64-bit 'long double' mode.
114   static SmallDenseMap<unsigned, StringRef, 4> AIXLongDouble64Builtins{
115       {Builtin::BI__builtin_frexpl, "frexp"},
116       {Builtin::BI__builtin_ldexpl, "ldexp"},
117       {Builtin::BI__builtin_modfl, "modf"},
118   };
119 
120   // If the builtin has been declared explicitly with an assembler label,
121   // use the mangled name. This differs from the plain label on platforms
122   // that prefix labels.
123   if (FD->hasAttr<AsmLabelAttr>())
124     Name = getMangledName(D);
125   else {
126     // TODO: This mutation should also be applied to other targets other than
127     // PPC, after backend supports IEEE 128-bit style libcalls.
128     if (getTriple().isPPC64() &&
129         &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad() &&
130         F128Builtins.find(BuiltinID) != F128Builtins.end())
131       Name = F128Builtins[BuiltinID];
132     else if (getTriple().isOSAIX() &&
133              &getTarget().getLongDoubleFormat() ==
134                  &llvm::APFloat::IEEEdouble() &&
135              AIXLongDouble64Builtins.find(BuiltinID) !=
136                  AIXLongDouble64Builtins.end())
137       Name = AIXLongDouble64Builtins[BuiltinID];
138     else
139       Name = Context.BuiltinInfo.getName(BuiltinID).substr(10);
140   }
141 
142   llvm::FunctionType *Ty =
143     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
144 
145   return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
146 }
147 
148 /// Emit the conversions required to turn the given value into an
149 /// integer of the given size.
150 static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
151                         QualType T, llvm::IntegerType *IntType) {
152   V = CGF.EmitToMemory(V, T);
153 
154   if (V->getType()->isPointerTy())
155     return CGF.Builder.CreatePtrToInt(V, IntType);
156 
157   assert(V->getType() == IntType);
158   return V;
159 }
160 
161 static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
162                           QualType T, llvm::Type *ResultType) {
163   V = CGF.EmitFromMemory(V, T);
164 
165   if (ResultType->isPointerTy())
166     return CGF.Builder.CreateIntToPtr(V, ResultType);
167 
168   assert(V->getType() == ResultType);
169   return V;
170 }
171 
172 /// Utility to insert an atomic instruction based on Intrinsic::ID
173 /// and the expression node.
174 static Value *MakeBinaryAtomicValue(
175     CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
176     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
177 
178   QualType T = E->getType();
179   assert(E->getArg(0)->getType()->isPointerType());
180   assert(CGF.getContext().hasSameUnqualifiedType(T,
181                                   E->getArg(0)->getType()->getPointeeType()));
182   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
183 
184   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
185   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
186 
187   llvm::IntegerType *IntType =
188     llvm::IntegerType::get(CGF.getLLVMContext(),
189                            CGF.getContext().getTypeSize(T));
190   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
191 
192   llvm::Value *Args[2];
193   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
194   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
195   llvm::Type *ValueType = Args[1]->getType();
196   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
197 
198   llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
199       Kind, Args[0], Args[1], Ordering);
200   return EmitFromInt(CGF, Result, T, ValueType);
201 }
202 
203 static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
204   Value *Val = CGF.EmitScalarExpr(E->getArg(0));
205   Value *Address = CGF.EmitScalarExpr(E->getArg(1));
206 
207   // Convert the type of the pointer to a pointer to the stored type.
208   Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
209   unsigned SrcAddrSpace = Address->getType()->getPointerAddressSpace();
210   Value *BC = CGF.Builder.CreateBitCast(
211       Address, llvm::PointerType::get(Val->getType(), SrcAddrSpace), "cast");
212   LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
213   LV.setNontemporal(true);
214   CGF.EmitStoreOfScalar(Val, LV, false);
215   return nullptr;
216 }
217 
218 static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
219   Value *Address = CGF.EmitScalarExpr(E->getArg(0));
220 
221   LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
222   LV.setNontemporal(true);
223   return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
224 }
225 
226 static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
227                                llvm::AtomicRMWInst::BinOp Kind,
228                                const CallExpr *E) {
229   return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
230 }
231 
232 /// Utility to insert an atomic instruction based Intrinsic::ID and
233 /// the expression node, where the return value is the result of the
234 /// operation.
235 static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
236                                    llvm::AtomicRMWInst::BinOp Kind,
237                                    const CallExpr *E,
238                                    Instruction::BinaryOps Op,
239                                    bool Invert = false) {
240   QualType T = E->getType();
241   assert(E->getArg(0)->getType()->isPointerType());
242   assert(CGF.getContext().hasSameUnqualifiedType(T,
243                                   E->getArg(0)->getType()->getPointeeType()));
244   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
245 
246   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
247   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
248 
249   llvm::IntegerType *IntType =
250     llvm::IntegerType::get(CGF.getLLVMContext(),
251                            CGF.getContext().getTypeSize(T));
252   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
253 
254   llvm::Value *Args[2];
255   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
256   llvm::Type *ValueType = Args[1]->getType();
257   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
258   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
259 
260   llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
261       Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
262   Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
263   if (Invert)
264     Result =
265         CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
266                                 llvm::ConstantInt::getAllOnesValue(IntType));
267   Result = EmitFromInt(CGF, Result, T, ValueType);
268   return RValue::get(Result);
269 }
270 
271 /// Utility to insert an atomic cmpxchg instruction.
272 ///
273 /// @param CGF The current codegen function.
274 /// @param E   Builtin call expression to convert to cmpxchg.
275 ///            arg0 - address to operate on
276 ///            arg1 - value to compare with
277 ///            arg2 - new value
278 /// @param ReturnBool Specifies whether to return success flag of
279 ///                   cmpxchg result or the old value.
280 ///
281 /// @returns result of cmpxchg, according to ReturnBool
282 ///
283 /// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
284 /// invoke the function EmitAtomicCmpXchgForMSIntrin.
285 static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
286                                      bool ReturnBool) {
287   QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
288   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
289   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
290 
291   llvm::IntegerType *IntType = llvm::IntegerType::get(
292       CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
293   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
294 
295   Value *Args[3];
296   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
297   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
298   llvm::Type *ValueType = Args[1]->getType();
299   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
300   Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
301 
302   Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
303       Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent,
304       llvm::AtomicOrdering::SequentiallyConsistent);
305   if (ReturnBool)
306     // Extract boolean success flag and zext it to int.
307     return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
308                                   CGF.ConvertType(E->getType()));
309   else
310     // Extract old value and emit it using the same type as compare value.
311     return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
312                        ValueType);
313 }
314 
315 /// This function should be invoked to emit atomic cmpxchg for Microsoft's
316 /// _InterlockedCompareExchange* intrinsics which have the following signature:
317 /// T _InterlockedCompareExchange(T volatile *Destination,
318 ///                               T Exchange,
319 ///                               T Comparand);
320 ///
321 /// Whereas the llvm 'cmpxchg' instruction has the following syntax:
322 /// cmpxchg *Destination, Comparand, Exchange.
323 /// So we need to swap Comparand and Exchange when invoking
324 /// CreateAtomicCmpXchg. That is the reason we could not use the above utility
325 /// function MakeAtomicCmpXchgValue since it expects the arguments to be
326 /// already swapped.
327 
328 static
329 Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E,
330     AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
331   assert(E->getArg(0)->getType()->isPointerType());
332   assert(CGF.getContext().hasSameUnqualifiedType(
333       E->getType(), E->getArg(0)->getType()->getPointeeType()));
334   assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
335                                                  E->getArg(1)->getType()));
336   assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
337                                                  E->getArg(2)->getType()));
338 
339   auto *Destination = CGF.EmitScalarExpr(E->getArg(0));
340   auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
341   auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
342 
343   // For Release ordering, the failure ordering should be Monotonic.
344   auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
345                          AtomicOrdering::Monotonic :
346                          SuccessOrdering;
347 
348   // The atomic instruction is marked volatile for consistency with MSVC. This
349   // blocks the few atomics optimizations that LLVM has. If we want to optimize
350   // _Interlocked* operations in the future, we will have to remove the volatile
351   // marker.
352   auto *Result = CGF.Builder.CreateAtomicCmpXchg(
353                    Destination, Comparand, Exchange,
354                    SuccessOrdering, FailureOrdering);
355   Result->setVolatile(true);
356   return CGF.Builder.CreateExtractValue(Result, 0);
357 }
358 
359 // 64-bit Microsoft platforms support 128 bit cmpxchg operations. They are
360 // prototyped like this:
361 //
362 // unsigned char _InterlockedCompareExchange128...(
363 //     __int64 volatile * _Destination,
364 //     __int64 _ExchangeHigh,
365 //     __int64 _ExchangeLow,
366 //     __int64 * _ComparandResult);
367 static Value *EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction &CGF,
368                                               const CallExpr *E,
369                                               AtomicOrdering SuccessOrdering) {
370   assert(E->getNumArgs() == 4);
371   llvm::Value *Destination = CGF.EmitScalarExpr(E->getArg(0));
372   llvm::Value *ExchangeHigh = CGF.EmitScalarExpr(E->getArg(1));
373   llvm::Value *ExchangeLow = CGF.EmitScalarExpr(E->getArg(2));
374   llvm::Value *ComparandPtr = CGF.EmitScalarExpr(E->getArg(3));
375 
376   assert(Destination->getType()->isPointerTy());
377   assert(!ExchangeHigh->getType()->isPointerTy());
378   assert(!ExchangeLow->getType()->isPointerTy());
379   assert(ComparandPtr->getType()->isPointerTy());
380 
381   // For Release ordering, the failure ordering should be Monotonic.
382   auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release
383                              ? AtomicOrdering::Monotonic
384                              : SuccessOrdering;
385 
386   // Convert to i128 pointers and values.
387   llvm::Type *Int128Ty = llvm::IntegerType::get(CGF.getLLVMContext(), 128);
388   llvm::Type *Int128PtrTy = Int128Ty->getPointerTo();
389   Destination = CGF.Builder.CreateBitCast(Destination, Int128PtrTy);
390   Address ComparandResult(CGF.Builder.CreateBitCast(ComparandPtr, Int128PtrTy),
391                           Int128Ty, CGF.getContext().toCharUnitsFromBits(128));
392 
393   // (((i128)hi) << 64) | ((i128)lo)
394   ExchangeHigh = CGF.Builder.CreateZExt(ExchangeHigh, Int128Ty);
395   ExchangeLow = CGF.Builder.CreateZExt(ExchangeLow, Int128Ty);
396   ExchangeHigh =
397       CGF.Builder.CreateShl(ExchangeHigh, llvm::ConstantInt::get(Int128Ty, 64));
398   llvm::Value *Exchange = CGF.Builder.CreateOr(ExchangeHigh, ExchangeLow);
399 
400   // Load the comparand for the instruction.
401   llvm::Value *Comparand = CGF.Builder.CreateLoad(ComparandResult);
402 
403   auto *CXI = CGF.Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
404                                               SuccessOrdering, FailureOrdering);
405 
406   // The atomic instruction is marked volatile for consistency with MSVC. This
407   // blocks the few atomics optimizations that LLVM has. If we want to optimize
408   // _Interlocked* operations in the future, we will have to remove the volatile
409   // marker.
410   CXI->setVolatile(true);
411 
412   // Store the result as an outparameter.
413   CGF.Builder.CreateStore(CGF.Builder.CreateExtractValue(CXI, 0),
414                           ComparandResult);
415 
416   // Get the success boolean and zero extend it to i8.
417   Value *Success = CGF.Builder.CreateExtractValue(CXI, 1);
418   return CGF.Builder.CreateZExt(Success, CGF.Int8Ty);
419 }
420 
421 static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E,
422     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
423   assert(E->getArg(0)->getType()->isPointerType());
424 
425   auto *IntTy = CGF.ConvertType(E->getType());
426   auto *Result = CGF.Builder.CreateAtomicRMW(
427                    AtomicRMWInst::Add,
428                    CGF.EmitScalarExpr(E->getArg(0)),
429                    ConstantInt::get(IntTy, 1),
430                    Ordering);
431   return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
432 }
433 
434 static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E,
435     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
436   assert(E->getArg(0)->getType()->isPointerType());
437 
438   auto *IntTy = CGF.ConvertType(E->getType());
439   auto *Result = CGF.Builder.CreateAtomicRMW(
440                    AtomicRMWInst::Sub,
441                    CGF.EmitScalarExpr(E->getArg(0)),
442                    ConstantInt::get(IntTy, 1),
443                    Ordering);
444   return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
445 }
446 
447 // Build a plain volatile load.
448 static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) {
449   Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
450   QualType ElTy = E->getArg(0)->getType()->getPointeeType();
451   CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy);
452   llvm::Type *ITy =
453       llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8);
454   Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
455   llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(ITy, Ptr, LoadSize);
456   Load->setVolatile(true);
457   return Load;
458 }
459 
460 // Build a plain volatile store.
461 static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) {
462   Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
463   Value *Value = CGF.EmitScalarExpr(E->getArg(1));
464   QualType ElTy = E->getArg(0)->getType()->getPointeeType();
465   CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy);
466   llvm::Type *ITy =
467       llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8);
468   Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
469   llvm::StoreInst *Store =
470       CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize);
471   Store->setVolatile(true);
472   return Store;
473 }
474 
475 // Emit a simple mangled intrinsic that has 1 argument and a return type
476 // matching the argument type. Depending on mode, this may be a constrained
477 // floating-point intrinsic.
478 static Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
479                                 const CallExpr *E, unsigned IntrinsicID,
480                                 unsigned ConstrainedIntrinsicID) {
481   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
482 
483   if (CGF.Builder.getIsFPConstrained()) {
484     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
485     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
486     return CGF.Builder.CreateConstrainedFPCall(F, { Src0 });
487   } else {
488     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
489     return CGF.Builder.CreateCall(F, Src0);
490   }
491 }
492 
493 // Emit an intrinsic that has 2 operands of the same type as its result.
494 // Depending on mode, this may be a constrained floating-point intrinsic.
495 static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
496                                 const CallExpr *E, unsigned IntrinsicID,
497                                 unsigned ConstrainedIntrinsicID) {
498   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
499   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
500 
501   if (CGF.Builder.getIsFPConstrained()) {
502     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
503     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
504     return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1 });
505   } else {
506     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
507     return CGF.Builder.CreateCall(F, { Src0, Src1 });
508   }
509 }
510 
511 // Emit an intrinsic that has 3 operands of the same type as its result.
512 // Depending on mode, this may be a constrained floating-point intrinsic.
513 static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
514                                  const CallExpr *E, unsigned IntrinsicID,
515                                  unsigned ConstrainedIntrinsicID) {
516   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
517   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
518   llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
519 
520   if (CGF.Builder.getIsFPConstrained()) {
521     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
522     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
523     return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1, Src2 });
524   } else {
525     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
526     return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
527   }
528 }
529 
530 // Emit an intrinsic where all operands are of the same type as the result.
531 // Depending on mode, this may be a constrained floating-point intrinsic.
532 static Value *emitCallMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
533                                                 unsigned IntrinsicID,
534                                                 unsigned ConstrainedIntrinsicID,
535                                                 llvm::Type *Ty,
536                                                 ArrayRef<Value *> Args) {
537   Function *F;
538   if (CGF.Builder.getIsFPConstrained())
539     F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Ty);
540   else
541     F = CGF.CGM.getIntrinsic(IntrinsicID, Ty);
542 
543   if (CGF.Builder.getIsFPConstrained())
544     return CGF.Builder.CreateConstrainedFPCall(F, Args);
545   else
546     return CGF.Builder.CreateCall(F, Args);
547 }
548 
549 // Emit a simple mangled intrinsic that has 1 argument and a return type
550 // matching the argument type.
551 static Value *emitUnaryBuiltin(CodeGenFunction &CGF, const CallExpr *E,
552                                unsigned IntrinsicID,
553                                llvm::StringRef Name = "") {
554   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
555 
556   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
557   return CGF.Builder.CreateCall(F, Src0, Name);
558 }
559 
560 // Emit an intrinsic that has 2 operands of the same type as its result.
561 static Value *emitBinaryBuiltin(CodeGenFunction &CGF,
562                                 const CallExpr *E,
563                                 unsigned IntrinsicID) {
564   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
565   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
566 
567   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
568   return CGF.Builder.CreateCall(F, { Src0, Src1 });
569 }
570 
571 // Emit an intrinsic that has 3 operands of the same type as its result.
572 static Value *emitTernaryBuiltin(CodeGenFunction &CGF,
573                                  const CallExpr *E,
574                                  unsigned IntrinsicID) {
575   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
576   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
577   llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
578 
579   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
580   return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
581 }
582 
583 // Emit an intrinsic that has 1 float or double operand, and 1 integer.
584 static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
585                                const CallExpr *E,
586                                unsigned IntrinsicID) {
587   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
588   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
589 
590   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
591   return CGF.Builder.CreateCall(F, {Src0, Src1});
592 }
593 
594 // Emit an intrinsic that has overloaded integer result and fp operand.
595 static Value *
596 emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E,
597                                         unsigned IntrinsicID,
598                                         unsigned ConstrainedIntrinsicID) {
599   llvm::Type *ResultType = CGF.ConvertType(E->getType());
600   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
601 
602   if (CGF.Builder.getIsFPConstrained()) {
603     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
604     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID,
605                                        {ResultType, Src0->getType()});
606     return CGF.Builder.CreateConstrainedFPCall(F, {Src0});
607   } else {
608     Function *F =
609         CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()});
610     return CGF.Builder.CreateCall(F, Src0);
611   }
612 }
613 
614 /// EmitFAbs - Emit a call to @llvm.fabs().
615 static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
616   Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
617   llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
618   Call->setDoesNotAccessMemory();
619   return Call;
620 }
621 
622 /// Emit the computation of the sign bit for a floating point value. Returns
623 /// the i1 sign bit value.
624 static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
625   LLVMContext &C = CGF.CGM.getLLVMContext();
626 
627   llvm::Type *Ty = V->getType();
628   int Width = Ty->getPrimitiveSizeInBits();
629   llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
630   V = CGF.Builder.CreateBitCast(V, IntTy);
631   if (Ty->isPPC_FP128Ty()) {
632     // We want the sign bit of the higher-order double. The bitcast we just
633     // did works as if the double-double was stored to memory and then
634     // read as an i128. The "store" will put the higher-order double in the
635     // lower address in both little- and big-Endian modes, but the "load"
636     // will treat those bits as a different part of the i128: the low bits in
637     // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
638     // we need to shift the high bits down to the low before truncating.
639     Width >>= 1;
640     if (CGF.getTarget().isBigEndian()) {
641       Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
642       V = CGF.Builder.CreateLShr(V, ShiftCst);
643     }
644     // We are truncating value in order to extract the higher-order
645     // double, which we will be using to extract the sign from.
646     IntTy = llvm::IntegerType::get(C, Width);
647     V = CGF.Builder.CreateTrunc(V, IntTy);
648   }
649   Value *Zero = llvm::Constant::getNullValue(IntTy);
650   return CGF.Builder.CreateICmpSLT(V, Zero);
651 }
652 
653 static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
654                               const CallExpr *E, llvm::Constant *calleeValue) {
655   CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
656   return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
657 }
658 
659 /// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
660 /// depending on IntrinsicID.
661 ///
662 /// \arg CGF The current codegen function.
663 /// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
664 /// \arg X The first argument to the llvm.*.with.overflow.*.
665 /// \arg Y The second argument to the llvm.*.with.overflow.*.
666 /// \arg Carry The carry returned by the llvm.*.with.overflow.*.
667 /// \returns The result (i.e. sum/product) returned by the intrinsic.
668 static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
669                                           const llvm::Intrinsic::ID IntrinsicID,
670                                           llvm::Value *X, llvm::Value *Y,
671                                           llvm::Value *&Carry) {
672   // Make sure we have integers of the same width.
673   assert(X->getType() == Y->getType() &&
674          "Arguments must be the same type. (Did you forget to make sure both "
675          "arguments have the same integer width?)");
676 
677   Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
678   llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
679   Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
680   return CGF.Builder.CreateExtractValue(Tmp, 0);
681 }
682 
683 static Value *emitRangedBuiltin(CodeGenFunction &CGF,
684                                 unsigned IntrinsicID,
685                                 int low, int high) {
686     llvm::MDBuilder MDHelper(CGF.getLLVMContext());
687     llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high));
688     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
689     llvm::Instruction *Call = CGF.Builder.CreateCall(F);
690     Call->setMetadata(llvm::LLVMContext::MD_range, RNode);
691     Call->setMetadata(llvm::LLVMContext::MD_noundef,
692                       llvm::MDNode::get(CGF.getLLVMContext(), std::nullopt));
693     return Call;
694 }
695 
696 namespace {
697   struct WidthAndSignedness {
698     unsigned Width;
699     bool Signed;
700   };
701 }
702 
703 static WidthAndSignedness
704 getIntegerWidthAndSignedness(const clang::ASTContext &context,
705                              const clang::QualType Type) {
706   assert(Type->isIntegerType() && "Given type is not an integer.");
707   unsigned Width = Type->isBooleanType()  ? 1
708                    : Type->isBitIntType() ? context.getIntWidth(Type)
709                                           : context.getTypeInfo(Type).Width;
710   bool Signed = Type->isSignedIntegerType();
711   return {Width, Signed};
712 }
713 
714 // Given one or more integer types, this function produces an integer type that
715 // encompasses them: any value in one of the given types could be expressed in
716 // the encompassing type.
717 static struct WidthAndSignedness
718 EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
719   assert(Types.size() > 0 && "Empty list of types.");
720 
721   // If any of the given types is signed, we must return a signed type.
722   bool Signed = false;
723   for (const auto &Type : Types) {
724     Signed |= Type.Signed;
725   }
726 
727   // The encompassing type must have a width greater than or equal to the width
728   // of the specified types.  Additionally, if the encompassing type is signed,
729   // its width must be strictly greater than the width of any unsigned types
730   // given.
731   unsigned Width = 0;
732   for (const auto &Type : Types) {
733     unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
734     if (Width < MinWidth) {
735       Width = MinWidth;
736     }
737   }
738 
739   return {Width, Signed};
740 }
741 
742 Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
743   llvm::Type *DestType = Int8PtrTy;
744   if (ArgValue->getType() != DestType)
745     ArgValue =
746         Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
747 
748   Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
749   return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
750 }
751 
752 /// Checks if using the result of __builtin_object_size(p, @p From) in place of
753 /// __builtin_object_size(p, @p To) is correct
754 static bool areBOSTypesCompatible(int From, int To) {
755   // Note: Our __builtin_object_size implementation currently treats Type=0 and
756   // Type=2 identically. Encoding this implementation detail here may make
757   // improving __builtin_object_size difficult in the future, so it's omitted.
758   return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
759 }
760 
761 static llvm::Value *
762 getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
763   return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
764 }
765 
766 llvm::Value *
767 CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
768                                                  llvm::IntegerType *ResType,
769                                                  llvm::Value *EmittedE,
770                                                  bool IsDynamic) {
771   uint64_t ObjectSize;
772   if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
773     return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic);
774   return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
775 }
776 
777 /// Returns a Value corresponding to the size of the given expression.
778 /// This Value may be either of the following:
779 ///   - A llvm::Argument (if E is a param with the pass_object_size attribute on
780 ///     it)
781 ///   - A call to the @llvm.objectsize intrinsic
782 ///
783 /// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
784 /// and we wouldn't otherwise try to reference a pass_object_size parameter,
785 /// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
786 llvm::Value *
787 CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
788                                        llvm::IntegerType *ResType,
789                                        llvm::Value *EmittedE, bool IsDynamic) {
790   // We need to reference an argument if the pointer is a parameter with the
791   // pass_object_size attribute.
792   if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
793     auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
794     auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
795     if (Param != nullptr && PS != nullptr &&
796         areBOSTypesCompatible(PS->getType(), Type)) {
797       auto Iter = SizeArguments.find(Param);
798       assert(Iter != SizeArguments.end());
799 
800       const ImplicitParamDecl *D = Iter->second;
801       auto DIter = LocalDeclMap.find(D);
802       assert(DIter != LocalDeclMap.end());
803 
804       return EmitLoadOfScalar(DIter->second, /*Volatile=*/false,
805                               getContext().getSizeType(), E->getBeginLoc());
806     }
807   }
808 
809   // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
810   // evaluate E for side-effects. In either case, we shouldn't lower to
811   // @llvm.objectsize.
812   if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
813     return getDefaultBuiltinObjectSizeResult(Type, ResType);
814 
815   Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
816   assert(Ptr->getType()->isPointerTy() &&
817          "Non-pointer passed to __builtin_object_size?");
818 
819   Function *F =
820       CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
821 
822   // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
823   Value *Min = Builder.getInt1((Type & 2) != 0);
824   // For GCC compatibility, __builtin_object_size treat NULL as unknown size.
825   Value *NullIsUnknown = Builder.getTrue();
826   Value *Dynamic = Builder.getInt1(IsDynamic);
827   return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic});
828 }
829 
830 namespace {
831 /// A struct to generically describe a bit test intrinsic.
832 struct BitTest {
833   enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
834   enum InterlockingKind : uint8_t {
835     Unlocked,
836     Sequential,
837     Acquire,
838     Release,
839     NoFence
840   };
841 
842   ActionKind Action;
843   InterlockingKind Interlocking;
844   bool Is64Bit;
845 
846   static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
847 };
848 } // namespace
849 
850 BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
851   switch (BuiltinID) {
852     // Main portable variants.
853   case Builtin::BI_bittest:
854     return {TestOnly, Unlocked, false};
855   case Builtin::BI_bittestandcomplement:
856     return {Complement, Unlocked, false};
857   case Builtin::BI_bittestandreset:
858     return {Reset, Unlocked, false};
859   case Builtin::BI_bittestandset:
860     return {Set, Unlocked, false};
861   case Builtin::BI_interlockedbittestandreset:
862     return {Reset, Sequential, false};
863   case Builtin::BI_interlockedbittestandset:
864     return {Set, Sequential, false};
865 
866     // X86-specific 64-bit variants.
867   case Builtin::BI_bittest64:
868     return {TestOnly, Unlocked, true};
869   case Builtin::BI_bittestandcomplement64:
870     return {Complement, Unlocked, true};
871   case Builtin::BI_bittestandreset64:
872     return {Reset, Unlocked, true};
873   case Builtin::BI_bittestandset64:
874     return {Set, Unlocked, true};
875   case Builtin::BI_interlockedbittestandreset64:
876     return {Reset, Sequential, true};
877   case Builtin::BI_interlockedbittestandset64:
878     return {Set, Sequential, true};
879 
880     // ARM/AArch64-specific ordering variants.
881   case Builtin::BI_interlockedbittestandset_acq:
882     return {Set, Acquire, false};
883   case Builtin::BI_interlockedbittestandset_rel:
884     return {Set, Release, false};
885   case Builtin::BI_interlockedbittestandset_nf:
886     return {Set, NoFence, false};
887   case Builtin::BI_interlockedbittestandreset_acq:
888     return {Reset, Acquire, false};
889   case Builtin::BI_interlockedbittestandreset_rel:
890     return {Reset, Release, false};
891   case Builtin::BI_interlockedbittestandreset_nf:
892     return {Reset, NoFence, false};
893   }
894   llvm_unreachable("expected only bittest intrinsics");
895 }
896 
897 static char bitActionToX86BTCode(BitTest::ActionKind A) {
898   switch (A) {
899   case BitTest::TestOnly:   return '\0';
900   case BitTest::Complement: return 'c';
901   case BitTest::Reset:      return 'r';
902   case BitTest::Set:        return 's';
903   }
904   llvm_unreachable("invalid action");
905 }
906 
907 static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF,
908                                             BitTest BT,
909                                             const CallExpr *E, Value *BitBase,
910                                             Value *BitPos) {
911   char Action = bitActionToX86BTCode(BT.Action);
912   char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
913 
914   // Build the assembly.
915   SmallString<64> Asm;
916   raw_svector_ostream AsmOS(Asm);
917   if (BT.Interlocking != BitTest::Unlocked)
918     AsmOS << "lock ";
919   AsmOS << "bt";
920   if (Action)
921     AsmOS << Action;
922   AsmOS << SizeSuffix << " $2, ($1)";
923 
924   // Build the constraints. FIXME: We should support immediates when possible.
925   std::string Constraints = "={@ccc},r,r,~{cc},~{memory}";
926   std::string MachineClobbers = CGF.getTarget().getClobbers();
927   if (!MachineClobbers.empty()) {
928     Constraints += ',';
929     Constraints += MachineClobbers;
930   }
931   llvm::IntegerType *IntType = llvm::IntegerType::get(
932       CGF.getLLVMContext(),
933       CGF.getContext().getTypeSize(E->getArg(1)->getType()));
934   llvm::Type *IntPtrType = IntType->getPointerTo();
935   llvm::FunctionType *FTy =
936       llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false);
937 
938   llvm::InlineAsm *IA =
939       llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
940   return CGF.Builder.CreateCall(IA, {BitBase, BitPos});
941 }
942 
943 static llvm::AtomicOrdering
944 getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
945   switch (I) {
946   case BitTest::Unlocked:   return llvm::AtomicOrdering::NotAtomic;
947   case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
948   case BitTest::Acquire:    return llvm::AtomicOrdering::Acquire;
949   case BitTest::Release:    return llvm::AtomicOrdering::Release;
950   case BitTest::NoFence:    return llvm::AtomicOrdering::Monotonic;
951   }
952   llvm_unreachable("invalid interlocking");
953 }
954 
955 /// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
956 /// bits and a bit position and read and optionally modify the bit at that
957 /// position. The position index can be arbitrarily large, i.e. it can be larger
958 /// than 31 or 63, so we need an indexed load in the general case.
959 static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
960                                          unsigned BuiltinID,
961                                          const CallExpr *E) {
962   Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
963   Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
964 
965   BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
966 
967   // X86 has special BT, BTC, BTR, and BTS instructions that handle the array
968   // indexing operation internally. Use them if possible.
969   if (CGF.getTarget().getTriple().isX86())
970     return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
971 
972   // Otherwise, use generic code to load one byte and test the bit. Use all but
973   // the bottom three bits as the array index, and the bottom three bits to form
974   // a mask.
975   // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
976   Value *ByteIndex = CGF.Builder.CreateAShr(
977       BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx");
978   Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy);
979   Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
980                                                  ByteIndex, "bittest.byteaddr"),
981                    CGF.Int8Ty, CharUnits::One());
982   Value *PosLow =
983       CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty),
984                             llvm::ConstantInt::get(CGF.Int8Ty, 0x7));
985 
986   // The updating instructions will need a mask.
987   Value *Mask = nullptr;
988   if (BT.Action != BitTest::TestOnly) {
989     Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow,
990                                  "bittest.mask");
991   }
992 
993   // Check the action and ordering of the interlocked intrinsics.
994   llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking);
995 
996   Value *OldByte = nullptr;
997   if (Ordering != llvm::AtomicOrdering::NotAtomic) {
998     // Emit a combined atomicrmw load/store operation for the interlocked
999     // intrinsics.
1000     llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
1001     if (BT.Action == BitTest::Reset) {
1002       Mask = CGF.Builder.CreateNot(Mask);
1003       RMWOp = llvm::AtomicRMWInst::And;
1004     }
1005     OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask,
1006                                           Ordering);
1007   } else {
1008     // Emit a plain load for the non-interlocked intrinsics.
1009     OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte");
1010     Value *NewByte = nullptr;
1011     switch (BT.Action) {
1012     case BitTest::TestOnly:
1013       // Don't store anything.
1014       break;
1015     case BitTest::Complement:
1016       NewByte = CGF.Builder.CreateXor(OldByte, Mask);
1017       break;
1018     case BitTest::Reset:
1019       NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask));
1020       break;
1021     case BitTest::Set:
1022       NewByte = CGF.Builder.CreateOr(OldByte, Mask);
1023       break;
1024     }
1025     if (NewByte)
1026       CGF.Builder.CreateStore(NewByte, ByteAddr);
1027   }
1028 
1029   // However we loaded the old byte, either by plain load or atomicrmw, shift
1030   // the bit into the low position and mask it to 0 or 1.
1031   Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr");
1032   return CGF.Builder.CreateAnd(
1033       ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res");
1034 }
1035 
1036 static llvm::Value *emitPPCLoadReserveIntrinsic(CodeGenFunction &CGF,
1037                                                 unsigned BuiltinID,
1038                                                 const CallExpr *E) {
1039   Value *Addr = CGF.EmitScalarExpr(E->getArg(0));
1040 
1041   SmallString<64> Asm;
1042   raw_svector_ostream AsmOS(Asm);
1043   llvm::IntegerType *RetType = CGF.Int32Ty;
1044 
1045   switch (BuiltinID) {
1046   case clang::PPC::BI__builtin_ppc_ldarx:
1047     AsmOS << "ldarx ";
1048     RetType = CGF.Int64Ty;
1049     break;
1050   case clang::PPC::BI__builtin_ppc_lwarx:
1051     AsmOS << "lwarx ";
1052     RetType = CGF.Int32Ty;
1053     break;
1054   case clang::PPC::BI__builtin_ppc_lharx:
1055     AsmOS << "lharx ";
1056     RetType = CGF.Int16Ty;
1057     break;
1058   case clang::PPC::BI__builtin_ppc_lbarx:
1059     AsmOS << "lbarx ";
1060     RetType = CGF.Int8Ty;
1061     break;
1062   default:
1063     llvm_unreachable("Expected only PowerPC load reserve intrinsics");
1064   }
1065 
1066   AsmOS << "$0, ${1:y}";
1067 
1068   std::string Constraints = "=r,*Z,~{memory}";
1069   std::string MachineClobbers = CGF.getTarget().getClobbers();
1070   if (!MachineClobbers.empty()) {
1071     Constraints += ',';
1072     Constraints += MachineClobbers;
1073   }
1074 
1075   llvm::Type *IntPtrType = RetType->getPointerTo();
1076   llvm::FunctionType *FTy =
1077       llvm::FunctionType::get(RetType, {IntPtrType}, false);
1078 
1079   llvm::InlineAsm *IA =
1080       llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1081   llvm::CallInst *CI = CGF.Builder.CreateCall(IA, {Addr});
1082   CI->addParamAttr(
1083       0, Attribute::get(CGF.getLLVMContext(), Attribute::ElementType, RetType));
1084   return CI;
1085 }
1086 
1087 namespace {
1088 enum class MSVCSetJmpKind {
1089   _setjmpex,
1090   _setjmp3,
1091   _setjmp
1092 };
1093 }
1094 
1095 /// MSVC handles setjmp a bit differently on different platforms. On every
1096 /// architecture except 32-bit x86, the frame address is passed. On x86, extra
1097 /// parameters can be passed as variadic arguments, but we always pass none.
1098 static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
1099                                const CallExpr *E) {
1100   llvm::Value *Arg1 = nullptr;
1101   llvm::Type *Arg1Ty = nullptr;
1102   StringRef Name;
1103   bool IsVarArg = false;
1104   if (SJKind == MSVCSetJmpKind::_setjmp3) {
1105     Name = "_setjmp3";
1106     Arg1Ty = CGF.Int32Ty;
1107     Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0);
1108     IsVarArg = true;
1109   } else {
1110     Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
1111     Arg1Ty = CGF.Int8PtrTy;
1112     if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
1113       Arg1 = CGF.Builder.CreateCall(
1114           CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy));
1115     } else
1116       Arg1 = CGF.Builder.CreateCall(
1117           CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy),
1118           llvm::ConstantInt::get(CGF.Int32Ty, 0));
1119   }
1120 
1121   // Mark the call site and declaration with ReturnsTwice.
1122   llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
1123   llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
1124       CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
1125       llvm::Attribute::ReturnsTwice);
1126   llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction(
1127       llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name,
1128       ReturnsTwiceAttr, /*Local=*/true);
1129 
1130   llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
1131       CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
1132   llvm::Value *Args[] = {Buf, Arg1};
1133   llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
1134   CB->setAttributes(ReturnsTwiceAttr);
1135   return RValue::get(CB);
1136 }
1137 
1138 // Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
1139 // we handle them here.
1140 enum class CodeGenFunction::MSVCIntrin {
1141   _BitScanForward,
1142   _BitScanReverse,
1143   _InterlockedAnd,
1144   _InterlockedDecrement,
1145   _InterlockedExchange,
1146   _InterlockedExchangeAdd,
1147   _InterlockedExchangeSub,
1148   _InterlockedIncrement,
1149   _InterlockedOr,
1150   _InterlockedXor,
1151   _InterlockedExchangeAdd_acq,
1152   _InterlockedExchangeAdd_rel,
1153   _InterlockedExchangeAdd_nf,
1154   _InterlockedExchange_acq,
1155   _InterlockedExchange_rel,
1156   _InterlockedExchange_nf,
1157   _InterlockedCompareExchange_acq,
1158   _InterlockedCompareExchange_rel,
1159   _InterlockedCompareExchange_nf,
1160   _InterlockedCompareExchange128,
1161   _InterlockedCompareExchange128_acq,
1162   _InterlockedCompareExchange128_rel,
1163   _InterlockedCompareExchange128_nf,
1164   _InterlockedOr_acq,
1165   _InterlockedOr_rel,
1166   _InterlockedOr_nf,
1167   _InterlockedXor_acq,
1168   _InterlockedXor_rel,
1169   _InterlockedXor_nf,
1170   _InterlockedAnd_acq,
1171   _InterlockedAnd_rel,
1172   _InterlockedAnd_nf,
1173   _InterlockedIncrement_acq,
1174   _InterlockedIncrement_rel,
1175   _InterlockedIncrement_nf,
1176   _InterlockedDecrement_acq,
1177   _InterlockedDecrement_rel,
1178   _InterlockedDecrement_nf,
1179   __fastfail,
1180 };
1181 
1182 static std::optional<CodeGenFunction::MSVCIntrin>
1183 translateArmToMsvcIntrin(unsigned BuiltinID) {
1184   using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1185   switch (BuiltinID) {
1186   default:
1187     return std::nullopt;
1188   case clang::ARM::BI_BitScanForward:
1189   case clang::ARM::BI_BitScanForward64:
1190     return MSVCIntrin::_BitScanForward;
1191   case clang::ARM::BI_BitScanReverse:
1192   case clang::ARM::BI_BitScanReverse64:
1193     return MSVCIntrin::_BitScanReverse;
1194   case clang::ARM::BI_InterlockedAnd64:
1195     return MSVCIntrin::_InterlockedAnd;
1196   case clang::ARM::BI_InterlockedExchange64:
1197     return MSVCIntrin::_InterlockedExchange;
1198   case clang::ARM::BI_InterlockedExchangeAdd64:
1199     return MSVCIntrin::_InterlockedExchangeAdd;
1200   case clang::ARM::BI_InterlockedExchangeSub64:
1201     return MSVCIntrin::_InterlockedExchangeSub;
1202   case clang::ARM::BI_InterlockedOr64:
1203     return MSVCIntrin::_InterlockedOr;
1204   case clang::ARM::BI_InterlockedXor64:
1205     return MSVCIntrin::_InterlockedXor;
1206   case clang::ARM::BI_InterlockedDecrement64:
1207     return MSVCIntrin::_InterlockedDecrement;
1208   case clang::ARM::BI_InterlockedIncrement64:
1209     return MSVCIntrin::_InterlockedIncrement;
1210   case clang::ARM::BI_InterlockedExchangeAdd8_acq:
1211   case clang::ARM::BI_InterlockedExchangeAdd16_acq:
1212   case clang::ARM::BI_InterlockedExchangeAdd_acq:
1213   case clang::ARM::BI_InterlockedExchangeAdd64_acq:
1214     return MSVCIntrin::_InterlockedExchangeAdd_acq;
1215   case clang::ARM::BI_InterlockedExchangeAdd8_rel:
1216   case clang::ARM::BI_InterlockedExchangeAdd16_rel:
1217   case clang::ARM::BI_InterlockedExchangeAdd_rel:
1218   case clang::ARM::BI_InterlockedExchangeAdd64_rel:
1219     return MSVCIntrin::_InterlockedExchangeAdd_rel;
1220   case clang::ARM::BI_InterlockedExchangeAdd8_nf:
1221   case clang::ARM::BI_InterlockedExchangeAdd16_nf:
1222   case clang::ARM::BI_InterlockedExchangeAdd_nf:
1223   case clang::ARM::BI_InterlockedExchangeAdd64_nf:
1224     return MSVCIntrin::_InterlockedExchangeAdd_nf;
1225   case clang::ARM::BI_InterlockedExchange8_acq:
1226   case clang::ARM::BI_InterlockedExchange16_acq:
1227   case clang::ARM::BI_InterlockedExchange_acq:
1228   case clang::ARM::BI_InterlockedExchange64_acq:
1229     return MSVCIntrin::_InterlockedExchange_acq;
1230   case clang::ARM::BI_InterlockedExchange8_rel:
1231   case clang::ARM::BI_InterlockedExchange16_rel:
1232   case clang::ARM::BI_InterlockedExchange_rel:
1233   case clang::ARM::BI_InterlockedExchange64_rel:
1234     return MSVCIntrin::_InterlockedExchange_rel;
1235   case clang::ARM::BI_InterlockedExchange8_nf:
1236   case clang::ARM::BI_InterlockedExchange16_nf:
1237   case clang::ARM::BI_InterlockedExchange_nf:
1238   case clang::ARM::BI_InterlockedExchange64_nf:
1239     return MSVCIntrin::_InterlockedExchange_nf;
1240   case clang::ARM::BI_InterlockedCompareExchange8_acq:
1241   case clang::ARM::BI_InterlockedCompareExchange16_acq:
1242   case clang::ARM::BI_InterlockedCompareExchange_acq:
1243   case clang::ARM::BI_InterlockedCompareExchange64_acq:
1244     return MSVCIntrin::_InterlockedCompareExchange_acq;
1245   case clang::ARM::BI_InterlockedCompareExchange8_rel:
1246   case clang::ARM::BI_InterlockedCompareExchange16_rel:
1247   case clang::ARM::BI_InterlockedCompareExchange_rel:
1248   case clang::ARM::BI_InterlockedCompareExchange64_rel:
1249     return MSVCIntrin::_InterlockedCompareExchange_rel;
1250   case clang::ARM::BI_InterlockedCompareExchange8_nf:
1251   case clang::ARM::BI_InterlockedCompareExchange16_nf:
1252   case clang::ARM::BI_InterlockedCompareExchange_nf:
1253   case clang::ARM::BI_InterlockedCompareExchange64_nf:
1254     return MSVCIntrin::_InterlockedCompareExchange_nf;
1255   case clang::ARM::BI_InterlockedOr8_acq:
1256   case clang::ARM::BI_InterlockedOr16_acq:
1257   case clang::ARM::BI_InterlockedOr_acq:
1258   case clang::ARM::BI_InterlockedOr64_acq:
1259     return MSVCIntrin::_InterlockedOr_acq;
1260   case clang::ARM::BI_InterlockedOr8_rel:
1261   case clang::ARM::BI_InterlockedOr16_rel:
1262   case clang::ARM::BI_InterlockedOr_rel:
1263   case clang::ARM::BI_InterlockedOr64_rel:
1264     return MSVCIntrin::_InterlockedOr_rel;
1265   case clang::ARM::BI_InterlockedOr8_nf:
1266   case clang::ARM::BI_InterlockedOr16_nf:
1267   case clang::ARM::BI_InterlockedOr_nf:
1268   case clang::ARM::BI_InterlockedOr64_nf:
1269     return MSVCIntrin::_InterlockedOr_nf;
1270   case clang::ARM::BI_InterlockedXor8_acq:
1271   case clang::ARM::BI_InterlockedXor16_acq:
1272   case clang::ARM::BI_InterlockedXor_acq:
1273   case clang::ARM::BI_InterlockedXor64_acq:
1274     return MSVCIntrin::_InterlockedXor_acq;
1275   case clang::ARM::BI_InterlockedXor8_rel:
1276   case clang::ARM::BI_InterlockedXor16_rel:
1277   case clang::ARM::BI_InterlockedXor_rel:
1278   case clang::ARM::BI_InterlockedXor64_rel:
1279     return MSVCIntrin::_InterlockedXor_rel;
1280   case clang::ARM::BI_InterlockedXor8_nf:
1281   case clang::ARM::BI_InterlockedXor16_nf:
1282   case clang::ARM::BI_InterlockedXor_nf:
1283   case clang::ARM::BI_InterlockedXor64_nf:
1284     return MSVCIntrin::_InterlockedXor_nf;
1285   case clang::ARM::BI_InterlockedAnd8_acq:
1286   case clang::ARM::BI_InterlockedAnd16_acq:
1287   case clang::ARM::BI_InterlockedAnd_acq:
1288   case clang::ARM::BI_InterlockedAnd64_acq:
1289     return MSVCIntrin::_InterlockedAnd_acq;
1290   case clang::ARM::BI_InterlockedAnd8_rel:
1291   case clang::ARM::BI_InterlockedAnd16_rel:
1292   case clang::ARM::BI_InterlockedAnd_rel:
1293   case clang::ARM::BI_InterlockedAnd64_rel:
1294     return MSVCIntrin::_InterlockedAnd_rel;
1295   case clang::ARM::BI_InterlockedAnd8_nf:
1296   case clang::ARM::BI_InterlockedAnd16_nf:
1297   case clang::ARM::BI_InterlockedAnd_nf:
1298   case clang::ARM::BI_InterlockedAnd64_nf:
1299     return MSVCIntrin::_InterlockedAnd_nf;
1300   case clang::ARM::BI_InterlockedIncrement16_acq:
1301   case clang::ARM::BI_InterlockedIncrement_acq:
1302   case clang::ARM::BI_InterlockedIncrement64_acq:
1303     return MSVCIntrin::_InterlockedIncrement_acq;
1304   case clang::ARM::BI_InterlockedIncrement16_rel:
1305   case clang::ARM::BI_InterlockedIncrement_rel:
1306   case clang::ARM::BI_InterlockedIncrement64_rel:
1307     return MSVCIntrin::_InterlockedIncrement_rel;
1308   case clang::ARM::BI_InterlockedIncrement16_nf:
1309   case clang::ARM::BI_InterlockedIncrement_nf:
1310   case clang::ARM::BI_InterlockedIncrement64_nf:
1311     return MSVCIntrin::_InterlockedIncrement_nf;
1312   case clang::ARM::BI_InterlockedDecrement16_acq:
1313   case clang::ARM::BI_InterlockedDecrement_acq:
1314   case clang::ARM::BI_InterlockedDecrement64_acq:
1315     return MSVCIntrin::_InterlockedDecrement_acq;
1316   case clang::ARM::BI_InterlockedDecrement16_rel:
1317   case clang::ARM::BI_InterlockedDecrement_rel:
1318   case clang::ARM::BI_InterlockedDecrement64_rel:
1319     return MSVCIntrin::_InterlockedDecrement_rel;
1320   case clang::ARM::BI_InterlockedDecrement16_nf:
1321   case clang::ARM::BI_InterlockedDecrement_nf:
1322   case clang::ARM::BI_InterlockedDecrement64_nf:
1323     return MSVCIntrin::_InterlockedDecrement_nf;
1324   }
1325   llvm_unreachable("must return from switch");
1326 }
1327 
1328 static std::optional<CodeGenFunction::MSVCIntrin>
1329 translateAarch64ToMsvcIntrin(unsigned BuiltinID) {
1330   using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1331   switch (BuiltinID) {
1332   default:
1333     return std::nullopt;
1334   case clang::AArch64::BI_BitScanForward:
1335   case clang::AArch64::BI_BitScanForward64:
1336     return MSVCIntrin::_BitScanForward;
1337   case clang::AArch64::BI_BitScanReverse:
1338   case clang::AArch64::BI_BitScanReverse64:
1339     return MSVCIntrin::_BitScanReverse;
1340   case clang::AArch64::BI_InterlockedAnd64:
1341     return MSVCIntrin::_InterlockedAnd;
1342   case clang::AArch64::BI_InterlockedExchange64:
1343     return MSVCIntrin::_InterlockedExchange;
1344   case clang::AArch64::BI_InterlockedExchangeAdd64:
1345     return MSVCIntrin::_InterlockedExchangeAdd;
1346   case clang::AArch64::BI_InterlockedExchangeSub64:
1347     return MSVCIntrin::_InterlockedExchangeSub;
1348   case clang::AArch64::BI_InterlockedOr64:
1349     return MSVCIntrin::_InterlockedOr;
1350   case clang::AArch64::BI_InterlockedXor64:
1351     return MSVCIntrin::_InterlockedXor;
1352   case clang::AArch64::BI_InterlockedDecrement64:
1353     return MSVCIntrin::_InterlockedDecrement;
1354   case clang::AArch64::BI_InterlockedIncrement64:
1355     return MSVCIntrin::_InterlockedIncrement;
1356   case clang::AArch64::BI_InterlockedExchangeAdd8_acq:
1357   case clang::AArch64::BI_InterlockedExchangeAdd16_acq:
1358   case clang::AArch64::BI_InterlockedExchangeAdd_acq:
1359   case clang::AArch64::BI_InterlockedExchangeAdd64_acq:
1360     return MSVCIntrin::_InterlockedExchangeAdd_acq;
1361   case clang::AArch64::BI_InterlockedExchangeAdd8_rel:
1362   case clang::AArch64::BI_InterlockedExchangeAdd16_rel:
1363   case clang::AArch64::BI_InterlockedExchangeAdd_rel:
1364   case clang::AArch64::BI_InterlockedExchangeAdd64_rel:
1365     return MSVCIntrin::_InterlockedExchangeAdd_rel;
1366   case clang::AArch64::BI_InterlockedExchangeAdd8_nf:
1367   case clang::AArch64::BI_InterlockedExchangeAdd16_nf:
1368   case clang::AArch64::BI_InterlockedExchangeAdd_nf:
1369   case clang::AArch64::BI_InterlockedExchangeAdd64_nf:
1370     return MSVCIntrin::_InterlockedExchangeAdd_nf;
1371   case clang::AArch64::BI_InterlockedExchange8_acq:
1372   case clang::AArch64::BI_InterlockedExchange16_acq:
1373   case clang::AArch64::BI_InterlockedExchange_acq:
1374   case clang::AArch64::BI_InterlockedExchange64_acq:
1375     return MSVCIntrin::_InterlockedExchange_acq;
1376   case clang::AArch64::BI_InterlockedExchange8_rel:
1377   case clang::AArch64::BI_InterlockedExchange16_rel:
1378   case clang::AArch64::BI_InterlockedExchange_rel:
1379   case clang::AArch64::BI_InterlockedExchange64_rel:
1380     return MSVCIntrin::_InterlockedExchange_rel;
1381   case clang::AArch64::BI_InterlockedExchange8_nf:
1382   case clang::AArch64::BI_InterlockedExchange16_nf:
1383   case clang::AArch64::BI_InterlockedExchange_nf:
1384   case clang::AArch64::BI_InterlockedExchange64_nf:
1385     return MSVCIntrin::_InterlockedExchange_nf;
1386   case clang::AArch64::BI_InterlockedCompareExchange8_acq:
1387   case clang::AArch64::BI_InterlockedCompareExchange16_acq:
1388   case clang::AArch64::BI_InterlockedCompareExchange_acq:
1389   case clang::AArch64::BI_InterlockedCompareExchange64_acq:
1390     return MSVCIntrin::_InterlockedCompareExchange_acq;
1391   case clang::AArch64::BI_InterlockedCompareExchange8_rel:
1392   case clang::AArch64::BI_InterlockedCompareExchange16_rel:
1393   case clang::AArch64::BI_InterlockedCompareExchange_rel:
1394   case clang::AArch64::BI_InterlockedCompareExchange64_rel:
1395     return MSVCIntrin::_InterlockedCompareExchange_rel;
1396   case clang::AArch64::BI_InterlockedCompareExchange8_nf:
1397   case clang::AArch64::BI_InterlockedCompareExchange16_nf:
1398   case clang::AArch64::BI_InterlockedCompareExchange_nf:
1399   case clang::AArch64::BI_InterlockedCompareExchange64_nf:
1400     return MSVCIntrin::_InterlockedCompareExchange_nf;
1401   case clang::AArch64::BI_InterlockedCompareExchange128:
1402     return MSVCIntrin::_InterlockedCompareExchange128;
1403   case clang::AArch64::BI_InterlockedCompareExchange128_acq:
1404     return MSVCIntrin::_InterlockedCompareExchange128_acq;
1405   case clang::AArch64::BI_InterlockedCompareExchange128_nf:
1406     return MSVCIntrin::_InterlockedCompareExchange128_nf;
1407   case clang::AArch64::BI_InterlockedCompareExchange128_rel:
1408     return MSVCIntrin::_InterlockedCompareExchange128_rel;
1409   case clang::AArch64::BI_InterlockedOr8_acq:
1410   case clang::AArch64::BI_InterlockedOr16_acq:
1411   case clang::AArch64::BI_InterlockedOr_acq:
1412   case clang::AArch64::BI_InterlockedOr64_acq:
1413     return MSVCIntrin::_InterlockedOr_acq;
1414   case clang::AArch64::BI_InterlockedOr8_rel:
1415   case clang::AArch64::BI_InterlockedOr16_rel:
1416   case clang::AArch64::BI_InterlockedOr_rel:
1417   case clang::AArch64::BI_InterlockedOr64_rel:
1418     return MSVCIntrin::_InterlockedOr_rel;
1419   case clang::AArch64::BI_InterlockedOr8_nf:
1420   case clang::AArch64::BI_InterlockedOr16_nf:
1421   case clang::AArch64::BI_InterlockedOr_nf:
1422   case clang::AArch64::BI_InterlockedOr64_nf:
1423     return MSVCIntrin::_InterlockedOr_nf;
1424   case clang::AArch64::BI_InterlockedXor8_acq:
1425   case clang::AArch64::BI_InterlockedXor16_acq:
1426   case clang::AArch64::BI_InterlockedXor_acq:
1427   case clang::AArch64::BI_InterlockedXor64_acq:
1428     return MSVCIntrin::_InterlockedXor_acq;
1429   case clang::AArch64::BI_InterlockedXor8_rel:
1430   case clang::AArch64::BI_InterlockedXor16_rel:
1431   case clang::AArch64::BI_InterlockedXor_rel:
1432   case clang::AArch64::BI_InterlockedXor64_rel:
1433     return MSVCIntrin::_InterlockedXor_rel;
1434   case clang::AArch64::BI_InterlockedXor8_nf:
1435   case clang::AArch64::BI_InterlockedXor16_nf:
1436   case clang::AArch64::BI_InterlockedXor_nf:
1437   case clang::AArch64::BI_InterlockedXor64_nf:
1438     return MSVCIntrin::_InterlockedXor_nf;
1439   case clang::AArch64::BI_InterlockedAnd8_acq:
1440   case clang::AArch64::BI_InterlockedAnd16_acq:
1441   case clang::AArch64::BI_InterlockedAnd_acq:
1442   case clang::AArch64::BI_InterlockedAnd64_acq:
1443     return MSVCIntrin::_InterlockedAnd_acq;
1444   case clang::AArch64::BI_InterlockedAnd8_rel:
1445   case clang::AArch64::BI_InterlockedAnd16_rel:
1446   case clang::AArch64::BI_InterlockedAnd_rel:
1447   case clang::AArch64::BI_InterlockedAnd64_rel:
1448     return MSVCIntrin::_InterlockedAnd_rel;
1449   case clang::AArch64::BI_InterlockedAnd8_nf:
1450   case clang::AArch64::BI_InterlockedAnd16_nf:
1451   case clang::AArch64::BI_InterlockedAnd_nf:
1452   case clang::AArch64::BI_InterlockedAnd64_nf:
1453     return MSVCIntrin::_InterlockedAnd_nf;
1454   case clang::AArch64::BI_InterlockedIncrement16_acq:
1455   case clang::AArch64::BI_InterlockedIncrement_acq:
1456   case clang::AArch64::BI_InterlockedIncrement64_acq:
1457     return MSVCIntrin::_InterlockedIncrement_acq;
1458   case clang::AArch64::BI_InterlockedIncrement16_rel:
1459   case clang::AArch64::BI_InterlockedIncrement_rel:
1460   case clang::AArch64::BI_InterlockedIncrement64_rel:
1461     return MSVCIntrin::_InterlockedIncrement_rel;
1462   case clang::AArch64::BI_InterlockedIncrement16_nf:
1463   case clang::AArch64::BI_InterlockedIncrement_nf:
1464   case clang::AArch64::BI_InterlockedIncrement64_nf:
1465     return MSVCIntrin::_InterlockedIncrement_nf;
1466   case clang::AArch64::BI_InterlockedDecrement16_acq:
1467   case clang::AArch64::BI_InterlockedDecrement_acq:
1468   case clang::AArch64::BI_InterlockedDecrement64_acq:
1469     return MSVCIntrin::_InterlockedDecrement_acq;
1470   case clang::AArch64::BI_InterlockedDecrement16_rel:
1471   case clang::AArch64::BI_InterlockedDecrement_rel:
1472   case clang::AArch64::BI_InterlockedDecrement64_rel:
1473     return MSVCIntrin::_InterlockedDecrement_rel;
1474   case clang::AArch64::BI_InterlockedDecrement16_nf:
1475   case clang::AArch64::BI_InterlockedDecrement_nf:
1476   case clang::AArch64::BI_InterlockedDecrement64_nf:
1477     return MSVCIntrin::_InterlockedDecrement_nf;
1478   }
1479   llvm_unreachable("must return from switch");
1480 }
1481 
1482 static std::optional<CodeGenFunction::MSVCIntrin>
1483 translateX86ToMsvcIntrin(unsigned BuiltinID) {
1484   using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1485   switch (BuiltinID) {
1486   default:
1487     return std::nullopt;
1488   case clang::X86::BI_BitScanForward:
1489   case clang::X86::BI_BitScanForward64:
1490     return MSVCIntrin::_BitScanForward;
1491   case clang::X86::BI_BitScanReverse:
1492   case clang::X86::BI_BitScanReverse64:
1493     return MSVCIntrin::_BitScanReverse;
1494   case clang::X86::BI_InterlockedAnd64:
1495     return MSVCIntrin::_InterlockedAnd;
1496   case clang::X86::BI_InterlockedCompareExchange128:
1497     return MSVCIntrin::_InterlockedCompareExchange128;
1498   case clang::X86::BI_InterlockedExchange64:
1499     return MSVCIntrin::_InterlockedExchange;
1500   case clang::X86::BI_InterlockedExchangeAdd64:
1501     return MSVCIntrin::_InterlockedExchangeAdd;
1502   case clang::X86::BI_InterlockedExchangeSub64:
1503     return MSVCIntrin::_InterlockedExchangeSub;
1504   case clang::X86::BI_InterlockedOr64:
1505     return MSVCIntrin::_InterlockedOr;
1506   case clang::X86::BI_InterlockedXor64:
1507     return MSVCIntrin::_InterlockedXor;
1508   case clang::X86::BI_InterlockedDecrement64:
1509     return MSVCIntrin::_InterlockedDecrement;
1510   case clang::X86::BI_InterlockedIncrement64:
1511     return MSVCIntrin::_InterlockedIncrement;
1512   }
1513   llvm_unreachable("must return from switch");
1514 }
1515 
1516 // Emit an MSVC intrinsic. Assumes that arguments have *not* been evaluated.
1517 Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
1518                                             const CallExpr *E) {
1519   switch (BuiltinID) {
1520   case MSVCIntrin::_BitScanForward:
1521   case MSVCIntrin::_BitScanReverse: {
1522     Address IndexAddress(EmitPointerWithAlignment(E->getArg(0)));
1523     Value *ArgValue = EmitScalarExpr(E->getArg(1));
1524 
1525     llvm::Type *ArgType = ArgValue->getType();
1526     llvm::Type *IndexType = IndexAddress.getElementType();
1527     llvm::Type *ResultType = ConvertType(E->getType());
1528 
1529     Value *ArgZero = llvm::Constant::getNullValue(ArgType);
1530     Value *ResZero = llvm::Constant::getNullValue(ResultType);
1531     Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
1532 
1533     BasicBlock *Begin = Builder.GetInsertBlock();
1534     BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
1535     Builder.SetInsertPoint(End);
1536     PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
1537 
1538     Builder.SetInsertPoint(Begin);
1539     Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
1540     BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
1541     Builder.CreateCondBr(IsZero, End, NotZero);
1542     Result->addIncoming(ResZero, Begin);
1543 
1544     Builder.SetInsertPoint(NotZero);
1545 
1546     if (BuiltinID == MSVCIntrin::_BitScanForward) {
1547       Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1548       Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1549       ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1550       Builder.CreateStore(ZeroCount, IndexAddress, false);
1551     } else {
1552       unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
1553       Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
1554 
1555       Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1556       Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1557       ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1558       Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
1559       Builder.CreateStore(Index, IndexAddress, false);
1560     }
1561     Builder.CreateBr(End);
1562     Result->addIncoming(ResOne, NotZero);
1563 
1564     Builder.SetInsertPoint(End);
1565     return Result;
1566   }
1567   case MSVCIntrin::_InterlockedAnd:
1568     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
1569   case MSVCIntrin::_InterlockedExchange:
1570     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
1571   case MSVCIntrin::_InterlockedExchangeAdd:
1572     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
1573   case MSVCIntrin::_InterlockedExchangeSub:
1574     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
1575   case MSVCIntrin::_InterlockedOr:
1576     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
1577   case MSVCIntrin::_InterlockedXor:
1578     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
1579   case MSVCIntrin::_InterlockedExchangeAdd_acq:
1580     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1581                                  AtomicOrdering::Acquire);
1582   case MSVCIntrin::_InterlockedExchangeAdd_rel:
1583     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1584                                  AtomicOrdering::Release);
1585   case MSVCIntrin::_InterlockedExchangeAdd_nf:
1586     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1587                                  AtomicOrdering::Monotonic);
1588   case MSVCIntrin::_InterlockedExchange_acq:
1589     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1590                                  AtomicOrdering::Acquire);
1591   case MSVCIntrin::_InterlockedExchange_rel:
1592     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1593                                  AtomicOrdering::Release);
1594   case MSVCIntrin::_InterlockedExchange_nf:
1595     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1596                                  AtomicOrdering::Monotonic);
1597   case MSVCIntrin::_InterlockedCompareExchange_acq:
1598     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
1599   case MSVCIntrin::_InterlockedCompareExchange_rel:
1600     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
1601   case MSVCIntrin::_InterlockedCompareExchange_nf:
1602     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1603   case MSVCIntrin::_InterlockedCompareExchange128:
1604     return EmitAtomicCmpXchg128ForMSIntrin(
1605         *this, E, AtomicOrdering::SequentiallyConsistent);
1606   case MSVCIntrin::_InterlockedCompareExchange128_acq:
1607     return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Acquire);
1608   case MSVCIntrin::_InterlockedCompareExchange128_rel:
1609     return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Release);
1610   case MSVCIntrin::_InterlockedCompareExchange128_nf:
1611     return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1612   case MSVCIntrin::_InterlockedOr_acq:
1613     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1614                                  AtomicOrdering::Acquire);
1615   case MSVCIntrin::_InterlockedOr_rel:
1616     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1617                                  AtomicOrdering::Release);
1618   case MSVCIntrin::_InterlockedOr_nf:
1619     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1620                                  AtomicOrdering::Monotonic);
1621   case MSVCIntrin::_InterlockedXor_acq:
1622     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1623                                  AtomicOrdering::Acquire);
1624   case MSVCIntrin::_InterlockedXor_rel:
1625     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1626                                  AtomicOrdering::Release);
1627   case MSVCIntrin::_InterlockedXor_nf:
1628     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1629                                  AtomicOrdering::Monotonic);
1630   case MSVCIntrin::_InterlockedAnd_acq:
1631     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1632                                  AtomicOrdering::Acquire);
1633   case MSVCIntrin::_InterlockedAnd_rel:
1634     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1635                                  AtomicOrdering::Release);
1636   case MSVCIntrin::_InterlockedAnd_nf:
1637     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1638                                  AtomicOrdering::Monotonic);
1639   case MSVCIntrin::_InterlockedIncrement_acq:
1640     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
1641   case MSVCIntrin::_InterlockedIncrement_rel:
1642     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
1643   case MSVCIntrin::_InterlockedIncrement_nf:
1644     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
1645   case MSVCIntrin::_InterlockedDecrement_acq:
1646     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
1647   case MSVCIntrin::_InterlockedDecrement_rel:
1648     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
1649   case MSVCIntrin::_InterlockedDecrement_nf:
1650     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
1651 
1652   case MSVCIntrin::_InterlockedDecrement:
1653     return EmitAtomicDecrementValue(*this, E);
1654   case MSVCIntrin::_InterlockedIncrement:
1655     return EmitAtomicIncrementValue(*this, E);
1656 
1657   case MSVCIntrin::__fastfail: {
1658     // Request immediate process termination from the kernel. The instruction
1659     // sequences to do this are documented on MSDN:
1660     // https://msdn.microsoft.com/en-us/library/dn774154.aspx
1661     llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
1662     StringRef Asm, Constraints;
1663     switch (ISA) {
1664     default:
1665       ErrorUnsupported(E, "__fastfail call for this architecture");
1666       break;
1667     case llvm::Triple::x86:
1668     case llvm::Triple::x86_64:
1669       Asm = "int $$0x29";
1670       Constraints = "{cx}";
1671       break;
1672     case llvm::Triple::thumb:
1673       Asm = "udf #251";
1674       Constraints = "{r0}";
1675       break;
1676     case llvm::Triple::aarch64:
1677       Asm = "brk #0xF003";
1678       Constraints = "{w0}";
1679     }
1680     llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
1681     llvm::InlineAsm *IA =
1682         llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1683     llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
1684         getLLVMContext(), llvm::AttributeList::FunctionIndex,
1685         llvm::Attribute::NoReturn);
1686     llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
1687     CI->setAttributes(NoReturnAttr);
1688     return CI;
1689   }
1690   }
1691   llvm_unreachable("Incorrect MSVC intrinsic!");
1692 }
1693 
1694 namespace {
1695 // ARC cleanup for __builtin_os_log_format
1696 struct CallObjCArcUse final : EHScopeStack::Cleanup {
1697   CallObjCArcUse(llvm::Value *object) : object(object) {}
1698   llvm::Value *object;
1699 
1700   void Emit(CodeGenFunction &CGF, Flags flags) override {
1701     CGF.EmitARCIntrinsicUse(object);
1702   }
1703 };
1704 }
1705 
1706 Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
1707                                                  BuiltinCheckKind Kind) {
1708   assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)
1709           && "Unsupported builtin check kind");
1710 
1711   Value *ArgValue = EmitScalarExpr(E);
1712   if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef())
1713     return ArgValue;
1714 
1715   SanitizerScope SanScope(this);
1716   Value *Cond = Builder.CreateICmpNE(
1717       ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
1718   EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
1719             SanitizerHandler::InvalidBuiltin,
1720             {EmitCheckSourceLocation(E->getExprLoc()),
1721              llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
1722             std::nullopt);
1723   return ArgValue;
1724 }
1725 
1726 /// Get the argument type for arguments to os_log_helper.
1727 static CanQualType getOSLogArgType(ASTContext &C, int Size) {
1728   QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
1729   return C.getCanonicalType(UnsignedTy);
1730 }
1731 
1732 llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
1733     const analyze_os_log::OSLogBufferLayout &Layout,
1734     CharUnits BufferAlignment) {
1735   ASTContext &Ctx = getContext();
1736 
1737   llvm::SmallString<64> Name;
1738   {
1739     raw_svector_ostream OS(Name);
1740     OS << "__os_log_helper";
1741     OS << "_" << BufferAlignment.getQuantity();
1742     OS << "_" << int(Layout.getSummaryByte());
1743     OS << "_" << int(Layout.getNumArgsByte());
1744     for (const auto &Item : Layout.Items)
1745       OS << "_" << int(Item.getSizeByte()) << "_"
1746          << int(Item.getDescriptorByte());
1747   }
1748 
1749   if (llvm::Function *F = CGM.getModule().getFunction(Name))
1750     return F;
1751 
1752   llvm::SmallVector<QualType, 4> ArgTys;
1753   FunctionArgList Args;
1754   Args.push_back(ImplicitParamDecl::Create(
1755       Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy,
1756       ImplicitParamDecl::Other));
1757   ArgTys.emplace_back(Ctx.VoidPtrTy);
1758 
1759   for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
1760     char Size = Layout.Items[I].getSizeByte();
1761     if (!Size)
1762       continue;
1763 
1764     QualType ArgTy = getOSLogArgType(Ctx, Size);
1765     Args.push_back(ImplicitParamDecl::Create(
1766         Ctx, nullptr, SourceLocation(),
1767         &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
1768         ImplicitParamDecl::Other));
1769     ArgTys.emplace_back(ArgTy);
1770   }
1771 
1772   QualType ReturnTy = Ctx.VoidTy;
1773 
1774   // The helper function has linkonce_odr linkage to enable the linker to merge
1775   // identical functions. To ensure the merging always happens, 'noinline' is
1776   // attached to the function when compiling with -Oz.
1777   const CGFunctionInfo &FI =
1778       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args);
1779   llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
1780   llvm::Function *Fn = llvm::Function::Create(
1781       FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
1782   Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
1783   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn, /*IsThunk=*/false);
1784   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
1785   Fn->setDoesNotThrow();
1786 
1787   // Attach 'noinline' at -Oz.
1788   if (CGM.getCodeGenOpts().OptimizeSize == 2)
1789     Fn->addFnAttr(llvm::Attribute::NoInline);
1790 
1791   auto NL = ApplyDebugLocation::CreateEmpty(*this);
1792   StartFunction(GlobalDecl(), ReturnTy, Fn, FI, Args);
1793 
1794   // Create a scope with an artificial location for the body of this function.
1795   auto AL = ApplyDebugLocation::CreateArtificial(*this);
1796 
1797   CharUnits Offset;
1798   Address BufAddr =
1799       Address(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"), Int8Ty,
1800               BufferAlignment);
1801   Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
1802                       Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
1803   Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
1804                       Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
1805 
1806   unsigned I = 1;
1807   for (const auto &Item : Layout.Items) {
1808     Builder.CreateStore(
1809         Builder.getInt8(Item.getDescriptorByte()),
1810         Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
1811     Builder.CreateStore(
1812         Builder.getInt8(Item.getSizeByte()),
1813         Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
1814 
1815     CharUnits Size = Item.size();
1816     if (!Size.getQuantity())
1817       continue;
1818 
1819     Address Arg = GetAddrOfLocalVar(Args[I]);
1820     Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
1821     Addr =
1822         Builder.CreateElementBitCast(Addr, Arg.getElementType(), "argDataCast");
1823     Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
1824     Offset += Size;
1825     ++I;
1826   }
1827 
1828   FinishFunction();
1829 
1830   return Fn;
1831 }
1832 
1833 RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
1834   assert(E.getNumArgs() >= 2 &&
1835          "__builtin_os_log_format takes at least 2 arguments");
1836   ASTContext &Ctx = getContext();
1837   analyze_os_log::OSLogBufferLayout Layout;
1838   analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
1839   Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
1840   llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
1841 
1842   // Ignore argument 1, the format string. It is not currently used.
1843   CallArgList Args;
1844   Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy);
1845 
1846   for (const auto &Item : Layout.Items) {
1847     int Size = Item.getSizeByte();
1848     if (!Size)
1849       continue;
1850 
1851     llvm::Value *ArgVal;
1852 
1853     if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
1854       uint64_t Val = 0;
1855       for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
1856         Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
1857       ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
1858     } else if (const Expr *TheExpr = Item.getExpr()) {
1859       ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
1860 
1861       // If a temporary object that requires destruction after the full
1862       // expression is passed, push a lifetime-extended cleanup to extend its
1863       // lifetime to the end of the enclosing block scope.
1864       auto LifetimeExtendObject = [&](const Expr *E) {
1865         E = E->IgnoreParenCasts();
1866         // Extend lifetimes of objects returned by function calls and message
1867         // sends.
1868 
1869         // FIXME: We should do this in other cases in which temporaries are
1870         //        created including arguments of non-ARC types (e.g., C++
1871         //        temporaries).
1872         if (isa<CallExpr>(E) || isa<ObjCMessageExpr>(E))
1873           return true;
1874         return false;
1875       };
1876 
1877       if (TheExpr->getType()->isObjCRetainableType() &&
1878           getLangOpts().ObjCAutoRefCount && LifetimeExtendObject(TheExpr)) {
1879         assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&
1880                "Only scalar can be a ObjC retainable type");
1881         if (!isa<Constant>(ArgVal)) {
1882           CleanupKind Cleanup = getARCCleanupKind();
1883           QualType Ty = TheExpr->getType();
1884           Address Alloca = Address::invalid();
1885           Address Addr = CreateMemTemp(Ty, "os.log.arg", &Alloca);
1886           ArgVal = EmitARCRetain(Ty, ArgVal);
1887           Builder.CreateStore(ArgVal, Addr);
1888           pushLifetimeExtendedDestroy(Cleanup, Alloca, Ty,
1889                                       CodeGenFunction::destroyARCStrongPrecise,
1890                                       Cleanup & EHCleanup);
1891 
1892           // Push a clang.arc.use call to ensure ARC optimizer knows that the
1893           // argument has to be alive.
1894           if (CGM.getCodeGenOpts().OptimizationLevel != 0)
1895             pushCleanupAfterFullExpr<CallObjCArcUse>(Cleanup, ArgVal);
1896         }
1897       }
1898     } else {
1899       ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
1900     }
1901 
1902     unsigned ArgValSize =
1903         CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
1904     llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
1905                                                      ArgValSize);
1906     ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
1907     CanQualType ArgTy = getOSLogArgType(Ctx, Size);
1908     // If ArgVal has type x86_fp80, zero-extend ArgVal.
1909     ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
1910     Args.add(RValue::get(ArgVal), ArgTy);
1911   }
1912 
1913   const CGFunctionInfo &FI =
1914       CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
1915   llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
1916       Layout, BufAddr.getAlignment());
1917   EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
1918   return RValue::get(BufAddr.getPointer());
1919 }
1920 
1921 static bool isSpecialUnsignedMultiplySignedResult(
1922     unsigned BuiltinID, WidthAndSignedness Op1Info, WidthAndSignedness Op2Info,
1923     WidthAndSignedness ResultInfo) {
1924   return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1925          Op1Info.Width == Op2Info.Width && Op2Info.Width == ResultInfo.Width &&
1926          !Op1Info.Signed && !Op2Info.Signed && ResultInfo.Signed;
1927 }
1928 
1929 static RValue EmitCheckedUnsignedMultiplySignedResult(
1930     CodeGenFunction &CGF, const clang::Expr *Op1, WidthAndSignedness Op1Info,
1931     const clang::Expr *Op2, WidthAndSignedness Op2Info,
1932     const clang::Expr *ResultArg, QualType ResultQTy,
1933     WidthAndSignedness ResultInfo) {
1934   assert(isSpecialUnsignedMultiplySignedResult(
1935              Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
1936          "Cannot specialize this multiply");
1937 
1938   llvm::Value *V1 = CGF.EmitScalarExpr(Op1);
1939   llvm::Value *V2 = CGF.EmitScalarExpr(Op2);
1940 
1941   llvm::Value *HasOverflow;
1942   llvm::Value *Result = EmitOverflowIntrinsic(
1943       CGF, llvm::Intrinsic::umul_with_overflow, V1, V2, HasOverflow);
1944 
1945   // The intrinsic call will detect overflow when the value is > UINT_MAX,
1946   // however, since the original builtin had a signed result, we need to report
1947   // an overflow when the result is greater than INT_MAX.
1948   auto IntMax = llvm::APInt::getSignedMaxValue(ResultInfo.Width);
1949   llvm::Value *IntMaxValue = llvm::ConstantInt::get(Result->getType(), IntMax);
1950 
1951   llvm::Value *IntMaxOverflow = CGF.Builder.CreateICmpUGT(Result, IntMaxValue);
1952   HasOverflow = CGF.Builder.CreateOr(HasOverflow, IntMaxOverflow);
1953 
1954   bool isVolatile =
1955       ResultArg->getType()->getPointeeType().isVolatileQualified();
1956   Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1957   CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
1958                           isVolatile);
1959   return RValue::get(HasOverflow);
1960 }
1961 
1962 /// Determine if a binop is a checked mixed-sign multiply we can specialize.
1963 static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
1964                                        WidthAndSignedness Op1Info,
1965                                        WidthAndSignedness Op2Info,
1966                                        WidthAndSignedness ResultInfo) {
1967   return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1968          std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
1969          Op1Info.Signed != Op2Info.Signed;
1970 }
1971 
1972 /// Emit a checked mixed-sign multiply. This is a cheaper specialization of
1973 /// the generic checked-binop irgen.
1974 static RValue
1975 EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
1976                              WidthAndSignedness Op1Info, const clang::Expr *Op2,
1977                              WidthAndSignedness Op2Info,
1978                              const clang::Expr *ResultArg, QualType ResultQTy,
1979                              WidthAndSignedness ResultInfo) {
1980   assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,
1981                                     Op2Info, ResultInfo) &&
1982          "Not a mixed-sign multipliction we can specialize");
1983 
1984   // Emit the signed and unsigned operands.
1985   const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
1986   const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
1987   llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
1988   llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
1989   unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
1990   unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
1991 
1992   // One of the operands may be smaller than the other. If so, [s|z]ext it.
1993   if (SignedOpWidth < UnsignedOpWidth)
1994     Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext");
1995   if (UnsignedOpWidth < SignedOpWidth)
1996     Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext");
1997 
1998   llvm::Type *OpTy = Signed->getType();
1999   llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
2000   Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
2001   llvm::Type *ResTy = ResultPtr.getElementType();
2002   unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width);
2003 
2004   // Take the absolute value of the signed operand.
2005   llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
2006   llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
2007   llvm::Value *AbsSigned =
2008       CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
2009 
2010   // Perform a checked unsigned multiplication.
2011   llvm::Value *UnsignedOverflow;
2012   llvm::Value *UnsignedResult =
2013       EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
2014                             Unsigned, UnsignedOverflow);
2015 
2016   llvm::Value *Overflow, *Result;
2017   if (ResultInfo.Signed) {
2018     // Signed overflow occurs if the result is greater than INT_MAX or lesser
2019     // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
2020     auto IntMax =
2021         llvm::APInt::getSignedMaxValue(ResultInfo.Width).zext(OpWidth);
2022     llvm::Value *MaxResult =
2023         CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
2024                               CGF.Builder.CreateZExt(IsNegative, OpTy));
2025     llvm::Value *SignedOverflow =
2026         CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
2027     Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
2028 
2029     // Prepare the signed result (possibly by negating it).
2030     llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
2031     llvm::Value *SignedResult =
2032         CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
2033     Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
2034   } else {
2035     // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
2036     llvm::Value *Underflow = CGF.Builder.CreateAnd(
2037         IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
2038     Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
2039     if (ResultInfo.Width < OpWidth) {
2040       auto IntMax =
2041           llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth);
2042       llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
2043           UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
2044       Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
2045     }
2046 
2047     // Negate the product if it would be negative in infinite precision.
2048     Result = CGF.Builder.CreateSelect(
2049         IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
2050 
2051     Result = CGF.Builder.CreateTrunc(Result, ResTy);
2052   }
2053   assert(Overflow && Result && "Missing overflow or result");
2054 
2055   bool isVolatile =
2056       ResultArg->getType()->getPointeeType().isVolatileQualified();
2057   CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
2058                           isVolatile);
2059   return RValue::get(Overflow);
2060 }
2061 
2062 static bool
2063 TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty,
2064                               llvm::SmallPtrSetImpl<const Decl *> &Seen) {
2065   if (const auto *Arr = Ctx.getAsArrayType(Ty))
2066     Ty = Ctx.getBaseElementType(Arr);
2067 
2068   const auto *Record = Ty->getAsCXXRecordDecl();
2069   if (!Record)
2070     return false;
2071 
2072   // We've already checked this type, or are in the process of checking it.
2073   if (!Seen.insert(Record).second)
2074     return false;
2075 
2076   assert(Record->hasDefinition() &&
2077          "Incomplete types should already be diagnosed");
2078 
2079   if (Record->isDynamicClass())
2080     return true;
2081 
2082   for (FieldDecl *F : Record->fields()) {
2083     if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
2084       return true;
2085   }
2086   return false;
2087 }
2088 
2089 /// Determine if the specified type requires laundering by checking if it is a
2090 /// dynamic class type or contains a subobject which is a dynamic class type.
2091 static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) {
2092   if (!CGM.getCodeGenOpts().StrictVTablePointers)
2093     return false;
2094   llvm::SmallPtrSet<const Decl *, 16> Seen;
2095   return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
2096 }
2097 
2098 RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
2099   llvm::Value *Src = EmitScalarExpr(E->getArg(0));
2100   llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
2101 
2102   // The builtin's shift arg may have a different type than the source arg and
2103   // result, but the LLVM intrinsic uses the same type for all values.
2104   llvm::Type *Ty = Src->getType();
2105   ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false);
2106 
2107   // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
2108   unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
2109   Function *F = CGM.getIntrinsic(IID, Ty);
2110   return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt }));
2111 }
2112 
2113 // Map math builtins for long-double to f128 version.
2114 static unsigned mutateLongDoubleBuiltin(unsigned BuiltinID) {
2115   switch (BuiltinID) {
2116 #define MUTATE_LDBL(func) \
2117   case Builtin::BI__builtin_##func##l: \
2118     return Builtin::BI__builtin_##func##f128;
2119   MUTATE_LDBL(sqrt)
2120   MUTATE_LDBL(cbrt)
2121   MUTATE_LDBL(fabs)
2122   MUTATE_LDBL(log)
2123   MUTATE_LDBL(log2)
2124   MUTATE_LDBL(log10)
2125   MUTATE_LDBL(log1p)
2126   MUTATE_LDBL(logb)
2127   MUTATE_LDBL(exp)
2128   MUTATE_LDBL(exp2)
2129   MUTATE_LDBL(expm1)
2130   MUTATE_LDBL(fdim)
2131   MUTATE_LDBL(hypot)
2132   MUTATE_LDBL(ilogb)
2133   MUTATE_LDBL(pow)
2134   MUTATE_LDBL(fmin)
2135   MUTATE_LDBL(fmax)
2136   MUTATE_LDBL(ceil)
2137   MUTATE_LDBL(trunc)
2138   MUTATE_LDBL(rint)
2139   MUTATE_LDBL(nearbyint)
2140   MUTATE_LDBL(round)
2141   MUTATE_LDBL(floor)
2142   MUTATE_LDBL(lround)
2143   MUTATE_LDBL(llround)
2144   MUTATE_LDBL(lrint)
2145   MUTATE_LDBL(llrint)
2146   MUTATE_LDBL(fmod)
2147   MUTATE_LDBL(modf)
2148   MUTATE_LDBL(nan)
2149   MUTATE_LDBL(nans)
2150   MUTATE_LDBL(inf)
2151   MUTATE_LDBL(fma)
2152   MUTATE_LDBL(sin)
2153   MUTATE_LDBL(cos)
2154   MUTATE_LDBL(tan)
2155   MUTATE_LDBL(sinh)
2156   MUTATE_LDBL(cosh)
2157   MUTATE_LDBL(tanh)
2158   MUTATE_LDBL(asin)
2159   MUTATE_LDBL(acos)
2160   MUTATE_LDBL(atan)
2161   MUTATE_LDBL(asinh)
2162   MUTATE_LDBL(acosh)
2163   MUTATE_LDBL(atanh)
2164   MUTATE_LDBL(atan2)
2165   MUTATE_LDBL(erf)
2166   MUTATE_LDBL(erfc)
2167   MUTATE_LDBL(ldexp)
2168   MUTATE_LDBL(frexp)
2169   MUTATE_LDBL(huge_val)
2170   MUTATE_LDBL(copysign)
2171   MUTATE_LDBL(nextafter)
2172   MUTATE_LDBL(nexttoward)
2173   MUTATE_LDBL(remainder)
2174   MUTATE_LDBL(remquo)
2175   MUTATE_LDBL(scalbln)
2176   MUTATE_LDBL(scalbn)
2177   MUTATE_LDBL(tgamma)
2178   MUTATE_LDBL(lgamma)
2179 #undef MUTATE_LDBL
2180   default:
2181     return BuiltinID;
2182   }
2183 }
2184 
2185 RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
2186                                         const CallExpr *E,
2187                                         ReturnValueSlot ReturnValue) {
2188   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
2189   // See if we can constant fold this builtin.  If so, don't emit it at all.
2190   // TODO: Extend this handling to all builtin calls that we can constant-fold.
2191   Expr::EvalResult Result;
2192   if (E->isPRValue() && E->EvaluateAsRValue(Result, CGM.getContext()) &&
2193       !Result.hasSideEffects()) {
2194     if (Result.Val.isInt())
2195       return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
2196                                                 Result.Val.getInt()));
2197     if (Result.Val.isFloat())
2198       return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
2199                                                Result.Val.getFloat()));
2200   }
2201 
2202   // If current long-double semantics is IEEE 128-bit, replace math builtins
2203   // of long-double with f128 equivalent.
2204   // TODO: This mutation should also be applied to other targets other than PPC,
2205   // after backend supports IEEE 128-bit style libcalls.
2206   if (getTarget().getTriple().isPPC64() &&
2207       &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
2208     BuiltinID = mutateLongDoubleBuiltin(BuiltinID);
2209 
2210   // If the builtin has been declared explicitly with an assembler label,
2211   // disable the specialized emitting below. Ideally we should communicate the
2212   // rename in IR, or at least avoid generating the intrinsic calls that are
2213   // likely to get lowered to the renamed library functions.
2214   const unsigned BuiltinIDIfNoAsmLabel =
2215       FD->hasAttr<AsmLabelAttr>() ? 0 : BuiltinID;
2216 
2217   // There are LLVM math intrinsics/instructions corresponding to math library
2218   // functions except the LLVM op will never set errno while the math library
2219   // might. Also, math builtins have the same semantics as their math library
2220   // twins. Thus, we can transform math library and builtin calls to their
2221   // LLVM counterparts if the call is marked 'const' (known to never set errno).
2222   // In case FP exceptions are enabled, the experimental versions of the
2223   // intrinsics model those.
2224   bool ConstWithoutErrnoAndExceptions =
2225       getContext().BuiltinInfo.isConstWithoutErrnoAndExceptions(BuiltinID);
2226   bool ConstWithoutExceptions =
2227       getContext().BuiltinInfo.isConstWithoutExceptions(BuiltinID);
2228   if (FD->hasAttr<ConstAttr>() ||
2229       ((ConstWithoutErrnoAndExceptions || ConstWithoutExceptions) &&
2230        (!ConstWithoutErrnoAndExceptions || (!getLangOpts().MathErrno)))) {
2231     switch (BuiltinIDIfNoAsmLabel) {
2232     case Builtin::BIceil:
2233     case Builtin::BIceilf:
2234     case Builtin::BIceill:
2235     case Builtin::BI__builtin_ceil:
2236     case Builtin::BI__builtin_ceilf:
2237     case Builtin::BI__builtin_ceilf16:
2238     case Builtin::BI__builtin_ceill:
2239     case Builtin::BI__builtin_ceilf128:
2240       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2241                                    Intrinsic::ceil,
2242                                    Intrinsic::experimental_constrained_ceil));
2243 
2244     case Builtin::BIcopysign:
2245     case Builtin::BIcopysignf:
2246     case Builtin::BIcopysignl:
2247     case Builtin::BI__builtin_copysign:
2248     case Builtin::BI__builtin_copysignf:
2249     case Builtin::BI__builtin_copysignf16:
2250     case Builtin::BI__builtin_copysignl:
2251     case Builtin::BI__builtin_copysignf128:
2252       return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
2253 
2254     case Builtin::BIcos:
2255     case Builtin::BIcosf:
2256     case Builtin::BIcosl:
2257     case Builtin::BI__builtin_cos:
2258     case Builtin::BI__builtin_cosf:
2259     case Builtin::BI__builtin_cosf16:
2260     case Builtin::BI__builtin_cosl:
2261     case Builtin::BI__builtin_cosf128:
2262       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2263                                    Intrinsic::cos,
2264                                    Intrinsic::experimental_constrained_cos));
2265 
2266     case Builtin::BIexp:
2267     case Builtin::BIexpf:
2268     case Builtin::BIexpl:
2269     case Builtin::BI__builtin_exp:
2270     case Builtin::BI__builtin_expf:
2271     case Builtin::BI__builtin_expf16:
2272     case Builtin::BI__builtin_expl:
2273     case Builtin::BI__builtin_expf128:
2274       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2275                                    Intrinsic::exp,
2276                                    Intrinsic::experimental_constrained_exp));
2277 
2278     case Builtin::BIexp2:
2279     case Builtin::BIexp2f:
2280     case Builtin::BIexp2l:
2281     case Builtin::BI__builtin_exp2:
2282     case Builtin::BI__builtin_exp2f:
2283     case Builtin::BI__builtin_exp2f16:
2284     case Builtin::BI__builtin_exp2l:
2285     case Builtin::BI__builtin_exp2f128:
2286       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2287                                    Intrinsic::exp2,
2288                                    Intrinsic::experimental_constrained_exp2));
2289 
2290     case Builtin::BIfabs:
2291     case Builtin::BIfabsf:
2292     case Builtin::BIfabsl:
2293     case Builtin::BI__builtin_fabs:
2294     case Builtin::BI__builtin_fabsf:
2295     case Builtin::BI__builtin_fabsf16:
2296     case Builtin::BI__builtin_fabsl:
2297     case Builtin::BI__builtin_fabsf128:
2298       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
2299 
2300     case Builtin::BIfloor:
2301     case Builtin::BIfloorf:
2302     case Builtin::BIfloorl:
2303     case Builtin::BI__builtin_floor:
2304     case Builtin::BI__builtin_floorf:
2305     case Builtin::BI__builtin_floorf16:
2306     case Builtin::BI__builtin_floorl:
2307     case Builtin::BI__builtin_floorf128:
2308       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2309                                    Intrinsic::floor,
2310                                    Intrinsic::experimental_constrained_floor));
2311 
2312     case Builtin::BIfma:
2313     case Builtin::BIfmaf:
2314     case Builtin::BIfmal:
2315     case Builtin::BI__builtin_fma:
2316     case Builtin::BI__builtin_fmaf:
2317     case Builtin::BI__builtin_fmaf16:
2318     case Builtin::BI__builtin_fmal:
2319     case Builtin::BI__builtin_fmaf128:
2320       return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E,
2321                                    Intrinsic::fma,
2322                                    Intrinsic::experimental_constrained_fma));
2323 
2324     case Builtin::BIfmax:
2325     case Builtin::BIfmaxf:
2326     case Builtin::BIfmaxl:
2327     case Builtin::BI__builtin_fmax:
2328     case Builtin::BI__builtin_fmaxf:
2329     case Builtin::BI__builtin_fmaxf16:
2330     case Builtin::BI__builtin_fmaxl:
2331     case Builtin::BI__builtin_fmaxf128:
2332       return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2333                                    Intrinsic::maxnum,
2334                                    Intrinsic::experimental_constrained_maxnum));
2335 
2336     case Builtin::BIfmin:
2337     case Builtin::BIfminf:
2338     case Builtin::BIfminl:
2339     case Builtin::BI__builtin_fmin:
2340     case Builtin::BI__builtin_fminf:
2341     case Builtin::BI__builtin_fminf16:
2342     case Builtin::BI__builtin_fminl:
2343     case Builtin::BI__builtin_fminf128:
2344       return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2345                                    Intrinsic::minnum,
2346                                    Intrinsic::experimental_constrained_minnum));
2347 
2348     // fmod() is a special-case. It maps to the frem instruction rather than an
2349     // LLVM intrinsic.
2350     case Builtin::BIfmod:
2351     case Builtin::BIfmodf:
2352     case Builtin::BIfmodl:
2353     case Builtin::BI__builtin_fmod:
2354     case Builtin::BI__builtin_fmodf:
2355     case Builtin::BI__builtin_fmodf16:
2356     case Builtin::BI__builtin_fmodl:
2357     case Builtin::BI__builtin_fmodf128: {
2358       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2359       Value *Arg1 = EmitScalarExpr(E->getArg(0));
2360       Value *Arg2 = EmitScalarExpr(E->getArg(1));
2361       return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
2362     }
2363 
2364     case Builtin::BIlog:
2365     case Builtin::BIlogf:
2366     case Builtin::BIlogl:
2367     case Builtin::BI__builtin_log:
2368     case Builtin::BI__builtin_logf:
2369     case Builtin::BI__builtin_logf16:
2370     case Builtin::BI__builtin_logl:
2371     case Builtin::BI__builtin_logf128:
2372       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2373                                    Intrinsic::log,
2374                                    Intrinsic::experimental_constrained_log));
2375 
2376     case Builtin::BIlog10:
2377     case Builtin::BIlog10f:
2378     case Builtin::BIlog10l:
2379     case Builtin::BI__builtin_log10:
2380     case Builtin::BI__builtin_log10f:
2381     case Builtin::BI__builtin_log10f16:
2382     case Builtin::BI__builtin_log10l:
2383     case Builtin::BI__builtin_log10f128:
2384       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2385                                    Intrinsic::log10,
2386                                    Intrinsic::experimental_constrained_log10));
2387 
2388     case Builtin::BIlog2:
2389     case Builtin::BIlog2f:
2390     case Builtin::BIlog2l:
2391     case Builtin::BI__builtin_log2:
2392     case Builtin::BI__builtin_log2f:
2393     case Builtin::BI__builtin_log2f16:
2394     case Builtin::BI__builtin_log2l:
2395     case Builtin::BI__builtin_log2f128:
2396       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2397                                    Intrinsic::log2,
2398                                    Intrinsic::experimental_constrained_log2));
2399 
2400     case Builtin::BInearbyint:
2401     case Builtin::BInearbyintf:
2402     case Builtin::BInearbyintl:
2403     case Builtin::BI__builtin_nearbyint:
2404     case Builtin::BI__builtin_nearbyintf:
2405     case Builtin::BI__builtin_nearbyintl:
2406     case Builtin::BI__builtin_nearbyintf128:
2407       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2408                                 Intrinsic::nearbyint,
2409                                 Intrinsic::experimental_constrained_nearbyint));
2410 
2411     case Builtin::BIpow:
2412     case Builtin::BIpowf:
2413     case Builtin::BIpowl:
2414     case Builtin::BI__builtin_pow:
2415     case Builtin::BI__builtin_powf:
2416     case Builtin::BI__builtin_powf16:
2417     case Builtin::BI__builtin_powl:
2418     case Builtin::BI__builtin_powf128:
2419       return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2420                                    Intrinsic::pow,
2421                                    Intrinsic::experimental_constrained_pow));
2422 
2423     case Builtin::BIrint:
2424     case Builtin::BIrintf:
2425     case Builtin::BIrintl:
2426     case Builtin::BI__builtin_rint:
2427     case Builtin::BI__builtin_rintf:
2428     case Builtin::BI__builtin_rintf16:
2429     case Builtin::BI__builtin_rintl:
2430     case Builtin::BI__builtin_rintf128:
2431       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2432                                    Intrinsic::rint,
2433                                    Intrinsic::experimental_constrained_rint));
2434 
2435     case Builtin::BIround:
2436     case Builtin::BIroundf:
2437     case Builtin::BIroundl:
2438     case Builtin::BI__builtin_round:
2439     case Builtin::BI__builtin_roundf:
2440     case Builtin::BI__builtin_roundf16:
2441     case Builtin::BI__builtin_roundl:
2442     case Builtin::BI__builtin_roundf128:
2443       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2444                                    Intrinsic::round,
2445                                    Intrinsic::experimental_constrained_round));
2446 
2447     case Builtin::BIsin:
2448     case Builtin::BIsinf:
2449     case Builtin::BIsinl:
2450     case Builtin::BI__builtin_sin:
2451     case Builtin::BI__builtin_sinf:
2452     case Builtin::BI__builtin_sinf16:
2453     case Builtin::BI__builtin_sinl:
2454     case Builtin::BI__builtin_sinf128:
2455       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2456                                    Intrinsic::sin,
2457                                    Intrinsic::experimental_constrained_sin));
2458 
2459     case Builtin::BIsqrt:
2460     case Builtin::BIsqrtf:
2461     case Builtin::BIsqrtl:
2462     case Builtin::BI__builtin_sqrt:
2463     case Builtin::BI__builtin_sqrtf:
2464     case Builtin::BI__builtin_sqrtf16:
2465     case Builtin::BI__builtin_sqrtl:
2466     case Builtin::BI__builtin_sqrtf128:
2467       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2468                                    Intrinsic::sqrt,
2469                                    Intrinsic::experimental_constrained_sqrt));
2470 
2471     case Builtin::BItrunc:
2472     case Builtin::BItruncf:
2473     case Builtin::BItruncl:
2474     case Builtin::BI__builtin_trunc:
2475     case Builtin::BI__builtin_truncf:
2476     case Builtin::BI__builtin_truncf16:
2477     case Builtin::BI__builtin_truncl:
2478     case Builtin::BI__builtin_truncf128:
2479       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2480                                    Intrinsic::trunc,
2481                                    Intrinsic::experimental_constrained_trunc));
2482 
2483     case Builtin::BIlround:
2484     case Builtin::BIlroundf:
2485     case Builtin::BIlroundl:
2486     case Builtin::BI__builtin_lround:
2487     case Builtin::BI__builtin_lroundf:
2488     case Builtin::BI__builtin_lroundl:
2489     case Builtin::BI__builtin_lroundf128:
2490       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2491           *this, E, Intrinsic::lround,
2492           Intrinsic::experimental_constrained_lround));
2493 
2494     case Builtin::BIllround:
2495     case Builtin::BIllroundf:
2496     case Builtin::BIllroundl:
2497     case Builtin::BI__builtin_llround:
2498     case Builtin::BI__builtin_llroundf:
2499     case Builtin::BI__builtin_llroundl:
2500     case Builtin::BI__builtin_llroundf128:
2501       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2502           *this, E, Intrinsic::llround,
2503           Intrinsic::experimental_constrained_llround));
2504 
2505     case Builtin::BIlrint:
2506     case Builtin::BIlrintf:
2507     case Builtin::BIlrintl:
2508     case Builtin::BI__builtin_lrint:
2509     case Builtin::BI__builtin_lrintf:
2510     case Builtin::BI__builtin_lrintl:
2511     case Builtin::BI__builtin_lrintf128:
2512       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2513           *this, E, Intrinsic::lrint,
2514           Intrinsic::experimental_constrained_lrint));
2515 
2516     case Builtin::BIllrint:
2517     case Builtin::BIllrintf:
2518     case Builtin::BIllrintl:
2519     case Builtin::BI__builtin_llrint:
2520     case Builtin::BI__builtin_llrintf:
2521     case Builtin::BI__builtin_llrintl:
2522     case Builtin::BI__builtin_llrintf128:
2523       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2524           *this, E, Intrinsic::llrint,
2525           Intrinsic::experimental_constrained_llrint));
2526 
2527     default:
2528       break;
2529     }
2530   }
2531 
2532   switch (BuiltinIDIfNoAsmLabel) {
2533   default: break;
2534   case Builtin::BI__builtin___CFStringMakeConstantString:
2535   case Builtin::BI__builtin___NSStringMakeConstantString:
2536     return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
2537   case Builtin::BI__builtin_stdarg_start:
2538   case Builtin::BI__builtin_va_start:
2539   case Builtin::BI__va_start:
2540   case Builtin::BI__builtin_va_end:
2541     EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
2542                        ? EmitScalarExpr(E->getArg(0))
2543                        : EmitVAListRef(E->getArg(0)).getPointer(),
2544                    BuiltinID != Builtin::BI__builtin_va_end);
2545     return RValue::get(nullptr);
2546   case Builtin::BI__builtin_va_copy: {
2547     Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
2548     Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
2549 
2550     llvm::Type *Type = Int8PtrTy;
2551 
2552     DstPtr = Builder.CreateBitCast(DstPtr, Type);
2553     SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
2554     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy), {DstPtr, SrcPtr});
2555     return RValue::get(nullptr);
2556   }
2557   case Builtin::BI__builtin_abs:
2558   case Builtin::BI__builtin_labs:
2559   case Builtin::BI__builtin_llabs: {
2560     // X < 0 ? -X : X
2561     // The negation has 'nsw' because abs of INT_MIN is undefined.
2562     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2563     Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg");
2564     Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType());
2565     Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond");
2566     Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs");
2567     return RValue::get(Result);
2568   }
2569   case Builtin::BI__builtin_complex: {
2570     Value *Real = EmitScalarExpr(E->getArg(0));
2571     Value *Imag = EmitScalarExpr(E->getArg(1));
2572     return RValue::getComplex({Real, Imag});
2573   }
2574   case Builtin::BI__builtin_conj:
2575   case Builtin::BI__builtin_conjf:
2576   case Builtin::BI__builtin_conjl:
2577   case Builtin::BIconj:
2578   case Builtin::BIconjf:
2579   case Builtin::BIconjl: {
2580     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2581     Value *Real = ComplexVal.first;
2582     Value *Imag = ComplexVal.second;
2583     Imag = Builder.CreateFNeg(Imag, "neg");
2584     return RValue::getComplex(std::make_pair(Real, Imag));
2585   }
2586   case Builtin::BI__builtin_creal:
2587   case Builtin::BI__builtin_crealf:
2588   case Builtin::BI__builtin_creall:
2589   case Builtin::BIcreal:
2590   case Builtin::BIcrealf:
2591   case Builtin::BIcreall: {
2592     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2593     return RValue::get(ComplexVal.first);
2594   }
2595 
2596   case Builtin::BI__builtin_preserve_access_index: {
2597     // Only enabled preserved access index region when debuginfo
2598     // is available as debuginfo is needed to preserve user-level
2599     // access pattern.
2600     if (!getDebugInfo()) {
2601       CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g");
2602       return RValue::get(EmitScalarExpr(E->getArg(0)));
2603     }
2604 
2605     // Nested builtin_preserve_access_index() not supported
2606     if (IsInPreservedAIRegion) {
2607       CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported");
2608       return RValue::get(EmitScalarExpr(E->getArg(0)));
2609     }
2610 
2611     IsInPreservedAIRegion = true;
2612     Value *Res = EmitScalarExpr(E->getArg(0));
2613     IsInPreservedAIRegion = false;
2614     return RValue::get(Res);
2615   }
2616 
2617   case Builtin::BI__builtin_cimag:
2618   case Builtin::BI__builtin_cimagf:
2619   case Builtin::BI__builtin_cimagl:
2620   case Builtin::BIcimag:
2621   case Builtin::BIcimagf:
2622   case Builtin::BIcimagl: {
2623     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2624     return RValue::get(ComplexVal.second);
2625   }
2626 
2627   case Builtin::BI__builtin_clrsb:
2628   case Builtin::BI__builtin_clrsbl:
2629   case Builtin::BI__builtin_clrsbll: {
2630     // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
2631     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2632 
2633     llvm::Type *ArgType = ArgValue->getType();
2634     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2635 
2636     llvm::Type *ResultType = ConvertType(E->getType());
2637     Value *Zero = llvm::Constant::getNullValue(ArgType);
2638     Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg");
2639     Value *Inverse = Builder.CreateNot(ArgValue, "not");
2640     Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue);
2641     Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()});
2642     Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1));
2643     Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2644                                    "cast");
2645     return RValue::get(Result);
2646   }
2647   case Builtin::BI__builtin_ctzs:
2648   case Builtin::BI__builtin_ctz:
2649   case Builtin::BI__builtin_ctzl:
2650   case Builtin::BI__builtin_ctzll: {
2651     Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
2652 
2653     llvm::Type *ArgType = ArgValue->getType();
2654     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2655 
2656     llvm::Type *ResultType = ConvertType(E->getType());
2657     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2658     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2659     if (Result->getType() != ResultType)
2660       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2661                                      "cast");
2662     return RValue::get(Result);
2663   }
2664   case Builtin::BI__builtin_clzs:
2665   case Builtin::BI__builtin_clz:
2666   case Builtin::BI__builtin_clzl:
2667   case Builtin::BI__builtin_clzll: {
2668     Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
2669 
2670     llvm::Type *ArgType = ArgValue->getType();
2671     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2672 
2673     llvm::Type *ResultType = ConvertType(E->getType());
2674     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2675     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2676     if (Result->getType() != ResultType)
2677       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2678                                      "cast");
2679     return RValue::get(Result);
2680   }
2681   case Builtin::BI__builtin_ffs:
2682   case Builtin::BI__builtin_ffsl:
2683   case Builtin::BI__builtin_ffsll: {
2684     // ffs(x) -> x ? cttz(x) + 1 : 0
2685     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2686 
2687     llvm::Type *ArgType = ArgValue->getType();
2688     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2689 
2690     llvm::Type *ResultType = ConvertType(E->getType());
2691     Value *Tmp =
2692         Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
2693                           llvm::ConstantInt::get(ArgType, 1));
2694     Value *Zero = llvm::Constant::getNullValue(ArgType);
2695     Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
2696     Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
2697     if (Result->getType() != ResultType)
2698       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2699                                      "cast");
2700     return RValue::get(Result);
2701   }
2702   case Builtin::BI__builtin_parity:
2703   case Builtin::BI__builtin_parityl:
2704   case Builtin::BI__builtin_parityll: {
2705     // parity(x) -> ctpop(x) & 1
2706     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2707 
2708     llvm::Type *ArgType = ArgValue->getType();
2709     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2710 
2711     llvm::Type *ResultType = ConvertType(E->getType());
2712     Value *Tmp = Builder.CreateCall(F, ArgValue);
2713     Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
2714     if (Result->getType() != ResultType)
2715       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2716                                      "cast");
2717     return RValue::get(Result);
2718   }
2719   case Builtin::BI__lzcnt16:
2720   case Builtin::BI__lzcnt:
2721   case Builtin::BI__lzcnt64: {
2722     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2723 
2724     llvm::Type *ArgType = ArgValue->getType();
2725     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2726 
2727     llvm::Type *ResultType = ConvertType(E->getType());
2728     Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()});
2729     if (Result->getType() != ResultType)
2730       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2731                                      "cast");
2732     return RValue::get(Result);
2733   }
2734   case Builtin::BI__popcnt16:
2735   case Builtin::BI__popcnt:
2736   case Builtin::BI__popcnt64:
2737   case Builtin::BI__builtin_popcount:
2738   case Builtin::BI__builtin_popcountl:
2739   case Builtin::BI__builtin_popcountll: {
2740     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2741 
2742     llvm::Type *ArgType = ArgValue->getType();
2743     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2744 
2745     llvm::Type *ResultType = ConvertType(E->getType());
2746     Value *Result = Builder.CreateCall(F, ArgValue);
2747     if (Result->getType() != ResultType)
2748       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2749                                      "cast");
2750     return RValue::get(Result);
2751   }
2752   case Builtin::BI__builtin_unpredictable: {
2753     // Always return the argument of __builtin_unpredictable. LLVM does not
2754     // handle this builtin. Metadata for this builtin should be added directly
2755     // to instructions such as branches or switches that use it.
2756     return RValue::get(EmitScalarExpr(E->getArg(0)));
2757   }
2758   case Builtin::BI__builtin_expect: {
2759     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2760     llvm::Type *ArgType = ArgValue->getType();
2761 
2762     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2763     // Don't generate llvm.expect on -O0 as the backend won't use it for
2764     // anything.
2765     // Note, we still IRGen ExpectedValue because it could have side-effects.
2766     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2767       return RValue::get(ArgValue);
2768 
2769     Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
2770     Value *Result =
2771         Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
2772     return RValue::get(Result);
2773   }
2774   case Builtin::BI__builtin_expect_with_probability: {
2775     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2776     llvm::Type *ArgType = ArgValue->getType();
2777 
2778     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2779     llvm::APFloat Probability(0.0);
2780     const Expr *ProbArg = E->getArg(2);
2781     bool EvalSucceed = ProbArg->EvaluateAsFloat(Probability, CGM.getContext());
2782     assert(EvalSucceed && "probability should be able to evaluate as float");
2783     (void)EvalSucceed;
2784     bool LoseInfo = false;
2785     Probability.convert(llvm::APFloat::IEEEdouble(),
2786                         llvm::RoundingMode::Dynamic, &LoseInfo);
2787     llvm::Type *Ty = ConvertType(ProbArg->getType());
2788     Constant *Confidence = ConstantFP::get(Ty, Probability);
2789     // Don't generate llvm.expect.with.probability on -O0 as the backend
2790     // won't use it for anything.
2791     // Note, we still IRGen ExpectedValue because it could have side-effects.
2792     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2793       return RValue::get(ArgValue);
2794 
2795     Function *FnExpect =
2796         CGM.getIntrinsic(Intrinsic::expect_with_probability, ArgType);
2797     Value *Result = Builder.CreateCall(
2798         FnExpect, {ArgValue, ExpectedValue, Confidence}, "expval");
2799     return RValue::get(Result);
2800   }
2801   case Builtin::BI__builtin_assume_aligned: {
2802     const Expr *Ptr = E->getArg(0);
2803     Value *PtrValue = EmitScalarExpr(Ptr);
2804     if (PtrValue->getType() != VoidPtrTy)
2805       PtrValue = EmitCastToVoidPtr(PtrValue);
2806     Value *OffsetValue =
2807       (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
2808 
2809     Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
2810     ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
2811     if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
2812       AlignmentCI = ConstantInt::get(AlignmentCI->getType(),
2813                                      llvm::Value::MaximumAlignment);
2814 
2815     emitAlignmentAssumption(PtrValue, Ptr,
2816                             /*The expr loc is sufficient.*/ SourceLocation(),
2817                             AlignmentCI, OffsetValue);
2818     return RValue::get(PtrValue);
2819   }
2820   case Builtin::BI__assume:
2821   case Builtin::BI__builtin_assume: {
2822     if (E->getArg(0)->HasSideEffects(getContext()))
2823       return RValue::get(nullptr);
2824 
2825     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2826     Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
2827     Builder.CreateCall(FnAssume, ArgValue);
2828     return RValue::get(nullptr);
2829   }
2830   case Builtin::BI__arithmetic_fence: {
2831     // Create the builtin call if FastMath is selected, and the target
2832     // supports the builtin, otherwise just return the argument.
2833     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2834     llvm::FastMathFlags FMF = Builder.getFastMathFlags();
2835     bool isArithmeticFenceEnabled =
2836         FMF.allowReassoc() &&
2837         getContext().getTargetInfo().checkArithmeticFenceSupported();
2838     QualType ArgType = E->getArg(0)->getType();
2839     if (ArgType->isComplexType()) {
2840       if (isArithmeticFenceEnabled) {
2841         QualType ElementType = ArgType->castAs<ComplexType>()->getElementType();
2842         ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2843         Value *Real = Builder.CreateArithmeticFence(ComplexVal.first,
2844                                                     ConvertType(ElementType));
2845         Value *Imag = Builder.CreateArithmeticFence(ComplexVal.second,
2846                                                     ConvertType(ElementType));
2847         return RValue::getComplex(std::make_pair(Real, Imag));
2848       }
2849       ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2850       Value *Real = ComplexVal.first;
2851       Value *Imag = ComplexVal.second;
2852       return RValue::getComplex(std::make_pair(Real, Imag));
2853     }
2854     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2855     if (isArithmeticFenceEnabled)
2856       return RValue::get(
2857           Builder.CreateArithmeticFence(ArgValue, ConvertType(ArgType)));
2858     return RValue::get(ArgValue);
2859   }
2860   case Builtin::BI__builtin_bswap16:
2861   case Builtin::BI__builtin_bswap32:
2862   case Builtin::BI__builtin_bswap64:
2863   case Builtin::BI_byteswap_ushort:
2864   case Builtin::BI_byteswap_ulong:
2865   case Builtin::BI_byteswap_uint64: {
2866     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
2867   }
2868   case Builtin::BI__builtin_bitreverse8:
2869   case Builtin::BI__builtin_bitreverse16:
2870   case Builtin::BI__builtin_bitreverse32:
2871   case Builtin::BI__builtin_bitreverse64: {
2872     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
2873   }
2874   case Builtin::BI__builtin_rotateleft8:
2875   case Builtin::BI__builtin_rotateleft16:
2876   case Builtin::BI__builtin_rotateleft32:
2877   case Builtin::BI__builtin_rotateleft64:
2878   case Builtin::BI_rotl8: // Microsoft variants of rotate left
2879   case Builtin::BI_rotl16:
2880   case Builtin::BI_rotl:
2881   case Builtin::BI_lrotl:
2882   case Builtin::BI_rotl64:
2883     return emitRotate(E, false);
2884 
2885   case Builtin::BI__builtin_rotateright8:
2886   case Builtin::BI__builtin_rotateright16:
2887   case Builtin::BI__builtin_rotateright32:
2888   case Builtin::BI__builtin_rotateright64:
2889   case Builtin::BI_rotr8: // Microsoft variants of rotate right
2890   case Builtin::BI_rotr16:
2891   case Builtin::BI_rotr:
2892   case Builtin::BI_lrotr:
2893   case Builtin::BI_rotr64:
2894     return emitRotate(E, true);
2895 
2896   case Builtin::BI__builtin_constant_p: {
2897     llvm::Type *ResultType = ConvertType(E->getType());
2898 
2899     const Expr *Arg = E->getArg(0);
2900     QualType ArgType = Arg->getType();
2901     // FIXME: The allowance for Obj-C pointers and block pointers is historical
2902     // and likely a mistake.
2903     if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() &&
2904         !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType())
2905       // Per the GCC documentation, only numeric constants are recognized after
2906       // inlining.
2907       return RValue::get(ConstantInt::get(ResultType, 0));
2908 
2909     if (Arg->HasSideEffects(getContext()))
2910       // The argument is unevaluated, so be conservative if it might have
2911       // side-effects.
2912       return RValue::get(ConstantInt::get(ResultType, 0));
2913 
2914     Value *ArgValue = EmitScalarExpr(Arg);
2915     if (ArgType->isObjCObjectPointerType()) {
2916       // Convert Objective-C objects to id because we cannot distinguish between
2917       // LLVM types for Obj-C classes as they are opaque.
2918       ArgType = CGM.getContext().getObjCIdType();
2919       ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType));
2920     }
2921     Function *F =
2922         CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType));
2923     Value *Result = Builder.CreateCall(F, ArgValue);
2924     if (Result->getType() != ResultType)
2925       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false);
2926     return RValue::get(Result);
2927   }
2928   case Builtin::BI__builtin_dynamic_object_size:
2929   case Builtin::BI__builtin_object_size: {
2930     unsigned Type =
2931         E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
2932     auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
2933 
2934     // We pass this builtin onto the optimizer so that it can figure out the
2935     // object size in more complex cases.
2936     bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size;
2937     return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
2938                                              /*EmittedE=*/nullptr, IsDynamic));
2939   }
2940   case Builtin::BI__builtin_prefetch: {
2941     Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
2942     // FIXME: Technically these constants should of type 'int', yes?
2943     RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
2944       llvm::ConstantInt::get(Int32Ty, 0);
2945     Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
2946       llvm::ConstantInt::get(Int32Ty, 3);
2947     Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
2948     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
2949     Builder.CreateCall(F, {Address, RW, Locality, Data});
2950     return RValue::get(nullptr);
2951   }
2952   case Builtin::BI__builtin_readcyclecounter: {
2953     Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
2954     return RValue::get(Builder.CreateCall(F));
2955   }
2956   case Builtin::BI__builtin___clear_cache: {
2957     Value *Begin = EmitScalarExpr(E->getArg(0));
2958     Value *End = EmitScalarExpr(E->getArg(1));
2959     Function *F = CGM.getIntrinsic(Intrinsic::clear_cache);
2960     return RValue::get(Builder.CreateCall(F, {Begin, End}));
2961   }
2962   case Builtin::BI__builtin_trap:
2963     EmitTrapCall(Intrinsic::trap);
2964     return RValue::get(nullptr);
2965   case Builtin::BI__debugbreak:
2966     EmitTrapCall(Intrinsic::debugtrap);
2967     return RValue::get(nullptr);
2968   case Builtin::BI__builtin_unreachable: {
2969     EmitUnreachable(E->getExprLoc());
2970 
2971     // We do need to preserve an insertion point.
2972     EmitBlock(createBasicBlock("unreachable.cont"));
2973 
2974     return RValue::get(nullptr);
2975   }
2976 
2977   case Builtin::BI__builtin_powi:
2978   case Builtin::BI__builtin_powif:
2979   case Builtin::BI__builtin_powil: {
2980     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
2981     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
2982 
2983     if (Builder.getIsFPConstrained()) {
2984       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2985       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_powi,
2986                                      Src0->getType());
2987       return RValue::get(Builder.CreateConstrainedFPCall(F, { Src0, Src1 }));
2988     }
2989 
2990     Function *F = CGM.getIntrinsic(Intrinsic::powi,
2991                                    { Src0->getType(), Src1->getType() });
2992     return RValue::get(Builder.CreateCall(F, { Src0, Src1 }));
2993   }
2994   case Builtin::BI__builtin_isgreater:
2995   case Builtin::BI__builtin_isgreaterequal:
2996   case Builtin::BI__builtin_isless:
2997   case Builtin::BI__builtin_islessequal:
2998   case Builtin::BI__builtin_islessgreater:
2999   case Builtin::BI__builtin_isunordered: {
3000     // Ordered comparisons: we know the arguments to these are matching scalar
3001     // floating point values.
3002     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3003     Value *LHS = EmitScalarExpr(E->getArg(0));
3004     Value *RHS = EmitScalarExpr(E->getArg(1));
3005 
3006     switch (BuiltinID) {
3007     default: llvm_unreachable("Unknown ordered comparison");
3008     case Builtin::BI__builtin_isgreater:
3009       LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
3010       break;
3011     case Builtin::BI__builtin_isgreaterequal:
3012       LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
3013       break;
3014     case Builtin::BI__builtin_isless:
3015       LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
3016       break;
3017     case Builtin::BI__builtin_islessequal:
3018       LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
3019       break;
3020     case Builtin::BI__builtin_islessgreater:
3021       LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
3022       break;
3023     case Builtin::BI__builtin_isunordered:
3024       LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
3025       break;
3026     }
3027     // ZExt bool to int type.
3028     return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
3029   }
3030   case Builtin::BI__builtin_isnan: {
3031     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3032     Value *V = EmitScalarExpr(E->getArg(0));
3033     llvm::Type *Ty = V->getType();
3034     const llvm::fltSemantics &Semantics = Ty->getFltSemantics();
3035     if (!Builder.getIsFPConstrained() ||
3036         Builder.getDefaultConstrainedExcept() == fp::ebIgnore ||
3037         !Ty->isIEEE()) {
3038       V = Builder.CreateFCmpUNO(V, V, "cmp");
3039       return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3040     }
3041 
3042     if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM))
3043       return RValue::get(Result);
3044 
3045     // NaN has all exp bits set and a non zero significand. Therefore:
3046     // isnan(V) == ((exp mask - (abs(V) & exp mask)) < 0)
3047     unsigned bitsize = Ty->getScalarSizeInBits();
3048     llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize);
3049     Value *IntV = Builder.CreateBitCast(V, IntTy);
3050     APInt AndMask = APInt::getSignedMaxValue(bitsize);
3051     Value *AbsV =
3052         Builder.CreateAnd(IntV, llvm::ConstantInt::get(IntTy, AndMask));
3053     APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt();
3054     Value *Sub =
3055         Builder.CreateSub(llvm::ConstantInt::get(IntTy, ExpMask), AbsV);
3056     // V = sign bit (Sub) <=> V = (Sub < 0)
3057     V = Builder.CreateLShr(Sub, llvm::ConstantInt::get(IntTy, bitsize - 1));
3058     if (bitsize > 32)
3059       V = Builder.CreateTrunc(V, ConvertType(E->getType()));
3060     return RValue::get(V);
3061   }
3062 
3063   case Builtin::BI__builtin_elementwise_abs: {
3064     Value *Result;
3065     QualType QT = E->getArg(0)->getType();
3066 
3067     if (auto *VecTy = QT->getAs<VectorType>())
3068       QT = VecTy->getElementType();
3069     if (QT->isIntegerType())
3070       Result = Builder.CreateBinaryIntrinsic(
3071           llvm::Intrinsic::abs, EmitScalarExpr(E->getArg(0)),
3072           Builder.getFalse(), nullptr, "elt.abs");
3073     else
3074       Result = emitUnaryBuiltin(*this, E, llvm::Intrinsic::fabs, "elt.abs");
3075 
3076     return RValue::get(Result);
3077   }
3078 
3079   case Builtin::BI__builtin_elementwise_ceil:
3080     return RValue::get(
3081         emitUnaryBuiltin(*this, E, llvm::Intrinsic::ceil, "elt.ceil"));
3082   case Builtin::BI__builtin_elementwise_cos:
3083     return RValue::get(
3084         emitUnaryBuiltin(*this, E, llvm::Intrinsic::cos, "elt.cos"));
3085   case Builtin::BI__builtin_elementwise_floor:
3086     return RValue::get(
3087         emitUnaryBuiltin(*this, E, llvm::Intrinsic::floor, "elt.floor"));
3088   case Builtin::BI__builtin_elementwise_roundeven:
3089     return RValue::get(emitUnaryBuiltin(*this, E, llvm::Intrinsic::roundeven,
3090                                         "elt.roundeven"));
3091   case Builtin::BI__builtin_elementwise_sin:
3092     return RValue::get(
3093         emitUnaryBuiltin(*this, E, llvm::Intrinsic::sin, "elt.sin"));
3094 
3095   case Builtin::BI__builtin_elementwise_trunc:
3096     return RValue::get(
3097         emitUnaryBuiltin(*this, E, llvm::Intrinsic::trunc, "elt.trunc"));
3098   case Builtin::BI__builtin_elementwise_canonicalize:
3099     return RValue::get(
3100         emitUnaryBuiltin(*this, E, llvm::Intrinsic::canonicalize, "elt.trunc"));
3101   case Builtin::BI__builtin_elementwise_copysign:
3102     return RValue::get(emitBinaryBuiltin(*this, E, llvm::Intrinsic::copysign));
3103   case Builtin::BI__builtin_elementwise_add_sat:
3104   case Builtin::BI__builtin_elementwise_sub_sat: {
3105     Value *Op0 = EmitScalarExpr(E->getArg(0));
3106     Value *Op1 = EmitScalarExpr(E->getArg(1));
3107     Value *Result;
3108     assert(Op0->getType()->isIntOrIntVectorTy() && "integer type expected");
3109     QualType Ty = E->getArg(0)->getType();
3110     if (auto *VecTy = Ty->getAs<VectorType>())
3111       Ty = VecTy->getElementType();
3112     bool IsSigned = Ty->isSignedIntegerType();
3113     unsigned Opc;
3114     if (BuiltinIDIfNoAsmLabel == Builtin::BI__builtin_elementwise_add_sat)
3115       Opc = IsSigned ? llvm::Intrinsic::sadd_sat : llvm::Intrinsic::uadd_sat;
3116     else
3117       Opc = IsSigned ? llvm::Intrinsic::ssub_sat : llvm::Intrinsic::usub_sat;
3118     Result = Builder.CreateBinaryIntrinsic(Opc, Op0, Op1, nullptr, "elt.sat");
3119     return RValue::get(Result);
3120   }
3121 
3122   case Builtin::BI__builtin_elementwise_max: {
3123     Value *Op0 = EmitScalarExpr(E->getArg(0));
3124     Value *Op1 = EmitScalarExpr(E->getArg(1));
3125     Value *Result;
3126     if (Op0->getType()->isIntOrIntVectorTy()) {
3127       QualType Ty = E->getArg(0)->getType();
3128       if (auto *VecTy = Ty->getAs<VectorType>())
3129         Ty = VecTy->getElementType();
3130       Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType()
3131                                                  ? llvm::Intrinsic::smax
3132                                                  : llvm::Intrinsic::umax,
3133                                              Op0, Op1, nullptr, "elt.max");
3134     } else
3135       Result = Builder.CreateMaxNum(Op0, Op1, "elt.max");
3136     return RValue::get(Result);
3137   }
3138   case Builtin::BI__builtin_elementwise_min: {
3139     Value *Op0 = EmitScalarExpr(E->getArg(0));
3140     Value *Op1 = EmitScalarExpr(E->getArg(1));
3141     Value *Result;
3142     if (Op0->getType()->isIntOrIntVectorTy()) {
3143       QualType Ty = E->getArg(0)->getType();
3144       if (auto *VecTy = Ty->getAs<VectorType>())
3145         Ty = VecTy->getElementType();
3146       Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType()
3147                                                  ? llvm::Intrinsic::smin
3148                                                  : llvm::Intrinsic::umin,
3149                                              Op0, Op1, nullptr, "elt.min");
3150     } else
3151       Result = Builder.CreateMinNum(Op0, Op1, "elt.min");
3152     return RValue::get(Result);
3153   }
3154 
3155   case Builtin::BI__builtin_reduce_max: {
3156     auto GetIntrinsicID = [](QualType QT) {
3157       if (auto *VecTy = QT->getAs<VectorType>())
3158         QT = VecTy->getElementType();
3159       if (QT->isSignedIntegerType())
3160         return llvm::Intrinsic::vector_reduce_smax;
3161       if (QT->isUnsignedIntegerType())
3162         return llvm::Intrinsic::vector_reduce_umax;
3163       assert(QT->isFloatingType() && "must have a float here");
3164       return llvm::Intrinsic::vector_reduce_fmax;
3165     };
3166     return RValue::get(emitUnaryBuiltin(
3167         *this, E, GetIntrinsicID(E->getArg(0)->getType()), "rdx.min"));
3168   }
3169 
3170   case Builtin::BI__builtin_reduce_min: {
3171     auto GetIntrinsicID = [](QualType QT) {
3172       if (auto *VecTy = QT->getAs<VectorType>())
3173         QT = VecTy->getElementType();
3174       if (QT->isSignedIntegerType())
3175         return llvm::Intrinsic::vector_reduce_smin;
3176       if (QT->isUnsignedIntegerType())
3177         return llvm::Intrinsic::vector_reduce_umin;
3178       assert(QT->isFloatingType() && "must have a float here");
3179       return llvm::Intrinsic::vector_reduce_fmin;
3180     };
3181 
3182     return RValue::get(emitUnaryBuiltin(
3183         *this, E, GetIntrinsicID(E->getArg(0)->getType()), "rdx.min"));
3184   }
3185 
3186   case Builtin::BI__builtin_reduce_add:
3187     return RValue::get(emitUnaryBuiltin(
3188         *this, E, llvm::Intrinsic::vector_reduce_add, "rdx.add"));
3189   case Builtin::BI__builtin_reduce_mul:
3190     return RValue::get(emitUnaryBuiltin(
3191         *this, E, llvm::Intrinsic::vector_reduce_mul, "rdx.mul"));
3192   case Builtin::BI__builtin_reduce_xor:
3193     return RValue::get(emitUnaryBuiltin(
3194         *this, E, llvm::Intrinsic::vector_reduce_xor, "rdx.xor"));
3195   case Builtin::BI__builtin_reduce_or:
3196     return RValue::get(emitUnaryBuiltin(
3197         *this, E, llvm::Intrinsic::vector_reduce_or, "rdx.or"));
3198   case Builtin::BI__builtin_reduce_and:
3199     return RValue::get(emitUnaryBuiltin(
3200         *this, E, llvm::Intrinsic::vector_reduce_and, "rdx.and"));
3201 
3202   case Builtin::BI__builtin_matrix_transpose: {
3203     auto *MatrixTy = E->getArg(0)->getType()->castAs<ConstantMatrixType>();
3204     Value *MatValue = EmitScalarExpr(E->getArg(0));
3205     MatrixBuilder MB(Builder);
3206     Value *Result = MB.CreateMatrixTranspose(MatValue, MatrixTy->getNumRows(),
3207                                              MatrixTy->getNumColumns());
3208     return RValue::get(Result);
3209   }
3210 
3211   case Builtin::BI__builtin_matrix_column_major_load: {
3212     MatrixBuilder MB(Builder);
3213     // Emit everything that isn't dependent on the first parameter type
3214     Value *Stride = EmitScalarExpr(E->getArg(3));
3215     const auto *ResultTy = E->getType()->getAs<ConstantMatrixType>();
3216     auto *PtrTy = E->getArg(0)->getType()->getAs<PointerType>();
3217     assert(PtrTy && "arg0 must be of pointer type");
3218     bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
3219 
3220     Address Src = EmitPointerWithAlignment(E->getArg(0));
3221     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(0)->getType(),
3222                         E->getArg(0)->getExprLoc(), FD, 0);
3223     Value *Result = MB.CreateColumnMajorLoad(
3224         Src.getElementType(), Src.getPointer(),
3225         Align(Src.getAlignment().getQuantity()), Stride, IsVolatile,
3226         ResultTy->getNumRows(), ResultTy->getNumColumns(),
3227         "matrix");
3228     return RValue::get(Result);
3229   }
3230 
3231   case Builtin::BI__builtin_matrix_column_major_store: {
3232     MatrixBuilder MB(Builder);
3233     Value *Matrix = EmitScalarExpr(E->getArg(0));
3234     Address Dst = EmitPointerWithAlignment(E->getArg(1));
3235     Value *Stride = EmitScalarExpr(E->getArg(2));
3236 
3237     const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>();
3238     auto *PtrTy = E->getArg(1)->getType()->getAs<PointerType>();
3239     assert(PtrTy && "arg1 must be of pointer type");
3240     bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
3241 
3242     EmitNonNullArgCheck(RValue::get(Dst.getPointer()), E->getArg(1)->getType(),
3243                         E->getArg(1)->getExprLoc(), FD, 0);
3244     Value *Result = MB.CreateColumnMajorStore(
3245         Matrix, Dst.getPointer(), Align(Dst.getAlignment().getQuantity()),
3246         Stride, IsVolatile, MatrixTy->getNumRows(), MatrixTy->getNumColumns());
3247     return RValue::get(Result);
3248   }
3249 
3250   case Builtin::BIfinite:
3251   case Builtin::BI__finite:
3252   case Builtin::BIfinitef:
3253   case Builtin::BI__finitef:
3254   case Builtin::BIfinitel:
3255   case Builtin::BI__finitel:
3256   case Builtin::BI__builtin_isinf:
3257   case Builtin::BI__builtin_isfinite: {
3258     // isinf(x)    --> fabs(x) == infinity
3259     // isfinite(x) --> fabs(x) != infinity
3260     // x != NaN via the ordered compare in either case.
3261     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3262     Value *V = EmitScalarExpr(E->getArg(0));
3263     llvm::Type *Ty = V->getType();
3264     if (!Builder.getIsFPConstrained() ||
3265         Builder.getDefaultConstrainedExcept() == fp::ebIgnore ||
3266         !Ty->isIEEE()) {
3267       Value *Fabs = EmitFAbs(*this, V);
3268       Constant *Infinity = ConstantFP::getInfinity(V->getType());
3269       CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf)
3270                                     ? CmpInst::FCMP_OEQ
3271                                     : CmpInst::FCMP_ONE;
3272       Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf");
3273       return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType())));
3274     }
3275 
3276     if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM))
3277       return RValue::get(Result);
3278 
3279     // Inf values have all exp bits set and a zero significand. Therefore:
3280     // isinf(V) == ((V << 1) == ((exp mask) << 1))
3281     // isfinite(V) == ((V << 1) < ((exp mask) << 1)) using unsigned comparison
3282     unsigned bitsize = Ty->getScalarSizeInBits();
3283     llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize);
3284     Value *IntV = Builder.CreateBitCast(V, IntTy);
3285     Value *Shl1 = Builder.CreateShl(IntV, 1);
3286     const llvm::fltSemantics &Semantics = Ty->getFltSemantics();
3287     APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt();
3288     Value *ExpMaskShl1 = llvm::ConstantInt::get(IntTy, ExpMask.shl(1));
3289     if (BuiltinID == Builtin::BI__builtin_isinf)
3290       V = Builder.CreateICmpEQ(Shl1, ExpMaskShl1);
3291     else
3292       V = Builder.CreateICmpULT(Shl1, ExpMaskShl1);
3293     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3294   }
3295 
3296   case Builtin::BI__builtin_isinf_sign: {
3297     // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
3298     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3299     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3300     Value *Arg = EmitScalarExpr(E->getArg(0));
3301     Value *AbsArg = EmitFAbs(*this, Arg);
3302     Value *IsInf = Builder.CreateFCmpOEQ(
3303         AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
3304     Value *IsNeg = EmitSignBit(*this, Arg);
3305 
3306     llvm::Type *IntTy = ConvertType(E->getType());
3307     Value *Zero = Constant::getNullValue(IntTy);
3308     Value *One = ConstantInt::get(IntTy, 1);
3309     Value *NegativeOne = ConstantInt::get(IntTy, -1);
3310     Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
3311     Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
3312     return RValue::get(Result);
3313   }
3314 
3315   case Builtin::BI__builtin_isnormal: {
3316     // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
3317     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3318     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3319     Value *V = EmitScalarExpr(E->getArg(0));
3320     Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
3321 
3322     Value *Abs = EmitFAbs(*this, V);
3323     Value *IsLessThanInf =
3324       Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
3325     APFloat Smallest = APFloat::getSmallestNormalized(
3326                    getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
3327     Value *IsNormal =
3328       Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
3329                             "isnormal");
3330     V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
3331     V = Builder.CreateAnd(V, IsNormal, "and");
3332     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3333   }
3334 
3335   case Builtin::BI__builtin_flt_rounds: {
3336     Function *F = CGM.getIntrinsic(Intrinsic::get_rounding);
3337 
3338     llvm::Type *ResultType = ConvertType(E->getType());
3339     Value *Result = Builder.CreateCall(F);
3340     if (Result->getType() != ResultType)
3341       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3342                                      "cast");
3343     return RValue::get(Result);
3344   }
3345 
3346   case Builtin::BI__builtin_fpclassify: {
3347     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3348     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3349     Value *V = EmitScalarExpr(E->getArg(5));
3350     llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
3351 
3352     // Create Result
3353     BasicBlock *Begin = Builder.GetInsertBlock();
3354     BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
3355     Builder.SetInsertPoint(End);
3356     PHINode *Result =
3357       Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
3358                         "fpclassify_result");
3359 
3360     // if (V==0) return FP_ZERO
3361     Builder.SetInsertPoint(Begin);
3362     Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
3363                                           "iszero");
3364     Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
3365     BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
3366     Builder.CreateCondBr(IsZero, End, NotZero);
3367     Result->addIncoming(ZeroLiteral, Begin);
3368 
3369     // if (V != V) return FP_NAN
3370     Builder.SetInsertPoint(NotZero);
3371     Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
3372     Value *NanLiteral = EmitScalarExpr(E->getArg(0));
3373     BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
3374     Builder.CreateCondBr(IsNan, End, NotNan);
3375     Result->addIncoming(NanLiteral, NotZero);
3376 
3377     // if (fabs(V) == infinity) return FP_INFINITY
3378     Builder.SetInsertPoint(NotNan);
3379     Value *VAbs = EmitFAbs(*this, V);
3380     Value *IsInf =
3381       Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
3382                             "isinf");
3383     Value *InfLiteral = EmitScalarExpr(E->getArg(1));
3384     BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
3385     Builder.CreateCondBr(IsInf, End, NotInf);
3386     Result->addIncoming(InfLiteral, NotNan);
3387 
3388     // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
3389     Builder.SetInsertPoint(NotInf);
3390     APFloat Smallest = APFloat::getSmallestNormalized(
3391         getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
3392     Value *IsNormal =
3393       Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
3394                             "isnormal");
3395     Value *NormalResult =
3396       Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
3397                            EmitScalarExpr(E->getArg(3)));
3398     Builder.CreateBr(End);
3399     Result->addIncoming(NormalResult, NotInf);
3400 
3401     // return Result
3402     Builder.SetInsertPoint(End);
3403     return RValue::get(Result);
3404   }
3405 
3406   case Builtin::BIalloca:
3407   case Builtin::BI_alloca:
3408   case Builtin::BI__builtin_alloca_uninitialized:
3409   case Builtin::BI__builtin_alloca: {
3410     Value *Size = EmitScalarExpr(E->getArg(0));
3411     const TargetInfo &TI = getContext().getTargetInfo();
3412     // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
3413     const Align SuitableAlignmentInBytes =
3414         CGM.getContext()
3415             .toCharUnitsFromBits(TI.getSuitableAlign())
3416             .getAsAlign();
3417     AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
3418     AI->setAlignment(SuitableAlignmentInBytes);
3419     if (BuiltinID != Builtin::BI__builtin_alloca_uninitialized)
3420       initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes);
3421     return RValue::get(AI);
3422   }
3423 
3424   case Builtin::BI__builtin_alloca_with_align_uninitialized:
3425   case Builtin::BI__builtin_alloca_with_align: {
3426     Value *Size = EmitScalarExpr(E->getArg(0));
3427     Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
3428     auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
3429     unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
3430     const Align AlignmentInBytes =
3431         CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getAsAlign();
3432     AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
3433     AI->setAlignment(AlignmentInBytes);
3434     if (BuiltinID != Builtin::BI__builtin_alloca_with_align_uninitialized)
3435       initializeAlloca(*this, AI, Size, AlignmentInBytes);
3436     return RValue::get(AI);
3437   }
3438 
3439   case Builtin::BIbzero:
3440   case Builtin::BI__builtin_bzero: {
3441     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3442     Value *SizeVal = EmitScalarExpr(E->getArg(1));
3443     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3444                         E->getArg(0)->getExprLoc(), FD, 0);
3445     Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
3446     return RValue::get(nullptr);
3447   }
3448   case Builtin::BImemcpy:
3449   case Builtin::BI__builtin_memcpy:
3450   case Builtin::BImempcpy:
3451   case Builtin::BI__builtin_mempcpy: {
3452     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3453     Address Src = EmitPointerWithAlignment(E->getArg(1));
3454     Value *SizeVal = EmitScalarExpr(E->getArg(2));
3455     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3456                         E->getArg(0)->getExprLoc(), FD, 0);
3457     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3458                         E->getArg(1)->getExprLoc(), FD, 1);
3459     Builder.CreateMemCpy(Dest, Src, SizeVal, false);
3460     if (BuiltinID == Builtin::BImempcpy ||
3461         BuiltinID == Builtin::BI__builtin_mempcpy)
3462       return RValue::get(Builder.CreateInBoundsGEP(Dest.getElementType(),
3463                                                    Dest.getPointer(), SizeVal));
3464     else
3465       return RValue::get(Dest.getPointer());
3466   }
3467 
3468   case Builtin::BI__builtin_memcpy_inline: {
3469     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3470     Address Src = EmitPointerWithAlignment(E->getArg(1));
3471     uint64_t Size =
3472         E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
3473     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3474                         E->getArg(0)->getExprLoc(), FD, 0);
3475     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3476                         E->getArg(1)->getExprLoc(), FD, 1);
3477     Builder.CreateMemCpyInline(Dest, Src, Size);
3478     return RValue::get(nullptr);
3479   }
3480 
3481   case Builtin::BI__builtin_char_memchr:
3482     BuiltinID = Builtin::BI__builtin_memchr;
3483     break;
3484 
3485   case Builtin::BI__builtin___memcpy_chk: {
3486     // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
3487     Expr::EvalResult SizeResult, DstSizeResult;
3488     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3489         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3490       break;
3491     llvm::APSInt Size = SizeResult.Val.getInt();
3492     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3493     if (Size.ugt(DstSize))
3494       break;
3495     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3496     Address Src = EmitPointerWithAlignment(E->getArg(1));
3497     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3498     Builder.CreateMemCpy(Dest, Src, SizeVal, false);
3499     return RValue::get(Dest.getPointer());
3500   }
3501 
3502   case Builtin::BI__builtin_objc_memmove_collectable: {
3503     Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
3504     Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
3505     Value *SizeVal = EmitScalarExpr(E->getArg(2));
3506     CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
3507                                                   DestAddr, SrcAddr, SizeVal);
3508     return RValue::get(DestAddr.getPointer());
3509   }
3510 
3511   case Builtin::BI__builtin___memmove_chk: {
3512     // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
3513     Expr::EvalResult SizeResult, DstSizeResult;
3514     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3515         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3516       break;
3517     llvm::APSInt Size = SizeResult.Val.getInt();
3518     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3519     if (Size.ugt(DstSize))
3520       break;
3521     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3522     Address Src = EmitPointerWithAlignment(E->getArg(1));
3523     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3524     Builder.CreateMemMove(Dest, Src, SizeVal, false);
3525     return RValue::get(Dest.getPointer());
3526   }
3527 
3528   case Builtin::BImemmove:
3529   case Builtin::BI__builtin_memmove: {
3530     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3531     Address Src = EmitPointerWithAlignment(E->getArg(1));
3532     Value *SizeVal = EmitScalarExpr(E->getArg(2));
3533     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3534                         E->getArg(0)->getExprLoc(), FD, 0);
3535     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3536                         E->getArg(1)->getExprLoc(), FD, 1);
3537     Builder.CreateMemMove(Dest, Src, SizeVal, false);
3538     return RValue::get(Dest.getPointer());
3539   }
3540   case Builtin::BImemset:
3541   case Builtin::BI__builtin_memset: {
3542     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3543     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
3544                                          Builder.getInt8Ty());
3545     Value *SizeVal = EmitScalarExpr(E->getArg(2));
3546     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3547                         E->getArg(0)->getExprLoc(), FD, 0);
3548     Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
3549     return RValue::get(Dest.getPointer());
3550   }
3551   case Builtin::BI__builtin_memset_inline: {
3552     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3553     Value *ByteVal =
3554         Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), Builder.getInt8Ty());
3555     uint64_t Size =
3556         E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
3557     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3558                         E->getArg(0)->getExprLoc(), FD, 0);
3559     Builder.CreateMemSetInline(Dest, ByteVal, Size);
3560     return RValue::get(nullptr);
3561   }
3562   case Builtin::BI__builtin___memset_chk: {
3563     // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
3564     Expr::EvalResult SizeResult, DstSizeResult;
3565     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3566         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3567       break;
3568     llvm::APSInt Size = SizeResult.Val.getInt();
3569     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3570     if (Size.ugt(DstSize))
3571       break;
3572     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3573     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
3574                                          Builder.getInt8Ty());
3575     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3576     Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
3577     return RValue::get(Dest.getPointer());
3578   }
3579   case Builtin::BI__builtin_wmemchr: {
3580     // The MSVC runtime library does not provide a definition of wmemchr, so we
3581     // need an inline implementation.
3582     if (!getTarget().getTriple().isOSMSVCRT())
3583       break;
3584 
3585     llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
3586     Value *Str = EmitScalarExpr(E->getArg(0));
3587     Value *Chr = EmitScalarExpr(E->getArg(1));
3588     Value *Size = EmitScalarExpr(E->getArg(2));
3589 
3590     BasicBlock *Entry = Builder.GetInsertBlock();
3591     BasicBlock *CmpEq = createBasicBlock("wmemchr.eq");
3592     BasicBlock *Next = createBasicBlock("wmemchr.next");
3593     BasicBlock *Exit = createBasicBlock("wmemchr.exit");
3594     Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
3595     Builder.CreateCondBr(SizeEq0, Exit, CmpEq);
3596 
3597     EmitBlock(CmpEq);
3598     PHINode *StrPhi = Builder.CreatePHI(Str->getType(), 2);
3599     StrPhi->addIncoming(Str, Entry);
3600     PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
3601     SizePhi->addIncoming(Size, Entry);
3602     CharUnits WCharAlign =
3603         getContext().getTypeAlignInChars(getContext().WCharTy);
3604     Value *StrCh = Builder.CreateAlignedLoad(WCharTy, StrPhi, WCharAlign);
3605     Value *FoundChr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 0);
3606     Value *StrEqChr = Builder.CreateICmpEQ(StrCh, Chr);
3607     Builder.CreateCondBr(StrEqChr, Exit, Next);
3608 
3609     EmitBlock(Next);
3610     Value *NextStr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 1);
3611     Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
3612     Value *NextSizeEq0 =
3613         Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
3614     Builder.CreateCondBr(NextSizeEq0, Exit, CmpEq);
3615     StrPhi->addIncoming(NextStr, Next);
3616     SizePhi->addIncoming(NextSize, Next);
3617 
3618     EmitBlock(Exit);
3619     PHINode *Ret = Builder.CreatePHI(Str->getType(), 3);
3620     Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Entry);
3621     Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Next);
3622     Ret->addIncoming(FoundChr, CmpEq);
3623     return RValue::get(Ret);
3624   }
3625   case Builtin::BI__builtin_wmemcmp: {
3626     // The MSVC runtime library does not provide a definition of wmemcmp, so we
3627     // need an inline implementation.
3628     if (!getTarget().getTriple().isOSMSVCRT())
3629       break;
3630 
3631     llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
3632 
3633     Value *Dst = EmitScalarExpr(E->getArg(0));
3634     Value *Src = EmitScalarExpr(E->getArg(1));
3635     Value *Size = EmitScalarExpr(E->getArg(2));
3636 
3637     BasicBlock *Entry = Builder.GetInsertBlock();
3638     BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
3639     BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
3640     BasicBlock *Next = createBasicBlock("wmemcmp.next");
3641     BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
3642     Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
3643     Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
3644 
3645     EmitBlock(CmpGT);
3646     PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
3647     DstPhi->addIncoming(Dst, Entry);
3648     PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
3649     SrcPhi->addIncoming(Src, Entry);
3650     PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
3651     SizePhi->addIncoming(Size, Entry);
3652     CharUnits WCharAlign =
3653         getContext().getTypeAlignInChars(getContext().WCharTy);
3654     Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
3655     Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
3656     Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
3657     Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
3658 
3659     EmitBlock(CmpLT);
3660     Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
3661     Builder.CreateCondBr(DstLtSrc, Exit, Next);
3662 
3663     EmitBlock(Next);
3664     Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
3665     Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
3666     Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
3667     Value *NextSizeEq0 =
3668         Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
3669     Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
3670     DstPhi->addIncoming(NextDst, Next);
3671     SrcPhi->addIncoming(NextSrc, Next);
3672     SizePhi->addIncoming(NextSize, Next);
3673 
3674     EmitBlock(Exit);
3675     PHINode *Ret = Builder.CreatePHI(IntTy, 4);
3676     Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
3677     Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
3678     Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
3679     Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
3680     return RValue::get(Ret);
3681   }
3682   case Builtin::BI__builtin_dwarf_cfa: {
3683     // The offset in bytes from the first argument to the CFA.
3684     //
3685     // Why on earth is this in the frontend?  Is there any reason at
3686     // all that the backend can't reasonably determine this while
3687     // lowering llvm.eh.dwarf.cfa()?
3688     //
3689     // TODO: If there's a satisfactory reason, add a target hook for
3690     // this instead of hard-coding 0, which is correct for most targets.
3691     int32_t Offset = 0;
3692 
3693     Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
3694     return RValue::get(Builder.CreateCall(F,
3695                                       llvm::ConstantInt::get(Int32Ty, Offset)));
3696   }
3697   case Builtin::BI__builtin_return_address: {
3698     Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
3699                                                    getContext().UnsignedIntTy);
3700     Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
3701     return RValue::get(Builder.CreateCall(F, Depth));
3702   }
3703   case Builtin::BI_ReturnAddress: {
3704     Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
3705     return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
3706   }
3707   case Builtin::BI__builtin_frame_address: {
3708     Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
3709                                                    getContext().UnsignedIntTy);
3710     Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy);
3711     return RValue::get(Builder.CreateCall(F, Depth));
3712   }
3713   case Builtin::BI__builtin_extract_return_addr: {
3714     Value *Address = EmitScalarExpr(E->getArg(0));
3715     Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
3716     return RValue::get(Result);
3717   }
3718   case Builtin::BI__builtin_frob_return_addr: {
3719     Value *Address = EmitScalarExpr(E->getArg(0));
3720     Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
3721     return RValue::get(Result);
3722   }
3723   case Builtin::BI__builtin_dwarf_sp_column: {
3724     llvm::IntegerType *Ty
3725       = cast<llvm::IntegerType>(ConvertType(E->getType()));
3726     int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
3727     if (Column == -1) {
3728       CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
3729       return RValue::get(llvm::UndefValue::get(Ty));
3730     }
3731     return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
3732   }
3733   case Builtin::BI__builtin_init_dwarf_reg_size_table: {
3734     Value *Address = EmitScalarExpr(E->getArg(0));
3735     if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
3736       CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
3737     return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
3738   }
3739   case Builtin::BI__builtin_eh_return: {
3740     Value *Int = EmitScalarExpr(E->getArg(0));
3741     Value *Ptr = EmitScalarExpr(E->getArg(1));
3742 
3743     llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
3744     assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
3745            "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
3746     Function *F =
3747         CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32
3748                                                     : Intrinsic::eh_return_i64);
3749     Builder.CreateCall(F, {Int, Ptr});
3750     Builder.CreateUnreachable();
3751 
3752     // We do need to preserve an insertion point.
3753     EmitBlock(createBasicBlock("builtin_eh_return.cont"));
3754 
3755     return RValue::get(nullptr);
3756   }
3757   case Builtin::BI__builtin_unwind_init: {
3758     Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
3759     Builder.CreateCall(F);
3760     return RValue::get(nullptr);
3761   }
3762   case Builtin::BI__builtin_extend_pointer: {
3763     // Extends a pointer to the size of an _Unwind_Word, which is
3764     // uint64_t on all platforms.  Generally this gets poked into a
3765     // register and eventually used as an address, so if the
3766     // addressing registers are wider than pointers and the platform
3767     // doesn't implicitly ignore high-order bits when doing
3768     // addressing, we need to make sure we zext / sext based on
3769     // the platform's expectations.
3770     //
3771     // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
3772 
3773     // Cast the pointer to intptr_t.
3774     Value *Ptr = EmitScalarExpr(E->getArg(0));
3775     Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
3776 
3777     // If that's 64 bits, we're done.
3778     if (IntPtrTy->getBitWidth() == 64)
3779       return RValue::get(Result);
3780 
3781     // Otherwise, ask the codegen data what to do.
3782     if (getTargetHooks().extendPointerWithSExt())
3783       return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
3784     else
3785       return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
3786   }
3787   case Builtin::BI__builtin_setjmp: {
3788     // Buffer is a void**.
3789     Address Buf = EmitPointerWithAlignment(E->getArg(0));
3790 
3791     // Store the frame pointer to the setjmp buffer.
3792     Value *FrameAddr = Builder.CreateCall(
3793         CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy),
3794         ConstantInt::get(Int32Ty, 0));
3795     Builder.CreateStore(FrameAddr, Buf);
3796 
3797     // Store the stack pointer to the setjmp buffer.
3798     Value *StackAddr =
3799         Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
3800     Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2);
3801     Builder.CreateStore(StackAddr, StackSaveSlot);
3802 
3803     // Call LLVM's EH setjmp, which is lightweight.
3804     Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
3805     Buf = Builder.CreateElementBitCast(Buf, Int8Ty);
3806     return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
3807   }
3808   case Builtin::BI__builtin_longjmp: {
3809     Value *Buf = EmitScalarExpr(E->getArg(0));
3810     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
3811 
3812     // Call LLVM's EH longjmp, which is lightweight.
3813     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
3814 
3815     // longjmp doesn't return; mark this as unreachable.
3816     Builder.CreateUnreachable();
3817 
3818     // We do need to preserve an insertion point.
3819     EmitBlock(createBasicBlock("longjmp.cont"));
3820 
3821     return RValue::get(nullptr);
3822   }
3823   case Builtin::BI__builtin_launder: {
3824     const Expr *Arg = E->getArg(0);
3825     QualType ArgTy = Arg->getType()->getPointeeType();
3826     Value *Ptr = EmitScalarExpr(Arg);
3827     if (TypeRequiresBuiltinLaunder(CGM, ArgTy))
3828       Ptr = Builder.CreateLaunderInvariantGroup(Ptr);
3829 
3830     return RValue::get(Ptr);
3831   }
3832   case Builtin::BI__sync_fetch_and_add:
3833   case Builtin::BI__sync_fetch_and_sub:
3834   case Builtin::BI__sync_fetch_and_or:
3835   case Builtin::BI__sync_fetch_and_and:
3836   case Builtin::BI__sync_fetch_and_xor:
3837   case Builtin::BI__sync_fetch_and_nand:
3838   case Builtin::BI__sync_add_and_fetch:
3839   case Builtin::BI__sync_sub_and_fetch:
3840   case Builtin::BI__sync_and_and_fetch:
3841   case Builtin::BI__sync_or_and_fetch:
3842   case Builtin::BI__sync_xor_and_fetch:
3843   case Builtin::BI__sync_nand_and_fetch:
3844   case Builtin::BI__sync_val_compare_and_swap:
3845   case Builtin::BI__sync_bool_compare_and_swap:
3846   case Builtin::BI__sync_lock_test_and_set:
3847   case Builtin::BI__sync_lock_release:
3848   case Builtin::BI__sync_swap:
3849     llvm_unreachable("Shouldn't make it through sema");
3850   case Builtin::BI__sync_fetch_and_add_1:
3851   case Builtin::BI__sync_fetch_and_add_2:
3852   case Builtin::BI__sync_fetch_and_add_4:
3853   case Builtin::BI__sync_fetch_and_add_8:
3854   case Builtin::BI__sync_fetch_and_add_16:
3855     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
3856   case Builtin::BI__sync_fetch_and_sub_1:
3857   case Builtin::BI__sync_fetch_and_sub_2:
3858   case Builtin::BI__sync_fetch_and_sub_4:
3859   case Builtin::BI__sync_fetch_and_sub_8:
3860   case Builtin::BI__sync_fetch_and_sub_16:
3861     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
3862   case Builtin::BI__sync_fetch_and_or_1:
3863   case Builtin::BI__sync_fetch_and_or_2:
3864   case Builtin::BI__sync_fetch_and_or_4:
3865   case Builtin::BI__sync_fetch_and_or_8:
3866   case Builtin::BI__sync_fetch_and_or_16:
3867     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
3868   case Builtin::BI__sync_fetch_and_and_1:
3869   case Builtin::BI__sync_fetch_and_and_2:
3870   case Builtin::BI__sync_fetch_and_and_4:
3871   case Builtin::BI__sync_fetch_and_and_8:
3872   case Builtin::BI__sync_fetch_and_and_16:
3873     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
3874   case Builtin::BI__sync_fetch_and_xor_1:
3875   case Builtin::BI__sync_fetch_and_xor_2:
3876   case Builtin::BI__sync_fetch_and_xor_4:
3877   case Builtin::BI__sync_fetch_and_xor_8:
3878   case Builtin::BI__sync_fetch_and_xor_16:
3879     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
3880   case Builtin::BI__sync_fetch_and_nand_1:
3881   case Builtin::BI__sync_fetch_and_nand_2:
3882   case Builtin::BI__sync_fetch_and_nand_4:
3883   case Builtin::BI__sync_fetch_and_nand_8:
3884   case Builtin::BI__sync_fetch_and_nand_16:
3885     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
3886 
3887   // Clang extensions: not overloaded yet.
3888   case Builtin::BI__sync_fetch_and_min:
3889     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
3890   case Builtin::BI__sync_fetch_and_max:
3891     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
3892   case Builtin::BI__sync_fetch_and_umin:
3893     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
3894   case Builtin::BI__sync_fetch_and_umax:
3895     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
3896 
3897   case Builtin::BI__sync_add_and_fetch_1:
3898   case Builtin::BI__sync_add_and_fetch_2:
3899   case Builtin::BI__sync_add_and_fetch_4:
3900   case Builtin::BI__sync_add_and_fetch_8:
3901   case Builtin::BI__sync_add_and_fetch_16:
3902     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
3903                                 llvm::Instruction::Add);
3904   case Builtin::BI__sync_sub_and_fetch_1:
3905   case Builtin::BI__sync_sub_and_fetch_2:
3906   case Builtin::BI__sync_sub_and_fetch_4:
3907   case Builtin::BI__sync_sub_and_fetch_8:
3908   case Builtin::BI__sync_sub_and_fetch_16:
3909     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
3910                                 llvm::Instruction::Sub);
3911   case Builtin::BI__sync_and_and_fetch_1:
3912   case Builtin::BI__sync_and_and_fetch_2:
3913   case Builtin::BI__sync_and_and_fetch_4:
3914   case Builtin::BI__sync_and_and_fetch_8:
3915   case Builtin::BI__sync_and_and_fetch_16:
3916     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
3917                                 llvm::Instruction::And);
3918   case Builtin::BI__sync_or_and_fetch_1:
3919   case Builtin::BI__sync_or_and_fetch_2:
3920   case Builtin::BI__sync_or_and_fetch_4:
3921   case Builtin::BI__sync_or_and_fetch_8:
3922   case Builtin::BI__sync_or_and_fetch_16:
3923     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
3924                                 llvm::Instruction::Or);
3925   case Builtin::BI__sync_xor_and_fetch_1:
3926   case Builtin::BI__sync_xor_and_fetch_2:
3927   case Builtin::BI__sync_xor_and_fetch_4:
3928   case Builtin::BI__sync_xor_and_fetch_8:
3929   case Builtin::BI__sync_xor_and_fetch_16:
3930     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
3931                                 llvm::Instruction::Xor);
3932   case Builtin::BI__sync_nand_and_fetch_1:
3933   case Builtin::BI__sync_nand_and_fetch_2:
3934   case Builtin::BI__sync_nand_and_fetch_4:
3935   case Builtin::BI__sync_nand_and_fetch_8:
3936   case Builtin::BI__sync_nand_and_fetch_16:
3937     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
3938                                 llvm::Instruction::And, true);
3939 
3940   case Builtin::BI__sync_val_compare_and_swap_1:
3941   case Builtin::BI__sync_val_compare_and_swap_2:
3942   case Builtin::BI__sync_val_compare_and_swap_4:
3943   case Builtin::BI__sync_val_compare_and_swap_8:
3944   case Builtin::BI__sync_val_compare_and_swap_16:
3945     return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
3946 
3947   case Builtin::BI__sync_bool_compare_and_swap_1:
3948   case Builtin::BI__sync_bool_compare_and_swap_2:
3949   case Builtin::BI__sync_bool_compare_and_swap_4:
3950   case Builtin::BI__sync_bool_compare_and_swap_8:
3951   case Builtin::BI__sync_bool_compare_and_swap_16:
3952     return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
3953 
3954   case Builtin::BI__sync_swap_1:
3955   case Builtin::BI__sync_swap_2:
3956   case Builtin::BI__sync_swap_4:
3957   case Builtin::BI__sync_swap_8:
3958   case Builtin::BI__sync_swap_16:
3959     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
3960 
3961   case Builtin::BI__sync_lock_test_and_set_1:
3962   case Builtin::BI__sync_lock_test_and_set_2:
3963   case Builtin::BI__sync_lock_test_and_set_4:
3964   case Builtin::BI__sync_lock_test_and_set_8:
3965   case Builtin::BI__sync_lock_test_and_set_16:
3966     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
3967 
3968   case Builtin::BI__sync_lock_release_1:
3969   case Builtin::BI__sync_lock_release_2:
3970   case Builtin::BI__sync_lock_release_4:
3971   case Builtin::BI__sync_lock_release_8:
3972   case Builtin::BI__sync_lock_release_16: {
3973     Value *Ptr = EmitScalarExpr(E->getArg(0));
3974     QualType ElTy = E->getArg(0)->getType()->getPointeeType();
3975     CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
3976     llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
3977                                              StoreSize.getQuantity() * 8);
3978     Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
3979     llvm::StoreInst *Store =
3980       Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
3981                                  StoreSize);
3982     Store->setAtomic(llvm::AtomicOrdering::Release);
3983     return RValue::get(nullptr);
3984   }
3985 
3986   case Builtin::BI__sync_synchronize: {
3987     // We assume this is supposed to correspond to a C++0x-style
3988     // sequentially-consistent fence (i.e. this is only usable for
3989     // synchronization, not device I/O or anything like that). This intrinsic
3990     // is really badly designed in the sense that in theory, there isn't
3991     // any way to safely use it... but in practice, it mostly works
3992     // to use it with non-atomic loads and stores to get acquire/release
3993     // semantics.
3994     Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
3995     return RValue::get(nullptr);
3996   }
3997 
3998   case Builtin::BI__builtin_nontemporal_load:
3999     return RValue::get(EmitNontemporalLoad(*this, E));
4000   case Builtin::BI__builtin_nontemporal_store:
4001     return RValue::get(EmitNontemporalStore(*this, E));
4002   case Builtin::BI__c11_atomic_is_lock_free:
4003   case Builtin::BI__atomic_is_lock_free: {
4004     // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
4005     // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
4006     // _Atomic(T) is always properly-aligned.
4007     const char *LibCallName = "__atomic_is_lock_free";
4008     CallArgList Args;
4009     Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
4010              getContext().getSizeType());
4011     if (BuiltinID == Builtin::BI__atomic_is_lock_free)
4012       Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
4013                getContext().VoidPtrTy);
4014     else
4015       Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
4016                getContext().VoidPtrTy);
4017     const CGFunctionInfo &FuncInfo =
4018         CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
4019     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
4020     llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
4021     return EmitCall(FuncInfo, CGCallee::forDirect(Func),
4022                     ReturnValueSlot(), Args);
4023   }
4024 
4025   case Builtin::BI__atomic_test_and_set: {
4026     // Look at the argument type to determine whether this is a volatile
4027     // operation. The parameter type is always volatile.
4028     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
4029     bool Volatile =
4030         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
4031 
4032     Value *Ptr = EmitScalarExpr(E->getArg(0));
4033     unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
4034     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
4035     Value *NewVal = Builder.getInt8(1);
4036     Value *Order = EmitScalarExpr(E->getArg(1));
4037     if (isa<llvm::ConstantInt>(Order)) {
4038       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4039       AtomicRMWInst *Result = nullptr;
4040       switch (ord) {
4041       case 0:  // memory_order_relaxed
4042       default: // invalid order
4043         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4044                                          llvm::AtomicOrdering::Monotonic);
4045         break;
4046       case 1: // memory_order_consume
4047       case 2: // memory_order_acquire
4048         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4049                                          llvm::AtomicOrdering::Acquire);
4050         break;
4051       case 3: // memory_order_release
4052         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4053                                          llvm::AtomicOrdering::Release);
4054         break;
4055       case 4: // memory_order_acq_rel
4056 
4057         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4058                                          llvm::AtomicOrdering::AcquireRelease);
4059         break;
4060       case 5: // memory_order_seq_cst
4061         Result = Builder.CreateAtomicRMW(
4062             llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4063             llvm::AtomicOrdering::SequentiallyConsistent);
4064         break;
4065       }
4066       Result->setVolatile(Volatile);
4067       return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
4068     }
4069 
4070     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4071 
4072     llvm::BasicBlock *BBs[5] = {
4073       createBasicBlock("monotonic", CurFn),
4074       createBasicBlock("acquire", CurFn),
4075       createBasicBlock("release", CurFn),
4076       createBasicBlock("acqrel", CurFn),
4077       createBasicBlock("seqcst", CurFn)
4078     };
4079     llvm::AtomicOrdering Orders[5] = {
4080         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
4081         llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
4082         llvm::AtomicOrdering::SequentiallyConsistent};
4083 
4084     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4085     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
4086 
4087     Builder.SetInsertPoint(ContBB);
4088     PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
4089 
4090     for (unsigned i = 0; i < 5; ++i) {
4091       Builder.SetInsertPoint(BBs[i]);
4092       AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
4093                                                    Ptr, NewVal, Orders[i]);
4094       RMW->setVolatile(Volatile);
4095       Result->addIncoming(RMW, BBs[i]);
4096       Builder.CreateBr(ContBB);
4097     }
4098 
4099     SI->addCase(Builder.getInt32(0), BBs[0]);
4100     SI->addCase(Builder.getInt32(1), BBs[1]);
4101     SI->addCase(Builder.getInt32(2), BBs[1]);
4102     SI->addCase(Builder.getInt32(3), BBs[2]);
4103     SI->addCase(Builder.getInt32(4), BBs[3]);
4104     SI->addCase(Builder.getInt32(5), BBs[4]);
4105 
4106     Builder.SetInsertPoint(ContBB);
4107     return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
4108   }
4109 
4110   case Builtin::BI__atomic_clear: {
4111     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
4112     bool Volatile =
4113         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
4114 
4115     Address Ptr = EmitPointerWithAlignment(E->getArg(0));
4116     Ptr = Builder.CreateElementBitCast(Ptr, Int8Ty);
4117     Value *NewVal = Builder.getInt8(0);
4118     Value *Order = EmitScalarExpr(E->getArg(1));
4119     if (isa<llvm::ConstantInt>(Order)) {
4120       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4121       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
4122       switch (ord) {
4123       case 0:  // memory_order_relaxed
4124       default: // invalid order
4125         Store->setOrdering(llvm::AtomicOrdering::Monotonic);
4126         break;
4127       case 3:  // memory_order_release
4128         Store->setOrdering(llvm::AtomicOrdering::Release);
4129         break;
4130       case 5:  // memory_order_seq_cst
4131         Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
4132         break;
4133       }
4134       return RValue::get(nullptr);
4135     }
4136 
4137     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4138 
4139     llvm::BasicBlock *BBs[3] = {
4140       createBasicBlock("monotonic", CurFn),
4141       createBasicBlock("release", CurFn),
4142       createBasicBlock("seqcst", CurFn)
4143     };
4144     llvm::AtomicOrdering Orders[3] = {
4145         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
4146         llvm::AtomicOrdering::SequentiallyConsistent};
4147 
4148     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4149     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
4150 
4151     for (unsigned i = 0; i < 3; ++i) {
4152       Builder.SetInsertPoint(BBs[i]);
4153       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
4154       Store->setOrdering(Orders[i]);
4155       Builder.CreateBr(ContBB);
4156     }
4157 
4158     SI->addCase(Builder.getInt32(0), BBs[0]);
4159     SI->addCase(Builder.getInt32(3), BBs[1]);
4160     SI->addCase(Builder.getInt32(5), BBs[2]);
4161 
4162     Builder.SetInsertPoint(ContBB);
4163     return RValue::get(nullptr);
4164   }
4165 
4166   case Builtin::BI__atomic_thread_fence:
4167   case Builtin::BI__atomic_signal_fence:
4168   case Builtin::BI__c11_atomic_thread_fence:
4169   case Builtin::BI__c11_atomic_signal_fence: {
4170     llvm::SyncScope::ID SSID;
4171     if (BuiltinID == Builtin::BI__atomic_signal_fence ||
4172         BuiltinID == Builtin::BI__c11_atomic_signal_fence)
4173       SSID = llvm::SyncScope::SingleThread;
4174     else
4175       SSID = llvm::SyncScope::System;
4176     Value *Order = EmitScalarExpr(E->getArg(0));
4177     if (isa<llvm::ConstantInt>(Order)) {
4178       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4179       switch (ord) {
4180       case 0:  // memory_order_relaxed
4181       default: // invalid order
4182         break;
4183       case 1:  // memory_order_consume
4184       case 2:  // memory_order_acquire
4185         Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
4186         break;
4187       case 3:  // memory_order_release
4188         Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
4189         break;
4190       case 4:  // memory_order_acq_rel
4191         Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
4192         break;
4193       case 5:  // memory_order_seq_cst
4194         Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4195         break;
4196       }
4197       return RValue::get(nullptr);
4198     }
4199 
4200     llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
4201     AcquireBB = createBasicBlock("acquire", CurFn);
4202     ReleaseBB = createBasicBlock("release", CurFn);
4203     AcqRelBB = createBasicBlock("acqrel", CurFn);
4204     SeqCstBB = createBasicBlock("seqcst", CurFn);
4205     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4206 
4207     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4208     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
4209 
4210     Builder.SetInsertPoint(AcquireBB);
4211     Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
4212     Builder.CreateBr(ContBB);
4213     SI->addCase(Builder.getInt32(1), AcquireBB);
4214     SI->addCase(Builder.getInt32(2), AcquireBB);
4215 
4216     Builder.SetInsertPoint(ReleaseBB);
4217     Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
4218     Builder.CreateBr(ContBB);
4219     SI->addCase(Builder.getInt32(3), ReleaseBB);
4220 
4221     Builder.SetInsertPoint(AcqRelBB);
4222     Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
4223     Builder.CreateBr(ContBB);
4224     SI->addCase(Builder.getInt32(4), AcqRelBB);
4225 
4226     Builder.SetInsertPoint(SeqCstBB);
4227     Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4228     Builder.CreateBr(ContBB);
4229     SI->addCase(Builder.getInt32(5), SeqCstBB);
4230 
4231     Builder.SetInsertPoint(ContBB);
4232     return RValue::get(nullptr);
4233   }
4234 
4235   case Builtin::BI__builtin_signbit:
4236   case Builtin::BI__builtin_signbitf:
4237   case Builtin::BI__builtin_signbitl: {
4238     return RValue::get(
4239         Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
4240                            ConvertType(E->getType())));
4241   }
4242   case Builtin::BI__warn_memset_zero_len:
4243     return RValue::getIgnored();
4244   case Builtin::BI__annotation: {
4245     // Re-encode each wide string to UTF8 and make an MDString.
4246     SmallVector<Metadata *, 1> Strings;
4247     for (const Expr *Arg : E->arguments()) {
4248       const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
4249       assert(Str->getCharByteWidth() == 2);
4250       StringRef WideBytes = Str->getBytes();
4251       std::string StrUtf8;
4252       if (!convertUTF16ToUTF8String(
4253               ArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
4254         CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
4255         continue;
4256       }
4257       Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
4258     }
4259 
4260     // Build and MDTuple of MDStrings and emit the intrinsic call.
4261     llvm::Function *F =
4262         CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
4263     MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
4264     Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
4265     return RValue::getIgnored();
4266   }
4267   case Builtin::BI__builtin_annotation: {
4268     llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
4269     llvm::Function *F =
4270         CGM.getIntrinsic(llvm::Intrinsic::annotation,
4271                          {AnnVal->getType(), CGM.ConstGlobalsPtrTy});
4272 
4273     // Get the annotation string, go through casts. Sema requires this to be a
4274     // non-wide string literal, potentially casted, so the cast<> is safe.
4275     const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
4276     StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
4277     return RValue::get(
4278         EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc(), nullptr));
4279   }
4280   case Builtin::BI__builtin_addcb:
4281   case Builtin::BI__builtin_addcs:
4282   case Builtin::BI__builtin_addc:
4283   case Builtin::BI__builtin_addcl:
4284   case Builtin::BI__builtin_addcll:
4285   case Builtin::BI__builtin_subcb:
4286   case Builtin::BI__builtin_subcs:
4287   case Builtin::BI__builtin_subc:
4288   case Builtin::BI__builtin_subcl:
4289   case Builtin::BI__builtin_subcll: {
4290 
4291     // We translate all of these builtins from expressions of the form:
4292     //   int x = ..., y = ..., carryin = ..., carryout, result;
4293     //   result = __builtin_addc(x, y, carryin, &carryout);
4294     //
4295     // to LLVM IR of the form:
4296     //
4297     //   %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
4298     //   %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
4299     //   %carry1 = extractvalue {i32, i1} %tmp1, 1
4300     //   %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
4301     //                                                       i32 %carryin)
4302     //   %result = extractvalue {i32, i1} %tmp2, 0
4303     //   %carry2 = extractvalue {i32, i1} %tmp2, 1
4304     //   %tmp3 = or i1 %carry1, %carry2
4305     //   %tmp4 = zext i1 %tmp3 to i32
4306     //   store i32 %tmp4, i32* %carryout
4307 
4308     // Scalarize our inputs.
4309     llvm::Value *X = EmitScalarExpr(E->getArg(0));
4310     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
4311     llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
4312     Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
4313 
4314     // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
4315     llvm::Intrinsic::ID IntrinsicId;
4316     switch (BuiltinID) {
4317     default: llvm_unreachable("Unknown multiprecision builtin id.");
4318     case Builtin::BI__builtin_addcb:
4319     case Builtin::BI__builtin_addcs:
4320     case Builtin::BI__builtin_addc:
4321     case Builtin::BI__builtin_addcl:
4322     case Builtin::BI__builtin_addcll:
4323       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
4324       break;
4325     case Builtin::BI__builtin_subcb:
4326     case Builtin::BI__builtin_subcs:
4327     case Builtin::BI__builtin_subc:
4328     case Builtin::BI__builtin_subcl:
4329     case Builtin::BI__builtin_subcll:
4330       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
4331       break;
4332     }
4333 
4334     // Construct our resulting LLVM IR expression.
4335     llvm::Value *Carry1;
4336     llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
4337                                               X, Y, Carry1);
4338     llvm::Value *Carry2;
4339     llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
4340                                               Sum1, Carryin, Carry2);
4341     llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
4342                                                X->getType());
4343     Builder.CreateStore(CarryOut, CarryOutPtr);
4344     return RValue::get(Sum2);
4345   }
4346 
4347   case Builtin::BI__builtin_add_overflow:
4348   case Builtin::BI__builtin_sub_overflow:
4349   case Builtin::BI__builtin_mul_overflow: {
4350     const clang::Expr *LeftArg = E->getArg(0);
4351     const clang::Expr *RightArg = E->getArg(1);
4352     const clang::Expr *ResultArg = E->getArg(2);
4353 
4354     clang::QualType ResultQTy =
4355         ResultArg->getType()->castAs<PointerType>()->getPointeeType();
4356 
4357     WidthAndSignedness LeftInfo =
4358         getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
4359     WidthAndSignedness RightInfo =
4360         getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
4361     WidthAndSignedness ResultInfo =
4362         getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
4363 
4364     // Handle mixed-sign multiplication as a special case, because adding
4365     // runtime or backend support for our generic irgen would be too expensive.
4366     if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
4367       return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
4368                                           RightInfo, ResultArg, ResultQTy,
4369                                           ResultInfo);
4370 
4371     if (isSpecialUnsignedMultiplySignedResult(BuiltinID, LeftInfo, RightInfo,
4372                                               ResultInfo))
4373       return EmitCheckedUnsignedMultiplySignedResult(
4374           *this, LeftArg, LeftInfo, RightArg, RightInfo, ResultArg, ResultQTy,
4375           ResultInfo);
4376 
4377     WidthAndSignedness EncompassingInfo =
4378         EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
4379 
4380     llvm::Type *EncompassingLLVMTy =
4381         llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
4382 
4383     llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
4384 
4385     llvm::Intrinsic::ID IntrinsicId;
4386     switch (BuiltinID) {
4387     default:
4388       llvm_unreachable("Unknown overflow builtin id.");
4389     case Builtin::BI__builtin_add_overflow:
4390       IntrinsicId = EncompassingInfo.Signed
4391                         ? llvm::Intrinsic::sadd_with_overflow
4392                         : llvm::Intrinsic::uadd_with_overflow;
4393       break;
4394     case Builtin::BI__builtin_sub_overflow:
4395       IntrinsicId = EncompassingInfo.Signed
4396                         ? llvm::Intrinsic::ssub_with_overflow
4397                         : llvm::Intrinsic::usub_with_overflow;
4398       break;
4399     case Builtin::BI__builtin_mul_overflow:
4400       IntrinsicId = EncompassingInfo.Signed
4401                         ? llvm::Intrinsic::smul_with_overflow
4402                         : llvm::Intrinsic::umul_with_overflow;
4403       break;
4404     }
4405 
4406     llvm::Value *Left = EmitScalarExpr(LeftArg);
4407     llvm::Value *Right = EmitScalarExpr(RightArg);
4408     Address ResultPtr = EmitPointerWithAlignment(ResultArg);
4409 
4410     // Extend each operand to the encompassing type.
4411     Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
4412     Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
4413 
4414     // Perform the operation on the extended values.
4415     llvm::Value *Overflow, *Result;
4416     Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
4417 
4418     if (EncompassingInfo.Width > ResultInfo.Width) {
4419       // The encompassing type is wider than the result type, so we need to
4420       // truncate it.
4421       llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
4422 
4423       // To see if the truncation caused an overflow, we will extend
4424       // the result and then compare it to the original result.
4425       llvm::Value *ResultTruncExt = Builder.CreateIntCast(
4426           ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
4427       llvm::Value *TruncationOverflow =
4428           Builder.CreateICmpNE(Result, ResultTruncExt);
4429 
4430       Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
4431       Result = ResultTrunc;
4432     }
4433 
4434     // Finally, store the result using the pointer.
4435     bool isVolatile =
4436       ResultArg->getType()->getPointeeType().isVolatileQualified();
4437     Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
4438 
4439     return RValue::get(Overflow);
4440   }
4441 
4442   case Builtin::BI__builtin_uadd_overflow:
4443   case Builtin::BI__builtin_uaddl_overflow:
4444   case Builtin::BI__builtin_uaddll_overflow:
4445   case Builtin::BI__builtin_usub_overflow:
4446   case Builtin::BI__builtin_usubl_overflow:
4447   case Builtin::BI__builtin_usubll_overflow:
4448   case Builtin::BI__builtin_umul_overflow:
4449   case Builtin::BI__builtin_umull_overflow:
4450   case Builtin::BI__builtin_umulll_overflow:
4451   case Builtin::BI__builtin_sadd_overflow:
4452   case Builtin::BI__builtin_saddl_overflow:
4453   case Builtin::BI__builtin_saddll_overflow:
4454   case Builtin::BI__builtin_ssub_overflow:
4455   case Builtin::BI__builtin_ssubl_overflow:
4456   case Builtin::BI__builtin_ssubll_overflow:
4457   case Builtin::BI__builtin_smul_overflow:
4458   case Builtin::BI__builtin_smull_overflow:
4459   case Builtin::BI__builtin_smulll_overflow: {
4460 
4461     // We translate all of these builtins directly to the relevant llvm IR node.
4462 
4463     // Scalarize our inputs.
4464     llvm::Value *X = EmitScalarExpr(E->getArg(0));
4465     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
4466     Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
4467 
4468     // Decide which of the overflow intrinsics we are lowering to:
4469     llvm::Intrinsic::ID IntrinsicId;
4470     switch (BuiltinID) {
4471     default: llvm_unreachable("Unknown overflow builtin id.");
4472     case Builtin::BI__builtin_uadd_overflow:
4473     case Builtin::BI__builtin_uaddl_overflow:
4474     case Builtin::BI__builtin_uaddll_overflow:
4475       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
4476       break;
4477     case Builtin::BI__builtin_usub_overflow:
4478     case Builtin::BI__builtin_usubl_overflow:
4479     case Builtin::BI__builtin_usubll_overflow:
4480       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
4481       break;
4482     case Builtin::BI__builtin_umul_overflow:
4483     case Builtin::BI__builtin_umull_overflow:
4484     case Builtin::BI__builtin_umulll_overflow:
4485       IntrinsicId = llvm::Intrinsic::umul_with_overflow;
4486       break;
4487     case Builtin::BI__builtin_sadd_overflow:
4488     case Builtin::BI__builtin_saddl_overflow:
4489     case Builtin::BI__builtin_saddll_overflow:
4490       IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
4491       break;
4492     case Builtin::BI__builtin_ssub_overflow:
4493     case Builtin::BI__builtin_ssubl_overflow:
4494     case Builtin::BI__builtin_ssubll_overflow:
4495       IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
4496       break;
4497     case Builtin::BI__builtin_smul_overflow:
4498     case Builtin::BI__builtin_smull_overflow:
4499     case Builtin::BI__builtin_smulll_overflow:
4500       IntrinsicId = llvm::Intrinsic::smul_with_overflow;
4501       break;
4502     }
4503 
4504 
4505     llvm::Value *Carry;
4506     llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
4507     Builder.CreateStore(Sum, SumOutPtr);
4508 
4509     return RValue::get(Carry);
4510   }
4511   case Builtin::BIaddressof:
4512   case Builtin::BI__addressof:
4513   case Builtin::BI__builtin_addressof:
4514     return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this));
4515   case Builtin::BI__builtin_function_start:
4516     return RValue::get(CGM.GetFunctionStart(
4517         E->getArg(0)->getAsBuiltinConstantDeclRef(CGM.getContext())));
4518   case Builtin::BI__builtin_operator_new:
4519     return EmitBuiltinNewDeleteCall(
4520         E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false);
4521   case Builtin::BI__builtin_operator_delete:
4522     EmitBuiltinNewDeleteCall(
4523         E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true);
4524     return RValue::get(nullptr);
4525 
4526   case Builtin::BI__builtin_is_aligned:
4527     return EmitBuiltinIsAligned(E);
4528   case Builtin::BI__builtin_align_up:
4529     return EmitBuiltinAlignTo(E, true);
4530   case Builtin::BI__builtin_align_down:
4531     return EmitBuiltinAlignTo(E, false);
4532 
4533   case Builtin::BI__noop:
4534     // __noop always evaluates to an integer literal zero.
4535     return RValue::get(ConstantInt::get(IntTy, 0));
4536   case Builtin::BI__builtin_call_with_static_chain: {
4537     const CallExpr *Call = cast<CallExpr>(E->getArg(0));
4538     const Expr *Chain = E->getArg(1);
4539     return EmitCall(Call->getCallee()->getType(),
4540                     EmitCallee(Call->getCallee()), Call, ReturnValue,
4541                     EmitScalarExpr(Chain));
4542   }
4543   case Builtin::BI_InterlockedExchange8:
4544   case Builtin::BI_InterlockedExchange16:
4545   case Builtin::BI_InterlockedExchange:
4546   case Builtin::BI_InterlockedExchangePointer:
4547     return RValue::get(
4548         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
4549   case Builtin::BI_InterlockedCompareExchangePointer:
4550   case Builtin::BI_InterlockedCompareExchangePointer_nf: {
4551     llvm::Type *RTy;
4552     llvm::IntegerType *IntType =
4553       IntegerType::get(getLLVMContext(),
4554                        getContext().getTypeSize(E->getType()));
4555     llvm::Type *IntPtrType = IntType->getPointerTo();
4556 
4557     llvm::Value *Destination =
4558       Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
4559 
4560     llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
4561     RTy = Exchange->getType();
4562     Exchange = Builder.CreatePtrToInt(Exchange, IntType);
4563 
4564     llvm::Value *Comparand =
4565       Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
4566 
4567     auto Ordering =
4568       BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ?
4569       AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent;
4570 
4571     auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
4572                                               Ordering, Ordering);
4573     Result->setVolatile(true);
4574 
4575     return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
4576                                                                          0),
4577                                               RTy));
4578   }
4579   case Builtin::BI_InterlockedCompareExchange8:
4580   case Builtin::BI_InterlockedCompareExchange16:
4581   case Builtin::BI_InterlockedCompareExchange:
4582   case Builtin::BI_InterlockedCompareExchange64:
4583     return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E));
4584   case Builtin::BI_InterlockedIncrement16:
4585   case Builtin::BI_InterlockedIncrement:
4586     return RValue::get(
4587         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
4588   case Builtin::BI_InterlockedDecrement16:
4589   case Builtin::BI_InterlockedDecrement:
4590     return RValue::get(
4591         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
4592   case Builtin::BI_InterlockedAnd8:
4593   case Builtin::BI_InterlockedAnd16:
4594   case Builtin::BI_InterlockedAnd:
4595     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
4596   case Builtin::BI_InterlockedExchangeAdd8:
4597   case Builtin::BI_InterlockedExchangeAdd16:
4598   case Builtin::BI_InterlockedExchangeAdd:
4599     return RValue::get(
4600         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
4601   case Builtin::BI_InterlockedExchangeSub8:
4602   case Builtin::BI_InterlockedExchangeSub16:
4603   case Builtin::BI_InterlockedExchangeSub:
4604     return RValue::get(
4605         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
4606   case Builtin::BI_InterlockedOr8:
4607   case Builtin::BI_InterlockedOr16:
4608   case Builtin::BI_InterlockedOr:
4609     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
4610   case Builtin::BI_InterlockedXor8:
4611   case Builtin::BI_InterlockedXor16:
4612   case Builtin::BI_InterlockedXor:
4613     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
4614 
4615   case Builtin::BI_bittest64:
4616   case Builtin::BI_bittest:
4617   case Builtin::BI_bittestandcomplement64:
4618   case Builtin::BI_bittestandcomplement:
4619   case Builtin::BI_bittestandreset64:
4620   case Builtin::BI_bittestandreset:
4621   case Builtin::BI_bittestandset64:
4622   case Builtin::BI_bittestandset:
4623   case Builtin::BI_interlockedbittestandreset:
4624   case Builtin::BI_interlockedbittestandreset64:
4625   case Builtin::BI_interlockedbittestandset64:
4626   case Builtin::BI_interlockedbittestandset:
4627   case Builtin::BI_interlockedbittestandset_acq:
4628   case Builtin::BI_interlockedbittestandset_rel:
4629   case Builtin::BI_interlockedbittestandset_nf:
4630   case Builtin::BI_interlockedbittestandreset_acq:
4631   case Builtin::BI_interlockedbittestandreset_rel:
4632   case Builtin::BI_interlockedbittestandreset_nf:
4633     return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E));
4634 
4635     // These builtins exist to emit regular volatile loads and stores not
4636     // affected by the -fms-volatile setting.
4637   case Builtin::BI__iso_volatile_load8:
4638   case Builtin::BI__iso_volatile_load16:
4639   case Builtin::BI__iso_volatile_load32:
4640   case Builtin::BI__iso_volatile_load64:
4641     return RValue::get(EmitISOVolatileLoad(*this, E));
4642   case Builtin::BI__iso_volatile_store8:
4643   case Builtin::BI__iso_volatile_store16:
4644   case Builtin::BI__iso_volatile_store32:
4645   case Builtin::BI__iso_volatile_store64:
4646     return RValue::get(EmitISOVolatileStore(*this, E));
4647 
4648   case Builtin::BI__exception_code:
4649   case Builtin::BI_exception_code:
4650     return RValue::get(EmitSEHExceptionCode());
4651   case Builtin::BI__exception_info:
4652   case Builtin::BI_exception_info:
4653     return RValue::get(EmitSEHExceptionInfo());
4654   case Builtin::BI__abnormal_termination:
4655   case Builtin::BI_abnormal_termination:
4656     return RValue::get(EmitSEHAbnormalTermination());
4657   case Builtin::BI_setjmpex:
4658     if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
4659         E->getArg(0)->getType()->isPointerType())
4660       return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
4661     break;
4662   case Builtin::BI_setjmp:
4663     if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
4664         E->getArg(0)->getType()->isPointerType()) {
4665       if (getTarget().getTriple().getArch() == llvm::Triple::x86)
4666         return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E);
4667       else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64)
4668         return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
4669       return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E);
4670     }
4671     break;
4672 
4673   // C++ std:: builtins.
4674   case Builtin::BImove:
4675   case Builtin::BImove_if_noexcept:
4676   case Builtin::BIforward:
4677   case Builtin::BIas_const:
4678     return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this));
4679   case Builtin::BI__GetExceptionInfo: {
4680     if (llvm::GlobalVariable *GV =
4681             CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
4682       return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
4683     break;
4684   }
4685 
4686   case Builtin::BI__fastfail:
4687     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
4688 
4689   case Builtin::BI__builtin_coro_id:
4690     return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
4691   case Builtin::BI__builtin_coro_promise:
4692     return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
4693   case Builtin::BI__builtin_coro_resume:
4694     EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
4695     return RValue::get(nullptr);
4696   case Builtin::BI__builtin_coro_frame:
4697     return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
4698   case Builtin::BI__builtin_coro_noop:
4699     return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop);
4700   case Builtin::BI__builtin_coro_free:
4701     return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
4702   case Builtin::BI__builtin_coro_destroy:
4703     EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
4704     return RValue::get(nullptr);
4705   case Builtin::BI__builtin_coro_done:
4706     return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
4707   case Builtin::BI__builtin_coro_alloc:
4708     return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
4709   case Builtin::BI__builtin_coro_begin:
4710     return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
4711   case Builtin::BI__builtin_coro_end:
4712     return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
4713   case Builtin::BI__builtin_coro_suspend:
4714     return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
4715   case Builtin::BI__builtin_coro_size:
4716     return EmitCoroutineIntrinsic(E, Intrinsic::coro_size);
4717   case Builtin::BI__builtin_coro_align:
4718     return EmitCoroutineIntrinsic(E, Intrinsic::coro_align);
4719 
4720   // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
4721   case Builtin::BIread_pipe:
4722   case Builtin::BIwrite_pipe: {
4723     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4724           *Arg1 = EmitScalarExpr(E->getArg(1));
4725     CGOpenCLRuntime OpenCLRT(CGM);
4726     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4727     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4728 
4729     // Type of the generic packet parameter.
4730     unsigned GenericAS =
4731         getContext().getTargetAddressSpace(LangAS::opencl_generic);
4732     llvm::Type *I8PTy = llvm::PointerType::get(
4733         llvm::Type::getInt8Ty(getLLVMContext()), GenericAS);
4734 
4735     // Testing which overloaded version we should generate the call for.
4736     if (2U == E->getNumArgs()) {
4737       const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
4738                                                              : "__write_pipe_2";
4739       // Creating a generic function type to be able to call with any builtin or
4740       // user defined type.
4741       llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
4742       llvm::FunctionType *FTy = llvm::FunctionType::get(
4743           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4744       Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
4745       return RValue::get(
4746           EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4747                           {Arg0, BCast, PacketSize, PacketAlign}));
4748     } else {
4749       assert(4 == E->getNumArgs() &&
4750              "Illegal number of parameters to pipe function");
4751       const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
4752                                                              : "__write_pipe_4";
4753 
4754       llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
4755                               Int32Ty, Int32Ty};
4756       Value *Arg2 = EmitScalarExpr(E->getArg(2)),
4757             *Arg3 = EmitScalarExpr(E->getArg(3));
4758       llvm::FunctionType *FTy = llvm::FunctionType::get(
4759           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4760       Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
4761       // We know the third argument is an integer type, but we may need to cast
4762       // it to i32.
4763       if (Arg2->getType() != Int32Ty)
4764         Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
4765       return RValue::get(
4766           EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4767                           {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
4768     }
4769   }
4770   // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
4771   // functions
4772   case Builtin::BIreserve_read_pipe:
4773   case Builtin::BIreserve_write_pipe:
4774   case Builtin::BIwork_group_reserve_read_pipe:
4775   case Builtin::BIwork_group_reserve_write_pipe:
4776   case Builtin::BIsub_group_reserve_read_pipe:
4777   case Builtin::BIsub_group_reserve_write_pipe: {
4778     // Composing the mangled name for the function.
4779     const char *Name;
4780     if (BuiltinID == Builtin::BIreserve_read_pipe)
4781       Name = "__reserve_read_pipe";
4782     else if (BuiltinID == Builtin::BIreserve_write_pipe)
4783       Name = "__reserve_write_pipe";
4784     else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
4785       Name = "__work_group_reserve_read_pipe";
4786     else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
4787       Name = "__work_group_reserve_write_pipe";
4788     else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
4789       Name = "__sub_group_reserve_read_pipe";
4790     else
4791       Name = "__sub_group_reserve_write_pipe";
4792 
4793     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4794           *Arg1 = EmitScalarExpr(E->getArg(1));
4795     llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
4796     CGOpenCLRuntime OpenCLRT(CGM);
4797     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4798     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4799 
4800     // Building the generic function prototype.
4801     llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
4802     llvm::FunctionType *FTy = llvm::FunctionType::get(
4803         ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4804     // We know the second argument is an integer type, but we may need to cast
4805     // it to i32.
4806     if (Arg1->getType() != Int32Ty)
4807       Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
4808     return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4809                                        {Arg0, Arg1, PacketSize, PacketAlign}));
4810   }
4811   // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
4812   // functions
4813   case Builtin::BIcommit_read_pipe:
4814   case Builtin::BIcommit_write_pipe:
4815   case Builtin::BIwork_group_commit_read_pipe:
4816   case Builtin::BIwork_group_commit_write_pipe:
4817   case Builtin::BIsub_group_commit_read_pipe:
4818   case Builtin::BIsub_group_commit_write_pipe: {
4819     const char *Name;
4820     if (BuiltinID == Builtin::BIcommit_read_pipe)
4821       Name = "__commit_read_pipe";
4822     else if (BuiltinID == Builtin::BIcommit_write_pipe)
4823       Name = "__commit_write_pipe";
4824     else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
4825       Name = "__work_group_commit_read_pipe";
4826     else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
4827       Name = "__work_group_commit_write_pipe";
4828     else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
4829       Name = "__sub_group_commit_read_pipe";
4830     else
4831       Name = "__sub_group_commit_write_pipe";
4832 
4833     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4834           *Arg1 = EmitScalarExpr(E->getArg(1));
4835     CGOpenCLRuntime OpenCLRT(CGM);
4836     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4837     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4838 
4839     // Building the generic function prototype.
4840     llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
4841     llvm::FunctionType *FTy =
4842         llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
4843                                 llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4844 
4845     return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4846                                        {Arg0, Arg1, PacketSize, PacketAlign}));
4847   }
4848   // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
4849   case Builtin::BIget_pipe_num_packets:
4850   case Builtin::BIget_pipe_max_packets: {
4851     const char *BaseName;
4852     const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>();
4853     if (BuiltinID == Builtin::BIget_pipe_num_packets)
4854       BaseName = "__get_pipe_num_packets";
4855     else
4856       BaseName = "__get_pipe_max_packets";
4857     std::string Name = std::string(BaseName) +
4858                        std::string(PipeTy->isReadOnly() ? "_ro" : "_wo");
4859 
4860     // Building the generic function prototype.
4861     Value *Arg0 = EmitScalarExpr(E->getArg(0));
4862     CGOpenCLRuntime OpenCLRT(CGM);
4863     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4864     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4865     llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
4866     llvm::FunctionType *FTy = llvm::FunctionType::get(
4867         Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4868 
4869     return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4870                                        {Arg0, PacketSize, PacketAlign}));
4871   }
4872 
4873   // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
4874   case Builtin::BIto_global:
4875   case Builtin::BIto_local:
4876   case Builtin::BIto_private: {
4877     auto Arg0 = EmitScalarExpr(E->getArg(0));
4878     auto NewArgT = llvm::PointerType::get(Int8Ty,
4879       CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
4880     auto NewRetT = llvm::PointerType::get(Int8Ty,
4881       CGM.getContext().getTargetAddressSpace(
4882         E->getType()->getPointeeType().getAddressSpace()));
4883     auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
4884     llvm::Value *NewArg;
4885     if (Arg0->getType()->getPointerAddressSpace() !=
4886         NewArgT->getPointerAddressSpace())
4887       NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
4888     else
4889       NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
4890     auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
4891     auto NewCall =
4892         EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
4893     return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
4894       ConvertType(E->getType())));
4895   }
4896 
4897   // OpenCL v2.0, s6.13.17 - Enqueue kernel function.
4898   // It contains four different overload formats specified in Table 6.13.17.1.
4899   case Builtin::BIenqueue_kernel: {
4900     StringRef Name; // Generated function call name
4901     unsigned NumArgs = E->getNumArgs();
4902 
4903     llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
4904     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4905         getContext().getTargetAddressSpace(LangAS::opencl_generic));
4906 
4907     llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
4908     llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
4909     LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
4910     llvm::Value *Range = NDRangeL.getAddress(*this).getPointer();
4911     llvm::Type *RangeTy = NDRangeL.getAddress(*this).getType();
4912 
4913     if (NumArgs == 4) {
4914       // The most basic form of the call with parameters:
4915       // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
4916       Name = "__enqueue_kernel_basic";
4917       llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
4918                               GenericVoidPtrTy};
4919       llvm::FunctionType *FTy = llvm::FunctionType::get(
4920           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4921 
4922       auto Info =
4923           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
4924       llvm::Value *Kernel =
4925           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4926       llvm::Value *Block =
4927           Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4928 
4929       AttrBuilder B(Builder.getContext());
4930       B.addByValAttr(NDRangeL.getAddress(*this).getElementType());
4931       llvm::AttributeList ByValAttrSet =
4932           llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
4933 
4934       auto RTCall =
4935           EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
4936                           {Queue, Flags, Range, Kernel, Block});
4937       RTCall->setAttributes(ByValAttrSet);
4938       return RValue::get(RTCall);
4939     }
4940     assert(NumArgs >= 5 && "Invalid enqueue_kernel signature");
4941 
4942     // Create a temporary array to hold the sizes of local pointer arguments
4943     // for the block. \p First is the position of the first size argument.
4944     auto CreateArrayForSizeVar = [=](unsigned First)
4945         -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> {
4946       llvm::APInt ArraySize(32, NumArgs - First);
4947       QualType SizeArrayTy = getContext().getConstantArrayType(
4948           getContext().getSizeType(), ArraySize, nullptr, ArrayType::Normal,
4949           /*IndexTypeQuals=*/0);
4950       auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes");
4951       llvm::Value *TmpPtr = Tmp.getPointer();
4952       llvm::Value *TmpSize = EmitLifetimeStart(
4953           CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr);
4954       llvm::Value *ElemPtr;
4955       // Each of the following arguments specifies the size of the corresponding
4956       // argument passed to the enqueued block.
4957       auto *Zero = llvm::ConstantInt::get(IntTy, 0);
4958       for (unsigned I = First; I < NumArgs; ++I) {
4959         auto *Index = llvm::ConstantInt::get(IntTy, I - First);
4960         auto *GEP = Builder.CreateGEP(Tmp.getElementType(), TmpPtr,
4961                                       {Zero, Index});
4962         if (I == First)
4963           ElemPtr = GEP;
4964         auto *V =
4965             Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
4966         Builder.CreateAlignedStore(
4967             V, GEP, CGM.getDataLayout().getPrefTypeAlign(SizeTy));
4968       }
4969       return std::tie(ElemPtr, TmpSize, TmpPtr);
4970     };
4971 
4972     // Could have events and/or varargs.
4973     if (E->getArg(3)->getType()->isBlockPointerType()) {
4974       // No events passed, but has variadic arguments.
4975       Name = "__enqueue_kernel_varargs";
4976       auto Info =
4977           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
4978       llvm::Value *Kernel =
4979           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4980       auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4981       llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
4982       std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4);
4983 
4984       // Create a vector of the arguments, as well as a constant value to
4985       // express to the runtime the number of variadic arguments.
4986       llvm::Value *const Args[] = {Queue,  Flags,
4987                                    Range,  Kernel,
4988                                    Block,  ConstantInt::get(IntTy, NumArgs - 4),
4989                                    ElemPtr};
4990       llvm::Type *const ArgTys[] = {
4991           QueueTy,          IntTy, RangeTy,           GenericVoidPtrTy,
4992           GenericVoidPtrTy, IntTy, ElemPtr->getType()};
4993 
4994       llvm::FunctionType *FTy = llvm::FunctionType::get(Int32Ty, ArgTys, false);
4995       auto Call = RValue::get(
4996           EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Args));
4997       if (TmpSize)
4998         EmitLifetimeEnd(TmpSize, TmpPtr);
4999       return Call;
5000     }
5001     // Any calls now have event arguments passed.
5002     if (NumArgs >= 7) {
5003       llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy);
5004       llvm::PointerType *EventPtrTy = EventTy->getPointerTo(
5005           CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
5006 
5007       llvm::Value *NumEvents =
5008           Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
5009 
5010       // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments
5011       // to be a null pointer constant (including `0` literal), we can take it
5012       // into account and emit null pointer directly.
5013       llvm::Value *EventWaitList = nullptr;
5014       if (E->getArg(4)->isNullPointerConstant(
5015               getContext(), Expr::NPC_ValueDependentIsNotNull)) {
5016         EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy);
5017       } else {
5018         EventWaitList = E->getArg(4)->getType()->isArrayType()
5019                         ? EmitArrayToPointerDecay(E->getArg(4)).getPointer()
5020                         : EmitScalarExpr(E->getArg(4));
5021         // Convert to generic address space.
5022         EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy);
5023       }
5024       llvm::Value *EventRet = nullptr;
5025       if (E->getArg(5)->isNullPointerConstant(
5026               getContext(), Expr::NPC_ValueDependentIsNotNull)) {
5027         EventRet = llvm::ConstantPointerNull::get(EventPtrTy);
5028       } else {
5029         EventRet =
5030             Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy);
5031       }
5032 
5033       auto Info =
5034           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
5035       llvm::Value *Kernel =
5036           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
5037       llvm::Value *Block =
5038           Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5039 
5040       std::vector<llvm::Type *> ArgTys = {
5041           QueueTy,    Int32Ty,    RangeTy,          Int32Ty,
5042           EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy};
5043 
5044       std::vector<llvm::Value *> Args = {Queue,     Flags,         Range,
5045                                          NumEvents, EventWaitList, EventRet,
5046                                          Kernel,    Block};
5047 
5048       if (NumArgs == 7) {
5049         // Has events but no variadics.
5050         Name = "__enqueue_kernel_basic_events";
5051         llvm::FunctionType *FTy = llvm::FunctionType::get(
5052             Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5053         return RValue::get(
5054             EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5055                             llvm::ArrayRef<llvm::Value *>(Args)));
5056       }
5057       // Has event info and variadics
5058       // Pass the number of variadics to the runtime function too.
5059       Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
5060       ArgTys.push_back(Int32Ty);
5061       Name = "__enqueue_kernel_events_varargs";
5062 
5063       llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
5064       std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7);
5065       Args.push_back(ElemPtr);
5066       ArgTys.push_back(ElemPtr->getType());
5067 
5068       llvm::FunctionType *FTy = llvm::FunctionType::get(
5069           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5070       auto Call =
5071           RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5072                                       llvm::ArrayRef<llvm::Value *>(Args)));
5073       if (TmpSize)
5074         EmitLifetimeEnd(TmpSize, TmpPtr);
5075       return Call;
5076     }
5077     [[fallthrough]];
5078   }
5079   // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
5080   // parameter.
5081   case Builtin::BIget_kernel_work_group_size: {
5082     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
5083         getContext().getTargetAddressSpace(LangAS::opencl_generic));
5084     auto Info =
5085         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
5086     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
5087     Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5088     return RValue::get(EmitRuntimeCall(
5089         CGM.CreateRuntimeFunction(
5090             llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
5091                                     false),
5092             "__get_kernel_work_group_size_impl"),
5093         {Kernel, Arg}));
5094   }
5095   case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
5096     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
5097         getContext().getTargetAddressSpace(LangAS::opencl_generic));
5098     auto Info =
5099         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
5100     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
5101     Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5102     return RValue::get(EmitRuntimeCall(
5103         CGM.CreateRuntimeFunction(
5104             llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
5105                                     false),
5106             "__get_kernel_preferred_work_group_size_multiple_impl"),
5107         {Kernel, Arg}));
5108   }
5109   case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
5110   case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
5111     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
5112         getContext().getTargetAddressSpace(LangAS::opencl_generic));
5113     LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
5114     llvm::Value *NDRange = NDRangeL.getAddress(*this).getPointer();
5115     auto Info =
5116         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
5117     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
5118     Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5119     const char *Name =
5120         BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
5121             ? "__get_kernel_max_sub_group_size_for_ndrange_impl"
5122             : "__get_kernel_sub_group_count_for_ndrange_impl";
5123     return RValue::get(EmitRuntimeCall(
5124         CGM.CreateRuntimeFunction(
5125             llvm::FunctionType::get(
5126                 IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
5127                 false),
5128             Name),
5129         {NDRange, Kernel, Block}));
5130   }
5131 
5132   case Builtin::BI__builtin_store_half:
5133   case Builtin::BI__builtin_store_halff: {
5134     Value *Val = EmitScalarExpr(E->getArg(0));
5135     Address Address = EmitPointerWithAlignment(E->getArg(1));
5136     Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
5137     Builder.CreateStore(HalfVal, Address);
5138     return RValue::get(nullptr);
5139   }
5140   case Builtin::BI__builtin_load_half: {
5141     Address Address = EmitPointerWithAlignment(E->getArg(0));
5142     Value *HalfVal = Builder.CreateLoad(Address);
5143     return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
5144   }
5145   case Builtin::BI__builtin_load_halff: {
5146     Address Address = EmitPointerWithAlignment(E->getArg(0));
5147     Value *HalfVal = Builder.CreateLoad(Address);
5148     return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
5149   }
5150   case Builtin::BIprintf:
5151     if (getTarget().getTriple().isNVPTX() ||
5152         getTarget().getTriple().isAMDGCN()) {
5153       if (getLangOpts().OpenMPIsDevice)
5154         return EmitOpenMPDevicePrintfCallExpr(E);
5155       if (getTarget().getTriple().isNVPTX())
5156         return EmitNVPTXDevicePrintfCallExpr(E);
5157       if (getTarget().getTriple().isAMDGCN() && getLangOpts().HIP)
5158         return EmitAMDGPUDevicePrintfCallExpr(E);
5159     }
5160 
5161     break;
5162   case Builtin::BI__builtin_canonicalize:
5163   case Builtin::BI__builtin_canonicalizef:
5164   case Builtin::BI__builtin_canonicalizef16:
5165   case Builtin::BI__builtin_canonicalizel:
5166     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize));
5167 
5168   case Builtin::BI__builtin_thread_pointer: {
5169     if (!getContext().getTargetInfo().isTLSSupported())
5170       CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
5171     // Fall through - it's already mapped to the intrinsic by ClangBuiltin.
5172     break;
5173   }
5174   case Builtin::BI__builtin_os_log_format:
5175     return emitBuiltinOSLogFormat(*E);
5176 
5177   case Builtin::BI__xray_customevent: {
5178     if (!ShouldXRayInstrumentFunction())
5179       return RValue::getIgnored();
5180 
5181     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
5182             XRayInstrKind::Custom))
5183       return RValue::getIgnored();
5184 
5185     if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
5186       if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
5187         return RValue::getIgnored();
5188 
5189     Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
5190     auto FTy = F->getFunctionType();
5191     auto Arg0 = E->getArg(0);
5192     auto Arg0Val = EmitScalarExpr(Arg0);
5193     auto Arg0Ty = Arg0->getType();
5194     auto PTy0 = FTy->getParamType(0);
5195     if (PTy0 != Arg0Val->getType()) {
5196       if (Arg0Ty->isArrayType())
5197         Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer();
5198       else
5199         Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
5200     }
5201     auto Arg1 = EmitScalarExpr(E->getArg(1));
5202     auto PTy1 = FTy->getParamType(1);
5203     if (PTy1 != Arg1->getType())
5204       Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
5205     return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
5206   }
5207 
5208   case Builtin::BI__xray_typedevent: {
5209     // TODO: There should be a way to always emit events even if the current
5210     // function is not instrumented. Losing events in a stream can cripple
5211     // a trace.
5212     if (!ShouldXRayInstrumentFunction())
5213       return RValue::getIgnored();
5214 
5215     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
5216             XRayInstrKind::Typed))
5217       return RValue::getIgnored();
5218 
5219     if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
5220       if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents())
5221         return RValue::getIgnored();
5222 
5223     Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent);
5224     auto FTy = F->getFunctionType();
5225     auto Arg0 = EmitScalarExpr(E->getArg(0));
5226     auto PTy0 = FTy->getParamType(0);
5227     if (PTy0 != Arg0->getType())
5228       Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0);
5229     auto Arg1 = E->getArg(1);
5230     auto Arg1Val = EmitScalarExpr(Arg1);
5231     auto Arg1Ty = Arg1->getType();
5232     auto PTy1 = FTy->getParamType(1);
5233     if (PTy1 != Arg1Val->getType()) {
5234       if (Arg1Ty->isArrayType())
5235         Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer();
5236       else
5237         Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1);
5238     }
5239     auto Arg2 = EmitScalarExpr(E->getArg(2));
5240     auto PTy2 = FTy->getParamType(2);
5241     if (PTy2 != Arg2->getType())
5242       Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2);
5243     return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2}));
5244   }
5245 
5246   case Builtin::BI__builtin_ms_va_start:
5247   case Builtin::BI__builtin_ms_va_end:
5248     return RValue::get(
5249         EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
5250                        BuiltinID == Builtin::BI__builtin_ms_va_start));
5251 
5252   case Builtin::BI__builtin_ms_va_copy: {
5253     // Lower this manually. We can't reliably determine whether or not any
5254     // given va_copy() is for a Win64 va_list from the calling convention
5255     // alone, because it's legal to do this from a System V ABI function.
5256     // With opaque pointer types, we won't have enough information in LLVM
5257     // IR to determine this from the argument types, either. Best to do it
5258     // now, while we have enough information.
5259     Address DestAddr = EmitMSVAListRef(E->getArg(0));
5260     Address SrcAddr = EmitMSVAListRef(E->getArg(1));
5261 
5262     llvm::Type *BPP = Int8PtrPtrTy;
5263 
5264     DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
5265                        Int8PtrTy, DestAddr.getAlignment());
5266     SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
5267                       Int8PtrTy, SrcAddr.getAlignment());
5268 
5269     Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
5270     return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
5271   }
5272 
5273   case Builtin::BI__builtin_get_device_side_mangled_name: {
5274     auto Name = CGM.getCUDARuntime().getDeviceSideName(
5275         cast<DeclRefExpr>(E->getArg(0)->IgnoreImpCasts())->getDecl());
5276     auto Str = CGM.GetAddrOfConstantCString(Name, "");
5277     llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0),
5278                                llvm::ConstantInt::get(SizeTy, 0)};
5279     auto *Ptr = llvm::ConstantExpr::getGetElementPtr(Str.getElementType(),
5280                                                      Str.getPointer(), Zeros);
5281     return RValue::get(Ptr);
5282   }
5283   }
5284 
5285   // If this is an alias for a lib function (e.g. __builtin_sin), emit
5286   // the call using the normal call path, but using the unmangled
5287   // version of the function name.
5288   if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
5289     return emitLibraryCall(*this, FD, E,
5290                            CGM.getBuiltinLibFunction(FD, BuiltinID));
5291 
5292   // If this is a predefined lib function (e.g. malloc), emit the call
5293   // using exactly the normal call path.
5294   if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
5295     return emitLibraryCall(*this, FD, E,
5296                       cast<llvm::Constant>(EmitScalarExpr(E->getCallee())));
5297 
5298   // Check that a call to a target specific builtin has the correct target
5299   // features.
5300   // This is down here to avoid non-target specific builtins, however, if
5301   // generic builtins start to require generic target features then we
5302   // can move this up to the beginning of the function.
5303   checkTargetFeatures(E, FD);
5304 
5305   if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID))
5306     LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth);
5307 
5308   // See if we have a target specific intrinsic.
5309   StringRef Name = getContext().BuiltinInfo.getName(BuiltinID);
5310   Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
5311   StringRef Prefix =
5312       llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
5313   if (!Prefix.empty()) {
5314     IntrinsicID = Intrinsic::getIntrinsicForClangBuiltin(Prefix.data(), Name);
5315     // NOTE we don't need to perform a compatibility flag check here since the
5316     // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
5317     // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
5318     if (IntrinsicID == Intrinsic::not_intrinsic)
5319       IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
5320   }
5321 
5322   if (IntrinsicID != Intrinsic::not_intrinsic) {
5323     SmallVector<Value*, 16> Args;
5324 
5325     // Find out if any arguments are required to be integer constant
5326     // expressions.
5327     unsigned ICEArguments = 0;
5328     ASTContext::GetBuiltinTypeError Error;
5329     getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
5330     assert(Error == ASTContext::GE_None && "Should not codegen an error");
5331 
5332     Function *F = CGM.getIntrinsic(IntrinsicID);
5333     llvm::FunctionType *FTy = F->getFunctionType();
5334 
5335     for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
5336       Value *ArgValue;
5337       // If this is a normal argument, just emit it as a scalar.
5338       if ((ICEArguments & (1 << i)) == 0) {
5339         ArgValue = EmitScalarExpr(E->getArg(i));
5340       } else {
5341         // If this is required to be a constant, constant fold it so that we
5342         // know that the generated intrinsic gets a ConstantInt.
5343         ArgValue = llvm::ConstantInt::get(
5344             getLLVMContext(),
5345             *E->getArg(i)->getIntegerConstantExpr(getContext()));
5346       }
5347 
5348       // If the intrinsic arg type is different from the builtin arg type
5349       // we need to do a bit cast.
5350       llvm::Type *PTy = FTy->getParamType(i);
5351       if (PTy != ArgValue->getType()) {
5352         // XXX - vector of pointers?
5353         if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) {
5354           if (PtrTy->getAddressSpace() !=
5355               ArgValue->getType()->getPointerAddressSpace()) {
5356             ArgValue = Builder.CreateAddrSpaceCast(
5357               ArgValue,
5358               ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace()));
5359           }
5360         }
5361 
5362         assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
5363                "Must be able to losslessly bit cast to param");
5364         // Cast vector type (e.g., v256i32) to x86_amx, this only happen
5365         // in amx intrinsics.
5366         if (PTy->isX86_AMXTy())
5367           ArgValue = Builder.CreateIntrinsic(Intrinsic::x86_cast_vector_to_tile,
5368                                              {ArgValue->getType()}, {ArgValue});
5369         else
5370           ArgValue = Builder.CreateBitCast(ArgValue, PTy);
5371       }
5372 
5373       Args.push_back(ArgValue);
5374     }
5375 
5376     Value *V = Builder.CreateCall(F, Args);
5377     QualType BuiltinRetType = E->getType();
5378 
5379     llvm::Type *RetTy = VoidTy;
5380     if (!BuiltinRetType->isVoidType())
5381       RetTy = ConvertType(BuiltinRetType);
5382 
5383     if (RetTy != V->getType()) {
5384       // XXX - vector of pointers?
5385       if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) {
5386         if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) {
5387           V = Builder.CreateAddrSpaceCast(
5388             V, V->getType()->getPointerTo(PtrTy->getAddressSpace()));
5389         }
5390       }
5391 
5392       assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
5393              "Must be able to losslessly bit cast result type");
5394       // Cast x86_amx to vector type (e.g., v256i32), this only happen
5395       // in amx intrinsics.
5396       if (V->getType()->isX86_AMXTy())
5397         V = Builder.CreateIntrinsic(Intrinsic::x86_cast_tile_to_vector, {RetTy},
5398                                     {V});
5399       else
5400         V = Builder.CreateBitCast(V, RetTy);
5401     }
5402 
5403     if (RetTy->isVoidTy())
5404       return RValue::get(nullptr);
5405 
5406     return RValue::get(V);
5407   }
5408 
5409   // Some target-specific builtins can have aggregate return values, e.g.
5410   // __builtin_arm_mve_vld2q_u32. So if the result is an aggregate, force
5411   // ReturnValue to be non-null, so that the target-specific emission code can
5412   // always just emit into it.
5413   TypeEvaluationKind EvalKind = getEvaluationKind(E->getType());
5414   if (EvalKind == TEK_Aggregate && ReturnValue.isNull()) {
5415     Address DestPtr = CreateMemTemp(E->getType(), "agg.tmp");
5416     ReturnValue = ReturnValueSlot(DestPtr, false);
5417   }
5418 
5419   // Now see if we can emit a target-specific builtin.
5420   if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) {
5421     switch (EvalKind) {
5422     case TEK_Scalar:
5423       if (V->getType()->isVoidTy())
5424         return RValue::get(nullptr);
5425       return RValue::get(V);
5426     case TEK_Aggregate:
5427       return RValue::getAggregate(ReturnValue.getValue(),
5428                                   ReturnValue.isVolatile());
5429     case TEK_Complex:
5430       llvm_unreachable("No current target builtin returns complex");
5431     }
5432     llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr");
5433   }
5434 
5435   ErrorUnsupported(E, "builtin function");
5436 
5437   // Unknown builtin, for now just dump it out and return undef.
5438   return GetUndefRValue(E->getType());
5439 }
5440 
5441 static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
5442                                         unsigned BuiltinID, const CallExpr *E,
5443                                         ReturnValueSlot ReturnValue,
5444                                         llvm::Triple::ArchType Arch) {
5445   switch (Arch) {
5446   case llvm::Triple::arm:
5447   case llvm::Triple::armeb:
5448   case llvm::Triple::thumb:
5449   case llvm::Triple::thumbeb:
5450     return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch);
5451   case llvm::Triple::aarch64:
5452   case llvm::Triple::aarch64_32:
5453   case llvm::Triple::aarch64_be:
5454     return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
5455   case llvm::Triple::bpfeb:
5456   case llvm::Triple::bpfel:
5457     return CGF->EmitBPFBuiltinExpr(BuiltinID, E);
5458   case llvm::Triple::x86:
5459   case llvm::Triple::x86_64:
5460     return CGF->EmitX86BuiltinExpr(BuiltinID, E);
5461   case llvm::Triple::ppc:
5462   case llvm::Triple::ppcle:
5463   case llvm::Triple::ppc64:
5464   case llvm::Triple::ppc64le:
5465     return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
5466   case llvm::Triple::r600:
5467   case llvm::Triple::amdgcn:
5468     return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
5469   case llvm::Triple::systemz:
5470     return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
5471   case llvm::Triple::nvptx:
5472   case llvm::Triple::nvptx64:
5473     return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
5474   case llvm::Triple::wasm32:
5475   case llvm::Triple::wasm64:
5476     return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
5477   case llvm::Triple::hexagon:
5478     return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
5479   case llvm::Triple::riscv32:
5480   case llvm::Triple::riscv64:
5481     return CGF->EmitRISCVBuiltinExpr(BuiltinID, E, ReturnValue);
5482   case llvm::Triple::loongarch32:
5483   case llvm::Triple::loongarch64:
5484     return CGF->EmitLoongArchBuiltinExpr(BuiltinID, E);
5485   default:
5486     return nullptr;
5487   }
5488 }
5489 
5490 Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
5491                                               const CallExpr *E,
5492                                               ReturnValueSlot ReturnValue) {
5493   if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
5494     assert(getContext().getAuxTargetInfo() && "Missing aux target info");
5495     return EmitTargetArchBuiltinExpr(
5496         this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
5497         ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch());
5498   }
5499 
5500   return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue,
5501                                    getTarget().getTriple().getArch());
5502 }
5503 
5504 static llvm::FixedVectorType *GetNeonType(CodeGenFunction *CGF,
5505                                           NeonTypeFlags TypeFlags,
5506                                           bool HasLegalHalfType = true,
5507                                           bool V1Ty = false,
5508                                           bool AllowBFloatArgsAndRet = true) {
5509   int IsQuad = TypeFlags.isQuad();
5510   switch (TypeFlags.getEltType()) {
5511   case NeonTypeFlags::Int8:
5512   case NeonTypeFlags::Poly8:
5513     return llvm::FixedVectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
5514   case NeonTypeFlags::Int16:
5515   case NeonTypeFlags::Poly16:
5516     return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5517   case NeonTypeFlags::BFloat16:
5518     if (AllowBFloatArgsAndRet)
5519       return llvm::FixedVectorType::get(CGF->BFloatTy, V1Ty ? 1 : (4 << IsQuad));
5520     else
5521       return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5522   case NeonTypeFlags::Float16:
5523     if (HasLegalHalfType)
5524       return llvm::FixedVectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
5525     else
5526       return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5527   case NeonTypeFlags::Int32:
5528     return llvm::FixedVectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
5529   case NeonTypeFlags::Int64:
5530   case NeonTypeFlags::Poly64:
5531     return llvm::FixedVectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
5532   case NeonTypeFlags::Poly128:
5533     // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
5534     // There is a lot of i128 and f128 API missing.
5535     // so we use v16i8 to represent poly128 and get pattern matched.
5536     return llvm::FixedVectorType::get(CGF->Int8Ty, 16);
5537   case NeonTypeFlags::Float32:
5538     return llvm::FixedVectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
5539   case NeonTypeFlags::Float64:
5540     return llvm::FixedVectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
5541   }
5542   llvm_unreachable("Unknown vector element type!");
5543 }
5544 
5545 static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
5546                                           NeonTypeFlags IntTypeFlags) {
5547   int IsQuad = IntTypeFlags.isQuad();
5548   switch (IntTypeFlags.getEltType()) {
5549   case NeonTypeFlags::Int16:
5550     return llvm::FixedVectorType::get(CGF->HalfTy, (4 << IsQuad));
5551   case NeonTypeFlags::Int32:
5552     return llvm::FixedVectorType::get(CGF->FloatTy, (2 << IsQuad));
5553   case NeonTypeFlags::Int64:
5554     return llvm::FixedVectorType::get(CGF->DoubleTy, (1 << IsQuad));
5555   default:
5556     llvm_unreachable("Type can't be converted to floating-point!");
5557   }
5558 }
5559 
5560 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C,
5561                                       const ElementCount &Count) {
5562   Value *SV = llvm::ConstantVector::getSplat(Count, C);
5563   return Builder.CreateShuffleVector(V, V, SV, "lane");
5564 }
5565 
5566 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
5567   ElementCount EC = cast<llvm::VectorType>(V->getType())->getElementCount();
5568   return EmitNeonSplat(V, C, EC);
5569 }
5570 
5571 Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
5572                                      const char *name,
5573                                      unsigned shift, bool rightshift) {
5574   unsigned j = 0;
5575   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
5576        ai != ae; ++ai, ++j) {
5577     if (F->isConstrainedFPIntrinsic())
5578       if (ai->getType()->isMetadataTy())
5579         continue;
5580     if (shift > 0 && shift == j)
5581       Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
5582     else
5583       Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
5584   }
5585 
5586   if (F->isConstrainedFPIntrinsic())
5587     return Builder.CreateConstrainedFPCall(F, Ops, name);
5588   else
5589     return Builder.CreateCall(F, Ops, name);
5590 }
5591 
5592 Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
5593                                             bool neg) {
5594   int SV = cast<ConstantInt>(V)->getSExtValue();
5595   return ConstantInt::get(Ty, neg ? -SV : SV);
5596 }
5597 
5598 // Right-shift a vector by a constant.
5599 Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
5600                                           llvm::Type *Ty, bool usgn,
5601                                           const char *name) {
5602   llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
5603 
5604   int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
5605   int EltSize = VTy->getScalarSizeInBits();
5606 
5607   Vec = Builder.CreateBitCast(Vec, Ty);
5608 
5609   // lshr/ashr are undefined when the shift amount is equal to the vector
5610   // element size.
5611   if (ShiftAmt == EltSize) {
5612     if (usgn) {
5613       // Right-shifting an unsigned value by its size yields 0.
5614       return llvm::ConstantAggregateZero::get(VTy);
5615     } else {
5616       // Right-shifting a signed value by its size is equivalent
5617       // to a shift of size-1.
5618       --ShiftAmt;
5619       Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
5620     }
5621   }
5622 
5623   Shift = EmitNeonShiftVector(Shift, Ty, false);
5624   if (usgn)
5625     return Builder.CreateLShr(Vec, Shift, name);
5626   else
5627     return Builder.CreateAShr(Vec, Shift, name);
5628 }
5629 
5630 enum {
5631   AddRetType = (1 << 0),
5632   Add1ArgType = (1 << 1),
5633   Add2ArgTypes = (1 << 2),
5634 
5635   VectorizeRetType = (1 << 3),
5636   VectorizeArgTypes = (1 << 4),
5637 
5638   InventFloatType = (1 << 5),
5639   UnsignedAlts = (1 << 6),
5640 
5641   Use64BitVectors = (1 << 7),
5642   Use128BitVectors = (1 << 8),
5643 
5644   Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
5645   VectorRet = AddRetType | VectorizeRetType,
5646   VectorRetGetArgs01 =
5647       AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
5648   FpCmpzModifiers =
5649       AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
5650 };
5651 
5652 namespace {
5653 struct ARMVectorIntrinsicInfo {
5654   const char *NameHint;
5655   unsigned BuiltinID;
5656   unsigned LLVMIntrinsic;
5657   unsigned AltLLVMIntrinsic;
5658   uint64_t TypeModifier;
5659 
5660   bool operator<(unsigned RHSBuiltinID) const {
5661     return BuiltinID < RHSBuiltinID;
5662   }
5663   bool operator<(const ARMVectorIntrinsicInfo &TE) const {
5664     return BuiltinID < TE.BuiltinID;
5665   }
5666 };
5667 } // end anonymous namespace
5668 
5669 #define NEONMAP0(NameBase) \
5670   { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
5671 
5672 #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
5673   { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
5674       Intrinsic::LLVMIntrinsic, 0, TypeModifier }
5675 
5676 #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
5677   { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
5678       Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
5679       TypeModifier }
5680 
5681 static const ARMVectorIntrinsicInfo ARMSIMDIntrinsicMap [] = {
5682   NEONMAP1(__a32_vcvt_bf16_f32, arm_neon_vcvtfp2bf, 0),
5683   NEONMAP0(splat_lane_v),
5684   NEONMAP0(splat_laneq_v),
5685   NEONMAP0(splatq_lane_v),
5686   NEONMAP0(splatq_laneq_v),
5687   NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
5688   NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
5689   NEONMAP1(vabs_v, arm_neon_vabs, 0),
5690   NEONMAP1(vabsq_v, arm_neon_vabs, 0),
5691   NEONMAP0(vadd_v),
5692   NEONMAP0(vaddhn_v),
5693   NEONMAP0(vaddq_v),
5694   NEONMAP1(vaesdq_u8, arm_neon_aesd, 0),
5695   NEONMAP1(vaeseq_u8, arm_neon_aese, 0),
5696   NEONMAP1(vaesimcq_u8, arm_neon_aesimc, 0),
5697   NEONMAP1(vaesmcq_u8, arm_neon_aesmc, 0),
5698   NEONMAP1(vbfdot_f32, arm_neon_bfdot, 0),
5699   NEONMAP1(vbfdotq_f32, arm_neon_bfdot, 0),
5700   NEONMAP1(vbfmlalbq_f32, arm_neon_bfmlalb, 0),
5701   NEONMAP1(vbfmlaltq_f32, arm_neon_bfmlalt, 0),
5702   NEONMAP1(vbfmmlaq_f32, arm_neon_bfmmla, 0),
5703   NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
5704   NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
5705   NEONMAP1(vcadd_rot270_f16, arm_neon_vcadd_rot270, Add1ArgType),
5706   NEONMAP1(vcadd_rot270_f32, arm_neon_vcadd_rot270, Add1ArgType),
5707   NEONMAP1(vcadd_rot90_f16, arm_neon_vcadd_rot90, Add1ArgType),
5708   NEONMAP1(vcadd_rot90_f32, arm_neon_vcadd_rot90, Add1ArgType),
5709   NEONMAP1(vcaddq_rot270_f16, arm_neon_vcadd_rot270, Add1ArgType),
5710   NEONMAP1(vcaddq_rot270_f32, arm_neon_vcadd_rot270, Add1ArgType),
5711   NEONMAP1(vcaddq_rot270_f64, arm_neon_vcadd_rot270, Add1ArgType),
5712   NEONMAP1(vcaddq_rot90_f16, arm_neon_vcadd_rot90, Add1ArgType),
5713   NEONMAP1(vcaddq_rot90_f32, arm_neon_vcadd_rot90, Add1ArgType),
5714   NEONMAP1(vcaddq_rot90_f64, arm_neon_vcadd_rot90, Add1ArgType),
5715   NEONMAP1(vcage_v, arm_neon_vacge, 0),
5716   NEONMAP1(vcageq_v, arm_neon_vacge, 0),
5717   NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
5718   NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
5719   NEONMAP1(vcale_v, arm_neon_vacge, 0),
5720   NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
5721   NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
5722   NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
5723   NEONMAP0(vceqz_v),
5724   NEONMAP0(vceqzq_v),
5725   NEONMAP0(vcgez_v),
5726   NEONMAP0(vcgezq_v),
5727   NEONMAP0(vcgtz_v),
5728   NEONMAP0(vcgtzq_v),
5729   NEONMAP0(vclez_v),
5730   NEONMAP0(vclezq_v),
5731   NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
5732   NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
5733   NEONMAP0(vcltz_v),
5734   NEONMAP0(vcltzq_v),
5735   NEONMAP1(vclz_v, ctlz, Add1ArgType),
5736   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
5737   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
5738   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
5739   NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
5740   NEONMAP0(vcvt_f16_s16),
5741   NEONMAP0(vcvt_f16_u16),
5742   NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
5743   NEONMAP0(vcvt_f32_v),
5744   NEONMAP1(vcvt_n_f16_s16, arm_neon_vcvtfxs2fp, 0),
5745   NEONMAP1(vcvt_n_f16_u16, arm_neon_vcvtfxu2fp, 0),
5746   NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5747   NEONMAP1(vcvt_n_s16_f16, arm_neon_vcvtfp2fxs, 0),
5748   NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
5749   NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
5750   NEONMAP1(vcvt_n_u16_f16, arm_neon_vcvtfp2fxu, 0),
5751   NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
5752   NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
5753   NEONMAP0(vcvt_s16_f16),
5754   NEONMAP0(vcvt_s32_v),
5755   NEONMAP0(vcvt_s64_v),
5756   NEONMAP0(vcvt_u16_f16),
5757   NEONMAP0(vcvt_u32_v),
5758   NEONMAP0(vcvt_u64_v),
5759   NEONMAP1(vcvta_s16_f16, arm_neon_vcvtas, 0),
5760   NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
5761   NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
5762   NEONMAP1(vcvta_u16_f16, arm_neon_vcvtau, 0),
5763   NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
5764   NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
5765   NEONMAP1(vcvtaq_s16_f16, arm_neon_vcvtas, 0),
5766   NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
5767   NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
5768   NEONMAP1(vcvtaq_u16_f16, arm_neon_vcvtau, 0),
5769   NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
5770   NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
5771   NEONMAP1(vcvth_bf16_f32, arm_neon_vcvtbfp2bf, 0),
5772   NEONMAP1(vcvtm_s16_f16, arm_neon_vcvtms, 0),
5773   NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
5774   NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
5775   NEONMAP1(vcvtm_u16_f16, arm_neon_vcvtmu, 0),
5776   NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
5777   NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
5778   NEONMAP1(vcvtmq_s16_f16, arm_neon_vcvtms, 0),
5779   NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
5780   NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
5781   NEONMAP1(vcvtmq_u16_f16, arm_neon_vcvtmu, 0),
5782   NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
5783   NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
5784   NEONMAP1(vcvtn_s16_f16, arm_neon_vcvtns, 0),
5785   NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
5786   NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
5787   NEONMAP1(vcvtn_u16_f16, arm_neon_vcvtnu, 0),
5788   NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
5789   NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
5790   NEONMAP1(vcvtnq_s16_f16, arm_neon_vcvtns, 0),
5791   NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
5792   NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
5793   NEONMAP1(vcvtnq_u16_f16, arm_neon_vcvtnu, 0),
5794   NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
5795   NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
5796   NEONMAP1(vcvtp_s16_f16, arm_neon_vcvtps, 0),
5797   NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
5798   NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
5799   NEONMAP1(vcvtp_u16_f16, arm_neon_vcvtpu, 0),
5800   NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
5801   NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
5802   NEONMAP1(vcvtpq_s16_f16, arm_neon_vcvtps, 0),
5803   NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
5804   NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
5805   NEONMAP1(vcvtpq_u16_f16, arm_neon_vcvtpu, 0),
5806   NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
5807   NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
5808   NEONMAP0(vcvtq_f16_s16),
5809   NEONMAP0(vcvtq_f16_u16),
5810   NEONMAP0(vcvtq_f32_v),
5811   NEONMAP1(vcvtq_n_f16_s16, arm_neon_vcvtfxs2fp, 0),
5812   NEONMAP1(vcvtq_n_f16_u16, arm_neon_vcvtfxu2fp, 0),
5813   NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5814   NEONMAP1(vcvtq_n_s16_f16, arm_neon_vcvtfp2fxs, 0),
5815   NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
5816   NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
5817   NEONMAP1(vcvtq_n_u16_f16, arm_neon_vcvtfp2fxu, 0),
5818   NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
5819   NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
5820   NEONMAP0(vcvtq_s16_f16),
5821   NEONMAP0(vcvtq_s32_v),
5822   NEONMAP0(vcvtq_s64_v),
5823   NEONMAP0(vcvtq_u16_f16),
5824   NEONMAP0(vcvtq_u32_v),
5825   NEONMAP0(vcvtq_u64_v),
5826   NEONMAP1(vdot_s32, arm_neon_sdot, 0),
5827   NEONMAP1(vdot_u32, arm_neon_udot, 0),
5828   NEONMAP1(vdotq_s32, arm_neon_sdot, 0),
5829   NEONMAP1(vdotq_u32, arm_neon_udot, 0),
5830   NEONMAP0(vext_v),
5831   NEONMAP0(vextq_v),
5832   NEONMAP0(vfma_v),
5833   NEONMAP0(vfmaq_v),
5834   NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
5835   NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
5836   NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
5837   NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
5838   NEONMAP0(vld1_dup_v),
5839   NEONMAP1(vld1_v, arm_neon_vld1, 0),
5840   NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0),
5841   NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0),
5842   NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0),
5843   NEONMAP0(vld1q_dup_v),
5844   NEONMAP1(vld1q_v, arm_neon_vld1, 0),
5845   NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0),
5846   NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0),
5847   NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0),
5848   NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0),
5849   NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
5850   NEONMAP1(vld2_v, arm_neon_vld2, 0),
5851   NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0),
5852   NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
5853   NEONMAP1(vld2q_v, arm_neon_vld2, 0),
5854   NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0),
5855   NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
5856   NEONMAP1(vld3_v, arm_neon_vld3, 0),
5857   NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0),
5858   NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
5859   NEONMAP1(vld3q_v, arm_neon_vld3, 0),
5860   NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0),
5861   NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
5862   NEONMAP1(vld4_v, arm_neon_vld4, 0),
5863   NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0),
5864   NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
5865   NEONMAP1(vld4q_v, arm_neon_vld4, 0),
5866   NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
5867   NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
5868   NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
5869   NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
5870   NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
5871   NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
5872   NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
5873   NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
5874   NEONMAP1(vmmlaq_s32, arm_neon_smmla, 0),
5875   NEONMAP1(vmmlaq_u32, arm_neon_ummla, 0),
5876   NEONMAP0(vmovl_v),
5877   NEONMAP0(vmovn_v),
5878   NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
5879   NEONMAP0(vmull_v),
5880   NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
5881   NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
5882   NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
5883   NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
5884   NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
5885   NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
5886   NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
5887   NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
5888   NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
5889   NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
5890   NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
5891   NEONMAP2(vqadd_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
5892   NEONMAP2(vqaddq_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
5893   NEONMAP2(vqdmlal_v, arm_neon_vqdmull, sadd_sat, 0),
5894   NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, ssub_sat, 0),
5895   NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
5896   NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
5897   NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
5898   NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
5899   NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
5900   NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
5901   NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
5902   NEONMAP1(vqrdmlah_s16, arm_neon_vqrdmlah, Add1ArgType),
5903   NEONMAP1(vqrdmlah_s32, arm_neon_vqrdmlah, Add1ArgType),
5904   NEONMAP1(vqrdmlahq_s16, arm_neon_vqrdmlah, Add1ArgType),
5905   NEONMAP1(vqrdmlahq_s32, arm_neon_vqrdmlah, Add1ArgType),
5906   NEONMAP1(vqrdmlsh_s16, arm_neon_vqrdmlsh, Add1ArgType),
5907   NEONMAP1(vqrdmlsh_s32, arm_neon_vqrdmlsh, Add1ArgType),
5908   NEONMAP1(vqrdmlshq_s16, arm_neon_vqrdmlsh, Add1ArgType),
5909   NEONMAP1(vqrdmlshq_s32, arm_neon_vqrdmlsh, Add1ArgType),
5910   NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
5911   NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
5912   NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
5913   NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
5914   NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
5915   NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
5916   NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
5917   NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
5918   NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
5919   NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
5920   NEONMAP2(vqsub_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
5921   NEONMAP2(vqsubq_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
5922   NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
5923   NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
5924   NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
5925   NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
5926   NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
5927   NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
5928   NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
5929   NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
5930   NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
5931   NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
5932   NEONMAP0(vrndi_v),
5933   NEONMAP0(vrndiq_v),
5934   NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
5935   NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
5936   NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
5937   NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
5938   NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
5939   NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
5940   NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
5941   NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
5942   NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
5943   NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
5944   NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
5945   NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
5946   NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
5947   NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
5948   NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
5949   NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
5950   NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
5951   NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
5952   NEONMAP1(vsha1su0q_u32, arm_neon_sha1su0, 0),
5953   NEONMAP1(vsha1su1q_u32, arm_neon_sha1su1, 0),
5954   NEONMAP1(vsha256h2q_u32, arm_neon_sha256h2, 0),
5955   NEONMAP1(vsha256hq_u32, arm_neon_sha256h, 0),
5956   NEONMAP1(vsha256su0q_u32, arm_neon_sha256su0, 0),
5957   NEONMAP1(vsha256su1q_u32, arm_neon_sha256su1, 0),
5958   NEONMAP0(vshl_n_v),
5959   NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
5960   NEONMAP0(vshll_n_v),
5961   NEONMAP0(vshlq_n_v),
5962   NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
5963   NEONMAP0(vshr_n_v),
5964   NEONMAP0(vshrn_n_v),
5965   NEONMAP0(vshrq_n_v),
5966   NEONMAP1(vst1_v, arm_neon_vst1, 0),
5967   NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0),
5968   NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0),
5969   NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0),
5970   NEONMAP1(vst1q_v, arm_neon_vst1, 0),
5971   NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0),
5972   NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0),
5973   NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0),
5974   NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
5975   NEONMAP1(vst2_v, arm_neon_vst2, 0),
5976   NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
5977   NEONMAP1(vst2q_v, arm_neon_vst2, 0),
5978   NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
5979   NEONMAP1(vst3_v, arm_neon_vst3, 0),
5980   NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
5981   NEONMAP1(vst3q_v, arm_neon_vst3, 0),
5982   NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
5983   NEONMAP1(vst4_v, arm_neon_vst4, 0),
5984   NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
5985   NEONMAP1(vst4q_v, arm_neon_vst4, 0),
5986   NEONMAP0(vsubhn_v),
5987   NEONMAP0(vtrn_v),
5988   NEONMAP0(vtrnq_v),
5989   NEONMAP0(vtst_v),
5990   NEONMAP0(vtstq_v),
5991   NEONMAP1(vusdot_s32, arm_neon_usdot, 0),
5992   NEONMAP1(vusdotq_s32, arm_neon_usdot, 0),
5993   NEONMAP1(vusmmlaq_s32, arm_neon_usmmla, 0),
5994   NEONMAP0(vuzp_v),
5995   NEONMAP0(vuzpq_v),
5996   NEONMAP0(vzip_v),
5997   NEONMAP0(vzipq_v)
5998 };
5999 
6000 static const ARMVectorIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
6001   NEONMAP1(__a64_vcvtq_low_bf16_f32, aarch64_neon_bfcvtn, 0),
6002   NEONMAP0(splat_lane_v),
6003   NEONMAP0(splat_laneq_v),
6004   NEONMAP0(splatq_lane_v),
6005   NEONMAP0(splatq_laneq_v),
6006   NEONMAP1(vabs_v, aarch64_neon_abs, 0),
6007   NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
6008   NEONMAP0(vadd_v),
6009   NEONMAP0(vaddhn_v),
6010   NEONMAP0(vaddq_p128),
6011   NEONMAP0(vaddq_v),
6012   NEONMAP1(vaesdq_u8, aarch64_crypto_aesd, 0),
6013   NEONMAP1(vaeseq_u8, aarch64_crypto_aese, 0),
6014   NEONMAP1(vaesimcq_u8, aarch64_crypto_aesimc, 0),
6015   NEONMAP1(vaesmcq_u8, aarch64_crypto_aesmc, 0),
6016   NEONMAP2(vbcaxq_s16, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6017   NEONMAP2(vbcaxq_s32, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6018   NEONMAP2(vbcaxq_s64, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6019   NEONMAP2(vbcaxq_s8, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6020   NEONMAP2(vbcaxq_u16, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6021   NEONMAP2(vbcaxq_u32, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6022   NEONMAP2(vbcaxq_u64, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6023   NEONMAP2(vbcaxq_u8, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6024   NEONMAP1(vbfdot_f32, aarch64_neon_bfdot, 0),
6025   NEONMAP1(vbfdotq_f32, aarch64_neon_bfdot, 0),
6026   NEONMAP1(vbfmlalbq_f32, aarch64_neon_bfmlalb, 0),
6027   NEONMAP1(vbfmlaltq_f32, aarch64_neon_bfmlalt, 0),
6028   NEONMAP1(vbfmmlaq_f32, aarch64_neon_bfmmla, 0),
6029   NEONMAP1(vcadd_rot270_f16, aarch64_neon_vcadd_rot270, Add1ArgType),
6030   NEONMAP1(vcadd_rot270_f32, aarch64_neon_vcadd_rot270, Add1ArgType),
6031   NEONMAP1(vcadd_rot90_f16, aarch64_neon_vcadd_rot90, Add1ArgType),
6032   NEONMAP1(vcadd_rot90_f32, aarch64_neon_vcadd_rot90, Add1ArgType),
6033   NEONMAP1(vcaddq_rot270_f16, aarch64_neon_vcadd_rot270, Add1ArgType),
6034   NEONMAP1(vcaddq_rot270_f32, aarch64_neon_vcadd_rot270, Add1ArgType),
6035   NEONMAP1(vcaddq_rot270_f64, aarch64_neon_vcadd_rot270, Add1ArgType),
6036   NEONMAP1(vcaddq_rot90_f16, aarch64_neon_vcadd_rot90, Add1ArgType),
6037   NEONMAP1(vcaddq_rot90_f32, aarch64_neon_vcadd_rot90, Add1ArgType),
6038   NEONMAP1(vcaddq_rot90_f64, aarch64_neon_vcadd_rot90, Add1ArgType),
6039   NEONMAP1(vcage_v, aarch64_neon_facge, 0),
6040   NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
6041   NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
6042   NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
6043   NEONMAP1(vcale_v, aarch64_neon_facge, 0),
6044   NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
6045   NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
6046   NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
6047   NEONMAP0(vceqz_v),
6048   NEONMAP0(vceqzq_v),
6049   NEONMAP0(vcgez_v),
6050   NEONMAP0(vcgezq_v),
6051   NEONMAP0(vcgtz_v),
6052   NEONMAP0(vcgtzq_v),
6053   NEONMAP0(vclez_v),
6054   NEONMAP0(vclezq_v),
6055   NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
6056   NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
6057   NEONMAP0(vcltz_v),
6058   NEONMAP0(vcltzq_v),
6059   NEONMAP1(vclz_v, ctlz, Add1ArgType),
6060   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
6061   NEONMAP1(vcmla_f16, aarch64_neon_vcmla_rot0, Add1ArgType),
6062   NEONMAP1(vcmla_f32, aarch64_neon_vcmla_rot0, Add1ArgType),
6063   NEONMAP1(vcmla_rot180_f16, aarch64_neon_vcmla_rot180, Add1ArgType),
6064   NEONMAP1(vcmla_rot180_f32, aarch64_neon_vcmla_rot180, Add1ArgType),
6065   NEONMAP1(vcmla_rot270_f16, aarch64_neon_vcmla_rot270, Add1ArgType),
6066   NEONMAP1(vcmla_rot270_f32, aarch64_neon_vcmla_rot270, Add1ArgType),
6067   NEONMAP1(vcmla_rot90_f16, aarch64_neon_vcmla_rot90, Add1ArgType),
6068   NEONMAP1(vcmla_rot90_f32, aarch64_neon_vcmla_rot90, Add1ArgType),
6069   NEONMAP1(vcmlaq_f16, aarch64_neon_vcmla_rot0, Add1ArgType),
6070   NEONMAP1(vcmlaq_f32, aarch64_neon_vcmla_rot0, Add1ArgType),
6071   NEONMAP1(vcmlaq_f64, aarch64_neon_vcmla_rot0, Add1ArgType),
6072   NEONMAP1(vcmlaq_rot180_f16, aarch64_neon_vcmla_rot180, Add1ArgType),
6073   NEONMAP1(vcmlaq_rot180_f32, aarch64_neon_vcmla_rot180, Add1ArgType),
6074   NEONMAP1(vcmlaq_rot180_f64, aarch64_neon_vcmla_rot180, Add1ArgType),
6075   NEONMAP1(vcmlaq_rot270_f16, aarch64_neon_vcmla_rot270, Add1ArgType),
6076   NEONMAP1(vcmlaq_rot270_f32, aarch64_neon_vcmla_rot270, Add1ArgType),
6077   NEONMAP1(vcmlaq_rot270_f64, aarch64_neon_vcmla_rot270, Add1ArgType),
6078   NEONMAP1(vcmlaq_rot90_f16, aarch64_neon_vcmla_rot90, Add1ArgType),
6079   NEONMAP1(vcmlaq_rot90_f32, aarch64_neon_vcmla_rot90, Add1ArgType),
6080   NEONMAP1(vcmlaq_rot90_f64, aarch64_neon_vcmla_rot90, Add1ArgType),
6081   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
6082   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
6083   NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
6084   NEONMAP0(vcvt_f16_s16),
6085   NEONMAP0(vcvt_f16_u16),
6086   NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
6087   NEONMAP0(vcvt_f32_v),
6088   NEONMAP1(vcvt_n_f16_s16, aarch64_neon_vcvtfxs2fp, 0),
6089   NEONMAP1(vcvt_n_f16_u16, aarch64_neon_vcvtfxu2fp, 0),
6090   NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6091   NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6092   NEONMAP1(vcvt_n_s16_f16, aarch64_neon_vcvtfp2fxs, 0),
6093   NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
6094   NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
6095   NEONMAP1(vcvt_n_u16_f16, aarch64_neon_vcvtfp2fxu, 0),
6096   NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
6097   NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
6098   NEONMAP0(vcvtq_f16_s16),
6099   NEONMAP0(vcvtq_f16_u16),
6100   NEONMAP0(vcvtq_f32_v),
6101   NEONMAP1(vcvtq_high_bf16_f32, aarch64_neon_bfcvtn2, 0),
6102   NEONMAP1(vcvtq_n_f16_s16, aarch64_neon_vcvtfxs2fp, 0),
6103   NEONMAP1(vcvtq_n_f16_u16, aarch64_neon_vcvtfxu2fp, 0),
6104   NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6105   NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6106   NEONMAP1(vcvtq_n_s16_f16, aarch64_neon_vcvtfp2fxs, 0),
6107   NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
6108   NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
6109   NEONMAP1(vcvtq_n_u16_f16, aarch64_neon_vcvtfp2fxu, 0),
6110   NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
6111   NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
6112   NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
6113   NEONMAP1(vdot_s32, aarch64_neon_sdot, 0),
6114   NEONMAP1(vdot_u32, aarch64_neon_udot, 0),
6115   NEONMAP1(vdotq_s32, aarch64_neon_sdot, 0),
6116   NEONMAP1(vdotq_u32, aarch64_neon_udot, 0),
6117   NEONMAP2(veor3q_s16, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6118   NEONMAP2(veor3q_s32, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6119   NEONMAP2(veor3q_s64, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6120   NEONMAP2(veor3q_s8, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6121   NEONMAP2(veor3q_u16, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6122   NEONMAP2(veor3q_u32, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6123   NEONMAP2(veor3q_u64, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6124   NEONMAP2(veor3q_u8, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6125   NEONMAP0(vext_v),
6126   NEONMAP0(vextq_v),
6127   NEONMAP0(vfma_v),
6128   NEONMAP0(vfmaq_v),
6129   NEONMAP1(vfmlal_high_f16, aarch64_neon_fmlal2, 0),
6130   NEONMAP1(vfmlal_low_f16, aarch64_neon_fmlal, 0),
6131   NEONMAP1(vfmlalq_high_f16, aarch64_neon_fmlal2, 0),
6132   NEONMAP1(vfmlalq_low_f16, aarch64_neon_fmlal, 0),
6133   NEONMAP1(vfmlsl_high_f16, aarch64_neon_fmlsl2, 0),
6134   NEONMAP1(vfmlsl_low_f16, aarch64_neon_fmlsl, 0),
6135   NEONMAP1(vfmlslq_high_f16, aarch64_neon_fmlsl2, 0),
6136   NEONMAP1(vfmlslq_low_f16, aarch64_neon_fmlsl, 0),
6137   NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
6138   NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
6139   NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
6140   NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
6141   NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0),
6142   NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0),
6143   NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0),
6144   NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0),
6145   NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0),
6146   NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0),
6147   NEONMAP1(vmmlaq_s32, aarch64_neon_smmla, 0),
6148   NEONMAP1(vmmlaq_u32, aarch64_neon_ummla, 0),
6149   NEONMAP0(vmovl_v),
6150   NEONMAP0(vmovn_v),
6151   NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
6152   NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
6153   NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
6154   NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
6155   NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
6156   NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
6157   NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
6158   NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
6159   NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
6160   NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
6161   NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
6162   NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
6163   NEONMAP1(vqdmulh_lane_v, aarch64_neon_sqdmulh_lane, 0),
6164   NEONMAP1(vqdmulh_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
6165   NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
6166   NEONMAP1(vqdmulhq_lane_v, aarch64_neon_sqdmulh_lane, 0),
6167   NEONMAP1(vqdmulhq_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
6168   NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
6169   NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
6170   NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
6171   NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
6172   NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
6173   NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
6174   NEONMAP1(vqrdmlah_s16, aarch64_neon_sqrdmlah, Add1ArgType),
6175   NEONMAP1(vqrdmlah_s32, aarch64_neon_sqrdmlah, Add1ArgType),
6176   NEONMAP1(vqrdmlahq_s16, aarch64_neon_sqrdmlah, Add1ArgType),
6177   NEONMAP1(vqrdmlahq_s32, aarch64_neon_sqrdmlah, Add1ArgType),
6178   NEONMAP1(vqrdmlsh_s16, aarch64_neon_sqrdmlsh, Add1ArgType),
6179   NEONMAP1(vqrdmlsh_s32, aarch64_neon_sqrdmlsh, Add1ArgType),
6180   NEONMAP1(vqrdmlshq_s16, aarch64_neon_sqrdmlsh, Add1ArgType),
6181   NEONMAP1(vqrdmlshq_s32, aarch64_neon_sqrdmlsh, Add1ArgType),
6182   NEONMAP1(vqrdmulh_lane_v, aarch64_neon_sqrdmulh_lane, 0),
6183   NEONMAP1(vqrdmulh_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
6184   NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
6185   NEONMAP1(vqrdmulhq_lane_v, aarch64_neon_sqrdmulh_lane, 0),
6186   NEONMAP1(vqrdmulhq_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
6187   NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
6188   NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
6189   NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
6190   NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
6191   NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
6192   NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
6193   NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
6194   NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
6195   NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
6196   NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
6197   NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
6198   NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
6199   NEONMAP1(vrax1q_u64, aarch64_crypto_rax1, 0),
6200   NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
6201   NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
6202   NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
6203   NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
6204   NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
6205   NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
6206   NEONMAP1(vrnd32x_f32, aarch64_neon_frint32x, Add1ArgType),
6207   NEONMAP1(vrnd32xq_f32, aarch64_neon_frint32x, Add1ArgType),
6208   NEONMAP1(vrnd32z_f32, aarch64_neon_frint32z, Add1ArgType),
6209   NEONMAP1(vrnd32zq_f32, aarch64_neon_frint32z, Add1ArgType),
6210   NEONMAP1(vrnd64x_f32, aarch64_neon_frint64x, Add1ArgType),
6211   NEONMAP1(vrnd64xq_f32, aarch64_neon_frint64x, Add1ArgType),
6212   NEONMAP1(vrnd64z_f32, aarch64_neon_frint64z, Add1ArgType),
6213   NEONMAP1(vrnd64zq_f32, aarch64_neon_frint64z, Add1ArgType),
6214   NEONMAP0(vrndi_v),
6215   NEONMAP0(vrndiq_v),
6216   NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
6217   NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
6218   NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
6219   NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
6220   NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
6221   NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
6222   NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
6223   NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
6224   NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
6225   NEONMAP1(vsha1su0q_u32, aarch64_crypto_sha1su0, 0),
6226   NEONMAP1(vsha1su1q_u32, aarch64_crypto_sha1su1, 0),
6227   NEONMAP1(vsha256h2q_u32, aarch64_crypto_sha256h2, 0),
6228   NEONMAP1(vsha256hq_u32, aarch64_crypto_sha256h, 0),
6229   NEONMAP1(vsha256su0q_u32, aarch64_crypto_sha256su0, 0),
6230   NEONMAP1(vsha256su1q_u32, aarch64_crypto_sha256su1, 0),
6231   NEONMAP1(vsha512h2q_u64, aarch64_crypto_sha512h2, 0),
6232   NEONMAP1(vsha512hq_u64, aarch64_crypto_sha512h, 0),
6233   NEONMAP1(vsha512su0q_u64, aarch64_crypto_sha512su0, 0),
6234   NEONMAP1(vsha512su1q_u64, aarch64_crypto_sha512su1, 0),
6235   NEONMAP0(vshl_n_v),
6236   NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
6237   NEONMAP0(vshll_n_v),
6238   NEONMAP0(vshlq_n_v),
6239   NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
6240   NEONMAP0(vshr_n_v),
6241   NEONMAP0(vshrn_n_v),
6242   NEONMAP0(vshrq_n_v),
6243   NEONMAP1(vsm3partw1q_u32, aarch64_crypto_sm3partw1, 0),
6244   NEONMAP1(vsm3partw2q_u32, aarch64_crypto_sm3partw2, 0),
6245   NEONMAP1(vsm3ss1q_u32, aarch64_crypto_sm3ss1, 0),
6246   NEONMAP1(vsm3tt1aq_u32, aarch64_crypto_sm3tt1a, 0),
6247   NEONMAP1(vsm3tt1bq_u32, aarch64_crypto_sm3tt1b, 0),
6248   NEONMAP1(vsm3tt2aq_u32, aarch64_crypto_sm3tt2a, 0),
6249   NEONMAP1(vsm3tt2bq_u32, aarch64_crypto_sm3tt2b, 0),
6250   NEONMAP1(vsm4ekeyq_u32, aarch64_crypto_sm4ekey, 0),
6251   NEONMAP1(vsm4eq_u32, aarch64_crypto_sm4e, 0),
6252   NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0),
6253   NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0),
6254   NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0),
6255   NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0),
6256   NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0),
6257   NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0),
6258   NEONMAP0(vsubhn_v),
6259   NEONMAP0(vtst_v),
6260   NEONMAP0(vtstq_v),
6261   NEONMAP1(vusdot_s32, aarch64_neon_usdot, 0),
6262   NEONMAP1(vusdotq_s32, aarch64_neon_usdot, 0),
6263   NEONMAP1(vusmmlaq_s32, aarch64_neon_usmmla, 0),
6264   NEONMAP1(vxarq_u64, aarch64_crypto_xar, 0),
6265 };
6266 
6267 static const ARMVectorIntrinsicInfo AArch64SISDIntrinsicMap[] = {
6268   NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
6269   NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
6270   NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
6271   NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
6272   NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
6273   NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
6274   NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
6275   NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
6276   NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
6277   NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6278   NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
6279   NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
6280   NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
6281   NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
6282   NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6283   NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6284   NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
6285   NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
6286   NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
6287   NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
6288   NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
6289   NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
6290   NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
6291   NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
6292   NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6293   NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6294   NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6295   NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6296   NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6297   NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6298   NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6299   NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6300   NEONMAP1(vcvtd_s64_f64, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6301   NEONMAP1(vcvtd_u64_f64, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6302   NEONMAP1(vcvth_bf16_f32, aarch64_neon_bfcvt, 0),
6303   NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6304   NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6305   NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6306   NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6307   NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6308   NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6309   NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6310   NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6311   NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6312   NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6313   NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6314   NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6315   NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6316   NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6317   NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6318   NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6319   NEONMAP1(vcvts_s32_f32, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6320   NEONMAP1(vcvts_u32_f32, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6321   NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
6322   NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6323   NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6324   NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6325   NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6326   NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
6327   NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
6328   NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6329   NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6330   NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
6331   NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
6332   NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6333   NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6334   NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6335   NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6336   NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
6337   NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
6338   NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6339   NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
6340   NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
6341   NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
6342   NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
6343   NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
6344   NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
6345   NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6346   NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6347   NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6348   NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6349   NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6350   NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6351   NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6352   NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6353   NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
6354   NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6355   NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
6356   NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
6357   NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
6358   NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
6359   NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
6360   NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
6361   NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
6362   NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
6363   NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
6364   NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
6365   NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
6366   NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
6367   NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
6368   NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
6369   NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
6370   NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
6371   NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
6372   NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
6373   NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
6374   NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
6375   NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
6376   NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
6377   NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
6378   NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
6379   NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
6380   NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
6381   NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
6382   NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
6383   NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
6384   NEONMAP1(vqrdmlahh_s16, aarch64_neon_sqrdmlah, Vectorize1ArgType | Use64BitVectors),
6385   NEONMAP1(vqrdmlahs_s32, aarch64_neon_sqrdmlah, Add1ArgType),
6386   NEONMAP1(vqrdmlshh_s16, aarch64_neon_sqrdmlsh, Vectorize1ArgType | Use64BitVectors),
6387   NEONMAP1(vqrdmlshs_s32, aarch64_neon_sqrdmlsh, Add1ArgType),
6388   NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
6389   NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
6390   NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
6391   NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
6392   NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
6393   NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
6394   NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
6395   NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
6396   NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
6397   NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
6398   NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
6399   NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
6400   NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
6401   NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
6402   NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
6403   NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
6404   NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
6405   NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
6406   NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
6407   NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6408   NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6409   NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6410   NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6411   NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
6412   NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
6413   NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6414   NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6415   NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6416   NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6417   NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
6418   NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
6419   NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
6420   NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
6421   NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
6422   NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
6423   NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
6424   NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
6425   NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
6426   NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
6427   NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
6428   NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
6429   NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
6430   NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
6431   NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
6432   NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
6433   NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
6434   NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
6435   NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
6436   NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
6437   NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
6438   NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
6439   NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
6440   NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
6441   NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
6442   NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
6443   NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
6444   NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
6445   NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
6446   NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
6447   NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
6448   NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
6449   NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
6450   NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
6451   NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
6452   NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
6453   NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
6454   NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
6455   NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
6456   NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
6457   NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
6458   NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
6459   NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
6460   NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
6461   NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
6462   NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
6463   NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
6464   NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
6465   NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
6466   NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
6467   NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
6468   NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
6469   // FP16 scalar intrinisics go here.
6470   NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType),
6471   NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6472   NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6473   NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6474   NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6475   NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6476   NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6477   NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6478   NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6479   NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6480   NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6481   NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6482   NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6483   NEONMAP1(vcvth_s32_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6484   NEONMAP1(vcvth_s64_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6485   NEONMAP1(vcvth_u32_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6486   NEONMAP1(vcvth_u64_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6487   NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6488   NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6489   NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6490   NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6491   NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6492   NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6493   NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6494   NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6495   NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6496   NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6497   NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6498   NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6499   NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType),
6500   NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType),
6501   NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType),
6502   NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType),
6503   NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType),
6504 };
6505 
6506 // Some intrinsics are equivalent for codegen.
6507 static const std::pair<unsigned, unsigned> NEONEquivalentIntrinsicMap[] = {
6508   { NEON::BI__builtin_neon_splat_lane_bf16, NEON::BI__builtin_neon_splat_lane_v, },
6509   { NEON::BI__builtin_neon_splat_laneq_bf16, NEON::BI__builtin_neon_splat_laneq_v, },
6510   { NEON::BI__builtin_neon_splatq_lane_bf16, NEON::BI__builtin_neon_splatq_lane_v, },
6511   { NEON::BI__builtin_neon_splatq_laneq_bf16, NEON::BI__builtin_neon_splatq_laneq_v, },
6512   { NEON::BI__builtin_neon_vabd_f16, NEON::BI__builtin_neon_vabd_v, },
6513   { NEON::BI__builtin_neon_vabdq_f16, NEON::BI__builtin_neon_vabdq_v, },
6514   { NEON::BI__builtin_neon_vabs_f16, NEON::BI__builtin_neon_vabs_v, },
6515   { NEON::BI__builtin_neon_vabsq_f16, NEON::BI__builtin_neon_vabsq_v, },
6516   { NEON::BI__builtin_neon_vbsl_f16, NEON::BI__builtin_neon_vbsl_v, },
6517   { NEON::BI__builtin_neon_vbslq_f16, NEON::BI__builtin_neon_vbslq_v, },
6518   { NEON::BI__builtin_neon_vcage_f16, NEON::BI__builtin_neon_vcage_v, },
6519   { NEON::BI__builtin_neon_vcageq_f16, NEON::BI__builtin_neon_vcageq_v, },
6520   { NEON::BI__builtin_neon_vcagt_f16, NEON::BI__builtin_neon_vcagt_v, },
6521   { NEON::BI__builtin_neon_vcagtq_f16, NEON::BI__builtin_neon_vcagtq_v, },
6522   { NEON::BI__builtin_neon_vcale_f16, NEON::BI__builtin_neon_vcale_v, },
6523   { NEON::BI__builtin_neon_vcaleq_f16, NEON::BI__builtin_neon_vcaleq_v, },
6524   { NEON::BI__builtin_neon_vcalt_f16, NEON::BI__builtin_neon_vcalt_v, },
6525   { NEON::BI__builtin_neon_vcaltq_f16, NEON::BI__builtin_neon_vcaltq_v, },
6526   { NEON::BI__builtin_neon_vceqz_f16, NEON::BI__builtin_neon_vceqz_v, },
6527   { NEON::BI__builtin_neon_vceqzq_f16, NEON::BI__builtin_neon_vceqzq_v, },
6528   { NEON::BI__builtin_neon_vcgez_f16, NEON::BI__builtin_neon_vcgez_v, },
6529   { NEON::BI__builtin_neon_vcgezq_f16, NEON::BI__builtin_neon_vcgezq_v, },
6530   { NEON::BI__builtin_neon_vcgtz_f16, NEON::BI__builtin_neon_vcgtz_v, },
6531   { NEON::BI__builtin_neon_vcgtzq_f16, NEON::BI__builtin_neon_vcgtzq_v, },
6532   { NEON::BI__builtin_neon_vclez_f16, NEON::BI__builtin_neon_vclez_v, },
6533   { NEON::BI__builtin_neon_vclezq_f16, NEON::BI__builtin_neon_vclezq_v, },
6534   { NEON::BI__builtin_neon_vcltz_f16, NEON::BI__builtin_neon_vcltz_v, },
6535   { NEON::BI__builtin_neon_vcltzq_f16, NEON::BI__builtin_neon_vcltzq_v, },
6536   { NEON::BI__builtin_neon_vext_f16, NEON::BI__builtin_neon_vext_v, },
6537   { NEON::BI__builtin_neon_vextq_f16, NEON::BI__builtin_neon_vextq_v, },
6538   { NEON::BI__builtin_neon_vfma_f16, NEON::BI__builtin_neon_vfma_v, },
6539   { NEON::BI__builtin_neon_vfma_lane_f16, NEON::BI__builtin_neon_vfma_lane_v, },
6540   { NEON::BI__builtin_neon_vfma_laneq_f16, NEON::BI__builtin_neon_vfma_laneq_v, },
6541   { NEON::BI__builtin_neon_vfmaq_f16, NEON::BI__builtin_neon_vfmaq_v, },
6542   { NEON::BI__builtin_neon_vfmaq_lane_f16, NEON::BI__builtin_neon_vfmaq_lane_v, },
6543   { NEON::BI__builtin_neon_vfmaq_laneq_f16, NEON::BI__builtin_neon_vfmaq_laneq_v, },
6544   { NEON::BI__builtin_neon_vld1_bf16_x2, NEON::BI__builtin_neon_vld1_x2_v },
6545   { NEON::BI__builtin_neon_vld1_bf16_x3, NEON::BI__builtin_neon_vld1_x3_v },
6546   { NEON::BI__builtin_neon_vld1_bf16_x4, NEON::BI__builtin_neon_vld1_x4_v },
6547   { NEON::BI__builtin_neon_vld1_bf16, NEON::BI__builtin_neon_vld1_v },
6548   { NEON::BI__builtin_neon_vld1_dup_bf16, NEON::BI__builtin_neon_vld1_dup_v },
6549   { NEON::BI__builtin_neon_vld1_lane_bf16, NEON::BI__builtin_neon_vld1_lane_v },
6550   { NEON::BI__builtin_neon_vld1q_bf16_x2, NEON::BI__builtin_neon_vld1q_x2_v },
6551   { NEON::BI__builtin_neon_vld1q_bf16_x3, NEON::BI__builtin_neon_vld1q_x3_v },
6552   { NEON::BI__builtin_neon_vld1q_bf16_x4, NEON::BI__builtin_neon_vld1q_x4_v },
6553   { NEON::BI__builtin_neon_vld1q_bf16, NEON::BI__builtin_neon_vld1q_v },
6554   { NEON::BI__builtin_neon_vld1q_dup_bf16, NEON::BI__builtin_neon_vld1q_dup_v },
6555   { NEON::BI__builtin_neon_vld1q_lane_bf16, NEON::BI__builtin_neon_vld1q_lane_v },
6556   { NEON::BI__builtin_neon_vld2_bf16, NEON::BI__builtin_neon_vld2_v },
6557   { NEON::BI__builtin_neon_vld2_dup_bf16, NEON::BI__builtin_neon_vld2_dup_v },
6558   { NEON::BI__builtin_neon_vld2_lane_bf16, NEON::BI__builtin_neon_vld2_lane_v },
6559   { NEON::BI__builtin_neon_vld2q_bf16, NEON::BI__builtin_neon_vld2q_v },
6560   { NEON::BI__builtin_neon_vld2q_dup_bf16, NEON::BI__builtin_neon_vld2q_dup_v },
6561   { NEON::BI__builtin_neon_vld2q_lane_bf16, NEON::BI__builtin_neon_vld2q_lane_v },
6562   { NEON::BI__builtin_neon_vld3_bf16, NEON::BI__builtin_neon_vld3_v },
6563   { NEON::BI__builtin_neon_vld3_dup_bf16, NEON::BI__builtin_neon_vld3_dup_v },
6564   { NEON::BI__builtin_neon_vld3_lane_bf16, NEON::BI__builtin_neon_vld3_lane_v },
6565   { NEON::BI__builtin_neon_vld3q_bf16, NEON::BI__builtin_neon_vld3q_v },
6566   { NEON::BI__builtin_neon_vld3q_dup_bf16, NEON::BI__builtin_neon_vld3q_dup_v },
6567   { NEON::BI__builtin_neon_vld3q_lane_bf16, NEON::BI__builtin_neon_vld3q_lane_v },
6568   { NEON::BI__builtin_neon_vld4_bf16, NEON::BI__builtin_neon_vld4_v },
6569   { NEON::BI__builtin_neon_vld4_dup_bf16, NEON::BI__builtin_neon_vld4_dup_v },
6570   { NEON::BI__builtin_neon_vld4_lane_bf16, NEON::BI__builtin_neon_vld4_lane_v },
6571   { NEON::BI__builtin_neon_vld4q_bf16, NEON::BI__builtin_neon_vld4q_v },
6572   { NEON::BI__builtin_neon_vld4q_dup_bf16, NEON::BI__builtin_neon_vld4q_dup_v },
6573   { NEON::BI__builtin_neon_vld4q_lane_bf16, NEON::BI__builtin_neon_vld4q_lane_v },
6574   { NEON::BI__builtin_neon_vmax_f16, NEON::BI__builtin_neon_vmax_v, },
6575   { NEON::BI__builtin_neon_vmaxnm_f16, NEON::BI__builtin_neon_vmaxnm_v, },
6576   { NEON::BI__builtin_neon_vmaxnmq_f16, NEON::BI__builtin_neon_vmaxnmq_v, },
6577   { NEON::BI__builtin_neon_vmaxq_f16, NEON::BI__builtin_neon_vmaxq_v, },
6578   { NEON::BI__builtin_neon_vmin_f16, NEON::BI__builtin_neon_vmin_v, },
6579   { NEON::BI__builtin_neon_vminnm_f16, NEON::BI__builtin_neon_vminnm_v, },
6580   { NEON::BI__builtin_neon_vminnmq_f16, NEON::BI__builtin_neon_vminnmq_v, },
6581   { NEON::BI__builtin_neon_vminq_f16, NEON::BI__builtin_neon_vminq_v, },
6582   { NEON::BI__builtin_neon_vmulx_f16, NEON::BI__builtin_neon_vmulx_v, },
6583   { NEON::BI__builtin_neon_vmulxq_f16, NEON::BI__builtin_neon_vmulxq_v, },
6584   { NEON::BI__builtin_neon_vpadd_f16, NEON::BI__builtin_neon_vpadd_v, },
6585   { NEON::BI__builtin_neon_vpaddq_f16, NEON::BI__builtin_neon_vpaddq_v, },
6586   { NEON::BI__builtin_neon_vpmax_f16, NEON::BI__builtin_neon_vpmax_v, },
6587   { NEON::BI__builtin_neon_vpmaxnm_f16, NEON::BI__builtin_neon_vpmaxnm_v, },
6588   { NEON::BI__builtin_neon_vpmaxnmq_f16, NEON::BI__builtin_neon_vpmaxnmq_v, },
6589   { NEON::BI__builtin_neon_vpmaxq_f16, NEON::BI__builtin_neon_vpmaxq_v, },
6590   { NEON::BI__builtin_neon_vpmin_f16, NEON::BI__builtin_neon_vpmin_v, },
6591   { NEON::BI__builtin_neon_vpminnm_f16, NEON::BI__builtin_neon_vpminnm_v, },
6592   { NEON::BI__builtin_neon_vpminnmq_f16, NEON::BI__builtin_neon_vpminnmq_v, },
6593   { NEON::BI__builtin_neon_vpminq_f16, NEON::BI__builtin_neon_vpminq_v, },
6594   { NEON::BI__builtin_neon_vrecpe_f16, NEON::BI__builtin_neon_vrecpe_v, },
6595   { NEON::BI__builtin_neon_vrecpeq_f16, NEON::BI__builtin_neon_vrecpeq_v, },
6596   { NEON::BI__builtin_neon_vrecps_f16, NEON::BI__builtin_neon_vrecps_v, },
6597   { NEON::BI__builtin_neon_vrecpsq_f16, NEON::BI__builtin_neon_vrecpsq_v, },
6598   { NEON::BI__builtin_neon_vrnd_f16, NEON::BI__builtin_neon_vrnd_v, },
6599   { NEON::BI__builtin_neon_vrnda_f16, NEON::BI__builtin_neon_vrnda_v, },
6600   { NEON::BI__builtin_neon_vrndaq_f16, NEON::BI__builtin_neon_vrndaq_v, },
6601   { NEON::BI__builtin_neon_vrndi_f16, NEON::BI__builtin_neon_vrndi_v, },
6602   { NEON::BI__builtin_neon_vrndiq_f16, NEON::BI__builtin_neon_vrndiq_v, },
6603   { NEON::BI__builtin_neon_vrndm_f16, NEON::BI__builtin_neon_vrndm_v, },
6604   { NEON::BI__builtin_neon_vrndmq_f16, NEON::BI__builtin_neon_vrndmq_v, },
6605   { NEON::BI__builtin_neon_vrndn_f16, NEON::BI__builtin_neon_vrndn_v, },
6606   { NEON::BI__builtin_neon_vrndnq_f16, NEON::BI__builtin_neon_vrndnq_v, },
6607   { NEON::BI__builtin_neon_vrndp_f16, NEON::BI__builtin_neon_vrndp_v, },
6608   { NEON::BI__builtin_neon_vrndpq_f16, NEON::BI__builtin_neon_vrndpq_v, },
6609   { NEON::BI__builtin_neon_vrndq_f16, NEON::BI__builtin_neon_vrndq_v, },
6610   { NEON::BI__builtin_neon_vrndx_f16, NEON::BI__builtin_neon_vrndx_v, },
6611   { NEON::BI__builtin_neon_vrndxq_f16, NEON::BI__builtin_neon_vrndxq_v, },
6612   { NEON::BI__builtin_neon_vrsqrte_f16, NEON::BI__builtin_neon_vrsqrte_v, },
6613   { NEON::BI__builtin_neon_vrsqrteq_f16, NEON::BI__builtin_neon_vrsqrteq_v, },
6614   { NEON::BI__builtin_neon_vrsqrts_f16, NEON::BI__builtin_neon_vrsqrts_v, },
6615   { NEON::BI__builtin_neon_vrsqrtsq_f16, NEON::BI__builtin_neon_vrsqrtsq_v, },
6616   { NEON::BI__builtin_neon_vsqrt_f16, NEON::BI__builtin_neon_vsqrt_v, },
6617   { NEON::BI__builtin_neon_vsqrtq_f16, NEON::BI__builtin_neon_vsqrtq_v, },
6618   { NEON::BI__builtin_neon_vst1_bf16_x2, NEON::BI__builtin_neon_vst1_x2_v },
6619   { NEON::BI__builtin_neon_vst1_bf16_x3, NEON::BI__builtin_neon_vst1_x3_v },
6620   { NEON::BI__builtin_neon_vst1_bf16_x4, NEON::BI__builtin_neon_vst1_x4_v },
6621   { NEON::BI__builtin_neon_vst1_bf16, NEON::BI__builtin_neon_vst1_v },
6622   { NEON::BI__builtin_neon_vst1_lane_bf16, NEON::BI__builtin_neon_vst1_lane_v },
6623   { NEON::BI__builtin_neon_vst1q_bf16_x2, NEON::BI__builtin_neon_vst1q_x2_v },
6624   { NEON::BI__builtin_neon_vst1q_bf16_x3, NEON::BI__builtin_neon_vst1q_x3_v },
6625   { NEON::BI__builtin_neon_vst1q_bf16_x4, NEON::BI__builtin_neon_vst1q_x4_v },
6626   { NEON::BI__builtin_neon_vst1q_bf16, NEON::BI__builtin_neon_vst1q_v },
6627   { NEON::BI__builtin_neon_vst1q_lane_bf16, NEON::BI__builtin_neon_vst1q_lane_v },
6628   { NEON::BI__builtin_neon_vst2_bf16, NEON::BI__builtin_neon_vst2_v },
6629   { NEON::BI__builtin_neon_vst2_lane_bf16, NEON::BI__builtin_neon_vst2_lane_v },
6630   { NEON::BI__builtin_neon_vst2q_bf16, NEON::BI__builtin_neon_vst2q_v },
6631   { NEON::BI__builtin_neon_vst2q_lane_bf16, NEON::BI__builtin_neon_vst2q_lane_v },
6632   { NEON::BI__builtin_neon_vst3_bf16, NEON::BI__builtin_neon_vst3_v },
6633   { NEON::BI__builtin_neon_vst3_lane_bf16, NEON::BI__builtin_neon_vst3_lane_v },
6634   { NEON::BI__builtin_neon_vst3q_bf16, NEON::BI__builtin_neon_vst3q_v },
6635   { NEON::BI__builtin_neon_vst3q_lane_bf16, NEON::BI__builtin_neon_vst3q_lane_v },
6636   { NEON::BI__builtin_neon_vst4_bf16, NEON::BI__builtin_neon_vst4_v },
6637   { NEON::BI__builtin_neon_vst4_lane_bf16, NEON::BI__builtin_neon_vst4_lane_v },
6638   { NEON::BI__builtin_neon_vst4q_bf16, NEON::BI__builtin_neon_vst4q_v },
6639   { NEON::BI__builtin_neon_vst4q_lane_bf16, NEON::BI__builtin_neon_vst4q_lane_v },
6640   { NEON::BI__builtin_neon_vtrn_f16, NEON::BI__builtin_neon_vtrn_v, },
6641   { NEON::BI__builtin_neon_vtrnq_f16, NEON::BI__builtin_neon_vtrnq_v, },
6642   { NEON::BI__builtin_neon_vuzp_f16, NEON::BI__builtin_neon_vuzp_v, },
6643   { NEON::BI__builtin_neon_vuzpq_f16, NEON::BI__builtin_neon_vuzpq_v, },
6644   { NEON::BI__builtin_neon_vzip_f16, NEON::BI__builtin_neon_vzip_v, },
6645   { NEON::BI__builtin_neon_vzipq_f16, NEON::BI__builtin_neon_vzipq_v, },
6646 };
6647 
6648 #undef NEONMAP0
6649 #undef NEONMAP1
6650 #undef NEONMAP2
6651 
6652 #define SVEMAP1(NameBase, LLVMIntrinsic, TypeModifier)                         \
6653   {                                                                            \
6654     #NameBase, SVE::BI__builtin_sve_##NameBase, Intrinsic::LLVMIntrinsic, 0,   \
6655         TypeModifier                                                           \
6656   }
6657 
6658 #define SVEMAP2(NameBase, TypeModifier)                                        \
6659   { #NameBase, SVE::BI__builtin_sve_##NameBase, 0, 0, TypeModifier }
6660 static const ARMVectorIntrinsicInfo AArch64SVEIntrinsicMap[] = {
6661 #define GET_SVE_LLVM_INTRINSIC_MAP
6662 #include "clang/Basic/arm_sve_builtin_cg.inc"
6663 #include "clang/Basic/BuiltinsAArch64NeonSVEBridge_cg.def"
6664 #undef GET_SVE_LLVM_INTRINSIC_MAP
6665 };
6666 
6667 #undef SVEMAP1
6668 #undef SVEMAP2
6669 
6670 static bool NEONSIMDIntrinsicsProvenSorted = false;
6671 
6672 static bool AArch64SIMDIntrinsicsProvenSorted = false;
6673 static bool AArch64SISDIntrinsicsProvenSorted = false;
6674 static bool AArch64SVEIntrinsicsProvenSorted = false;
6675 
6676 static const ARMVectorIntrinsicInfo *
6677 findARMVectorIntrinsicInMap(ArrayRef<ARMVectorIntrinsicInfo> IntrinsicMap,
6678                             unsigned BuiltinID, bool &MapProvenSorted) {
6679 
6680 #ifndef NDEBUG
6681   if (!MapProvenSorted) {
6682     assert(llvm::is_sorted(IntrinsicMap));
6683     MapProvenSorted = true;
6684   }
6685 #endif
6686 
6687   const ARMVectorIntrinsicInfo *Builtin =
6688       llvm::lower_bound(IntrinsicMap, BuiltinID);
6689 
6690   if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
6691     return Builtin;
6692 
6693   return nullptr;
6694 }
6695 
6696 Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
6697                                                    unsigned Modifier,
6698                                                    llvm::Type *ArgType,
6699                                                    const CallExpr *E) {
6700   int VectorSize = 0;
6701   if (Modifier & Use64BitVectors)
6702     VectorSize = 64;
6703   else if (Modifier & Use128BitVectors)
6704     VectorSize = 128;
6705 
6706   // Return type.
6707   SmallVector<llvm::Type *, 3> Tys;
6708   if (Modifier & AddRetType) {
6709     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
6710     if (Modifier & VectorizeRetType)
6711       Ty = llvm::FixedVectorType::get(
6712           Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
6713 
6714     Tys.push_back(Ty);
6715   }
6716 
6717   // Arguments.
6718   if (Modifier & VectorizeArgTypes) {
6719     int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
6720     ArgType = llvm::FixedVectorType::get(ArgType, Elts);
6721   }
6722 
6723   if (Modifier & (Add1ArgType | Add2ArgTypes))
6724     Tys.push_back(ArgType);
6725 
6726   if (Modifier & Add2ArgTypes)
6727     Tys.push_back(ArgType);
6728 
6729   if (Modifier & InventFloatType)
6730     Tys.push_back(FloatTy);
6731 
6732   return CGM.getIntrinsic(IntrinsicID, Tys);
6733 }
6734 
6735 static Value *EmitCommonNeonSISDBuiltinExpr(
6736     CodeGenFunction &CGF, const ARMVectorIntrinsicInfo &SISDInfo,
6737     SmallVectorImpl<Value *> &Ops, const CallExpr *E) {
6738   unsigned BuiltinID = SISDInfo.BuiltinID;
6739   unsigned int Int = SISDInfo.LLVMIntrinsic;
6740   unsigned Modifier = SISDInfo.TypeModifier;
6741   const char *s = SISDInfo.NameHint;
6742 
6743   switch (BuiltinID) {
6744   case NEON::BI__builtin_neon_vcled_s64:
6745   case NEON::BI__builtin_neon_vcled_u64:
6746   case NEON::BI__builtin_neon_vcles_f32:
6747   case NEON::BI__builtin_neon_vcled_f64:
6748   case NEON::BI__builtin_neon_vcltd_s64:
6749   case NEON::BI__builtin_neon_vcltd_u64:
6750   case NEON::BI__builtin_neon_vclts_f32:
6751   case NEON::BI__builtin_neon_vcltd_f64:
6752   case NEON::BI__builtin_neon_vcales_f32:
6753   case NEON::BI__builtin_neon_vcaled_f64:
6754   case NEON::BI__builtin_neon_vcalts_f32:
6755   case NEON::BI__builtin_neon_vcaltd_f64:
6756     // Only one direction of comparisons actually exist, cmle is actually a cmge
6757     // with swapped operands. The table gives us the right intrinsic but we
6758     // still need to do the swap.
6759     std::swap(Ops[0], Ops[1]);
6760     break;
6761   }
6762 
6763   assert(Int && "Generic code assumes a valid intrinsic");
6764 
6765   // Determine the type(s) of this overloaded AArch64 intrinsic.
6766   const Expr *Arg = E->getArg(0);
6767   llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
6768   Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
6769 
6770   int j = 0;
6771   ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
6772   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
6773        ai != ae; ++ai, ++j) {
6774     llvm::Type *ArgTy = ai->getType();
6775     if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
6776              ArgTy->getPrimitiveSizeInBits())
6777       continue;
6778 
6779     assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy());
6780     // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
6781     // it before inserting.
6782     Ops[j] = CGF.Builder.CreateTruncOrBitCast(
6783         Ops[j], cast<llvm::VectorType>(ArgTy)->getElementType());
6784     Ops[j] =
6785         CGF.Builder.CreateInsertElement(PoisonValue::get(ArgTy), Ops[j], C0);
6786   }
6787 
6788   Value *Result = CGF.EmitNeonCall(F, Ops, s);
6789   llvm::Type *ResultType = CGF.ConvertType(E->getType());
6790   if (ResultType->getPrimitiveSizeInBits().getFixedValue() <
6791       Result->getType()->getPrimitiveSizeInBits().getFixedValue())
6792     return CGF.Builder.CreateExtractElement(Result, C0);
6793 
6794   return CGF.Builder.CreateBitCast(Result, ResultType, s);
6795 }
6796 
6797 Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
6798     unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
6799     const char *NameHint, unsigned Modifier, const CallExpr *E,
6800     SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1,
6801     llvm::Triple::ArchType Arch) {
6802   // Get the last argument, which specifies the vector type.
6803   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
6804   std::optional<llvm::APSInt> NeonTypeConst =
6805       Arg->getIntegerConstantExpr(getContext());
6806   if (!NeonTypeConst)
6807     return nullptr;
6808 
6809   // Determine the type of this overloaded NEON intrinsic.
6810   NeonTypeFlags Type(NeonTypeConst->getZExtValue());
6811   bool Usgn = Type.isUnsigned();
6812   bool Quad = Type.isQuad();
6813   const bool HasLegalHalfType = getTarget().hasLegalHalfType();
6814   const bool AllowBFloatArgsAndRet =
6815       getTargetHooks().getABIInfo().allowBFloatArgsAndRet();
6816 
6817   llvm::FixedVectorType *VTy =
6818       GetNeonType(this, Type, HasLegalHalfType, false, AllowBFloatArgsAndRet);
6819   llvm::Type *Ty = VTy;
6820   if (!Ty)
6821     return nullptr;
6822 
6823   auto getAlignmentValue32 = [&](Address addr) -> Value* {
6824     return Builder.getInt32(addr.getAlignment().getQuantity());
6825   };
6826 
6827   unsigned Int = LLVMIntrinsic;
6828   if ((Modifier & UnsignedAlts) && !Usgn)
6829     Int = AltLLVMIntrinsic;
6830 
6831   switch (BuiltinID) {
6832   default: break;
6833   case NEON::BI__builtin_neon_splat_lane_v:
6834   case NEON::BI__builtin_neon_splat_laneq_v:
6835   case NEON::BI__builtin_neon_splatq_lane_v:
6836   case NEON::BI__builtin_neon_splatq_laneq_v: {
6837     auto NumElements = VTy->getElementCount();
6838     if (BuiltinID == NEON::BI__builtin_neon_splatq_lane_v)
6839       NumElements = NumElements * 2;
6840     if (BuiltinID == NEON::BI__builtin_neon_splat_laneq_v)
6841       NumElements = NumElements.divideCoefficientBy(2);
6842 
6843     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
6844     return EmitNeonSplat(Ops[0], cast<ConstantInt>(Ops[1]), NumElements);
6845   }
6846   case NEON::BI__builtin_neon_vpadd_v:
6847   case NEON::BI__builtin_neon_vpaddq_v:
6848     // We don't allow fp/int overloading of intrinsics.
6849     if (VTy->getElementType()->isFloatingPointTy() &&
6850         Int == Intrinsic::aarch64_neon_addp)
6851       Int = Intrinsic::aarch64_neon_faddp;
6852     break;
6853   case NEON::BI__builtin_neon_vabs_v:
6854   case NEON::BI__builtin_neon_vabsq_v:
6855     if (VTy->getElementType()->isFloatingPointTy())
6856       return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
6857     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
6858   case NEON::BI__builtin_neon_vadd_v:
6859   case NEON::BI__builtin_neon_vaddq_v: {
6860     llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, Quad ? 16 : 8);
6861     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
6862     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
6863     Ops[0] =  Builder.CreateXor(Ops[0], Ops[1]);
6864     return Builder.CreateBitCast(Ops[0], Ty);
6865   }
6866   case NEON::BI__builtin_neon_vaddhn_v: {
6867     llvm::FixedVectorType *SrcTy =
6868         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6869 
6870     // %sum = add <4 x i32> %lhs, %rhs
6871     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6872     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
6873     Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
6874 
6875     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
6876     Constant *ShiftAmt =
6877         ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
6878     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
6879 
6880     // %res = trunc <4 x i32> %high to <4 x i16>
6881     return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
6882   }
6883   case NEON::BI__builtin_neon_vcale_v:
6884   case NEON::BI__builtin_neon_vcaleq_v:
6885   case NEON::BI__builtin_neon_vcalt_v:
6886   case NEON::BI__builtin_neon_vcaltq_v:
6887     std::swap(Ops[0], Ops[1]);
6888     [[fallthrough]];
6889   case NEON::BI__builtin_neon_vcage_v:
6890   case NEON::BI__builtin_neon_vcageq_v:
6891   case NEON::BI__builtin_neon_vcagt_v:
6892   case NEON::BI__builtin_neon_vcagtq_v: {
6893     llvm::Type *Ty;
6894     switch (VTy->getScalarSizeInBits()) {
6895     default: llvm_unreachable("unexpected type");
6896     case 32:
6897       Ty = FloatTy;
6898       break;
6899     case 64:
6900       Ty = DoubleTy;
6901       break;
6902     case 16:
6903       Ty = HalfTy;
6904       break;
6905     }
6906     auto *VecFlt = llvm::FixedVectorType::get(Ty, VTy->getNumElements());
6907     llvm::Type *Tys[] = { VTy, VecFlt };
6908     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6909     return EmitNeonCall(F, Ops, NameHint);
6910   }
6911   case NEON::BI__builtin_neon_vceqz_v:
6912   case NEON::BI__builtin_neon_vceqzq_v:
6913     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
6914                                          ICmpInst::ICMP_EQ, "vceqz");
6915   case NEON::BI__builtin_neon_vcgez_v:
6916   case NEON::BI__builtin_neon_vcgezq_v:
6917     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
6918                                          ICmpInst::ICMP_SGE, "vcgez");
6919   case NEON::BI__builtin_neon_vclez_v:
6920   case NEON::BI__builtin_neon_vclezq_v:
6921     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
6922                                          ICmpInst::ICMP_SLE, "vclez");
6923   case NEON::BI__builtin_neon_vcgtz_v:
6924   case NEON::BI__builtin_neon_vcgtzq_v:
6925     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
6926                                          ICmpInst::ICMP_SGT, "vcgtz");
6927   case NEON::BI__builtin_neon_vcltz_v:
6928   case NEON::BI__builtin_neon_vcltzq_v:
6929     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
6930                                          ICmpInst::ICMP_SLT, "vcltz");
6931   case NEON::BI__builtin_neon_vclz_v:
6932   case NEON::BI__builtin_neon_vclzq_v:
6933     // We generate target-independent intrinsic, which needs a second argument
6934     // for whether or not clz of zero is undefined; on ARM it isn't.
6935     Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
6936     break;
6937   case NEON::BI__builtin_neon_vcvt_f32_v:
6938   case NEON::BI__builtin_neon_vcvtq_f32_v:
6939     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6940     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad),
6941                      HasLegalHalfType);
6942     return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
6943                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
6944   case NEON::BI__builtin_neon_vcvt_f16_s16:
6945   case NEON::BI__builtin_neon_vcvt_f16_u16:
6946   case NEON::BI__builtin_neon_vcvtq_f16_s16:
6947   case NEON::BI__builtin_neon_vcvtq_f16_u16:
6948     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6949     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad),
6950                      HasLegalHalfType);
6951     return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
6952                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
6953   case NEON::BI__builtin_neon_vcvt_n_f16_s16:
6954   case NEON::BI__builtin_neon_vcvt_n_f16_u16:
6955   case NEON::BI__builtin_neon_vcvtq_n_f16_s16:
6956   case NEON::BI__builtin_neon_vcvtq_n_f16_u16: {
6957     llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
6958     Function *F = CGM.getIntrinsic(Int, Tys);
6959     return EmitNeonCall(F, Ops, "vcvt_n");
6960   }
6961   case NEON::BI__builtin_neon_vcvt_n_f32_v:
6962   case NEON::BI__builtin_neon_vcvt_n_f64_v:
6963   case NEON::BI__builtin_neon_vcvtq_n_f32_v:
6964   case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
6965     llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
6966     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
6967     Function *F = CGM.getIntrinsic(Int, Tys);
6968     return EmitNeonCall(F, Ops, "vcvt_n");
6969   }
6970   case NEON::BI__builtin_neon_vcvt_n_s16_f16:
6971   case NEON::BI__builtin_neon_vcvt_n_s32_v:
6972   case NEON::BI__builtin_neon_vcvt_n_u16_f16:
6973   case NEON::BI__builtin_neon_vcvt_n_u32_v:
6974   case NEON::BI__builtin_neon_vcvt_n_s64_v:
6975   case NEON::BI__builtin_neon_vcvt_n_u64_v:
6976   case NEON::BI__builtin_neon_vcvtq_n_s16_f16:
6977   case NEON::BI__builtin_neon_vcvtq_n_s32_v:
6978   case NEON::BI__builtin_neon_vcvtq_n_u16_f16:
6979   case NEON::BI__builtin_neon_vcvtq_n_u32_v:
6980   case NEON::BI__builtin_neon_vcvtq_n_s64_v:
6981   case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
6982     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
6983     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6984     return EmitNeonCall(F, Ops, "vcvt_n");
6985   }
6986   case NEON::BI__builtin_neon_vcvt_s32_v:
6987   case NEON::BI__builtin_neon_vcvt_u32_v:
6988   case NEON::BI__builtin_neon_vcvt_s64_v:
6989   case NEON::BI__builtin_neon_vcvt_u64_v:
6990   case NEON::BI__builtin_neon_vcvt_s16_f16:
6991   case NEON::BI__builtin_neon_vcvt_u16_f16:
6992   case NEON::BI__builtin_neon_vcvtq_s32_v:
6993   case NEON::BI__builtin_neon_vcvtq_u32_v:
6994   case NEON::BI__builtin_neon_vcvtq_s64_v:
6995   case NEON::BI__builtin_neon_vcvtq_u64_v:
6996   case NEON::BI__builtin_neon_vcvtq_s16_f16:
6997   case NEON::BI__builtin_neon_vcvtq_u16_f16: {
6998     Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
6999     return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
7000                 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
7001   }
7002   case NEON::BI__builtin_neon_vcvta_s16_f16:
7003   case NEON::BI__builtin_neon_vcvta_s32_v:
7004   case NEON::BI__builtin_neon_vcvta_s64_v:
7005   case NEON::BI__builtin_neon_vcvta_u16_f16:
7006   case NEON::BI__builtin_neon_vcvta_u32_v:
7007   case NEON::BI__builtin_neon_vcvta_u64_v:
7008   case NEON::BI__builtin_neon_vcvtaq_s16_f16:
7009   case NEON::BI__builtin_neon_vcvtaq_s32_v:
7010   case NEON::BI__builtin_neon_vcvtaq_s64_v:
7011   case NEON::BI__builtin_neon_vcvtaq_u16_f16:
7012   case NEON::BI__builtin_neon_vcvtaq_u32_v:
7013   case NEON::BI__builtin_neon_vcvtaq_u64_v:
7014   case NEON::BI__builtin_neon_vcvtn_s16_f16:
7015   case NEON::BI__builtin_neon_vcvtn_s32_v:
7016   case NEON::BI__builtin_neon_vcvtn_s64_v:
7017   case NEON::BI__builtin_neon_vcvtn_u16_f16:
7018   case NEON::BI__builtin_neon_vcvtn_u32_v:
7019   case NEON::BI__builtin_neon_vcvtn_u64_v:
7020   case NEON::BI__builtin_neon_vcvtnq_s16_f16:
7021   case NEON::BI__builtin_neon_vcvtnq_s32_v:
7022   case NEON::BI__builtin_neon_vcvtnq_s64_v:
7023   case NEON::BI__builtin_neon_vcvtnq_u16_f16:
7024   case NEON::BI__builtin_neon_vcvtnq_u32_v:
7025   case NEON::BI__builtin_neon_vcvtnq_u64_v:
7026   case NEON::BI__builtin_neon_vcvtp_s16_f16:
7027   case NEON::BI__builtin_neon_vcvtp_s32_v:
7028   case NEON::BI__builtin_neon_vcvtp_s64_v:
7029   case NEON::BI__builtin_neon_vcvtp_u16_f16:
7030   case NEON::BI__builtin_neon_vcvtp_u32_v:
7031   case NEON::BI__builtin_neon_vcvtp_u64_v:
7032   case NEON::BI__builtin_neon_vcvtpq_s16_f16:
7033   case NEON::BI__builtin_neon_vcvtpq_s32_v:
7034   case NEON::BI__builtin_neon_vcvtpq_s64_v:
7035   case NEON::BI__builtin_neon_vcvtpq_u16_f16:
7036   case NEON::BI__builtin_neon_vcvtpq_u32_v:
7037   case NEON::BI__builtin_neon_vcvtpq_u64_v:
7038   case NEON::BI__builtin_neon_vcvtm_s16_f16:
7039   case NEON::BI__builtin_neon_vcvtm_s32_v:
7040   case NEON::BI__builtin_neon_vcvtm_s64_v:
7041   case NEON::BI__builtin_neon_vcvtm_u16_f16:
7042   case NEON::BI__builtin_neon_vcvtm_u32_v:
7043   case NEON::BI__builtin_neon_vcvtm_u64_v:
7044   case NEON::BI__builtin_neon_vcvtmq_s16_f16:
7045   case NEON::BI__builtin_neon_vcvtmq_s32_v:
7046   case NEON::BI__builtin_neon_vcvtmq_s64_v:
7047   case NEON::BI__builtin_neon_vcvtmq_u16_f16:
7048   case NEON::BI__builtin_neon_vcvtmq_u32_v:
7049   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
7050     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
7051     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
7052   }
7053   case NEON::BI__builtin_neon_vcvtx_f32_v: {
7054     llvm::Type *Tys[2] = { VTy->getTruncatedElementVectorType(VTy), Ty};
7055     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
7056 
7057   }
7058   case NEON::BI__builtin_neon_vext_v:
7059   case NEON::BI__builtin_neon_vextq_v: {
7060     int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
7061     SmallVector<int, 16> Indices;
7062     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
7063       Indices.push_back(i+CV);
7064 
7065     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7066     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7067     return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
7068   }
7069   case NEON::BI__builtin_neon_vfma_v:
7070   case NEON::BI__builtin_neon_vfmaq_v: {
7071     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7072     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7073     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7074 
7075     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
7076     return emitCallMaybeConstrainedFPBuiltin(
7077         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
7078         {Ops[1], Ops[2], Ops[0]});
7079   }
7080   case NEON::BI__builtin_neon_vld1_v:
7081   case NEON::BI__builtin_neon_vld1q_v: {
7082     llvm::Type *Tys[] = {Ty, Int8PtrTy};
7083     Ops.push_back(getAlignmentValue32(PtrOp0));
7084     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
7085   }
7086   case NEON::BI__builtin_neon_vld1_x2_v:
7087   case NEON::BI__builtin_neon_vld1q_x2_v:
7088   case NEON::BI__builtin_neon_vld1_x3_v:
7089   case NEON::BI__builtin_neon_vld1q_x3_v:
7090   case NEON::BI__builtin_neon_vld1_x4_v:
7091   case NEON::BI__builtin_neon_vld1q_x4_v: {
7092     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
7093     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
7094     llvm::Type *Tys[2] = { VTy, PTy };
7095     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
7096     Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
7097     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
7098     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7099     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7100   }
7101   case NEON::BI__builtin_neon_vld2_v:
7102   case NEON::BI__builtin_neon_vld2q_v:
7103   case NEON::BI__builtin_neon_vld3_v:
7104   case NEON::BI__builtin_neon_vld3q_v:
7105   case NEON::BI__builtin_neon_vld4_v:
7106   case NEON::BI__builtin_neon_vld4q_v:
7107   case NEON::BI__builtin_neon_vld2_dup_v:
7108   case NEON::BI__builtin_neon_vld2q_dup_v:
7109   case NEON::BI__builtin_neon_vld3_dup_v:
7110   case NEON::BI__builtin_neon_vld3q_dup_v:
7111   case NEON::BI__builtin_neon_vld4_dup_v:
7112   case NEON::BI__builtin_neon_vld4q_dup_v: {
7113     llvm::Type *Tys[] = {Ty, Int8PtrTy};
7114     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
7115     Value *Align = getAlignmentValue32(PtrOp1);
7116     Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
7117     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
7118     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7119     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7120   }
7121   case NEON::BI__builtin_neon_vld1_dup_v:
7122   case NEON::BI__builtin_neon_vld1q_dup_v: {
7123     Value *V = PoisonValue::get(Ty);
7124     PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
7125     LoadInst *Ld = Builder.CreateLoad(PtrOp0);
7126     llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
7127     Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
7128     return EmitNeonSplat(Ops[0], CI);
7129   }
7130   case NEON::BI__builtin_neon_vld2_lane_v:
7131   case NEON::BI__builtin_neon_vld2q_lane_v:
7132   case NEON::BI__builtin_neon_vld3_lane_v:
7133   case NEON::BI__builtin_neon_vld3q_lane_v:
7134   case NEON::BI__builtin_neon_vld4_lane_v:
7135   case NEON::BI__builtin_neon_vld4q_lane_v: {
7136     llvm::Type *Tys[] = {Ty, Int8PtrTy};
7137     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
7138     for (unsigned I = 2; I < Ops.size() - 1; ++I)
7139       Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
7140     Ops.push_back(getAlignmentValue32(PtrOp1));
7141     Ops[1] = Builder.CreateCall(F, ArrayRef(Ops).slice(1), NameHint);
7142     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
7143     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7144     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
7145   }
7146   case NEON::BI__builtin_neon_vmovl_v: {
7147     llvm::FixedVectorType *DTy =
7148         llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
7149     Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
7150     if (Usgn)
7151       return Builder.CreateZExt(Ops[0], Ty, "vmovl");
7152     return Builder.CreateSExt(Ops[0], Ty, "vmovl");
7153   }
7154   case NEON::BI__builtin_neon_vmovn_v: {
7155     llvm::FixedVectorType *QTy =
7156         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
7157     Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
7158     return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
7159   }
7160   case NEON::BI__builtin_neon_vmull_v:
7161     // FIXME: the integer vmull operations could be emitted in terms of pure
7162     // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
7163     // hoisting the exts outside loops. Until global ISel comes along that can
7164     // see through such movement this leads to bad CodeGen. So we need an
7165     // intrinsic for now.
7166     Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
7167     Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
7168     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
7169   case NEON::BI__builtin_neon_vpadal_v:
7170   case NEON::BI__builtin_neon_vpadalq_v: {
7171     // The source operand type has twice as many elements of half the size.
7172     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
7173     llvm::Type *EltTy =
7174       llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
7175     auto *NarrowTy =
7176         llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
7177     llvm::Type *Tys[2] = { Ty, NarrowTy };
7178     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
7179   }
7180   case NEON::BI__builtin_neon_vpaddl_v:
7181   case NEON::BI__builtin_neon_vpaddlq_v: {
7182     // The source operand type has twice as many elements of half the size.
7183     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
7184     llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
7185     auto *NarrowTy =
7186         llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
7187     llvm::Type *Tys[2] = { Ty, NarrowTy };
7188     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
7189   }
7190   case NEON::BI__builtin_neon_vqdmlal_v:
7191   case NEON::BI__builtin_neon_vqdmlsl_v: {
7192     SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
7193     Ops[1] =
7194         EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
7195     Ops.resize(2);
7196     return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
7197   }
7198   case NEON::BI__builtin_neon_vqdmulhq_lane_v:
7199   case NEON::BI__builtin_neon_vqdmulh_lane_v:
7200   case NEON::BI__builtin_neon_vqrdmulhq_lane_v:
7201   case NEON::BI__builtin_neon_vqrdmulh_lane_v: {
7202     auto *RTy = cast<llvm::FixedVectorType>(Ty);
7203     if (BuiltinID == NEON::BI__builtin_neon_vqdmulhq_lane_v ||
7204         BuiltinID == NEON::BI__builtin_neon_vqrdmulhq_lane_v)
7205       RTy = llvm::FixedVectorType::get(RTy->getElementType(),
7206                                        RTy->getNumElements() * 2);
7207     llvm::Type *Tys[2] = {
7208         RTy, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
7209                                              /*isQuad*/ false))};
7210     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
7211   }
7212   case NEON::BI__builtin_neon_vqdmulhq_laneq_v:
7213   case NEON::BI__builtin_neon_vqdmulh_laneq_v:
7214   case NEON::BI__builtin_neon_vqrdmulhq_laneq_v:
7215   case NEON::BI__builtin_neon_vqrdmulh_laneq_v: {
7216     llvm::Type *Tys[2] = {
7217         Ty, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
7218                                             /*isQuad*/ true))};
7219     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
7220   }
7221   case NEON::BI__builtin_neon_vqshl_n_v:
7222   case NEON::BI__builtin_neon_vqshlq_n_v:
7223     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
7224                         1, false);
7225   case NEON::BI__builtin_neon_vqshlu_n_v:
7226   case NEON::BI__builtin_neon_vqshluq_n_v:
7227     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
7228                         1, false);
7229   case NEON::BI__builtin_neon_vrecpe_v:
7230   case NEON::BI__builtin_neon_vrecpeq_v:
7231   case NEON::BI__builtin_neon_vrsqrte_v:
7232   case NEON::BI__builtin_neon_vrsqrteq_v:
7233     Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
7234     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
7235   case NEON::BI__builtin_neon_vrndi_v:
7236   case NEON::BI__builtin_neon_vrndiq_v:
7237     Int = Builder.getIsFPConstrained()
7238               ? Intrinsic::experimental_constrained_nearbyint
7239               : Intrinsic::nearbyint;
7240     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
7241   case NEON::BI__builtin_neon_vrshr_n_v:
7242   case NEON::BI__builtin_neon_vrshrq_n_v:
7243     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
7244                         1, true);
7245   case NEON::BI__builtin_neon_vsha512hq_u64:
7246   case NEON::BI__builtin_neon_vsha512h2q_u64:
7247   case NEON::BI__builtin_neon_vsha512su0q_u64:
7248   case NEON::BI__builtin_neon_vsha512su1q_u64: {
7249     Function *F = CGM.getIntrinsic(Int);
7250     return EmitNeonCall(F, Ops, "");
7251   }
7252   case NEON::BI__builtin_neon_vshl_n_v:
7253   case NEON::BI__builtin_neon_vshlq_n_v:
7254     Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
7255     return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
7256                              "vshl_n");
7257   case NEON::BI__builtin_neon_vshll_n_v: {
7258     llvm::FixedVectorType *SrcTy =
7259         llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
7260     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
7261     if (Usgn)
7262       Ops[0] = Builder.CreateZExt(Ops[0], VTy);
7263     else
7264       Ops[0] = Builder.CreateSExt(Ops[0], VTy);
7265     Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
7266     return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
7267   }
7268   case NEON::BI__builtin_neon_vshrn_n_v: {
7269     llvm::FixedVectorType *SrcTy =
7270         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
7271     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
7272     Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
7273     if (Usgn)
7274       Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
7275     else
7276       Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
7277     return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
7278   }
7279   case NEON::BI__builtin_neon_vshr_n_v:
7280   case NEON::BI__builtin_neon_vshrq_n_v:
7281     return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
7282   case NEON::BI__builtin_neon_vst1_v:
7283   case NEON::BI__builtin_neon_vst1q_v:
7284   case NEON::BI__builtin_neon_vst2_v:
7285   case NEON::BI__builtin_neon_vst2q_v:
7286   case NEON::BI__builtin_neon_vst3_v:
7287   case NEON::BI__builtin_neon_vst3q_v:
7288   case NEON::BI__builtin_neon_vst4_v:
7289   case NEON::BI__builtin_neon_vst4q_v:
7290   case NEON::BI__builtin_neon_vst2_lane_v:
7291   case NEON::BI__builtin_neon_vst2q_lane_v:
7292   case NEON::BI__builtin_neon_vst3_lane_v:
7293   case NEON::BI__builtin_neon_vst3q_lane_v:
7294   case NEON::BI__builtin_neon_vst4_lane_v:
7295   case NEON::BI__builtin_neon_vst4q_lane_v: {
7296     llvm::Type *Tys[] = {Int8PtrTy, Ty};
7297     Ops.push_back(getAlignmentValue32(PtrOp0));
7298     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
7299   }
7300   case NEON::BI__builtin_neon_vsm3partw1q_u32:
7301   case NEON::BI__builtin_neon_vsm3partw2q_u32:
7302   case NEON::BI__builtin_neon_vsm3ss1q_u32:
7303   case NEON::BI__builtin_neon_vsm4ekeyq_u32:
7304   case NEON::BI__builtin_neon_vsm4eq_u32: {
7305     Function *F = CGM.getIntrinsic(Int);
7306     return EmitNeonCall(F, Ops, "");
7307   }
7308   case NEON::BI__builtin_neon_vsm3tt1aq_u32:
7309   case NEON::BI__builtin_neon_vsm3tt1bq_u32:
7310   case NEON::BI__builtin_neon_vsm3tt2aq_u32:
7311   case NEON::BI__builtin_neon_vsm3tt2bq_u32: {
7312     Function *F = CGM.getIntrinsic(Int);
7313     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
7314     return EmitNeonCall(F, Ops, "");
7315   }
7316   case NEON::BI__builtin_neon_vst1_x2_v:
7317   case NEON::BI__builtin_neon_vst1q_x2_v:
7318   case NEON::BI__builtin_neon_vst1_x3_v:
7319   case NEON::BI__builtin_neon_vst1q_x3_v:
7320   case NEON::BI__builtin_neon_vst1_x4_v:
7321   case NEON::BI__builtin_neon_vst1q_x4_v: {
7322     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
7323     // TODO: Currently in AArch32 mode the pointer operand comes first, whereas
7324     // in AArch64 it comes last. We may want to stick to one or another.
7325     if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be ||
7326         Arch == llvm::Triple::aarch64_32) {
7327       llvm::Type *Tys[2] = { VTy, PTy };
7328       std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
7329       return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
7330     }
7331     llvm::Type *Tys[2] = { PTy, VTy };
7332     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
7333   }
7334   case NEON::BI__builtin_neon_vsubhn_v: {
7335     llvm::FixedVectorType *SrcTy =
7336         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
7337 
7338     // %sum = add <4 x i32> %lhs, %rhs
7339     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
7340     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
7341     Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
7342 
7343     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
7344     Constant *ShiftAmt =
7345         ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
7346     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
7347 
7348     // %res = trunc <4 x i32> %high to <4 x i16>
7349     return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
7350   }
7351   case NEON::BI__builtin_neon_vtrn_v:
7352   case NEON::BI__builtin_neon_vtrnq_v: {
7353     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
7354     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7355     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7356     Value *SV = nullptr;
7357 
7358     for (unsigned vi = 0; vi != 2; ++vi) {
7359       SmallVector<int, 16> Indices;
7360       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
7361         Indices.push_back(i+vi);
7362         Indices.push_back(i+e+vi);
7363       }
7364       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
7365       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
7366       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
7367     }
7368     return SV;
7369   }
7370   case NEON::BI__builtin_neon_vtst_v:
7371   case NEON::BI__builtin_neon_vtstq_v: {
7372     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7373     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7374     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
7375     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
7376                                 ConstantAggregateZero::get(Ty));
7377     return Builder.CreateSExt(Ops[0], Ty, "vtst");
7378   }
7379   case NEON::BI__builtin_neon_vuzp_v:
7380   case NEON::BI__builtin_neon_vuzpq_v: {
7381     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
7382     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7383     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7384     Value *SV = nullptr;
7385 
7386     for (unsigned vi = 0; vi != 2; ++vi) {
7387       SmallVector<int, 16> Indices;
7388       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
7389         Indices.push_back(2*i+vi);
7390 
7391       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
7392       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
7393       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
7394     }
7395     return SV;
7396   }
7397   case NEON::BI__builtin_neon_vxarq_u64: {
7398     Function *F = CGM.getIntrinsic(Int);
7399     Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
7400     return EmitNeonCall(F, Ops, "");
7401   }
7402   case NEON::BI__builtin_neon_vzip_v:
7403   case NEON::BI__builtin_neon_vzipq_v: {
7404     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
7405     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7406     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7407     Value *SV = nullptr;
7408 
7409     for (unsigned vi = 0; vi != 2; ++vi) {
7410       SmallVector<int, 16> Indices;
7411       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
7412         Indices.push_back((i + vi*e) >> 1);
7413         Indices.push_back(((i + vi*e) >> 1)+e);
7414       }
7415       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
7416       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
7417       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
7418     }
7419     return SV;
7420   }
7421   case NEON::BI__builtin_neon_vdot_s32:
7422   case NEON::BI__builtin_neon_vdot_u32:
7423   case NEON::BI__builtin_neon_vdotq_s32:
7424   case NEON::BI__builtin_neon_vdotq_u32: {
7425     auto *InputTy =
7426         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7427     llvm::Type *Tys[2] = { Ty, InputTy };
7428     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot");
7429   }
7430   case NEON::BI__builtin_neon_vfmlal_low_f16:
7431   case NEON::BI__builtin_neon_vfmlalq_low_f16: {
7432     auto *InputTy =
7433         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7434     llvm::Type *Tys[2] = { Ty, InputTy };
7435     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low");
7436   }
7437   case NEON::BI__builtin_neon_vfmlsl_low_f16:
7438   case NEON::BI__builtin_neon_vfmlslq_low_f16: {
7439     auto *InputTy =
7440         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7441     llvm::Type *Tys[2] = { Ty, InputTy };
7442     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low");
7443   }
7444   case NEON::BI__builtin_neon_vfmlal_high_f16:
7445   case NEON::BI__builtin_neon_vfmlalq_high_f16: {
7446     auto *InputTy =
7447         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7448     llvm::Type *Tys[2] = { Ty, InputTy };
7449     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high");
7450   }
7451   case NEON::BI__builtin_neon_vfmlsl_high_f16:
7452   case NEON::BI__builtin_neon_vfmlslq_high_f16: {
7453     auto *InputTy =
7454         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7455     llvm::Type *Tys[2] = { Ty, InputTy };
7456     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high");
7457   }
7458   case NEON::BI__builtin_neon_vmmlaq_s32:
7459   case NEON::BI__builtin_neon_vmmlaq_u32: {
7460     auto *InputTy =
7461         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7462     llvm::Type *Tys[2] = { Ty, InputTy };
7463     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vmmla");
7464   }
7465   case NEON::BI__builtin_neon_vusmmlaq_s32: {
7466     auto *InputTy =
7467         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7468     llvm::Type *Tys[2] = { Ty, InputTy };
7469     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusmmla");
7470   }
7471   case NEON::BI__builtin_neon_vusdot_s32:
7472   case NEON::BI__builtin_neon_vusdotq_s32: {
7473     auto *InputTy =
7474         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7475     llvm::Type *Tys[2] = { Ty, InputTy };
7476     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusdot");
7477   }
7478   case NEON::BI__builtin_neon_vbfdot_f32:
7479   case NEON::BI__builtin_neon_vbfdotq_f32: {
7480     llvm::Type *InputTy =
7481         llvm::FixedVectorType::get(BFloatTy, Ty->getPrimitiveSizeInBits() / 16);
7482     llvm::Type *Tys[2] = { Ty, InputTy };
7483     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfdot");
7484   }
7485   case NEON::BI__builtin_neon___a32_vcvt_bf16_f32: {
7486     llvm::Type *Tys[1] = { Ty };
7487     Function *F = CGM.getIntrinsic(Int, Tys);
7488     return EmitNeonCall(F, Ops, "vcvtfp2bf");
7489   }
7490 
7491   }
7492 
7493   assert(Int && "Expected valid intrinsic number");
7494 
7495   // Determine the type(s) of this overloaded AArch64 intrinsic.
7496   Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
7497 
7498   Value *Result = EmitNeonCall(F, Ops, NameHint);
7499   llvm::Type *ResultType = ConvertType(E->getType());
7500   // AArch64 intrinsic one-element vector type cast to
7501   // scalar type expected by the builtin
7502   return Builder.CreateBitCast(Result, ResultType, NameHint);
7503 }
7504 
7505 Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
7506     Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
7507     const CmpInst::Predicate Ip, const Twine &Name) {
7508   llvm::Type *OTy = Op->getType();
7509 
7510   // FIXME: this is utterly horrific. We should not be looking at previous
7511   // codegen context to find out what needs doing. Unfortunately TableGen
7512   // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
7513   // (etc).
7514   if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
7515     OTy = BI->getOperand(0)->getType();
7516 
7517   Op = Builder.CreateBitCast(Op, OTy);
7518   if (OTy->getScalarType()->isFloatingPointTy()) {
7519     if (Fp == CmpInst::FCMP_OEQ)
7520       Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
7521     else
7522       Op = Builder.CreateFCmpS(Fp, Op, Constant::getNullValue(OTy));
7523   } else {
7524     Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
7525   }
7526   return Builder.CreateSExt(Op, Ty, Name);
7527 }
7528 
7529 static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
7530                                  Value *ExtOp, Value *IndexOp,
7531                                  llvm::Type *ResTy, unsigned IntID,
7532                                  const char *Name) {
7533   SmallVector<Value *, 2> TblOps;
7534   if (ExtOp)
7535     TblOps.push_back(ExtOp);
7536 
7537   // Build a vector containing sequential number like (0, 1, 2, ..., 15)
7538   SmallVector<int, 16> Indices;
7539   auto *TblTy = cast<llvm::FixedVectorType>(Ops[0]->getType());
7540   for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
7541     Indices.push_back(2*i);
7542     Indices.push_back(2*i+1);
7543   }
7544 
7545   int PairPos = 0, End = Ops.size() - 1;
7546   while (PairPos < End) {
7547     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
7548                                                      Ops[PairPos+1], Indices,
7549                                                      Name));
7550     PairPos += 2;
7551   }
7552 
7553   // If there's an odd number of 64-bit lookup table, fill the high 64-bit
7554   // of the 128-bit lookup table with zero.
7555   if (PairPos == End) {
7556     Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
7557     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
7558                                                      ZeroTbl, Indices, Name));
7559   }
7560 
7561   Function *TblF;
7562   TblOps.push_back(IndexOp);
7563   TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
7564 
7565   return CGF.EmitNeonCall(TblF, TblOps, Name);
7566 }
7567 
7568 Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
7569   unsigned Value;
7570   switch (BuiltinID) {
7571   default:
7572     return nullptr;
7573   case clang::ARM::BI__builtin_arm_nop:
7574     Value = 0;
7575     break;
7576   case clang::ARM::BI__builtin_arm_yield:
7577   case clang::ARM::BI__yield:
7578     Value = 1;
7579     break;
7580   case clang::ARM::BI__builtin_arm_wfe:
7581   case clang::ARM::BI__wfe:
7582     Value = 2;
7583     break;
7584   case clang::ARM::BI__builtin_arm_wfi:
7585   case clang::ARM::BI__wfi:
7586     Value = 3;
7587     break;
7588   case clang::ARM::BI__builtin_arm_sev:
7589   case clang::ARM::BI__sev:
7590     Value = 4;
7591     break;
7592   case clang::ARM::BI__builtin_arm_sevl:
7593   case clang::ARM::BI__sevl:
7594     Value = 5;
7595     break;
7596   }
7597 
7598   return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
7599                             llvm::ConstantInt::get(Int32Ty, Value));
7600 }
7601 
7602 enum SpecialRegisterAccessKind {
7603   NormalRead,
7604   VolatileRead,
7605   Write,
7606 };
7607 
7608 // Generates the IR for the read/write special register builtin,
7609 // ValueType is the type of the value that is to be written or read,
7610 // RegisterType is the type of the register being written to or read from.
7611 static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
7612                                          const CallExpr *E,
7613                                          llvm::Type *RegisterType,
7614                                          llvm::Type *ValueType,
7615                                          SpecialRegisterAccessKind AccessKind,
7616                                          StringRef SysReg = "") {
7617   // write and register intrinsics only support 32, 64 and 128 bit operations.
7618   assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64) ||
7619           RegisterType->isIntegerTy(128)) &&
7620          "Unsupported size for register.");
7621 
7622   CodeGen::CGBuilderTy &Builder = CGF.Builder;
7623   CodeGen::CodeGenModule &CGM = CGF.CGM;
7624   LLVMContext &Context = CGM.getLLVMContext();
7625 
7626   if (SysReg.empty()) {
7627     const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
7628     SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
7629   }
7630 
7631   llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
7632   llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
7633   llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
7634 
7635   llvm::Type *Types[] = { RegisterType };
7636 
7637   bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
7638   assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))
7639             && "Can't fit 64-bit value in 32-bit register");
7640 
7641   if (AccessKind != Write) {
7642     assert(AccessKind == NormalRead || AccessKind == VolatileRead);
7643     llvm::Function *F = CGM.getIntrinsic(
7644         AccessKind == VolatileRead ? llvm::Intrinsic::read_volatile_register
7645                                    : llvm::Intrinsic::read_register,
7646         Types);
7647     llvm::Value *Call = Builder.CreateCall(F, Metadata);
7648 
7649     if (MixedTypes)
7650       // Read into 64 bit register and then truncate result to 32 bit.
7651       return Builder.CreateTrunc(Call, ValueType);
7652 
7653     if (ValueType->isPointerTy())
7654       // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
7655       return Builder.CreateIntToPtr(Call, ValueType);
7656 
7657     return Call;
7658   }
7659 
7660   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
7661   llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
7662   if (MixedTypes) {
7663     // Extend 32 bit write value to 64 bit to pass to write.
7664     ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
7665     return Builder.CreateCall(F, { Metadata, ArgValue });
7666   }
7667 
7668   if (ValueType->isPointerTy()) {
7669     // Have VoidPtrTy ArgValue but want to return an i32/i64.
7670     ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
7671     return Builder.CreateCall(F, { Metadata, ArgValue });
7672   }
7673 
7674   return Builder.CreateCall(F, { Metadata, ArgValue });
7675 }
7676 
7677 /// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
7678 /// argument that specifies the vector type.
7679 static bool HasExtraNeonArgument(unsigned BuiltinID) {
7680   switch (BuiltinID) {
7681   default: break;
7682   case NEON::BI__builtin_neon_vget_lane_i8:
7683   case NEON::BI__builtin_neon_vget_lane_i16:
7684   case NEON::BI__builtin_neon_vget_lane_bf16:
7685   case NEON::BI__builtin_neon_vget_lane_i32:
7686   case NEON::BI__builtin_neon_vget_lane_i64:
7687   case NEON::BI__builtin_neon_vget_lane_f32:
7688   case NEON::BI__builtin_neon_vgetq_lane_i8:
7689   case NEON::BI__builtin_neon_vgetq_lane_i16:
7690   case NEON::BI__builtin_neon_vgetq_lane_bf16:
7691   case NEON::BI__builtin_neon_vgetq_lane_i32:
7692   case NEON::BI__builtin_neon_vgetq_lane_i64:
7693   case NEON::BI__builtin_neon_vgetq_lane_f32:
7694   case NEON::BI__builtin_neon_vduph_lane_bf16:
7695   case NEON::BI__builtin_neon_vduph_laneq_bf16:
7696   case NEON::BI__builtin_neon_vset_lane_i8:
7697   case NEON::BI__builtin_neon_vset_lane_i16:
7698   case NEON::BI__builtin_neon_vset_lane_bf16:
7699   case NEON::BI__builtin_neon_vset_lane_i32:
7700   case NEON::BI__builtin_neon_vset_lane_i64:
7701   case NEON::BI__builtin_neon_vset_lane_f32:
7702   case NEON::BI__builtin_neon_vsetq_lane_i8:
7703   case NEON::BI__builtin_neon_vsetq_lane_i16:
7704   case NEON::BI__builtin_neon_vsetq_lane_bf16:
7705   case NEON::BI__builtin_neon_vsetq_lane_i32:
7706   case NEON::BI__builtin_neon_vsetq_lane_i64:
7707   case NEON::BI__builtin_neon_vsetq_lane_f32:
7708   case NEON::BI__builtin_neon_vsha1h_u32:
7709   case NEON::BI__builtin_neon_vsha1cq_u32:
7710   case NEON::BI__builtin_neon_vsha1pq_u32:
7711   case NEON::BI__builtin_neon_vsha1mq_u32:
7712   case NEON::BI__builtin_neon_vcvth_bf16_f32:
7713   case clang::ARM::BI_MoveToCoprocessor:
7714   case clang::ARM::BI_MoveToCoprocessor2:
7715     return false;
7716   }
7717   return true;
7718 }
7719 
7720 Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
7721                                            const CallExpr *E,
7722                                            ReturnValueSlot ReturnValue,
7723                                            llvm::Triple::ArchType Arch) {
7724   if (auto Hint = GetValueForARMHint(BuiltinID))
7725     return Hint;
7726 
7727   if (BuiltinID == clang::ARM::BI__emit) {
7728     bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
7729     llvm::FunctionType *FTy =
7730         llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
7731 
7732     Expr::EvalResult Result;
7733     if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
7734       llvm_unreachable("Sema will ensure that the parameter is constant");
7735 
7736     llvm::APSInt Value = Result.Val.getInt();
7737     uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
7738 
7739     llvm::InlineAsm *Emit =
7740         IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
7741                                  /*hasSideEffects=*/true)
7742                 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
7743                                  /*hasSideEffects=*/true);
7744 
7745     return Builder.CreateCall(Emit);
7746   }
7747 
7748   if (BuiltinID == clang::ARM::BI__builtin_arm_dbg) {
7749     Value *Option = EmitScalarExpr(E->getArg(0));
7750     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
7751   }
7752 
7753   if (BuiltinID == clang::ARM::BI__builtin_arm_prefetch) {
7754     Value *Address = EmitScalarExpr(E->getArg(0));
7755     Value *RW      = EmitScalarExpr(E->getArg(1));
7756     Value *IsData  = EmitScalarExpr(E->getArg(2));
7757 
7758     // Locality is not supported on ARM target
7759     Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
7760 
7761     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
7762     return Builder.CreateCall(F, {Address, RW, Locality, IsData});
7763   }
7764 
7765   if (BuiltinID == clang::ARM::BI__builtin_arm_rbit) {
7766     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7767     return Builder.CreateCall(
7768         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
7769   }
7770 
7771   if (BuiltinID == clang::ARM::BI__builtin_arm_cls) {
7772     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7773     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls), Arg, "cls");
7774   }
7775   if (BuiltinID == clang::ARM::BI__builtin_arm_cls64) {
7776     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7777     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls64), Arg,
7778                               "cls");
7779   }
7780 
7781   if (BuiltinID == clang::ARM::BI__clear_cache) {
7782     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
7783     const FunctionDecl *FD = E->getDirectCallee();
7784     Value *Ops[2];
7785     for (unsigned i = 0; i < 2; i++)
7786       Ops[i] = EmitScalarExpr(E->getArg(i));
7787     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
7788     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
7789     StringRef Name = FD->getName();
7790     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
7791   }
7792 
7793   if (BuiltinID == clang::ARM::BI__builtin_arm_mcrr ||
7794       BuiltinID == clang::ARM::BI__builtin_arm_mcrr2) {
7795     Function *F;
7796 
7797     switch (BuiltinID) {
7798     default: llvm_unreachable("unexpected builtin");
7799     case clang::ARM::BI__builtin_arm_mcrr:
7800       F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
7801       break;
7802     case clang::ARM::BI__builtin_arm_mcrr2:
7803       F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
7804       break;
7805     }
7806 
7807     // MCRR{2} instruction has 5 operands but
7808     // the intrinsic has 4 because Rt and Rt2
7809     // are represented as a single unsigned 64
7810     // bit integer in the intrinsic definition
7811     // but internally it's represented as 2 32
7812     // bit integers.
7813 
7814     Value *Coproc = EmitScalarExpr(E->getArg(0));
7815     Value *Opc1 = EmitScalarExpr(E->getArg(1));
7816     Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
7817     Value *CRm = EmitScalarExpr(E->getArg(3));
7818 
7819     Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
7820     Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
7821     Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
7822     Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
7823 
7824     return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
7825   }
7826 
7827   if (BuiltinID == clang::ARM::BI__builtin_arm_mrrc ||
7828       BuiltinID == clang::ARM::BI__builtin_arm_mrrc2) {
7829     Function *F;
7830 
7831     switch (BuiltinID) {
7832     default: llvm_unreachable("unexpected builtin");
7833     case clang::ARM::BI__builtin_arm_mrrc:
7834       F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
7835       break;
7836     case clang::ARM::BI__builtin_arm_mrrc2:
7837       F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
7838       break;
7839     }
7840 
7841     Value *Coproc = EmitScalarExpr(E->getArg(0));
7842     Value *Opc1 = EmitScalarExpr(E->getArg(1));
7843     Value *CRm  = EmitScalarExpr(E->getArg(2));
7844     Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
7845 
7846     // Returns an unsigned 64 bit integer, represented
7847     // as two 32 bit integers.
7848 
7849     Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
7850     Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
7851     Rt = Builder.CreateZExt(Rt, Int64Ty);
7852     Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
7853 
7854     Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
7855     RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
7856     RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
7857 
7858     return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
7859   }
7860 
7861   if (BuiltinID == clang::ARM::BI__builtin_arm_ldrexd ||
7862       ((BuiltinID == clang::ARM::BI__builtin_arm_ldrex ||
7863         BuiltinID == clang::ARM::BI__builtin_arm_ldaex) &&
7864        getContext().getTypeSize(E->getType()) == 64) ||
7865       BuiltinID == clang::ARM::BI__ldrexd) {
7866     Function *F;
7867 
7868     switch (BuiltinID) {
7869     default: llvm_unreachable("unexpected builtin");
7870     case clang::ARM::BI__builtin_arm_ldaex:
7871       F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
7872       break;
7873     case clang::ARM::BI__builtin_arm_ldrexd:
7874     case clang::ARM::BI__builtin_arm_ldrex:
7875     case clang::ARM::BI__ldrexd:
7876       F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
7877       break;
7878     }
7879 
7880     Value *LdPtr = EmitScalarExpr(E->getArg(0));
7881     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
7882                                     "ldrexd");
7883 
7884     Value *Val0 = Builder.CreateExtractValue(Val, 1);
7885     Value *Val1 = Builder.CreateExtractValue(Val, 0);
7886     Val0 = Builder.CreateZExt(Val0, Int64Ty);
7887     Val1 = Builder.CreateZExt(Val1, Int64Ty);
7888 
7889     Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
7890     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
7891     Val = Builder.CreateOr(Val, Val1);
7892     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
7893   }
7894 
7895   if (BuiltinID == clang::ARM::BI__builtin_arm_ldrex ||
7896       BuiltinID == clang::ARM::BI__builtin_arm_ldaex) {
7897     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
7898 
7899     QualType Ty = E->getType();
7900     llvm::Type *RealResTy = ConvertType(Ty);
7901     llvm::Type *IntTy =
7902         llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty));
7903     llvm::Type *PtrTy = IntTy->getPointerTo();
7904     LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
7905 
7906     Function *F = CGM.getIntrinsic(
7907         BuiltinID == clang::ARM::BI__builtin_arm_ldaex ? Intrinsic::arm_ldaex
7908                                                        : Intrinsic::arm_ldrex,
7909         PtrTy);
7910     CallInst *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
7911     Val->addParamAttr(
7912         0, Attribute::get(getLLVMContext(), Attribute::ElementType, IntTy));
7913 
7914     if (RealResTy->isPointerTy())
7915       return Builder.CreateIntToPtr(Val, RealResTy);
7916     else {
7917       llvm::Type *IntResTy = llvm::IntegerType::get(
7918           getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
7919       return Builder.CreateBitCast(Builder.CreateTruncOrBitCast(Val, IntResTy),
7920                                    RealResTy);
7921     }
7922   }
7923 
7924   if (BuiltinID == clang::ARM::BI__builtin_arm_strexd ||
7925       ((BuiltinID == clang::ARM::BI__builtin_arm_stlex ||
7926         BuiltinID == clang::ARM::BI__builtin_arm_strex) &&
7927        getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
7928     Function *F = CGM.getIntrinsic(
7929         BuiltinID == clang::ARM::BI__builtin_arm_stlex ? Intrinsic::arm_stlexd
7930                                                        : Intrinsic::arm_strexd);
7931     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty);
7932 
7933     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
7934     Value *Val = EmitScalarExpr(E->getArg(0));
7935     Builder.CreateStore(Val, Tmp);
7936 
7937     Address LdPtr = Builder.CreateElementBitCast(Tmp, STy);
7938     Val = Builder.CreateLoad(LdPtr);
7939 
7940     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
7941     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
7942     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
7943     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
7944   }
7945 
7946   if (BuiltinID == clang::ARM::BI__builtin_arm_strex ||
7947       BuiltinID == clang::ARM::BI__builtin_arm_stlex) {
7948     Value *StoreVal = EmitScalarExpr(E->getArg(0));
7949     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
7950 
7951     QualType Ty = E->getArg(0)->getType();
7952     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
7953                                                  getContext().getTypeSize(Ty));
7954     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
7955 
7956     if (StoreVal->getType()->isPointerTy())
7957       StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
7958     else {
7959       llvm::Type *IntTy = llvm::IntegerType::get(
7960           getLLVMContext(),
7961           CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
7962       StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
7963       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
7964     }
7965 
7966     Function *F = CGM.getIntrinsic(
7967         BuiltinID == clang::ARM::BI__builtin_arm_stlex ? Intrinsic::arm_stlex
7968                                                        : Intrinsic::arm_strex,
7969         StoreAddr->getType());
7970 
7971     CallInst *CI = Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
7972     CI->addParamAttr(
7973         1, Attribute::get(getLLVMContext(), Attribute::ElementType, StoreTy));
7974     return CI;
7975   }
7976 
7977   if (BuiltinID == clang::ARM::BI__builtin_arm_clrex) {
7978     Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
7979     return Builder.CreateCall(F);
7980   }
7981 
7982   // CRC32
7983   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
7984   switch (BuiltinID) {
7985   case clang::ARM::BI__builtin_arm_crc32b:
7986     CRCIntrinsicID = Intrinsic::arm_crc32b; break;
7987   case clang::ARM::BI__builtin_arm_crc32cb:
7988     CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
7989   case clang::ARM::BI__builtin_arm_crc32h:
7990     CRCIntrinsicID = Intrinsic::arm_crc32h; break;
7991   case clang::ARM::BI__builtin_arm_crc32ch:
7992     CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
7993   case clang::ARM::BI__builtin_arm_crc32w:
7994   case clang::ARM::BI__builtin_arm_crc32d:
7995     CRCIntrinsicID = Intrinsic::arm_crc32w; break;
7996   case clang::ARM::BI__builtin_arm_crc32cw:
7997   case clang::ARM::BI__builtin_arm_crc32cd:
7998     CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
7999   }
8000 
8001   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
8002     Value *Arg0 = EmitScalarExpr(E->getArg(0));
8003     Value *Arg1 = EmitScalarExpr(E->getArg(1));
8004 
8005     // crc32{c,}d intrinsics are implemented as two calls to crc32{c,}w
8006     // intrinsics, hence we need different codegen for these cases.
8007     if (BuiltinID == clang::ARM::BI__builtin_arm_crc32d ||
8008         BuiltinID == clang::ARM::BI__builtin_arm_crc32cd) {
8009       Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
8010       Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
8011       Value *Arg1b = Builder.CreateLShr(Arg1, C1);
8012       Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
8013 
8014       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
8015       Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
8016       return Builder.CreateCall(F, {Res, Arg1b});
8017     } else {
8018       Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
8019 
8020       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
8021       return Builder.CreateCall(F, {Arg0, Arg1});
8022     }
8023   }
8024 
8025   if (BuiltinID == clang::ARM::BI__builtin_arm_rsr ||
8026       BuiltinID == clang::ARM::BI__builtin_arm_rsr64 ||
8027       BuiltinID == clang::ARM::BI__builtin_arm_rsrp ||
8028       BuiltinID == clang::ARM::BI__builtin_arm_wsr ||
8029       BuiltinID == clang::ARM::BI__builtin_arm_wsr64 ||
8030       BuiltinID == clang::ARM::BI__builtin_arm_wsrp) {
8031 
8032     SpecialRegisterAccessKind AccessKind = Write;
8033     if (BuiltinID == clang::ARM::BI__builtin_arm_rsr ||
8034         BuiltinID == clang::ARM::BI__builtin_arm_rsr64 ||
8035         BuiltinID == clang::ARM::BI__builtin_arm_rsrp)
8036       AccessKind = VolatileRead;
8037 
8038     bool IsPointerBuiltin = BuiltinID == clang::ARM::BI__builtin_arm_rsrp ||
8039                             BuiltinID == clang::ARM::BI__builtin_arm_wsrp;
8040 
8041     bool Is64Bit = BuiltinID == clang::ARM::BI__builtin_arm_rsr64 ||
8042                    BuiltinID == clang::ARM::BI__builtin_arm_wsr64;
8043 
8044     llvm::Type *ValueType;
8045     llvm::Type *RegisterType;
8046     if (IsPointerBuiltin) {
8047       ValueType = VoidPtrTy;
8048       RegisterType = Int32Ty;
8049     } else if (Is64Bit) {
8050       ValueType = RegisterType = Int64Ty;
8051     } else {
8052       ValueType = RegisterType = Int32Ty;
8053     }
8054 
8055     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
8056                                       AccessKind);
8057   }
8058 
8059   if (BuiltinID == ARM::BI__builtin_sponentry) {
8060     llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy);
8061     return Builder.CreateCall(F);
8062   }
8063 
8064   // Handle MSVC intrinsics before argument evaluation to prevent double
8065   // evaluation.
8066   if (std::optional<MSVCIntrin> MsvcIntId = translateArmToMsvcIntrin(BuiltinID))
8067     return EmitMSVCBuiltinExpr(*MsvcIntId, E);
8068 
8069   // Deal with MVE builtins
8070   if (Value *Result = EmitARMMVEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
8071     return Result;
8072   // Handle CDE builtins
8073   if (Value *Result = EmitARMCDEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
8074     return Result;
8075 
8076   // Some intrinsics are equivalent - if they are use the base intrinsic ID.
8077   auto It = llvm::find_if(NEONEquivalentIntrinsicMap, [BuiltinID](auto &P) {
8078     return P.first == BuiltinID;
8079   });
8080   if (It != end(NEONEquivalentIntrinsicMap))
8081     BuiltinID = It->second;
8082 
8083   // Find out if any arguments are required to be integer constant
8084   // expressions.
8085   unsigned ICEArguments = 0;
8086   ASTContext::GetBuiltinTypeError Error;
8087   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
8088   assert(Error == ASTContext::GE_None && "Should not codegen an error");
8089 
8090   auto getAlignmentValue32 = [&](Address addr) -> Value* {
8091     return Builder.getInt32(addr.getAlignment().getQuantity());
8092   };
8093 
8094   Address PtrOp0 = Address::invalid();
8095   Address PtrOp1 = Address::invalid();
8096   SmallVector<Value*, 4> Ops;
8097   bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
8098   unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
8099   for (unsigned i = 0, e = NumArgs; i != e; i++) {
8100     if (i == 0) {
8101       switch (BuiltinID) {
8102       case NEON::BI__builtin_neon_vld1_v:
8103       case NEON::BI__builtin_neon_vld1q_v:
8104       case NEON::BI__builtin_neon_vld1q_lane_v:
8105       case NEON::BI__builtin_neon_vld1_lane_v:
8106       case NEON::BI__builtin_neon_vld1_dup_v:
8107       case NEON::BI__builtin_neon_vld1q_dup_v:
8108       case NEON::BI__builtin_neon_vst1_v:
8109       case NEON::BI__builtin_neon_vst1q_v:
8110       case NEON::BI__builtin_neon_vst1q_lane_v:
8111       case NEON::BI__builtin_neon_vst1_lane_v:
8112       case NEON::BI__builtin_neon_vst2_v:
8113       case NEON::BI__builtin_neon_vst2q_v:
8114       case NEON::BI__builtin_neon_vst2_lane_v:
8115       case NEON::BI__builtin_neon_vst2q_lane_v:
8116       case NEON::BI__builtin_neon_vst3_v:
8117       case NEON::BI__builtin_neon_vst3q_v:
8118       case NEON::BI__builtin_neon_vst3_lane_v:
8119       case NEON::BI__builtin_neon_vst3q_lane_v:
8120       case NEON::BI__builtin_neon_vst4_v:
8121       case NEON::BI__builtin_neon_vst4q_v:
8122       case NEON::BI__builtin_neon_vst4_lane_v:
8123       case NEON::BI__builtin_neon_vst4q_lane_v:
8124         // Get the alignment for the argument in addition to the value;
8125         // we'll use it later.
8126         PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
8127         Ops.push_back(PtrOp0.getPointer());
8128         continue;
8129       }
8130     }
8131     if (i == 1) {
8132       switch (BuiltinID) {
8133       case NEON::BI__builtin_neon_vld2_v:
8134       case NEON::BI__builtin_neon_vld2q_v:
8135       case NEON::BI__builtin_neon_vld3_v:
8136       case NEON::BI__builtin_neon_vld3q_v:
8137       case NEON::BI__builtin_neon_vld4_v:
8138       case NEON::BI__builtin_neon_vld4q_v:
8139       case NEON::BI__builtin_neon_vld2_lane_v:
8140       case NEON::BI__builtin_neon_vld2q_lane_v:
8141       case NEON::BI__builtin_neon_vld3_lane_v:
8142       case NEON::BI__builtin_neon_vld3q_lane_v:
8143       case NEON::BI__builtin_neon_vld4_lane_v:
8144       case NEON::BI__builtin_neon_vld4q_lane_v:
8145       case NEON::BI__builtin_neon_vld2_dup_v:
8146       case NEON::BI__builtin_neon_vld2q_dup_v:
8147       case NEON::BI__builtin_neon_vld3_dup_v:
8148       case NEON::BI__builtin_neon_vld3q_dup_v:
8149       case NEON::BI__builtin_neon_vld4_dup_v:
8150       case NEON::BI__builtin_neon_vld4q_dup_v:
8151         // Get the alignment for the argument in addition to the value;
8152         // we'll use it later.
8153         PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
8154         Ops.push_back(PtrOp1.getPointer());
8155         continue;
8156       }
8157     }
8158 
8159     if ((ICEArguments & (1 << i)) == 0) {
8160       Ops.push_back(EmitScalarExpr(E->getArg(i)));
8161     } else {
8162       // If this is required to be a constant, constant fold it so that we know
8163       // that the generated intrinsic gets a ConstantInt.
8164       Ops.push_back(llvm::ConstantInt::get(
8165           getLLVMContext(),
8166           *E->getArg(i)->getIntegerConstantExpr(getContext())));
8167     }
8168   }
8169 
8170   switch (BuiltinID) {
8171   default: break;
8172 
8173   case NEON::BI__builtin_neon_vget_lane_i8:
8174   case NEON::BI__builtin_neon_vget_lane_i16:
8175   case NEON::BI__builtin_neon_vget_lane_i32:
8176   case NEON::BI__builtin_neon_vget_lane_i64:
8177   case NEON::BI__builtin_neon_vget_lane_bf16:
8178   case NEON::BI__builtin_neon_vget_lane_f32:
8179   case NEON::BI__builtin_neon_vgetq_lane_i8:
8180   case NEON::BI__builtin_neon_vgetq_lane_i16:
8181   case NEON::BI__builtin_neon_vgetq_lane_i32:
8182   case NEON::BI__builtin_neon_vgetq_lane_i64:
8183   case NEON::BI__builtin_neon_vgetq_lane_bf16:
8184   case NEON::BI__builtin_neon_vgetq_lane_f32:
8185   case NEON::BI__builtin_neon_vduph_lane_bf16:
8186   case NEON::BI__builtin_neon_vduph_laneq_bf16:
8187     return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
8188 
8189   case NEON::BI__builtin_neon_vrndns_f32: {
8190     Value *Arg = EmitScalarExpr(E->getArg(0));
8191     llvm::Type *Tys[] = {Arg->getType()};
8192     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys);
8193     return Builder.CreateCall(F, {Arg}, "vrndn"); }
8194 
8195   case NEON::BI__builtin_neon_vset_lane_i8:
8196   case NEON::BI__builtin_neon_vset_lane_i16:
8197   case NEON::BI__builtin_neon_vset_lane_i32:
8198   case NEON::BI__builtin_neon_vset_lane_i64:
8199   case NEON::BI__builtin_neon_vset_lane_bf16:
8200   case NEON::BI__builtin_neon_vset_lane_f32:
8201   case NEON::BI__builtin_neon_vsetq_lane_i8:
8202   case NEON::BI__builtin_neon_vsetq_lane_i16:
8203   case NEON::BI__builtin_neon_vsetq_lane_i32:
8204   case NEON::BI__builtin_neon_vsetq_lane_i64:
8205   case NEON::BI__builtin_neon_vsetq_lane_bf16:
8206   case NEON::BI__builtin_neon_vsetq_lane_f32:
8207     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
8208 
8209   case NEON::BI__builtin_neon_vsha1h_u32:
8210     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
8211                         "vsha1h");
8212   case NEON::BI__builtin_neon_vsha1cq_u32:
8213     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
8214                         "vsha1h");
8215   case NEON::BI__builtin_neon_vsha1pq_u32:
8216     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
8217                         "vsha1h");
8218   case NEON::BI__builtin_neon_vsha1mq_u32:
8219     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
8220                         "vsha1h");
8221 
8222   case NEON::BI__builtin_neon_vcvth_bf16_f32: {
8223     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vcvtbfp2bf), Ops,
8224                         "vcvtbfp2bf");
8225   }
8226 
8227   // The ARM _MoveToCoprocessor builtins put the input register value as
8228   // the first argument, but the LLVM intrinsic expects it as the third one.
8229   case clang::ARM::BI_MoveToCoprocessor:
8230   case clang::ARM::BI_MoveToCoprocessor2: {
8231     Function *F = CGM.getIntrinsic(BuiltinID == clang::ARM::BI_MoveToCoprocessor
8232                                        ? Intrinsic::arm_mcr
8233                                        : Intrinsic::arm_mcr2);
8234     return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
8235                                   Ops[3], Ops[4], Ops[5]});
8236   }
8237   }
8238 
8239   // Get the last argument, which specifies the vector type.
8240   assert(HasExtraArg);
8241   const Expr *Arg = E->getArg(E->getNumArgs()-1);
8242   std::optional<llvm::APSInt> Result =
8243       Arg->getIntegerConstantExpr(getContext());
8244   if (!Result)
8245     return nullptr;
8246 
8247   if (BuiltinID == clang::ARM::BI__builtin_arm_vcvtr_f ||
8248       BuiltinID == clang::ARM::BI__builtin_arm_vcvtr_d) {
8249     // Determine the overloaded type of this builtin.
8250     llvm::Type *Ty;
8251     if (BuiltinID == clang::ARM::BI__builtin_arm_vcvtr_f)
8252       Ty = FloatTy;
8253     else
8254       Ty = DoubleTy;
8255 
8256     // Determine whether this is an unsigned conversion or not.
8257     bool usgn = Result->getZExtValue() == 1;
8258     unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
8259 
8260     // Call the appropriate intrinsic.
8261     Function *F = CGM.getIntrinsic(Int, Ty);
8262     return Builder.CreateCall(F, Ops, "vcvtr");
8263   }
8264 
8265   // Determine the type of this overloaded NEON intrinsic.
8266   NeonTypeFlags Type = Result->getZExtValue();
8267   bool usgn = Type.isUnsigned();
8268   bool rightShift = false;
8269 
8270   llvm::FixedVectorType *VTy =
8271       GetNeonType(this, Type, getTarget().hasLegalHalfType(), false,
8272                   getTarget().hasBFloat16Type());
8273   llvm::Type *Ty = VTy;
8274   if (!Ty)
8275     return nullptr;
8276 
8277   // Many NEON builtins have identical semantics and uses in ARM and
8278   // AArch64. Emit these in a single function.
8279   auto IntrinsicMap = ArrayRef(ARMSIMDIntrinsicMap);
8280   const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
8281       IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
8282   if (Builtin)
8283     return EmitCommonNeonBuiltinExpr(
8284         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
8285         Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch);
8286 
8287   unsigned Int;
8288   switch (BuiltinID) {
8289   default: return nullptr;
8290   case NEON::BI__builtin_neon_vld1q_lane_v:
8291     // Handle 64-bit integer elements as a special case.  Use shuffles of
8292     // one-element vectors to avoid poor code for i64 in the backend.
8293     if (VTy->getElementType()->isIntegerTy(64)) {
8294       // Extract the other lane.
8295       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8296       int Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
8297       Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
8298       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
8299       // Load the value as a one-element vector.
8300       Ty = llvm::FixedVectorType::get(VTy->getElementType(), 1);
8301       llvm::Type *Tys[] = {Ty, Int8PtrTy};
8302       Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
8303       Value *Align = getAlignmentValue32(PtrOp0);
8304       Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
8305       // Combine them.
8306       int Indices[] = {1 - Lane, Lane};
8307       return Builder.CreateShuffleVector(Ops[1], Ld, Indices, "vld1q_lane");
8308     }
8309     [[fallthrough]];
8310   case NEON::BI__builtin_neon_vld1_lane_v: {
8311     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8312     PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
8313     Value *Ld = Builder.CreateLoad(PtrOp0);
8314     return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
8315   }
8316   case NEON::BI__builtin_neon_vqrshrn_n_v:
8317     Int =
8318       usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
8319     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
8320                         1, true);
8321   case NEON::BI__builtin_neon_vqrshrun_n_v:
8322     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
8323                         Ops, "vqrshrun_n", 1, true);
8324   case NEON::BI__builtin_neon_vqshrn_n_v:
8325     Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
8326     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
8327                         1, true);
8328   case NEON::BI__builtin_neon_vqshrun_n_v:
8329     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
8330                         Ops, "vqshrun_n", 1, true);
8331   case NEON::BI__builtin_neon_vrecpe_v:
8332   case NEON::BI__builtin_neon_vrecpeq_v:
8333     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
8334                         Ops, "vrecpe");
8335   case NEON::BI__builtin_neon_vrshrn_n_v:
8336     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
8337                         Ops, "vrshrn_n", 1, true);
8338   case NEON::BI__builtin_neon_vrsra_n_v:
8339   case NEON::BI__builtin_neon_vrsraq_n_v:
8340     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8341     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8342     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
8343     Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
8344     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
8345     return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
8346   case NEON::BI__builtin_neon_vsri_n_v:
8347   case NEON::BI__builtin_neon_vsriq_n_v:
8348     rightShift = true;
8349     [[fallthrough]];
8350   case NEON::BI__builtin_neon_vsli_n_v:
8351   case NEON::BI__builtin_neon_vsliq_n_v:
8352     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
8353     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
8354                         Ops, "vsli_n");
8355   case NEON::BI__builtin_neon_vsra_n_v:
8356   case NEON::BI__builtin_neon_vsraq_n_v:
8357     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8358     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
8359     return Builder.CreateAdd(Ops[0], Ops[1]);
8360   case NEON::BI__builtin_neon_vst1q_lane_v:
8361     // Handle 64-bit integer elements as a special case.  Use a shuffle to get
8362     // a one-element vector and avoid poor code for i64 in the backend.
8363     if (VTy->getElementType()->isIntegerTy(64)) {
8364       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8365       Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
8366       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
8367       Ops[2] = getAlignmentValue32(PtrOp0);
8368       llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
8369       return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
8370                                                  Tys), Ops);
8371     }
8372     [[fallthrough]];
8373   case NEON::BI__builtin_neon_vst1_lane_v: {
8374     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8375     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
8376     auto St = Builder.CreateStore(
8377         Ops[1], Builder.CreateElementBitCast(PtrOp0, Ops[1]->getType()));
8378     return St;
8379   }
8380   case NEON::BI__builtin_neon_vtbl1_v:
8381     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
8382                         Ops, "vtbl1");
8383   case NEON::BI__builtin_neon_vtbl2_v:
8384     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
8385                         Ops, "vtbl2");
8386   case NEON::BI__builtin_neon_vtbl3_v:
8387     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
8388                         Ops, "vtbl3");
8389   case NEON::BI__builtin_neon_vtbl4_v:
8390     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
8391                         Ops, "vtbl4");
8392   case NEON::BI__builtin_neon_vtbx1_v:
8393     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
8394                         Ops, "vtbx1");
8395   case NEON::BI__builtin_neon_vtbx2_v:
8396     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
8397                         Ops, "vtbx2");
8398   case NEON::BI__builtin_neon_vtbx3_v:
8399     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
8400                         Ops, "vtbx3");
8401   case NEON::BI__builtin_neon_vtbx4_v:
8402     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
8403                         Ops, "vtbx4");
8404   }
8405 }
8406 
8407 template<typename Integer>
8408 static Integer GetIntegerConstantValue(const Expr *E, ASTContext &Context) {
8409   return E->getIntegerConstantExpr(Context)->getExtValue();
8410 }
8411 
8412 static llvm::Value *SignOrZeroExtend(CGBuilderTy &Builder, llvm::Value *V,
8413                                      llvm::Type *T, bool Unsigned) {
8414   // Helper function called by Tablegen-constructed ARM MVE builtin codegen,
8415   // which finds it convenient to specify signed/unsigned as a boolean flag.
8416   return Unsigned ? Builder.CreateZExt(V, T) : Builder.CreateSExt(V, T);
8417 }
8418 
8419 static llvm::Value *MVEImmediateShr(CGBuilderTy &Builder, llvm::Value *V,
8420                                     uint32_t Shift, bool Unsigned) {
8421   // MVE helper function for integer shift right. This must handle signed vs
8422   // unsigned, and also deal specially with the case where the shift count is
8423   // equal to the lane size. In LLVM IR, an LShr with that parameter would be
8424   // undefined behavior, but in MVE it's legal, so we must convert it to code
8425   // that is not undefined in IR.
8426   unsigned LaneBits = cast<llvm::VectorType>(V->getType())
8427                           ->getElementType()
8428                           ->getPrimitiveSizeInBits();
8429   if (Shift == LaneBits) {
8430     // An unsigned shift of the full lane size always generates zero, so we can
8431     // simply emit a zero vector. A signed shift of the full lane size does the
8432     // same thing as shifting by one bit fewer.
8433     if (Unsigned)
8434       return llvm::Constant::getNullValue(V->getType());
8435     else
8436       --Shift;
8437   }
8438   return Unsigned ? Builder.CreateLShr(V, Shift) : Builder.CreateAShr(V, Shift);
8439 }
8440 
8441 static llvm::Value *ARMMVEVectorSplat(CGBuilderTy &Builder, llvm::Value *V) {
8442   // MVE-specific helper function for a vector splat, which infers the element
8443   // count of the output vector by knowing that MVE vectors are all 128 bits
8444   // wide.
8445   unsigned Elements = 128 / V->getType()->getPrimitiveSizeInBits();
8446   return Builder.CreateVectorSplat(Elements, V);
8447 }
8448 
8449 static llvm::Value *ARMMVEVectorReinterpret(CGBuilderTy &Builder,
8450                                             CodeGenFunction *CGF,
8451                                             llvm::Value *V,
8452                                             llvm::Type *DestType) {
8453   // Convert one MVE vector type into another by reinterpreting its in-register
8454   // format.
8455   //
8456   // Little-endian, this is identical to a bitcast (which reinterprets the
8457   // memory format). But big-endian, they're not necessarily the same, because
8458   // the register and memory formats map to each other differently depending on
8459   // the lane size.
8460   //
8461   // We generate a bitcast whenever we can (if we're little-endian, or if the
8462   // lane sizes are the same anyway). Otherwise we fall back to an IR intrinsic
8463   // that performs the different kind of reinterpretation.
8464   if (CGF->getTarget().isBigEndian() &&
8465       V->getType()->getScalarSizeInBits() != DestType->getScalarSizeInBits()) {
8466     return Builder.CreateCall(
8467         CGF->CGM.getIntrinsic(Intrinsic::arm_mve_vreinterpretq,
8468                               {DestType, V->getType()}),
8469         V);
8470   } else {
8471     return Builder.CreateBitCast(V, DestType);
8472   }
8473 }
8474 
8475 static llvm::Value *VectorUnzip(CGBuilderTy &Builder, llvm::Value *V, bool Odd) {
8476   // Make a shufflevector that extracts every other element of a vector (evens
8477   // or odds, as desired).
8478   SmallVector<int, 16> Indices;
8479   unsigned InputElements =
8480       cast<llvm::FixedVectorType>(V->getType())->getNumElements();
8481   for (unsigned i = 0; i < InputElements; i += 2)
8482     Indices.push_back(i + Odd);
8483   return Builder.CreateShuffleVector(V, Indices);
8484 }
8485 
8486 static llvm::Value *VectorZip(CGBuilderTy &Builder, llvm::Value *V0,
8487                               llvm::Value *V1) {
8488   // Make a shufflevector that interleaves two vectors element by element.
8489   assert(V0->getType() == V1->getType() && "Can't zip different vector types");
8490   SmallVector<int, 16> Indices;
8491   unsigned InputElements =
8492       cast<llvm::FixedVectorType>(V0->getType())->getNumElements();
8493   for (unsigned i = 0; i < InputElements; i++) {
8494     Indices.push_back(i);
8495     Indices.push_back(i + InputElements);
8496   }
8497   return Builder.CreateShuffleVector(V0, V1, Indices);
8498 }
8499 
8500 template<unsigned HighBit, unsigned OtherBits>
8501 static llvm::Value *ARMMVEConstantSplat(CGBuilderTy &Builder, llvm::Type *VT) {
8502   // MVE-specific helper function to make a vector splat of a constant such as
8503   // UINT_MAX or INT_MIN, in which all bits below the highest one are equal.
8504   llvm::Type *T = cast<llvm::VectorType>(VT)->getElementType();
8505   unsigned LaneBits = T->getPrimitiveSizeInBits();
8506   uint32_t Value = HighBit << (LaneBits - 1);
8507   if (OtherBits)
8508     Value |= (1UL << (LaneBits - 1)) - 1;
8509   llvm::Value *Lane = llvm::ConstantInt::get(T, Value);
8510   return ARMMVEVectorSplat(Builder, Lane);
8511 }
8512 
8513 static llvm::Value *ARMMVEVectorElementReverse(CGBuilderTy &Builder,
8514                                                llvm::Value *V,
8515                                                unsigned ReverseWidth) {
8516   // MVE-specific helper function which reverses the elements of a
8517   // vector within every (ReverseWidth)-bit collection of lanes.
8518   SmallVector<int, 16> Indices;
8519   unsigned LaneSize = V->getType()->getScalarSizeInBits();
8520   unsigned Elements = 128 / LaneSize;
8521   unsigned Mask = ReverseWidth / LaneSize - 1;
8522   for (unsigned i = 0; i < Elements; i++)
8523     Indices.push_back(i ^ Mask);
8524   return Builder.CreateShuffleVector(V, Indices);
8525 }
8526 
8527 Value *CodeGenFunction::EmitARMMVEBuiltinExpr(unsigned BuiltinID,
8528                                               const CallExpr *E,
8529                                               ReturnValueSlot ReturnValue,
8530                                               llvm::Triple::ArchType Arch) {
8531   enum class CustomCodeGen { VLD24, VST24 } CustomCodeGenType;
8532   Intrinsic::ID IRIntr;
8533   unsigned NumVectors;
8534 
8535   // Code autogenerated by Tablegen will handle all the simple builtins.
8536   switch (BuiltinID) {
8537     #include "clang/Basic/arm_mve_builtin_cg.inc"
8538 
8539     // If we didn't match an MVE builtin id at all, go back to the
8540     // main EmitARMBuiltinExpr.
8541   default:
8542     return nullptr;
8543   }
8544 
8545   // Anything that breaks from that switch is an MVE builtin that
8546   // needs handwritten code to generate.
8547 
8548   switch (CustomCodeGenType) {
8549 
8550   case CustomCodeGen::VLD24: {
8551     llvm::SmallVector<Value *, 4> Ops;
8552     llvm::SmallVector<llvm::Type *, 4> Tys;
8553 
8554     auto MvecCType = E->getType();
8555     auto MvecLType = ConvertType(MvecCType);
8556     assert(MvecLType->isStructTy() &&
8557            "Return type for vld[24]q should be a struct");
8558     assert(MvecLType->getStructNumElements() == 1 &&
8559            "Return-type struct for vld[24]q should have one element");
8560     auto MvecLTypeInner = MvecLType->getStructElementType(0);
8561     assert(MvecLTypeInner->isArrayTy() &&
8562            "Return-type struct for vld[24]q should contain an array");
8563     assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
8564            "Array member of return-type struct vld[24]q has wrong length");
8565     auto VecLType = MvecLTypeInner->getArrayElementType();
8566 
8567     Tys.push_back(VecLType);
8568 
8569     auto Addr = E->getArg(0);
8570     Ops.push_back(EmitScalarExpr(Addr));
8571     Tys.push_back(ConvertType(Addr->getType()));
8572 
8573     Function *F = CGM.getIntrinsic(IRIntr, ArrayRef(Tys));
8574     Value *LoadResult = Builder.CreateCall(F, Ops);
8575     Value *MvecOut = PoisonValue::get(MvecLType);
8576     for (unsigned i = 0; i < NumVectors; ++i) {
8577       Value *Vec = Builder.CreateExtractValue(LoadResult, i);
8578       MvecOut = Builder.CreateInsertValue(MvecOut, Vec, {0, i});
8579     }
8580 
8581     if (ReturnValue.isNull())
8582       return MvecOut;
8583     else
8584       return Builder.CreateStore(MvecOut, ReturnValue.getValue());
8585   }
8586 
8587   case CustomCodeGen::VST24: {
8588     llvm::SmallVector<Value *, 4> Ops;
8589     llvm::SmallVector<llvm::Type *, 4> Tys;
8590 
8591     auto Addr = E->getArg(0);
8592     Ops.push_back(EmitScalarExpr(Addr));
8593     Tys.push_back(ConvertType(Addr->getType()));
8594 
8595     auto MvecCType = E->getArg(1)->getType();
8596     auto MvecLType = ConvertType(MvecCType);
8597     assert(MvecLType->isStructTy() && "Data type for vst2q should be a struct");
8598     assert(MvecLType->getStructNumElements() == 1 &&
8599            "Data-type struct for vst2q should have one element");
8600     auto MvecLTypeInner = MvecLType->getStructElementType(0);
8601     assert(MvecLTypeInner->isArrayTy() &&
8602            "Data-type struct for vst2q should contain an array");
8603     assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
8604            "Array member of return-type struct vld[24]q has wrong length");
8605     auto VecLType = MvecLTypeInner->getArrayElementType();
8606 
8607     Tys.push_back(VecLType);
8608 
8609     AggValueSlot MvecSlot = CreateAggTemp(MvecCType);
8610     EmitAggExpr(E->getArg(1), MvecSlot);
8611     auto Mvec = Builder.CreateLoad(MvecSlot.getAddress());
8612     for (unsigned i = 0; i < NumVectors; i++)
8613       Ops.push_back(Builder.CreateExtractValue(Mvec, {0, i}));
8614 
8615     Function *F = CGM.getIntrinsic(IRIntr, ArrayRef(Tys));
8616     Value *ToReturn = nullptr;
8617     for (unsigned i = 0; i < NumVectors; i++) {
8618       Ops.push_back(llvm::ConstantInt::get(Int32Ty, i));
8619       ToReturn = Builder.CreateCall(F, Ops);
8620       Ops.pop_back();
8621     }
8622     return ToReturn;
8623   }
8624   }
8625   llvm_unreachable("unknown custom codegen type.");
8626 }
8627 
8628 Value *CodeGenFunction::EmitARMCDEBuiltinExpr(unsigned BuiltinID,
8629                                               const CallExpr *E,
8630                                               ReturnValueSlot ReturnValue,
8631                                               llvm::Triple::ArchType Arch) {
8632   switch (BuiltinID) {
8633   default:
8634     return nullptr;
8635 #include "clang/Basic/arm_cde_builtin_cg.inc"
8636   }
8637 }
8638 
8639 static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
8640                                       const CallExpr *E,
8641                                       SmallVectorImpl<Value *> &Ops,
8642                                       llvm::Triple::ArchType Arch) {
8643   unsigned int Int = 0;
8644   const char *s = nullptr;
8645 
8646   switch (BuiltinID) {
8647   default:
8648     return nullptr;
8649   case NEON::BI__builtin_neon_vtbl1_v:
8650   case NEON::BI__builtin_neon_vqtbl1_v:
8651   case NEON::BI__builtin_neon_vqtbl1q_v:
8652   case NEON::BI__builtin_neon_vtbl2_v:
8653   case NEON::BI__builtin_neon_vqtbl2_v:
8654   case NEON::BI__builtin_neon_vqtbl2q_v:
8655   case NEON::BI__builtin_neon_vtbl3_v:
8656   case NEON::BI__builtin_neon_vqtbl3_v:
8657   case NEON::BI__builtin_neon_vqtbl3q_v:
8658   case NEON::BI__builtin_neon_vtbl4_v:
8659   case NEON::BI__builtin_neon_vqtbl4_v:
8660   case NEON::BI__builtin_neon_vqtbl4q_v:
8661     break;
8662   case NEON::BI__builtin_neon_vtbx1_v:
8663   case NEON::BI__builtin_neon_vqtbx1_v:
8664   case NEON::BI__builtin_neon_vqtbx1q_v:
8665   case NEON::BI__builtin_neon_vtbx2_v:
8666   case NEON::BI__builtin_neon_vqtbx2_v:
8667   case NEON::BI__builtin_neon_vqtbx2q_v:
8668   case NEON::BI__builtin_neon_vtbx3_v:
8669   case NEON::BI__builtin_neon_vqtbx3_v:
8670   case NEON::BI__builtin_neon_vqtbx3q_v:
8671   case NEON::BI__builtin_neon_vtbx4_v:
8672   case NEON::BI__builtin_neon_vqtbx4_v:
8673   case NEON::BI__builtin_neon_vqtbx4q_v:
8674     break;
8675   }
8676 
8677   assert(E->getNumArgs() >= 3);
8678 
8679   // Get the last argument, which specifies the vector type.
8680   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
8681   std::optional<llvm::APSInt> Result =
8682       Arg->getIntegerConstantExpr(CGF.getContext());
8683   if (!Result)
8684     return nullptr;
8685 
8686   // Determine the type of this overloaded NEON intrinsic.
8687   NeonTypeFlags Type = Result->getZExtValue();
8688   llvm::FixedVectorType *Ty = GetNeonType(&CGF, Type);
8689   if (!Ty)
8690     return nullptr;
8691 
8692   CodeGen::CGBuilderTy &Builder = CGF.Builder;
8693 
8694   // AArch64 scalar builtins are not overloaded, they do not have an extra
8695   // argument that specifies the vector type, need to handle each case.
8696   switch (BuiltinID) {
8697   case NEON::BI__builtin_neon_vtbl1_v: {
8698     return packTBLDVectorList(CGF, ArrayRef(Ops).slice(0, 1), nullptr, Ops[1],
8699                               Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
8700   }
8701   case NEON::BI__builtin_neon_vtbl2_v: {
8702     return packTBLDVectorList(CGF, ArrayRef(Ops).slice(0, 2), nullptr, Ops[2],
8703                               Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
8704   }
8705   case NEON::BI__builtin_neon_vtbl3_v: {
8706     return packTBLDVectorList(CGF, ArrayRef(Ops).slice(0, 3), nullptr, Ops[3],
8707                               Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
8708   }
8709   case NEON::BI__builtin_neon_vtbl4_v: {
8710     return packTBLDVectorList(CGF, ArrayRef(Ops).slice(0, 4), nullptr, Ops[4],
8711                               Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
8712   }
8713   case NEON::BI__builtin_neon_vtbx1_v: {
8714     Value *TblRes =
8715         packTBLDVectorList(CGF, ArrayRef(Ops).slice(1, 1), nullptr, Ops[2], Ty,
8716                            Intrinsic::aarch64_neon_tbl1, "vtbl1");
8717 
8718     llvm::Constant *EightV = ConstantInt::get(Ty, 8);
8719     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
8720     CmpRes = Builder.CreateSExt(CmpRes, Ty);
8721 
8722     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
8723     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
8724     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
8725   }
8726   case NEON::BI__builtin_neon_vtbx2_v: {
8727     return packTBLDVectorList(CGF, ArrayRef(Ops).slice(1, 2), Ops[0], Ops[3],
8728                               Ty, Intrinsic::aarch64_neon_tbx1, "vtbx1");
8729   }
8730   case NEON::BI__builtin_neon_vtbx3_v: {
8731     Value *TblRes =
8732         packTBLDVectorList(CGF, ArrayRef(Ops).slice(1, 3), nullptr, Ops[4], Ty,
8733                            Intrinsic::aarch64_neon_tbl2, "vtbl2");
8734 
8735     llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
8736     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
8737                                            TwentyFourV);
8738     CmpRes = Builder.CreateSExt(CmpRes, Ty);
8739 
8740     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
8741     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
8742     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
8743   }
8744   case NEON::BI__builtin_neon_vtbx4_v: {
8745     return packTBLDVectorList(CGF, ArrayRef(Ops).slice(1, 4), Ops[0], Ops[5],
8746                               Ty, Intrinsic::aarch64_neon_tbx2, "vtbx2");
8747   }
8748   case NEON::BI__builtin_neon_vqtbl1_v:
8749   case NEON::BI__builtin_neon_vqtbl1q_v:
8750     Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
8751   case NEON::BI__builtin_neon_vqtbl2_v:
8752   case NEON::BI__builtin_neon_vqtbl2q_v: {
8753     Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
8754   case NEON::BI__builtin_neon_vqtbl3_v:
8755   case NEON::BI__builtin_neon_vqtbl3q_v:
8756     Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
8757   case NEON::BI__builtin_neon_vqtbl4_v:
8758   case NEON::BI__builtin_neon_vqtbl4q_v:
8759     Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
8760   case NEON::BI__builtin_neon_vqtbx1_v:
8761   case NEON::BI__builtin_neon_vqtbx1q_v:
8762     Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
8763   case NEON::BI__builtin_neon_vqtbx2_v:
8764   case NEON::BI__builtin_neon_vqtbx2q_v:
8765     Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
8766   case NEON::BI__builtin_neon_vqtbx3_v:
8767   case NEON::BI__builtin_neon_vqtbx3q_v:
8768     Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
8769   case NEON::BI__builtin_neon_vqtbx4_v:
8770   case NEON::BI__builtin_neon_vqtbx4q_v:
8771     Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
8772   }
8773   }
8774 
8775   if (!Int)
8776     return nullptr;
8777 
8778   Function *F = CGF.CGM.getIntrinsic(Int, Ty);
8779   return CGF.EmitNeonCall(F, Ops, s);
8780 }
8781 
8782 Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
8783   auto *VTy = llvm::FixedVectorType::get(Int16Ty, 4);
8784   Op = Builder.CreateBitCast(Op, Int16Ty);
8785   Value *V = PoisonValue::get(VTy);
8786   llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
8787   Op = Builder.CreateInsertElement(V, Op, CI);
8788   return Op;
8789 }
8790 
8791 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
8792 /// access builtin.  Only required if it can't be inferred from the base pointer
8793 /// operand.
8794 llvm::Type *CodeGenFunction::SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags) {
8795   switch (TypeFlags.getMemEltType()) {
8796   case SVETypeFlags::MemEltTyDefault:
8797     return getEltType(TypeFlags);
8798   case SVETypeFlags::MemEltTyInt8:
8799     return Builder.getInt8Ty();
8800   case SVETypeFlags::MemEltTyInt16:
8801     return Builder.getInt16Ty();
8802   case SVETypeFlags::MemEltTyInt32:
8803     return Builder.getInt32Ty();
8804   case SVETypeFlags::MemEltTyInt64:
8805     return Builder.getInt64Ty();
8806   }
8807   llvm_unreachable("Unknown MemEltType");
8808 }
8809 
8810 llvm::Type *CodeGenFunction::getEltType(const SVETypeFlags &TypeFlags) {
8811   switch (TypeFlags.getEltType()) {
8812   default:
8813     llvm_unreachable("Invalid SVETypeFlag!");
8814 
8815   case SVETypeFlags::EltTyInt8:
8816     return Builder.getInt8Ty();
8817   case SVETypeFlags::EltTyInt16:
8818     return Builder.getInt16Ty();
8819   case SVETypeFlags::EltTyInt32:
8820     return Builder.getInt32Ty();
8821   case SVETypeFlags::EltTyInt64:
8822     return Builder.getInt64Ty();
8823 
8824   case SVETypeFlags::EltTyFloat16:
8825     return Builder.getHalfTy();
8826   case SVETypeFlags::EltTyFloat32:
8827     return Builder.getFloatTy();
8828   case SVETypeFlags::EltTyFloat64:
8829     return Builder.getDoubleTy();
8830 
8831   case SVETypeFlags::EltTyBFloat16:
8832     return Builder.getBFloatTy();
8833 
8834   case SVETypeFlags::EltTyBool8:
8835   case SVETypeFlags::EltTyBool16:
8836   case SVETypeFlags::EltTyBool32:
8837   case SVETypeFlags::EltTyBool64:
8838     return Builder.getInt1Ty();
8839   }
8840 }
8841 
8842 // Return the llvm predicate vector type corresponding to the specified element
8843 // TypeFlags.
8844 llvm::ScalableVectorType *
8845 CodeGenFunction::getSVEPredType(const SVETypeFlags &TypeFlags) {
8846   switch (TypeFlags.getEltType()) {
8847   default: llvm_unreachable("Unhandled SVETypeFlag!");
8848 
8849   case SVETypeFlags::EltTyInt8:
8850     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8851   case SVETypeFlags::EltTyInt16:
8852     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8853   case SVETypeFlags::EltTyInt32:
8854     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8855   case SVETypeFlags::EltTyInt64:
8856     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8857 
8858   case SVETypeFlags::EltTyBFloat16:
8859     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8860   case SVETypeFlags::EltTyFloat16:
8861     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8862   case SVETypeFlags::EltTyFloat32:
8863     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8864   case SVETypeFlags::EltTyFloat64:
8865     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8866 
8867   case SVETypeFlags::EltTyBool8:
8868     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8869   case SVETypeFlags::EltTyBool16:
8870     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8871   case SVETypeFlags::EltTyBool32:
8872     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8873   case SVETypeFlags::EltTyBool64:
8874     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8875   }
8876 }
8877 
8878 // Return the llvm vector type corresponding to the specified element TypeFlags.
8879 llvm::ScalableVectorType *
8880 CodeGenFunction::getSVEType(const SVETypeFlags &TypeFlags) {
8881   switch (TypeFlags.getEltType()) {
8882   default:
8883     llvm_unreachable("Invalid SVETypeFlag!");
8884 
8885   case SVETypeFlags::EltTyInt8:
8886     return llvm::ScalableVectorType::get(Builder.getInt8Ty(), 16);
8887   case SVETypeFlags::EltTyInt16:
8888     return llvm::ScalableVectorType::get(Builder.getInt16Ty(), 8);
8889   case SVETypeFlags::EltTyInt32:
8890     return llvm::ScalableVectorType::get(Builder.getInt32Ty(), 4);
8891   case SVETypeFlags::EltTyInt64:
8892     return llvm::ScalableVectorType::get(Builder.getInt64Ty(), 2);
8893 
8894   case SVETypeFlags::EltTyFloat16:
8895     return llvm::ScalableVectorType::get(Builder.getHalfTy(), 8);
8896   case SVETypeFlags::EltTyBFloat16:
8897     return llvm::ScalableVectorType::get(Builder.getBFloatTy(), 8);
8898   case SVETypeFlags::EltTyFloat32:
8899     return llvm::ScalableVectorType::get(Builder.getFloatTy(), 4);
8900   case SVETypeFlags::EltTyFloat64:
8901     return llvm::ScalableVectorType::get(Builder.getDoubleTy(), 2);
8902 
8903   case SVETypeFlags::EltTyBool8:
8904     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8905   case SVETypeFlags::EltTyBool16:
8906     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8907   case SVETypeFlags::EltTyBool32:
8908     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8909   case SVETypeFlags::EltTyBool64:
8910     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8911   }
8912 }
8913 
8914 llvm::Value *
8915 CodeGenFunction::EmitSVEAllTruePred(const SVETypeFlags &TypeFlags) {
8916   Function *Ptrue =
8917       CGM.getIntrinsic(Intrinsic::aarch64_sve_ptrue, getSVEPredType(TypeFlags));
8918   return Builder.CreateCall(Ptrue, {Builder.getInt32(/*SV_ALL*/ 31)});
8919 }
8920 
8921 constexpr unsigned SVEBitsPerBlock = 128;
8922 
8923 static llvm::ScalableVectorType *getSVEVectorForElementType(llvm::Type *EltTy) {
8924   unsigned NumElts = SVEBitsPerBlock / EltTy->getScalarSizeInBits();
8925   return llvm::ScalableVectorType::get(EltTy, NumElts);
8926 }
8927 
8928 // Reinterpret the input predicate so that it can be used to correctly isolate
8929 // the elements of the specified datatype.
8930 Value *CodeGenFunction::EmitSVEPredicateCast(Value *Pred,
8931                                              llvm::ScalableVectorType *VTy) {
8932   auto *RTy = llvm::VectorType::get(IntegerType::get(getLLVMContext(), 1), VTy);
8933   if (Pred->getType() == RTy)
8934     return Pred;
8935 
8936   unsigned IntID;
8937   llvm::Type *IntrinsicTy;
8938   switch (VTy->getMinNumElements()) {
8939   default:
8940     llvm_unreachable("unsupported element count!");
8941   case 2:
8942   case 4:
8943   case 8:
8944     IntID = Intrinsic::aarch64_sve_convert_from_svbool;
8945     IntrinsicTy = RTy;
8946     break;
8947   case 16:
8948     IntID = Intrinsic::aarch64_sve_convert_to_svbool;
8949     IntrinsicTy = Pred->getType();
8950     break;
8951   }
8952 
8953   Function *F = CGM.getIntrinsic(IntID, IntrinsicTy);
8954   Value *C = Builder.CreateCall(F, Pred);
8955   assert(C->getType() == RTy && "Unexpected return type!");
8956   return C;
8957 }
8958 
8959 Value *CodeGenFunction::EmitSVEGatherLoad(const SVETypeFlags &TypeFlags,
8960                                           SmallVectorImpl<Value *> &Ops,
8961                                           unsigned IntID) {
8962   auto *ResultTy = getSVEType(TypeFlags);
8963   auto *OverloadedTy =
8964       llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), ResultTy);
8965 
8966   // At the ACLE level there's only one predicate type, svbool_t, which is
8967   // mapped to <n x 16 x i1>. However, this might be incompatible with the
8968   // actual type being loaded. For example, when loading doubles (i64) the
8969   // predicated should be <n x 2 x i1> instead. At the IR level the type of
8970   // the predicate and the data being loaded must match. Cast accordingly.
8971   Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
8972 
8973   Function *F = nullptr;
8974   if (Ops[1]->getType()->isVectorTy())
8975     // This is the "vector base, scalar offset" case. In order to uniquely
8976     // map this built-in to an LLVM IR intrinsic, we need both the return type
8977     // and the type of the vector base.
8978     F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[1]->getType()});
8979   else
8980     // This is the "scalar base, vector offset case". The type of the offset
8981     // is encoded in the name of the intrinsic. We only need to specify the
8982     // return type in order to uniquely map this built-in to an LLVM IR
8983     // intrinsic.
8984     F = CGM.getIntrinsic(IntID, OverloadedTy);
8985 
8986   // Pass 0 when the offset is missing. This can only be applied when using
8987   // the "vector base" addressing mode for which ACLE allows no offset. The
8988   // corresponding LLVM IR always requires an offset.
8989   if (Ops.size() == 2) {
8990     assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset");
8991     Ops.push_back(ConstantInt::get(Int64Ty, 0));
8992   }
8993 
8994   // For "vector base, scalar index" scale the index so that it becomes a
8995   // scalar offset.
8996   if (!TypeFlags.isByteIndexed() && Ops[1]->getType()->isVectorTy()) {
8997     unsigned BytesPerElt =
8998         OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
8999     Ops[2] = Builder.CreateShl(Ops[2], Log2_32(BytesPerElt));
9000   }
9001 
9002   Value *Call = Builder.CreateCall(F, Ops);
9003 
9004   // The following sext/zext is only needed when ResultTy != OverloadedTy. In
9005   // other cases it's folded into a nop.
9006   return TypeFlags.isZExtReturn() ? Builder.CreateZExt(Call, ResultTy)
9007                                   : Builder.CreateSExt(Call, ResultTy);
9008 }
9009 
9010 Value *CodeGenFunction::EmitSVEScatterStore(const SVETypeFlags &TypeFlags,
9011                                             SmallVectorImpl<Value *> &Ops,
9012                                             unsigned IntID) {
9013   auto *SrcDataTy = getSVEType(TypeFlags);
9014   auto *OverloadedTy =
9015       llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), SrcDataTy);
9016 
9017   // In ACLE the source data is passed in the last argument, whereas in LLVM IR
9018   // it's the first argument. Move it accordingly.
9019   Ops.insert(Ops.begin(), Ops.pop_back_val());
9020 
9021   Function *F = nullptr;
9022   if (Ops[2]->getType()->isVectorTy())
9023     // This is the "vector base, scalar offset" case. In order to uniquely
9024     // map this built-in to an LLVM IR intrinsic, we need both the return type
9025     // and the type of the vector base.
9026     F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[2]->getType()});
9027   else
9028     // This is the "scalar base, vector offset case". The type of the offset
9029     // is encoded in the name of the intrinsic. We only need to specify the
9030     // return type in order to uniquely map this built-in to an LLVM IR
9031     // intrinsic.
9032     F = CGM.getIntrinsic(IntID, OverloadedTy);
9033 
9034   // Pass 0 when the offset is missing. This can only be applied when using
9035   // the "vector base" addressing mode for which ACLE allows no offset. The
9036   // corresponding LLVM IR always requires an offset.
9037   if (Ops.size() == 3) {
9038     assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset");
9039     Ops.push_back(ConstantInt::get(Int64Ty, 0));
9040   }
9041 
9042   // Truncation is needed when SrcDataTy != OverloadedTy. In other cases it's
9043   // folded into a nop.
9044   Ops[0] = Builder.CreateTrunc(Ops[0], OverloadedTy);
9045 
9046   // At the ACLE level there's only one predicate type, svbool_t, which is
9047   // mapped to <n x 16 x i1>. However, this might be incompatible with the
9048   // actual type being stored. For example, when storing doubles (i64) the
9049   // predicated should be <n x 2 x i1> instead. At the IR level the type of
9050   // the predicate and the data being stored must match. Cast accordingly.
9051   Ops[1] = EmitSVEPredicateCast(Ops[1], OverloadedTy);
9052 
9053   // For "vector base, scalar index" scale the index so that it becomes a
9054   // scalar offset.
9055   if (!TypeFlags.isByteIndexed() && Ops[2]->getType()->isVectorTy()) {
9056     unsigned BytesPerElt =
9057         OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
9058     Ops[3] = Builder.CreateShl(Ops[3], Log2_32(BytesPerElt));
9059   }
9060 
9061   return Builder.CreateCall(F, Ops);
9062 }
9063 
9064 Value *CodeGenFunction::EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags,
9065                                               SmallVectorImpl<Value *> &Ops,
9066                                               unsigned IntID) {
9067   // The gather prefetches are overloaded on the vector input - this can either
9068   // be the vector of base addresses or vector of offsets.
9069   auto *OverloadedTy = dyn_cast<llvm::ScalableVectorType>(Ops[1]->getType());
9070   if (!OverloadedTy)
9071     OverloadedTy = cast<llvm::ScalableVectorType>(Ops[2]->getType());
9072 
9073   // Cast the predicate from svbool_t to the right number of elements.
9074   Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
9075 
9076   // vector + imm addressing modes
9077   if (Ops[1]->getType()->isVectorTy()) {
9078     if (Ops.size() == 3) {
9079       // Pass 0 for 'vector+imm' when the index is omitted.
9080       Ops.push_back(ConstantInt::get(Int64Ty, 0));
9081 
9082       // The sv_prfop is the last operand in the builtin and IR intrinsic.
9083       std::swap(Ops[2], Ops[3]);
9084     } else {
9085       // Index needs to be passed as scaled offset.
9086       llvm::Type *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
9087       unsigned BytesPerElt = MemEltTy->getPrimitiveSizeInBits() / 8;
9088       if (BytesPerElt > 1)
9089         Ops[2] = Builder.CreateShl(Ops[2], Log2_32(BytesPerElt));
9090     }
9091   }
9092 
9093   Function *F = CGM.getIntrinsic(IntID, OverloadedTy);
9094   return Builder.CreateCall(F, Ops);
9095 }
9096 
9097 Value *CodeGenFunction::EmitSVEStructLoad(const SVETypeFlags &TypeFlags,
9098                                           SmallVectorImpl<Value*> &Ops,
9099                                           unsigned IntID) {
9100   llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
9101   auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
9102   auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
9103 
9104   unsigned N;
9105   switch (IntID) {
9106   case Intrinsic::aarch64_sve_ld2_sret:
9107     N = 2;
9108     break;
9109   case Intrinsic::aarch64_sve_ld3_sret:
9110     N = 3;
9111     break;
9112   case Intrinsic::aarch64_sve_ld4_sret:
9113     N = 4;
9114     break;
9115   default:
9116     llvm_unreachable("unknown intrinsic!");
9117   }
9118   auto RetTy = llvm::VectorType::get(VTy->getElementType(),
9119                                      VTy->getElementCount() * N);
9120 
9121 	Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
9122   Value *BasePtr= Builder.CreateBitCast(Ops[1], VecPtrTy);
9123 
9124   // Does the load have an offset?
9125   if (Ops.size() > 2)
9126     BasePtr = Builder.CreateGEP(VTy, BasePtr, Ops[2]);
9127 
9128   BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
9129   Function *F = CGM.getIntrinsic(IntID, {VTy});
9130   Value *Call = Builder.CreateCall(F, {Predicate, BasePtr});
9131   unsigned MinElts = VTy->getMinNumElements();
9132   Value *Ret = llvm::PoisonValue::get(RetTy);
9133   for (unsigned I = 0; I < N; I++) {
9134     Value *Idx = ConstantInt::get(CGM.Int64Ty, I * MinElts);
9135     Value *SRet = Builder.CreateExtractValue(Call, I);
9136     Ret = Builder.CreateInsertVector(RetTy, Ret, SRet, Idx);
9137   }
9138   return Ret;
9139 }
9140 
9141 Value *CodeGenFunction::EmitSVEStructStore(const SVETypeFlags &TypeFlags,
9142                                            SmallVectorImpl<Value*> &Ops,
9143                                            unsigned IntID) {
9144   llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
9145   auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
9146   auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
9147 
9148   unsigned N;
9149   switch (IntID) {
9150   case Intrinsic::aarch64_sve_st2:
9151     N = 2;
9152     break;
9153   case Intrinsic::aarch64_sve_st3:
9154     N = 3;
9155     break;
9156   case Intrinsic::aarch64_sve_st4:
9157     N = 4;
9158     break;
9159   default:
9160     llvm_unreachable("unknown intrinsic!");
9161   }
9162 
9163   Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
9164   Value *BasePtr = Builder.CreateBitCast(Ops[1], VecPtrTy);
9165 
9166   // Does the store have an offset?
9167   if (Ops.size() > 3)
9168     BasePtr = Builder.CreateGEP(VTy, BasePtr, Ops[2]);
9169 
9170   BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
9171   Value *Val = Ops.back();
9172 
9173   // The llvm.aarch64.sve.st2/3/4 intrinsics take legal part vectors, so we
9174   // need to break up the tuple vector.
9175   SmallVector<llvm::Value*, 5> Operands;
9176   unsigned MinElts = VTy->getElementCount().getKnownMinValue();
9177   for (unsigned I = 0; I < N; ++I) {
9178     Value *Idx = ConstantInt::get(CGM.Int64Ty, I * MinElts);
9179     Operands.push_back(Builder.CreateExtractVector(VTy, Val, Idx));
9180   }
9181   Operands.append({Predicate, BasePtr});
9182 
9183   Function *F = CGM.getIntrinsic(IntID, { VTy });
9184   return Builder.CreateCall(F, Operands);
9185 }
9186 
9187 // SVE2's svpmullb and svpmullt builtins are similar to the svpmullb_pair and
9188 // svpmullt_pair intrinsics, with the exception that their results are bitcast
9189 // to a wider type.
9190 Value *CodeGenFunction::EmitSVEPMull(const SVETypeFlags &TypeFlags,
9191                                      SmallVectorImpl<Value *> &Ops,
9192                                      unsigned BuiltinID) {
9193   // Splat scalar operand to vector (intrinsics with _n infix)
9194   if (TypeFlags.hasSplatOperand()) {
9195     unsigned OpNo = TypeFlags.getSplatOperand();
9196     Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
9197   }
9198 
9199   // The pair-wise function has a narrower overloaded type.
9200   Function *F = CGM.getIntrinsic(BuiltinID, Ops[0]->getType());
9201   Value *Call = Builder.CreateCall(F, {Ops[0], Ops[1]});
9202 
9203   // Now bitcast to the wider result type.
9204   llvm::ScalableVectorType *Ty = getSVEType(TypeFlags);
9205   return EmitSVEReinterpret(Call, Ty);
9206 }
9207 
9208 Value *CodeGenFunction::EmitSVEMovl(const SVETypeFlags &TypeFlags,
9209                                     ArrayRef<Value *> Ops, unsigned BuiltinID) {
9210   llvm::Type *OverloadedTy = getSVEType(TypeFlags);
9211   Function *F = CGM.getIntrinsic(BuiltinID, OverloadedTy);
9212   return Builder.CreateCall(F, {Ops[0], Builder.getInt32(0)});
9213 }
9214 
9215 Value *CodeGenFunction::EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags,
9216                                             SmallVectorImpl<Value *> &Ops,
9217                                             unsigned BuiltinID) {
9218   auto *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
9219   auto *VectorTy = getSVEVectorForElementType(MemEltTy);
9220   auto *MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
9221 
9222   Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
9223   Value *BasePtr = Ops[1];
9224 
9225   // Implement the index operand if not omitted.
9226   if (Ops.size() > 3) {
9227     BasePtr = Builder.CreateBitCast(BasePtr, MemoryTy->getPointerTo());
9228     BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]);
9229   }
9230 
9231   // Prefetch intriniscs always expect an i8*
9232   BasePtr = Builder.CreateBitCast(BasePtr, llvm::PointerType::getUnqual(Int8Ty));
9233   Value *PrfOp = Ops.back();
9234 
9235   Function *F = CGM.getIntrinsic(BuiltinID, Predicate->getType());
9236   return Builder.CreateCall(F, {Predicate, BasePtr, PrfOp});
9237 }
9238 
9239 Value *CodeGenFunction::EmitSVEMaskedLoad(const CallExpr *E,
9240                                           llvm::Type *ReturnTy,
9241                                           SmallVectorImpl<Value *> &Ops,
9242                                           unsigned BuiltinID,
9243                                           bool IsZExtReturn) {
9244   QualType LangPTy = E->getArg(1)->getType();
9245   llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
9246       LangPTy->castAs<PointerType>()->getPointeeType());
9247 
9248   // The vector type that is returned may be different from the
9249   // eventual type loaded from memory.
9250   auto VectorTy = cast<llvm::ScalableVectorType>(ReturnTy);
9251   auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
9252 
9253   Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
9254   Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
9255 
9256   // Does the load have an offset?
9257   if (Ops.size() > 2)
9258     BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]);
9259 
9260   BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
9261   Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
9262   auto *Load =
9263       cast<llvm::Instruction>(Builder.CreateCall(F, {Predicate, BasePtr}));
9264   auto TBAAInfo = CGM.getTBAAAccessInfo(LangPTy->getPointeeType());
9265   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
9266 
9267   return IsZExtReturn ? Builder.CreateZExt(Load, VectorTy)
9268                      : Builder.CreateSExt(Load, VectorTy);
9269 }
9270 
9271 Value *CodeGenFunction::EmitSVEMaskedStore(const CallExpr *E,
9272                                            SmallVectorImpl<Value *> &Ops,
9273                                            unsigned BuiltinID) {
9274   QualType LangPTy = E->getArg(1)->getType();
9275   llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
9276       LangPTy->castAs<PointerType>()->getPointeeType());
9277 
9278   // The vector type that is stored may be different from the
9279   // eventual type stored to memory.
9280   auto VectorTy = cast<llvm::ScalableVectorType>(Ops.back()->getType());
9281   auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
9282 
9283   Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
9284   Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
9285 
9286   // Does the store have an offset?
9287   if (Ops.size() == 4)
9288     BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]);
9289 
9290   // Last value is always the data
9291   llvm::Value *Val = Builder.CreateTrunc(Ops.back(), MemoryTy);
9292 
9293   BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
9294   Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
9295   auto *Store =
9296       cast<llvm::Instruction>(Builder.CreateCall(F, {Val, Predicate, BasePtr}));
9297   auto TBAAInfo = CGM.getTBAAAccessInfo(LangPTy->getPointeeType());
9298   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
9299   return Store;
9300 }
9301 
9302 // Limit the usage of scalable llvm IR generated by the ACLE by using the
9303 // sve dup.x intrinsic instead of IRBuilder::CreateVectorSplat.
9304 Value *CodeGenFunction::EmitSVEDupX(Value *Scalar, llvm::Type *Ty) {
9305   return Builder.CreateVectorSplat(
9306       cast<llvm::VectorType>(Ty)->getElementCount(), Scalar);
9307 }
9308 
9309 Value *CodeGenFunction::EmitSVEDupX(Value* Scalar) {
9310   return EmitSVEDupX(Scalar, getSVEVectorForElementType(Scalar->getType()));
9311 }
9312 
9313 Value *CodeGenFunction::EmitSVEReinterpret(Value *Val, llvm::Type *Ty) {
9314   // FIXME: For big endian this needs an additional REV, or needs a separate
9315   // intrinsic that is code-generated as a no-op, because the LLVM bitcast
9316   // instruction is defined as 'bitwise' equivalent from memory point of
9317   // view (when storing/reloading), whereas the svreinterpret builtin
9318   // implements bitwise equivalent cast from register point of view.
9319   // LLVM CodeGen for a bitcast must add an explicit REV for big-endian.
9320   return Builder.CreateBitCast(Val, Ty);
9321 }
9322 
9323 static void InsertExplicitZeroOperand(CGBuilderTy &Builder, llvm::Type *Ty,
9324                                       SmallVectorImpl<Value *> &Ops) {
9325   auto *SplatZero = Constant::getNullValue(Ty);
9326   Ops.insert(Ops.begin(), SplatZero);
9327 }
9328 
9329 static void InsertExplicitUndefOperand(CGBuilderTy &Builder, llvm::Type *Ty,
9330                                        SmallVectorImpl<Value *> &Ops) {
9331   auto *SplatUndef = UndefValue::get(Ty);
9332   Ops.insert(Ops.begin(), SplatUndef);
9333 }
9334 
9335 SmallVector<llvm::Type *, 2>
9336 CodeGenFunction::getSVEOverloadTypes(const SVETypeFlags &TypeFlags,
9337                                      llvm::Type *ResultType,
9338                                      ArrayRef<Value *> Ops) {
9339   if (TypeFlags.isOverloadNone())
9340     return {};
9341 
9342   llvm::Type *DefaultType = getSVEType(TypeFlags);
9343 
9344   if (TypeFlags.isOverloadWhile())
9345     return {DefaultType, Ops[1]->getType()};
9346 
9347   if (TypeFlags.isOverloadWhileRW())
9348     return {getSVEPredType(TypeFlags), Ops[0]->getType()};
9349 
9350   if (TypeFlags.isOverloadCvt())
9351     return {Ops[0]->getType(), Ops.back()->getType()};
9352 
9353   assert(TypeFlags.isOverloadDefault() && "Unexpected value for overloads");
9354   return {DefaultType};
9355 }
9356 
9357 Value *CodeGenFunction::EmitSVETupleSetOrGet(const SVETypeFlags &TypeFlags,
9358                                              llvm::Type *Ty,
9359                                              ArrayRef<Value *> Ops) {
9360   assert((TypeFlags.isTupleSet() || TypeFlags.isTupleGet()) &&
9361          "Expects TypleFlag isTupleSet or TypeFlags.isTupleSet()");
9362 
9363   unsigned I = cast<ConstantInt>(Ops[1])->getSExtValue();
9364   auto *SingleVecTy = dyn_cast<llvm::ScalableVectorType>(
9365                       TypeFlags.isTupleSet() ? Ops[2]->getType() : Ty);
9366   Value *Idx = ConstantInt::get(CGM.Int64Ty,
9367                                 I * SingleVecTy->getMinNumElements());
9368 
9369   if (TypeFlags.isTupleSet())
9370     return Builder.CreateInsertVector(Ty, Ops[0], Ops[2], Idx);
9371   return Builder.CreateExtractVector(Ty, Ops[0], Idx);
9372 }
9373 
9374 Value *CodeGenFunction::EmitSVETupleCreate(const SVETypeFlags &TypeFlags,
9375                                              llvm::Type *Ty,
9376                                              ArrayRef<Value *> Ops) {
9377   assert(TypeFlags.isTupleCreate() && "Expects TypleFlag isTupleCreate");
9378 
9379   auto *SrcTy = dyn_cast<llvm::ScalableVectorType>(Ops[0]->getType());
9380   unsigned MinElts = SrcTy->getMinNumElements();
9381   Value *Call = llvm::PoisonValue::get(Ty);
9382   for (unsigned I = 0; I < Ops.size(); I++) {
9383     Value *Idx = ConstantInt::get(CGM.Int64Ty, I * MinElts);
9384     Call = Builder.CreateInsertVector(Ty, Call, Ops[I], Idx);
9385   }
9386 
9387   return Call;
9388 }
9389 
9390 Value *CodeGenFunction::EmitAArch64SVEBuiltinExpr(unsigned BuiltinID,
9391                                                   const CallExpr *E) {
9392   // Find out if any arguments are required to be integer constant expressions.
9393   unsigned ICEArguments = 0;
9394   ASTContext::GetBuiltinTypeError Error;
9395   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
9396   assert(Error == ASTContext::GE_None && "Should not codegen an error");
9397 
9398   llvm::Type *Ty = ConvertType(E->getType());
9399   if (BuiltinID >= SVE::BI__builtin_sve_reinterpret_s8_s8 &&
9400       BuiltinID <= SVE::BI__builtin_sve_reinterpret_f64_f64) {
9401     Value *Val = EmitScalarExpr(E->getArg(0));
9402     return EmitSVEReinterpret(Val, Ty);
9403   }
9404 
9405   llvm::SmallVector<Value *, 4> Ops;
9406   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
9407     if ((ICEArguments & (1 << i)) == 0)
9408       Ops.push_back(EmitScalarExpr(E->getArg(i)));
9409     else {
9410       // If this is required to be a constant, constant fold it so that we know
9411       // that the generated intrinsic gets a ConstantInt.
9412       std::optional<llvm::APSInt> Result =
9413           E->getArg(i)->getIntegerConstantExpr(getContext());
9414       assert(Result && "Expected argument to be a constant");
9415 
9416       // Immediates for SVE llvm intrinsics are always 32bit.  We can safely
9417       // truncate because the immediate has been range checked and no valid
9418       // immediate requires more than a handful of bits.
9419       *Result = Result->extOrTrunc(32);
9420       Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), *Result));
9421     }
9422   }
9423 
9424   auto *Builtin = findARMVectorIntrinsicInMap(AArch64SVEIntrinsicMap, BuiltinID,
9425                                               AArch64SVEIntrinsicsProvenSorted);
9426   SVETypeFlags TypeFlags(Builtin->TypeModifier);
9427   if (TypeFlags.isLoad())
9428     return EmitSVEMaskedLoad(E, Ty, Ops, Builtin->LLVMIntrinsic,
9429                              TypeFlags.isZExtReturn());
9430   else if (TypeFlags.isStore())
9431     return EmitSVEMaskedStore(E, Ops, Builtin->LLVMIntrinsic);
9432   else if (TypeFlags.isGatherLoad())
9433     return EmitSVEGatherLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9434   else if (TypeFlags.isScatterStore())
9435     return EmitSVEScatterStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9436   else if (TypeFlags.isPrefetch())
9437     return EmitSVEPrefetchLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9438   else if (TypeFlags.isGatherPrefetch())
9439     return EmitSVEGatherPrefetch(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9440 	else if (TypeFlags.isStructLoad())
9441 		return EmitSVEStructLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9442 	else if (TypeFlags.isStructStore())
9443 		return EmitSVEStructStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9444   else if (TypeFlags.isTupleSet() || TypeFlags.isTupleGet())
9445         return EmitSVETupleSetOrGet(TypeFlags, Ty, Ops);
9446   else if (TypeFlags.isTupleCreate())
9447         return EmitSVETupleCreate(TypeFlags, Ty, Ops);
9448   else if (TypeFlags.isUndef())
9449     return UndefValue::get(Ty);
9450   else if (Builtin->LLVMIntrinsic != 0) {
9451     if (TypeFlags.getMergeType() == SVETypeFlags::MergeZeroExp)
9452       InsertExplicitZeroOperand(Builder, Ty, Ops);
9453 
9454     if (TypeFlags.getMergeType() == SVETypeFlags::MergeAnyExp)
9455       InsertExplicitUndefOperand(Builder, Ty, Ops);
9456 
9457     // Some ACLE builtins leave out the argument to specify the predicate
9458     // pattern, which is expected to be expanded to an SV_ALL pattern.
9459     if (TypeFlags.isAppendSVALL())
9460       Ops.push_back(Builder.getInt32(/*SV_ALL*/ 31));
9461     if (TypeFlags.isInsertOp1SVALL())
9462       Ops.insert(&Ops[1], Builder.getInt32(/*SV_ALL*/ 31));
9463 
9464     // Predicates must match the main datatype.
9465     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
9466       if (auto PredTy = dyn_cast<llvm::VectorType>(Ops[i]->getType()))
9467         if (PredTy->getElementType()->isIntegerTy(1))
9468           Ops[i] = EmitSVEPredicateCast(Ops[i], getSVEType(TypeFlags));
9469 
9470     // Splat scalar operand to vector (intrinsics with _n infix)
9471     if (TypeFlags.hasSplatOperand()) {
9472       unsigned OpNo = TypeFlags.getSplatOperand();
9473       Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
9474     }
9475 
9476     if (TypeFlags.isReverseCompare())
9477       std::swap(Ops[1], Ops[2]);
9478 
9479     if (TypeFlags.isReverseUSDOT())
9480       std::swap(Ops[1], Ops[2]);
9481 
9482     // Predicated intrinsics with _z suffix need a select w/ zeroinitializer.
9483     if (TypeFlags.getMergeType() == SVETypeFlags::MergeZero) {
9484       llvm::Type *OpndTy = Ops[1]->getType();
9485       auto *SplatZero = Constant::getNullValue(OpndTy);
9486       Ops[1] = Builder.CreateSelect(Ops[0], Ops[1], SplatZero);
9487     }
9488 
9489     Function *F = CGM.getIntrinsic(Builtin->LLVMIntrinsic,
9490                                    getSVEOverloadTypes(TypeFlags, Ty, Ops));
9491     Value *Call = Builder.CreateCall(F, Ops);
9492 
9493     // Predicate results must be converted to svbool_t.
9494     if (auto PredTy = dyn_cast<llvm::VectorType>(Call->getType()))
9495       if (PredTy->getScalarType()->isIntegerTy(1))
9496         Call = EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
9497 
9498     return Call;
9499   }
9500 
9501   switch (BuiltinID) {
9502   default:
9503     return nullptr;
9504 
9505   case SVE::BI__builtin_sve_svmov_b_z: {
9506     // svmov_b_z(pg, op) <=> svand_b_z(pg, op, op)
9507     SVETypeFlags TypeFlags(Builtin->TypeModifier);
9508     llvm::Type* OverloadedTy = getSVEType(TypeFlags);
9509     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_and_z, OverloadedTy);
9510     return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[1]});
9511   }
9512 
9513   case SVE::BI__builtin_sve_svnot_b_z: {
9514     // svnot_b_z(pg, op) <=> sveor_b_z(pg, op, pg)
9515     SVETypeFlags TypeFlags(Builtin->TypeModifier);
9516     llvm::Type* OverloadedTy = getSVEType(TypeFlags);
9517     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_eor_z, OverloadedTy);
9518     return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[0]});
9519   }
9520 
9521   case SVE::BI__builtin_sve_svmovlb_u16:
9522   case SVE::BI__builtin_sve_svmovlb_u32:
9523   case SVE::BI__builtin_sve_svmovlb_u64:
9524     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllb);
9525 
9526   case SVE::BI__builtin_sve_svmovlb_s16:
9527   case SVE::BI__builtin_sve_svmovlb_s32:
9528   case SVE::BI__builtin_sve_svmovlb_s64:
9529     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllb);
9530 
9531   case SVE::BI__builtin_sve_svmovlt_u16:
9532   case SVE::BI__builtin_sve_svmovlt_u32:
9533   case SVE::BI__builtin_sve_svmovlt_u64:
9534     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllt);
9535 
9536   case SVE::BI__builtin_sve_svmovlt_s16:
9537   case SVE::BI__builtin_sve_svmovlt_s32:
9538   case SVE::BI__builtin_sve_svmovlt_s64:
9539     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllt);
9540 
9541   case SVE::BI__builtin_sve_svpmullt_u16:
9542   case SVE::BI__builtin_sve_svpmullt_u64:
9543   case SVE::BI__builtin_sve_svpmullt_n_u16:
9544   case SVE::BI__builtin_sve_svpmullt_n_u64:
9545     return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullt_pair);
9546 
9547   case SVE::BI__builtin_sve_svpmullb_u16:
9548   case SVE::BI__builtin_sve_svpmullb_u64:
9549   case SVE::BI__builtin_sve_svpmullb_n_u16:
9550   case SVE::BI__builtin_sve_svpmullb_n_u64:
9551     return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullb_pair);
9552 
9553   case SVE::BI__builtin_sve_svdup_n_b8:
9554   case SVE::BI__builtin_sve_svdup_n_b16:
9555   case SVE::BI__builtin_sve_svdup_n_b32:
9556   case SVE::BI__builtin_sve_svdup_n_b64: {
9557     Value *CmpNE =
9558         Builder.CreateICmpNE(Ops[0], Constant::getNullValue(Ops[0]->getType()));
9559     llvm::ScalableVectorType *OverloadedTy = getSVEType(TypeFlags);
9560     Value *Dup = EmitSVEDupX(CmpNE, OverloadedTy);
9561     return EmitSVEPredicateCast(Dup, cast<llvm::ScalableVectorType>(Ty));
9562   }
9563 
9564   case SVE::BI__builtin_sve_svdupq_n_b8:
9565   case SVE::BI__builtin_sve_svdupq_n_b16:
9566   case SVE::BI__builtin_sve_svdupq_n_b32:
9567   case SVE::BI__builtin_sve_svdupq_n_b64:
9568   case SVE::BI__builtin_sve_svdupq_n_u8:
9569   case SVE::BI__builtin_sve_svdupq_n_s8:
9570   case SVE::BI__builtin_sve_svdupq_n_u64:
9571   case SVE::BI__builtin_sve_svdupq_n_f64:
9572   case SVE::BI__builtin_sve_svdupq_n_s64:
9573   case SVE::BI__builtin_sve_svdupq_n_u16:
9574   case SVE::BI__builtin_sve_svdupq_n_f16:
9575   case SVE::BI__builtin_sve_svdupq_n_bf16:
9576   case SVE::BI__builtin_sve_svdupq_n_s16:
9577   case SVE::BI__builtin_sve_svdupq_n_u32:
9578   case SVE::BI__builtin_sve_svdupq_n_f32:
9579   case SVE::BI__builtin_sve_svdupq_n_s32: {
9580     // These builtins are implemented by storing each element to an array and using
9581     // ld1rq to materialize a vector.
9582     unsigned NumOpnds = Ops.size();
9583 
9584     bool IsBoolTy =
9585         cast<llvm::VectorType>(Ty)->getElementType()->isIntegerTy(1);
9586 
9587     // For svdupq_n_b* the element type of is an integer of type 128/numelts,
9588     // so that the compare can use the width that is natural for the expected
9589     // number of predicate lanes.
9590     llvm::Type *EltTy = Ops[0]->getType();
9591     if (IsBoolTy)
9592       EltTy = IntegerType::get(getLLVMContext(), SVEBitsPerBlock / NumOpnds);
9593 
9594     SmallVector<llvm::Value *, 16> VecOps;
9595     for (unsigned I = 0; I < NumOpnds; ++I)
9596         VecOps.push_back(Builder.CreateZExt(Ops[I], EltTy));
9597     Value *Vec = BuildVector(VecOps);
9598 
9599     llvm::Type *OverloadedTy = getSVEVectorForElementType(EltTy);
9600     Value *InsertSubVec = Builder.CreateInsertVector(
9601         OverloadedTy, PoisonValue::get(OverloadedTy), Vec, Builder.getInt64(0));
9602 
9603     Function *F =
9604         CGM.getIntrinsic(Intrinsic::aarch64_sve_dupq_lane, OverloadedTy);
9605     Value *DupQLane =
9606         Builder.CreateCall(F, {InsertSubVec, Builder.getInt64(0)});
9607 
9608     if (!IsBoolTy)
9609       return DupQLane;
9610 
9611     SVETypeFlags TypeFlags(Builtin->TypeModifier);
9612     Value *Pred = EmitSVEAllTruePred(TypeFlags);
9613 
9614     // For svdupq_n_b* we need to add an additional 'cmpne' with '0'.
9615     F = CGM.getIntrinsic(NumOpnds == 2 ? Intrinsic::aarch64_sve_cmpne
9616                                        : Intrinsic::aarch64_sve_cmpne_wide,
9617                          OverloadedTy);
9618     Value *Call = Builder.CreateCall(
9619         F, {Pred, DupQLane, EmitSVEDupX(Builder.getInt64(0))});
9620     return EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
9621   }
9622 
9623   case SVE::BI__builtin_sve_svpfalse_b:
9624     return ConstantInt::getFalse(Ty);
9625 
9626   case SVE::BI__builtin_sve_svlen_bf16:
9627   case SVE::BI__builtin_sve_svlen_f16:
9628   case SVE::BI__builtin_sve_svlen_f32:
9629   case SVE::BI__builtin_sve_svlen_f64:
9630   case SVE::BI__builtin_sve_svlen_s8:
9631   case SVE::BI__builtin_sve_svlen_s16:
9632   case SVE::BI__builtin_sve_svlen_s32:
9633   case SVE::BI__builtin_sve_svlen_s64:
9634   case SVE::BI__builtin_sve_svlen_u8:
9635   case SVE::BI__builtin_sve_svlen_u16:
9636   case SVE::BI__builtin_sve_svlen_u32:
9637   case SVE::BI__builtin_sve_svlen_u64: {
9638     SVETypeFlags TF(Builtin->TypeModifier);
9639     auto VTy = cast<llvm::VectorType>(getSVEType(TF));
9640     auto *NumEls =
9641         llvm::ConstantInt::get(Ty, VTy->getElementCount().getKnownMinValue());
9642 
9643     Function *F = CGM.getIntrinsic(Intrinsic::vscale, Ty);
9644     return Builder.CreateMul(NumEls, Builder.CreateCall(F));
9645   }
9646 
9647   case SVE::BI__builtin_sve_svtbl2_u8:
9648   case SVE::BI__builtin_sve_svtbl2_s8:
9649   case SVE::BI__builtin_sve_svtbl2_u16:
9650   case SVE::BI__builtin_sve_svtbl2_s16:
9651   case SVE::BI__builtin_sve_svtbl2_u32:
9652   case SVE::BI__builtin_sve_svtbl2_s32:
9653   case SVE::BI__builtin_sve_svtbl2_u64:
9654   case SVE::BI__builtin_sve_svtbl2_s64:
9655   case SVE::BI__builtin_sve_svtbl2_f16:
9656   case SVE::BI__builtin_sve_svtbl2_bf16:
9657   case SVE::BI__builtin_sve_svtbl2_f32:
9658   case SVE::BI__builtin_sve_svtbl2_f64: {
9659     SVETypeFlags TF(Builtin->TypeModifier);
9660     auto VTy = cast<llvm::ScalableVectorType>(getSVEType(TF));
9661     Value *V0 = Builder.CreateExtractVector(VTy, Ops[0],
9662                                             ConstantInt::get(CGM.Int64Ty, 0));
9663     unsigned MinElts = VTy->getMinNumElements();
9664     Value *V1 = Builder.CreateExtractVector(
9665         VTy, Ops[0], ConstantInt::get(CGM.Int64Ty, MinElts));
9666     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_tbl2, VTy);
9667     return Builder.CreateCall(F, {V0, V1, Ops[1]});
9668   }
9669 
9670   case SVE::BI__builtin_sve_svset_neonq_s8:
9671   case SVE::BI__builtin_sve_svset_neonq_s16:
9672   case SVE::BI__builtin_sve_svset_neonq_s32:
9673   case SVE::BI__builtin_sve_svset_neonq_s64:
9674   case SVE::BI__builtin_sve_svset_neonq_u8:
9675   case SVE::BI__builtin_sve_svset_neonq_u16:
9676   case SVE::BI__builtin_sve_svset_neonq_u32:
9677   case SVE::BI__builtin_sve_svset_neonq_u64:
9678   case SVE::BI__builtin_sve_svset_neonq_f16:
9679   case SVE::BI__builtin_sve_svset_neonq_f32:
9680   case SVE::BI__builtin_sve_svset_neonq_f64:
9681   case SVE::BI__builtin_sve_svset_neonq_bf16: {
9682     return Builder.CreateInsertVector(Ty, Ops[0], Ops[1], Builder.getInt64(0));
9683   }
9684 
9685   case SVE::BI__builtin_sve_svget_neonq_s8:
9686   case SVE::BI__builtin_sve_svget_neonq_s16:
9687   case SVE::BI__builtin_sve_svget_neonq_s32:
9688   case SVE::BI__builtin_sve_svget_neonq_s64:
9689   case SVE::BI__builtin_sve_svget_neonq_u8:
9690   case SVE::BI__builtin_sve_svget_neonq_u16:
9691   case SVE::BI__builtin_sve_svget_neonq_u32:
9692   case SVE::BI__builtin_sve_svget_neonq_u64:
9693   case SVE::BI__builtin_sve_svget_neonq_f16:
9694   case SVE::BI__builtin_sve_svget_neonq_f32:
9695   case SVE::BI__builtin_sve_svget_neonq_f64:
9696   case SVE::BI__builtin_sve_svget_neonq_bf16: {
9697     return Builder.CreateExtractVector(Ty, Ops[0], Builder.getInt64(0));
9698   }
9699 
9700   case SVE::BI__builtin_sve_svdup_neonq_s8:
9701   case SVE::BI__builtin_sve_svdup_neonq_s16:
9702   case SVE::BI__builtin_sve_svdup_neonq_s32:
9703   case SVE::BI__builtin_sve_svdup_neonq_s64:
9704   case SVE::BI__builtin_sve_svdup_neonq_u8:
9705   case SVE::BI__builtin_sve_svdup_neonq_u16:
9706   case SVE::BI__builtin_sve_svdup_neonq_u32:
9707   case SVE::BI__builtin_sve_svdup_neonq_u64:
9708   case SVE::BI__builtin_sve_svdup_neonq_f16:
9709   case SVE::BI__builtin_sve_svdup_neonq_f32:
9710   case SVE::BI__builtin_sve_svdup_neonq_f64:
9711   case SVE::BI__builtin_sve_svdup_neonq_bf16: {
9712     Value *Insert = Builder.CreateInsertVector(Ty, PoisonValue::get(Ty), Ops[0],
9713                                                Builder.getInt64(0));
9714     return Builder.CreateIntrinsic(Intrinsic::aarch64_sve_dupq_lane, {Ty},
9715                                    {Insert, Builder.getInt64(0)});
9716   }
9717   }
9718 
9719   /// Should not happen
9720   return nullptr;
9721 }
9722 
9723 Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
9724                                                const CallExpr *E,
9725                                                llvm::Triple::ArchType Arch) {
9726   if (BuiltinID >= clang::AArch64::FirstSVEBuiltin &&
9727       BuiltinID <= clang::AArch64::LastSVEBuiltin)
9728     return EmitAArch64SVEBuiltinExpr(BuiltinID, E);
9729 
9730   unsigned HintID = static_cast<unsigned>(-1);
9731   switch (BuiltinID) {
9732   default: break;
9733   case clang::AArch64::BI__builtin_arm_nop:
9734     HintID = 0;
9735     break;
9736   case clang::AArch64::BI__builtin_arm_yield:
9737   case clang::AArch64::BI__yield:
9738     HintID = 1;
9739     break;
9740   case clang::AArch64::BI__builtin_arm_wfe:
9741   case clang::AArch64::BI__wfe:
9742     HintID = 2;
9743     break;
9744   case clang::AArch64::BI__builtin_arm_wfi:
9745   case clang::AArch64::BI__wfi:
9746     HintID = 3;
9747     break;
9748   case clang::AArch64::BI__builtin_arm_sev:
9749   case clang::AArch64::BI__sev:
9750     HintID = 4;
9751     break;
9752   case clang::AArch64::BI__builtin_arm_sevl:
9753   case clang::AArch64::BI__sevl:
9754     HintID = 5;
9755     break;
9756   }
9757 
9758   if (HintID != static_cast<unsigned>(-1)) {
9759     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
9760     return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
9761   }
9762 
9763   if (BuiltinID == clang::AArch64::BI__builtin_arm_rbit) {
9764     assert((getContext().getTypeSize(E->getType()) == 32) &&
9765            "rbit of unusual size!");
9766     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9767     return Builder.CreateCall(
9768         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
9769   }
9770   if (BuiltinID == clang::AArch64::BI__builtin_arm_rbit64) {
9771     assert((getContext().getTypeSize(E->getType()) == 64) &&
9772            "rbit of unusual size!");
9773     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9774     return Builder.CreateCall(
9775         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
9776   }
9777 
9778   if (BuiltinID == clang::AArch64::BI__builtin_arm_cls) {
9779     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9780     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls), Arg,
9781                               "cls");
9782   }
9783   if (BuiltinID == clang::AArch64::BI__builtin_arm_cls64) {
9784     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9785     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls64), Arg,
9786                               "cls");
9787   }
9788 
9789   if (BuiltinID == clang::AArch64::BI__builtin_arm_rint32zf ||
9790       BuiltinID == clang::AArch64::BI__builtin_arm_rint32z) {
9791     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9792     llvm::Type *Ty = Arg->getType();
9793     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32z, Ty),
9794                               Arg, "frint32z");
9795   }
9796 
9797   if (BuiltinID == clang::AArch64::BI__builtin_arm_rint64zf ||
9798       BuiltinID == clang::AArch64::BI__builtin_arm_rint64z) {
9799     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9800     llvm::Type *Ty = Arg->getType();
9801     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64z, Ty),
9802                               Arg, "frint64z");
9803   }
9804 
9805   if (BuiltinID == clang::AArch64::BI__builtin_arm_rint32xf ||
9806       BuiltinID == clang::AArch64::BI__builtin_arm_rint32x) {
9807     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9808     llvm::Type *Ty = Arg->getType();
9809     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32x, Ty),
9810                               Arg, "frint32x");
9811   }
9812 
9813   if (BuiltinID == clang::AArch64::BI__builtin_arm_rint64xf ||
9814       BuiltinID == clang::AArch64::BI__builtin_arm_rint64x) {
9815     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9816     llvm::Type *Ty = Arg->getType();
9817     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64x, Ty),
9818                               Arg, "frint64x");
9819   }
9820 
9821   if (BuiltinID == clang::AArch64::BI__builtin_arm_jcvt) {
9822     assert((getContext().getTypeSize(E->getType()) == 32) &&
9823            "__jcvt of unusual size!");
9824     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9825     return Builder.CreateCall(
9826         CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg);
9827   }
9828 
9829   if (BuiltinID == clang::AArch64::BI__builtin_arm_ld64b ||
9830       BuiltinID == clang::AArch64::BI__builtin_arm_st64b ||
9831       BuiltinID == clang::AArch64::BI__builtin_arm_st64bv ||
9832       BuiltinID == clang::AArch64::BI__builtin_arm_st64bv0) {
9833     llvm::Value *MemAddr = EmitScalarExpr(E->getArg(0));
9834     llvm::Value *ValPtr = EmitScalarExpr(E->getArg(1));
9835 
9836     if (BuiltinID == clang::AArch64::BI__builtin_arm_ld64b) {
9837       // Load from the address via an LLVM intrinsic, receiving a
9838       // tuple of 8 i64 words, and store each one to ValPtr.
9839       Function *F = CGM.getIntrinsic(Intrinsic::aarch64_ld64b);
9840       llvm::Value *Val = Builder.CreateCall(F, MemAddr);
9841       llvm::Value *ToRet;
9842       for (size_t i = 0; i < 8; i++) {
9843         llvm::Value *ValOffsetPtr =
9844             Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i));
9845         Address Addr =
9846             Address(ValOffsetPtr, Int64Ty, CharUnits::fromQuantity(8));
9847         ToRet = Builder.CreateStore(Builder.CreateExtractValue(Val, i), Addr);
9848       }
9849       return ToRet;
9850     } else {
9851       // Load 8 i64 words from ValPtr, and store them to the address
9852       // via an LLVM intrinsic.
9853       SmallVector<llvm::Value *, 9> Args;
9854       Args.push_back(MemAddr);
9855       for (size_t i = 0; i < 8; i++) {
9856         llvm::Value *ValOffsetPtr =
9857             Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i));
9858         Address Addr =
9859             Address(ValOffsetPtr, Int64Ty, CharUnits::fromQuantity(8));
9860         Args.push_back(Builder.CreateLoad(Addr));
9861       }
9862 
9863       auto Intr = (BuiltinID == clang::AArch64::BI__builtin_arm_st64b
9864                        ? Intrinsic::aarch64_st64b
9865                    : BuiltinID == clang::AArch64::BI__builtin_arm_st64bv
9866                        ? Intrinsic::aarch64_st64bv
9867                        : Intrinsic::aarch64_st64bv0);
9868       Function *F = CGM.getIntrinsic(Intr);
9869       return Builder.CreateCall(F, Args);
9870     }
9871   }
9872 
9873   if (BuiltinID == clang::AArch64::BI__builtin_arm_rndr ||
9874       BuiltinID == clang::AArch64::BI__builtin_arm_rndrrs) {
9875 
9876     auto Intr = (BuiltinID == clang::AArch64::BI__builtin_arm_rndr
9877                      ? Intrinsic::aarch64_rndr
9878                      : Intrinsic::aarch64_rndrrs);
9879     Function *F = CGM.getIntrinsic(Intr);
9880     llvm::Value *Val = Builder.CreateCall(F);
9881     Value *RandomValue = Builder.CreateExtractValue(Val, 0);
9882     Value *Status = Builder.CreateExtractValue(Val, 1);
9883 
9884     Address MemAddress = EmitPointerWithAlignment(E->getArg(0));
9885     Builder.CreateStore(RandomValue, MemAddress);
9886     Status = Builder.CreateZExt(Status, Int32Ty);
9887     return Status;
9888   }
9889 
9890   if (BuiltinID == clang::AArch64::BI__clear_cache) {
9891     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
9892     const FunctionDecl *FD = E->getDirectCallee();
9893     Value *Ops[2];
9894     for (unsigned i = 0; i < 2; i++)
9895       Ops[i] = EmitScalarExpr(E->getArg(i));
9896     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
9897     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
9898     StringRef Name = FD->getName();
9899     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
9900   }
9901 
9902   if ((BuiltinID == clang::AArch64::BI__builtin_arm_ldrex ||
9903        BuiltinID == clang::AArch64::BI__builtin_arm_ldaex) &&
9904       getContext().getTypeSize(E->getType()) == 128) {
9905     Function *F =
9906         CGM.getIntrinsic(BuiltinID == clang::AArch64::BI__builtin_arm_ldaex
9907                              ? Intrinsic::aarch64_ldaxp
9908                              : Intrinsic::aarch64_ldxp);
9909 
9910     Value *LdPtr = EmitScalarExpr(E->getArg(0));
9911     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
9912                                     "ldxp");
9913 
9914     Value *Val0 = Builder.CreateExtractValue(Val, 1);
9915     Value *Val1 = Builder.CreateExtractValue(Val, 0);
9916     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
9917     Val0 = Builder.CreateZExt(Val0, Int128Ty);
9918     Val1 = Builder.CreateZExt(Val1, Int128Ty);
9919 
9920     Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
9921     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
9922     Val = Builder.CreateOr(Val, Val1);
9923     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
9924   } else if (BuiltinID == clang::AArch64::BI__builtin_arm_ldrex ||
9925              BuiltinID == clang::AArch64::BI__builtin_arm_ldaex) {
9926     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
9927 
9928     QualType Ty = E->getType();
9929     llvm::Type *RealResTy = ConvertType(Ty);
9930     llvm::Type *IntTy =
9931         llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty));
9932     llvm::Type *PtrTy = IntTy->getPointerTo();
9933     LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
9934 
9935     Function *F =
9936         CGM.getIntrinsic(BuiltinID == clang::AArch64::BI__builtin_arm_ldaex
9937                              ? Intrinsic::aarch64_ldaxr
9938                              : Intrinsic::aarch64_ldxr,
9939                          PtrTy);
9940     CallInst *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
9941     Val->addParamAttr(
9942         0, Attribute::get(getLLVMContext(), Attribute::ElementType, IntTy));
9943 
9944     if (RealResTy->isPointerTy())
9945       return Builder.CreateIntToPtr(Val, RealResTy);
9946 
9947     llvm::Type *IntResTy = llvm::IntegerType::get(
9948         getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
9949     return Builder.CreateBitCast(Builder.CreateTruncOrBitCast(Val, IntResTy),
9950                                  RealResTy);
9951   }
9952 
9953   if ((BuiltinID == clang::AArch64::BI__builtin_arm_strex ||
9954        BuiltinID == clang::AArch64::BI__builtin_arm_stlex) &&
9955       getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
9956     Function *F =
9957         CGM.getIntrinsic(BuiltinID == clang::AArch64::BI__builtin_arm_stlex
9958                              ? Intrinsic::aarch64_stlxp
9959                              : Intrinsic::aarch64_stxp);
9960     llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty);
9961 
9962     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
9963     EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
9964 
9965     Tmp = Builder.CreateElementBitCast(Tmp, STy);
9966     llvm::Value *Val = Builder.CreateLoad(Tmp);
9967 
9968     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
9969     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
9970     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
9971                                          Int8PtrTy);
9972     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
9973   }
9974 
9975   if (BuiltinID == clang::AArch64::BI__builtin_arm_strex ||
9976       BuiltinID == clang::AArch64::BI__builtin_arm_stlex) {
9977     Value *StoreVal = EmitScalarExpr(E->getArg(0));
9978     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
9979 
9980     QualType Ty = E->getArg(0)->getType();
9981     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
9982                                                  getContext().getTypeSize(Ty));
9983     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
9984 
9985     if (StoreVal->getType()->isPointerTy())
9986       StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
9987     else {
9988       llvm::Type *IntTy = llvm::IntegerType::get(
9989           getLLVMContext(),
9990           CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
9991       StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
9992       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
9993     }
9994 
9995     Function *F =
9996         CGM.getIntrinsic(BuiltinID == clang::AArch64::BI__builtin_arm_stlex
9997                              ? Intrinsic::aarch64_stlxr
9998                              : Intrinsic::aarch64_stxr,
9999                          StoreAddr->getType());
10000     CallInst *CI = Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
10001     CI->addParamAttr(
10002         1, Attribute::get(getLLVMContext(), Attribute::ElementType, StoreTy));
10003     return CI;
10004   }
10005 
10006   if (BuiltinID == clang::AArch64::BI__getReg) {
10007     Expr::EvalResult Result;
10008     if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
10009       llvm_unreachable("Sema will ensure that the parameter is constant");
10010 
10011     llvm::APSInt Value = Result.Val.getInt();
10012     LLVMContext &Context = CGM.getLLVMContext();
10013     std::string Reg = Value == 31 ? "sp" : "x" + toString(Value, 10);
10014 
10015     llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)};
10016     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
10017     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
10018 
10019     llvm::Function *F =
10020         CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
10021     return Builder.CreateCall(F, Metadata);
10022   }
10023 
10024   if (BuiltinID == clang::AArch64::BI__break) {
10025     Expr::EvalResult Result;
10026     if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
10027       llvm_unreachable("Sema will ensure that the parameter is constant");
10028 
10029     llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::aarch64_break);
10030     return Builder.CreateCall(F, {EmitScalarExpr(E->getArg(0))});
10031   }
10032 
10033   if (BuiltinID == clang::AArch64::BI__builtin_arm_clrex) {
10034     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
10035     return Builder.CreateCall(F);
10036   }
10037 
10038   if (BuiltinID == clang::AArch64::BI_ReadWriteBarrier)
10039     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
10040                                llvm::SyncScope::SingleThread);
10041 
10042   // CRC32
10043   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
10044   switch (BuiltinID) {
10045   case clang::AArch64::BI__builtin_arm_crc32b:
10046     CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
10047   case clang::AArch64::BI__builtin_arm_crc32cb:
10048     CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
10049   case clang::AArch64::BI__builtin_arm_crc32h:
10050     CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
10051   case clang::AArch64::BI__builtin_arm_crc32ch:
10052     CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
10053   case clang::AArch64::BI__builtin_arm_crc32w:
10054     CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
10055   case clang::AArch64::BI__builtin_arm_crc32cw:
10056     CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
10057   case clang::AArch64::BI__builtin_arm_crc32d:
10058     CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
10059   case clang::AArch64::BI__builtin_arm_crc32cd:
10060     CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
10061   }
10062 
10063   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
10064     Value *Arg0 = EmitScalarExpr(E->getArg(0));
10065     Value *Arg1 = EmitScalarExpr(E->getArg(1));
10066     Function *F = CGM.getIntrinsic(CRCIntrinsicID);
10067 
10068     llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
10069     Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
10070 
10071     return Builder.CreateCall(F, {Arg0, Arg1});
10072   }
10073 
10074   // Memory Operations (MOPS)
10075   if (BuiltinID == AArch64::BI__builtin_arm_mops_memset_tag) {
10076     Value *Dst = EmitScalarExpr(E->getArg(0));
10077     Value *Val = EmitScalarExpr(E->getArg(1));
10078     Value *Size = EmitScalarExpr(E->getArg(2));
10079     Dst = Builder.CreatePointerCast(Dst, Int8PtrTy);
10080     Val = Builder.CreateTrunc(Val, Int8Ty);
10081     Size = Builder.CreateIntCast(Size, Int64Ty, false);
10082     return Builder.CreateCall(
10083         CGM.getIntrinsic(Intrinsic::aarch64_mops_memset_tag), {Dst, Val, Size});
10084   }
10085 
10086   // Memory Tagging Extensions (MTE) Intrinsics
10087   Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic;
10088   switch (BuiltinID) {
10089   case clang::AArch64::BI__builtin_arm_irg:
10090     MTEIntrinsicID = Intrinsic::aarch64_irg; break;
10091   case clang::AArch64::BI__builtin_arm_addg:
10092     MTEIntrinsicID = Intrinsic::aarch64_addg; break;
10093   case clang::AArch64::BI__builtin_arm_gmi:
10094     MTEIntrinsicID = Intrinsic::aarch64_gmi; break;
10095   case clang::AArch64::BI__builtin_arm_ldg:
10096     MTEIntrinsicID = Intrinsic::aarch64_ldg; break;
10097   case clang::AArch64::BI__builtin_arm_stg:
10098     MTEIntrinsicID = Intrinsic::aarch64_stg; break;
10099   case clang::AArch64::BI__builtin_arm_subp:
10100     MTEIntrinsicID = Intrinsic::aarch64_subp; break;
10101   }
10102 
10103   if (MTEIntrinsicID != Intrinsic::not_intrinsic) {
10104     llvm::Type *T = ConvertType(E->getType());
10105 
10106     if (MTEIntrinsicID == Intrinsic::aarch64_irg) {
10107       Value *Pointer = EmitScalarExpr(E->getArg(0));
10108       Value *Mask = EmitScalarExpr(E->getArg(1));
10109 
10110       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
10111       Mask = Builder.CreateZExt(Mask, Int64Ty);
10112       Value *RV = Builder.CreateCall(
10113                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask});
10114        return Builder.CreatePointerCast(RV, T);
10115     }
10116     if (MTEIntrinsicID == Intrinsic::aarch64_addg) {
10117       Value *Pointer = EmitScalarExpr(E->getArg(0));
10118       Value *TagOffset = EmitScalarExpr(E->getArg(1));
10119 
10120       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
10121       TagOffset = Builder.CreateZExt(TagOffset, Int64Ty);
10122       Value *RV = Builder.CreateCall(
10123                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset});
10124       return Builder.CreatePointerCast(RV, T);
10125     }
10126     if (MTEIntrinsicID == Intrinsic::aarch64_gmi) {
10127       Value *Pointer = EmitScalarExpr(E->getArg(0));
10128       Value *ExcludedMask = EmitScalarExpr(E->getArg(1));
10129 
10130       ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty);
10131       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
10132       return Builder.CreateCall(
10133                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask});
10134     }
10135     // Although it is possible to supply a different return
10136     // address (first arg) to this intrinsic, for now we set
10137     // return address same as input address.
10138     if (MTEIntrinsicID == Intrinsic::aarch64_ldg) {
10139       Value *TagAddress = EmitScalarExpr(E->getArg(0));
10140       TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
10141       Value *RV = Builder.CreateCall(
10142                     CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
10143       return Builder.CreatePointerCast(RV, T);
10144     }
10145     // Although it is possible to supply a different tag (to set)
10146     // to this intrinsic (as first arg), for now we supply
10147     // the tag that is in input address arg (common use case).
10148     if (MTEIntrinsicID == Intrinsic::aarch64_stg) {
10149         Value *TagAddress = EmitScalarExpr(E->getArg(0));
10150         TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
10151         return Builder.CreateCall(
10152                  CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
10153     }
10154     if (MTEIntrinsicID == Intrinsic::aarch64_subp) {
10155       Value *PointerA = EmitScalarExpr(E->getArg(0));
10156       Value *PointerB = EmitScalarExpr(E->getArg(1));
10157       PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy);
10158       PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy);
10159       return Builder.CreateCall(
10160                        CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB});
10161     }
10162   }
10163 
10164   if (BuiltinID == clang::AArch64::BI__builtin_arm_rsr ||
10165       BuiltinID == clang::AArch64::BI__builtin_arm_rsr64 ||
10166       BuiltinID == clang::AArch64::BI__builtin_arm_rsr128 ||
10167       BuiltinID == clang::AArch64::BI__builtin_arm_rsrp ||
10168       BuiltinID == clang::AArch64::BI__builtin_arm_wsr ||
10169       BuiltinID == clang::AArch64::BI__builtin_arm_wsr64 ||
10170       BuiltinID == clang::AArch64::BI__builtin_arm_wsr128 ||
10171       BuiltinID == clang::AArch64::BI__builtin_arm_wsrp) {
10172 
10173     SpecialRegisterAccessKind AccessKind = Write;
10174     if (BuiltinID == clang::AArch64::BI__builtin_arm_rsr ||
10175         BuiltinID == clang::AArch64::BI__builtin_arm_rsr64 ||
10176         BuiltinID == clang::AArch64::BI__builtin_arm_rsr128 ||
10177         BuiltinID == clang::AArch64::BI__builtin_arm_rsrp)
10178       AccessKind = VolatileRead;
10179 
10180     bool IsPointerBuiltin = BuiltinID == clang::AArch64::BI__builtin_arm_rsrp ||
10181                             BuiltinID == clang::AArch64::BI__builtin_arm_wsrp;
10182 
10183     bool Is32Bit = BuiltinID == clang::AArch64::BI__builtin_arm_rsr ||
10184                    BuiltinID == clang::AArch64::BI__builtin_arm_wsr;
10185 
10186     bool Is128Bit = BuiltinID == clang::AArch64::BI__builtin_arm_rsr128 ||
10187                     BuiltinID == clang::AArch64::BI__builtin_arm_wsr128;
10188 
10189     llvm::Type *ValueType;
10190     llvm::Type *RegisterType = Int64Ty;
10191     if (Is32Bit) {
10192       ValueType = Int32Ty;
10193     } else if (Is128Bit) {
10194       llvm::Type *Int128Ty =
10195           llvm::IntegerType::getInt128Ty(CGM.getLLVMContext());
10196       ValueType = Int128Ty;
10197       RegisterType = Int128Ty;
10198     } else if (IsPointerBuiltin) {
10199       ValueType = VoidPtrTy;
10200     } else {
10201       ValueType = Int64Ty;
10202     };
10203 
10204     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
10205                                       AccessKind);
10206   }
10207 
10208   if (BuiltinID == clang::AArch64::BI_ReadStatusReg ||
10209       BuiltinID == clang::AArch64::BI_WriteStatusReg) {
10210     LLVMContext &Context = CGM.getLLVMContext();
10211 
10212     unsigned SysReg =
10213       E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue();
10214 
10215     std::string SysRegStr;
10216     llvm::raw_string_ostream(SysRegStr) <<
10217                        ((1 << 1) | ((SysReg >> 14) & 1))  << ":" <<
10218                        ((SysReg >> 11) & 7)               << ":" <<
10219                        ((SysReg >> 7)  & 15)              << ":" <<
10220                        ((SysReg >> 3)  & 15)              << ":" <<
10221                        ( SysReg        & 7);
10222 
10223     llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) };
10224     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
10225     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
10226 
10227     llvm::Type *RegisterType = Int64Ty;
10228     llvm::Type *Types[] = { RegisterType };
10229 
10230     if (BuiltinID == clang::AArch64::BI_ReadStatusReg) {
10231       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
10232 
10233       return Builder.CreateCall(F, Metadata);
10234     }
10235 
10236     llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
10237     llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1));
10238 
10239     return Builder.CreateCall(F, { Metadata, ArgValue });
10240   }
10241 
10242   if (BuiltinID == clang::AArch64::BI_AddressOfReturnAddress) {
10243     llvm::Function *F =
10244         CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
10245     return Builder.CreateCall(F);
10246   }
10247 
10248   if (BuiltinID == clang::AArch64::BI__builtin_sponentry) {
10249     llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy);
10250     return Builder.CreateCall(F);
10251   }
10252 
10253   if (BuiltinID == clang::AArch64::BI__mulh ||
10254       BuiltinID == clang::AArch64::BI__umulh) {
10255     llvm::Type *ResType = ConvertType(E->getType());
10256     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
10257 
10258     bool IsSigned = BuiltinID == clang::AArch64::BI__mulh;
10259     Value *LHS =
10260         Builder.CreateIntCast(EmitScalarExpr(E->getArg(0)), Int128Ty, IsSigned);
10261     Value *RHS =
10262         Builder.CreateIntCast(EmitScalarExpr(E->getArg(1)), Int128Ty, IsSigned);
10263 
10264     Value *MulResult, *HigherBits;
10265     if (IsSigned) {
10266       MulResult = Builder.CreateNSWMul(LHS, RHS);
10267       HigherBits = Builder.CreateAShr(MulResult, 64);
10268     } else {
10269       MulResult = Builder.CreateNUWMul(LHS, RHS);
10270       HigherBits = Builder.CreateLShr(MulResult, 64);
10271     }
10272     HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
10273 
10274     return HigherBits;
10275   }
10276 
10277   if (BuiltinID == AArch64::BI__writex18byte ||
10278       BuiltinID == AArch64::BI__writex18word ||
10279       BuiltinID == AArch64::BI__writex18dword ||
10280       BuiltinID == AArch64::BI__writex18qword) {
10281     llvm::Type *IntTy = ConvertType(E->getArg(1)->getType());
10282 
10283     // Read x18 as i8*
10284     LLVMContext &Context = CGM.getLLVMContext();
10285     llvm::Metadata *Ops[] = {llvm::MDString::get(Context, "x18")};
10286     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
10287     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
10288     llvm::Function *F =
10289         CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
10290     llvm::Value *X18 = Builder.CreateCall(F, Metadata);
10291     X18 = Builder.CreateIntToPtr(X18, llvm::PointerType::get(Int8Ty, 0));
10292 
10293     // Store val at x18 + offset
10294     Value *Offset = Builder.CreateZExt(EmitScalarExpr(E->getArg(0)), Int64Ty);
10295     Value *Ptr = Builder.CreateGEP(Int8Ty, X18, Offset);
10296     Ptr = Builder.CreatePointerCast(Ptr, llvm::PointerType::get(IntTy, 0));
10297     Value *Val = EmitScalarExpr(E->getArg(1));
10298     StoreInst *Store = Builder.CreateAlignedStore(Val, Ptr, CharUnits::One());
10299     return Store;
10300   }
10301 
10302   if (BuiltinID == AArch64::BI__readx18byte ||
10303       BuiltinID == AArch64::BI__readx18word ||
10304       BuiltinID == AArch64::BI__readx18dword ||
10305       BuiltinID == AArch64::BI__readx18qword) {
10306     llvm::Type *IntTy = ConvertType(E->getType());
10307 
10308     // Read x18 as i8*
10309     LLVMContext &Context = CGM.getLLVMContext();
10310     llvm::Metadata *Ops[] = {llvm::MDString::get(Context, "x18")};
10311     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
10312     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
10313     llvm::Function *F =
10314         CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
10315     llvm::Value *X18 = Builder.CreateCall(F, Metadata);
10316     X18 = Builder.CreateIntToPtr(X18, llvm::PointerType::get(Int8Ty, 0));
10317 
10318     // Load x18 + offset
10319     Value *Offset = Builder.CreateZExt(EmitScalarExpr(E->getArg(0)), Int64Ty);
10320     Value *Ptr = Builder.CreateGEP(Int8Ty, X18, Offset);
10321     Ptr = Builder.CreatePointerCast(Ptr, llvm::PointerType::get(IntTy, 0));
10322     LoadInst *Load = Builder.CreateAlignedLoad(IntTy, Ptr, CharUnits::One());
10323     return Load;
10324   }
10325 
10326   // Handle MSVC intrinsics before argument evaluation to prevent double
10327   // evaluation.
10328   if (std::optional<MSVCIntrin> MsvcIntId =
10329           translateAarch64ToMsvcIntrin(BuiltinID))
10330     return EmitMSVCBuiltinExpr(*MsvcIntId, E);
10331 
10332   // Some intrinsics are equivalent - if they are use the base intrinsic ID.
10333   auto It = llvm::find_if(NEONEquivalentIntrinsicMap, [BuiltinID](auto &P) {
10334     return P.first == BuiltinID;
10335   });
10336   if (It != end(NEONEquivalentIntrinsicMap))
10337     BuiltinID = It->second;
10338 
10339   // Find out if any arguments are required to be integer constant
10340   // expressions.
10341   unsigned ICEArguments = 0;
10342   ASTContext::GetBuiltinTypeError Error;
10343   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
10344   assert(Error == ASTContext::GE_None && "Should not codegen an error");
10345 
10346   llvm::SmallVector<Value*, 4> Ops;
10347   Address PtrOp0 = Address::invalid();
10348   for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
10349     if (i == 0) {
10350       switch (BuiltinID) {
10351       case NEON::BI__builtin_neon_vld1_v:
10352       case NEON::BI__builtin_neon_vld1q_v:
10353       case NEON::BI__builtin_neon_vld1_dup_v:
10354       case NEON::BI__builtin_neon_vld1q_dup_v:
10355       case NEON::BI__builtin_neon_vld1_lane_v:
10356       case NEON::BI__builtin_neon_vld1q_lane_v:
10357       case NEON::BI__builtin_neon_vst1_v:
10358       case NEON::BI__builtin_neon_vst1q_v:
10359       case NEON::BI__builtin_neon_vst1_lane_v:
10360       case NEON::BI__builtin_neon_vst1q_lane_v:
10361         // Get the alignment for the argument in addition to the value;
10362         // we'll use it later.
10363         PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
10364         Ops.push_back(PtrOp0.getPointer());
10365         continue;
10366       }
10367     }
10368     if ((ICEArguments & (1 << i)) == 0) {
10369       Ops.push_back(EmitScalarExpr(E->getArg(i)));
10370     } else {
10371       // If this is required to be a constant, constant fold it so that we know
10372       // that the generated intrinsic gets a ConstantInt.
10373       Ops.push_back(llvm::ConstantInt::get(
10374           getLLVMContext(),
10375           *E->getArg(i)->getIntegerConstantExpr(getContext())));
10376     }
10377   }
10378 
10379   auto SISDMap = ArrayRef(AArch64SISDIntrinsicMap);
10380   const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
10381       SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
10382 
10383   if (Builtin) {
10384     Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
10385     Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
10386     assert(Result && "SISD intrinsic should have been handled");
10387     return Result;
10388   }
10389 
10390   const Expr *Arg = E->getArg(E->getNumArgs()-1);
10391   NeonTypeFlags Type(0);
10392   if (std::optional<llvm::APSInt> Result =
10393           Arg->getIntegerConstantExpr(getContext()))
10394     // Determine the type of this overloaded NEON intrinsic.
10395     Type = NeonTypeFlags(Result->getZExtValue());
10396 
10397   bool usgn = Type.isUnsigned();
10398   bool quad = Type.isQuad();
10399 
10400   // Handle non-overloaded intrinsics first.
10401   switch (BuiltinID) {
10402   default: break;
10403   case NEON::BI__builtin_neon_vabsh_f16:
10404     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10405     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs");
10406   case NEON::BI__builtin_neon_vaddq_p128: {
10407     llvm::Type *Ty = GetNeonType(this, NeonTypeFlags::Poly128);
10408     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10409     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10410     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10411     Ops[0] =  Builder.CreateXor(Ops[0], Ops[1]);
10412     llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
10413     return Builder.CreateBitCast(Ops[0], Int128Ty);
10414   }
10415   case NEON::BI__builtin_neon_vldrq_p128: {
10416     llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
10417     llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0);
10418     Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
10419     return Builder.CreateAlignedLoad(Int128Ty, Ptr,
10420                                      CharUnits::fromQuantity(16));
10421   }
10422   case NEON::BI__builtin_neon_vstrq_p128: {
10423     llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
10424     Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
10425     return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
10426   }
10427   case NEON::BI__builtin_neon_vcvts_f32_u32:
10428   case NEON::BI__builtin_neon_vcvtd_f64_u64:
10429     usgn = true;
10430     [[fallthrough]];
10431   case NEON::BI__builtin_neon_vcvts_f32_s32:
10432   case NEON::BI__builtin_neon_vcvtd_f64_s64: {
10433     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10434     bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
10435     llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
10436     llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
10437     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
10438     if (usgn)
10439       return Builder.CreateUIToFP(Ops[0], FTy);
10440     return Builder.CreateSIToFP(Ops[0], FTy);
10441   }
10442   case NEON::BI__builtin_neon_vcvth_f16_u16:
10443   case NEON::BI__builtin_neon_vcvth_f16_u32:
10444   case NEON::BI__builtin_neon_vcvth_f16_u64:
10445     usgn = true;
10446     [[fallthrough]];
10447   case NEON::BI__builtin_neon_vcvth_f16_s16:
10448   case NEON::BI__builtin_neon_vcvth_f16_s32:
10449   case NEON::BI__builtin_neon_vcvth_f16_s64: {
10450     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10451     llvm::Type *FTy = HalfTy;
10452     llvm::Type *InTy;
10453     if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64)
10454       InTy = Int64Ty;
10455     else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32)
10456       InTy = Int32Ty;
10457     else
10458       InTy = Int16Ty;
10459     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
10460     if (usgn)
10461       return Builder.CreateUIToFP(Ops[0], FTy);
10462     return Builder.CreateSIToFP(Ops[0], FTy);
10463   }
10464   case NEON::BI__builtin_neon_vcvtah_u16_f16:
10465   case NEON::BI__builtin_neon_vcvtmh_u16_f16:
10466   case NEON::BI__builtin_neon_vcvtnh_u16_f16:
10467   case NEON::BI__builtin_neon_vcvtph_u16_f16:
10468   case NEON::BI__builtin_neon_vcvth_u16_f16:
10469   case NEON::BI__builtin_neon_vcvtah_s16_f16:
10470   case NEON::BI__builtin_neon_vcvtmh_s16_f16:
10471   case NEON::BI__builtin_neon_vcvtnh_s16_f16:
10472   case NEON::BI__builtin_neon_vcvtph_s16_f16:
10473   case NEON::BI__builtin_neon_vcvth_s16_f16: {
10474     unsigned Int;
10475     llvm::Type* InTy = Int32Ty;
10476     llvm::Type* FTy  = HalfTy;
10477     llvm::Type *Tys[2] = {InTy, FTy};
10478     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10479     switch (BuiltinID) {
10480     default: llvm_unreachable("missing builtin ID in switch!");
10481     case NEON::BI__builtin_neon_vcvtah_u16_f16:
10482       Int = Intrinsic::aarch64_neon_fcvtau; break;
10483     case NEON::BI__builtin_neon_vcvtmh_u16_f16:
10484       Int = Intrinsic::aarch64_neon_fcvtmu; break;
10485     case NEON::BI__builtin_neon_vcvtnh_u16_f16:
10486       Int = Intrinsic::aarch64_neon_fcvtnu; break;
10487     case NEON::BI__builtin_neon_vcvtph_u16_f16:
10488       Int = Intrinsic::aarch64_neon_fcvtpu; break;
10489     case NEON::BI__builtin_neon_vcvth_u16_f16:
10490       Int = Intrinsic::aarch64_neon_fcvtzu; break;
10491     case NEON::BI__builtin_neon_vcvtah_s16_f16:
10492       Int = Intrinsic::aarch64_neon_fcvtas; break;
10493     case NEON::BI__builtin_neon_vcvtmh_s16_f16:
10494       Int = Intrinsic::aarch64_neon_fcvtms; break;
10495     case NEON::BI__builtin_neon_vcvtnh_s16_f16:
10496       Int = Intrinsic::aarch64_neon_fcvtns; break;
10497     case NEON::BI__builtin_neon_vcvtph_s16_f16:
10498       Int = Intrinsic::aarch64_neon_fcvtps; break;
10499     case NEON::BI__builtin_neon_vcvth_s16_f16:
10500       Int = Intrinsic::aarch64_neon_fcvtzs; break;
10501     }
10502     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt");
10503     return Builder.CreateTrunc(Ops[0], Int16Ty);
10504   }
10505   case NEON::BI__builtin_neon_vcaleh_f16:
10506   case NEON::BI__builtin_neon_vcalth_f16:
10507   case NEON::BI__builtin_neon_vcageh_f16:
10508   case NEON::BI__builtin_neon_vcagth_f16: {
10509     unsigned Int;
10510     llvm::Type* InTy = Int32Ty;
10511     llvm::Type* FTy  = HalfTy;
10512     llvm::Type *Tys[2] = {InTy, FTy};
10513     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10514     switch (BuiltinID) {
10515     default: llvm_unreachable("missing builtin ID in switch!");
10516     case NEON::BI__builtin_neon_vcageh_f16:
10517       Int = Intrinsic::aarch64_neon_facge; break;
10518     case NEON::BI__builtin_neon_vcagth_f16:
10519       Int = Intrinsic::aarch64_neon_facgt; break;
10520     case NEON::BI__builtin_neon_vcaleh_f16:
10521       Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break;
10522     case NEON::BI__builtin_neon_vcalth_f16:
10523       Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break;
10524     }
10525     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg");
10526     return Builder.CreateTrunc(Ops[0], Int16Ty);
10527   }
10528   case NEON::BI__builtin_neon_vcvth_n_s16_f16:
10529   case NEON::BI__builtin_neon_vcvth_n_u16_f16: {
10530     unsigned Int;
10531     llvm::Type* InTy = Int32Ty;
10532     llvm::Type* FTy  = HalfTy;
10533     llvm::Type *Tys[2] = {InTy, FTy};
10534     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10535     switch (BuiltinID) {
10536     default: llvm_unreachable("missing builtin ID in switch!");
10537     case NEON::BI__builtin_neon_vcvth_n_s16_f16:
10538       Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break;
10539     case NEON::BI__builtin_neon_vcvth_n_u16_f16:
10540       Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break;
10541     }
10542     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
10543     return Builder.CreateTrunc(Ops[0], Int16Ty);
10544   }
10545   case NEON::BI__builtin_neon_vcvth_n_f16_s16:
10546   case NEON::BI__builtin_neon_vcvth_n_f16_u16: {
10547     unsigned Int;
10548     llvm::Type* FTy  = HalfTy;
10549     llvm::Type* InTy = Int32Ty;
10550     llvm::Type *Tys[2] = {FTy, InTy};
10551     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10552     switch (BuiltinID) {
10553     default: llvm_unreachable("missing builtin ID in switch!");
10554     case NEON::BI__builtin_neon_vcvth_n_f16_s16:
10555       Int = Intrinsic::aarch64_neon_vcvtfxs2fp;
10556       Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext");
10557       break;
10558     case NEON::BI__builtin_neon_vcvth_n_f16_u16:
10559       Int = Intrinsic::aarch64_neon_vcvtfxu2fp;
10560       Ops[0] = Builder.CreateZExt(Ops[0], InTy);
10561       break;
10562     }
10563     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
10564   }
10565   case NEON::BI__builtin_neon_vpaddd_s64: {
10566     auto *Ty = llvm::FixedVectorType::get(Int64Ty, 2);
10567     Value *Vec = EmitScalarExpr(E->getArg(0));
10568     // The vector is v2f64, so make sure it's bitcast to that.
10569     Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
10570     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
10571     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
10572     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
10573     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
10574     // Pairwise addition of a v2f64 into a scalar f64.
10575     return Builder.CreateAdd(Op0, Op1, "vpaddd");
10576   }
10577   case NEON::BI__builtin_neon_vpaddd_f64: {
10578     auto *Ty = llvm::FixedVectorType::get(DoubleTy, 2);
10579     Value *Vec = EmitScalarExpr(E->getArg(0));
10580     // The vector is v2f64, so make sure it's bitcast to that.
10581     Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
10582     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
10583     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
10584     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
10585     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
10586     // Pairwise addition of a v2f64 into a scalar f64.
10587     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
10588   }
10589   case NEON::BI__builtin_neon_vpadds_f32: {
10590     auto *Ty = llvm::FixedVectorType::get(FloatTy, 2);
10591     Value *Vec = EmitScalarExpr(E->getArg(0));
10592     // The vector is v2f32, so make sure it's bitcast to that.
10593     Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
10594     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
10595     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
10596     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
10597     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
10598     // Pairwise addition of a v2f32 into a scalar f32.
10599     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
10600   }
10601   case NEON::BI__builtin_neon_vceqzd_s64:
10602   case NEON::BI__builtin_neon_vceqzd_f64:
10603   case NEON::BI__builtin_neon_vceqzs_f32:
10604   case NEON::BI__builtin_neon_vceqzh_f16:
10605     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10606     return EmitAArch64CompareBuiltinExpr(
10607         Ops[0], ConvertType(E->getCallReturnType(getContext())),
10608         ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
10609   case NEON::BI__builtin_neon_vcgezd_s64:
10610   case NEON::BI__builtin_neon_vcgezd_f64:
10611   case NEON::BI__builtin_neon_vcgezs_f32:
10612   case NEON::BI__builtin_neon_vcgezh_f16:
10613     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10614     return EmitAArch64CompareBuiltinExpr(
10615         Ops[0], ConvertType(E->getCallReturnType(getContext())),
10616         ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
10617   case NEON::BI__builtin_neon_vclezd_s64:
10618   case NEON::BI__builtin_neon_vclezd_f64:
10619   case NEON::BI__builtin_neon_vclezs_f32:
10620   case NEON::BI__builtin_neon_vclezh_f16:
10621     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10622     return EmitAArch64CompareBuiltinExpr(
10623         Ops[0], ConvertType(E->getCallReturnType(getContext())),
10624         ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
10625   case NEON::BI__builtin_neon_vcgtzd_s64:
10626   case NEON::BI__builtin_neon_vcgtzd_f64:
10627   case NEON::BI__builtin_neon_vcgtzs_f32:
10628   case NEON::BI__builtin_neon_vcgtzh_f16:
10629     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10630     return EmitAArch64CompareBuiltinExpr(
10631         Ops[0], ConvertType(E->getCallReturnType(getContext())),
10632         ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
10633   case NEON::BI__builtin_neon_vcltzd_s64:
10634   case NEON::BI__builtin_neon_vcltzd_f64:
10635   case NEON::BI__builtin_neon_vcltzs_f32:
10636   case NEON::BI__builtin_neon_vcltzh_f16:
10637     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10638     return EmitAArch64CompareBuiltinExpr(
10639         Ops[0], ConvertType(E->getCallReturnType(getContext())),
10640         ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
10641 
10642   case NEON::BI__builtin_neon_vceqzd_u64: {
10643     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10644     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
10645     Ops[0] =
10646         Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
10647     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
10648   }
10649   case NEON::BI__builtin_neon_vceqd_f64:
10650   case NEON::BI__builtin_neon_vcled_f64:
10651   case NEON::BI__builtin_neon_vcltd_f64:
10652   case NEON::BI__builtin_neon_vcged_f64:
10653   case NEON::BI__builtin_neon_vcgtd_f64: {
10654     llvm::CmpInst::Predicate P;
10655     switch (BuiltinID) {
10656     default: llvm_unreachable("missing builtin ID in switch!");
10657     case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
10658     case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
10659     case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
10660     case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
10661     case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
10662     }
10663     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10664     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10665     Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
10666     if (P == llvm::FCmpInst::FCMP_OEQ)
10667       Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
10668     else
10669       Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]);
10670     return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
10671   }
10672   case NEON::BI__builtin_neon_vceqs_f32:
10673   case NEON::BI__builtin_neon_vcles_f32:
10674   case NEON::BI__builtin_neon_vclts_f32:
10675   case NEON::BI__builtin_neon_vcges_f32:
10676   case NEON::BI__builtin_neon_vcgts_f32: {
10677     llvm::CmpInst::Predicate P;
10678     switch (BuiltinID) {
10679     default: llvm_unreachable("missing builtin ID in switch!");
10680     case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
10681     case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
10682     case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
10683     case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
10684     case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
10685     }
10686     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10687     Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
10688     Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
10689     if (P == llvm::FCmpInst::FCMP_OEQ)
10690       Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
10691     else
10692       Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]);
10693     return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
10694   }
10695   case NEON::BI__builtin_neon_vceqh_f16:
10696   case NEON::BI__builtin_neon_vcleh_f16:
10697   case NEON::BI__builtin_neon_vclth_f16:
10698   case NEON::BI__builtin_neon_vcgeh_f16:
10699   case NEON::BI__builtin_neon_vcgth_f16: {
10700     llvm::CmpInst::Predicate P;
10701     switch (BuiltinID) {
10702     default: llvm_unreachable("missing builtin ID in switch!");
10703     case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break;
10704     case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break;
10705     case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break;
10706     case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break;
10707     case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break;
10708     }
10709     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10710     Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
10711     Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy);
10712     if (P == llvm::FCmpInst::FCMP_OEQ)
10713       Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
10714     else
10715       Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]);
10716     return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd");
10717   }
10718   case NEON::BI__builtin_neon_vceqd_s64:
10719   case NEON::BI__builtin_neon_vceqd_u64:
10720   case NEON::BI__builtin_neon_vcgtd_s64:
10721   case NEON::BI__builtin_neon_vcgtd_u64:
10722   case NEON::BI__builtin_neon_vcltd_s64:
10723   case NEON::BI__builtin_neon_vcltd_u64:
10724   case NEON::BI__builtin_neon_vcged_u64:
10725   case NEON::BI__builtin_neon_vcged_s64:
10726   case NEON::BI__builtin_neon_vcled_u64:
10727   case NEON::BI__builtin_neon_vcled_s64: {
10728     llvm::CmpInst::Predicate P;
10729     switch (BuiltinID) {
10730     default: llvm_unreachable("missing builtin ID in switch!");
10731     case NEON::BI__builtin_neon_vceqd_s64:
10732     case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
10733     case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
10734     case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
10735     case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
10736     case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
10737     case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
10738     case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
10739     case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
10740     case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
10741     }
10742     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10743     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
10744     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
10745     Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
10746     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
10747   }
10748   case NEON::BI__builtin_neon_vtstd_s64:
10749   case NEON::BI__builtin_neon_vtstd_u64: {
10750     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10751     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
10752     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
10753     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
10754     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
10755                                 llvm::Constant::getNullValue(Int64Ty));
10756     return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
10757   }
10758   case NEON::BI__builtin_neon_vset_lane_i8:
10759   case NEON::BI__builtin_neon_vset_lane_i16:
10760   case NEON::BI__builtin_neon_vset_lane_i32:
10761   case NEON::BI__builtin_neon_vset_lane_i64:
10762   case NEON::BI__builtin_neon_vset_lane_bf16:
10763   case NEON::BI__builtin_neon_vset_lane_f32:
10764   case NEON::BI__builtin_neon_vsetq_lane_i8:
10765   case NEON::BI__builtin_neon_vsetq_lane_i16:
10766   case NEON::BI__builtin_neon_vsetq_lane_i32:
10767   case NEON::BI__builtin_neon_vsetq_lane_i64:
10768   case NEON::BI__builtin_neon_vsetq_lane_bf16:
10769   case NEON::BI__builtin_neon_vsetq_lane_f32:
10770     Ops.push_back(EmitScalarExpr(E->getArg(2)));
10771     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
10772   case NEON::BI__builtin_neon_vset_lane_f64:
10773     // The vector type needs a cast for the v1f64 variant.
10774     Ops[1] =
10775         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 1));
10776     Ops.push_back(EmitScalarExpr(E->getArg(2)));
10777     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
10778   case NEON::BI__builtin_neon_vsetq_lane_f64:
10779     // The vector type needs a cast for the v2f64 variant.
10780     Ops[1] =
10781         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 2));
10782     Ops.push_back(EmitScalarExpr(E->getArg(2)));
10783     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
10784 
10785   case NEON::BI__builtin_neon_vget_lane_i8:
10786   case NEON::BI__builtin_neon_vdupb_lane_i8:
10787     Ops[0] =
10788         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 8));
10789     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10790                                         "vget_lane");
10791   case NEON::BI__builtin_neon_vgetq_lane_i8:
10792   case NEON::BI__builtin_neon_vdupb_laneq_i8:
10793     Ops[0] =
10794         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 16));
10795     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10796                                         "vgetq_lane");
10797   case NEON::BI__builtin_neon_vget_lane_i16:
10798   case NEON::BI__builtin_neon_vduph_lane_i16:
10799     Ops[0] =
10800         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 4));
10801     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10802                                         "vget_lane");
10803   case NEON::BI__builtin_neon_vgetq_lane_i16:
10804   case NEON::BI__builtin_neon_vduph_laneq_i16:
10805     Ops[0] =
10806         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 8));
10807     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10808                                         "vgetq_lane");
10809   case NEON::BI__builtin_neon_vget_lane_i32:
10810   case NEON::BI__builtin_neon_vdups_lane_i32:
10811     Ops[0] =
10812         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 2));
10813     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10814                                         "vget_lane");
10815   case NEON::BI__builtin_neon_vdups_lane_f32:
10816     Ops[0] =
10817         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
10818     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10819                                         "vdups_lane");
10820   case NEON::BI__builtin_neon_vgetq_lane_i32:
10821   case NEON::BI__builtin_neon_vdups_laneq_i32:
10822     Ops[0] =
10823         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
10824     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10825                                         "vgetq_lane");
10826   case NEON::BI__builtin_neon_vget_lane_i64:
10827   case NEON::BI__builtin_neon_vdupd_lane_i64:
10828     Ops[0] =
10829         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 1));
10830     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10831                                         "vget_lane");
10832   case NEON::BI__builtin_neon_vdupd_lane_f64:
10833     Ops[0] =
10834         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
10835     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10836                                         "vdupd_lane");
10837   case NEON::BI__builtin_neon_vgetq_lane_i64:
10838   case NEON::BI__builtin_neon_vdupd_laneq_i64:
10839     Ops[0] =
10840         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
10841     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10842                                         "vgetq_lane");
10843   case NEON::BI__builtin_neon_vget_lane_f32:
10844     Ops[0] =
10845         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
10846     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10847                                         "vget_lane");
10848   case NEON::BI__builtin_neon_vget_lane_f64:
10849     Ops[0] =
10850         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
10851     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10852                                         "vget_lane");
10853   case NEON::BI__builtin_neon_vgetq_lane_f32:
10854   case NEON::BI__builtin_neon_vdups_laneq_f32:
10855     Ops[0] =
10856         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 4));
10857     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10858                                         "vgetq_lane");
10859   case NEON::BI__builtin_neon_vgetq_lane_f64:
10860   case NEON::BI__builtin_neon_vdupd_laneq_f64:
10861     Ops[0] =
10862         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 2));
10863     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10864                                         "vgetq_lane");
10865   case NEON::BI__builtin_neon_vaddh_f16:
10866     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10867     return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh");
10868   case NEON::BI__builtin_neon_vsubh_f16:
10869     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10870     return Builder.CreateFSub(Ops[0], Ops[1], "vsubh");
10871   case NEON::BI__builtin_neon_vmulh_f16:
10872     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10873     return Builder.CreateFMul(Ops[0], Ops[1], "vmulh");
10874   case NEON::BI__builtin_neon_vdivh_f16:
10875     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10876     return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh");
10877   case NEON::BI__builtin_neon_vfmah_f16:
10878     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
10879     return emitCallMaybeConstrainedFPBuiltin(
10880         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
10881         {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]});
10882   case NEON::BI__builtin_neon_vfmsh_f16: {
10883     // FIXME: This should be an fneg instruction:
10884     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy);
10885     Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh");
10886 
10887     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
10888     return emitCallMaybeConstrainedFPBuiltin(
10889         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
10890         {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]});
10891   }
10892   case NEON::BI__builtin_neon_vaddd_s64:
10893   case NEON::BI__builtin_neon_vaddd_u64:
10894     return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
10895   case NEON::BI__builtin_neon_vsubd_s64:
10896   case NEON::BI__builtin_neon_vsubd_u64:
10897     return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
10898   case NEON::BI__builtin_neon_vqdmlalh_s16:
10899   case NEON::BI__builtin_neon_vqdmlslh_s16: {
10900     SmallVector<Value *, 2> ProductOps;
10901     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
10902     ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
10903     auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
10904     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
10905                           ProductOps, "vqdmlXl");
10906     Constant *CI = ConstantInt::get(SizeTy, 0);
10907     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
10908 
10909     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
10910                                         ? Intrinsic::aarch64_neon_sqadd
10911                                         : Intrinsic::aarch64_neon_sqsub;
10912     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
10913   }
10914   case NEON::BI__builtin_neon_vqshlud_n_s64: {
10915     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10916     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
10917     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
10918                         Ops, "vqshlu_n");
10919   }
10920   case NEON::BI__builtin_neon_vqshld_n_u64:
10921   case NEON::BI__builtin_neon_vqshld_n_s64: {
10922     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
10923                                    ? Intrinsic::aarch64_neon_uqshl
10924                                    : Intrinsic::aarch64_neon_sqshl;
10925     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10926     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
10927     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
10928   }
10929   case NEON::BI__builtin_neon_vrshrd_n_u64:
10930   case NEON::BI__builtin_neon_vrshrd_n_s64: {
10931     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
10932                                    ? Intrinsic::aarch64_neon_urshl
10933                                    : Intrinsic::aarch64_neon_srshl;
10934     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10935     int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
10936     Ops[1] = ConstantInt::get(Int64Ty, -SV);
10937     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
10938   }
10939   case NEON::BI__builtin_neon_vrsrad_n_u64:
10940   case NEON::BI__builtin_neon_vrsrad_n_s64: {
10941     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
10942                                    ? Intrinsic::aarch64_neon_urshl
10943                                    : Intrinsic::aarch64_neon_srshl;
10944     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
10945     Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
10946     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
10947                                 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
10948     return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
10949   }
10950   case NEON::BI__builtin_neon_vshld_n_s64:
10951   case NEON::BI__builtin_neon_vshld_n_u64: {
10952     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10953     return Builder.CreateShl(
10954         Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
10955   }
10956   case NEON::BI__builtin_neon_vshrd_n_s64: {
10957     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10958     return Builder.CreateAShr(
10959         Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
10960                                                    Amt->getZExtValue())),
10961         "shrd_n");
10962   }
10963   case NEON::BI__builtin_neon_vshrd_n_u64: {
10964     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10965     uint64_t ShiftAmt = Amt->getZExtValue();
10966     // Right-shifting an unsigned value by its size yields 0.
10967     if (ShiftAmt == 64)
10968       return ConstantInt::get(Int64Ty, 0);
10969     return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
10970                               "shrd_n");
10971   }
10972   case NEON::BI__builtin_neon_vsrad_n_s64: {
10973     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
10974     Ops[1] = Builder.CreateAShr(
10975         Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
10976                                                    Amt->getZExtValue())),
10977         "shrd_n");
10978     return Builder.CreateAdd(Ops[0], Ops[1]);
10979   }
10980   case NEON::BI__builtin_neon_vsrad_n_u64: {
10981     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
10982     uint64_t ShiftAmt = Amt->getZExtValue();
10983     // Right-shifting an unsigned value by its size yields 0.
10984     // As Op + 0 = Op, return Ops[0] directly.
10985     if (ShiftAmt == 64)
10986       return Ops[0];
10987     Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
10988                                 "shrd_n");
10989     return Builder.CreateAdd(Ops[0], Ops[1]);
10990   }
10991   case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
10992   case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
10993   case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
10994   case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
10995     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
10996                                           "lane");
10997     SmallVector<Value *, 2> ProductOps;
10998     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
10999     ProductOps.push_back(vectorWrapScalar16(Ops[2]));
11000     auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
11001     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
11002                           ProductOps, "vqdmlXl");
11003     Constant *CI = ConstantInt::get(SizeTy, 0);
11004     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
11005     Ops.pop_back();
11006 
11007     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
11008                        BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
11009                           ? Intrinsic::aarch64_neon_sqadd
11010                           : Intrinsic::aarch64_neon_sqsub;
11011     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
11012   }
11013   case NEON::BI__builtin_neon_vqdmlals_s32:
11014   case NEON::BI__builtin_neon_vqdmlsls_s32: {
11015     SmallVector<Value *, 2> ProductOps;
11016     ProductOps.push_back(Ops[1]);
11017     ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
11018     Ops[1] =
11019         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
11020                      ProductOps, "vqdmlXl");
11021 
11022     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
11023                                         ? Intrinsic::aarch64_neon_sqadd
11024                                         : Intrinsic::aarch64_neon_sqsub;
11025     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
11026   }
11027   case NEON::BI__builtin_neon_vqdmlals_lane_s32:
11028   case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
11029   case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
11030   case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
11031     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
11032                                           "lane");
11033     SmallVector<Value *, 2> ProductOps;
11034     ProductOps.push_back(Ops[1]);
11035     ProductOps.push_back(Ops[2]);
11036     Ops[1] =
11037         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
11038                      ProductOps, "vqdmlXl");
11039     Ops.pop_back();
11040 
11041     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
11042                        BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
11043                           ? Intrinsic::aarch64_neon_sqadd
11044                           : Intrinsic::aarch64_neon_sqsub;
11045     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
11046   }
11047   case NEON::BI__builtin_neon_vget_lane_bf16:
11048   case NEON::BI__builtin_neon_vduph_lane_bf16:
11049   case NEON::BI__builtin_neon_vduph_lane_f16: {
11050     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
11051                                         "vget_lane");
11052   }
11053   case NEON::BI__builtin_neon_vgetq_lane_bf16:
11054   case NEON::BI__builtin_neon_vduph_laneq_bf16:
11055   case NEON::BI__builtin_neon_vduph_laneq_f16: {
11056     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
11057                                         "vgetq_lane");
11058   }
11059 
11060   case clang::AArch64::BI_InterlockedAdd: {
11061     Value *Arg0 = EmitScalarExpr(E->getArg(0));
11062     Value *Arg1 = EmitScalarExpr(E->getArg(1));
11063     AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
11064       AtomicRMWInst::Add, Arg0, Arg1,
11065       llvm::AtomicOrdering::SequentiallyConsistent);
11066     return Builder.CreateAdd(RMWI, Arg1);
11067   }
11068   }
11069 
11070   llvm::FixedVectorType *VTy = GetNeonType(this, Type);
11071   llvm::Type *Ty = VTy;
11072   if (!Ty)
11073     return nullptr;
11074 
11075   // Not all intrinsics handled by the common case work for AArch64 yet, so only
11076   // defer to common code if it's been added to our special map.
11077   Builtin = findARMVectorIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
11078                                         AArch64SIMDIntrinsicsProvenSorted);
11079 
11080   if (Builtin)
11081     return EmitCommonNeonBuiltinExpr(
11082         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
11083         Builtin->NameHint, Builtin->TypeModifier, E, Ops,
11084         /*never use addresses*/ Address::invalid(), Address::invalid(), Arch);
11085 
11086   if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch))
11087     return V;
11088 
11089   unsigned Int;
11090   switch (BuiltinID) {
11091   default: return nullptr;
11092   case NEON::BI__builtin_neon_vbsl_v:
11093   case NEON::BI__builtin_neon_vbslq_v: {
11094     llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
11095     Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
11096     Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
11097     Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
11098 
11099     Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
11100     Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
11101     Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
11102     return Builder.CreateBitCast(Ops[0], Ty);
11103   }
11104   case NEON::BI__builtin_neon_vfma_lane_v:
11105   case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
11106     // The ARM builtins (and instructions) have the addend as the first
11107     // operand, but the 'fma' intrinsics have it last. Swap it around here.
11108     Value *Addend = Ops[0];
11109     Value *Multiplicand = Ops[1];
11110     Value *LaneSource = Ops[2];
11111     Ops[0] = Multiplicand;
11112     Ops[1] = LaneSource;
11113     Ops[2] = Addend;
11114 
11115     // Now adjust things to handle the lane access.
11116     auto *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v
11117                          ? llvm::FixedVectorType::get(VTy->getElementType(),
11118                                                       VTy->getNumElements() / 2)
11119                          : VTy;
11120     llvm::Constant *cst = cast<Constant>(Ops[3]);
11121     Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), cst);
11122     Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
11123     Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
11124 
11125     Ops.pop_back();
11126     Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_fma
11127                                        : Intrinsic::fma;
11128     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
11129   }
11130   case NEON::BI__builtin_neon_vfma_laneq_v: {
11131     auto *VTy = cast<llvm::FixedVectorType>(Ty);
11132     // v1f64 fma should be mapped to Neon scalar f64 fma
11133     if (VTy && VTy->getElementType() == DoubleTy) {
11134       Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
11135       Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
11136       llvm::FixedVectorType *VTy =
11137           GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true));
11138       Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
11139       Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
11140       Value *Result;
11141       Result = emitCallMaybeConstrainedFPBuiltin(
11142           *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma,
11143           DoubleTy, {Ops[1], Ops[2], Ops[0]});
11144       return Builder.CreateBitCast(Result, Ty);
11145     }
11146     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11147     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11148 
11149     auto *STy = llvm::FixedVectorType::get(VTy->getElementType(),
11150                                            VTy->getNumElements() * 2);
11151     Ops[2] = Builder.CreateBitCast(Ops[2], STy);
11152     Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(),
11153                                                cast<ConstantInt>(Ops[3]));
11154     Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
11155 
11156     return emitCallMaybeConstrainedFPBuiltin(
11157         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
11158         {Ops[2], Ops[1], Ops[0]});
11159   }
11160   case NEON::BI__builtin_neon_vfmaq_laneq_v: {
11161     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11162     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11163 
11164     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11165     Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
11166     return emitCallMaybeConstrainedFPBuiltin(
11167         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
11168         {Ops[2], Ops[1], Ops[0]});
11169   }
11170   case NEON::BI__builtin_neon_vfmah_lane_f16:
11171   case NEON::BI__builtin_neon_vfmas_lane_f32:
11172   case NEON::BI__builtin_neon_vfmah_laneq_f16:
11173   case NEON::BI__builtin_neon_vfmas_laneq_f32:
11174   case NEON::BI__builtin_neon_vfmad_lane_f64:
11175   case NEON::BI__builtin_neon_vfmad_laneq_f64: {
11176     Ops.push_back(EmitScalarExpr(E->getArg(3)));
11177     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
11178     Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
11179     return emitCallMaybeConstrainedFPBuiltin(
11180         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
11181         {Ops[1], Ops[2], Ops[0]});
11182   }
11183   case NEON::BI__builtin_neon_vmull_v:
11184     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
11185     Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
11186     if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
11187     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
11188   case NEON::BI__builtin_neon_vmax_v:
11189   case NEON::BI__builtin_neon_vmaxq_v:
11190     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
11191     Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
11192     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
11193     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
11194   case NEON::BI__builtin_neon_vmaxh_f16: {
11195     Ops.push_back(EmitScalarExpr(E->getArg(1)));
11196     Int = Intrinsic::aarch64_neon_fmax;
11197     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax");
11198   }
11199   case NEON::BI__builtin_neon_vmin_v:
11200   case NEON::BI__builtin_neon_vminq_v:
11201     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
11202     Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
11203     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
11204     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
11205   case NEON::BI__builtin_neon_vminh_f16: {
11206     Ops.push_back(EmitScalarExpr(E->getArg(1)));
11207     Int = Intrinsic::aarch64_neon_fmin;
11208     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin");
11209   }
11210   case NEON::BI__builtin_neon_vabd_v:
11211   case NEON::BI__builtin_neon_vabdq_v:
11212     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
11213     Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
11214     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
11215     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
11216   case NEON::BI__builtin_neon_vpadal_v:
11217   case NEON::BI__builtin_neon_vpadalq_v: {
11218     unsigned ArgElts = VTy->getNumElements();
11219     llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
11220     unsigned BitWidth = EltTy->getBitWidth();
11221     auto *ArgTy = llvm::FixedVectorType::get(
11222         llvm::IntegerType::get(getLLVMContext(), BitWidth / 2), 2 * ArgElts);
11223     llvm::Type* Tys[2] = { VTy, ArgTy };
11224     Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
11225     SmallVector<llvm::Value*, 1> TmpOps;
11226     TmpOps.push_back(Ops[1]);
11227     Function *F = CGM.getIntrinsic(Int, Tys);
11228     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
11229     llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
11230     return Builder.CreateAdd(tmp, addend);
11231   }
11232   case NEON::BI__builtin_neon_vpmin_v:
11233   case NEON::BI__builtin_neon_vpminq_v:
11234     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
11235     Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
11236     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
11237     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
11238   case NEON::BI__builtin_neon_vpmax_v:
11239   case NEON::BI__builtin_neon_vpmaxq_v:
11240     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
11241     Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
11242     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
11243     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
11244   case NEON::BI__builtin_neon_vminnm_v:
11245   case NEON::BI__builtin_neon_vminnmq_v:
11246     Int = Intrinsic::aarch64_neon_fminnm;
11247     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
11248   case NEON::BI__builtin_neon_vminnmh_f16:
11249     Ops.push_back(EmitScalarExpr(E->getArg(1)));
11250     Int = Intrinsic::aarch64_neon_fminnm;
11251     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm");
11252   case NEON::BI__builtin_neon_vmaxnm_v:
11253   case NEON::BI__builtin_neon_vmaxnmq_v:
11254     Int = Intrinsic::aarch64_neon_fmaxnm;
11255     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
11256   case NEON::BI__builtin_neon_vmaxnmh_f16:
11257     Ops.push_back(EmitScalarExpr(E->getArg(1)));
11258     Int = Intrinsic::aarch64_neon_fmaxnm;
11259     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm");
11260   case NEON::BI__builtin_neon_vrecpss_f32: {
11261     Ops.push_back(EmitScalarExpr(E->getArg(1)));
11262     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
11263                         Ops, "vrecps");
11264   }
11265   case NEON::BI__builtin_neon_vrecpsd_f64:
11266     Ops.push_back(EmitScalarExpr(E->getArg(1)));
11267     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
11268                         Ops, "vrecps");
11269   case NEON::BI__builtin_neon_vrecpsh_f16:
11270     Ops.push_back(EmitScalarExpr(E->getArg(1)));
11271     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy),
11272                         Ops, "vrecps");
11273   case NEON::BI__builtin_neon_vqshrun_n_v:
11274     Int = Intrinsic::aarch64_neon_sqshrun;
11275     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
11276   case NEON::BI__builtin_neon_vqrshrun_n_v:
11277     Int = Intrinsic::aarch64_neon_sqrshrun;
11278     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
11279   case NEON::BI__builtin_neon_vqshrn_n_v:
11280     Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
11281     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
11282   case NEON::BI__builtin_neon_vrshrn_n_v:
11283     Int = Intrinsic::aarch64_neon_rshrn;
11284     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
11285   case NEON::BI__builtin_neon_vqrshrn_n_v:
11286     Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
11287     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
11288   case NEON::BI__builtin_neon_vrndah_f16: {
11289     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11290     Int = Builder.getIsFPConstrained()
11291               ? Intrinsic::experimental_constrained_round
11292               : Intrinsic::round;
11293     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda");
11294   }
11295   case NEON::BI__builtin_neon_vrnda_v:
11296   case NEON::BI__builtin_neon_vrndaq_v: {
11297     Int = Builder.getIsFPConstrained()
11298               ? Intrinsic::experimental_constrained_round
11299               : Intrinsic::round;
11300     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
11301   }
11302   case NEON::BI__builtin_neon_vrndih_f16: {
11303     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11304     Int = Builder.getIsFPConstrained()
11305               ? Intrinsic::experimental_constrained_nearbyint
11306               : Intrinsic::nearbyint;
11307     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi");
11308   }
11309   case NEON::BI__builtin_neon_vrndmh_f16: {
11310     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11311     Int = Builder.getIsFPConstrained()
11312               ? Intrinsic::experimental_constrained_floor
11313               : Intrinsic::floor;
11314     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm");
11315   }
11316   case NEON::BI__builtin_neon_vrndm_v:
11317   case NEON::BI__builtin_neon_vrndmq_v: {
11318     Int = Builder.getIsFPConstrained()
11319               ? Intrinsic::experimental_constrained_floor
11320               : Intrinsic::floor;
11321     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
11322   }
11323   case NEON::BI__builtin_neon_vrndnh_f16: {
11324     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11325     Int = Builder.getIsFPConstrained()
11326               ? Intrinsic::experimental_constrained_roundeven
11327               : Intrinsic::roundeven;
11328     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn");
11329   }
11330   case NEON::BI__builtin_neon_vrndn_v:
11331   case NEON::BI__builtin_neon_vrndnq_v: {
11332     Int = Builder.getIsFPConstrained()
11333               ? Intrinsic::experimental_constrained_roundeven
11334               : Intrinsic::roundeven;
11335     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
11336   }
11337   case NEON::BI__builtin_neon_vrndns_f32: {
11338     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11339     Int = Builder.getIsFPConstrained()
11340               ? Intrinsic::experimental_constrained_roundeven
11341               : Intrinsic::roundeven;
11342     return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn");
11343   }
11344   case NEON::BI__builtin_neon_vrndph_f16: {
11345     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11346     Int = Builder.getIsFPConstrained()
11347               ? Intrinsic::experimental_constrained_ceil
11348               : Intrinsic::ceil;
11349     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp");
11350   }
11351   case NEON::BI__builtin_neon_vrndp_v:
11352   case NEON::BI__builtin_neon_vrndpq_v: {
11353     Int = Builder.getIsFPConstrained()
11354               ? Intrinsic::experimental_constrained_ceil
11355               : Intrinsic::ceil;
11356     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
11357   }
11358   case NEON::BI__builtin_neon_vrndxh_f16: {
11359     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11360     Int = Builder.getIsFPConstrained()
11361               ? Intrinsic::experimental_constrained_rint
11362               : Intrinsic::rint;
11363     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx");
11364   }
11365   case NEON::BI__builtin_neon_vrndx_v:
11366   case NEON::BI__builtin_neon_vrndxq_v: {
11367     Int = Builder.getIsFPConstrained()
11368               ? Intrinsic::experimental_constrained_rint
11369               : Intrinsic::rint;
11370     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
11371   }
11372   case NEON::BI__builtin_neon_vrndh_f16: {
11373     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11374     Int = Builder.getIsFPConstrained()
11375               ? Intrinsic::experimental_constrained_trunc
11376               : Intrinsic::trunc;
11377     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz");
11378   }
11379   case NEON::BI__builtin_neon_vrnd32x_f32:
11380   case NEON::BI__builtin_neon_vrnd32xq_f32: {
11381     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11382     Int = Intrinsic::aarch64_neon_frint32x;
11383     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32x");
11384   }
11385   case NEON::BI__builtin_neon_vrnd32z_f32:
11386   case NEON::BI__builtin_neon_vrnd32zq_f32: {
11387     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11388     Int = Intrinsic::aarch64_neon_frint32z;
11389     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32z");
11390   }
11391   case NEON::BI__builtin_neon_vrnd64x_f32:
11392   case NEON::BI__builtin_neon_vrnd64xq_f32: {
11393     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11394     Int = Intrinsic::aarch64_neon_frint64x;
11395     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64x");
11396   }
11397   case NEON::BI__builtin_neon_vrnd64z_f32:
11398   case NEON::BI__builtin_neon_vrnd64zq_f32: {
11399     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11400     Int = Intrinsic::aarch64_neon_frint64z;
11401     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64z");
11402   }
11403   case NEON::BI__builtin_neon_vrnd_v:
11404   case NEON::BI__builtin_neon_vrndq_v: {
11405     Int = Builder.getIsFPConstrained()
11406               ? Intrinsic::experimental_constrained_trunc
11407               : Intrinsic::trunc;
11408     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
11409   }
11410   case NEON::BI__builtin_neon_vcvt_f64_v:
11411   case NEON::BI__builtin_neon_vcvtq_f64_v:
11412     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11413     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
11414     return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
11415                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
11416   case NEON::BI__builtin_neon_vcvt_f64_f32: {
11417     assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&
11418            "unexpected vcvt_f64_f32 builtin");
11419     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
11420     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
11421 
11422     return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
11423   }
11424   case NEON::BI__builtin_neon_vcvt_f32_f64: {
11425     assert(Type.getEltType() == NeonTypeFlags::Float32 &&
11426            "unexpected vcvt_f32_f64 builtin");
11427     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
11428     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
11429 
11430     return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
11431   }
11432   case NEON::BI__builtin_neon_vcvt_s32_v:
11433   case NEON::BI__builtin_neon_vcvt_u32_v:
11434   case NEON::BI__builtin_neon_vcvt_s64_v:
11435   case NEON::BI__builtin_neon_vcvt_u64_v:
11436   case NEON::BI__builtin_neon_vcvt_s16_f16:
11437   case NEON::BI__builtin_neon_vcvt_u16_f16:
11438   case NEON::BI__builtin_neon_vcvtq_s32_v:
11439   case NEON::BI__builtin_neon_vcvtq_u32_v:
11440   case NEON::BI__builtin_neon_vcvtq_s64_v:
11441   case NEON::BI__builtin_neon_vcvtq_u64_v:
11442   case NEON::BI__builtin_neon_vcvtq_s16_f16:
11443   case NEON::BI__builtin_neon_vcvtq_u16_f16: {
11444     Int =
11445         usgn ? Intrinsic::aarch64_neon_fcvtzu : Intrinsic::aarch64_neon_fcvtzs;
11446     llvm::Type *Tys[2] = {Ty, GetFloatNeonType(this, Type)};
11447     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtz");
11448   }
11449   case NEON::BI__builtin_neon_vcvta_s16_f16:
11450   case NEON::BI__builtin_neon_vcvta_u16_f16:
11451   case NEON::BI__builtin_neon_vcvta_s32_v:
11452   case NEON::BI__builtin_neon_vcvtaq_s16_f16:
11453   case NEON::BI__builtin_neon_vcvtaq_s32_v:
11454   case NEON::BI__builtin_neon_vcvta_u32_v:
11455   case NEON::BI__builtin_neon_vcvtaq_u16_f16:
11456   case NEON::BI__builtin_neon_vcvtaq_u32_v:
11457   case NEON::BI__builtin_neon_vcvta_s64_v:
11458   case NEON::BI__builtin_neon_vcvtaq_s64_v:
11459   case NEON::BI__builtin_neon_vcvta_u64_v:
11460   case NEON::BI__builtin_neon_vcvtaq_u64_v: {
11461     Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
11462     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
11463     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
11464   }
11465   case NEON::BI__builtin_neon_vcvtm_s16_f16:
11466   case NEON::BI__builtin_neon_vcvtm_s32_v:
11467   case NEON::BI__builtin_neon_vcvtmq_s16_f16:
11468   case NEON::BI__builtin_neon_vcvtmq_s32_v:
11469   case NEON::BI__builtin_neon_vcvtm_u16_f16:
11470   case NEON::BI__builtin_neon_vcvtm_u32_v:
11471   case NEON::BI__builtin_neon_vcvtmq_u16_f16:
11472   case NEON::BI__builtin_neon_vcvtmq_u32_v:
11473   case NEON::BI__builtin_neon_vcvtm_s64_v:
11474   case NEON::BI__builtin_neon_vcvtmq_s64_v:
11475   case NEON::BI__builtin_neon_vcvtm_u64_v:
11476   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
11477     Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
11478     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
11479     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
11480   }
11481   case NEON::BI__builtin_neon_vcvtn_s16_f16:
11482   case NEON::BI__builtin_neon_vcvtn_s32_v:
11483   case NEON::BI__builtin_neon_vcvtnq_s16_f16:
11484   case NEON::BI__builtin_neon_vcvtnq_s32_v:
11485   case NEON::BI__builtin_neon_vcvtn_u16_f16:
11486   case NEON::BI__builtin_neon_vcvtn_u32_v:
11487   case NEON::BI__builtin_neon_vcvtnq_u16_f16:
11488   case NEON::BI__builtin_neon_vcvtnq_u32_v:
11489   case NEON::BI__builtin_neon_vcvtn_s64_v:
11490   case NEON::BI__builtin_neon_vcvtnq_s64_v:
11491   case NEON::BI__builtin_neon_vcvtn_u64_v:
11492   case NEON::BI__builtin_neon_vcvtnq_u64_v: {
11493     Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
11494     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
11495     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
11496   }
11497   case NEON::BI__builtin_neon_vcvtp_s16_f16:
11498   case NEON::BI__builtin_neon_vcvtp_s32_v:
11499   case NEON::BI__builtin_neon_vcvtpq_s16_f16:
11500   case NEON::BI__builtin_neon_vcvtpq_s32_v:
11501   case NEON::BI__builtin_neon_vcvtp_u16_f16:
11502   case NEON::BI__builtin_neon_vcvtp_u32_v:
11503   case NEON::BI__builtin_neon_vcvtpq_u16_f16:
11504   case NEON::BI__builtin_neon_vcvtpq_u32_v:
11505   case NEON::BI__builtin_neon_vcvtp_s64_v:
11506   case NEON::BI__builtin_neon_vcvtpq_s64_v:
11507   case NEON::BI__builtin_neon_vcvtp_u64_v:
11508   case NEON::BI__builtin_neon_vcvtpq_u64_v: {
11509     Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
11510     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
11511     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
11512   }
11513   case NEON::BI__builtin_neon_vmulx_v:
11514   case NEON::BI__builtin_neon_vmulxq_v: {
11515     Int = Intrinsic::aarch64_neon_fmulx;
11516     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
11517   }
11518   case NEON::BI__builtin_neon_vmulxh_lane_f16:
11519   case NEON::BI__builtin_neon_vmulxh_laneq_f16: {
11520     // vmulx_lane should be mapped to Neon scalar mulx after
11521     // extracting the scalar element
11522     Ops.push_back(EmitScalarExpr(E->getArg(2)));
11523     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
11524     Ops.pop_back();
11525     Int = Intrinsic::aarch64_neon_fmulx;
11526     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx");
11527   }
11528   case NEON::BI__builtin_neon_vmul_lane_v:
11529   case NEON::BI__builtin_neon_vmul_laneq_v: {
11530     // v1f64 vmul_lane should be mapped to Neon scalar mul lane
11531     bool Quad = false;
11532     if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
11533       Quad = true;
11534     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
11535     llvm::FixedVectorType *VTy =
11536         GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
11537     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
11538     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
11539     Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
11540     return Builder.CreateBitCast(Result, Ty);
11541   }
11542   case NEON::BI__builtin_neon_vnegd_s64:
11543     return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
11544   case NEON::BI__builtin_neon_vnegh_f16:
11545     return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh");
11546   case NEON::BI__builtin_neon_vpmaxnm_v:
11547   case NEON::BI__builtin_neon_vpmaxnmq_v: {
11548     Int = Intrinsic::aarch64_neon_fmaxnmp;
11549     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
11550   }
11551   case NEON::BI__builtin_neon_vpminnm_v:
11552   case NEON::BI__builtin_neon_vpminnmq_v: {
11553     Int = Intrinsic::aarch64_neon_fminnmp;
11554     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
11555   }
11556   case NEON::BI__builtin_neon_vsqrth_f16: {
11557     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11558     Int = Builder.getIsFPConstrained()
11559               ? Intrinsic::experimental_constrained_sqrt
11560               : Intrinsic::sqrt;
11561     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt");
11562   }
11563   case NEON::BI__builtin_neon_vsqrt_v:
11564   case NEON::BI__builtin_neon_vsqrtq_v: {
11565     Int = Builder.getIsFPConstrained()
11566               ? Intrinsic::experimental_constrained_sqrt
11567               : Intrinsic::sqrt;
11568     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11569     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
11570   }
11571   case NEON::BI__builtin_neon_vrbit_v:
11572   case NEON::BI__builtin_neon_vrbitq_v: {
11573     Int = Intrinsic::bitreverse;
11574     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
11575   }
11576   case NEON::BI__builtin_neon_vaddv_u8:
11577     // FIXME: These are handled by the AArch64 scalar code.
11578     usgn = true;
11579     [[fallthrough]];
11580   case NEON::BI__builtin_neon_vaddv_s8: {
11581     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
11582     Ty = Int32Ty;
11583     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11584     llvm::Type *Tys[2] = { Ty, VTy };
11585     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11586     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
11587     return Builder.CreateTrunc(Ops[0], Int8Ty);
11588   }
11589   case NEON::BI__builtin_neon_vaddv_u16:
11590     usgn = true;
11591     [[fallthrough]];
11592   case NEON::BI__builtin_neon_vaddv_s16: {
11593     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
11594     Ty = Int32Ty;
11595     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11596     llvm::Type *Tys[2] = { Ty, VTy };
11597     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11598     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
11599     return Builder.CreateTrunc(Ops[0], Int16Ty);
11600   }
11601   case NEON::BI__builtin_neon_vaddvq_u8:
11602     usgn = true;
11603     [[fallthrough]];
11604   case NEON::BI__builtin_neon_vaddvq_s8: {
11605     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
11606     Ty = Int32Ty;
11607     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11608     llvm::Type *Tys[2] = { Ty, VTy };
11609     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11610     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
11611     return Builder.CreateTrunc(Ops[0], Int8Ty);
11612   }
11613   case NEON::BI__builtin_neon_vaddvq_u16:
11614     usgn = true;
11615     [[fallthrough]];
11616   case NEON::BI__builtin_neon_vaddvq_s16: {
11617     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
11618     Ty = Int32Ty;
11619     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11620     llvm::Type *Tys[2] = { Ty, VTy };
11621     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11622     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
11623     return Builder.CreateTrunc(Ops[0], Int16Ty);
11624   }
11625   case NEON::BI__builtin_neon_vmaxv_u8: {
11626     Int = Intrinsic::aarch64_neon_umaxv;
11627     Ty = Int32Ty;
11628     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11629     llvm::Type *Tys[2] = { Ty, VTy };
11630     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11631     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11632     return Builder.CreateTrunc(Ops[0], Int8Ty);
11633   }
11634   case NEON::BI__builtin_neon_vmaxv_u16: {
11635     Int = Intrinsic::aarch64_neon_umaxv;
11636     Ty = Int32Ty;
11637     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11638     llvm::Type *Tys[2] = { Ty, VTy };
11639     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11640     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11641     return Builder.CreateTrunc(Ops[0], Int16Ty);
11642   }
11643   case NEON::BI__builtin_neon_vmaxvq_u8: {
11644     Int = Intrinsic::aarch64_neon_umaxv;
11645     Ty = Int32Ty;
11646     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11647     llvm::Type *Tys[2] = { Ty, VTy };
11648     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11649     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11650     return Builder.CreateTrunc(Ops[0], Int8Ty);
11651   }
11652   case NEON::BI__builtin_neon_vmaxvq_u16: {
11653     Int = Intrinsic::aarch64_neon_umaxv;
11654     Ty = Int32Ty;
11655     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11656     llvm::Type *Tys[2] = { Ty, VTy };
11657     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11658     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11659     return Builder.CreateTrunc(Ops[0], Int16Ty);
11660   }
11661   case NEON::BI__builtin_neon_vmaxv_s8: {
11662     Int = Intrinsic::aarch64_neon_smaxv;
11663     Ty = Int32Ty;
11664     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11665     llvm::Type *Tys[2] = { Ty, VTy };
11666     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11667     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11668     return Builder.CreateTrunc(Ops[0], Int8Ty);
11669   }
11670   case NEON::BI__builtin_neon_vmaxv_s16: {
11671     Int = Intrinsic::aarch64_neon_smaxv;
11672     Ty = Int32Ty;
11673     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11674     llvm::Type *Tys[2] = { Ty, VTy };
11675     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11676     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11677     return Builder.CreateTrunc(Ops[0], Int16Ty);
11678   }
11679   case NEON::BI__builtin_neon_vmaxvq_s8: {
11680     Int = Intrinsic::aarch64_neon_smaxv;
11681     Ty = Int32Ty;
11682     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11683     llvm::Type *Tys[2] = { Ty, VTy };
11684     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11685     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11686     return Builder.CreateTrunc(Ops[0], Int8Ty);
11687   }
11688   case NEON::BI__builtin_neon_vmaxvq_s16: {
11689     Int = Intrinsic::aarch64_neon_smaxv;
11690     Ty = Int32Ty;
11691     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11692     llvm::Type *Tys[2] = { Ty, VTy };
11693     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11694     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11695     return Builder.CreateTrunc(Ops[0], Int16Ty);
11696   }
11697   case NEON::BI__builtin_neon_vmaxv_f16: {
11698     Int = Intrinsic::aarch64_neon_fmaxv;
11699     Ty = HalfTy;
11700     VTy = llvm::FixedVectorType::get(HalfTy, 4);
11701     llvm::Type *Tys[2] = { Ty, VTy };
11702     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11703     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11704     return Builder.CreateTrunc(Ops[0], HalfTy);
11705   }
11706   case NEON::BI__builtin_neon_vmaxvq_f16: {
11707     Int = Intrinsic::aarch64_neon_fmaxv;
11708     Ty = HalfTy;
11709     VTy = llvm::FixedVectorType::get(HalfTy, 8);
11710     llvm::Type *Tys[2] = { Ty, VTy };
11711     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11712     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11713     return Builder.CreateTrunc(Ops[0], HalfTy);
11714   }
11715   case NEON::BI__builtin_neon_vminv_u8: {
11716     Int = Intrinsic::aarch64_neon_uminv;
11717     Ty = Int32Ty;
11718     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11719     llvm::Type *Tys[2] = { Ty, VTy };
11720     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11721     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11722     return Builder.CreateTrunc(Ops[0], Int8Ty);
11723   }
11724   case NEON::BI__builtin_neon_vminv_u16: {
11725     Int = Intrinsic::aarch64_neon_uminv;
11726     Ty = Int32Ty;
11727     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11728     llvm::Type *Tys[2] = { Ty, VTy };
11729     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11730     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11731     return Builder.CreateTrunc(Ops[0], Int16Ty);
11732   }
11733   case NEON::BI__builtin_neon_vminvq_u8: {
11734     Int = Intrinsic::aarch64_neon_uminv;
11735     Ty = Int32Ty;
11736     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11737     llvm::Type *Tys[2] = { Ty, VTy };
11738     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11739     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11740     return Builder.CreateTrunc(Ops[0], Int8Ty);
11741   }
11742   case NEON::BI__builtin_neon_vminvq_u16: {
11743     Int = Intrinsic::aarch64_neon_uminv;
11744     Ty = Int32Ty;
11745     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11746     llvm::Type *Tys[2] = { Ty, VTy };
11747     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11748     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11749     return Builder.CreateTrunc(Ops[0], Int16Ty);
11750   }
11751   case NEON::BI__builtin_neon_vminv_s8: {
11752     Int = Intrinsic::aarch64_neon_sminv;
11753     Ty = Int32Ty;
11754     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11755     llvm::Type *Tys[2] = { Ty, VTy };
11756     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11757     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11758     return Builder.CreateTrunc(Ops[0], Int8Ty);
11759   }
11760   case NEON::BI__builtin_neon_vminv_s16: {
11761     Int = Intrinsic::aarch64_neon_sminv;
11762     Ty = Int32Ty;
11763     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11764     llvm::Type *Tys[2] = { Ty, VTy };
11765     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11766     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11767     return Builder.CreateTrunc(Ops[0], Int16Ty);
11768   }
11769   case NEON::BI__builtin_neon_vminvq_s8: {
11770     Int = Intrinsic::aarch64_neon_sminv;
11771     Ty = Int32Ty;
11772     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11773     llvm::Type *Tys[2] = { Ty, VTy };
11774     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11775     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11776     return Builder.CreateTrunc(Ops[0], Int8Ty);
11777   }
11778   case NEON::BI__builtin_neon_vminvq_s16: {
11779     Int = Intrinsic::aarch64_neon_sminv;
11780     Ty = Int32Ty;
11781     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11782     llvm::Type *Tys[2] = { Ty, VTy };
11783     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11784     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11785     return Builder.CreateTrunc(Ops[0], Int16Ty);
11786   }
11787   case NEON::BI__builtin_neon_vminv_f16: {
11788     Int = Intrinsic::aarch64_neon_fminv;
11789     Ty = HalfTy;
11790     VTy = llvm::FixedVectorType::get(HalfTy, 4);
11791     llvm::Type *Tys[2] = { Ty, VTy };
11792     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11793     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11794     return Builder.CreateTrunc(Ops[0], HalfTy);
11795   }
11796   case NEON::BI__builtin_neon_vminvq_f16: {
11797     Int = Intrinsic::aarch64_neon_fminv;
11798     Ty = HalfTy;
11799     VTy = llvm::FixedVectorType::get(HalfTy, 8);
11800     llvm::Type *Tys[2] = { Ty, VTy };
11801     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11802     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11803     return Builder.CreateTrunc(Ops[0], HalfTy);
11804   }
11805   case NEON::BI__builtin_neon_vmaxnmv_f16: {
11806     Int = Intrinsic::aarch64_neon_fmaxnmv;
11807     Ty = HalfTy;
11808     VTy = llvm::FixedVectorType::get(HalfTy, 4);
11809     llvm::Type *Tys[2] = { Ty, VTy };
11810     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11811     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
11812     return Builder.CreateTrunc(Ops[0], HalfTy);
11813   }
11814   case NEON::BI__builtin_neon_vmaxnmvq_f16: {
11815     Int = Intrinsic::aarch64_neon_fmaxnmv;
11816     Ty = HalfTy;
11817     VTy = llvm::FixedVectorType::get(HalfTy, 8);
11818     llvm::Type *Tys[2] = { Ty, VTy };
11819     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11820     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
11821     return Builder.CreateTrunc(Ops[0], HalfTy);
11822   }
11823   case NEON::BI__builtin_neon_vminnmv_f16: {
11824     Int = Intrinsic::aarch64_neon_fminnmv;
11825     Ty = HalfTy;
11826     VTy = llvm::FixedVectorType::get(HalfTy, 4);
11827     llvm::Type *Tys[2] = { Ty, VTy };
11828     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11829     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
11830     return Builder.CreateTrunc(Ops[0], HalfTy);
11831   }
11832   case NEON::BI__builtin_neon_vminnmvq_f16: {
11833     Int = Intrinsic::aarch64_neon_fminnmv;
11834     Ty = HalfTy;
11835     VTy = llvm::FixedVectorType::get(HalfTy, 8);
11836     llvm::Type *Tys[2] = { Ty, VTy };
11837     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11838     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
11839     return Builder.CreateTrunc(Ops[0], HalfTy);
11840   }
11841   case NEON::BI__builtin_neon_vmul_n_f64: {
11842     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
11843     Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
11844     return Builder.CreateFMul(Ops[0], RHS);
11845   }
11846   case NEON::BI__builtin_neon_vaddlv_u8: {
11847     Int = Intrinsic::aarch64_neon_uaddlv;
11848     Ty = Int32Ty;
11849     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11850     llvm::Type *Tys[2] = { Ty, VTy };
11851     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11852     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11853     return Builder.CreateTrunc(Ops[0], Int16Ty);
11854   }
11855   case NEON::BI__builtin_neon_vaddlv_u16: {
11856     Int = Intrinsic::aarch64_neon_uaddlv;
11857     Ty = Int32Ty;
11858     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11859     llvm::Type *Tys[2] = { Ty, VTy };
11860     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11861     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11862   }
11863   case NEON::BI__builtin_neon_vaddlvq_u8: {
11864     Int = Intrinsic::aarch64_neon_uaddlv;
11865     Ty = Int32Ty;
11866     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11867     llvm::Type *Tys[2] = { Ty, VTy };
11868     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11869     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11870     return Builder.CreateTrunc(Ops[0], Int16Ty);
11871   }
11872   case NEON::BI__builtin_neon_vaddlvq_u16: {
11873     Int = Intrinsic::aarch64_neon_uaddlv;
11874     Ty = Int32Ty;
11875     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11876     llvm::Type *Tys[2] = { Ty, VTy };
11877     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11878     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11879   }
11880   case NEON::BI__builtin_neon_vaddlv_s8: {
11881     Int = Intrinsic::aarch64_neon_saddlv;
11882     Ty = Int32Ty;
11883     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11884     llvm::Type *Tys[2] = { Ty, VTy };
11885     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11886     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11887     return Builder.CreateTrunc(Ops[0], Int16Ty);
11888   }
11889   case NEON::BI__builtin_neon_vaddlv_s16: {
11890     Int = Intrinsic::aarch64_neon_saddlv;
11891     Ty = Int32Ty;
11892     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11893     llvm::Type *Tys[2] = { Ty, VTy };
11894     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11895     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11896   }
11897   case NEON::BI__builtin_neon_vaddlvq_s8: {
11898     Int = Intrinsic::aarch64_neon_saddlv;
11899     Ty = Int32Ty;
11900     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11901     llvm::Type *Tys[2] = { Ty, VTy };
11902     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11903     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11904     return Builder.CreateTrunc(Ops[0], Int16Ty);
11905   }
11906   case NEON::BI__builtin_neon_vaddlvq_s16: {
11907     Int = Intrinsic::aarch64_neon_saddlv;
11908     Ty = Int32Ty;
11909     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11910     llvm::Type *Tys[2] = { Ty, VTy };
11911     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11912     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11913   }
11914   case NEON::BI__builtin_neon_vsri_n_v:
11915   case NEON::BI__builtin_neon_vsriq_n_v: {
11916     Int = Intrinsic::aarch64_neon_vsri;
11917     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
11918     return EmitNeonCall(Intrin, Ops, "vsri_n");
11919   }
11920   case NEON::BI__builtin_neon_vsli_n_v:
11921   case NEON::BI__builtin_neon_vsliq_n_v: {
11922     Int = Intrinsic::aarch64_neon_vsli;
11923     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
11924     return EmitNeonCall(Intrin, Ops, "vsli_n");
11925   }
11926   case NEON::BI__builtin_neon_vsra_n_v:
11927   case NEON::BI__builtin_neon_vsraq_n_v:
11928     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11929     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
11930     return Builder.CreateAdd(Ops[0], Ops[1]);
11931   case NEON::BI__builtin_neon_vrsra_n_v:
11932   case NEON::BI__builtin_neon_vrsraq_n_v: {
11933     Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
11934     SmallVector<llvm::Value*,2> TmpOps;
11935     TmpOps.push_back(Ops[1]);
11936     TmpOps.push_back(Ops[2]);
11937     Function* F = CGM.getIntrinsic(Int, Ty);
11938     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
11939     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
11940     return Builder.CreateAdd(Ops[0], tmp);
11941   }
11942   case NEON::BI__builtin_neon_vld1_v:
11943   case NEON::BI__builtin_neon_vld1q_v: {
11944     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
11945     return Builder.CreateAlignedLoad(VTy, Ops[0], PtrOp0.getAlignment());
11946   }
11947   case NEON::BI__builtin_neon_vst1_v:
11948   case NEON::BI__builtin_neon_vst1q_v:
11949     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
11950     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
11951     return Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment());
11952   case NEON::BI__builtin_neon_vld1_lane_v:
11953   case NEON::BI__builtin_neon_vld1q_lane_v: {
11954     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11955     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
11956     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11957     Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
11958                                        PtrOp0.getAlignment());
11959     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
11960   }
11961   case NEON::BI__builtin_neon_vld1_dup_v:
11962   case NEON::BI__builtin_neon_vld1q_dup_v: {
11963     Value *V = PoisonValue::get(Ty);
11964     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
11965     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11966     Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
11967                                        PtrOp0.getAlignment());
11968     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
11969     Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
11970     return EmitNeonSplat(Ops[0], CI);
11971   }
11972   case NEON::BI__builtin_neon_vst1_lane_v:
11973   case NEON::BI__builtin_neon_vst1q_lane_v:
11974     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11975     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
11976     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11977     return Builder.CreateAlignedStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty),
11978                                       PtrOp0.getAlignment());
11979   case NEON::BI__builtin_neon_vld2_v:
11980   case NEON::BI__builtin_neon_vld2q_v: {
11981     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
11982     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11983     llvm::Type *Tys[2] = { VTy, PTy };
11984     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
11985     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
11986     Ops[0] = Builder.CreateBitCast(Ops[0],
11987                 llvm::PointerType::getUnqual(Ops[1]->getType()));
11988     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11989   }
11990   case NEON::BI__builtin_neon_vld3_v:
11991   case NEON::BI__builtin_neon_vld3q_v: {
11992     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
11993     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11994     llvm::Type *Tys[2] = { VTy, PTy };
11995     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
11996     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
11997     Ops[0] = Builder.CreateBitCast(Ops[0],
11998                 llvm::PointerType::getUnqual(Ops[1]->getType()));
11999     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
12000   }
12001   case NEON::BI__builtin_neon_vld4_v:
12002   case NEON::BI__builtin_neon_vld4q_v: {
12003     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
12004     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
12005     llvm::Type *Tys[2] = { VTy, PTy };
12006     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
12007     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
12008     Ops[0] = Builder.CreateBitCast(Ops[0],
12009                 llvm::PointerType::getUnqual(Ops[1]->getType()));
12010     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
12011   }
12012   case NEON::BI__builtin_neon_vld2_dup_v:
12013   case NEON::BI__builtin_neon_vld2q_dup_v: {
12014     llvm::Type *PTy =
12015       llvm::PointerType::getUnqual(VTy->getElementType());
12016     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
12017     llvm::Type *Tys[2] = { VTy, PTy };
12018     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
12019     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
12020     Ops[0] = Builder.CreateBitCast(Ops[0],
12021                 llvm::PointerType::getUnqual(Ops[1]->getType()));
12022     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
12023   }
12024   case NEON::BI__builtin_neon_vld3_dup_v:
12025   case NEON::BI__builtin_neon_vld3q_dup_v: {
12026     llvm::Type *PTy =
12027       llvm::PointerType::getUnqual(VTy->getElementType());
12028     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
12029     llvm::Type *Tys[2] = { VTy, PTy };
12030     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
12031     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
12032     Ops[0] = Builder.CreateBitCast(Ops[0],
12033                 llvm::PointerType::getUnqual(Ops[1]->getType()));
12034     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
12035   }
12036   case NEON::BI__builtin_neon_vld4_dup_v:
12037   case NEON::BI__builtin_neon_vld4q_dup_v: {
12038     llvm::Type *PTy =
12039       llvm::PointerType::getUnqual(VTy->getElementType());
12040     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
12041     llvm::Type *Tys[2] = { VTy, PTy };
12042     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
12043     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
12044     Ops[0] = Builder.CreateBitCast(Ops[0],
12045                 llvm::PointerType::getUnqual(Ops[1]->getType()));
12046     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
12047   }
12048   case NEON::BI__builtin_neon_vld2_lane_v:
12049   case NEON::BI__builtin_neon_vld2q_lane_v: {
12050     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
12051     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
12052     std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
12053     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
12054     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
12055     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
12056     Ops[1] = Builder.CreateCall(F, ArrayRef(Ops).slice(1), "vld2_lane");
12057     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
12058     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
12059     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
12060   }
12061   case NEON::BI__builtin_neon_vld3_lane_v:
12062   case NEON::BI__builtin_neon_vld3q_lane_v: {
12063     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
12064     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
12065     std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
12066     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
12067     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
12068     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
12069     Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
12070     Ops[1] = Builder.CreateCall(F, ArrayRef(Ops).slice(1), "vld3_lane");
12071     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
12072     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
12073     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
12074   }
12075   case NEON::BI__builtin_neon_vld4_lane_v:
12076   case NEON::BI__builtin_neon_vld4q_lane_v: {
12077     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
12078     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
12079     std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
12080     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
12081     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
12082     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
12083     Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
12084     Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
12085     Ops[1] = Builder.CreateCall(F, ArrayRef(Ops).slice(1), "vld4_lane");
12086     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
12087     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
12088     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
12089   }
12090   case NEON::BI__builtin_neon_vst2_v:
12091   case NEON::BI__builtin_neon_vst2q_v: {
12092     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
12093     llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
12094     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
12095                         Ops, "");
12096   }
12097   case NEON::BI__builtin_neon_vst2_lane_v:
12098   case NEON::BI__builtin_neon_vst2q_lane_v: {
12099     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
12100     Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
12101     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
12102     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
12103                         Ops, "");
12104   }
12105   case NEON::BI__builtin_neon_vst3_v:
12106   case NEON::BI__builtin_neon_vst3q_v: {
12107     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
12108     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
12109     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
12110                         Ops, "");
12111   }
12112   case NEON::BI__builtin_neon_vst3_lane_v:
12113   case NEON::BI__builtin_neon_vst3q_lane_v: {
12114     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
12115     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
12116     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
12117     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
12118                         Ops, "");
12119   }
12120   case NEON::BI__builtin_neon_vst4_v:
12121   case NEON::BI__builtin_neon_vst4q_v: {
12122     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
12123     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
12124     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
12125                         Ops, "");
12126   }
12127   case NEON::BI__builtin_neon_vst4_lane_v:
12128   case NEON::BI__builtin_neon_vst4q_lane_v: {
12129     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
12130     Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
12131     llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
12132     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
12133                         Ops, "");
12134   }
12135   case NEON::BI__builtin_neon_vtrn_v:
12136   case NEON::BI__builtin_neon_vtrnq_v: {
12137     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
12138     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
12139     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
12140     Value *SV = nullptr;
12141 
12142     for (unsigned vi = 0; vi != 2; ++vi) {
12143       SmallVector<int, 16> Indices;
12144       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
12145         Indices.push_back(i+vi);
12146         Indices.push_back(i+e+vi);
12147       }
12148       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
12149       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
12150       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
12151     }
12152     return SV;
12153   }
12154   case NEON::BI__builtin_neon_vuzp_v:
12155   case NEON::BI__builtin_neon_vuzpq_v: {
12156     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
12157     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
12158     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
12159     Value *SV = nullptr;
12160 
12161     for (unsigned vi = 0; vi != 2; ++vi) {
12162       SmallVector<int, 16> Indices;
12163       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
12164         Indices.push_back(2*i+vi);
12165 
12166       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
12167       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
12168       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
12169     }
12170     return SV;
12171   }
12172   case NEON::BI__builtin_neon_vzip_v:
12173   case NEON::BI__builtin_neon_vzipq_v: {
12174     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
12175     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
12176     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
12177     Value *SV = nullptr;
12178 
12179     for (unsigned vi = 0; vi != 2; ++vi) {
12180       SmallVector<int, 16> Indices;
12181       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
12182         Indices.push_back((i + vi*e) >> 1);
12183         Indices.push_back(((i + vi*e) >> 1)+e);
12184       }
12185       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
12186       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
12187       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
12188     }
12189     return SV;
12190   }
12191   case NEON::BI__builtin_neon_vqtbl1q_v: {
12192     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
12193                         Ops, "vtbl1");
12194   }
12195   case NEON::BI__builtin_neon_vqtbl2q_v: {
12196     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
12197                         Ops, "vtbl2");
12198   }
12199   case NEON::BI__builtin_neon_vqtbl3q_v: {
12200     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
12201                         Ops, "vtbl3");
12202   }
12203   case NEON::BI__builtin_neon_vqtbl4q_v: {
12204     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
12205                         Ops, "vtbl4");
12206   }
12207   case NEON::BI__builtin_neon_vqtbx1q_v: {
12208     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
12209                         Ops, "vtbx1");
12210   }
12211   case NEON::BI__builtin_neon_vqtbx2q_v: {
12212     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
12213                         Ops, "vtbx2");
12214   }
12215   case NEON::BI__builtin_neon_vqtbx3q_v: {
12216     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
12217                         Ops, "vtbx3");
12218   }
12219   case NEON::BI__builtin_neon_vqtbx4q_v: {
12220     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
12221                         Ops, "vtbx4");
12222   }
12223   case NEON::BI__builtin_neon_vsqadd_v:
12224   case NEON::BI__builtin_neon_vsqaddq_v: {
12225     Int = Intrinsic::aarch64_neon_usqadd;
12226     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
12227   }
12228   case NEON::BI__builtin_neon_vuqadd_v:
12229   case NEON::BI__builtin_neon_vuqaddq_v: {
12230     Int = Intrinsic::aarch64_neon_suqadd;
12231     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
12232   }
12233   }
12234 }
12235 
12236 Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID,
12237                                            const CallExpr *E) {
12238   assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||
12239           BuiltinID == BPF::BI__builtin_btf_type_id ||
12240           BuiltinID == BPF::BI__builtin_preserve_type_info ||
12241           BuiltinID == BPF::BI__builtin_preserve_enum_value) &&
12242          "unexpected BPF builtin");
12243 
12244   // A sequence number, injected into IR builtin functions, to
12245   // prevent CSE given the only difference of the function
12246   // may just be the debuginfo metadata.
12247   static uint32_t BuiltinSeqNum;
12248 
12249   switch (BuiltinID) {
12250   default:
12251     llvm_unreachable("Unexpected BPF builtin");
12252   case BPF::BI__builtin_preserve_field_info: {
12253     const Expr *Arg = E->getArg(0);
12254     bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField;
12255 
12256     if (!getDebugInfo()) {
12257       CGM.Error(E->getExprLoc(),
12258                 "using __builtin_preserve_field_info() without -g");
12259       return IsBitField ? EmitLValue(Arg).getBitFieldPointer()
12260                         : EmitLValue(Arg).getPointer(*this);
12261     }
12262 
12263     // Enable underlying preserve_*_access_index() generation.
12264     bool OldIsInPreservedAIRegion = IsInPreservedAIRegion;
12265     IsInPreservedAIRegion = true;
12266     Value *FieldAddr = IsBitField ? EmitLValue(Arg).getBitFieldPointer()
12267                                   : EmitLValue(Arg).getPointer(*this);
12268     IsInPreservedAIRegion = OldIsInPreservedAIRegion;
12269 
12270     ConstantInt *C = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
12271     Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue());
12272 
12273     // Built the IR for the preserve_field_info intrinsic.
12274     llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getDeclaration(
12275         &CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info,
12276         {FieldAddr->getType()});
12277     return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind});
12278   }
12279   case BPF::BI__builtin_btf_type_id:
12280   case BPF::BI__builtin_preserve_type_info: {
12281     if (!getDebugInfo()) {
12282       CGM.Error(E->getExprLoc(), "using builtin function without -g");
12283       return nullptr;
12284     }
12285 
12286     const Expr *Arg0 = E->getArg(0);
12287     llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
12288         Arg0->getType(), Arg0->getExprLoc());
12289 
12290     ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
12291     Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
12292     Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
12293 
12294     llvm::Function *FnDecl;
12295     if (BuiltinID == BPF::BI__builtin_btf_type_id)
12296       FnDecl = llvm::Intrinsic::getDeclaration(
12297           &CGM.getModule(), llvm::Intrinsic::bpf_btf_type_id, {});
12298     else
12299       FnDecl = llvm::Intrinsic::getDeclaration(
12300           &CGM.getModule(), llvm::Intrinsic::bpf_preserve_type_info, {});
12301     CallInst *Fn = Builder.CreateCall(FnDecl, {SeqNumVal, FlagValue});
12302     Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
12303     return Fn;
12304   }
12305   case BPF::BI__builtin_preserve_enum_value: {
12306     if (!getDebugInfo()) {
12307       CGM.Error(E->getExprLoc(), "using builtin function without -g");
12308       return nullptr;
12309     }
12310 
12311     const Expr *Arg0 = E->getArg(0);
12312     llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
12313         Arg0->getType(), Arg0->getExprLoc());
12314 
12315     // Find enumerator
12316     const auto *UO = cast<UnaryOperator>(Arg0->IgnoreParens());
12317     const auto *CE = cast<CStyleCastExpr>(UO->getSubExpr());
12318     const auto *DR = cast<DeclRefExpr>(CE->getSubExpr());
12319     const auto *Enumerator = cast<EnumConstantDecl>(DR->getDecl());
12320 
12321     auto &InitVal = Enumerator->getInitVal();
12322     std::string InitValStr;
12323     if (InitVal.isNegative() || InitVal > uint64_t(INT64_MAX))
12324       InitValStr = std::to_string(InitVal.getSExtValue());
12325     else
12326       InitValStr = std::to_string(InitVal.getZExtValue());
12327     std::string EnumStr = Enumerator->getNameAsString() + ":" + InitValStr;
12328     Value *EnumStrVal = Builder.CreateGlobalStringPtr(EnumStr);
12329 
12330     ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
12331     Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
12332     Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
12333 
12334     llvm::Function *IntrinsicFn = llvm::Intrinsic::getDeclaration(
12335         &CGM.getModule(), llvm::Intrinsic::bpf_preserve_enum_value, {});
12336     CallInst *Fn =
12337         Builder.CreateCall(IntrinsicFn, {SeqNumVal, EnumStrVal, FlagValue});
12338     Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
12339     return Fn;
12340   }
12341   }
12342 }
12343 
12344 llvm::Value *CodeGenFunction::
12345 BuildVector(ArrayRef<llvm::Value*> Ops) {
12346   assert((Ops.size() & (Ops.size() - 1)) == 0 &&
12347          "Not a power-of-two sized vector!");
12348   bool AllConstants = true;
12349   for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
12350     AllConstants &= isa<Constant>(Ops[i]);
12351 
12352   // If this is a constant vector, create a ConstantVector.
12353   if (AllConstants) {
12354     SmallVector<llvm::Constant*, 16> CstOps;
12355     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
12356       CstOps.push_back(cast<Constant>(Ops[i]));
12357     return llvm::ConstantVector::get(CstOps);
12358   }
12359 
12360   // Otherwise, insertelement the values to build the vector.
12361   Value *Result = llvm::PoisonValue::get(
12362       llvm::FixedVectorType::get(Ops[0]->getType(), Ops.size()));
12363 
12364   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
12365     Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt64(i));
12366 
12367   return Result;
12368 }
12369 
12370 // Convert the mask from an integer type to a vector of i1.
12371 static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
12372                               unsigned NumElts) {
12373 
12374   auto *MaskTy = llvm::FixedVectorType::get(
12375       CGF.Builder.getInt1Ty(),
12376       cast<IntegerType>(Mask->getType())->getBitWidth());
12377   Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
12378 
12379   // If we have less than 8 elements, then the starting mask was an i8 and
12380   // we need to extract down to the right number of elements.
12381   if (NumElts < 8) {
12382     int Indices[4];
12383     for (unsigned i = 0; i != NumElts; ++i)
12384       Indices[i] = i;
12385     MaskVec = CGF.Builder.CreateShuffleVector(
12386         MaskVec, MaskVec, ArrayRef(Indices, NumElts), "extract");
12387   }
12388   return MaskVec;
12389 }
12390 
12391 static Value *EmitX86MaskedStore(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
12392                                  Align Alignment) {
12393   // Cast the pointer to right type.
12394   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
12395                                llvm::PointerType::getUnqual(Ops[1]->getType()));
12396 
12397   Value *MaskVec = getMaskVecValue(
12398       CGF, Ops[2],
12399       cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements());
12400 
12401   return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Alignment, MaskVec);
12402 }
12403 
12404 static Value *EmitX86MaskedLoad(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
12405                                 Align Alignment) {
12406   // Cast the pointer to right type.
12407   llvm::Type *Ty = Ops[1]->getType();
12408   Value *Ptr =
12409       CGF.Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
12410 
12411   Value *MaskVec = getMaskVecValue(
12412       CGF, Ops[2], cast<llvm::FixedVectorType>(Ty)->getNumElements());
12413 
12414   return CGF.Builder.CreateMaskedLoad(Ty, Ptr, Alignment, MaskVec, Ops[1]);
12415 }
12416 
12417 static Value *EmitX86ExpandLoad(CodeGenFunction &CGF,
12418                                 ArrayRef<Value *> Ops) {
12419   auto *ResultTy = cast<llvm::VectorType>(Ops[1]->getType());
12420   llvm::Type *PtrTy = ResultTy->getElementType();
12421 
12422   // Cast the pointer to element type.
12423   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
12424                                          llvm::PointerType::getUnqual(PtrTy));
12425 
12426   Value *MaskVec = getMaskVecValue(
12427       CGF, Ops[2], cast<FixedVectorType>(ResultTy)->getNumElements());
12428 
12429   llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload,
12430                                            ResultTy);
12431   return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] });
12432 }
12433 
12434 static Value *EmitX86CompressExpand(CodeGenFunction &CGF,
12435                                     ArrayRef<Value *> Ops,
12436                                     bool IsCompress) {
12437   auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
12438 
12439   Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
12440 
12441   Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress
12442                                  : Intrinsic::x86_avx512_mask_expand;
12443   llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy);
12444   return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec });
12445 }
12446 
12447 static Value *EmitX86CompressStore(CodeGenFunction &CGF,
12448                                    ArrayRef<Value *> Ops) {
12449   auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
12450   llvm::Type *PtrTy = ResultTy->getElementType();
12451 
12452   // Cast the pointer to element type.
12453   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
12454                                          llvm::PointerType::getUnqual(PtrTy));
12455 
12456   Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
12457 
12458   llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore,
12459                                            ResultTy);
12460   return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec });
12461 }
12462 
12463 static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
12464                               ArrayRef<Value *> Ops,
12465                               bool InvertLHS = false) {
12466   unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
12467   Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts);
12468   Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts);
12469 
12470   if (InvertLHS)
12471     LHS = CGF.Builder.CreateNot(LHS);
12472 
12473   return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS),
12474                                    Ops[0]->getType());
12475 }
12476 
12477 static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1,
12478                                  Value *Amt, bool IsRight) {
12479   llvm::Type *Ty = Op0->getType();
12480 
12481   // Amount may be scalar immediate, in which case create a splat vector.
12482   // Funnel shifts amounts are treated as modulo and types are all power-of-2 so
12483   // we only care about the lowest log2 bits anyway.
12484   if (Amt->getType() != Ty) {
12485     unsigned NumElts = cast<llvm::FixedVectorType>(Ty)->getNumElements();
12486     Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false);
12487     Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt);
12488   }
12489 
12490   unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl;
12491   Function *F = CGF.CGM.getIntrinsic(IID, Ty);
12492   return CGF.Builder.CreateCall(F, {Op0, Op1, Amt});
12493 }
12494 
12495 static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
12496                            bool IsSigned) {
12497   Value *Op0 = Ops[0];
12498   Value *Op1 = Ops[1];
12499   llvm::Type *Ty = Op0->getType();
12500   uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
12501 
12502   CmpInst::Predicate Pred;
12503   switch (Imm) {
12504   case 0x0:
12505     Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
12506     break;
12507   case 0x1:
12508     Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
12509     break;
12510   case 0x2:
12511     Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
12512     break;
12513   case 0x3:
12514     Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
12515     break;
12516   case 0x4:
12517     Pred = ICmpInst::ICMP_EQ;
12518     break;
12519   case 0x5:
12520     Pred = ICmpInst::ICMP_NE;
12521     break;
12522   case 0x6:
12523     return llvm::Constant::getNullValue(Ty); // FALSE
12524   case 0x7:
12525     return llvm::Constant::getAllOnesValue(Ty); // TRUE
12526   default:
12527     llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate");
12528   }
12529 
12530   Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1);
12531   Value *Res = CGF.Builder.CreateSExt(Cmp, Ty);
12532   return Res;
12533 }
12534 
12535 static Value *EmitX86Select(CodeGenFunction &CGF,
12536                             Value *Mask, Value *Op0, Value *Op1) {
12537 
12538   // If the mask is all ones just return first argument.
12539   if (const auto *C = dyn_cast<Constant>(Mask))
12540     if (C->isAllOnesValue())
12541       return Op0;
12542 
12543   Mask = getMaskVecValue(
12544       CGF, Mask, cast<llvm::FixedVectorType>(Op0->getType())->getNumElements());
12545 
12546   return CGF.Builder.CreateSelect(Mask, Op0, Op1);
12547 }
12548 
12549 static Value *EmitX86ScalarSelect(CodeGenFunction &CGF,
12550                                   Value *Mask, Value *Op0, Value *Op1) {
12551   // If the mask is all ones just return first argument.
12552   if (const auto *C = dyn_cast<Constant>(Mask))
12553     if (C->isAllOnesValue())
12554       return Op0;
12555 
12556   auto *MaskTy = llvm::FixedVectorType::get(
12557       CGF.Builder.getInt1Ty(), Mask->getType()->getIntegerBitWidth());
12558   Mask = CGF.Builder.CreateBitCast(Mask, MaskTy);
12559   Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0);
12560   return CGF.Builder.CreateSelect(Mask, Op0, Op1);
12561 }
12562 
12563 static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp,
12564                                          unsigned NumElts, Value *MaskIn) {
12565   if (MaskIn) {
12566     const auto *C = dyn_cast<Constant>(MaskIn);
12567     if (!C || !C->isAllOnesValue())
12568       Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts));
12569   }
12570 
12571   if (NumElts < 8) {
12572     int Indices[8];
12573     for (unsigned i = 0; i != NumElts; ++i)
12574       Indices[i] = i;
12575     for (unsigned i = NumElts; i != 8; ++i)
12576       Indices[i] = i % NumElts + NumElts;
12577     Cmp = CGF.Builder.CreateShuffleVector(
12578         Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
12579   }
12580 
12581   return CGF.Builder.CreateBitCast(Cmp,
12582                                    IntegerType::get(CGF.getLLVMContext(),
12583                                                     std::max(NumElts, 8U)));
12584 }
12585 
12586 static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
12587                                    bool Signed, ArrayRef<Value *> Ops) {
12588   assert((Ops.size() == 2 || Ops.size() == 4) &&
12589          "Unexpected number of arguments");
12590   unsigned NumElts =
12591       cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12592   Value *Cmp;
12593 
12594   if (CC == 3) {
12595     Cmp = Constant::getNullValue(
12596         llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
12597   } else if (CC == 7) {
12598     Cmp = Constant::getAllOnesValue(
12599         llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
12600   } else {
12601     ICmpInst::Predicate Pred;
12602     switch (CC) {
12603     default: llvm_unreachable("Unknown condition code");
12604     case 0: Pred = ICmpInst::ICMP_EQ;  break;
12605     case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
12606     case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
12607     case 4: Pred = ICmpInst::ICMP_NE;  break;
12608     case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
12609     case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
12610     }
12611     Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
12612   }
12613 
12614   Value *MaskIn = nullptr;
12615   if (Ops.size() == 4)
12616     MaskIn = Ops[3];
12617 
12618   return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn);
12619 }
12620 
12621 static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) {
12622   Value *Zero = Constant::getNullValue(In->getType());
12623   return EmitX86MaskedCompare(CGF, 1, true, { In, Zero });
12624 }
12625 
12626 static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF, const CallExpr *E,
12627                                     ArrayRef<Value *> Ops, bool IsSigned) {
12628   unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue();
12629   llvm::Type *Ty = Ops[1]->getType();
12630 
12631   Value *Res;
12632   if (Rnd != 4) {
12633     Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round
12634                                  : Intrinsic::x86_avx512_uitofp_round;
12635     Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() });
12636     Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] });
12637   } else {
12638     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
12639     Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty)
12640                    : CGF.Builder.CreateUIToFP(Ops[0], Ty);
12641   }
12642 
12643   return EmitX86Select(CGF, Ops[2], Res, Ops[1]);
12644 }
12645 
12646 // Lowers X86 FMA intrinsics to IR.
12647 static Value *EmitX86FMAExpr(CodeGenFunction &CGF, const CallExpr *E,
12648                              ArrayRef<Value *> Ops, unsigned BuiltinID,
12649                              bool IsAddSub) {
12650 
12651   bool Subtract = false;
12652   Intrinsic::ID IID = Intrinsic::not_intrinsic;
12653   switch (BuiltinID) {
12654   default: break;
12655   case clang::X86::BI__builtin_ia32_vfmsubph512_mask3:
12656     Subtract = true;
12657     [[fallthrough]];
12658   case clang::X86::BI__builtin_ia32_vfmaddph512_mask:
12659   case clang::X86::BI__builtin_ia32_vfmaddph512_maskz:
12660   case clang::X86::BI__builtin_ia32_vfmaddph512_mask3:
12661     IID = llvm::Intrinsic::x86_avx512fp16_vfmadd_ph_512;
12662     break;
12663   case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3:
12664     Subtract = true;
12665     [[fallthrough]];
12666   case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask:
12667   case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz:
12668   case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3:
12669     IID = llvm::Intrinsic::x86_avx512fp16_vfmaddsub_ph_512;
12670     break;
12671   case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
12672     Subtract = true;
12673     [[fallthrough]];
12674   case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
12675   case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
12676   case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
12677     IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break;
12678   case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
12679     Subtract = true;
12680     [[fallthrough]];
12681   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
12682   case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
12683   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
12684     IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break;
12685   case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
12686     Subtract = true;
12687     [[fallthrough]];
12688   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
12689   case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
12690   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
12691     IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512;
12692     break;
12693   case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
12694     Subtract = true;
12695     [[fallthrough]];
12696   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
12697   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
12698   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
12699     IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512;
12700     break;
12701   }
12702 
12703   Value *A = Ops[0];
12704   Value *B = Ops[1];
12705   Value *C = Ops[2];
12706 
12707   if (Subtract)
12708     C = CGF.Builder.CreateFNeg(C);
12709 
12710   Value *Res;
12711 
12712   // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding).
12713   if (IID != Intrinsic::not_intrinsic &&
12714       (cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4 ||
12715        IsAddSub)) {
12716     Function *Intr = CGF.CGM.getIntrinsic(IID);
12717     Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() });
12718   } else {
12719     llvm::Type *Ty = A->getType();
12720     Function *FMA;
12721     if (CGF.Builder.getIsFPConstrained()) {
12722       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
12723       FMA = CGF.CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, Ty);
12724       Res = CGF.Builder.CreateConstrainedFPCall(FMA, {A, B, C});
12725     } else {
12726       FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
12727       Res = CGF.Builder.CreateCall(FMA, {A, B, C});
12728     }
12729   }
12730 
12731   // Handle any required masking.
12732   Value *MaskFalseVal = nullptr;
12733   switch (BuiltinID) {
12734   case clang::X86::BI__builtin_ia32_vfmaddph512_mask:
12735   case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
12736   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
12737   case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask:
12738   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
12739   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
12740     MaskFalseVal = Ops[0];
12741     break;
12742   case clang::X86::BI__builtin_ia32_vfmaddph512_maskz:
12743   case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
12744   case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
12745   case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz:
12746   case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
12747   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
12748     MaskFalseVal = Constant::getNullValue(Ops[0]->getType());
12749     break;
12750   case clang::X86::BI__builtin_ia32_vfmsubph512_mask3:
12751   case clang::X86::BI__builtin_ia32_vfmaddph512_mask3:
12752   case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
12753   case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
12754   case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
12755   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
12756   case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3:
12757   case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3:
12758   case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
12759   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
12760   case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
12761   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
12762     MaskFalseVal = Ops[2];
12763     break;
12764   }
12765 
12766   if (MaskFalseVal)
12767     return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal);
12768 
12769   return Res;
12770 }
12771 
12772 static Value *EmitScalarFMAExpr(CodeGenFunction &CGF, const CallExpr *E,
12773                                 MutableArrayRef<Value *> Ops, Value *Upper,
12774                                 bool ZeroMask = false, unsigned PTIdx = 0,
12775                                 bool NegAcc = false) {
12776   unsigned Rnd = 4;
12777   if (Ops.size() > 4)
12778     Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
12779 
12780   if (NegAcc)
12781     Ops[2] = CGF.Builder.CreateFNeg(Ops[2]);
12782 
12783   Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0);
12784   Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0);
12785   Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0);
12786   Value *Res;
12787   if (Rnd != 4) {
12788     Intrinsic::ID IID;
12789 
12790     switch (Ops[0]->getType()->getPrimitiveSizeInBits()) {
12791     case 16:
12792       IID = Intrinsic::x86_avx512fp16_vfmadd_f16;
12793       break;
12794     case 32:
12795       IID = Intrinsic::x86_avx512_vfmadd_f32;
12796       break;
12797     case 64:
12798       IID = Intrinsic::x86_avx512_vfmadd_f64;
12799       break;
12800     default:
12801       llvm_unreachable("Unexpected size");
12802     }
12803     Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
12804                                  {Ops[0], Ops[1], Ops[2], Ops[4]});
12805   } else if (CGF.Builder.getIsFPConstrained()) {
12806     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
12807     Function *FMA = CGF.CGM.getIntrinsic(
12808         Intrinsic::experimental_constrained_fma, Ops[0]->getType());
12809     Res = CGF.Builder.CreateConstrainedFPCall(FMA, Ops.slice(0, 3));
12810   } else {
12811     Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType());
12812     Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3));
12813   }
12814   // If we have more than 3 arguments, we need to do masking.
12815   if (Ops.size() > 3) {
12816     Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType())
12817                                : Ops[PTIdx];
12818 
12819     // If we negated the accumulator and the its the PassThru value we need to
12820     // bypass the negate. Conveniently Upper should be the same thing in this
12821     // case.
12822     if (NegAcc && PTIdx == 2)
12823       PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0);
12824 
12825     Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru);
12826   }
12827   return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0);
12828 }
12829 
12830 static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned,
12831                            ArrayRef<Value *> Ops) {
12832   llvm::Type *Ty = Ops[0]->getType();
12833   // Arguments have a vXi32 type so cast to vXi64.
12834   Ty = llvm::FixedVectorType::get(CGF.Int64Ty,
12835                                   Ty->getPrimitiveSizeInBits() / 64);
12836   Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty);
12837   Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty);
12838 
12839   if (IsSigned) {
12840     // Shift left then arithmetic shift right.
12841     Constant *ShiftAmt = ConstantInt::get(Ty, 32);
12842     LHS = CGF.Builder.CreateShl(LHS, ShiftAmt);
12843     LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt);
12844     RHS = CGF.Builder.CreateShl(RHS, ShiftAmt);
12845     RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt);
12846   } else {
12847     // Clear the upper bits.
12848     Constant *Mask = ConstantInt::get(Ty, 0xffffffff);
12849     LHS = CGF.Builder.CreateAnd(LHS, Mask);
12850     RHS = CGF.Builder.CreateAnd(RHS, Mask);
12851   }
12852 
12853   return CGF.Builder.CreateMul(LHS, RHS);
12854 }
12855 
12856 // Emit a masked pternlog intrinsic. This only exists because the header has to
12857 // use a macro and we aren't able to pass the input argument to a pternlog
12858 // builtin and a select builtin without evaluating it twice.
12859 static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask,
12860                              ArrayRef<Value *> Ops) {
12861   llvm::Type *Ty = Ops[0]->getType();
12862 
12863   unsigned VecWidth = Ty->getPrimitiveSizeInBits();
12864   unsigned EltWidth = Ty->getScalarSizeInBits();
12865   Intrinsic::ID IID;
12866   if (VecWidth == 128 && EltWidth == 32)
12867     IID = Intrinsic::x86_avx512_pternlog_d_128;
12868   else if (VecWidth == 256 && EltWidth == 32)
12869     IID = Intrinsic::x86_avx512_pternlog_d_256;
12870   else if (VecWidth == 512 && EltWidth == 32)
12871     IID = Intrinsic::x86_avx512_pternlog_d_512;
12872   else if (VecWidth == 128 && EltWidth == 64)
12873     IID = Intrinsic::x86_avx512_pternlog_q_128;
12874   else if (VecWidth == 256 && EltWidth == 64)
12875     IID = Intrinsic::x86_avx512_pternlog_q_256;
12876   else if (VecWidth == 512 && EltWidth == 64)
12877     IID = Intrinsic::x86_avx512_pternlog_q_512;
12878   else
12879     llvm_unreachable("Unexpected intrinsic");
12880 
12881   Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
12882                                           Ops.drop_back());
12883   Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0];
12884   return EmitX86Select(CGF, Ops[4], Ternlog, PassThru);
12885 }
12886 
12887 static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
12888                               llvm::Type *DstTy) {
12889   unsigned NumberOfElements =
12890       cast<llvm::FixedVectorType>(DstTy)->getNumElements();
12891   Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements);
12892   return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2");
12893 }
12894 
12895 Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
12896   const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
12897   StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
12898   return EmitX86CpuIs(CPUStr);
12899 }
12900 
12901 // Convert F16 halfs to floats.
12902 static Value *EmitX86CvtF16ToFloatExpr(CodeGenFunction &CGF,
12903                                        ArrayRef<Value *> Ops,
12904                                        llvm::Type *DstTy) {
12905   assert((Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) &&
12906          "Unknown cvtph2ps intrinsic");
12907 
12908   // If the SAE intrinsic doesn't use default rounding then we can't upgrade.
12909   if (Ops.size() == 4 && cast<llvm::ConstantInt>(Ops[3])->getZExtValue() != 4) {
12910     Function *F =
12911         CGF.CGM.getIntrinsic(Intrinsic::x86_avx512_mask_vcvtph2ps_512);
12912     return CGF.Builder.CreateCall(F, {Ops[0], Ops[1], Ops[2], Ops[3]});
12913   }
12914 
12915   unsigned NumDstElts = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
12916   Value *Src = Ops[0];
12917 
12918   // Extract the subvector.
12919   if (NumDstElts !=
12920       cast<llvm::FixedVectorType>(Src->getType())->getNumElements()) {
12921     assert(NumDstElts == 4 && "Unexpected vector size");
12922     Src = CGF.Builder.CreateShuffleVector(Src, ArrayRef<int>{0, 1, 2, 3});
12923   }
12924 
12925   // Bitcast from vXi16 to vXf16.
12926   auto *HalfTy = llvm::FixedVectorType::get(
12927       llvm::Type::getHalfTy(CGF.getLLVMContext()), NumDstElts);
12928   Src = CGF.Builder.CreateBitCast(Src, HalfTy);
12929 
12930   // Perform the fp-extension.
12931   Value *Res = CGF.Builder.CreateFPExt(Src, DstTy, "cvtph2ps");
12932 
12933   if (Ops.size() >= 3)
12934     Res = EmitX86Select(CGF, Ops[2], Res, Ops[1]);
12935   return Res;
12936 }
12937 
12938 Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
12939 
12940   llvm::Type *Int32Ty = Builder.getInt32Ty();
12941 
12942   // Matching the struct layout from the compiler-rt/libgcc structure that is
12943   // filled in:
12944   // unsigned int __cpu_vendor;
12945   // unsigned int __cpu_type;
12946   // unsigned int __cpu_subtype;
12947   // unsigned int __cpu_features[1];
12948   llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
12949                                           llvm::ArrayType::get(Int32Ty, 1));
12950 
12951   // Grab the global __cpu_model.
12952   llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
12953   cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
12954 
12955   // Calculate the index needed to access the correct field based on the
12956   // range. Also adjust the expected value.
12957   unsigned Index;
12958   unsigned Value;
12959   std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
12960 #define X86_VENDOR(ENUM, STRING)                                               \
12961   .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
12962 #define X86_CPU_TYPE_ALIAS(ENUM, ALIAS)                                        \
12963   .Case(ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
12964 #define X86_CPU_TYPE(ENUM, STR)                                                \
12965   .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
12966 #define X86_CPU_SUBTYPE_ALIAS(ENUM, ALIAS)                                     \
12967   .Case(ALIAS, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
12968 #define X86_CPU_SUBTYPE(ENUM, STR)                                             \
12969   .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
12970 #include "llvm/TargetParser/X86TargetParser.def"
12971                                .Default({0, 0});
12972   assert(Value != 0 && "Invalid CPUStr passed to CpuIs");
12973 
12974   // Grab the appropriate field from __cpu_model.
12975   llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
12976                          ConstantInt::get(Int32Ty, Index)};
12977   llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs);
12978   CpuValue = Builder.CreateAlignedLoad(Int32Ty, CpuValue,
12979                                        CharUnits::fromQuantity(4));
12980 
12981   // Check the value of the field against the requested value.
12982   return Builder.CreateICmpEQ(CpuValue,
12983                                   llvm::ConstantInt::get(Int32Ty, Value));
12984 }
12985 
12986 Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
12987   const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
12988   StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
12989   return EmitX86CpuSupports(FeatureStr);
12990 }
12991 
12992 Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
12993   return EmitX86CpuSupports(llvm::X86::getCpuSupportsMask(FeatureStrs));
12994 }
12995 
12996 llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) {
12997   uint32_t Features1 = Lo_32(FeaturesMask);
12998   uint32_t Features2 = Hi_32(FeaturesMask);
12999 
13000   Value *Result = Builder.getTrue();
13001 
13002   if (Features1 != 0) {
13003     // Matching the struct layout from the compiler-rt/libgcc structure that is
13004     // filled in:
13005     // unsigned int __cpu_vendor;
13006     // unsigned int __cpu_type;
13007     // unsigned int __cpu_subtype;
13008     // unsigned int __cpu_features[1];
13009     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
13010                                             llvm::ArrayType::get(Int32Ty, 1));
13011 
13012     // Grab the global __cpu_model.
13013     llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
13014     cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
13015 
13016     // Grab the first (0th) element from the field __cpu_features off of the
13017     // global in the struct STy.
13018     Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3),
13019                      Builder.getInt32(0)};
13020     Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
13021     Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures,
13022                                                 CharUnits::fromQuantity(4));
13023 
13024     // Check the value of the bit corresponding to the feature requested.
13025     Value *Mask = Builder.getInt32(Features1);
13026     Value *Bitset = Builder.CreateAnd(Features, Mask);
13027     Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
13028     Result = Builder.CreateAnd(Result, Cmp);
13029   }
13030 
13031   if (Features2 != 0) {
13032     llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty,
13033                                                              "__cpu_features2");
13034     cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true);
13035 
13036     Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures2,
13037                                                 CharUnits::fromQuantity(4));
13038 
13039     // Check the value of the bit corresponding to the feature requested.
13040     Value *Mask = Builder.getInt32(Features2);
13041     Value *Bitset = Builder.CreateAnd(Features, Mask);
13042     Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
13043     Result = Builder.CreateAnd(Result, Cmp);
13044   }
13045 
13046   return Result;
13047 }
13048 
13049 Value *CodeGenFunction::EmitAArch64CpuInit() {
13050   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
13051   llvm::FunctionCallee Func =
13052       CGM.CreateRuntimeFunction(FTy, "init_cpu_features_resolver");
13053   cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
13054   cast<llvm::GlobalValue>(Func.getCallee())
13055       ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
13056   return Builder.CreateCall(Func);
13057 }
13058 
13059 Value *CodeGenFunction::EmitX86CpuInit() {
13060   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy,
13061                                                     /*Variadic*/ false);
13062   llvm::FunctionCallee Func =
13063       CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init");
13064   cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
13065   cast<llvm::GlobalValue>(Func.getCallee())
13066       ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
13067   return Builder.CreateCall(Func);
13068 }
13069 
13070 llvm::Value *
13071 CodeGenFunction::EmitAArch64CpuSupports(ArrayRef<StringRef> FeaturesStrs) {
13072   uint64_t FeaturesMask = llvm::AArch64::getCpuSupportsMask(FeaturesStrs);
13073   Value *Result = Builder.getTrue();
13074   if (FeaturesMask != 0) {
13075     // Get features from structure in runtime library
13076     // struct {
13077     //   unsigned long long features;
13078     // } __aarch64_cpu_features;
13079     llvm::Type *STy = llvm::StructType::get(Int64Ty);
13080     llvm::Constant *AArch64CPUFeatures =
13081         CGM.CreateRuntimeVariable(STy, "__aarch64_cpu_features");
13082     cast<llvm::GlobalValue>(AArch64CPUFeatures)->setDSOLocal(true);
13083     llvm::Value *CpuFeatures = Builder.CreateGEP(
13084         STy, AArch64CPUFeatures,
13085         {ConstantInt::get(Int32Ty, 0), ConstantInt::get(Int32Ty, 0)});
13086     Value *Features = Builder.CreateAlignedLoad(Int64Ty, CpuFeatures,
13087                                                 CharUnits::fromQuantity(8));
13088     Value *Mask = Builder.getInt64(FeaturesMask);
13089     Value *Bitset = Builder.CreateAnd(Features, Mask);
13090     Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
13091     Result = Builder.CreateAnd(Result, Cmp);
13092   }
13093   return Result;
13094 }
13095 
13096 Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
13097                                            const CallExpr *E) {
13098   if (BuiltinID == X86::BI__builtin_cpu_is)
13099     return EmitX86CpuIs(E);
13100   if (BuiltinID == X86::BI__builtin_cpu_supports)
13101     return EmitX86CpuSupports(E);
13102   if (BuiltinID == X86::BI__builtin_cpu_init)
13103     return EmitX86CpuInit();
13104 
13105   // Handle MSVC intrinsics before argument evaluation to prevent double
13106   // evaluation.
13107   if (std::optional<MSVCIntrin> MsvcIntId = translateX86ToMsvcIntrin(BuiltinID))
13108     return EmitMSVCBuiltinExpr(*MsvcIntId, E);
13109 
13110   SmallVector<Value*, 4> Ops;
13111   bool IsMaskFCmp = false;
13112   bool IsConjFMA = false;
13113 
13114   // Find out if any arguments are required to be integer constant expressions.
13115   unsigned ICEArguments = 0;
13116   ASTContext::GetBuiltinTypeError Error;
13117   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
13118   assert(Error == ASTContext::GE_None && "Should not codegen an error");
13119 
13120   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
13121     // If this is a normal argument, just emit it as a scalar.
13122     if ((ICEArguments & (1 << i)) == 0) {
13123       Ops.push_back(EmitScalarExpr(E->getArg(i)));
13124       continue;
13125     }
13126 
13127     // If this is required to be a constant, constant fold it so that we know
13128     // that the generated intrinsic gets a ConstantInt.
13129     Ops.push_back(llvm::ConstantInt::get(
13130         getLLVMContext(), *E->getArg(i)->getIntegerConstantExpr(getContext())));
13131   }
13132 
13133   // These exist so that the builtin that takes an immediate can be bounds
13134   // checked by clang to avoid passing bad immediates to the backend. Since
13135   // AVX has a larger immediate than SSE we would need separate builtins to
13136   // do the different bounds checking. Rather than create a clang specific
13137   // SSE only builtin, this implements eight separate builtins to match gcc
13138   // implementation.
13139   auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
13140     Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
13141     llvm::Function *F = CGM.getIntrinsic(ID);
13142     return Builder.CreateCall(F, Ops);
13143   };
13144 
13145   // For the vector forms of FP comparisons, translate the builtins directly to
13146   // IR.
13147   // TODO: The builtins could be removed if the SSE header files used vector
13148   // extension comparisons directly (vector ordered/unordered may need
13149   // additional support via __builtin_isnan()).
13150   auto getVectorFCmpIR = [this, &Ops, E](CmpInst::Predicate Pred,
13151                                          bool IsSignaling) {
13152     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
13153     Value *Cmp;
13154     if (IsSignaling)
13155       Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
13156     else
13157       Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
13158     llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
13159     llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
13160     Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
13161     return Builder.CreateBitCast(Sext, FPVecTy);
13162   };
13163 
13164   switch (BuiltinID) {
13165   default: return nullptr;
13166   case X86::BI_mm_prefetch: {
13167     Value *Address = Ops[0];
13168     ConstantInt *C = cast<ConstantInt>(Ops[1]);
13169     Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1);
13170     Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3);
13171     Value *Data = ConstantInt::get(Int32Ty, 1);
13172     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
13173     return Builder.CreateCall(F, {Address, RW, Locality, Data});
13174   }
13175   case X86::BI_mm_clflush: {
13176     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
13177                               Ops[0]);
13178   }
13179   case X86::BI_mm_lfence: {
13180     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
13181   }
13182   case X86::BI_mm_mfence: {
13183     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
13184   }
13185   case X86::BI_mm_sfence: {
13186     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
13187   }
13188   case X86::BI_mm_pause: {
13189     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
13190   }
13191   case X86::BI__rdtsc: {
13192     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
13193   }
13194   case X86::BI__builtin_ia32_rdtscp: {
13195     Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp));
13196     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
13197                                       Ops[0]);
13198     return Builder.CreateExtractValue(Call, 0);
13199   }
13200   case X86::BI__builtin_ia32_lzcnt_u16:
13201   case X86::BI__builtin_ia32_lzcnt_u32:
13202   case X86::BI__builtin_ia32_lzcnt_u64: {
13203     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
13204     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
13205   }
13206   case X86::BI__builtin_ia32_tzcnt_u16:
13207   case X86::BI__builtin_ia32_tzcnt_u32:
13208   case X86::BI__builtin_ia32_tzcnt_u64: {
13209     Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
13210     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
13211   }
13212   case X86::BI__builtin_ia32_undef128:
13213   case X86::BI__builtin_ia32_undef256:
13214   case X86::BI__builtin_ia32_undef512:
13215     // The x86 definition of "undef" is not the same as the LLVM definition
13216     // (PR32176). We leave optimizing away an unnecessary zero constant to the
13217     // IR optimizer and backend.
13218     // TODO: If we had a "freeze" IR instruction to generate a fixed undef
13219     // value, we should use that here instead of a zero.
13220     return llvm::Constant::getNullValue(ConvertType(E->getType()));
13221   case X86::BI__builtin_ia32_vec_init_v8qi:
13222   case X86::BI__builtin_ia32_vec_init_v4hi:
13223   case X86::BI__builtin_ia32_vec_init_v2si:
13224     return Builder.CreateBitCast(BuildVector(Ops),
13225                                  llvm::Type::getX86_MMXTy(getLLVMContext()));
13226   case X86::BI__builtin_ia32_vec_ext_v2si:
13227   case X86::BI__builtin_ia32_vec_ext_v16qi:
13228   case X86::BI__builtin_ia32_vec_ext_v8hi:
13229   case X86::BI__builtin_ia32_vec_ext_v4si:
13230   case X86::BI__builtin_ia32_vec_ext_v4sf:
13231   case X86::BI__builtin_ia32_vec_ext_v2di:
13232   case X86::BI__builtin_ia32_vec_ext_v32qi:
13233   case X86::BI__builtin_ia32_vec_ext_v16hi:
13234   case X86::BI__builtin_ia32_vec_ext_v8si:
13235   case X86::BI__builtin_ia32_vec_ext_v4di: {
13236     unsigned NumElts =
13237         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13238     uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue();
13239     Index &= NumElts - 1;
13240     // These builtins exist so we can ensure the index is an ICE and in range.
13241     // Otherwise we could just do this in the header file.
13242     return Builder.CreateExtractElement(Ops[0], Index);
13243   }
13244   case X86::BI__builtin_ia32_vec_set_v16qi:
13245   case X86::BI__builtin_ia32_vec_set_v8hi:
13246   case X86::BI__builtin_ia32_vec_set_v4si:
13247   case X86::BI__builtin_ia32_vec_set_v2di:
13248   case X86::BI__builtin_ia32_vec_set_v32qi:
13249   case X86::BI__builtin_ia32_vec_set_v16hi:
13250   case X86::BI__builtin_ia32_vec_set_v8si:
13251   case X86::BI__builtin_ia32_vec_set_v4di: {
13252     unsigned NumElts =
13253         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13254     unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
13255     Index &= NumElts - 1;
13256     // These builtins exist so we can ensure the index is an ICE and in range.
13257     // Otherwise we could just do this in the header file.
13258     return Builder.CreateInsertElement(Ops[0], Ops[1], Index);
13259   }
13260   case X86::BI_mm_setcsr:
13261   case X86::BI__builtin_ia32_ldmxcsr: {
13262     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
13263     Builder.CreateStore(Ops[0], Tmp);
13264     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
13265                           Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
13266   }
13267   case X86::BI_mm_getcsr:
13268   case X86::BI__builtin_ia32_stmxcsr: {
13269     Address Tmp = CreateMemTemp(E->getType());
13270     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
13271                        Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
13272     return Builder.CreateLoad(Tmp, "stmxcsr");
13273   }
13274   case X86::BI__builtin_ia32_xsave:
13275   case X86::BI__builtin_ia32_xsave64:
13276   case X86::BI__builtin_ia32_xrstor:
13277   case X86::BI__builtin_ia32_xrstor64:
13278   case X86::BI__builtin_ia32_xsaveopt:
13279   case X86::BI__builtin_ia32_xsaveopt64:
13280   case X86::BI__builtin_ia32_xrstors:
13281   case X86::BI__builtin_ia32_xrstors64:
13282   case X86::BI__builtin_ia32_xsavec:
13283   case X86::BI__builtin_ia32_xsavec64:
13284   case X86::BI__builtin_ia32_xsaves:
13285   case X86::BI__builtin_ia32_xsaves64:
13286   case X86::BI__builtin_ia32_xsetbv:
13287   case X86::BI_xsetbv: {
13288     Intrinsic::ID ID;
13289 #define INTRINSIC_X86_XSAVE_ID(NAME) \
13290     case X86::BI__builtin_ia32_##NAME: \
13291       ID = Intrinsic::x86_##NAME; \
13292       break
13293     switch (BuiltinID) {
13294     default: llvm_unreachable("Unsupported intrinsic!");
13295     INTRINSIC_X86_XSAVE_ID(xsave);
13296     INTRINSIC_X86_XSAVE_ID(xsave64);
13297     INTRINSIC_X86_XSAVE_ID(xrstor);
13298     INTRINSIC_X86_XSAVE_ID(xrstor64);
13299     INTRINSIC_X86_XSAVE_ID(xsaveopt);
13300     INTRINSIC_X86_XSAVE_ID(xsaveopt64);
13301     INTRINSIC_X86_XSAVE_ID(xrstors);
13302     INTRINSIC_X86_XSAVE_ID(xrstors64);
13303     INTRINSIC_X86_XSAVE_ID(xsavec);
13304     INTRINSIC_X86_XSAVE_ID(xsavec64);
13305     INTRINSIC_X86_XSAVE_ID(xsaves);
13306     INTRINSIC_X86_XSAVE_ID(xsaves64);
13307     INTRINSIC_X86_XSAVE_ID(xsetbv);
13308     case X86::BI_xsetbv:
13309       ID = Intrinsic::x86_xsetbv;
13310       break;
13311     }
13312 #undef INTRINSIC_X86_XSAVE_ID
13313     Value *Mhi = Builder.CreateTrunc(
13314       Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
13315     Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
13316     Ops[1] = Mhi;
13317     Ops.push_back(Mlo);
13318     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
13319   }
13320   case X86::BI__builtin_ia32_xgetbv:
13321   case X86::BI_xgetbv:
13322     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops);
13323   case X86::BI__builtin_ia32_storedqudi128_mask:
13324   case X86::BI__builtin_ia32_storedqusi128_mask:
13325   case X86::BI__builtin_ia32_storedquhi128_mask:
13326   case X86::BI__builtin_ia32_storedquqi128_mask:
13327   case X86::BI__builtin_ia32_storeupd128_mask:
13328   case X86::BI__builtin_ia32_storeups128_mask:
13329   case X86::BI__builtin_ia32_storedqudi256_mask:
13330   case X86::BI__builtin_ia32_storedqusi256_mask:
13331   case X86::BI__builtin_ia32_storedquhi256_mask:
13332   case X86::BI__builtin_ia32_storedquqi256_mask:
13333   case X86::BI__builtin_ia32_storeupd256_mask:
13334   case X86::BI__builtin_ia32_storeups256_mask:
13335   case X86::BI__builtin_ia32_storedqudi512_mask:
13336   case X86::BI__builtin_ia32_storedqusi512_mask:
13337   case X86::BI__builtin_ia32_storedquhi512_mask:
13338   case X86::BI__builtin_ia32_storedquqi512_mask:
13339   case X86::BI__builtin_ia32_storeupd512_mask:
13340   case X86::BI__builtin_ia32_storeups512_mask:
13341     return EmitX86MaskedStore(*this, Ops, Align(1));
13342 
13343   case X86::BI__builtin_ia32_storesh128_mask:
13344   case X86::BI__builtin_ia32_storess128_mask:
13345   case X86::BI__builtin_ia32_storesd128_mask:
13346     return EmitX86MaskedStore(*this, Ops, Align(1));
13347 
13348   case X86::BI__builtin_ia32_vpopcntb_128:
13349   case X86::BI__builtin_ia32_vpopcntd_128:
13350   case X86::BI__builtin_ia32_vpopcntq_128:
13351   case X86::BI__builtin_ia32_vpopcntw_128:
13352   case X86::BI__builtin_ia32_vpopcntb_256:
13353   case X86::BI__builtin_ia32_vpopcntd_256:
13354   case X86::BI__builtin_ia32_vpopcntq_256:
13355   case X86::BI__builtin_ia32_vpopcntw_256:
13356   case X86::BI__builtin_ia32_vpopcntb_512:
13357   case X86::BI__builtin_ia32_vpopcntd_512:
13358   case X86::BI__builtin_ia32_vpopcntq_512:
13359   case X86::BI__builtin_ia32_vpopcntw_512: {
13360     llvm::Type *ResultType = ConvertType(E->getType());
13361     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
13362     return Builder.CreateCall(F, Ops);
13363   }
13364   case X86::BI__builtin_ia32_cvtmask2b128:
13365   case X86::BI__builtin_ia32_cvtmask2b256:
13366   case X86::BI__builtin_ia32_cvtmask2b512:
13367   case X86::BI__builtin_ia32_cvtmask2w128:
13368   case X86::BI__builtin_ia32_cvtmask2w256:
13369   case X86::BI__builtin_ia32_cvtmask2w512:
13370   case X86::BI__builtin_ia32_cvtmask2d128:
13371   case X86::BI__builtin_ia32_cvtmask2d256:
13372   case X86::BI__builtin_ia32_cvtmask2d512:
13373   case X86::BI__builtin_ia32_cvtmask2q128:
13374   case X86::BI__builtin_ia32_cvtmask2q256:
13375   case X86::BI__builtin_ia32_cvtmask2q512:
13376     return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType()));
13377 
13378   case X86::BI__builtin_ia32_cvtb2mask128:
13379   case X86::BI__builtin_ia32_cvtb2mask256:
13380   case X86::BI__builtin_ia32_cvtb2mask512:
13381   case X86::BI__builtin_ia32_cvtw2mask128:
13382   case X86::BI__builtin_ia32_cvtw2mask256:
13383   case X86::BI__builtin_ia32_cvtw2mask512:
13384   case X86::BI__builtin_ia32_cvtd2mask128:
13385   case X86::BI__builtin_ia32_cvtd2mask256:
13386   case X86::BI__builtin_ia32_cvtd2mask512:
13387   case X86::BI__builtin_ia32_cvtq2mask128:
13388   case X86::BI__builtin_ia32_cvtq2mask256:
13389   case X86::BI__builtin_ia32_cvtq2mask512:
13390     return EmitX86ConvertToMask(*this, Ops[0]);
13391 
13392   case X86::BI__builtin_ia32_cvtdq2ps512_mask:
13393   case X86::BI__builtin_ia32_cvtqq2ps512_mask:
13394   case X86::BI__builtin_ia32_cvtqq2pd512_mask:
13395   case X86::BI__builtin_ia32_vcvtw2ph512_mask:
13396   case X86::BI__builtin_ia32_vcvtdq2ph512_mask:
13397   case X86::BI__builtin_ia32_vcvtqq2ph512_mask:
13398     return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ true);
13399   case X86::BI__builtin_ia32_cvtudq2ps512_mask:
13400   case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
13401   case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
13402   case X86::BI__builtin_ia32_vcvtuw2ph512_mask:
13403   case X86::BI__builtin_ia32_vcvtudq2ph512_mask:
13404   case X86::BI__builtin_ia32_vcvtuqq2ph512_mask:
13405     return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ false);
13406 
13407   case X86::BI__builtin_ia32_vfmaddss3:
13408   case X86::BI__builtin_ia32_vfmaddsd3:
13409   case X86::BI__builtin_ia32_vfmaddsh3_mask:
13410   case X86::BI__builtin_ia32_vfmaddss3_mask:
13411   case X86::BI__builtin_ia32_vfmaddsd3_mask:
13412     return EmitScalarFMAExpr(*this, E, Ops, Ops[0]);
13413   case X86::BI__builtin_ia32_vfmaddss:
13414   case X86::BI__builtin_ia32_vfmaddsd:
13415     return EmitScalarFMAExpr(*this, E, Ops,
13416                              Constant::getNullValue(Ops[0]->getType()));
13417   case X86::BI__builtin_ia32_vfmaddsh3_maskz:
13418   case X86::BI__builtin_ia32_vfmaddss3_maskz:
13419   case X86::BI__builtin_ia32_vfmaddsd3_maskz:
13420     return EmitScalarFMAExpr(*this, E, Ops, Ops[0], /*ZeroMask*/ true);
13421   case X86::BI__builtin_ia32_vfmaddsh3_mask3:
13422   case X86::BI__builtin_ia32_vfmaddss3_mask3:
13423   case X86::BI__builtin_ia32_vfmaddsd3_mask3:
13424     return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2);
13425   case X86::BI__builtin_ia32_vfmsubsh3_mask3:
13426   case X86::BI__builtin_ia32_vfmsubss3_mask3:
13427   case X86::BI__builtin_ia32_vfmsubsd3_mask3:
13428     return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2,
13429                              /*NegAcc*/ true);
13430   case X86::BI__builtin_ia32_vfmaddph:
13431   case X86::BI__builtin_ia32_vfmaddps:
13432   case X86::BI__builtin_ia32_vfmaddpd:
13433   case X86::BI__builtin_ia32_vfmaddph256:
13434   case X86::BI__builtin_ia32_vfmaddps256:
13435   case X86::BI__builtin_ia32_vfmaddpd256:
13436   case X86::BI__builtin_ia32_vfmaddph512_mask:
13437   case X86::BI__builtin_ia32_vfmaddph512_maskz:
13438   case X86::BI__builtin_ia32_vfmaddph512_mask3:
13439   case X86::BI__builtin_ia32_vfmaddps512_mask:
13440   case X86::BI__builtin_ia32_vfmaddps512_maskz:
13441   case X86::BI__builtin_ia32_vfmaddps512_mask3:
13442   case X86::BI__builtin_ia32_vfmsubps512_mask3:
13443   case X86::BI__builtin_ia32_vfmaddpd512_mask:
13444   case X86::BI__builtin_ia32_vfmaddpd512_maskz:
13445   case X86::BI__builtin_ia32_vfmaddpd512_mask3:
13446   case X86::BI__builtin_ia32_vfmsubpd512_mask3:
13447   case X86::BI__builtin_ia32_vfmsubph512_mask3:
13448     return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ false);
13449   case X86::BI__builtin_ia32_vfmaddsubph512_mask:
13450   case X86::BI__builtin_ia32_vfmaddsubph512_maskz:
13451   case X86::BI__builtin_ia32_vfmaddsubph512_mask3:
13452   case X86::BI__builtin_ia32_vfmsubaddph512_mask3:
13453   case X86::BI__builtin_ia32_vfmaddsubps512_mask:
13454   case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
13455   case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
13456   case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
13457   case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
13458   case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
13459   case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
13460   case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
13461     return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ true);
13462 
13463   case X86::BI__builtin_ia32_movdqa32store128_mask:
13464   case X86::BI__builtin_ia32_movdqa64store128_mask:
13465   case X86::BI__builtin_ia32_storeaps128_mask:
13466   case X86::BI__builtin_ia32_storeapd128_mask:
13467   case X86::BI__builtin_ia32_movdqa32store256_mask:
13468   case X86::BI__builtin_ia32_movdqa64store256_mask:
13469   case X86::BI__builtin_ia32_storeaps256_mask:
13470   case X86::BI__builtin_ia32_storeapd256_mask:
13471   case X86::BI__builtin_ia32_movdqa32store512_mask:
13472   case X86::BI__builtin_ia32_movdqa64store512_mask:
13473   case X86::BI__builtin_ia32_storeaps512_mask:
13474   case X86::BI__builtin_ia32_storeapd512_mask:
13475     return EmitX86MaskedStore(
13476         *this, Ops,
13477         getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
13478 
13479   case X86::BI__builtin_ia32_loadups128_mask:
13480   case X86::BI__builtin_ia32_loadups256_mask:
13481   case X86::BI__builtin_ia32_loadups512_mask:
13482   case X86::BI__builtin_ia32_loadupd128_mask:
13483   case X86::BI__builtin_ia32_loadupd256_mask:
13484   case X86::BI__builtin_ia32_loadupd512_mask:
13485   case X86::BI__builtin_ia32_loaddquqi128_mask:
13486   case X86::BI__builtin_ia32_loaddquqi256_mask:
13487   case X86::BI__builtin_ia32_loaddquqi512_mask:
13488   case X86::BI__builtin_ia32_loaddquhi128_mask:
13489   case X86::BI__builtin_ia32_loaddquhi256_mask:
13490   case X86::BI__builtin_ia32_loaddquhi512_mask:
13491   case X86::BI__builtin_ia32_loaddqusi128_mask:
13492   case X86::BI__builtin_ia32_loaddqusi256_mask:
13493   case X86::BI__builtin_ia32_loaddqusi512_mask:
13494   case X86::BI__builtin_ia32_loaddqudi128_mask:
13495   case X86::BI__builtin_ia32_loaddqudi256_mask:
13496   case X86::BI__builtin_ia32_loaddqudi512_mask:
13497     return EmitX86MaskedLoad(*this, Ops, Align(1));
13498 
13499   case X86::BI__builtin_ia32_loadsh128_mask:
13500   case X86::BI__builtin_ia32_loadss128_mask:
13501   case X86::BI__builtin_ia32_loadsd128_mask:
13502     return EmitX86MaskedLoad(*this, Ops, Align(1));
13503 
13504   case X86::BI__builtin_ia32_loadaps128_mask:
13505   case X86::BI__builtin_ia32_loadaps256_mask:
13506   case X86::BI__builtin_ia32_loadaps512_mask:
13507   case X86::BI__builtin_ia32_loadapd128_mask:
13508   case X86::BI__builtin_ia32_loadapd256_mask:
13509   case X86::BI__builtin_ia32_loadapd512_mask:
13510   case X86::BI__builtin_ia32_movdqa32load128_mask:
13511   case X86::BI__builtin_ia32_movdqa32load256_mask:
13512   case X86::BI__builtin_ia32_movdqa32load512_mask:
13513   case X86::BI__builtin_ia32_movdqa64load128_mask:
13514   case X86::BI__builtin_ia32_movdqa64load256_mask:
13515   case X86::BI__builtin_ia32_movdqa64load512_mask:
13516     return EmitX86MaskedLoad(
13517         *this, Ops,
13518         getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
13519 
13520   case X86::BI__builtin_ia32_expandloaddf128_mask:
13521   case X86::BI__builtin_ia32_expandloaddf256_mask:
13522   case X86::BI__builtin_ia32_expandloaddf512_mask:
13523   case X86::BI__builtin_ia32_expandloadsf128_mask:
13524   case X86::BI__builtin_ia32_expandloadsf256_mask:
13525   case X86::BI__builtin_ia32_expandloadsf512_mask:
13526   case X86::BI__builtin_ia32_expandloaddi128_mask:
13527   case X86::BI__builtin_ia32_expandloaddi256_mask:
13528   case X86::BI__builtin_ia32_expandloaddi512_mask:
13529   case X86::BI__builtin_ia32_expandloadsi128_mask:
13530   case X86::BI__builtin_ia32_expandloadsi256_mask:
13531   case X86::BI__builtin_ia32_expandloadsi512_mask:
13532   case X86::BI__builtin_ia32_expandloadhi128_mask:
13533   case X86::BI__builtin_ia32_expandloadhi256_mask:
13534   case X86::BI__builtin_ia32_expandloadhi512_mask:
13535   case X86::BI__builtin_ia32_expandloadqi128_mask:
13536   case X86::BI__builtin_ia32_expandloadqi256_mask:
13537   case X86::BI__builtin_ia32_expandloadqi512_mask:
13538     return EmitX86ExpandLoad(*this, Ops);
13539 
13540   case X86::BI__builtin_ia32_compressstoredf128_mask:
13541   case X86::BI__builtin_ia32_compressstoredf256_mask:
13542   case X86::BI__builtin_ia32_compressstoredf512_mask:
13543   case X86::BI__builtin_ia32_compressstoresf128_mask:
13544   case X86::BI__builtin_ia32_compressstoresf256_mask:
13545   case X86::BI__builtin_ia32_compressstoresf512_mask:
13546   case X86::BI__builtin_ia32_compressstoredi128_mask:
13547   case X86::BI__builtin_ia32_compressstoredi256_mask:
13548   case X86::BI__builtin_ia32_compressstoredi512_mask:
13549   case X86::BI__builtin_ia32_compressstoresi128_mask:
13550   case X86::BI__builtin_ia32_compressstoresi256_mask:
13551   case X86::BI__builtin_ia32_compressstoresi512_mask:
13552   case X86::BI__builtin_ia32_compressstorehi128_mask:
13553   case X86::BI__builtin_ia32_compressstorehi256_mask:
13554   case X86::BI__builtin_ia32_compressstorehi512_mask:
13555   case X86::BI__builtin_ia32_compressstoreqi128_mask:
13556   case X86::BI__builtin_ia32_compressstoreqi256_mask:
13557   case X86::BI__builtin_ia32_compressstoreqi512_mask:
13558     return EmitX86CompressStore(*this, Ops);
13559 
13560   case X86::BI__builtin_ia32_expanddf128_mask:
13561   case X86::BI__builtin_ia32_expanddf256_mask:
13562   case X86::BI__builtin_ia32_expanddf512_mask:
13563   case X86::BI__builtin_ia32_expandsf128_mask:
13564   case X86::BI__builtin_ia32_expandsf256_mask:
13565   case X86::BI__builtin_ia32_expandsf512_mask:
13566   case X86::BI__builtin_ia32_expanddi128_mask:
13567   case X86::BI__builtin_ia32_expanddi256_mask:
13568   case X86::BI__builtin_ia32_expanddi512_mask:
13569   case X86::BI__builtin_ia32_expandsi128_mask:
13570   case X86::BI__builtin_ia32_expandsi256_mask:
13571   case X86::BI__builtin_ia32_expandsi512_mask:
13572   case X86::BI__builtin_ia32_expandhi128_mask:
13573   case X86::BI__builtin_ia32_expandhi256_mask:
13574   case X86::BI__builtin_ia32_expandhi512_mask:
13575   case X86::BI__builtin_ia32_expandqi128_mask:
13576   case X86::BI__builtin_ia32_expandqi256_mask:
13577   case X86::BI__builtin_ia32_expandqi512_mask:
13578     return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false);
13579 
13580   case X86::BI__builtin_ia32_compressdf128_mask:
13581   case X86::BI__builtin_ia32_compressdf256_mask:
13582   case X86::BI__builtin_ia32_compressdf512_mask:
13583   case X86::BI__builtin_ia32_compresssf128_mask:
13584   case X86::BI__builtin_ia32_compresssf256_mask:
13585   case X86::BI__builtin_ia32_compresssf512_mask:
13586   case X86::BI__builtin_ia32_compressdi128_mask:
13587   case X86::BI__builtin_ia32_compressdi256_mask:
13588   case X86::BI__builtin_ia32_compressdi512_mask:
13589   case X86::BI__builtin_ia32_compresssi128_mask:
13590   case X86::BI__builtin_ia32_compresssi256_mask:
13591   case X86::BI__builtin_ia32_compresssi512_mask:
13592   case X86::BI__builtin_ia32_compresshi128_mask:
13593   case X86::BI__builtin_ia32_compresshi256_mask:
13594   case X86::BI__builtin_ia32_compresshi512_mask:
13595   case X86::BI__builtin_ia32_compressqi128_mask:
13596   case X86::BI__builtin_ia32_compressqi256_mask:
13597   case X86::BI__builtin_ia32_compressqi512_mask:
13598     return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true);
13599 
13600   case X86::BI__builtin_ia32_gather3div2df:
13601   case X86::BI__builtin_ia32_gather3div2di:
13602   case X86::BI__builtin_ia32_gather3div4df:
13603   case X86::BI__builtin_ia32_gather3div4di:
13604   case X86::BI__builtin_ia32_gather3div4sf:
13605   case X86::BI__builtin_ia32_gather3div4si:
13606   case X86::BI__builtin_ia32_gather3div8sf:
13607   case X86::BI__builtin_ia32_gather3div8si:
13608   case X86::BI__builtin_ia32_gather3siv2df:
13609   case X86::BI__builtin_ia32_gather3siv2di:
13610   case X86::BI__builtin_ia32_gather3siv4df:
13611   case X86::BI__builtin_ia32_gather3siv4di:
13612   case X86::BI__builtin_ia32_gather3siv4sf:
13613   case X86::BI__builtin_ia32_gather3siv4si:
13614   case X86::BI__builtin_ia32_gather3siv8sf:
13615   case X86::BI__builtin_ia32_gather3siv8si:
13616   case X86::BI__builtin_ia32_gathersiv8df:
13617   case X86::BI__builtin_ia32_gathersiv16sf:
13618   case X86::BI__builtin_ia32_gatherdiv8df:
13619   case X86::BI__builtin_ia32_gatherdiv16sf:
13620   case X86::BI__builtin_ia32_gathersiv8di:
13621   case X86::BI__builtin_ia32_gathersiv16si:
13622   case X86::BI__builtin_ia32_gatherdiv8di:
13623   case X86::BI__builtin_ia32_gatherdiv16si: {
13624     Intrinsic::ID IID;
13625     switch (BuiltinID) {
13626     default: llvm_unreachable("Unexpected builtin");
13627     case X86::BI__builtin_ia32_gather3div2df:
13628       IID = Intrinsic::x86_avx512_mask_gather3div2_df;
13629       break;
13630     case X86::BI__builtin_ia32_gather3div2di:
13631       IID = Intrinsic::x86_avx512_mask_gather3div2_di;
13632       break;
13633     case X86::BI__builtin_ia32_gather3div4df:
13634       IID = Intrinsic::x86_avx512_mask_gather3div4_df;
13635       break;
13636     case X86::BI__builtin_ia32_gather3div4di:
13637       IID = Intrinsic::x86_avx512_mask_gather3div4_di;
13638       break;
13639     case X86::BI__builtin_ia32_gather3div4sf:
13640       IID = Intrinsic::x86_avx512_mask_gather3div4_sf;
13641       break;
13642     case X86::BI__builtin_ia32_gather3div4si:
13643       IID = Intrinsic::x86_avx512_mask_gather3div4_si;
13644       break;
13645     case X86::BI__builtin_ia32_gather3div8sf:
13646       IID = Intrinsic::x86_avx512_mask_gather3div8_sf;
13647       break;
13648     case X86::BI__builtin_ia32_gather3div8si:
13649       IID = Intrinsic::x86_avx512_mask_gather3div8_si;
13650       break;
13651     case X86::BI__builtin_ia32_gather3siv2df:
13652       IID = Intrinsic::x86_avx512_mask_gather3siv2_df;
13653       break;
13654     case X86::BI__builtin_ia32_gather3siv2di:
13655       IID = Intrinsic::x86_avx512_mask_gather3siv2_di;
13656       break;
13657     case X86::BI__builtin_ia32_gather3siv4df:
13658       IID = Intrinsic::x86_avx512_mask_gather3siv4_df;
13659       break;
13660     case X86::BI__builtin_ia32_gather3siv4di:
13661       IID = Intrinsic::x86_avx512_mask_gather3siv4_di;
13662       break;
13663     case X86::BI__builtin_ia32_gather3siv4sf:
13664       IID = Intrinsic::x86_avx512_mask_gather3siv4_sf;
13665       break;
13666     case X86::BI__builtin_ia32_gather3siv4si:
13667       IID = Intrinsic::x86_avx512_mask_gather3siv4_si;
13668       break;
13669     case X86::BI__builtin_ia32_gather3siv8sf:
13670       IID = Intrinsic::x86_avx512_mask_gather3siv8_sf;
13671       break;
13672     case X86::BI__builtin_ia32_gather3siv8si:
13673       IID = Intrinsic::x86_avx512_mask_gather3siv8_si;
13674       break;
13675     case X86::BI__builtin_ia32_gathersiv8df:
13676       IID = Intrinsic::x86_avx512_mask_gather_dpd_512;
13677       break;
13678     case X86::BI__builtin_ia32_gathersiv16sf:
13679       IID = Intrinsic::x86_avx512_mask_gather_dps_512;
13680       break;
13681     case X86::BI__builtin_ia32_gatherdiv8df:
13682       IID = Intrinsic::x86_avx512_mask_gather_qpd_512;
13683       break;
13684     case X86::BI__builtin_ia32_gatherdiv16sf:
13685       IID = Intrinsic::x86_avx512_mask_gather_qps_512;
13686       break;
13687     case X86::BI__builtin_ia32_gathersiv8di:
13688       IID = Intrinsic::x86_avx512_mask_gather_dpq_512;
13689       break;
13690     case X86::BI__builtin_ia32_gathersiv16si:
13691       IID = Intrinsic::x86_avx512_mask_gather_dpi_512;
13692       break;
13693     case X86::BI__builtin_ia32_gatherdiv8di:
13694       IID = Intrinsic::x86_avx512_mask_gather_qpq_512;
13695       break;
13696     case X86::BI__builtin_ia32_gatherdiv16si:
13697       IID = Intrinsic::x86_avx512_mask_gather_qpi_512;
13698       break;
13699     }
13700 
13701     unsigned MinElts = std::min(
13702         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(),
13703         cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements());
13704     Ops[3] = getMaskVecValue(*this, Ops[3], MinElts);
13705     Function *Intr = CGM.getIntrinsic(IID);
13706     return Builder.CreateCall(Intr, Ops);
13707   }
13708 
13709   case X86::BI__builtin_ia32_scattersiv8df:
13710   case X86::BI__builtin_ia32_scattersiv16sf:
13711   case X86::BI__builtin_ia32_scatterdiv8df:
13712   case X86::BI__builtin_ia32_scatterdiv16sf:
13713   case X86::BI__builtin_ia32_scattersiv8di:
13714   case X86::BI__builtin_ia32_scattersiv16si:
13715   case X86::BI__builtin_ia32_scatterdiv8di:
13716   case X86::BI__builtin_ia32_scatterdiv16si:
13717   case X86::BI__builtin_ia32_scatterdiv2df:
13718   case X86::BI__builtin_ia32_scatterdiv2di:
13719   case X86::BI__builtin_ia32_scatterdiv4df:
13720   case X86::BI__builtin_ia32_scatterdiv4di:
13721   case X86::BI__builtin_ia32_scatterdiv4sf:
13722   case X86::BI__builtin_ia32_scatterdiv4si:
13723   case X86::BI__builtin_ia32_scatterdiv8sf:
13724   case X86::BI__builtin_ia32_scatterdiv8si:
13725   case X86::BI__builtin_ia32_scattersiv2df:
13726   case X86::BI__builtin_ia32_scattersiv2di:
13727   case X86::BI__builtin_ia32_scattersiv4df:
13728   case X86::BI__builtin_ia32_scattersiv4di:
13729   case X86::BI__builtin_ia32_scattersiv4sf:
13730   case X86::BI__builtin_ia32_scattersiv4si:
13731   case X86::BI__builtin_ia32_scattersiv8sf:
13732   case X86::BI__builtin_ia32_scattersiv8si: {
13733     Intrinsic::ID IID;
13734     switch (BuiltinID) {
13735     default: llvm_unreachable("Unexpected builtin");
13736     case X86::BI__builtin_ia32_scattersiv8df:
13737       IID = Intrinsic::x86_avx512_mask_scatter_dpd_512;
13738       break;
13739     case X86::BI__builtin_ia32_scattersiv16sf:
13740       IID = Intrinsic::x86_avx512_mask_scatter_dps_512;
13741       break;
13742     case X86::BI__builtin_ia32_scatterdiv8df:
13743       IID = Intrinsic::x86_avx512_mask_scatter_qpd_512;
13744       break;
13745     case X86::BI__builtin_ia32_scatterdiv16sf:
13746       IID = Intrinsic::x86_avx512_mask_scatter_qps_512;
13747       break;
13748     case X86::BI__builtin_ia32_scattersiv8di:
13749       IID = Intrinsic::x86_avx512_mask_scatter_dpq_512;
13750       break;
13751     case X86::BI__builtin_ia32_scattersiv16si:
13752       IID = Intrinsic::x86_avx512_mask_scatter_dpi_512;
13753       break;
13754     case X86::BI__builtin_ia32_scatterdiv8di:
13755       IID = Intrinsic::x86_avx512_mask_scatter_qpq_512;
13756       break;
13757     case X86::BI__builtin_ia32_scatterdiv16si:
13758       IID = Intrinsic::x86_avx512_mask_scatter_qpi_512;
13759       break;
13760     case X86::BI__builtin_ia32_scatterdiv2df:
13761       IID = Intrinsic::x86_avx512_mask_scatterdiv2_df;
13762       break;
13763     case X86::BI__builtin_ia32_scatterdiv2di:
13764       IID = Intrinsic::x86_avx512_mask_scatterdiv2_di;
13765       break;
13766     case X86::BI__builtin_ia32_scatterdiv4df:
13767       IID = Intrinsic::x86_avx512_mask_scatterdiv4_df;
13768       break;
13769     case X86::BI__builtin_ia32_scatterdiv4di:
13770       IID = Intrinsic::x86_avx512_mask_scatterdiv4_di;
13771       break;
13772     case X86::BI__builtin_ia32_scatterdiv4sf:
13773       IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf;
13774       break;
13775     case X86::BI__builtin_ia32_scatterdiv4si:
13776       IID = Intrinsic::x86_avx512_mask_scatterdiv4_si;
13777       break;
13778     case X86::BI__builtin_ia32_scatterdiv8sf:
13779       IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf;
13780       break;
13781     case X86::BI__builtin_ia32_scatterdiv8si:
13782       IID = Intrinsic::x86_avx512_mask_scatterdiv8_si;
13783       break;
13784     case X86::BI__builtin_ia32_scattersiv2df:
13785       IID = Intrinsic::x86_avx512_mask_scattersiv2_df;
13786       break;
13787     case X86::BI__builtin_ia32_scattersiv2di:
13788       IID = Intrinsic::x86_avx512_mask_scattersiv2_di;
13789       break;
13790     case X86::BI__builtin_ia32_scattersiv4df:
13791       IID = Intrinsic::x86_avx512_mask_scattersiv4_df;
13792       break;
13793     case X86::BI__builtin_ia32_scattersiv4di:
13794       IID = Intrinsic::x86_avx512_mask_scattersiv4_di;
13795       break;
13796     case X86::BI__builtin_ia32_scattersiv4sf:
13797       IID = Intrinsic::x86_avx512_mask_scattersiv4_sf;
13798       break;
13799     case X86::BI__builtin_ia32_scattersiv4si:
13800       IID = Intrinsic::x86_avx512_mask_scattersiv4_si;
13801       break;
13802     case X86::BI__builtin_ia32_scattersiv8sf:
13803       IID = Intrinsic::x86_avx512_mask_scattersiv8_sf;
13804       break;
13805     case X86::BI__builtin_ia32_scattersiv8si:
13806       IID = Intrinsic::x86_avx512_mask_scattersiv8_si;
13807       break;
13808     }
13809 
13810     unsigned MinElts = std::min(
13811         cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements(),
13812         cast<llvm::FixedVectorType>(Ops[3]->getType())->getNumElements());
13813     Ops[1] = getMaskVecValue(*this, Ops[1], MinElts);
13814     Function *Intr = CGM.getIntrinsic(IID);
13815     return Builder.CreateCall(Intr, Ops);
13816   }
13817 
13818   case X86::BI__builtin_ia32_vextractf128_pd256:
13819   case X86::BI__builtin_ia32_vextractf128_ps256:
13820   case X86::BI__builtin_ia32_vextractf128_si256:
13821   case X86::BI__builtin_ia32_extract128i256:
13822   case X86::BI__builtin_ia32_extractf64x4_mask:
13823   case X86::BI__builtin_ia32_extractf32x4_mask:
13824   case X86::BI__builtin_ia32_extracti64x4_mask:
13825   case X86::BI__builtin_ia32_extracti32x4_mask:
13826   case X86::BI__builtin_ia32_extractf32x8_mask:
13827   case X86::BI__builtin_ia32_extracti32x8_mask:
13828   case X86::BI__builtin_ia32_extractf32x4_256_mask:
13829   case X86::BI__builtin_ia32_extracti32x4_256_mask:
13830   case X86::BI__builtin_ia32_extractf64x2_256_mask:
13831   case X86::BI__builtin_ia32_extracti64x2_256_mask:
13832   case X86::BI__builtin_ia32_extractf64x2_512_mask:
13833   case X86::BI__builtin_ia32_extracti64x2_512_mask: {
13834     auto *DstTy = cast<llvm::FixedVectorType>(ConvertType(E->getType()));
13835     unsigned NumElts = DstTy->getNumElements();
13836     unsigned SrcNumElts =
13837         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13838     unsigned SubVectors = SrcNumElts / NumElts;
13839     unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue();
13840     assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
13841     Index &= SubVectors - 1; // Remove any extra bits.
13842     Index *= NumElts;
13843 
13844     int Indices[16];
13845     for (unsigned i = 0; i != NumElts; ++i)
13846       Indices[i] = i + Index;
13847 
13848     Value *Res = Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts),
13849                                              "extract");
13850 
13851     if (Ops.size() == 4)
13852       Res = EmitX86Select(*this, Ops[3], Res, Ops[2]);
13853 
13854     return Res;
13855   }
13856   case X86::BI__builtin_ia32_vinsertf128_pd256:
13857   case X86::BI__builtin_ia32_vinsertf128_ps256:
13858   case X86::BI__builtin_ia32_vinsertf128_si256:
13859   case X86::BI__builtin_ia32_insert128i256:
13860   case X86::BI__builtin_ia32_insertf64x4:
13861   case X86::BI__builtin_ia32_insertf32x4:
13862   case X86::BI__builtin_ia32_inserti64x4:
13863   case X86::BI__builtin_ia32_inserti32x4:
13864   case X86::BI__builtin_ia32_insertf32x8:
13865   case X86::BI__builtin_ia32_inserti32x8:
13866   case X86::BI__builtin_ia32_insertf32x4_256:
13867   case X86::BI__builtin_ia32_inserti32x4_256:
13868   case X86::BI__builtin_ia32_insertf64x2_256:
13869   case X86::BI__builtin_ia32_inserti64x2_256:
13870   case X86::BI__builtin_ia32_insertf64x2_512:
13871   case X86::BI__builtin_ia32_inserti64x2_512: {
13872     unsigned DstNumElts =
13873         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13874     unsigned SrcNumElts =
13875         cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements();
13876     unsigned SubVectors = DstNumElts / SrcNumElts;
13877     unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
13878     assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
13879     Index &= SubVectors - 1; // Remove any extra bits.
13880     Index *= SrcNumElts;
13881 
13882     int Indices[16];
13883     for (unsigned i = 0; i != DstNumElts; ++i)
13884       Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i;
13885 
13886     Value *Op1 = Builder.CreateShuffleVector(
13887         Ops[1], ArrayRef(Indices, DstNumElts), "widen");
13888 
13889     for (unsigned i = 0; i != DstNumElts; ++i) {
13890       if (i >= Index && i < (Index + SrcNumElts))
13891         Indices[i] = (i - Index) + DstNumElts;
13892       else
13893         Indices[i] = i;
13894     }
13895 
13896     return Builder.CreateShuffleVector(Ops[0], Op1,
13897                                        ArrayRef(Indices, DstNumElts), "insert");
13898   }
13899   case X86::BI__builtin_ia32_pmovqd512_mask:
13900   case X86::BI__builtin_ia32_pmovwb512_mask: {
13901     Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType());
13902     return EmitX86Select(*this, Ops[2], Res, Ops[1]);
13903   }
13904   case X86::BI__builtin_ia32_pmovdb512_mask:
13905   case X86::BI__builtin_ia32_pmovdw512_mask:
13906   case X86::BI__builtin_ia32_pmovqw512_mask: {
13907     if (const auto *C = dyn_cast<Constant>(Ops[2]))
13908       if (C->isAllOnesValue())
13909         return Builder.CreateTrunc(Ops[0], Ops[1]->getType());
13910 
13911     Intrinsic::ID IID;
13912     switch (BuiltinID) {
13913     default: llvm_unreachable("Unsupported intrinsic!");
13914     case X86::BI__builtin_ia32_pmovdb512_mask:
13915       IID = Intrinsic::x86_avx512_mask_pmov_db_512;
13916       break;
13917     case X86::BI__builtin_ia32_pmovdw512_mask:
13918       IID = Intrinsic::x86_avx512_mask_pmov_dw_512;
13919       break;
13920     case X86::BI__builtin_ia32_pmovqw512_mask:
13921       IID = Intrinsic::x86_avx512_mask_pmov_qw_512;
13922       break;
13923     }
13924 
13925     Function *Intr = CGM.getIntrinsic(IID);
13926     return Builder.CreateCall(Intr, Ops);
13927   }
13928   case X86::BI__builtin_ia32_pblendw128:
13929   case X86::BI__builtin_ia32_blendpd:
13930   case X86::BI__builtin_ia32_blendps:
13931   case X86::BI__builtin_ia32_blendpd256:
13932   case X86::BI__builtin_ia32_blendps256:
13933   case X86::BI__builtin_ia32_pblendw256:
13934   case X86::BI__builtin_ia32_pblendd128:
13935   case X86::BI__builtin_ia32_pblendd256: {
13936     unsigned NumElts =
13937         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13938     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13939 
13940     int Indices[16];
13941     // If there are more than 8 elements, the immediate is used twice so make
13942     // sure we handle that.
13943     for (unsigned i = 0; i != NumElts; ++i)
13944       Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i;
13945 
13946     return Builder.CreateShuffleVector(Ops[0], Ops[1],
13947                                        ArrayRef(Indices, NumElts), "blend");
13948   }
13949   case X86::BI__builtin_ia32_pshuflw:
13950   case X86::BI__builtin_ia32_pshuflw256:
13951   case X86::BI__builtin_ia32_pshuflw512: {
13952     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13953     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13954     unsigned NumElts = Ty->getNumElements();
13955 
13956     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13957     Imm = (Imm & 0xff) * 0x01010101;
13958 
13959     int Indices[32];
13960     for (unsigned l = 0; l != NumElts; l += 8) {
13961       for (unsigned i = 0; i != 4; ++i) {
13962         Indices[l + i] = l + (Imm & 3);
13963         Imm >>= 2;
13964       }
13965       for (unsigned i = 4; i != 8; ++i)
13966         Indices[l + i] = l + i;
13967     }
13968 
13969     return Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts),
13970                                        "pshuflw");
13971   }
13972   case X86::BI__builtin_ia32_pshufhw:
13973   case X86::BI__builtin_ia32_pshufhw256:
13974   case X86::BI__builtin_ia32_pshufhw512: {
13975     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13976     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13977     unsigned NumElts = Ty->getNumElements();
13978 
13979     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13980     Imm = (Imm & 0xff) * 0x01010101;
13981 
13982     int Indices[32];
13983     for (unsigned l = 0; l != NumElts; l += 8) {
13984       for (unsigned i = 0; i != 4; ++i)
13985         Indices[l + i] = l + i;
13986       for (unsigned i = 4; i != 8; ++i) {
13987         Indices[l + i] = l + 4 + (Imm & 3);
13988         Imm >>= 2;
13989       }
13990     }
13991 
13992     return Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts),
13993                                        "pshufhw");
13994   }
13995   case X86::BI__builtin_ia32_pshufd:
13996   case X86::BI__builtin_ia32_pshufd256:
13997   case X86::BI__builtin_ia32_pshufd512:
13998   case X86::BI__builtin_ia32_vpermilpd:
13999   case X86::BI__builtin_ia32_vpermilps:
14000   case X86::BI__builtin_ia32_vpermilpd256:
14001   case X86::BI__builtin_ia32_vpermilps256:
14002   case X86::BI__builtin_ia32_vpermilpd512:
14003   case X86::BI__builtin_ia32_vpermilps512: {
14004     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
14005     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
14006     unsigned NumElts = Ty->getNumElements();
14007     unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
14008     unsigned NumLaneElts = NumElts / NumLanes;
14009 
14010     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
14011     Imm = (Imm & 0xff) * 0x01010101;
14012 
14013     int Indices[16];
14014     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
14015       for (unsigned i = 0; i != NumLaneElts; ++i) {
14016         Indices[i + l] = (Imm % NumLaneElts) + l;
14017         Imm /= NumLaneElts;
14018       }
14019     }
14020 
14021     return Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts),
14022                                        "permil");
14023   }
14024   case X86::BI__builtin_ia32_shufpd:
14025   case X86::BI__builtin_ia32_shufpd256:
14026   case X86::BI__builtin_ia32_shufpd512:
14027   case X86::BI__builtin_ia32_shufps:
14028   case X86::BI__builtin_ia32_shufps256:
14029   case X86::BI__builtin_ia32_shufps512: {
14030     uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
14031     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
14032     unsigned NumElts = Ty->getNumElements();
14033     unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
14034     unsigned NumLaneElts = NumElts / NumLanes;
14035 
14036     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
14037     Imm = (Imm & 0xff) * 0x01010101;
14038 
14039     int Indices[16];
14040     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
14041       for (unsigned i = 0; i != NumLaneElts; ++i) {
14042         unsigned Index = Imm % NumLaneElts;
14043         Imm /= NumLaneElts;
14044         if (i >= (NumLaneElts / 2))
14045           Index += NumElts;
14046         Indices[l + i] = l + Index;
14047       }
14048     }
14049 
14050     return Builder.CreateShuffleVector(Ops[0], Ops[1],
14051                                        ArrayRef(Indices, NumElts), "shufp");
14052   }
14053   case X86::BI__builtin_ia32_permdi256:
14054   case X86::BI__builtin_ia32_permdf256:
14055   case X86::BI__builtin_ia32_permdi512:
14056   case X86::BI__builtin_ia32_permdf512: {
14057     unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
14058     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
14059     unsigned NumElts = Ty->getNumElements();
14060 
14061     // These intrinsics operate on 256-bit lanes of four 64-bit elements.
14062     int Indices[8];
14063     for (unsigned l = 0; l != NumElts; l += 4)
14064       for (unsigned i = 0; i != 4; ++i)
14065         Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3);
14066 
14067     return Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts),
14068                                        "perm");
14069   }
14070   case X86::BI__builtin_ia32_palignr128:
14071   case X86::BI__builtin_ia32_palignr256:
14072   case X86::BI__builtin_ia32_palignr512: {
14073     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
14074 
14075     unsigned NumElts =
14076         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14077     assert(NumElts % 16 == 0);
14078 
14079     // If palignr is shifting the pair of vectors more than the size of two
14080     // lanes, emit zero.
14081     if (ShiftVal >= 32)
14082       return llvm::Constant::getNullValue(ConvertType(E->getType()));
14083 
14084     // If palignr is shifting the pair of input vectors more than one lane,
14085     // but less than two lanes, convert to shifting in zeroes.
14086     if (ShiftVal > 16) {
14087       ShiftVal -= 16;
14088       Ops[1] = Ops[0];
14089       Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
14090     }
14091 
14092     int Indices[64];
14093     // 256-bit palignr operates on 128-bit lanes so we need to handle that
14094     for (unsigned l = 0; l != NumElts; l += 16) {
14095       for (unsigned i = 0; i != 16; ++i) {
14096         unsigned Idx = ShiftVal + i;
14097         if (Idx >= 16)
14098           Idx += NumElts - 16; // End of lane, switch operand.
14099         Indices[l + i] = Idx + l;
14100       }
14101     }
14102 
14103     return Builder.CreateShuffleVector(Ops[1], Ops[0],
14104                                        ArrayRef(Indices, NumElts), "palignr");
14105   }
14106   case X86::BI__builtin_ia32_alignd128:
14107   case X86::BI__builtin_ia32_alignd256:
14108   case X86::BI__builtin_ia32_alignd512:
14109   case X86::BI__builtin_ia32_alignq128:
14110   case X86::BI__builtin_ia32_alignq256:
14111   case X86::BI__builtin_ia32_alignq512: {
14112     unsigned NumElts =
14113         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14114     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
14115 
14116     // Mask the shift amount to width of a vector.
14117     ShiftVal &= NumElts - 1;
14118 
14119     int Indices[16];
14120     for (unsigned i = 0; i != NumElts; ++i)
14121       Indices[i] = i + ShiftVal;
14122 
14123     return Builder.CreateShuffleVector(Ops[1], Ops[0],
14124                                        ArrayRef(Indices, NumElts), "valign");
14125   }
14126   case X86::BI__builtin_ia32_shuf_f32x4_256:
14127   case X86::BI__builtin_ia32_shuf_f64x2_256:
14128   case X86::BI__builtin_ia32_shuf_i32x4_256:
14129   case X86::BI__builtin_ia32_shuf_i64x2_256:
14130   case X86::BI__builtin_ia32_shuf_f32x4:
14131   case X86::BI__builtin_ia32_shuf_f64x2:
14132   case X86::BI__builtin_ia32_shuf_i32x4:
14133   case X86::BI__builtin_ia32_shuf_i64x2: {
14134     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
14135     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
14136     unsigned NumElts = Ty->getNumElements();
14137     unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2;
14138     unsigned NumLaneElts = NumElts / NumLanes;
14139 
14140     int Indices[16];
14141     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
14142       unsigned Index = (Imm % NumLanes) * NumLaneElts;
14143       Imm /= NumLanes; // Discard the bits we just used.
14144       if (l >= (NumElts / 2))
14145         Index += NumElts; // Switch to other source.
14146       for (unsigned i = 0; i != NumLaneElts; ++i) {
14147         Indices[l + i] = Index + i;
14148       }
14149     }
14150 
14151     return Builder.CreateShuffleVector(Ops[0], Ops[1],
14152                                        ArrayRef(Indices, NumElts), "shuf");
14153   }
14154 
14155   case X86::BI__builtin_ia32_vperm2f128_pd256:
14156   case X86::BI__builtin_ia32_vperm2f128_ps256:
14157   case X86::BI__builtin_ia32_vperm2f128_si256:
14158   case X86::BI__builtin_ia32_permti256: {
14159     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
14160     unsigned NumElts =
14161         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14162 
14163     // This takes a very simple approach since there are two lanes and a
14164     // shuffle can have 2 inputs. So we reserve the first input for the first
14165     // lane and the second input for the second lane. This may result in
14166     // duplicate sources, but this can be dealt with in the backend.
14167 
14168     Value *OutOps[2];
14169     int Indices[8];
14170     for (unsigned l = 0; l != 2; ++l) {
14171       // Determine the source for this lane.
14172       if (Imm & (1 << ((l * 4) + 3)))
14173         OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType());
14174       else if (Imm & (1 << ((l * 4) + 1)))
14175         OutOps[l] = Ops[1];
14176       else
14177         OutOps[l] = Ops[0];
14178 
14179       for (unsigned i = 0; i != NumElts/2; ++i) {
14180         // Start with ith element of the source for this lane.
14181         unsigned Idx = (l * NumElts) + i;
14182         // If bit 0 of the immediate half is set, switch to the high half of
14183         // the source.
14184         if (Imm & (1 << (l * 4)))
14185           Idx += NumElts/2;
14186         Indices[(l * (NumElts/2)) + i] = Idx;
14187       }
14188     }
14189 
14190     return Builder.CreateShuffleVector(OutOps[0], OutOps[1],
14191                                        ArrayRef(Indices, NumElts), "vperm");
14192   }
14193 
14194   case X86::BI__builtin_ia32_pslldqi128_byteshift:
14195   case X86::BI__builtin_ia32_pslldqi256_byteshift:
14196   case X86::BI__builtin_ia32_pslldqi512_byteshift: {
14197     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
14198     auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
14199     // Builtin type is vXi64 so multiply by 8 to get bytes.
14200     unsigned NumElts = ResultType->getNumElements() * 8;
14201 
14202     // If pslldq is shifting the vector more than 15 bytes, emit zero.
14203     if (ShiftVal >= 16)
14204       return llvm::Constant::getNullValue(ResultType);
14205 
14206     int Indices[64];
14207     // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that
14208     for (unsigned l = 0; l != NumElts; l += 16) {
14209       for (unsigned i = 0; i != 16; ++i) {
14210         unsigned Idx = NumElts + i - ShiftVal;
14211         if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand.
14212         Indices[l + i] = Idx + l;
14213       }
14214     }
14215 
14216     auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
14217     Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
14218     Value *Zero = llvm::Constant::getNullValue(VecTy);
14219     Value *SV = Builder.CreateShuffleVector(
14220         Zero, Cast, ArrayRef(Indices, NumElts), "pslldq");
14221     return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast");
14222   }
14223   case X86::BI__builtin_ia32_psrldqi128_byteshift:
14224   case X86::BI__builtin_ia32_psrldqi256_byteshift:
14225   case X86::BI__builtin_ia32_psrldqi512_byteshift: {
14226     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
14227     auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
14228     // Builtin type is vXi64 so multiply by 8 to get bytes.
14229     unsigned NumElts = ResultType->getNumElements() * 8;
14230 
14231     // If psrldq is shifting the vector more than 15 bytes, emit zero.
14232     if (ShiftVal >= 16)
14233       return llvm::Constant::getNullValue(ResultType);
14234 
14235     int Indices[64];
14236     // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that
14237     for (unsigned l = 0; l != NumElts; l += 16) {
14238       for (unsigned i = 0; i != 16; ++i) {
14239         unsigned Idx = i + ShiftVal;
14240         if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand.
14241         Indices[l + i] = Idx + l;
14242       }
14243     }
14244 
14245     auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
14246     Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
14247     Value *Zero = llvm::Constant::getNullValue(VecTy);
14248     Value *SV = Builder.CreateShuffleVector(
14249         Cast, Zero, ArrayRef(Indices, NumElts), "psrldq");
14250     return Builder.CreateBitCast(SV, ResultType, "cast");
14251   }
14252   case X86::BI__builtin_ia32_kshiftliqi:
14253   case X86::BI__builtin_ia32_kshiftlihi:
14254   case X86::BI__builtin_ia32_kshiftlisi:
14255   case X86::BI__builtin_ia32_kshiftlidi: {
14256     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
14257     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14258 
14259     if (ShiftVal >= NumElts)
14260       return llvm::Constant::getNullValue(Ops[0]->getType());
14261 
14262     Value *In = getMaskVecValue(*this, Ops[0], NumElts);
14263 
14264     int Indices[64];
14265     for (unsigned i = 0; i != NumElts; ++i)
14266       Indices[i] = NumElts + i - ShiftVal;
14267 
14268     Value *Zero = llvm::Constant::getNullValue(In->getType());
14269     Value *SV = Builder.CreateShuffleVector(
14270         Zero, In, ArrayRef(Indices, NumElts), "kshiftl");
14271     return Builder.CreateBitCast(SV, Ops[0]->getType());
14272   }
14273   case X86::BI__builtin_ia32_kshiftriqi:
14274   case X86::BI__builtin_ia32_kshiftrihi:
14275   case X86::BI__builtin_ia32_kshiftrisi:
14276   case X86::BI__builtin_ia32_kshiftridi: {
14277     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
14278     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14279 
14280     if (ShiftVal >= NumElts)
14281       return llvm::Constant::getNullValue(Ops[0]->getType());
14282 
14283     Value *In = getMaskVecValue(*this, Ops[0], NumElts);
14284 
14285     int Indices[64];
14286     for (unsigned i = 0; i != NumElts; ++i)
14287       Indices[i] = i + ShiftVal;
14288 
14289     Value *Zero = llvm::Constant::getNullValue(In->getType());
14290     Value *SV = Builder.CreateShuffleVector(
14291         In, Zero, ArrayRef(Indices, NumElts), "kshiftr");
14292     return Builder.CreateBitCast(SV, Ops[0]->getType());
14293   }
14294   case X86::BI__builtin_ia32_movnti:
14295   case X86::BI__builtin_ia32_movnti64:
14296   case X86::BI__builtin_ia32_movntsd:
14297   case X86::BI__builtin_ia32_movntss: {
14298     llvm::MDNode *Node = llvm::MDNode::get(
14299         getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
14300 
14301     Value *Ptr = Ops[0];
14302     Value *Src = Ops[1];
14303 
14304     // Extract the 0'th element of the source vector.
14305     if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
14306         BuiltinID == X86::BI__builtin_ia32_movntss)
14307       Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
14308 
14309     // Convert the type of the pointer to a pointer to the stored type.
14310     Value *BC = Builder.CreateBitCast(
14311         Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast");
14312 
14313     // Unaligned nontemporal store of the scalar value.
14314     StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC);
14315     SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
14316     SI->setAlignment(llvm::Align(1));
14317     return SI;
14318   }
14319   // Rotate is a special case of funnel shift - 1st 2 args are the same.
14320   case X86::BI__builtin_ia32_vprotb:
14321   case X86::BI__builtin_ia32_vprotw:
14322   case X86::BI__builtin_ia32_vprotd:
14323   case X86::BI__builtin_ia32_vprotq:
14324   case X86::BI__builtin_ia32_vprotbi:
14325   case X86::BI__builtin_ia32_vprotwi:
14326   case X86::BI__builtin_ia32_vprotdi:
14327   case X86::BI__builtin_ia32_vprotqi:
14328   case X86::BI__builtin_ia32_prold128:
14329   case X86::BI__builtin_ia32_prold256:
14330   case X86::BI__builtin_ia32_prold512:
14331   case X86::BI__builtin_ia32_prolq128:
14332   case X86::BI__builtin_ia32_prolq256:
14333   case X86::BI__builtin_ia32_prolq512:
14334   case X86::BI__builtin_ia32_prolvd128:
14335   case X86::BI__builtin_ia32_prolvd256:
14336   case X86::BI__builtin_ia32_prolvd512:
14337   case X86::BI__builtin_ia32_prolvq128:
14338   case X86::BI__builtin_ia32_prolvq256:
14339   case X86::BI__builtin_ia32_prolvq512:
14340     return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false);
14341   case X86::BI__builtin_ia32_prord128:
14342   case X86::BI__builtin_ia32_prord256:
14343   case X86::BI__builtin_ia32_prord512:
14344   case X86::BI__builtin_ia32_prorq128:
14345   case X86::BI__builtin_ia32_prorq256:
14346   case X86::BI__builtin_ia32_prorq512:
14347   case X86::BI__builtin_ia32_prorvd128:
14348   case X86::BI__builtin_ia32_prorvd256:
14349   case X86::BI__builtin_ia32_prorvd512:
14350   case X86::BI__builtin_ia32_prorvq128:
14351   case X86::BI__builtin_ia32_prorvq256:
14352   case X86::BI__builtin_ia32_prorvq512:
14353     return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true);
14354   case X86::BI__builtin_ia32_selectb_128:
14355   case X86::BI__builtin_ia32_selectb_256:
14356   case X86::BI__builtin_ia32_selectb_512:
14357   case X86::BI__builtin_ia32_selectw_128:
14358   case X86::BI__builtin_ia32_selectw_256:
14359   case X86::BI__builtin_ia32_selectw_512:
14360   case X86::BI__builtin_ia32_selectd_128:
14361   case X86::BI__builtin_ia32_selectd_256:
14362   case X86::BI__builtin_ia32_selectd_512:
14363   case X86::BI__builtin_ia32_selectq_128:
14364   case X86::BI__builtin_ia32_selectq_256:
14365   case X86::BI__builtin_ia32_selectq_512:
14366   case X86::BI__builtin_ia32_selectph_128:
14367   case X86::BI__builtin_ia32_selectph_256:
14368   case X86::BI__builtin_ia32_selectph_512:
14369   case X86::BI__builtin_ia32_selectpbf_128:
14370   case X86::BI__builtin_ia32_selectpbf_256:
14371   case X86::BI__builtin_ia32_selectpbf_512:
14372   case X86::BI__builtin_ia32_selectps_128:
14373   case X86::BI__builtin_ia32_selectps_256:
14374   case X86::BI__builtin_ia32_selectps_512:
14375   case X86::BI__builtin_ia32_selectpd_128:
14376   case X86::BI__builtin_ia32_selectpd_256:
14377   case X86::BI__builtin_ia32_selectpd_512:
14378     return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
14379   case X86::BI__builtin_ia32_selectsh_128:
14380   case X86::BI__builtin_ia32_selectsbf_128:
14381   case X86::BI__builtin_ia32_selectss_128:
14382   case X86::BI__builtin_ia32_selectsd_128: {
14383     Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
14384     Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
14385     A = EmitX86ScalarSelect(*this, Ops[0], A, B);
14386     return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0);
14387   }
14388   case X86::BI__builtin_ia32_cmpb128_mask:
14389   case X86::BI__builtin_ia32_cmpb256_mask:
14390   case X86::BI__builtin_ia32_cmpb512_mask:
14391   case X86::BI__builtin_ia32_cmpw128_mask:
14392   case X86::BI__builtin_ia32_cmpw256_mask:
14393   case X86::BI__builtin_ia32_cmpw512_mask:
14394   case X86::BI__builtin_ia32_cmpd128_mask:
14395   case X86::BI__builtin_ia32_cmpd256_mask:
14396   case X86::BI__builtin_ia32_cmpd512_mask:
14397   case X86::BI__builtin_ia32_cmpq128_mask:
14398   case X86::BI__builtin_ia32_cmpq256_mask:
14399   case X86::BI__builtin_ia32_cmpq512_mask: {
14400     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
14401     return EmitX86MaskedCompare(*this, CC, true, Ops);
14402   }
14403   case X86::BI__builtin_ia32_ucmpb128_mask:
14404   case X86::BI__builtin_ia32_ucmpb256_mask:
14405   case X86::BI__builtin_ia32_ucmpb512_mask:
14406   case X86::BI__builtin_ia32_ucmpw128_mask:
14407   case X86::BI__builtin_ia32_ucmpw256_mask:
14408   case X86::BI__builtin_ia32_ucmpw512_mask:
14409   case X86::BI__builtin_ia32_ucmpd128_mask:
14410   case X86::BI__builtin_ia32_ucmpd256_mask:
14411   case X86::BI__builtin_ia32_ucmpd512_mask:
14412   case X86::BI__builtin_ia32_ucmpq128_mask:
14413   case X86::BI__builtin_ia32_ucmpq256_mask:
14414   case X86::BI__builtin_ia32_ucmpq512_mask: {
14415     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
14416     return EmitX86MaskedCompare(*this, CC, false, Ops);
14417   }
14418   case X86::BI__builtin_ia32_vpcomb:
14419   case X86::BI__builtin_ia32_vpcomw:
14420   case X86::BI__builtin_ia32_vpcomd:
14421   case X86::BI__builtin_ia32_vpcomq:
14422     return EmitX86vpcom(*this, Ops, true);
14423   case X86::BI__builtin_ia32_vpcomub:
14424   case X86::BI__builtin_ia32_vpcomuw:
14425   case X86::BI__builtin_ia32_vpcomud:
14426   case X86::BI__builtin_ia32_vpcomuq:
14427     return EmitX86vpcom(*this, Ops, false);
14428 
14429   case X86::BI__builtin_ia32_kortestcqi:
14430   case X86::BI__builtin_ia32_kortestchi:
14431   case X86::BI__builtin_ia32_kortestcsi:
14432   case X86::BI__builtin_ia32_kortestcdi: {
14433     Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
14434     Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType());
14435     Value *Cmp = Builder.CreateICmpEQ(Or, C);
14436     return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
14437   }
14438   case X86::BI__builtin_ia32_kortestzqi:
14439   case X86::BI__builtin_ia32_kortestzhi:
14440   case X86::BI__builtin_ia32_kortestzsi:
14441   case X86::BI__builtin_ia32_kortestzdi: {
14442     Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
14443     Value *C = llvm::Constant::getNullValue(Ops[0]->getType());
14444     Value *Cmp = Builder.CreateICmpEQ(Or, C);
14445     return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
14446   }
14447 
14448   case X86::BI__builtin_ia32_ktestcqi:
14449   case X86::BI__builtin_ia32_ktestzqi:
14450   case X86::BI__builtin_ia32_ktestchi:
14451   case X86::BI__builtin_ia32_ktestzhi:
14452   case X86::BI__builtin_ia32_ktestcsi:
14453   case X86::BI__builtin_ia32_ktestzsi:
14454   case X86::BI__builtin_ia32_ktestcdi:
14455   case X86::BI__builtin_ia32_ktestzdi: {
14456     Intrinsic::ID IID;
14457     switch (BuiltinID) {
14458     default: llvm_unreachable("Unsupported intrinsic!");
14459     case X86::BI__builtin_ia32_ktestcqi:
14460       IID = Intrinsic::x86_avx512_ktestc_b;
14461       break;
14462     case X86::BI__builtin_ia32_ktestzqi:
14463       IID = Intrinsic::x86_avx512_ktestz_b;
14464       break;
14465     case X86::BI__builtin_ia32_ktestchi:
14466       IID = Intrinsic::x86_avx512_ktestc_w;
14467       break;
14468     case X86::BI__builtin_ia32_ktestzhi:
14469       IID = Intrinsic::x86_avx512_ktestz_w;
14470       break;
14471     case X86::BI__builtin_ia32_ktestcsi:
14472       IID = Intrinsic::x86_avx512_ktestc_d;
14473       break;
14474     case X86::BI__builtin_ia32_ktestzsi:
14475       IID = Intrinsic::x86_avx512_ktestz_d;
14476       break;
14477     case X86::BI__builtin_ia32_ktestcdi:
14478       IID = Intrinsic::x86_avx512_ktestc_q;
14479       break;
14480     case X86::BI__builtin_ia32_ktestzdi:
14481       IID = Intrinsic::x86_avx512_ktestz_q;
14482       break;
14483     }
14484 
14485     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14486     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
14487     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
14488     Function *Intr = CGM.getIntrinsic(IID);
14489     return Builder.CreateCall(Intr, {LHS, RHS});
14490   }
14491 
14492   case X86::BI__builtin_ia32_kaddqi:
14493   case X86::BI__builtin_ia32_kaddhi:
14494   case X86::BI__builtin_ia32_kaddsi:
14495   case X86::BI__builtin_ia32_kadddi: {
14496     Intrinsic::ID IID;
14497     switch (BuiltinID) {
14498     default: llvm_unreachable("Unsupported intrinsic!");
14499     case X86::BI__builtin_ia32_kaddqi:
14500       IID = Intrinsic::x86_avx512_kadd_b;
14501       break;
14502     case X86::BI__builtin_ia32_kaddhi:
14503       IID = Intrinsic::x86_avx512_kadd_w;
14504       break;
14505     case X86::BI__builtin_ia32_kaddsi:
14506       IID = Intrinsic::x86_avx512_kadd_d;
14507       break;
14508     case X86::BI__builtin_ia32_kadddi:
14509       IID = Intrinsic::x86_avx512_kadd_q;
14510       break;
14511     }
14512 
14513     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14514     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
14515     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
14516     Function *Intr = CGM.getIntrinsic(IID);
14517     Value *Res = Builder.CreateCall(Intr, {LHS, RHS});
14518     return Builder.CreateBitCast(Res, Ops[0]->getType());
14519   }
14520   case X86::BI__builtin_ia32_kandqi:
14521   case X86::BI__builtin_ia32_kandhi:
14522   case X86::BI__builtin_ia32_kandsi:
14523   case X86::BI__builtin_ia32_kanddi:
14524     return EmitX86MaskLogic(*this, Instruction::And, Ops);
14525   case X86::BI__builtin_ia32_kandnqi:
14526   case X86::BI__builtin_ia32_kandnhi:
14527   case X86::BI__builtin_ia32_kandnsi:
14528   case X86::BI__builtin_ia32_kandndi:
14529     return EmitX86MaskLogic(*this, Instruction::And, Ops, true);
14530   case X86::BI__builtin_ia32_korqi:
14531   case X86::BI__builtin_ia32_korhi:
14532   case X86::BI__builtin_ia32_korsi:
14533   case X86::BI__builtin_ia32_kordi:
14534     return EmitX86MaskLogic(*this, Instruction::Or, Ops);
14535   case X86::BI__builtin_ia32_kxnorqi:
14536   case X86::BI__builtin_ia32_kxnorhi:
14537   case X86::BI__builtin_ia32_kxnorsi:
14538   case X86::BI__builtin_ia32_kxnordi:
14539     return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true);
14540   case X86::BI__builtin_ia32_kxorqi:
14541   case X86::BI__builtin_ia32_kxorhi:
14542   case X86::BI__builtin_ia32_kxorsi:
14543   case X86::BI__builtin_ia32_kxordi:
14544     return EmitX86MaskLogic(*this, Instruction::Xor,  Ops);
14545   case X86::BI__builtin_ia32_knotqi:
14546   case X86::BI__builtin_ia32_knothi:
14547   case X86::BI__builtin_ia32_knotsi:
14548   case X86::BI__builtin_ia32_knotdi: {
14549     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14550     Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
14551     return Builder.CreateBitCast(Builder.CreateNot(Res),
14552                                  Ops[0]->getType());
14553   }
14554   case X86::BI__builtin_ia32_kmovb:
14555   case X86::BI__builtin_ia32_kmovw:
14556   case X86::BI__builtin_ia32_kmovd:
14557   case X86::BI__builtin_ia32_kmovq: {
14558     // Bitcast to vXi1 type and then back to integer. This gets the mask
14559     // register type into the IR, but might be optimized out depending on
14560     // what's around it.
14561     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14562     Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
14563     return Builder.CreateBitCast(Res, Ops[0]->getType());
14564   }
14565 
14566   case X86::BI__builtin_ia32_kunpckdi:
14567   case X86::BI__builtin_ia32_kunpcksi:
14568   case X86::BI__builtin_ia32_kunpckhi: {
14569     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14570     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
14571     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
14572     int Indices[64];
14573     for (unsigned i = 0; i != NumElts; ++i)
14574       Indices[i] = i;
14575 
14576     // First extract half of each vector. This gives better codegen than
14577     // doing it in a single shuffle.
14578     LHS = Builder.CreateShuffleVector(LHS, LHS, ArrayRef(Indices, NumElts / 2));
14579     RHS = Builder.CreateShuffleVector(RHS, RHS, ArrayRef(Indices, NumElts / 2));
14580     // Concat the vectors.
14581     // NOTE: Operands are swapped to match the intrinsic definition.
14582     Value *Res =
14583         Builder.CreateShuffleVector(RHS, LHS, ArrayRef(Indices, NumElts));
14584     return Builder.CreateBitCast(Res, Ops[0]->getType());
14585   }
14586 
14587   case X86::BI__builtin_ia32_vplzcntd_128:
14588   case X86::BI__builtin_ia32_vplzcntd_256:
14589   case X86::BI__builtin_ia32_vplzcntd_512:
14590   case X86::BI__builtin_ia32_vplzcntq_128:
14591   case X86::BI__builtin_ia32_vplzcntq_256:
14592   case X86::BI__builtin_ia32_vplzcntq_512: {
14593     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
14594     return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)});
14595   }
14596   case X86::BI__builtin_ia32_sqrtss:
14597   case X86::BI__builtin_ia32_sqrtsd: {
14598     Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0);
14599     Function *F;
14600     if (Builder.getIsFPConstrained()) {
14601       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14602       F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
14603                            A->getType());
14604       A = Builder.CreateConstrainedFPCall(F, {A});
14605     } else {
14606       F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
14607       A = Builder.CreateCall(F, {A});
14608     }
14609     return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
14610   }
14611   case X86::BI__builtin_ia32_sqrtsh_round_mask:
14612   case X86::BI__builtin_ia32_sqrtsd_round_mask:
14613   case X86::BI__builtin_ia32_sqrtss_round_mask: {
14614     unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
14615     // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
14616     // otherwise keep the intrinsic.
14617     if (CC != 4) {
14618       Intrinsic::ID IID;
14619 
14620       switch (BuiltinID) {
14621       default:
14622         llvm_unreachable("Unsupported intrinsic!");
14623       case X86::BI__builtin_ia32_sqrtsh_round_mask:
14624         IID = Intrinsic::x86_avx512fp16_mask_sqrt_sh;
14625         break;
14626       case X86::BI__builtin_ia32_sqrtsd_round_mask:
14627         IID = Intrinsic::x86_avx512_mask_sqrt_sd;
14628         break;
14629       case X86::BI__builtin_ia32_sqrtss_round_mask:
14630         IID = Intrinsic::x86_avx512_mask_sqrt_ss;
14631         break;
14632       }
14633       return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
14634     }
14635     Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
14636     Function *F;
14637     if (Builder.getIsFPConstrained()) {
14638       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14639       F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
14640                            A->getType());
14641       A = Builder.CreateConstrainedFPCall(F, A);
14642     } else {
14643       F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
14644       A = Builder.CreateCall(F, A);
14645     }
14646     Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
14647     A = EmitX86ScalarSelect(*this, Ops[3], A, Src);
14648     return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
14649   }
14650   case X86::BI__builtin_ia32_sqrtpd256:
14651   case X86::BI__builtin_ia32_sqrtpd:
14652   case X86::BI__builtin_ia32_sqrtps256:
14653   case X86::BI__builtin_ia32_sqrtps:
14654   case X86::BI__builtin_ia32_sqrtph256:
14655   case X86::BI__builtin_ia32_sqrtph:
14656   case X86::BI__builtin_ia32_sqrtph512:
14657   case X86::BI__builtin_ia32_sqrtps512:
14658   case X86::BI__builtin_ia32_sqrtpd512: {
14659     if (Ops.size() == 2) {
14660       unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
14661       // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
14662       // otherwise keep the intrinsic.
14663       if (CC != 4) {
14664         Intrinsic::ID IID;
14665 
14666         switch (BuiltinID) {
14667         default:
14668           llvm_unreachable("Unsupported intrinsic!");
14669         case X86::BI__builtin_ia32_sqrtph512:
14670           IID = Intrinsic::x86_avx512fp16_sqrt_ph_512;
14671           break;
14672         case X86::BI__builtin_ia32_sqrtps512:
14673           IID = Intrinsic::x86_avx512_sqrt_ps_512;
14674           break;
14675         case X86::BI__builtin_ia32_sqrtpd512:
14676           IID = Intrinsic::x86_avx512_sqrt_pd_512;
14677           break;
14678         }
14679         return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
14680       }
14681     }
14682     if (Builder.getIsFPConstrained()) {
14683       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14684       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
14685                                      Ops[0]->getType());
14686       return Builder.CreateConstrainedFPCall(F, Ops[0]);
14687     } else {
14688       Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType());
14689       return Builder.CreateCall(F, Ops[0]);
14690     }
14691   }
14692 
14693   case X86::BI__builtin_ia32_pmuludq128:
14694   case X86::BI__builtin_ia32_pmuludq256:
14695   case X86::BI__builtin_ia32_pmuludq512:
14696     return EmitX86Muldq(*this, /*IsSigned*/false, Ops);
14697 
14698   case X86::BI__builtin_ia32_pmuldq128:
14699   case X86::BI__builtin_ia32_pmuldq256:
14700   case X86::BI__builtin_ia32_pmuldq512:
14701     return EmitX86Muldq(*this, /*IsSigned*/true, Ops);
14702 
14703   case X86::BI__builtin_ia32_pternlogd512_mask:
14704   case X86::BI__builtin_ia32_pternlogq512_mask:
14705   case X86::BI__builtin_ia32_pternlogd128_mask:
14706   case X86::BI__builtin_ia32_pternlogd256_mask:
14707   case X86::BI__builtin_ia32_pternlogq128_mask:
14708   case X86::BI__builtin_ia32_pternlogq256_mask:
14709     return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops);
14710 
14711   case X86::BI__builtin_ia32_pternlogd512_maskz:
14712   case X86::BI__builtin_ia32_pternlogq512_maskz:
14713   case X86::BI__builtin_ia32_pternlogd128_maskz:
14714   case X86::BI__builtin_ia32_pternlogd256_maskz:
14715   case X86::BI__builtin_ia32_pternlogq128_maskz:
14716   case X86::BI__builtin_ia32_pternlogq256_maskz:
14717     return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops);
14718 
14719   case X86::BI__builtin_ia32_vpshldd128:
14720   case X86::BI__builtin_ia32_vpshldd256:
14721   case X86::BI__builtin_ia32_vpshldd512:
14722   case X86::BI__builtin_ia32_vpshldq128:
14723   case X86::BI__builtin_ia32_vpshldq256:
14724   case X86::BI__builtin_ia32_vpshldq512:
14725   case X86::BI__builtin_ia32_vpshldw128:
14726   case X86::BI__builtin_ia32_vpshldw256:
14727   case X86::BI__builtin_ia32_vpshldw512:
14728     return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
14729 
14730   case X86::BI__builtin_ia32_vpshrdd128:
14731   case X86::BI__builtin_ia32_vpshrdd256:
14732   case X86::BI__builtin_ia32_vpshrdd512:
14733   case X86::BI__builtin_ia32_vpshrdq128:
14734   case X86::BI__builtin_ia32_vpshrdq256:
14735   case X86::BI__builtin_ia32_vpshrdq512:
14736   case X86::BI__builtin_ia32_vpshrdw128:
14737   case X86::BI__builtin_ia32_vpshrdw256:
14738   case X86::BI__builtin_ia32_vpshrdw512:
14739     // Ops 0 and 1 are swapped.
14740     return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
14741 
14742   case X86::BI__builtin_ia32_vpshldvd128:
14743   case X86::BI__builtin_ia32_vpshldvd256:
14744   case X86::BI__builtin_ia32_vpshldvd512:
14745   case X86::BI__builtin_ia32_vpshldvq128:
14746   case X86::BI__builtin_ia32_vpshldvq256:
14747   case X86::BI__builtin_ia32_vpshldvq512:
14748   case X86::BI__builtin_ia32_vpshldvw128:
14749   case X86::BI__builtin_ia32_vpshldvw256:
14750   case X86::BI__builtin_ia32_vpshldvw512:
14751     return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
14752 
14753   case X86::BI__builtin_ia32_vpshrdvd128:
14754   case X86::BI__builtin_ia32_vpshrdvd256:
14755   case X86::BI__builtin_ia32_vpshrdvd512:
14756   case X86::BI__builtin_ia32_vpshrdvq128:
14757   case X86::BI__builtin_ia32_vpshrdvq256:
14758   case X86::BI__builtin_ia32_vpshrdvq512:
14759   case X86::BI__builtin_ia32_vpshrdvw128:
14760   case X86::BI__builtin_ia32_vpshrdvw256:
14761   case X86::BI__builtin_ia32_vpshrdvw512:
14762     // Ops 0 and 1 are swapped.
14763     return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
14764 
14765   // Reductions
14766   case X86::BI__builtin_ia32_reduce_fadd_pd512:
14767   case X86::BI__builtin_ia32_reduce_fadd_ps512:
14768   case X86::BI__builtin_ia32_reduce_fadd_ph512:
14769   case X86::BI__builtin_ia32_reduce_fadd_ph256:
14770   case X86::BI__builtin_ia32_reduce_fadd_ph128: {
14771     Function *F =
14772         CGM.getIntrinsic(Intrinsic::vector_reduce_fadd, Ops[1]->getType());
14773     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
14774     Builder.getFastMathFlags().setAllowReassoc();
14775     return Builder.CreateCall(F, {Ops[0], Ops[1]});
14776   }
14777   case X86::BI__builtin_ia32_reduce_fmul_pd512:
14778   case X86::BI__builtin_ia32_reduce_fmul_ps512:
14779   case X86::BI__builtin_ia32_reduce_fmul_ph512:
14780   case X86::BI__builtin_ia32_reduce_fmul_ph256:
14781   case X86::BI__builtin_ia32_reduce_fmul_ph128: {
14782     Function *F =
14783         CGM.getIntrinsic(Intrinsic::vector_reduce_fmul, Ops[1]->getType());
14784     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
14785     Builder.getFastMathFlags().setAllowReassoc();
14786     return Builder.CreateCall(F, {Ops[0], Ops[1]});
14787   }
14788   case X86::BI__builtin_ia32_reduce_fmax_pd512:
14789   case X86::BI__builtin_ia32_reduce_fmax_ps512:
14790   case X86::BI__builtin_ia32_reduce_fmax_ph512:
14791   case X86::BI__builtin_ia32_reduce_fmax_ph256:
14792   case X86::BI__builtin_ia32_reduce_fmax_ph128: {
14793     Function *F =
14794         CGM.getIntrinsic(Intrinsic::vector_reduce_fmax, Ops[0]->getType());
14795     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
14796     Builder.getFastMathFlags().setNoNaNs();
14797     return Builder.CreateCall(F, {Ops[0]});
14798   }
14799   case X86::BI__builtin_ia32_reduce_fmin_pd512:
14800   case X86::BI__builtin_ia32_reduce_fmin_ps512:
14801   case X86::BI__builtin_ia32_reduce_fmin_ph512:
14802   case X86::BI__builtin_ia32_reduce_fmin_ph256:
14803   case X86::BI__builtin_ia32_reduce_fmin_ph128: {
14804     Function *F =
14805         CGM.getIntrinsic(Intrinsic::vector_reduce_fmin, Ops[0]->getType());
14806     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
14807     Builder.getFastMathFlags().setNoNaNs();
14808     return Builder.CreateCall(F, {Ops[0]});
14809   }
14810 
14811   // 3DNow!
14812   case X86::BI__builtin_ia32_pswapdsf:
14813   case X86::BI__builtin_ia32_pswapdsi: {
14814     llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
14815     Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
14816     llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
14817     return Builder.CreateCall(F, Ops, "pswapd");
14818   }
14819   case X86::BI__builtin_ia32_rdrand16_step:
14820   case X86::BI__builtin_ia32_rdrand32_step:
14821   case X86::BI__builtin_ia32_rdrand64_step:
14822   case X86::BI__builtin_ia32_rdseed16_step:
14823   case X86::BI__builtin_ia32_rdseed32_step:
14824   case X86::BI__builtin_ia32_rdseed64_step: {
14825     Intrinsic::ID ID;
14826     switch (BuiltinID) {
14827     default: llvm_unreachable("Unsupported intrinsic!");
14828     case X86::BI__builtin_ia32_rdrand16_step:
14829       ID = Intrinsic::x86_rdrand_16;
14830       break;
14831     case X86::BI__builtin_ia32_rdrand32_step:
14832       ID = Intrinsic::x86_rdrand_32;
14833       break;
14834     case X86::BI__builtin_ia32_rdrand64_step:
14835       ID = Intrinsic::x86_rdrand_64;
14836       break;
14837     case X86::BI__builtin_ia32_rdseed16_step:
14838       ID = Intrinsic::x86_rdseed_16;
14839       break;
14840     case X86::BI__builtin_ia32_rdseed32_step:
14841       ID = Intrinsic::x86_rdseed_32;
14842       break;
14843     case X86::BI__builtin_ia32_rdseed64_step:
14844       ID = Intrinsic::x86_rdseed_64;
14845       break;
14846     }
14847 
14848     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
14849     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
14850                                       Ops[0]);
14851     return Builder.CreateExtractValue(Call, 1);
14852   }
14853   case X86::BI__builtin_ia32_addcarryx_u32:
14854   case X86::BI__builtin_ia32_addcarryx_u64:
14855   case X86::BI__builtin_ia32_subborrow_u32:
14856   case X86::BI__builtin_ia32_subborrow_u64: {
14857     Intrinsic::ID IID;
14858     switch (BuiltinID) {
14859     default: llvm_unreachable("Unsupported intrinsic!");
14860     case X86::BI__builtin_ia32_addcarryx_u32:
14861       IID = Intrinsic::x86_addcarry_32;
14862       break;
14863     case X86::BI__builtin_ia32_addcarryx_u64:
14864       IID = Intrinsic::x86_addcarry_64;
14865       break;
14866     case X86::BI__builtin_ia32_subborrow_u32:
14867       IID = Intrinsic::x86_subborrow_32;
14868       break;
14869     case X86::BI__builtin_ia32_subborrow_u64:
14870       IID = Intrinsic::x86_subborrow_64;
14871       break;
14872     }
14873 
14874     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID),
14875                                      { Ops[0], Ops[1], Ops[2] });
14876     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
14877                                       Ops[3]);
14878     return Builder.CreateExtractValue(Call, 0);
14879   }
14880 
14881   case X86::BI__builtin_ia32_fpclassps128_mask:
14882   case X86::BI__builtin_ia32_fpclassps256_mask:
14883   case X86::BI__builtin_ia32_fpclassps512_mask:
14884   case X86::BI__builtin_ia32_fpclassph128_mask:
14885   case X86::BI__builtin_ia32_fpclassph256_mask:
14886   case X86::BI__builtin_ia32_fpclassph512_mask:
14887   case X86::BI__builtin_ia32_fpclasspd128_mask:
14888   case X86::BI__builtin_ia32_fpclasspd256_mask:
14889   case X86::BI__builtin_ia32_fpclasspd512_mask: {
14890     unsigned NumElts =
14891         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14892     Value *MaskIn = Ops[2];
14893     Ops.erase(&Ops[2]);
14894 
14895     Intrinsic::ID ID;
14896     switch (BuiltinID) {
14897     default: llvm_unreachable("Unsupported intrinsic!");
14898     case X86::BI__builtin_ia32_fpclassph128_mask:
14899       ID = Intrinsic::x86_avx512fp16_fpclass_ph_128;
14900       break;
14901     case X86::BI__builtin_ia32_fpclassph256_mask:
14902       ID = Intrinsic::x86_avx512fp16_fpclass_ph_256;
14903       break;
14904     case X86::BI__builtin_ia32_fpclassph512_mask:
14905       ID = Intrinsic::x86_avx512fp16_fpclass_ph_512;
14906       break;
14907     case X86::BI__builtin_ia32_fpclassps128_mask:
14908       ID = Intrinsic::x86_avx512_fpclass_ps_128;
14909       break;
14910     case X86::BI__builtin_ia32_fpclassps256_mask:
14911       ID = Intrinsic::x86_avx512_fpclass_ps_256;
14912       break;
14913     case X86::BI__builtin_ia32_fpclassps512_mask:
14914       ID = Intrinsic::x86_avx512_fpclass_ps_512;
14915       break;
14916     case X86::BI__builtin_ia32_fpclasspd128_mask:
14917       ID = Intrinsic::x86_avx512_fpclass_pd_128;
14918       break;
14919     case X86::BI__builtin_ia32_fpclasspd256_mask:
14920       ID = Intrinsic::x86_avx512_fpclass_pd_256;
14921       break;
14922     case X86::BI__builtin_ia32_fpclasspd512_mask:
14923       ID = Intrinsic::x86_avx512_fpclass_pd_512;
14924       break;
14925     }
14926 
14927     Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14928     return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn);
14929   }
14930 
14931   case X86::BI__builtin_ia32_vp2intersect_q_512:
14932   case X86::BI__builtin_ia32_vp2intersect_q_256:
14933   case X86::BI__builtin_ia32_vp2intersect_q_128:
14934   case X86::BI__builtin_ia32_vp2intersect_d_512:
14935   case X86::BI__builtin_ia32_vp2intersect_d_256:
14936   case X86::BI__builtin_ia32_vp2intersect_d_128: {
14937     unsigned NumElts =
14938         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14939     Intrinsic::ID ID;
14940 
14941     switch (BuiltinID) {
14942     default: llvm_unreachable("Unsupported intrinsic!");
14943     case X86::BI__builtin_ia32_vp2intersect_q_512:
14944       ID = Intrinsic::x86_avx512_vp2intersect_q_512;
14945       break;
14946     case X86::BI__builtin_ia32_vp2intersect_q_256:
14947       ID = Intrinsic::x86_avx512_vp2intersect_q_256;
14948       break;
14949     case X86::BI__builtin_ia32_vp2intersect_q_128:
14950       ID = Intrinsic::x86_avx512_vp2intersect_q_128;
14951       break;
14952     case X86::BI__builtin_ia32_vp2intersect_d_512:
14953       ID = Intrinsic::x86_avx512_vp2intersect_d_512;
14954       break;
14955     case X86::BI__builtin_ia32_vp2intersect_d_256:
14956       ID = Intrinsic::x86_avx512_vp2intersect_d_256;
14957       break;
14958     case X86::BI__builtin_ia32_vp2intersect_d_128:
14959       ID = Intrinsic::x86_avx512_vp2intersect_d_128;
14960       break;
14961     }
14962 
14963     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]});
14964     Value *Result = Builder.CreateExtractValue(Call, 0);
14965     Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
14966     Builder.CreateDefaultAlignedStore(Result, Ops[2]);
14967 
14968     Result = Builder.CreateExtractValue(Call, 1);
14969     Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
14970     return Builder.CreateDefaultAlignedStore(Result, Ops[3]);
14971   }
14972 
14973   case X86::BI__builtin_ia32_vpmultishiftqb128:
14974   case X86::BI__builtin_ia32_vpmultishiftqb256:
14975   case X86::BI__builtin_ia32_vpmultishiftqb512: {
14976     Intrinsic::ID ID;
14977     switch (BuiltinID) {
14978     default: llvm_unreachable("Unsupported intrinsic!");
14979     case X86::BI__builtin_ia32_vpmultishiftqb128:
14980       ID = Intrinsic::x86_avx512_pmultishift_qb_128;
14981       break;
14982     case X86::BI__builtin_ia32_vpmultishiftqb256:
14983       ID = Intrinsic::x86_avx512_pmultishift_qb_256;
14984       break;
14985     case X86::BI__builtin_ia32_vpmultishiftqb512:
14986       ID = Intrinsic::x86_avx512_pmultishift_qb_512;
14987       break;
14988     }
14989 
14990     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14991   }
14992 
14993   case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
14994   case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
14995   case X86::BI__builtin_ia32_vpshufbitqmb512_mask: {
14996     unsigned NumElts =
14997         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14998     Value *MaskIn = Ops[2];
14999     Ops.erase(&Ops[2]);
15000 
15001     Intrinsic::ID ID;
15002     switch (BuiltinID) {
15003     default: llvm_unreachable("Unsupported intrinsic!");
15004     case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
15005       ID = Intrinsic::x86_avx512_vpshufbitqmb_128;
15006       break;
15007     case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
15008       ID = Intrinsic::x86_avx512_vpshufbitqmb_256;
15009       break;
15010     case X86::BI__builtin_ia32_vpshufbitqmb512_mask:
15011       ID = Intrinsic::x86_avx512_vpshufbitqmb_512;
15012       break;
15013     }
15014 
15015     Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
15016     return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn);
15017   }
15018 
15019   // packed comparison intrinsics
15020   case X86::BI__builtin_ia32_cmpeqps:
15021   case X86::BI__builtin_ia32_cmpeqpd:
15022     return getVectorFCmpIR(CmpInst::FCMP_OEQ, /*IsSignaling*/false);
15023   case X86::BI__builtin_ia32_cmpltps:
15024   case X86::BI__builtin_ia32_cmpltpd:
15025     return getVectorFCmpIR(CmpInst::FCMP_OLT, /*IsSignaling*/true);
15026   case X86::BI__builtin_ia32_cmpleps:
15027   case X86::BI__builtin_ia32_cmplepd:
15028     return getVectorFCmpIR(CmpInst::FCMP_OLE, /*IsSignaling*/true);
15029   case X86::BI__builtin_ia32_cmpunordps:
15030   case X86::BI__builtin_ia32_cmpunordpd:
15031     return getVectorFCmpIR(CmpInst::FCMP_UNO, /*IsSignaling*/false);
15032   case X86::BI__builtin_ia32_cmpneqps:
15033   case X86::BI__builtin_ia32_cmpneqpd:
15034     return getVectorFCmpIR(CmpInst::FCMP_UNE, /*IsSignaling*/false);
15035   case X86::BI__builtin_ia32_cmpnltps:
15036   case X86::BI__builtin_ia32_cmpnltpd:
15037     return getVectorFCmpIR(CmpInst::FCMP_UGE, /*IsSignaling*/true);
15038   case X86::BI__builtin_ia32_cmpnleps:
15039   case X86::BI__builtin_ia32_cmpnlepd:
15040     return getVectorFCmpIR(CmpInst::FCMP_UGT, /*IsSignaling*/true);
15041   case X86::BI__builtin_ia32_cmpordps:
15042   case X86::BI__builtin_ia32_cmpordpd:
15043     return getVectorFCmpIR(CmpInst::FCMP_ORD, /*IsSignaling*/false);
15044   case X86::BI__builtin_ia32_cmpph128_mask:
15045   case X86::BI__builtin_ia32_cmpph256_mask:
15046   case X86::BI__builtin_ia32_cmpph512_mask:
15047   case X86::BI__builtin_ia32_cmpps128_mask:
15048   case X86::BI__builtin_ia32_cmpps256_mask:
15049   case X86::BI__builtin_ia32_cmpps512_mask:
15050   case X86::BI__builtin_ia32_cmppd128_mask:
15051   case X86::BI__builtin_ia32_cmppd256_mask:
15052   case X86::BI__builtin_ia32_cmppd512_mask:
15053     IsMaskFCmp = true;
15054     [[fallthrough]];
15055   case X86::BI__builtin_ia32_cmpps:
15056   case X86::BI__builtin_ia32_cmpps256:
15057   case X86::BI__builtin_ia32_cmppd:
15058   case X86::BI__builtin_ia32_cmppd256: {
15059     // Lowering vector comparisons to fcmp instructions, while
15060     // ignoring signalling behaviour requested
15061     // ignoring rounding mode requested
15062     // This is only possible if fp-model is not strict and FENV_ACCESS is off.
15063 
15064     // The third argument is the comparison condition, and integer in the
15065     // range [0, 31]
15066     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f;
15067 
15068     // Lowering to IR fcmp instruction.
15069     // Ignoring requested signaling behaviour,
15070     // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT.
15071     FCmpInst::Predicate Pred;
15072     bool IsSignaling;
15073     // Predicates for 16-31 repeat the 0-15 predicates. Only the signalling
15074     // behavior is inverted. We'll handle that after the switch.
15075     switch (CC & 0xf) {
15076     case 0x00: Pred = FCmpInst::FCMP_OEQ;   IsSignaling = false; break;
15077     case 0x01: Pred = FCmpInst::FCMP_OLT;   IsSignaling = true;  break;
15078     case 0x02: Pred = FCmpInst::FCMP_OLE;   IsSignaling = true;  break;
15079     case 0x03: Pred = FCmpInst::FCMP_UNO;   IsSignaling = false; break;
15080     case 0x04: Pred = FCmpInst::FCMP_UNE;   IsSignaling = false; break;
15081     case 0x05: Pred = FCmpInst::FCMP_UGE;   IsSignaling = true;  break;
15082     case 0x06: Pred = FCmpInst::FCMP_UGT;   IsSignaling = true;  break;
15083     case 0x07: Pred = FCmpInst::FCMP_ORD;   IsSignaling = false; break;
15084     case 0x08: Pred = FCmpInst::FCMP_UEQ;   IsSignaling = false; break;
15085     case 0x09: Pred = FCmpInst::FCMP_ULT;   IsSignaling = true;  break;
15086     case 0x0a: Pred = FCmpInst::FCMP_ULE;   IsSignaling = true;  break;
15087     case 0x0b: Pred = FCmpInst::FCMP_FALSE; IsSignaling = false; break;
15088     case 0x0c: Pred = FCmpInst::FCMP_ONE;   IsSignaling = false; break;
15089     case 0x0d: Pred = FCmpInst::FCMP_OGE;   IsSignaling = true;  break;
15090     case 0x0e: Pred = FCmpInst::FCMP_OGT;   IsSignaling = true;  break;
15091     case 0x0f: Pred = FCmpInst::FCMP_TRUE;  IsSignaling = false; break;
15092     default: llvm_unreachable("Unhandled CC");
15093     }
15094 
15095     // Invert the signalling behavior for 16-31.
15096     if (CC & 0x10)
15097       IsSignaling = !IsSignaling;
15098 
15099     // If the predicate is true or false and we're using constrained intrinsics,
15100     // we don't have a compare intrinsic we can use. Just use the legacy X86
15101     // specific intrinsic.
15102     // If the intrinsic is mask enabled and we're using constrained intrinsics,
15103     // use the legacy X86 specific intrinsic.
15104     if (Builder.getIsFPConstrained() &&
15105         (Pred == FCmpInst::FCMP_TRUE || Pred == FCmpInst::FCMP_FALSE ||
15106          IsMaskFCmp)) {
15107 
15108       Intrinsic::ID IID;
15109       switch (BuiltinID) {
15110       default: llvm_unreachable("Unexpected builtin");
15111       case X86::BI__builtin_ia32_cmpps:
15112         IID = Intrinsic::x86_sse_cmp_ps;
15113         break;
15114       case X86::BI__builtin_ia32_cmpps256:
15115         IID = Intrinsic::x86_avx_cmp_ps_256;
15116         break;
15117       case X86::BI__builtin_ia32_cmppd:
15118         IID = Intrinsic::x86_sse2_cmp_pd;
15119         break;
15120       case X86::BI__builtin_ia32_cmppd256:
15121         IID = Intrinsic::x86_avx_cmp_pd_256;
15122         break;
15123       case X86::BI__builtin_ia32_cmpps512_mask:
15124         IID = Intrinsic::x86_avx512_mask_cmp_ps_512;
15125         break;
15126       case X86::BI__builtin_ia32_cmppd512_mask:
15127         IID = Intrinsic::x86_avx512_mask_cmp_pd_512;
15128         break;
15129       case X86::BI__builtin_ia32_cmpps128_mask:
15130         IID = Intrinsic::x86_avx512_mask_cmp_ps_128;
15131         break;
15132       case X86::BI__builtin_ia32_cmpps256_mask:
15133         IID = Intrinsic::x86_avx512_mask_cmp_ps_256;
15134         break;
15135       case X86::BI__builtin_ia32_cmppd128_mask:
15136         IID = Intrinsic::x86_avx512_mask_cmp_pd_128;
15137         break;
15138       case X86::BI__builtin_ia32_cmppd256_mask:
15139         IID = Intrinsic::x86_avx512_mask_cmp_pd_256;
15140         break;
15141       }
15142 
15143       Function *Intr = CGM.getIntrinsic(IID);
15144       if (IsMaskFCmp) {
15145         unsigned NumElts =
15146             cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
15147         Ops[3] = getMaskVecValue(*this, Ops[3], NumElts);
15148         Value *Cmp = Builder.CreateCall(Intr, Ops);
15149         return EmitX86MaskedCompareResult(*this, Cmp, NumElts, nullptr);
15150       }
15151 
15152       return Builder.CreateCall(Intr, Ops);
15153     }
15154 
15155     // Builtins without the _mask suffix return a vector of integers
15156     // of the same width as the input vectors
15157     if (IsMaskFCmp) {
15158       // We ignore SAE if strict FP is disabled. We only keep precise
15159       // exception behavior under strict FP.
15160       // NOTE: If strict FP does ever go through here a CGFPOptionsRAII
15161       // object will be required.
15162       unsigned NumElts =
15163           cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
15164       Value *Cmp;
15165       if (IsSignaling)
15166         Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
15167       else
15168         Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
15169       return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]);
15170     }
15171 
15172     return getVectorFCmpIR(Pred, IsSignaling);
15173   }
15174 
15175   // SSE scalar comparison intrinsics
15176   case X86::BI__builtin_ia32_cmpeqss:
15177     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
15178   case X86::BI__builtin_ia32_cmpltss:
15179     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
15180   case X86::BI__builtin_ia32_cmpless:
15181     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
15182   case X86::BI__builtin_ia32_cmpunordss:
15183     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
15184   case X86::BI__builtin_ia32_cmpneqss:
15185     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
15186   case X86::BI__builtin_ia32_cmpnltss:
15187     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
15188   case X86::BI__builtin_ia32_cmpnless:
15189     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
15190   case X86::BI__builtin_ia32_cmpordss:
15191     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
15192   case X86::BI__builtin_ia32_cmpeqsd:
15193     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
15194   case X86::BI__builtin_ia32_cmpltsd:
15195     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
15196   case X86::BI__builtin_ia32_cmplesd:
15197     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
15198   case X86::BI__builtin_ia32_cmpunordsd:
15199     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
15200   case X86::BI__builtin_ia32_cmpneqsd:
15201     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
15202   case X86::BI__builtin_ia32_cmpnltsd:
15203     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
15204   case X86::BI__builtin_ia32_cmpnlesd:
15205     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
15206   case X86::BI__builtin_ia32_cmpordsd:
15207     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
15208 
15209   // f16c half2float intrinsics
15210   case X86::BI__builtin_ia32_vcvtph2ps:
15211   case X86::BI__builtin_ia32_vcvtph2ps256:
15212   case X86::BI__builtin_ia32_vcvtph2ps_mask:
15213   case X86::BI__builtin_ia32_vcvtph2ps256_mask:
15214   case X86::BI__builtin_ia32_vcvtph2ps512_mask: {
15215     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
15216     return EmitX86CvtF16ToFloatExpr(*this, Ops, ConvertType(E->getType()));
15217   }
15218 
15219   // AVX512 bf16 intrinsics
15220   case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: {
15221     Ops[2] = getMaskVecValue(
15222         *this, Ops[2],
15223         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements());
15224     Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128;
15225     return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
15226   }
15227   case X86::BI__builtin_ia32_cvtsbf162ss_32:
15228     return Builder.CreateFPExt(Ops[0], Builder.getFloatTy());
15229 
15230   case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
15231   case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: {
15232     Intrinsic::ID IID;
15233     switch (BuiltinID) {
15234     default: llvm_unreachable("Unsupported intrinsic!");
15235     case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
15236       IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256;
15237       break;
15238     case X86::BI__builtin_ia32_cvtneps2bf16_512_mask:
15239       IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512;
15240       break;
15241     }
15242     Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]);
15243     return EmitX86Select(*this, Ops[2], Res, Ops[1]);
15244   }
15245 
15246   case X86::BI__cpuid:
15247   case X86::BI__cpuidex: {
15248     Value *FuncId = EmitScalarExpr(E->getArg(1));
15249     Value *SubFuncId = BuiltinID == X86::BI__cpuidex
15250                            ? EmitScalarExpr(E->getArg(2))
15251                            : llvm::ConstantInt::get(Int32Ty, 0);
15252 
15253     llvm::StructType *CpuidRetTy =
15254         llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty, Int32Ty);
15255     llvm::FunctionType *FTy =
15256         llvm::FunctionType::get(CpuidRetTy, {Int32Ty, Int32Ty}, false);
15257 
15258     StringRef Asm, Constraints;
15259     if (getTarget().getTriple().getArch() == llvm::Triple::x86) {
15260       Asm = "cpuid";
15261       Constraints = "={ax},={bx},={cx},={dx},{ax},{cx}";
15262     } else {
15263       // x86-64 uses %rbx as the base register, so preserve it.
15264       Asm = "xchgq %rbx, ${1:q}\n"
15265             "cpuid\n"
15266             "xchgq %rbx, ${1:q}";
15267       Constraints = "={ax},=r,={cx},={dx},0,2";
15268     }
15269 
15270     llvm::InlineAsm *IA = llvm::InlineAsm::get(FTy, Asm, Constraints,
15271                                                /*hasSideEffects=*/false);
15272     Value *IACall = Builder.CreateCall(IA, {FuncId, SubFuncId});
15273     Value *BasePtr = EmitScalarExpr(E->getArg(0));
15274     Value *Store = nullptr;
15275     for (unsigned i = 0; i < 4; i++) {
15276       Value *Extracted = Builder.CreateExtractValue(IACall, i);
15277       Value *StorePtr = Builder.CreateConstInBoundsGEP1_32(Int32Ty, BasePtr, i);
15278       Store = Builder.CreateAlignedStore(Extracted, StorePtr, getIntAlign());
15279     }
15280 
15281     // Return the last store instruction to signal that we have emitted the
15282     // the intrinsic.
15283     return Store;
15284   }
15285 
15286   case X86::BI__emul:
15287   case X86::BI__emulu: {
15288     llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
15289     bool isSigned = (BuiltinID == X86::BI__emul);
15290     Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
15291     Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
15292     return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
15293   }
15294   case X86::BI__mulh:
15295   case X86::BI__umulh:
15296   case X86::BI_mul128:
15297   case X86::BI_umul128: {
15298     llvm::Type *ResType = ConvertType(E->getType());
15299     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
15300 
15301     bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
15302     Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
15303     Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
15304 
15305     Value *MulResult, *HigherBits;
15306     if (IsSigned) {
15307       MulResult = Builder.CreateNSWMul(LHS, RHS);
15308       HigherBits = Builder.CreateAShr(MulResult, 64);
15309     } else {
15310       MulResult = Builder.CreateNUWMul(LHS, RHS);
15311       HigherBits = Builder.CreateLShr(MulResult, 64);
15312     }
15313     HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
15314 
15315     if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
15316       return HigherBits;
15317 
15318     Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
15319     Builder.CreateStore(HigherBits, HighBitsAddress);
15320     return Builder.CreateIntCast(MulResult, ResType, IsSigned);
15321   }
15322 
15323   case X86::BI__faststorefence: {
15324     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
15325                                llvm::SyncScope::System);
15326   }
15327   case X86::BI__shiftleft128:
15328   case X86::BI__shiftright128: {
15329     llvm::Function *F = CGM.getIntrinsic(
15330         BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr,
15331         Int64Ty);
15332     // Flip low/high ops and zero-extend amount to matching type.
15333     // shiftleft128(Low, High, Amt) -> fshl(High, Low, Amt)
15334     // shiftright128(Low, High, Amt) -> fshr(High, Low, Amt)
15335     std::swap(Ops[0], Ops[1]);
15336     Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
15337     return Builder.CreateCall(F, Ops);
15338   }
15339   case X86::BI_ReadWriteBarrier:
15340   case X86::BI_ReadBarrier:
15341   case X86::BI_WriteBarrier: {
15342     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
15343                                llvm::SyncScope::SingleThread);
15344   }
15345 
15346   case X86::BI_AddressOfReturnAddress: {
15347     Function *F =
15348         CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
15349     return Builder.CreateCall(F);
15350   }
15351   case X86::BI__stosb: {
15352     // We treat __stosb as a volatile memset - it may not generate "rep stosb"
15353     // instruction, but it will create a memset that won't be optimized away.
15354     return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], Align(1), true);
15355   }
15356   case X86::BI__ud2:
15357     // llvm.trap makes a ud2a instruction on x86.
15358     return EmitTrapCall(Intrinsic::trap);
15359   case X86::BI__int2c: {
15360     // This syscall signals a driver assertion failure in x86 NT kernels.
15361     llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
15362     llvm::InlineAsm *IA =
15363         llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true);
15364     llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
15365         getLLVMContext(), llvm::AttributeList::FunctionIndex,
15366         llvm::Attribute::NoReturn);
15367     llvm::CallInst *CI = Builder.CreateCall(IA);
15368     CI->setAttributes(NoReturnAttr);
15369     return CI;
15370   }
15371   case X86::BI__readfsbyte:
15372   case X86::BI__readfsword:
15373   case X86::BI__readfsdword:
15374   case X86::BI__readfsqword: {
15375     llvm::Type *IntTy = ConvertType(E->getType());
15376     Value *Ptr =
15377         Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257));
15378     LoadInst *Load = Builder.CreateAlignedLoad(
15379         IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
15380     Load->setVolatile(true);
15381     return Load;
15382   }
15383   case X86::BI__readgsbyte:
15384   case X86::BI__readgsword:
15385   case X86::BI__readgsdword:
15386   case X86::BI__readgsqword: {
15387     llvm::Type *IntTy = ConvertType(E->getType());
15388     Value *Ptr =
15389         Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256));
15390     LoadInst *Load = Builder.CreateAlignedLoad(
15391         IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
15392     Load->setVolatile(true);
15393     return Load;
15394   }
15395   case X86::BI__builtin_ia32_encodekey128_u32: {
15396     Intrinsic::ID IID = Intrinsic::x86_encodekey128;
15397 
15398     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1]});
15399 
15400     for (int i = 0; i < 3; ++i) {
15401       Value *Extract = Builder.CreateExtractValue(Call, i + 1);
15402       Value *Ptr = Builder.CreateConstGEP1_32(Int8Ty, Ops[2], i * 16);
15403       Ptr = Builder.CreateBitCast(
15404           Ptr, llvm::PointerType::getUnqual(Extract->getType()));
15405       Builder.CreateAlignedStore(Extract, Ptr, Align(1));
15406     }
15407 
15408     return Builder.CreateExtractValue(Call, 0);
15409   }
15410   case X86::BI__builtin_ia32_encodekey256_u32: {
15411     Intrinsic::ID IID = Intrinsic::x86_encodekey256;
15412 
15413     Value *Call =
15414         Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1], Ops[2]});
15415 
15416     for (int i = 0; i < 4; ++i) {
15417       Value *Extract = Builder.CreateExtractValue(Call, i + 1);
15418       Value *Ptr = Builder.CreateConstGEP1_32(Int8Ty, Ops[3], i * 16);
15419       Ptr = Builder.CreateBitCast(
15420           Ptr, llvm::PointerType::getUnqual(Extract->getType()));
15421       Builder.CreateAlignedStore(Extract, Ptr, Align(1));
15422     }
15423 
15424     return Builder.CreateExtractValue(Call, 0);
15425   }
15426   case X86::BI__builtin_ia32_aesenc128kl_u8:
15427   case X86::BI__builtin_ia32_aesdec128kl_u8:
15428   case X86::BI__builtin_ia32_aesenc256kl_u8:
15429   case X86::BI__builtin_ia32_aesdec256kl_u8: {
15430     Intrinsic::ID IID;
15431     StringRef BlockName;
15432     switch (BuiltinID) {
15433     default:
15434       llvm_unreachable("Unexpected builtin");
15435     case X86::BI__builtin_ia32_aesenc128kl_u8:
15436       IID = Intrinsic::x86_aesenc128kl;
15437       BlockName = "aesenc128kl";
15438       break;
15439     case X86::BI__builtin_ia32_aesdec128kl_u8:
15440       IID = Intrinsic::x86_aesdec128kl;
15441       BlockName = "aesdec128kl";
15442       break;
15443     case X86::BI__builtin_ia32_aesenc256kl_u8:
15444       IID = Intrinsic::x86_aesenc256kl;
15445       BlockName = "aesenc256kl";
15446       break;
15447     case X86::BI__builtin_ia32_aesdec256kl_u8:
15448       IID = Intrinsic::x86_aesdec256kl;
15449       BlockName = "aesdec256kl";
15450       break;
15451     }
15452 
15453     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[1], Ops[2]});
15454 
15455     BasicBlock *NoError =
15456         createBasicBlock(BlockName + "_no_error", this->CurFn);
15457     BasicBlock *Error = createBasicBlock(BlockName + "_error", this->CurFn);
15458     BasicBlock *End = createBasicBlock(BlockName + "_end", this->CurFn);
15459 
15460     Value *Ret = Builder.CreateExtractValue(Call, 0);
15461     Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty());
15462     Value *Out = Builder.CreateExtractValue(Call, 1);
15463     Builder.CreateCondBr(Succ, NoError, Error);
15464 
15465     Builder.SetInsertPoint(NoError);
15466     Builder.CreateDefaultAlignedStore(Out, Ops[0]);
15467     Builder.CreateBr(End);
15468 
15469     Builder.SetInsertPoint(Error);
15470     Constant *Zero = llvm::Constant::getNullValue(Out->getType());
15471     Builder.CreateDefaultAlignedStore(Zero, Ops[0]);
15472     Builder.CreateBr(End);
15473 
15474     Builder.SetInsertPoint(End);
15475     return Builder.CreateExtractValue(Call, 0);
15476   }
15477   case X86::BI__builtin_ia32_aesencwide128kl_u8:
15478   case X86::BI__builtin_ia32_aesdecwide128kl_u8:
15479   case X86::BI__builtin_ia32_aesencwide256kl_u8:
15480   case X86::BI__builtin_ia32_aesdecwide256kl_u8: {
15481     Intrinsic::ID IID;
15482     StringRef BlockName;
15483     switch (BuiltinID) {
15484     case X86::BI__builtin_ia32_aesencwide128kl_u8:
15485       IID = Intrinsic::x86_aesencwide128kl;
15486       BlockName = "aesencwide128kl";
15487       break;
15488     case X86::BI__builtin_ia32_aesdecwide128kl_u8:
15489       IID = Intrinsic::x86_aesdecwide128kl;
15490       BlockName = "aesdecwide128kl";
15491       break;
15492     case X86::BI__builtin_ia32_aesencwide256kl_u8:
15493       IID = Intrinsic::x86_aesencwide256kl;
15494       BlockName = "aesencwide256kl";
15495       break;
15496     case X86::BI__builtin_ia32_aesdecwide256kl_u8:
15497       IID = Intrinsic::x86_aesdecwide256kl;
15498       BlockName = "aesdecwide256kl";
15499       break;
15500     }
15501 
15502     llvm::Type *Ty = FixedVectorType::get(Builder.getInt64Ty(), 2);
15503     Value *InOps[9];
15504     InOps[0] = Ops[2];
15505     for (int i = 0; i != 8; ++i) {
15506       Value *Ptr = Builder.CreateConstGEP1_32(Ty, Ops[1], i);
15507       InOps[i + 1] = Builder.CreateAlignedLoad(Ty, Ptr, Align(16));
15508     }
15509 
15510     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), InOps);
15511 
15512     BasicBlock *NoError =
15513         createBasicBlock(BlockName + "_no_error", this->CurFn);
15514     BasicBlock *Error = createBasicBlock(BlockName + "_error", this->CurFn);
15515     BasicBlock *End = createBasicBlock(BlockName + "_end", this->CurFn);
15516 
15517     Value *Ret = Builder.CreateExtractValue(Call, 0);
15518     Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty());
15519     Builder.CreateCondBr(Succ, NoError, Error);
15520 
15521     Builder.SetInsertPoint(NoError);
15522     for (int i = 0; i != 8; ++i) {
15523       Value *Extract = Builder.CreateExtractValue(Call, i + 1);
15524       Value *Ptr = Builder.CreateConstGEP1_32(Extract->getType(), Ops[0], i);
15525       Builder.CreateAlignedStore(Extract, Ptr, Align(16));
15526     }
15527     Builder.CreateBr(End);
15528 
15529     Builder.SetInsertPoint(Error);
15530     for (int i = 0; i != 8; ++i) {
15531       Value *Out = Builder.CreateExtractValue(Call, i + 1);
15532       Constant *Zero = llvm::Constant::getNullValue(Out->getType());
15533       Value *Ptr = Builder.CreateConstGEP1_32(Out->getType(), Ops[0], i);
15534       Builder.CreateAlignedStore(Zero, Ptr, Align(16));
15535     }
15536     Builder.CreateBr(End);
15537 
15538     Builder.SetInsertPoint(End);
15539     return Builder.CreateExtractValue(Call, 0);
15540   }
15541   case X86::BI__builtin_ia32_vfcmaddcph512_mask:
15542     IsConjFMA = true;
15543     [[fallthrough]];
15544   case X86::BI__builtin_ia32_vfmaddcph512_mask: {
15545     Intrinsic::ID IID = IsConjFMA
15546                             ? Intrinsic::x86_avx512fp16_mask_vfcmadd_cph_512
15547                             : Intrinsic::x86_avx512fp16_mask_vfmadd_cph_512;
15548     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
15549     return EmitX86Select(*this, Ops[3], Call, Ops[0]);
15550   }
15551   case X86::BI__builtin_ia32_vfcmaddcsh_round_mask:
15552     IsConjFMA = true;
15553     [[fallthrough]];
15554   case X86::BI__builtin_ia32_vfmaddcsh_round_mask: {
15555     Intrinsic::ID IID = IsConjFMA ? Intrinsic::x86_avx512fp16_mask_vfcmadd_csh
15556                                   : Intrinsic::x86_avx512fp16_mask_vfmadd_csh;
15557     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
15558     Value *And = Builder.CreateAnd(Ops[3], llvm::ConstantInt::get(Int8Ty, 1));
15559     return EmitX86Select(*this, And, Call, Ops[0]);
15560   }
15561   case X86::BI__builtin_ia32_vfcmaddcsh_round_mask3:
15562     IsConjFMA = true;
15563     [[fallthrough]];
15564   case X86::BI__builtin_ia32_vfmaddcsh_round_mask3: {
15565     Intrinsic::ID IID = IsConjFMA ? Intrinsic::x86_avx512fp16_mask_vfcmadd_csh
15566                                   : Intrinsic::x86_avx512fp16_mask_vfmadd_csh;
15567     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
15568     static constexpr int Mask[] = {0, 5, 6, 7};
15569     return Builder.CreateShuffleVector(Call, Ops[2], Mask);
15570   }
15571   case X86::BI__builtin_ia32_prefetchi:
15572     return Builder.CreateCall(
15573         CGM.getIntrinsic(Intrinsic::prefetch, Ops[0]->getType()),
15574         {Ops[0], llvm::ConstantInt::get(Int32Ty, 0), Ops[1],
15575          llvm::ConstantInt::get(Int32Ty, 0)});
15576   }
15577 }
15578 
15579 Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
15580                                            const CallExpr *E) {
15581   // Do not emit the builtin arguments in the arguments of a function call,
15582   // because the evaluation order of function arguments is not specified in C++.
15583   // This is important when testing to ensure the arguments are emitted in the
15584   // same order every time. Eg:
15585   // Instead of:
15586   //   return Builder.CreateFDiv(EmitScalarExpr(E->getArg(0)),
15587   //                             EmitScalarExpr(E->getArg(1)), "swdiv");
15588   // Use:
15589   //   Value *Op0 = EmitScalarExpr(E->getArg(0));
15590   //   Value *Op1 = EmitScalarExpr(E->getArg(1));
15591   //   return Builder.CreateFDiv(Op0, Op1, "swdiv")
15592 
15593   Intrinsic::ID ID = Intrinsic::not_intrinsic;
15594 
15595   switch (BuiltinID) {
15596   default: return nullptr;
15597 
15598   // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
15599   // call __builtin_readcyclecounter.
15600   case PPC::BI__builtin_ppc_get_timebase:
15601     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
15602 
15603   // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
15604   case PPC::BI__builtin_altivec_lvx:
15605   case PPC::BI__builtin_altivec_lvxl:
15606   case PPC::BI__builtin_altivec_lvebx:
15607   case PPC::BI__builtin_altivec_lvehx:
15608   case PPC::BI__builtin_altivec_lvewx:
15609   case PPC::BI__builtin_altivec_lvsl:
15610   case PPC::BI__builtin_altivec_lvsr:
15611   case PPC::BI__builtin_vsx_lxvd2x:
15612   case PPC::BI__builtin_vsx_lxvw4x:
15613   case PPC::BI__builtin_vsx_lxvd2x_be:
15614   case PPC::BI__builtin_vsx_lxvw4x_be:
15615   case PPC::BI__builtin_vsx_lxvl:
15616   case PPC::BI__builtin_vsx_lxvll:
15617   {
15618     SmallVector<Value *, 2> Ops;
15619     Ops.push_back(EmitScalarExpr(E->getArg(0)));
15620     Ops.push_back(EmitScalarExpr(E->getArg(1)));
15621     if(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
15622        BuiltinID == PPC::BI__builtin_vsx_lxvll){
15623       Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
15624     }else {
15625       Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
15626       Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]);
15627       Ops.pop_back();
15628     }
15629 
15630     switch (BuiltinID) {
15631     default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
15632     case PPC::BI__builtin_altivec_lvx:
15633       ID = Intrinsic::ppc_altivec_lvx;
15634       break;
15635     case PPC::BI__builtin_altivec_lvxl:
15636       ID = Intrinsic::ppc_altivec_lvxl;
15637       break;
15638     case PPC::BI__builtin_altivec_lvebx:
15639       ID = Intrinsic::ppc_altivec_lvebx;
15640       break;
15641     case PPC::BI__builtin_altivec_lvehx:
15642       ID = Intrinsic::ppc_altivec_lvehx;
15643       break;
15644     case PPC::BI__builtin_altivec_lvewx:
15645       ID = Intrinsic::ppc_altivec_lvewx;
15646       break;
15647     case PPC::BI__builtin_altivec_lvsl:
15648       ID = Intrinsic::ppc_altivec_lvsl;
15649       break;
15650     case PPC::BI__builtin_altivec_lvsr:
15651       ID = Intrinsic::ppc_altivec_lvsr;
15652       break;
15653     case PPC::BI__builtin_vsx_lxvd2x:
15654       ID = Intrinsic::ppc_vsx_lxvd2x;
15655       break;
15656     case PPC::BI__builtin_vsx_lxvw4x:
15657       ID = Intrinsic::ppc_vsx_lxvw4x;
15658       break;
15659     case PPC::BI__builtin_vsx_lxvd2x_be:
15660       ID = Intrinsic::ppc_vsx_lxvd2x_be;
15661       break;
15662     case PPC::BI__builtin_vsx_lxvw4x_be:
15663       ID = Intrinsic::ppc_vsx_lxvw4x_be;
15664       break;
15665     case PPC::BI__builtin_vsx_lxvl:
15666       ID = Intrinsic::ppc_vsx_lxvl;
15667       break;
15668     case PPC::BI__builtin_vsx_lxvll:
15669       ID = Intrinsic::ppc_vsx_lxvll;
15670       break;
15671     }
15672     llvm::Function *F = CGM.getIntrinsic(ID);
15673     return Builder.CreateCall(F, Ops, "");
15674   }
15675 
15676   // vec_st, vec_xst_be
15677   case PPC::BI__builtin_altivec_stvx:
15678   case PPC::BI__builtin_altivec_stvxl:
15679   case PPC::BI__builtin_altivec_stvebx:
15680   case PPC::BI__builtin_altivec_stvehx:
15681   case PPC::BI__builtin_altivec_stvewx:
15682   case PPC::BI__builtin_vsx_stxvd2x:
15683   case PPC::BI__builtin_vsx_stxvw4x:
15684   case PPC::BI__builtin_vsx_stxvd2x_be:
15685   case PPC::BI__builtin_vsx_stxvw4x_be:
15686   case PPC::BI__builtin_vsx_stxvl:
15687   case PPC::BI__builtin_vsx_stxvll:
15688   {
15689     SmallVector<Value *, 3> Ops;
15690     Ops.push_back(EmitScalarExpr(E->getArg(0)));
15691     Ops.push_back(EmitScalarExpr(E->getArg(1)));
15692     Ops.push_back(EmitScalarExpr(E->getArg(2)));
15693     if(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
15694       BuiltinID == PPC::BI__builtin_vsx_stxvll ){
15695       Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
15696     }else {
15697       Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
15698       Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]);
15699       Ops.pop_back();
15700     }
15701 
15702     switch (BuiltinID) {
15703     default: llvm_unreachable("Unsupported st intrinsic!");
15704     case PPC::BI__builtin_altivec_stvx:
15705       ID = Intrinsic::ppc_altivec_stvx;
15706       break;
15707     case PPC::BI__builtin_altivec_stvxl:
15708       ID = Intrinsic::ppc_altivec_stvxl;
15709       break;
15710     case PPC::BI__builtin_altivec_stvebx:
15711       ID = Intrinsic::ppc_altivec_stvebx;
15712       break;
15713     case PPC::BI__builtin_altivec_stvehx:
15714       ID = Intrinsic::ppc_altivec_stvehx;
15715       break;
15716     case PPC::BI__builtin_altivec_stvewx:
15717       ID = Intrinsic::ppc_altivec_stvewx;
15718       break;
15719     case PPC::BI__builtin_vsx_stxvd2x:
15720       ID = Intrinsic::ppc_vsx_stxvd2x;
15721       break;
15722     case PPC::BI__builtin_vsx_stxvw4x:
15723       ID = Intrinsic::ppc_vsx_stxvw4x;
15724       break;
15725     case PPC::BI__builtin_vsx_stxvd2x_be:
15726       ID = Intrinsic::ppc_vsx_stxvd2x_be;
15727       break;
15728     case PPC::BI__builtin_vsx_stxvw4x_be:
15729       ID = Intrinsic::ppc_vsx_stxvw4x_be;
15730       break;
15731     case PPC::BI__builtin_vsx_stxvl:
15732       ID = Intrinsic::ppc_vsx_stxvl;
15733       break;
15734     case PPC::BI__builtin_vsx_stxvll:
15735       ID = Intrinsic::ppc_vsx_stxvll;
15736       break;
15737     }
15738     llvm::Function *F = CGM.getIntrinsic(ID);
15739     return Builder.CreateCall(F, Ops, "");
15740   }
15741   case PPC::BI__builtin_vsx_ldrmb: {
15742     // Essentially boils down to performing an unaligned VMX load sequence so
15743     // as to avoid crossing a page boundary and then shuffling the elements
15744     // into the right side of the vector register.
15745     Value *Op0 = EmitScalarExpr(E->getArg(0));
15746     Value *Op1 = EmitScalarExpr(E->getArg(1));
15747     int64_t NumBytes = cast<ConstantInt>(Op1)->getZExtValue();
15748     llvm::Type *ResTy = ConvertType(E->getType());
15749     bool IsLE = getTarget().isLittleEndian();
15750 
15751     // If the user wants the entire vector, just load the entire vector.
15752     if (NumBytes == 16) {
15753       Value *BC = Builder.CreateBitCast(Op0, ResTy->getPointerTo());
15754       Value *LD =
15755           Builder.CreateLoad(Address(BC, ResTy, CharUnits::fromQuantity(1)));
15756       if (!IsLE)
15757         return LD;
15758 
15759       // Reverse the bytes on LE.
15760       SmallVector<int, 16> RevMask;
15761       for (int Idx = 0; Idx < 16; Idx++)
15762         RevMask.push_back(15 - Idx);
15763       return Builder.CreateShuffleVector(LD, LD, RevMask);
15764     }
15765 
15766     llvm::Function *Lvx = CGM.getIntrinsic(Intrinsic::ppc_altivec_lvx);
15767     llvm::Function *Lvs = CGM.getIntrinsic(IsLE ? Intrinsic::ppc_altivec_lvsr
15768                                                 : Intrinsic::ppc_altivec_lvsl);
15769     llvm::Function *Vperm = CGM.getIntrinsic(Intrinsic::ppc_altivec_vperm);
15770     Value *HiMem = Builder.CreateGEP(
15771         Int8Ty, Op0, ConstantInt::get(Op1->getType(), NumBytes - 1));
15772     Value *LoLd = Builder.CreateCall(Lvx, Op0, "ld.lo");
15773     Value *HiLd = Builder.CreateCall(Lvx, HiMem, "ld.hi");
15774     Value *Mask1 = Builder.CreateCall(Lvs, Op0, "mask1");
15775 
15776     Op0 = IsLE ? HiLd : LoLd;
15777     Op1 = IsLE ? LoLd : HiLd;
15778     Value *AllElts = Builder.CreateCall(Vperm, {Op0, Op1, Mask1}, "shuffle1");
15779     Constant *Zero = llvm::Constant::getNullValue(IsLE ? ResTy : AllElts->getType());
15780 
15781     if (IsLE) {
15782       SmallVector<int, 16> Consts;
15783       for (int Idx = 0; Idx < 16; Idx++) {
15784         int Val = (NumBytes - Idx - 1 >= 0) ? (NumBytes - Idx - 1)
15785                                             : 16 - (NumBytes - Idx);
15786         Consts.push_back(Val);
15787       }
15788       return Builder.CreateShuffleVector(Builder.CreateBitCast(AllElts, ResTy),
15789                                          Zero, Consts);
15790     }
15791     SmallVector<Constant *, 16> Consts;
15792     for (int Idx = 0; Idx < 16; Idx++)
15793       Consts.push_back(Builder.getInt8(NumBytes + Idx));
15794     Value *Mask2 = ConstantVector::get(Consts);
15795     return Builder.CreateBitCast(
15796         Builder.CreateCall(Vperm, {Zero, AllElts, Mask2}, "shuffle2"), ResTy);
15797   }
15798   case PPC::BI__builtin_vsx_strmb: {
15799     Value *Op0 = EmitScalarExpr(E->getArg(0));
15800     Value *Op1 = EmitScalarExpr(E->getArg(1));
15801     Value *Op2 = EmitScalarExpr(E->getArg(2));
15802     int64_t NumBytes = cast<ConstantInt>(Op1)->getZExtValue();
15803     bool IsLE = getTarget().isLittleEndian();
15804     auto StoreSubVec = [&](unsigned Width, unsigned Offset, unsigned EltNo) {
15805       // Storing the whole vector, simply store it on BE and reverse bytes and
15806       // store on LE.
15807       if (Width == 16) {
15808         Value *BC = Builder.CreateBitCast(Op0, Op2->getType()->getPointerTo());
15809         Value *StVec = Op2;
15810         if (IsLE) {
15811           SmallVector<int, 16> RevMask;
15812           for (int Idx = 0; Idx < 16; Idx++)
15813             RevMask.push_back(15 - Idx);
15814           StVec = Builder.CreateShuffleVector(Op2, Op2, RevMask);
15815         }
15816         return Builder.CreateStore(
15817             StVec, Address(BC, Op2->getType(), CharUnits::fromQuantity(1)));
15818       }
15819       auto *ConvTy = Int64Ty;
15820       unsigned NumElts = 0;
15821       switch (Width) {
15822       default:
15823         llvm_unreachable("width for stores must be a power of 2");
15824       case 8:
15825         ConvTy = Int64Ty;
15826         NumElts = 2;
15827         break;
15828       case 4:
15829         ConvTy = Int32Ty;
15830         NumElts = 4;
15831         break;
15832       case 2:
15833         ConvTy = Int16Ty;
15834         NumElts = 8;
15835         break;
15836       case 1:
15837         ConvTy = Int8Ty;
15838         NumElts = 16;
15839         break;
15840       }
15841       Value *Vec = Builder.CreateBitCast(
15842           Op2, llvm::FixedVectorType::get(ConvTy, NumElts));
15843       Value *Ptr =
15844           Builder.CreateGEP(Int8Ty, Op0, ConstantInt::get(Int64Ty, Offset));
15845       Value *PtrBC = Builder.CreateBitCast(Ptr, ConvTy->getPointerTo());
15846       Value *Elt = Builder.CreateExtractElement(Vec, EltNo);
15847       if (IsLE && Width > 1) {
15848         Function *F = CGM.getIntrinsic(Intrinsic::bswap, ConvTy);
15849         Elt = Builder.CreateCall(F, Elt);
15850       }
15851       return Builder.CreateStore(
15852           Elt, Address(PtrBC, ConvTy, CharUnits::fromQuantity(1)));
15853     };
15854     unsigned Stored = 0;
15855     unsigned RemainingBytes = NumBytes;
15856     Value *Result;
15857     if (NumBytes == 16)
15858       return StoreSubVec(16, 0, 0);
15859     if (NumBytes >= 8) {
15860       Result = StoreSubVec(8, NumBytes - 8, IsLE ? 0 : 1);
15861       RemainingBytes -= 8;
15862       Stored += 8;
15863     }
15864     if (RemainingBytes >= 4) {
15865       Result = StoreSubVec(4, NumBytes - Stored - 4,
15866                            IsLE ? (Stored >> 2) : 3 - (Stored >> 2));
15867       RemainingBytes -= 4;
15868       Stored += 4;
15869     }
15870     if (RemainingBytes >= 2) {
15871       Result = StoreSubVec(2, NumBytes - Stored - 2,
15872                            IsLE ? (Stored >> 1) : 7 - (Stored >> 1));
15873       RemainingBytes -= 2;
15874       Stored += 2;
15875     }
15876     if (RemainingBytes)
15877       Result =
15878           StoreSubVec(1, NumBytes - Stored - 1, IsLE ? Stored : 15 - Stored);
15879     return Result;
15880   }
15881   // Square root
15882   case PPC::BI__builtin_vsx_xvsqrtsp:
15883   case PPC::BI__builtin_vsx_xvsqrtdp: {
15884     llvm::Type *ResultType = ConvertType(E->getType());
15885     Value *X = EmitScalarExpr(E->getArg(0));
15886     if (Builder.getIsFPConstrained()) {
15887       llvm::Function *F = CGM.getIntrinsic(
15888           Intrinsic::experimental_constrained_sqrt, ResultType);
15889       return Builder.CreateConstrainedFPCall(F, X);
15890     } else {
15891       llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
15892       return Builder.CreateCall(F, X);
15893     }
15894   }
15895   // Count leading zeros
15896   case PPC::BI__builtin_altivec_vclzb:
15897   case PPC::BI__builtin_altivec_vclzh:
15898   case PPC::BI__builtin_altivec_vclzw:
15899   case PPC::BI__builtin_altivec_vclzd: {
15900     llvm::Type *ResultType = ConvertType(E->getType());
15901     Value *X = EmitScalarExpr(E->getArg(0));
15902     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
15903     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
15904     return Builder.CreateCall(F, {X, Undef});
15905   }
15906   case PPC::BI__builtin_altivec_vctzb:
15907   case PPC::BI__builtin_altivec_vctzh:
15908   case PPC::BI__builtin_altivec_vctzw:
15909   case PPC::BI__builtin_altivec_vctzd: {
15910     llvm::Type *ResultType = ConvertType(E->getType());
15911     Value *X = EmitScalarExpr(E->getArg(0));
15912     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
15913     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
15914     return Builder.CreateCall(F, {X, Undef});
15915   }
15916   case PPC::BI__builtin_altivec_vinsd:
15917   case PPC::BI__builtin_altivec_vinsw:
15918   case PPC::BI__builtin_altivec_vinsd_elt:
15919   case PPC::BI__builtin_altivec_vinsw_elt: {
15920     llvm::Type *ResultType = ConvertType(E->getType());
15921     Value *Op0 = EmitScalarExpr(E->getArg(0));
15922     Value *Op1 = EmitScalarExpr(E->getArg(1));
15923     Value *Op2 = EmitScalarExpr(E->getArg(2));
15924 
15925     bool IsUnaligned = (BuiltinID == PPC::BI__builtin_altivec_vinsw ||
15926                         BuiltinID == PPC::BI__builtin_altivec_vinsd);
15927 
15928     bool Is32bit = (BuiltinID == PPC::BI__builtin_altivec_vinsw ||
15929                     BuiltinID == PPC::BI__builtin_altivec_vinsw_elt);
15930 
15931     // The third argument must be a compile time constant.
15932     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
15933     assert(ArgCI &&
15934            "Third Arg to vinsw/vinsd intrinsic must be a constant integer!");
15935 
15936     // Valid value for the third argument is dependent on the input type and
15937     // builtin called.
15938     int ValidMaxValue = 0;
15939     if (IsUnaligned)
15940       ValidMaxValue = (Is32bit) ? 12 : 8;
15941     else
15942       ValidMaxValue = (Is32bit) ? 3 : 1;
15943 
15944     // Get value of third argument.
15945     int64_t ConstArg = ArgCI->getSExtValue();
15946 
15947     // Compose range checking error message.
15948     std::string RangeErrMsg = IsUnaligned ? "byte" : "element";
15949     RangeErrMsg += " number " + llvm::to_string(ConstArg);
15950     RangeErrMsg += " is outside of the valid range [0, ";
15951     RangeErrMsg += llvm::to_string(ValidMaxValue) + "]";
15952 
15953     // Issue error if third argument is not within the valid range.
15954     if (ConstArg < 0 || ConstArg > ValidMaxValue)
15955       CGM.Error(E->getExprLoc(), RangeErrMsg);
15956 
15957     // Input to vec_replace_elt is an element index, convert to byte index.
15958     if (!IsUnaligned) {
15959       ConstArg *= Is32bit ? 4 : 8;
15960       // Fix the constant according to endianess.
15961       if (getTarget().isLittleEndian())
15962         ConstArg = (Is32bit ? 12 : 8) - ConstArg;
15963     }
15964 
15965     ID = Is32bit ? Intrinsic::ppc_altivec_vinsw : Intrinsic::ppc_altivec_vinsd;
15966     Op2 = ConstantInt::getSigned(Int32Ty, ConstArg);
15967     // Casting input to vector int as per intrinsic definition.
15968     Op0 =
15969         Is32bit
15970             ? Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4))
15971             : Builder.CreateBitCast(Op0,
15972                                     llvm::FixedVectorType::get(Int64Ty, 2));
15973     return Builder.CreateBitCast(
15974         Builder.CreateCall(CGM.getIntrinsic(ID), {Op0, Op1, Op2}), ResultType);
15975   }
15976   case PPC::BI__builtin_altivec_vpopcntb:
15977   case PPC::BI__builtin_altivec_vpopcnth:
15978   case PPC::BI__builtin_altivec_vpopcntw:
15979   case PPC::BI__builtin_altivec_vpopcntd: {
15980     llvm::Type *ResultType = ConvertType(E->getType());
15981     Value *X = EmitScalarExpr(E->getArg(0));
15982     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
15983     return Builder.CreateCall(F, X);
15984   }
15985   case PPC::BI__builtin_altivec_vadduqm:
15986   case PPC::BI__builtin_altivec_vsubuqm: {
15987     Value *Op0 = EmitScalarExpr(E->getArg(0));
15988     Value *Op1 = EmitScalarExpr(E->getArg(1));
15989     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
15990     Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int128Ty, 1));
15991     Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int128Ty, 1));
15992     if (BuiltinID == PPC::BI__builtin_altivec_vadduqm)
15993       return Builder.CreateAdd(Op0, Op1, "vadduqm");
15994     else
15995       return Builder.CreateSub(Op0, Op1, "vsubuqm");
15996   }
15997   case PPC::BI__builtin_altivec_vaddcuq_c:
15998   case PPC::BI__builtin_altivec_vsubcuq_c: {
15999     SmallVector<Value *, 2> Ops;
16000     Value *Op0 = EmitScalarExpr(E->getArg(0));
16001     Value *Op1 = EmitScalarExpr(E->getArg(1));
16002     llvm::Type *V1I128Ty = llvm::FixedVectorType::get(
16003         llvm::IntegerType::get(getLLVMContext(), 128), 1);
16004     Ops.push_back(Builder.CreateBitCast(Op0, V1I128Ty));
16005     Ops.push_back(Builder.CreateBitCast(Op1, V1I128Ty));
16006     ID = (BuiltinID == PPC::BI__builtin_altivec_vaddcuq_c)
16007              ? Intrinsic::ppc_altivec_vaddcuq
16008              : Intrinsic::ppc_altivec_vsubcuq;
16009     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops, "");
16010   }
16011   case PPC::BI__builtin_altivec_vaddeuqm_c:
16012   case PPC::BI__builtin_altivec_vaddecuq_c:
16013   case PPC::BI__builtin_altivec_vsubeuqm_c:
16014   case PPC::BI__builtin_altivec_vsubecuq_c: {
16015     SmallVector<Value *, 3> Ops;
16016     Value *Op0 = EmitScalarExpr(E->getArg(0));
16017     Value *Op1 = EmitScalarExpr(E->getArg(1));
16018     Value *Op2 = EmitScalarExpr(E->getArg(2));
16019     llvm::Type *V1I128Ty = llvm::FixedVectorType::get(
16020         llvm::IntegerType::get(getLLVMContext(), 128), 1);
16021     Ops.push_back(Builder.CreateBitCast(Op0, V1I128Ty));
16022     Ops.push_back(Builder.CreateBitCast(Op1, V1I128Ty));
16023     Ops.push_back(Builder.CreateBitCast(Op2, V1I128Ty));
16024     switch (BuiltinID) {
16025     default:
16026       llvm_unreachable("Unsupported intrinsic!");
16027     case PPC::BI__builtin_altivec_vaddeuqm_c:
16028       ID = Intrinsic::ppc_altivec_vaddeuqm;
16029       break;
16030     case PPC::BI__builtin_altivec_vaddecuq_c:
16031       ID = Intrinsic::ppc_altivec_vaddecuq;
16032       break;
16033     case PPC::BI__builtin_altivec_vsubeuqm_c:
16034       ID = Intrinsic::ppc_altivec_vsubeuqm;
16035       break;
16036     case PPC::BI__builtin_altivec_vsubecuq_c:
16037       ID = Intrinsic::ppc_altivec_vsubecuq;
16038       break;
16039     }
16040     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops, "");
16041   }
16042   // Rotate and insert under mask operation.
16043   // __rldimi(rs, is, shift, mask)
16044   // (rotl64(rs, shift) & mask) | (is & ~mask)
16045   // __rlwimi(rs, is, shift, mask)
16046   // (rotl(rs, shift) & mask) | (is & ~mask)
16047   case PPC::BI__builtin_ppc_rldimi:
16048   case PPC::BI__builtin_ppc_rlwimi: {
16049     Value *Op0 = EmitScalarExpr(E->getArg(0));
16050     Value *Op1 = EmitScalarExpr(E->getArg(1));
16051     Value *Op2 = EmitScalarExpr(E->getArg(2));
16052     Value *Op3 = EmitScalarExpr(E->getArg(3));
16053     llvm::Type *Ty = Op0->getType();
16054     Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
16055     if (BuiltinID == PPC::BI__builtin_ppc_rldimi)
16056       Op2 = Builder.CreateZExt(Op2, Int64Ty);
16057     Value *Shift = Builder.CreateCall(F, {Op0, Op0, Op2});
16058     Value *X = Builder.CreateAnd(Shift, Op3);
16059     Value *Y = Builder.CreateAnd(Op1, Builder.CreateNot(Op3));
16060     return Builder.CreateOr(X, Y);
16061   }
16062   // Rotate and insert under mask operation.
16063   // __rlwnm(rs, shift, mask)
16064   // rotl(rs, shift) & mask
16065   case PPC::BI__builtin_ppc_rlwnm: {
16066     Value *Op0 = EmitScalarExpr(E->getArg(0));
16067     Value *Op1 = EmitScalarExpr(E->getArg(1));
16068     Value *Op2 = EmitScalarExpr(E->getArg(2));
16069     llvm::Type *Ty = Op0->getType();
16070     Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
16071     Value *Shift = Builder.CreateCall(F, {Op0, Op0, Op1});
16072     return Builder.CreateAnd(Shift, Op2);
16073   }
16074   case PPC::BI__builtin_ppc_poppar4:
16075   case PPC::BI__builtin_ppc_poppar8: {
16076     Value *Op0 = EmitScalarExpr(E->getArg(0));
16077     llvm::Type *ArgType = Op0->getType();
16078     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
16079     Value *Tmp = Builder.CreateCall(F, Op0);
16080 
16081     llvm::Type *ResultType = ConvertType(E->getType());
16082     Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
16083     if (Result->getType() != ResultType)
16084       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
16085                                      "cast");
16086     return Result;
16087   }
16088   case PPC::BI__builtin_ppc_cmpb: {
16089     Value *Op0 = EmitScalarExpr(E->getArg(0));
16090     Value *Op1 = EmitScalarExpr(E->getArg(1));
16091     if (getTarget().getTriple().isPPC64()) {
16092       Function *F =
16093           CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int64Ty, Int64Ty, Int64Ty});
16094       return Builder.CreateCall(F, {Op0, Op1}, "cmpb");
16095     }
16096     // For 32 bit, emit the code as below:
16097     // %conv = trunc i64 %a to i32
16098     // %conv1 = trunc i64 %b to i32
16099     // %shr = lshr i64 %a, 32
16100     // %conv2 = trunc i64 %shr to i32
16101     // %shr3 = lshr i64 %b, 32
16102     // %conv4 = trunc i64 %shr3 to i32
16103     // %0 = tail call i32 @llvm.ppc.cmpb32(i32 %conv, i32 %conv1)
16104     // %conv5 = zext i32 %0 to i64
16105     // %1 = tail call i32 @llvm.ppc.cmpb32(i32 %conv2, i32 %conv4)
16106     // %conv614 = zext i32 %1 to i64
16107     // %shl = shl nuw i64 %conv614, 32
16108     // %or = or i64 %shl, %conv5
16109     // ret i64 %or
16110     Function *F =
16111         CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int32Ty, Int32Ty, Int32Ty});
16112     Value *ArgOneLo = Builder.CreateTrunc(Op0, Int32Ty);
16113     Value *ArgTwoLo = Builder.CreateTrunc(Op1, Int32Ty);
16114     Constant *ShiftAmt = ConstantInt::get(Int64Ty, 32);
16115     Value *ArgOneHi =
16116         Builder.CreateTrunc(Builder.CreateLShr(Op0, ShiftAmt), Int32Ty);
16117     Value *ArgTwoHi =
16118         Builder.CreateTrunc(Builder.CreateLShr(Op1, ShiftAmt), Int32Ty);
16119     Value *ResLo = Builder.CreateZExt(
16120         Builder.CreateCall(F, {ArgOneLo, ArgTwoLo}, "cmpb"), Int64Ty);
16121     Value *ResHiShift = Builder.CreateZExt(
16122         Builder.CreateCall(F, {ArgOneHi, ArgTwoHi}, "cmpb"), Int64Ty);
16123     Value *ResHi = Builder.CreateShl(ResHiShift, ShiftAmt);
16124     return Builder.CreateOr(ResLo, ResHi);
16125   }
16126   // Copy sign
16127   case PPC::BI__builtin_vsx_xvcpsgnsp:
16128   case PPC::BI__builtin_vsx_xvcpsgndp: {
16129     llvm::Type *ResultType = ConvertType(E->getType());
16130     Value *X = EmitScalarExpr(E->getArg(0));
16131     Value *Y = EmitScalarExpr(E->getArg(1));
16132     ID = Intrinsic::copysign;
16133     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
16134     return Builder.CreateCall(F, {X, Y});
16135   }
16136   // Rounding/truncation
16137   case PPC::BI__builtin_vsx_xvrspip:
16138   case PPC::BI__builtin_vsx_xvrdpip:
16139   case PPC::BI__builtin_vsx_xvrdpim:
16140   case PPC::BI__builtin_vsx_xvrspim:
16141   case PPC::BI__builtin_vsx_xvrdpi:
16142   case PPC::BI__builtin_vsx_xvrspi:
16143   case PPC::BI__builtin_vsx_xvrdpic:
16144   case PPC::BI__builtin_vsx_xvrspic:
16145   case PPC::BI__builtin_vsx_xvrdpiz:
16146   case PPC::BI__builtin_vsx_xvrspiz: {
16147     llvm::Type *ResultType = ConvertType(E->getType());
16148     Value *X = EmitScalarExpr(E->getArg(0));
16149     if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
16150         BuiltinID == PPC::BI__builtin_vsx_xvrspim)
16151       ID = Builder.getIsFPConstrained()
16152                ? Intrinsic::experimental_constrained_floor
16153                : Intrinsic::floor;
16154     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
16155              BuiltinID == PPC::BI__builtin_vsx_xvrspi)
16156       ID = Builder.getIsFPConstrained()
16157                ? Intrinsic::experimental_constrained_round
16158                : Intrinsic::round;
16159     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
16160              BuiltinID == PPC::BI__builtin_vsx_xvrspic)
16161       ID = Builder.getIsFPConstrained()
16162                ? Intrinsic::experimental_constrained_rint
16163                : Intrinsic::rint;
16164     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
16165              BuiltinID == PPC::BI__builtin_vsx_xvrspip)
16166       ID = Builder.getIsFPConstrained()
16167                ? Intrinsic::experimental_constrained_ceil
16168                : Intrinsic::ceil;
16169     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
16170              BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
16171       ID = Builder.getIsFPConstrained()
16172                ? Intrinsic::experimental_constrained_trunc
16173                : Intrinsic::trunc;
16174     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
16175     return Builder.getIsFPConstrained() ? Builder.CreateConstrainedFPCall(F, X)
16176                                         : Builder.CreateCall(F, X);
16177   }
16178 
16179   // Absolute value
16180   case PPC::BI__builtin_vsx_xvabsdp:
16181   case PPC::BI__builtin_vsx_xvabssp: {
16182     llvm::Type *ResultType = ConvertType(E->getType());
16183     Value *X = EmitScalarExpr(E->getArg(0));
16184     llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
16185     return Builder.CreateCall(F, X);
16186   }
16187 
16188   // Fastmath by default
16189   case PPC::BI__builtin_ppc_recipdivf:
16190   case PPC::BI__builtin_ppc_recipdivd:
16191   case PPC::BI__builtin_ppc_rsqrtf:
16192   case PPC::BI__builtin_ppc_rsqrtd: {
16193     FastMathFlags FMF = Builder.getFastMathFlags();
16194     Builder.getFastMathFlags().setFast();
16195     llvm::Type *ResultType = ConvertType(E->getType());
16196     Value *X = EmitScalarExpr(E->getArg(0));
16197 
16198     if (BuiltinID == PPC::BI__builtin_ppc_recipdivf ||
16199         BuiltinID == PPC::BI__builtin_ppc_recipdivd) {
16200       Value *Y = EmitScalarExpr(E->getArg(1));
16201       Value *FDiv = Builder.CreateFDiv(X, Y, "recipdiv");
16202       Builder.getFastMathFlags() &= (FMF);
16203       return FDiv;
16204     }
16205     auto *One = ConstantFP::get(ResultType, 1.0);
16206     llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
16207     Value *FDiv = Builder.CreateFDiv(One, Builder.CreateCall(F, X), "rsqrt");
16208     Builder.getFastMathFlags() &= (FMF);
16209     return FDiv;
16210   }
16211   case PPC::BI__builtin_ppc_alignx: {
16212     Value *Op0 = EmitScalarExpr(E->getArg(0));
16213     Value *Op1 = EmitScalarExpr(E->getArg(1));
16214     ConstantInt *AlignmentCI = cast<ConstantInt>(Op0);
16215     if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
16216       AlignmentCI = ConstantInt::get(AlignmentCI->getType(),
16217                                      llvm::Value::MaximumAlignment);
16218 
16219     emitAlignmentAssumption(Op1, E->getArg(1),
16220                             /*The expr loc is sufficient.*/ SourceLocation(),
16221                             AlignmentCI, nullptr);
16222     return Op1;
16223   }
16224   case PPC::BI__builtin_ppc_rdlam: {
16225     Value *Op0 = EmitScalarExpr(E->getArg(0));
16226     Value *Op1 = EmitScalarExpr(E->getArg(1));
16227     Value *Op2 = EmitScalarExpr(E->getArg(2));
16228     llvm::Type *Ty = Op0->getType();
16229     Value *ShiftAmt = Builder.CreateIntCast(Op1, Ty, false);
16230     Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
16231     Value *Rotate = Builder.CreateCall(F, {Op0, Op0, ShiftAmt});
16232     return Builder.CreateAnd(Rotate, Op2);
16233   }
16234   case PPC::BI__builtin_ppc_load2r: {
16235     Function *F = CGM.getIntrinsic(Intrinsic::ppc_load2r);
16236     Value *Op0 = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
16237     Value *LoadIntrinsic = Builder.CreateCall(F, {Op0});
16238     return Builder.CreateTrunc(LoadIntrinsic, Int16Ty);
16239   }
16240   // FMA variations
16241   case PPC::BI__builtin_ppc_fnmsub:
16242   case PPC::BI__builtin_ppc_fnmsubs:
16243   case PPC::BI__builtin_vsx_xvmaddadp:
16244   case PPC::BI__builtin_vsx_xvmaddasp:
16245   case PPC::BI__builtin_vsx_xvnmaddadp:
16246   case PPC::BI__builtin_vsx_xvnmaddasp:
16247   case PPC::BI__builtin_vsx_xvmsubadp:
16248   case PPC::BI__builtin_vsx_xvmsubasp:
16249   case PPC::BI__builtin_vsx_xvnmsubadp:
16250   case PPC::BI__builtin_vsx_xvnmsubasp: {
16251     llvm::Type *ResultType = ConvertType(E->getType());
16252     Value *X = EmitScalarExpr(E->getArg(0));
16253     Value *Y = EmitScalarExpr(E->getArg(1));
16254     Value *Z = EmitScalarExpr(E->getArg(2));
16255     llvm::Function *F;
16256     if (Builder.getIsFPConstrained())
16257       F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
16258     else
16259       F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
16260     switch (BuiltinID) {
16261       case PPC::BI__builtin_vsx_xvmaddadp:
16262       case PPC::BI__builtin_vsx_xvmaddasp:
16263         if (Builder.getIsFPConstrained())
16264           return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
16265         else
16266           return Builder.CreateCall(F, {X, Y, Z});
16267       case PPC::BI__builtin_vsx_xvnmaddadp:
16268       case PPC::BI__builtin_vsx_xvnmaddasp:
16269         if (Builder.getIsFPConstrained())
16270           return Builder.CreateFNeg(
16271               Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg");
16272         else
16273           return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
16274       case PPC::BI__builtin_vsx_xvmsubadp:
16275       case PPC::BI__builtin_vsx_xvmsubasp:
16276         if (Builder.getIsFPConstrained())
16277           return Builder.CreateConstrainedFPCall(
16278               F, {X, Y, Builder.CreateFNeg(Z, "neg")});
16279         else
16280           return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
16281       case PPC::BI__builtin_ppc_fnmsub:
16282       case PPC::BI__builtin_ppc_fnmsubs:
16283       case PPC::BI__builtin_vsx_xvnmsubadp:
16284       case PPC::BI__builtin_vsx_xvnmsubasp:
16285         if (Builder.getIsFPConstrained())
16286           return Builder.CreateFNeg(
16287               Builder.CreateConstrainedFPCall(
16288                   F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
16289               "neg");
16290         else
16291           return Builder.CreateCall(
16292               CGM.getIntrinsic(Intrinsic::ppc_fnmsub, ResultType), {X, Y, Z});
16293       }
16294     llvm_unreachable("Unknown FMA operation");
16295     return nullptr; // Suppress no-return warning
16296   }
16297 
16298   case PPC::BI__builtin_vsx_insertword: {
16299     Value *Op0 = EmitScalarExpr(E->getArg(0));
16300     Value *Op1 = EmitScalarExpr(E->getArg(1));
16301     Value *Op2 = EmitScalarExpr(E->getArg(2));
16302     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
16303 
16304     // Third argument is a compile time constant int. It must be clamped to
16305     // to the range [0, 12].
16306     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
16307     assert(ArgCI &&
16308            "Third arg to xxinsertw intrinsic must be constant integer");
16309     const int64_t MaxIndex = 12;
16310     int64_t Index = std::clamp(ArgCI->getSExtValue(), (int64_t)0, MaxIndex);
16311 
16312     // The builtin semantics don't exactly match the xxinsertw instructions
16313     // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
16314     // word from the first argument, and inserts it in the second argument. The
16315     // instruction extracts the word from its second input register and inserts
16316     // it into its first input register, so swap the first and second arguments.
16317     std::swap(Op0, Op1);
16318 
16319     // Need to cast the second argument from a vector of unsigned int to a
16320     // vector of long long.
16321     Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int64Ty, 2));
16322 
16323     if (getTarget().isLittleEndian()) {
16324       // Reverse the double words in the vector we will extract from.
16325       Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2));
16326       Op0 = Builder.CreateShuffleVector(Op0, Op0, ArrayRef<int>{1, 0});
16327 
16328       // Reverse the index.
16329       Index = MaxIndex - Index;
16330     }
16331 
16332     // Intrinsic expects the first arg to be a vector of int.
16333     Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4));
16334     Op2 = ConstantInt::getSigned(Int32Ty, Index);
16335     return Builder.CreateCall(F, {Op0, Op1, Op2});
16336   }
16337 
16338   case PPC::BI__builtin_vsx_extractuword: {
16339     Value *Op0 = EmitScalarExpr(E->getArg(0));
16340     Value *Op1 = EmitScalarExpr(E->getArg(1));
16341     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
16342 
16343     // Intrinsic expects the first argument to be a vector of doublewords.
16344     Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2));
16345 
16346     // The second argument is a compile time constant int that needs to
16347     // be clamped to the range [0, 12].
16348     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op1);
16349     assert(ArgCI &&
16350            "Second Arg to xxextractuw intrinsic must be a constant integer!");
16351     const int64_t MaxIndex = 12;
16352     int64_t Index = std::clamp(ArgCI->getSExtValue(), (int64_t)0, MaxIndex);
16353 
16354     if (getTarget().isLittleEndian()) {
16355       // Reverse the index.
16356       Index = MaxIndex - Index;
16357       Op1 = ConstantInt::getSigned(Int32Ty, Index);
16358 
16359       // Emit the call, then reverse the double words of the results vector.
16360       Value *Call = Builder.CreateCall(F, {Op0, Op1});
16361 
16362       Value *ShuffleCall =
16363           Builder.CreateShuffleVector(Call, Call, ArrayRef<int>{1, 0});
16364       return ShuffleCall;
16365     } else {
16366       Op1 = ConstantInt::getSigned(Int32Ty, Index);
16367       return Builder.CreateCall(F, {Op0, Op1});
16368     }
16369   }
16370 
16371   case PPC::BI__builtin_vsx_xxpermdi: {
16372     Value *Op0 = EmitScalarExpr(E->getArg(0));
16373     Value *Op1 = EmitScalarExpr(E->getArg(1));
16374     Value *Op2 = EmitScalarExpr(E->getArg(2));
16375     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
16376     assert(ArgCI && "Third arg must be constant integer!");
16377 
16378     unsigned Index = ArgCI->getZExtValue();
16379     Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2));
16380     Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int64Ty, 2));
16381 
16382     // Account for endianness by treating this as just a shuffle. So we use the
16383     // same indices for both LE and BE in order to produce expected results in
16384     // both cases.
16385     int ElemIdx0 = (Index & 2) >> 1;
16386     int ElemIdx1 = 2 + (Index & 1);
16387 
16388     int ShuffleElts[2] = {ElemIdx0, ElemIdx1};
16389     Value *ShuffleCall = Builder.CreateShuffleVector(Op0, Op1, ShuffleElts);
16390     QualType BIRetType = E->getType();
16391     auto RetTy = ConvertType(BIRetType);
16392     return Builder.CreateBitCast(ShuffleCall, RetTy);
16393   }
16394 
16395   case PPC::BI__builtin_vsx_xxsldwi: {
16396     Value *Op0 = EmitScalarExpr(E->getArg(0));
16397     Value *Op1 = EmitScalarExpr(E->getArg(1));
16398     Value *Op2 = EmitScalarExpr(E->getArg(2));
16399     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
16400     assert(ArgCI && "Third argument must be a compile time constant");
16401     unsigned Index = ArgCI->getZExtValue() & 0x3;
16402     Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4));
16403     Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int32Ty, 4));
16404 
16405     // Create a shuffle mask
16406     int ElemIdx0;
16407     int ElemIdx1;
16408     int ElemIdx2;
16409     int ElemIdx3;
16410     if (getTarget().isLittleEndian()) {
16411       // Little endian element N comes from element 8+N-Index of the
16412       // concatenated wide vector (of course, using modulo arithmetic on
16413       // the total number of elements).
16414       ElemIdx0 = (8 - Index) % 8;
16415       ElemIdx1 = (9 - Index) % 8;
16416       ElemIdx2 = (10 - Index) % 8;
16417       ElemIdx3 = (11 - Index) % 8;
16418     } else {
16419       // Big endian ElemIdx<N> = Index + N
16420       ElemIdx0 = Index;
16421       ElemIdx1 = Index + 1;
16422       ElemIdx2 = Index + 2;
16423       ElemIdx3 = Index + 3;
16424     }
16425 
16426     int ShuffleElts[4] = {ElemIdx0, ElemIdx1, ElemIdx2, ElemIdx3};
16427     Value *ShuffleCall = Builder.CreateShuffleVector(Op0, Op1, ShuffleElts);
16428     QualType BIRetType = E->getType();
16429     auto RetTy = ConvertType(BIRetType);
16430     return Builder.CreateBitCast(ShuffleCall, RetTy);
16431   }
16432 
16433   case PPC::BI__builtin_pack_vector_int128: {
16434     Value *Op0 = EmitScalarExpr(E->getArg(0));
16435     Value *Op1 = EmitScalarExpr(E->getArg(1));
16436     bool isLittleEndian = getTarget().isLittleEndian();
16437     Value *PoisonValue =
16438         llvm::PoisonValue::get(llvm::FixedVectorType::get(Op0->getType(), 2));
16439     Value *Res = Builder.CreateInsertElement(
16440         PoisonValue, Op0, (uint64_t)(isLittleEndian ? 1 : 0));
16441     Res = Builder.CreateInsertElement(Res, Op1,
16442                                       (uint64_t)(isLittleEndian ? 0 : 1));
16443     return Builder.CreateBitCast(Res, ConvertType(E->getType()));
16444   }
16445 
16446   case PPC::BI__builtin_unpack_vector_int128: {
16447     Value *Op0 = EmitScalarExpr(E->getArg(0));
16448     Value *Op1 = EmitScalarExpr(E->getArg(1));
16449     ConstantInt *Index = cast<ConstantInt>(Op1);
16450     Value *Unpacked = Builder.CreateBitCast(
16451         Op0, llvm::FixedVectorType::get(ConvertType(E->getType()), 2));
16452 
16453     if (getTarget().isLittleEndian())
16454       Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue());
16455 
16456     return Builder.CreateExtractElement(Unpacked, Index);
16457   }
16458 
16459   case PPC::BI__builtin_ppc_sthcx: {
16460     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_sthcx);
16461     Value *Op0 = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
16462     Value *Op1 = Builder.CreateSExt(EmitScalarExpr(E->getArg(1)), Int32Ty);
16463     return Builder.CreateCall(F, {Op0, Op1});
16464   }
16465 
16466   // The PPC MMA builtins take a pointer to a __vector_quad as an argument.
16467   // Some of the MMA instructions accumulate their result into an existing
16468   // accumulator whereas the others generate a new accumulator. So we need to
16469   // use custom code generation to expand a builtin call with a pointer to a
16470   // load (if the corresponding instruction accumulates its result) followed by
16471   // the call to the intrinsic and a store of the result.
16472 #define CUSTOM_BUILTIN(Name, Intr, Types, Accumulate) \
16473   case PPC::BI__builtin_##Name:
16474 #include "clang/Basic/BuiltinsPPC.def"
16475   {
16476     SmallVector<Value *, 4> Ops;
16477     for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
16478       if (E->getArg(i)->getType()->isArrayType())
16479         Ops.push_back(EmitArrayToPointerDecay(E->getArg(i)).getPointer());
16480       else
16481         Ops.push_back(EmitScalarExpr(E->getArg(i)));
16482     // The first argument of these two builtins is a pointer used to store their
16483     // result. However, the llvm intrinsics return their result in multiple
16484     // return values. So, here we emit code extracting these values from the
16485     // intrinsic results and storing them using that pointer.
16486     if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc ||
16487         BuiltinID == PPC::BI__builtin_vsx_disassemble_pair ||
16488         BuiltinID == PPC::BI__builtin_mma_disassemble_pair) {
16489       unsigned NumVecs = 2;
16490       auto Intrinsic = Intrinsic::ppc_vsx_disassemble_pair;
16491       if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc) {
16492         NumVecs = 4;
16493         Intrinsic = Intrinsic::ppc_mma_disassemble_acc;
16494       }
16495       llvm::Function *F = CGM.getIntrinsic(Intrinsic);
16496       Address Addr = EmitPointerWithAlignment(E->getArg(1));
16497       Value *Vec = Builder.CreateLoad(Addr);
16498       Value *Call = Builder.CreateCall(F, {Vec});
16499       llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, 16);
16500       Value *Ptr = Builder.CreateBitCast(Ops[0], VTy->getPointerTo());
16501       for (unsigned i=0; i<NumVecs; i++) {
16502         Value *Vec = Builder.CreateExtractValue(Call, i);
16503         llvm::ConstantInt* Index = llvm::ConstantInt::get(IntTy, i);
16504         Value *GEP = Builder.CreateInBoundsGEP(VTy, Ptr, Index);
16505         Builder.CreateAlignedStore(Vec, GEP, MaybeAlign(16));
16506       }
16507       return Call;
16508     }
16509     if (BuiltinID == PPC::BI__builtin_vsx_build_pair ||
16510         BuiltinID == PPC::BI__builtin_mma_build_acc) {
16511       // Reverse the order of the operands for LE, so the
16512       // same builtin call can be used on both LE and BE
16513       // without the need for the programmer to swap operands.
16514       // The operands are reversed starting from the second argument,
16515       // the first operand is the pointer to the pair/accumulator
16516       // that is being built.
16517       if (getTarget().isLittleEndian())
16518         std::reverse(Ops.begin() + 1, Ops.end());
16519     }
16520     bool Accumulate;
16521     switch (BuiltinID) {
16522   #define CUSTOM_BUILTIN(Name, Intr, Types, Acc) \
16523     case PPC::BI__builtin_##Name: \
16524       ID = Intrinsic::ppc_##Intr; \
16525       Accumulate = Acc; \
16526       break;
16527   #include "clang/Basic/BuiltinsPPC.def"
16528     }
16529     if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
16530         BuiltinID == PPC::BI__builtin_vsx_stxvp ||
16531         BuiltinID == PPC::BI__builtin_mma_lxvp ||
16532         BuiltinID == PPC::BI__builtin_mma_stxvp) {
16533       if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
16534           BuiltinID == PPC::BI__builtin_mma_lxvp) {
16535         Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
16536         Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]);
16537       } else {
16538         Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
16539         Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]);
16540       }
16541       Ops.pop_back();
16542       llvm::Function *F = CGM.getIntrinsic(ID);
16543       return Builder.CreateCall(F, Ops, "");
16544     }
16545     SmallVector<Value*, 4> CallOps;
16546     if (Accumulate) {
16547       Address Addr = EmitPointerWithAlignment(E->getArg(0));
16548       Value *Acc = Builder.CreateLoad(Addr);
16549       CallOps.push_back(Acc);
16550     }
16551     for (unsigned i=1; i<Ops.size(); i++)
16552       CallOps.push_back(Ops[i]);
16553     llvm::Function *F = CGM.getIntrinsic(ID);
16554     Value *Call = Builder.CreateCall(F, CallOps);
16555     return Builder.CreateAlignedStore(Call, Ops[0], MaybeAlign(64));
16556   }
16557 
16558   case PPC::BI__builtin_ppc_compare_and_swap:
16559   case PPC::BI__builtin_ppc_compare_and_swaplp: {
16560     Address Addr = EmitPointerWithAlignment(E->getArg(0));
16561     Address OldValAddr = EmitPointerWithAlignment(E->getArg(1));
16562     Value *OldVal = Builder.CreateLoad(OldValAddr);
16563     QualType AtomicTy = E->getArg(0)->getType()->getPointeeType();
16564     LValue LV = MakeAddrLValue(Addr, AtomicTy);
16565     Value *Op2 = EmitScalarExpr(E->getArg(2));
16566     auto Pair = EmitAtomicCompareExchange(
16567         LV, RValue::get(OldVal), RValue::get(Op2), E->getExprLoc(),
16568         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Monotonic, true);
16569     // Unlike c11's atomic_compare_exchange, according to
16570     // https://www.ibm.com/docs/en/xl-c-and-cpp-aix/16.1?topic=functions-compare-swap-compare-swaplp
16571     // > In either case, the contents of the memory location specified by addr
16572     // > are copied into the memory location specified by old_val_addr.
16573     // But it hasn't specified storing to OldValAddr is atomic or not and
16574     // which order to use. Now following XL's codegen, treat it as a normal
16575     // store.
16576     Value *LoadedVal = Pair.first.getScalarVal();
16577     Builder.CreateStore(LoadedVal, OldValAddr);
16578     return Builder.CreateZExt(Pair.second, Builder.getInt32Ty());
16579   }
16580   case PPC::BI__builtin_ppc_fetch_and_add:
16581   case PPC::BI__builtin_ppc_fetch_and_addlp: {
16582     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
16583                                  llvm::AtomicOrdering::Monotonic);
16584   }
16585   case PPC::BI__builtin_ppc_fetch_and_and:
16586   case PPC::BI__builtin_ppc_fetch_and_andlp: {
16587     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
16588                                  llvm::AtomicOrdering::Monotonic);
16589   }
16590 
16591   case PPC::BI__builtin_ppc_fetch_and_or:
16592   case PPC::BI__builtin_ppc_fetch_and_orlp: {
16593     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
16594                                  llvm::AtomicOrdering::Monotonic);
16595   }
16596   case PPC::BI__builtin_ppc_fetch_and_swap:
16597   case PPC::BI__builtin_ppc_fetch_and_swaplp: {
16598     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
16599                                  llvm::AtomicOrdering::Monotonic);
16600   }
16601   case PPC::BI__builtin_ppc_ldarx:
16602   case PPC::BI__builtin_ppc_lwarx:
16603   case PPC::BI__builtin_ppc_lharx:
16604   case PPC::BI__builtin_ppc_lbarx:
16605     return emitPPCLoadReserveIntrinsic(*this, BuiltinID, E);
16606   case PPC::BI__builtin_ppc_mfspr: {
16607     Value *Op0 = EmitScalarExpr(E->getArg(0));
16608     llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32
16609                               ? Int32Ty
16610                               : Int64Ty;
16611     Function *F = CGM.getIntrinsic(Intrinsic::ppc_mfspr, RetType);
16612     return Builder.CreateCall(F, {Op0});
16613   }
16614   case PPC::BI__builtin_ppc_mtspr: {
16615     Value *Op0 = EmitScalarExpr(E->getArg(0));
16616     Value *Op1 = EmitScalarExpr(E->getArg(1));
16617     llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32
16618                               ? Int32Ty
16619                               : Int64Ty;
16620     Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtspr, RetType);
16621     return Builder.CreateCall(F, {Op0, Op1});
16622   }
16623   case PPC::BI__builtin_ppc_popcntb: {
16624     Value *ArgValue = EmitScalarExpr(E->getArg(0));
16625     llvm::Type *ArgType = ArgValue->getType();
16626     Function *F = CGM.getIntrinsic(Intrinsic::ppc_popcntb, {ArgType, ArgType});
16627     return Builder.CreateCall(F, {ArgValue}, "popcntb");
16628   }
16629   case PPC::BI__builtin_ppc_mtfsf: {
16630     // The builtin takes a uint32 that needs to be cast to an
16631     // f64 to be passed to the intrinsic.
16632     Value *Op0 = EmitScalarExpr(E->getArg(0));
16633     Value *Op1 = EmitScalarExpr(E->getArg(1));
16634     Value *Cast = Builder.CreateUIToFP(Op1, DoubleTy);
16635     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtfsf);
16636     return Builder.CreateCall(F, {Op0, Cast}, "");
16637   }
16638 
16639   case PPC::BI__builtin_ppc_swdiv_nochk:
16640   case PPC::BI__builtin_ppc_swdivs_nochk: {
16641     Value *Op0 = EmitScalarExpr(E->getArg(0));
16642     Value *Op1 = EmitScalarExpr(E->getArg(1));
16643     FastMathFlags FMF = Builder.getFastMathFlags();
16644     Builder.getFastMathFlags().setFast();
16645     Value *FDiv = Builder.CreateFDiv(Op0, Op1, "swdiv_nochk");
16646     Builder.getFastMathFlags() &= (FMF);
16647     return FDiv;
16648   }
16649   case PPC::BI__builtin_ppc_fric:
16650     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16651                            *this, E, Intrinsic::rint,
16652                            Intrinsic::experimental_constrained_rint))
16653         .getScalarVal();
16654   case PPC::BI__builtin_ppc_frim:
16655   case PPC::BI__builtin_ppc_frims:
16656     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16657                            *this, E, Intrinsic::floor,
16658                            Intrinsic::experimental_constrained_floor))
16659         .getScalarVal();
16660   case PPC::BI__builtin_ppc_frin:
16661   case PPC::BI__builtin_ppc_frins:
16662     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16663                            *this, E, Intrinsic::round,
16664                            Intrinsic::experimental_constrained_round))
16665         .getScalarVal();
16666   case PPC::BI__builtin_ppc_frip:
16667   case PPC::BI__builtin_ppc_frips:
16668     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16669                            *this, E, Intrinsic::ceil,
16670                            Intrinsic::experimental_constrained_ceil))
16671         .getScalarVal();
16672   case PPC::BI__builtin_ppc_friz:
16673   case PPC::BI__builtin_ppc_frizs:
16674     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16675                            *this, E, Intrinsic::trunc,
16676                            Intrinsic::experimental_constrained_trunc))
16677         .getScalarVal();
16678   case PPC::BI__builtin_ppc_fsqrt:
16679   case PPC::BI__builtin_ppc_fsqrts:
16680     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16681                            *this, E, Intrinsic::sqrt,
16682                            Intrinsic::experimental_constrained_sqrt))
16683         .getScalarVal();
16684   case PPC::BI__builtin_ppc_test_data_class: {
16685     Value *Op0 = EmitScalarExpr(E->getArg(0));
16686     Value *Op1 = EmitScalarExpr(E->getArg(1));
16687     return Builder.CreateCall(
16688         CGM.getIntrinsic(Intrinsic::ppc_test_data_class, Op0->getType()),
16689         {Op0, Op1}, "test_data_class");
16690   }
16691   case PPC::BI__builtin_ppc_maxfe: {
16692     Value *Op0 = EmitScalarExpr(E->getArg(0));
16693     Value *Op1 = EmitScalarExpr(E->getArg(1));
16694     Value *Op2 = EmitScalarExpr(E->getArg(2));
16695     Value *Op3 = EmitScalarExpr(E->getArg(3));
16696     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfe),
16697                               {Op0, Op1, Op2, Op3});
16698   }
16699   case PPC::BI__builtin_ppc_maxfl: {
16700     Value *Op0 = EmitScalarExpr(E->getArg(0));
16701     Value *Op1 = EmitScalarExpr(E->getArg(1));
16702     Value *Op2 = EmitScalarExpr(E->getArg(2));
16703     Value *Op3 = EmitScalarExpr(E->getArg(3));
16704     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfl),
16705                               {Op0, Op1, Op2, Op3});
16706   }
16707   case PPC::BI__builtin_ppc_maxfs: {
16708     Value *Op0 = EmitScalarExpr(E->getArg(0));
16709     Value *Op1 = EmitScalarExpr(E->getArg(1));
16710     Value *Op2 = EmitScalarExpr(E->getArg(2));
16711     Value *Op3 = EmitScalarExpr(E->getArg(3));
16712     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfs),
16713                               {Op0, Op1, Op2, Op3});
16714   }
16715   case PPC::BI__builtin_ppc_minfe: {
16716     Value *Op0 = EmitScalarExpr(E->getArg(0));
16717     Value *Op1 = EmitScalarExpr(E->getArg(1));
16718     Value *Op2 = EmitScalarExpr(E->getArg(2));
16719     Value *Op3 = EmitScalarExpr(E->getArg(3));
16720     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfe),
16721                               {Op0, Op1, Op2, Op3});
16722   }
16723   case PPC::BI__builtin_ppc_minfl: {
16724     Value *Op0 = EmitScalarExpr(E->getArg(0));
16725     Value *Op1 = EmitScalarExpr(E->getArg(1));
16726     Value *Op2 = EmitScalarExpr(E->getArg(2));
16727     Value *Op3 = EmitScalarExpr(E->getArg(3));
16728     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfl),
16729                               {Op0, Op1, Op2, Op3});
16730   }
16731   case PPC::BI__builtin_ppc_minfs: {
16732     Value *Op0 = EmitScalarExpr(E->getArg(0));
16733     Value *Op1 = EmitScalarExpr(E->getArg(1));
16734     Value *Op2 = EmitScalarExpr(E->getArg(2));
16735     Value *Op3 = EmitScalarExpr(E->getArg(3));
16736     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfs),
16737                               {Op0, Op1, Op2, Op3});
16738   }
16739   case PPC::BI__builtin_ppc_swdiv:
16740   case PPC::BI__builtin_ppc_swdivs: {
16741     Value *Op0 = EmitScalarExpr(E->getArg(0));
16742     Value *Op1 = EmitScalarExpr(E->getArg(1));
16743     return Builder.CreateFDiv(Op0, Op1, "swdiv");
16744   }
16745   }
16746 }
16747 
16748 namespace {
16749 // If \p E is not null pointer, insert address space cast to match return
16750 // type of \p E if necessary.
16751 Value *EmitAMDGPUDispatchPtr(CodeGenFunction &CGF,
16752                              const CallExpr *E = nullptr) {
16753   auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_dispatch_ptr);
16754   auto *Call = CGF.Builder.CreateCall(F);
16755   Call->addRetAttr(
16756       Attribute::getWithDereferenceableBytes(Call->getContext(), 64));
16757   Call->addRetAttr(Attribute::getWithAlignment(Call->getContext(), Align(4)));
16758   if (!E)
16759     return Call;
16760   QualType BuiltinRetType = E->getType();
16761   auto *RetTy = cast<llvm::PointerType>(CGF.ConvertType(BuiltinRetType));
16762   if (RetTy == Call->getType())
16763     return Call;
16764   return CGF.Builder.CreateAddrSpaceCast(Call, RetTy);
16765 }
16766 
16767 Value *EmitAMDGPUImplicitArgPtr(CodeGenFunction &CGF) {
16768   auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_implicitarg_ptr);
16769   auto *Call = CGF.Builder.CreateCall(F);
16770   Call->addRetAttr(
16771       Attribute::getWithDereferenceableBytes(Call->getContext(), 256));
16772   Call->addRetAttr(Attribute::getWithAlignment(Call->getContext(), Align(8)));
16773   return Call;
16774 }
16775 
16776 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
16777 Value *EmitAMDGPUWorkGroupSize(CodeGenFunction &CGF, unsigned Index) {
16778   bool IsCOV_5 = CGF.getTarget().getTargetOpts().CodeObjectVersion ==
16779                  clang::TargetOptions::COV_5;
16780   Constant *Offset;
16781   Value *DP;
16782   if (IsCOV_5) {
16783     // Indexing the implicit kernarg segment.
16784     Offset = llvm::ConstantInt::get(CGF.Int32Ty, 12 + Index * 2);
16785     DP = EmitAMDGPUImplicitArgPtr(CGF);
16786   } else {
16787     // Indexing the HSA kernel_dispatch_packet struct.
16788     Offset = llvm::ConstantInt::get(CGF.Int32Ty, 4 + Index * 2);
16789     DP = EmitAMDGPUDispatchPtr(CGF);
16790   }
16791 
16792   auto *GEP = CGF.Builder.CreateGEP(CGF.Int8Ty, DP, Offset);
16793   auto *DstTy =
16794       CGF.Int16Ty->getPointerTo(GEP->getType()->getPointerAddressSpace());
16795   auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy);
16796   auto *LD = CGF.Builder.CreateLoad(
16797       Address(Cast, CGF.Int16Ty, CharUnits::fromQuantity(2)));
16798   llvm::MDBuilder MDHelper(CGF.getLLVMContext());
16799   llvm::MDNode *RNode = MDHelper.createRange(APInt(16, 1),
16800       APInt(16, CGF.getTarget().getMaxOpenCLWorkGroupSize() + 1));
16801   LD->setMetadata(llvm::LLVMContext::MD_range, RNode);
16802   LD->setMetadata(llvm::LLVMContext::MD_noundef,
16803                   llvm::MDNode::get(CGF.getLLVMContext(), std::nullopt));
16804   LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
16805                   llvm::MDNode::get(CGF.getLLVMContext(), std::nullopt));
16806   return LD;
16807 }
16808 
16809 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
16810 Value *EmitAMDGPUGridSize(CodeGenFunction &CGF, unsigned Index) {
16811   const unsigned XOffset = 12;
16812   auto *DP = EmitAMDGPUDispatchPtr(CGF);
16813   // Indexing the HSA kernel_dispatch_packet struct.
16814   auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 4);
16815   auto *GEP = CGF.Builder.CreateGEP(CGF.Int8Ty, DP, Offset);
16816   auto *DstTy =
16817       CGF.Int32Ty->getPointerTo(GEP->getType()->getPointerAddressSpace());
16818   auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy);
16819   auto *LD = CGF.Builder.CreateLoad(
16820       Address(Cast, CGF.Int32Ty, CharUnits::fromQuantity(4)));
16821   LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
16822                   llvm::MDNode::get(CGF.getLLVMContext(), std::nullopt));
16823   return LD;
16824 }
16825 } // namespace
16826 
16827 // For processing memory ordering and memory scope arguments of various
16828 // amdgcn builtins.
16829 // \p Order takes a C++11 comptabile memory-ordering specifier and converts
16830 // it into LLVM's memory ordering specifier using atomic C ABI, and writes
16831 // to \p AO. \p Scope takes a const char * and converts it into AMDGCN
16832 // specific SyncScopeID and writes it to \p SSID.
16833 void CodeGenFunction::ProcessOrderScopeAMDGCN(Value *Order, Value *Scope,
16834                                               llvm::AtomicOrdering &AO,
16835                                               llvm::SyncScope::ID &SSID) {
16836   int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
16837 
16838   // Map C11/C++11 memory ordering to LLVM memory ordering
16839   assert(llvm::isValidAtomicOrderingCABI(ord));
16840   switch (static_cast<llvm::AtomicOrderingCABI>(ord)) {
16841   case llvm::AtomicOrderingCABI::acquire:
16842   case llvm::AtomicOrderingCABI::consume:
16843     AO = llvm::AtomicOrdering::Acquire;
16844     break;
16845   case llvm::AtomicOrderingCABI::release:
16846     AO = llvm::AtomicOrdering::Release;
16847     break;
16848   case llvm::AtomicOrderingCABI::acq_rel:
16849     AO = llvm::AtomicOrdering::AcquireRelease;
16850     break;
16851   case llvm::AtomicOrderingCABI::seq_cst:
16852     AO = llvm::AtomicOrdering::SequentiallyConsistent;
16853     break;
16854   case llvm::AtomicOrderingCABI::relaxed:
16855     AO = llvm::AtomicOrdering::Monotonic;
16856     break;
16857   }
16858 
16859   StringRef scp;
16860   llvm::getConstantStringInfo(Scope, scp);
16861   SSID = getLLVMContext().getOrInsertSyncScopeID(scp);
16862 }
16863 
16864 Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
16865                                               const CallExpr *E) {
16866   llvm::AtomicOrdering AO = llvm::AtomicOrdering::SequentiallyConsistent;
16867   llvm::SyncScope::ID SSID;
16868   switch (BuiltinID) {
16869   case AMDGPU::BI__builtin_amdgcn_div_scale:
16870   case AMDGPU::BI__builtin_amdgcn_div_scalef: {
16871     // Translate from the intrinsics's struct return to the builtin's out
16872     // argument.
16873 
16874     Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
16875 
16876     llvm::Value *X = EmitScalarExpr(E->getArg(0));
16877     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
16878     llvm::Value *Z = EmitScalarExpr(E->getArg(2));
16879 
16880     llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
16881                                            X->getType());
16882 
16883     llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
16884 
16885     llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
16886     llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
16887 
16888     llvm::Type *RealFlagType = FlagOutPtr.getElementType();
16889 
16890     llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
16891     Builder.CreateStore(FlagExt, FlagOutPtr);
16892     return Result;
16893   }
16894   case AMDGPU::BI__builtin_amdgcn_div_fmas:
16895   case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
16896     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
16897     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
16898     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
16899     llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
16900 
16901     llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
16902                                       Src0->getType());
16903     llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
16904     return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
16905   }
16906 
16907   case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
16908     return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle);
16909   case AMDGPU::BI__builtin_amdgcn_mov_dpp8:
16910     return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_mov_dpp8);
16911   case AMDGPU::BI__builtin_amdgcn_mov_dpp:
16912   case AMDGPU::BI__builtin_amdgcn_update_dpp: {
16913     llvm::SmallVector<llvm::Value *, 6> Args;
16914     for (unsigned I = 0; I != E->getNumArgs(); ++I)
16915       Args.push_back(EmitScalarExpr(E->getArg(I)));
16916     assert(Args.size() == 5 || Args.size() == 6);
16917     if (Args.size() == 5)
16918       Args.insert(Args.begin(), llvm::PoisonValue::get(Args[0]->getType()));
16919     Function *F =
16920         CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType());
16921     return Builder.CreateCall(F, Args);
16922   }
16923   case AMDGPU::BI__builtin_amdgcn_div_fixup:
16924   case AMDGPU::BI__builtin_amdgcn_div_fixupf:
16925   case AMDGPU::BI__builtin_amdgcn_div_fixuph:
16926     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup);
16927   case AMDGPU::BI__builtin_amdgcn_trig_preop:
16928   case AMDGPU::BI__builtin_amdgcn_trig_preopf:
16929     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
16930   case AMDGPU::BI__builtin_amdgcn_rcp:
16931   case AMDGPU::BI__builtin_amdgcn_rcpf:
16932   case AMDGPU::BI__builtin_amdgcn_rcph:
16933     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp);
16934   case AMDGPU::BI__builtin_amdgcn_sqrt:
16935   case AMDGPU::BI__builtin_amdgcn_sqrtf:
16936   case AMDGPU::BI__builtin_amdgcn_sqrth:
16937     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sqrt);
16938   case AMDGPU::BI__builtin_amdgcn_rsq:
16939   case AMDGPU::BI__builtin_amdgcn_rsqf:
16940   case AMDGPU::BI__builtin_amdgcn_rsqh:
16941     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq);
16942   case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
16943   case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
16944     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp);
16945   case AMDGPU::BI__builtin_amdgcn_sinf:
16946   case AMDGPU::BI__builtin_amdgcn_sinh:
16947     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin);
16948   case AMDGPU::BI__builtin_amdgcn_cosf:
16949   case AMDGPU::BI__builtin_amdgcn_cosh:
16950     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos);
16951   case AMDGPU::BI__builtin_amdgcn_dispatch_ptr:
16952     return EmitAMDGPUDispatchPtr(*this, E);
16953   case AMDGPU::BI__builtin_amdgcn_log_clampf:
16954     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp);
16955   case AMDGPU::BI__builtin_amdgcn_ldexp:
16956   case AMDGPU::BI__builtin_amdgcn_ldexpf:
16957   case AMDGPU::BI__builtin_amdgcn_ldexph:
16958     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp);
16959   case AMDGPU::BI__builtin_amdgcn_frexp_mant:
16960   case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
16961   case AMDGPU::BI__builtin_amdgcn_frexp_manth:
16962     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant);
16963   case AMDGPU::BI__builtin_amdgcn_frexp_exp:
16964   case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
16965     Value *Src0 = EmitScalarExpr(E->getArg(0));
16966     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
16967                                 { Builder.getInt32Ty(), Src0->getType() });
16968     return Builder.CreateCall(F, Src0);
16969   }
16970   case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
16971     Value *Src0 = EmitScalarExpr(E->getArg(0));
16972     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
16973                                 { Builder.getInt16Ty(), Src0->getType() });
16974     return Builder.CreateCall(F, Src0);
16975   }
16976   case AMDGPU::BI__builtin_amdgcn_fract:
16977   case AMDGPU::BI__builtin_amdgcn_fractf:
16978   case AMDGPU::BI__builtin_amdgcn_fracth:
16979     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract);
16980   case AMDGPU::BI__builtin_amdgcn_lerp:
16981     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp);
16982   case AMDGPU::BI__builtin_amdgcn_ubfe:
16983     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_ubfe);
16984   case AMDGPU::BI__builtin_amdgcn_sbfe:
16985     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_sbfe);
16986   case AMDGPU::BI__builtin_amdgcn_ballot_w32:
16987   case AMDGPU::BI__builtin_amdgcn_ballot_w64: {
16988     llvm::Type *ResultType = ConvertType(E->getType());
16989     llvm::Value *Src = EmitScalarExpr(E->getArg(0));
16990     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_ballot, { ResultType });
16991     return Builder.CreateCall(F, { Src });
16992   }
16993   case AMDGPU::BI__builtin_amdgcn_uicmp:
16994   case AMDGPU::BI__builtin_amdgcn_uicmpl:
16995   case AMDGPU::BI__builtin_amdgcn_sicmp:
16996   case AMDGPU::BI__builtin_amdgcn_sicmpl: {
16997     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
16998     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
16999     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
17000 
17001     // FIXME-GFX10: How should 32 bit mask be handled?
17002     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp,
17003       { Builder.getInt64Ty(), Src0->getType() });
17004     return Builder.CreateCall(F, { Src0, Src1, Src2 });
17005   }
17006   case AMDGPU::BI__builtin_amdgcn_fcmp:
17007   case AMDGPU::BI__builtin_amdgcn_fcmpf: {
17008     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
17009     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
17010     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
17011 
17012     // FIXME-GFX10: How should 32 bit mask be handled?
17013     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp,
17014       { Builder.getInt64Ty(), Src0->getType() });
17015     return Builder.CreateCall(F, { Src0, Src1, Src2 });
17016   }
17017   case AMDGPU::BI__builtin_amdgcn_class:
17018   case AMDGPU::BI__builtin_amdgcn_classf:
17019   case AMDGPU::BI__builtin_amdgcn_classh:
17020     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
17021   case AMDGPU::BI__builtin_amdgcn_fmed3f:
17022   case AMDGPU::BI__builtin_amdgcn_fmed3h:
17023     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3);
17024   case AMDGPU::BI__builtin_amdgcn_ds_append:
17025   case AMDGPU::BI__builtin_amdgcn_ds_consume: {
17026     Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ?
17027       Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume;
17028     Value *Src0 = EmitScalarExpr(E->getArg(0));
17029     Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() });
17030     return Builder.CreateCall(F, { Src0, Builder.getFalse() });
17031   }
17032   case AMDGPU::BI__builtin_amdgcn_ds_faddf:
17033   case AMDGPU::BI__builtin_amdgcn_ds_fminf:
17034   case AMDGPU::BI__builtin_amdgcn_ds_fmaxf: {
17035     Intrinsic::ID Intrin;
17036     switch (BuiltinID) {
17037     case AMDGPU::BI__builtin_amdgcn_ds_faddf:
17038       Intrin = Intrinsic::amdgcn_ds_fadd;
17039       break;
17040     case AMDGPU::BI__builtin_amdgcn_ds_fminf:
17041       Intrin = Intrinsic::amdgcn_ds_fmin;
17042       break;
17043     case AMDGPU::BI__builtin_amdgcn_ds_fmaxf:
17044       Intrin = Intrinsic::amdgcn_ds_fmax;
17045       break;
17046     }
17047     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
17048     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
17049     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
17050     llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
17051     llvm::Value *Src4 = EmitScalarExpr(E->getArg(4));
17052     llvm::Function *F = CGM.getIntrinsic(Intrin, { Src1->getType() });
17053     llvm::FunctionType *FTy = F->getFunctionType();
17054     llvm::Type *PTy = FTy->getParamType(0);
17055     Src0 = Builder.CreatePointerBitCastOrAddrSpaceCast(Src0, PTy);
17056     return Builder.CreateCall(F, { Src0, Src1, Src2, Src3, Src4 });
17057   }
17058   case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f64:
17059   case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f32:
17060   case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2f16:
17061   case AMDGPU::BI__builtin_amdgcn_global_atomic_fmin_f64:
17062   case AMDGPU::BI__builtin_amdgcn_global_atomic_fmax_f64:
17063   case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f64:
17064   case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmin_f64:
17065   case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmax_f64:
17066   case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f32:
17067   case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2f16: {
17068     Intrinsic::ID IID;
17069     llvm::Type *ArgTy = llvm::Type::getDoubleTy(getLLVMContext());
17070     switch (BuiltinID) {
17071     case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f32:
17072       ArgTy = llvm::Type::getFloatTy(getLLVMContext());
17073       IID = Intrinsic::amdgcn_global_atomic_fadd;
17074       break;
17075     case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2f16:
17076       ArgTy = llvm::FixedVectorType::get(
17077           llvm::Type::getHalfTy(getLLVMContext()), 2);
17078       IID = Intrinsic::amdgcn_global_atomic_fadd;
17079       break;
17080     case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f64:
17081       IID = Intrinsic::amdgcn_global_atomic_fadd;
17082       break;
17083     case AMDGPU::BI__builtin_amdgcn_global_atomic_fmin_f64:
17084       IID = Intrinsic::amdgcn_global_atomic_fmin;
17085       break;
17086     case AMDGPU::BI__builtin_amdgcn_global_atomic_fmax_f64:
17087       IID = Intrinsic::amdgcn_global_atomic_fmax;
17088       break;
17089     case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f64:
17090       IID = Intrinsic::amdgcn_flat_atomic_fadd;
17091       break;
17092     case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmin_f64:
17093       IID = Intrinsic::amdgcn_flat_atomic_fmin;
17094       break;
17095     case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmax_f64:
17096       IID = Intrinsic::amdgcn_flat_atomic_fmax;
17097       break;
17098     case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f32:
17099       ArgTy = llvm::Type::getFloatTy(getLLVMContext());
17100       IID = Intrinsic::amdgcn_flat_atomic_fadd;
17101       break;
17102     case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2f16:
17103       ArgTy = llvm::FixedVectorType::get(
17104           llvm::Type::getHalfTy(getLLVMContext()), 2);
17105       IID = Intrinsic::amdgcn_flat_atomic_fadd;
17106       break;
17107     }
17108     llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
17109     llvm::Value *Val = EmitScalarExpr(E->getArg(1));
17110     llvm::Function *F =
17111         CGM.getIntrinsic(IID, {ArgTy, Addr->getType(), Val->getType()});
17112     return Builder.CreateCall(F, {Addr, Val});
17113   }
17114   case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2bf16:
17115   case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2bf16: {
17116     Intrinsic::ID IID;
17117     switch (BuiltinID) {
17118     case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2bf16:
17119       IID = Intrinsic::amdgcn_global_atomic_fadd_v2bf16;
17120       break;
17121     case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2bf16:
17122       IID = Intrinsic::amdgcn_flat_atomic_fadd_v2bf16;
17123       break;
17124     }
17125     llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
17126     llvm::Value *Val = EmitScalarExpr(E->getArg(1));
17127     llvm::Function *F = CGM.getIntrinsic(IID, {Addr->getType()});
17128     return Builder.CreateCall(F, {Addr, Val});
17129   }
17130   case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f64:
17131   case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f32: {
17132     Intrinsic::ID IID;
17133     llvm::Type *ArgTy;
17134     switch (BuiltinID) {
17135     case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f32:
17136       ArgTy = llvm::Type::getFloatTy(getLLVMContext());
17137       IID = Intrinsic::amdgcn_ds_fadd;
17138       break;
17139     case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f64:
17140       ArgTy = llvm::Type::getDoubleTy(getLLVMContext());
17141       IID = Intrinsic::amdgcn_ds_fadd;
17142       break;
17143     }
17144     llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
17145     llvm::Value *Val = EmitScalarExpr(E->getArg(1));
17146     llvm::Constant *ZeroI32 = llvm::ConstantInt::getIntegerValue(
17147         llvm::Type::getInt32Ty(getLLVMContext()), APInt(32, 0, true));
17148     llvm::Constant *ZeroI1 = llvm::ConstantInt::getIntegerValue(
17149         llvm::Type::getInt1Ty(getLLVMContext()), APInt(1, 0));
17150     llvm::Function *F = CGM.getIntrinsic(IID, {ArgTy});
17151     return Builder.CreateCall(F, {Addr, Val, ZeroI32, ZeroI32, ZeroI1});
17152   }
17153   case AMDGPU::BI__builtin_amdgcn_read_exec: {
17154     CallInst *CI = cast<CallInst>(
17155       EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, NormalRead, "exec"));
17156     CI->setConvergent();
17157     return CI;
17158   }
17159   case AMDGPU::BI__builtin_amdgcn_read_exec_lo:
17160   case AMDGPU::BI__builtin_amdgcn_read_exec_hi: {
17161     StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ?
17162       "exec_lo" : "exec_hi";
17163     CallInst *CI = cast<CallInst>(
17164       EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, NormalRead, RegName));
17165     CI->setConvergent();
17166     return CI;
17167   }
17168   case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray:
17169   case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_h:
17170   case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_l:
17171   case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_lh: {
17172     llvm::Value *NodePtr = EmitScalarExpr(E->getArg(0));
17173     llvm::Value *RayExtent = EmitScalarExpr(E->getArg(1));
17174     llvm::Value *RayOrigin = EmitScalarExpr(E->getArg(2));
17175     llvm::Value *RayDir = EmitScalarExpr(E->getArg(3));
17176     llvm::Value *RayInverseDir = EmitScalarExpr(E->getArg(4));
17177     llvm::Value *TextureDescr = EmitScalarExpr(E->getArg(5));
17178 
17179     // The builtins take these arguments as vec4 where the last element is
17180     // ignored. The intrinsic takes them as vec3.
17181     RayOrigin = Builder.CreateShuffleVector(RayOrigin, RayOrigin,
17182                                             ArrayRef<int>{0, 1, 2});
17183     RayDir =
17184         Builder.CreateShuffleVector(RayDir, RayDir, ArrayRef<int>{0, 1, 2});
17185     RayInverseDir = Builder.CreateShuffleVector(RayInverseDir, RayInverseDir,
17186                                                 ArrayRef<int>{0, 1, 2});
17187 
17188     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_image_bvh_intersect_ray,
17189                                    {NodePtr->getType(), RayDir->getType()});
17190     return Builder.CreateCall(F, {NodePtr, RayExtent, RayOrigin, RayDir,
17191                                   RayInverseDir, TextureDescr});
17192   }
17193 
17194   case AMDGPU::BI__builtin_amdgcn_ds_bvh_stack_rtn: {
17195     SmallVector<Value *, 4> Args;
17196     for (int i = 0, e = E->getNumArgs(); i != e; ++i)
17197       Args.push_back(EmitScalarExpr(E->getArg(i)));
17198 
17199     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_ds_bvh_stack_rtn);
17200     Value *Call = Builder.CreateCall(F, Args);
17201     Value *Rtn = Builder.CreateExtractValue(Call, 0);
17202     Value *A = Builder.CreateExtractValue(Call, 1);
17203     llvm::Type *RetTy = ConvertType(E->getType());
17204     Value *I0 = Builder.CreateInsertElement(PoisonValue::get(RetTy), Rtn,
17205                                             (uint64_t)0);
17206     return Builder.CreateInsertElement(I0, A, 1);
17207   }
17208 
17209   case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32:
17210   case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64:
17211   case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w32:
17212   case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w64:
17213   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32:
17214   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w64:
17215   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w32:
17216   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w64:
17217   case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w32:
17218   case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w64:
17219   case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32:
17220   case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w64: {
17221 
17222     // These operations perform a matrix multiplication and accumulation of
17223     // the form:
17224     //             D = A * B + C
17225     // The return type always matches the type of matrix C.
17226     unsigned ArgForMatchingRetType;
17227     unsigned BuiltinWMMAOp;
17228 
17229     switch (BuiltinID) {
17230     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w32:
17231     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w64:
17232       ArgForMatchingRetType = 2;
17233       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_f16;
17234       break;
17235     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32:
17236     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w64:
17237       ArgForMatchingRetType = 2;
17238       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_bf16;
17239       break;
17240     case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w32:
17241     case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w64:
17242       ArgForMatchingRetType = 2;
17243       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f16_16x16x16_f16;
17244       break;
17245     case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32:
17246     case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64:
17247       ArgForMatchingRetType = 2;
17248       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_bf16_16x16x16_bf16;
17249       break;
17250     case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32:
17251     case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w64:
17252       ArgForMatchingRetType = 4;
17253       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_i32_16x16x16_iu8;
17254       break;
17255     case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w32:
17256     case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w64:
17257       ArgForMatchingRetType = 4;
17258       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_i32_16x16x16_iu4;
17259       break;
17260     }
17261 
17262     SmallVector<Value *, 6> Args;
17263     for (int i = 0, e = E->getNumArgs(); i != e; ++i)
17264       Args.push_back(EmitScalarExpr(E->getArg(i)));
17265 
17266     Function *F = CGM.getIntrinsic(BuiltinWMMAOp,
17267                                    {Args[ArgForMatchingRetType]->getType()});
17268 
17269     return Builder.CreateCall(F, Args);
17270   }
17271 
17272   // amdgcn workitem
17273   case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
17274     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
17275   case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
17276     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
17277   case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
17278     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
17279 
17280   // amdgcn workgroup size
17281   case AMDGPU::BI__builtin_amdgcn_workgroup_size_x:
17282     return EmitAMDGPUWorkGroupSize(*this, 0);
17283   case AMDGPU::BI__builtin_amdgcn_workgroup_size_y:
17284     return EmitAMDGPUWorkGroupSize(*this, 1);
17285   case AMDGPU::BI__builtin_amdgcn_workgroup_size_z:
17286     return EmitAMDGPUWorkGroupSize(*this, 2);
17287 
17288   // amdgcn grid size
17289   case AMDGPU::BI__builtin_amdgcn_grid_size_x:
17290     return EmitAMDGPUGridSize(*this, 0);
17291   case AMDGPU::BI__builtin_amdgcn_grid_size_y:
17292     return EmitAMDGPUGridSize(*this, 1);
17293   case AMDGPU::BI__builtin_amdgcn_grid_size_z:
17294     return EmitAMDGPUGridSize(*this, 2);
17295 
17296   // r600 intrinsics
17297   case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
17298   case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
17299     return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee);
17300   case AMDGPU::BI__builtin_r600_read_tidig_x:
17301     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
17302   case AMDGPU::BI__builtin_r600_read_tidig_y:
17303     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
17304   case AMDGPU::BI__builtin_r600_read_tidig_z:
17305     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
17306   case AMDGPU::BI__builtin_amdgcn_alignbit: {
17307     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
17308     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
17309     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
17310     Function *F = CGM.getIntrinsic(Intrinsic::fshr, Src0->getType());
17311     return Builder.CreateCall(F, { Src0, Src1, Src2 });
17312   }
17313   case AMDGPU::BI__builtin_amdgcn_fence: {
17314     ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(0)),
17315                             EmitScalarExpr(E->getArg(1)), AO, SSID);
17316     return Builder.CreateFence(AO, SSID);
17317   }
17318   case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
17319   case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
17320   case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
17321   case AMDGPU::BI__builtin_amdgcn_atomic_dec64: {
17322     unsigned BuiltinAtomicOp;
17323     llvm::Type *ResultType = ConvertType(E->getType());
17324 
17325     switch (BuiltinID) {
17326     case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
17327     case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
17328       BuiltinAtomicOp = Intrinsic::amdgcn_atomic_inc;
17329       break;
17330     case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
17331     case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
17332       BuiltinAtomicOp = Intrinsic::amdgcn_atomic_dec;
17333       break;
17334     }
17335 
17336     Value *Ptr = EmitScalarExpr(E->getArg(0));
17337     Value *Val = EmitScalarExpr(E->getArg(1));
17338 
17339     llvm::Function *F =
17340         CGM.getIntrinsic(BuiltinAtomicOp, {ResultType, Ptr->getType()});
17341 
17342     ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(2)),
17343                             EmitScalarExpr(E->getArg(3)), AO, SSID);
17344 
17345     // llvm.amdgcn.atomic.inc and llvm.amdgcn.atomic.dec expects ordering and
17346     // scope as unsigned values
17347     Value *MemOrder = Builder.getInt32(static_cast<int>(AO));
17348     Value *MemScope = Builder.getInt32(static_cast<int>(SSID));
17349 
17350     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
17351     bool Volatile =
17352       PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
17353     Value *IsVolatile = Builder.getInt1(static_cast<bool>(Volatile));
17354 
17355     return Builder.CreateCall(F, {Ptr, Val, MemOrder, MemScope, IsVolatile});
17356   }
17357   case AMDGPU::BI__builtin_amdgcn_s_sendmsg_rtn:
17358   case AMDGPU::BI__builtin_amdgcn_s_sendmsg_rtnl: {
17359     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
17360     llvm::Type *ResultType = ConvertType(E->getType());
17361     // s_sendmsg_rtn is mangled using return type only.
17362     Function *F =
17363         CGM.getIntrinsic(Intrinsic::amdgcn_s_sendmsg_rtn, {ResultType});
17364     return Builder.CreateCall(F, {Arg});
17365   }
17366   default:
17367     return nullptr;
17368   }
17369 }
17370 
17371 /// Handle a SystemZ function in which the final argument is a pointer
17372 /// to an int that receives the post-instruction CC value.  At the LLVM level
17373 /// this is represented as a function that returns a {result, cc} pair.
17374 static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
17375                                          unsigned IntrinsicID,
17376                                          const CallExpr *E) {
17377   unsigned NumArgs = E->getNumArgs() - 1;
17378   SmallVector<Value *, 8> Args(NumArgs);
17379   for (unsigned I = 0; I < NumArgs; ++I)
17380     Args[I] = CGF.EmitScalarExpr(E->getArg(I));
17381   Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
17382   Function *F = CGF.CGM.getIntrinsic(IntrinsicID);
17383   Value *Call = CGF.Builder.CreateCall(F, Args);
17384   Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
17385   CGF.Builder.CreateStore(CC, CCPtr);
17386   return CGF.Builder.CreateExtractValue(Call, 0);
17387 }
17388 
17389 Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
17390                                                const CallExpr *E) {
17391   switch (BuiltinID) {
17392   case SystemZ::BI__builtin_tbegin: {
17393     Value *TDB = EmitScalarExpr(E->getArg(0));
17394     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
17395     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
17396     return Builder.CreateCall(F, {TDB, Control});
17397   }
17398   case SystemZ::BI__builtin_tbegin_nofloat: {
17399     Value *TDB = EmitScalarExpr(E->getArg(0));
17400     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
17401     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
17402     return Builder.CreateCall(F, {TDB, Control});
17403   }
17404   case SystemZ::BI__builtin_tbeginc: {
17405     Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
17406     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
17407     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
17408     return Builder.CreateCall(F, {TDB, Control});
17409   }
17410   case SystemZ::BI__builtin_tabort: {
17411     Value *Data = EmitScalarExpr(E->getArg(0));
17412     Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
17413     return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
17414   }
17415   case SystemZ::BI__builtin_non_tx_store: {
17416     Value *Address = EmitScalarExpr(E->getArg(0));
17417     Value *Data = EmitScalarExpr(E->getArg(1));
17418     Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
17419     return Builder.CreateCall(F, {Data, Address});
17420   }
17421 
17422   // Vector builtins.  Note that most vector builtins are mapped automatically
17423   // to target-specific LLVM intrinsics.  The ones handled specially here can
17424   // be represented via standard LLVM IR, which is preferable to enable common
17425   // LLVM optimizations.
17426 
17427   case SystemZ::BI__builtin_s390_vpopctb:
17428   case SystemZ::BI__builtin_s390_vpopcth:
17429   case SystemZ::BI__builtin_s390_vpopctf:
17430   case SystemZ::BI__builtin_s390_vpopctg: {
17431     llvm::Type *ResultType = ConvertType(E->getType());
17432     Value *X = EmitScalarExpr(E->getArg(0));
17433     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
17434     return Builder.CreateCall(F, X);
17435   }
17436 
17437   case SystemZ::BI__builtin_s390_vclzb:
17438   case SystemZ::BI__builtin_s390_vclzh:
17439   case SystemZ::BI__builtin_s390_vclzf:
17440   case SystemZ::BI__builtin_s390_vclzg: {
17441     llvm::Type *ResultType = ConvertType(E->getType());
17442     Value *X = EmitScalarExpr(E->getArg(0));
17443     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
17444     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
17445     return Builder.CreateCall(F, {X, Undef});
17446   }
17447 
17448   case SystemZ::BI__builtin_s390_vctzb:
17449   case SystemZ::BI__builtin_s390_vctzh:
17450   case SystemZ::BI__builtin_s390_vctzf:
17451   case SystemZ::BI__builtin_s390_vctzg: {
17452     llvm::Type *ResultType = ConvertType(E->getType());
17453     Value *X = EmitScalarExpr(E->getArg(0));
17454     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
17455     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
17456     return Builder.CreateCall(F, {X, Undef});
17457   }
17458 
17459   case SystemZ::BI__builtin_s390_vfsqsb:
17460   case SystemZ::BI__builtin_s390_vfsqdb: {
17461     llvm::Type *ResultType = ConvertType(E->getType());
17462     Value *X = EmitScalarExpr(E->getArg(0));
17463     if (Builder.getIsFPConstrained()) {
17464       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, ResultType);
17465       return Builder.CreateConstrainedFPCall(F, { X });
17466     } else {
17467       Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
17468       return Builder.CreateCall(F, X);
17469     }
17470   }
17471   case SystemZ::BI__builtin_s390_vfmasb:
17472   case SystemZ::BI__builtin_s390_vfmadb: {
17473     llvm::Type *ResultType = ConvertType(E->getType());
17474     Value *X = EmitScalarExpr(E->getArg(0));
17475     Value *Y = EmitScalarExpr(E->getArg(1));
17476     Value *Z = EmitScalarExpr(E->getArg(2));
17477     if (Builder.getIsFPConstrained()) {
17478       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
17479       return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
17480     } else {
17481       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
17482       return Builder.CreateCall(F, {X, Y, Z});
17483     }
17484   }
17485   case SystemZ::BI__builtin_s390_vfmssb:
17486   case SystemZ::BI__builtin_s390_vfmsdb: {
17487     llvm::Type *ResultType = ConvertType(E->getType());
17488     Value *X = EmitScalarExpr(E->getArg(0));
17489     Value *Y = EmitScalarExpr(E->getArg(1));
17490     Value *Z = EmitScalarExpr(E->getArg(2));
17491     if (Builder.getIsFPConstrained()) {
17492       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
17493       return Builder.CreateConstrainedFPCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
17494     } else {
17495       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
17496       return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
17497     }
17498   }
17499   case SystemZ::BI__builtin_s390_vfnmasb:
17500   case SystemZ::BI__builtin_s390_vfnmadb: {
17501     llvm::Type *ResultType = ConvertType(E->getType());
17502     Value *X = EmitScalarExpr(E->getArg(0));
17503     Value *Y = EmitScalarExpr(E->getArg(1));
17504     Value *Z = EmitScalarExpr(E->getArg(2));
17505     if (Builder.getIsFPConstrained()) {
17506       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
17507       return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y,  Z}), "neg");
17508     } else {
17509       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
17510       return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
17511     }
17512   }
17513   case SystemZ::BI__builtin_s390_vfnmssb:
17514   case SystemZ::BI__builtin_s390_vfnmsdb: {
17515     llvm::Type *ResultType = ConvertType(E->getType());
17516     Value *X = EmitScalarExpr(E->getArg(0));
17517     Value *Y = EmitScalarExpr(E->getArg(1));
17518     Value *Z = EmitScalarExpr(E->getArg(2));
17519     if (Builder.getIsFPConstrained()) {
17520       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
17521       Value *NegZ = Builder.CreateFNeg(Z, "sub");
17522       return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, NegZ}));
17523     } else {
17524       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
17525       Value *NegZ = Builder.CreateFNeg(Z, "neg");
17526       return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, NegZ}));
17527     }
17528   }
17529   case SystemZ::BI__builtin_s390_vflpsb:
17530   case SystemZ::BI__builtin_s390_vflpdb: {
17531     llvm::Type *ResultType = ConvertType(E->getType());
17532     Value *X = EmitScalarExpr(E->getArg(0));
17533     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
17534     return Builder.CreateCall(F, X);
17535   }
17536   case SystemZ::BI__builtin_s390_vflnsb:
17537   case SystemZ::BI__builtin_s390_vflndb: {
17538     llvm::Type *ResultType = ConvertType(E->getType());
17539     Value *X = EmitScalarExpr(E->getArg(0));
17540     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
17541     return Builder.CreateFNeg(Builder.CreateCall(F, X), "neg");
17542   }
17543   case SystemZ::BI__builtin_s390_vfisb:
17544   case SystemZ::BI__builtin_s390_vfidb: {
17545     llvm::Type *ResultType = ConvertType(E->getType());
17546     Value *X = EmitScalarExpr(E->getArg(0));
17547     // Constant-fold the M4 and M5 mask arguments.
17548     llvm::APSInt M4 = *E->getArg(1)->getIntegerConstantExpr(getContext());
17549     llvm::APSInt M5 = *E->getArg(2)->getIntegerConstantExpr(getContext());
17550     // Check whether this instance can be represented via a LLVM standard
17551     // intrinsic.  We only support some combinations of M4 and M5.
17552     Intrinsic::ID ID = Intrinsic::not_intrinsic;
17553     Intrinsic::ID CI;
17554     switch (M4.getZExtValue()) {
17555     default: break;
17556     case 0:  // IEEE-inexact exception allowed
17557       switch (M5.getZExtValue()) {
17558       default: break;
17559       case 0: ID = Intrinsic::rint;
17560               CI = Intrinsic::experimental_constrained_rint; break;
17561       }
17562       break;
17563     case 4:  // IEEE-inexact exception suppressed
17564       switch (M5.getZExtValue()) {
17565       default: break;
17566       case 0: ID = Intrinsic::nearbyint;
17567               CI = Intrinsic::experimental_constrained_nearbyint; break;
17568       case 1: ID = Intrinsic::round;
17569               CI = Intrinsic::experimental_constrained_round; break;
17570       case 5: ID = Intrinsic::trunc;
17571               CI = Intrinsic::experimental_constrained_trunc; break;
17572       case 6: ID = Intrinsic::ceil;
17573               CI = Intrinsic::experimental_constrained_ceil; break;
17574       case 7: ID = Intrinsic::floor;
17575               CI = Intrinsic::experimental_constrained_floor; break;
17576       }
17577       break;
17578     }
17579     if (ID != Intrinsic::not_intrinsic) {
17580       if (Builder.getIsFPConstrained()) {
17581         Function *F = CGM.getIntrinsic(CI, ResultType);
17582         return Builder.CreateConstrainedFPCall(F, X);
17583       } else {
17584         Function *F = CGM.getIntrinsic(ID, ResultType);
17585         return Builder.CreateCall(F, X);
17586       }
17587     }
17588     switch (BuiltinID) { // FIXME: constrained version?
17589       case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break;
17590       case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break;
17591       default: llvm_unreachable("Unknown BuiltinID");
17592     }
17593     Function *F = CGM.getIntrinsic(ID);
17594     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
17595     Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
17596     return Builder.CreateCall(F, {X, M4Value, M5Value});
17597   }
17598   case SystemZ::BI__builtin_s390_vfmaxsb:
17599   case SystemZ::BI__builtin_s390_vfmaxdb: {
17600     llvm::Type *ResultType = ConvertType(E->getType());
17601     Value *X = EmitScalarExpr(E->getArg(0));
17602     Value *Y = EmitScalarExpr(E->getArg(1));
17603     // Constant-fold the M4 mask argument.
17604     llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
17605     // Check whether this instance can be represented via a LLVM standard
17606     // intrinsic.  We only support some values of M4.
17607     Intrinsic::ID ID = Intrinsic::not_intrinsic;
17608     Intrinsic::ID CI;
17609     switch (M4.getZExtValue()) {
17610     default: break;
17611     case 4: ID = Intrinsic::maxnum;
17612             CI = Intrinsic::experimental_constrained_maxnum; break;
17613     }
17614     if (ID != Intrinsic::not_intrinsic) {
17615       if (Builder.getIsFPConstrained()) {
17616         Function *F = CGM.getIntrinsic(CI, ResultType);
17617         return Builder.CreateConstrainedFPCall(F, {X, Y});
17618       } else {
17619         Function *F = CGM.getIntrinsic(ID, ResultType);
17620         return Builder.CreateCall(F, {X, Y});
17621       }
17622     }
17623     switch (BuiltinID) {
17624       case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break;
17625       case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break;
17626       default: llvm_unreachable("Unknown BuiltinID");
17627     }
17628     Function *F = CGM.getIntrinsic(ID);
17629     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
17630     return Builder.CreateCall(F, {X, Y, M4Value});
17631   }
17632   case SystemZ::BI__builtin_s390_vfminsb:
17633   case SystemZ::BI__builtin_s390_vfmindb: {
17634     llvm::Type *ResultType = ConvertType(E->getType());
17635     Value *X = EmitScalarExpr(E->getArg(0));
17636     Value *Y = EmitScalarExpr(E->getArg(1));
17637     // Constant-fold the M4 mask argument.
17638     llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
17639     // Check whether this instance can be represented via a LLVM standard
17640     // intrinsic.  We only support some values of M4.
17641     Intrinsic::ID ID = Intrinsic::not_intrinsic;
17642     Intrinsic::ID CI;
17643     switch (M4.getZExtValue()) {
17644     default: break;
17645     case 4: ID = Intrinsic::minnum;
17646             CI = Intrinsic::experimental_constrained_minnum; break;
17647     }
17648     if (ID != Intrinsic::not_intrinsic) {
17649       if (Builder.getIsFPConstrained()) {
17650         Function *F = CGM.getIntrinsic(CI, ResultType);
17651         return Builder.CreateConstrainedFPCall(F, {X, Y});
17652       } else {
17653         Function *F = CGM.getIntrinsic(ID, ResultType);
17654         return Builder.CreateCall(F, {X, Y});
17655       }
17656     }
17657     switch (BuiltinID) {
17658       case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break;
17659       case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break;
17660       default: llvm_unreachable("Unknown BuiltinID");
17661     }
17662     Function *F = CGM.getIntrinsic(ID);
17663     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
17664     return Builder.CreateCall(F, {X, Y, M4Value});
17665   }
17666 
17667   case SystemZ::BI__builtin_s390_vlbrh:
17668   case SystemZ::BI__builtin_s390_vlbrf:
17669   case SystemZ::BI__builtin_s390_vlbrg: {
17670     llvm::Type *ResultType = ConvertType(E->getType());
17671     Value *X = EmitScalarExpr(E->getArg(0));
17672     Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType);
17673     return Builder.CreateCall(F, X);
17674   }
17675 
17676   // Vector intrinsics that output the post-instruction CC value.
17677 
17678 #define INTRINSIC_WITH_CC(NAME) \
17679     case SystemZ::BI__builtin_##NAME: \
17680       return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
17681 
17682   INTRINSIC_WITH_CC(s390_vpkshs);
17683   INTRINSIC_WITH_CC(s390_vpksfs);
17684   INTRINSIC_WITH_CC(s390_vpksgs);
17685 
17686   INTRINSIC_WITH_CC(s390_vpklshs);
17687   INTRINSIC_WITH_CC(s390_vpklsfs);
17688   INTRINSIC_WITH_CC(s390_vpklsgs);
17689 
17690   INTRINSIC_WITH_CC(s390_vceqbs);
17691   INTRINSIC_WITH_CC(s390_vceqhs);
17692   INTRINSIC_WITH_CC(s390_vceqfs);
17693   INTRINSIC_WITH_CC(s390_vceqgs);
17694 
17695   INTRINSIC_WITH_CC(s390_vchbs);
17696   INTRINSIC_WITH_CC(s390_vchhs);
17697   INTRINSIC_WITH_CC(s390_vchfs);
17698   INTRINSIC_WITH_CC(s390_vchgs);
17699 
17700   INTRINSIC_WITH_CC(s390_vchlbs);
17701   INTRINSIC_WITH_CC(s390_vchlhs);
17702   INTRINSIC_WITH_CC(s390_vchlfs);
17703   INTRINSIC_WITH_CC(s390_vchlgs);
17704 
17705   INTRINSIC_WITH_CC(s390_vfaebs);
17706   INTRINSIC_WITH_CC(s390_vfaehs);
17707   INTRINSIC_WITH_CC(s390_vfaefs);
17708 
17709   INTRINSIC_WITH_CC(s390_vfaezbs);
17710   INTRINSIC_WITH_CC(s390_vfaezhs);
17711   INTRINSIC_WITH_CC(s390_vfaezfs);
17712 
17713   INTRINSIC_WITH_CC(s390_vfeebs);
17714   INTRINSIC_WITH_CC(s390_vfeehs);
17715   INTRINSIC_WITH_CC(s390_vfeefs);
17716 
17717   INTRINSIC_WITH_CC(s390_vfeezbs);
17718   INTRINSIC_WITH_CC(s390_vfeezhs);
17719   INTRINSIC_WITH_CC(s390_vfeezfs);
17720 
17721   INTRINSIC_WITH_CC(s390_vfenebs);
17722   INTRINSIC_WITH_CC(s390_vfenehs);
17723   INTRINSIC_WITH_CC(s390_vfenefs);
17724 
17725   INTRINSIC_WITH_CC(s390_vfenezbs);
17726   INTRINSIC_WITH_CC(s390_vfenezhs);
17727   INTRINSIC_WITH_CC(s390_vfenezfs);
17728 
17729   INTRINSIC_WITH_CC(s390_vistrbs);
17730   INTRINSIC_WITH_CC(s390_vistrhs);
17731   INTRINSIC_WITH_CC(s390_vistrfs);
17732 
17733   INTRINSIC_WITH_CC(s390_vstrcbs);
17734   INTRINSIC_WITH_CC(s390_vstrchs);
17735   INTRINSIC_WITH_CC(s390_vstrcfs);
17736 
17737   INTRINSIC_WITH_CC(s390_vstrczbs);
17738   INTRINSIC_WITH_CC(s390_vstrczhs);
17739   INTRINSIC_WITH_CC(s390_vstrczfs);
17740 
17741   INTRINSIC_WITH_CC(s390_vfcesbs);
17742   INTRINSIC_WITH_CC(s390_vfcedbs);
17743   INTRINSIC_WITH_CC(s390_vfchsbs);
17744   INTRINSIC_WITH_CC(s390_vfchdbs);
17745   INTRINSIC_WITH_CC(s390_vfchesbs);
17746   INTRINSIC_WITH_CC(s390_vfchedbs);
17747 
17748   INTRINSIC_WITH_CC(s390_vftcisb);
17749   INTRINSIC_WITH_CC(s390_vftcidb);
17750 
17751   INTRINSIC_WITH_CC(s390_vstrsb);
17752   INTRINSIC_WITH_CC(s390_vstrsh);
17753   INTRINSIC_WITH_CC(s390_vstrsf);
17754 
17755   INTRINSIC_WITH_CC(s390_vstrszb);
17756   INTRINSIC_WITH_CC(s390_vstrszh);
17757   INTRINSIC_WITH_CC(s390_vstrszf);
17758 
17759 #undef INTRINSIC_WITH_CC
17760 
17761   default:
17762     return nullptr;
17763   }
17764 }
17765 
17766 namespace {
17767 // Helper classes for mapping MMA builtins to particular LLVM intrinsic variant.
17768 struct NVPTXMmaLdstInfo {
17769   unsigned NumResults;  // Number of elements to load/store
17770   // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported.
17771   unsigned IID_col;
17772   unsigned IID_row;
17773 };
17774 
17775 #define MMA_INTR(geom_op_type, layout) \
17776   Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride
17777 #define MMA_LDST(n, geom_op_type)                                              \
17778   { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) }
17779 
17780 static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) {
17781   switch (BuiltinID) {
17782   // FP MMA loads
17783   case NVPTX::BI__hmma_m16n16k16_ld_a:
17784     return MMA_LDST(8, m16n16k16_load_a_f16);
17785   case NVPTX::BI__hmma_m16n16k16_ld_b:
17786     return MMA_LDST(8, m16n16k16_load_b_f16);
17787   case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
17788     return MMA_LDST(4, m16n16k16_load_c_f16);
17789   case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
17790     return MMA_LDST(8, m16n16k16_load_c_f32);
17791   case NVPTX::BI__hmma_m32n8k16_ld_a:
17792     return MMA_LDST(8, m32n8k16_load_a_f16);
17793   case NVPTX::BI__hmma_m32n8k16_ld_b:
17794     return MMA_LDST(8, m32n8k16_load_b_f16);
17795   case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
17796     return MMA_LDST(4, m32n8k16_load_c_f16);
17797   case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
17798     return MMA_LDST(8, m32n8k16_load_c_f32);
17799   case NVPTX::BI__hmma_m8n32k16_ld_a:
17800     return MMA_LDST(8, m8n32k16_load_a_f16);
17801   case NVPTX::BI__hmma_m8n32k16_ld_b:
17802     return MMA_LDST(8, m8n32k16_load_b_f16);
17803   case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
17804     return MMA_LDST(4, m8n32k16_load_c_f16);
17805   case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
17806     return MMA_LDST(8, m8n32k16_load_c_f32);
17807 
17808   // Integer MMA loads
17809   case NVPTX::BI__imma_m16n16k16_ld_a_s8:
17810     return MMA_LDST(2, m16n16k16_load_a_s8);
17811   case NVPTX::BI__imma_m16n16k16_ld_a_u8:
17812     return MMA_LDST(2, m16n16k16_load_a_u8);
17813   case NVPTX::BI__imma_m16n16k16_ld_b_s8:
17814     return MMA_LDST(2, m16n16k16_load_b_s8);
17815   case NVPTX::BI__imma_m16n16k16_ld_b_u8:
17816     return MMA_LDST(2, m16n16k16_load_b_u8);
17817   case NVPTX::BI__imma_m16n16k16_ld_c:
17818     return MMA_LDST(8, m16n16k16_load_c_s32);
17819   case NVPTX::BI__imma_m32n8k16_ld_a_s8:
17820     return MMA_LDST(4, m32n8k16_load_a_s8);
17821   case NVPTX::BI__imma_m32n8k16_ld_a_u8:
17822     return MMA_LDST(4, m32n8k16_load_a_u8);
17823   case NVPTX::BI__imma_m32n8k16_ld_b_s8:
17824     return MMA_LDST(1, m32n8k16_load_b_s8);
17825   case NVPTX::BI__imma_m32n8k16_ld_b_u8:
17826     return MMA_LDST(1, m32n8k16_load_b_u8);
17827   case NVPTX::BI__imma_m32n8k16_ld_c:
17828     return MMA_LDST(8, m32n8k16_load_c_s32);
17829   case NVPTX::BI__imma_m8n32k16_ld_a_s8:
17830     return MMA_LDST(1, m8n32k16_load_a_s8);
17831   case NVPTX::BI__imma_m8n32k16_ld_a_u8:
17832     return MMA_LDST(1, m8n32k16_load_a_u8);
17833   case NVPTX::BI__imma_m8n32k16_ld_b_s8:
17834     return MMA_LDST(4, m8n32k16_load_b_s8);
17835   case NVPTX::BI__imma_m8n32k16_ld_b_u8:
17836     return MMA_LDST(4, m8n32k16_load_b_u8);
17837   case NVPTX::BI__imma_m8n32k16_ld_c:
17838     return MMA_LDST(8, m8n32k16_load_c_s32);
17839 
17840   // Sub-integer MMA loads.
17841   // Only row/col layout is supported by A/B fragments.
17842   case NVPTX::BI__imma_m8n8k32_ld_a_s4:
17843     return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)};
17844   case NVPTX::BI__imma_m8n8k32_ld_a_u4:
17845     return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)};
17846   case NVPTX::BI__imma_m8n8k32_ld_b_s4:
17847     return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0};
17848   case NVPTX::BI__imma_m8n8k32_ld_b_u4:
17849     return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0};
17850   case NVPTX::BI__imma_m8n8k32_ld_c:
17851     return MMA_LDST(2, m8n8k32_load_c_s32);
17852   case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
17853     return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)};
17854   case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
17855     return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0};
17856   case NVPTX::BI__bmma_m8n8k128_ld_c:
17857     return MMA_LDST(2, m8n8k128_load_c_s32);
17858 
17859   // Double MMA loads
17860   case NVPTX::BI__dmma_m8n8k4_ld_a:
17861     return MMA_LDST(1, m8n8k4_load_a_f64);
17862   case NVPTX::BI__dmma_m8n8k4_ld_b:
17863     return MMA_LDST(1, m8n8k4_load_b_f64);
17864   case NVPTX::BI__dmma_m8n8k4_ld_c:
17865     return MMA_LDST(2, m8n8k4_load_c_f64);
17866 
17867   // Alternate float MMA loads
17868   case NVPTX::BI__mma_bf16_m16n16k16_ld_a:
17869     return MMA_LDST(4, m16n16k16_load_a_bf16);
17870   case NVPTX::BI__mma_bf16_m16n16k16_ld_b:
17871     return MMA_LDST(4, m16n16k16_load_b_bf16);
17872   case NVPTX::BI__mma_bf16_m8n32k16_ld_a:
17873     return MMA_LDST(2, m8n32k16_load_a_bf16);
17874   case NVPTX::BI__mma_bf16_m8n32k16_ld_b:
17875     return MMA_LDST(8, m8n32k16_load_b_bf16);
17876   case NVPTX::BI__mma_bf16_m32n8k16_ld_a:
17877     return MMA_LDST(8, m32n8k16_load_a_bf16);
17878   case NVPTX::BI__mma_bf16_m32n8k16_ld_b:
17879     return MMA_LDST(2, m32n8k16_load_b_bf16);
17880   case NVPTX::BI__mma_tf32_m16n16k8_ld_a:
17881     return MMA_LDST(4, m16n16k8_load_a_tf32);
17882   case NVPTX::BI__mma_tf32_m16n16k8_ld_b:
17883     return MMA_LDST(4, m16n16k8_load_b_tf32);
17884   case NVPTX::BI__mma_tf32_m16n16k8_ld_c:
17885     return MMA_LDST(8, m16n16k8_load_c_f32);
17886 
17887   // NOTE: We need to follow inconsitent naming scheme used by NVCC.  Unlike
17888   // PTX and LLVM IR where stores always use fragment D, NVCC builtins always
17889   // use fragment C for both loads and stores.
17890   // FP MMA stores.
17891   case NVPTX::BI__hmma_m16n16k16_st_c_f16:
17892     return MMA_LDST(4, m16n16k16_store_d_f16);
17893   case NVPTX::BI__hmma_m16n16k16_st_c_f32:
17894     return MMA_LDST(8, m16n16k16_store_d_f32);
17895   case NVPTX::BI__hmma_m32n8k16_st_c_f16:
17896     return MMA_LDST(4, m32n8k16_store_d_f16);
17897   case NVPTX::BI__hmma_m32n8k16_st_c_f32:
17898     return MMA_LDST(8, m32n8k16_store_d_f32);
17899   case NVPTX::BI__hmma_m8n32k16_st_c_f16:
17900     return MMA_LDST(4, m8n32k16_store_d_f16);
17901   case NVPTX::BI__hmma_m8n32k16_st_c_f32:
17902     return MMA_LDST(8, m8n32k16_store_d_f32);
17903 
17904   // Integer and sub-integer MMA stores.
17905   // Another naming quirk. Unlike other MMA builtins that use PTX types in the
17906   // name, integer loads/stores use LLVM's i32.
17907   case NVPTX::BI__imma_m16n16k16_st_c_i32:
17908     return MMA_LDST(8, m16n16k16_store_d_s32);
17909   case NVPTX::BI__imma_m32n8k16_st_c_i32:
17910     return MMA_LDST(8, m32n8k16_store_d_s32);
17911   case NVPTX::BI__imma_m8n32k16_st_c_i32:
17912     return MMA_LDST(8, m8n32k16_store_d_s32);
17913   case NVPTX::BI__imma_m8n8k32_st_c_i32:
17914     return MMA_LDST(2, m8n8k32_store_d_s32);
17915   case NVPTX::BI__bmma_m8n8k128_st_c_i32:
17916     return MMA_LDST(2, m8n8k128_store_d_s32);
17917 
17918   // Double MMA store
17919   case NVPTX::BI__dmma_m8n8k4_st_c_f64:
17920     return MMA_LDST(2, m8n8k4_store_d_f64);
17921 
17922   // Alternate float MMA store
17923   case NVPTX::BI__mma_m16n16k8_st_c_f32:
17924     return MMA_LDST(8, m16n16k8_store_d_f32);
17925 
17926   default:
17927     llvm_unreachable("Unknown MMA builtin");
17928   }
17929 }
17930 #undef MMA_LDST
17931 #undef MMA_INTR
17932 
17933 
17934 struct NVPTXMmaInfo {
17935   unsigned NumEltsA;
17936   unsigned NumEltsB;
17937   unsigned NumEltsC;
17938   unsigned NumEltsD;
17939 
17940   // Variants are ordered by layout-A/layout-B/satf, where 'row' has priority
17941   // over 'col' for layout. The index of non-satf variants is expected to match
17942   // the undocumented layout constants used by CUDA's mma.hpp.
17943   std::array<unsigned, 8> Variants;
17944 
17945   unsigned getMMAIntrinsic(int Layout, bool Satf) {
17946     unsigned Index = Layout + 4 * Satf;
17947     if (Index >= Variants.size())
17948       return 0;
17949     return Variants[Index];
17950   }
17951 };
17952 
17953   // Returns an intrinsic that matches Layout and Satf for valid combinations of
17954   // Layout and Satf, 0 otherwise.
17955 static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) {
17956   // clang-format off
17957 #define MMA_VARIANTS(geom, type)                                    \
17958       Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type,             \
17959       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
17960       Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type,             \
17961       Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type
17962 #define MMA_SATF_VARIANTS(geom, type)                               \
17963       MMA_VARIANTS(geom, type),                                     \
17964       Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \
17965       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
17966       Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \
17967       Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite
17968 // Sub-integer MMA only supports row.col layout.
17969 #define MMA_VARIANTS_I4(geom, type) \
17970       0, \
17971       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
17972       0, \
17973       0, \
17974       0, \
17975       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
17976       0, \
17977       0
17978 // b1 MMA does not support .satfinite.
17979 #define MMA_VARIANTS_B1_XOR(geom, type) \
17980       0, \
17981       Intrinsic::nvvm_wmma_##geom##_mma_xor_popc_row_col_##type,             \
17982       0, \
17983       0, \
17984       0, \
17985       0, \
17986       0, \
17987       0
17988 #define MMA_VARIANTS_B1_AND(geom, type) \
17989       0, \
17990       Intrinsic::nvvm_wmma_##geom##_mma_and_popc_row_col_##type,             \
17991       0, \
17992       0, \
17993       0, \
17994       0, \
17995       0, \
17996       0
17997   // clang-format on
17998   switch (BuiltinID) {
17999   // FP MMA
18000   // Note that 'type' argument of MMA_SATF_VARIANTS uses D_C notation, while
18001   // NumEltsN of return value are ordered as A,B,C,D.
18002   case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
18003     return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m16n16k16, f16_f16)}}};
18004   case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
18005     return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m16n16k16, f32_f16)}}};
18006   case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
18007     return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m16n16k16, f16_f32)}}};
18008   case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
18009     return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, f32_f32)}}};
18010   case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
18011     return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m32n8k16, f16_f16)}}};
18012   case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
18013     return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m32n8k16, f32_f16)}}};
18014   case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
18015     return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m32n8k16, f16_f32)}}};
18016   case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
18017     return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, f32_f32)}}};
18018   case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
18019     return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m8n32k16, f16_f16)}}};
18020   case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
18021     return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m8n32k16, f32_f16)}}};
18022   case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
18023     return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m8n32k16, f16_f32)}}};
18024   case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
18025     return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, f32_f32)}}};
18026 
18027   // Integer MMA
18028   case NVPTX::BI__imma_m16n16k16_mma_s8:
18029     return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, s8)}}};
18030   case NVPTX::BI__imma_m16n16k16_mma_u8:
18031     return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, u8)}}};
18032   case NVPTX::BI__imma_m32n8k16_mma_s8:
18033     return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, s8)}}};
18034   case NVPTX::BI__imma_m32n8k16_mma_u8:
18035     return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, u8)}}};
18036   case NVPTX::BI__imma_m8n32k16_mma_s8:
18037     return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, s8)}}};
18038   case NVPTX::BI__imma_m8n32k16_mma_u8:
18039     return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, u8)}}};
18040 
18041   // Sub-integer MMA
18042   case NVPTX::BI__imma_m8n8k32_mma_s4:
18043     return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32, s4)}}};
18044   case NVPTX::BI__imma_m8n8k32_mma_u4:
18045     return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32, u4)}}};
18046   case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
18047     return {1, 1, 2, 2, {{MMA_VARIANTS_B1_XOR(m8n8k128, b1)}}};
18048   case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1:
18049     return {1, 1, 2, 2, {{MMA_VARIANTS_B1_AND(m8n8k128, b1)}}};
18050 
18051   // Double MMA
18052   case NVPTX::BI__dmma_m8n8k4_mma_f64:
18053     return {1, 1, 2, 2, {{MMA_VARIANTS(m8n8k4, f64)}}};
18054 
18055   // Alternate FP MMA
18056   case NVPTX::BI__mma_bf16_m16n16k16_mma_f32:
18057     return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k16, bf16)}}};
18058   case NVPTX::BI__mma_bf16_m8n32k16_mma_f32:
18059     return {2, 8, 8, 8, {{MMA_VARIANTS(m8n32k16, bf16)}}};
18060   case NVPTX::BI__mma_bf16_m32n8k16_mma_f32:
18061     return {8, 2, 8, 8, {{MMA_VARIANTS(m32n8k16, bf16)}}};
18062   case NVPTX::BI__mma_tf32_m16n16k8_mma_f32:
18063     return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k8, tf32)}}};
18064   default:
18065     llvm_unreachable("Unexpected builtin ID.");
18066   }
18067 #undef MMA_VARIANTS
18068 #undef MMA_SATF_VARIANTS
18069 #undef MMA_VARIANTS_I4
18070 #undef MMA_VARIANTS_B1_AND
18071 #undef MMA_VARIANTS_B1_XOR
18072 }
18073 
18074 } // namespace
18075 
18076 Value *
18077 CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E) {
18078   auto MakeLdg = [&](unsigned IntrinsicID) {
18079     Value *Ptr = EmitScalarExpr(E->getArg(0));
18080     QualType ArgType = E->getArg(0)->getType();
18081     clang::CharUnits Align = CGM.getNaturalPointeeTypeAlignment(ArgType);
18082     llvm::Type *ElemTy = ConvertTypeForMem(ArgType->getPointeeType());
18083     return Builder.CreateCall(
18084         CGM.getIntrinsic(IntrinsicID, {ElemTy, Ptr->getType()}),
18085         {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())});
18086   };
18087   auto MakeScopedAtomic = [&](unsigned IntrinsicID) {
18088     Value *Ptr = EmitScalarExpr(E->getArg(0));
18089     llvm::Type *ElemTy =
18090         ConvertTypeForMem(E->getArg(0)->getType()->getPointeeType());
18091     return Builder.CreateCall(
18092         CGM.getIntrinsic(IntrinsicID, {ElemTy, Ptr->getType()}),
18093         {Ptr, EmitScalarExpr(E->getArg(1))});
18094   };
18095   switch (BuiltinID) {
18096   case NVPTX::BI__nvvm_atom_add_gen_i:
18097   case NVPTX::BI__nvvm_atom_add_gen_l:
18098   case NVPTX::BI__nvvm_atom_add_gen_ll:
18099     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
18100 
18101   case NVPTX::BI__nvvm_atom_sub_gen_i:
18102   case NVPTX::BI__nvvm_atom_sub_gen_l:
18103   case NVPTX::BI__nvvm_atom_sub_gen_ll:
18104     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
18105 
18106   case NVPTX::BI__nvvm_atom_and_gen_i:
18107   case NVPTX::BI__nvvm_atom_and_gen_l:
18108   case NVPTX::BI__nvvm_atom_and_gen_ll:
18109     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
18110 
18111   case NVPTX::BI__nvvm_atom_or_gen_i:
18112   case NVPTX::BI__nvvm_atom_or_gen_l:
18113   case NVPTX::BI__nvvm_atom_or_gen_ll:
18114     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
18115 
18116   case NVPTX::BI__nvvm_atom_xor_gen_i:
18117   case NVPTX::BI__nvvm_atom_xor_gen_l:
18118   case NVPTX::BI__nvvm_atom_xor_gen_ll:
18119     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
18120 
18121   case NVPTX::BI__nvvm_atom_xchg_gen_i:
18122   case NVPTX::BI__nvvm_atom_xchg_gen_l:
18123   case NVPTX::BI__nvvm_atom_xchg_gen_ll:
18124     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
18125 
18126   case NVPTX::BI__nvvm_atom_max_gen_i:
18127   case NVPTX::BI__nvvm_atom_max_gen_l:
18128   case NVPTX::BI__nvvm_atom_max_gen_ll:
18129     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
18130 
18131   case NVPTX::BI__nvvm_atom_max_gen_ui:
18132   case NVPTX::BI__nvvm_atom_max_gen_ul:
18133   case NVPTX::BI__nvvm_atom_max_gen_ull:
18134     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
18135 
18136   case NVPTX::BI__nvvm_atom_min_gen_i:
18137   case NVPTX::BI__nvvm_atom_min_gen_l:
18138   case NVPTX::BI__nvvm_atom_min_gen_ll:
18139     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
18140 
18141   case NVPTX::BI__nvvm_atom_min_gen_ui:
18142   case NVPTX::BI__nvvm_atom_min_gen_ul:
18143   case NVPTX::BI__nvvm_atom_min_gen_ull:
18144     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
18145 
18146   case NVPTX::BI__nvvm_atom_cas_gen_i:
18147   case NVPTX::BI__nvvm_atom_cas_gen_l:
18148   case NVPTX::BI__nvvm_atom_cas_gen_ll:
18149     // __nvvm_atom_cas_gen_* should return the old value rather than the
18150     // success flag.
18151     return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
18152 
18153   case NVPTX::BI__nvvm_atom_add_gen_f:
18154   case NVPTX::BI__nvvm_atom_add_gen_d: {
18155     Value *Ptr = EmitScalarExpr(E->getArg(0));
18156     Value *Val = EmitScalarExpr(E->getArg(1));
18157     return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, Ptr, Val,
18158                                    AtomicOrdering::SequentiallyConsistent);
18159   }
18160 
18161   case NVPTX::BI__nvvm_atom_inc_gen_ui: {
18162     Value *Ptr = EmitScalarExpr(E->getArg(0));
18163     Value *Val = EmitScalarExpr(E->getArg(1));
18164     Function *FnALI32 =
18165         CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
18166     return Builder.CreateCall(FnALI32, {Ptr, Val});
18167   }
18168 
18169   case NVPTX::BI__nvvm_atom_dec_gen_ui: {
18170     Value *Ptr = EmitScalarExpr(E->getArg(0));
18171     Value *Val = EmitScalarExpr(E->getArg(1));
18172     Function *FnALD32 =
18173         CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
18174     return Builder.CreateCall(FnALD32, {Ptr, Val});
18175   }
18176 
18177   case NVPTX::BI__nvvm_ldg_c:
18178   case NVPTX::BI__nvvm_ldg_c2:
18179   case NVPTX::BI__nvvm_ldg_c4:
18180   case NVPTX::BI__nvvm_ldg_s:
18181   case NVPTX::BI__nvvm_ldg_s2:
18182   case NVPTX::BI__nvvm_ldg_s4:
18183   case NVPTX::BI__nvvm_ldg_i:
18184   case NVPTX::BI__nvvm_ldg_i2:
18185   case NVPTX::BI__nvvm_ldg_i4:
18186   case NVPTX::BI__nvvm_ldg_l:
18187   case NVPTX::BI__nvvm_ldg_ll:
18188   case NVPTX::BI__nvvm_ldg_ll2:
18189   case NVPTX::BI__nvvm_ldg_uc:
18190   case NVPTX::BI__nvvm_ldg_uc2:
18191   case NVPTX::BI__nvvm_ldg_uc4:
18192   case NVPTX::BI__nvvm_ldg_us:
18193   case NVPTX::BI__nvvm_ldg_us2:
18194   case NVPTX::BI__nvvm_ldg_us4:
18195   case NVPTX::BI__nvvm_ldg_ui:
18196   case NVPTX::BI__nvvm_ldg_ui2:
18197   case NVPTX::BI__nvvm_ldg_ui4:
18198   case NVPTX::BI__nvvm_ldg_ul:
18199   case NVPTX::BI__nvvm_ldg_ull:
18200   case NVPTX::BI__nvvm_ldg_ull2:
18201     // PTX Interoperability section 2.2: "For a vector with an even number of
18202     // elements, its alignment is set to number of elements times the alignment
18203     // of its member: n*alignof(t)."
18204     return MakeLdg(Intrinsic::nvvm_ldg_global_i);
18205   case NVPTX::BI__nvvm_ldg_f:
18206   case NVPTX::BI__nvvm_ldg_f2:
18207   case NVPTX::BI__nvvm_ldg_f4:
18208   case NVPTX::BI__nvvm_ldg_d:
18209   case NVPTX::BI__nvvm_ldg_d2:
18210     return MakeLdg(Intrinsic::nvvm_ldg_global_f);
18211 
18212   case NVPTX::BI__nvvm_atom_cta_add_gen_i:
18213   case NVPTX::BI__nvvm_atom_cta_add_gen_l:
18214   case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
18215     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta);
18216   case NVPTX::BI__nvvm_atom_sys_add_gen_i:
18217   case NVPTX::BI__nvvm_atom_sys_add_gen_l:
18218   case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
18219     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys);
18220   case NVPTX::BI__nvvm_atom_cta_add_gen_f:
18221   case NVPTX::BI__nvvm_atom_cta_add_gen_d:
18222     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta);
18223   case NVPTX::BI__nvvm_atom_sys_add_gen_f:
18224   case NVPTX::BI__nvvm_atom_sys_add_gen_d:
18225     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys);
18226   case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
18227   case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
18228   case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
18229     return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta);
18230   case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
18231   case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
18232   case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
18233     return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys);
18234   case NVPTX::BI__nvvm_atom_cta_max_gen_i:
18235   case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
18236   case NVPTX::BI__nvvm_atom_cta_max_gen_l:
18237   case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
18238   case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
18239   case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
18240     return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta);
18241   case NVPTX::BI__nvvm_atom_sys_max_gen_i:
18242   case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
18243   case NVPTX::BI__nvvm_atom_sys_max_gen_l:
18244   case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
18245   case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
18246   case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
18247     return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys);
18248   case NVPTX::BI__nvvm_atom_cta_min_gen_i:
18249   case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
18250   case NVPTX::BI__nvvm_atom_cta_min_gen_l:
18251   case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
18252   case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
18253   case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
18254     return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta);
18255   case NVPTX::BI__nvvm_atom_sys_min_gen_i:
18256   case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
18257   case NVPTX::BI__nvvm_atom_sys_min_gen_l:
18258   case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
18259   case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
18260   case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
18261     return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys);
18262   case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
18263     return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta);
18264   case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
18265     return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta);
18266   case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
18267     return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys);
18268   case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
18269     return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys);
18270   case NVPTX::BI__nvvm_atom_cta_and_gen_i:
18271   case NVPTX::BI__nvvm_atom_cta_and_gen_l:
18272   case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
18273     return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta);
18274   case NVPTX::BI__nvvm_atom_sys_and_gen_i:
18275   case NVPTX::BI__nvvm_atom_sys_and_gen_l:
18276   case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
18277     return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys);
18278   case NVPTX::BI__nvvm_atom_cta_or_gen_i:
18279   case NVPTX::BI__nvvm_atom_cta_or_gen_l:
18280   case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
18281     return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta);
18282   case NVPTX::BI__nvvm_atom_sys_or_gen_i:
18283   case NVPTX::BI__nvvm_atom_sys_or_gen_l:
18284   case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
18285     return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys);
18286   case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
18287   case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
18288   case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
18289     return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta);
18290   case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
18291   case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
18292   case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
18293     return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys);
18294   case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
18295   case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
18296   case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
18297     Value *Ptr = EmitScalarExpr(E->getArg(0));
18298     llvm::Type *ElemTy =
18299         ConvertTypeForMem(E->getArg(0)->getType()->getPointeeType());
18300     return Builder.CreateCall(
18301         CGM.getIntrinsic(
18302             Intrinsic::nvvm_atomic_cas_gen_i_cta, {ElemTy, Ptr->getType()}),
18303         {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
18304   }
18305   case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
18306   case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
18307   case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
18308     Value *Ptr = EmitScalarExpr(E->getArg(0));
18309     llvm::Type *ElemTy =
18310         ConvertTypeForMem(E->getArg(0)->getType()->getPointeeType());
18311     return Builder.CreateCall(
18312         CGM.getIntrinsic(
18313             Intrinsic::nvvm_atomic_cas_gen_i_sys, {ElemTy, Ptr->getType()}),
18314         {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
18315   }
18316   case NVPTX::BI__nvvm_match_all_sync_i32p:
18317   case NVPTX::BI__nvvm_match_all_sync_i64p: {
18318     Value *Mask = EmitScalarExpr(E->getArg(0));
18319     Value *Val = EmitScalarExpr(E->getArg(1));
18320     Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2));
18321     Value *ResultPair = Builder.CreateCall(
18322         CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p
18323                              ? Intrinsic::nvvm_match_all_sync_i32p
18324                              : Intrinsic::nvvm_match_all_sync_i64p),
18325         {Mask, Val});
18326     Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1),
18327                                      PredOutPtr.getElementType());
18328     Builder.CreateStore(Pred, PredOutPtr);
18329     return Builder.CreateExtractValue(ResultPair, 0);
18330   }
18331 
18332   // FP MMA loads
18333   case NVPTX::BI__hmma_m16n16k16_ld_a:
18334   case NVPTX::BI__hmma_m16n16k16_ld_b:
18335   case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
18336   case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
18337   case NVPTX::BI__hmma_m32n8k16_ld_a:
18338   case NVPTX::BI__hmma_m32n8k16_ld_b:
18339   case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
18340   case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
18341   case NVPTX::BI__hmma_m8n32k16_ld_a:
18342   case NVPTX::BI__hmma_m8n32k16_ld_b:
18343   case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
18344   case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
18345   // Integer MMA loads.
18346   case NVPTX::BI__imma_m16n16k16_ld_a_s8:
18347   case NVPTX::BI__imma_m16n16k16_ld_a_u8:
18348   case NVPTX::BI__imma_m16n16k16_ld_b_s8:
18349   case NVPTX::BI__imma_m16n16k16_ld_b_u8:
18350   case NVPTX::BI__imma_m16n16k16_ld_c:
18351   case NVPTX::BI__imma_m32n8k16_ld_a_s8:
18352   case NVPTX::BI__imma_m32n8k16_ld_a_u8:
18353   case NVPTX::BI__imma_m32n8k16_ld_b_s8:
18354   case NVPTX::BI__imma_m32n8k16_ld_b_u8:
18355   case NVPTX::BI__imma_m32n8k16_ld_c:
18356   case NVPTX::BI__imma_m8n32k16_ld_a_s8:
18357   case NVPTX::BI__imma_m8n32k16_ld_a_u8:
18358   case NVPTX::BI__imma_m8n32k16_ld_b_s8:
18359   case NVPTX::BI__imma_m8n32k16_ld_b_u8:
18360   case NVPTX::BI__imma_m8n32k16_ld_c:
18361   // Sub-integer MMA loads.
18362   case NVPTX::BI__imma_m8n8k32_ld_a_s4:
18363   case NVPTX::BI__imma_m8n8k32_ld_a_u4:
18364   case NVPTX::BI__imma_m8n8k32_ld_b_s4:
18365   case NVPTX::BI__imma_m8n8k32_ld_b_u4:
18366   case NVPTX::BI__imma_m8n8k32_ld_c:
18367   case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
18368   case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
18369   case NVPTX::BI__bmma_m8n8k128_ld_c:
18370   // Double MMA loads.
18371   case NVPTX::BI__dmma_m8n8k4_ld_a:
18372   case NVPTX::BI__dmma_m8n8k4_ld_b:
18373   case NVPTX::BI__dmma_m8n8k4_ld_c:
18374   // Alternate float MMA loads.
18375   case NVPTX::BI__mma_bf16_m16n16k16_ld_a:
18376   case NVPTX::BI__mma_bf16_m16n16k16_ld_b:
18377   case NVPTX::BI__mma_bf16_m8n32k16_ld_a:
18378   case NVPTX::BI__mma_bf16_m8n32k16_ld_b:
18379   case NVPTX::BI__mma_bf16_m32n8k16_ld_a:
18380   case NVPTX::BI__mma_bf16_m32n8k16_ld_b:
18381   case NVPTX::BI__mma_tf32_m16n16k8_ld_a:
18382   case NVPTX::BI__mma_tf32_m16n16k8_ld_b:
18383   case NVPTX::BI__mma_tf32_m16n16k8_ld_c: {
18384     Address Dst = EmitPointerWithAlignment(E->getArg(0));
18385     Value *Src = EmitScalarExpr(E->getArg(1));
18386     Value *Ldm = EmitScalarExpr(E->getArg(2));
18387     std::optional<llvm::APSInt> isColMajorArg =
18388         E->getArg(3)->getIntegerConstantExpr(getContext());
18389     if (!isColMajorArg)
18390       return nullptr;
18391     bool isColMajor = isColMajorArg->getSExtValue();
18392     NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
18393     unsigned IID = isColMajor ? II.IID_col : II.IID_row;
18394     if (IID == 0)
18395       return nullptr;
18396 
18397     Value *Result =
18398         Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm});
18399 
18400     // Save returned values.
18401     assert(II.NumResults);
18402     if (II.NumResults == 1) {
18403       Builder.CreateAlignedStore(Result, Dst.getPointer(),
18404                                  CharUnits::fromQuantity(4));
18405     } else {
18406       for (unsigned i = 0; i < II.NumResults; ++i) {
18407         Builder.CreateAlignedStore(
18408             Builder.CreateBitCast(Builder.CreateExtractValue(Result, i),
18409                                   Dst.getElementType()),
18410             Builder.CreateGEP(Dst.getElementType(), Dst.getPointer(),
18411                               llvm::ConstantInt::get(IntTy, i)),
18412             CharUnits::fromQuantity(4));
18413       }
18414     }
18415     return Result;
18416   }
18417 
18418   case NVPTX::BI__hmma_m16n16k16_st_c_f16:
18419   case NVPTX::BI__hmma_m16n16k16_st_c_f32:
18420   case NVPTX::BI__hmma_m32n8k16_st_c_f16:
18421   case NVPTX::BI__hmma_m32n8k16_st_c_f32:
18422   case NVPTX::BI__hmma_m8n32k16_st_c_f16:
18423   case NVPTX::BI__hmma_m8n32k16_st_c_f32:
18424   case NVPTX::BI__imma_m16n16k16_st_c_i32:
18425   case NVPTX::BI__imma_m32n8k16_st_c_i32:
18426   case NVPTX::BI__imma_m8n32k16_st_c_i32:
18427   case NVPTX::BI__imma_m8n8k32_st_c_i32:
18428   case NVPTX::BI__bmma_m8n8k128_st_c_i32:
18429   case NVPTX::BI__dmma_m8n8k4_st_c_f64:
18430   case NVPTX::BI__mma_m16n16k8_st_c_f32: {
18431     Value *Dst = EmitScalarExpr(E->getArg(0));
18432     Address Src = EmitPointerWithAlignment(E->getArg(1));
18433     Value *Ldm = EmitScalarExpr(E->getArg(2));
18434     std::optional<llvm::APSInt> isColMajorArg =
18435         E->getArg(3)->getIntegerConstantExpr(getContext());
18436     if (!isColMajorArg)
18437       return nullptr;
18438     bool isColMajor = isColMajorArg->getSExtValue();
18439     NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
18440     unsigned IID = isColMajor ? II.IID_col : II.IID_row;
18441     if (IID == 0)
18442       return nullptr;
18443     Function *Intrinsic =
18444         CGM.getIntrinsic(IID, Dst->getType());
18445     llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1);
18446     SmallVector<Value *, 10> Values = {Dst};
18447     for (unsigned i = 0; i < II.NumResults; ++i) {
18448       Value *V = Builder.CreateAlignedLoad(
18449           Src.getElementType(),
18450           Builder.CreateGEP(Src.getElementType(), Src.getPointer(),
18451                             llvm::ConstantInt::get(IntTy, i)),
18452           CharUnits::fromQuantity(4));
18453       Values.push_back(Builder.CreateBitCast(V, ParamType));
18454     }
18455     Values.push_back(Ldm);
18456     Value *Result = Builder.CreateCall(Intrinsic, Values);
18457     return Result;
18458   }
18459 
18460   // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) -->
18461   // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf>
18462   case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
18463   case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
18464   case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
18465   case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
18466   case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
18467   case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
18468   case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
18469   case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
18470   case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
18471   case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
18472   case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
18473   case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
18474   case NVPTX::BI__imma_m16n16k16_mma_s8:
18475   case NVPTX::BI__imma_m16n16k16_mma_u8:
18476   case NVPTX::BI__imma_m32n8k16_mma_s8:
18477   case NVPTX::BI__imma_m32n8k16_mma_u8:
18478   case NVPTX::BI__imma_m8n32k16_mma_s8:
18479   case NVPTX::BI__imma_m8n32k16_mma_u8:
18480   case NVPTX::BI__imma_m8n8k32_mma_s4:
18481   case NVPTX::BI__imma_m8n8k32_mma_u4:
18482   case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
18483   case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1:
18484   case NVPTX::BI__dmma_m8n8k4_mma_f64:
18485   case NVPTX::BI__mma_bf16_m16n16k16_mma_f32:
18486   case NVPTX::BI__mma_bf16_m8n32k16_mma_f32:
18487   case NVPTX::BI__mma_bf16_m32n8k16_mma_f32:
18488   case NVPTX::BI__mma_tf32_m16n16k8_mma_f32: {
18489     Address Dst = EmitPointerWithAlignment(E->getArg(0));
18490     Address SrcA = EmitPointerWithAlignment(E->getArg(1));
18491     Address SrcB = EmitPointerWithAlignment(E->getArg(2));
18492     Address SrcC = EmitPointerWithAlignment(E->getArg(3));
18493     std::optional<llvm::APSInt> LayoutArg =
18494         E->getArg(4)->getIntegerConstantExpr(getContext());
18495     if (!LayoutArg)
18496       return nullptr;
18497     int Layout = LayoutArg->getSExtValue();
18498     if (Layout < 0 || Layout > 3)
18499       return nullptr;
18500     llvm::APSInt SatfArg;
18501     if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1 ||
18502         BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1)
18503       SatfArg = 0;  // .b1 does not have satf argument.
18504     else if (std::optional<llvm::APSInt> OptSatfArg =
18505                  E->getArg(5)->getIntegerConstantExpr(getContext()))
18506       SatfArg = *OptSatfArg;
18507     else
18508       return nullptr;
18509     bool Satf = SatfArg.getSExtValue();
18510     NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID);
18511     unsigned IID = MI.getMMAIntrinsic(Layout, Satf);
18512     if (IID == 0)  // Unsupported combination of Layout/Satf.
18513       return nullptr;
18514 
18515     SmallVector<Value *, 24> Values;
18516     Function *Intrinsic = CGM.getIntrinsic(IID);
18517     llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0);
18518     // Load A
18519     for (unsigned i = 0; i < MI.NumEltsA; ++i) {
18520       Value *V = Builder.CreateAlignedLoad(
18521           SrcA.getElementType(),
18522           Builder.CreateGEP(SrcA.getElementType(), SrcA.getPointer(),
18523                             llvm::ConstantInt::get(IntTy, i)),
18524           CharUnits::fromQuantity(4));
18525       Values.push_back(Builder.CreateBitCast(V, AType));
18526     }
18527     // Load B
18528     llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA);
18529     for (unsigned i = 0; i < MI.NumEltsB; ++i) {
18530       Value *V = Builder.CreateAlignedLoad(
18531           SrcB.getElementType(),
18532           Builder.CreateGEP(SrcB.getElementType(), SrcB.getPointer(),
18533                             llvm::ConstantInt::get(IntTy, i)),
18534           CharUnits::fromQuantity(4));
18535       Values.push_back(Builder.CreateBitCast(V, BType));
18536     }
18537     // Load C
18538     llvm::Type *CType =
18539         Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB);
18540     for (unsigned i = 0; i < MI.NumEltsC; ++i) {
18541       Value *V = Builder.CreateAlignedLoad(
18542           SrcC.getElementType(),
18543           Builder.CreateGEP(SrcC.getElementType(), SrcC.getPointer(),
18544                             llvm::ConstantInt::get(IntTy, i)),
18545           CharUnits::fromQuantity(4));
18546       Values.push_back(Builder.CreateBitCast(V, CType));
18547     }
18548     Value *Result = Builder.CreateCall(Intrinsic, Values);
18549     llvm::Type *DType = Dst.getElementType();
18550     for (unsigned i = 0; i < MI.NumEltsD; ++i)
18551       Builder.CreateAlignedStore(
18552           Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType),
18553           Builder.CreateGEP(Dst.getElementType(), Dst.getPointer(),
18554                             llvm::ConstantInt::get(IntTy, i)),
18555           CharUnits::fromQuantity(4));
18556     return Result;
18557   }
18558   default:
18559     return nullptr;
18560   }
18561 }
18562 
18563 namespace {
18564 struct BuiltinAlignArgs {
18565   llvm::Value *Src = nullptr;
18566   llvm::Type *SrcType = nullptr;
18567   llvm::Value *Alignment = nullptr;
18568   llvm::Value *Mask = nullptr;
18569   llvm::IntegerType *IntType = nullptr;
18570 
18571   BuiltinAlignArgs(const CallExpr *E, CodeGenFunction &CGF) {
18572     QualType AstType = E->getArg(0)->getType();
18573     if (AstType->isArrayType())
18574       Src = CGF.EmitArrayToPointerDecay(E->getArg(0)).getPointer();
18575     else
18576       Src = CGF.EmitScalarExpr(E->getArg(0));
18577     SrcType = Src->getType();
18578     if (SrcType->isPointerTy()) {
18579       IntType = IntegerType::get(
18580           CGF.getLLVMContext(),
18581           CGF.CGM.getDataLayout().getIndexTypeSizeInBits(SrcType));
18582     } else {
18583       assert(SrcType->isIntegerTy());
18584       IntType = cast<llvm::IntegerType>(SrcType);
18585     }
18586     Alignment = CGF.EmitScalarExpr(E->getArg(1));
18587     Alignment = CGF.Builder.CreateZExtOrTrunc(Alignment, IntType, "alignment");
18588     auto *One = llvm::ConstantInt::get(IntType, 1);
18589     Mask = CGF.Builder.CreateSub(Alignment, One, "mask");
18590   }
18591 };
18592 } // namespace
18593 
18594 /// Generate (x & (y-1)) == 0.
18595 RValue CodeGenFunction::EmitBuiltinIsAligned(const CallExpr *E) {
18596   BuiltinAlignArgs Args(E, *this);
18597   llvm::Value *SrcAddress = Args.Src;
18598   if (Args.SrcType->isPointerTy())
18599     SrcAddress =
18600         Builder.CreateBitOrPointerCast(Args.Src, Args.IntType, "src_addr");
18601   return RValue::get(Builder.CreateICmpEQ(
18602       Builder.CreateAnd(SrcAddress, Args.Mask, "set_bits"),
18603       llvm::Constant::getNullValue(Args.IntType), "is_aligned"));
18604 }
18605 
18606 /// Generate (x & ~(y-1)) to align down or ((x+(y-1)) & ~(y-1)) to align up.
18607 /// Note: For pointer types we can avoid ptrtoint/inttoptr pairs by using the
18608 /// llvm.ptrmask intrinsic (with a GEP before in the align_up case).
18609 /// TODO: actually use ptrmask once most optimization passes know about it.
18610 RValue CodeGenFunction::EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp) {
18611   BuiltinAlignArgs Args(E, *this);
18612   llvm::Value *SrcAddr = Args.Src;
18613   if (Args.Src->getType()->isPointerTy())
18614     SrcAddr = Builder.CreatePtrToInt(Args.Src, Args.IntType, "intptr");
18615   llvm::Value *SrcForMask = SrcAddr;
18616   if (AlignUp) {
18617     // When aligning up we have to first add the mask to ensure we go over the
18618     // next alignment value and then align down to the next valid multiple.
18619     // By adding the mask, we ensure that align_up on an already aligned
18620     // value will not change the value.
18621     SrcForMask = Builder.CreateAdd(SrcForMask, Args.Mask, "over_boundary");
18622   }
18623   // Invert the mask to only clear the lower bits.
18624   llvm::Value *InvertedMask = Builder.CreateNot(Args.Mask, "inverted_mask");
18625   llvm::Value *Result =
18626       Builder.CreateAnd(SrcForMask, InvertedMask, "aligned_result");
18627   if (Args.Src->getType()->isPointerTy()) {
18628     /// TODO: Use ptrmask instead of ptrtoint+gep once it is optimized well.
18629     // Result = Builder.CreateIntrinsic(
18630     //  Intrinsic::ptrmask, {Args.SrcType, SrcForMask->getType(), Args.IntType},
18631     //  {SrcForMask, NegatedMask}, nullptr, "aligned_result");
18632     Result->setName("aligned_intptr");
18633     llvm::Value *Difference = Builder.CreateSub(Result, SrcAddr, "diff");
18634     // The result must point to the same underlying allocation. This means we
18635     // can use an inbounds GEP to enable better optimization.
18636     Value *Base = EmitCastToVoidPtr(Args.Src);
18637     if (getLangOpts().isSignedOverflowDefined())
18638       Result = Builder.CreateGEP(Int8Ty, Base, Difference, "aligned_result");
18639     else
18640       Result = EmitCheckedInBoundsGEP(Int8Ty, Base, Difference,
18641                                       /*SignedIndices=*/true,
18642                                       /*isSubtraction=*/!AlignUp,
18643                                       E->getExprLoc(), "aligned_result");
18644     Result = Builder.CreatePointerCast(Result, Args.SrcType);
18645     // Emit an alignment assumption to ensure that the new alignment is
18646     // propagated to loads/stores, etc.
18647     emitAlignmentAssumption(Result, E, E->getExprLoc(), Args.Alignment);
18648   }
18649   assert(Result->getType() == Args.SrcType);
18650   return RValue::get(Result);
18651 }
18652 
18653 Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
18654                                                    const CallExpr *E) {
18655   switch (BuiltinID) {
18656   case WebAssembly::BI__builtin_wasm_memory_size: {
18657     llvm::Type *ResultType = ConvertType(E->getType());
18658     Value *I = EmitScalarExpr(E->getArg(0));
18659     Function *Callee =
18660         CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
18661     return Builder.CreateCall(Callee, I);
18662   }
18663   case WebAssembly::BI__builtin_wasm_memory_grow: {
18664     llvm::Type *ResultType = ConvertType(E->getType());
18665     Value *Args[] = {EmitScalarExpr(E->getArg(0)),
18666                      EmitScalarExpr(E->getArg(1))};
18667     Function *Callee =
18668         CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType);
18669     return Builder.CreateCall(Callee, Args);
18670   }
18671   case WebAssembly::BI__builtin_wasm_tls_size: {
18672     llvm::Type *ResultType = ConvertType(E->getType());
18673     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType);
18674     return Builder.CreateCall(Callee);
18675   }
18676   case WebAssembly::BI__builtin_wasm_tls_align: {
18677     llvm::Type *ResultType = ConvertType(E->getType());
18678     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType);
18679     return Builder.CreateCall(Callee);
18680   }
18681   case WebAssembly::BI__builtin_wasm_tls_base: {
18682     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base);
18683     return Builder.CreateCall(Callee);
18684   }
18685   case WebAssembly::BI__builtin_wasm_throw: {
18686     Value *Tag = EmitScalarExpr(E->getArg(0));
18687     Value *Obj = EmitScalarExpr(E->getArg(1));
18688     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw);
18689     return Builder.CreateCall(Callee, {Tag, Obj});
18690   }
18691   case WebAssembly::BI__builtin_wasm_rethrow: {
18692     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow);
18693     return Builder.CreateCall(Callee);
18694   }
18695   case WebAssembly::BI__builtin_wasm_memory_atomic_wait32: {
18696     Value *Addr = EmitScalarExpr(E->getArg(0));
18697     Value *Expected = EmitScalarExpr(E->getArg(1));
18698     Value *Timeout = EmitScalarExpr(E->getArg(2));
18699     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait32);
18700     return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
18701   }
18702   case WebAssembly::BI__builtin_wasm_memory_atomic_wait64: {
18703     Value *Addr = EmitScalarExpr(E->getArg(0));
18704     Value *Expected = EmitScalarExpr(E->getArg(1));
18705     Value *Timeout = EmitScalarExpr(E->getArg(2));
18706     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait64);
18707     return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
18708   }
18709   case WebAssembly::BI__builtin_wasm_memory_atomic_notify: {
18710     Value *Addr = EmitScalarExpr(E->getArg(0));
18711     Value *Count = EmitScalarExpr(E->getArg(1));
18712     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_notify);
18713     return Builder.CreateCall(Callee, {Addr, Count});
18714   }
18715   case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32:
18716   case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64:
18717   case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32:
18718   case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: {
18719     Value *Src = EmitScalarExpr(E->getArg(0));
18720     llvm::Type *ResT = ConvertType(E->getType());
18721     Function *Callee =
18722         CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()});
18723     return Builder.CreateCall(Callee, {Src});
18724   }
18725   case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32:
18726   case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64:
18727   case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32:
18728   case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: {
18729     Value *Src = EmitScalarExpr(E->getArg(0));
18730     llvm::Type *ResT = ConvertType(E->getType());
18731     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned,
18732                                         {ResT, Src->getType()});
18733     return Builder.CreateCall(Callee, {Src});
18734   }
18735   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32:
18736   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64:
18737   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32:
18738   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64:
18739   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4: {
18740     Value *Src = EmitScalarExpr(E->getArg(0));
18741     llvm::Type *ResT = ConvertType(E->getType());
18742     Function *Callee =
18743         CGM.getIntrinsic(Intrinsic::fptosi_sat, {ResT, Src->getType()});
18744     return Builder.CreateCall(Callee, {Src});
18745   }
18746   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32:
18747   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64:
18748   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32:
18749   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64:
18750   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4: {
18751     Value *Src = EmitScalarExpr(E->getArg(0));
18752     llvm::Type *ResT = ConvertType(E->getType());
18753     Function *Callee =
18754         CGM.getIntrinsic(Intrinsic::fptoui_sat, {ResT, Src->getType()});
18755     return Builder.CreateCall(Callee, {Src});
18756   }
18757   case WebAssembly::BI__builtin_wasm_min_f32:
18758   case WebAssembly::BI__builtin_wasm_min_f64:
18759   case WebAssembly::BI__builtin_wasm_min_f32x4:
18760   case WebAssembly::BI__builtin_wasm_min_f64x2: {
18761     Value *LHS = EmitScalarExpr(E->getArg(0));
18762     Value *RHS = EmitScalarExpr(E->getArg(1));
18763     Function *Callee =
18764         CGM.getIntrinsic(Intrinsic::minimum, ConvertType(E->getType()));
18765     return Builder.CreateCall(Callee, {LHS, RHS});
18766   }
18767   case WebAssembly::BI__builtin_wasm_max_f32:
18768   case WebAssembly::BI__builtin_wasm_max_f64:
18769   case WebAssembly::BI__builtin_wasm_max_f32x4:
18770   case WebAssembly::BI__builtin_wasm_max_f64x2: {
18771     Value *LHS = EmitScalarExpr(E->getArg(0));
18772     Value *RHS = EmitScalarExpr(E->getArg(1));
18773     Function *Callee =
18774         CGM.getIntrinsic(Intrinsic::maximum, ConvertType(E->getType()));
18775     return Builder.CreateCall(Callee, {LHS, RHS});
18776   }
18777   case WebAssembly::BI__builtin_wasm_pmin_f32x4:
18778   case WebAssembly::BI__builtin_wasm_pmin_f64x2: {
18779     Value *LHS = EmitScalarExpr(E->getArg(0));
18780     Value *RHS = EmitScalarExpr(E->getArg(1));
18781     Function *Callee =
18782         CGM.getIntrinsic(Intrinsic::wasm_pmin, ConvertType(E->getType()));
18783     return Builder.CreateCall(Callee, {LHS, RHS});
18784   }
18785   case WebAssembly::BI__builtin_wasm_pmax_f32x4:
18786   case WebAssembly::BI__builtin_wasm_pmax_f64x2: {
18787     Value *LHS = EmitScalarExpr(E->getArg(0));
18788     Value *RHS = EmitScalarExpr(E->getArg(1));
18789     Function *Callee =
18790         CGM.getIntrinsic(Intrinsic::wasm_pmax, ConvertType(E->getType()));
18791     return Builder.CreateCall(Callee, {LHS, RHS});
18792   }
18793   case WebAssembly::BI__builtin_wasm_ceil_f32x4:
18794   case WebAssembly::BI__builtin_wasm_floor_f32x4:
18795   case WebAssembly::BI__builtin_wasm_trunc_f32x4:
18796   case WebAssembly::BI__builtin_wasm_nearest_f32x4:
18797   case WebAssembly::BI__builtin_wasm_ceil_f64x2:
18798   case WebAssembly::BI__builtin_wasm_floor_f64x2:
18799   case WebAssembly::BI__builtin_wasm_trunc_f64x2:
18800   case WebAssembly::BI__builtin_wasm_nearest_f64x2: {
18801     unsigned IntNo;
18802     switch (BuiltinID) {
18803     case WebAssembly::BI__builtin_wasm_ceil_f32x4:
18804     case WebAssembly::BI__builtin_wasm_ceil_f64x2:
18805       IntNo = Intrinsic::ceil;
18806       break;
18807     case WebAssembly::BI__builtin_wasm_floor_f32x4:
18808     case WebAssembly::BI__builtin_wasm_floor_f64x2:
18809       IntNo = Intrinsic::floor;
18810       break;
18811     case WebAssembly::BI__builtin_wasm_trunc_f32x4:
18812     case WebAssembly::BI__builtin_wasm_trunc_f64x2:
18813       IntNo = Intrinsic::trunc;
18814       break;
18815     case WebAssembly::BI__builtin_wasm_nearest_f32x4:
18816     case WebAssembly::BI__builtin_wasm_nearest_f64x2:
18817       IntNo = Intrinsic::nearbyint;
18818       break;
18819     default:
18820       llvm_unreachable("unexpected builtin ID");
18821     }
18822     Value *Value = EmitScalarExpr(E->getArg(0));
18823     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
18824     return Builder.CreateCall(Callee, Value);
18825   }
18826   case WebAssembly::BI__builtin_wasm_swizzle_i8x16: {
18827     Value *Src = EmitScalarExpr(E->getArg(0));
18828     Value *Indices = EmitScalarExpr(E->getArg(1));
18829     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle);
18830     return Builder.CreateCall(Callee, {Src, Indices});
18831   }
18832   case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16:
18833   case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16:
18834   case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8:
18835   case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8:
18836   case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16:
18837   case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16:
18838   case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8:
18839   case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8: {
18840     unsigned IntNo;
18841     switch (BuiltinID) {
18842     case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16:
18843     case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8:
18844       IntNo = Intrinsic::sadd_sat;
18845       break;
18846     case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16:
18847     case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8:
18848       IntNo = Intrinsic::uadd_sat;
18849       break;
18850     case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16:
18851     case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8:
18852       IntNo = Intrinsic::wasm_sub_sat_signed;
18853       break;
18854     case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16:
18855     case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8:
18856       IntNo = Intrinsic::wasm_sub_sat_unsigned;
18857       break;
18858     default:
18859       llvm_unreachable("unexpected builtin ID");
18860     }
18861     Value *LHS = EmitScalarExpr(E->getArg(0));
18862     Value *RHS = EmitScalarExpr(E->getArg(1));
18863     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
18864     return Builder.CreateCall(Callee, {LHS, RHS});
18865   }
18866   case WebAssembly::BI__builtin_wasm_abs_i8x16:
18867   case WebAssembly::BI__builtin_wasm_abs_i16x8:
18868   case WebAssembly::BI__builtin_wasm_abs_i32x4:
18869   case WebAssembly::BI__builtin_wasm_abs_i64x2: {
18870     Value *Vec = EmitScalarExpr(E->getArg(0));
18871     Value *Neg = Builder.CreateNeg(Vec, "neg");
18872     Constant *Zero = llvm::Constant::getNullValue(Vec->getType());
18873     Value *ICmp = Builder.CreateICmpSLT(Vec, Zero, "abscond");
18874     return Builder.CreateSelect(ICmp, Neg, Vec, "abs");
18875   }
18876   case WebAssembly::BI__builtin_wasm_min_s_i8x16:
18877   case WebAssembly::BI__builtin_wasm_min_u_i8x16:
18878   case WebAssembly::BI__builtin_wasm_max_s_i8x16:
18879   case WebAssembly::BI__builtin_wasm_max_u_i8x16:
18880   case WebAssembly::BI__builtin_wasm_min_s_i16x8:
18881   case WebAssembly::BI__builtin_wasm_min_u_i16x8:
18882   case WebAssembly::BI__builtin_wasm_max_s_i16x8:
18883   case WebAssembly::BI__builtin_wasm_max_u_i16x8:
18884   case WebAssembly::BI__builtin_wasm_min_s_i32x4:
18885   case WebAssembly::BI__builtin_wasm_min_u_i32x4:
18886   case WebAssembly::BI__builtin_wasm_max_s_i32x4:
18887   case WebAssembly::BI__builtin_wasm_max_u_i32x4: {
18888     Value *LHS = EmitScalarExpr(E->getArg(0));
18889     Value *RHS = EmitScalarExpr(E->getArg(1));
18890     Value *ICmp;
18891     switch (BuiltinID) {
18892     case WebAssembly::BI__builtin_wasm_min_s_i8x16:
18893     case WebAssembly::BI__builtin_wasm_min_s_i16x8:
18894     case WebAssembly::BI__builtin_wasm_min_s_i32x4:
18895       ICmp = Builder.CreateICmpSLT(LHS, RHS);
18896       break;
18897     case WebAssembly::BI__builtin_wasm_min_u_i8x16:
18898     case WebAssembly::BI__builtin_wasm_min_u_i16x8:
18899     case WebAssembly::BI__builtin_wasm_min_u_i32x4:
18900       ICmp = Builder.CreateICmpULT(LHS, RHS);
18901       break;
18902     case WebAssembly::BI__builtin_wasm_max_s_i8x16:
18903     case WebAssembly::BI__builtin_wasm_max_s_i16x8:
18904     case WebAssembly::BI__builtin_wasm_max_s_i32x4:
18905       ICmp = Builder.CreateICmpSGT(LHS, RHS);
18906       break;
18907     case WebAssembly::BI__builtin_wasm_max_u_i8x16:
18908     case WebAssembly::BI__builtin_wasm_max_u_i16x8:
18909     case WebAssembly::BI__builtin_wasm_max_u_i32x4:
18910       ICmp = Builder.CreateICmpUGT(LHS, RHS);
18911       break;
18912     default:
18913       llvm_unreachable("unexpected builtin ID");
18914     }
18915     return Builder.CreateSelect(ICmp, LHS, RHS);
18916   }
18917   case WebAssembly::BI__builtin_wasm_avgr_u_i8x16:
18918   case WebAssembly::BI__builtin_wasm_avgr_u_i16x8: {
18919     Value *LHS = EmitScalarExpr(E->getArg(0));
18920     Value *RHS = EmitScalarExpr(E->getArg(1));
18921     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_avgr_unsigned,
18922                                         ConvertType(E->getType()));
18923     return Builder.CreateCall(Callee, {LHS, RHS});
18924   }
18925   case WebAssembly::BI__builtin_wasm_q15mulr_sat_s_i16x8: {
18926     Value *LHS = EmitScalarExpr(E->getArg(0));
18927     Value *RHS = EmitScalarExpr(E->getArg(1));
18928     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_q15mulr_sat_signed);
18929     return Builder.CreateCall(Callee, {LHS, RHS});
18930   }
18931   case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
18932   case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
18933   case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
18934   case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4: {
18935     Value *Vec = EmitScalarExpr(E->getArg(0));
18936     unsigned IntNo;
18937     switch (BuiltinID) {
18938     case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
18939     case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
18940       IntNo = Intrinsic::wasm_extadd_pairwise_signed;
18941       break;
18942     case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
18943     case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4:
18944       IntNo = Intrinsic::wasm_extadd_pairwise_unsigned;
18945       break;
18946     default:
18947       llvm_unreachable("unexpected builtin ID");
18948     }
18949 
18950     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
18951     return Builder.CreateCall(Callee, Vec);
18952   }
18953   case WebAssembly::BI__builtin_wasm_bitselect: {
18954     Value *V1 = EmitScalarExpr(E->getArg(0));
18955     Value *V2 = EmitScalarExpr(E->getArg(1));
18956     Value *C = EmitScalarExpr(E->getArg(2));
18957     Function *Callee =
18958         CGM.getIntrinsic(Intrinsic::wasm_bitselect, ConvertType(E->getType()));
18959     return Builder.CreateCall(Callee, {V1, V2, C});
18960   }
18961   case WebAssembly::BI__builtin_wasm_dot_s_i32x4_i16x8: {
18962     Value *LHS = EmitScalarExpr(E->getArg(0));
18963     Value *RHS = EmitScalarExpr(E->getArg(1));
18964     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_dot);
18965     return Builder.CreateCall(Callee, {LHS, RHS});
18966   }
18967   case WebAssembly::BI__builtin_wasm_popcnt_i8x16: {
18968     Value *Vec = EmitScalarExpr(E->getArg(0));
18969     Function *Callee =
18970         CGM.getIntrinsic(Intrinsic::ctpop, ConvertType(E->getType()));
18971     return Builder.CreateCall(Callee, {Vec});
18972   }
18973   case WebAssembly::BI__builtin_wasm_any_true_v128:
18974   case WebAssembly::BI__builtin_wasm_all_true_i8x16:
18975   case WebAssembly::BI__builtin_wasm_all_true_i16x8:
18976   case WebAssembly::BI__builtin_wasm_all_true_i32x4:
18977   case WebAssembly::BI__builtin_wasm_all_true_i64x2: {
18978     unsigned IntNo;
18979     switch (BuiltinID) {
18980     case WebAssembly::BI__builtin_wasm_any_true_v128:
18981       IntNo = Intrinsic::wasm_anytrue;
18982       break;
18983     case WebAssembly::BI__builtin_wasm_all_true_i8x16:
18984     case WebAssembly::BI__builtin_wasm_all_true_i16x8:
18985     case WebAssembly::BI__builtin_wasm_all_true_i32x4:
18986     case WebAssembly::BI__builtin_wasm_all_true_i64x2:
18987       IntNo = Intrinsic::wasm_alltrue;
18988       break;
18989     default:
18990       llvm_unreachable("unexpected builtin ID");
18991     }
18992     Value *Vec = EmitScalarExpr(E->getArg(0));
18993     Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType());
18994     return Builder.CreateCall(Callee, {Vec});
18995   }
18996   case WebAssembly::BI__builtin_wasm_bitmask_i8x16:
18997   case WebAssembly::BI__builtin_wasm_bitmask_i16x8:
18998   case WebAssembly::BI__builtin_wasm_bitmask_i32x4:
18999   case WebAssembly::BI__builtin_wasm_bitmask_i64x2: {
19000     Value *Vec = EmitScalarExpr(E->getArg(0));
19001     Function *Callee =
19002         CGM.getIntrinsic(Intrinsic::wasm_bitmask, Vec->getType());
19003     return Builder.CreateCall(Callee, {Vec});
19004   }
19005   case WebAssembly::BI__builtin_wasm_abs_f32x4:
19006   case WebAssembly::BI__builtin_wasm_abs_f64x2: {
19007     Value *Vec = EmitScalarExpr(E->getArg(0));
19008     Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType());
19009     return Builder.CreateCall(Callee, {Vec});
19010   }
19011   case WebAssembly::BI__builtin_wasm_sqrt_f32x4:
19012   case WebAssembly::BI__builtin_wasm_sqrt_f64x2: {
19013     Value *Vec = EmitScalarExpr(E->getArg(0));
19014     Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType());
19015     return Builder.CreateCall(Callee, {Vec});
19016   }
19017   case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
19018   case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
19019   case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
19020   case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: {
19021     Value *Low = EmitScalarExpr(E->getArg(0));
19022     Value *High = EmitScalarExpr(E->getArg(1));
19023     unsigned IntNo;
19024     switch (BuiltinID) {
19025     case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
19026     case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
19027       IntNo = Intrinsic::wasm_narrow_signed;
19028       break;
19029     case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
19030     case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4:
19031       IntNo = Intrinsic::wasm_narrow_unsigned;
19032       break;
19033     default:
19034       llvm_unreachable("unexpected builtin ID");
19035     }
19036     Function *Callee =
19037         CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()});
19038     return Builder.CreateCall(Callee, {Low, High});
19039   }
19040   case WebAssembly::BI__builtin_wasm_trunc_sat_s_zero_f64x2_i32x4:
19041   case WebAssembly::BI__builtin_wasm_trunc_sat_u_zero_f64x2_i32x4: {
19042     Value *Vec = EmitScalarExpr(E->getArg(0));
19043     unsigned IntNo;
19044     switch (BuiltinID) {
19045     case WebAssembly::BI__builtin_wasm_trunc_sat_s_zero_f64x2_i32x4:
19046       IntNo = Intrinsic::fptosi_sat;
19047       break;
19048     case WebAssembly::BI__builtin_wasm_trunc_sat_u_zero_f64x2_i32x4:
19049       IntNo = Intrinsic::fptoui_sat;
19050       break;
19051     default:
19052       llvm_unreachable("unexpected builtin ID");
19053     }
19054     llvm::Type *SrcT = Vec->getType();
19055     llvm::Type *TruncT = SrcT->getWithNewType(Builder.getInt32Ty());
19056     Function *Callee = CGM.getIntrinsic(IntNo, {TruncT, SrcT});
19057     Value *Trunc = Builder.CreateCall(Callee, Vec);
19058     Value *Splat = Constant::getNullValue(TruncT);
19059     return Builder.CreateShuffleVector(Trunc, Splat, ArrayRef<int>{0, 1, 2, 3});
19060   }
19061   case WebAssembly::BI__builtin_wasm_shuffle_i8x16: {
19062     Value *Ops[18];
19063     size_t OpIdx = 0;
19064     Ops[OpIdx++] = EmitScalarExpr(E->getArg(0));
19065     Ops[OpIdx++] = EmitScalarExpr(E->getArg(1));
19066     while (OpIdx < 18) {
19067       std::optional<llvm::APSInt> LaneConst =
19068           E->getArg(OpIdx)->getIntegerConstantExpr(getContext());
19069       assert(LaneConst && "Constant arg isn't actually constant?");
19070       Ops[OpIdx++] = llvm::ConstantInt::get(getLLVMContext(), *LaneConst);
19071     }
19072     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_shuffle);
19073     return Builder.CreateCall(Callee, Ops);
19074   }
19075   case WebAssembly::BI__builtin_wasm_relaxed_madd_f32x4:
19076   case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f32x4:
19077   case WebAssembly::BI__builtin_wasm_relaxed_madd_f64x2:
19078   case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f64x2: {
19079     Value *A = EmitScalarExpr(E->getArg(0));
19080     Value *B = EmitScalarExpr(E->getArg(1));
19081     Value *C = EmitScalarExpr(E->getArg(2));
19082     unsigned IntNo;
19083     switch (BuiltinID) {
19084     case WebAssembly::BI__builtin_wasm_relaxed_madd_f32x4:
19085     case WebAssembly::BI__builtin_wasm_relaxed_madd_f64x2:
19086       IntNo = Intrinsic::wasm_relaxed_madd;
19087       break;
19088     case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f32x4:
19089     case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f64x2:
19090       IntNo = Intrinsic::wasm_relaxed_nmadd;
19091       break;
19092     default:
19093       llvm_unreachable("unexpected builtin ID");
19094     }
19095     Function *Callee = CGM.getIntrinsic(IntNo, A->getType());
19096     return Builder.CreateCall(Callee, {A, B, C});
19097   }
19098   case WebAssembly::BI__builtin_wasm_relaxed_laneselect_i8x16:
19099   case WebAssembly::BI__builtin_wasm_relaxed_laneselect_i16x8:
19100   case WebAssembly::BI__builtin_wasm_relaxed_laneselect_i32x4:
19101   case WebAssembly::BI__builtin_wasm_relaxed_laneselect_i64x2: {
19102     Value *A = EmitScalarExpr(E->getArg(0));
19103     Value *B = EmitScalarExpr(E->getArg(1));
19104     Value *C = EmitScalarExpr(E->getArg(2));
19105     Function *Callee =
19106         CGM.getIntrinsic(Intrinsic::wasm_relaxed_laneselect, A->getType());
19107     return Builder.CreateCall(Callee, {A, B, C});
19108   }
19109   case WebAssembly::BI__builtin_wasm_relaxed_swizzle_i8x16: {
19110     Value *Src = EmitScalarExpr(E->getArg(0));
19111     Value *Indices = EmitScalarExpr(E->getArg(1));
19112     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_relaxed_swizzle);
19113     return Builder.CreateCall(Callee, {Src, Indices});
19114   }
19115   case WebAssembly::BI__builtin_wasm_relaxed_min_f32x4:
19116   case WebAssembly::BI__builtin_wasm_relaxed_max_f32x4:
19117   case WebAssembly::BI__builtin_wasm_relaxed_min_f64x2:
19118   case WebAssembly::BI__builtin_wasm_relaxed_max_f64x2: {
19119     Value *LHS = EmitScalarExpr(E->getArg(0));
19120     Value *RHS = EmitScalarExpr(E->getArg(1));
19121     unsigned IntNo;
19122     switch (BuiltinID) {
19123     case WebAssembly::BI__builtin_wasm_relaxed_min_f32x4:
19124     case WebAssembly::BI__builtin_wasm_relaxed_min_f64x2:
19125       IntNo = Intrinsic::wasm_relaxed_min;
19126       break;
19127     case WebAssembly::BI__builtin_wasm_relaxed_max_f32x4:
19128     case WebAssembly::BI__builtin_wasm_relaxed_max_f64x2:
19129       IntNo = Intrinsic::wasm_relaxed_max;
19130       break;
19131     default:
19132       llvm_unreachable("unexpected builtin ID");
19133     }
19134     Function *Callee = CGM.getIntrinsic(IntNo, LHS->getType());
19135     return Builder.CreateCall(Callee, {LHS, RHS});
19136   }
19137   case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_i32x4_f32x4:
19138   case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_i32x4_f32x4:
19139   case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_zero_i32x4_f64x2:
19140   case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_zero_i32x4_f64x2: {
19141     Value *Vec = EmitScalarExpr(E->getArg(0));
19142     unsigned IntNo;
19143     switch (BuiltinID) {
19144     case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_i32x4_f32x4:
19145       IntNo = Intrinsic::wasm_relaxed_trunc_signed;
19146       break;
19147     case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_i32x4_f32x4:
19148       IntNo = Intrinsic::wasm_relaxed_trunc_unsigned;
19149       break;
19150     case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_zero_i32x4_f64x2:
19151       IntNo = Intrinsic::wasm_relaxed_trunc_signed_zero;
19152       break;
19153     case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_zero_i32x4_f64x2:
19154       IntNo = Intrinsic::wasm_relaxed_trunc_unsigned_zero;
19155       break;
19156     default:
19157       llvm_unreachable("unexpected builtin ID");
19158     }
19159     Function *Callee = CGM.getIntrinsic(IntNo);
19160     return Builder.CreateCall(Callee, {Vec});
19161   }
19162   case WebAssembly::BI__builtin_wasm_relaxed_q15mulr_s_i16x8: {
19163     Value *LHS = EmitScalarExpr(E->getArg(0));
19164     Value *RHS = EmitScalarExpr(E->getArg(1));
19165     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_relaxed_q15mulr_signed);
19166     return Builder.CreateCall(Callee, {LHS, RHS});
19167   }
19168   case WebAssembly::BI__builtin_wasm_relaxed_dot_i8x16_i7x16_s_i16x8: {
19169     Value *LHS = EmitScalarExpr(E->getArg(0));
19170     Value *RHS = EmitScalarExpr(E->getArg(1));
19171     Function *Callee =
19172         CGM.getIntrinsic(Intrinsic::wasm_relaxed_dot_i8x16_i7x16_signed);
19173     return Builder.CreateCall(Callee, {LHS, RHS});
19174   }
19175   case WebAssembly::BI__builtin_wasm_relaxed_dot_i8x16_i7x16_add_s_i32x4: {
19176     Value *LHS = EmitScalarExpr(E->getArg(0));
19177     Value *RHS = EmitScalarExpr(E->getArg(1));
19178     Value *Acc = EmitScalarExpr(E->getArg(2));
19179     Function *Callee =
19180         CGM.getIntrinsic(Intrinsic::wasm_relaxed_dot_i8x16_i7x16_add_signed);
19181     return Builder.CreateCall(Callee, {LHS, RHS, Acc});
19182   }
19183   case WebAssembly::BI__builtin_wasm_relaxed_dot_bf16x8_add_f32_f32x4: {
19184     Value *LHS = EmitScalarExpr(E->getArg(0));
19185     Value *RHS = EmitScalarExpr(E->getArg(1));
19186     Value *Acc = EmitScalarExpr(E->getArg(2));
19187     Function *Callee =
19188         CGM.getIntrinsic(Intrinsic::wasm_relaxed_dot_bf16x8_add_f32);
19189     return Builder.CreateCall(Callee, {LHS, RHS, Acc});
19190   }
19191   default:
19192     return nullptr;
19193   }
19194 }
19195 
19196 static std::pair<Intrinsic::ID, unsigned>
19197 getIntrinsicForHexagonNonClangBuiltin(unsigned BuiltinID) {
19198   struct Info {
19199     unsigned BuiltinID;
19200     Intrinsic::ID IntrinsicID;
19201     unsigned VecLen;
19202   };
19203   static Info Infos[] = {
19204 #define CUSTOM_BUILTIN_MAPPING(x,s) \
19205   { Hexagon::BI__builtin_HEXAGON_##x, Intrinsic::hexagon_##x, s },
19206     CUSTOM_BUILTIN_MAPPING(L2_loadrub_pci, 0)
19207     CUSTOM_BUILTIN_MAPPING(L2_loadrb_pci, 0)
19208     CUSTOM_BUILTIN_MAPPING(L2_loadruh_pci, 0)
19209     CUSTOM_BUILTIN_MAPPING(L2_loadrh_pci, 0)
19210     CUSTOM_BUILTIN_MAPPING(L2_loadri_pci, 0)
19211     CUSTOM_BUILTIN_MAPPING(L2_loadrd_pci, 0)
19212     CUSTOM_BUILTIN_MAPPING(L2_loadrub_pcr, 0)
19213     CUSTOM_BUILTIN_MAPPING(L2_loadrb_pcr, 0)
19214     CUSTOM_BUILTIN_MAPPING(L2_loadruh_pcr, 0)
19215     CUSTOM_BUILTIN_MAPPING(L2_loadrh_pcr, 0)
19216     CUSTOM_BUILTIN_MAPPING(L2_loadri_pcr, 0)
19217     CUSTOM_BUILTIN_MAPPING(L2_loadrd_pcr, 0)
19218     CUSTOM_BUILTIN_MAPPING(S2_storerb_pci, 0)
19219     CUSTOM_BUILTIN_MAPPING(S2_storerh_pci, 0)
19220     CUSTOM_BUILTIN_MAPPING(S2_storerf_pci, 0)
19221     CUSTOM_BUILTIN_MAPPING(S2_storeri_pci, 0)
19222     CUSTOM_BUILTIN_MAPPING(S2_storerd_pci, 0)
19223     CUSTOM_BUILTIN_MAPPING(S2_storerb_pcr, 0)
19224     CUSTOM_BUILTIN_MAPPING(S2_storerh_pcr, 0)
19225     CUSTOM_BUILTIN_MAPPING(S2_storerf_pcr, 0)
19226     CUSTOM_BUILTIN_MAPPING(S2_storeri_pcr, 0)
19227     CUSTOM_BUILTIN_MAPPING(S2_storerd_pcr, 0)
19228     // Legacy builtins that take a vector in place of a vector predicate.
19229     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq, 64)
19230     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq, 64)
19231     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq, 64)
19232     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq, 64)
19233     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq_128B, 128)
19234     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq_128B, 128)
19235     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq_128B, 128)
19236     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq_128B, 128)
19237 #include "clang/Basic/BuiltinsHexagonMapCustomDep.def"
19238 #undef CUSTOM_BUILTIN_MAPPING
19239   };
19240 
19241   auto CmpInfo = [] (Info A, Info B) { return A.BuiltinID < B.BuiltinID; };
19242   static const bool SortOnce = (llvm::sort(Infos, CmpInfo), true);
19243   (void)SortOnce;
19244 
19245   const Info *F = llvm::lower_bound(Infos, Info{BuiltinID, 0, 0}, CmpInfo);
19246   if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
19247     return {Intrinsic::not_intrinsic, 0};
19248 
19249   return {F->IntrinsicID, F->VecLen};
19250 }
19251 
19252 Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID,
19253                                                const CallExpr *E) {
19254   Intrinsic::ID ID;
19255   unsigned VecLen;
19256   std::tie(ID, VecLen) = getIntrinsicForHexagonNonClangBuiltin(BuiltinID);
19257 
19258   auto MakeCircOp = [this, E](unsigned IntID, bool IsLoad) {
19259     // The base pointer is passed by address, so it needs to be loaded.
19260     Address A = EmitPointerWithAlignment(E->getArg(0));
19261     Address BP = Address(Builder.CreateBitCast(
19262         A.getPointer(), Int8PtrPtrTy), Int8PtrTy, A.getAlignment());
19263     llvm::Value *Base = Builder.CreateLoad(BP);
19264     // The treatment of both loads and stores is the same: the arguments for
19265     // the builtin are the same as the arguments for the intrinsic.
19266     // Load:
19267     //   builtin(Base, Inc, Mod, Start) -> intr(Base, Inc, Mod, Start)
19268     //   builtin(Base, Mod, Start)      -> intr(Base, Mod, Start)
19269     // Store:
19270     //   builtin(Base, Inc, Mod, Val, Start) -> intr(Base, Inc, Mod, Val, Start)
19271     //   builtin(Base, Mod, Val, Start)      -> intr(Base, Mod, Val, Start)
19272     SmallVector<llvm::Value*,5> Ops = { Base };
19273     for (unsigned i = 1, e = E->getNumArgs(); i != e; ++i)
19274       Ops.push_back(EmitScalarExpr(E->getArg(i)));
19275 
19276     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
19277     // The load intrinsics generate two results (Value, NewBase), stores
19278     // generate one (NewBase). The new base address needs to be stored.
19279     llvm::Value *NewBase = IsLoad ? Builder.CreateExtractValue(Result, 1)
19280                                   : Result;
19281     llvm::Value *LV = Builder.CreateBitCast(
19282         EmitScalarExpr(E->getArg(0)), NewBase->getType()->getPointerTo());
19283     Address Dest = EmitPointerWithAlignment(E->getArg(0));
19284     llvm::Value *RetVal =
19285         Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
19286     if (IsLoad)
19287       RetVal = Builder.CreateExtractValue(Result, 0);
19288     return RetVal;
19289   };
19290 
19291   // Handle the conversion of bit-reverse load intrinsics to bit code.
19292   // The intrinsic call after this function only reads from memory and the
19293   // write to memory is dealt by the store instruction.
19294   auto MakeBrevLd = [this, E](unsigned IntID, llvm::Type *DestTy) {
19295     // The intrinsic generates one result, which is the new value for the base
19296     // pointer. It needs to be returned. The result of the load instruction is
19297     // passed to intrinsic by address, so the value needs to be stored.
19298     llvm::Value *BaseAddress =
19299         Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
19300 
19301     // Expressions like &(*pt++) will be incremented per evaluation.
19302     // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression
19303     // per call.
19304     Address DestAddr = EmitPointerWithAlignment(E->getArg(1));
19305     DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy),
19306                        Int8Ty, DestAddr.getAlignment());
19307     llvm::Value *DestAddress = DestAddr.getPointer();
19308 
19309     // Operands are Base, Dest, Modifier.
19310     // The intrinsic format in LLVM IR is defined as
19311     // { ValueType, i8* } (i8*, i32).
19312     llvm::Value *Result = Builder.CreateCall(
19313         CGM.getIntrinsic(IntID), {BaseAddress, EmitScalarExpr(E->getArg(2))});
19314 
19315     // The value needs to be stored as the variable is passed by reference.
19316     llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0);
19317 
19318     // The store needs to be truncated to fit the destination type.
19319     // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs
19320     // to be handled with stores of respective destination type.
19321     DestVal = Builder.CreateTrunc(DestVal, DestTy);
19322 
19323     llvm::Value *DestForStore =
19324         Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo());
19325     Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment());
19326     // The updated value of the base pointer is returned.
19327     return Builder.CreateExtractValue(Result, 1);
19328   };
19329 
19330   auto V2Q = [this, VecLen] (llvm::Value *Vec) {
19331     Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandvrt_128B
19332                                      : Intrinsic::hexagon_V6_vandvrt;
19333     return Builder.CreateCall(CGM.getIntrinsic(ID),
19334                               {Vec, Builder.getInt32(-1)});
19335   };
19336   auto Q2V = [this, VecLen] (llvm::Value *Pred) {
19337     Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandqrt_128B
19338                                      : Intrinsic::hexagon_V6_vandqrt;
19339     return Builder.CreateCall(CGM.getIntrinsic(ID),
19340                               {Pred, Builder.getInt32(-1)});
19341   };
19342 
19343   switch (BuiltinID) {
19344   // These intrinsics return a tuple {Vector, VectorPred} in LLVM IR,
19345   // and the corresponding C/C++ builtins use loads/stores to update
19346   // the predicate.
19347   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry:
19348   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B:
19349   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry:
19350   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: {
19351     // Get the type from the 0-th argument.
19352     llvm::Type *VecType = ConvertType(E->getArg(0)->getType());
19353     Address PredAddr = Builder.CreateElementBitCast(
19354         EmitPointerWithAlignment(E->getArg(2)), VecType);
19355     llvm::Value *PredIn = V2Q(Builder.CreateLoad(PredAddr));
19356     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID),
19357         {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), PredIn});
19358 
19359     llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1);
19360     Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.getPointer(),
19361         PredAddr.getAlignment());
19362     return Builder.CreateExtractValue(Result, 0);
19363   }
19364   // These are identical to the builtins above, except they don't consume
19365   // input carry, only generate carry-out. Since they still produce two
19366   // outputs, generate the store of the predicate, but no load.
19367   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarryo:
19368   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarryo_128B:
19369   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarryo:
19370   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarryo_128B: {
19371     // Get the type from the 0-th argument.
19372     llvm::Type *VecType = ConvertType(E->getArg(0)->getType());
19373     Address PredAddr = Builder.CreateElementBitCast(
19374         EmitPointerWithAlignment(E->getArg(2)), VecType);
19375     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID),
19376         {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1))});
19377 
19378     llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1);
19379     Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.getPointer(),
19380         PredAddr.getAlignment());
19381     return Builder.CreateExtractValue(Result, 0);
19382   }
19383 
19384   case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstoreq:
19385   case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorenq:
19386   case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentq:
19387   case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentnq:
19388   case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstoreq_128B:
19389   case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorenq_128B:
19390   case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentq_128B:
19391   case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentnq_128B: {
19392     SmallVector<llvm::Value*,4> Ops;
19393     const Expr *PredOp = E->getArg(0);
19394     // There will be an implicit cast to a boolean vector. Strip it.
19395     if (auto *Cast = dyn_cast<ImplicitCastExpr>(PredOp)) {
19396       if (Cast->getCastKind() == CK_BitCast)
19397         PredOp = Cast->getSubExpr();
19398       Ops.push_back(V2Q(EmitScalarExpr(PredOp)));
19399     }
19400     for (int i = 1, e = E->getNumArgs(); i != e; ++i)
19401       Ops.push_back(EmitScalarExpr(E->getArg(i)));
19402     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
19403   }
19404 
19405   case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci:
19406   case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci:
19407   case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci:
19408   case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci:
19409   case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci:
19410   case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci:
19411   case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr:
19412   case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr:
19413   case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr:
19414   case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr:
19415   case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr:
19416   case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr:
19417     return MakeCircOp(ID, /*IsLoad=*/true);
19418   case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci:
19419   case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci:
19420   case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci:
19421   case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci:
19422   case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci:
19423   case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr:
19424   case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr:
19425   case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr:
19426   case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr:
19427   case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr:
19428     return MakeCircOp(ID, /*IsLoad=*/false);
19429   case Hexagon::BI__builtin_brev_ldub:
19430     return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty);
19431   case Hexagon::BI__builtin_brev_ldb:
19432     return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty);
19433   case Hexagon::BI__builtin_brev_lduh:
19434     return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty);
19435   case Hexagon::BI__builtin_brev_ldh:
19436     return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty);
19437   case Hexagon::BI__builtin_brev_ldw:
19438     return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty);
19439   case Hexagon::BI__builtin_brev_ldd:
19440     return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty);
19441   } // switch
19442 
19443   return nullptr;
19444 }
19445 
19446 Value *CodeGenFunction::EmitRISCVBuiltinExpr(unsigned BuiltinID,
19447                                              const CallExpr *E,
19448                                              ReturnValueSlot ReturnValue) {
19449   SmallVector<Value *, 4> Ops;
19450   llvm::Type *ResultType = ConvertType(E->getType());
19451 
19452   // Find out if any arguments are required to be integer constant expressions.
19453   unsigned ICEArguments = 0;
19454   ASTContext::GetBuiltinTypeError Error;
19455   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
19456   if (Error == ASTContext::GE_Missing_type) {
19457     // Vector intrinsics don't have a type string.
19458     assert(BuiltinID >= clang::RISCV::FirstRVVBuiltin &&
19459            BuiltinID <= clang::RISCV::LastRVVBuiltin);
19460     ICEArguments = 0;
19461     if (BuiltinID == RISCVVector::BI__builtin_rvv_vget_v ||
19462         BuiltinID == RISCVVector::BI__builtin_rvv_vset_v)
19463       ICEArguments = 1 << 1;
19464   } else {
19465     assert(Error == ASTContext::GE_None && "Unexpected error");
19466   }
19467 
19468   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
19469     // If this is a normal argument, just emit it as a scalar.
19470     if ((ICEArguments & (1 << i)) == 0) {
19471       Ops.push_back(EmitScalarExpr(E->getArg(i)));
19472       continue;
19473     }
19474 
19475     // If this is required to be a constant, constant fold it so that we know
19476     // that the generated intrinsic gets a ConstantInt.
19477     Ops.push_back(llvm::ConstantInt::get(
19478         getLLVMContext(), *E->getArg(i)->getIntegerConstantExpr(getContext())));
19479   }
19480 
19481   Intrinsic::ID ID = Intrinsic::not_intrinsic;
19482   unsigned NF = 1;
19483   // The 0th bit simulates the `vta` of RVV
19484   // The 1st bit simulates the `vma` of RVV
19485   constexpr unsigned RVV_VTA = 0x1;
19486   constexpr unsigned RVV_VMA = 0x2;
19487   int PolicyAttrs = 0;
19488   bool IsMasked = false;
19489 
19490   // Required for overloaded intrinsics.
19491   llvm::SmallVector<llvm::Type *, 2> IntrinsicTypes;
19492   switch (BuiltinID) {
19493   default: llvm_unreachable("unexpected builtin ID");
19494   case RISCV::BI__builtin_riscv_orc_b_32:
19495   case RISCV::BI__builtin_riscv_orc_b_64:
19496   case RISCV::BI__builtin_riscv_clz_32:
19497   case RISCV::BI__builtin_riscv_clz_64:
19498   case RISCV::BI__builtin_riscv_ctz_32:
19499   case RISCV::BI__builtin_riscv_ctz_64:
19500   case RISCV::BI__builtin_riscv_clmul:
19501   case RISCV::BI__builtin_riscv_clmulh:
19502   case RISCV::BI__builtin_riscv_clmulr:
19503   case RISCV::BI__builtin_riscv_xperm4:
19504   case RISCV::BI__builtin_riscv_xperm8:
19505   case RISCV::BI__builtin_riscv_brev8:
19506   case RISCV::BI__builtin_riscv_zip_32:
19507   case RISCV::BI__builtin_riscv_unzip_32: {
19508     switch (BuiltinID) {
19509     default: llvm_unreachable("unexpected builtin ID");
19510     // Zbb
19511     case RISCV::BI__builtin_riscv_orc_b_32:
19512     case RISCV::BI__builtin_riscv_orc_b_64:
19513       ID = Intrinsic::riscv_orc_b;
19514       break;
19515     case RISCV::BI__builtin_riscv_clz_32:
19516     case RISCV::BI__builtin_riscv_clz_64: {
19517       Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
19518       return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
19519     }
19520     case RISCV::BI__builtin_riscv_ctz_32:
19521     case RISCV::BI__builtin_riscv_ctz_64: {
19522       Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
19523       return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
19524     }
19525 
19526     // Zbc
19527     case RISCV::BI__builtin_riscv_clmul:
19528       ID = Intrinsic::riscv_clmul;
19529       break;
19530     case RISCV::BI__builtin_riscv_clmulh:
19531       ID = Intrinsic::riscv_clmulh;
19532       break;
19533     case RISCV::BI__builtin_riscv_clmulr:
19534       ID = Intrinsic::riscv_clmulr;
19535       break;
19536 
19537     // Zbkx
19538     case RISCV::BI__builtin_riscv_xperm8:
19539       ID = Intrinsic::riscv_xperm8;
19540       break;
19541     case RISCV::BI__builtin_riscv_xperm4:
19542       ID = Intrinsic::riscv_xperm4;
19543       break;
19544 
19545     // Zbkb
19546     case RISCV::BI__builtin_riscv_brev8:
19547       ID = Intrinsic::riscv_brev8;
19548       break;
19549     case RISCV::BI__builtin_riscv_zip_32:
19550       ID = Intrinsic::riscv_zip;
19551       break;
19552     case RISCV::BI__builtin_riscv_unzip_32:
19553       ID = Intrinsic::riscv_unzip;
19554       break;
19555     }
19556 
19557     IntrinsicTypes = {ResultType};
19558     break;
19559   }
19560 
19561   // Zk builtins
19562 
19563   // Zknd
19564   case RISCV::BI__builtin_riscv_aes32dsi_32:
19565     ID = Intrinsic::riscv_aes32dsi;
19566     break;
19567   case RISCV::BI__builtin_riscv_aes32dsmi_32:
19568     ID = Intrinsic::riscv_aes32dsmi;
19569     break;
19570   case RISCV::BI__builtin_riscv_aes64ds_64:
19571     ID = Intrinsic::riscv_aes64ds;
19572     break;
19573   case RISCV::BI__builtin_riscv_aes64dsm_64:
19574     ID = Intrinsic::riscv_aes64dsm;
19575     break;
19576   case RISCV::BI__builtin_riscv_aes64im_64:
19577     ID = Intrinsic::riscv_aes64im;
19578     break;
19579 
19580   // Zkne
19581   case RISCV::BI__builtin_riscv_aes32esi_32:
19582     ID = Intrinsic::riscv_aes32esi;
19583     break;
19584   case RISCV::BI__builtin_riscv_aes32esmi_32:
19585     ID = Intrinsic::riscv_aes32esmi;
19586     break;
19587   case RISCV::BI__builtin_riscv_aes64es_64:
19588     ID = Intrinsic::riscv_aes64es;
19589     break;
19590   case RISCV::BI__builtin_riscv_aes64esm_64:
19591     ID = Intrinsic::riscv_aes64esm;
19592     break;
19593 
19594   // Zknd & Zkne
19595   case RISCV::BI__builtin_riscv_aes64ks1i_64:
19596     ID = Intrinsic::riscv_aes64ks1i;
19597     break;
19598   case RISCV::BI__builtin_riscv_aes64ks2_64:
19599     ID = Intrinsic::riscv_aes64ks2;
19600     break;
19601 
19602   // Zknh
19603   case RISCV::BI__builtin_riscv_sha256sig0:
19604     ID = Intrinsic::riscv_sha256sig0;
19605     IntrinsicTypes = {ResultType};
19606     break;
19607   case RISCV::BI__builtin_riscv_sha256sig1:
19608     ID = Intrinsic::riscv_sha256sig1;
19609     IntrinsicTypes = {ResultType};
19610     break;
19611   case RISCV::BI__builtin_riscv_sha256sum0:
19612     ID = Intrinsic::riscv_sha256sum0;
19613     IntrinsicTypes = {ResultType};
19614     break;
19615   case RISCV::BI__builtin_riscv_sha256sum1:
19616     ID = Intrinsic::riscv_sha256sum1;
19617     IntrinsicTypes = {ResultType};
19618     break;
19619   case RISCV::BI__builtin_riscv_sha512sig0_64:
19620     ID = Intrinsic::riscv_sha512sig0;
19621     break;
19622   case RISCV::BI__builtin_riscv_sha512sig0h_32:
19623     ID = Intrinsic::riscv_sha512sig0h;
19624     break;
19625   case RISCV::BI__builtin_riscv_sha512sig0l_32:
19626     ID = Intrinsic::riscv_sha512sig0l;
19627     break;
19628   case RISCV::BI__builtin_riscv_sha512sig1_64:
19629     ID = Intrinsic::riscv_sha512sig1;
19630     break;
19631   case RISCV::BI__builtin_riscv_sha512sig1h_32:
19632     ID = Intrinsic::riscv_sha512sig1h;
19633     break;
19634   case RISCV::BI__builtin_riscv_sha512sig1l_32:
19635     ID = Intrinsic::riscv_sha512sig1l;
19636     break;
19637   case RISCV::BI__builtin_riscv_sha512sum0_64:
19638     ID = Intrinsic::riscv_sha512sum0;
19639     break;
19640   case RISCV::BI__builtin_riscv_sha512sum0r_32:
19641     ID = Intrinsic::riscv_sha512sum0r;
19642     break;
19643   case RISCV::BI__builtin_riscv_sha512sum1_64:
19644     ID = Intrinsic::riscv_sha512sum1;
19645     break;
19646   case RISCV::BI__builtin_riscv_sha512sum1r_32:
19647     ID = Intrinsic::riscv_sha512sum1r;
19648     break;
19649 
19650   // Zksed
19651   case RISCV::BI__builtin_riscv_sm4ks:
19652     ID = Intrinsic::riscv_sm4ks;
19653     IntrinsicTypes = {ResultType};
19654     break;
19655   case RISCV::BI__builtin_riscv_sm4ed:
19656     ID = Intrinsic::riscv_sm4ed;
19657     IntrinsicTypes = {ResultType};
19658     break;
19659 
19660   // Zksh
19661   case RISCV::BI__builtin_riscv_sm3p0:
19662     ID = Intrinsic::riscv_sm3p0;
19663     IntrinsicTypes = {ResultType};
19664     break;
19665   case RISCV::BI__builtin_riscv_sm3p1:
19666     ID = Intrinsic::riscv_sm3p1;
19667     IntrinsicTypes = {ResultType};
19668     break;
19669 
19670   // Vector builtins are handled from here.
19671 #include "clang/Basic/riscv_vector_builtin_cg.inc"
19672   }
19673 
19674   assert(ID != Intrinsic::not_intrinsic);
19675 
19676   llvm::Function *F = CGM.getIntrinsic(ID, IntrinsicTypes);
19677   return Builder.CreateCall(F, Ops, "");
19678 }
19679 
19680 Value *CodeGenFunction::EmitLoongArchBuiltinExpr(unsigned BuiltinID,
19681                                                  const CallExpr *E) {
19682   SmallVector<Value *, 4> Ops;
19683 
19684   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
19685     Ops.push_back(EmitScalarExpr(E->getArg(i)));
19686 
19687   Intrinsic::ID ID = Intrinsic::not_intrinsic;
19688 
19689   switch (BuiltinID) {
19690   default:
19691     llvm_unreachable("unexpected builtin ID.");
19692   case LoongArch::BI__builtin_loongarch_cacop_d:
19693     ID = Intrinsic::loongarch_cacop_d;
19694     break;
19695   case LoongArch::BI__builtin_loongarch_cacop_w:
19696     ID = Intrinsic::loongarch_cacop_w;
19697     break;
19698   case LoongArch::BI__builtin_loongarch_dbar:
19699     ID = Intrinsic::loongarch_dbar;
19700     break;
19701   case LoongArch::BI__builtin_loongarch_break:
19702     ID = Intrinsic::loongarch_break;
19703     break;
19704   case LoongArch::BI__builtin_loongarch_ibar:
19705     ID = Intrinsic::loongarch_ibar;
19706     break;
19707   case LoongArch::BI__builtin_loongarch_movfcsr2gr:
19708     ID = Intrinsic::loongarch_movfcsr2gr;
19709     break;
19710   case LoongArch::BI__builtin_loongarch_movgr2fcsr:
19711     ID = Intrinsic::loongarch_movgr2fcsr;
19712     break;
19713   case LoongArch::BI__builtin_loongarch_syscall:
19714     ID = Intrinsic::loongarch_syscall;
19715     break;
19716   case LoongArch::BI__builtin_loongarch_crc_w_b_w:
19717     ID = Intrinsic::loongarch_crc_w_b_w;
19718     break;
19719   case LoongArch::BI__builtin_loongarch_crc_w_h_w:
19720     ID = Intrinsic::loongarch_crc_w_h_w;
19721     break;
19722   case LoongArch::BI__builtin_loongarch_crc_w_w_w:
19723     ID = Intrinsic::loongarch_crc_w_w_w;
19724     break;
19725   case LoongArch::BI__builtin_loongarch_crc_w_d_w:
19726     ID = Intrinsic::loongarch_crc_w_d_w;
19727     break;
19728   case LoongArch::BI__builtin_loongarch_crcc_w_b_w:
19729     ID = Intrinsic::loongarch_crcc_w_b_w;
19730     break;
19731   case LoongArch::BI__builtin_loongarch_crcc_w_h_w:
19732     ID = Intrinsic::loongarch_crcc_w_h_w;
19733     break;
19734   case LoongArch::BI__builtin_loongarch_crcc_w_w_w:
19735     ID = Intrinsic::loongarch_crcc_w_w_w;
19736     break;
19737   case LoongArch::BI__builtin_loongarch_crcc_w_d_w:
19738     ID = Intrinsic::loongarch_crcc_w_d_w;
19739     break;
19740   case LoongArch::BI__builtin_loongarch_csrrd_w:
19741     ID = Intrinsic::loongarch_csrrd_w;
19742     break;
19743   case LoongArch::BI__builtin_loongarch_csrwr_w:
19744     ID = Intrinsic::loongarch_csrwr_w;
19745     break;
19746   case LoongArch::BI__builtin_loongarch_csrxchg_w:
19747     ID = Intrinsic::loongarch_csrxchg_w;
19748     break;
19749   case LoongArch::BI__builtin_loongarch_csrrd_d:
19750     ID = Intrinsic::loongarch_csrrd_d;
19751     break;
19752   case LoongArch::BI__builtin_loongarch_csrwr_d:
19753     ID = Intrinsic::loongarch_csrwr_d;
19754     break;
19755   case LoongArch::BI__builtin_loongarch_csrxchg_d:
19756     ID = Intrinsic::loongarch_csrxchg_d;
19757     break;
19758   case LoongArch::BI__builtin_loongarch_iocsrrd_b:
19759     ID = Intrinsic::loongarch_iocsrrd_b;
19760     break;
19761   case LoongArch::BI__builtin_loongarch_iocsrrd_h:
19762     ID = Intrinsic::loongarch_iocsrrd_h;
19763     break;
19764   case LoongArch::BI__builtin_loongarch_iocsrrd_w:
19765     ID = Intrinsic::loongarch_iocsrrd_w;
19766     break;
19767   case LoongArch::BI__builtin_loongarch_iocsrrd_d:
19768     ID = Intrinsic::loongarch_iocsrrd_d;
19769     break;
19770   case LoongArch::BI__builtin_loongarch_iocsrwr_b:
19771     ID = Intrinsic::loongarch_iocsrwr_b;
19772     break;
19773   case LoongArch::BI__builtin_loongarch_iocsrwr_h:
19774     ID = Intrinsic::loongarch_iocsrwr_h;
19775     break;
19776   case LoongArch::BI__builtin_loongarch_iocsrwr_w:
19777     ID = Intrinsic::loongarch_iocsrwr_w;
19778     break;
19779   case LoongArch::BI__builtin_loongarch_iocsrwr_d:
19780     ID = Intrinsic::loongarch_iocsrwr_d;
19781     break;
19782   case LoongArch::BI__builtin_loongarch_cpucfg:
19783     ID = Intrinsic::loongarch_cpucfg;
19784     break;
19785   case LoongArch::BI__builtin_loongarch_asrtle_d:
19786     ID = Intrinsic::loongarch_asrtle_d;
19787     break;
19788   case LoongArch::BI__builtin_loongarch_asrtgt_d:
19789     ID = Intrinsic::loongarch_asrtgt_d;
19790     break;
19791   case LoongArch::BI__builtin_loongarch_lddir_d:
19792     ID = Intrinsic::loongarch_lddir_d;
19793     break;
19794   case LoongArch::BI__builtin_loongarch_ldpte_d:
19795     ID = Intrinsic::loongarch_ldpte_d;
19796     break;
19797     // TODO: Support more Intrinsics.
19798   }
19799 
19800   assert(ID != Intrinsic::not_intrinsic);
19801 
19802   llvm::Function *F = CGM.getIntrinsic(ID);
19803   return Builder.CreateCall(F, Ops);
19804 }
19805