1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Builtin calls as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGObjCRuntime.h"
15 #include "CGOpenCLRuntime.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenFunction.h"
18 #include "CodeGenModule.h"
19 #include "ConstantEmitter.h"
20 #include "PatternInit.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/OSLog.h"
26 #include "clang/Basic/TargetBuiltins.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/IntrinsicsAArch64.h"
36 #include "llvm/IR/IntrinsicsAMDGPU.h"
37 #include "llvm/IR/IntrinsicsARM.h"
38 #include "llvm/IR/IntrinsicsBPF.h"
39 #include "llvm/IR/IntrinsicsHexagon.h"
40 #include "llvm/IR/IntrinsicsNVPTX.h"
41 #include "llvm/IR/IntrinsicsPowerPC.h"
42 #include "llvm/IR/IntrinsicsR600.h"
43 #include "llvm/IR/IntrinsicsS390.h"
44 #include "llvm/IR/IntrinsicsWebAssembly.h"
45 #include "llvm/IR/IntrinsicsX86.h"
46 #include "llvm/IR/MDBuilder.h"
47 #include "llvm/IR/MatrixBuilder.h"
48 #include "llvm/Support/ConvertUTF.h"
49 #include "llvm/Support/ScopedPrinter.h"
50 #include "llvm/Support/X86TargetParser.h"
51 #include <sstream>
52 
53 using namespace clang;
54 using namespace CodeGen;
55 using namespace llvm;
56 
57 static
58 int64_t clamp(int64_t Value, int64_t Low, int64_t High) {
59   return std::min(High, std::max(Low, Value));
60 }
61 
62 static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size,
63                              Align AlignmentInBytes) {
64   ConstantInt *Byte;
65   switch (CGF.getLangOpts().getTrivialAutoVarInit()) {
66   case LangOptions::TrivialAutoVarInitKind::Uninitialized:
67     // Nothing to initialize.
68     return;
69   case LangOptions::TrivialAutoVarInitKind::Zero:
70     Byte = CGF.Builder.getInt8(0x00);
71     break;
72   case LangOptions::TrivialAutoVarInitKind::Pattern: {
73     llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext());
74     Byte = llvm::dyn_cast<llvm::ConstantInt>(
75         initializationPatternFor(CGF.CGM, Int8));
76     break;
77   }
78   }
79   if (CGF.CGM.stopAutoInit())
80     return;
81   CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes);
82 }
83 
84 /// getBuiltinLibFunction - Given a builtin id for a function like
85 /// "__builtin_fabsf", return a Function* for "fabsf".
86 llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
87                                                      unsigned BuiltinID) {
88   assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
89 
90   // Get the name, skip over the __builtin_ prefix (if necessary).
91   StringRef Name;
92   GlobalDecl D(FD);
93 
94   // If the builtin has been declared explicitly with an assembler label,
95   // use the mangled name. This differs from the plain label on platforms
96   // that prefix labels.
97   if (FD->hasAttr<AsmLabelAttr>())
98     Name = getMangledName(D);
99   else
100     Name = Context.BuiltinInfo.getName(BuiltinID) + 10;
101 
102   llvm::FunctionType *Ty =
103     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
104 
105   return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
106 }
107 
108 /// Emit the conversions required to turn the given value into an
109 /// integer of the given size.
110 static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
111                         QualType T, llvm::IntegerType *IntType) {
112   V = CGF.EmitToMemory(V, T);
113 
114   if (V->getType()->isPointerTy())
115     return CGF.Builder.CreatePtrToInt(V, IntType);
116 
117   assert(V->getType() == IntType);
118   return V;
119 }
120 
121 static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
122                           QualType T, llvm::Type *ResultType) {
123   V = CGF.EmitFromMemory(V, T);
124 
125   if (ResultType->isPointerTy())
126     return CGF.Builder.CreateIntToPtr(V, ResultType);
127 
128   assert(V->getType() == ResultType);
129   return V;
130 }
131 
132 /// Utility to insert an atomic instruction based on Intrinsic::ID
133 /// and the expression node.
134 static Value *MakeBinaryAtomicValue(
135     CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
136     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
137   QualType T = E->getType();
138   assert(E->getArg(0)->getType()->isPointerType());
139   assert(CGF.getContext().hasSameUnqualifiedType(T,
140                                   E->getArg(0)->getType()->getPointeeType()));
141   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
142 
143   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
144   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
145 
146   llvm::IntegerType *IntType =
147     llvm::IntegerType::get(CGF.getLLVMContext(),
148                            CGF.getContext().getTypeSize(T));
149   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
150 
151   llvm::Value *Args[2];
152   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
153   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
154   llvm::Type *ValueType = Args[1]->getType();
155   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
156 
157   llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
158       Kind, Args[0], Args[1], Ordering);
159   return EmitFromInt(CGF, Result, T, ValueType);
160 }
161 
162 static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
163   Value *Val = CGF.EmitScalarExpr(E->getArg(0));
164   Value *Address = CGF.EmitScalarExpr(E->getArg(1));
165 
166   // Convert the type of the pointer to a pointer to the stored type.
167   Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
168   Value *BC = CGF.Builder.CreateBitCast(
169       Address, llvm::PointerType::getUnqual(Val->getType()), "cast");
170   LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
171   LV.setNontemporal(true);
172   CGF.EmitStoreOfScalar(Val, LV, false);
173   return nullptr;
174 }
175 
176 static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
177   Value *Address = CGF.EmitScalarExpr(E->getArg(0));
178 
179   LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
180   LV.setNontemporal(true);
181   return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
182 }
183 
184 static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
185                                llvm::AtomicRMWInst::BinOp Kind,
186                                const CallExpr *E) {
187   return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
188 }
189 
190 /// Utility to insert an atomic instruction based Intrinsic::ID and
191 /// the expression node, where the return value is the result of the
192 /// operation.
193 static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
194                                    llvm::AtomicRMWInst::BinOp Kind,
195                                    const CallExpr *E,
196                                    Instruction::BinaryOps Op,
197                                    bool Invert = false) {
198   QualType T = E->getType();
199   assert(E->getArg(0)->getType()->isPointerType());
200   assert(CGF.getContext().hasSameUnqualifiedType(T,
201                                   E->getArg(0)->getType()->getPointeeType()));
202   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
203 
204   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
205   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
206 
207   llvm::IntegerType *IntType =
208     llvm::IntegerType::get(CGF.getLLVMContext(),
209                            CGF.getContext().getTypeSize(T));
210   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
211 
212   llvm::Value *Args[2];
213   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
214   llvm::Type *ValueType = Args[1]->getType();
215   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
216   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
217 
218   llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
219       Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
220   Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
221   if (Invert)
222     Result =
223         CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
224                                 llvm::ConstantInt::getAllOnesValue(IntType));
225   Result = EmitFromInt(CGF, Result, T, ValueType);
226   return RValue::get(Result);
227 }
228 
229 /// Utility to insert an atomic cmpxchg instruction.
230 ///
231 /// @param CGF The current codegen function.
232 /// @param E   Builtin call expression to convert to cmpxchg.
233 ///            arg0 - address to operate on
234 ///            arg1 - value to compare with
235 ///            arg2 - new value
236 /// @param ReturnBool Specifies whether to return success flag of
237 ///                   cmpxchg result or the old value.
238 ///
239 /// @returns result of cmpxchg, according to ReturnBool
240 ///
241 /// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
242 /// invoke the function EmitAtomicCmpXchgForMSIntrin.
243 static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
244                                      bool ReturnBool) {
245   QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
246   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
247   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
248 
249   llvm::IntegerType *IntType = llvm::IntegerType::get(
250       CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
251   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
252 
253   Value *Args[3];
254   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
255   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
256   llvm::Type *ValueType = Args[1]->getType();
257   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
258   Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
259 
260   Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
261       Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent,
262       llvm::AtomicOrdering::SequentiallyConsistent);
263   if (ReturnBool)
264     // Extract boolean success flag and zext it to int.
265     return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
266                                   CGF.ConvertType(E->getType()));
267   else
268     // Extract old value and emit it using the same type as compare value.
269     return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
270                        ValueType);
271 }
272 
273 /// This function should be invoked to emit atomic cmpxchg for Microsoft's
274 /// _InterlockedCompareExchange* intrinsics which have the following signature:
275 /// T _InterlockedCompareExchange(T volatile *Destination,
276 ///                               T Exchange,
277 ///                               T Comparand);
278 ///
279 /// Whereas the llvm 'cmpxchg' instruction has the following syntax:
280 /// cmpxchg *Destination, Comparand, Exchange.
281 /// So we need to swap Comparand and Exchange when invoking
282 /// CreateAtomicCmpXchg. That is the reason we could not use the above utility
283 /// function MakeAtomicCmpXchgValue since it expects the arguments to be
284 /// already swapped.
285 
286 static
287 Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E,
288     AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
289   assert(E->getArg(0)->getType()->isPointerType());
290   assert(CGF.getContext().hasSameUnqualifiedType(
291       E->getType(), E->getArg(0)->getType()->getPointeeType()));
292   assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
293                                                  E->getArg(1)->getType()));
294   assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
295                                                  E->getArg(2)->getType()));
296 
297   auto *Destination = CGF.EmitScalarExpr(E->getArg(0));
298   auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
299   auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
300 
301   // For Release ordering, the failure ordering should be Monotonic.
302   auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
303                          AtomicOrdering::Monotonic :
304                          SuccessOrdering;
305 
306   auto *Result = CGF.Builder.CreateAtomicCmpXchg(
307                    Destination, Comparand, Exchange,
308                    SuccessOrdering, FailureOrdering);
309   Result->setVolatile(true);
310   return CGF.Builder.CreateExtractValue(Result, 0);
311 }
312 
313 static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E,
314     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
315   assert(E->getArg(0)->getType()->isPointerType());
316 
317   auto *IntTy = CGF.ConvertType(E->getType());
318   auto *Result = CGF.Builder.CreateAtomicRMW(
319                    AtomicRMWInst::Add,
320                    CGF.EmitScalarExpr(E->getArg(0)),
321                    ConstantInt::get(IntTy, 1),
322                    Ordering);
323   return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
324 }
325 
326 static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E,
327     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
328   assert(E->getArg(0)->getType()->isPointerType());
329 
330   auto *IntTy = CGF.ConvertType(E->getType());
331   auto *Result = CGF.Builder.CreateAtomicRMW(
332                    AtomicRMWInst::Sub,
333                    CGF.EmitScalarExpr(E->getArg(0)),
334                    ConstantInt::get(IntTy, 1),
335                    Ordering);
336   return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
337 }
338 
339 // Build a plain volatile load.
340 static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) {
341   Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
342   QualType ElTy = E->getArg(0)->getType()->getPointeeType();
343   CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy);
344   llvm::Type *ITy =
345       llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8);
346   Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
347   llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(Ptr, LoadSize);
348   Load->setVolatile(true);
349   return Load;
350 }
351 
352 // Build a plain volatile store.
353 static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) {
354   Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
355   Value *Value = CGF.EmitScalarExpr(E->getArg(1));
356   QualType ElTy = E->getArg(0)->getType()->getPointeeType();
357   CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy);
358   llvm::Type *ITy =
359       llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8);
360   Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
361   llvm::StoreInst *Store =
362       CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize);
363   Store->setVolatile(true);
364   return Store;
365 }
366 
367 // Emit a simple mangled intrinsic that has 1 argument and a return type
368 // matching the argument type. Depending on mode, this may be a constrained
369 // floating-point intrinsic.
370 static Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
371                                 const CallExpr *E, unsigned IntrinsicID,
372                                 unsigned ConstrainedIntrinsicID) {
373   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
374 
375   if (CGF.Builder.getIsFPConstrained()) {
376     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
377     return CGF.Builder.CreateConstrainedFPCall(F, { Src0 });
378   } else {
379     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
380     return CGF.Builder.CreateCall(F, Src0);
381   }
382 }
383 
384 // Emit an intrinsic that has 2 operands of the same type as its result.
385 // Depending on mode, this may be a constrained floating-point intrinsic.
386 static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
387                                 const CallExpr *E, unsigned IntrinsicID,
388                                 unsigned ConstrainedIntrinsicID) {
389   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
390   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
391 
392   if (CGF.Builder.getIsFPConstrained()) {
393     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
394     return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1 });
395   } else {
396     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
397     return CGF.Builder.CreateCall(F, { Src0, Src1 });
398   }
399 }
400 
401 // Emit an intrinsic that has 3 operands of the same type as its result.
402 // Depending on mode, this may be a constrained floating-point intrinsic.
403 static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
404                                  const CallExpr *E, unsigned IntrinsicID,
405                                  unsigned ConstrainedIntrinsicID) {
406   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
407   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
408   llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
409 
410   if (CGF.Builder.getIsFPConstrained()) {
411     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
412     return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1, Src2 });
413   } else {
414     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
415     return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
416   }
417 }
418 
419 // Emit an intrinsic where all operands are of the same type as the result.
420 // Depending on mode, this may be a constrained floating-point intrinsic.
421 static Value *emitCallMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
422                                                 unsigned IntrinsicID,
423                                                 unsigned ConstrainedIntrinsicID,
424                                                 llvm::Type *Ty,
425                                                 ArrayRef<Value *> Args) {
426   Function *F;
427   if (CGF.Builder.getIsFPConstrained())
428     F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Ty);
429   else
430     F = CGF.CGM.getIntrinsic(IntrinsicID, Ty);
431 
432   if (CGF.Builder.getIsFPConstrained())
433     return CGF.Builder.CreateConstrainedFPCall(F, Args);
434   else
435     return CGF.Builder.CreateCall(F, Args);
436 }
437 
438 // Emit a simple mangled intrinsic that has 1 argument and a return type
439 // matching the argument type.
440 static Value *emitUnaryBuiltin(CodeGenFunction &CGF,
441                                const CallExpr *E,
442                                unsigned IntrinsicID) {
443   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
444 
445   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
446   return CGF.Builder.CreateCall(F, Src0);
447 }
448 
449 // Emit an intrinsic that has 2 operands of the same type as its result.
450 static Value *emitBinaryBuiltin(CodeGenFunction &CGF,
451                                 const CallExpr *E,
452                                 unsigned IntrinsicID) {
453   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
454   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
455 
456   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
457   return CGF.Builder.CreateCall(F, { Src0, Src1 });
458 }
459 
460 // Emit an intrinsic that has 3 operands of the same type as its result.
461 static Value *emitTernaryBuiltin(CodeGenFunction &CGF,
462                                  const CallExpr *E,
463                                  unsigned IntrinsicID) {
464   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
465   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
466   llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
467 
468   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
469   return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
470 }
471 
472 // Emit an intrinsic that has 1 float or double operand, and 1 integer.
473 static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
474                                const CallExpr *E,
475                                unsigned IntrinsicID) {
476   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
477   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
478 
479   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
480   return CGF.Builder.CreateCall(F, {Src0, Src1});
481 }
482 
483 // Emit an intrinsic that has overloaded integer result and fp operand.
484 static Value *
485 emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E,
486                                         unsigned IntrinsicID,
487                                         unsigned ConstrainedIntrinsicID) {
488   llvm::Type *ResultType = CGF.ConvertType(E->getType());
489   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
490 
491   if (CGF.Builder.getIsFPConstrained()) {
492     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID,
493                                        {ResultType, Src0->getType()});
494     return CGF.Builder.CreateConstrainedFPCall(F, {Src0});
495   } else {
496     Function *F =
497         CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()});
498     return CGF.Builder.CreateCall(F, Src0);
499   }
500 }
501 
502 /// EmitFAbs - Emit a call to @llvm.fabs().
503 static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
504   Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
505   llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
506   Call->setDoesNotAccessMemory();
507   return Call;
508 }
509 
510 /// Emit the computation of the sign bit for a floating point value. Returns
511 /// the i1 sign bit value.
512 static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
513   LLVMContext &C = CGF.CGM.getLLVMContext();
514 
515   llvm::Type *Ty = V->getType();
516   int Width = Ty->getPrimitiveSizeInBits();
517   llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
518   V = CGF.Builder.CreateBitCast(V, IntTy);
519   if (Ty->isPPC_FP128Ty()) {
520     // We want the sign bit of the higher-order double. The bitcast we just
521     // did works as if the double-double was stored to memory and then
522     // read as an i128. The "store" will put the higher-order double in the
523     // lower address in both little- and big-Endian modes, but the "load"
524     // will treat those bits as a different part of the i128: the low bits in
525     // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
526     // we need to shift the high bits down to the low before truncating.
527     Width >>= 1;
528     if (CGF.getTarget().isBigEndian()) {
529       Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
530       V = CGF.Builder.CreateLShr(V, ShiftCst);
531     }
532     // We are truncating value in order to extract the higher-order
533     // double, which we will be using to extract the sign from.
534     IntTy = llvm::IntegerType::get(C, Width);
535     V = CGF.Builder.CreateTrunc(V, IntTy);
536   }
537   Value *Zero = llvm::Constant::getNullValue(IntTy);
538   return CGF.Builder.CreateICmpSLT(V, Zero);
539 }
540 
541 static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
542                               const CallExpr *E, llvm::Constant *calleeValue) {
543   CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
544   return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
545 }
546 
547 /// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
548 /// depending on IntrinsicID.
549 ///
550 /// \arg CGF The current codegen function.
551 /// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
552 /// \arg X The first argument to the llvm.*.with.overflow.*.
553 /// \arg Y The second argument to the llvm.*.with.overflow.*.
554 /// \arg Carry The carry returned by the llvm.*.with.overflow.*.
555 /// \returns The result (i.e. sum/product) returned by the intrinsic.
556 static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
557                                           const llvm::Intrinsic::ID IntrinsicID,
558                                           llvm::Value *X, llvm::Value *Y,
559                                           llvm::Value *&Carry) {
560   // Make sure we have integers of the same width.
561   assert(X->getType() == Y->getType() &&
562          "Arguments must be the same type. (Did you forget to make sure both "
563          "arguments have the same integer width?)");
564 
565   Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
566   llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
567   Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
568   return CGF.Builder.CreateExtractValue(Tmp, 0);
569 }
570 
571 static Value *emitRangedBuiltin(CodeGenFunction &CGF,
572                                 unsigned IntrinsicID,
573                                 int low, int high) {
574     llvm::MDBuilder MDHelper(CGF.getLLVMContext());
575     llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high));
576     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
577     llvm::Instruction *Call = CGF.Builder.CreateCall(F);
578     Call->setMetadata(llvm::LLVMContext::MD_range, RNode);
579     return Call;
580 }
581 
582 namespace {
583   struct WidthAndSignedness {
584     unsigned Width;
585     bool Signed;
586   };
587 }
588 
589 static WidthAndSignedness
590 getIntegerWidthAndSignedness(const clang::ASTContext &context,
591                              const clang::QualType Type) {
592   assert(Type->isIntegerType() && "Given type is not an integer.");
593   unsigned Width = Type->isBooleanType()  ? 1
594                    : Type->isExtIntType() ? context.getIntWidth(Type)
595                                           : context.getTypeInfo(Type).Width;
596   bool Signed = Type->isSignedIntegerType();
597   return {Width, Signed};
598 }
599 
600 // Given one or more integer types, this function produces an integer type that
601 // encompasses them: any value in one of the given types could be expressed in
602 // the encompassing type.
603 static struct WidthAndSignedness
604 EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
605   assert(Types.size() > 0 && "Empty list of types.");
606 
607   // If any of the given types is signed, we must return a signed type.
608   bool Signed = false;
609   for (const auto &Type : Types) {
610     Signed |= Type.Signed;
611   }
612 
613   // The encompassing type must have a width greater than or equal to the width
614   // of the specified types.  Additionally, if the encompassing type is signed,
615   // its width must be strictly greater than the width of any unsigned types
616   // given.
617   unsigned Width = 0;
618   for (const auto &Type : Types) {
619     unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
620     if (Width < MinWidth) {
621       Width = MinWidth;
622     }
623   }
624 
625   return {Width, Signed};
626 }
627 
628 Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
629   llvm::Type *DestType = Int8PtrTy;
630   if (ArgValue->getType() != DestType)
631     ArgValue =
632         Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
633 
634   Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
635   return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
636 }
637 
638 /// Checks if using the result of __builtin_object_size(p, @p From) in place of
639 /// __builtin_object_size(p, @p To) is correct
640 static bool areBOSTypesCompatible(int From, int To) {
641   // Note: Our __builtin_object_size implementation currently treats Type=0 and
642   // Type=2 identically. Encoding this implementation detail here may make
643   // improving __builtin_object_size difficult in the future, so it's omitted.
644   return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
645 }
646 
647 static llvm::Value *
648 getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
649   return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
650 }
651 
652 llvm::Value *
653 CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
654                                                  llvm::IntegerType *ResType,
655                                                  llvm::Value *EmittedE,
656                                                  bool IsDynamic) {
657   uint64_t ObjectSize;
658   if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
659     return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic);
660   return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
661 }
662 
663 /// Returns a Value corresponding to the size of the given expression.
664 /// This Value may be either of the following:
665 ///   - A llvm::Argument (if E is a param with the pass_object_size attribute on
666 ///     it)
667 ///   - A call to the @llvm.objectsize intrinsic
668 ///
669 /// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
670 /// and we wouldn't otherwise try to reference a pass_object_size parameter,
671 /// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
672 llvm::Value *
673 CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
674                                        llvm::IntegerType *ResType,
675                                        llvm::Value *EmittedE, bool IsDynamic) {
676   // We need to reference an argument if the pointer is a parameter with the
677   // pass_object_size attribute.
678   if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
679     auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
680     auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
681     if (Param != nullptr && PS != nullptr &&
682         areBOSTypesCompatible(PS->getType(), Type)) {
683       auto Iter = SizeArguments.find(Param);
684       assert(Iter != SizeArguments.end());
685 
686       const ImplicitParamDecl *D = Iter->second;
687       auto DIter = LocalDeclMap.find(D);
688       assert(DIter != LocalDeclMap.end());
689 
690       return EmitLoadOfScalar(DIter->second, /*Volatile=*/false,
691                               getContext().getSizeType(), E->getBeginLoc());
692     }
693   }
694 
695   // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
696   // evaluate E for side-effects. In either case, we shouldn't lower to
697   // @llvm.objectsize.
698   if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
699     return getDefaultBuiltinObjectSizeResult(Type, ResType);
700 
701   Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
702   assert(Ptr->getType()->isPointerTy() &&
703          "Non-pointer passed to __builtin_object_size?");
704 
705   Function *F =
706       CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
707 
708   // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
709   Value *Min = Builder.getInt1((Type & 2) != 0);
710   // For GCC compatibility, __builtin_object_size treat NULL as unknown size.
711   Value *NullIsUnknown = Builder.getTrue();
712   Value *Dynamic = Builder.getInt1(IsDynamic);
713   return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic});
714 }
715 
716 namespace {
717 /// A struct to generically describe a bit test intrinsic.
718 struct BitTest {
719   enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
720   enum InterlockingKind : uint8_t {
721     Unlocked,
722     Sequential,
723     Acquire,
724     Release,
725     NoFence
726   };
727 
728   ActionKind Action;
729   InterlockingKind Interlocking;
730   bool Is64Bit;
731 
732   static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
733 };
734 } // namespace
735 
736 BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
737   switch (BuiltinID) {
738     // Main portable variants.
739   case Builtin::BI_bittest:
740     return {TestOnly, Unlocked, false};
741   case Builtin::BI_bittestandcomplement:
742     return {Complement, Unlocked, false};
743   case Builtin::BI_bittestandreset:
744     return {Reset, Unlocked, false};
745   case Builtin::BI_bittestandset:
746     return {Set, Unlocked, false};
747   case Builtin::BI_interlockedbittestandreset:
748     return {Reset, Sequential, false};
749   case Builtin::BI_interlockedbittestandset:
750     return {Set, Sequential, false};
751 
752     // X86-specific 64-bit variants.
753   case Builtin::BI_bittest64:
754     return {TestOnly, Unlocked, true};
755   case Builtin::BI_bittestandcomplement64:
756     return {Complement, Unlocked, true};
757   case Builtin::BI_bittestandreset64:
758     return {Reset, Unlocked, true};
759   case Builtin::BI_bittestandset64:
760     return {Set, Unlocked, true};
761   case Builtin::BI_interlockedbittestandreset64:
762     return {Reset, Sequential, true};
763   case Builtin::BI_interlockedbittestandset64:
764     return {Set, Sequential, true};
765 
766     // ARM/AArch64-specific ordering variants.
767   case Builtin::BI_interlockedbittestandset_acq:
768     return {Set, Acquire, false};
769   case Builtin::BI_interlockedbittestandset_rel:
770     return {Set, Release, false};
771   case Builtin::BI_interlockedbittestandset_nf:
772     return {Set, NoFence, false};
773   case Builtin::BI_interlockedbittestandreset_acq:
774     return {Reset, Acquire, false};
775   case Builtin::BI_interlockedbittestandreset_rel:
776     return {Reset, Release, false};
777   case Builtin::BI_interlockedbittestandreset_nf:
778     return {Reset, NoFence, false};
779   }
780   llvm_unreachable("expected only bittest intrinsics");
781 }
782 
783 static char bitActionToX86BTCode(BitTest::ActionKind A) {
784   switch (A) {
785   case BitTest::TestOnly:   return '\0';
786   case BitTest::Complement: return 'c';
787   case BitTest::Reset:      return 'r';
788   case BitTest::Set:        return 's';
789   }
790   llvm_unreachable("invalid action");
791 }
792 
793 static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF,
794                                             BitTest BT,
795                                             const CallExpr *E, Value *BitBase,
796                                             Value *BitPos) {
797   char Action = bitActionToX86BTCode(BT.Action);
798   char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
799 
800   // Build the assembly.
801   SmallString<64> Asm;
802   raw_svector_ostream AsmOS(Asm);
803   if (BT.Interlocking != BitTest::Unlocked)
804     AsmOS << "lock ";
805   AsmOS << "bt";
806   if (Action)
807     AsmOS << Action;
808   AsmOS << SizeSuffix << " $2, ($1)\n\tsetc ${0:b}";
809 
810   // Build the constraints. FIXME: We should support immediates when possible.
811   std::string Constraints = "=r,r,r,~{cc},~{flags},~{fpsr}";
812   llvm::IntegerType *IntType = llvm::IntegerType::get(
813       CGF.getLLVMContext(),
814       CGF.getContext().getTypeSize(E->getArg(1)->getType()));
815   llvm::Type *IntPtrType = IntType->getPointerTo();
816   llvm::FunctionType *FTy =
817       llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false);
818 
819   llvm::InlineAsm *IA =
820       llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
821   return CGF.Builder.CreateCall(IA, {BitBase, BitPos});
822 }
823 
824 static llvm::AtomicOrdering
825 getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
826   switch (I) {
827   case BitTest::Unlocked:   return llvm::AtomicOrdering::NotAtomic;
828   case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
829   case BitTest::Acquire:    return llvm::AtomicOrdering::Acquire;
830   case BitTest::Release:    return llvm::AtomicOrdering::Release;
831   case BitTest::NoFence:    return llvm::AtomicOrdering::Monotonic;
832   }
833   llvm_unreachable("invalid interlocking");
834 }
835 
836 /// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
837 /// bits and a bit position and read and optionally modify the bit at that
838 /// position. The position index can be arbitrarily large, i.e. it can be larger
839 /// than 31 or 63, so we need an indexed load in the general case.
840 static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
841                                          unsigned BuiltinID,
842                                          const CallExpr *E) {
843   Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
844   Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
845 
846   BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
847 
848   // X86 has special BT, BTC, BTR, and BTS instructions that handle the array
849   // indexing operation internally. Use them if possible.
850   if (CGF.getTarget().getTriple().isX86())
851     return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
852 
853   // Otherwise, use generic code to load one byte and test the bit. Use all but
854   // the bottom three bits as the array index, and the bottom three bits to form
855   // a mask.
856   // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
857   Value *ByteIndex = CGF.Builder.CreateAShr(
858       BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx");
859   Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy);
860   Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
861                                                  ByteIndex, "bittest.byteaddr"),
862                    CharUnits::One());
863   Value *PosLow =
864       CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty),
865                             llvm::ConstantInt::get(CGF.Int8Ty, 0x7));
866 
867   // The updating instructions will need a mask.
868   Value *Mask = nullptr;
869   if (BT.Action != BitTest::TestOnly) {
870     Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow,
871                                  "bittest.mask");
872   }
873 
874   // Check the action and ordering of the interlocked intrinsics.
875   llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking);
876 
877   Value *OldByte = nullptr;
878   if (Ordering != llvm::AtomicOrdering::NotAtomic) {
879     // Emit a combined atomicrmw load/store operation for the interlocked
880     // intrinsics.
881     llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
882     if (BT.Action == BitTest::Reset) {
883       Mask = CGF.Builder.CreateNot(Mask);
884       RMWOp = llvm::AtomicRMWInst::And;
885     }
886     OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask,
887                                           Ordering);
888   } else {
889     // Emit a plain load for the non-interlocked intrinsics.
890     OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte");
891     Value *NewByte = nullptr;
892     switch (BT.Action) {
893     case BitTest::TestOnly:
894       // Don't store anything.
895       break;
896     case BitTest::Complement:
897       NewByte = CGF.Builder.CreateXor(OldByte, Mask);
898       break;
899     case BitTest::Reset:
900       NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask));
901       break;
902     case BitTest::Set:
903       NewByte = CGF.Builder.CreateOr(OldByte, Mask);
904       break;
905     }
906     if (NewByte)
907       CGF.Builder.CreateStore(NewByte, ByteAddr);
908   }
909 
910   // However we loaded the old byte, either by plain load or atomicrmw, shift
911   // the bit into the low position and mask it to 0 or 1.
912   Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr");
913   return CGF.Builder.CreateAnd(
914       ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res");
915 }
916 
917 namespace {
918 enum class MSVCSetJmpKind {
919   _setjmpex,
920   _setjmp3,
921   _setjmp
922 };
923 }
924 
925 /// MSVC handles setjmp a bit differently on different platforms. On every
926 /// architecture except 32-bit x86, the frame address is passed. On x86, extra
927 /// parameters can be passed as variadic arguments, but we always pass none.
928 static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
929                                const CallExpr *E) {
930   llvm::Value *Arg1 = nullptr;
931   llvm::Type *Arg1Ty = nullptr;
932   StringRef Name;
933   bool IsVarArg = false;
934   if (SJKind == MSVCSetJmpKind::_setjmp3) {
935     Name = "_setjmp3";
936     Arg1Ty = CGF.Int32Ty;
937     Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0);
938     IsVarArg = true;
939   } else {
940     Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
941     Arg1Ty = CGF.Int8PtrTy;
942     if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
943       Arg1 = CGF.Builder.CreateCall(
944           CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy));
945     } else
946       Arg1 = CGF.Builder.CreateCall(
947           CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy),
948           llvm::ConstantInt::get(CGF.Int32Ty, 0));
949   }
950 
951   // Mark the call site and declaration with ReturnsTwice.
952   llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
953   llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
954       CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
955       llvm::Attribute::ReturnsTwice);
956   llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction(
957       llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name,
958       ReturnsTwiceAttr, /*Local=*/true);
959 
960   llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
961       CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
962   llvm::Value *Args[] = {Buf, Arg1};
963   llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
964   CB->setAttributes(ReturnsTwiceAttr);
965   return RValue::get(CB);
966 }
967 
968 // Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
969 // we handle them here.
970 enum class CodeGenFunction::MSVCIntrin {
971   _BitScanForward,
972   _BitScanReverse,
973   _InterlockedAnd,
974   _InterlockedDecrement,
975   _InterlockedExchange,
976   _InterlockedExchangeAdd,
977   _InterlockedExchangeSub,
978   _InterlockedIncrement,
979   _InterlockedOr,
980   _InterlockedXor,
981   _InterlockedExchangeAdd_acq,
982   _InterlockedExchangeAdd_rel,
983   _InterlockedExchangeAdd_nf,
984   _InterlockedExchange_acq,
985   _InterlockedExchange_rel,
986   _InterlockedExchange_nf,
987   _InterlockedCompareExchange_acq,
988   _InterlockedCompareExchange_rel,
989   _InterlockedCompareExchange_nf,
990   _InterlockedOr_acq,
991   _InterlockedOr_rel,
992   _InterlockedOr_nf,
993   _InterlockedXor_acq,
994   _InterlockedXor_rel,
995   _InterlockedXor_nf,
996   _InterlockedAnd_acq,
997   _InterlockedAnd_rel,
998   _InterlockedAnd_nf,
999   _InterlockedIncrement_acq,
1000   _InterlockedIncrement_rel,
1001   _InterlockedIncrement_nf,
1002   _InterlockedDecrement_acq,
1003   _InterlockedDecrement_rel,
1004   _InterlockedDecrement_nf,
1005   __fastfail,
1006 };
1007 
1008 Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
1009                                             const CallExpr *E) {
1010   switch (BuiltinID) {
1011   case MSVCIntrin::_BitScanForward:
1012   case MSVCIntrin::_BitScanReverse: {
1013     Value *ArgValue = EmitScalarExpr(E->getArg(1));
1014 
1015     llvm::Type *ArgType = ArgValue->getType();
1016     llvm::Type *IndexType =
1017       EmitScalarExpr(E->getArg(0))->getType()->getPointerElementType();
1018     llvm::Type *ResultType = ConvertType(E->getType());
1019 
1020     Value *ArgZero = llvm::Constant::getNullValue(ArgType);
1021     Value *ResZero = llvm::Constant::getNullValue(ResultType);
1022     Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
1023 
1024     BasicBlock *Begin = Builder.GetInsertBlock();
1025     BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
1026     Builder.SetInsertPoint(End);
1027     PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
1028 
1029     Builder.SetInsertPoint(Begin);
1030     Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
1031     BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
1032     Builder.CreateCondBr(IsZero, End, NotZero);
1033     Result->addIncoming(ResZero, Begin);
1034 
1035     Builder.SetInsertPoint(NotZero);
1036     Address IndexAddress = EmitPointerWithAlignment(E->getArg(0));
1037 
1038     if (BuiltinID == MSVCIntrin::_BitScanForward) {
1039       Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1040       Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1041       ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1042       Builder.CreateStore(ZeroCount, IndexAddress, false);
1043     } else {
1044       unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
1045       Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
1046 
1047       Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1048       Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1049       ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1050       Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
1051       Builder.CreateStore(Index, IndexAddress, false);
1052     }
1053     Builder.CreateBr(End);
1054     Result->addIncoming(ResOne, NotZero);
1055 
1056     Builder.SetInsertPoint(End);
1057     return Result;
1058   }
1059   case MSVCIntrin::_InterlockedAnd:
1060     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
1061   case MSVCIntrin::_InterlockedExchange:
1062     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
1063   case MSVCIntrin::_InterlockedExchangeAdd:
1064     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
1065   case MSVCIntrin::_InterlockedExchangeSub:
1066     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
1067   case MSVCIntrin::_InterlockedOr:
1068     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
1069   case MSVCIntrin::_InterlockedXor:
1070     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
1071   case MSVCIntrin::_InterlockedExchangeAdd_acq:
1072     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1073                                  AtomicOrdering::Acquire);
1074   case MSVCIntrin::_InterlockedExchangeAdd_rel:
1075     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1076                                  AtomicOrdering::Release);
1077   case MSVCIntrin::_InterlockedExchangeAdd_nf:
1078     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1079                                  AtomicOrdering::Monotonic);
1080   case MSVCIntrin::_InterlockedExchange_acq:
1081     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1082                                  AtomicOrdering::Acquire);
1083   case MSVCIntrin::_InterlockedExchange_rel:
1084     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1085                                  AtomicOrdering::Release);
1086   case MSVCIntrin::_InterlockedExchange_nf:
1087     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1088                                  AtomicOrdering::Monotonic);
1089   case MSVCIntrin::_InterlockedCompareExchange_acq:
1090     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
1091   case MSVCIntrin::_InterlockedCompareExchange_rel:
1092     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
1093   case MSVCIntrin::_InterlockedCompareExchange_nf:
1094     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1095   case MSVCIntrin::_InterlockedOr_acq:
1096     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1097                                  AtomicOrdering::Acquire);
1098   case MSVCIntrin::_InterlockedOr_rel:
1099     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1100                                  AtomicOrdering::Release);
1101   case MSVCIntrin::_InterlockedOr_nf:
1102     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1103                                  AtomicOrdering::Monotonic);
1104   case MSVCIntrin::_InterlockedXor_acq:
1105     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1106                                  AtomicOrdering::Acquire);
1107   case MSVCIntrin::_InterlockedXor_rel:
1108     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1109                                  AtomicOrdering::Release);
1110   case MSVCIntrin::_InterlockedXor_nf:
1111     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1112                                  AtomicOrdering::Monotonic);
1113   case MSVCIntrin::_InterlockedAnd_acq:
1114     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1115                                  AtomicOrdering::Acquire);
1116   case MSVCIntrin::_InterlockedAnd_rel:
1117     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1118                                  AtomicOrdering::Release);
1119   case MSVCIntrin::_InterlockedAnd_nf:
1120     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1121                                  AtomicOrdering::Monotonic);
1122   case MSVCIntrin::_InterlockedIncrement_acq:
1123     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
1124   case MSVCIntrin::_InterlockedIncrement_rel:
1125     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
1126   case MSVCIntrin::_InterlockedIncrement_nf:
1127     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
1128   case MSVCIntrin::_InterlockedDecrement_acq:
1129     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
1130   case MSVCIntrin::_InterlockedDecrement_rel:
1131     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
1132   case MSVCIntrin::_InterlockedDecrement_nf:
1133     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
1134 
1135   case MSVCIntrin::_InterlockedDecrement:
1136     return EmitAtomicDecrementValue(*this, E);
1137   case MSVCIntrin::_InterlockedIncrement:
1138     return EmitAtomicIncrementValue(*this, E);
1139 
1140   case MSVCIntrin::__fastfail: {
1141     // Request immediate process termination from the kernel. The instruction
1142     // sequences to do this are documented on MSDN:
1143     // https://msdn.microsoft.com/en-us/library/dn774154.aspx
1144     llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
1145     StringRef Asm, Constraints;
1146     switch (ISA) {
1147     default:
1148       ErrorUnsupported(E, "__fastfail call for this architecture");
1149       break;
1150     case llvm::Triple::x86:
1151     case llvm::Triple::x86_64:
1152       Asm = "int $$0x29";
1153       Constraints = "{cx}";
1154       break;
1155     case llvm::Triple::thumb:
1156       Asm = "udf #251";
1157       Constraints = "{r0}";
1158       break;
1159     case llvm::Triple::aarch64:
1160       Asm = "brk #0xF003";
1161       Constraints = "{w0}";
1162     }
1163     llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
1164     llvm::InlineAsm *IA =
1165         llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1166     llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
1167         getLLVMContext(), llvm::AttributeList::FunctionIndex,
1168         llvm::Attribute::NoReturn);
1169     llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
1170     CI->setAttributes(NoReturnAttr);
1171     return CI;
1172   }
1173   }
1174   llvm_unreachable("Incorrect MSVC intrinsic!");
1175 }
1176 
1177 namespace {
1178 // ARC cleanup for __builtin_os_log_format
1179 struct CallObjCArcUse final : EHScopeStack::Cleanup {
1180   CallObjCArcUse(llvm::Value *object) : object(object) {}
1181   llvm::Value *object;
1182 
1183   void Emit(CodeGenFunction &CGF, Flags flags) override {
1184     CGF.EmitARCIntrinsicUse(object);
1185   }
1186 };
1187 }
1188 
1189 Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
1190                                                  BuiltinCheckKind Kind) {
1191   assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)
1192           && "Unsupported builtin check kind");
1193 
1194   Value *ArgValue = EmitScalarExpr(E);
1195   if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef())
1196     return ArgValue;
1197 
1198   SanitizerScope SanScope(this);
1199   Value *Cond = Builder.CreateICmpNE(
1200       ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
1201   EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
1202             SanitizerHandler::InvalidBuiltin,
1203             {EmitCheckSourceLocation(E->getExprLoc()),
1204              llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
1205             None);
1206   return ArgValue;
1207 }
1208 
1209 /// Get the argument type for arguments to os_log_helper.
1210 static CanQualType getOSLogArgType(ASTContext &C, int Size) {
1211   QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
1212   return C.getCanonicalType(UnsignedTy);
1213 }
1214 
1215 llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
1216     const analyze_os_log::OSLogBufferLayout &Layout,
1217     CharUnits BufferAlignment) {
1218   ASTContext &Ctx = getContext();
1219 
1220   llvm::SmallString<64> Name;
1221   {
1222     raw_svector_ostream OS(Name);
1223     OS << "__os_log_helper";
1224     OS << "_" << BufferAlignment.getQuantity();
1225     OS << "_" << int(Layout.getSummaryByte());
1226     OS << "_" << int(Layout.getNumArgsByte());
1227     for (const auto &Item : Layout.Items)
1228       OS << "_" << int(Item.getSizeByte()) << "_"
1229          << int(Item.getDescriptorByte());
1230   }
1231 
1232   if (llvm::Function *F = CGM.getModule().getFunction(Name))
1233     return F;
1234 
1235   llvm::SmallVector<QualType, 4> ArgTys;
1236   FunctionArgList Args;
1237   Args.push_back(ImplicitParamDecl::Create(
1238       Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy,
1239       ImplicitParamDecl::Other));
1240   ArgTys.emplace_back(Ctx.VoidPtrTy);
1241 
1242   for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
1243     char Size = Layout.Items[I].getSizeByte();
1244     if (!Size)
1245       continue;
1246 
1247     QualType ArgTy = getOSLogArgType(Ctx, Size);
1248     Args.push_back(ImplicitParamDecl::Create(
1249         Ctx, nullptr, SourceLocation(),
1250         &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
1251         ImplicitParamDecl::Other));
1252     ArgTys.emplace_back(ArgTy);
1253   }
1254 
1255   QualType ReturnTy = Ctx.VoidTy;
1256   QualType FuncionTy = Ctx.getFunctionType(ReturnTy, ArgTys, {});
1257 
1258   // The helper function has linkonce_odr linkage to enable the linker to merge
1259   // identical functions. To ensure the merging always happens, 'noinline' is
1260   // attached to the function when compiling with -Oz.
1261   const CGFunctionInfo &FI =
1262       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args);
1263   llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
1264   llvm::Function *Fn = llvm::Function::Create(
1265       FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
1266   Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
1267   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn);
1268   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
1269   Fn->setDoesNotThrow();
1270 
1271   // Attach 'noinline' at -Oz.
1272   if (CGM.getCodeGenOpts().OptimizeSize == 2)
1273     Fn->addFnAttr(llvm::Attribute::NoInline);
1274 
1275   auto NL = ApplyDebugLocation::CreateEmpty(*this);
1276   IdentifierInfo *II = &Ctx.Idents.get(Name);
1277   FunctionDecl *FD = FunctionDecl::Create(
1278       Ctx, Ctx.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
1279       FuncionTy, nullptr, SC_PrivateExtern, false, false);
1280   // Avoid generating debug location info for the function.
1281   FD->setImplicit();
1282 
1283   StartFunction(FD, ReturnTy, Fn, FI, Args);
1284 
1285   // Create a scope with an artificial location for the body of this function.
1286   auto AL = ApplyDebugLocation::CreateArtificial(*this);
1287 
1288   CharUnits Offset;
1289   Address BufAddr(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"),
1290                   BufferAlignment);
1291   Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
1292                       Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
1293   Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
1294                       Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
1295 
1296   unsigned I = 1;
1297   for (const auto &Item : Layout.Items) {
1298     Builder.CreateStore(
1299         Builder.getInt8(Item.getDescriptorByte()),
1300         Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
1301     Builder.CreateStore(
1302         Builder.getInt8(Item.getSizeByte()),
1303         Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
1304 
1305     CharUnits Size = Item.size();
1306     if (!Size.getQuantity())
1307       continue;
1308 
1309     Address Arg = GetAddrOfLocalVar(Args[I]);
1310     Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
1311     Addr = Builder.CreateBitCast(Addr, Arg.getPointer()->getType(),
1312                                  "argDataCast");
1313     Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
1314     Offset += Size;
1315     ++I;
1316   }
1317 
1318   FinishFunction();
1319 
1320   return Fn;
1321 }
1322 
1323 RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
1324   assert(E.getNumArgs() >= 2 &&
1325          "__builtin_os_log_format takes at least 2 arguments");
1326   ASTContext &Ctx = getContext();
1327   analyze_os_log::OSLogBufferLayout Layout;
1328   analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
1329   Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
1330   llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
1331 
1332   // Ignore argument 1, the format string. It is not currently used.
1333   CallArgList Args;
1334   Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy);
1335 
1336   for (const auto &Item : Layout.Items) {
1337     int Size = Item.getSizeByte();
1338     if (!Size)
1339       continue;
1340 
1341     llvm::Value *ArgVal;
1342 
1343     if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
1344       uint64_t Val = 0;
1345       for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
1346         Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
1347       ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
1348     } else if (const Expr *TheExpr = Item.getExpr()) {
1349       ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
1350 
1351       // If a temporary object that requires destruction after the full
1352       // expression is passed, push a lifetime-extended cleanup to extend its
1353       // lifetime to the end of the enclosing block scope.
1354       auto LifetimeExtendObject = [&](const Expr *E) {
1355         E = E->IgnoreParenCasts();
1356         // Extend lifetimes of objects returned by function calls and message
1357         // sends.
1358 
1359         // FIXME: We should do this in other cases in which temporaries are
1360         //        created including arguments of non-ARC types (e.g., C++
1361         //        temporaries).
1362         if (isa<CallExpr>(E) || isa<ObjCMessageExpr>(E))
1363           return true;
1364         return false;
1365       };
1366 
1367       if (TheExpr->getType()->isObjCRetainableType() &&
1368           getLangOpts().ObjCAutoRefCount && LifetimeExtendObject(TheExpr)) {
1369         assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&
1370                "Only scalar can be a ObjC retainable type");
1371         if (!isa<Constant>(ArgVal)) {
1372           CleanupKind Cleanup = getARCCleanupKind();
1373           QualType Ty = TheExpr->getType();
1374           Address Alloca = Address::invalid();
1375           Address Addr = CreateMemTemp(Ty, "os.log.arg", &Alloca);
1376           ArgVal = EmitARCRetain(Ty, ArgVal);
1377           Builder.CreateStore(ArgVal, Addr);
1378           pushLifetimeExtendedDestroy(Cleanup, Alloca, Ty,
1379                                       CodeGenFunction::destroyARCStrongPrecise,
1380                                       Cleanup & EHCleanup);
1381 
1382           // Push a clang.arc.use call to ensure ARC optimizer knows that the
1383           // argument has to be alive.
1384           if (CGM.getCodeGenOpts().OptimizationLevel != 0)
1385             pushCleanupAfterFullExpr<CallObjCArcUse>(Cleanup, ArgVal);
1386         }
1387       }
1388     } else {
1389       ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
1390     }
1391 
1392     unsigned ArgValSize =
1393         CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
1394     llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
1395                                                      ArgValSize);
1396     ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
1397     CanQualType ArgTy = getOSLogArgType(Ctx, Size);
1398     // If ArgVal has type x86_fp80, zero-extend ArgVal.
1399     ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
1400     Args.add(RValue::get(ArgVal), ArgTy);
1401   }
1402 
1403   const CGFunctionInfo &FI =
1404       CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
1405   llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
1406       Layout, BufAddr.getAlignment());
1407   EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
1408   return RValue::get(BufAddr.getPointer());
1409 }
1410 
1411 /// Determine if a binop is a checked mixed-sign multiply we can specialize.
1412 static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
1413                                        WidthAndSignedness Op1Info,
1414                                        WidthAndSignedness Op2Info,
1415                                        WidthAndSignedness ResultInfo) {
1416   return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1417          std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
1418          Op1Info.Signed != Op2Info.Signed;
1419 }
1420 
1421 /// Emit a checked mixed-sign multiply. This is a cheaper specialization of
1422 /// the generic checked-binop irgen.
1423 static RValue
1424 EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
1425                              WidthAndSignedness Op1Info, const clang::Expr *Op2,
1426                              WidthAndSignedness Op2Info,
1427                              const clang::Expr *ResultArg, QualType ResultQTy,
1428                              WidthAndSignedness ResultInfo) {
1429   assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,
1430                                     Op2Info, ResultInfo) &&
1431          "Not a mixed-sign multipliction we can specialize");
1432 
1433   // Emit the signed and unsigned operands.
1434   const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
1435   const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
1436   llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
1437   llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
1438   unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
1439   unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
1440 
1441   // One of the operands may be smaller than the other. If so, [s|z]ext it.
1442   if (SignedOpWidth < UnsignedOpWidth)
1443     Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext");
1444   if (UnsignedOpWidth < SignedOpWidth)
1445     Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext");
1446 
1447   llvm::Type *OpTy = Signed->getType();
1448   llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
1449   Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1450   llvm::Type *ResTy = ResultPtr.getElementType();
1451   unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width);
1452 
1453   // Take the absolute value of the signed operand.
1454   llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
1455   llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
1456   llvm::Value *AbsSigned =
1457       CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
1458 
1459   // Perform a checked unsigned multiplication.
1460   llvm::Value *UnsignedOverflow;
1461   llvm::Value *UnsignedResult =
1462       EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
1463                             Unsigned, UnsignedOverflow);
1464 
1465   llvm::Value *Overflow, *Result;
1466   if (ResultInfo.Signed) {
1467     // Signed overflow occurs if the result is greater than INT_MAX or lesser
1468     // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
1469     auto IntMax =
1470         llvm::APInt::getSignedMaxValue(ResultInfo.Width).zextOrSelf(OpWidth);
1471     llvm::Value *MaxResult =
1472         CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
1473                               CGF.Builder.CreateZExt(IsNegative, OpTy));
1474     llvm::Value *SignedOverflow =
1475         CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
1476     Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
1477 
1478     // Prepare the signed result (possibly by negating it).
1479     llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
1480     llvm::Value *SignedResult =
1481         CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
1482     Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
1483   } else {
1484     // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
1485     llvm::Value *Underflow = CGF.Builder.CreateAnd(
1486         IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
1487     Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
1488     if (ResultInfo.Width < OpWidth) {
1489       auto IntMax =
1490           llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth);
1491       llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
1492           UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
1493       Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
1494     }
1495 
1496     // Negate the product if it would be negative in infinite precision.
1497     Result = CGF.Builder.CreateSelect(
1498         IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
1499 
1500     Result = CGF.Builder.CreateTrunc(Result, ResTy);
1501   }
1502   assert(Overflow && Result && "Missing overflow or result");
1503 
1504   bool isVolatile =
1505       ResultArg->getType()->getPointeeType().isVolatileQualified();
1506   CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
1507                           isVolatile);
1508   return RValue::get(Overflow);
1509 }
1510 
1511 static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType,
1512                                Value *&RecordPtr, CharUnits Align,
1513                                llvm::FunctionCallee Func, int Lvl) {
1514   ASTContext &Context = CGF.getContext();
1515   RecordDecl *RD = RType->castAs<RecordType>()->getDecl()->getDefinition();
1516   std::string Pad = std::string(Lvl * 4, ' ');
1517 
1518   Value *GString =
1519       CGF.Builder.CreateGlobalStringPtr(RType.getAsString() + " {\n");
1520   Value *Res = CGF.Builder.CreateCall(Func, {GString});
1521 
1522   static llvm::DenseMap<QualType, const char *> Types;
1523   if (Types.empty()) {
1524     Types[Context.CharTy] = "%c";
1525     Types[Context.BoolTy] = "%d";
1526     Types[Context.SignedCharTy] = "%hhd";
1527     Types[Context.UnsignedCharTy] = "%hhu";
1528     Types[Context.IntTy] = "%d";
1529     Types[Context.UnsignedIntTy] = "%u";
1530     Types[Context.LongTy] = "%ld";
1531     Types[Context.UnsignedLongTy] = "%lu";
1532     Types[Context.LongLongTy] = "%lld";
1533     Types[Context.UnsignedLongLongTy] = "%llu";
1534     Types[Context.ShortTy] = "%hd";
1535     Types[Context.UnsignedShortTy] = "%hu";
1536     Types[Context.VoidPtrTy] = "%p";
1537     Types[Context.FloatTy] = "%f";
1538     Types[Context.DoubleTy] = "%f";
1539     Types[Context.LongDoubleTy] = "%Lf";
1540     Types[Context.getPointerType(Context.CharTy)] = "%s";
1541     Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s";
1542   }
1543 
1544   for (const auto *FD : RD->fields()) {
1545     Value *FieldPtr = RecordPtr;
1546     if (RD->isUnion())
1547       FieldPtr = CGF.Builder.CreatePointerCast(
1548           FieldPtr, CGF.ConvertType(Context.getPointerType(FD->getType())));
1549     else
1550       FieldPtr = CGF.Builder.CreateStructGEP(CGF.ConvertType(RType), FieldPtr,
1551                                              FD->getFieldIndex());
1552 
1553     GString = CGF.Builder.CreateGlobalStringPtr(
1554         llvm::Twine(Pad)
1555             .concat(FD->getType().getAsString())
1556             .concat(llvm::Twine(' '))
1557             .concat(FD->getNameAsString())
1558             .concat(" : ")
1559             .str());
1560     Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
1561     Res = CGF.Builder.CreateAdd(Res, TmpRes);
1562 
1563     QualType CanonicalType =
1564         FD->getType().getUnqualifiedType().getCanonicalType();
1565 
1566     // We check whether we are in a recursive type
1567     if (CanonicalType->isRecordType()) {
1568       TmpRes = dumpRecord(CGF, CanonicalType, FieldPtr, Align, Func, Lvl + 1);
1569       Res = CGF.Builder.CreateAdd(TmpRes, Res);
1570       continue;
1571     }
1572 
1573     // We try to determine the best format to print the current field
1574     llvm::Twine Format = Types.find(CanonicalType) == Types.end()
1575                              ? Types[Context.VoidPtrTy]
1576                              : Types[CanonicalType];
1577 
1578     Address FieldAddress = Address(FieldPtr, Align);
1579     FieldPtr = CGF.Builder.CreateLoad(FieldAddress);
1580 
1581     // FIXME Need to handle bitfield here
1582     GString = CGF.Builder.CreateGlobalStringPtr(
1583         Format.concat(llvm::Twine('\n')).str());
1584     TmpRes = CGF.Builder.CreateCall(Func, {GString, FieldPtr});
1585     Res = CGF.Builder.CreateAdd(Res, TmpRes);
1586   }
1587 
1588   GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n");
1589   Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
1590   Res = CGF.Builder.CreateAdd(Res, TmpRes);
1591   return Res;
1592 }
1593 
1594 static bool
1595 TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty,
1596                               llvm::SmallPtrSetImpl<const Decl *> &Seen) {
1597   if (const auto *Arr = Ctx.getAsArrayType(Ty))
1598     Ty = Ctx.getBaseElementType(Arr);
1599 
1600   const auto *Record = Ty->getAsCXXRecordDecl();
1601   if (!Record)
1602     return false;
1603 
1604   // We've already checked this type, or are in the process of checking it.
1605   if (!Seen.insert(Record).second)
1606     return false;
1607 
1608   assert(Record->hasDefinition() &&
1609          "Incomplete types should already be diagnosed");
1610 
1611   if (Record->isDynamicClass())
1612     return true;
1613 
1614   for (FieldDecl *F : Record->fields()) {
1615     if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
1616       return true;
1617   }
1618   return false;
1619 }
1620 
1621 /// Determine if the specified type requires laundering by checking if it is a
1622 /// dynamic class type or contains a subobject which is a dynamic class type.
1623 static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) {
1624   if (!CGM.getCodeGenOpts().StrictVTablePointers)
1625     return false;
1626   llvm::SmallPtrSet<const Decl *, 16> Seen;
1627   return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
1628 }
1629 
1630 RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
1631   llvm::Value *Src = EmitScalarExpr(E->getArg(0));
1632   llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
1633 
1634   // The builtin's shift arg may have a different type than the source arg and
1635   // result, but the LLVM intrinsic uses the same type for all values.
1636   llvm::Type *Ty = Src->getType();
1637   ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false);
1638 
1639   // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
1640   unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
1641   Function *F = CGM.getIntrinsic(IID, Ty);
1642   return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt }));
1643 }
1644 
1645 RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
1646                                         const CallExpr *E,
1647                                         ReturnValueSlot ReturnValue) {
1648   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
1649   // See if we can constant fold this builtin.  If so, don't emit it at all.
1650   Expr::EvalResult Result;
1651   if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
1652       !Result.hasSideEffects()) {
1653     if (Result.Val.isInt())
1654       return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
1655                                                 Result.Val.getInt()));
1656     if (Result.Val.isFloat())
1657       return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
1658                                                Result.Val.getFloat()));
1659   }
1660 
1661   // There are LLVM math intrinsics/instructions corresponding to math library
1662   // functions except the LLVM op will never set errno while the math library
1663   // might. Also, math builtins have the same semantics as their math library
1664   // twins. Thus, we can transform math library and builtin calls to their
1665   // LLVM counterparts if the call is marked 'const' (known to never set errno).
1666   if (FD->hasAttr<ConstAttr>()) {
1667     switch (BuiltinID) {
1668     case Builtin::BIceil:
1669     case Builtin::BIceilf:
1670     case Builtin::BIceill:
1671     case Builtin::BI__builtin_ceil:
1672     case Builtin::BI__builtin_ceilf:
1673     case Builtin::BI__builtin_ceilf16:
1674     case Builtin::BI__builtin_ceill:
1675       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1676                                    Intrinsic::ceil,
1677                                    Intrinsic::experimental_constrained_ceil));
1678 
1679     case Builtin::BIcopysign:
1680     case Builtin::BIcopysignf:
1681     case Builtin::BIcopysignl:
1682     case Builtin::BI__builtin_copysign:
1683     case Builtin::BI__builtin_copysignf:
1684     case Builtin::BI__builtin_copysignf16:
1685     case Builtin::BI__builtin_copysignl:
1686     case Builtin::BI__builtin_copysignf128:
1687       return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
1688 
1689     case Builtin::BIcos:
1690     case Builtin::BIcosf:
1691     case Builtin::BIcosl:
1692     case Builtin::BI__builtin_cos:
1693     case Builtin::BI__builtin_cosf:
1694     case Builtin::BI__builtin_cosf16:
1695     case Builtin::BI__builtin_cosl:
1696       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1697                                    Intrinsic::cos,
1698                                    Intrinsic::experimental_constrained_cos));
1699 
1700     case Builtin::BIexp:
1701     case Builtin::BIexpf:
1702     case Builtin::BIexpl:
1703     case Builtin::BI__builtin_exp:
1704     case Builtin::BI__builtin_expf:
1705     case Builtin::BI__builtin_expf16:
1706     case Builtin::BI__builtin_expl:
1707       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1708                                    Intrinsic::exp,
1709                                    Intrinsic::experimental_constrained_exp));
1710 
1711     case Builtin::BIexp2:
1712     case Builtin::BIexp2f:
1713     case Builtin::BIexp2l:
1714     case Builtin::BI__builtin_exp2:
1715     case Builtin::BI__builtin_exp2f:
1716     case Builtin::BI__builtin_exp2f16:
1717     case Builtin::BI__builtin_exp2l:
1718       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1719                                    Intrinsic::exp2,
1720                                    Intrinsic::experimental_constrained_exp2));
1721 
1722     case Builtin::BIfabs:
1723     case Builtin::BIfabsf:
1724     case Builtin::BIfabsl:
1725     case Builtin::BI__builtin_fabs:
1726     case Builtin::BI__builtin_fabsf:
1727     case Builtin::BI__builtin_fabsf16:
1728     case Builtin::BI__builtin_fabsl:
1729     case Builtin::BI__builtin_fabsf128:
1730       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
1731 
1732     case Builtin::BIfloor:
1733     case Builtin::BIfloorf:
1734     case Builtin::BIfloorl:
1735     case Builtin::BI__builtin_floor:
1736     case Builtin::BI__builtin_floorf:
1737     case Builtin::BI__builtin_floorf16:
1738     case Builtin::BI__builtin_floorl:
1739       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1740                                    Intrinsic::floor,
1741                                    Intrinsic::experimental_constrained_floor));
1742 
1743     case Builtin::BIfma:
1744     case Builtin::BIfmaf:
1745     case Builtin::BIfmal:
1746     case Builtin::BI__builtin_fma:
1747     case Builtin::BI__builtin_fmaf:
1748     case Builtin::BI__builtin_fmaf16:
1749     case Builtin::BI__builtin_fmal:
1750       return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E,
1751                                    Intrinsic::fma,
1752                                    Intrinsic::experimental_constrained_fma));
1753 
1754     case Builtin::BIfmax:
1755     case Builtin::BIfmaxf:
1756     case Builtin::BIfmaxl:
1757     case Builtin::BI__builtin_fmax:
1758     case Builtin::BI__builtin_fmaxf:
1759     case Builtin::BI__builtin_fmaxf16:
1760     case Builtin::BI__builtin_fmaxl:
1761       return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
1762                                    Intrinsic::maxnum,
1763                                    Intrinsic::experimental_constrained_maxnum));
1764 
1765     case Builtin::BIfmin:
1766     case Builtin::BIfminf:
1767     case Builtin::BIfminl:
1768     case Builtin::BI__builtin_fmin:
1769     case Builtin::BI__builtin_fminf:
1770     case Builtin::BI__builtin_fminf16:
1771     case Builtin::BI__builtin_fminl:
1772       return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
1773                                    Intrinsic::minnum,
1774                                    Intrinsic::experimental_constrained_minnum));
1775 
1776     // fmod() is a special-case. It maps to the frem instruction rather than an
1777     // LLVM intrinsic.
1778     case Builtin::BIfmod:
1779     case Builtin::BIfmodf:
1780     case Builtin::BIfmodl:
1781     case Builtin::BI__builtin_fmod:
1782     case Builtin::BI__builtin_fmodf:
1783     case Builtin::BI__builtin_fmodf16:
1784     case Builtin::BI__builtin_fmodl: {
1785       Value *Arg1 = EmitScalarExpr(E->getArg(0));
1786       Value *Arg2 = EmitScalarExpr(E->getArg(1));
1787       return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
1788     }
1789 
1790     case Builtin::BIlog:
1791     case Builtin::BIlogf:
1792     case Builtin::BIlogl:
1793     case Builtin::BI__builtin_log:
1794     case Builtin::BI__builtin_logf:
1795     case Builtin::BI__builtin_logf16:
1796     case Builtin::BI__builtin_logl:
1797       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1798                                    Intrinsic::log,
1799                                    Intrinsic::experimental_constrained_log));
1800 
1801     case Builtin::BIlog10:
1802     case Builtin::BIlog10f:
1803     case Builtin::BIlog10l:
1804     case Builtin::BI__builtin_log10:
1805     case Builtin::BI__builtin_log10f:
1806     case Builtin::BI__builtin_log10f16:
1807     case Builtin::BI__builtin_log10l:
1808       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1809                                    Intrinsic::log10,
1810                                    Intrinsic::experimental_constrained_log10));
1811 
1812     case Builtin::BIlog2:
1813     case Builtin::BIlog2f:
1814     case Builtin::BIlog2l:
1815     case Builtin::BI__builtin_log2:
1816     case Builtin::BI__builtin_log2f:
1817     case Builtin::BI__builtin_log2f16:
1818     case Builtin::BI__builtin_log2l:
1819       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1820                                    Intrinsic::log2,
1821                                    Intrinsic::experimental_constrained_log2));
1822 
1823     case Builtin::BInearbyint:
1824     case Builtin::BInearbyintf:
1825     case Builtin::BInearbyintl:
1826     case Builtin::BI__builtin_nearbyint:
1827     case Builtin::BI__builtin_nearbyintf:
1828     case Builtin::BI__builtin_nearbyintl:
1829       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1830                                 Intrinsic::nearbyint,
1831                                 Intrinsic::experimental_constrained_nearbyint));
1832 
1833     case Builtin::BIpow:
1834     case Builtin::BIpowf:
1835     case Builtin::BIpowl:
1836     case Builtin::BI__builtin_pow:
1837     case Builtin::BI__builtin_powf:
1838     case Builtin::BI__builtin_powf16:
1839     case Builtin::BI__builtin_powl:
1840       return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
1841                                    Intrinsic::pow,
1842                                    Intrinsic::experimental_constrained_pow));
1843 
1844     case Builtin::BIrint:
1845     case Builtin::BIrintf:
1846     case Builtin::BIrintl:
1847     case Builtin::BI__builtin_rint:
1848     case Builtin::BI__builtin_rintf:
1849     case Builtin::BI__builtin_rintf16:
1850     case Builtin::BI__builtin_rintl:
1851       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1852                                    Intrinsic::rint,
1853                                    Intrinsic::experimental_constrained_rint));
1854 
1855     case Builtin::BIround:
1856     case Builtin::BIroundf:
1857     case Builtin::BIroundl:
1858     case Builtin::BI__builtin_round:
1859     case Builtin::BI__builtin_roundf:
1860     case Builtin::BI__builtin_roundf16:
1861     case Builtin::BI__builtin_roundl:
1862       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1863                                    Intrinsic::round,
1864                                    Intrinsic::experimental_constrained_round));
1865 
1866     case Builtin::BIsin:
1867     case Builtin::BIsinf:
1868     case Builtin::BIsinl:
1869     case Builtin::BI__builtin_sin:
1870     case Builtin::BI__builtin_sinf:
1871     case Builtin::BI__builtin_sinf16:
1872     case Builtin::BI__builtin_sinl:
1873       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1874                                    Intrinsic::sin,
1875                                    Intrinsic::experimental_constrained_sin));
1876 
1877     case Builtin::BIsqrt:
1878     case Builtin::BIsqrtf:
1879     case Builtin::BIsqrtl:
1880     case Builtin::BI__builtin_sqrt:
1881     case Builtin::BI__builtin_sqrtf:
1882     case Builtin::BI__builtin_sqrtf16:
1883     case Builtin::BI__builtin_sqrtl:
1884       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1885                                    Intrinsic::sqrt,
1886                                    Intrinsic::experimental_constrained_sqrt));
1887 
1888     case Builtin::BItrunc:
1889     case Builtin::BItruncf:
1890     case Builtin::BItruncl:
1891     case Builtin::BI__builtin_trunc:
1892     case Builtin::BI__builtin_truncf:
1893     case Builtin::BI__builtin_truncf16:
1894     case Builtin::BI__builtin_truncl:
1895       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1896                                    Intrinsic::trunc,
1897                                    Intrinsic::experimental_constrained_trunc));
1898 
1899     case Builtin::BIlround:
1900     case Builtin::BIlroundf:
1901     case Builtin::BIlroundl:
1902     case Builtin::BI__builtin_lround:
1903     case Builtin::BI__builtin_lroundf:
1904     case Builtin::BI__builtin_lroundl:
1905       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
1906           *this, E, Intrinsic::lround,
1907           Intrinsic::experimental_constrained_lround));
1908 
1909     case Builtin::BIllround:
1910     case Builtin::BIllroundf:
1911     case Builtin::BIllroundl:
1912     case Builtin::BI__builtin_llround:
1913     case Builtin::BI__builtin_llroundf:
1914     case Builtin::BI__builtin_llroundl:
1915       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
1916           *this, E, Intrinsic::llround,
1917           Intrinsic::experimental_constrained_llround));
1918 
1919     case Builtin::BIlrint:
1920     case Builtin::BIlrintf:
1921     case Builtin::BIlrintl:
1922     case Builtin::BI__builtin_lrint:
1923     case Builtin::BI__builtin_lrintf:
1924     case Builtin::BI__builtin_lrintl:
1925       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
1926           *this, E, Intrinsic::lrint,
1927           Intrinsic::experimental_constrained_lrint));
1928 
1929     case Builtin::BIllrint:
1930     case Builtin::BIllrintf:
1931     case Builtin::BIllrintl:
1932     case Builtin::BI__builtin_llrint:
1933     case Builtin::BI__builtin_llrintf:
1934     case Builtin::BI__builtin_llrintl:
1935       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
1936           *this, E, Intrinsic::llrint,
1937           Intrinsic::experimental_constrained_llrint));
1938 
1939     default:
1940       break;
1941     }
1942   }
1943 
1944   switch (BuiltinID) {
1945   default: break;
1946   case Builtin::BI__builtin___CFStringMakeConstantString:
1947   case Builtin::BI__builtin___NSStringMakeConstantString:
1948     return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
1949   case Builtin::BI__builtin_stdarg_start:
1950   case Builtin::BI__builtin_va_start:
1951   case Builtin::BI__va_start:
1952   case Builtin::BI__builtin_va_end:
1953     return RValue::get(
1954         EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
1955                            ? EmitScalarExpr(E->getArg(0))
1956                            : EmitVAListRef(E->getArg(0)).getPointer(),
1957                        BuiltinID != Builtin::BI__builtin_va_end));
1958   case Builtin::BI__builtin_va_copy: {
1959     Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
1960     Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
1961 
1962     llvm::Type *Type = Int8PtrTy;
1963 
1964     DstPtr = Builder.CreateBitCast(DstPtr, Type);
1965     SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
1966     return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
1967                                           {DstPtr, SrcPtr}));
1968   }
1969   case Builtin::BI__builtin_abs:
1970   case Builtin::BI__builtin_labs:
1971   case Builtin::BI__builtin_llabs: {
1972     // X < 0 ? -X : X
1973     // The negation has 'nsw' because abs of INT_MIN is undefined.
1974     Value *ArgValue = EmitScalarExpr(E->getArg(0));
1975     Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg");
1976     Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType());
1977     Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond");
1978     Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs");
1979     return RValue::get(Result);
1980   }
1981   case Builtin::BI__builtin_conj:
1982   case Builtin::BI__builtin_conjf:
1983   case Builtin::BI__builtin_conjl:
1984   case Builtin::BIconj:
1985   case Builtin::BIconjf:
1986   case Builtin::BIconjl: {
1987     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
1988     Value *Real = ComplexVal.first;
1989     Value *Imag = ComplexVal.second;
1990     Imag = Builder.CreateFNeg(Imag, "neg");
1991     return RValue::getComplex(std::make_pair(Real, Imag));
1992   }
1993   case Builtin::BI__builtin_creal:
1994   case Builtin::BI__builtin_crealf:
1995   case Builtin::BI__builtin_creall:
1996   case Builtin::BIcreal:
1997   case Builtin::BIcrealf:
1998   case Builtin::BIcreall: {
1999     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2000     return RValue::get(ComplexVal.first);
2001   }
2002 
2003   case Builtin::BI__builtin_dump_struct: {
2004     llvm::Type *LLVMIntTy = getTypes().ConvertType(getContext().IntTy);
2005     llvm::FunctionType *LLVMFuncType = llvm::FunctionType::get(
2006         LLVMIntTy, {llvm::Type::getInt8PtrTy(getLLVMContext())}, true);
2007 
2008     Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts());
2009     CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment();
2010 
2011     const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts();
2012     QualType Arg0Type = Arg0->getType()->getPointeeType();
2013 
2014     Value *RecordPtr = EmitScalarExpr(Arg0);
2015     Value *Res = dumpRecord(*this, Arg0Type, RecordPtr, Arg0Align,
2016                             {LLVMFuncType, Func}, 0);
2017     return RValue::get(Res);
2018   }
2019 
2020   case Builtin::BI__builtin_preserve_access_index: {
2021     // Only enabled preserved access index region when debuginfo
2022     // is available as debuginfo is needed to preserve user-level
2023     // access pattern.
2024     if (!getDebugInfo()) {
2025       CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g");
2026       return RValue::get(EmitScalarExpr(E->getArg(0)));
2027     }
2028 
2029     // Nested builtin_preserve_access_index() not supported
2030     if (IsInPreservedAIRegion) {
2031       CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported");
2032       return RValue::get(EmitScalarExpr(E->getArg(0)));
2033     }
2034 
2035     IsInPreservedAIRegion = true;
2036     Value *Res = EmitScalarExpr(E->getArg(0));
2037     IsInPreservedAIRegion = false;
2038     return RValue::get(Res);
2039   }
2040 
2041   case Builtin::BI__builtin_cimag:
2042   case Builtin::BI__builtin_cimagf:
2043   case Builtin::BI__builtin_cimagl:
2044   case Builtin::BIcimag:
2045   case Builtin::BIcimagf:
2046   case Builtin::BIcimagl: {
2047     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2048     return RValue::get(ComplexVal.second);
2049   }
2050 
2051   case Builtin::BI__builtin_clrsb:
2052   case Builtin::BI__builtin_clrsbl:
2053   case Builtin::BI__builtin_clrsbll: {
2054     // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
2055     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2056 
2057     llvm::Type *ArgType = ArgValue->getType();
2058     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2059 
2060     llvm::Type *ResultType = ConvertType(E->getType());
2061     Value *Zero = llvm::Constant::getNullValue(ArgType);
2062     Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg");
2063     Value *Inverse = Builder.CreateNot(ArgValue, "not");
2064     Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue);
2065     Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()});
2066     Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1));
2067     Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2068                                    "cast");
2069     return RValue::get(Result);
2070   }
2071   case Builtin::BI__builtin_ctzs:
2072   case Builtin::BI__builtin_ctz:
2073   case Builtin::BI__builtin_ctzl:
2074   case Builtin::BI__builtin_ctzll: {
2075     Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
2076 
2077     llvm::Type *ArgType = ArgValue->getType();
2078     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2079 
2080     llvm::Type *ResultType = ConvertType(E->getType());
2081     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2082     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2083     if (Result->getType() != ResultType)
2084       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2085                                      "cast");
2086     return RValue::get(Result);
2087   }
2088   case Builtin::BI__builtin_clzs:
2089   case Builtin::BI__builtin_clz:
2090   case Builtin::BI__builtin_clzl:
2091   case Builtin::BI__builtin_clzll: {
2092     Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
2093 
2094     llvm::Type *ArgType = ArgValue->getType();
2095     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2096 
2097     llvm::Type *ResultType = ConvertType(E->getType());
2098     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2099     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2100     if (Result->getType() != ResultType)
2101       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2102                                      "cast");
2103     return RValue::get(Result);
2104   }
2105   case Builtin::BI__builtin_ffs:
2106   case Builtin::BI__builtin_ffsl:
2107   case Builtin::BI__builtin_ffsll: {
2108     // ffs(x) -> x ? cttz(x) + 1 : 0
2109     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2110 
2111     llvm::Type *ArgType = ArgValue->getType();
2112     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2113 
2114     llvm::Type *ResultType = ConvertType(E->getType());
2115     Value *Tmp =
2116         Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
2117                           llvm::ConstantInt::get(ArgType, 1));
2118     Value *Zero = llvm::Constant::getNullValue(ArgType);
2119     Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
2120     Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
2121     if (Result->getType() != ResultType)
2122       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2123                                      "cast");
2124     return RValue::get(Result);
2125   }
2126   case Builtin::BI__builtin_parity:
2127   case Builtin::BI__builtin_parityl:
2128   case Builtin::BI__builtin_parityll: {
2129     // parity(x) -> ctpop(x) & 1
2130     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2131 
2132     llvm::Type *ArgType = ArgValue->getType();
2133     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2134 
2135     llvm::Type *ResultType = ConvertType(E->getType());
2136     Value *Tmp = Builder.CreateCall(F, ArgValue);
2137     Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
2138     if (Result->getType() != ResultType)
2139       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2140                                      "cast");
2141     return RValue::get(Result);
2142   }
2143   case Builtin::BI__lzcnt16:
2144   case Builtin::BI__lzcnt:
2145   case Builtin::BI__lzcnt64: {
2146     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2147 
2148     llvm::Type *ArgType = ArgValue->getType();
2149     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2150 
2151     llvm::Type *ResultType = ConvertType(E->getType());
2152     Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()});
2153     if (Result->getType() != ResultType)
2154       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2155                                      "cast");
2156     return RValue::get(Result);
2157   }
2158   case Builtin::BI__popcnt16:
2159   case Builtin::BI__popcnt:
2160   case Builtin::BI__popcnt64:
2161   case Builtin::BI__builtin_popcount:
2162   case Builtin::BI__builtin_popcountl:
2163   case Builtin::BI__builtin_popcountll: {
2164     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2165 
2166     llvm::Type *ArgType = ArgValue->getType();
2167     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2168 
2169     llvm::Type *ResultType = ConvertType(E->getType());
2170     Value *Result = Builder.CreateCall(F, ArgValue);
2171     if (Result->getType() != ResultType)
2172       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2173                                      "cast");
2174     return RValue::get(Result);
2175   }
2176   case Builtin::BI__builtin_unpredictable: {
2177     // Always return the argument of __builtin_unpredictable. LLVM does not
2178     // handle this builtin. Metadata for this builtin should be added directly
2179     // to instructions such as branches or switches that use it.
2180     return RValue::get(EmitScalarExpr(E->getArg(0)));
2181   }
2182   case Builtin::BI__builtin_expect: {
2183     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2184     llvm::Type *ArgType = ArgValue->getType();
2185 
2186     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2187     // Don't generate llvm.expect on -O0 as the backend won't use it for
2188     // anything.
2189     // Note, we still IRGen ExpectedValue because it could have side-effects.
2190     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2191       return RValue::get(ArgValue);
2192 
2193     Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
2194     Value *Result =
2195         Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
2196     return RValue::get(Result);
2197   }
2198   case Builtin::BI__builtin_expect_with_probability: {
2199     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2200     llvm::Type *ArgType = ArgValue->getType();
2201 
2202     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2203     llvm::APFloat Probability(0.0);
2204     const Expr *ProbArg = E->getArg(2);
2205     bool EvalSucceed = ProbArg->EvaluateAsFloat(Probability, CGM.getContext());
2206     assert(EvalSucceed && "probability should be able to evaluate as float");
2207     (void)EvalSucceed;
2208     bool LoseInfo = false;
2209     Probability.convert(llvm::APFloat::IEEEdouble(),
2210                         llvm::RoundingMode::Dynamic, &LoseInfo);
2211     llvm::Type *Ty = ConvertType(ProbArg->getType());
2212     Constant *Confidence = ConstantFP::get(Ty, Probability);
2213     // Don't generate llvm.expect.with.probability on -O0 as the backend
2214     // won't use it for anything.
2215     // Note, we still IRGen ExpectedValue because it could have side-effects.
2216     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2217       return RValue::get(ArgValue);
2218 
2219     Function *FnExpect =
2220         CGM.getIntrinsic(Intrinsic::expect_with_probability, ArgType);
2221     Value *Result = Builder.CreateCall(
2222         FnExpect, {ArgValue, ExpectedValue, Confidence}, "expval");
2223     return RValue::get(Result);
2224   }
2225   case Builtin::BI__builtin_assume_aligned: {
2226     const Expr *Ptr = E->getArg(0);
2227     Value *PtrValue = EmitScalarExpr(Ptr);
2228     Value *OffsetValue =
2229       (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
2230 
2231     Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
2232     ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
2233     if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
2234       AlignmentCI = ConstantInt::get(AlignmentCI->getType(),
2235                                      llvm::Value::MaximumAlignment);
2236 
2237     emitAlignmentAssumption(PtrValue, Ptr,
2238                             /*The expr loc is sufficient.*/ SourceLocation(),
2239                             AlignmentCI, OffsetValue);
2240     return RValue::get(PtrValue);
2241   }
2242   case Builtin::BI__assume:
2243   case Builtin::BI__builtin_assume: {
2244     if (E->getArg(0)->HasSideEffects(getContext()))
2245       return RValue::get(nullptr);
2246 
2247     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2248     Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
2249     return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
2250   }
2251   case Builtin::BI__builtin_bswap16:
2252   case Builtin::BI__builtin_bswap32:
2253   case Builtin::BI__builtin_bswap64: {
2254     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
2255   }
2256   case Builtin::BI__builtin_bitreverse8:
2257   case Builtin::BI__builtin_bitreverse16:
2258   case Builtin::BI__builtin_bitreverse32:
2259   case Builtin::BI__builtin_bitreverse64: {
2260     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
2261   }
2262   case Builtin::BI__builtin_rotateleft8:
2263   case Builtin::BI__builtin_rotateleft16:
2264   case Builtin::BI__builtin_rotateleft32:
2265   case Builtin::BI__builtin_rotateleft64:
2266   case Builtin::BI_rotl8: // Microsoft variants of rotate left
2267   case Builtin::BI_rotl16:
2268   case Builtin::BI_rotl:
2269   case Builtin::BI_lrotl:
2270   case Builtin::BI_rotl64:
2271     return emitRotate(E, false);
2272 
2273   case Builtin::BI__builtin_rotateright8:
2274   case Builtin::BI__builtin_rotateright16:
2275   case Builtin::BI__builtin_rotateright32:
2276   case Builtin::BI__builtin_rotateright64:
2277   case Builtin::BI_rotr8: // Microsoft variants of rotate right
2278   case Builtin::BI_rotr16:
2279   case Builtin::BI_rotr:
2280   case Builtin::BI_lrotr:
2281   case Builtin::BI_rotr64:
2282     return emitRotate(E, true);
2283 
2284   case Builtin::BI__builtin_constant_p: {
2285     llvm::Type *ResultType = ConvertType(E->getType());
2286 
2287     const Expr *Arg = E->getArg(0);
2288     QualType ArgType = Arg->getType();
2289     // FIXME: The allowance for Obj-C pointers and block pointers is historical
2290     // and likely a mistake.
2291     if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() &&
2292         !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType())
2293       // Per the GCC documentation, only numeric constants are recognized after
2294       // inlining.
2295       return RValue::get(ConstantInt::get(ResultType, 0));
2296 
2297     if (Arg->HasSideEffects(getContext()))
2298       // The argument is unevaluated, so be conservative if it might have
2299       // side-effects.
2300       return RValue::get(ConstantInt::get(ResultType, 0));
2301 
2302     Value *ArgValue = EmitScalarExpr(Arg);
2303     if (ArgType->isObjCObjectPointerType()) {
2304       // Convert Objective-C objects to id because we cannot distinguish between
2305       // LLVM types for Obj-C classes as they are opaque.
2306       ArgType = CGM.getContext().getObjCIdType();
2307       ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType));
2308     }
2309     Function *F =
2310         CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType));
2311     Value *Result = Builder.CreateCall(F, ArgValue);
2312     if (Result->getType() != ResultType)
2313       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false);
2314     return RValue::get(Result);
2315   }
2316   case Builtin::BI__builtin_dynamic_object_size:
2317   case Builtin::BI__builtin_object_size: {
2318     unsigned Type =
2319         E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
2320     auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
2321 
2322     // We pass this builtin onto the optimizer so that it can figure out the
2323     // object size in more complex cases.
2324     bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size;
2325     return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
2326                                              /*EmittedE=*/nullptr, IsDynamic));
2327   }
2328   case Builtin::BI__builtin_prefetch: {
2329     Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
2330     // FIXME: Technically these constants should of type 'int', yes?
2331     RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
2332       llvm::ConstantInt::get(Int32Ty, 0);
2333     Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
2334       llvm::ConstantInt::get(Int32Ty, 3);
2335     Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
2336     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
2337     return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data}));
2338   }
2339   case Builtin::BI__builtin_readcyclecounter: {
2340     Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
2341     return RValue::get(Builder.CreateCall(F));
2342   }
2343   case Builtin::BI__builtin___clear_cache: {
2344     Value *Begin = EmitScalarExpr(E->getArg(0));
2345     Value *End = EmitScalarExpr(E->getArg(1));
2346     Function *F = CGM.getIntrinsic(Intrinsic::clear_cache);
2347     return RValue::get(Builder.CreateCall(F, {Begin, End}));
2348   }
2349   case Builtin::BI__builtin_trap:
2350     return RValue::get(EmitTrapCall(Intrinsic::trap));
2351   case Builtin::BI__debugbreak:
2352     return RValue::get(EmitTrapCall(Intrinsic::debugtrap));
2353   case Builtin::BI__builtin_unreachable: {
2354     EmitUnreachable(E->getExprLoc());
2355 
2356     // We do need to preserve an insertion point.
2357     EmitBlock(createBasicBlock("unreachable.cont"));
2358 
2359     return RValue::get(nullptr);
2360   }
2361 
2362   case Builtin::BI__builtin_powi:
2363   case Builtin::BI__builtin_powif:
2364   case Builtin::BI__builtin_powil:
2365     return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(
2366         *this, E, Intrinsic::powi, Intrinsic::experimental_constrained_powi));
2367 
2368   case Builtin::BI__builtin_isgreater:
2369   case Builtin::BI__builtin_isgreaterequal:
2370   case Builtin::BI__builtin_isless:
2371   case Builtin::BI__builtin_islessequal:
2372   case Builtin::BI__builtin_islessgreater:
2373   case Builtin::BI__builtin_isunordered: {
2374     // Ordered comparisons: we know the arguments to these are matching scalar
2375     // floating point values.
2376     Value *LHS = EmitScalarExpr(E->getArg(0));
2377     Value *RHS = EmitScalarExpr(E->getArg(1));
2378 
2379     switch (BuiltinID) {
2380     default: llvm_unreachable("Unknown ordered comparison");
2381     case Builtin::BI__builtin_isgreater:
2382       LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
2383       break;
2384     case Builtin::BI__builtin_isgreaterequal:
2385       LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
2386       break;
2387     case Builtin::BI__builtin_isless:
2388       LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
2389       break;
2390     case Builtin::BI__builtin_islessequal:
2391       LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
2392       break;
2393     case Builtin::BI__builtin_islessgreater:
2394       LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
2395       break;
2396     case Builtin::BI__builtin_isunordered:
2397       LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
2398       break;
2399     }
2400     // ZExt bool to int type.
2401     return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
2402   }
2403   case Builtin::BI__builtin_isnan: {
2404     Value *V = EmitScalarExpr(E->getArg(0));
2405     V = Builder.CreateFCmpUNO(V, V, "cmp");
2406     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
2407   }
2408 
2409   case Builtin::BI__builtin_matrix_transpose: {
2410     const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>();
2411     Value *MatValue = EmitScalarExpr(E->getArg(0));
2412     MatrixBuilder<CGBuilderTy> MB(Builder);
2413     Value *Result = MB.CreateMatrixTranspose(MatValue, MatrixTy->getNumRows(),
2414                                              MatrixTy->getNumColumns());
2415     return RValue::get(Result);
2416   }
2417 
2418   case Builtin::BI__builtin_matrix_column_major_load: {
2419     MatrixBuilder<CGBuilderTy> MB(Builder);
2420     // Emit everything that isn't dependent on the first parameter type
2421     Value *Stride = EmitScalarExpr(E->getArg(3));
2422     const auto *ResultTy = E->getType()->getAs<ConstantMatrixType>();
2423     auto *PtrTy = E->getArg(0)->getType()->getAs<PointerType>();
2424     assert(PtrTy && "arg0 must be of pointer type");
2425     bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
2426 
2427     Address Src = EmitPointerWithAlignment(E->getArg(0));
2428     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(0)->getType(),
2429                         E->getArg(0)->getExprLoc(), FD, 0);
2430     Value *Result = MB.CreateColumnMajorLoad(
2431         Src.getPointer(), Align(Src.getAlignment().getQuantity()), Stride,
2432         IsVolatile, ResultTy->getNumRows(), ResultTy->getNumColumns(),
2433         "matrix");
2434     return RValue::get(Result);
2435   }
2436 
2437   case Builtin::BI__builtin_matrix_column_major_store: {
2438     MatrixBuilder<CGBuilderTy> MB(Builder);
2439     Value *Matrix = EmitScalarExpr(E->getArg(0));
2440     Address Dst = EmitPointerWithAlignment(E->getArg(1));
2441     Value *Stride = EmitScalarExpr(E->getArg(2));
2442 
2443     const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>();
2444     auto *PtrTy = E->getArg(1)->getType()->getAs<PointerType>();
2445     assert(PtrTy && "arg1 must be of pointer type");
2446     bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
2447 
2448     EmitNonNullArgCheck(RValue::get(Dst.getPointer()), E->getArg(1)->getType(),
2449                         E->getArg(1)->getExprLoc(), FD, 0);
2450     Value *Result = MB.CreateColumnMajorStore(
2451         Matrix, Dst.getPointer(), Align(Dst.getAlignment().getQuantity()),
2452         Stride, IsVolatile, MatrixTy->getNumRows(), MatrixTy->getNumColumns());
2453     return RValue::get(Result);
2454   }
2455 
2456   case Builtin::BIfinite:
2457   case Builtin::BI__finite:
2458   case Builtin::BIfinitef:
2459   case Builtin::BI__finitef:
2460   case Builtin::BIfinitel:
2461   case Builtin::BI__finitel:
2462   case Builtin::BI__builtin_isinf:
2463   case Builtin::BI__builtin_isfinite: {
2464     // isinf(x)    --> fabs(x) == infinity
2465     // isfinite(x) --> fabs(x) != infinity
2466     // x != NaN via the ordered compare in either case.
2467     Value *V = EmitScalarExpr(E->getArg(0));
2468     Value *Fabs = EmitFAbs(*this, V);
2469     Constant *Infinity = ConstantFP::getInfinity(V->getType());
2470     CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf)
2471                                   ? CmpInst::FCMP_OEQ
2472                                   : CmpInst::FCMP_ONE;
2473     Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf");
2474     return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType())));
2475   }
2476 
2477   case Builtin::BI__builtin_isinf_sign: {
2478     // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
2479     Value *Arg = EmitScalarExpr(E->getArg(0));
2480     Value *AbsArg = EmitFAbs(*this, Arg);
2481     Value *IsInf = Builder.CreateFCmpOEQ(
2482         AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
2483     Value *IsNeg = EmitSignBit(*this, Arg);
2484 
2485     llvm::Type *IntTy = ConvertType(E->getType());
2486     Value *Zero = Constant::getNullValue(IntTy);
2487     Value *One = ConstantInt::get(IntTy, 1);
2488     Value *NegativeOne = ConstantInt::get(IntTy, -1);
2489     Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
2490     Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
2491     return RValue::get(Result);
2492   }
2493 
2494   case Builtin::BI__builtin_isnormal: {
2495     // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
2496     Value *V = EmitScalarExpr(E->getArg(0));
2497     Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
2498 
2499     Value *Abs = EmitFAbs(*this, V);
2500     Value *IsLessThanInf =
2501       Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
2502     APFloat Smallest = APFloat::getSmallestNormalized(
2503                    getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
2504     Value *IsNormal =
2505       Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
2506                             "isnormal");
2507     V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
2508     V = Builder.CreateAnd(V, IsNormal, "and");
2509     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
2510   }
2511 
2512   case Builtin::BI__builtin_flt_rounds: {
2513     Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds);
2514 
2515     llvm::Type *ResultType = ConvertType(E->getType());
2516     Value *Result = Builder.CreateCall(F);
2517     if (Result->getType() != ResultType)
2518       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2519                                      "cast");
2520     return RValue::get(Result);
2521   }
2522 
2523   case Builtin::BI__builtin_fpclassify: {
2524     Value *V = EmitScalarExpr(E->getArg(5));
2525     llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
2526 
2527     // Create Result
2528     BasicBlock *Begin = Builder.GetInsertBlock();
2529     BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
2530     Builder.SetInsertPoint(End);
2531     PHINode *Result =
2532       Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
2533                         "fpclassify_result");
2534 
2535     // if (V==0) return FP_ZERO
2536     Builder.SetInsertPoint(Begin);
2537     Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
2538                                           "iszero");
2539     Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
2540     BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
2541     Builder.CreateCondBr(IsZero, End, NotZero);
2542     Result->addIncoming(ZeroLiteral, Begin);
2543 
2544     // if (V != V) return FP_NAN
2545     Builder.SetInsertPoint(NotZero);
2546     Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
2547     Value *NanLiteral = EmitScalarExpr(E->getArg(0));
2548     BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
2549     Builder.CreateCondBr(IsNan, End, NotNan);
2550     Result->addIncoming(NanLiteral, NotZero);
2551 
2552     // if (fabs(V) == infinity) return FP_INFINITY
2553     Builder.SetInsertPoint(NotNan);
2554     Value *VAbs = EmitFAbs(*this, V);
2555     Value *IsInf =
2556       Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
2557                             "isinf");
2558     Value *InfLiteral = EmitScalarExpr(E->getArg(1));
2559     BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
2560     Builder.CreateCondBr(IsInf, End, NotInf);
2561     Result->addIncoming(InfLiteral, NotNan);
2562 
2563     // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
2564     Builder.SetInsertPoint(NotInf);
2565     APFloat Smallest = APFloat::getSmallestNormalized(
2566         getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
2567     Value *IsNormal =
2568       Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
2569                             "isnormal");
2570     Value *NormalResult =
2571       Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
2572                            EmitScalarExpr(E->getArg(3)));
2573     Builder.CreateBr(End);
2574     Result->addIncoming(NormalResult, NotInf);
2575 
2576     // return Result
2577     Builder.SetInsertPoint(End);
2578     return RValue::get(Result);
2579   }
2580 
2581   case Builtin::BIalloca:
2582   case Builtin::BI_alloca:
2583   case Builtin::BI__builtin_alloca: {
2584     Value *Size = EmitScalarExpr(E->getArg(0));
2585     const TargetInfo &TI = getContext().getTargetInfo();
2586     // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
2587     const Align SuitableAlignmentInBytes =
2588         CGM.getContext()
2589             .toCharUnitsFromBits(TI.getSuitableAlign())
2590             .getAsAlign();
2591     AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
2592     AI->setAlignment(SuitableAlignmentInBytes);
2593     initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes);
2594     return RValue::get(AI);
2595   }
2596 
2597   case Builtin::BI__builtin_alloca_with_align: {
2598     Value *Size = EmitScalarExpr(E->getArg(0));
2599     Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
2600     auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
2601     unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
2602     const Align AlignmentInBytes =
2603         CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getAsAlign();
2604     AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
2605     AI->setAlignment(AlignmentInBytes);
2606     initializeAlloca(*this, AI, Size, AlignmentInBytes);
2607     return RValue::get(AI);
2608   }
2609 
2610   case Builtin::BIbzero:
2611   case Builtin::BI__builtin_bzero: {
2612     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2613     Value *SizeVal = EmitScalarExpr(E->getArg(1));
2614     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2615                         E->getArg(0)->getExprLoc(), FD, 0);
2616     Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
2617     return RValue::get(nullptr);
2618   }
2619   case Builtin::BImemcpy:
2620   case Builtin::BI__builtin_memcpy:
2621   case Builtin::BImempcpy:
2622   case Builtin::BI__builtin_mempcpy: {
2623     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2624     Address Src = EmitPointerWithAlignment(E->getArg(1));
2625     Value *SizeVal = EmitScalarExpr(E->getArg(2));
2626     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2627                         E->getArg(0)->getExprLoc(), FD, 0);
2628     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
2629                         E->getArg(1)->getExprLoc(), FD, 1);
2630     Builder.CreateMemCpy(Dest, Src, SizeVal, false);
2631     if (BuiltinID == Builtin::BImempcpy ||
2632         BuiltinID == Builtin::BI__builtin_mempcpy)
2633       return RValue::get(Builder.CreateInBoundsGEP(Dest.getPointer(), SizeVal));
2634     else
2635       return RValue::get(Dest.getPointer());
2636   }
2637 
2638   case Builtin::BI__builtin_memcpy_inline: {
2639     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2640     Address Src = EmitPointerWithAlignment(E->getArg(1));
2641     uint64_t Size =
2642         E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
2643     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2644                         E->getArg(0)->getExprLoc(), FD, 0);
2645     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
2646                         E->getArg(1)->getExprLoc(), FD, 1);
2647     Builder.CreateMemCpyInline(Dest, Src, Size);
2648     return RValue::get(nullptr);
2649   }
2650 
2651   case Builtin::BI__builtin_char_memchr:
2652     BuiltinID = Builtin::BI__builtin_memchr;
2653     break;
2654 
2655   case Builtin::BI__builtin___memcpy_chk: {
2656     // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
2657     Expr::EvalResult SizeResult, DstSizeResult;
2658     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
2659         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
2660       break;
2661     llvm::APSInt Size = SizeResult.Val.getInt();
2662     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
2663     if (Size.ugt(DstSize))
2664       break;
2665     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2666     Address Src = EmitPointerWithAlignment(E->getArg(1));
2667     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
2668     Builder.CreateMemCpy(Dest, Src, SizeVal, false);
2669     return RValue::get(Dest.getPointer());
2670   }
2671 
2672   case Builtin::BI__builtin_objc_memmove_collectable: {
2673     Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
2674     Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
2675     Value *SizeVal = EmitScalarExpr(E->getArg(2));
2676     CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
2677                                                   DestAddr, SrcAddr, SizeVal);
2678     return RValue::get(DestAddr.getPointer());
2679   }
2680 
2681   case Builtin::BI__builtin___memmove_chk: {
2682     // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
2683     Expr::EvalResult SizeResult, DstSizeResult;
2684     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
2685         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
2686       break;
2687     llvm::APSInt Size = SizeResult.Val.getInt();
2688     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
2689     if (Size.ugt(DstSize))
2690       break;
2691     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2692     Address Src = EmitPointerWithAlignment(E->getArg(1));
2693     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
2694     Builder.CreateMemMove(Dest, Src, SizeVal, false);
2695     return RValue::get(Dest.getPointer());
2696   }
2697 
2698   case Builtin::BImemmove:
2699   case Builtin::BI__builtin_memmove: {
2700     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2701     Address Src = EmitPointerWithAlignment(E->getArg(1));
2702     Value *SizeVal = EmitScalarExpr(E->getArg(2));
2703     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2704                         E->getArg(0)->getExprLoc(), FD, 0);
2705     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
2706                         E->getArg(1)->getExprLoc(), FD, 1);
2707     Builder.CreateMemMove(Dest, Src, SizeVal, false);
2708     return RValue::get(Dest.getPointer());
2709   }
2710   case Builtin::BImemset:
2711   case Builtin::BI__builtin_memset: {
2712     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2713     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
2714                                          Builder.getInt8Ty());
2715     Value *SizeVal = EmitScalarExpr(E->getArg(2));
2716     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2717                         E->getArg(0)->getExprLoc(), FD, 0);
2718     Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
2719     return RValue::get(Dest.getPointer());
2720   }
2721   case Builtin::BI__builtin___memset_chk: {
2722     // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
2723     Expr::EvalResult SizeResult, DstSizeResult;
2724     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
2725         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
2726       break;
2727     llvm::APSInt Size = SizeResult.Val.getInt();
2728     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
2729     if (Size.ugt(DstSize))
2730       break;
2731     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2732     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
2733                                          Builder.getInt8Ty());
2734     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
2735     Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
2736     return RValue::get(Dest.getPointer());
2737   }
2738   case Builtin::BI__builtin_wmemcmp: {
2739     // The MSVC runtime library does not provide a definition of wmemcmp, so we
2740     // need an inline implementation.
2741     if (!getTarget().getTriple().isOSMSVCRT())
2742       break;
2743 
2744     llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
2745 
2746     Value *Dst = EmitScalarExpr(E->getArg(0));
2747     Value *Src = EmitScalarExpr(E->getArg(1));
2748     Value *Size = EmitScalarExpr(E->getArg(2));
2749 
2750     BasicBlock *Entry = Builder.GetInsertBlock();
2751     BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
2752     BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
2753     BasicBlock *Next = createBasicBlock("wmemcmp.next");
2754     BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
2755     Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
2756     Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
2757 
2758     EmitBlock(CmpGT);
2759     PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
2760     DstPhi->addIncoming(Dst, Entry);
2761     PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
2762     SrcPhi->addIncoming(Src, Entry);
2763     PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
2764     SizePhi->addIncoming(Size, Entry);
2765     CharUnits WCharAlign =
2766         getContext().getTypeAlignInChars(getContext().WCharTy);
2767     Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
2768     Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
2769     Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
2770     Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
2771 
2772     EmitBlock(CmpLT);
2773     Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
2774     Builder.CreateCondBr(DstLtSrc, Exit, Next);
2775 
2776     EmitBlock(Next);
2777     Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
2778     Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
2779     Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
2780     Value *NextSizeEq0 =
2781         Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
2782     Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
2783     DstPhi->addIncoming(NextDst, Next);
2784     SrcPhi->addIncoming(NextSrc, Next);
2785     SizePhi->addIncoming(NextSize, Next);
2786 
2787     EmitBlock(Exit);
2788     PHINode *Ret = Builder.CreatePHI(IntTy, 4);
2789     Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
2790     Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
2791     Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
2792     Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
2793     return RValue::get(Ret);
2794   }
2795   case Builtin::BI__builtin_dwarf_cfa: {
2796     // The offset in bytes from the first argument to the CFA.
2797     //
2798     // Why on earth is this in the frontend?  Is there any reason at
2799     // all that the backend can't reasonably determine this while
2800     // lowering llvm.eh.dwarf.cfa()?
2801     //
2802     // TODO: If there's a satisfactory reason, add a target hook for
2803     // this instead of hard-coding 0, which is correct for most targets.
2804     int32_t Offset = 0;
2805 
2806     Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
2807     return RValue::get(Builder.CreateCall(F,
2808                                       llvm::ConstantInt::get(Int32Ty, Offset)));
2809   }
2810   case Builtin::BI__builtin_return_address: {
2811     Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
2812                                                    getContext().UnsignedIntTy);
2813     Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
2814     return RValue::get(Builder.CreateCall(F, Depth));
2815   }
2816   case Builtin::BI_ReturnAddress: {
2817     Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
2818     return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
2819   }
2820   case Builtin::BI__builtin_frame_address: {
2821     Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
2822                                                    getContext().UnsignedIntTy);
2823     Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy);
2824     return RValue::get(Builder.CreateCall(F, Depth));
2825   }
2826   case Builtin::BI__builtin_extract_return_addr: {
2827     Value *Address = EmitScalarExpr(E->getArg(0));
2828     Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
2829     return RValue::get(Result);
2830   }
2831   case Builtin::BI__builtin_frob_return_addr: {
2832     Value *Address = EmitScalarExpr(E->getArg(0));
2833     Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
2834     return RValue::get(Result);
2835   }
2836   case Builtin::BI__builtin_dwarf_sp_column: {
2837     llvm::IntegerType *Ty
2838       = cast<llvm::IntegerType>(ConvertType(E->getType()));
2839     int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
2840     if (Column == -1) {
2841       CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
2842       return RValue::get(llvm::UndefValue::get(Ty));
2843     }
2844     return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
2845   }
2846   case Builtin::BI__builtin_init_dwarf_reg_size_table: {
2847     Value *Address = EmitScalarExpr(E->getArg(0));
2848     if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
2849       CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
2850     return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
2851   }
2852   case Builtin::BI__builtin_eh_return: {
2853     Value *Int = EmitScalarExpr(E->getArg(0));
2854     Value *Ptr = EmitScalarExpr(E->getArg(1));
2855 
2856     llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
2857     assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
2858            "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
2859     Function *F =
2860         CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32
2861                                                     : Intrinsic::eh_return_i64);
2862     Builder.CreateCall(F, {Int, Ptr});
2863     Builder.CreateUnreachable();
2864 
2865     // We do need to preserve an insertion point.
2866     EmitBlock(createBasicBlock("builtin_eh_return.cont"));
2867 
2868     return RValue::get(nullptr);
2869   }
2870   case Builtin::BI__builtin_unwind_init: {
2871     Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
2872     return RValue::get(Builder.CreateCall(F));
2873   }
2874   case Builtin::BI__builtin_extend_pointer: {
2875     // Extends a pointer to the size of an _Unwind_Word, which is
2876     // uint64_t on all platforms.  Generally this gets poked into a
2877     // register and eventually used as an address, so if the
2878     // addressing registers are wider than pointers and the platform
2879     // doesn't implicitly ignore high-order bits when doing
2880     // addressing, we need to make sure we zext / sext based on
2881     // the platform's expectations.
2882     //
2883     // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
2884 
2885     // Cast the pointer to intptr_t.
2886     Value *Ptr = EmitScalarExpr(E->getArg(0));
2887     Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
2888 
2889     // If that's 64 bits, we're done.
2890     if (IntPtrTy->getBitWidth() == 64)
2891       return RValue::get(Result);
2892 
2893     // Otherwise, ask the codegen data what to do.
2894     if (getTargetHooks().extendPointerWithSExt())
2895       return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
2896     else
2897       return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
2898   }
2899   case Builtin::BI__builtin_setjmp: {
2900     // Buffer is a void**.
2901     Address Buf = EmitPointerWithAlignment(E->getArg(0));
2902 
2903     // Store the frame pointer to the setjmp buffer.
2904     Value *FrameAddr = Builder.CreateCall(
2905         CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy),
2906         ConstantInt::get(Int32Ty, 0));
2907     Builder.CreateStore(FrameAddr, Buf);
2908 
2909     // Store the stack pointer to the setjmp buffer.
2910     Value *StackAddr =
2911         Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
2912     Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2);
2913     Builder.CreateStore(StackAddr, StackSaveSlot);
2914 
2915     // Call LLVM's EH setjmp, which is lightweight.
2916     Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
2917     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
2918     return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
2919   }
2920   case Builtin::BI__builtin_longjmp: {
2921     Value *Buf = EmitScalarExpr(E->getArg(0));
2922     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
2923 
2924     // Call LLVM's EH longjmp, which is lightweight.
2925     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
2926 
2927     // longjmp doesn't return; mark this as unreachable.
2928     Builder.CreateUnreachable();
2929 
2930     // We do need to preserve an insertion point.
2931     EmitBlock(createBasicBlock("longjmp.cont"));
2932 
2933     return RValue::get(nullptr);
2934   }
2935   case Builtin::BI__builtin_launder: {
2936     const Expr *Arg = E->getArg(0);
2937     QualType ArgTy = Arg->getType()->getPointeeType();
2938     Value *Ptr = EmitScalarExpr(Arg);
2939     if (TypeRequiresBuiltinLaunder(CGM, ArgTy))
2940       Ptr = Builder.CreateLaunderInvariantGroup(Ptr);
2941 
2942     return RValue::get(Ptr);
2943   }
2944   case Builtin::BI__sync_fetch_and_add:
2945   case Builtin::BI__sync_fetch_and_sub:
2946   case Builtin::BI__sync_fetch_and_or:
2947   case Builtin::BI__sync_fetch_and_and:
2948   case Builtin::BI__sync_fetch_and_xor:
2949   case Builtin::BI__sync_fetch_and_nand:
2950   case Builtin::BI__sync_add_and_fetch:
2951   case Builtin::BI__sync_sub_and_fetch:
2952   case Builtin::BI__sync_and_and_fetch:
2953   case Builtin::BI__sync_or_and_fetch:
2954   case Builtin::BI__sync_xor_and_fetch:
2955   case Builtin::BI__sync_nand_and_fetch:
2956   case Builtin::BI__sync_val_compare_and_swap:
2957   case Builtin::BI__sync_bool_compare_and_swap:
2958   case Builtin::BI__sync_lock_test_and_set:
2959   case Builtin::BI__sync_lock_release:
2960   case Builtin::BI__sync_swap:
2961     llvm_unreachable("Shouldn't make it through sema");
2962   case Builtin::BI__sync_fetch_and_add_1:
2963   case Builtin::BI__sync_fetch_and_add_2:
2964   case Builtin::BI__sync_fetch_and_add_4:
2965   case Builtin::BI__sync_fetch_and_add_8:
2966   case Builtin::BI__sync_fetch_and_add_16:
2967     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
2968   case Builtin::BI__sync_fetch_and_sub_1:
2969   case Builtin::BI__sync_fetch_and_sub_2:
2970   case Builtin::BI__sync_fetch_and_sub_4:
2971   case Builtin::BI__sync_fetch_and_sub_8:
2972   case Builtin::BI__sync_fetch_and_sub_16:
2973     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
2974   case Builtin::BI__sync_fetch_and_or_1:
2975   case Builtin::BI__sync_fetch_and_or_2:
2976   case Builtin::BI__sync_fetch_and_or_4:
2977   case Builtin::BI__sync_fetch_and_or_8:
2978   case Builtin::BI__sync_fetch_and_or_16:
2979     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
2980   case Builtin::BI__sync_fetch_and_and_1:
2981   case Builtin::BI__sync_fetch_and_and_2:
2982   case Builtin::BI__sync_fetch_and_and_4:
2983   case Builtin::BI__sync_fetch_and_and_8:
2984   case Builtin::BI__sync_fetch_and_and_16:
2985     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
2986   case Builtin::BI__sync_fetch_and_xor_1:
2987   case Builtin::BI__sync_fetch_and_xor_2:
2988   case Builtin::BI__sync_fetch_and_xor_4:
2989   case Builtin::BI__sync_fetch_and_xor_8:
2990   case Builtin::BI__sync_fetch_and_xor_16:
2991     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
2992   case Builtin::BI__sync_fetch_and_nand_1:
2993   case Builtin::BI__sync_fetch_and_nand_2:
2994   case Builtin::BI__sync_fetch_and_nand_4:
2995   case Builtin::BI__sync_fetch_and_nand_8:
2996   case Builtin::BI__sync_fetch_and_nand_16:
2997     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
2998 
2999   // Clang extensions: not overloaded yet.
3000   case Builtin::BI__sync_fetch_and_min:
3001     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
3002   case Builtin::BI__sync_fetch_and_max:
3003     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
3004   case Builtin::BI__sync_fetch_and_umin:
3005     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
3006   case Builtin::BI__sync_fetch_and_umax:
3007     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
3008 
3009   case Builtin::BI__sync_add_and_fetch_1:
3010   case Builtin::BI__sync_add_and_fetch_2:
3011   case Builtin::BI__sync_add_and_fetch_4:
3012   case Builtin::BI__sync_add_and_fetch_8:
3013   case Builtin::BI__sync_add_and_fetch_16:
3014     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
3015                                 llvm::Instruction::Add);
3016   case Builtin::BI__sync_sub_and_fetch_1:
3017   case Builtin::BI__sync_sub_and_fetch_2:
3018   case Builtin::BI__sync_sub_and_fetch_4:
3019   case Builtin::BI__sync_sub_and_fetch_8:
3020   case Builtin::BI__sync_sub_and_fetch_16:
3021     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
3022                                 llvm::Instruction::Sub);
3023   case Builtin::BI__sync_and_and_fetch_1:
3024   case Builtin::BI__sync_and_and_fetch_2:
3025   case Builtin::BI__sync_and_and_fetch_4:
3026   case Builtin::BI__sync_and_and_fetch_8:
3027   case Builtin::BI__sync_and_and_fetch_16:
3028     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
3029                                 llvm::Instruction::And);
3030   case Builtin::BI__sync_or_and_fetch_1:
3031   case Builtin::BI__sync_or_and_fetch_2:
3032   case Builtin::BI__sync_or_and_fetch_4:
3033   case Builtin::BI__sync_or_and_fetch_8:
3034   case Builtin::BI__sync_or_and_fetch_16:
3035     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
3036                                 llvm::Instruction::Or);
3037   case Builtin::BI__sync_xor_and_fetch_1:
3038   case Builtin::BI__sync_xor_and_fetch_2:
3039   case Builtin::BI__sync_xor_and_fetch_4:
3040   case Builtin::BI__sync_xor_and_fetch_8:
3041   case Builtin::BI__sync_xor_and_fetch_16:
3042     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
3043                                 llvm::Instruction::Xor);
3044   case Builtin::BI__sync_nand_and_fetch_1:
3045   case Builtin::BI__sync_nand_and_fetch_2:
3046   case Builtin::BI__sync_nand_and_fetch_4:
3047   case Builtin::BI__sync_nand_and_fetch_8:
3048   case Builtin::BI__sync_nand_and_fetch_16:
3049     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
3050                                 llvm::Instruction::And, true);
3051 
3052   case Builtin::BI__sync_val_compare_and_swap_1:
3053   case Builtin::BI__sync_val_compare_and_swap_2:
3054   case Builtin::BI__sync_val_compare_and_swap_4:
3055   case Builtin::BI__sync_val_compare_and_swap_8:
3056   case Builtin::BI__sync_val_compare_and_swap_16:
3057     return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
3058 
3059   case Builtin::BI__sync_bool_compare_and_swap_1:
3060   case Builtin::BI__sync_bool_compare_and_swap_2:
3061   case Builtin::BI__sync_bool_compare_and_swap_4:
3062   case Builtin::BI__sync_bool_compare_and_swap_8:
3063   case Builtin::BI__sync_bool_compare_and_swap_16:
3064     return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
3065 
3066   case Builtin::BI__sync_swap_1:
3067   case Builtin::BI__sync_swap_2:
3068   case Builtin::BI__sync_swap_4:
3069   case Builtin::BI__sync_swap_8:
3070   case Builtin::BI__sync_swap_16:
3071     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
3072 
3073   case Builtin::BI__sync_lock_test_and_set_1:
3074   case Builtin::BI__sync_lock_test_and_set_2:
3075   case Builtin::BI__sync_lock_test_and_set_4:
3076   case Builtin::BI__sync_lock_test_and_set_8:
3077   case Builtin::BI__sync_lock_test_and_set_16:
3078     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
3079 
3080   case Builtin::BI__sync_lock_release_1:
3081   case Builtin::BI__sync_lock_release_2:
3082   case Builtin::BI__sync_lock_release_4:
3083   case Builtin::BI__sync_lock_release_8:
3084   case Builtin::BI__sync_lock_release_16: {
3085     Value *Ptr = EmitScalarExpr(E->getArg(0));
3086     QualType ElTy = E->getArg(0)->getType()->getPointeeType();
3087     CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
3088     llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
3089                                              StoreSize.getQuantity() * 8);
3090     Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
3091     llvm::StoreInst *Store =
3092       Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
3093                                  StoreSize);
3094     Store->setAtomic(llvm::AtomicOrdering::Release);
3095     return RValue::get(nullptr);
3096   }
3097 
3098   case Builtin::BI__sync_synchronize: {
3099     // We assume this is supposed to correspond to a C++0x-style
3100     // sequentially-consistent fence (i.e. this is only usable for
3101     // synchronization, not device I/O or anything like that). This intrinsic
3102     // is really badly designed in the sense that in theory, there isn't
3103     // any way to safely use it... but in practice, it mostly works
3104     // to use it with non-atomic loads and stores to get acquire/release
3105     // semantics.
3106     Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
3107     return RValue::get(nullptr);
3108   }
3109 
3110   case Builtin::BI__builtin_nontemporal_load:
3111     return RValue::get(EmitNontemporalLoad(*this, E));
3112   case Builtin::BI__builtin_nontemporal_store:
3113     return RValue::get(EmitNontemporalStore(*this, E));
3114   case Builtin::BI__c11_atomic_is_lock_free:
3115   case Builtin::BI__atomic_is_lock_free: {
3116     // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
3117     // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
3118     // _Atomic(T) is always properly-aligned.
3119     const char *LibCallName = "__atomic_is_lock_free";
3120     CallArgList Args;
3121     Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
3122              getContext().getSizeType());
3123     if (BuiltinID == Builtin::BI__atomic_is_lock_free)
3124       Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
3125                getContext().VoidPtrTy);
3126     else
3127       Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
3128                getContext().VoidPtrTy);
3129     const CGFunctionInfo &FuncInfo =
3130         CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
3131     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
3132     llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
3133     return EmitCall(FuncInfo, CGCallee::forDirect(Func),
3134                     ReturnValueSlot(), Args);
3135   }
3136 
3137   case Builtin::BI__atomic_test_and_set: {
3138     // Look at the argument type to determine whether this is a volatile
3139     // operation. The parameter type is always volatile.
3140     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
3141     bool Volatile =
3142         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
3143 
3144     Value *Ptr = EmitScalarExpr(E->getArg(0));
3145     unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
3146     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
3147     Value *NewVal = Builder.getInt8(1);
3148     Value *Order = EmitScalarExpr(E->getArg(1));
3149     if (isa<llvm::ConstantInt>(Order)) {
3150       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3151       AtomicRMWInst *Result = nullptr;
3152       switch (ord) {
3153       case 0:  // memory_order_relaxed
3154       default: // invalid order
3155         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3156                                          llvm::AtomicOrdering::Monotonic);
3157         break;
3158       case 1: // memory_order_consume
3159       case 2: // memory_order_acquire
3160         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3161                                          llvm::AtomicOrdering::Acquire);
3162         break;
3163       case 3: // memory_order_release
3164         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3165                                          llvm::AtomicOrdering::Release);
3166         break;
3167       case 4: // memory_order_acq_rel
3168 
3169         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3170                                          llvm::AtomicOrdering::AcquireRelease);
3171         break;
3172       case 5: // memory_order_seq_cst
3173         Result = Builder.CreateAtomicRMW(
3174             llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3175             llvm::AtomicOrdering::SequentiallyConsistent);
3176         break;
3177       }
3178       Result->setVolatile(Volatile);
3179       return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
3180     }
3181 
3182     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3183 
3184     llvm::BasicBlock *BBs[5] = {
3185       createBasicBlock("monotonic", CurFn),
3186       createBasicBlock("acquire", CurFn),
3187       createBasicBlock("release", CurFn),
3188       createBasicBlock("acqrel", CurFn),
3189       createBasicBlock("seqcst", CurFn)
3190     };
3191     llvm::AtomicOrdering Orders[5] = {
3192         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
3193         llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
3194         llvm::AtomicOrdering::SequentiallyConsistent};
3195 
3196     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3197     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
3198 
3199     Builder.SetInsertPoint(ContBB);
3200     PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
3201 
3202     for (unsigned i = 0; i < 5; ++i) {
3203       Builder.SetInsertPoint(BBs[i]);
3204       AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
3205                                                    Ptr, NewVal, Orders[i]);
3206       RMW->setVolatile(Volatile);
3207       Result->addIncoming(RMW, BBs[i]);
3208       Builder.CreateBr(ContBB);
3209     }
3210 
3211     SI->addCase(Builder.getInt32(0), BBs[0]);
3212     SI->addCase(Builder.getInt32(1), BBs[1]);
3213     SI->addCase(Builder.getInt32(2), BBs[1]);
3214     SI->addCase(Builder.getInt32(3), BBs[2]);
3215     SI->addCase(Builder.getInt32(4), BBs[3]);
3216     SI->addCase(Builder.getInt32(5), BBs[4]);
3217 
3218     Builder.SetInsertPoint(ContBB);
3219     return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
3220   }
3221 
3222   case Builtin::BI__atomic_clear: {
3223     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
3224     bool Volatile =
3225         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
3226 
3227     Address Ptr = EmitPointerWithAlignment(E->getArg(0));
3228     unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace();
3229     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
3230     Value *NewVal = Builder.getInt8(0);
3231     Value *Order = EmitScalarExpr(E->getArg(1));
3232     if (isa<llvm::ConstantInt>(Order)) {
3233       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3234       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
3235       switch (ord) {
3236       case 0:  // memory_order_relaxed
3237       default: // invalid order
3238         Store->setOrdering(llvm::AtomicOrdering::Monotonic);
3239         break;
3240       case 3:  // memory_order_release
3241         Store->setOrdering(llvm::AtomicOrdering::Release);
3242         break;
3243       case 5:  // memory_order_seq_cst
3244         Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
3245         break;
3246       }
3247       return RValue::get(nullptr);
3248     }
3249 
3250     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3251 
3252     llvm::BasicBlock *BBs[3] = {
3253       createBasicBlock("monotonic", CurFn),
3254       createBasicBlock("release", CurFn),
3255       createBasicBlock("seqcst", CurFn)
3256     };
3257     llvm::AtomicOrdering Orders[3] = {
3258         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
3259         llvm::AtomicOrdering::SequentiallyConsistent};
3260 
3261     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3262     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
3263 
3264     for (unsigned i = 0; i < 3; ++i) {
3265       Builder.SetInsertPoint(BBs[i]);
3266       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
3267       Store->setOrdering(Orders[i]);
3268       Builder.CreateBr(ContBB);
3269     }
3270 
3271     SI->addCase(Builder.getInt32(0), BBs[0]);
3272     SI->addCase(Builder.getInt32(3), BBs[1]);
3273     SI->addCase(Builder.getInt32(5), BBs[2]);
3274 
3275     Builder.SetInsertPoint(ContBB);
3276     return RValue::get(nullptr);
3277   }
3278 
3279   case Builtin::BI__atomic_thread_fence:
3280   case Builtin::BI__atomic_signal_fence:
3281   case Builtin::BI__c11_atomic_thread_fence:
3282   case Builtin::BI__c11_atomic_signal_fence: {
3283     llvm::SyncScope::ID SSID;
3284     if (BuiltinID == Builtin::BI__atomic_signal_fence ||
3285         BuiltinID == Builtin::BI__c11_atomic_signal_fence)
3286       SSID = llvm::SyncScope::SingleThread;
3287     else
3288       SSID = llvm::SyncScope::System;
3289     Value *Order = EmitScalarExpr(E->getArg(0));
3290     if (isa<llvm::ConstantInt>(Order)) {
3291       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3292       switch (ord) {
3293       case 0:  // memory_order_relaxed
3294       default: // invalid order
3295         break;
3296       case 1:  // memory_order_consume
3297       case 2:  // memory_order_acquire
3298         Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
3299         break;
3300       case 3:  // memory_order_release
3301         Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
3302         break;
3303       case 4:  // memory_order_acq_rel
3304         Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
3305         break;
3306       case 5:  // memory_order_seq_cst
3307         Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
3308         break;
3309       }
3310       return RValue::get(nullptr);
3311     }
3312 
3313     llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
3314     AcquireBB = createBasicBlock("acquire", CurFn);
3315     ReleaseBB = createBasicBlock("release", CurFn);
3316     AcqRelBB = createBasicBlock("acqrel", CurFn);
3317     SeqCstBB = createBasicBlock("seqcst", CurFn);
3318     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3319 
3320     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3321     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
3322 
3323     Builder.SetInsertPoint(AcquireBB);
3324     Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
3325     Builder.CreateBr(ContBB);
3326     SI->addCase(Builder.getInt32(1), AcquireBB);
3327     SI->addCase(Builder.getInt32(2), AcquireBB);
3328 
3329     Builder.SetInsertPoint(ReleaseBB);
3330     Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
3331     Builder.CreateBr(ContBB);
3332     SI->addCase(Builder.getInt32(3), ReleaseBB);
3333 
3334     Builder.SetInsertPoint(AcqRelBB);
3335     Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
3336     Builder.CreateBr(ContBB);
3337     SI->addCase(Builder.getInt32(4), AcqRelBB);
3338 
3339     Builder.SetInsertPoint(SeqCstBB);
3340     Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
3341     Builder.CreateBr(ContBB);
3342     SI->addCase(Builder.getInt32(5), SeqCstBB);
3343 
3344     Builder.SetInsertPoint(ContBB);
3345     return RValue::get(nullptr);
3346   }
3347 
3348   case Builtin::BI__builtin_signbit:
3349   case Builtin::BI__builtin_signbitf:
3350   case Builtin::BI__builtin_signbitl: {
3351     return RValue::get(
3352         Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
3353                            ConvertType(E->getType())));
3354   }
3355   case Builtin::BI__warn_memset_zero_len:
3356     return RValue::getIgnored();
3357   case Builtin::BI__annotation: {
3358     // Re-encode each wide string to UTF8 and make an MDString.
3359     SmallVector<Metadata *, 1> Strings;
3360     for (const Expr *Arg : E->arguments()) {
3361       const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
3362       assert(Str->getCharByteWidth() == 2);
3363       StringRef WideBytes = Str->getBytes();
3364       std::string StrUtf8;
3365       if (!convertUTF16ToUTF8String(
3366               makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
3367         CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
3368         continue;
3369       }
3370       Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
3371     }
3372 
3373     // Build and MDTuple of MDStrings and emit the intrinsic call.
3374     llvm::Function *F =
3375         CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
3376     MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
3377     Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
3378     return RValue::getIgnored();
3379   }
3380   case Builtin::BI__builtin_annotation: {
3381     llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
3382     llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
3383                                       AnnVal->getType());
3384 
3385     // Get the annotation string, go through casts. Sema requires this to be a
3386     // non-wide string literal, potentially casted, so the cast<> is safe.
3387     const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
3388     StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
3389     return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc()));
3390   }
3391   case Builtin::BI__builtin_addcb:
3392   case Builtin::BI__builtin_addcs:
3393   case Builtin::BI__builtin_addc:
3394   case Builtin::BI__builtin_addcl:
3395   case Builtin::BI__builtin_addcll:
3396   case Builtin::BI__builtin_subcb:
3397   case Builtin::BI__builtin_subcs:
3398   case Builtin::BI__builtin_subc:
3399   case Builtin::BI__builtin_subcl:
3400   case Builtin::BI__builtin_subcll: {
3401 
3402     // We translate all of these builtins from expressions of the form:
3403     //   int x = ..., y = ..., carryin = ..., carryout, result;
3404     //   result = __builtin_addc(x, y, carryin, &carryout);
3405     //
3406     // to LLVM IR of the form:
3407     //
3408     //   %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
3409     //   %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
3410     //   %carry1 = extractvalue {i32, i1} %tmp1, 1
3411     //   %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
3412     //                                                       i32 %carryin)
3413     //   %result = extractvalue {i32, i1} %tmp2, 0
3414     //   %carry2 = extractvalue {i32, i1} %tmp2, 1
3415     //   %tmp3 = or i1 %carry1, %carry2
3416     //   %tmp4 = zext i1 %tmp3 to i32
3417     //   store i32 %tmp4, i32* %carryout
3418 
3419     // Scalarize our inputs.
3420     llvm::Value *X = EmitScalarExpr(E->getArg(0));
3421     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
3422     llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
3423     Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
3424 
3425     // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
3426     llvm::Intrinsic::ID IntrinsicId;
3427     switch (BuiltinID) {
3428     default: llvm_unreachable("Unknown multiprecision builtin id.");
3429     case Builtin::BI__builtin_addcb:
3430     case Builtin::BI__builtin_addcs:
3431     case Builtin::BI__builtin_addc:
3432     case Builtin::BI__builtin_addcl:
3433     case Builtin::BI__builtin_addcll:
3434       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
3435       break;
3436     case Builtin::BI__builtin_subcb:
3437     case Builtin::BI__builtin_subcs:
3438     case Builtin::BI__builtin_subc:
3439     case Builtin::BI__builtin_subcl:
3440     case Builtin::BI__builtin_subcll:
3441       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
3442       break;
3443     }
3444 
3445     // Construct our resulting LLVM IR expression.
3446     llvm::Value *Carry1;
3447     llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
3448                                               X, Y, Carry1);
3449     llvm::Value *Carry2;
3450     llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
3451                                               Sum1, Carryin, Carry2);
3452     llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
3453                                                X->getType());
3454     Builder.CreateStore(CarryOut, CarryOutPtr);
3455     return RValue::get(Sum2);
3456   }
3457 
3458   case Builtin::BI__builtin_add_overflow:
3459   case Builtin::BI__builtin_sub_overflow:
3460   case Builtin::BI__builtin_mul_overflow: {
3461     const clang::Expr *LeftArg = E->getArg(0);
3462     const clang::Expr *RightArg = E->getArg(1);
3463     const clang::Expr *ResultArg = E->getArg(2);
3464 
3465     clang::QualType ResultQTy =
3466         ResultArg->getType()->castAs<PointerType>()->getPointeeType();
3467 
3468     WidthAndSignedness LeftInfo =
3469         getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
3470     WidthAndSignedness RightInfo =
3471         getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
3472     WidthAndSignedness ResultInfo =
3473         getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
3474 
3475     // Handle mixed-sign multiplication as a special case, because adding
3476     // runtime or backend support for our generic irgen would be too expensive.
3477     if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
3478       return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
3479                                           RightInfo, ResultArg, ResultQTy,
3480                                           ResultInfo);
3481 
3482     WidthAndSignedness EncompassingInfo =
3483         EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
3484 
3485     llvm::Type *EncompassingLLVMTy =
3486         llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
3487 
3488     llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
3489 
3490     llvm::Intrinsic::ID IntrinsicId;
3491     switch (BuiltinID) {
3492     default:
3493       llvm_unreachable("Unknown overflow builtin id.");
3494     case Builtin::BI__builtin_add_overflow:
3495       IntrinsicId = EncompassingInfo.Signed
3496                         ? llvm::Intrinsic::sadd_with_overflow
3497                         : llvm::Intrinsic::uadd_with_overflow;
3498       break;
3499     case Builtin::BI__builtin_sub_overflow:
3500       IntrinsicId = EncompassingInfo.Signed
3501                         ? llvm::Intrinsic::ssub_with_overflow
3502                         : llvm::Intrinsic::usub_with_overflow;
3503       break;
3504     case Builtin::BI__builtin_mul_overflow:
3505       IntrinsicId = EncompassingInfo.Signed
3506                         ? llvm::Intrinsic::smul_with_overflow
3507                         : llvm::Intrinsic::umul_with_overflow;
3508       break;
3509     }
3510 
3511     llvm::Value *Left = EmitScalarExpr(LeftArg);
3512     llvm::Value *Right = EmitScalarExpr(RightArg);
3513     Address ResultPtr = EmitPointerWithAlignment(ResultArg);
3514 
3515     // Extend each operand to the encompassing type.
3516     Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
3517     Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
3518 
3519     // Perform the operation on the extended values.
3520     llvm::Value *Overflow, *Result;
3521     Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
3522 
3523     if (EncompassingInfo.Width > ResultInfo.Width) {
3524       // The encompassing type is wider than the result type, so we need to
3525       // truncate it.
3526       llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
3527 
3528       // To see if the truncation caused an overflow, we will extend
3529       // the result and then compare it to the original result.
3530       llvm::Value *ResultTruncExt = Builder.CreateIntCast(
3531           ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
3532       llvm::Value *TruncationOverflow =
3533           Builder.CreateICmpNE(Result, ResultTruncExt);
3534 
3535       Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
3536       Result = ResultTrunc;
3537     }
3538 
3539     // Finally, store the result using the pointer.
3540     bool isVolatile =
3541       ResultArg->getType()->getPointeeType().isVolatileQualified();
3542     Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
3543 
3544     return RValue::get(Overflow);
3545   }
3546 
3547   case Builtin::BI__builtin_uadd_overflow:
3548   case Builtin::BI__builtin_uaddl_overflow:
3549   case Builtin::BI__builtin_uaddll_overflow:
3550   case Builtin::BI__builtin_usub_overflow:
3551   case Builtin::BI__builtin_usubl_overflow:
3552   case Builtin::BI__builtin_usubll_overflow:
3553   case Builtin::BI__builtin_umul_overflow:
3554   case Builtin::BI__builtin_umull_overflow:
3555   case Builtin::BI__builtin_umulll_overflow:
3556   case Builtin::BI__builtin_sadd_overflow:
3557   case Builtin::BI__builtin_saddl_overflow:
3558   case Builtin::BI__builtin_saddll_overflow:
3559   case Builtin::BI__builtin_ssub_overflow:
3560   case Builtin::BI__builtin_ssubl_overflow:
3561   case Builtin::BI__builtin_ssubll_overflow:
3562   case Builtin::BI__builtin_smul_overflow:
3563   case Builtin::BI__builtin_smull_overflow:
3564   case Builtin::BI__builtin_smulll_overflow: {
3565 
3566     // We translate all of these builtins directly to the relevant llvm IR node.
3567 
3568     // Scalarize our inputs.
3569     llvm::Value *X = EmitScalarExpr(E->getArg(0));
3570     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
3571     Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
3572 
3573     // Decide which of the overflow intrinsics we are lowering to:
3574     llvm::Intrinsic::ID IntrinsicId;
3575     switch (BuiltinID) {
3576     default: llvm_unreachable("Unknown overflow builtin id.");
3577     case Builtin::BI__builtin_uadd_overflow:
3578     case Builtin::BI__builtin_uaddl_overflow:
3579     case Builtin::BI__builtin_uaddll_overflow:
3580       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
3581       break;
3582     case Builtin::BI__builtin_usub_overflow:
3583     case Builtin::BI__builtin_usubl_overflow:
3584     case Builtin::BI__builtin_usubll_overflow:
3585       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
3586       break;
3587     case Builtin::BI__builtin_umul_overflow:
3588     case Builtin::BI__builtin_umull_overflow:
3589     case Builtin::BI__builtin_umulll_overflow:
3590       IntrinsicId = llvm::Intrinsic::umul_with_overflow;
3591       break;
3592     case Builtin::BI__builtin_sadd_overflow:
3593     case Builtin::BI__builtin_saddl_overflow:
3594     case Builtin::BI__builtin_saddll_overflow:
3595       IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
3596       break;
3597     case Builtin::BI__builtin_ssub_overflow:
3598     case Builtin::BI__builtin_ssubl_overflow:
3599     case Builtin::BI__builtin_ssubll_overflow:
3600       IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
3601       break;
3602     case Builtin::BI__builtin_smul_overflow:
3603     case Builtin::BI__builtin_smull_overflow:
3604     case Builtin::BI__builtin_smulll_overflow:
3605       IntrinsicId = llvm::Intrinsic::smul_with_overflow;
3606       break;
3607     }
3608 
3609 
3610     llvm::Value *Carry;
3611     llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
3612     Builder.CreateStore(Sum, SumOutPtr);
3613 
3614     return RValue::get(Carry);
3615   }
3616   case Builtin::BI__builtin_addressof:
3617     return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this));
3618   case Builtin::BI__builtin_operator_new:
3619     return EmitBuiltinNewDeleteCall(
3620         E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false);
3621   case Builtin::BI__builtin_operator_delete:
3622     return EmitBuiltinNewDeleteCall(
3623         E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true);
3624 
3625   case Builtin::BI__builtin_is_aligned:
3626     return EmitBuiltinIsAligned(E);
3627   case Builtin::BI__builtin_align_up:
3628     return EmitBuiltinAlignTo(E, true);
3629   case Builtin::BI__builtin_align_down:
3630     return EmitBuiltinAlignTo(E, false);
3631 
3632   case Builtin::BI__noop:
3633     // __noop always evaluates to an integer literal zero.
3634     return RValue::get(ConstantInt::get(IntTy, 0));
3635   case Builtin::BI__builtin_call_with_static_chain: {
3636     const CallExpr *Call = cast<CallExpr>(E->getArg(0));
3637     const Expr *Chain = E->getArg(1);
3638     return EmitCall(Call->getCallee()->getType(),
3639                     EmitCallee(Call->getCallee()), Call, ReturnValue,
3640                     EmitScalarExpr(Chain));
3641   }
3642   case Builtin::BI_InterlockedExchange8:
3643   case Builtin::BI_InterlockedExchange16:
3644   case Builtin::BI_InterlockedExchange:
3645   case Builtin::BI_InterlockedExchangePointer:
3646     return RValue::get(
3647         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
3648   case Builtin::BI_InterlockedCompareExchangePointer:
3649   case Builtin::BI_InterlockedCompareExchangePointer_nf: {
3650     llvm::Type *RTy;
3651     llvm::IntegerType *IntType =
3652       IntegerType::get(getLLVMContext(),
3653                        getContext().getTypeSize(E->getType()));
3654     llvm::Type *IntPtrType = IntType->getPointerTo();
3655 
3656     llvm::Value *Destination =
3657       Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
3658 
3659     llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
3660     RTy = Exchange->getType();
3661     Exchange = Builder.CreatePtrToInt(Exchange, IntType);
3662 
3663     llvm::Value *Comparand =
3664       Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
3665 
3666     auto Ordering =
3667       BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ?
3668       AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent;
3669 
3670     auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
3671                                               Ordering, Ordering);
3672     Result->setVolatile(true);
3673 
3674     return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
3675                                                                          0),
3676                                               RTy));
3677   }
3678   case Builtin::BI_InterlockedCompareExchange8:
3679   case Builtin::BI_InterlockedCompareExchange16:
3680   case Builtin::BI_InterlockedCompareExchange:
3681   case Builtin::BI_InterlockedCompareExchange64:
3682     return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E));
3683   case Builtin::BI_InterlockedIncrement16:
3684   case Builtin::BI_InterlockedIncrement:
3685     return RValue::get(
3686         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
3687   case Builtin::BI_InterlockedDecrement16:
3688   case Builtin::BI_InterlockedDecrement:
3689     return RValue::get(
3690         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
3691   case Builtin::BI_InterlockedAnd8:
3692   case Builtin::BI_InterlockedAnd16:
3693   case Builtin::BI_InterlockedAnd:
3694     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
3695   case Builtin::BI_InterlockedExchangeAdd8:
3696   case Builtin::BI_InterlockedExchangeAdd16:
3697   case Builtin::BI_InterlockedExchangeAdd:
3698     return RValue::get(
3699         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
3700   case Builtin::BI_InterlockedExchangeSub8:
3701   case Builtin::BI_InterlockedExchangeSub16:
3702   case Builtin::BI_InterlockedExchangeSub:
3703     return RValue::get(
3704         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
3705   case Builtin::BI_InterlockedOr8:
3706   case Builtin::BI_InterlockedOr16:
3707   case Builtin::BI_InterlockedOr:
3708     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
3709   case Builtin::BI_InterlockedXor8:
3710   case Builtin::BI_InterlockedXor16:
3711   case Builtin::BI_InterlockedXor:
3712     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
3713 
3714   case Builtin::BI_bittest64:
3715   case Builtin::BI_bittest:
3716   case Builtin::BI_bittestandcomplement64:
3717   case Builtin::BI_bittestandcomplement:
3718   case Builtin::BI_bittestandreset64:
3719   case Builtin::BI_bittestandreset:
3720   case Builtin::BI_bittestandset64:
3721   case Builtin::BI_bittestandset:
3722   case Builtin::BI_interlockedbittestandreset:
3723   case Builtin::BI_interlockedbittestandreset64:
3724   case Builtin::BI_interlockedbittestandset64:
3725   case Builtin::BI_interlockedbittestandset:
3726   case Builtin::BI_interlockedbittestandset_acq:
3727   case Builtin::BI_interlockedbittestandset_rel:
3728   case Builtin::BI_interlockedbittestandset_nf:
3729   case Builtin::BI_interlockedbittestandreset_acq:
3730   case Builtin::BI_interlockedbittestandreset_rel:
3731   case Builtin::BI_interlockedbittestandreset_nf:
3732     return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E));
3733 
3734     // These builtins exist to emit regular volatile loads and stores not
3735     // affected by the -fms-volatile setting.
3736   case Builtin::BI__iso_volatile_load8:
3737   case Builtin::BI__iso_volatile_load16:
3738   case Builtin::BI__iso_volatile_load32:
3739   case Builtin::BI__iso_volatile_load64:
3740     return RValue::get(EmitISOVolatileLoad(*this, E));
3741   case Builtin::BI__iso_volatile_store8:
3742   case Builtin::BI__iso_volatile_store16:
3743   case Builtin::BI__iso_volatile_store32:
3744   case Builtin::BI__iso_volatile_store64:
3745     return RValue::get(EmitISOVolatileStore(*this, E));
3746 
3747   case Builtin::BI__exception_code:
3748   case Builtin::BI_exception_code:
3749     return RValue::get(EmitSEHExceptionCode());
3750   case Builtin::BI__exception_info:
3751   case Builtin::BI_exception_info:
3752     return RValue::get(EmitSEHExceptionInfo());
3753   case Builtin::BI__abnormal_termination:
3754   case Builtin::BI_abnormal_termination:
3755     return RValue::get(EmitSEHAbnormalTermination());
3756   case Builtin::BI_setjmpex:
3757     if (getTarget().getTriple().isOSMSVCRT())
3758       return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
3759     break;
3760   case Builtin::BI_setjmp:
3761     if (getTarget().getTriple().isOSMSVCRT()) {
3762       if (getTarget().getTriple().getArch() == llvm::Triple::x86)
3763         return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E);
3764       else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64)
3765         return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
3766       return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E);
3767     }
3768     break;
3769 
3770   case Builtin::BI__GetExceptionInfo: {
3771     if (llvm::GlobalVariable *GV =
3772             CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
3773       return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
3774     break;
3775   }
3776 
3777   case Builtin::BI__fastfail:
3778     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
3779 
3780   case Builtin::BI__builtin_coro_size: {
3781     auto & Context = getContext();
3782     auto SizeTy = Context.getSizeType();
3783     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3784     Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T);
3785     return RValue::get(Builder.CreateCall(F));
3786   }
3787 
3788   case Builtin::BI__builtin_coro_id:
3789     return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
3790   case Builtin::BI__builtin_coro_promise:
3791     return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
3792   case Builtin::BI__builtin_coro_resume:
3793     return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
3794   case Builtin::BI__builtin_coro_frame:
3795     return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
3796   case Builtin::BI__builtin_coro_noop:
3797     return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop);
3798   case Builtin::BI__builtin_coro_free:
3799     return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
3800   case Builtin::BI__builtin_coro_destroy:
3801     return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
3802   case Builtin::BI__builtin_coro_done:
3803     return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
3804   case Builtin::BI__builtin_coro_alloc:
3805     return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
3806   case Builtin::BI__builtin_coro_begin:
3807     return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
3808   case Builtin::BI__builtin_coro_end:
3809     return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
3810   case Builtin::BI__builtin_coro_suspend:
3811     return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
3812   case Builtin::BI__builtin_coro_param:
3813     return EmitCoroutineIntrinsic(E, Intrinsic::coro_param);
3814 
3815   // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
3816   case Builtin::BIread_pipe:
3817   case Builtin::BIwrite_pipe: {
3818     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
3819           *Arg1 = EmitScalarExpr(E->getArg(1));
3820     CGOpenCLRuntime OpenCLRT(CGM);
3821     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3822     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3823 
3824     // Type of the generic packet parameter.
3825     unsigned GenericAS =
3826         getContext().getTargetAddressSpace(LangAS::opencl_generic);
3827     llvm::Type *I8PTy = llvm::PointerType::get(
3828         llvm::Type::getInt8Ty(getLLVMContext()), GenericAS);
3829 
3830     // Testing which overloaded version we should generate the call for.
3831     if (2U == E->getNumArgs()) {
3832       const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
3833                                                              : "__write_pipe_2";
3834       // Creating a generic function type to be able to call with any builtin or
3835       // user defined type.
3836       llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
3837       llvm::FunctionType *FTy = llvm::FunctionType::get(
3838           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3839       Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
3840       return RValue::get(
3841           Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3842                              {Arg0, BCast, PacketSize, PacketAlign}));
3843     } else {
3844       assert(4 == E->getNumArgs() &&
3845              "Illegal number of parameters to pipe function");
3846       const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
3847                                                              : "__write_pipe_4";
3848 
3849       llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
3850                               Int32Ty, Int32Ty};
3851       Value *Arg2 = EmitScalarExpr(E->getArg(2)),
3852             *Arg3 = EmitScalarExpr(E->getArg(3));
3853       llvm::FunctionType *FTy = llvm::FunctionType::get(
3854           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3855       Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
3856       // We know the third argument is an integer type, but we may need to cast
3857       // it to i32.
3858       if (Arg2->getType() != Int32Ty)
3859         Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
3860       return RValue::get(Builder.CreateCall(
3861           CGM.CreateRuntimeFunction(FTy, Name),
3862           {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
3863     }
3864   }
3865   // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
3866   // functions
3867   case Builtin::BIreserve_read_pipe:
3868   case Builtin::BIreserve_write_pipe:
3869   case Builtin::BIwork_group_reserve_read_pipe:
3870   case Builtin::BIwork_group_reserve_write_pipe:
3871   case Builtin::BIsub_group_reserve_read_pipe:
3872   case Builtin::BIsub_group_reserve_write_pipe: {
3873     // Composing the mangled name for the function.
3874     const char *Name;
3875     if (BuiltinID == Builtin::BIreserve_read_pipe)
3876       Name = "__reserve_read_pipe";
3877     else if (BuiltinID == Builtin::BIreserve_write_pipe)
3878       Name = "__reserve_write_pipe";
3879     else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
3880       Name = "__work_group_reserve_read_pipe";
3881     else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
3882       Name = "__work_group_reserve_write_pipe";
3883     else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
3884       Name = "__sub_group_reserve_read_pipe";
3885     else
3886       Name = "__sub_group_reserve_write_pipe";
3887 
3888     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
3889           *Arg1 = EmitScalarExpr(E->getArg(1));
3890     llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
3891     CGOpenCLRuntime OpenCLRT(CGM);
3892     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3893     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3894 
3895     // Building the generic function prototype.
3896     llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
3897     llvm::FunctionType *FTy = llvm::FunctionType::get(
3898         ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3899     // We know the second argument is an integer type, but we may need to cast
3900     // it to i32.
3901     if (Arg1->getType() != Int32Ty)
3902       Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
3903     return RValue::get(
3904         Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3905                            {Arg0, Arg1, PacketSize, PacketAlign}));
3906   }
3907   // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
3908   // functions
3909   case Builtin::BIcommit_read_pipe:
3910   case Builtin::BIcommit_write_pipe:
3911   case Builtin::BIwork_group_commit_read_pipe:
3912   case Builtin::BIwork_group_commit_write_pipe:
3913   case Builtin::BIsub_group_commit_read_pipe:
3914   case Builtin::BIsub_group_commit_write_pipe: {
3915     const char *Name;
3916     if (BuiltinID == Builtin::BIcommit_read_pipe)
3917       Name = "__commit_read_pipe";
3918     else if (BuiltinID == Builtin::BIcommit_write_pipe)
3919       Name = "__commit_write_pipe";
3920     else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
3921       Name = "__work_group_commit_read_pipe";
3922     else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
3923       Name = "__work_group_commit_write_pipe";
3924     else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
3925       Name = "__sub_group_commit_read_pipe";
3926     else
3927       Name = "__sub_group_commit_write_pipe";
3928 
3929     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
3930           *Arg1 = EmitScalarExpr(E->getArg(1));
3931     CGOpenCLRuntime OpenCLRT(CGM);
3932     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3933     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3934 
3935     // Building the generic function prototype.
3936     llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
3937     llvm::FunctionType *FTy =
3938         llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
3939                                 llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3940 
3941     return RValue::get(
3942         Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3943                            {Arg0, Arg1, PacketSize, PacketAlign}));
3944   }
3945   // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
3946   case Builtin::BIget_pipe_num_packets:
3947   case Builtin::BIget_pipe_max_packets: {
3948     const char *BaseName;
3949     const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>();
3950     if (BuiltinID == Builtin::BIget_pipe_num_packets)
3951       BaseName = "__get_pipe_num_packets";
3952     else
3953       BaseName = "__get_pipe_max_packets";
3954     std::string Name = std::string(BaseName) +
3955                        std::string(PipeTy->isReadOnly() ? "_ro" : "_wo");
3956 
3957     // Building the generic function prototype.
3958     Value *Arg0 = EmitScalarExpr(E->getArg(0));
3959     CGOpenCLRuntime OpenCLRT(CGM);
3960     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3961     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3962     llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
3963     llvm::FunctionType *FTy = llvm::FunctionType::get(
3964         Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3965 
3966     return RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3967                                           {Arg0, PacketSize, PacketAlign}));
3968   }
3969 
3970   // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
3971   case Builtin::BIto_global:
3972   case Builtin::BIto_local:
3973   case Builtin::BIto_private: {
3974     auto Arg0 = EmitScalarExpr(E->getArg(0));
3975     auto NewArgT = llvm::PointerType::get(Int8Ty,
3976       CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
3977     auto NewRetT = llvm::PointerType::get(Int8Ty,
3978       CGM.getContext().getTargetAddressSpace(
3979         E->getType()->getPointeeType().getAddressSpace()));
3980     auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
3981     llvm::Value *NewArg;
3982     if (Arg0->getType()->getPointerAddressSpace() !=
3983         NewArgT->getPointerAddressSpace())
3984       NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
3985     else
3986       NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
3987     auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
3988     auto NewCall =
3989         Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
3990     return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
3991       ConvertType(E->getType())));
3992   }
3993 
3994   // OpenCL v2.0, s6.13.17 - Enqueue kernel function.
3995   // It contains four different overload formats specified in Table 6.13.17.1.
3996   case Builtin::BIenqueue_kernel: {
3997     StringRef Name; // Generated function call name
3998     unsigned NumArgs = E->getNumArgs();
3999 
4000     llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
4001     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4002         getContext().getTargetAddressSpace(LangAS::opencl_generic));
4003 
4004     llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
4005     llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
4006     LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
4007     llvm::Value *Range = NDRangeL.getAddress(*this).getPointer();
4008     llvm::Type *RangeTy = NDRangeL.getAddress(*this).getType();
4009 
4010     if (NumArgs == 4) {
4011       // The most basic form of the call with parameters:
4012       // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
4013       Name = "__enqueue_kernel_basic";
4014       llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
4015                               GenericVoidPtrTy};
4016       llvm::FunctionType *FTy = llvm::FunctionType::get(
4017           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4018 
4019       auto Info =
4020           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
4021       llvm::Value *Kernel =
4022           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4023       llvm::Value *Block =
4024           Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4025 
4026       AttrBuilder B;
4027       B.addByValAttr(NDRangeL.getAddress(*this).getElementType());
4028       llvm::AttributeList ByValAttrSet =
4029           llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
4030 
4031       auto RTCall =
4032           Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
4033                              {Queue, Flags, Range, Kernel, Block});
4034       RTCall->setAttributes(ByValAttrSet);
4035       return RValue::get(RTCall);
4036     }
4037     assert(NumArgs >= 5 && "Invalid enqueue_kernel signature");
4038 
4039     // Create a temporary array to hold the sizes of local pointer arguments
4040     // for the block. \p First is the position of the first size argument.
4041     auto CreateArrayForSizeVar = [=](unsigned First)
4042         -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> {
4043       llvm::APInt ArraySize(32, NumArgs - First);
4044       QualType SizeArrayTy = getContext().getConstantArrayType(
4045           getContext().getSizeType(), ArraySize, nullptr, ArrayType::Normal,
4046           /*IndexTypeQuals=*/0);
4047       auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes");
4048       llvm::Value *TmpPtr = Tmp.getPointer();
4049       llvm::Value *TmpSize = EmitLifetimeStart(
4050           CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr);
4051       llvm::Value *ElemPtr;
4052       // Each of the following arguments specifies the size of the corresponding
4053       // argument passed to the enqueued block.
4054       auto *Zero = llvm::ConstantInt::get(IntTy, 0);
4055       for (unsigned I = First; I < NumArgs; ++I) {
4056         auto *Index = llvm::ConstantInt::get(IntTy, I - First);
4057         auto *GEP = Builder.CreateGEP(TmpPtr, {Zero, Index});
4058         if (I == First)
4059           ElemPtr = GEP;
4060         auto *V =
4061             Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
4062         Builder.CreateAlignedStore(
4063             V, GEP, CGM.getDataLayout().getPrefTypeAlign(SizeTy));
4064       }
4065       return std::tie(ElemPtr, TmpSize, TmpPtr);
4066     };
4067 
4068     // Could have events and/or varargs.
4069     if (E->getArg(3)->getType()->isBlockPointerType()) {
4070       // No events passed, but has variadic arguments.
4071       Name = "__enqueue_kernel_varargs";
4072       auto Info =
4073           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
4074       llvm::Value *Kernel =
4075           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4076       auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4077       llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
4078       std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4);
4079 
4080       // Create a vector of the arguments, as well as a constant value to
4081       // express to the runtime the number of variadic arguments.
4082       llvm::Value *const Args[] = {Queue,  Flags,
4083                                    Range,  Kernel,
4084                                    Block,  ConstantInt::get(IntTy, NumArgs - 4),
4085                                    ElemPtr};
4086       llvm::Type *const ArgTys[] = {
4087           QueueTy,          IntTy, RangeTy,           GenericVoidPtrTy,
4088           GenericVoidPtrTy, IntTy, ElemPtr->getType()};
4089 
4090       llvm::FunctionType *FTy = llvm::FunctionType::get(Int32Ty, ArgTys, false);
4091       auto Call = RValue::get(
4092           Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), Args));
4093       if (TmpSize)
4094         EmitLifetimeEnd(TmpSize, TmpPtr);
4095       return Call;
4096     }
4097     // Any calls now have event arguments passed.
4098     if (NumArgs >= 7) {
4099       llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy);
4100       llvm::PointerType *EventPtrTy = EventTy->getPointerTo(
4101           CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
4102 
4103       llvm::Value *NumEvents =
4104           Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
4105 
4106       // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments
4107       // to be a null pointer constant (including `0` literal), we can take it
4108       // into account and emit null pointer directly.
4109       llvm::Value *EventWaitList = nullptr;
4110       if (E->getArg(4)->isNullPointerConstant(
4111               getContext(), Expr::NPC_ValueDependentIsNotNull)) {
4112         EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy);
4113       } else {
4114         EventWaitList = E->getArg(4)->getType()->isArrayType()
4115                         ? EmitArrayToPointerDecay(E->getArg(4)).getPointer()
4116                         : EmitScalarExpr(E->getArg(4));
4117         // Convert to generic address space.
4118         EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy);
4119       }
4120       llvm::Value *EventRet = nullptr;
4121       if (E->getArg(5)->isNullPointerConstant(
4122               getContext(), Expr::NPC_ValueDependentIsNotNull)) {
4123         EventRet = llvm::ConstantPointerNull::get(EventPtrTy);
4124       } else {
4125         EventRet =
4126             Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy);
4127       }
4128 
4129       auto Info =
4130           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
4131       llvm::Value *Kernel =
4132           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4133       llvm::Value *Block =
4134           Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4135 
4136       std::vector<llvm::Type *> ArgTys = {
4137           QueueTy,    Int32Ty,    RangeTy,          Int32Ty,
4138           EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy};
4139 
4140       std::vector<llvm::Value *> Args = {Queue,     Flags,         Range,
4141                                          NumEvents, EventWaitList, EventRet,
4142                                          Kernel,    Block};
4143 
4144       if (NumArgs == 7) {
4145         // Has events but no variadics.
4146         Name = "__enqueue_kernel_basic_events";
4147         llvm::FunctionType *FTy = llvm::FunctionType::get(
4148             Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4149         return RValue::get(
4150             Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
4151                                llvm::ArrayRef<llvm::Value *>(Args)));
4152       }
4153       // Has event info and variadics
4154       // Pass the number of variadics to the runtime function too.
4155       Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
4156       ArgTys.push_back(Int32Ty);
4157       Name = "__enqueue_kernel_events_varargs";
4158 
4159       llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
4160       std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7);
4161       Args.push_back(ElemPtr);
4162       ArgTys.push_back(ElemPtr->getType());
4163 
4164       llvm::FunctionType *FTy = llvm::FunctionType::get(
4165           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4166       auto Call =
4167           RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
4168                                          llvm::ArrayRef<llvm::Value *>(Args)));
4169       if (TmpSize)
4170         EmitLifetimeEnd(TmpSize, TmpPtr);
4171       return Call;
4172     }
4173     LLVM_FALLTHROUGH;
4174   }
4175   // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
4176   // parameter.
4177   case Builtin::BIget_kernel_work_group_size: {
4178     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4179         getContext().getTargetAddressSpace(LangAS::opencl_generic));
4180     auto Info =
4181         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
4182     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4183     Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4184     return RValue::get(Builder.CreateCall(
4185         CGM.CreateRuntimeFunction(
4186             llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
4187                                     false),
4188             "__get_kernel_work_group_size_impl"),
4189         {Kernel, Arg}));
4190   }
4191   case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
4192     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4193         getContext().getTargetAddressSpace(LangAS::opencl_generic));
4194     auto Info =
4195         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
4196     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4197     Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4198     return RValue::get(Builder.CreateCall(
4199         CGM.CreateRuntimeFunction(
4200             llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
4201                                     false),
4202             "__get_kernel_preferred_work_group_size_multiple_impl"),
4203         {Kernel, Arg}));
4204   }
4205   case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
4206   case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
4207     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4208         getContext().getTargetAddressSpace(LangAS::opencl_generic));
4209     LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
4210     llvm::Value *NDRange = NDRangeL.getAddress(*this).getPointer();
4211     auto Info =
4212         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
4213     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4214     Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4215     const char *Name =
4216         BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
4217             ? "__get_kernel_max_sub_group_size_for_ndrange_impl"
4218             : "__get_kernel_sub_group_count_for_ndrange_impl";
4219     return RValue::get(Builder.CreateCall(
4220         CGM.CreateRuntimeFunction(
4221             llvm::FunctionType::get(
4222                 IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
4223                 false),
4224             Name),
4225         {NDRange, Kernel, Block}));
4226   }
4227 
4228   case Builtin::BI__builtin_store_half:
4229   case Builtin::BI__builtin_store_halff: {
4230     Value *Val = EmitScalarExpr(E->getArg(0));
4231     Address Address = EmitPointerWithAlignment(E->getArg(1));
4232     Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
4233     return RValue::get(Builder.CreateStore(HalfVal, Address));
4234   }
4235   case Builtin::BI__builtin_load_half: {
4236     Address Address = EmitPointerWithAlignment(E->getArg(0));
4237     Value *HalfVal = Builder.CreateLoad(Address);
4238     return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
4239   }
4240   case Builtin::BI__builtin_load_halff: {
4241     Address Address = EmitPointerWithAlignment(E->getArg(0));
4242     Value *HalfVal = Builder.CreateLoad(Address);
4243     return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
4244   }
4245   case Builtin::BIprintf:
4246     if (getTarget().getTriple().isNVPTX())
4247       return EmitNVPTXDevicePrintfCallExpr(E, ReturnValue);
4248     if (getTarget().getTriple().getArch() == Triple::amdgcn &&
4249         getLangOpts().HIP)
4250       return EmitAMDGPUDevicePrintfCallExpr(E, ReturnValue);
4251     break;
4252   case Builtin::BI__builtin_canonicalize:
4253   case Builtin::BI__builtin_canonicalizef:
4254   case Builtin::BI__builtin_canonicalizef16:
4255   case Builtin::BI__builtin_canonicalizel:
4256     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize));
4257 
4258   case Builtin::BI__builtin_thread_pointer: {
4259     if (!getContext().getTargetInfo().isTLSSupported())
4260       CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
4261     // Fall through - it's already mapped to the intrinsic by GCCBuiltin.
4262     break;
4263   }
4264   case Builtin::BI__builtin_os_log_format:
4265     return emitBuiltinOSLogFormat(*E);
4266 
4267   case Builtin::BI__xray_customevent: {
4268     if (!ShouldXRayInstrumentFunction())
4269       return RValue::getIgnored();
4270 
4271     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
4272             XRayInstrKind::Custom))
4273       return RValue::getIgnored();
4274 
4275     if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
4276       if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
4277         return RValue::getIgnored();
4278 
4279     Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
4280     auto FTy = F->getFunctionType();
4281     auto Arg0 = E->getArg(0);
4282     auto Arg0Val = EmitScalarExpr(Arg0);
4283     auto Arg0Ty = Arg0->getType();
4284     auto PTy0 = FTy->getParamType(0);
4285     if (PTy0 != Arg0Val->getType()) {
4286       if (Arg0Ty->isArrayType())
4287         Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer();
4288       else
4289         Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
4290     }
4291     auto Arg1 = EmitScalarExpr(E->getArg(1));
4292     auto PTy1 = FTy->getParamType(1);
4293     if (PTy1 != Arg1->getType())
4294       Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
4295     return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
4296   }
4297 
4298   case Builtin::BI__xray_typedevent: {
4299     // TODO: There should be a way to always emit events even if the current
4300     // function is not instrumented. Losing events in a stream can cripple
4301     // a trace.
4302     if (!ShouldXRayInstrumentFunction())
4303       return RValue::getIgnored();
4304 
4305     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
4306             XRayInstrKind::Typed))
4307       return RValue::getIgnored();
4308 
4309     if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
4310       if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents())
4311         return RValue::getIgnored();
4312 
4313     Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent);
4314     auto FTy = F->getFunctionType();
4315     auto Arg0 = EmitScalarExpr(E->getArg(0));
4316     auto PTy0 = FTy->getParamType(0);
4317     if (PTy0 != Arg0->getType())
4318       Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0);
4319     auto Arg1 = E->getArg(1);
4320     auto Arg1Val = EmitScalarExpr(Arg1);
4321     auto Arg1Ty = Arg1->getType();
4322     auto PTy1 = FTy->getParamType(1);
4323     if (PTy1 != Arg1Val->getType()) {
4324       if (Arg1Ty->isArrayType())
4325         Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer();
4326       else
4327         Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1);
4328     }
4329     auto Arg2 = EmitScalarExpr(E->getArg(2));
4330     auto PTy2 = FTy->getParamType(2);
4331     if (PTy2 != Arg2->getType())
4332       Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2);
4333     return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2}));
4334   }
4335 
4336   case Builtin::BI__builtin_ms_va_start:
4337   case Builtin::BI__builtin_ms_va_end:
4338     return RValue::get(
4339         EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
4340                        BuiltinID == Builtin::BI__builtin_ms_va_start));
4341 
4342   case Builtin::BI__builtin_ms_va_copy: {
4343     // Lower this manually. We can't reliably determine whether or not any
4344     // given va_copy() is for a Win64 va_list from the calling convention
4345     // alone, because it's legal to do this from a System V ABI function.
4346     // With opaque pointer types, we won't have enough information in LLVM
4347     // IR to determine this from the argument types, either. Best to do it
4348     // now, while we have enough information.
4349     Address DestAddr = EmitMSVAListRef(E->getArg(0));
4350     Address SrcAddr = EmitMSVAListRef(E->getArg(1));
4351 
4352     llvm::Type *BPP = Int8PtrPtrTy;
4353 
4354     DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
4355                        DestAddr.getAlignment());
4356     SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
4357                       SrcAddr.getAlignment());
4358 
4359     Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
4360     return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
4361   }
4362   }
4363 
4364   // If this is an alias for a lib function (e.g. __builtin_sin), emit
4365   // the call using the normal call path, but using the unmangled
4366   // version of the function name.
4367   if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
4368     return emitLibraryCall(*this, FD, E,
4369                            CGM.getBuiltinLibFunction(FD, BuiltinID));
4370 
4371   // If this is a predefined lib function (e.g. malloc), emit the call
4372   // using exactly the normal call path.
4373   if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
4374     return emitLibraryCall(*this, FD, E,
4375                       cast<llvm::Constant>(EmitScalarExpr(E->getCallee())));
4376 
4377   // Check that a call to a target specific builtin has the correct target
4378   // features.
4379   // This is down here to avoid non-target specific builtins, however, if
4380   // generic builtins start to require generic target features then we
4381   // can move this up to the beginning of the function.
4382   checkTargetFeatures(E, FD);
4383 
4384   if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID))
4385     LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth);
4386 
4387   // See if we have a target specific intrinsic.
4388   const char *Name = getContext().BuiltinInfo.getName(BuiltinID);
4389   Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
4390   StringRef Prefix =
4391       llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
4392   if (!Prefix.empty()) {
4393     IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name);
4394     // NOTE we don't need to perform a compatibility flag check here since the
4395     // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
4396     // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
4397     if (IntrinsicID == Intrinsic::not_intrinsic)
4398       IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
4399   }
4400 
4401   if (IntrinsicID != Intrinsic::not_intrinsic) {
4402     SmallVector<Value*, 16> Args;
4403 
4404     // Find out if any arguments are required to be integer constant
4405     // expressions.
4406     unsigned ICEArguments = 0;
4407     ASTContext::GetBuiltinTypeError Error;
4408     getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
4409     assert(Error == ASTContext::GE_None && "Should not codegen an error");
4410 
4411     Function *F = CGM.getIntrinsic(IntrinsicID);
4412     llvm::FunctionType *FTy = F->getFunctionType();
4413 
4414     for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
4415       Value *ArgValue;
4416       // If this is a normal argument, just emit it as a scalar.
4417       if ((ICEArguments & (1 << i)) == 0) {
4418         ArgValue = EmitScalarExpr(E->getArg(i));
4419       } else {
4420         // If this is required to be a constant, constant fold it so that we
4421         // know that the generated intrinsic gets a ConstantInt.
4422         llvm::APSInt Result;
4423         bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
4424         assert(IsConst && "Constant arg isn't actually constant?");
4425         (void)IsConst;
4426         ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
4427       }
4428 
4429       // If the intrinsic arg type is different from the builtin arg type
4430       // we need to do a bit cast.
4431       llvm::Type *PTy = FTy->getParamType(i);
4432       if (PTy != ArgValue->getType()) {
4433         // XXX - vector of pointers?
4434         if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) {
4435           if (PtrTy->getAddressSpace() !=
4436               ArgValue->getType()->getPointerAddressSpace()) {
4437             ArgValue = Builder.CreateAddrSpaceCast(
4438               ArgValue,
4439               ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace()));
4440           }
4441         }
4442 
4443         assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
4444                "Must be able to losslessly bit cast to param");
4445         ArgValue = Builder.CreateBitCast(ArgValue, PTy);
4446       }
4447 
4448       Args.push_back(ArgValue);
4449     }
4450 
4451     Value *V = Builder.CreateCall(F, Args);
4452     QualType BuiltinRetType = E->getType();
4453 
4454     llvm::Type *RetTy = VoidTy;
4455     if (!BuiltinRetType->isVoidType())
4456       RetTy = ConvertType(BuiltinRetType);
4457 
4458     if (RetTy != V->getType()) {
4459       // XXX - vector of pointers?
4460       if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) {
4461         if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) {
4462           V = Builder.CreateAddrSpaceCast(
4463             V, V->getType()->getPointerTo(PtrTy->getAddressSpace()));
4464         }
4465       }
4466 
4467       assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
4468              "Must be able to losslessly bit cast result type");
4469       V = Builder.CreateBitCast(V, RetTy);
4470     }
4471 
4472     return RValue::get(V);
4473   }
4474 
4475   // Some target-specific builtins can have aggregate return values, e.g.
4476   // __builtin_arm_mve_vld2q_u32. So if the result is an aggregate, force
4477   // ReturnValue to be non-null, so that the target-specific emission code can
4478   // always just emit into it.
4479   TypeEvaluationKind EvalKind = getEvaluationKind(E->getType());
4480   if (EvalKind == TEK_Aggregate && ReturnValue.isNull()) {
4481     Address DestPtr = CreateMemTemp(E->getType(), "agg.tmp");
4482     ReturnValue = ReturnValueSlot(DestPtr, false);
4483   }
4484 
4485   // Now see if we can emit a target-specific builtin.
4486   if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) {
4487     switch (EvalKind) {
4488     case TEK_Scalar:
4489       return RValue::get(V);
4490     case TEK_Aggregate:
4491       return RValue::getAggregate(ReturnValue.getValue(),
4492                                   ReturnValue.isVolatile());
4493     case TEK_Complex:
4494       llvm_unreachable("No current target builtin returns complex");
4495     }
4496     llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr");
4497   }
4498 
4499   ErrorUnsupported(E, "builtin function");
4500 
4501   // Unknown builtin, for now just dump it out and return undef.
4502   return GetUndefRValue(E->getType());
4503 }
4504 
4505 static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
4506                                         unsigned BuiltinID, const CallExpr *E,
4507                                         ReturnValueSlot ReturnValue,
4508                                         llvm::Triple::ArchType Arch) {
4509   switch (Arch) {
4510   case llvm::Triple::arm:
4511   case llvm::Triple::armeb:
4512   case llvm::Triple::thumb:
4513   case llvm::Triple::thumbeb:
4514     return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch);
4515   case llvm::Triple::aarch64:
4516   case llvm::Triple::aarch64_32:
4517   case llvm::Triple::aarch64_be:
4518     return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
4519   case llvm::Triple::bpfeb:
4520   case llvm::Triple::bpfel:
4521     return CGF->EmitBPFBuiltinExpr(BuiltinID, E);
4522   case llvm::Triple::x86:
4523   case llvm::Triple::x86_64:
4524     return CGF->EmitX86BuiltinExpr(BuiltinID, E);
4525   case llvm::Triple::ppc:
4526   case llvm::Triple::ppc64:
4527   case llvm::Triple::ppc64le:
4528     return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
4529   case llvm::Triple::r600:
4530   case llvm::Triple::amdgcn:
4531     return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
4532   case llvm::Triple::systemz:
4533     return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
4534   case llvm::Triple::nvptx:
4535   case llvm::Triple::nvptx64:
4536     return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
4537   case llvm::Triple::wasm32:
4538   case llvm::Triple::wasm64:
4539     return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
4540   case llvm::Triple::hexagon:
4541     return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
4542   default:
4543     return nullptr;
4544   }
4545 }
4546 
4547 Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
4548                                               const CallExpr *E,
4549                                               ReturnValueSlot ReturnValue) {
4550   if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
4551     assert(getContext().getAuxTargetInfo() && "Missing aux target info");
4552     return EmitTargetArchBuiltinExpr(
4553         this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
4554         ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch());
4555   }
4556 
4557   return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue,
4558                                    getTarget().getTriple().getArch());
4559 }
4560 
4561 static llvm::VectorType *GetNeonType(CodeGenFunction *CGF,
4562                                      NeonTypeFlags TypeFlags,
4563                                      bool HasLegalHalfType = true,
4564                                      bool V1Ty = false,
4565                                      bool AllowBFloatArgsAndRet = true) {
4566   int IsQuad = TypeFlags.isQuad();
4567   switch (TypeFlags.getEltType()) {
4568   case NeonTypeFlags::Int8:
4569   case NeonTypeFlags::Poly8:
4570     return llvm::FixedVectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
4571   case NeonTypeFlags::Int16:
4572   case NeonTypeFlags::Poly16:
4573     return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
4574   case NeonTypeFlags::BFloat16:
4575     if (AllowBFloatArgsAndRet)
4576       return llvm::FixedVectorType::get(CGF->BFloatTy, V1Ty ? 1 : (4 << IsQuad));
4577     else
4578       return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
4579   case NeonTypeFlags::Float16:
4580     if (HasLegalHalfType)
4581       return llvm::FixedVectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
4582     else
4583       return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
4584   case NeonTypeFlags::Int32:
4585     return llvm::FixedVectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
4586   case NeonTypeFlags::Int64:
4587   case NeonTypeFlags::Poly64:
4588     return llvm::FixedVectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
4589   case NeonTypeFlags::Poly128:
4590     // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
4591     // There is a lot of i128 and f128 API missing.
4592     // so we use v16i8 to represent poly128 and get pattern matched.
4593     return llvm::FixedVectorType::get(CGF->Int8Ty, 16);
4594   case NeonTypeFlags::Float32:
4595     return llvm::FixedVectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
4596   case NeonTypeFlags::Float64:
4597     return llvm::FixedVectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
4598   }
4599   llvm_unreachable("Unknown vector element type!");
4600 }
4601 
4602 static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
4603                                           NeonTypeFlags IntTypeFlags) {
4604   int IsQuad = IntTypeFlags.isQuad();
4605   switch (IntTypeFlags.getEltType()) {
4606   case NeonTypeFlags::Int16:
4607     return llvm::FixedVectorType::get(CGF->HalfTy, (4 << IsQuad));
4608   case NeonTypeFlags::Int32:
4609     return llvm::FixedVectorType::get(CGF->FloatTy, (2 << IsQuad));
4610   case NeonTypeFlags::Int64:
4611     return llvm::FixedVectorType::get(CGF->DoubleTy, (1 << IsQuad));
4612   default:
4613     llvm_unreachable("Type can't be converted to floating-point!");
4614   }
4615 }
4616 
4617 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C,
4618                                       const ElementCount &Count) {
4619   Value *SV = llvm::ConstantVector::getSplat(Count, C);
4620   return Builder.CreateShuffleVector(V, V, SV, "lane");
4621 }
4622 
4623 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
4624   ElementCount EC = cast<llvm::VectorType>(V->getType())->getElementCount();
4625   return EmitNeonSplat(V, C, EC);
4626 }
4627 
4628 Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
4629                                      const char *name,
4630                                      unsigned shift, bool rightshift) {
4631   unsigned j = 0;
4632   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
4633        ai != ae; ++ai, ++j) {
4634     if (F->isConstrainedFPIntrinsic())
4635       if (ai->getType()->isMetadataTy())
4636         continue;
4637     if (shift > 0 && shift == j)
4638       Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
4639     else
4640       Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
4641   }
4642 
4643   if (F->isConstrainedFPIntrinsic())
4644     return Builder.CreateConstrainedFPCall(F, Ops, name);
4645   else
4646     return Builder.CreateCall(F, Ops, name);
4647 }
4648 
4649 Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
4650                                             bool neg) {
4651   int SV = cast<ConstantInt>(V)->getSExtValue();
4652   return ConstantInt::get(Ty, neg ? -SV : SV);
4653 }
4654 
4655 // Right-shift a vector by a constant.
4656 Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
4657                                           llvm::Type *Ty, bool usgn,
4658                                           const char *name) {
4659   llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
4660 
4661   int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
4662   int EltSize = VTy->getScalarSizeInBits();
4663 
4664   Vec = Builder.CreateBitCast(Vec, Ty);
4665 
4666   // lshr/ashr are undefined when the shift amount is equal to the vector
4667   // element size.
4668   if (ShiftAmt == EltSize) {
4669     if (usgn) {
4670       // Right-shifting an unsigned value by its size yields 0.
4671       return llvm::ConstantAggregateZero::get(VTy);
4672     } else {
4673       // Right-shifting a signed value by its size is equivalent
4674       // to a shift of size-1.
4675       --ShiftAmt;
4676       Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
4677     }
4678   }
4679 
4680   Shift = EmitNeonShiftVector(Shift, Ty, false);
4681   if (usgn)
4682     return Builder.CreateLShr(Vec, Shift, name);
4683   else
4684     return Builder.CreateAShr(Vec, Shift, name);
4685 }
4686 
4687 enum {
4688   AddRetType = (1 << 0),
4689   Add1ArgType = (1 << 1),
4690   Add2ArgTypes = (1 << 2),
4691 
4692   VectorizeRetType = (1 << 3),
4693   VectorizeArgTypes = (1 << 4),
4694 
4695   InventFloatType = (1 << 5),
4696   UnsignedAlts = (1 << 6),
4697 
4698   Use64BitVectors = (1 << 7),
4699   Use128BitVectors = (1 << 8),
4700 
4701   Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
4702   VectorRet = AddRetType | VectorizeRetType,
4703   VectorRetGetArgs01 =
4704       AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
4705   FpCmpzModifiers =
4706       AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
4707 };
4708 
4709 namespace {
4710 struct ARMVectorIntrinsicInfo {
4711   const char *NameHint;
4712   unsigned BuiltinID;
4713   unsigned LLVMIntrinsic;
4714   unsigned AltLLVMIntrinsic;
4715   uint64_t TypeModifier;
4716 
4717   bool operator<(unsigned RHSBuiltinID) const {
4718     return BuiltinID < RHSBuiltinID;
4719   }
4720   bool operator<(const ARMVectorIntrinsicInfo &TE) const {
4721     return BuiltinID < TE.BuiltinID;
4722   }
4723 };
4724 } // end anonymous namespace
4725 
4726 #define NEONMAP0(NameBase) \
4727   { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
4728 
4729 #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
4730   { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
4731       Intrinsic::LLVMIntrinsic, 0, TypeModifier }
4732 
4733 #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
4734   { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
4735       Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
4736       TypeModifier }
4737 
4738 static const ARMVectorIntrinsicInfo ARMSIMDIntrinsicMap [] = {
4739   NEONMAP1(__a32_vcvt_bf16_v, arm_neon_vcvtfp2bf, 0),
4740   NEONMAP0(splat_lane_v),
4741   NEONMAP0(splat_laneq_v),
4742   NEONMAP0(splatq_lane_v),
4743   NEONMAP0(splatq_laneq_v),
4744   NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
4745   NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
4746   NEONMAP1(vabs_v, arm_neon_vabs, 0),
4747   NEONMAP1(vabsq_v, arm_neon_vabs, 0),
4748   NEONMAP0(vaddhn_v),
4749   NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
4750   NEONMAP1(vaeseq_v, arm_neon_aese, 0),
4751   NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
4752   NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
4753   NEONMAP1(vbfdot_v, arm_neon_bfdot, 0),
4754   NEONMAP1(vbfdotq_v, arm_neon_bfdot, 0),
4755   NEONMAP1(vbfmlalbq_v, arm_neon_bfmlalb, 0),
4756   NEONMAP1(vbfmlaltq_v, arm_neon_bfmlalt, 0),
4757   NEONMAP1(vbfmmlaq_v, arm_neon_bfmmla, 0),
4758   NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
4759   NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
4760   NEONMAP1(vcadd_rot270_v, arm_neon_vcadd_rot270, Add1ArgType),
4761   NEONMAP1(vcadd_rot90_v, arm_neon_vcadd_rot90, Add1ArgType),
4762   NEONMAP1(vcaddq_rot270_v, arm_neon_vcadd_rot270, Add1ArgType),
4763   NEONMAP1(vcaddq_rot90_v, arm_neon_vcadd_rot90, Add1ArgType),
4764   NEONMAP1(vcage_v, arm_neon_vacge, 0),
4765   NEONMAP1(vcageq_v, arm_neon_vacge, 0),
4766   NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
4767   NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
4768   NEONMAP1(vcale_v, arm_neon_vacge, 0),
4769   NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
4770   NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
4771   NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
4772   NEONMAP0(vceqz_v),
4773   NEONMAP0(vceqzq_v),
4774   NEONMAP0(vcgez_v),
4775   NEONMAP0(vcgezq_v),
4776   NEONMAP0(vcgtz_v),
4777   NEONMAP0(vcgtzq_v),
4778   NEONMAP0(vclez_v),
4779   NEONMAP0(vclezq_v),
4780   NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
4781   NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
4782   NEONMAP0(vcltz_v),
4783   NEONMAP0(vcltzq_v),
4784   NEONMAP1(vclz_v, ctlz, Add1ArgType),
4785   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
4786   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
4787   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
4788   NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
4789   NEONMAP0(vcvt_f16_v),
4790   NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
4791   NEONMAP0(vcvt_f32_v),
4792   NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4793   NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4794   NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0),
4795   NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
4796   NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
4797   NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0),
4798   NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
4799   NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
4800   NEONMAP0(vcvt_s16_v),
4801   NEONMAP0(vcvt_s32_v),
4802   NEONMAP0(vcvt_s64_v),
4803   NEONMAP0(vcvt_u16_v),
4804   NEONMAP0(vcvt_u32_v),
4805   NEONMAP0(vcvt_u64_v),
4806   NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0),
4807   NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
4808   NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
4809   NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0),
4810   NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
4811   NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
4812   NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0),
4813   NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
4814   NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
4815   NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0),
4816   NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
4817   NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
4818   NEONMAP1(vcvth_bf16_f32, arm_neon_vcvtbfp2bf, 0),
4819   NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0),
4820   NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
4821   NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
4822   NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0),
4823   NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
4824   NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
4825   NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0),
4826   NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
4827   NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
4828   NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0),
4829   NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
4830   NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
4831   NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0),
4832   NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
4833   NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
4834   NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0),
4835   NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
4836   NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
4837   NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0),
4838   NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
4839   NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
4840   NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0),
4841   NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
4842   NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
4843   NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0),
4844   NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
4845   NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
4846   NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0),
4847   NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
4848   NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
4849   NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0),
4850   NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
4851   NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
4852   NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0),
4853   NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
4854   NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
4855   NEONMAP0(vcvtq_f16_v),
4856   NEONMAP0(vcvtq_f32_v),
4857   NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4858   NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4859   NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0),
4860   NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
4861   NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
4862   NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0),
4863   NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
4864   NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
4865   NEONMAP0(vcvtq_s16_v),
4866   NEONMAP0(vcvtq_s32_v),
4867   NEONMAP0(vcvtq_s64_v),
4868   NEONMAP0(vcvtq_u16_v),
4869   NEONMAP0(vcvtq_u32_v),
4870   NEONMAP0(vcvtq_u64_v),
4871   NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0),
4872   NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0),
4873   NEONMAP0(vext_v),
4874   NEONMAP0(vextq_v),
4875   NEONMAP0(vfma_v),
4876   NEONMAP0(vfmaq_v),
4877   NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
4878   NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
4879   NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
4880   NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
4881   NEONMAP0(vld1_dup_v),
4882   NEONMAP1(vld1_v, arm_neon_vld1, 0),
4883   NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0),
4884   NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0),
4885   NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0),
4886   NEONMAP0(vld1q_dup_v),
4887   NEONMAP1(vld1q_v, arm_neon_vld1, 0),
4888   NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0),
4889   NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0),
4890   NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0),
4891   NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0),
4892   NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
4893   NEONMAP1(vld2_v, arm_neon_vld2, 0),
4894   NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0),
4895   NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
4896   NEONMAP1(vld2q_v, arm_neon_vld2, 0),
4897   NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0),
4898   NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
4899   NEONMAP1(vld3_v, arm_neon_vld3, 0),
4900   NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0),
4901   NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
4902   NEONMAP1(vld3q_v, arm_neon_vld3, 0),
4903   NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0),
4904   NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
4905   NEONMAP1(vld4_v, arm_neon_vld4, 0),
4906   NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0),
4907   NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
4908   NEONMAP1(vld4q_v, arm_neon_vld4, 0),
4909   NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
4910   NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
4911   NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
4912   NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
4913   NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
4914   NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
4915   NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
4916   NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
4917   NEONMAP2(vmmlaq_v, arm_neon_ummla, arm_neon_smmla, 0),
4918   NEONMAP0(vmovl_v),
4919   NEONMAP0(vmovn_v),
4920   NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
4921   NEONMAP0(vmull_v),
4922   NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
4923   NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
4924   NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
4925   NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
4926   NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
4927   NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
4928   NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
4929   NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
4930   NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
4931   NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
4932   NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
4933   NEONMAP2(vqadd_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
4934   NEONMAP2(vqaddq_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
4935   NEONMAP2(vqdmlal_v, arm_neon_vqdmull, sadd_sat, 0),
4936   NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, ssub_sat, 0),
4937   NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
4938   NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
4939   NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
4940   NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
4941   NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
4942   NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
4943   NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
4944   NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
4945   NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
4946   NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
4947   NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
4948   NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
4949   NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
4950   NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
4951   NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
4952   NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
4953   NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
4954   NEONMAP2(vqsub_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
4955   NEONMAP2(vqsubq_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
4956   NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
4957   NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
4958   NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
4959   NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
4960   NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
4961   NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
4962   NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
4963   NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
4964   NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
4965   NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
4966   NEONMAP0(vrndi_v),
4967   NEONMAP0(vrndiq_v),
4968   NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
4969   NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
4970   NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
4971   NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
4972   NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
4973   NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
4974   NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
4975   NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
4976   NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
4977   NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
4978   NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
4979   NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
4980   NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
4981   NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
4982   NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
4983   NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
4984   NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
4985   NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
4986   NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
4987   NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
4988   NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
4989   NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
4990   NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
4991   NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
4992   NEONMAP0(vshl_n_v),
4993   NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
4994   NEONMAP0(vshll_n_v),
4995   NEONMAP0(vshlq_n_v),
4996   NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
4997   NEONMAP0(vshr_n_v),
4998   NEONMAP0(vshrn_n_v),
4999   NEONMAP0(vshrq_n_v),
5000   NEONMAP1(vst1_v, arm_neon_vst1, 0),
5001   NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0),
5002   NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0),
5003   NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0),
5004   NEONMAP1(vst1q_v, arm_neon_vst1, 0),
5005   NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0),
5006   NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0),
5007   NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0),
5008   NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
5009   NEONMAP1(vst2_v, arm_neon_vst2, 0),
5010   NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
5011   NEONMAP1(vst2q_v, arm_neon_vst2, 0),
5012   NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
5013   NEONMAP1(vst3_v, arm_neon_vst3, 0),
5014   NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
5015   NEONMAP1(vst3q_v, arm_neon_vst3, 0),
5016   NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
5017   NEONMAP1(vst4_v, arm_neon_vst4, 0),
5018   NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
5019   NEONMAP1(vst4q_v, arm_neon_vst4, 0),
5020   NEONMAP0(vsubhn_v),
5021   NEONMAP0(vtrn_v),
5022   NEONMAP0(vtrnq_v),
5023   NEONMAP0(vtst_v),
5024   NEONMAP0(vtstq_v),
5025   NEONMAP1(vusdot_v, arm_neon_usdot, 0),
5026   NEONMAP1(vusdotq_v, arm_neon_usdot, 0),
5027   NEONMAP1(vusmmlaq_v, arm_neon_usmmla, 0),
5028   NEONMAP0(vuzp_v),
5029   NEONMAP0(vuzpq_v),
5030   NEONMAP0(vzip_v),
5031   NEONMAP0(vzipq_v)
5032 };
5033 
5034 static const ARMVectorIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
5035   NEONMAP1(__a64_vcvtq_low_bf16_v, aarch64_neon_bfcvtn, 0),
5036   NEONMAP0(splat_lane_v),
5037   NEONMAP0(splat_laneq_v),
5038   NEONMAP0(splatq_lane_v),
5039   NEONMAP0(splatq_laneq_v),
5040   NEONMAP1(vabs_v, aarch64_neon_abs, 0),
5041   NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
5042   NEONMAP0(vaddhn_v),
5043   NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
5044   NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
5045   NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
5046   NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
5047   NEONMAP1(vbfdot_v, aarch64_neon_bfdot, 0),
5048   NEONMAP1(vbfdotq_v, aarch64_neon_bfdot, 0),
5049   NEONMAP1(vbfmlalbq_v, aarch64_neon_bfmlalb, 0),
5050   NEONMAP1(vbfmlaltq_v, aarch64_neon_bfmlalt, 0),
5051   NEONMAP1(vbfmmlaq_v, aarch64_neon_bfmmla, 0),
5052   NEONMAP1(vcadd_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType),
5053   NEONMAP1(vcadd_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType),
5054   NEONMAP1(vcaddq_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType),
5055   NEONMAP1(vcaddq_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType),
5056   NEONMAP1(vcage_v, aarch64_neon_facge, 0),
5057   NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
5058   NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
5059   NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
5060   NEONMAP1(vcale_v, aarch64_neon_facge, 0),
5061   NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
5062   NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
5063   NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
5064   NEONMAP0(vceqz_v),
5065   NEONMAP0(vceqzq_v),
5066   NEONMAP0(vcgez_v),
5067   NEONMAP0(vcgezq_v),
5068   NEONMAP0(vcgtz_v),
5069   NEONMAP0(vcgtzq_v),
5070   NEONMAP0(vclez_v),
5071   NEONMAP0(vclezq_v),
5072   NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
5073   NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
5074   NEONMAP0(vcltz_v),
5075   NEONMAP0(vcltzq_v),
5076   NEONMAP1(vclz_v, ctlz, Add1ArgType),
5077   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
5078   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
5079   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
5080   NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
5081   NEONMAP0(vcvt_f16_v),
5082   NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
5083   NEONMAP0(vcvt_f32_v),
5084   NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5085   NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5086   NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5087   NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
5088   NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
5089   NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
5090   NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
5091   NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
5092   NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
5093   NEONMAP0(vcvtq_f16_v),
5094   NEONMAP0(vcvtq_f32_v),
5095   NEONMAP1(vcvtq_high_bf16_v, aarch64_neon_bfcvtn2, 0),
5096   NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5097   NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5098   NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5099   NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
5100   NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
5101   NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
5102   NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
5103   NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
5104   NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
5105   NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
5106   NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
5107   NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
5108   NEONMAP0(vext_v),
5109   NEONMAP0(vextq_v),
5110   NEONMAP0(vfma_v),
5111   NEONMAP0(vfmaq_v),
5112   NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0),
5113   NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0),
5114   NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0),
5115   NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0),
5116   NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0),
5117   NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0),
5118   NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0),
5119   NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0),
5120   NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
5121   NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
5122   NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
5123   NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
5124   NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0),
5125   NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0),
5126   NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0),
5127   NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0),
5128   NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0),
5129   NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0),
5130   NEONMAP2(vmmlaq_v, aarch64_neon_ummla, aarch64_neon_smmla, 0),
5131   NEONMAP0(vmovl_v),
5132   NEONMAP0(vmovn_v),
5133   NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
5134   NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
5135   NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
5136   NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
5137   NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
5138   NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
5139   NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
5140   NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
5141   NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
5142   NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
5143   NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
5144   NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
5145   NEONMAP1(vqdmulh_lane_v, aarch64_neon_sqdmulh_lane, 0),
5146   NEONMAP1(vqdmulh_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
5147   NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
5148   NEONMAP1(vqdmulhq_lane_v, aarch64_neon_sqdmulh_lane, 0),
5149   NEONMAP1(vqdmulhq_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
5150   NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
5151   NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
5152   NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
5153   NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
5154   NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
5155   NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
5156   NEONMAP1(vqrdmulh_lane_v, aarch64_neon_sqrdmulh_lane, 0),
5157   NEONMAP1(vqrdmulh_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
5158   NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
5159   NEONMAP1(vqrdmulhq_lane_v, aarch64_neon_sqrdmulh_lane, 0),
5160   NEONMAP1(vqrdmulhq_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
5161   NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
5162   NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
5163   NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
5164   NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
5165   NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
5166   NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
5167   NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
5168   NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
5169   NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
5170   NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
5171   NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
5172   NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
5173   NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
5174   NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
5175   NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
5176   NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
5177   NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
5178   NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
5179   NEONMAP0(vrndi_v),
5180   NEONMAP0(vrndiq_v),
5181   NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
5182   NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
5183   NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
5184   NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
5185   NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
5186   NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
5187   NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
5188   NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
5189   NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
5190   NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
5191   NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
5192   NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
5193   NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
5194   NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
5195   NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
5196   NEONMAP0(vshl_n_v),
5197   NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
5198   NEONMAP0(vshll_n_v),
5199   NEONMAP0(vshlq_n_v),
5200   NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
5201   NEONMAP0(vshr_n_v),
5202   NEONMAP0(vshrn_n_v),
5203   NEONMAP0(vshrq_n_v),
5204   NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0),
5205   NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0),
5206   NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0),
5207   NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0),
5208   NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0),
5209   NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0),
5210   NEONMAP0(vsubhn_v),
5211   NEONMAP0(vtst_v),
5212   NEONMAP0(vtstq_v),
5213   NEONMAP1(vusdot_v, aarch64_neon_usdot, 0),
5214   NEONMAP1(vusdotq_v, aarch64_neon_usdot, 0),
5215   NEONMAP1(vusmmlaq_v, aarch64_neon_usmmla, 0),
5216 };
5217 
5218 static const ARMVectorIntrinsicInfo AArch64SISDIntrinsicMap[] = {
5219   NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
5220   NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
5221   NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
5222   NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
5223   NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
5224   NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
5225   NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
5226   NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
5227   NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
5228   NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5229   NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
5230   NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
5231   NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
5232   NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
5233   NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5234   NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5235   NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
5236   NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
5237   NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
5238   NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
5239   NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
5240   NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
5241   NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
5242   NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
5243   NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5244   NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5245   NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5246   NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5247   NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5248   NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
5249   NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
5250   NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
5251   NEONMAP1(vcvth_bf16_f32, aarch64_neon_bfcvt, 0),
5252   NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
5253   NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
5254   NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
5255   NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
5256   NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
5257   NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
5258   NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
5259   NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
5260   NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
5261   NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
5262   NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
5263   NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
5264   NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5265   NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
5266   NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
5267   NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
5268   NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
5269   NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
5270   NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
5271   NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
5272   NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
5273   NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
5274   NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
5275   NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
5276   NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
5277   NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
5278   NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
5279   NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
5280   NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
5281   NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
5282   NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
5283   NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
5284   NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
5285   NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
5286   NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
5287   NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
5288   NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
5289   NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
5290   NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
5291   NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
5292   NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5293   NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5294   NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
5295   NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
5296   NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
5297   NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
5298   NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
5299   NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
5300   NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
5301   NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
5302   NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
5303   NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
5304   NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
5305   NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
5306   NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
5307   NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
5308   NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
5309   NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
5310   NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
5311   NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
5312   NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
5313   NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
5314   NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
5315   NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
5316   NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
5317   NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
5318   NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
5319   NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
5320   NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
5321   NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
5322   NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
5323   NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
5324   NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
5325   NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
5326   NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
5327   NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
5328   NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
5329   NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
5330   NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
5331   NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
5332   NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
5333   NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
5334   NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
5335   NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
5336   NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
5337   NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
5338   NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
5339   NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
5340   NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
5341   NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
5342   NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
5343   NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
5344   NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
5345   NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
5346   NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
5347   NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
5348   NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
5349   NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
5350   NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5351   NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5352   NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5353   NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5354   NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
5355   NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
5356   NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5357   NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5358   NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5359   NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5360   NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
5361   NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
5362   NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
5363   NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
5364   NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
5365   NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
5366   NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
5367   NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
5368   NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
5369   NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
5370   NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
5371   NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
5372   NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
5373   NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
5374   NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
5375   NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
5376   NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
5377   NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
5378   NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
5379   NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
5380   NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
5381   NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
5382   NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
5383   NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
5384   NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
5385   NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
5386   NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
5387   NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
5388   NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
5389   NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
5390   NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
5391   NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
5392   NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
5393   NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
5394   NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
5395   NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
5396   NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
5397   NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
5398   NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
5399   NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
5400   NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
5401   NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
5402   NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
5403   NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
5404   NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
5405   NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
5406   NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
5407   NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
5408   NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
5409   NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
5410   NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
5411   NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
5412   // FP16 scalar intrinisics go here.
5413   NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType),
5414   NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5415   NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5416   NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5417   NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5418   NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5419   NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5420   NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
5421   NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
5422   NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
5423   NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
5424   NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
5425   NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
5426   NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
5427   NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
5428   NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
5429   NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
5430   NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
5431   NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
5432   NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
5433   NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
5434   NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
5435   NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
5436   NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
5437   NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
5438   NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType),
5439   NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType),
5440   NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType),
5441   NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType),
5442   NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType),
5443 };
5444 
5445 #undef NEONMAP0
5446 #undef NEONMAP1
5447 #undef NEONMAP2
5448 
5449 #define SVEMAP1(NameBase, LLVMIntrinsic, TypeModifier)                         \
5450   {                                                                            \
5451     #NameBase, SVE::BI__builtin_sve_##NameBase, Intrinsic::LLVMIntrinsic, 0,   \
5452         TypeModifier                                                           \
5453   }
5454 
5455 #define SVEMAP2(NameBase, TypeModifier)                                        \
5456   { #NameBase, SVE::BI__builtin_sve_##NameBase, 0, 0, TypeModifier }
5457 static const ARMVectorIntrinsicInfo AArch64SVEIntrinsicMap[] = {
5458 #define GET_SVE_LLVM_INTRINSIC_MAP
5459 #include "clang/Basic/arm_sve_builtin_cg.inc"
5460 #undef GET_SVE_LLVM_INTRINSIC_MAP
5461 };
5462 
5463 #undef SVEMAP1
5464 #undef SVEMAP2
5465 
5466 static bool NEONSIMDIntrinsicsProvenSorted = false;
5467 
5468 static bool AArch64SIMDIntrinsicsProvenSorted = false;
5469 static bool AArch64SISDIntrinsicsProvenSorted = false;
5470 static bool AArch64SVEIntrinsicsProvenSorted = false;
5471 
5472 static const ARMVectorIntrinsicInfo *
5473 findARMVectorIntrinsicInMap(ArrayRef<ARMVectorIntrinsicInfo> IntrinsicMap,
5474                             unsigned BuiltinID, bool &MapProvenSorted) {
5475 
5476 #ifndef NDEBUG
5477   if (!MapProvenSorted) {
5478     assert(llvm::is_sorted(IntrinsicMap));
5479     MapProvenSorted = true;
5480   }
5481 #endif
5482 
5483   const ARMVectorIntrinsicInfo *Builtin =
5484       llvm::lower_bound(IntrinsicMap, BuiltinID);
5485 
5486   if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
5487     return Builtin;
5488 
5489   return nullptr;
5490 }
5491 
5492 Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
5493                                                    unsigned Modifier,
5494                                                    llvm::Type *ArgType,
5495                                                    const CallExpr *E) {
5496   int VectorSize = 0;
5497   if (Modifier & Use64BitVectors)
5498     VectorSize = 64;
5499   else if (Modifier & Use128BitVectors)
5500     VectorSize = 128;
5501 
5502   // Return type.
5503   SmallVector<llvm::Type *, 3> Tys;
5504   if (Modifier & AddRetType) {
5505     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
5506     if (Modifier & VectorizeRetType)
5507       Ty = llvm::FixedVectorType::get(
5508           Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
5509 
5510     Tys.push_back(Ty);
5511   }
5512 
5513   // Arguments.
5514   if (Modifier & VectorizeArgTypes) {
5515     int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
5516     ArgType = llvm::FixedVectorType::get(ArgType, Elts);
5517   }
5518 
5519   if (Modifier & (Add1ArgType | Add2ArgTypes))
5520     Tys.push_back(ArgType);
5521 
5522   if (Modifier & Add2ArgTypes)
5523     Tys.push_back(ArgType);
5524 
5525   if (Modifier & InventFloatType)
5526     Tys.push_back(FloatTy);
5527 
5528   return CGM.getIntrinsic(IntrinsicID, Tys);
5529 }
5530 
5531 static Value *EmitCommonNeonSISDBuiltinExpr(
5532     CodeGenFunction &CGF, const ARMVectorIntrinsicInfo &SISDInfo,
5533     SmallVectorImpl<Value *> &Ops, const CallExpr *E) {
5534   unsigned BuiltinID = SISDInfo.BuiltinID;
5535   unsigned int Int = SISDInfo.LLVMIntrinsic;
5536   unsigned Modifier = SISDInfo.TypeModifier;
5537   const char *s = SISDInfo.NameHint;
5538 
5539   switch (BuiltinID) {
5540   case NEON::BI__builtin_neon_vcled_s64:
5541   case NEON::BI__builtin_neon_vcled_u64:
5542   case NEON::BI__builtin_neon_vcles_f32:
5543   case NEON::BI__builtin_neon_vcled_f64:
5544   case NEON::BI__builtin_neon_vcltd_s64:
5545   case NEON::BI__builtin_neon_vcltd_u64:
5546   case NEON::BI__builtin_neon_vclts_f32:
5547   case NEON::BI__builtin_neon_vcltd_f64:
5548   case NEON::BI__builtin_neon_vcales_f32:
5549   case NEON::BI__builtin_neon_vcaled_f64:
5550   case NEON::BI__builtin_neon_vcalts_f32:
5551   case NEON::BI__builtin_neon_vcaltd_f64:
5552     // Only one direction of comparisons actually exist, cmle is actually a cmge
5553     // with swapped operands. The table gives us the right intrinsic but we
5554     // still need to do the swap.
5555     std::swap(Ops[0], Ops[1]);
5556     break;
5557   }
5558 
5559   assert(Int && "Generic code assumes a valid intrinsic");
5560 
5561   // Determine the type(s) of this overloaded AArch64 intrinsic.
5562   const Expr *Arg = E->getArg(0);
5563   llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
5564   Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
5565 
5566   int j = 0;
5567   ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
5568   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
5569        ai != ae; ++ai, ++j) {
5570     llvm::Type *ArgTy = ai->getType();
5571     if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
5572              ArgTy->getPrimitiveSizeInBits())
5573       continue;
5574 
5575     assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy());
5576     // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
5577     // it before inserting.
5578     Ops[j] = CGF.Builder.CreateTruncOrBitCast(
5579         Ops[j], cast<llvm::VectorType>(ArgTy)->getElementType());
5580     Ops[j] =
5581         CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
5582   }
5583 
5584   Value *Result = CGF.EmitNeonCall(F, Ops, s);
5585   llvm::Type *ResultType = CGF.ConvertType(E->getType());
5586   if (ResultType->getPrimitiveSizeInBits() <
5587       Result->getType()->getPrimitiveSizeInBits())
5588     return CGF.Builder.CreateExtractElement(Result, C0);
5589 
5590   return CGF.Builder.CreateBitCast(Result, ResultType, s);
5591 }
5592 
5593 Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
5594     unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
5595     const char *NameHint, unsigned Modifier, const CallExpr *E,
5596     SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1,
5597     llvm::Triple::ArchType Arch) {
5598   // Get the last argument, which specifies the vector type.
5599   llvm::APSInt NeonTypeConst;
5600   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
5601   if (!Arg->isIntegerConstantExpr(NeonTypeConst, getContext()))
5602     return nullptr;
5603 
5604   // Determine the type of this overloaded NEON intrinsic.
5605   NeonTypeFlags Type(NeonTypeConst.getZExtValue());
5606   bool Usgn = Type.isUnsigned();
5607   bool Quad = Type.isQuad();
5608   const bool HasLegalHalfType = getTarget().hasLegalHalfType();
5609   const bool AllowBFloatArgsAndRet =
5610       getTargetHooks().getABIInfo().allowBFloatArgsAndRet();
5611 
5612   llvm::VectorType *VTy = GetNeonType(this, Type, HasLegalHalfType, false,
5613                                       AllowBFloatArgsAndRet);
5614   llvm::Type *Ty = VTy;
5615   if (!Ty)
5616     return nullptr;
5617 
5618   auto getAlignmentValue32 = [&](Address addr) -> Value* {
5619     return Builder.getInt32(addr.getAlignment().getQuantity());
5620   };
5621 
5622   unsigned Int = LLVMIntrinsic;
5623   if ((Modifier & UnsignedAlts) && !Usgn)
5624     Int = AltLLVMIntrinsic;
5625 
5626   switch (BuiltinID) {
5627   default: break;
5628   case NEON::BI__builtin_neon_splat_lane_v:
5629   case NEON::BI__builtin_neon_splat_laneq_v:
5630   case NEON::BI__builtin_neon_splatq_lane_v:
5631   case NEON::BI__builtin_neon_splatq_laneq_v: {
5632     auto NumElements = VTy->getElementCount();
5633     if (BuiltinID == NEON::BI__builtin_neon_splatq_lane_v)
5634       NumElements = NumElements * 2;
5635     if (BuiltinID == NEON::BI__builtin_neon_splat_laneq_v)
5636       NumElements = NumElements / 2;
5637 
5638     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
5639     return EmitNeonSplat(Ops[0], cast<ConstantInt>(Ops[1]), NumElements);
5640   }
5641   case NEON::BI__builtin_neon_vpadd_v:
5642   case NEON::BI__builtin_neon_vpaddq_v:
5643     // We don't allow fp/int overloading of intrinsics.
5644     if (VTy->getElementType()->isFloatingPointTy() &&
5645         Int == Intrinsic::aarch64_neon_addp)
5646       Int = Intrinsic::aarch64_neon_faddp;
5647     break;
5648   case NEON::BI__builtin_neon_vabs_v:
5649   case NEON::BI__builtin_neon_vabsq_v:
5650     if (VTy->getElementType()->isFloatingPointTy())
5651       return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
5652     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
5653   case NEON::BI__builtin_neon_vaddhn_v: {
5654     llvm::VectorType *SrcTy =
5655         llvm::VectorType::getExtendedElementVectorType(VTy);
5656 
5657     // %sum = add <4 x i32> %lhs, %rhs
5658     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
5659     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
5660     Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
5661 
5662     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
5663     Constant *ShiftAmt =
5664         ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
5665     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
5666 
5667     // %res = trunc <4 x i32> %high to <4 x i16>
5668     return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
5669   }
5670   case NEON::BI__builtin_neon_vcale_v:
5671   case NEON::BI__builtin_neon_vcaleq_v:
5672   case NEON::BI__builtin_neon_vcalt_v:
5673   case NEON::BI__builtin_neon_vcaltq_v:
5674     std::swap(Ops[0], Ops[1]);
5675     LLVM_FALLTHROUGH;
5676   case NEON::BI__builtin_neon_vcage_v:
5677   case NEON::BI__builtin_neon_vcageq_v:
5678   case NEON::BI__builtin_neon_vcagt_v:
5679   case NEON::BI__builtin_neon_vcagtq_v: {
5680     llvm::Type *Ty;
5681     switch (VTy->getScalarSizeInBits()) {
5682     default: llvm_unreachable("unexpected type");
5683     case 32:
5684       Ty = FloatTy;
5685       break;
5686     case 64:
5687       Ty = DoubleTy;
5688       break;
5689     case 16:
5690       Ty = HalfTy;
5691       break;
5692     }
5693     auto *VecFlt = llvm::FixedVectorType::get(Ty, VTy->getNumElements());
5694     llvm::Type *Tys[] = { VTy, VecFlt };
5695     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5696     return EmitNeonCall(F, Ops, NameHint);
5697   }
5698   case NEON::BI__builtin_neon_vceqz_v:
5699   case NEON::BI__builtin_neon_vceqzq_v:
5700     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
5701                                          ICmpInst::ICMP_EQ, "vceqz");
5702   case NEON::BI__builtin_neon_vcgez_v:
5703   case NEON::BI__builtin_neon_vcgezq_v:
5704     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
5705                                          ICmpInst::ICMP_SGE, "vcgez");
5706   case NEON::BI__builtin_neon_vclez_v:
5707   case NEON::BI__builtin_neon_vclezq_v:
5708     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
5709                                          ICmpInst::ICMP_SLE, "vclez");
5710   case NEON::BI__builtin_neon_vcgtz_v:
5711   case NEON::BI__builtin_neon_vcgtzq_v:
5712     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
5713                                          ICmpInst::ICMP_SGT, "vcgtz");
5714   case NEON::BI__builtin_neon_vcltz_v:
5715   case NEON::BI__builtin_neon_vcltzq_v:
5716     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
5717                                          ICmpInst::ICMP_SLT, "vcltz");
5718   case NEON::BI__builtin_neon_vclz_v:
5719   case NEON::BI__builtin_neon_vclzq_v:
5720     // We generate target-independent intrinsic, which needs a second argument
5721     // for whether or not clz of zero is undefined; on ARM it isn't.
5722     Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
5723     break;
5724   case NEON::BI__builtin_neon_vcvt_f32_v:
5725   case NEON::BI__builtin_neon_vcvtq_f32_v:
5726     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5727     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad),
5728                      HasLegalHalfType);
5729     return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
5730                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
5731   case NEON::BI__builtin_neon_vcvt_f16_v:
5732   case NEON::BI__builtin_neon_vcvtq_f16_v:
5733     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5734     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad),
5735                      HasLegalHalfType);
5736     return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
5737                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
5738   case NEON::BI__builtin_neon_vcvt_n_f16_v:
5739   case NEON::BI__builtin_neon_vcvt_n_f32_v:
5740   case NEON::BI__builtin_neon_vcvt_n_f64_v:
5741   case NEON::BI__builtin_neon_vcvtq_n_f16_v:
5742   case NEON::BI__builtin_neon_vcvtq_n_f32_v:
5743   case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
5744     llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
5745     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
5746     Function *F = CGM.getIntrinsic(Int, Tys);
5747     return EmitNeonCall(F, Ops, "vcvt_n");
5748   }
5749   case NEON::BI__builtin_neon_vcvt_n_s16_v:
5750   case NEON::BI__builtin_neon_vcvt_n_s32_v:
5751   case NEON::BI__builtin_neon_vcvt_n_u16_v:
5752   case NEON::BI__builtin_neon_vcvt_n_u32_v:
5753   case NEON::BI__builtin_neon_vcvt_n_s64_v:
5754   case NEON::BI__builtin_neon_vcvt_n_u64_v:
5755   case NEON::BI__builtin_neon_vcvtq_n_s16_v:
5756   case NEON::BI__builtin_neon_vcvtq_n_s32_v:
5757   case NEON::BI__builtin_neon_vcvtq_n_u16_v:
5758   case NEON::BI__builtin_neon_vcvtq_n_u32_v:
5759   case NEON::BI__builtin_neon_vcvtq_n_s64_v:
5760   case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
5761     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
5762     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5763     return EmitNeonCall(F, Ops, "vcvt_n");
5764   }
5765   case NEON::BI__builtin_neon_vcvt_s32_v:
5766   case NEON::BI__builtin_neon_vcvt_u32_v:
5767   case NEON::BI__builtin_neon_vcvt_s64_v:
5768   case NEON::BI__builtin_neon_vcvt_u64_v:
5769   case NEON::BI__builtin_neon_vcvt_s16_v:
5770   case NEON::BI__builtin_neon_vcvt_u16_v:
5771   case NEON::BI__builtin_neon_vcvtq_s32_v:
5772   case NEON::BI__builtin_neon_vcvtq_u32_v:
5773   case NEON::BI__builtin_neon_vcvtq_s64_v:
5774   case NEON::BI__builtin_neon_vcvtq_u64_v:
5775   case NEON::BI__builtin_neon_vcvtq_s16_v:
5776   case NEON::BI__builtin_neon_vcvtq_u16_v: {
5777     Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
5778     return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
5779                 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
5780   }
5781   case NEON::BI__builtin_neon_vcvta_s16_v:
5782   case NEON::BI__builtin_neon_vcvta_s32_v:
5783   case NEON::BI__builtin_neon_vcvta_s64_v:
5784   case NEON::BI__builtin_neon_vcvta_u16_v:
5785   case NEON::BI__builtin_neon_vcvta_u32_v:
5786   case NEON::BI__builtin_neon_vcvta_u64_v:
5787   case NEON::BI__builtin_neon_vcvtaq_s16_v:
5788   case NEON::BI__builtin_neon_vcvtaq_s32_v:
5789   case NEON::BI__builtin_neon_vcvtaq_s64_v:
5790   case NEON::BI__builtin_neon_vcvtaq_u16_v:
5791   case NEON::BI__builtin_neon_vcvtaq_u32_v:
5792   case NEON::BI__builtin_neon_vcvtaq_u64_v:
5793   case NEON::BI__builtin_neon_vcvtn_s16_v:
5794   case NEON::BI__builtin_neon_vcvtn_s32_v:
5795   case NEON::BI__builtin_neon_vcvtn_s64_v:
5796   case NEON::BI__builtin_neon_vcvtn_u16_v:
5797   case NEON::BI__builtin_neon_vcvtn_u32_v:
5798   case NEON::BI__builtin_neon_vcvtn_u64_v:
5799   case NEON::BI__builtin_neon_vcvtnq_s16_v:
5800   case NEON::BI__builtin_neon_vcvtnq_s32_v:
5801   case NEON::BI__builtin_neon_vcvtnq_s64_v:
5802   case NEON::BI__builtin_neon_vcvtnq_u16_v:
5803   case NEON::BI__builtin_neon_vcvtnq_u32_v:
5804   case NEON::BI__builtin_neon_vcvtnq_u64_v:
5805   case NEON::BI__builtin_neon_vcvtp_s16_v:
5806   case NEON::BI__builtin_neon_vcvtp_s32_v:
5807   case NEON::BI__builtin_neon_vcvtp_s64_v:
5808   case NEON::BI__builtin_neon_vcvtp_u16_v:
5809   case NEON::BI__builtin_neon_vcvtp_u32_v:
5810   case NEON::BI__builtin_neon_vcvtp_u64_v:
5811   case NEON::BI__builtin_neon_vcvtpq_s16_v:
5812   case NEON::BI__builtin_neon_vcvtpq_s32_v:
5813   case NEON::BI__builtin_neon_vcvtpq_s64_v:
5814   case NEON::BI__builtin_neon_vcvtpq_u16_v:
5815   case NEON::BI__builtin_neon_vcvtpq_u32_v:
5816   case NEON::BI__builtin_neon_vcvtpq_u64_v:
5817   case NEON::BI__builtin_neon_vcvtm_s16_v:
5818   case NEON::BI__builtin_neon_vcvtm_s32_v:
5819   case NEON::BI__builtin_neon_vcvtm_s64_v:
5820   case NEON::BI__builtin_neon_vcvtm_u16_v:
5821   case NEON::BI__builtin_neon_vcvtm_u32_v:
5822   case NEON::BI__builtin_neon_vcvtm_u64_v:
5823   case NEON::BI__builtin_neon_vcvtmq_s16_v:
5824   case NEON::BI__builtin_neon_vcvtmq_s32_v:
5825   case NEON::BI__builtin_neon_vcvtmq_s64_v:
5826   case NEON::BI__builtin_neon_vcvtmq_u16_v:
5827   case NEON::BI__builtin_neon_vcvtmq_u32_v:
5828   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
5829     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
5830     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
5831   }
5832   case NEON::BI__builtin_neon_vcvtx_f32_v: {
5833     llvm::Type *Tys[2] = { VTy->getTruncatedElementVectorType(VTy), Ty};
5834     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
5835 
5836   }
5837   case NEON::BI__builtin_neon_vext_v:
5838   case NEON::BI__builtin_neon_vextq_v: {
5839     int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
5840     SmallVector<int, 16> Indices;
5841     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
5842       Indices.push_back(i+CV);
5843 
5844     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5845     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5846     return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
5847   }
5848   case NEON::BI__builtin_neon_vfma_v:
5849   case NEON::BI__builtin_neon_vfmaq_v: {
5850     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5851     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5852     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5853 
5854     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
5855     return emitCallMaybeConstrainedFPBuiltin(
5856         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
5857         {Ops[1], Ops[2], Ops[0]});
5858   }
5859   case NEON::BI__builtin_neon_vld1_v:
5860   case NEON::BI__builtin_neon_vld1q_v: {
5861     llvm::Type *Tys[] = {Ty, Int8PtrTy};
5862     Ops.push_back(getAlignmentValue32(PtrOp0));
5863     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
5864   }
5865   case NEON::BI__builtin_neon_vld1_x2_v:
5866   case NEON::BI__builtin_neon_vld1q_x2_v:
5867   case NEON::BI__builtin_neon_vld1_x3_v:
5868   case NEON::BI__builtin_neon_vld1q_x3_v:
5869   case NEON::BI__builtin_neon_vld1_x4_v:
5870   case NEON::BI__builtin_neon_vld1q_x4_v: {
5871     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
5872     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
5873     llvm::Type *Tys[2] = { VTy, PTy };
5874     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5875     Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
5876     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5877     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5878     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5879   }
5880   case NEON::BI__builtin_neon_vld2_v:
5881   case NEON::BI__builtin_neon_vld2q_v:
5882   case NEON::BI__builtin_neon_vld3_v:
5883   case NEON::BI__builtin_neon_vld3q_v:
5884   case NEON::BI__builtin_neon_vld4_v:
5885   case NEON::BI__builtin_neon_vld4q_v:
5886   case NEON::BI__builtin_neon_vld2_dup_v:
5887   case NEON::BI__builtin_neon_vld2q_dup_v:
5888   case NEON::BI__builtin_neon_vld3_dup_v:
5889   case NEON::BI__builtin_neon_vld3q_dup_v:
5890   case NEON::BI__builtin_neon_vld4_dup_v:
5891   case NEON::BI__builtin_neon_vld4q_dup_v: {
5892     llvm::Type *Tys[] = {Ty, Int8PtrTy};
5893     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5894     Value *Align = getAlignmentValue32(PtrOp1);
5895     Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
5896     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5897     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5898     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5899   }
5900   case NEON::BI__builtin_neon_vld1_dup_v:
5901   case NEON::BI__builtin_neon_vld1q_dup_v: {
5902     Value *V = UndefValue::get(Ty);
5903     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
5904     PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty);
5905     LoadInst *Ld = Builder.CreateLoad(PtrOp0);
5906     llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
5907     Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
5908     return EmitNeonSplat(Ops[0], CI);
5909   }
5910   case NEON::BI__builtin_neon_vld2_lane_v:
5911   case NEON::BI__builtin_neon_vld2q_lane_v:
5912   case NEON::BI__builtin_neon_vld3_lane_v:
5913   case NEON::BI__builtin_neon_vld3q_lane_v:
5914   case NEON::BI__builtin_neon_vld4_lane_v:
5915   case NEON::BI__builtin_neon_vld4q_lane_v: {
5916     llvm::Type *Tys[] = {Ty, Int8PtrTy};
5917     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5918     for (unsigned I = 2; I < Ops.size() - 1; ++I)
5919       Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
5920     Ops.push_back(getAlignmentValue32(PtrOp1));
5921     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
5922     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5923     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5924     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5925   }
5926   case NEON::BI__builtin_neon_vmovl_v: {
5927     llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
5928     Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
5929     if (Usgn)
5930       return Builder.CreateZExt(Ops[0], Ty, "vmovl");
5931     return Builder.CreateSExt(Ops[0], Ty, "vmovl");
5932   }
5933   case NEON::BI__builtin_neon_vmovn_v: {
5934     llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
5935     Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
5936     return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
5937   }
5938   case NEON::BI__builtin_neon_vmull_v:
5939     // FIXME: the integer vmull operations could be emitted in terms of pure
5940     // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
5941     // hoisting the exts outside loops. Until global ISel comes along that can
5942     // see through such movement this leads to bad CodeGen. So we need an
5943     // intrinsic for now.
5944     Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
5945     Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
5946     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
5947   case NEON::BI__builtin_neon_vpadal_v:
5948   case NEON::BI__builtin_neon_vpadalq_v: {
5949     // The source operand type has twice as many elements of half the size.
5950     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
5951     llvm::Type *EltTy =
5952       llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
5953     auto *NarrowTy =
5954         llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
5955     llvm::Type *Tys[2] = { Ty, NarrowTy };
5956     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
5957   }
5958   case NEON::BI__builtin_neon_vpaddl_v:
5959   case NEON::BI__builtin_neon_vpaddlq_v: {
5960     // The source operand type has twice as many elements of half the size.
5961     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
5962     llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
5963     auto *NarrowTy =
5964         llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
5965     llvm::Type *Tys[2] = { Ty, NarrowTy };
5966     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
5967   }
5968   case NEON::BI__builtin_neon_vqdmlal_v:
5969   case NEON::BI__builtin_neon_vqdmlsl_v: {
5970     SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
5971     Ops[1] =
5972         EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
5973     Ops.resize(2);
5974     return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
5975   }
5976   case NEON::BI__builtin_neon_vqdmulhq_lane_v:
5977   case NEON::BI__builtin_neon_vqdmulh_lane_v:
5978   case NEON::BI__builtin_neon_vqrdmulhq_lane_v:
5979   case NEON::BI__builtin_neon_vqrdmulh_lane_v: {
5980     auto *RTy = cast<llvm::VectorType>(Ty);
5981     if (BuiltinID == NEON::BI__builtin_neon_vqdmulhq_lane_v ||
5982         BuiltinID == NEON::BI__builtin_neon_vqrdmulhq_lane_v)
5983       RTy = llvm::FixedVectorType::get(RTy->getElementType(),
5984                                        RTy->getNumElements() * 2);
5985     llvm::Type *Tys[2] = {
5986         RTy, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
5987                                              /*isQuad*/ false))};
5988     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
5989   }
5990   case NEON::BI__builtin_neon_vqdmulhq_laneq_v:
5991   case NEON::BI__builtin_neon_vqdmulh_laneq_v:
5992   case NEON::BI__builtin_neon_vqrdmulhq_laneq_v:
5993   case NEON::BI__builtin_neon_vqrdmulh_laneq_v: {
5994     llvm::Type *Tys[2] = {
5995         Ty, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
5996                                             /*isQuad*/ true))};
5997     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
5998   }
5999   case NEON::BI__builtin_neon_vqshl_n_v:
6000   case NEON::BI__builtin_neon_vqshlq_n_v:
6001     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
6002                         1, false);
6003   case NEON::BI__builtin_neon_vqshlu_n_v:
6004   case NEON::BI__builtin_neon_vqshluq_n_v:
6005     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
6006                         1, false);
6007   case NEON::BI__builtin_neon_vrecpe_v:
6008   case NEON::BI__builtin_neon_vrecpeq_v:
6009   case NEON::BI__builtin_neon_vrsqrte_v:
6010   case NEON::BI__builtin_neon_vrsqrteq_v:
6011     Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
6012     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
6013   case NEON::BI__builtin_neon_vrndi_v:
6014   case NEON::BI__builtin_neon_vrndiq_v:
6015     Int = Builder.getIsFPConstrained()
6016               ? Intrinsic::experimental_constrained_nearbyint
6017               : Intrinsic::nearbyint;
6018     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
6019   case NEON::BI__builtin_neon_vrshr_n_v:
6020   case NEON::BI__builtin_neon_vrshrq_n_v:
6021     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
6022                         1, true);
6023   case NEON::BI__builtin_neon_vshl_n_v:
6024   case NEON::BI__builtin_neon_vshlq_n_v:
6025     Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
6026     return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
6027                              "vshl_n");
6028   case NEON::BI__builtin_neon_vshll_n_v: {
6029     llvm::Type *SrcTy = llvm::VectorType::getTruncatedElementVectorType(VTy);
6030     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6031     if (Usgn)
6032       Ops[0] = Builder.CreateZExt(Ops[0], VTy);
6033     else
6034       Ops[0] = Builder.CreateSExt(Ops[0], VTy);
6035     Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
6036     return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
6037   }
6038   case NEON::BI__builtin_neon_vshrn_n_v: {
6039     llvm::Type *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy);
6040     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6041     Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
6042     if (Usgn)
6043       Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
6044     else
6045       Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
6046     return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
6047   }
6048   case NEON::BI__builtin_neon_vshr_n_v:
6049   case NEON::BI__builtin_neon_vshrq_n_v:
6050     return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
6051   case NEON::BI__builtin_neon_vst1_v:
6052   case NEON::BI__builtin_neon_vst1q_v:
6053   case NEON::BI__builtin_neon_vst2_v:
6054   case NEON::BI__builtin_neon_vst2q_v:
6055   case NEON::BI__builtin_neon_vst3_v:
6056   case NEON::BI__builtin_neon_vst3q_v:
6057   case NEON::BI__builtin_neon_vst4_v:
6058   case NEON::BI__builtin_neon_vst4q_v:
6059   case NEON::BI__builtin_neon_vst2_lane_v:
6060   case NEON::BI__builtin_neon_vst2q_lane_v:
6061   case NEON::BI__builtin_neon_vst3_lane_v:
6062   case NEON::BI__builtin_neon_vst3q_lane_v:
6063   case NEON::BI__builtin_neon_vst4_lane_v:
6064   case NEON::BI__builtin_neon_vst4q_lane_v: {
6065     llvm::Type *Tys[] = {Int8PtrTy, Ty};
6066     Ops.push_back(getAlignmentValue32(PtrOp0));
6067     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
6068   }
6069   case NEON::BI__builtin_neon_vst1_x2_v:
6070   case NEON::BI__builtin_neon_vst1q_x2_v:
6071   case NEON::BI__builtin_neon_vst1_x3_v:
6072   case NEON::BI__builtin_neon_vst1q_x3_v:
6073   case NEON::BI__builtin_neon_vst1_x4_v:
6074   case NEON::BI__builtin_neon_vst1q_x4_v: {
6075     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
6076     // TODO: Currently in AArch32 mode the pointer operand comes first, whereas
6077     // in AArch64 it comes last. We may want to stick to one or another.
6078     if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be ||
6079         Arch == llvm::Triple::aarch64_32) {
6080       llvm::Type *Tys[2] = { VTy, PTy };
6081       std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
6082       return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
6083     }
6084     llvm::Type *Tys[2] = { PTy, VTy };
6085     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
6086   }
6087   case NEON::BI__builtin_neon_vsubhn_v: {
6088     llvm::VectorType *SrcTy =
6089         llvm::VectorType::getExtendedElementVectorType(VTy);
6090 
6091     // %sum = add <4 x i32> %lhs, %rhs
6092     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6093     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
6094     Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
6095 
6096     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
6097     Constant *ShiftAmt =
6098         ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
6099     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
6100 
6101     // %res = trunc <4 x i32> %high to <4 x i16>
6102     return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
6103   }
6104   case NEON::BI__builtin_neon_vtrn_v:
6105   case NEON::BI__builtin_neon_vtrnq_v: {
6106     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
6107     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6108     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6109     Value *SV = nullptr;
6110 
6111     for (unsigned vi = 0; vi != 2; ++vi) {
6112       SmallVector<int, 16> Indices;
6113       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
6114         Indices.push_back(i+vi);
6115         Indices.push_back(i+e+vi);
6116       }
6117       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
6118       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
6119       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
6120     }
6121     return SV;
6122   }
6123   case NEON::BI__builtin_neon_vtst_v:
6124   case NEON::BI__builtin_neon_vtstq_v: {
6125     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6126     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6127     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
6128     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
6129                                 ConstantAggregateZero::get(Ty));
6130     return Builder.CreateSExt(Ops[0], Ty, "vtst");
6131   }
6132   case NEON::BI__builtin_neon_vuzp_v:
6133   case NEON::BI__builtin_neon_vuzpq_v: {
6134     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
6135     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6136     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6137     Value *SV = nullptr;
6138 
6139     for (unsigned vi = 0; vi != 2; ++vi) {
6140       SmallVector<int, 16> Indices;
6141       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
6142         Indices.push_back(2*i+vi);
6143 
6144       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
6145       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
6146       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
6147     }
6148     return SV;
6149   }
6150   case NEON::BI__builtin_neon_vzip_v:
6151   case NEON::BI__builtin_neon_vzipq_v: {
6152     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
6153     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6154     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6155     Value *SV = nullptr;
6156 
6157     for (unsigned vi = 0; vi != 2; ++vi) {
6158       SmallVector<int, 16> Indices;
6159       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
6160         Indices.push_back((i + vi*e) >> 1);
6161         Indices.push_back(((i + vi*e) >> 1)+e);
6162       }
6163       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
6164       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
6165       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
6166     }
6167     return SV;
6168   }
6169   case NEON::BI__builtin_neon_vdot_v:
6170   case NEON::BI__builtin_neon_vdotq_v: {
6171     auto *InputTy =
6172         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
6173     llvm::Type *Tys[2] = { Ty, InputTy };
6174     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
6175     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot");
6176   }
6177   case NEON::BI__builtin_neon_vfmlal_low_v:
6178   case NEON::BI__builtin_neon_vfmlalq_low_v: {
6179     auto *InputTy =
6180         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
6181     llvm::Type *Tys[2] = { Ty, InputTy };
6182     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low");
6183   }
6184   case NEON::BI__builtin_neon_vfmlsl_low_v:
6185   case NEON::BI__builtin_neon_vfmlslq_low_v: {
6186     auto *InputTy =
6187         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
6188     llvm::Type *Tys[2] = { Ty, InputTy };
6189     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low");
6190   }
6191   case NEON::BI__builtin_neon_vfmlal_high_v:
6192   case NEON::BI__builtin_neon_vfmlalq_high_v: {
6193     auto *InputTy =
6194         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
6195     llvm::Type *Tys[2] = { Ty, InputTy };
6196     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high");
6197   }
6198   case NEON::BI__builtin_neon_vfmlsl_high_v:
6199   case NEON::BI__builtin_neon_vfmlslq_high_v: {
6200     auto *InputTy =
6201         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
6202     llvm::Type *Tys[2] = { Ty, InputTy };
6203     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high");
6204   }
6205   case NEON::BI__builtin_neon_vmmlaq_v: {
6206     auto *InputTy =
6207         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
6208     llvm::Type *Tys[2] = { Ty, InputTy };
6209     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
6210     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmmla");
6211   }
6212   case NEON::BI__builtin_neon_vusmmlaq_v: {
6213     auto *InputTy =
6214         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
6215     llvm::Type *Tys[2] = { Ty, InputTy };
6216     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusmmla");
6217   }
6218   case NEON::BI__builtin_neon_vusdot_v:
6219   case NEON::BI__builtin_neon_vusdotq_v: {
6220     auto *InputTy =
6221         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
6222     llvm::Type *Tys[2] = { Ty, InputTy };
6223     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusdot");
6224   }
6225   case NEON::BI__builtin_neon_vbfdot_v:
6226   case NEON::BI__builtin_neon_vbfdotq_v: {
6227     llvm::Type *InputTy =
6228         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
6229     llvm::Type *Tys[2] = { Ty, InputTy };
6230     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfdot");
6231   }
6232   case NEON::BI__builtin_neon_vbfmmlaq_v: {
6233     llvm::Type *InputTy =
6234         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
6235     llvm::Type *Tys[2] = { Ty, InputTy };
6236     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfmmla");
6237   }
6238   case NEON::BI__builtin_neon_vbfmlalbq_v: {
6239     llvm::Type *InputTy =
6240         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
6241     llvm::Type *Tys[2] = { Ty, InputTy };
6242     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfmlalb");
6243   }
6244   case NEON::BI__builtin_neon_vbfmlaltq_v: {
6245     llvm::Type *InputTy =
6246         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
6247     llvm::Type *Tys[2] = { Ty, InputTy };
6248     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfmlalt");
6249   }
6250   case NEON::BI__builtin_neon___a32_vcvt_bf16_v: {
6251     llvm::Type *Tys[1] = { Ty };
6252     Function *F = CGM.getIntrinsic(Int, Tys);
6253     return EmitNeonCall(F, Ops, "vcvtfp2bf");
6254   }
6255 
6256   }
6257 
6258   assert(Int && "Expected valid intrinsic number");
6259 
6260   // Determine the type(s) of this overloaded AArch64 intrinsic.
6261   Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
6262 
6263   Value *Result = EmitNeonCall(F, Ops, NameHint);
6264   llvm::Type *ResultType = ConvertType(E->getType());
6265   // AArch64 intrinsic one-element vector type cast to
6266   // scalar type expected by the builtin
6267   return Builder.CreateBitCast(Result, ResultType, NameHint);
6268 }
6269 
6270 Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
6271     Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
6272     const CmpInst::Predicate Ip, const Twine &Name) {
6273   llvm::Type *OTy = Op->getType();
6274 
6275   // FIXME: this is utterly horrific. We should not be looking at previous
6276   // codegen context to find out what needs doing. Unfortunately TableGen
6277   // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
6278   // (etc).
6279   if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
6280     OTy = BI->getOperand(0)->getType();
6281 
6282   Op = Builder.CreateBitCast(Op, OTy);
6283   if (OTy->getScalarType()->isFloatingPointTy()) {
6284     Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
6285   } else {
6286     Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
6287   }
6288   return Builder.CreateSExt(Op, Ty, Name);
6289 }
6290 
6291 static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
6292                                  Value *ExtOp, Value *IndexOp,
6293                                  llvm::Type *ResTy, unsigned IntID,
6294                                  const char *Name) {
6295   SmallVector<Value *, 2> TblOps;
6296   if (ExtOp)
6297     TblOps.push_back(ExtOp);
6298 
6299   // Build a vector containing sequential number like (0, 1, 2, ..., 15)
6300   SmallVector<int, 16> Indices;
6301   llvm::VectorType *TblTy = cast<llvm::VectorType>(Ops[0]->getType());
6302   for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
6303     Indices.push_back(2*i);
6304     Indices.push_back(2*i+1);
6305   }
6306 
6307   int PairPos = 0, End = Ops.size() - 1;
6308   while (PairPos < End) {
6309     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
6310                                                      Ops[PairPos+1], Indices,
6311                                                      Name));
6312     PairPos += 2;
6313   }
6314 
6315   // If there's an odd number of 64-bit lookup table, fill the high 64-bit
6316   // of the 128-bit lookup table with zero.
6317   if (PairPos == End) {
6318     Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
6319     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
6320                                                      ZeroTbl, Indices, Name));
6321   }
6322 
6323   Function *TblF;
6324   TblOps.push_back(IndexOp);
6325   TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
6326 
6327   return CGF.EmitNeonCall(TblF, TblOps, Name);
6328 }
6329 
6330 Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
6331   unsigned Value;
6332   switch (BuiltinID) {
6333   default:
6334     return nullptr;
6335   case ARM::BI__builtin_arm_nop:
6336     Value = 0;
6337     break;
6338   case ARM::BI__builtin_arm_yield:
6339   case ARM::BI__yield:
6340     Value = 1;
6341     break;
6342   case ARM::BI__builtin_arm_wfe:
6343   case ARM::BI__wfe:
6344     Value = 2;
6345     break;
6346   case ARM::BI__builtin_arm_wfi:
6347   case ARM::BI__wfi:
6348     Value = 3;
6349     break;
6350   case ARM::BI__builtin_arm_sev:
6351   case ARM::BI__sev:
6352     Value = 4;
6353     break;
6354   case ARM::BI__builtin_arm_sevl:
6355   case ARM::BI__sevl:
6356     Value = 5;
6357     break;
6358   }
6359 
6360   return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
6361                             llvm::ConstantInt::get(Int32Ty, Value));
6362 }
6363 
6364 enum SpecialRegisterAccessKind {
6365   NormalRead,
6366   VolatileRead,
6367   Write,
6368 };
6369 
6370 // Generates the IR for the read/write special register builtin,
6371 // ValueType is the type of the value that is to be written or read,
6372 // RegisterType is the type of the register being written to or read from.
6373 static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
6374                                          const CallExpr *E,
6375                                          llvm::Type *RegisterType,
6376                                          llvm::Type *ValueType,
6377                                          SpecialRegisterAccessKind AccessKind,
6378                                          StringRef SysReg = "") {
6379   // write and register intrinsics only support 32 and 64 bit operations.
6380   assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64))
6381           && "Unsupported size for register.");
6382 
6383   CodeGen::CGBuilderTy &Builder = CGF.Builder;
6384   CodeGen::CodeGenModule &CGM = CGF.CGM;
6385   LLVMContext &Context = CGM.getLLVMContext();
6386 
6387   if (SysReg.empty()) {
6388     const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
6389     SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
6390   }
6391 
6392   llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
6393   llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
6394   llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
6395 
6396   llvm::Type *Types[] = { RegisterType };
6397 
6398   bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
6399   assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))
6400             && "Can't fit 64-bit value in 32-bit register");
6401 
6402   if (AccessKind != Write) {
6403     assert(AccessKind == NormalRead || AccessKind == VolatileRead);
6404     llvm::Function *F = CGM.getIntrinsic(
6405         AccessKind == VolatileRead ? llvm::Intrinsic::read_volatile_register
6406                                    : llvm::Intrinsic::read_register,
6407         Types);
6408     llvm::Value *Call = Builder.CreateCall(F, Metadata);
6409 
6410     if (MixedTypes)
6411       // Read into 64 bit register and then truncate result to 32 bit.
6412       return Builder.CreateTrunc(Call, ValueType);
6413 
6414     if (ValueType->isPointerTy())
6415       // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
6416       return Builder.CreateIntToPtr(Call, ValueType);
6417 
6418     return Call;
6419   }
6420 
6421   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
6422   llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
6423   if (MixedTypes) {
6424     // Extend 32 bit write value to 64 bit to pass to write.
6425     ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
6426     return Builder.CreateCall(F, { Metadata, ArgValue });
6427   }
6428 
6429   if (ValueType->isPointerTy()) {
6430     // Have VoidPtrTy ArgValue but want to return an i32/i64.
6431     ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
6432     return Builder.CreateCall(F, { Metadata, ArgValue });
6433   }
6434 
6435   return Builder.CreateCall(F, { Metadata, ArgValue });
6436 }
6437 
6438 /// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
6439 /// argument that specifies the vector type.
6440 static bool HasExtraNeonArgument(unsigned BuiltinID) {
6441   switch (BuiltinID) {
6442   default: break;
6443   case NEON::BI__builtin_neon_vget_lane_i8:
6444   case NEON::BI__builtin_neon_vget_lane_i16:
6445   case NEON::BI__builtin_neon_vget_lane_bf16:
6446   case NEON::BI__builtin_neon_vget_lane_i32:
6447   case NEON::BI__builtin_neon_vget_lane_i64:
6448   case NEON::BI__builtin_neon_vget_lane_f32:
6449   case NEON::BI__builtin_neon_vgetq_lane_i8:
6450   case NEON::BI__builtin_neon_vgetq_lane_i16:
6451   case NEON::BI__builtin_neon_vgetq_lane_bf16:
6452   case NEON::BI__builtin_neon_vgetq_lane_i32:
6453   case NEON::BI__builtin_neon_vgetq_lane_i64:
6454   case NEON::BI__builtin_neon_vgetq_lane_f32:
6455   case NEON::BI__builtin_neon_vduph_lane_bf16:
6456   case NEON::BI__builtin_neon_vduph_laneq_bf16:
6457   case NEON::BI__builtin_neon_vset_lane_i8:
6458   case NEON::BI__builtin_neon_vset_lane_i16:
6459   case NEON::BI__builtin_neon_vset_lane_bf16:
6460   case NEON::BI__builtin_neon_vset_lane_i32:
6461   case NEON::BI__builtin_neon_vset_lane_i64:
6462   case NEON::BI__builtin_neon_vset_lane_f32:
6463   case NEON::BI__builtin_neon_vsetq_lane_i8:
6464   case NEON::BI__builtin_neon_vsetq_lane_i16:
6465   case NEON::BI__builtin_neon_vsetq_lane_bf16:
6466   case NEON::BI__builtin_neon_vsetq_lane_i32:
6467   case NEON::BI__builtin_neon_vsetq_lane_i64:
6468   case NEON::BI__builtin_neon_vsetq_lane_f32:
6469   case NEON::BI__builtin_neon_vsha1h_u32:
6470   case NEON::BI__builtin_neon_vsha1cq_u32:
6471   case NEON::BI__builtin_neon_vsha1pq_u32:
6472   case NEON::BI__builtin_neon_vsha1mq_u32:
6473   case NEON::BI__builtin_neon_vcvth_bf16_f32:
6474   case clang::ARM::BI_MoveToCoprocessor:
6475   case clang::ARM::BI_MoveToCoprocessor2:
6476     return false;
6477   }
6478   return true;
6479 }
6480 
6481 Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
6482                                            const CallExpr *E,
6483                                            ReturnValueSlot ReturnValue,
6484                                            llvm::Triple::ArchType Arch) {
6485   if (auto Hint = GetValueForARMHint(BuiltinID))
6486     return Hint;
6487 
6488   if (BuiltinID == ARM::BI__emit) {
6489     bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
6490     llvm::FunctionType *FTy =
6491         llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
6492 
6493     Expr::EvalResult Result;
6494     if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
6495       llvm_unreachable("Sema will ensure that the parameter is constant");
6496 
6497     llvm::APSInt Value = Result.Val.getInt();
6498     uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
6499 
6500     llvm::InlineAsm *Emit =
6501         IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
6502                                  /*hasSideEffects=*/true)
6503                 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
6504                                  /*hasSideEffects=*/true);
6505 
6506     return Builder.CreateCall(Emit);
6507   }
6508 
6509   if (BuiltinID == ARM::BI__builtin_arm_dbg) {
6510     Value *Option = EmitScalarExpr(E->getArg(0));
6511     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
6512   }
6513 
6514   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
6515     Value *Address = EmitScalarExpr(E->getArg(0));
6516     Value *RW      = EmitScalarExpr(E->getArg(1));
6517     Value *IsData  = EmitScalarExpr(E->getArg(2));
6518 
6519     // Locality is not supported on ARM target
6520     Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
6521 
6522     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
6523     return Builder.CreateCall(F, {Address, RW, Locality, IsData});
6524   }
6525 
6526   if (BuiltinID == ARM::BI__builtin_arm_rbit) {
6527     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
6528     return Builder.CreateCall(
6529         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
6530   }
6531 
6532   if (BuiltinID == ARM::BI__builtin_arm_cls) {
6533     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
6534     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls), Arg, "cls");
6535   }
6536   if (BuiltinID == ARM::BI__builtin_arm_cls64) {
6537     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
6538     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls64), Arg,
6539                               "cls");
6540   }
6541 
6542   if (BuiltinID == ARM::BI__clear_cache) {
6543     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
6544     const FunctionDecl *FD = E->getDirectCallee();
6545     Value *Ops[2];
6546     for (unsigned i = 0; i < 2; i++)
6547       Ops[i] = EmitScalarExpr(E->getArg(i));
6548     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
6549     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
6550     StringRef Name = FD->getName();
6551     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
6552   }
6553 
6554   if (BuiltinID == ARM::BI__builtin_arm_mcrr ||
6555       BuiltinID == ARM::BI__builtin_arm_mcrr2) {
6556     Function *F;
6557 
6558     switch (BuiltinID) {
6559     default: llvm_unreachable("unexpected builtin");
6560     case ARM::BI__builtin_arm_mcrr:
6561       F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
6562       break;
6563     case ARM::BI__builtin_arm_mcrr2:
6564       F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
6565       break;
6566     }
6567 
6568     // MCRR{2} instruction has 5 operands but
6569     // the intrinsic has 4 because Rt and Rt2
6570     // are represented as a single unsigned 64
6571     // bit integer in the intrinsic definition
6572     // but internally it's represented as 2 32
6573     // bit integers.
6574 
6575     Value *Coproc = EmitScalarExpr(E->getArg(0));
6576     Value *Opc1 = EmitScalarExpr(E->getArg(1));
6577     Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
6578     Value *CRm = EmitScalarExpr(E->getArg(3));
6579 
6580     Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
6581     Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
6582     Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
6583     Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
6584 
6585     return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
6586   }
6587 
6588   if (BuiltinID == ARM::BI__builtin_arm_mrrc ||
6589       BuiltinID == ARM::BI__builtin_arm_mrrc2) {
6590     Function *F;
6591 
6592     switch (BuiltinID) {
6593     default: llvm_unreachable("unexpected builtin");
6594     case ARM::BI__builtin_arm_mrrc:
6595       F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
6596       break;
6597     case ARM::BI__builtin_arm_mrrc2:
6598       F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
6599       break;
6600     }
6601 
6602     Value *Coproc = EmitScalarExpr(E->getArg(0));
6603     Value *Opc1 = EmitScalarExpr(E->getArg(1));
6604     Value *CRm  = EmitScalarExpr(E->getArg(2));
6605     Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
6606 
6607     // Returns an unsigned 64 bit integer, represented
6608     // as two 32 bit integers.
6609 
6610     Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
6611     Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
6612     Rt = Builder.CreateZExt(Rt, Int64Ty);
6613     Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
6614 
6615     Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
6616     RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
6617     RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
6618 
6619     return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
6620   }
6621 
6622   if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
6623       ((BuiltinID == ARM::BI__builtin_arm_ldrex ||
6624         BuiltinID == ARM::BI__builtin_arm_ldaex) &&
6625        getContext().getTypeSize(E->getType()) == 64) ||
6626       BuiltinID == ARM::BI__ldrexd) {
6627     Function *F;
6628 
6629     switch (BuiltinID) {
6630     default: llvm_unreachable("unexpected builtin");
6631     case ARM::BI__builtin_arm_ldaex:
6632       F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
6633       break;
6634     case ARM::BI__builtin_arm_ldrexd:
6635     case ARM::BI__builtin_arm_ldrex:
6636     case ARM::BI__ldrexd:
6637       F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
6638       break;
6639     }
6640 
6641     Value *LdPtr = EmitScalarExpr(E->getArg(0));
6642     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
6643                                     "ldrexd");
6644 
6645     Value *Val0 = Builder.CreateExtractValue(Val, 1);
6646     Value *Val1 = Builder.CreateExtractValue(Val, 0);
6647     Val0 = Builder.CreateZExt(Val0, Int64Ty);
6648     Val1 = Builder.CreateZExt(Val1, Int64Ty);
6649 
6650     Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
6651     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
6652     Val = Builder.CreateOr(Val, Val1);
6653     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
6654   }
6655 
6656   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
6657       BuiltinID == ARM::BI__builtin_arm_ldaex) {
6658     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
6659 
6660     QualType Ty = E->getType();
6661     llvm::Type *RealResTy = ConvertType(Ty);
6662     llvm::Type *PtrTy = llvm::IntegerType::get(
6663         getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
6664     LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
6665 
6666     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex
6667                                        ? Intrinsic::arm_ldaex
6668                                        : Intrinsic::arm_ldrex,
6669                                    PtrTy);
6670     Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
6671 
6672     if (RealResTy->isPointerTy())
6673       return Builder.CreateIntToPtr(Val, RealResTy);
6674     else {
6675       llvm::Type *IntResTy = llvm::IntegerType::get(
6676           getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
6677       Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
6678       return Builder.CreateBitCast(Val, RealResTy);
6679     }
6680   }
6681 
6682   if (BuiltinID == ARM::BI__builtin_arm_strexd ||
6683       ((BuiltinID == ARM::BI__builtin_arm_stlex ||
6684         BuiltinID == ARM::BI__builtin_arm_strex) &&
6685        getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
6686     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
6687                                        ? Intrinsic::arm_stlexd
6688                                        : Intrinsic::arm_strexd);
6689     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty);
6690 
6691     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
6692     Value *Val = EmitScalarExpr(E->getArg(0));
6693     Builder.CreateStore(Val, Tmp);
6694 
6695     Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
6696     Val = Builder.CreateLoad(LdPtr);
6697 
6698     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
6699     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
6700     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
6701     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
6702   }
6703 
6704   if (BuiltinID == ARM::BI__builtin_arm_strex ||
6705       BuiltinID == ARM::BI__builtin_arm_stlex) {
6706     Value *StoreVal = EmitScalarExpr(E->getArg(0));
6707     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
6708 
6709     QualType Ty = E->getArg(0)->getType();
6710     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
6711                                                  getContext().getTypeSize(Ty));
6712     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
6713 
6714     if (StoreVal->getType()->isPointerTy())
6715       StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
6716     else {
6717       llvm::Type *IntTy = llvm::IntegerType::get(
6718           getLLVMContext(),
6719           CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
6720       StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
6721       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
6722     }
6723 
6724     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
6725                                        ? Intrinsic::arm_stlex
6726                                        : Intrinsic::arm_strex,
6727                                    StoreAddr->getType());
6728     return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
6729   }
6730 
6731   if (BuiltinID == ARM::BI__builtin_arm_clrex) {
6732     Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
6733     return Builder.CreateCall(F);
6734   }
6735 
6736   // CRC32
6737   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
6738   switch (BuiltinID) {
6739   case ARM::BI__builtin_arm_crc32b:
6740     CRCIntrinsicID = Intrinsic::arm_crc32b; break;
6741   case ARM::BI__builtin_arm_crc32cb:
6742     CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
6743   case ARM::BI__builtin_arm_crc32h:
6744     CRCIntrinsicID = Intrinsic::arm_crc32h; break;
6745   case ARM::BI__builtin_arm_crc32ch:
6746     CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
6747   case ARM::BI__builtin_arm_crc32w:
6748   case ARM::BI__builtin_arm_crc32d:
6749     CRCIntrinsicID = Intrinsic::arm_crc32w; break;
6750   case ARM::BI__builtin_arm_crc32cw:
6751   case ARM::BI__builtin_arm_crc32cd:
6752     CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
6753   }
6754 
6755   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
6756     Value *Arg0 = EmitScalarExpr(E->getArg(0));
6757     Value *Arg1 = EmitScalarExpr(E->getArg(1));
6758 
6759     // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
6760     // intrinsics, hence we need different codegen for these cases.
6761     if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
6762         BuiltinID == ARM::BI__builtin_arm_crc32cd) {
6763       Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
6764       Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
6765       Value *Arg1b = Builder.CreateLShr(Arg1, C1);
6766       Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
6767 
6768       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
6769       Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
6770       return Builder.CreateCall(F, {Res, Arg1b});
6771     } else {
6772       Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
6773 
6774       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
6775       return Builder.CreateCall(F, {Arg0, Arg1});
6776     }
6777   }
6778 
6779   if (BuiltinID == ARM::BI__builtin_arm_rsr ||
6780       BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6781       BuiltinID == ARM::BI__builtin_arm_rsrp ||
6782       BuiltinID == ARM::BI__builtin_arm_wsr ||
6783       BuiltinID == ARM::BI__builtin_arm_wsr64 ||
6784       BuiltinID == ARM::BI__builtin_arm_wsrp) {
6785 
6786     SpecialRegisterAccessKind AccessKind = Write;
6787     if (BuiltinID == ARM::BI__builtin_arm_rsr ||
6788         BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6789         BuiltinID == ARM::BI__builtin_arm_rsrp)
6790       AccessKind = VolatileRead;
6791 
6792     bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp ||
6793                             BuiltinID == ARM::BI__builtin_arm_wsrp;
6794 
6795     bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6796                    BuiltinID == ARM::BI__builtin_arm_wsr64;
6797 
6798     llvm::Type *ValueType;
6799     llvm::Type *RegisterType;
6800     if (IsPointerBuiltin) {
6801       ValueType = VoidPtrTy;
6802       RegisterType = Int32Ty;
6803     } else if (Is64Bit) {
6804       ValueType = RegisterType = Int64Ty;
6805     } else {
6806       ValueType = RegisterType = Int32Ty;
6807     }
6808 
6809     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
6810                                       AccessKind);
6811   }
6812 
6813   // Deal with MVE builtins
6814   if (Value *Result = EmitARMMVEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
6815     return Result;
6816   // Handle CDE builtins
6817   if (Value *Result = EmitARMCDEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
6818     return Result;
6819 
6820   // Find out if any arguments are required to be integer constant
6821   // expressions.
6822   unsigned ICEArguments = 0;
6823   ASTContext::GetBuiltinTypeError Error;
6824   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
6825   assert(Error == ASTContext::GE_None && "Should not codegen an error");
6826 
6827   auto getAlignmentValue32 = [&](Address addr) -> Value* {
6828     return Builder.getInt32(addr.getAlignment().getQuantity());
6829   };
6830 
6831   Address PtrOp0 = Address::invalid();
6832   Address PtrOp1 = Address::invalid();
6833   SmallVector<Value*, 4> Ops;
6834   bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
6835   unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
6836   for (unsigned i = 0, e = NumArgs; i != e; i++) {
6837     if (i == 0) {
6838       switch (BuiltinID) {
6839       case NEON::BI__builtin_neon_vld1_v:
6840       case NEON::BI__builtin_neon_vld1q_v:
6841       case NEON::BI__builtin_neon_vld1q_lane_v:
6842       case NEON::BI__builtin_neon_vld1_lane_v:
6843       case NEON::BI__builtin_neon_vld1_dup_v:
6844       case NEON::BI__builtin_neon_vld1q_dup_v:
6845       case NEON::BI__builtin_neon_vst1_v:
6846       case NEON::BI__builtin_neon_vst1q_v:
6847       case NEON::BI__builtin_neon_vst1q_lane_v:
6848       case NEON::BI__builtin_neon_vst1_lane_v:
6849       case NEON::BI__builtin_neon_vst2_v:
6850       case NEON::BI__builtin_neon_vst2q_v:
6851       case NEON::BI__builtin_neon_vst2_lane_v:
6852       case NEON::BI__builtin_neon_vst2q_lane_v:
6853       case NEON::BI__builtin_neon_vst3_v:
6854       case NEON::BI__builtin_neon_vst3q_v:
6855       case NEON::BI__builtin_neon_vst3_lane_v:
6856       case NEON::BI__builtin_neon_vst3q_lane_v:
6857       case NEON::BI__builtin_neon_vst4_v:
6858       case NEON::BI__builtin_neon_vst4q_v:
6859       case NEON::BI__builtin_neon_vst4_lane_v:
6860       case NEON::BI__builtin_neon_vst4q_lane_v:
6861         // Get the alignment for the argument in addition to the value;
6862         // we'll use it later.
6863         PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
6864         Ops.push_back(PtrOp0.getPointer());
6865         continue;
6866       }
6867     }
6868     if (i == 1) {
6869       switch (BuiltinID) {
6870       case NEON::BI__builtin_neon_vld2_v:
6871       case NEON::BI__builtin_neon_vld2q_v:
6872       case NEON::BI__builtin_neon_vld3_v:
6873       case NEON::BI__builtin_neon_vld3q_v:
6874       case NEON::BI__builtin_neon_vld4_v:
6875       case NEON::BI__builtin_neon_vld4q_v:
6876       case NEON::BI__builtin_neon_vld2_lane_v:
6877       case NEON::BI__builtin_neon_vld2q_lane_v:
6878       case NEON::BI__builtin_neon_vld3_lane_v:
6879       case NEON::BI__builtin_neon_vld3q_lane_v:
6880       case NEON::BI__builtin_neon_vld4_lane_v:
6881       case NEON::BI__builtin_neon_vld4q_lane_v:
6882       case NEON::BI__builtin_neon_vld2_dup_v:
6883       case NEON::BI__builtin_neon_vld2q_dup_v:
6884       case NEON::BI__builtin_neon_vld3_dup_v:
6885       case NEON::BI__builtin_neon_vld3q_dup_v:
6886       case NEON::BI__builtin_neon_vld4_dup_v:
6887       case NEON::BI__builtin_neon_vld4q_dup_v:
6888         // Get the alignment for the argument in addition to the value;
6889         // we'll use it later.
6890         PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
6891         Ops.push_back(PtrOp1.getPointer());
6892         continue;
6893       }
6894     }
6895 
6896     if ((ICEArguments & (1 << i)) == 0) {
6897       Ops.push_back(EmitScalarExpr(E->getArg(i)));
6898     } else {
6899       // If this is required to be a constant, constant fold it so that we know
6900       // that the generated intrinsic gets a ConstantInt.
6901       llvm::APSInt Result;
6902       bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
6903       assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
6904       Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
6905     }
6906   }
6907 
6908   switch (BuiltinID) {
6909   default: break;
6910 
6911   case NEON::BI__builtin_neon_vget_lane_i8:
6912   case NEON::BI__builtin_neon_vget_lane_i16:
6913   case NEON::BI__builtin_neon_vget_lane_i32:
6914   case NEON::BI__builtin_neon_vget_lane_i64:
6915   case NEON::BI__builtin_neon_vget_lane_bf16:
6916   case NEON::BI__builtin_neon_vget_lane_f32:
6917   case NEON::BI__builtin_neon_vgetq_lane_i8:
6918   case NEON::BI__builtin_neon_vgetq_lane_i16:
6919   case NEON::BI__builtin_neon_vgetq_lane_i32:
6920   case NEON::BI__builtin_neon_vgetq_lane_i64:
6921   case NEON::BI__builtin_neon_vgetq_lane_bf16:
6922   case NEON::BI__builtin_neon_vgetq_lane_f32:
6923   case NEON::BI__builtin_neon_vduph_lane_bf16:
6924   case NEON::BI__builtin_neon_vduph_laneq_bf16:
6925     return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
6926 
6927   case NEON::BI__builtin_neon_vrndns_f32: {
6928     Value *Arg = EmitScalarExpr(E->getArg(0));
6929     llvm::Type *Tys[] = {Arg->getType()};
6930     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys);
6931     return Builder.CreateCall(F, {Arg}, "vrndn"); }
6932 
6933   case NEON::BI__builtin_neon_vset_lane_i8:
6934   case NEON::BI__builtin_neon_vset_lane_i16:
6935   case NEON::BI__builtin_neon_vset_lane_i32:
6936   case NEON::BI__builtin_neon_vset_lane_i64:
6937   case NEON::BI__builtin_neon_vset_lane_bf16:
6938   case NEON::BI__builtin_neon_vset_lane_f32:
6939   case NEON::BI__builtin_neon_vsetq_lane_i8:
6940   case NEON::BI__builtin_neon_vsetq_lane_i16:
6941   case NEON::BI__builtin_neon_vsetq_lane_i32:
6942   case NEON::BI__builtin_neon_vsetq_lane_i64:
6943   case NEON::BI__builtin_neon_vsetq_lane_bf16:
6944   case NEON::BI__builtin_neon_vsetq_lane_f32:
6945     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
6946 
6947   case NEON::BI__builtin_neon_vsha1h_u32:
6948     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
6949                         "vsha1h");
6950   case NEON::BI__builtin_neon_vsha1cq_u32:
6951     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
6952                         "vsha1h");
6953   case NEON::BI__builtin_neon_vsha1pq_u32:
6954     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
6955                         "vsha1h");
6956   case NEON::BI__builtin_neon_vsha1mq_u32:
6957     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
6958                         "vsha1h");
6959 
6960   case NEON::BI__builtin_neon_vcvth_bf16_f32: {
6961     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vcvtbfp2bf), Ops,
6962                         "vcvtbfp2bf");
6963   }
6964 
6965   // The ARM _MoveToCoprocessor builtins put the input register value as
6966   // the first argument, but the LLVM intrinsic expects it as the third one.
6967   case ARM::BI_MoveToCoprocessor:
6968   case ARM::BI_MoveToCoprocessor2: {
6969     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ?
6970                                    Intrinsic::arm_mcr : Intrinsic::arm_mcr2);
6971     return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
6972                                   Ops[3], Ops[4], Ops[5]});
6973   }
6974   case ARM::BI_BitScanForward:
6975   case ARM::BI_BitScanForward64:
6976     return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
6977   case ARM::BI_BitScanReverse:
6978   case ARM::BI_BitScanReverse64:
6979     return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
6980 
6981   case ARM::BI_InterlockedAnd64:
6982     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
6983   case ARM::BI_InterlockedExchange64:
6984     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
6985   case ARM::BI_InterlockedExchangeAdd64:
6986     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
6987   case ARM::BI_InterlockedExchangeSub64:
6988     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
6989   case ARM::BI_InterlockedOr64:
6990     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
6991   case ARM::BI_InterlockedXor64:
6992     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
6993   case ARM::BI_InterlockedDecrement64:
6994     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
6995   case ARM::BI_InterlockedIncrement64:
6996     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
6997   case ARM::BI_InterlockedExchangeAdd8_acq:
6998   case ARM::BI_InterlockedExchangeAdd16_acq:
6999   case ARM::BI_InterlockedExchangeAdd_acq:
7000   case ARM::BI_InterlockedExchangeAdd64_acq:
7001     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_acq, E);
7002   case ARM::BI_InterlockedExchangeAdd8_rel:
7003   case ARM::BI_InterlockedExchangeAdd16_rel:
7004   case ARM::BI_InterlockedExchangeAdd_rel:
7005   case ARM::BI_InterlockedExchangeAdd64_rel:
7006     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_rel, E);
7007   case ARM::BI_InterlockedExchangeAdd8_nf:
7008   case ARM::BI_InterlockedExchangeAdd16_nf:
7009   case ARM::BI_InterlockedExchangeAdd_nf:
7010   case ARM::BI_InterlockedExchangeAdd64_nf:
7011     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_nf, E);
7012   case ARM::BI_InterlockedExchange8_acq:
7013   case ARM::BI_InterlockedExchange16_acq:
7014   case ARM::BI_InterlockedExchange_acq:
7015   case ARM::BI_InterlockedExchange64_acq:
7016     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_acq, E);
7017   case ARM::BI_InterlockedExchange8_rel:
7018   case ARM::BI_InterlockedExchange16_rel:
7019   case ARM::BI_InterlockedExchange_rel:
7020   case ARM::BI_InterlockedExchange64_rel:
7021     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_rel, E);
7022   case ARM::BI_InterlockedExchange8_nf:
7023   case ARM::BI_InterlockedExchange16_nf:
7024   case ARM::BI_InterlockedExchange_nf:
7025   case ARM::BI_InterlockedExchange64_nf:
7026     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_nf, E);
7027   case ARM::BI_InterlockedCompareExchange8_acq:
7028   case ARM::BI_InterlockedCompareExchange16_acq:
7029   case ARM::BI_InterlockedCompareExchange_acq:
7030   case ARM::BI_InterlockedCompareExchange64_acq:
7031     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_acq, E);
7032   case ARM::BI_InterlockedCompareExchange8_rel:
7033   case ARM::BI_InterlockedCompareExchange16_rel:
7034   case ARM::BI_InterlockedCompareExchange_rel:
7035   case ARM::BI_InterlockedCompareExchange64_rel:
7036     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_rel, E);
7037   case ARM::BI_InterlockedCompareExchange8_nf:
7038   case ARM::BI_InterlockedCompareExchange16_nf:
7039   case ARM::BI_InterlockedCompareExchange_nf:
7040   case ARM::BI_InterlockedCompareExchange64_nf:
7041     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_nf, E);
7042   case ARM::BI_InterlockedOr8_acq:
7043   case ARM::BI_InterlockedOr16_acq:
7044   case ARM::BI_InterlockedOr_acq:
7045   case ARM::BI_InterlockedOr64_acq:
7046     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_acq, E);
7047   case ARM::BI_InterlockedOr8_rel:
7048   case ARM::BI_InterlockedOr16_rel:
7049   case ARM::BI_InterlockedOr_rel:
7050   case ARM::BI_InterlockedOr64_rel:
7051     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_rel, E);
7052   case ARM::BI_InterlockedOr8_nf:
7053   case ARM::BI_InterlockedOr16_nf:
7054   case ARM::BI_InterlockedOr_nf:
7055   case ARM::BI_InterlockedOr64_nf:
7056     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_nf, E);
7057   case ARM::BI_InterlockedXor8_acq:
7058   case ARM::BI_InterlockedXor16_acq:
7059   case ARM::BI_InterlockedXor_acq:
7060   case ARM::BI_InterlockedXor64_acq:
7061     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_acq, E);
7062   case ARM::BI_InterlockedXor8_rel:
7063   case ARM::BI_InterlockedXor16_rel:
7064   case ARM::BI_InterlockedXor_rel:
7065   case ARM::BI_InterlockedXor64_rel:
7066     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_rel, E);
7067   case ARM::BI_InterlockedXor8_nf:
7068   case ARM::BI_InterlockedXor16_nf:
7069   case ARM::BI_InterlockedXor_nf:
7070   case ARM::BI_InterlockedXor64_nf:
7071     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_nf, E);
7072   case ARM::BI_InterlockedAnd8_acq:
7073   case ARM::BI_InterlockedAnd16_acq:
7074   case ARM::BI_InterlockedAnd_acq:
7075   case ARM::BI_InterlockedAnd64_acq:
7076     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_acq, E);
7077   case ARM::BI_InterlockedAnd8_rel:
7078   case ARM::BI_InterlockedAnd16_rel:
7079   case ARM::BI_InterlockedAnd_rel:
7080   case ARM::BI_InterlockedAnd64_rel:
7081     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_rel, E);
7082   case ARM::BI_InterlockedAnd8_nf:
7083   case ARM::BI_InterlockedAnd16_nf:
7084   case ARM::BI_InterlockedAnd_nf:
7085   case ARM::BI_InterlockedAnd64_nf:
7086     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_nf, E);
7087   case ARM::BI_InterlockedIncrement16_acq:
7088   case ARM::BI_InterlockedIncrement_acq:
7089   case ARM::BI_InterlockedIncrement64_acq:
7090     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_acq, E);
7091   case ARM::BI_InterlockedIncrement16_rel:
7092   case ARM::BI_InterlockedIncrement_rel:
7093   case ARM::BI_InterlockedIncrement64_rel:
7094     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_rel, E);
7095   case ARM::BI_InterlockedIncrement16_nf:
7096   case ARM::BI_InterlockedIncrement_nf:
7097   case ARM::BI_InterlockedIncrement64_nf:
7098     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_nf, E);
7099   case ARM::BI_InterlockedDecrement16_acq:
7100   case ARM::BI_InterlockedDecrement_acq:
7101   case ARM::BI_InterlockedDecrement64_acq:
7102     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_acq, E);
7103   case ARM::BI_InterlockedDecrement16_rel:
7104   case ARM::BI_InterlockedDecrement_rel:
7105   case ARM::BI_InterlockedDecrement64_rel:
7106     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_rel, E);
7107   case ARM::BI_InterlockedDecrement16_nf:
7108   case ARM::BI_InterlockedDecrement_nf:
7109   case ARM::BI_InterlockedDecrement64_nf:
7110     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_nf, E);
7111   }
7112 
7113   // Get the last argument, which specifies the vector type.
7114   assert(HasExtraArg);
7115   llvm::APSInt Result;
7116   const Expr *Arg = E->getArg(E->getNumArgs()-1);
7117   if (!Arg->isIntegerConstantExpr(Result, getContext()))
7118     return nullptr;
7119 
7120   if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
7121       BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
7122     // Determine the overloaded type of this builtin.
7123     llvm::Type *Ty;
7124     if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
7125       Ty = FloatTy;
7126     else
7127       Ty = DoubleTy;
7128 
7129     // Determine whether this is an unsigned conversion or not.
7130     bool usgn = Result.getZExtValue() == 1;
7131     unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
7132 
7133     // Call the appropriate intrinsic.
7134     Function *F = CGM.getIntrinsic(Int, Ty);
7135     return Builder.CreateCall(F, Ops, "vcvtr");
7136   }
7137 
7138   // Determine the type of this overloaded NEON intrinsic.
7139   NeonTypeFlags Type(Result.getZExtValue());
7140   bool usgn = Type.isUnsigned();
7141   bool rightShift = false;
7142 
7143   llvm::VectorType *VTy = GetNeonType(this, Type,
7144                                       getTarget().hasLegalHalfType(),
7145                                       false,
7146                                       getTarget().hasBFloat16Type());
7147   llvm::Type *Ty = VTy;
7148   if (!Ty)
7149     return nullptr;
7150 
7151   // Many NEON builtins have identical semantics and uses in ARM and
7152   // AArch64. Emit these in a single function.
7153   auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
7154   const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
7155       IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
7156   if (Builtin)
7157     return EmitCommonNeonBuiltinExpr(
7158         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
7159         Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch);
7160 
7161   unsigned Int;
7162   switch (BuiltinID) {
7163   default: return nullptr;
7164   case NEON::BI__builtin_neon_vld1q_lane_v:
7165     // Handle 64-bit integer elements as a special case.  Use shuffles of
7166     // one-element vectors to avoid poor code for i64 in the backend.
7167     if (VTy->getElementType()->isIntegerTy(64)) {
7168       // Extract the other lane.
7169       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7170       int Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
7171       Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
7172       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
7173       // Load the value as a one-element vector.
7174       Ty = llvm::FixedVectorType::get(VTy->getElementType(), 1);
7175       llvm::Type *Tys[] = {Ty, Int8PtrTy};
7176       Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
7177       Value *Align = getAlignmentValue32(PtrOp0);
7178       Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
7179       // Combine them.
7180       int Indices[] = {1 - Lane, Lane};
7181       return Builder.CreateShuffleVector(Ops[1], Ld, Indices, "vld1q_lane");
7182     }
7183     LLVM_FALLTHROUGH;
7184   case NEON::BI__builtin_neon_vld1_lane_v: {
7185     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7186     PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
7187     Value *Ld = Builder.CreateLoad(PtrOp0);
7188     return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
7189   }
7190   case NEON::BI__builtin_neon_vqrshrn_n_v:
7191     Int =
7192       usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
7193     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
7194                         1, true);
7195   case NEON::BI__builtin_neon_vqrshrun_n_v:
7196     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
7197                         Ops, "vqrshrun_n", 1, true);
7198   case NEON::BI__builtin_neon_vqshrn_n_v:
7199     Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
7200     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
7201                         1, true);
7202   case NEON::BI__builtin_neon_vqshrun_n_v:
7203     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
7204                         Ops, "vqshrun_n", 1, true);
7205   case NEON::BI__builtin_neon_vrecpe_v:
7206   case NEON::BI__builtin_neon_vrecpeq_v:
7207     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
7208                         Ops, "vrecpe");
7209   case NEON::BI__builtin_neon_vrshrn_n_v:
7210     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
7211                         Ops, "vrshrn_n", 1, true);
7212   case NEON::BI__builtin_neon_vrsra_n_v:
7213   case NEON::BI__builtin_neon_vrsraq_n_v:
7214     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7215     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7216     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
7217     Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
7218     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
7219     return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
7220   case NEON::BI__builtin_neon_vsri_n_v:
7221   case NEON::BI__builtin_neon_vsriq_n_v:
7222     rightShift = true;
7223     LLVM_FALLTHROUGH;
7224   case NEON::BI__builtin_neon_vsli_n_v:
7225   case NEON::BI__builtin_neon_vsliq_n_v:
7226     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
7227     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
7228                         Ops, "vsli_n");
7229   case NEON::BI__builtin_neon_vsra_n_v:
7230   case NEON::BI__builtin_neon_vsraq_n_v:
7231     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7232     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
7233     return Builder.CreateAdd(Ops[0], Ops[1]);
7234   case NEON::BI__builtin_neon_vst1q_lane_v:
7235     // Handle 64-bit integer elements as a special case.  Use a shuffle to get
7236     // a one-element vector and avoid poor code for i64 in the backend.
7237     if (VTy->getElementType()->isIntegerTy(64)) {
7238       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7239       Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
7240       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
7241       Ops[2] = getAlignmentValue32(PtrOp0);
7242       llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
7243       return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
7244                                                  Tys), Ops);
7245     }
7246     LLVM_FALLTHROUGH;
7247   case NEON::BI__builtin_neon_vst1_lane_v: {
7248     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7249     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
7250     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
7251     auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty));
7252     return St;
7253   }
7254   case NEON::BI__builtin_neon_vtbl1_v:
7255     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
7256                         Ops, "vtbl1");
7257   case NEON::BI__builtin_neon_vtbl2_v:
7258     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
7259                         Ops, "vtbl2");
7260   case NEON::BI__builtin_neon_vtbl3_v:
7261     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
7262                         Ops, "vtbl3");
7263   case NEON::BI__builtin_neon_vtbl4_v:
7264     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
7265                         Ops, "vtbl4");
7266   case NEON::BI__builtin_neon_vtbx1_v:
7267     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
7268                         Ops, "vtbx1");
7269   case NEON::BI__builtin_neon_vtbx2_v:
7270     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
7271                         Ops, "vtbx2");
7272   case NEON::BI__builtin_neon_vtbx3_v:
7273     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
7274                         Ops, "vtbx3");
7275   case NEON::BI__builtin_neon_vtbx4_v:
7276     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
7277                         Ops, "vtbx4");
7278   }
7279 }
7280 
7281 template<typename Integer>
7282 static Integer GetIntegerConstantValue(const Expr *E, ASTContext &Context) {
7283   llvm::APSInt IntVal;
7284   bool IsConst = E->isIntegerConstantExpr(IntVal, Context);
7285   assert(IsConst && "Sema should have checked this was a constant");
7286   (void)IsConst;
7287   return IntVal.getExtValue();
7288 }
7289 
7290 static llvm::Value *SignOrZeroExtend(CGBuilderTy &Builder, llvm::Value *V,
7291                                      llvm::Type *T, bool Unsigned) {
7292   // Helper function called by Tablegen-constructed ARM MVE builtin codegen,
7293   // which finds it convenient to specify signed/unsigned as a boolean flag.
7294   return Unsigned ? Builder.CreateZExt(V, T) : Builder.CreateSExt(V, T);
7295 }
7296 
7297 static llvm::Value *MVEImmediateShr(CGBuilderTy &Builder, llvm::Value *V,
7298                                     uint32_t Shift, bool Unsigned) {
7299   // MVE helper function for integer shift right. This must handle signed vs
7300   // unsigned, and also deal specially with the case where the shift count is
7301   // equal to the lane size. In LLVM IR, an LShr with that parameter would be
7302   // undefined behavior, but in MVE it's legal, so we must convert it to code
7303   // that is not undefined in IR.
7304   unsigned LaneBits = cast<llvm::VectorType>(V->getType())
7305                           ->getElementType()
7306                           ->getPrimitiveSizeInBits();
7307   if (Shift == LaneBits) {
7308     // An unsigned shift of the full lane size always generates zero, so we can
7309     // simply emit a zero vector. A signed shift of the full lane size does the
7310     // same thing as shifting by one bit fewer.
7311     if (Unsigned)
7312       return llvm::Constant::getNullValue(V->getType());
7313     else
7314       --Shift;
7315   }
7316   return Unsigned ? Builder.CreateLShr(V, Shift) : Builder.CreateAShr(V, Shift);
7317 }
7318 
7319 static llvm::Value *ARMMVEVectorSplat(CGBuilderTy &Builder, llvm::Value *V) {
7320   // MVE-specific helper function for a vector splat, which infers the element
7321   // count of the output vector by knowing that MVE vectors are all 128 bits
7322   // wide.
7323   unsigned Elements = 128 / V->getType()->getPrimitiveSizeInBits();
7324   return Builder.CreateVectorSplat(Elements, V);
7325 }
7326 
7327 static llvm::Value *ARMMVEVectorReinterpret(CGBuilderTy &Builder,
7328                                             CodeGenFunction *CGF,
7329                                             llvm::Value *V,
7330                                             llvm::Type *DestType) {
7331   // Convert one MVE vector type into another by reinterpreting its in-register
7332   // format.
7333   //
7334   // Little-endian, this is identical to a bitcast (which reinterprets the
7335   // memory format). But big-endian, they're not necessarily the same, because
7336   // the register and memory formats map to each other differently depending on
7337   // the lane size.
7338   //
7339   // We generate a bitcast whenever we can (if we're little-endian, or if the
7340   // lane sizes are the same anyway). Otherwise we fall back to an IR intrinsic
7341   // that performs the different kind of reinterpretation.
7342   if (CGF->getTarget().isBigEndian() &&
7343       V->getType()->getScalarSizeInBits() != DestType->getScalarSizeInBits()) {
7344     return Builder.CreateCall(
7345         CGF->CGM.getIntrinsic(Intrinsic::arm_mve_vreinterpretq,
7346                               {DestType, V->getType()}),
7347         V);
7348   } else {
7349     return Builder.CreateBitCast(V, DestType);
7350   }
7351 }
7352 
7353 static llvm::Value *VectorUnzip(CGBuilderTy &Builder, llvm::Value *V, bool Odd) {
7354   // Make a shufflevector that extracts every other element of a vector (evens
7355   // or odds, as desired).
7356   SmallVector<int, 16> Indices;
7357   unsigned InputElements =
7358       cast<llvm::VectorType>(V->getType())->getNumElements();
7359   for (unsigned i = 0; i < InputElements; i += 2)
7360     Indices.push_back(i + Odd);
7361   return Builder.CreateShuffleVector(V, llvm::UndefValue::get(V->getType()),
7362                                      Indices);
7363 }
7364 
7365 static llvm::Value *VectorZip(CGBuilderTy &Builder, llvm::Value *V0,
7366                               llvm::Value *V1) {
7367   // Make a shufflevector that interleaves two vectors element by element.
7368   assert(V0->getType() == V1->getType() && "Can't zip different vector types");
7369   SmallVector<int, 16> Indices;
7370   unsigned InputElements =
7371       cast<llvm::VectorType>(V0->getType())->getNumElements();
7372   for (unsigned i = 0; i < InputElements; i++) {
7373     Indices.push_back(i);
7374     Indices.push_back(i + InputElements);
7375   }
7376   return Builder.CreateShuffleVector(V0, V1, Indices);
7377 }
7378 
7379 template<unsigned HighBit, unsigned OtherBits>
7380 static llvm::Value *ARMMVEConstantSplat(CGBuilderTy &Builder, llvm::Type *VT) {
7381   // MVE-specific helper function to make a vector splat of a constant such as
7382   // UINT_MAX or INT_MIN, in which all bits below the highest one are equal.
7383   llvm::Type *T = cast<llvm::VectorType>(VT)->getElementType();
7384   unsigned LaneBits = T->getPrimitiveSizeInBits();
7385   uint32_t Value = HighBit << (LaneBits - 1);
7386   if (OtherBits)
7387     Value |= (1UL << (LaneBits - 1)) - 1;
7388   llvm::Value *Lane = llvm::ConstantInt::get(T, Value);
7389   return ARMMVEVectorSplat(Builder, Lane);
7390 }
7391 
7392 static llvm::Value *ARMMVEVectorElementReverse(CGBuilderTy &Builder,
7393                                                llvm::Value *V,
7394                                                unsigned ReverseWidth) {
7395   // MVE-specific helper function which reverses the elements of a
7396   // vector within every (ReverseWidth)-bit collection of lanes.
7397   SmallVector<int, 16> Indices;
7398   unsigned LaneSize = V->getType()->getScalarSizeInBits();
7399   unsigned Elements = 128 / LaneSize;
7400   unsigned Mask = ReverseWidth / LaneSize - 1;
7401   for (unsigned i = 0; i < Elements; i++)
7402     Indices.push_back(i ^ Mask);
7403   return Builder.CreateShuffleVector(V, llvm::UndefValue::get(V->getType()),
7404                                      Indices);
7405 }
7406 
7407 Value *CodeGenFunction::EmitARMMVEBuiltinExpr(unsigned BuiltinID,
7408                                               const CallExpr *E,
7409                                               ReturnValueSlot ReturnValue,
7410                                               llvm::Triple::ArchType Arch) {
7411   enum class CustomCodeGen { VLD24, VST24 } CustomCodeGenType;
7412   Intrinsic::ID IRIntr;
7413   unsigned NumVectors;
7414 
7415   // Code autogenerated by Tablegen will handle all the simple builtins.
7416   switch (BuiltinID) {
7417     #include "clang/Basic/arm_mve_builtin_cg.inc"
7418 
7419     // If we didn't match an MVE builtin id at all, go back to the
7420     // main EmitARMBuiltinExpr.
7421   default:
7422     return nullptr;
7423   }
7424 
7425   // Anything that breaks from that switch is an MVE builtin that
7426   // needs handwritten code to generate.
7427 
7428   switch (CustomCodeGenType) {
7429 
7430   case CustomCodeGen::VLD24: {
7431     llvm::SmallVector<Value *, 4> Ops;
7432     llvm::SmallVector<llvm::Type *, 4> Tys;
7433 
7434     auto MvecCType = E->getType();
7435     auto MvecLType = ConvertType(MvecCType);
7436     assert(MvecLType->isStructTy() &&
7437            "Return type for vld[24]q should be a struct");
7438     assert(MvecLType->getStructNumElements() == 1 &&
7439            "Return-type struct for vld[24]q should have one element");
7440     auto MvecLTypeInner = MvecLType->getStructElementType(0);
7441     assert(MvecLTypeInner->isArrayTy() &&
7442            "Return-type struct for vld[24]q should contain an array");
7443     assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
7444            "Array member of return-type struct vld[24]q has wrong length");
7445     auto VecLType = MvecLTypeInner->getArrayElementType();
7446 
7447     Tys.push_back(VecLType);
7448 
7449     auto Addr = E->getArg(0);
7450     Ops.push_back(EmitScalarExpr(Addr));
7451     Tys.push_back(ConvertType(Addr->getType()));
7452 
7453     Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
7454     Value *LoadResult = Builder.CreateCall(F, Ops);
7455     Value *MvecOut = UndefValue::get(MvecLType);
7456     for (unsigned i = 0; i < NumVectors; ++i) {
7457       Value *Vec = Builder.CreateExtractValue(LoadResult, i);
7458       MvecOut = Builder.CreateInsertValue(MvecOut, Vec, {0, i});
7459     }
7460 
7461     if (ReturnValue.isNull())
7462       return MvecOut;
7463     else
7464       return Builder.CreateStore(MvecOut, ReturnValue.getValue());
7465   }
7466 
7467   case CustomCodeGen::VST24: {
7468     llvm::SmallVector<Value *, 4> Ops;
7469     llvm::SmallVector<llvm::Type *, 4> Tys;
7470 
7471     auto Addr = E->getArg(0);
7472     Ops.push_back(EmitScalarExpr(Addr));
7473     Tys.push_back(ConvertType(Addr->getType()));
7474 
7475     auto MvecCType = E->getArg(1)->getType();
7476     auto MvecLType = ConvertType(MvecCType);
7477     assert(MvecLType->isStructTy() && "Data type for vst2q should be a struct");
7478     assert(MvecLType->getStructNumElements() == 1 &&
7479            "Data-type struct for vst2q should have one element");
7480     auto MvecLTypeInner = MvecLType->getStructElementType(0);
7481     assert(MvecLTypeInner->isArrayTy() &&
7482            "Data-type struct for vst2q should contain an array");
7483     assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
7484            "Array member of return-type struct vld[24]q has wrong length");
7485     auto VecLType = MvecLTypeInner->getArrayElementType();
7486 
7487     Tys.push_back(VecLType);
7488 
7489     AggValueSlot MvecSlot = CreateAggTemp(MvecCType);
7490     EmitAggExpr(E->getArg(1), MvecSlot);
7491     auto Mvec = Builder.CreateLoad(MvecSlot.getAddress());
7492     for (unsigned i = 0; i < NumVectors; i++)
7493       Ops.push_back(Builder.CreateExtractValue(Mvec, {0, i}));
7494 
7495     Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
7496     Value *ToReturn = nullptr;
7497     for (unsigned i = 0; i < NumVectors; i++) {
7498       Ops.push_back(llvm::ConstantInt::get(Int32Ty, i));
7499       ToReturn = Builder.CreateCall(F, Ops);
7500       Ops.pop_back();
7501     }
7502     return ToReturn;
7503   }
7504   }
7505   llvm_unreachable("unknown custom codegen type.");
7506 }
7507 
7508 Value *CodeGenFunction::EmitARMCDEBuiltinExpr(unsigned BuiltinID,
7509                                               const CallExpr *E,
7510                                               ReturnValueSlot ReturnValue,
7511                                               llvm::Triple::ArchType Arch) {
7512   switch (BuiltinID) {
7513   default:
7514     return nullptr;
7515 #include "clang/Basic/arm_cde_builtin_cg.inc"
7516   }
7517 }
7518 
7519 static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
7520                                       const CallExpr *E,
7521                                       SmallVectorImpl<Value *> &Ops,
7522                                       llvm::Triple::ArchType Arch) {
7523   unsigned int Int = 0;
7524   const char *s = nullptr;
7525 
7526   switch (BuiltinID) {
7527   default:
7528     return nullptr;
7529   case NEON::BI__builtin_neon_vtbl1_v:
7530   case NEON::BI__builtin_neon_vqtbl1_v:
7531   case NEON::BI__builtin_neon_vqtbl1q_v:
7532   case NEON::BI__builtin_neon_vtbl2_v:
7533   case NEON::BI__builtin_neon_vqtbl2_v:
7534   case NEON::BI__builtin_neon_vqtbl2q_v:
7535   case NEON::BI__builtin_neon_vtbl3_v:
7536   case NEON::BI__builtin_neon_vqtbl3_v:
7537   case NEON::BI__builtin_neon_vqtbl3q_v:
7538   case NEON::BI__builtin_neon_vtbl4_v:
7539   case NEON::BI__builtin_neon_vqtbl4_v:
7540   case NEON::BI__builtin_neon_vqtbl4q_v:
7541     break;
7542   case NEON::BI__builtin_neon_vtbx1_v:
7543   case NEON::BI__builtin_neon_vqtbx1_v:
7544   case NEON::BI__builtin_neon_vqtbx1q_v:
7545   case NEON::BI__builtin_neon_vtbx2_v:
7546   case NEON::BI__builtin_neon_vqtbx2_v:
7547   case NEON::BI__builtin_neon_vqtbx2q_v:
7548   case NEON::BI__builtin_neon_vtbx3_v:
7549   case NEON::BI__builtin_neon_vqtbx3_v:
7550   case NEON::BI__builtin_neon_vqtbx3q_v:
7551   case NEON::BI__builtin_neon_vtbx4_v:
7552   case NEON::BI__builtin_neon_vqtbx4_v:
7553   case NEON::BI__builtin_neon_vqtbx4q_v:
7554     break;
7555   }
7556 
7557   assert(E->getNumArgs() >= 3);
7558 
7559   // Get the last argument, which specifies the vector type.
7560   llvm::APSInt Result;
7561   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
7562   if (!Arg->isIntegerConstantExpr(Result, CGF.getContext()))
7563     return nullptr;
7564 
7565   // Determine the type of this overloaded NEON intrinsic.
7566   NeonTypeFlags Type(Result.getZExtValue());
7567   llvm::VectorType *Ty = GetNeonType(&CGF, Type);
7568   if (!Ty)
7569     return nullptr;
7570 
7571   CodeGen::CGBuilderTy &Builder = CGF.Builder;
7572 
7573   // AArch64 scalar builtins are not overloaded, they do not have an extra
7574   // argument that specifies the vector type, need to handle each case.
7575   switch (BuiltinID) {
7576   case NEON::BI__builtin_neon_vtbl1_v: {
7577     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr,
7578                               Ops[1], Ty, Intrinsic::aarch64_neon_tbl1,
7579                               "vtbl1");
7580   }
7581   case NEON::BI__builtin_neon_vtbl2_v: {
7582     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr,
7583                               Ops[2], Ty, Intrinsic::aarch64_neon_tbl1,
7584                               "vtbl1");
7585   }
7586   case NEON::BI__builtin_neon_vtbl3_v: {
7587     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr,
7588                               Ops[3], Ty, Intrinsic::aarch64_neon_tbl2,
7589                               "vtbl2");
7590   }
7591   case NEON::BI__builtin_neon_vtbl4_v: {
7592     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr,
7593                               Ops[4], Ty, Intrinsic::aarch64_neon_tbl2,
7594                               "vtbl2");
7595   }
7596   case NEON::BI__builtin_neon_vtbx1_v: {
7597     Value *TblRes =
7598         packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2],
7599                            Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
7600 
7601     llvm::Constant *EightV = ConstantInt::get(Ty, 8);
7602     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
7603     CmpRes = Builder.CreateSExt(CmpRes, Ty);
7604 
7605     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
7606     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
7607     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
7608   }
7609   case NEON::BI__builtin_neon_vtbx2_v: {
7610     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0],
7611                               Ops[3], Ty, Intrinsic::aarch64_neon_tbx1,
7612                               "vtbx1");
7613   }
7614   case NEON::BI__builtin_neon_vtbx3_v: {
7615     Value *TblRes =
7616         packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4],
7617                            Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
7618 
7619     llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
7620     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
7621                                            TwentyFourV);
7622     CmpRes = Builder.CreateSExt(CmpRes, Ty);
7623 
7624     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
7625     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
7626     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
7627   }
7628   case NEON::BI__builtin_neon_vtbx4_v: {
7629     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0],
7630                               Ops[5], Ty, Intrinsic::aarch64_neon_tbx2,
7631                               "vtbx2");
7632   }
7633   case NEON::BI__builtin_neon_vqtbl1_v:
7634   case NEON::BI__builtin_neon_vqtbl1q_v:
7635     Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
7636   case NEON::BI__builtin_neon_vqtbl2_v:
7637   case NEON::BI__builtin_neon_vqtbl2q_v: {
7638     Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
7639   case NEON::BI__builtin_neon_vqtbl3_v:
7640   case NEON::BI__builtin_neon_vqtbl3q_v:
7641     Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
7642   case NEON::BI__builtin_neon_vqtbl4_v:
7643   case NEON::BI__builtin_neon_vqtbl4q_v:
7644     Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
7645   case NEON::BI__builtin_neon_vqtbx1_v:
7646   case NEON::BI__builtin_neon_vqtbx1q_v:
7647     Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
7648   case NEON::BI__builtin_neon_vqtbx2_v:
7649   case NEON::BI__builtin_neon_vqtbx2q_v:
7650     Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
7651   case NEON::BI__builtin_neon_vqtbx3_v:
7652   case NEON::BI__builtin_neon_vqtbx3q_v:
7653     Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
7654   case NEON::BI__builtin_neon_vqtbx4_v:
7655   case NEON::BI__builtin_neon_vqtbx4q_v:
7656     Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
7657   }
7658   }
7659 
7660   if (!Int)
7661     return nullptr;
7662 
7663   Function *F = CGF.CGM.getIntrinsic(Int, Ty);
7664   return CGF.EmitNeonCall(F, Ops, s);
7665 }
7666 
7667 Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
7668   auto *VTy = llvm::FixedVectorType::get(Int16Ty, 4);
7669   Op = Builder.CreateBitCast(Op, Int16Ty);
7670   Value *V = UndefValue::get(VTy);
7671   llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
7672   Op = Builder.CreateInsertElement(V, Op, CI);
7673   return Op;
7674 }
7675 
7676 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
7677 /// access builtin.  Only required if it can't be inferred from the base pointer
7678 /// operand.
7679 llvm::Type *CodeGenFunction::SVEBuiltinMemEltTy(SVETypeFlags TypeFlags) {
7680   switch (TypeFlags.getMemEltType()) {
7681   case SVETypeFlags::MemEltTyDefault:
7682     return getEltType(TypeFlags);
7683   case SVETypeFlags::MemEltTyInt8:
7684     return Builder.getInt8Ty();
7685   case SVETypeFlags::MemEltTyInt16:
7686     return Builder.getInt16Ty();
7687   case SVETypeFlags::MemEltTyInt32:
7688     return Builder.getInt32Ty();
7689   case SVETypeFlags::MemEltTyInt64:
7690     return Builder.getInt64Ty();
7691   }
7692   llvm_unreachable("Unknown MemEltType");
7693 }
7694 
7695 llvm::Type *CodeGenFunction::getEltType(SVETypeFlags TypeFlags) {
7696   switch (TypeFlags.getEltType()) {
7697   default:
7698     llvm_unreachable("Invalid SVETypeFlag!");
7699 
7700   case SVETypeFlags::EltTyInt8:
7701     return Builder.getInt8Ty();
7702   case SVETypeFlags::EltTyInt16:
7703     return Builder.getInt16Ty();
7704   case SVETypeFlags::EltTyInt32:
7705     return Builder.getInt32Ty();
7706   case SVETypeFlags::EltTyInt64:
7707     return Builder.getInt64Ty();
7708 
7709   case SVETypeFlags::EltTyFloat16:
7710     return Builder.getHalfTy();
7711   case SVETypeFlags::EltTyFloat32:
7712     return Builder.getFloatTy();
7713   case SVETypeFlags::EltTyFloat64:
7714     return Builder.getDoubleTy();
7715 
7716   case SVETypeFlags::EltTyBFloat16:
7717     return Builder.getBFloatTy();
7718 
7719   case SVETypeFlags::EltTyBool8:
7720   case SVETypeFlags::EltTyBool16:
7721   case SVETypeFlags::EltTyBool32:
7722   case SVETypeFlags::EltTyBool64:
7723     return Builder.getInt1Ty();
7724   }
7725 }
7726 
7727 // Return the llvm predicate vector type corresponding to the specified element
7728 // TypeFlags.
7729 llvm::ScalableVectorType *
7730 CodeGenFunction::getSVEPredType(SVETypeFlags TypeFlags) {
7731   switch (TypeFlags.getEltType()) {
7732   default: llvm_unreachable("Unhandled SVETypeFlag!");
7733 
7734   case SVETypeFlags::EltTyInt8:
7735     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
7736   case SVETypeFlags::EltTyInt16:
7737     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
7738   case SVETypeFlags::EltTyInt32:
7739     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
7740   case SVETypeFlags::EltTyInt64:
7741     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
7742 
7743   case SVETypeFlags::EltTyBFloat16:
7744     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
7745   case SVETypeFlags::EltTyFloat16:
7746     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
7747   case SVETypeFlags::EltTyFloat32:
7748     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
7749   case SVETypeFlags::EltTyFloat64:
7750     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
7751 
7752   case SVETypeFlags::EltTyBool8:
7753     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
7754   case SVETypeFlags::EltTyBool16:
7755     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
7756   case SVETypeFlags::EltTyBool32:
7757     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
7758   case SVETypeFlags::EltTyBool64:
7759     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
7760   }
7761 }
7762 
7763 // Return the llvm vector type corresponding to the specified element TypeFlags.
7764 llvm::ScalableVectorType *
7765 CodeGenFunction::getSVEType(const SVETypeFlags &TypeFlags) {
7766   switch (TypeFlags.getEltType()) {
7767   default:
7768     llvm_unreachable("Invalid SVETypeFlag!");
7769 
7770   case SVETypeFlags::EltTyInt8:
7771     return llvm::ScalableVectorType::get(Builder.getInt8Ty(), 16);
7772   case SVETypeFlags::EltTyInt16:
7773     return llvm::ScalableVectorType::get(Builder.getInt16Ty(), 8);
7774   case SVETypeFlags::EltTyInt32:
7775     return llvm::ScalableVectorType::get(Builder.getInt32Ty(), 4);
7776   case SVETypeFlags::EltTyInt64:
7777     return llvm::ScalableVectorType::get(Builder.getInt64Ty(), 2);
7778 
7779   case SVETypeFlags::EltTyFloat16:
7780     return llvm::ScalableVectorType::get(Builder.getHalfTy(), 8);
7781   case SVETypeFlags::EltTyBFloat16:
7782     return llvm::ScalableVectorType::get(Builder.getBFloatTy(), 8);
7783   case SVETypeFlags::EltTyFloat32:
7784     return llvm::ScalableVectorType::get(Builder.getFloatTy(), 4);
7785   case SVETypeFlags::EltTyFloat64:
7786     return llvm::ScalableVectorType::get(Builder.getDoubleTy(), 2);
7787 
7788   case SVETypeFlags::EltTyBool8:
7789     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
7790   case SVETypeFlags::EltTyBool16:
7791     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
7792   case SVETypeFlags::EltTyBool32:
7793     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
7794   case SVETypeFlags::EltTyBool64:
7795     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
7796   }
7797 }
7798 
7799 llvm::Value *CodeGenFunction::EmitSVEAllTruePred(SVETypeFlags TypeFlags) {
7800   Function *Ptrue =
7801       CGM.getIntrinsic(Intrinsic::aarch64_sve_ptrue, getSVEPredType(TypeFlags));
7802   return Builder.CreateCall(Ptrue, {Builder.getInt32(/*SV_ALL*/ 31)});
7803 }
7804 
7805 constexpr unsigned SVEBitsPerBlock = 128;
7806 
7807 static llvm::ScalableVectorType *getSVEVectorForElementType(llvm::Type *EltTy) {
7808   unsigned NumElts = SVEBitsPerBlock / EltTy->getScalarSizeInBits();
7809   return llvm::ScalableVectorType::get(EltTy, NumElts);
7810 }
7811 
7812 // Reinterpret the input predicate so that it can be used to correctly isolate
7813 // the elements of the specified datatype.
7814 Value *CodeGenFunction::EmitSVEPredicateCast(Value *Pred,
7815                                              llvm::ScalableVectorType *VTy) {
7816   auto *RTy = llvm::VectorType::get(IntegerType::get(getLLVMContext(), 1), VTy);
7817   if (Pred->getType() == RTy)
7818     return Pred;
7819 
7820   unsigned IntID;
7821   llvm::Type *IntrinsicTy;
7822   switch (VTy->getMinNumElements()) {
7823   default:
7824     llvm_unreachable("unsupported element count!");
7825   case 2:
7826   case 4:
7827   case 8:
7828     IntID = Intrinsic::aarch64_sve_convert_from_svbool;
7829     IntrinsicTy = RTy;
7830     break;
7831   case 16:
7832     IntID = Intrinsic::aarch64_sve_convert_to_svbool;
7833     IntrinsicTy = Pred->getType();
7834     break;
7835   }
7836 
7837   Function *F = CGM.getIntrinsic(IntID, IntrinsicTy);
7838   Value *C = Builder.CreateCall(F, Pred);
7839   assert(C->getType() == RTy && "Unexpected return type!");
7840   return C;
7841 }
7842 
7843 Value *CodeGenFunction::EmitSVEGatherLoad(SVETypeFlags TypeFlags,
7844                                           SmallVectorImpl<Value *> &Ops,
7845                                           unsigned IntID) {
7846   auto *ResultTy = getSVEType(TypeFlags);
7847   auto *OverloadedTy =
7848       llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), ResultTy);
7849 
7850   // At the ACLE level there's only one predicate type, svbool_t, which is
7851   // mapped to <n x 16 x i1>. However, this might be incompatible with the
7852   // actual type being loaded. For example, when loading doubles (i64) the
7853   // predicated should be <n x 2 x i1> instead. At the IR level the type of
7854   // the predicate and the data being loaded must match. Cast accordingly.
7855   Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
7856 
7857   Function *F = nullptr;
7858   if (Ops[1]->getType()->isVectorTy())
7859     // This is the "vector base, scalar offset" case. In order to uniquely
7860     // map this built-in to an LLVM IR intrinsic, we need both the return type
7861     // and the type of the vector base.
7862     F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[1]->getType()});
7863   else
7864     // This is the "scalar base, vector offset case". The type of the offset
7865     // is encoded in the name of the intrinsic. We only need to specify the
7866     // return type in order to uniquely map this built-in to an LLVM IR
7867     // intrinsic.
7868     F = CGM.getIntrinsic(IntID, OverloadedTy);
7869 
7870   // Pass 0 when the offset is missing. This can only be applied when using
7871   // the "vector base" addressing mode for which ACLE allows no offset. The
7872   // corresponding LLVM IR always requires an offset.
7873   if (Ops.size() == 2) {
7874     assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset");
7875     Ops.push_back(ConstantInt::get(Int64Ty, 0));
7876   }
7877 
7878   // For "vector base, scalar index" scale the index so that it becomes a
7879   // scalar offset.
7880   if (!TypeFlags.isByteIndexed() && Ops[1]->getType()->isVectorTy()) {
7881     unsigned BytesPerElt =
7882         OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
7883     Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
7884     Ops[2] = Builder.CreateMul(Ops[2], Scale);
7885   }
7886 
7887   Value *Call = Builder.CreateCall(F, Ops);
7888 
7889   // The following sext/zext is only needed when ResultTy != OverloadedTy. In
7890   // other cases it's folded into a nop.
7891   return TypeFlags.isZExtReturn() ? Builder.CreateZExt(Call, ResultTy)
7892                                   : Builder.CreateSExt(Call, ResultTy);
7893 }
7894 
7895 Value *CodeGenFunction::EmitSVEScatterStore(SVETypeFlags TypeFlags,
7896                                             SmallVectorImpl<Value *> &Ops,
7897                                             unsigned IntID) {
7898   auto *SrcDataTy = getSVEType(TypeFlags);
7899   auto *OverloadedTy =
7900       llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), SrcDataTy);
7901 
7902   // In ACLE the source data is passed in the last argument, whereas in LLVM IR
7903   // it's the first argument. Move it accordingly.
7904   Ops.insert(Ops.begin(), Ops.pop_back_val());
7905 
7906   Function *F = nullptr;
7907   if (Ops[2]->getType()->isVectorTy())
7908     // This is the "vector base, scalar offset" case. In order to uniquely
7909     // map this built-in to an LLVM IR intrinsic, we need both the return type
7910     // and the type of the vector base.
7911     F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[2]->getType()});
7912   else
7913     // This is the "scalar base, vector offset case". The type of the offset
7914     // is encoded in the name of the intrinsic. We only need to specify the
7915     // return type in order to uniquely map this built-in to an LLVM IR
7916     // intrinsic.
7917     F = CGM.getIntrinsic(IntID, OverloadedTy);
7918 
7919   // Pass 0 when the offset is missing. This can only be applied when using
7920   // the "vector base" addressing mode for which ACLE allows no offset. The
7921   // corresponding LLVM IR always requires an offset.
7922   if (Ops.size() == 3) {
7923     assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset");
7924     Ops.push_back(ConstantInt::get(Int64Ty, 0));
7925   }
7926 
7927   // Truncation is needed when SrcDataTy != OverloadedTy. In other cases it's
7928   // folded into a nop.
7929   Ops[0] = Builder.CreateTrunc(Ops[0], OverloadedTy);
7930 
7931   // At the ACLE level there's only one predicate type, svbool_t, which is
7932   // mapped to <n x 16 x i1>. However, this might be incompatible with the
7933   // actual type being stored. For example, when storing doubles (i64) the
7934   // predicated should be <n x 2 x i1> instead. At the IR level the type of
7935   // the predicate and the data being stored must match. Cast accordingly.
7936   Ops[1] = EmitSVEPredicateCast(Ops[1], OverloadedTy);
7937 
7938   // For "vector base, scalar index" scale the index so that it becomes a
7939   // scalar offset.
7940   if (!TypeFlags.isByteIndexed() && Ops[2]->getType()->isVectorTy()) {
7941     unsigned BytesPerElt =
7942         OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
7943     Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
7944     Ops[3] = Builder.CreateMul(Ops[3], Scale);
7945   }
7946 
7947   return Builder.CreateCall(F, Ops);
7948 }
7949 
7950 Value *CodeGenFunction::EmitSVEGatherPrefetch(SVETypeFlags TypeFlags,
7951                                               SmallVectorImpl<Value *> &Ops,
7952                                               unsigned IntID) {
7953   // The gather prefetches are overloaded on the vector input - this can either
7954   // be the vector of base addresses or vector of offsets.
7955   auto *OverloadedTy = dyn_cast<llvm::ScalableVectorType>(Ops[1]->getType());
7956   if (!OverloadedTy)
7957     OverloadedTy = cast<llvm::ScalableVectorType>(Ops[2]->getType());
7958 
7959   // Cast the predicate from svbool_t to the right number of elements.
7960   Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
7961 
7962   // vector + imm addressing modes
7963   if (Ops[1]->getType()->isVectorTy()) {
7964     if (Ops.size() == 3) {
7965       // Pass 0 for 'vector+imm' when the index is omitted.
7966       Ops.push_back(ConstantInt::get(Int64Ty, 0));
7967 
7968       // The sv_prfop is the last operand in the builtin and IR intrinsic.
7969       std::swap(Ops[2], Ops[3]);
7970     } else {
7971       // Index needs to be passed as scaled offset.
7972       llvm::Type *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
7973       unsigned BytesPerElt = MemEltTy->getPrimitiveSizeInBits() / 8;
7974       Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
7975       Ops[2] = Builder.CreateMul(Ops[2], Scale);
7976     }
7977   }
7978 
7979   Function *F = CGM.getIntrinsic(IntID, OverloadedTy);
7980   return Builder.CreateCall(F, Ops);
7981 }
7982 
7983 Value *CodeGenFunction::EmitSVEStructLoad(SVETypeFlags TypeFlags,
7984                                           SmallVectorImpl<Value*> &Ops,
7985                                           unsigned IntID) {
7986   llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
7987   auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
7988   auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
7989 
7990   unsigned N;
7991   switch (IntID) {
7992   case Intrinsic::aarch64_sve_ld2:
7993     N = 2;
7994     break;
7995   case Intrinsic::aarch64_sve_ld3:
7996     N = 3;
7997     break;
7998   case Intrinsic::aarch64_sve_ld4:
7999     N = 4;
8000     break;
8001   default:
8002     llvm_unreachable("unknown intrinsic!");
8003   }
8004   auto RetTy = llvm::VectorType::get(VTy->getElementType(),
8005                                      VTy->getElementCount() * N);
8006 
8007 	Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
8008   Value *BasePtr= Builder.CreateBitCast(Ops[1], VecPtrTy);
8009   Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0);
8010   BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset);
8011   BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
8012 
8013   Function *F = CGM.getIntrinsic(IntID, {RetTy, Predicate->getType()});
8014   return Builder.CreateCall(F, { Predicate, BasePtr });
8015 }
8016 
8017 Value *CodeGenFunction::EmitSVEStructStore(SVETypeFlags TypeFlags,
8018                                            SmallVectorImpl<Value*> &Ops,
8019                                            unsigned IntID) {
8020   llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
8021   auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
8022   auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
8023 
8024   unsigned N;
8025   switch (IntID) {
8026   case Intrinsic::aarch64_sve_st2:
8027     N = 2;
8028     break;
8029   case Intrinsic::aarch64_sve_st3:
8030     N = 3;
8031     break;
8032   case Intrinsic::aarch64_sve_st4:
8033     N = 4;
8034     break;
8035   default:
8036     llvm_unreachable("unknown intrinsic!");
8037   }
8038   auto TupleTy =
8039       llvm::VectorType::get(VTy->getElementType(), VTy->getElementCount() * N);
8040 
8041   Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
8042   Value *BasePtr = Builder.CreateBitCast(Ops[1], VecPtrTy);
8043   Value *Offset = Ops.size() > 3 ? Ops[2] : Builder.getInt32(0);
8044   Value *Val = Ops.back();
8045   BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset);
8046   BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
8047 
8048   // The llvm.aarch64.sve.st2/3/4 intrinsics take legal part vectors, so we
8049   // need to break up the tuple vector.
8050   SmallVector<llvm::Value*, 5> Operands;
8051   Function *FExtr =
8052       CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy});
8053   for (unsigned I = 0; I < N; ++I)
8054     Operands.push_back(Builder.CreateCall(FExtr, {Val, Builder.getInt32(I)}));
8055   Operands.append({Predicate, BasePtr});
8056 
8057   Function *F = CGM.getIntrinsic(IntID, { VTy });
8058   return Builder.CreateCall(F, Operands);
8059 }
8060 
8061 // SVE2's svpmullb and svpmullt builtins are similar to the svpmullb_pair and
8062 // svpmullt_pair intrinsics, with the exception that their results are bitcast
8063 // to a wider type.
8064 Value *CodeGenFunction::EmitSVEPMull(SVETypeFlags TypeFlags,
8065                                      SmallVectorImpl<Value *> &Ops,
8066                                      unsigned BuiltinID) {
8067   // Splat scalar operand to vector (intrinsics with _n infix)
8068   if (TypeFlags.hasSplatOperand()) {
8069     unsigned OpNo = TypeFlags.getSplatOperand();
8070     Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
8071   }
8072 
8073   // The pair-wise function has a narrower overloaded type.
8074   Function *F = CGM.getIntrinsic(BuiltinID, Ops[0]->getType());
8075   Value *Call = Builder.CreateCall(F, {Ops[0], Ops[1]});
8076 
8077   // Now bitcast to the wider result type.
8078   llvm::ScalableVectorType *Ty = getSVEType(TypeFlags);
8079   return EmitSVEReinterpret(Call, Ty);
8080 }
8081 
8082 Value *CodeGenFunction::EmitSVEMovl(SVETypeFlags TypeFlags,
8083                                     ArrayRef<Value *> Ops, unsigned BuiltinID) {
8084   llvm::Type *OverloadedTy = getSVEType(TypeFlags);
8085   Function *F = CGM.getIntrinsic(BuiltinID, OverloadedTy);
8086   return Builder.CreateCall(F, {Ops[0], Builder.getInt32(0)});
8087 }
8088 
8089 Value *CodeGenFunction::EmitSVEPrefetchLoad(SVETypeFlags TypeFlags,
8090                                             SmallVectorImpl<Value *> &Ops,
8091                                             unsigned BuiltinID) {
8092   auto *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
8093   auto *VectorTy = getSVEVectorForElementType(MemEltTy);
8094   auto *MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
8095 
8096   Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
8097   Value *BasePtr = Ops[1];
8098 
8099   // Implement the index operand if not omitted.
8100   if (Ops.size() > 3) {
8101     BasePtr = Builder.CreateBitCast(BasePtr, MemoryTy->getPointerTo());
8102     BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]);
8103   }
8104 
8105   // Prefetch intriniscs always expect an i8*
8106   BasePtr = Builder.CreateBitCast(BasePtr, llvm::PointerType::getUnqual(Int8Ty));
8107   Value *PrfOp = Ops.back();
8108 
8109   Function *F = CGM.getIntrinsic(BuiltinID, Predicate->getType());
8110   return Builder.CreateCall(F, {Predicate, BasePtr, PrfOp});
8111 }
8112 
8113 Value *CodeGenFunction::EmitSVEMaskedLoad(const CallExpr *E,
8114                                           llvm::Type *ReturnTy,
8115                                           SmallVectorImpl<Value *> &Ops,
8116                                           unsigned BuiltinID,
8117                                           bool IsZExtReturn) {
8118   QualType LangPTy = E->getArg(1)->getType();
8119   llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
8120       LangPTy->getAs<PointerType>()->getPointeeType());
8121 
8122   // The vector type that is returned may be different from the
8123   // eventual type loaded from memory.
8124   auto VectorTy = cast<llvm::ScalableVectorType>(ReturnTy);
8125   auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
8126 
8127   Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
8128   Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
8129   Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0);
8130   BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset);
8131 
8132   BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
8133   Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
8134   Value *Load = Builder.CreateCall(F, {Predicate, BasePtr});
8135 
8136   return IsZExtReturn ? Builder.CreateZExt(Load, VectorTy)
8137                      : Builder.CreateSExt(Load, VectorTy);
8138 }
8139 
8140 Value *CodeGenFunction::EmitSVEMaskedStore(const CallExpr *E,
8141                                            SmallVectorImpl<Value *> &Ops,
8142                                            unsigned BuiltinID) {
8143   QualType LangPTy = E->getArg(1)->getType();
8144   llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
8145       LangPTy->getAs<PointerType>()->getPointeeType());
8146 
8147   // The vector type that is stored may be different from the
8148   // eventual type stored to memory.
8149   auto VectorTy = cast<llvm::ScalableVectorType>(Ops.back()->getType());
8150   auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
8151 
8152   Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
8153   Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
8154   Value *Offset = Ops.size() == 4 ? Ops[2] : Builder.getInt32(0);
8155   BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset);
8156 
8157   // Last value is always the data
8158   llvm::Value *Val = Builder.CreateTrunc(Ops.back(), MemoryTy);
8159 
8160   BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
8161   Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
8162   return Builder.CreateCall(F, {Val, Predicate, BasePtr});
8163 }
8164 
8165 // Limit the usage of scalable llvm IR generated by the ACLE by using the
8166 // sve dup.x intrinsic instead of IRBuilder::CreateVectorSplat.
8167 Value *CodeGenFunction::EmitSVEDupX(Value *Scalar, llvm::Type *Ty) {
8168   auto F = CGM.getIntrinsic(Intrinsic::aarch64_sve_dup_x, Ty);
8169   return Builder.CreateCall(F, Scalar);
8170 }
8171 
8172 Value *CodeGenFunction::EmitSVEDupX(Value* Scalar) {
8173   return EmitSVEDupX(Scalar, getSVEVectorForElementType(Scalar->getType()));
8174 }
8175 
8176 Value *CodeGenFunction::EmitSVEReinterpret(Value *Val, llvm::Type *Ty) {
8177   // FIXME: For big endian this needs an additional REV, or needs a separate
8178   // intrinsic that is code-generated as a no-op, because the LLVM bitcast
8179   // instruction is defined as 'bitwise' equivalent from memory point of
8180   // view (when storing/reloading), whereas the svreinterpret builtin
8181   // implements bitwise equivalent cast from register point of view.
8182   // LLVM CodeGen for a bitcast must add an explicit REV for big-endian.
8183   return Builder.CreateBitCast(Val, Ty);
8184 }
8185 
8186 static void InsertExplicitZeroOperand(CGBuilderTy &Builder, llvm::Type *Ty,
8187                                       SmallVectorImpl<Value *> &Ops) {
8188   auto *SplatZero = Constant::getNullValue(Ty);
8189   Ops.insert(Ops.begin(), SplatZero);
8190 }
8191 
8192 static void InsertExplicitUndefOperand(CGBuilderTy &Builder, llvm::Type *Ty,
8193                                        SmallVectorImpl<Value *> &Ops) {
8194   auto *SplatUndef = UndefValue::get(Ty);
8195   Ops.insert(Ops.begin(), SplatUndef);
8196 }
8197 
8198 SmallVector<llvm::Type *, 2> CodeGenFunction::getSVEOverloadTypes(
8199     SVETypeFlags TypeFlags, llvm::Type *ResultType, ArrayRef<Value *> Ops) {
8200   if (TypeFlags.isOverloadNone())
8201     return {};
8202 
8203   llvm::Type *DefaultType = getSVEType(TypeFlags);
8204 
8205   if (TypeFlags.isOverloadWhile())
8206     return {DefaultType, Ops[1]->getType()};
8207 
8208   if (TypeFlags.isOverloadWhileRW())
8209     return {getSVEPredType(TypeFlags), Ops[0]->getType()};
8210 
8211   if (TypeFlags.isOverloadCvt() || TypeFlags.isTupleSet())
8212     return {Ops[0]->getType(), Ops.back()->getType()};
8213 
8214   if (TypeFlags.isTupleCreate() || TypeFlags.isTupleGet())
8215     return {ResultType, Ops[0]->getType()};
8216 
8217   assert(TypeFlags.isOverloadDefault() && "Unexpected value for overloads");
8218   return {DefaultType};
8219 }
8220 
8221 Value *CodeGenFunction::EmitAArch64SVEBuiltinExpr(unsigned BuiltinID,
8222                                                   const CallExpr *E) {
8223   // Find out if any arguments are required to be integer constant expressions.
8224   unsigned ICEArguments = 0;
8225   ASTContext::GetBuiltinTypeError Error;
8226   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
8227   assert(Error == ASTContext::GE_None && "Should not codegen an error");
8228 
8229   llvm::Type *Ty = ConvertType(E->getType());
8230   if (BuiltinID >= SVE::BI__builtin_sve_reinterpret_s8_s8 &&
8231       BuiltinID <= SVE::BI__builtin_sve_reinterpret_f64_f64) {
8232     Value *Val = EmitScalarExpr(E->getArg(0));
8233     return EmitSVEReinterpret(Val, Ty);
8234   }
8235 
8236   llvm::SmallVector<Value *, 4> Ops;
8237   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
8238     if ((ICEArguments & (1 << i)) == 0)
8239       Ops.push_back(EmitScalarExpr(E->getArg(i)));
8240     else {
8241       // If this is required to be a constant, constant fold it so that we know
8242       // that the generated intrinsic gets a ConstantInt.
8243       llvm::APSInt Result;
8244       if (!E->getArg(i)->isIntegerConstantExpr(Result, getContext()))
8245         llvm_unreachable("Expected argument to be a constant");
8246 
8247       // Immediates for SVE llvm intrinsics are always 32bit.  We can safely
8248       // truncate because the immediate has been range checked and no valid
8249       // immediate requires more than a handful of bits.
8250       Result = Result.extOrTrunc(32);
8251       Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
8252     }
8253   }
8254 
8255   auto *Builtin = findARMVectorIntrinsicInMap(AArch64SVEIntrinsicMap, BuiltinID,
8256                                               AArch64SVEIntrinsicsProvenSorted);
8257   SVETypeFlags TypeFlags(Builtin->TypeModifier);
8258   if (TypeFlags.isLoad())
8259     return EmitSVEMaskedLoad(E, Ty, Ops, Builtin->LLVMIntrinsic,
8260                              TypeFlags.isZExtReturn());
8261   else if (TypeFlags.isStore())
8262     return EmitSVEMaskedStore(E, Ops, Builtin->LLVMIntrinsic);
8263   else if (TypeFlags.isGatherLoad())
8264     return EmitSVEGatherLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8265   else if (TypeFlags.isScatterStore())
8266     return EmitSVEScatterStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8267   else if (TypeFlags.isPrefetch())
8268     return EmitSVEPrefetchLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8269   else if (TypeFlags.isGatherPrefetch())
8270     return EmitSVEGatherPrefetch(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8271 	else if (TypeFlags.isStructLoad())
8272 		return EmitSVEStructLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8273 	else if (TypeFlags.isStructStore())
8274 		return EmitSVEStructStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8275   else if (TypeFlags.isUndef())
8276     return UndefValue::get(Ty);
8277   else if (Builtin->LLVMIntrinsic != 0) {
8278     if (TypeFlags.getMergeType() == SVETypeFlags::MergeZeroExp)
8279       InsertExplicitZeroOperand(Builder, Ty, Ops);
8280 
8281     if (TypeFlags.getMergeType() == SVETypeFlags::MergeAnyExp)
8282       InsertExplicitUndefOperand(Builder, Ty, Ops);
8283 
8284     // Some ACLE builtins leave out the argument to specify the predicate
8285     // pattern, which is expected to be expanded to an SV_ALL pattern.
8286     if (TypeFlags.isAppendSVALL())
8287       Ops.push_back(Builder.getInt32(/*SV_ALL*/ 31));
8288     if (TypeFlags.isInsertOp1SVALL())
8289       Ops.insert(&Ops[1], Builder.getInt32(/*SV_ALL*/ 31));
8290 
8291     // Predicates must match the main datatype.
8292     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
8293       if (auto PredTy = dyn_cast<llvm::VectorType>(Ops[i]->getType()))
8294         if (PredTy->getElementType()->isIntegerTy(1))
8295           Ops[i] = EmitSVEPredicateCast(Ops[i], getSVEType(TypeFlags));
8296 
8297     // Splat scalar operand to vector (intrinsics with _n infix)
8298     if (TypeFlags.hasSplatOperand()) {
8299       unsigned OpNo = TypeFlags.getSplatOperand();
8300       Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
8301     }
8302 
8303     if (TypeFlags.isReverseCompare())
8304       std::swap(Ops[1], Ops[2]);
8305 
8306     if (TypeFlags.isReverseUSDOT())
8307       std::swap(Ops[1], Ops[2]);
8308 
8309     // Predicated intrinsics with _z suffix need a select w/ zeroinitializer.
8310     if (TypeFlags.getMergeType() == SVETypeFlags::MergeZero) {
8311       llvm::Type *OpndTy = Ops[1]->getType();
8312       auto *SplatZero = Constant::getNullValue(OpndTy);
8313       Function *Sel = CGM.getIntrinsic(Intrinsic::aarch64_sve_sel, OpndTy);
8314       Ops[1] = Builder.CreateCall(Sel, {Ops[0], Ops[1], SplatZero});
8315     }
8316 
8317     Function *F = CGM.getIntrinsic(Builtin->LLVMIntrinsic,
8318                                    getSVEOverloadTypes(TypeFlags, Ty, Ops));
8319     Value *Call = Builder.CreateCall(F, Ops);
8320 
8321     // Predicate results must be converted to svbool_t.
8322     if (auto PredTy = dyn_cast<llvm::VectorType>(Call->getType()))
8323       if (PredTy->getScalarType()->isIntegerTy(1))
8324         Call = EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
8325 
8326     return Call;
8327   }
8328 
8329   switch (BuiltinID) {
8330   default:
8331     return nullptr;
8332 
8333   case SVE::BI__builtin_sve_svmov_b_z: {
8334     // svmov_b_z(pg, op) <=> svand_b_z(pg, op, op)
8335     SVETypeFlags TypeFlags(Builtin->TypeModifier);
8336     llvm::Type* OverloadedTy = getSVEType(TypeFlags);
8337     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_and_z, OverloadedTy);
8338     return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[1]});
8339   }
8340 
8341   case SVE::BI__builtin_sve_svnot_b_z: {
8342     // svnot_b_z(pg, op) <=> sveor_b_z(pg, op, pg)
8343     SVETypeFlags TypeFlags(Builtin->TypeModifier);
8344     llvm::Type* OverloadedTy = getSVEType(TypeFlags);
8345     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_eor_z, OverloadedTy);
8346     return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[0]});
8347   }
8348 
8349   case SVE::BI__builtin_sve_svmovlb_u16:
8350   case SVE::BI__builtin_sve_svmovlb_u32:
8351   case SVE::BI__builtin_sve_svmovlb_u64:
8352     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllb);
8353 
8354   case SVE::BI__builtin_sve_svmovlb_s16:
8355   case SVE::BI__builtin_sve_svmovlb_s32:
8356   case SVE::BI__builtin_sve_svmovlb_s64:
8357     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllb);
8358 
8359   case SVE::BI__builtin_sve_svmovlt_u16:
8360   case SVE::BI__builtin_sve_svmovlt_u32:
8361   case SVE::BI__builtin_sve_svmovlt_u64:
8362     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllt);
8363 
8364   case SVE::BI__builtin_sve_svmovlt_s16:
8365   case SVE::BI__builtin_sve_svmovlt_s32:
8366   case SVE::BI__builtin_sve_svmovlt_s64:
8367     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllt);
8368 
8369   case SVE::BI__builtin_sve_svpmullt_u16:
8370   case SVE::BI__builtin_sve_svpmullt_u64:
8371   case SVE::BI__builtin_sve_svpmullt_n_u16:
8372   case SVE::BI__builtin_sve_svpmullt_n_u64:
8373     return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullt_pair);
8374 
8375   case SVE::BI__builtin_sve_svpmullb_u16:
8376   case SVE::BI__builtin_sve_svpmullb_u64:
8377   case SVE::BI__builtin_sve_svpmullb_n_u16:
8378   case SVE::BI__builtin_sve_svpmullb_n_u64:
8379     return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullb_pair);
8380 
8381   case SVE::BI__builtin_sve_svdup_n_b8:
8382   case SVE::BI__builtin_sve_svdup_n_b16:
8383   case SVE::BI__builtin_sve_svdup_n_b32:
8384   case SVE::BI__builtin_sve_svdup_n_b64: {
8385     Value *CmpNE =
8386         Builder.CreateICmpNE(Ops[0], Constant::getNullValue(Ops[0]->getType()));
8387     llvm::ScalableVectorType *OverloadedTy = getSVEType(TypeFlags);
8388     Value *Dup = EmitSVEDupX(CmpNE, OverloadedTy);
8389     return EmitSVEPredicateCast(Dup, cast<llvm::ScalableVectorType>(Ty));
8390   }
8391 
8392   case SVE::BI__builtin_sve_svdupq_n_b8:
8393   case SVE::BI__builtin_sve_svdupq_n_b16:
8394   case SVE::BI__builtin_sve_svdupq_n_b32:
8395   case SVE::BI__builtin_sve_svdupq_n_b64:
8396   case SVE::BI__builtin_sve_svdupq_n_u8:
8397   case SVE::BI__builtin_sve_svdupq_n_s8:
8398   case SVE::BI__builtin_sve_svdupq_n_u64:
8399   case SVE::BI__builtin_sve_svdupq_n_f64:
8400   case SVE::BI__builtin_sve_svdupq_n_s64:
8401   case SVE::BI__builtin_sve_svdupq_n_u16:
8402   case SVE::BI__builtin_sve_svdupq_n_f16:
8403   case SVE::BI__builtin_sve_svdupq_n_bf16:
8404   case SVE::BI__builtin_sve_svdupq_n_s16:
8405   case SVE::BI__builtin_sve_svdupq_n_u32:
8406   case SVE::BI__builtin_sve_svdupq_n_f32:
8407   case SVE::BI__builtin_sve_svdupq_n_s32: {
8408     // These builtins are implemented by storing each element to an array and using
8409     // ld1rq to materialize a vector.
8410     unsigned NumOpnds = Ops.size();
8411 
8412     bool IsBoolTy =
8413         cast<llvm::VectorType>(Ty)->getElementType()->isIntegerTy(1);
8414 
8415     // For svdupq_n_b* the element type of is an integer of type 128/numelts,
8416     // so that the compare can use the width that is natural for the expected
8417     // number of predicate lanes.
8418     llvm::Type *EltTy = Ops[0]->getType();
8419     if (IsBoolTy)
8420       EltTy = IntegerType::get(getLLVMContext(), SVEBitsPerBlock / NumOpnds);
8421 
8422     Address Alloca = CreateTempAlloca(llvm::ArrayType::get(EltTy, NumOpnds),
8423                                      CharUnits::fromQuantity(16));
8424     for (unsigned I = 0; I < NumOpnds; ++I)
8425       Builder.CreateDefaultAlignedStore(
8426           IsBoolTy ? Builder.CreateZExt(Ops[I], EltTy) : Ops[I],
8427           Builder.CreateGEP(Alloca.getPointer(),
8428                             {Builder.getInt64(0), Builder.getInt64(I)}));
8429 
8430     SVETypeFlags TypeFlags(Builtin->TypeModifier);
8431     Value *Pred = EmitSVEAllTruePred(TypeFlags);
8432 
8433     llvm::Type *OverloadedTy = getSVEVectorForElementType(EltTy);
8434     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_ld1rq, OverloadedTy);
8435     Value *Alloca0 = Builder.CreateGEP(
8436         Alloca.getPointer(), {Builder.getInt64(0), Builder.getInt64(0)});
8437     Value *LD1RQ = Builder.CreateCall(F, {Pred, Alloca0});
8438 
8439     if (!IsBoolTy)
8440       return LD1RQ;
8441 
8442     // For svdupq_n_b* we need to add an additional 'cmpne' with '0'.
8443     F = CGM.getIntrinsic(NumOpnds == 2 ? Intrinsic::aarch64_sve_cmpne
8444                                        : Intrinsic::aarch64_sve_cmpne_wide,
8445                          OverloadedTy);
8446     Value *Call =
8447         Builder.CreateCall(F, {Pred, LD1RQ, EmitSVEDupX(Builder.getInt64(0))});
8448     return EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
8449   }
8450 
8451   case SVE::BI__builtin_sve_svpfalse_b:
8452     return ConstantInt::getFalse(Ty);
8453 
8454   case SVE::BI__builtin_sve_svlen_bf16:
8455   case SVE::BI__builtin_sve_svlen_f16:
8456   case SVE::BI__builtin_sve_svlen_f32:
8457   case SVE::BI__builtin_sve_svlen_f64:
8458   case SVE::BI__builtin_sve_svlen_s8:
8459   case SVE::BI__builtin_sve_svlen_s16:
8460   case SVE::BI__builtin_sve_svlen_s32:
8461   case SVE::BI__builtin_sve_svlen_s64:
8462   case SVE::BI__builtin_sve_svlen_u8:
8463   case SVE::BI__builtin_sve_svlen_u16:
8464   case SVE::BI__builtin_sve_svlen_u32:
8465   case SVE::BI__builtin_sve_svlen_u64: {
8466     SVETypeFlags TF(Builtin->TypeModifier);
8467     auto VTy = cast<llvm::VectorType>(getSVEType(TF));
8468     auto NumEls = llvm::ConstantInt::get(Ty, VTy->getElementCount().Min);
8469 
8470     Function *F = CGM.getIntrinsic(Intrinsic::vscale, Ty);
8471     return Builder.CreateMul(NumEls, Builder.CreateCall(F));
8472   }
8473 
8474   case SVE::BI__builtin_sve_svtbl2_u8:
8475   case SVE::BI__builtin_sve_svtbl2_s8:
8476   case SVE::BI__builtin_sve_svtbl2_u16:
8477   case SVE::BI__builtin_sve_svtbl2_s16:
8478   case SVE::BI__builtin_sve_svtbl2_u32:
8479   case SVE::BI__builtin_sve_svtbl2_s32:
8480   case SVE::BI__builtin_sve_svtbl2_u64:
8481   case SVE::BI__builtin_sve_svtbl2_s64:
8482   case SVE::BI__builtin_sve_svtbl2_f16:
8483   case SVE::BI__builtin_sve_svtbl2_bf16:
8484   case SVE::BI__builtin_sve_svtbl2_f32:
8485   case SVE::BI__builtin_sve_svtbl2_f64: {
8486     SVETypeFlags TF(Builtin->TypeModifier);
8487     auto VTy = cast<llvm::VectorType>(getSVEType(TF));
8488     auto TupleTy = llvm::VectorType::get(VTy->getElementType(),
8489                                          VTy->getElementCount() * 2);
8490     Function *FExtr =
8491         CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy});
8492     Value *V0 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(0)});
8493     Value *V1 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(1)});
8494     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_tbl2, VTy);
8495     return Builder.CreateCall(F, {V0, V1, Ops[1]});
8496   }
8497   }
8498 
8499   /// Should not happen
8500   return nullptr;
8501 }
8502 
8503 Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
8504                                                const CallExpr *E,
8505                                                llvm::Triple::ArchType Arch) {
8506   if (BuiltinID >= AArch64::FirstSVEBuiltin &&
8507       BuiltinID <= AArch64::LastSVEBuiltin)
8508     return EmitAArch64SVEBuiltinExpr(BuiltinID, E);
8509 
8510   unsigned HintID = static_cast<unsigned>(-1);
8511   switch (BuiltinID) {
8512   default: break;
8513   case AArch64::BI__builtin_arm_nop:
8514     HintID = 0;
8515     break;
8516   case AArch64::BI__builtin_arm_yield:
8517   case AArch64::BI__yield:
8518     HintID = 1;
8519     break;
8520   case AArch64::BI__builtin_arm_wfe:
8521   case AArch64::BI__wfe:
8522     HintID = 2;
8523     break;
8524   case AArch64::BI__builtin_arm_wfi:
8525   case AArch64::BI__wfi:
8526     HintID = 3;
8527     break;
8528   case AArch64::BI__builtin_arm_sev:
8529   case AArch64::BI__sev:
8530     HintID = 4;
8531     break;
8532   case AArch64::BI__builtin_arm_sevl:
8533   case AArch64::BI__sevl:
8534     HintID = 5;
8535     break;
8536   }
8537 
8538   if (HintID != static_cast<unsigned>(-1)) {
8539     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
8540     return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
8541   }
8542 
8543   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
8544     Value *Address         = EmitScalarExpr(E->getArg(0));
8545     Value *RW              = EmitScalarExpr(E->getArg(1));
8546     Value *CacheLevel      = EmitScalarExpr(E->getArg(2));
8547     Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
8548     Value *IsData          = EmitScalarExpr(E->getArg(4));
8549 
8550     Value *Locality = nullptr;
8551     if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
8552       // Temporal fetch, needs to convert cache level to locality.
8553       Locality = llvm::ConstantInt::get(Int32Ty,
8554         -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
8555     } else {
8556       // Streaming fetch.
8557       Locality = llvm::ConstantInt::get(Int32Ty, 0);
8558     }
8559 
8560     // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
8561     // PLDL3STRM or PLDL2STRM.
8562     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
8563     return Builder.CreateCall(F, {Address, RW, Locality, IsData});
8564   }
8565 
8566   if (BuiltinID == AArch64::BI__builtin_arm_rbit) {
8567     assert((getContext().getTypeSize(E->getType()) == 32) &&
8568            "rbit of unusual size!");
8569     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8570     return Builder.CreateCall(
8571         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
8572   }
8573   if (BuiltinID == AArch64::BI__builtin_arm_rbit64) {
8574     assert((getContext().getTypeSize(E->getType()) == 64) &&
8575            "rbit of unusual size!");
8576     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8577     return Builder.CreateCall(
8578         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
8579   }
8580 
8581   if (BuiltinID == AArch64::BI__builtin_arm_cls) {
8582     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8583     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls), Arg,
8584                               "cls");
8585   }
8586   if (BuiltinID == AArch64::BI__builtin_arm_cls64) {
8587     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8588     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls64), Arg,
8589                               "cls");
8590   }
8591 
8592   if (BuiltinID == AArch64::BI__builtin_arm_jcvt) {
8593     assert((getContext().getTypeSize(E->getType()) == 32) &&
8594            "__jcvt of unusual size!");
8595     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8596     return Builder.CreateCall(
8597         CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg);
8598   }
8599 
8600   if (BuiltinID == AArch64::BI__clear_cache) {
8601     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
8602     const FunctionDecl *FD = E->getDirectCallee();
8603     Value *Ops[2];
8604     for (unsigned i = 0; i < 2; i++)
8605       Ops[i] = EmitScalarExpr(E->getArg(i));
8606     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
8607     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
8608     StringRef Name = FD->getName();
8609     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
8610   }
8611 
8612   if ((BuiltinID == AArch64::BI__builtin_arm_ldrex ||
8613       BuiltinID == AArch64::BI__builtin_arm_ldaex) &&
8614       getContext().getTypeSize(E->getType()) == 128) {
8615     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
8616                                        ? Intrinsic::aarch64_ldaxp
8617                                        : Intrinsic::aarch64_ldxp);
8618 
8619     Value *LdPtr = EmitScalarExpr(E->getArg(0));
8620     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
8621                                     "ldxp");
8622 
8623     Value *Val0 = Builder.CreateExtractValue(Val, 1);
8624     Value *Val1 = Builder.CreateExtractValue(Val, 0);
8625     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
8626     Val0 = Builder.CreateZExt(Val0, Int128Ty);
8627     Val1 = Builder.CreateZExt(Val1, Int128Ty);
8628 
8629     Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
8630     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
8631     Val = Builder.CreateOr(Val, Val1);
8632     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
8633   } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
8634              BuiltinID == AArch64::BI__builtin_arm_ldaex) {
8635     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
8636 
8637     QualType Ty = E->getType();
8638     llvm::Type *RealResTy = ConvertType(Ty);
8639     llvm::Type *PtrTy = llvm::IntegerType::get(
8640         getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
8641     LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
8642 
8643     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
8644                                        ? Intrinsic::aarch64_ldaxr
8645                                        : Intrinsic::aarch64_ldxr,
8646                                    PtrTy);
8647     Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
8648 
8649     if (RealResTy->isPointerTy())
8650       return Builder.CreateIntToPtr(Val, RealResTy);
8651 
8652     llvm::Type *IntResTy = llvm::IntegerType::get(
8653         getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
8654     Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
8655     return Builder.CreateBitCast(Val, RealResTy);
8656   }
8657 
8658   if ((BuiltinID == AArch64::BI__builtin_arm_strex ||
8659        BuiltinID == AArch64::BI__builtin_arm_stlex) &&
8660       getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
8661     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
8662                                        ? Intrinsic::aarch64_stlxp
8663                                        : Intrinsic::aarch64_stxp);
8664     llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty);
8665 
8666     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
8667     EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
8668 
8669     Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy));
8670     llvm::Value *Val = Builder.CreateLoad(Tmp);
8671 
8672     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
8673     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
8674     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
8675                                          Int8PtrTy);
8676     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
8677   }
8678 
8679   if (BuiltinID == AArch64::BI__builtin_arm_strex ||
8680       BuiltinID == AArch64::BI__builtin_arm_stlex) {
8681     Value *StoreVal = EmitScalarExpr(E->getArg(0));
8682     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
8683 
8684     QualType Ty = E->getArg(0)->getType();
8685     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
8686                                                  getContext().getTypeSize(Ty));
8687     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
8688 
8689     if (StoreVal->getType()->isPointerTy())
8690       StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
8691     else {
8692       llvm::Type *IntTy = llvm::IntegerType::get(
8693           getLLVMContext(),
8694           CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
8695       StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
8696       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
8697     }
8698 
8699     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
8700                                        ? Intrinsic::aarch64_stlxr
8701                                        : Intrinsic::aarch64_stxr,
8702                                    StoreAddr->getType());
8703     return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
8704   }
8705 
8706   if (BuiltinID == AArch64::BI__getReg) {
8707     Expr::EvalResult Result;
8708     if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
8709       llvm_unreachable("Sema will ensure that the parameter is constant");
8710 
8711     llvm::APSInt Value = Result.Val.getInt();
8712     LLVMContext &Context = CGM.getLLVMContext();
8713     std::string Reg = Value == 31 ? "sp" : "x" + Value.toString(10);
8714 
8715     llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)};
8716     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
8717     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
8718 
8719     llvm::Function *F =
8720         CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
8721     return Builder.CreateCall(F, Metadata);
8722   }
8723 
8724   if (BuiltinID == AArch64::BI__builtin_arm_clrex) {
8725     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
8726     return Builder.CreateCall(F);
8727   }
8728 
8729   if (BuiltinID == AArch64::BI_ReadWriteBarrier)
8730     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
8731                                llvm::SyncScope::SingleThread);
8732 
8733   // CRC32
8734   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
8735   switch (BuiltinID) {
8736   case AArch64::BI__builtin_arm_crc32b:
8737     CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
8738   case AArch64::BI__builtin_arm_crc32cb:
8739     CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
8740   case AArch64::BI__builtin_arm_crc32h:
8741     CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
8742   case AArch64::BI__builtin_arm_crc32ch:
8743     CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
8744   case AArch64::BI__builtin_arm_crc32w:
8745     CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
8746   case AArch64::BI__builtin_arm_crc32cw:
8747     CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
8748   case AArch64::BI__builtin_arm_crc32d:
8749     CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
8750   case AArch64::BI__builtin_arm_crc32cd:
8751     CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
8752   }
8753 
8754   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
8755     Value *Arg0 = EmitScalarExpr(E->getArg(0));
8756     Value *Arg1 = EmitScalarExpr(E->getArg(1));
8757     Function *F = CGM.getIntrinsic(CRCIntrinsicID);
8758 
8759     llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
8760     Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
8761 
8762     return Builder.CreateCall(F, {Arg0, Arg1});
8763   }
8764 
8765   // Memory Tagging Extensions (MTE) Intrinsics
8766   Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic;
8767   switch (BuiltinID) {
8768   case AArch64::BI__builtin_arm_irg:
8769     MTEIntrinsicID = Intrinsic::aarch64_irg; break;
8770   case  AArch64::BI__builtin_arm_addg:
8771     MTEIntrinsicID = Intrinsic::aarch64_addg; break;
8772   case  AArch64::BI__builtin_arm_gmi:
8773     MTEIntrinsicID = Intrinsic::aarch64_gmi; break;
8774   case  AArch64::BI__builtin_arm_ldg:
8775     MTEIntrinsicID = Intrinsic::aarch64_ldg; break;
8776   case AArch64::BI__builtin_arm_stg:
8777     MTEIntrinsicID = Intrinsic::aarch64_stg; break;
8778   case AArch64::BI__builtin_arm_subp:
8779     MTEIntrinsicID = Intrinsic::aarch64_subp; break;
8780   }
8781 
8782   if (MTEIntrinsicID != Intrinsic::not_intrinsic) {
8783     llvm::Type *T = ConvertType(E->getType());
8784 
8785     if (MTEIntrinsicID == Intrinsic::aarch64_irg) {
8786       Value *Pointer = EmitScalarExpr(E->getArg(0));
8787       Value *Mask = EmitScalarExpr(E->getArg(1));
8788 
8789       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
8790       Mask = Builder.CreateZExt(Mask, Int64Ty);
8791       Value *RV = Builder.CreateCall(
8792                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask});
8793        return Builder.CreatePointerCast(RV, T);
8794     }
8795     if (MTEIntrinsicID == Intrinsic::aarch64_addg) {
8796       Value *Pointer = EmitScalarExpr(E->getArg(0));
8797       Value *TagOffset = EmitScalarExpr(E->getArg(1));
8798 
8799       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
8800       TagOffset = Builder.CreateZExt(TagOffset, Int64Ty);
8801       Value *RV = Builder.CreateCall(
8802                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset});
8803       return Builder.CreatePointerCast(RV, T);
8804     }
8805     if (MTEIntrinsicID == Intrinsic::aarch64_gmi) {
8806       Value *Pointer = EmitScalarExpr(E->getArg(0));
8807       Value *ExcludedMask = EmitScalarExpr(E->getArg(1));
8808 
8809       ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty);
8810       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
8811       return Builder.CreateCall(
8812                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask});
8813     }
8814     // Although it is possible to supply a different return
8815     // address (first arg) to this intrinsic, for now we set
8816     // return address same as input address.
8817     if (MTEIntrinsicID == Intrinsic::aarch64_ldg) {
8818       Value *TagAddress = EmitScalarExpr(E->getArg(0));
8819       TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
8820       Value *RV = Builder.CreateCall(
8821                     CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
8822       return Builder.CreatePointerCast(RV, T);
8823     }
8824     // Although it is possible to supply a different tag (to set)
8825     // to this intrinsic (as first arg), for now we supply
8826     // the tag that is in input address arg (common use case).
8827     if (MTEIntrinsicID == Intrinsic::aarch64_stg) {
8828         Value *TagAddress = EmitScalarExpr(E->getArg(0));
8829         TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
8830         return Builder.CreateCall(
8831                  CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
8832     }
8833     if (MTEIntrinsicID == Intrinsic::aarch64_subp) {
8834       Value *PointerA = EmitScalarExpr(E->getArg(0));
8835       Value *PointerB = EmitScalarExpr(E->getArg(1));
8836       PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy);
8837       PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy);
8838       return Builder.CreateCall(
8839                        CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB});
8840     }
8841   }
8842 
8843   if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
8844       BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
8845       BuiltinID == AArch64::BI__builtin_arm_rsrp ||
8846       BuiltinID == AArch64::BI__builtin_arm_wsr ||
8847       BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
8848       BuiltinID == AArch64::BI__builtin_arm_wsrp) {
8849 
8850     SpecialRegisterAccessKind AccessKind = Write;
8851     if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
8852         BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
8853         BuiltinID == AArch64::BI__builtin_arm_rsrp)
8854       AccessKind = VolatileRead;
8855 
8856     bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp ||
8857                             BuiltinID == AArch64::BI__builtin_arm_wsrp;
8858 
8859     bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr &&
8860                    BuiltinID != AArch64::BI__builtin_arm_wsr;
8861 
8862     llvm::Type *ValueType;
8863     llvm::Type *RegisterType = Int64Ty;
8864     if (IsPointerBuiltin) {
8865       ValueType = VoidPtrTy;
8866     } else if (Is64Bit) {
8867       ValueType = Int64Ty;
8868     } else {
8869       ValueType = Int32Ty;
8870     }
8871 
8872     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
8873                                       AccessKind);
8874   }
8875 
8876   if (BuiltinID == AArch64::BI_ReadStatusReg ||
8877       BuiltinID == AArch64::BI_WriteStatusReg) {
8878     LLVMContext &Context = CGM.getLLVMContext();
8879 
8880     unsigned SysReg =
8881       E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue();
8882 
8883     std::string SysRegStr;
8884     llvm::raw_string_ostream(SysRegStr) <<
8885                        ((1 << 1) | ((SysReg >> 14) & 1))  << ":" <<
8886                        ((SysReg >> 11) & 7)               << ":" <<
8887                        ((SysReg >> 7)  & 15)              << ":" <<
8888                        ((SysReg >> 3)  & 15)              << ":" <<
8889                        ( SysReg        & 7);
8890 
8891     llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) };
8892     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
8893     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
8894 
8895     llvm::Type *RegisterType = Int64Ty;
8896     llvm::Type *Types[] = { RegisterType };
8897 
8898     if (BuiltinID == AArch64::BI_ReadStatusReg) {
8899       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
8900 
8901       return Builder.CreateCall(F, Metadata);
8902     }
8903 
8904     llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
8905     llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1));
8906 
8907     return Builder.CreateCall(F, { Metadata, ArgValue });
8908   }
8909 
8910   if (BuiltinID == AArch64::BI_AddressOfReturnAddress) {
8911     llvm::Function *F =
8912         CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
8913     return Builder.CreateCall(F);
8914   }
8915 
8916   if (BuiltinID == AArch64::BI__builtin_sponentry) {
8917     llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy);
8918     return Builder.CreateCall(F);
8919   }
8920 
8921   // Find out if any arguments are required to be integer constant
8922   // expressions.
8923   unsigned ICEArguments = 0;
8924   ASTContext::GetBuiltinTypeError Error;
8925   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
8926   assert(Error == ASTContext::GE_None && "Should not codegen an error");
8927 
8928   llvm::SmallVector<Value*, 4> Ops;
8929   Address PtrOp0 = Address::invalid();
8930   for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
8931     if (i == 0) {
8932       switch (BuiltinID) {
8933       case NEON::BI__builtin_neon_vld1_v:
8934       case NEON::BI__builtin_neon_vld1q_v:
8935       case NEON::BI__builtin_neon_vld1_dup_v:
8936       case NEON::BI__builtin_neon_vld1q_dup_v:
8937       case NEON::BI__builtin_neon_vld1_lane_v:
8938       case NEON::BI__builtin_neon_vld1q_lane_v:
8939       case NEON::BI__builtin_neon_vst1_v:
8940       case NEON::BI__builtin_neon_vst1q_v:
8941       case NEON::BI__builtin_neon_vst1_lane_v:
8942       case NEON::BI__builtin_neon_vst1q_lane_v:
8943         // Get the alignment for the argument in addition to the value;
8944         // we'll use it later.
8945         PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
8946         Ops.push_back(PtrOp0.getPointer());
8947         continue;
8948       }
8949     }
8950     if ((ICEArguments & (1 << i)) == 0) {
8951       Ops.push_back(EmitScalarExpr(E->getArg(i)));
8952     } else {
8953       // If this is required to be a constant, constant fold it so that we know
8954       // that the generated intrinsic gets a ConstantInt.
8955       llvm::APSInt Result;
8956       bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
8957       assert(IsConst && "Constant arg isn't actually constant?");
8958       (void)IsConst;
8959       Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
8960     }
8961   }
8962 
8963   auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
8964   const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
8965       SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
8966 
8967   if (Builtin) {
8968     Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
8969     Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
8970     assert(Result && "SISD intrinsic should have been handled");
8971     return Result;
8972   }
8973 
8974   llvm::APSInt Result;
8975   const Expr *Arg = E->getArg(E->getNumArgs()-1);
8976   NeonTypeFlags Type(0);
8977   if (Arg->isIntegerConstantExpr(Result, getContext()))
8978     // Determine the type of this overloaded NEON intrinsic.
8979     Type = NeonTypeFlags(Result.getZExtValue());
8980 
8981   bool usgn = Type.isUnsigned();
8982   bool quad = Type.isQuad();
8983 
8984   // Handle non-overloaded intrinsics first.
8985   switch (BuiltinID) {
8986   default: break;
8987   case NEON::BI__builtin_neon_vabsh_f16:
8988     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8989     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs");
8990   case NEON::BI__builtin_neon_vldrq_p128: {
8991     llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
8992     llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0);
8993     Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
8994     return Builder.CreateAlignedLoad(Int128Ty, Ptr,
8995                                      CharUnits::fromQuantity(16));
8996   }
8997   case NEON::BI__builtin_neon_vstrq_p128: {
8998     llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
8999     Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
9000     return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
9001   }
9002   case NEON::BI__builtin_neon_vcvts_u32_f32:
9003   case NEON::BI__builtin_neon_vcvtd_u64_f64:
9004     usgn = true;
9005     LLVM_FALLTHROUGH;
9006   case NEON::BI__builtin_neon_vcvts_s32_f32:
9007   case NEON::BI__builtin_neon_vcvtd_s64_f64: {
9008     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9009     bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
9010     llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
9011     llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
9012     Ops[0] = Builder.CreateBitCast(Ops[0], FTy);
9013     if (usgn)
9014       return Builder.CreateFPToUI(Ops[0], InTy);
9015     return Builder.CreateFPToSI(Ops[0], InTy);
9016   }
9017   case NEON::BI__builtin_neon_vcvts_f32_u32:
9018   case NEON::BI__builtin_neon_vcvtd_f64_u64:
9019     usgn = true;
9020     LLVM_FALLTHROUGH;
9021   case NEON::BI__builtin_neon_vcvts_f32_s32:
9022   case NEON::BI__builtin_neon_vcvtd_f64_s64: {
9023     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9024     bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
9025     llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
9026     llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
9027     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
9028     if (usgn)
9029       return Builder.CreateUIToFP(Ops[0], FTy);
9030     return Builder.CreateSIToFP(Ops[0], FTy);
9031   }
9032   case NEON::BI__builtin_neon_vcvth_f16_u16:
9033   case NEON::BI__builtin_neon_vcvth_f16_u32:
9034   case NEON::BI__builtin_neon_vcvth_f16_u64:
9035     usgn = true;
9036     LLVM_FALLTHROUGH;
9037   case NEON::BI__builtin_neon_vcvth_f16_s16:
9038   case NEON::BI__builtin_neon_vcvth_f16_s32:
9039   case NEON::BI__builtin_neon_vcvth_f16_s64: {
9040     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9041     llvm::Type *FTy = HalfTy;
9042     llvm::Type *InTy;
9043     if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64)
9044       InTy = Int64Ty;
9045     else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32)
9046       InTy = Int32Ty;
9047     else
9048       InTy = Int16Ty;
9049     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
9050     if (usgn)
9051       return Builder.CreateUIToFP(Ops[0], FTy);
9052     return Builder.CreateSIToFP(Ops[0], FTy);
9053   }
9054   case NEON::BI__builtin_neon_vcvth_u16_f16:
9055     usgn = true;
9056     LLVM_FALLTHROUGH;
9057   case NEON::BI__builtin_neon_vcvth_s16_f16: {
9058     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9059     Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
9060     if (usgn)
9061       return Builder.CreateFPToUI(Ops[0], Int16Ty);
9062     return Builder.CreateFPToSI(Ops[0], Int16Ty);
9063   }
9064   case NEON::BI__builtin_neon_vcvth_u32_f16:
9065     usgn = true;
9066     LLVM_FALLTHROUGH;
9067   case NEON::BI__builtin_neon_vcvth_s32_f16: {
9068     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9069     Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
9070     if (usgn)
9071       return Builder.CreateFPToUI(Ops[0], Int32Ty);
9072     return Builder.CreateFPToSI(Ops[0], Int32Ty);
9073   }
9074   case NEON::BI__builtin_neon_vcvth_u64_f16:
9075     usgn = true;
9076     LLVM_FALLTHROUGH;
9077   case NEON::BI__builtin_neon_vcvth_s64_f16: {
9078     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9079     Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
9080     if (usgn)
9081       return Builder.CreateFPToUI(Ops[0], Int64Ty);
9082     return Builder.CreateFPToSI(Ops[0], Int64Ty);
9083   }
9084   case NEON::BI__builtin_neon_vcvtah_u16_f16:
9085   case NEON::BI__builtin_neon_vcvtmh_u16_f16:
9086   case NEON::BI__builtin_neon_vcvtnh_u16_f16:
9087   case NEON::BI__builtin_neon_vcvtph_u16_f16:
9088   case NEON::BI__builtin_neon_vcvtah_s16_f16:
9089   case NEON::BI__builtin_neon_vcvtmh_s16_f16:
9090   case NEON::BI__builtin_neon_vcvtnh_s16_f16:
9091   case NEON::BI__builtin_neon_vcvtph_s16_f16: {
9092     unsigned Int;
9093     llvm::Type* InTy = Int32Ty;
9094     llvm::Type* FTy  = HalfTy;
9095     llvm::Type *Tys[2] = {InTy, FTy};
9096     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9097     switch (BuiltinID) {
9098     default: llvm_unreachable("missing builtin ID in switch!");
9099     case NEON::BI__builtin_neon_vcvtah_u16_f16:
9100       Int = Intrinsic::aarch64_neon_fcvtau; break;
9101     case NEON::BI__builtin_neon_vcvtmh_u16_f16:
9102       Int = Intrinsic::aarch64_neon_fcvtmu; break;
9103     case NEON::BI__builtin_neon_vcvtnh_u16_f16:
9104       Int = Intrinsic::aarch64_neon_fcvtnu; break;
9105     case NEON::BI__builtin_neon_vcvtph_u16_f16:
9106       Int = Intrinsic::aarch64_neon_fcvtpu; break;
9107     case NEON::BI__builtin_neon_vcvtah_s16_f16:
9108       Int = Intrinsic::aarch64_neon_fcvtas; break;
9109     case NEON::BI__builtin_neon_vcvtmh_s16_f16:
9110       Int = Intrinsic::aarch64_neon_fcvtms; break;
9111     case NEON::BI__builtin_neon_vcvtnh_s16_f16:
9112       Int = Intrinsic::aarch64_neon_fcvtns; break;
9113     case NEON::BI__builtin_neon_vcvtph_s16_f16:
9114       Int = Intrinsic::aarch64_neon_fcvtps; break;
9115     }
9116     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt");
9117     return Builder.CreateTrunc(Ops[0], Int16Ty);
9118   }
9119   case NEON::BI__builtin_neon_vcaleh_f16:
9120   case NEON::BI__builtin_neon_vcalth_f16:
9121   case NEON::BI__builtin_neon_vcageh_f16:
9122   case NEON::BI__builtin_neon_vcagth_f16: {
9123     unsigned Int;
9124     llvm::Type* InTy = Int32Ty;
9125     llvm::Type* FTy  = HalfTy;
9126     llvm::Type *Tys[2] = {InTy, FTy};
9127     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9128     switch (BuiltinID) {
9129     default: llvm_unreachable("missing builtin ID in switch!");
9130     case NEON::BI__builtin_neon_vcageh_f16:
9131       Int = Intrinsic::aarch64_neon_facge; break;
9132     case NEON::BI__builtin_neon_vcagth_f16:
9133       Int = Intrinsic::aarch64_neon_facgt; break;
9134     case NEON::BI__builtin_neon_vcaleh_f16:
9135       Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break;
9136     case NEON::BI__builtin_neon_vcalth_f16:
9137       Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break;
9138     }
9139     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg");
9140     return Builder.CreateTrunc(Ops[0], Int16Ty);
9141   }
9142   case NEON::BI__builtin_neon_vcvth_n_s16_f16:
9143   case NEON::BI__builtin_neon_vcvth_n_u16_f16: {
9144     unsigned Int;
9145     llvm::Type* InTy = Int32Ty;
9146     llvm::Type* FTy  = HalfTy;
9147     llvm::Type *Tys[2] = {InTy, FTy};
9148     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9149     switch (BuiltinID) {
9150     default: llvm_unreachable("missing builtin ID in switch!");
9151     case NEON::BI__builtin_neon_vcvth_n_s16_f16:
9152       Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break;
9153     case NEON::BI__builtin_neon_vcvth_n_u16_f16:
9154       Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break;
9155     }
9156     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
9157     return Builder.CreateTrunc(Ops[0], Int16Ty);
9158   }
9159   case NEON::BI__builtin_neon_vcvth_n_f16_s16:
9160   case NEON::BI__builtin_neon_vcvth_n_f16_u16: {
9161     unsigned Int;
9162     llvm::Type* FTy  = HalfTy;
9163     llvm::Type* InTy = Int32Ty;
9164     llvm::Type *Tys[2] = {FTy, InTy};
9165     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9166     switch (BuiltinID) {
9167     default: llvm_unreachable("missing builtin ID in switch!");
9168     case NEON::BI__builtin_neon_vcvth_n_f16_s16:
9169       Int = Intrinsic::aarch64_neon_vcvtfxs2fp;
9170       Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext");
9171       break;
9172     case NEON::BI__builtin_neon_vcvth_n_f16_u16:
9173       Int = Intrinsic::aarch64_neon_vcvtfxu2fp;
9174       Ops[0] = Builder.CreateZExt(Ops[0], InTy);
9175       break;
9176     }
9177     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
9178   }
9179   case NEON::BI__builtin_neon_vpaddd_s64: {
9180     auto *Ty = llvm::FixedVectorType::get(Int64Ty, 2);
9181     Value *Vec = EmitScalarExpr(E->getArg(0));
9182     // The vector is v2f64, so make sure it's bitcast to that.
9183     Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
9184     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
9185     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
9186     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
9187     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
9188     // Pairwise addition of a v2f64 into a scalar f64.
9189     return Builder.CreateAdd(Op0, Op1, "vpaddd");
9190   }
9191   case NEON::BI__builtin_neon_vpaddd_f64: {
9192     auto *Ty = llvm::FixedVectorType::get(DoubleTy, 2);
9193     Value *Vec = EmitScalarExpr(E->getArg(0));
9194     // The vector is v2f64, so make sure it's bitcast to that.
9195     Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
9196     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
9197     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
9198     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
9199     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
9200     // Pairwise addition of a v2f64 into a scalar f64.
9201     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
9202   }
9203   case NEON::BI__builtin_neon_vpadds_f32: {
9204     auto *Ty = llvm::FixedVectorType::get(FloatTy, 2);
9205     Value *Vec = EmitScalarExpr(E->getArg(0));
9206     // The vector is v2f32, so make sure it's bitcast to that.
9207     Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
9208     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
9209     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
9210     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
9211     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
9212     // Pairwise addition of a v2f32 into a scalar f32.
9213     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
9214   }
9215   case NEON::BI__builtin_neon_vceqzd_s64:
9216   case NEON::BI__builtin_neon_vceqzd_f64:
9217   case NEON::BI__builtin_neon_vceqzs_f32:
9218   case NEON::BI__builtin_neon_vceqzh_f16:
9219     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9220     return EmitAArch64CompareBuiltinExpr(
9221         Ops[0], ConvertType(E->getCallReturnType(getContext())),
9222         ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
9223   case NEON::BI__builtin_neon_vcgezd_s64:
9224   case NEON::BI__builtin_neon_vcgezd_f64:
9225   case NEON::BI__builtin_neon_vcgezs_f32:
9226   case NEON::BI__builtin_neon_vcgezh_f16:
9227     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9228     return EmitAArch64CompareBuiltinExpr(
9229         Ops[0], ConvertType(E->getCallReturnType(getContext())),
9230         ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
9231   case NEON::BI__builtin_neon_vclezd_s64:
9232   case NEON::BI__builtin_neon_vclezd_f64:
9233   case NEON::BI__builtin_neon_vclezs_f32:
9234   case NEON::BI__builtin_neon_vclezh_f16:
9235     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9236     return EmitAArch64CompareBuiltinExpr(
9237         Ops[0], ConvertType(E->getCallReturnType(getContext())),
9238         ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
9239   case NEON::BI__builtin_neon_vcgtzd_s64:
9240   case NEON::BI__builtin_neon_vcgtzd_f64:
9241   case NEON::BI__builtin_neon_vcgtzs_f32:
9242   case NEON::BI__builtin_neon_vcgtzh_f16:
9243     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9244     return EmitAArch64CompareBuiltinExpr(
9245         Ops[0], ConvertType(E->getCallReturnType(getContext())),
9246         ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
9247   case NEON::BI__builtin_neon_vcltzd_s64:
9248   case NEON::BI__builtin_neon_vcltzd_f64:
9249   case NEON::BI__builtin_neon_vcltzs_f32:
9250   case NEON::BI__builtin_neon_vcltzh_f16:
9251     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9252     return EmitAArch64CompareBuiltinExpr(
9253         Ops[0], ConvertType(E->getCallReturnType(getContext())),
9254         ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
9255 
9256   case NEON::BI__builtin_neon_vceqzd_u64: {
9257     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9258     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
9259     Ops[0] =
9260         Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
9261     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
9262   }
9263   case NEON::BI__builtin_neon_vceqd_f64:
9264   case NEON::BI__builtin_neon_vcled_f64:
9265   case NEON::BI__builtin_neon_vcltd_f64:
9266   case NEON::BI__builtin_neon_vcged_f64:
9267   case NEON::BI__builtin_neon_vcgtd_f64: {
9268     llvm::CmpInst::Predicate P;
9269     switch (BuiltinID) {
9270     default: llvm_unreachable("missing builtin ID in switch!");
9271     case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
9272     case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
9273     case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
9274     case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
9275     case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
9276     }
9277     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9278     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
9279     Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
9280     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
9281     return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
9282   }
9283   case NEON::BI__builtin_neon_vceqs_f32:
9284   case NEON::BI__builtin_neon_vcles_f32:
9285   case NEON::BI__builtin_neon_vclts_f32:
9286   case NEON::BI__builtin_neon_vcges_f32:
9287   case NEON::BI__builtin_neon_vcgts_f32: {
9288     llvm::CmpInst::Predicate P;
9289     switch (BuiltinID) {
9290     default: llvm_unreachable("missing builtin ID in switch!");
9291     case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
9292     case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
9293     case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
9294     case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
9295     case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
9296     }
9297     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9298     Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
9299     Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
9300     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
9301     return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
9302   }
9303   case NEON::BI__builtin_neon_vceqh_f16:
9304   case NEON::BI__builtin_neon_vcleh_f16:
9305   case NEON::BI__builtin_neon_vclth_f16:
9306   case NEON::BI__builtin_neon_vcgeh_f16:
9307   case NEON::BI__builtin_neon_vcgth_f16: {
9308     llvm::CmpInst::Predicate P;
9309     switch (BuiltinID) {
9310     default: llvm_unreachable("missing builtin ID in switch!");
9311     case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break;
9312     case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break;
9313     case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break;
9314     case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break;
9315     case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break;
9316     }
9317     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9318     Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
9319     Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy);
9320     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
9321     return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd");
9322   }
9323   case NEON::BI__builtin_neon_vceqd_s64:
9324   case NEON::BI__builtin_neon_vceqd_u64:
9325   case NEON::BI__builtin_neon_vcgtd_s64:
9326   case NEON::BI__builtin_neon_vcgtd_u64:
9327   case NEON::BI__builtin_neon_vcltd_s64:
9328   case NEON::BI__builtin_neon_vcltd_u64:
9329   case NEON::BI__builtin_neon_vcged_u64:
9330   case NEON::BI__builtin_neon_vcged_s64:
9331   case NEON::BI__builtin_neon_vcled_u64:
9332   case NEON::BI__builtin_neon_vcled_s64: {
9333     llvm::CmpInst::Predicate P;
9334     switch (BuiltinID) {
9335     default: llvm_unreachable("missing builtin ID in switch!");
9336     case NEON::BI__builtin_neon_vceqd_s64:
9337     case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
9338     case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
9339     case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
9340     case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
9341     case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
9342     case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
9343     case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
9344     case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
9345     case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
9346     }
9347     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9348     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
9349     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
9350     Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
9351     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
9352   }
9353   case NEON::BI__builtin_neon_vtstd_s64:
9354   case NEON::BI__builtin_neon_vtstd_u64: {
9355     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9356     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
9357     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
9358     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
9359     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
9360                                 llvm::Constant::getNullValue(Int64Ty));
9361     return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
9362   }
9363   case NEON::BI__builtin_neon_vset_lane_i8:
9364   case NEON::BI__builtin_neon_vset_lane_i16:
9365   case NEON::BI__builtin_neon_vset_lane_i32:
9366   case NEON::BI__builtin_neon_vset_lane_i64:
9367   case NEON::BI__builtin_neon_vset_lane_bf16:
9368   case NEON::BI__builtin_neon_vset_lane_f32:
9369   case NEON::BI__builtin_neon_vsetq_lane_i8:
9370   case NEON::BI__builtin_neon_vsetq_lane_i16:
9371   case NEON::BI__builtin_neon_vsetq_lane_i32:
9372   case NEON::BI__builtin_neon_vsetq_lane_i64:
9373   case NEON::BI__builtin_neon_vsetq_lane_bf16:
9374   case NEON::BI__builtin_neon_vsetq_lane_f32:
9375     Ops.push_back(EmitScalarExpr(E->getArg(2)));
9376     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
9377   case NEON::BI__builtin_neon_vset_lane_f64:
9378     // The vector type needs a cast for the v1f64 variant.
9379     Ops[1] =
9380         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 1));
9381     Ops.push_back(EmitScalarExpr(E->getArg(2)));
9382     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
9383   case NEON::BI__builtin_neon_vsetq_lane_f64:
9384     // The vector type needs a cast for the v2f64 variant.
9385     Ops[1] =
9386         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 2));
9387     Ops.push_back(EmitScalarExpr(E->getArg(2)));
9388     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
9389 
9390   case NEON::BI__builtin_neon_vget_lane_i8:
9391   case NEON::BI__builtin_neon_vdupb_lane_i8:
9392     Ops[0] =
9393         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 8));
9394     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9395                                         "vget_lane");
9396   case NEON::BI__builtin_neon_vgetq_lane_i8:
9397   case NEON::BI__builtin_neon_vdupb_laneq_i8:
9398     Ops[0] =
9399         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 16));
9400     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9401                                         "vgetq_lane");
9402   case NEON::BI__builtin_neon_vget_lane_i16:
9403   case NEON::BI__builtin_neon_vduph_lane_i16:
9404     Ops[0] =
9405         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 4));
9406     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9407                                         "vget_lane");
9408   case NEON::BI__builtin_neon_vgetq_lane_i16:
9409   case NEON::BI__builtin_neon_vduph_laneq_i16:
9410     Ops[0] =
9411         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 8));
9412     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9413                                         "vgetq_lane");
9414   case NEON::BI__builtin_neon_vget_lane_i32:
9415   case NEON::BI__builtin_neon_vdups_lane_i32:
9416     Ops[0] =
9417         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 2));
9418     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9419                                         "vget_lane");
9420   case NEON::BI__builtin_neon_vdups_lane_f32:
9421     Ops[0] =
9422         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
9423     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9424                                         "vdups_lane");
9425   case NEON::BI__builtin_neon_vgetq_lane_i32:
9426   case NEON::BI__builtin_neon_vdups_laneq_i32:
9427     Ops[0] =
9428         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
9429     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9430                                         "vgetq_lane");
9431   case NEON::BI__builtin_neon_vget_lane_i64:
9432   case NEON::BI__builtin_neon_vdupd_lane_i64:
9433     Ops[0] =
9434         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 1));
9435     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9436                                         "vget_lane");
9437   case NEON::BI__builtin_neon_vdupd_lane_f64:
9438     Ops[0] =
9439         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
9440     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9441                                         "vdupd_lane");
9442   case NEON::BI__builtin_neon_vgetq_lane_i64:
9443   case NEON::BI__builtin_neon_vdupd_laneq_i64:
9444     Ops[0] =
9445         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
9446     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9447                                         "vgetq_lane");
9448   case NEON::BI__builtin_neon_vget_lane_f32:
9449     Ops[0] =
9450         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
9451     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9452                                         "vget_lane");
9453   case NEON::BI__builtin_neon_vget_lane_f64:
9454     Ops[0] =
9455         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
9456     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9457                                         "vget_lane");
9458   case NEON::BI__builtin_neon_vgetq_lane_f32:
9459   case NEON::BI__builtin_neon_vdups_laneq_f32:
9460     Ops[0] =
9461         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 4));
9462     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9463                                         "vgetq_lane");
9464   case NEON::BI__builtin_neon_vgetq_lane_f64:
9465   case NEON::BI__builtin_neon_vdupd_laneq_f64:
9466     Ops[0] =
9467         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 2));
9468     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9469                                         "vgetq_lane");
9470   case NEON::BI__builtin_neon_vaddh_f16:
9471     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9472     return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh");
9473   case NEON::BI__builtin_neon_vsubh_f16:
9474     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9475     return Builder.CreateFSub(Ops[0], Ops[1], "vsubh");
9476   case NEON::BI__builtin_neon_vmulh_f16:
9477     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9478     return Builder.CreateFMul(Ops[0], Ops[1], "vmulh");
9479   case NEON::BI__builtin_neon_vdivh_f16:
9480     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9481     return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh");
9482   case NEON::BI__builtin_neon_vfmah_f16:
9483     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
9484     return emitCallMaybeConstrainedFPBuiltin(
9485         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
9486         {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]});
9487   case NEON::BI__builtin_neon_vfmsh_f16: {
9488     // FIXME: This should be an fneg instruction:
9489     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy);
9490     Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh");
9491 
9492     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
9493     return emitCallMaybeConstrainedFPBuiltin(
9494         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
9495         {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]});
9496   }
9497   case NEON::BI__builtin_neon_vaddd_s64:
9498   case NEON::BI__builtin_neon_vaddd_u64:
9499     return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
9500   case NEON::BI__builtin_neon_vsubd_s64:
9501   case NEON::BI__builtin_neon_vsubd_u64:
9502     return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
9503   case NEON::BI__builtin_neon_vqdmlalh_s16:
9504   case NEON::BI__builtin_neon_vqdmlslh_s16: {
9505     SmallVector<Value *, 2> ProductOps;
9506     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
9507     ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
9508     auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
9509     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
9510                           ProductOps, "vqdmlXl");
9511     Constant *CI = ConstantInt::get(SizeTy, 0);
9512     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
9513 
9514     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
9515                                         ? Intrinsic::aarch64_neon_sqadd
9516                                         : Intrinsic::aarch64_neon_sqsub;
9517     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
9518   }
9519   case NEON::BI__builtin_neon_vqshlud_n_s64: {
9520     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9521     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
9522     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
9523                         Ops, "vqshlu_n");
9524   }
9525   case NEON::BI__builtin_neon_vqshld_n_u64:
9526   case NEON::BI__builtin_neon_vqshld_n_s64: {
9527     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
9528                                    ? Intrinsic::aarch64_neon_uqshl
9529                                    : Intrinsic::aarch64_neon_sqshl;
9530     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9531     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
9532     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
9533   }
9534   case NEON::BI__builtin_neon_vrshrd_n_u64:
9535   case NEON::BI__builtin_neon_vrshrd_n_s64: {
9536     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
9537                                    ? Intrinsic::aarch64_neon_urshl
9538                                    : Intrinsic::aarch64_neon_srshl;
9539     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9540     int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
9541     Ops[1] = ConstantInt::get(Int64Ty, -SV);
9542     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
9543   }
9544   case NEON::BI__builtin_neon_vrsrad_n_u64:
9545   case NEON::BI__builtin_neon_vrsrad_n_s64: {
9546     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
9547                                    ? Intrinsic::aarch64_neon_urshl
9548                                    : Intrinsic::aarch64_neon_srshl;
9549     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
9550     Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
9551     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
9552                                 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
9553     return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
9554   }
9555   case NEON::BI__builtin_neon_vshld_n_s64:
9556   case NEON::BI__builtin_neon_vshld_n_u64: {
9557     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
9558     return Builder.CreateShl(
9559         Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
9560   }
9561   case NEON::BI__builtin_neon_vshrd_n_s64: {
9562     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
9563     return Builder.CreateAShr(
9564         Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
9565                                                    Amt->getZExtValue())),
9566         "shrd_n");
9567   }
9568   case NEON::BI__builtin_neon_vshrd_n_u64: {
9569     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
9570     uint64_t ShiftAmt = Amt->getZExtValue();
9571     // Right-shifting an unsigned value by its size yields 0.
9572     if (ShiftAmt == 64)
9573       return ConstantInt::get(Int64Ty, 0);
9574     return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
9575                               "shrd_n");
9576   }
9577   case NEON::BI__builtin_neon_vsrad_n_s64: {
9578     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
9579     Ops[1] = Builder.CreateAShr(
9580         Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
9581                                                    Amt->getZExtValue())),
9582         "shrd_n");
9583     return Builder.CreateAdd(Ops[0], Ops[1]);
9584   }
9585   case NEON::BI__builtin_neon_vsrad_n_u64: {
9586     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
9587     uint64_t ShiftAmt = Amt->getZExtValue();
9588     // Right-shifting an unsigned value by its size yields 0.
9589     // As Op + 0 = Op, return Ops[0] directly.
9590     if (ShiftAmt == 64)
9591       return Ops[0];
9592     Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
9593                                 "shrd_n");
9594     return Builder.CreateAdd(Ops[0], Ops[1]);
9595   }
9596   case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
9597   case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
9598   case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
9599   case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
9600     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
9601                                           "lane");
9602     SmallVector<Value *, 2> ProductOps;
9603     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
9604     ProductOps.push_back(vectorWrapScalar16(Ops[2]));
9605     auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
9606     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
9607                           ProductOps, "vqdmlXl");
9608     Constant *CI = ConstantInt::get(SizeTy, 0);
9609     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
9610     Ops.pop_back();
9611 
9612     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
9613                        BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
9614                           ? Intrinsic::aarch64_neon_sqadd
9615                           : Intrinsic::aarch64_neon_sqsub;
9616     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
9617   }
9618   case NEON::BI__builtin_neon_vqdmlals_s32:
9619   case NEON::BI__builtin_neon_vqdmlsls_s32: {
9620     SmallVector<Value *, 2> ProductOps;
9621     ProductOps.push_back(Ops[1]);
9622     ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
9623     Ops[1] =
9624         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
9625                      ProductOps, "vqdmlXl");
9626 
9627     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
9628                                         ? Intrinsic::aarch64_neon_sqadd
9629                                         : Intrinsic::aarch64_neon_sqsub;
9630     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
9631   }
9632   case NEON::BI__builtin_neon_vqdmlals_lane_s32:
9633   case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
9634   case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
9635   case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
9636     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
9637                                           "lane");
9638     SmallVector<Value *, 2> ProductOps;
9639     ProductOps.push_back(Ops[1]);
9640     ProductOps.push_back(Ops[2]);
9641     Ops[1] =
9642         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
9643                      ProductOps, "vqdmlXl");
9644     Ops.pop_back();
9645 
9646     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
9647                        BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
9648                           ? Intrinsic::aarch64_neon_sqadd
9649                           : Intrinsic::aarch64_neon_sqsub;
9650     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
9651   }
9652   case NEON::BI__builtin_neon_vget_lane_bf16:
9653   case NEON::BI__builtin_neon_vduph_lane_bf16:
9654   case NEON::BI__builtin_neon_vduph_lane_f16: {
9655     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9656                                         "vget_lane");
9657   }
9658   case NEON::BI__builtin_neon_vgetq_lane_bf16:
9659   case NEON::BI__builtin_neon_vduph_laneq_bf16:
9660   case NEON::BI__builtin_neon_vduph_laneq_f16: {
9661     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9662                                         "vgetq_lane");
9663   }
9664   case AArch64::BI_BitScanForward:
9665   case AArch64::BI_BitScanForward64:
9666     return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
9667   case AArch64::BI_BitScanReverse:
9668   case AArch64::BI_BitScanReverse64:
9669     return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
9670   case AArch64::BI_InterlockedAnd64:
9671     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
9672   case AArch64::BI_InterlockedExchange64:
9673     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
9674   case AArch64::BI_InterlockedExchangeAdd64:
9675     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
9676   case AArch64::BI_InterlockedExchangeSub64:
9677     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
9678   case AArch64::BI_InterlockedOr64:
9679     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
9680   case AArch64::BI_InterlockedXor64:
9681     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
9682   case AArch64::BI_InterlockedDecrement64:
9683     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
9684   case AArch64::BI_InterlockedIncrement64:
9685     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
9686   case AArch64::BI_InterlockedExchangeAdd8_acq:
9687   case AArch64::BI_InterlockedExchangeAdd16_acq:
9688   case AArch64::BI_InterlockedExchangeAdd_acq:
9689   case AArch64::BI_InterlockedExchangeAdd64_acq:
9690     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_acq, E);
9691   case AArch64::BI_InterlockedExchangeAdd8_rel:
9692   case AArch64::BI_InterlockedExchangeAdd16_rel:
9693   case AArch64::BI_InterlockedExchangeAdd_rel:
9694   case AArch64::BI_InterlockedExchangeAdd64_rel:
9695     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_rel, E);
9696   case AArch64::BI_InterlockedExchangeAdd8_nf:
9697   case AArch64::BI_InterlockedExchangeAdd16_nf:
9698   case AArch64::BI_InterlockedExchangeAdd_nf:
9699   case AArch64::BI_InterlockedExchangeAdd64_nf:
9700     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_nf, E);
9701   case AArch64::BI_InterlockedExchange8_acq:
9702   case AArch64::BI_InterlockedExchange16_acq:
9703   case AArch64::BI_InterlockedExchange_acq:
9704   case AArch64::BI_InterlockedExchange64_acq:
9705     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_acq, E);
9706   case AArch64::BI_InterlockedExchange8_rel:
9707   case AArch64::BI_InterlockedExchange16_rel:
9708   case AArch64::BI_InterlockedExchange_rel:
9709   case AArch64::BI_InterlockedExchange64_rel:
9710     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_rel, E);
9711   case AArch64::BI_InterlockedExchange8_nf:
9712   case AArch64::BI_InterlockedExchange16_nf:
9713   case AArch64::BI_InterlockedExchange_nf:
9714   case AArch64::BI_InterlockedExchange64_nf:
9715     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_nf, E);
9716   case AArch64::BI_InterlockedCompareExchange8_acq:
9717   case AArch64::BI_InterlockedCompareExchange16_acq:
9718   case AArch64::BI_InterlockedCompareExchange_acq:
9719   case AArch64::BI_InterlockedCompareExchange64_acq:
9720     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_acq, E);
9721   case AArch64::BI_InterlockedCompareExchange8_rel:
9722   case AArch64::BI_InterlockedCompareExchange16_rel:
9723   case AArch64::BI_InterlockedCompareExchange_rel:
9724   case AArch64::BI_InterlockedCompareExchange64_rel:
9725     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_rel, E);
9726   case AArch64::BI_InterlockedCompareExchange8_nf:
9727   case AArch64::BI_InterlockedCompareExchange16_nf:
9728   case AArch64::BI_InterlockedCompareExchange_nf:
9729   case AArch64::BI_InterlockedCompareExchange64_nf:
9730     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_nf, E);
9731   case AArch64::BI_InterlockedOr8_acq:
9732   case AArch64::BI_InterlockedOr16_acq:
9733   case AArch64::BI_InterlockedOr_acq:
9734   case AArch64::BI_InterlockedOr64_acq:
9735     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_acq, E);
9736   case AArch64::BI_InterlockedOr8_rel:
9737   case AArch64::BI_InterlockedOr16_rel:
9738   case AArch64::BI_InterlockedOr_rel:
9739   case AArch64::BI_InterlockedOr64_rel:
9740     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_rel, E);
9741   case AArch64::BI_InterlockedOr8_nf:
9742   case AArch64::BI_InterlockedOr16_nf:
9743   case AArch64::BI_InterlockedOr_nf:
9744   case AArch64::BI_InterlockedOr64_nf:
9745     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_nf, E);
9746   case AArch64::BI_InterlockedXor8_acq:
9747   case AArch64::BI_InterlockedXor16_acq:
9748   case AArch64::BI_InterlockedXor_acq:
9749   case AArch64::BI_InterlockedXor64_acq:
9750     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_acq, E);
9751   case AArch64::BI_InterlockedXor8_rel:
9752   case AArch64::BI_InterlockedXor16_rel:
9753   case AArch64::BI_InterlockedXor_rel:
9754   case AArch64::BI_InterlockedXor64_rel:
9755     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_rel, E);
9756   case AArch64::BI_InterlockedXor8_nf:
9757   case AArch64::BI_InterlockedXor16_nf:
9758   case AArch64::BI_InterlockedXor_nf:
9759   case AArch64::BI_InterlockedXor64_nf:
9760     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_nf, E);
9761   case AArch64::BI_InterlockedAnd8_acq:
9762   case AArch64::BI_InterlockedAnd16_acq:
9763   case AArch64::BI_InterlockedAnd_acq:
9764   case AArch64::BI_InterlockedAnd64_acq:
9765     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_acq, E);
9766   case AArch64::BI_InterlockedAnd8_rel:
9767   case AArch64::BI_InterlockedAnd16_rel:
9768   case AArch64::BI_InterlockedAnd_rel:
9769   case AArch64::BI_InterlockedAnd64_rel:
9770     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_rel, E);
9771   case AArch64::BI_InterlockedAnd8_nf:
9772   case AArch64::BI_InterlockedAnd16_nf:
9773   case AArch64::BI_InterlockedAnd_nf:
9774   case AArch64::BI_InterlockedAnd64_nf:
9775     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_nf, E);
9776   case AArch64::BI_InterlockedIncrement16_acq:
9777   case AArch64::BI_InterlockedIncrement_acq:
9778   case AArch64::BI_InterlockedIncrement64_acq:
9779     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_acq, E);
9780   case AArch64::BI_InterlockedIncrement16_rel:
9781   case AArch64::BI_InterlockedIncrement_rel:
9782   case AArch64::BI_InterlockedIncrement64_rel:
9783     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_rel, E);
9784   case AArch64::BI_InterlockedIncrement16_nf:
9785   case AArch64::BI_InterlockedIncrement_nf:
9786   case AArch64::BI_InterlockedIncrement64_nf:
9787     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_nf, E);
9788   case AArch64::BI_InterlockedDecrement16_acq:
9789   case AArch64::BI_InterlockedDecrement_acq:
9790   case AArch64::BI_InterlockedDecrement64_acq:
9791     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_acq, E);
9792   case AArch64::BI_InterlockedDecrement16_rel:
9793   case AArch64::BI_InterlockedDecrement_rel:
9794   case AArch64::BI_InterlockedDecrement64_rel:
9795     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_rel, E);
9796   case AArch64::BI_InterlockedDecrement16_nf:
9797   case AArch64::BI_InterlockedDecrement_nf:
9798   case AArch64::BI_InterlockedDecrement64_nf:
9799     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_nf, E);
9800 
9801   case AArch64::BI_InterlockedAdd: {
9802     Value *Arg0 = EmitScalarExpr(E->getArg(0));
9803     Value *Arg1 = EmitScalarExpr(E->getArg(1));
9804     AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
9805       AtomicRMWInst::Add, Arg0, Arg1,
9806       llvm::AtomicOrdering::SequentiallyConsistent);
9807     return Builder.CreateAdd(RMWI, Arg1);
9808   }
9809   }
9810 
9811   llvm::VectorType *VTy = GetNeonType(this, Type);
9812   llvm::Type *Ty = VTy;
9813   if (!Ty)
9814     return nullptr;
9815 
9816   // Not all intrinsics handled by the common case work for AArch64 yet, so only
9817   // defer to common code if it's been added to our special map.
9818   Builtin = findARMVectorIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
9819                                         AArch64SIMDIntrinsicsProvenSorted);
9820 
9821   if (Builtin)
9822     return EmitCommonNeonBuiltinExpr(
9823         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
9824         Builtin->NameHint, Builtin->TypeModifier, E, Ops,
9825         /*never use addresses*/ Address::invalid(), Address::invalid(), Arch);
9826 
9827   if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch))
9828     return V;
9829 
9830   unsigned Int;
9831   switch (BuiltinID) {
9832   default: return nullptr;
9833   case NEON::BI__builtin_neon_vbsl_v:
9834   case NEON::BI__builtin_neon_vbslq_v: {
9835     llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
9836     Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
9837     Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
9838     Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
9839 
9840     Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
9841     Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
9842     Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
9843     return Builder.CreateBitCast(Ops[0], Ty);
9844   }
9845   case NEON::BI__builtin_neon_vfma_lane_v:
9846   case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
9847     // The ARM builtins (and instructions) have the addend as the first
9848     // operand, but the 'fma' intrinsics have it last. Swap it around here.
9849     Value *Addend = Ops[0];
9850     Value *Multiplicand = Ops[1];
9851     Value *LaneSource = Ops[2];
9852     Ops[0] = Multiplicand;
9853     Ops[1] = LaneSource;
9854     Ops[2] = Addend;
9855 
9856     // Now adjust things to handle the lane access.
9857     auto *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v
9858                          ? llvm::FixedVectorType::get(VTy->getElementType(),
9859                                                       VTy->getNumElements() / 2)
9860                          : VTy;
9861     llvm::Constant *cst = cast<Constant>(Ops[3]);
9862     Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), cst);
9863     Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
9864     Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
9865 
9866     Ops.pop_back();
9867     Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_fma
9868                                        : Intrinsic::fma;
9869     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
9870   }
9871   case NEON::BI__builtin_neon_vfma_laneq_v: {
9872     llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
9873     // v1f64 fma should be mapped to Neon scalar f64 fma
9874     if (VTy && VTy->getElementType() == DoubleTy) {
9875       Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
9876       Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
9877       llvm::Type *VTy = GetNeonType(this,
9878         NeonTypeFlags(NeonTypeFlags::Float64, false, true));
9879       Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
9880       Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
9881       Value *Result;
9882       Result = emitCallMaybeConstrainedFPBuiltin(
9883           *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma,
9884           DoubleTy, {Ops[1], Ops[2], Ops[0]});
9885       return Builder.CreateBitCast(Result, Ty);
9886     }
9887     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9888     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9889 
9890     auto *STy = llvm::FixedVectorType::get(VTy->getElementType(),
9891                                            VTy->getNumElements() * 2);
9892     Ops[2] = Builder.CreateBitCast(Ops[2], STy);
9893     Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(),
9894                                                cast<ConstantInt>(Ops[3]));
9895     Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
9896 
9897     return emitCallMaybeConstrainedFPBuiltin(
9898         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
9899         {Ops[2], Ops[1], Ops[0]});
9900   }
9901   case NEON::BI__builtin_neon_vfmaq_laneq_v: {
9902     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9903     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9904 
9905     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
9906     Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
9907     return emitCallMaybeConstrainedFPBuiltin(
9908         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
9909         {Ops[2], Ops[1], Ops[0]});
9910   }
9911   case NEON::BI__builtin_neon_vfmah_lane_f16:
9912   case NEON::BI__builtin_neon_vfmas_lane_f32:
9913   case NEON::BI__builtin_neon_vfmah_laneq_f16:
9914   case NEON::BI__builtin_neon_vfmas_laneq_f32:
9915   case NEON::BI__builtin_neon_vfmad_lane_f64:
9916   case NEON::BI__builtin_neon_vfmad_laneq_f64: {
9917     Ops.push_back(EmitScalarExpr(E->getArg(3)));
9918     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
9919     Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
9920     return emitCallMaybeConstrainedFPBuiltin(
9921         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
9922         {Ops[1], Ops[2], Ops[0]});
9923   }
9924   case NEON::BI__builtin_neon_vmull_v:
9925     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
9926     Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
9927     if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
9928     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
9929   case NEON::BI__builtin_neon_vmax_v:
9930   case NEON::BI__builtin_neon_vmaxq_v:
9931     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
9932     Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
9933     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
9934     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
9935   case NEON::BI__builtin_neon_vmaxh_f16: {
9936     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9937     Int = Intrinsic::aarch64_neon_fmax;
9938     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax");
9939   }
9940   case NEON::BI__builtin_neon_vmin_v:
9941   case NEON::BI__builtin_neon_vminq_v:
9942     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
9943     Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
9944     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
9945     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
9946   case NEON::BI__builtin_neon_vminh_f16: {
9947     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9948     Int = Intrinsic::aarch64_neon_fmin;
9949     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin");
9950   }
9951   case NEON::BI__builtin_neon_vabd_v:
9952   case NEON::BI__builtin_neon_vabdq_v:
9953     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
9954     Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
9955     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
9956     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
9957   case NEON::BI__builtin_neon_vpadal_v:
9958   case NEON::BI__builtin_neon_vpadalq_v: {
9959     unsigned ArgElts = VTy->getNumElements();
9960     llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
9961     unsigned BitWidth = EltTy->getBitWidth();
9962     auto *ArgTy = llvm::FixedVectorType::get(
9963         llvm::IntegerType::get(getLLVMContext(), BitWidth / 2), 2 * ArgElts);
9964     llvm::Type* Tys[2] = { VTy, ArgTy };
9965     Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
9966     SmallVector<llvm::Value*, 1> TmpOps;
9967     TmpOps.push_back(Ops[1]);
9968     Function *F = CGM.getIntrinsic(Int, Tys);
9969     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
9970     llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
9971     return Builder.CreateAdd(tmp, addend);
9972   }
9973   case NEON::BI__builtin_neon_vpmin_v:
9974   case NEON::BI__builtin_neon_vpminq_v:
9975     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
9976     Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
9977     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
9978     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
9979   case NEON::BI__builtin_neon_vpmax_v:
9980   case NEON::BI__builtin_neon_vpmaxq_v:
9981     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
9982     Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
9983     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
9984     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
9985   case NEON::BI__builtin_neon_vminnm_v:
9986   case NEON::BI__builtin_neon_vminnmq_v:
9987     Int = Intrinsic::aarch64_neon_fminnm;
9988     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
9989   case NEON::BI__builtin_neon_vminnmh_f16:
9990     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9991     Int = Intrinsic::aarch64_neon_fminnm;
9992     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm");
9993   case NEON::BI__builtin_neon_vmaxnm_v:
9994   case NEON::BI__builtin_neon_vmaxnmq_v:
9995     Int = Intrinsic::aarch64_neon_fmaxnm;
9996     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
9997   case NEON::BI__builtin_neon_vmaxnmh_f16:
9998     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9999     Int = Intrinsic::aarch64_neon_fmaxnm;
10000     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm");
10001   case NEON::BI__builtin_neon_vrecpss_f32: {
10002     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10003     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
10004                         Ops, "vrecps");
10005   }
10006   case NEON::BI__builtin_neon_vrecpsd_f64:
10007     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10008     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
10009                         Ops, "vrecps");
10010   case NEON::BI__builtin_neon_vrecpsh_f16:
10011     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10012     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy),
10013                         Ops, "vrecps");
10014   case NEON::BI__builtin_neon_vqshrun_n_v:
10015     Int = Intrinsic::aarch64_neon_sqshrun;
10016     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
10017   case NEON::BI__builtin_neon_vqrshrun_n_v:
10018     Int = Intrinsic::aarch64_neon_sqrshrun;
10019     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
10020   case NEON::BI__builtin_neon_vqshrn_n_v:
10021     Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
10022     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
10023   case NEON::BI__builtin_neon_vrshrn_n_v:
10024     Int = Intrinsic::aarch64_neon_rshrn;
10025     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
10026   case NEON::BI__builtin_neon_vqrshrn_n_v:
10027     Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
10028     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
10029   case NEON::BI__builtin_neon_vrndah_f16: {
10030     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10031     Int = Builder.getIsFPConstrained()
10032               ? Intrinsic::experimental_constrained_round
10033               : Intrinsic::round;
10034     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda");
10035   }
10036   case NEON::BI__builtin_neon_vrnda_v:
10037   case NEON::BI__builtin_neon_vrndaq_v: {
10038     Int = Builder.getIsFPConstrained()
10039               ? Intrinsic::experimental_constrained_round
10040               : Intrinsic::round;
10041     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
10042   }
10043   case NEON::BI__builtin_neon_vrndih_f16: {
10044     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10045     Int = Builder.getIsFPConstrained()
10046               ? Intrinsic::experimental_constrained_nearbyint
10047               : Intrinsic::nearbyint;
10048     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi");
10049   }
10050   case NEON::BI__builtin_neon_vrndmh_f16: {
10051     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10052     Int = Builder.getIsFPConstrained()
10053               ? Intrinsic::experimental_constrained_floor
10054               : Intrinsic::floor;
10055     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm");
10056   }
10057   case NEON::BI__builtin_neon_vrndm_v:
10058   case NEON::BI__builtin_neon_vrndmq_v: {
10059     Int = Builder.getIsFPConstrained()
10060               ? Intrinsic::experimental_constrained_floor
10061               : Intrinsic::floor;
10062     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
10063   }
10064   case NEON::BI__builtin_neon_vrndnh_f16: {
10065     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10066     Int = Intrinsic::aarch64_neon_frintn;
10067     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn");
10068   }
10069   case NEON::BI__builtin_neon_vrndn_v:
10070   case NEON::BI__builtin_neon_vrndnq_v: {
10071     Int = Intrinsic::aarch64_neon_frintn;
10072     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
10073   }
10074   case NEON::BI__builtin_neon_vrndns_f32: {
10075     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10076     Int = Intrinsic::aarch64_neon_frintn;
10077     return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn");
10078   }
10079   case NEON::BI__builtin_neon_vrndph_f16: {
10080     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10081     Int = Builder.getIsFPConstrained()
10082               ? Intrinsic::experimental_constrained_ceil
10083               : Intrinsic::ceil;
10084     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp");
10085   }
10086   case NEON::BI__builtin_neon_vrndp_v:
10087   case NEON::BI__builtin_neon_vrndpq_v: {
10088     Int = Builder.getIsFPConstrained()
10089               ? Intrinsic::experimental_constrained_ceil
10090               : Intrinsic::ceil;
10091     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
10092   }
10093   case NEON::BI__builtin_neon_vrndxh_f16: {
10094     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10095     Int = Builder.getIsFPConstrained()
10096               ? Intrinsic::experimental_constrained_rint
10097               : Intrinsic::rint;
10098     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx");
10099   }
10100   case NEON::BI__builtin_neon_vrndx_v:
10101   case NEON::BI__builtin_neon_vrndxq_v: {
10102     Int = Builder.getIsFPConstrained()
10103               ? Intrinsic::experimental_constrained_rint
10104               : Intrinsic::rint;
10105     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
10106   }
10107   case NEON::BI__builtin_neon_vrndh_f16: {
10108     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10109     Int = Builder.getIsFPConstrained()
10110               ? Intrinsic::experimental_constrained_trunc
10111               : Intrinsic::trunc;
10112     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz");
10113   }
10114   case NEON::BI__builtin_neon_vrnd_v:
10115   case NEON::BI__builtin_neon_vrndq_v: {
10116     Int = Builder.getIsFPConstrained()
10117               ? Intrinsic::experimental_constrained_trunc
10118               : Intrinsic::trunc;
10119     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
10120   }
10121   case NEON::BI__builtin_neon_vcvt_f64_v:
10122   case NEON::BI__builtin_neon_vcvtq_f64_v:
10123     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10124     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
10125     return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
10126                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
10127   case NEON::BI__builtin_neon_vcvt_f64_f32: {
10128     assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&
10129            "unexpected vcvt_f64_f32 builtin");
10130     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
10131     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
10132 
10133     return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
10134   }
10135   case NEON::BI__builtin_neon_vcvt_f32_f64: {
10136     assert(Type.getEltType() == NeonTypeFlags::Float32 &&
10137            "unexpected vcvt_f32_f64 builtin");
10138     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
10139     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
10140 
10141     return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
10142   }
10143   case NEON::BI__builtin_neon_vcvt_s32_v:
10144   case NEON::BI__builtin_neon_vcvt_u32_v:
10145   case NEON::BI__builtin_neon_vcvt_s64_v:
10146   case NEON::BI__builtin_neon_vcvt_u64_v:
10147   case NEON::BI__builtin_neon_vcvt_s16_v:
10148   case NEON::BI__builtin_neon_vcvt_u16_v:
10149   case NEON::BI__builtin_neon_vcvtq_s32_v:
10150   case NEON::BI__builtin_neon_vcvtq_u32_v:
10151   case NEON::BI__builtin_neon_vcvtq_s64_v:
10152   case NEON::BI__builtin_neon_vcvtq_u64_v:
10153   case NEON::BI__builtin_neon_vcvtq_s16_v:
10154   case NEON::BI__builtin_neon_vcvtq_u16_v: {
10155     Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
10156     if (usgn)
10157       return Builder.CreateFPToUI(Ops[0], Ty);
10158     return Builder.CreateFPToSI(Ops[0], Ty);
10159   }
10160   case NEON::BI__builtin_neon_vcvta_s16_v:
10161   case NEON::BI__builtin_neon_vcvta_u16_v:
10162   case NEON::BI__builtin_neon_vcvta_s32_v:
10163   case NEON::BI__builtin_neon_vcvtaq_s16_v:
10164   case NEON::BI__builtin_neon_vcvtaq_s32_v:
10165   case NEON::BI__builtin_neon_vcvta_u32_v:
10166   case NEON::BI__builtin_neon_vcvtaq_u16_v:
10167   case NEON::BI__builtin_neon_vcvtaq_u32_v:
10168   case NEON::BI__builtin_neon_vcvta_s64_v:
10169   case NEON::BI__builtin_neon_vcvtaq_s64_v:
10170   case NEON::BI__builtin_neon_vcvta_u64_v:
10171   case NEON::BI__builtin_neon_vcvtaq_u64_v: {
10172     Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
10173     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10174     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
10175   }
10176   case NEON::BI__builtin_neon_vcvtm_s16_v:
10177   case NEON::BI__builtin_neon_vcvtm_s32_v:
10178   case NEON::BI__builtin_neon_vcvtmq_s16_v:
10179   case NEON::BI__builtin_neon_vcvtmq_s32_v:
10180   case NEON::BI__builtin_neon_vcvtm_u16_v:
10181   case NEON::BI__builtin_neon_vcvtm_u32_v:
10182   case NEON::BI__builtin_neon_vcvtmq_u16_v:
10183   case NEON::BI__builtin_neon_vcvtmq_u32_v:
10184   case NEON::BI__builtin_neon_vcvtm_s64_v:
10185   case NEON::BI__builtin_neon_vcvtmq_s64_v:
10186   case NEON::BI__builtin_neon_vcvtm_u64_v:
10187   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
10188     Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
10189     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10190     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
10191   }
10192   case NEON::BI__builtin_neon_vcvtn_s16_v:
10193   case NEON::BI__builtin_neon_vcvtn_s32_v:
10194   case NEON::BI__builtin_neon_vcvtnq_s16_v:
10195   case NEON::BI__builtin_neon_vcvtnq_s32_v:
10196   case NEON::BI__builtin_neon_vcvtn_u16_v:
10197   case NEON::BI__builtin_neon_vcvtn_u32_v:
10198   case NEON::BI__builtin_neon_vcvtnq_u16_v:
10199   case NEON::BI__builtin_neon_vcvtnq_u32_v:
10200   case NEON::BI__builtin_neon_vcvtn_s64_v:
10201   case NEON::BI__builtin_neon_vcvtnq_s64_v:
10202   case NEON::BI__builtin_neon_vcvtn_u64_v:
10203   case NEON::BI__builtin_neon_vcvtnq_u64_v: {
10204     Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
10205     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10206     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
10207   }
10208   case NEON::BI__builtin_neon_vcvtp_s16_v:
10209   case NEON::BI__builtin_neon_vcvtp_s32_v:
10210   case NEON::BI__builtin_neon_vcvtpq_s16_v:
10211   case NEON::BI__builtin_neon_vcvtpq_s32_v:
10212   case NEON::BI__builtin_neon_vcvtp_u16_v:
10213   case NEON::BI__builtin_neon_vcvtp_u32_v:
10214   case NEON::BI__builtin_neon_vcvtpq_u16_v:
10215   case NEON::BI__builtin_neon_vcvtpq_u32_v:
10216   case NEON::BI__builtin_neon_vcvtp_s64_v:
10217   case NEON::BI__builtin_neon_vcvtpq_s64_v:
10218   case NEON::BI__builtin_neon_vcvtp_u64_v:
10219   case NEON::BI__builtin_neon_vcvtpq_u64_v: {
10220     Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
10221     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10222     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
10223   }
10224   case NEON::BI__builtin_neon_vmulx_v:
10225   case NEON::BI__builtin_neon_vmulxq_v: {
10226     Int = Intrinsic::aarch64_neon_fmulx;
10227     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
10228   }
10229   case NEON::BI__builtin_neon_vmulxh_lane_f16:
10230   case NEON::BI__builtin_neon_vmulxh_laneq_f16: {
10231     // vmulx_lane should be mapped to Neon scalar mulx after
10232     // extracting the scalar element
10233     Ops.push_back(EmitScalarExpr(E->getArg(2)));
10234     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
10235     Ops.pop_back();
10236     Int = Intrinsic::aarch64_neon_fmulx;
10237     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx");
10238   }
10239   case NEON::BI__builtin_neon_vmul_lane_v:
10240   case NEON::BI__builtin_neon_vmul_laneq_v: {
10241     // v1f64 vmul_lane should be mapped to Neon scalar mul lane
10242     bool Quad = false;
10243     if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
10244       Quad = true;
10245     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10246     llvm::Type *VTy = GetNeonType(this,
10247       NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
10248     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
10249     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
10250     Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
10251     return Builder.CreateBitCast(Result, Ty);
10252   }
10253   case NEON::BI__builtin_neon_vnegd_s64:
10254     return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
10255   case NEON::BI__builtin_neon_vnegh_f16:
10256     return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh");
10257   case NEON::BI__builtin_neon_vpmaxnm_v:
10258   case NEON::BI__builtin_neon_vpmaxnmq_v: {
10259     Int = Intrinsic::aarch64_neon_fmaxnmp;
10260     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
10261   }
10262   case NEON::BI__builtin_neon_vpminnm_v:
10263   case NEON::BI__builtin_neon_vpminnmq_v: {
10264     Int = Intrinsic::aarch64_neon_fminnmp;
10265     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
10266   }
10267   case NEON::BI__builtin_neon_vsqrth_f16: {
10268     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10269     Int = Builder.getIsFPConstrained()
10270               ? Intrinsic::experimental_constrained_sqrt
10271               : Intrinsic::sqrt;
10272     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt");
10273   }
10274   case NEON::BI__builtin_neon_vsqrt_v:
10275   case NEON::BI__builtin_neon_vsqrtq_v: {
10276     Int = Builder.getIsFPConstrained()
10277               ? Intrinsic::experimental_constrained_sqrt
10278               : Intrinsic::sqrt;
10279     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10280     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
10281   }
10282   case NEON::BI__builtin_neon_vrbit_v:
10283   case NEON::BI__builtin_neon_vrbitq_v: {
10284     Int = Intrinsic::aarch64_neon_rbit;
10285     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
10286   }
10287   case NEON::BI__builtin_neon_vaddv_u8:
10288     // FIXME: These are handled by the AArch64 scalar code.
10289     usgn = true;
10290     LLVM_FALLTHROUGH;
10291   case NEON::BI__builtin_neon_vaddv_s8: {
10292     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10293     Ty = Int32Ty;
10294     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10295     llvm::Type *Tys[2] = { Ty, VTy };
10296     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10297     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
10298     return Builder.CreateTrunc(Ops[0], Int8Ty);
10299   }
10300   case NEON::BI__builtin_neon_vaddv_u16:
10301     usgn = true;
10302     LLVM_FALLTHROUGH;
10303   case NEON::BI__builtin_neon_vaddv_s16: {
10304     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10305     Ty = Int32Ty;
10306     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10307     llvm::Type *Tys[2] = { Ty, VTy };
10308     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10309     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
10310     return Builder.CreateTrunc(Ops[0], Int16Ty);
10311   }
10312   case NEON::BI__builtin_neon_vaddvq_u8:
10313     usgn = true;
10314     LLVM_FALLTHROUGH;
10315   case NEON::BI__builtin_neon_vaddvq_s8: {
10316     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10317     Ty = Int32Ty;
10318     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10319     llvm::Type *Tys[2] = { Ty, VTy };
10320     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10321     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
10322     return Builder.CreateTrunc(Ops[0], Int8Ty);
10323   }
10324   case NEON::BI__builtin_neon_vaddvq_u16:
10325     usgn = true;
10326     LLVM_FALLTHROUGH;
10327   case NEON::BI__builtin_neon_vaddvq_s16: {
10328     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10329     Ty = Int32Ty;
10330     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10331     llvm::Type *Tys[2] = { Ty, VTy };
10332     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10333     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
10334     return Builder.CreateTrunc(Ops[0], Int16Ty);
10335   }
10336   case NEON::BI__builtin_neon_vmaxv_u8: {
10337     Int = Intrinsic::aarch64_neon_umaxv;
10338     Ty = Int32Ty;
10339     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10340     llvm::Type *Tys[2] = { Ty, VTy };
10341     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10342     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10343     return Builder.CreateTrunc(Ops[0], Int8Ty);
10344   }
10345   case NEON::BI__builtin_neon_vmaxv_u16: {
10346     Int = Intrinsic::aarch64_neon_umaxv;
10347     Ty = Int32Ty;
10348     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10349     llvm::Type *Tys[2] = { Ty, VTy };
10350     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10351     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10352     return Builder.CreateTrunc(Ops[0], Int16Ty);
10353   }
10354   case NEON::BI__builtin_neon_vmaxvq_u8: {
10355     Int = Intrinsic::aarch64_neon_umaxv;
10356     Ty = Int32Ty;
10357     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10358     llvm::Type *Tys[2] = { Ty, VTy };
10359     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10360     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10361     return Builder.CreateTrunc(Ops[0], Int8Ty);
10362   }
10363   case NEON::BI__builtin_neon_vmaxvq_u16: {
10364     Int = Intrinsic::aarch64_neon_umaxv;
10365     Ty = Int32Ty;
10366     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10367     llvm::Type *Tys[2] = { Ty, VTy };
10368     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10369     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10370     return Builder.CreateTrunc(Ops[0], Int16Ty);
10371   }
10372   case NEON::BI__builtin_neon_vmaxv_s8: {
10373     Int = Intrinsic::aarch64_neon_smaxv;
10374     Ty = Int32Ty;
10375     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10376     llvm::Type *Tys[2] = { Ty, VTy };
10377     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10378     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10379     return Builder.CreateTrunc(Ops[0], Int8Ty);
10380   }
10381   case NEON::BI__builtin_neon_vmaxv_s16: {
10382     Int = Intrinsic::aarch64_neon_smaxv;
10383     Ty = Int32Ty;
10384     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10385     llvm::Type *Tys[2] = { Ty, VTy };
10386     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10387     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10388     return Builder.CreateTrunc(Ops[0], Int16Ty);
10389   }
10390   case NEON::BI__builtin_neon_vmaxvq_s8: {
10391     Int = Intrinsic::aarch64_neon_smaxv;
10392     Ty = Int32Ty;
10393     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10394     llvm::Type *Tys[2] = { Ty, VTy };
10395     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10396     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10397     return Builder.CreateTrunc(Ops[0], Int8Ty);
10398   }
10399   case NEON::BI__builtin_neon_vmaxvq_s16: {
10400     Int = Intrinsic::aarch64_neon_smaxv;
10401     Ty = Int32Ty;
10402     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10403     llvm::Type *Tys[2] = { Ty, VTy };
10404     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10405     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10406     return Builder.CreateTrunc(Ops[0], Int16Ty);
10407   }
10408   case NEON::BI__builtin_neon_vmaxv_f16: {
10409     Int = Intrinsic::aarch64_neon_fmaxv;
10410     Ty = HalfTy;
10411     VTy = llvm::FixedVectorType::get(HalfTy, 4);
10412     llvm::Type *Tys[2] = { Ty, VTy };
10413     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10414     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10415     return Builder.CreateTrunc(Ops[0], HalfTy);
10416   }
10417   case NEON::BI__builtin_neon_vmaxvq_f16: {
10418     Int = Intrinsic::aarch64_neon_fmaxv;
10419     Ty = HalfTy;
10420     VTy = llvm::FixedVectorType::get(HalfTy, 8);
10421     llvm::Type *Tys[2] = { Ty, VTy };
10422     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10423     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10424     return Builder.CreateTrunc(Ops[0], HalfTy);
10425   }
10426   case NEON::BI__builtin_neon_vminv_u8: {
10427     Int = Intrinsic::aarch64_neon_uminv;
10428     Ty = Int32Ty;
10429     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10430     llvm::Type *Tys[2] = { Ty, VTy };
10431     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10432     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10433     return Builder.CreateTrunc(Ops[0], Int8Ty);
10434   }
10435   case NEON::BI__builtin_neon_vminv_u16: {
10436     Int = Intrinsic::aarch64_neon_uminv;
10437     Ty = Int32Ty;
10438     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10439     llvm::Type *Tys[2] = { Ty, VTy };
10440     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10441     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10442     return Builder.CreateTrunc(Ops[0], Int16Ty);
10443   }
10444   case NEON::BI__builtin_neon_vminvq_u8: {
10445     Int = Intrinsic::aarch64_neon_uminv;
10446     Ty = Int32Ty;
10447     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10448     llvm::Type *Tys[2] = { Ty, VTy };
10449     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10450     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10451     return Builder.CreateTrunc(Ops[0], Int8Ty);
10452   }
10453   case NEON::BI__builtin_neon_vminvq_u16: {
10454     Int = Intrinsic::aarch64_neon_uminv;
10455     Ty = Int32Ty;
10456     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10457     llvm::Type *Tys[2] = { Ty, VTy };
10458     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10459     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10460     return Builder.CreateTrunc(Ops[0], Int16Ty);
10461   }
10462   case NEON::BI__builtin_neon_vminv_s8: {
10463     Int = Intrinsic::aarch64_neon_sminv;
10464     Ty = Int32Ty;
10465     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10466     llvm::Type *Tys[2] = { Ty, VTy };
10467     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10468     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10469     return Builder.CreateTrunc(Ops[0], Int8Ty);
10470   }
10471   case NEON::BI__builtin_neon_vminv_s16: {
10472     Int = Intrinsic::aarch64_neon_sminv;
10473     Ty = Int32Ty;
10474     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10475     llvm::Type *Tys[2] = { Ty, VTy };
10476     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10477     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10478     return Builder.CreateTrunc(Ops[0], Int16Ty);
10479   }
10480   case NEON::BI__builtin_neon_vminvq_s8: {
10481     Int = Intrinsic::aarch64_neon_sminv;
10482     Ty = Int32Ty;
10483     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10484     llvm::Type *Tys[2] = { Ty, VTy };
10485     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10486     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10487     return Builder.CreateTrunc(Ops[0], Int8Ty);
10488   }
10489   case NEON::BI__builtin_neon_vminvq_s16: {
10490     Int = Intrinsic::aarch64_neon_sminv;
10491     Ty = Int32Ty;
10492     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10493     llvm::Type *Tys[2] = { Ty, VTy };
10494     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10495     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10496     return Builder.CreateTrunc(Ops[0], Int16Ty);
10497   }
10498   case NEON::BI__builtin_neon_vminv_f16: {
10499     Int = Intrinsic::aarch64_neon_fminv;
10500     Ty = HalfTy;
10501     VTy = llvm::FixedVectorType::get(HalfTy, 4);
10502     llvm::Type *Tys[2] = { Ty, VTy };
10503     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10504     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10505     return Builder.CreateTrunc(Ops[0], HalfTy);
10506   }
10507   case NEON::BI__builtin_neon_vminvq_f16: {
10508     Int = Intrinsic::aarch64_neon_fminv;
10509     Ty = HalfTy;
10510     VTy = llvm::FixedVectorType::get(HalfTy, 8);
10511     llvm::Type *Tys[2] = { Ty, VTy };
10512     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10513     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10514     return Builder.CreateTrunc(Ops[0], HalfTy);
10515   }
10516   case NEON::BI__builtin_neon_vmaxnmv_f16: {
10517     Int = Intrinsic::aarch64_neon_fmaxnmv;
10518     Ty = HalfTy;
10519     VTy = llvm::FixedVectorType::get(HalfTy, 4);
10520     llvm::Type *Tys[2] = { Ty, VTy };
10521     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10522     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
10523     return Builder.CreateTrunc(Ops[0], HalfTy);
10524   }
10525   case NEON::BI__builtin_neon_vmaxnmvq_f16: {
10526     Int = Intrinsic::aarch64_neon_fmaxnmv;
10527     Ty = HalfTy;
10528     VTy = llvm::FixedVectorType::get(HalfTy, 8);
10529     llvm::Type *Tys[2] = { Ty, VTy };
10530     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10531     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
10532     return Builder.CreateTrunc(Ops[0], HalfTy);
10533   }
10534   case NEON::BI__builtin_neon_vminnmv_f16: {
10535     Int = Intrinsic::aarch64_neon_fminnmv;
10536     Ty = HalfTy;
10537     VTy = llvm::FixedVectorType::get(HalfTy, 4);
10538     llvm::Type *Tys[2] = { Ty, VTy };
10539     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10540     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
10541     return Builder.CreateTrunc(Ops[0], HalfTy);
10542   }
10543   case NEON::BI__builtin_neon_vminnmvq_f16: {
10544     Int = Intrinsic::aarch64_neon_fminnmv;
10545     Ty = HalfTy;
10546     VTy = llvm::FixedVectorType::get(HalfTy, 8);
10547     llvm::Type *Tys[2] = { Ty, VTy };
10548     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10549     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
10550     return Builder.CreateTrunc(Ops[0], HalfTy);
10551   }
10552   case NEON::BI__builtin_neon_vmul_n_f64: {
10553     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10554     Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
10555     return Builder.CreateFMul(Ops[0], RHS);
10556   }
10557   case NEON::BI__builtin_neon_vaddlv_u8: {
10558     Int = Intrinsic::aarch64_neon_uaddlv;
10559     Ty = Int32Ty;
10560     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10561     llvm::Type *Tys[2] = { Ty, VTy };
10562     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10563     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10564     return Builder.CreateTrunc(Ops[0], Int16Ty);
10565   }
10566   case NEON::BI__builtin_neon_vaddlv_u16: {
10567     Int = Intrinsic::aarch64_neon_uaddlv;
10568     Ty = Int32Ty;
10569     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10570     llvm::Type *Tys[2] = { Ty, VTy };
10571     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10572     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10573   }
10574   case NEON::BI__builtin_neon_vaddlvq_u8: {
10575     Int = Intrinsic::aarch64_neon_uaddlv;
10576     Ty = Int32Ty;
10577     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10578     llvm::Type *Tys[2] = { Ty, VTy };
10579     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10580     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10581     return Builder.CreateTrunc(Ops[0], Int16Ty);
10582   }
10583   case NEON::BI__builtin_neon_vaddlvq_u16: {
10584     Int = Intrinsic::aarch64_neon_uaddlv;
10585     Ty = Int32Ty;
10586     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10587     llvm::Type *Tys[2] = { Ty, VTy };
10588     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10589     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10590   }
10591   case NEON::BI__builtin_neon_vaddlv_s8: {
10592     Int = Intrinsic::aarch64_neon_saddlv;
10593     Ty = Int32Ty;
10594     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10595     llvm::Type *Tys[2] = { Ty, VTy };
10596     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10597     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10598     return Builder.CreateTrunc(Ops[0], Int16Ty);
10599   }
10600   case NEON::BI__builtin_neon_vaddlv_s16: {
10601     Int = Intrinsic::aarch64_neon_saddlv;
10602     Ty = Int32Ty;
10603     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10604     llvm::Type *Tys[2] = { Ty, VTy };
10605     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10606     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10607   }
10608   case NEON::BI__builtin_neon_vaddlvq_s8: {
10609     Int = Intrinsic::aarch64_neon_saddlv;
10610     Ty = Int32Ty;
10611     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10612     llvm::Type *Tys[2] = { Ty, VTy };
10613     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10614     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10615     return Builder.CreateTrunc(Ops[0], Int16Ty);
10616   }
10617   case NEON::BI__builtin_neon_vaddlvq_s16: {
10618     Int = Intrinsic::aarch64_neon_saddlv;
10619     Ty = Int32Ty;
10620     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10621     llvm::Type *Tys[2] = { Ty, VTy };
10622     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10623     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10624   }
10625   case NEON::BI__builtin_neon_vsri_n_v:
10626   case NEON::BI__builtin_neon_vsriq_n_v: {
10627     Int = Intrinsic::aarch64_neon_vsri;
10628     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
10629     return EmitNeonCall(Intrin, Ops, "vsri_n");
10630   }
10631   case NEON::BI__builtin_neon_vsli_n_v:
10632   case NEON::BI__builtin_neon_vsliq_n_v: {
10633     Int = Intrinsic::aarch64_neon_vsli;
10634     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
10635     return EmitNeonCall(Intrin, Ops, "vsli_n");
10636   }
10637   case NEON::BI__builtin_neon_vsra_n_v:
10638   case NEON::BI__builtin_neon_vsraq_n_v:
10639     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10640     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
10641     return Builder.CreateAdd(Ops[0], Ops[1]);
10642   case NEON::BI__builtin_neon_vrsra_n_v:
10643   case NEON::BI__builtin_neon_vrsraq_n_v: {
10644     Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
10645     SmallVector<llvm::Value*,2> TmpOps;
10646     TmpOps.push_back(Ops[1]);
10647     TmpOps.push_back(Ops[2]);
10648     Function* F = CGM.getIntrinsic(Int, Ty);
10649     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
10650     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
10651     return Builder.CreateAdd(Ops[0], tmp);
10652   }
10653   case NEON::BI__builtin_neon_vld1_v:
10654   case NEON::BI__builtin_neon_vld1q_v: {
10655     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
10656     return Builder.CreateAlignedLoad(VTy, Ops[0], PtrOp0.getAlignment());
10657   }
10658   case NEON::BI__builtin_neon_vst1_v:
10659   case NEON::BI__builtin_neon_vst1q_v:
10660     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
10661     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
10662     return Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment());
10663   case NEON::BI__builtin_neon_vld1_lane_v:
10664   case NEON::BI__builtin_neon_vld1q_lane_v: {
10665     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10666     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
10667     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10668     Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
10669                                        PtrOp0.getAlignment());
10670     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
10671   }
10672   case NEON::BI__builtin_neon_vld1_dup_v:
10673   case NEON::BI__builtin_neon_vld1q_dup_v: {
10674     Value *V = UndefValue::get(Ty);
10675     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
10676     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10677     Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
10678                                        PtrOp0.getAlignment());
10679     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
10680     Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
10681     return EmitNeonSplat(Ops[0], CI);
10682   }
10683   case NEON::BI__builtin_neon_vst1_lane_v:
10684   case NEON::BI__builtin_neon_vst1q_lane_v:
10685     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10686     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
10687     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
10688     return Builder.CreateAlignedStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty),
10689                                       PtrOp0.getAlignment());
10690   case NEON::BI__builtin_neon_vld2_v:
10691   case NEON::BI__builtin_neon_vld2q_v: {
10692     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
10693     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
10694     llvm::Type *Tys[2] = { VTy, PTy };
10695     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
10696     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
10697     Ops[0] = Builder.CreateBitCast(Ops[0],
10698                 llvm::PointerType::getUnqual(Ops[1]->getType()));
10699     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10700   }
10701   case NEON::BI__builtin_neon_vld3_v:
10702   case NEON::BI__builtin_neon_vld3q_v: {
10703     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
10704     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
10705     llvm::Type *Tys[2] = { VTy, PTy };
10706     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
10707     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
10708     Ops[0] = Builder.CreateBitCast(Ops[0],
10709                 llvm::PointerType::getUnqual(Ops[1]->getType()));
10710     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10711   }
10712   case NEON::BI__builtin_neon_vld4_v:
10713   case NEON::BI__builtin_neon_vld4q_v: {
10714     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
10715     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
10716     llvm::Type *Tys[2] = { VTy, PTy };
10717     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
10718     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
10719     Ops[0] = Builder.CreateBitCast(Ops[0],
10720                 llvm::PointerType::getUnqual(Ops[1]->getType()));
10721     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10722   }
10723   case NEON::BI__builtin_neon_vld2_dup_v:
10724   case NEON::BI__builtin_neon_vld2q_dup_v: {
10725     llvm::Type *PTy =
10726       llvm::PointerType::getUnqual(VTy->getElementType());
10727     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
10728     llvm::Type *Tys[2] = { VTy, PTy };
10729     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
10730     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
10731     Ops[0] = Builder.CreateBitCast(Ops[0],
10732                 llvm::PointerType::getUnqual(Ops[1]->getType()));
10733     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10734   }
10735   case NEON::BI__builtin_neon_vld3_dup_v:
10736   case NEON::BI__builtin_neon_vld3q_dup_v: {
10737     llvm::Type *PTy =
10738       llvm::PointerType::getUnqual(VTy->getElementType());
10739     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
10740     llvm::Type *Tys[2] = { VTy, PTy };
10741     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
10742     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
10743     Ops[0] = Builder.CreateBitCast(Ops[0],
10744                 llvm::PointerType::getUnqual(Ops[1]->getType()));
10745     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10746   }
10747   case NEON::BI__builtin_neon_vld4_dup_v:
10748   case NEON::BI__builtin_neon_vld4q_dup_v: {
10749     llvm::Type *PTy =
10750       llvm::PointerType::getUnqual(VTy->getElementType());
10751     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
10752     llvm::Type *Tys[2] = { VTy, PTy };
10753     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
10754     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
10755     Ops[0] = Builder.CreateBitCast(Ops[0],
10756                 llvm::PointerType::getUnqual(Ops[1]->getType()));
10757     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10758   }
10759   case NEON::BI__builtin_neon_vld2_lane_v:
10760   case NEON::BI__builtin_neon_vld2q_lane_v: {
10761     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
10762     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
10763     Ops.push_back(Ops[1]);
10764     Ops.erase(Ops.begin()+1);
10765     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10766     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
10767     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
10768     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
10769     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
10770     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10771     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10772   }
10773   case NEON::BI__builtin_neon_vld3_lane_v:
10774   case NEON::BI__builtin_neon_vld3q_lane_v: {
10775     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
10776     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
10777     Ops.push_back(Ops[1]);
10778     Ops.erase(Ops.begin()+1);
10779     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10780     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
10781     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
10782     Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
10783     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
10784     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
10785     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10786     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10787   }
10788   case NEON::BI__builtin_neon_vld4_lane_v:
10789   case NEON::BI__builtin_neon_vld4q_lane_v: {
10790     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
10791     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
10792     Ops.push_back(Ops[1]);
10793     Ops.erase(Ops.begin()+1);
10794     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10795     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
10796     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
10797     Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
10798     Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
10799     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
10800     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
10801     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10802     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10803   }
10804   case NEON::BI__builtin_neon_vst2_v:
10805   case NEON::BI__builtin_neon_vst2q_v: {
10806     Ops.push_back(Ops[0]);
10807     Ops.erase(Ops.begin());
10808     llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
10809     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
10810                         Ops, "");
10811   }
10812   case NEON::BI__builtin_neon_vst2_lane_v:
10813   case NEON::BI__builtin_neon_vst2q_lane_v: {
10814     Ops.push_back(Ops[0]);
10815     Ops.erase(Ops.begin());
10816     Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
10817     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
10818     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
10819                         Ops, "");
10820   }
10821   case NEON::BI__builtin_neon_vst3_v:
10822   case NEON::BI__builtin_neon_vst3q_v: {
10823     Ops.push_back(Ops[0]);
10824     Ops.erase(Ops.begin());
10825     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
10826     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
10827                         Ops, "");
10828   }
10829   case NEON::BI__builtin_neon_vst3_lane_v:
10830   case NEON::BI__builtin_neon_vst3q_lane_v: {
10831     Ops.push_back(Ops[0]);
10832     Ops.erase(Ops.begin());
10833     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
10834     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
10835     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
10836                         Ops, "");
10837   }
10838   case NEON::BI__builtin_neon_vst4_v:
10839   case NEON::BI__builtin_neon_vst4q_v: {
10840     Ops.push_back(Ops[0]);
10841     Ops.erase(Ops.begin());
10842     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
10843     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
10844                         Ops, "");
10845   }
10846   case NEON::BI__builtin_neon_vst4_lane_v:
10847   case NEON::BI__builtin_neon_vst4q_lane_v: {
10848     Ops.push_back(Ops[0]);
10849     Ops.erase(Ops.begin());
10850     Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
10851     llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
10852     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
10853                         Ops, "");
10854   }
10855   case NEON::BI__builtin_neon_vtrn_v:
10856   case NEON::BI__builtin_neon_vtrnq_v: {
10857     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
10858     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10859     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
10860     Value *SV = nullptr;
10861 
10862     for (unsigned vi = 0; vi != 2; ++vi) {
10863       SmallVector<int, 16> Indices;
10864       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
10865         Indices.push_back(i+vi);
10866         Indices.push_back(i+e+vi);
10867       }
10868       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
10869       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
10870       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
10871     }
10872     return SV;
10873   }
10874   case NEON::BI__builtin_neon_vuzp_v:
10875   case NEON::BI__builtin_neon_vuzpq_v: {
10876     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
10877     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10878     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
10879     Value *SV = nullptr;
10880 
10881     for (unsigned vi = 0; vi != 2; ++vi) {
10882       SmallVector<int, 16> Indices;
10883       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
10884         Indices.push_back(2*i+vi);
10885 
10886       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
10887       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
10888       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
10889     }
10890     return SV;
10891   }
10892   case NEON::BI__builtin_neon_vzip_v:
10893   case NEON::BI__builtin_neon_vzipq_v: {
10894     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
10895     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10896     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
10897     Value *SV = nullptr;
10898 
10899     for (unsigned vi = 0; vi != 2; ++vi) {
10900       SmallVector<int, 16> Indices;
10901       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
10902         Indices.push_back((i + vi*e) >> 1);
10903         Indices.push_back(((i + vi*e) >> 1)+e);
10904       }
10905       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
10906       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
10907       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
10908     }
10909     return SV;
10910   }
10911   case NEON::BI__builtin_neon_vqtbl1q_v: {
10912     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
10913                         Ops, "vtbl1");
10914   }
10915   case NEON::BI__builtin_neon_vqtbl2q_v: {
10916     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
10917                         Ops, "vtbl2");
10918   }
10919   case NEON::BI__builtin_neon_vqtbl3q_v: {
10920     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
10921                         Ops, "vtbl3");
10922   }
10923   case NEON::BI__builtin_neon_vqtbl4q_v: {
10924     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
10925                         Ops, "vtbl4");
10926   }
10927   case NEON::BI__builtin_neon_vqtbx1q_v: {
10928     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
10929                         Ops, "vtbx1");
10930   }
10931   case NEON::BI__builtin_neon_vqtbx2q_v: {
10932     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
10933                         Ops, "vtbx2");
10934   }
10935   case NEON::BI__builtin_neon_vqtbx3q_v: {
10936     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
10937                         Ops, "vtbx3");
10938   }
10939   case NEON::BI__builtin_neon_vqtbx4q_v: {
10940     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
10941                         Ops, "vtbx4");
10942   }
10943   case NEON::BI__builtin_neon_vsqadd_v:
10944   case NEON::BI__builtin_neon_vsqaddq_v: {
10945     Int = Intrinsic::aarch64_neon_usqadd;
10946     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
10947   }
10948   case NEON::BI__builtin_neon_vuqadd_v:
10949   case NEON::BI__builtin_neon_vuqaddq_v: {
10950     Int = Intrinsic::aarch64_neon_suqadd;
10951     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
10952   }
10953   }
10954 }
10955 
10956 Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID,
10957                                            const CallExpr *E) {
10958   assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||
10959           BuiltinID == BPF::BI__builtin_btf_type_id) &&
10960          "unexpected BPF builtin");
10961 
10962   switch (BuiltinID) {
10963   default:
10964     llvm_unreachable("Unexpected BPF builtin");
10965   case BPF::BI__builtin_preserve_field_info: {
10966     const Expr *Arg = E->getArg(0);
10967     bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField;
10968 
10969     if (!getDebugInfo()) {
10970       CGM.Error(E->getExprLoc(),
10971                 "using __builtin_preserve_field_info() without -g");
10972       return IsBitField ? EmitLValue(Arg).getBitFieldPointer()
10973                         : EmitLValue(Arg).getPointer(*this);
10974     }
10975 
10976     // Enable underlying preserve_*_access_index() generation.
10977     bool OldIsInPreservedAIRegion = IsInPreservedAIRegion;
10978     IsInPreservedAIRegion = true;
10979     Value *FieldAddr = IsBitField ? EmitLValue(Arg).getBitFieldPointer()
10980                                   : EmitLValue(Arg).getPointer(*this);
10981     IsInPreservedAIRegion = OldIsInPreservedAIRegion;
10982 
10983     ConstantInt *C = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10984     Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue());
10985 
10986     // Built the IR for the preserve_field_info intrinsic.
10987     llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getDeclaration(
10988         &CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info,
10989         {FieldAddr->getType()});
10990     return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind});
10991   }
10992   case BPF::BI__builtin_btf_type_id: {
10993     Value *FieldVal = nullptr;
10994 
10995     // The LValue cannot be converted Value in order to be used as the function
10996     // parameter. If it is a structure, it is the "alloca" result of the LValue
10997     // (a pointer) is used in the parameter. If it is a simple type,
10998     // the value will be loaded from its corresponding "alloca" and used as
10999     // the parameter. In our case, let us just get a pointer of the LValue
11000     // since we do not really use the parameter. The purpose of parameter
11001     // is to prevent the generated IR llvm.bpf.btf.type.id intrinsic call,
11002     // which carries metadata, from being changed.
11003     bool IsLValue = E->getArg(0)->isLValue();
11004     if (IsLValue)
11005       FieldVal = EmitLValue(E->getArg(0)).getPointer(*this);
11006     else
11007       FieldVal = EmitScalarExpr(E->getArg(0));
11008 
11009     if (!getDebugInfo()) {
11010       CGM.Error(E->getExprLoc(), "using __builtin_btf_type_id() without -g");
11011       return nullptr;
11012     }
11013 
11014     // Generate debuginfo type for the first argument.
11015     llvm::DIType *DbgInfo =
11016         getDebugInfo()->getOrCreateStandaloneType(E->getArg(0)->getType(),
11017                                                   E->getArg(0)->getExprLoc());
11018 
11019     ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11020     Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
11021 
11022     // Built the IR for the btf_type_id intrinsic.
11023     //
11024     // In the above, we converted LValue argument to a pointer to LValue.
11025     // For example, the following
11026     //   int v;
11027     //   C1: __builtin_btf_type_id(v, flag);
11028     // will be converted to
11029     //   L1: llvm.bpf.btf.type.id(&v, flag)
11030     // This makes it hard to differentiate from
11031     //   C2: __builtin_btf_type_id(&v, flag);
11032     // to
11033     //   L2: llvm.bpf.btf.type.id(&v, flag)
11034     //
11035     // If both C1 and C2 are present in the code, the llvm may later
11036     // on do CSE on L1 and L2, which will result in incorrect tagged types.
11037     //
11038     // The C1->L1 transformation only happens if the argument of
11039     // __builtin_btf_type_id() is a LValue. So Let us put whether
11040     // the argument is an LValue or not into generated IR. This should
11041     // prevent potential CSE from causing debuginfo type loss.
11042     //
11043     // The generated IR intrinsics will hence look like
11044     //   L1: llvm.bpf.btf.type.id(&v, 1, flag) !di_type_for_{v};
11045     //   L2: llvm.bpf.btf.type.id(&v, 0, flag) !di_type_for_{&v};
11046     Constant *CV = ConstantInt::get(IntTy, IsLValue);
11047     llvm::Function *FnBtfTypeId = llvm::Intrinsic::getDeclaration(
11048         &CGM.getModule(), llvm::Intrinsic::bpf_btf_type_id,
11049         {FieldVal->getType(), CV->getType()});
11050     CallInst *Fn = Builder.CreateCall(FnBtfTypeId, {FieldVal, CV, FlagValue});
11051     Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
11052     return Fn;
11053   }
11054   }
11055 }
11056 
11057 llvm::Value *CodeGenFunction::
11058 BuildVector(ArrayRef<llvm::Value*> Ops) {
11059   assert((Ops.size() & (Ops.size() - 1)) == 0 &&
11060          "Not a power-of-two sized vector!");
11061   bool AllConstants = true;
11062   for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
11063     AllConstants &= isa<Constant>(Ops[i]);
11064 
11065   // If this is a constant vector, create a ConstantVector.
11066   if (AllConstants) {
11067     SmallVector<llvm::Constant*, 16> CstOps;
11068     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
11069       CstOps.push_back(cast<Constant>(Ops[i]));
11070     return llvm::ConstantVector::get(CstOps);
11071   }
11072 
11073   // Otherwise, insertelement the values to build the vector.
11074   Value *Result = llvm::UndefValue::get(
11075       llvm::FixedVectorType::get(Ops[0]->getType(), Ops.size()));
11076 
11077   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
11078     Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
11079 
11080   return Result;
11081 }
11082 
11083 // Convert the mask from an integer type to a vector of i1.
11084 static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
11085                               unsigned NumElts) {
11086 
11087   auto *MaskTy = llvm::FixedVectorType::get(
11088       CGF.Builder.getInt1Ty(),
11089       cast<IntegerType>(Mask->getType())->getBitWidth());
11090   Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
11091 
11092   // If we have less than 8 elements, then the starting mask was an i8 and
11093   // we need to extract down to the right number of elements.
11094   if (NumElts < 8) {
11095     int Indices[4];
11096     for (unsigned i = 0; i != NumElts; ++i)
11097       Indices[i] = i;
11098     MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec,
11099                                              makeArrayRef(Indices, NumElts),
11100                                              "extract");
11101   }
11102   return MaskVec;
11103 }
11104 
11105 static Value *EmitX86MaskedStore(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11106                                  Align Alignment) {
11107   // Cast the pointer to right type.
11108   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11109                                llvm::PointerType::getUnqual(Ops[1]->getType()));
11110 
11111   Value *MaskVec = getMaskVecValue(
11112       CGF, Ops[2], cast<llvm::VectorType>(Ops[1]->getType())->getNumElements());
11113 
11114   return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Alignment, MaskVec);
11115 }
11116 
11117 static Value *EmitX86MaskedLoad(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11118                                 Align Alignment) {
11119   // Cast the pointer to right type.
11120   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11121                                llvm::PointerType::getUnqual(Ops[1]->getType()));
11122 
11123   Value *MaskVec = getMaskVecValue(
11124       CGF, Ops[2], cast<llvm::VectorType>(Ops[1]->getType())->getNumElements());
11125 
11126   return CGF.Builder.CreateMaskedLoad(Ptr, Alignment, MaskVec, Ops[1]);
11127 }
11128 
11129 static Value *EmitX86ExpandLoad(CodeGenFunction &CGF,
11130                                 ArrayRef<Value *> Ops) {
11131   auto *ResultTy = cast<llvm::VectorType>(Ops[1]->getType());
11132   llvm::Type *PtrTy = ResultTy->getElementType();
11133 
11134   // Cast the pointer to element type.
11135   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11136                                          llvm::PointerType::getUnqual(PtrTy));
11137 
11138   Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
11139 
11140   llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload,
11141                                            ResultTy);
11142   return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] });
11143 }
11144 
11145 static Value *EmitX86CompressExpand(CodeGenFunction &CGF,
11146                                     ArrayRef<Value *> Ops,
11147                                     bool IsCompress) {
11148   auto *ResultTy = cast<llvm::VectorType>(Ops[1]->getType());
11149 
11150   Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
11151 
11152   Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress
11153                                  : Intrinsic::x86_avx512_mask_expand;
11154   llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy);
11155   return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec });
11156 }
11157 
11158 static Value *EmitX86CompressStore(CodeGenFunction &CGF,
11159                                    ArrayRef<Value *> Ops) {
11160   auto *ResultTy = cast<llvm::VectorType>(Ops[1]->getType());
11161   llvm::Type *PtrTy = ResultTy->getElementType();
11162 
11163   // Cast the pointer to element type.
11164   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11165                                          llvm::PointerType::getUnqual(PtrTy));
11166 
11167   Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
11168 
11169   llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore,
11170                                            ResultTy);
11171   return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec });
11172 }
11173 
11174 static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
11175                               ArrayRef<Value *> Ops,
11176                               bool InvertLHS = false) {
11177   unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11178   Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts);
11179   Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts);
11180 
11181   if (InvertLHS)
11182     LHS = CGF.Builder.CreateNot(LHS);
11183 
11184   return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS),
11185                                    Ops[0]->getType());
11186 }
11187 
11188 static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1,
11189                                  Value *Amt, bool IsRight) {
11190   llvm::Type *Ty = Op0->getType();
11191 
11192   // Amount may be scalar immediate, in which case create a splat vector.
11193   // Funnel shifts amounts are treated as modulo and types are all power-of-2 so
11194   // we only care about the lowest log2 bits anyway.
11195   if (Amt->getType() != Ty) {
11196     unsigned NumElts = cast<llvm::VectorType>(Ty)->getNumElements();
11197     Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false);
11198     Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt);
11199   }
11200 
11201   unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl;
11202   Function *F = CGF.CGM.getIntrinsic(IID, Ty);
11203   return CGF.Builder.CreateCall(F, {Op0, Op1, Amt});
11204 }
11205 
11206 static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11207                            bool IsSigned) {
11208   Value *Op0 = Ops[0];
11209   Value *Op1 = Ops[1];
11210   llvm::Type *Ty = Op0->getType();
11211   uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
11212 
11213   CmpInst::Predicate Pred;
11214   switch (Imm) {
11215   case 0x0:
11216     Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
11217     break;
11218   case 0x1:
11219     Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
11220     break;
11221   case 0x2:
11222     Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
11223     break;
11224   case 0x3:
11225     Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
11226     break;
11227   case 0x4:
11228     Pred = ICmpInst::ICMP_EQ;
11229     break;
11230   case 0x5:
11231     Pred = ICmpInst::ICMP_NE;
11232     break;
11233   case 0x6:
11234     return llvm::Constant::getNullValue(Ty); // FALSE
11235   case 0x7:
11236     return llvm::Constant::getAllOnesValue(Ty); // TRUE
11237   default:
11238     llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate");
11239   }
11240 
11241   Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1);
11242   Value *Res = CGF.Builder.CreateSExt(Cmp, Ty);
11243   return Res;
11244 }
11245 
11246 static Value *EmitX86Select(CodeGenFunction &CGF,
11247                             Value *Mask, Value *Op0, Value *Op1) {
11248 
11249   // If the mask is all ones just return first argument.
11250   if (const auto *C = dyn_cast<Constant>(Mask))
11251     if (C->isAllOnesValue())
11252       return Op0;
11253 
11254   Mask = getMaskVecValue(
11255       CGF, Mask, cast<llvm::VectorType>(Op0->getType())->getNumElements());
11256 
11257   return CGF.Builder.CreateSelect(Mask, Op0, Op1);
11258 }
11259 
11260 static Value *EmitX86ScalarSelect(CodeGenFunction &CGF,
11261                                   Value *Mask, Value *Op0, Value *Op1) {
11262   // If the mask is all ones just return first argument.
11263   if (const auto *C = dyn_cast<Constant>(Mask))
11264     if (C->isAllOnesValue())
11265       return Op0;
11266 
11267   auto *MaskTy = llvm::FixedVectorType::get(
11268       CGF.Builder.getInt1Ty(), Mask->getType()->getIntegerBitWidth());
11269   Mask = CGF.Builder.CreateBitCast(Mask, MaskTy);
11270   Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0);
11271   return CGF.Builder.CreateSelect(Mask, Op0, Op1);
11272 }
11273 
11274 static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp,
11275                                          unsigned NumElts, Value *MaskIn) {
11276   if (MaskIn) {
11277     const auto *C = dyn_cast<Constant>(MaskIn);
11278     if (!C || !C->isAllOnesValue())
11279       Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts));
11280   }
11281 
11282   if (NumElts < 8) {
11283     int Indices[8];
11284     for (unsigned i = 0; i != NumElts; ++i)
11285       Indices[i] = i;
11286     for (unsigned i = NumElts; i != 8; ++i)
11287       Indices[i] = i % NumElts + NumElts;
11288     Cmp = CGF.Builder.CreateShuffleVector(
11289         Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
11290   }
11291 
11292   return CGF.Builder.CreateBitCast(Cmp,
11293                                    IntegerType::get(CGF.getLLVMContext(),
11294                                                     std::max(NumElts, 8U)));
11295 }
11296 
11297 static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
11298                                    bool Signed, ArrayRef<Value *> Ops) {
11299   assert((Ops.size() == 2 || Ops.size() == 4) &&
11300          "Unexpected number of arguments");
11301   unsigned NumElts =
11302       cast<llvm::VectorType>(Ops[0]->getType())->getNumElements();
11303   Value *Cmp;
11304 
11305   if (CC == 3) {
11306     Cmp = Constant::getNullValue(
11307         llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
11308   } else if (CC == 7) {
11309     Cmp = Constant::getAllOnesValue(
11310         llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
11311   } else {
11312     ICmpInst::Predicate Pred;
11313     switch (CC) {
11314     default: llvm_unreachable("Unknown condition code");
11315     case 0: Pred = ICmpInst::ICMP_EQ;  break;
11316     case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
11317     case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
11318     case 4: Pred = ICmpInst::ICMP_NE;  break;
11319     case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
11320     case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
11321     }
11322     Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
11323   }
11324 
11325   Value *MaskIn = nullptr;
11326   if (Ops.size() == 4)
11327     MaskIn = Ops[3];
11328 
11329   return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn);
11330 }
11331 
11332 static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) {
11333   Value *Zero = Constant::getNullValue(In->getType());
11334   return EmitX86MaskedCompare(CGF, 1, true, { In, Zero });
11335 }
11336 
11337 static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF,
11338                                     ArrayRef<Value *> Ops, bool IsSigned) {
11339   unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue();
11340   llvm::Type *Ty = Ops[1]->getType();
11341 
11342   Value *Res;
11343   if (Rnd != 4) {
11344     Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round
11345                                  : Intrinsic::x86_avx512_uitofp_round;
11346     Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() });
11347     Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] });
11348   } else {
11349     Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty)
11350                    : CGF.Builder.CreateUIToFP(Ops[0], Ty);
11351   }
11352 
11353   return EmitX86Select(CGF, Ops[2], Res, Ops[1]);
11354 }
11355 
11356 static Value *EmitX86Abs(CodeGenFunction &CGF, ArrayRef<Value *> Ops) {
11357 
11358   llvm::Type *Ty = Ops[0]->getType();
11359   Value *Zero = llvm::Constant::getNullValue(Ty);
11360   Value *Sub = CGF.Builder.CreateSub(Zero, Ops[0]);
11361   Value *Cmp = CGF.Builder.CreateICmp(ICmpInst::ICMP_SGT, Ops[0], Zero);
11362   Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Sub);
11363   return Res;
11364 }
11365 
11366 static Value *EmitX86MinMax(CodeGenFunction &CGF, ICmpInst::Predicate Pred,
11367                             ArrayRef<Value *> Ops) {
11368   Value *Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
11369   Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Ops[1]);
11370 
11371   assert(Ops.size() == 2);
11372   return Res;
11373 }
11374 
11375 // Lowers X86 FMA intrinsics to IR.
11376 static Value *EmitX86FMAExpr(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11377                              unsigned BuiltinID, bool IsAddSub) {
11378 
11379   bool Subtract = false;
11380   Intrinsic::ID IID = Intrinsic::not_intrinsic;
11381   switch (BuiltinID) {
11382   default: break;
11383   case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
11384     Subtract = true;
11385     LLVM_FALLTHROUGH;
11386   case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
11387   case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
11388   case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
11389     IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break;
11390   case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
11391     Subtract = true;
11392     LLVM_FALLTHROUGH;
11393   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
11394   case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
11395   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
11396     IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break;
11397   case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
11398     Subtract = true;
11399     LLVM_FALLTHROUGH;
11400   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
11401   case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
11402   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
11403     IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512;
11404     break;
11405   case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
11406     Subtract = true;
11407     LLVM_FALLTHROUGH;
11408   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
11409   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
11410   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
11411     IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512;
11412     break;
11413   }
11414 
11415   Value *A = Ops[0];
11416   Value *B = Ops[1];
11417   Value *C = Ops[2];
11418 
11419   if (Subtract)
11420     C = CGF.Builder.CreateFNeg(C);
11421 
11422   Value *Res;
11423 
11424   // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding).
11425   if (IID != Intrinsic::not_intrinsic &&
11426       (cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4 ||
11427        IsAddSub)) {
11428     Function *Intr = CGF.CGM.getIntrinsic(IID);
11429     Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() });
11430   } else {
11431     llvm::Type *Ty = A->getType();
11432     Function *FMA;
11433     if (CGF.Builder.getIsFPConstrained()) {
11434       FMA = CGF.CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, Ty);
11435       Res = CGF.Builder.CreateConstrainedFPCall(FMA, {A, B, C});
11436     } else {
11437       FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
11438       Res = CGF.Builder.CreateCall(FMA, {A, B, C});
11439     }
11440   }
11441 
11442   // Handle any required masking.
11443   Value *MaskFalseVal = nullptr;
11444   switch (BuiltinID) {
11445   case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
11446   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
11447   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
11448   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
11449     MaskFalseVal = Ops[0];
11450     break;
11451   case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
11452   case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
11453   case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
11454   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
11455     MaskFalseVal = Constant::getNullValue(Ops[0]->getType());
11456     break;
11457   case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
11458   case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
11459   case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
11460   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
11461   case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
11462   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
11463   case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
11464   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
11465     MaskFalseVal = Ops[2];
11466     break;
11467   }
11468 
11469   if (MaskFalseVal)
11470     return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal);
11471 
11472   return Res;
11473 }
11474 
11475 static Value *
11476 EmitScalarFMAExpr(CodeGenFunction &CGF, MutableArrayRef<Value *> Ops,
11477                   Value *Upper, bool ZeroMask = false, unsigned PTIdx = 0,
11478                   bool NegAcc = false) {
11479   unsigned Rnd = 4;
11480   if (Ops.size() > 4)
11481     Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
11482 
11483   if (NegAcc)
11484     Ops[2] = CGF.Builder.CreateFNeg(Ops[2]);
11485 
11486   Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0);
11487   Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0);
11488   Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0);
11489   Value *Res;
11490   if (Rnd != 4) {
11491     Intrinsic::ID IID = Ops[0]->getType()->getPrimitiveSizeInBits() == 32 ?
11492                         Intrinsic::x86_avx512_vfmadd_f32 :
11493                         Intrinsic::x86_avx512_vfmadd_f64;
11494     Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
11495                                  {Ops[0], Ops[1], Ops[2], Ops[4]});
11496   } else if (CGF.Builder.getIsFPConstrained()) {
11497     Function *FMA = CGF.CGM.getIntrinsic(
11498         Intrinsic::experimental_constrained_fma, Ops[0]->getType());
11499     Res = CGF.Builder.CreateConstrainedFPCall(FMA, Ops.slice(0, 3));
11500   } else {
11501     Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType());
11502     Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3));
11503   }
11504   // If we have more than 3 arguments, we need to do masking.
11505   if (Ops.size() > 3) {
11506     Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType())
11507                                : Ops[PTIdx];
11508 
11509     // If we negated the accumulator and the its the PassThru value we need to
11510     // bypass the negate. Conveniently Upper should be the same thing in this
11511     // case.
11512     if (NegAcc && PTIdx == 2)
11513       PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0);
11514 
11515     Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru);
11516   }
11517   return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0);
11518 }
11519 
11520 static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned,
11521                            ArrayRef<Value *> Ops) {
11522   llvm::Type *Ty = Ops[0]->getType();
11523   // Arguments have a vXi32 type so cast to vXi64.
11524   Ty = llvm::FixedVectorType::get(CGF.Int64Ty,
11525                                   Ty->getPrimitiveSizeInBits() / 64);
11526   Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty);
11527   Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty);
11528 
11529   if (IsSigned) {
11530     // Shift left then arithmetic shift right.
11531     Constant *ShiftAmt = ConstantInt::get(Ty, 32);
11532     LHS = CGF.Builder.CreateShl(LHS, ShiftAmt);
11533     LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt);
11534     RHS = CGF.Builder.CreateShl(RHS, ShiftAmt);
11535     RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt);
11536   } else {
11537     // Clear the upper bits.
11538     Constant *Mask = ConstantInt::get(Ty, 0xffffffff);
11539     LHS = CGF.Builder.CreateAnd(LHS, Mask);
11540     RHS = CGF.Builder.CreateAnd(RHS, Mask);
11541   }
11542 
11543   return CGF.Builder.CreateMul(LHS, RHS);
11544 }
11545 
11546 // Emit a masked pternlog intrinsic. This only exists because the header has to
11547 // use a macro and we aren't able to pass the input argument to a pternlog
11548 // builtin and a select builtin without evaluating it twice.
11549 static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask,
11550                              ArrayRef<Value *> Ops) {
11551   llvm::Type *Ty = Ops[0]->getType();
11552 
11553   unsigned VecWidth = Ty->getPrimitiveSizeInBits();
11554   unsigned EltWidth = Ty->getScalarSizeInBits();
11555   Intrinsic::ID IID;
11556   if (VecWidth == 128 && EltWidth == 32)
11557     IID = Intrinsic::x86_avx512_pternlog_d_128;
11558   else if (VecWidth == 256 && EltWidth == 32)
11559     IID = Intrinsic::x86_avx512_pternlog_d_256;
11560   else if (VecWidth == 512 && EltWidth == 32)
11561     IID = Intrinsic::x86_avx512_pternlog_d_512;
11562   else if (VecWidth == 128 && EltWidth == 64)
11563     IID = Intrinsic::x86_avx512_pternlog_q_128;
11564   else if (VecWidth == 256 && EltWidth == 64)
11565     IID = Intrinsic::x86_avx512_pternlog_q_256;
11566   else if (VecWidth == 512 && EltWidth == 64)
11567     IID = Intrinsic::x86_avx512_pternlog_q_512;
11568   else
11569     llvm_unreachable("Unexpected intrinsic");
11570 
11571   Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
11572                                           Ops.drop_back());
11573   Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0];
11574   return EmitX86Select(CGF, Ops[4], Ternlog, PassThru);
11575 }
11576 
11577 static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
11578                               llvm::Type *DstTy) {
11579   unsigned NumberOfElements = cast<llvm::VectorType>(DstTy)->getNumElements();
11580   Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements);
11581   return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2");
11582 }
11583 
11584 // Emit addition or subtraction with signed/unsigned saturation.
11585 static Value *EmitX86AddSubSatExpr(CodeGenFunction &CGF,
11586                                    ArrayRef<Value *> Ops, bool IsSigned,
11587                                    bool IsAddition) {
11588   Intrinsic::ID IID =
11589       IsSigned ? (IsAddition ? Intrinsic::sadd_sat : Intrinsic::ssub_sat)
11590                : (IsAddition ? Intrinsic::uadd_sat : Intrinsic::usub_sat);
11591   llvm::Function *F = CGF.CGM.getIntrinsic(IID, Ops[0]->getType());
11592   return CGF.Builder.CreateCall(F, {Ops[0], Ops[1]});
11593 }
11594 
11595 Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
11596   const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
11597   StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
11598   return EmitX86CpuIs(CPUStr);
11599 }
11600 
11601 // Convert F16 halfs to floats.
11602 static Value *EmitX86CvtF16ToFloatExpr(CodeGenFunction &CGF,
11603                                        ArrayRef<Value *> Ops,
11604                                        llvm::Type *DstTy) {
11605   assert((Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) &&
11606          "Unknown cvtph2ps intrinsic");
11607 
11608   // If the SAE intrinsic doesn't use default rounding then we can't upgrade.
11609   if (Ops.size() == 4 && cast<llvm::ConstantInt>(Ops[3])->getZExtValue() != 4) {
11610     Function *F =
11611         CGF.CGM.getIntrinsic(Intrinsic::x86_avx512_mask_vcvtph2ps_512);
11612     return CGF.Builder.CreateCall(F, {Ops[0], Ops[1], Ops[2], Ops[3]});
11613   }
11614 
11615   unsigned NumDstElts = cast<llvm::VectorType>(DstTy)->getNumElements();
11616   Value *Src = Ops[0];
11617 
11618   // Extract the subvector.
11619   if (NumDstElts != cast<llvm::VectorType>(Src->getType())->getNumElements()) {
11620     assert(NumDstElts == 4 && "Unexpected vector size");
11621     Src = CGF.Builder.CreateShuffleVector(Src, UndefValue::get(Src->getType()),
11622                                           ArrayRef<int>{0, 1, 2, 3});
11623   }
11624 
11625   // Bitcast from vXi16 to vXf16.
11626   auto *HalfTy = llvm::FixedVectorType::get(
11627       llvm::Type::getHalfTy(CGF.getLLVMContext()), NumDstElts);
11628   Src = CGF.Builder.CreateBitCast(Src, HalfTy);
11629 
11630   // Perform the fp-extension.
11631   Value *Res = CGF.Builder.CreateFPExt(Src, DstTy, "cvtph2ps");
11632 
11633   if (Ops.size() >= 3)
11634     Res = EmitX86Select(CGF, Ops[2], Res, Ops[1]);
11635   return Res;
11636 }
11637 
11638 // Convert a BF16 to a float.
11639 static Value *EmitX86CvtBF16ToFloatExpr(CodeGenFunction &CGF,
11640                                         const CallExpr *E,
11641                                         ArrayRef<Value *> Ops) {
11642   llvm::Type *Int32Ty = CGF.Builder.getInt32Ty();
11643   Value *ZeroExt = CGF.Builder.CreateZExt(Ops[0], Int32Ty);
11644   Value *Shl = CGF.Builder.CreateShl(ZeroExt, 16);
11645   llvm::Type *ResultType = CGF.ConvertType(E->getType());
11646   Value *BitCast = CGF.Builder.CreateBitCast(Shl, ResultType);
11647   return BitCast;
11648 }
11649 
11650 Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
11651 
11652   llvm::Type *Int32Ty = Builder.getInt32Ty();
11653 
11654   // Matching the struct layout from the compiler-rt/libgcc structure that is
11655   // filled in:
11656   // unsigned int __cpu_vendor;
11657   // unsigned int __cpu_type;
11658   // unsigned int __cpu_subtype;
11659   // unsigned int __cpu_features[1];
11660   llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
11661                                           llvm::ArrayType::get(Int32Ty, 1));
11662 
11663   // Grab the global __cpu_model.
11664   llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
11665   cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
11666 
11667   // Calculate the index needed to access the correct field based on the
11668   // range. Also adjust the expected value.
11669   unsigned Index;
11670   unsigned Value;
11671   std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
11672 #define X86_VENDOR(ENUM, STRING)                                               \
11673   .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
11674 #define X86_CPU_TYPE_ALIAS(ENUM, ALIAS)                                        \
11675   .Case(ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
11676 #define X86_CPU_TYPE(ENUM, STR)                                                \
11677   .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
11678 #define X86_CPU_SUBTYPE(ENUM, STR)                                             \
11679   .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
11680 #include "llvm/Support/X86TargetParser.def"
11681                                .Default({0, 0});
11682   assert(Value != 0 && "Invalid CPUStr passed to CpuIs");
11683 
11684   // Grab the appropriate field from __cpu_model.
11685   llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
11686                          ConstantInt::get(Int32Ty, Index)};
11687   llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs);
11688   CpuValue = Builder.CreateAlignedLoad(CpuValue, CharUnits::fromQuantity(4));
11689 
11690   // Check the value of the field against the requested value.
11691   return Builder.CreateICmpEQ(CpuValue,
11692                                   llvm::ConstantInt::get(Int32Ty, Value));
11693 }
11694 
11695 Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
11696   const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
11697   StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
11698   return EmitX86CpuSupports(FeatureStr);
11699 }
11700 
11701 uint64_t
11702 CodeGenFunction::GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs) {
11703   // Processor features and mapping to processor feature value.
11704   uint64_t FeaturesMask = 0;
11705   for (const StringRef &FeatureStr : FeatureStrs) {
11706     unsigned Feature =
11707         StringSwitch<unsigned>(FeatureStr)
11708 #define X86_FEATURE_COMPAT(ENUM, STR) .Case(STR, llvm::X86::FEATURE_##ENUM)
11709 #include "llvm/Support/X86TargetParser.def"
11710         ;
11711     FeaturesMask |= (1ULL << Feature);
11712   }
11713   return FeaturesMask;
11714 }
11715 
11716 Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
11717   return EmitX86CpuSupports(GetX86CpuSupportsMask(FeatureStrs));
11718 }
11719 
11720 llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) {
11721   uint32_t Features1 = Lo_32(FeaturesMask);
11722   uint32_t Features2 = Hi_32(FeaturesMask);
11723 
11724   Value *Result = Builder.getTrue();
11725 
11726   if (Features1 != 0) {
11727     // Matching the struct layout from the compiler-rt/libgcc structure that is
11728     // filled in:
11729     // unsigned int __cpu_vendor;
11730     // unsigned int __cpu_type;
11731     // unsigned int __cpu_subtype;
11732     // unsigned int __cpu_features[1];
11733     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
11734                                             llvm::ArrayType::get(Int32Ty, 1));
11735 
11736     // Grab the global __cpu_model.
11737     llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
11738     cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
11739 
11740     // Grab the first (0th) element from the field __cpu_features off of the
11741     // global in the struct STy.
11742     Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3),
11743                      Builder.getInt32(0)};
11744     Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
11745     Value *Features =
11746         Builder.CreateAlignedLoad(CpuFeatures, CharUnits::fromQuantity(4));
11747 
11748     // Check the value of the bit corresponding to the feature requested.
11749     Value *Mask = Builder.getInt32(Features1);
11750     Value *Bitset = Builder.CreateAnd(Features, Mask);
11751     Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
11752     Result = Builder.CreateAnd(Result, Cmp);
11753   }
11754 
11755   if (Features2 != 0) {
11756     llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty,
11757                                                              "__cpu_features2");
11758     cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true);
11759 
11760     Value *Features =
11761         Builder.CreateAlignedLoad(CpuFeatures2, CharUnits::fromQuantity(4));
11762 
11763     // Check the value of the bit corresponding to the feature requested.
11764     Value *Mask = Builder.getInt32(Features2);
11765     Value *Bitset = Builder.CreateAnd(Features, Mask);
11766     Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
11767     Result = Builder.CreateAnd(Result, Cmp);
11768   }
11769 
11770   return Result;
11771 }
11772 
11773 Value *CodeGenFunction::EmitX86CpuInit() {
11774   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy,
11775                                                     /*Variadic*/ false);
11776   llvm::FunctionCallee Func =
11777       CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init");
11778   cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
11779   cast<llvm::GlobalValue>(Func.getCallee())
11780       ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
11781   return Builder.CreateCall(Func);
11782 }
11783 
11784 Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
11785                                            const CallExpr *E) {
11786   if (BuiltinID == X86::BI__builtin_cpu_is)
11787     return EmitX86CpuIs(E);
11788   if (BuiltinID == X86::BI__builtin_cpu_supports)
11789     return EmitX86CpuSupports(E);
11790   if (BuiltinID == X86::BI__builtin_cpu_init)
11791     return EmitX86CpuInit();
11792 
11793   SmallVector<Value*, 4> Ops;
11794 
11795   // Find out if any arguments are required to be integer constant expressions.
11796   unsigned ICEArguments = 0;
11797   ASTContext::GetBuiltinTypeError Error;
11798   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
11799   assert(Error == ASTContext::GE_None && "Should not codegen an error");
11800 
11801   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
11802     // If this is a normal argument, just emit it as a scalar.
11803     if ((ICEArguments & (1 << i)) == 0) {
11804       Ops.push_back(EmitScalarExpr(E->getArg(i)));
11805       continue;
11806     }
11807 
11808     // If this is required to be a constant, constant fold it so that we know
11809     // that the generated intrinsic gets a ConstantInt.
11810     llvm::APSInt Result;
11811     bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
11812     assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
11813     Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
11814   }
11815 
11816   // These exist so that the builtin that takes an immediate can be bounds
11817   // checked by clang to avoid passing bad immediates to the backend. Since
11818   // AVX has a larger immediate than SSE we would need separate builtins to
11819   // do the different bounds checking. Rather than create a clang specific
11820   // SSE only builtin, this implements eight separate builtins to match gcc
11821   // implementation.
11822   auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
11823     Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
11824     llvm::Function *F = CGM.getIntrinsic(ID);
11825     return Builder.CreateCall(F, Ops);
11826   };
11827 
11828   // For the vector forms of FP comparisons, translate the builtins directly to
11829   // IR.
11830   // TODO: The builtins could be removed if the SSE header files used vector
11831   // extension comparisons directly (vector ordered/unordered may need
11832   // additional support via __builtin_isnan()).
11833   auto getVectorFCmpIR = [this, &Ops](CmpInst::Predicate Pred,
11834                                       bool IsSignaling) {
11835     Value *Cmp;
11836     if (IsSignaling)
11837       Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
11838     else
11839       Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
11840     llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
11841     llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
11842     Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
11843     return Builder.CreateBitCast(Sext, FPVecTy);
11844   };
11845 
11846   switch (BuiltinID) {
11847   default: return nullptr;
11848   case X86::BI_mm_prefetch: {
11849     Value *Address = Ops[0];
11850     ConstantInt *C = cast<ConstantInt>(Ops[1]);
11851     Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1);
11852     Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3);
11853     Value *Data = ConstantInt::get(Int32Ty, 1);
11854     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
11855     return Builder.CreateCall(F, {Address, RW, Locality, Data});
11856   }
11857   case X86::BI_mm_clflush: {
11858     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
11859                               Ops[0]);
11860   }
11861   case X86::BI_mm_lfence: {
11862     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
11863   }
11864   case X86::BI_mm_mfence: {
11865     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
11866   }
11867   case X86::BI_mm_sfence: {
11868     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
11869   }
11870   case X86::BI_mm_pause: {
11871     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
11872   }
11873   case X86::BI__rdtsc: {
11874     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
11875   }
11876   case X86::BI__builtin_ia32_rdtscp: {
11877     Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp));
11878     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
11879                                       Ops[0]);
11880     return Builder.CreateExtractValue(Call, 0);
11881   }
11882   case X86::BI__builtin_ia32_lzcnt_u16:
11883   case X86::BI__builtin_ia32_lzcnt_u32:
11884   case X86::BI__builtin_ia32_lzcnt_u64: {
11885     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
11886     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
11887   }
11888   case X86::BI__builtin_ia32_tzcnt_u16:
11889   case X86::BI__builtin_ia32_tzcnt_u32:
11890   case X86::BI__builtin_ia32_tzcnt_u64: {
11891     Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
11892     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
11893   }
11894   case X86::BI__builtin_ia32_undef128:
11895   case X86::BI__builtin_ia32_undef256:
11896   case X86::BI__builtin_ia32_undef512:
11897     // The x86 definition of "undef" is not the same as the LLVM definition
11898     // (PR32176). We leave optimizing away an unnecessary zero constant to the
11899     // IR optimizer and backend.
11900     // TODO: If we had a "freeze" IR instruction to generate a fixed undef
11901     // value, we should use that here instead of a zero.
11902     return llvm::Constant::getNullValue(ConvertType(E->getType()));
11903   case X86::BI__builtin_ia32_vec_init_v8qi:
11904   case X86::BI__builtin_ia32_vec_init_v4hi:
11905   case X86::BI__builtin_ia32_vec_init_v2si:
11906     return Builder.CreateBitCast(BuildVector(Ops),
11907                                  llvm::Type::getX86_MMXTy(getLLVMContext()));
11908   case X86::BI__builtin_ia32_vec_ext_v2si:
11909   case X86::BI__builtin_ia32_vec_ext_v16qi:
11910   case X86::BI__builtin_ia32_vec_ext_v8hi:
11911   case X86::BI__builtin_ia32_vec_ext_v4si:
11912   case X86::BI__builtin_ia32_vec_ext_v4sf:
11913   case X86::BI__builtin_ia32_vec_ext_v2di:
11914   case X86::BI__builtin_ia32_vec_ext_v32qi:
11915   case X86::BI__builtin_ia32_vec_ext_v16hi:
11916   case X86::BI__builtin_ia32_vec_ext_v8si:
11917   case X86::BI__builtin_ia32_vec_ext_v4di: {
11918     unsigned NumElts =
11919         cast<llvm::VectorType>(Ops[0]->getType())->getNumElements();
11920     uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue();
11921     Index &= NumElts - 1;
11922     // These builtins exist so we can ensure the index is an ICE and in range.
11923     // Otherwise we could just do this in the header file.
11924     return Builder.CreateExtractElement(Ops[0], Index);
11925   }
11926   case X86::BI__builtin_ia32_vec_set_v16qi:
11927   case X86::BI__builtin_ia32_vec_set_v8hi:
11928   case X86::BI__builtin_ia32_vec_set_v4si:
11929   case X86::BI__builtin_ia32_vec_set_v2di:
11930   case X86::BI__builtin_ia32_vec_set_v32qi:
11931   case X86::BI__builtin_ia32_vec_set_v16hi:
11932   case X86::BI__builtin_ia32_vec_set_v8si:
11933   case X86::BI__builtin_ia32_vec_set_v4di: {
11934     unsigned NumElts =
11935         cast<llvm::VectorType>(Ops[0]->getType())->getNumElements();
11936     unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
11937     Index &= NumElts - 1;
11938     // These builtins exist so we can ensure the index is an ICE and in range.
11939     // Otherwise we could just do this in the header file.
11940     return Builder.CreateInsertElement(Ops[0], Ops[1], Index);
11941   }
11942   case X86::BI_mm_setcsr:
11943   case X86::BI__builtin_ia32_ldmxcsr: {
11944     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
11945     Builder.CreateStore(Ops[0], Tmp);
11946     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
11947                           Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
11948   }
11949   case X86::BI_mm_getcsr:
11950   case X86::BI__builtin_ia32_stmxcsr: {
11951     Address Tmp = CreateMemTemp(E->getType());
11952     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
11953                        Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
11954     return Builder.CreateLoad(Tmp, "stmxcsr");
11955   }
11956   case X86::BI__builtin_ia32_xsave:
11957   case X86::BI__builtin_ia32_xsave64:
11958   case X86::BI__builtin_ia32_xrstor:
11959   case X86::BI__builtin_ia32_xrstor64:
11960   case X86::BI__builtin_ia32_xsaveopt:
11961   case X86::BI__builtin_ia32_xsaveopt64:
11962   case X86::BI__builtin_ia32_xrstors:
11963   case X86::BI__builtin_ia32_xrstors64:
11964   case X86::BI__builtin_ia32_xsavec:
11965   case X86::BI__builtin_ia32_xsavec64:
11966   case X86::BI__builtin_ia32_xsaves:
11967   case X86::BI__builtin_ia32_xsaves64:
11968   case X86::BI__builtin_ia32_xsetbv:
11969   case X86::BI_xsetbv: {
11970     Intrinsic::ID ID;
11971 #define INTRINSIC_X86_XSAVE_ID(NAME) \
11972     case X86::BI__builtin_ia32_##NAME: \
11973       ID = Intrinsic::x86_##NAME; \
11974       break
11975     switch (BuiltinID) {
11976     default: llvm_unreachable("Unsupported intrinsic!");
11977     INTRINSIC_X86_XSAVE_ID(xsave);
11978     INTRINSIC_X86_XSAVE_ID(xsave64);
11979     INTRINSIC_X86_XSAVE_ID(xrstor);
11980     INTRINSIC_X86_XSAVE_ID(xrstor64);
11981     INTRINSIC_X86_XSAVE_ID(xsaveopt);
11982     INTRINSIC_X86_XSAVE_ID(xsaveopt64);
11983     INTRINSIC_X86_XSAVE_ID(xrstors);
11984     INTRINSIC_X86_XSAVE_ID(xrstors64);
11985     INTRINSIC_X86_XSAVE_ID(xsavec);
11986     INTRINSIC_X86_XSAVE_ID(xsavec64);
11987     INTRINSIC_X86_XSAVE_ID(xsaves);
11988     INTRINSIC_X86_XSAVE_ID(xsaves64);
11989     INTRINSIC_X86_XSAVE_ID(xsetbv);
11990     case X86::BI_xsetbv:
11991       ID = Intrinsic::x86_xsetbv;
11992       break;
11993     }
11994 #undef INTRINSIC_X86_XSAVE_ID
11995     Value *Mhi = Builder.CreateTrunc(
11996       Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
11997     Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
11998     Ops[1] = Mhi;
11999     Ops.push_back(Mlo);
12000     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
12001   }
12002   case X86::BI__builtin_ia32_xgetbv:
12003   case X86::BI_xgetbv:
12004     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops);
12005   case X86::BI__builtin_ia32_storedqudi128_mask:
12006   case X86::BI__builtin_ia32_storedqusi128_mask:
12007   case X86::BI__builtin_ia32_storedquhi128_mask:
12008   case X86::BI__builtin_ia32_storedquqi128_mask:
12009   case X86::BI__builtin_ia32_storeupd128_mask:
12010   case X86::BI__builtin_ia32_storeups128_mask:
12011   case X86::BI__builtin_ia32_storedqudi256_mask:
12012   case X86::BI__builtin_ia32_storedqusi256_mask:
12013   case X86::BI__builtin_ia32_storedquhi256_mask:
12014   case X86::BI__builtin_ia32_storedquqi256_mask:
12015   case X86::BI__builtin_ia32_storeupd256_mask:
12016   case X86::BI__builtin_ia32_storeups256_mask:
12017   case X86::BI__builtin_ia32_storedqudi512_mask:
12018   case X86::BI__builtin_ia32_storedqusi512_mask:
12019   case X86::BI__builtin_ia32_storedquhi512_mask:
12020   case X86::BI__builtin_ia32_storedquqi512_mask:
12021   case X86::BI__builtin_ia32_storeupd512_mask:
12022   case X86::BI__builtin_ia32_storeups512_mask:
12023     return EmitX86MaskedStore(*this, Ops, Align(1));
12024 
12025   case X86::BI__builtin_ia32_storess128_mask:
12026   case X86::BI__builtin_ia32_storesd128_mask:
12027     return EmitX86MaskedStore(*this, Ops, Align(1));
12028 
12029   case X86::BI__builtin_ia32_vpopcntb_128:
12030   case X86::BI__builtin_ia32_vpopcntd_128:
12031   case X86::BI__builtin_ia32_vpopcntq_128:
12032   case X86::BI__builtin_ia32_vpopcntw_128:
12033   case X86::BI__builtin_ia32_vpopcntb_256:
12034   case X86::BI__builtin_ia32_vpopcntd_256:
12035   case X86::BI__builtin_ia32_vpopcntq_256:
12036   case X86::BI__builtin_ia32_vpopcntw_256:
12037   case X86::BI__builtin_ia32_vpopcntb_512:
12038   case X86::BI__builtin_ia32_vpopcntd_512:
12039   case X86::BI__builtin_ia32_vpopcntq_512:
12040   case X86::BI__builtin_ia32_vpopcntw_512: {
12041     llvm::Type *ResultType = ConvertType(E->getType());
12042     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
12043     return Builder.CreateCall(F, Ops);
12044   }
12045   case X86::BI__builtin_ia32_cvtmask2b128:
12046   case X86::BI__builtin_ia32_cvtmask2b256:
12047   case X86::BI__builtin_ia32_cvtmask2b512:
12048   case X86::BI__builtin_ia32_cvtmask2w128:
12049   case X86::BI__builtin_ia32_cvtmask2w256:
12050   case X86::BI__builtin_ia32_cvtmask2w512:
12051   case X86::BI__builtin_ia32_cvtmask2d128:
12052   case X86::BI__builtin_ia32_cvtmask2d256:
12053   case X86::BI__builtin_ia32_cvtmask2d512:
12054   case X86::BI__builtin_ia32_cvtmask2q128:
12055   case X86::BI__builtin_ia32_cvtmask2q256:
12056   case X86::BI__builtin_ia32_cvtmask2q512:
12057     return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType()));
12058 
12059   case X86::BI__builtin_ia32_cvtb2mask128:
12060   case X86::BI__builtin_ia32_cvtb2mask256:
12061   case X86::BI__builtin_ia32_cvtb2mask512:
12062   case X86::BI__builtin_ia32_cvtw2mask128:
12063   case X86::BI__builtin_ia32_cvtw2mask256:
12064   case X86::BI__builtin_ia32_cvtw2mask512:
12065   case X86::BI__builtin_ia32_cvtd2mask128:
12066   case X86::BI__builtin_ia32_cvtd2mask256:
12067   case X86::BI__builtin_ia32_cvtd2mask512:
12068   case X86::BI__builtin_ia32_cvtq2mask128:
12069   case X86::BI__builtin_ia32_cvtq2mask256:
12070   case X86::BI__builtin_ia32_cvtq2mask512:
12071     return EmitX86ConvertToMask(*this, Ops[0]);
12072 
12073   case X86::BI__builtin_ia32_cvtdq2ps512_mask:
12074   case X86::BI__builtin_ia32_cvtqq2ps512_mask:
12075   case X86::BI__builtin_ia32_cvtqq2pd512_mask:
12076     return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/true);
12077   case X86::BI__builtin_ia32_cvtudq2ps512_mask:
12078   case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
12079   case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
12080     return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/false);
12081 
12082   case X86::BI__builtin_ia32_vfmaddss3:
12083   case X86::BI__builtin_ia32_vfmaddsd3:
12084   case X86::BI__builtin_ia32_vfmaddss3_mask:
12085   case X86::BI__builtin_ia32_vfmaddsd3_mask:
12086     return EmitScalarFMAExpr(*this, Ops, Ops[0]);
12087   case X86::BI__builtin_ia32_vfmaddss:
12088   case X86::BI__builtin_ia32_vfmaddsd:
12089     return EmitScalarFMAExpr(*this, Ops,
12090                              Constant::getNullValue(Ops[0]->getType()));
12091   case X86::BI__builtin_ia32_vfmaddss3_maskz:
12092   case X86::BI__builtin_ia32_vfmaddsd3_maskz:
12093     return EmitScalarFMAExpr(*this, Ops, Ops[0], /*ZeroMask*/true);
12094   case X86::BI__builtin_ia32_vfmaddss3_mask3:
12095   case X86::BI__builtin_ia32_vfmaddsd3_mask3:
12096     return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2);
12097   case X86::BI__builtin_ia32_vfmsubss3_mask3:
12098   case X86::BI__builtin_ia32_vfmsubsd3_mask3:
12099     return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2,
12100                              /*NegAcc*/true);
12101   case X86::BI__builtin_ia32_vfmaddps:
12102   case X86::BI__builtin_ia32_vfmaddpd:
12103   case X86::BI__builtin_ia32_vfmaddps256:
12104   case X86::BI__builtin_ia32_vfmaddpd256:
12105   case X86::BI__builtin_ia32_vfmaddps512_mask:
12106   case X86::BI__builtin_ia32_vfmaddps512_maskz:
12107   case X86::BI__builtin_ia32_vfmaddps512_mask3:
12108   case X86::BI__builtin_ia32_vfmsubps512_mask3:
12109   case X86::BI__builtin_ia32_vfmaddpd512_mask:
12110   case X86::BI__builtin_ia32_vfmaddpd512_maskz:
12111   case X86::BI__builtin_ia32_vfmaddpd512_mask3:
12112   case X86::BI__builtin_ia32_vfmsubpd512_mask3:
12113     return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/false);
12114   case X86::BI__builtin_ia32_vfmaddsubps512_mask:
12115   case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
12116   case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
12117   case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
12118   case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
12119   case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
12120   case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
12121   case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
12122     return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/true);
12123 
12124   case X86::BI__builtin_ia32_movdqa32store128_mask:
12125   case X86::BI__builtin_ia32_movdqa64store128_mask:
12126   case X86::BI__builtin_ia32_storeaps128_mask:
12127   case X86::BI__builtin_ia32_storeapd128_mask:
12128   case X86::BI__builtin_ia32_movdqa32store256_mask:
12129   case X86::BI__builtin_ia32_movdqa64store256_mask:
12130   case X86::BI__builtin_ia32_storeaps256_mask:
12131   case X86::BI__builtin_ia32_storeapd256_mask:
12132   case X86::BI__builtin_ia32_movdqa32store512_mask:
12133   case X86::BI__builtin_ia32_movdqa64store512_mask:
12134   case X86::BI__builtin_ia32_storeaps512_mask:
12135   case X86::BI__builtin_ia32_storeapd512_mask:
12136     return EmitX86MaskedStore(
12137         *this, Ops,
12138         getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
12139 
12140   case X86::BI__builtin_ia32_loadups128_mask:
12141   case X86::BI__builtin_ia32_loadups256_mask:
12142   case X86::BI__builtin_ia32_loadups512_mask:
12143   case X86::BI__builtin_ia32_loadupd128_mask:
12144   case X86::BI__builtin_ia32_loadupd256_mask:
12145   case X86::BI__builtin_ia32_loadupd512_mask:
12146   case X86::BI__builtin_ia32_loaddquqi128_mask:
12147   case X86::BI__builtin_ia32_loaddquqi256_mask:
12148   case X86::BI__builtin_ia32_loaddquqi512_mask:
12149   case X86::BI__builtin_ia32_loaddquhi128_mask:
12150   case X86::BI__builtin_ia32_loaddquhi256_mask:
12151   case X86::BI__builtin_ia32_loaddquhi512_mask:
12152   case X86::BI__builtin_ia32_loaddqusi128_mask:
12153   case X86::BI__builtin_ia32_loaddqusi256_mask:
12154   case X86::BI__builtin_ia32_loaddqusi512_mask:
12155   case X86::BI__builtin_ia32_loaddqudi128_mask:
12156   case X86::BI__builtin_ia32_loaddqudi256_mask:
12157   case X86::BI__builtin_ia32_loaddqudi512_mask:
12158     return EmitX86MaskedLoad(*this, Ops, Align(1));
12159 
12160   case X86::BI__builtin_ia32_loadss128_mask:
12161   case X86::BI__builtin_ia32_loadsd128_mask:
12162     return EmitX86MaskedLoad(*this, Ops, Align(1));
12163 
12164   case X86::BI__builtin_ia32_loadaps128_mask:
12165   case X86::BI__builtin_ia32_loadaps256_mask:
12166   case X86::BI__builtin_ia32_loadaps512_mask:
12167   case X86::BI__builtin_ia32_loadapd128_mask:
12168   case X86::BI__builtin_ia32_loadapd256_mask:
12169   case X86::BI__builtin_ia32_loadapd512_mask:
12170   case X86::BI__builtin_ia32_movdqa32load128_mask:
12171   case X86::BI__builtin_ia32_movdqa32load256_mask:
12172   case X86::BI__builtin_ia32_movdqa32load512_mask:
12173   case X86::BI__builtin_ia32_movdqa64load128_mask:
12174   case X86::BI__builtin_ia32_movdqa64load256_mask:
12175   case X86::BI__builtin_ia32_movdqa64load512_mask:
12176     return EmitX86MaskedLoad(
12177         *this, Ops,
12178         getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
12179 
12180   case X86::BI__builtin_ia32_expandloaddf128_mask:
12181   case X86::BI__builtin_ia32_expandloaddf256_mask:
12182   case X86::BI__builtin_ia32_expandloaddf512_mask:
12183   case X86::BI__builtin_ia32_expandloadsf128_mask:
12184   case X86::BI__builtin_ia32_expandloadsf256_mask:
12185   case X86::BI__builtin_ia32_expandloadsf512_mask:
12186   case X86::BI__builtin_ia32_expandloaddi128_mask:
12187   case X86::BI__builtin_ia32_expandloaddi256_mask:
12188   case X86::BI__builtin_ia32_expandloaddi512_mask:
12189   case X86::BI__builtin_ia32_expandloadsi128_mask:
12190   case X86::BI__builtin_ia32_expandloadsi256_mask:
12191   case X86::BI__builtin_ia32_expandloadsi512_mask:
12192   case X86::BI__builtin_ia32_expandloadhi128_mask:
12193   case X86::BI__builtin_ia32_expandloadhi256_mask:
12194   case X86::BI__builtin_ia32_expandloadhi512_mask:
12195   case X86::BI__builtin_ia32_expandloadqi128_mask:
12196   case X86::BI__builtin_ia32_expandloadqi256_mask:
12197   case X86::BI__builtin_ia32_expandloadqi512_mask:
12198     return EmitX86ExpandLoad(*this, Ops);
12199 
12200   case X86::BI__builtin_ia32_compressstoredf128_mask:
12201   case X86::BI__builtin_ia32_compressstoredf256_mask:
12202   case X86::BI__builtin_ia32_compressstoredf512_mask:
12203   case X86::BI__builtin_ia32_compressstoresf128_mask:
12204   case X86::BI__builtin_ia32_compressstoresf256_mask:
12205   case X86::BI__builtin_ia32_compressstoresf512_mask:
12206   case X86::BI__builtin_ia32_compressstoredi128_mask:
12207   case X86::BI__builtin_ia32_compressstoredi256_mask:
12208   case X86::BI__builtin_ia32_compressstoredi512_mask:
12209   case X86::BI__builtin_ia32_compressstoresi128_mask:
12210   case X86::BI__builtin_ia32_compressstoresi256_mask:
12211   case X86::BI__builtin_ia32_compressstoresi512_mask:
12212   case X86::BI__builtin_ia32_compressstorehi128_mask:
12213   case X86::BI__builtin_ia32_compressstorehi256_mask:
12214   case X86::BI__builtin_ia32_compressstorehi512_mask:
12215   case X86::BI__builtin_ia32_compressstoreqi128_mask:
12216   case X86::BI__builtin_ia32_compressstoreqi256_mask:
12217   case X86::BI__builtin_ia32_compressstoreqi512_mask:
12218     return EmitX86CompressStore(*this, Ops);
12219 
12220   case X86::BI__builtin_ia32_expanddf128_mask:
12221   case X86::BI__builtin_ia32_expanddf256_mask:
12222   case X86::BI__builtin_ia32_expanddf512_mask:
12223   case X86::BI__builtin_ia32_expandsf128_mask:
12224   case X86::BI__builtin_ia32_expandsf256_mask:
12225   case X86::BI__builtin_ia32_expandsf512_mask:
12226   case X86::BI__builtin_ia32_expanddi128_mask:
12227   case X86::BI__builtin_ia32_expanddi256_mask:
12228   case X86::BI__builtin_ia32_expanddi512_mask:
12229   case X86::BI__builtin_ia32_expandsi128_mask:
12230   case X86::BI__builtin_ia32_expandsi256_mask:
12231   case X86::BI__builtin_ia32_expandsi512_mask:
12232   case X86::BI__builtin_ia32_expandhi128_mask:
12233   case X86::BI__builtin_ia32_expandhi256_mask:
12234   case X86::BI__builtin_ia32_expandhi512_mask:
12235   case X86::BI__builtin_ia32_expandqi128_mask:
12236   case X86::BI__builtin_ia32_expandqi256_mask:
12237   case X86::BI__builtin_ia32_expandqi512_mask:
12238     return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false);
12239 
12240   case X86::BI__builtin_ia32_compressdf128_mask:
12241   case X86::BI__builtin_ia32_compressdf256_mask:
12242   case X86::BI__builtin_ia32_compressdf512_mask:
12243   case X86::BI__builtin_ia32_compresssf128_mask:
12244   case X86::BI__builtin_ia32_compresssf256_mask:
12245   case X86::BI__builtin_ia32_compresssf512_mask:
12246   case X86::BI__builtin_ia32_compressdi128_mask:
12247   case X86::BI__builtin_ia32_compressdi256_mask:
12248   case X86::BI__builtin_ia32_compressdi512_mask:
12249   case X86::BI__builtin_ia32_compresssi128_mask:
12250   case X86::BI__builtin_ia32_compresssi256_mask:
12251   case X86::BI__builtin_ia32_compresssi512_mask:
12252   case X86::BI__builtin_ia32_compresshi128_mask:
12253   case X86::BI__builtin_ia32_compresshi256_mask:
12254   case X86::BI__builtin_ia32_compresshi512_mask:
12255   case X86::BI__builtin_ia32_compressqi128_mask:
12256   case X86::BI__builtin_ia32_compressqi256_mask:
12257   case X86::BI__builtin_ia32_compressqi512_mask:
12258     return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true);
12259 
12260   case X86::BI__builtin_ia32_gather3div2df:
12261   case X86::BI__builtin_ia32_gather3div2di:
12262   case X86::BI__builtin_ia32_gather3div4df:
12263   case X86::BI__builtin_ia32_gather3div4di:
12264   case X86::BI__builtin_ia32_gather3div4sf:
12265   case X86::BI__builtin_ia32_gather3div4si:
12266   case X86::BI__builtin_ia32_gather3div8sf:
12267   case X86::BI__builtin_ia32_gather3div8si:
12268   case X86::BI__builtin_ia32_gather3siv2df:
12269   case X86::BI__builtin_ia32_gather3siv2di:
12270   case X86::BI__builtin_ia32_gather3siv4df:
12271   case X86::BI__builtin_ia32_gather3siv4di:
12272   case X86::BI__builtin_ia32_gather3siv4sf:
12273   case X86::BI__builtin_ia32_gather3siv4si:
12274   case X86::BI__builtin_ia32_gather3siv8sf:
12275   case X86::BI__builtin_ia32_gather3siv8si:
12276   case X86::BI__builtin_ia32_gathersiv8df:
12277   case X86::BI__builtin_ia32_gathersiv16sf:
12278   case X86::BI__builtin_ia32_gatherdiv8df:
12279   case X86::BI__builtin_ia32_gatherdiv16sf:
12280   case X86::BI__builtin_ia32_gathersiv8di:
12281   case X86::BI__builtin_ia32_gathersiv16si:
12282   case X86::BI__builtin_ia32_gatherdiv8di:
12283   case X86::BI__builtin_ia32_gatherdiv16si: {
12284     Intrinsic::ID IID;
12285     switch (BuiltinID) {
12286     default: llvm_unreachable("Unexpected builtin");
12287     case X86::BI__builtin_ia32_gather3div2df:
12288       IID = Intrinsic::x86_avx512_mask_gather3div2_df;
12289       break;
12290     case X86::BI__builtin_ia32_gather3div2di:
12291       IID = Intrinsic::x86_avx512_mask_gather3div2_di;
12292       break;
12293     case X86::BI__builtin_ia32_gather3div4df:
12294       IID = Intrinsic::x86_avx512_mask_gather3div4_df;
12295       break;
12296     case X86::BI__builtin_ia32_gather3div4di:
12297       IID = Intrinsic::x86_avx512_mask_gather3div4_di;
12298       break;
12299     case X86::BI__builtin_ia32_gather3div4sf:
12300       IID = Intrinsic::x86_avx512_mask_gather3div4_sf;
12301       break;
12302     case X86::BI__builtin_ia32_gather3div4si:
12303       IID = Intrinsic::x86_avx512_mask_gather3div4_si;
12304       break;
12305     case X86::BI__builtin_ia32_gather3div8sf:
12306       IID = Intrinsic::x86_avx512_mask_gather3div8_sf;
12307       break;
12308     case X86::BI__builtin_ia32_gather3div8si:
12309       IID = Intrinsic::x86_avx512_mask_gather3div8_si;
12310       break;
12311     case X86::BI__builtin_ia32_gather3siv2df:
12312       IID = Intrinsic::x86_avx512_mask_gather3siv2_df;
12313       break;
12314     case X86::BI__builtin_ia32_gather3siv2di:
12315       IID = Intrinsic::x86_avx512_mask_gather3siv2_di;
12316       break;
12317     case X86::BI__builtin_ia32_gather3siv4df:
12318       IID = Intrinsic::x86_avx512_mask_gather3siv4_df;
12319       break;
12320     case X86::BI__builtin_ia32_gather3siv4di:
12321       IID = Intrinsic::x86_avx512_mask_gather3siv4_di;
12322       break;
12323     case X86::BI__builtin_ia32_gather3siv4sf:
12324       IID = Intrinsic::x86_avx512_mask_gather3siv4_sf;
12325       break;
12326     case X86::BI__builtin_ia32_gather3siv4si:
12327       IID = Intrinsic::x86_avx512_mask_gather3siv4_si;
12328       break;
12329     case X86::BI__builtin_ia32_gather3siv8sf:
12330       IID = Intrinsic::x86_avx512_mask_gather3siv8_sf;
12331       break;
12332     case X86::BI__builtin_ia32_gather3siv8si:
12333       IID = Intrinsic::x86_avx512_mask_gather3siv8_si;
12334       break;
12335     case X86::BI__builtin_ia32_gathersiv8df:
12336       IID = Intrinsic::x86_avx512_mask_gather_dpd_512;
12337       break;
12338     case X86::BI__builtin_ia32_gathersiv16sf:
12339       IID = Intrinsic::x86_avx512_mask_gather_dps_512;
12340       break;
12341     case X86::BI__builtin_ia32_gatherdiv8df:
12342       IID = Intrinsic::x86_avx512_mask_gather_qpd_512;
12343       break;
12344     case X86::BI__builtin_ia32_gatherdiv16sf:
12345       IID = Intrinsic::x86_avx512_mask_gather_qps_512;
12346       break;
12347     case X86::BI__builtin_ia32_gathersiv8di:
12348       IID = Intrinsic::x86_avx512_mask_gather_dpq_512;
12349       break;
12350     case X86::BI__builtin_ia32_gathersiv16si:
12351       IID = Intrinsic::x86_avx512_mask_gather_dpi_512;
12352       break;
12353     case X86::BI__builtin_ia32_gatherdiv8di:
12354       IID = Intrinsic::x86_avx512_mask_gather_qpq_512;
12355       break;
12356     case X86::BI__builtin_ia32_gatherdiv16si:
12357       IID = Intrinsic::x86_avx512_mask_gather_qpi_512;
12358       break;
12359     }
12360 
12361     unsigned MinElts =
12362         std::min(cast<llvm::VectorType>(Ops[0]->getType())->getNumElements(),
12363                  cast<llvm::VectorType>(Ops[2]->getType())->getNumElements());
12364     Ops[3] = getMaskVecValue(*this, Ops[3], MinElts);
12365     Function *Intr = CGM.getIntrinsic(IID);
12366     return Builder.CreateCall(Intr, Ops);
12367   }
12368 
12369   case X86::BI__builtin_ia32_scattersiv8df:
12370   case X86::BI__builtin_ia32_scattersiv16sf:
12371   case X86::BI__builtin_ia32_scatterdiv8df:
12372   case X86::BI__builtin_ia32_scatterdiv16sf:
12373   case X86::BI__builtin_ia32_scattersiv8di:
12374   case X86::BI__builtin_ia32_scattersiv16si:
12375   case X86::BI__builtin_ia32_scatterdiv8di:
12376   case X86::BI__builtin_ia32_scatterdiv16si:
12377   case X86::BI__builtin_ia32_scatterdiv2df:
12378   case X86::BI__builtin_ia32_scatterdiv2di:
12379   case X86::BI__builtin_ia32_scatterdiv4df:
12380   case X86::BI__builtin_ia32_scatterdiv4di:
12381   case X86::BI__builtin_ia32_scatterdiv4sf:
12382   case X86::BI__builtin_ia32_scatterdiv4si:
12383   case X86::BI__builtin_ia32_scatterdiv8sf:
12384   case X86::BI__builtin_ia32_scatterdiv8si:
12385   case X86::BI__builtin_ia32_scattersiv2df:
12386   case X86::BI__builtin_ia32_scattersiv2di:
12387   case X86::BI__builtin_ia32_scattersiv4df:
12388   case X86::BI__builtin_ia32_scattersiv4di:
12389   case X86::BI__builtin_ia32_scattersiv4sf:
12390   case X86::BI__builtin_ia32_scattersiv4si:
12391   case X86::BI__builtin_ia32_scattersiv8sf:
12392   case X86::BI__builtin_ia32_scattersiv8si: {
12393     Intrinsic::ID IID;
12394     switch (BuiltinID) {
12395     default: llvm_unreachable("Unexpected builtin");
12396     case X86::BI__builtin_ia32_scattersiv8df:
12397       IID = Intrinsic::x86_avx512_mask_scatter_dpd_512;
12398       break;
12399     case X86::BI__builtin_ia32_scattersiv16sf:
12400       IID = Intrinsic::x86_avx512_mask_scatter_dps_512;
12401       break;
12402     case X86::BI__builtin_ia32_scatterdiv8df:
12403       IID = Intrinsic::x86_avx512_mask_scatter_qpd_512;
12404       break;
12405     case X86::BI__builtin_ia32_scatterdiv16sf:
12406       IID = Intrinsic::x86_avx512_mask_scatter_qps_512;
12407       break;
12408     case X86::BI__builtin_ia32_scattersiv8di:
12409       IID = Intrinsic::x86_avx512_mask_scatter_dpq_512;
12410       break;
12411     case X86::BI__builtin_ia32_scattersiv16si:
12412       IID = Intrinsic::x86_avx512_mask_scatter_dpi_512;
12413       break;
12414     case X86::BI__builtin_ia32_scatterdiv8di:
12415       IID = Intrinsic::x86_avx512_mask_scatter_qpq_512;
12416       break;
12417     case X86::BI__builtin_ia32_scatterdiv16si:
12418       IID = Intrinsic::x86_avx512_mask_scatter_qpi_512;
12419       break;
12420     case X86::BI__builtin_ia32_scatterdiv2df:
12421       IID = Intrinsic::x86_avx512_mask_scatterdiv2_df;
12422       break;
12423     case X86::BI__builtin_ia32_scatterdiv2di:
12424       IID = Intrinsic::x86_avx512_mask_scatterdiv2_di;
12425       break;
12426     case X86::BI__builtin_ia32_scatterdiv4df:
12427       IID = Intrinsic::x86_avx512_mask_scatterdiv4_df;
12428       break;
12429     case X86::BI__builtin_ia32_scatterdiv4di:
12430       IID = Intrinsic::x86_avx512_mask_scatterdiv4_di;
12431       break;
12432     case X86::BI__builtin_ia32_scatterdiv4sf:
12433       IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf;
12434       break;
12435     case X86::BI__builtin_ia32_scatterdiv4si:
12436       IID = Intrinsic::x86_avx512_mask_scatterdiv4_si;
12437       break;
12438     case X86::BI__builtin_ia32_scatterdiv8sf:
12439       IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf;
12440       break;
12441     case X86::BI__builtin_ia32_scatterdiv8si:
12442       IID = Intrinsic::x86_avx512_mask_scatterdiv8_si;
12443       break;
12444     case X86::BI__builtin_ia32_scattersiv2df:
12445       IID = Intrinsic::x86_avx512_mask_scattersiv2_df;
12446       break;
12447     case X86::BI__builtin_ia32_scattersiv2di:
12448       IID = Intrinsic::x86_avx512_mask_scattersiv2_di;
12449       break;
12450     case X86::BI__builtin_ia32_scattersiv4df:
12451       IID = Intrinsic::x86_avx512_mask_scattersiv4_df;
12452       break;
12453     case X86::BI__builtin_ia32_scattersiv4di:
12454       IID = Intrinsic::x86_avx512_mask_scattersiv4_di;
12455       break;
12456     case X86::BI__builtin_ia32_scattersiv4sf:
12457       IID = Intrinsic::x86_avx512_mask_scattersiv4_sf;
12458       break;
12459     case X86::BI__builtin_ia32_scattersiv4si:
12460       IID = Intrinsic::x86_avx512_mask_scattersiv4_si;
12461       break;
12462     case X86::BI__builtin_ia32_scattersiv8sf:
12463       IID = Intrinsic::x86_avx512_mask_scattersiv8_sf;
12464       break;
12465     case X86::BI__builtin_ia32_scattersiv8si:
12466       IID = Intrinsic::x86_avx512_mask_scattersiv8_si;
12467       break;
12468     }
12469 
12470     unsigned MinElts =
12471         std::min(cast<llvm::VectorType>(Ops[2]->getType())->getNumElements(),
12472                  cast<llvm::VectorType>(Ops[3]->getType())->getNumElements());
12473     Ops[1] = getMaskVecValue(*this, Ops[1], MinElts);
12474     Function *Intr = CGM.getIntrinsic(IID);
12475     return Builder.CreateCall(Intr, Ops);
12476   }
12477 
12478   case X86::BI__builtin_ia32_vextractf128_pd256:
12479   case X86::BI__builtin_ia32_vextractf128_ps256:
12480   case X86::BI__builtin_ia32_vextractf128_si256:
12481   case X86::BI__builtin_ia32_extract128i256:
12482   case X86::BI__builtin_ia32_extractf64x4_mask:
12483   case X86::BI__builtin_ia32_extractf32x4_mask:
12484   case X86::BI__builtin_ia32_extracti64x4_mask:
12485   case X86::BI__builtin_ia32_extracti32x4_mask:
12486   case X86::BI__builtin_ia32_extractf32x8_mask:
12487   case X86::BI__builtin_ia32_extracti32x8_mask:
12488   case X86::BI__builtin_ia32_extractf32x4_256_mask:
12489   case X86::BI__builtin_ia32_extracti32x4_256_mask:
12490   case X86::BI__builtin_ia32_extractf64x2_256_mask:
12491   case X86::BI__builtin_ia32_extracti64x2_256_mask:
12492   case X86::BI__builtin_ia32_extractf64x2_512_mask:
12493   case X86::BI__builtin_ia32_extracti64x2_512_mask: {
12494     auto *DstTy = cast<llvm::VectorType>(ConvertType(E->getType()));
12495     unsigned NumElts = DstTy->getNumElements();
12496     unsigned SrcNumElts =
12497         cast<llvm::VectorType>(Ops[0]->getType())->getNumElements();
12498     unsigned SubVectors = SrcNumElts / NumElts;
12499     unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue();
12500     assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
12501     Index &= SubVectors - 1; // Remove any extra bits.
12502     Index *= NumElts;
12503 
12504     int Indices[16];
12505     for (unsigned i = 0; i != NumElts; ++i)
12506       Indices[i] = i + Index;
12507 
12508     Value *Res = Builder.CreateShuffleVector(Ops[0],
12509                                              UndefValue::get(Ops[0]->getType()),
12510                                              makeArrayRef(Indices, NumElts),
12511                                              "extract");
12512 
12513     if (Ops.size() == 4)
12514       Res = EmitX86Select(*this, Ops[3], Res, Ops[2]);
12515 
12516     return Res;
12517   }
12518   case X86::BI__builtin_ia32_vinsertf128_pd256:
12519   case X86::BI__builtin_ia32_vinsertf128_ps256:
12520   case X86::BI__builtin_ia32_vinsertf128_si256:
12521   case X86::BI__builtin_ia32_insert128i256:
12522   case X86::BI__builtin_ia32_insertf64x4:
12523   case X86::BI__builtin_ia32_insertf32x4:
12524   case X86::BI__builtin_ia32_inserti64x4:
12525   case X86::BI__builtin_ia32_inserti32x4:
12526   case X86::BI__builtin_ia32_insertf32x8:
12527   case X86::BI__builtin_ia32_inserti32x8:
12528   case X86::BI__builtin_ia32_insertf32x4_256:
12529   case X86::BI__builtin_ia32_inserti32x4_256:
12530   case X86::BI__builtin_ia32_insertf64x2_256:
12531   case X86::BI__builtin_ia32_inserti64x2_256:
12532   case X86::BI__builtin_ia32_insertf64x2_512:
12533   case X86::BI__builtin_ia32_inserti64x2_512: {
12534     unsigned DstNumElts =
12535         cast<llvm::VectorType>(Ops[0]->getType())->getNumElements();
12536     unsigned SrcNumElts =
12537         cast<llvm::VectorType>(Ops[1]->getType())->getNumElements();
12538     unsigned SubVectors = DstNumElts / SrcNumElts;
12539     unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
12540     assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
12541     Index &= SubVectors - 1; // Remove any extra bits.
12542     Index *= SrcNumElts;
12543 
12544     int Indices[16];
12545     for (unsigned i = 0; i != DstNumElts; ++i)
12546       Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i;
12547 
12548     Value *Op1 = Builder.CreateShuffleVector(Ops[1],
12549                                              UndefValue::get(Ops[1]->getType()),
12550                                              makeArrayRef(Indices, DstNumElts),
12551                                              "widen");
12552 
12553     for (unsigned i = 0; i != DstNumElts; ++i) {
12554       if (i >= Index && i < (Index + SrcNumElts))
12555         Indices[i] = (i - Index) + DstNumElts;
12556       else
12557         Indices[i] = i;
12558     }
12559 
12560     return Builder.CreateShuffleVector(Ops[0], Op1,
12561                                        makeArrayRef(Indices, DstNumElts),
12562                                        "insert");
12563   }
12564   case X86::BI__builtin_ia32_pmovqd512_mask:
12565   case X86::BI__builtin_ia32_pmovwb512_mask: {
12566     Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType());
12567     return EmitX86Select(*this, Ops[2], Res, Ops[1]);
12568   }
12569   case X86::BI__builtin_ia32_pmovdb512_mask:
12570   case X86::BI__builtin_ia32_pmovdw512_mask:
12571   case X86::BI__builtin_ia32_pmovqw512_mask: {
12572     if (const auto *C = dyn_cast<Constant>(Ops[2]))
12573       if (C->isAllOnesValue())
12574         return Builder.CreateTrunc(Ops[0], Ops[1]->getType());
12575 
12576     Intrinsic::ID IID;
12577     switch (BuiltinID) {
12578     default: llvm_unreachable("Unsupported intrinsic!");
12579     case X86::BI__builtin_ia32_pmovdb512_mask:
12580       IID = Intrinsic::x86_avx512_mask_pmov_db_512;
12581       break;
12582     case X86::BI__builtin_ia32_pmovdw512_mask:
12583       IID = Intrinsic::x86_avx512_mask_pmov_dw_512;
12584       break;
12585     case X86::BI__builtin_ia32_pmovqw512_mask:
12586       IID = Intrinsic::x86_avx512_mask_pmov_qw_512;
12587       break;
12588     }
12589 
12590     Function *Intr = CGM.getIntrinsic(IID);
12591     return Builder.CreateCall(Intr, Ops);
12592   }
12593   case X86::BI__builtin_ia32_pblendw128:
12594   case X86::BI__builtin_ia32_blendpd:
12595   case X86::BI__builtin_ia32_blendps:
12596   case X86::BI__builtin_ia32_blendpd256:
12597   case X86::BI__builtin_ia32_blendps256:
12598   case X86::BI__builtin_ia32_pblendw256:
12599   case X86::BI__builtin_ia32_pblendd128:
12600   case X86::BI__builtin_ia32_pblendd256: {
12601     unsigned NumElts =
12602         cast<llvm::VectorType>(Ops[0]->getType())->getNumElements();
12603     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
12604 
12605     int Indices[16];
12606     // If there are more than 8 elements, the immediate is used twice so make
12607     // sure we handle that.
12608     for (unsigned i = 0; i != NumElts; ++i)
12609       Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i;
12610 
12611     return Builder.CreateShuffleVector(Ops[0], Ops[1],
12612                                        makeArrayRef(Indices, NumElts),
12613                                        "blend");
12614   }
12615   case X86::BI__builtin_ia32_pshuflw:
12616   case X86::BI__builtin_ia32_pshuflw256:
12617   case X86::BI__builtin_ia32_pshuflw512: {
12618     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
12619     auto *Ty = cast<llvm::VectorType>(Ops[0]->getType());
12620     unsigned NumElts = Ty->getNumElements();
12621 
12622     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
12623     Imm = (Imm & 0xff) * 0x01010101;
12624 
12625     int Indices[32];
12626     for (unsigned l = 0; l != NumElts; l += 8) {
12627       for (unsigned i = 0; i != 4; ++i) {
12628         Indices[l + i] = l + (Imm & 3);
12629         Imm >>= 2;
12630       }
12631       for (unsigned i = 4; i != 8; ++i)
12632         Indices[l + i] = l + i;
12633     }
12634 
12635     return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
12636                                        makeArrayRef(Indices, NumElts),
12637                                        "pshuflw");
12638   }
12639   case X86::BI__builtin_ia32_pshufhw:
12640   case X86::BI__builtin_ia32_pshufhw256:
12641   case X86::BI__builtin_ia32_pshufhw512: {
12642     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
12643     auto *Ty = cast<llvm::VectorType>(Ops[0]->getType());
12644     unsigned NumElts = Ty->getNumElements();
12645 
12646     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
12647     Imm = (Imm & 0xff) * 0x01010101;
12648 
12649     int Indices[32];
12650     for (unsigned l = 0; l != NumElts; l += 8) {
12651       for (unsigned i = 0; i != 4; ++i)
12652         Indices[l + i] = l + i;
12653       for (unsigned i = 4; i != 8; ++i) {
12654         Indices[l + i] = l + 4 + (Imm & 3);
12655         Imm >>= 2;
12656       }
12657     }
12658 
12659     return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
12660                                        makeArrayRef(Indices, NumElts),
12661                                        "pshufhw");
12662   }
12663   case X86::BI__builtin_ia32_pshufd:
12664   case X86::BI__builtin_ia32_pshufd256:
12665   case X86::BI__builtin_ia32_pshufd512:
12666   case X86::BI__builtin_ia32_vpermilpd:
12667   case X86::BI__builtin_ia32_vpermilps:
12668   case X86::BI__builtin_ia32_vpermilpd256:
12669   case X86::BI__builtin_ia32_vpermilps256:
12670   case X86::BI__builtin_ia32_vpermilpd512:
12671   case X86::BI__builtin_ia32_vpermilps512: {
12672     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
12673     auto *Ty = cast<llvm::VectorType>(Ops[0]->getType());
12674     unsigned NumElts = Ty->getNumElements();
12675     unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
12676     unsigned NumLaneElts = NumElts / NumLanes;
12677 
12678     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
12679     Imm = (Imm & 0xff) * 0x01010101;
12680 
12681     int Indices[16];
12682     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
12683       for (unsigned i = 0; i != NumLaneElts; ++i) {
12684         Indices[i + l] = (Imm % NumLaneElts) + l;
12685         Imm /= NumLaneElts;
12686       }
12687     }
12688 
12689     return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
12690                                        makeArrayRef(Indices, NumElts),
12691                                        "permil");
12692   }
12693   case X86::BI__builtin_ia32_shufpd:
12694   case X86::BI__builtin_ia32_shufpd256:
12695   case X86::BI__builtin_ia32_shufpd512:
12696   case X86::BI__builtin_ia32_shufps:
12697   case X86::BI__builtin_ia32_shufps256:
12698   case X86::BI__builtin_ia32_shufps512: {
12699     uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
12700     auto *Ty = cast<llvm::VectorType>(Ops[0]->getType());
12701     unsigned NumElts = Ty->getNumElements();
12702     unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
12703     unsigned NumLaneElts = NumElts / NumLanes;
12704 
12705     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
12706     Imm = (Imm & 0xff) * 0x01010101;
12707 
12708     int Indices[16];
12709     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
12710       for (unsigned i = 0; i != NumLaneElts; ++i) {
12711         unsigned Index = Imm % NumLaneElts;
12712         Imm /= NumLaneElts;
12713         if (i >= (NumLaneElts / 2))
12714           Index += NumElts;
12715         Indices[l + i] = l + Index;
12716       }
12717     }
12718 
12719     return Builder.CreateShuffleVector(Ops[0], Ops[1],
12720                                        makeArrayRef(Indices, NumElts),
12721                                        "shufp");
12722   }
12723   case X86::BI__builtin_ia32_permdi256:
12724   case X86::BI__builtin_ia32_permdf256:
12725   case X86::BI__builtin_ia32_permdi512:
12726   case X86::BI__builtin_ia32_permdf512: {
12727     unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
12728     auto *Ty = cast<llvm::VectorType>(Ops[0]->getType());
12729     unsigned NumElts = Ty->getNumElements();
12730 
12731     // These intrinsics operate on 256-bit lanes of four 64-bit elements.
12732     int Indices[8];
12733     for (unsigned l = 0; l != NumElts; l += 4)
12734       for (unsigned i = 0; i != 4; ++i)
12735         Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3);
12736 
12737     return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
12738                                        makeArrayRef(Indices, NumElts),
12739                                        "perm");
12740   }
12741   case X86::BI__builtin_ia32_palignr128:
12742   case X86::BI__builtin_ia32_palignr256:
12743   case X86::BI__builtin_ia32_palignr512: {
12744     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
12745 
12746     unsigned NumElts =
12747         cast<llvm::VectorType>(Ops[0]->getType())->getNumElements();
12748     assert(NumElts % 16 == 0);
12749 
12750     // If palignr is shifting the pair of vectors more than the size of two
12751     // lanes, emit zero.
12752     if (ShiftVal >= 32)
12753       return llvm::Constant::getNullValue(ConvertType(E->getType()));
12754 
12755     // If palignr is shifting the pair of input vectors more than one lane,
12756     // but less than two lanes, convert to shifting in zeroes.
12757     if (ShiftVal > 16) {
12758       ShiftVal -= 16;
12759       Ops[1] = Ops[0];
12760       Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
12761     }
12762 
12763     int Indices[64];
12764     // 256-bit palignr operates on 128-bit lanes so we need to handle that
12765     for (unsigned l = 0; l != NumElts; l += 16) {
12766       for (unsigned i = 0; i != 16; ++i) {
12767         unsigned Idx = ShiftVal + i;
12768         if (Idx >= 16)
12769           Idx += NumElts - 16; // End of lane, switch operand.
12770         Indices[l + i] = Idx + l;
12771       }
12772     }
12773 
12774     return Builder.CreateShuffleVector(Ops[1], Ops[0],
12775                                        makeArrayRef(Indices, NumElts),
12776                                        "palignr");
12777   }
12778   case X86::BI__builtin_ia32_alignd128:
12779   case X86::BI__builtin_ia32_alignd256:
12780   case X86::BI__builtin_ia32_alignd512:
12781   case X86::BI__builtin_ia32_alignq128:
12782   case X86::BI__builtin_ia32_alignq256:
12783   case X86::BI__builtin_ia32_alignq512: {
12784     unsigned NumElts =
12785         cast<llvm::VectorType>(Ops[0]->getType())->getNumElements();
12786     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
12787 
12788     // Mask the shift amount to width of two vectors.
12789     ShiftVal &= (2 * NumElts) - 1;
12790 
12791     int Indices[16];
12792     for (unsigned i = 0; i != NumElts; ++i)
12793       Indices[i] = i + ShiftVal;
12794 
12795     return Builder.CreateShuffleVector(Ops[1], Ops[0],
12796                                        makeArrayRef(Indices, NumElts),
12797                                        "valign");
12798   }
12799   case X86::BI__builtin_ia32_shuf_f32x4_256:
12800   case X86::BI__builtin_ia32_shuf_f64x2_256:
12801   case X86::BI__builtin_ia32_shuf_i32x4_256:
12802   case X86::BI__builtin_ia32_shuf_i64x2_256:
12803   case X86::BI__builtin_ia32_shuf_f32x4:
12804   case X86::BI__builtin_ia32_shuf_f64x2:
12805   case X86::BI__builtin_ia32_shuf_i32x4:
12806   case X86::BI__builtin_ia32_shuf_i64x2: {
12807     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
12808     auto *Ty = cast<llvm::VectorType>(Ops[0]->getType());
12809     unsigned NumElts = Ty->getNumElements();
12810     unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2;
12811     unsigned NumLaneElts = NumElts / NumLanes;
12812 
12813     int Indices[16];
12814     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
12815       unsigned Index = (Imm % NumLanes) * NumLaneElts;
12816       Imm /= NumLanes; // Discard the bits we just used.
12817       if (l >= (NumElts / 2))
12818         Index += NumElts; // Switch to other source.
12819       for (unsigned i = 0; i != NumLaneElts; ++i) {
12820         Indices[l + i] = Index + i;
12821       }
12822     }
12823 
12824     return Builder.CreateShuffleVector(Ops[0], Ops[1],
12825                                        makeArrayRef(Indices, NumElts),
12826                                        "shuf");
12827   }
12828 
12829   case X86::BI__builtin_ia32_vperm2f128_pd256:
12830   case X86::BI__builtin_ia32_vperm2f128_ps256:
12831   case X86::BI__builtin_ia32_vperm2f128_si256:
12832   case X86::BI__builtin_ia32_permti256: {
12833     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
12834     unsigned NumElts =
12835         cast<llvm::VectorType>(Ops[0]->getType())->getNumElements();
12836 
12837     // This takes a very simple approach since there are two lanes and a
12838     // shuffle can have 2 inputs. So we reserve the first input for the first
12839     // lane and the second input for the second lane. This may result in
12840     // duplicate sources, but this can be dealt with in the backend.
12841 
12842     Value *OutOps[2];
12843     int Indices[8];
12844     for (unsigned l = 0; l != 2; ++l) {
12845       // Determine the source for this lane.
12846       if (Imm & (1 << ((l * 4) + 3)))
12847         OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType());
12848       else if (Imm & (1 << ((l * 4) + 1)))
12849         OutOps[l] = Ops[1];
12850       else
12851         OutOps[l] = Ops[0];
12852 
12853       for (unsigned i = 0; i != NumElts/2; ++i) {
12854         // Start with ith element of the source for this lane.
12855         unsigned Idx = (l * NumElts) + i;
12856         // If bit 0 of the immediate half is set, switch to the high half of
12857         // the source.
12858         if (Imm & (1 << (l * 4)))
12859           Idx += NumElts/2;
12860         Indices[(l * (NumElts/2)) + i] = Idx;
12861       }
12862     }
12863 
12864     return Builder.CreateShuffleVector(OutOps[0], OutOps[1],
12865                                        makeArrayRef(Indices, NumElts),
12866                                        "vperm");
12867   }
12868 
12869   case X86::BI__builtin_ia32_pslldqi128_byteshift:
12870   case X86::BI__builtin_ia32_pslldqi256_byteshift:
12871   case X86::BI__builtin_ia32_pslldqi512_byteshift: {
12872     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
12873     auto *ResultType = cast<llvm::VectorType>(Ops[0]->getType());
12874     // Builtin type is vXi64 so multiply by 8 to get bytes.
12875     unsigned NumElts = ResultType->getNumElements() * 8;
12876 
12877     // If pslldq is shifting the vector more than 15 bytes, emit zero.
12878     if (ShiftVal >= 16)
12879       return llvm::Constant::getNullValue(ResultType);
12880 
12881     int Indices[64];
12882     // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that
12883     for (unsigned l = 0; l != NumElts; l += 16) {
12884       for (unsigned i = 0; i != 16; ++i) {
12885         unsigned Idx = NumElts + i - ShiftVal;
12886         if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand.
12887         Indices[l + i] = Idx + l;
12888       }
12889     }
12890 
12891     auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
12892     Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
12893     Value *Zero = llvm::Constant::getNullValue(VecTy);
12894     Value *SV = Builder.CreateShuffleVector(Zero, Cast,
12895                                             makeArrayRef(Indices, NumElts),
12896                                             "pslldq");
12897     return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast");
12898   }
12899   case X86::BI__builtin_ia32_psrldqi128_byteshift:
12900   case X86::BI__builtin_ia32_psrldqi256_byteshift:
12901   case X86::BI__builtin_ia32_psrldqi512_byteshift: {
12902     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
12903     auto *ResultType = cast<llvm::VectorType>(Ops[0]->getType());
12904     // Builtin type is vXi64 so multiply by 8 to get bytes.
12905     unsigned NumElts = ResultType->getNumElements() * 8;
12906 
12907     // If psrldq is shifting the vector more than 15 bytes, emit zero.
12908     if (ShiftVal >= 16)
12909       return llvm::Constant::getNullValue(ResultType);
12910 
12911     int Indices[64];
12912     // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that
12913     for (unsigned l = 0; l != NumElts; l += 16) {
12914       for (unsigned i = 0; i != 16; ++i) {
12915         unsigned Idx = i + ShiftVal;
12916         if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand.
12917         Indices[l + i] = Idx + l;
12918       }
12919     }
12920 
12921     auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
12922     Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
12923     Value *Zero = llvm::Constant::getNullValue(VecTy);
12924     Value *SV = Builder.CreateShuffleVector(Cast, Zero,
12925                                             makeArrayRef(Indices, NumElts),
12926                                             "psrldq");
12927     return Builder.CreateBitCast(SV, ResultType, "cast");
12928   }
12929   case X86::BI__builtin_ia32_kshiftliqi:
12930   case X86::BI__builtin_ia32_kshiftlihi:
12931   case X86::BI__builtin_ia32_kshiftlisi:
12932   case X86::BI__builtin_ia32_kshiftlidi: {
12933     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
12934     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
12935 
12936     if (ShiftVal >= NumElts)
12937       return llvm::Constant::getNullValue(Ops[0]->getType());
12938 
12939     Value *In = getMaskVecValue(*this, Ops[0], NumElts);
12940 
12941     int Indices[64];
12942     for (unsigned i = 0; i != NumElts; ++i)
12943       Indices[i] = NumElts + i - ShiftVal;
12944 
12945     Value *Zero = llvm::Constant::getNullValue(In->getType());
12946     Value *SV = Builder.CreateShuffleVector(Zero, In,
12947                                             makeArrayRef(Indices, NumElts),
12948                                             "kshiftl");
12949     return Builder.CreateBitCast(SV, Ops[0]->getType());
12950   }
12951   case X86::BI__builtin_ia32_kshiftriqi:
12952   case X86::BI__builtin_ia32_kshiftrihi:
12953   case X86::BI__builtin_ia32_kshiftrisi:
12954   case X86::BI__builtin_ia32_kshiftridi: {
12955     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
12956     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
12957 
12958     if (ShiftVal >= NumElts)
12959       return llvm::Constant::getNullValue(Ops[0]->getType());
12960 
12961     Value *In = getMaskVecValue(*this, Ops[0], NumElts);
12962 
12963     int Indices[64];
12964     for (unsigned i = 0; i != NumElts; ++i)
12965       Indices[i] = i + ShiftVal;
12966 
12967     Value *Zero = llvm::Constant::getNullValue(In->getType());
12968     Value *SV = Builder.CreateShuffleVector(In, Zero,
12969                                             makeArrayRef(Indices, NumElts),
12970                                             "kshiftr");
12971     return Builder.CreateBitCast(SV, Ops[0]->getType());
12972   }
12973   case X86::BI__builtin_ia32_movnti:
12974   case X86::BI__builtin_ia32_movnti64:
12975   case X86::BI__builtin_ia32_movntsd:
12976   case X86::BI__builtin_ia32_movntss: {
12977     llvm::MDNode *Node = llvm::MDNode::get(
12978         getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
12979 
12980     Value *Ptr = Ops[0];
12981     Value *Src = Ops[1];
12982 
12983     // Extract the 0'th element of the source vector.
12984     if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
12985         BuiltinID == X86::BI__builtin_ia32_movntss)
12986       Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
12987 
12988     // Convert the type of the pointer to a pointer to the stored type.
12989     Value *BC = Builder.CreateBitCast(
12990         Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast");
12991 
12992     // Unaligned nontemporal store of the scalar value.
12993     StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC);
12994     SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
12995     SI->setAlignment(llvm::Align(1));
12996     return SI;
12997   }
12998   // Rotate is a special case of funnel shift - 1st 2 args are the same.
12999   case X86::BI__builtin_ia32_vprotb:
13000   case X86::BI__builtin_ia32_vprotw:
13001   case X86::BI__builtin_ia32_vprotd:
13002   case X86::BI__builtin_ia32_vprotq:
13003   case X86::BI__builtin_ia32_vprotbi:
13004   case X86::BI__builtin_ia32_vprotwi:
13005   case X86::BI__builtin_ia32_vprotdi:
13006   case X86::BI__builtin_ia32_vprotqi:
13007   case X86::BI__builtin_ia32_prold128:
13008   case X86::BI__builtin_ia32_prold256:
13009   case X86::BI__builtin_ia32_prold512:
13010   case X86::BI__builtin_ia32_prolq128:
13011   case X86::BI__builtin_ia32_prolq256:
13012   case X86::BI__builtin_ia32_prolq512:
13013   case X86::BI__builtin_ia32_prolvd128:
13014   case X86::BI__builtin_ia32_prolvd256:
13015   case X86::BI__builtin_ia32_prolvd512:
13016   case X86::BI__builtin_ia32_prolvq128:
13017   case X86::BI__builtin_ia32_prolvq256:
13018   case X86::BI__builtin_ia32_prolvq512:
13019     return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false);
13020   case X86::BI__builtin_ia32_prord128:
13021   case X86::BI__builtin_ia32_prord256:
13022   case X86::BI__builtin_ia32_prord512:
13023   case X86::BI__builtin_ia32_prorq128:
13024   case X86::BI__builtin_ia32_prorq256:
13025   case X86::BI__builtin_ia32_prorq512:
13026   case X86::BI__builtin_ia32_prorvd128:
13027   case X86::BI__builtin_ia32_prorvd256:
13028   case X86::BI__builtin_ia32_prorvd512:
13029   case X86::BI__builtin_ia32_prorvq128:
13030   case X86::BI__builtin_ia32_prorvq256:
13031   case X86::BI__builtin_ia32_prorvq512:
13032     return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true);
13033   case X86::BI__builtin_ia32_selectb_128:
13034   case X86::BI__builtin_ia32_selectb_256:
13035   case X86::BI__builtin_ia32_selectb_512:
13036   case X86::BI__builtin_ia32_selectw_128:
13037   case X86::BI__builtin_ia32_selectw_256:
13038   case X86::BI__builtin_ia32_selectw_512:
13039   case X86::BI__builtin_ia32_selectd_128:
13040   case X86::BI__builtin_ia32_selectd_256:
13041   case X86::BI__builtin_ia32_selectd_512:
13042   case X86::BI__builtin_ia32_selectq_128:
13043   case X86::BI__builtin_ia32_selectq_256:
13044   case X86::BI__builtin_ia32_selectq_512:
13045   case X86::BI__builtin_ia32_selectps_128:
13046   case X86::BI__builtin_ia32_selectps_256:
13047   case X86::BI__builtin_ia32_selectps_512:
13048   case X86::BI__builtin_ia32_selectpd_128:
13049   case X86::BI__builtin_ia32_selectpd_256:
13050   case X86::BI__builtin_ia32_selectpd_512:
13051     return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
13052   case X86::BI__builtin_ia32_selectss_128:
13053   case X86::BI__builtin_ia32_selectsd_128: {
13054     Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
13055     Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
13056     A = EmitX86ScalarSelect(*this, Ops[0], A, B);
13057     return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0);
13058   }
13059   case X86::BI__builtin_ia32_cmpb128_mask:
13060   case X86::BI__builtin_ia32_cmpb256_mask:
13061   case X86::BI__builtin_ia32_cmpb512_mask:
13062   case X86::BI__builtin_ia32_cmpw128_mask:
13063   case X86::BI__builtin_ia32_cmpw256_mask:
13064   case X86::BI__builtin_ia32_cmpw512_mask:
13065   case X86::BI__builtin_ia32_cmpd128_mask:
13066   case X86::BI__builtin_ia32_cmpd256_mask:
13067   case X86::BI__builtin_ia32_cmpd512_mask:
13068   case X86::BI__builtin_ia32_cmpq128_mask:
13069   case X86::BI__builtin_ia32_cmpq256_mask:
13070   case X86::BI__builtin_ia32_cmpq512_mask: {
13071     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
13072     return EmitX86MaskedCompare(*this, CC, true, Ops);
13073   }
13074   case X86::BI__builtin_ia32_ucmpb128_mask:
13075   case X86::BI__builtin_ia32_ucmpb256_mask:
13076   case X86::BI__builtin_ia32_ucmpb512_mask:
13077   case X86::BI__builtin_ia32_ucmpw128_mask:
13078   case X86::BI__builtin_ia32_ucmpw256_mask:
13079   case X86::BI__builtin_ia32_ucmpw512_mask:
13080   case X86::BI__builtin_ia32_ucmpd128_mask:
13081   case X86::BI__builtin_ia32_ucmpd256_mask:
13082   case X86::BI__builtin_ia32_ucmpd512_mask:
13083   case X86::BI__builtin_ia32_ucmpq128_mask:
13084   case X86::BI__builtin_ia32_ucmpq256_mask:
13085   case X86::BI__builtin_ia32_ucmpq512_mask: {
13086     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
13087     return EmitX86MaskedCompare(*this, CC, false, Ops);
13088   }
13089   case X86::BI__builtin_ia32_vpcomb:
13090   case X86::BI__builtin_ia32_vpcomw:
13091   case X86::BI__builtin_ia32_vpcomd:
13092   case X86::BI__builtin_ia32_vpcomq:
13093     return EmitX86vpcom(*this, Ops, true);
13094   case X86::BI__builtin_ia32_vpcomub:
13095   case X86::BI__builtin_ia32_vpcomuw:
13096   case X86::BI__builtin_ia32_vpcomud:
13097   case X86::BI__builtin_ia32_vpcomuq:
13098     return EmitX86vpcom(*this, Ops, false);
13099 
13100   case X86::BI__builtin_ia32_kortestcqi:
13101   case X86::BI__builtin_ia32_kortestchi:
13102   case X86::BI__builtin_ia32_kortestcsi:
13103   case X86::BI__builtin_ia32_kortestcdi: {
13104     Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
13105     Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType());
13106     Value *Cmp = Builder.CreateICmpEQ(Or, C);
13107     return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
13108   }
13109   case X86::BI__builtin_ia32_kortestzqi:
13110   case X86::BI__builtin_ia32_kortestzhi:
13111   case X86::BI__builtin_ia32_kortestzsi:
13112   case X86::BI__builtin_ia32_kortestzdi: {
13113     Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
13114     Value *C = llvm::Constant::getNullValue(Ops[0]->getType());
13115     Value *Cmp = Builder.CreateICmpEQ(Or, C);
13116     return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
13117   }
13118 
13119   case X86::BI__builtin_ia32_ktestcqi:
13120   case X86::BI__builtin_ia32_ktestzqi:
13121   case X86::BI__builtin_ia32_ktestchi:
13122   case X86::BI__builtin_ia32_ktestzhi:
13123   case X86::BI__builtin_ia32_ktestcsi:
13124   case X86::BI__builtin_ia32_ktestzsi:
13125   case X86::BI__builtin_ia32_ktestcdi:
13126   case X86::BI__builtin_ia32_ktestzdi: {
13127     Intrinsic::ID IID;
13128     switch (BuiltinID) {
13129     default: llvm_unreachable("Unsupported intrinsic!");
13130     case X86::BI__builtin_ia32_ktestcqi:
13131       IID = Intrinsic::x86_avx512_ktestc_b;
13132       break;
13133     case X86::BI__builtin_ia32_ktestzqi:
13134       IID = Intrinsic::x86_avx512_ktestz_b;
13135       break;
13136     case X86::BI__builtin_ia32_ktestchi:
13137       IID = Intrinsic::x86_avx512_ktestc_w;
13138       break;
13139     case X86::BI__builtin_ia32_ktestzhi:
13140       IID = Intrinsic::x86_avx512_ktestz_w;
13141       break;
13142     case X86::BI__builtin_ia32_ktestcsi:
13143       IID = Intrinsic::x86_avx512_ktestc_d;
13144       break;
13145     case X86::BI__builtin_ia32_ktestzsi:
13146       IID = Intrinsic::x86_avx512_ktestz_d;
13147       break;
13148     case X86::BI__builtin_ia32_ktestcdi:
13149       IID = Intrinsic::x86_avx512_ktestc_q;
13150       break;
13151     case X86::BI__builtin_ia32_ktestzdi:
13152       IID = Intrinsic::x86_avx512_ktestz_q;
13153       break;
13154     }
13155 
13156     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13157     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
13158     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
13159     Function *Intr = CGM.getIntrinsic(IID);
13160     return Builder.CreateCall(Intr, {LHS, RHS});
13161   }
13162 
13163   case X86::BI__builtin_ia32_kaddqi:
13164   case X86::BI__builtin_ia32_kaddhi:
13165   case X86::BI__builtin_ia32_kaddsi:
13166   case X86::BI__builtin_ia32_kadddi: {
13167     Intrinsic::ID IID;
13168     switch (BuiltinID) {
13169     default: llvm_unreachable("Unsupported intrinsic!");
13170     case X86::BI__builtin_ia32_kaddqi:
13171       IID = Intrinsic::x86_avx512_kadd_b;
13172       break;
13173     case X86::BI__builtin_ia32_kaddhi:
13174       IID = Intrinsic::x86_avx512_kadd_w;
13175       break;
13176     case X86::BI__builtin_ia32_kaddsi:
13177       IID = Intrinsic::x86_avx512_kadd_d;
13178       break;
13179     case X86::BI__builtin_ia32_kadddi:
13180       IID = Intrinsic::x86_avx512_kadd_q;
13181       break;
13182     }
13183 
13184     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13185     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
13186     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
13187     Function *Intr = CGM.getIntrinsic(IID);
13188     Value *Res = Builder.CreateCall(Intr, {LHS, RHS});
13189     return Builder.CreateBitCast(Res, Ops[0]->getType());
13190   }
13191   case X86::BI__builtin_ia32_kandqi:
13192   case X86::BI__builtin_ia32_kandhi:
13193   case X86::BI__builtin_ia32_kandsi:
13194   case X86::BI__builtin_ia32_kanddi:
13195     return EmitX86MaskLogic(*this, Instruction::And, Ops);
13196   case X86::BI__builtin_ia32_kandnqi:
13197   case X86::BI__builtin_ia32_kandnhi:
13198   case X86::BI__builtin_ia32_kandnsi:
13199   case X86::BI__builtin_ia32_kandndi:
13200     return EmitX86MaskLogic(*this, Instruction::And, Ops, true);
13201   case X86::BI__builtin_ia32_korqi:
13202   case X86::BI__builtin_ia32_korhi:
13203   case X86::BI__builtin_ia32_korsi:
13204   case X86::BI__builtin_ia32_kordi:
13205     return EmitX86MaskLogic(*this, Instruction::Or, Ops);
13206   case X86::BI__builtin_ia32_kxnorqi:
13207   case X86::BI__builtin_ia32_kxnorhi:
13208   case X86::BI__builtin_ia32_kxnorsi:
13209   case X86::BI__builtin_ia32_kxnordi:
13210     return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true);
13211   case X86::BI__builtin_ia32_kxorqi:
13212   case X86::BI__builtin_ia32_kxorhi:
13213   case X86::BI__builtin_ia32_kxorsi:
13214   case X86::BI__builtin_ia32_kxordi:
13215     return EmitX86MaskLogic(*this, Instruction::Xor,  Ops);
13216   case X86::BI__builtin_ia32_knotqi:
13217   case X86::BI__builtin_ia32_knothi:
13218   case X86::BI__builtin_ia32_knotsi:
13219   case X86::BI__builtin_ia32_knotdi: {
13220     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13221     Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
13222     return Builder.CreateBitCast(Builder.CreateNot(Res),
13223                                  Ops[0]->getType());
13224   }
13225   case X86::BI__builtin_ia32_kmovb:
13226   case X86::BI__builtin_ia32_kmovw:
13227   case X86::BI__builtin_ia32_kmovd:
13228   case X86::BI__builtin_ia32_kmovq: {
13229     // Bitcast to vXi1 type and then back to integer. This gets the mask
13230     // register type into the IR, but might be optimized out depending on
13231     // what's around it.
13232     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13233     Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
13234     return Builder.CreateBitCast(Res, Ops[0]->getType());
13235   }
13236 
13237   case X86::BI__builtin_ia32_kunpckdi:
13238   case X86::BI__builtin_ia32_kunpcksi:
13239   case X86::BI__builtin_ia32_kunpckhi: {
13240     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13241     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
13242     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
13243     int Indices[64];
13244     for (unsigned i = 0; i != NumElts; ++i)
13245       Indices[i] = i;
13246 
13247     // First extract half of each vector. This gives better codegen than
13248     // doing it in a single shuffle.
13249     LHS = Builder.CreateShuffleVector(LHS, LHS,
13250                                       makeArrayRef(Indices, NumElts / 2));
13251     RHS = Builder.CreateShuffleVector(RHS, RHS,
13252                                       makeArrayRef(Indices, NumElts / 2));
13253     // Concat the vectors.
13254     // NOTE: Operands are swapped to match the intrinsic definition.
13255     Value *Res = Builder.CreateShuffleVector(RHS, LHS,
13256                                              makeArrayRef(Indices, NumElts));
13257     return Builder.CreateBitCast(Res, Ops[0]->getType());
13258   }
13259 
13260   case X86::BI__builtin_ia32_vplzcntd_128:
13261   case X86::BI__builtin_ia32_vplzcntd_256:
13262   case X86::BI__builtin_ia32_vplzcntd_512:
13263   case X86::BI__builtin_ia32_vplzcntq_128:
13264   case X86::BI__builtin_ia32_vplzcntq_256:
13265   case X86::BI__builtin_ia32_vplzcntq_512: {
13266     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
13267     return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)});
13268   }
13269   case X86::BI__builtin_ia32_sqrtss:
13270   case X86::BI__builtin_ia32_sqrtsd: {
13271     Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0);
13272     Function *F;
13273     if (Builder.getIsFPConstrained()) {
13274       F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
13275                            A->getType());
13276       A = Builder.CreateConstrainedFPCall(F, {A});
13277     } else {
13278       F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
13279       A = Builder.CreateCall(F, {A});
13280     }
13281     return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
13282   }
13283   case X86::BI__builtin_ia32_sqrtsd_round_mask:
13284   case X86::BI__builtin_ia32_sqrtss_round_mask: {
13285     unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
13286     // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
13287     // otherwise keep the intrinsic.
13288     if (CC != 4) {
13289       Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtsd_round_mask ?
13290                           Intrinsic::x86_avx512_mask_sqrt_sd :
13291                           Intrinsic::x86_avx512_mask_sqrt_ss;
13292       return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
13293     }
13294     Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
13295     Function *F;
13296     if (Builder.getIsFPConstrained()) {
13297       F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
13298                            A->getType());
13299       A = Builder.CreateConstrainedFPCall(F, A);
13300     } else {
13301       F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
13302       A = Builder.CreateCall(F, A);
13303     }
13304     Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
13305     A = EmitX86ScalarSelect(*this, Ops[3], A, Src);
13306     return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
13307   }
13308   case X86::BI__builtin_ia32_sqrtpd256:
13309   case X86::BI__builtin_ia32_sqrtpd:
13310   case X86::BI__builtin_ia32_sqrtps256:
13311   case X86::BI__builtin_ia32_sqrtps:
13312   case X86::BI__builtin_ia32_sqrtps512:
13313   case X86::BI__builtin_ia32_sqrtpd512: {
13314     if (Ops.size() == 2) {
13315       unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13316       // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
13317       // otherwise keep the intrinsic.
13318       if (CC != 4) {
13319         Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtps512 ?
13320                             Intrinsic::x86_avx512_sqrt_ps_512 :
13321                             Intrinsic::x86_avx512_sqrt_pd_512;
13322         return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
13323       }
13324     }
13325     if (Builder.getIsFPConstrained()) {
13326       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
13327                                      Ops[0]->getType());
13328       return Builder.CreateConstrainedFPCall(F, Ops[0]);
13329     } else {
13330       Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType());
13331       return Builder.CreateCall(F, Ops[0]);
13332     }
13333   }
13334   case X86::BI__builtin_ia32_pabsb128:
13335   case X86::BI__builtin_ia32_pabsw128:
13336   case X86::BI__builtin_ia32_pabsd128:
13337   case X86::BI__builtin_ia32_pabsb256:
13338   case X86::BI__builtin_ia32_pabsw256:
13339   case X86::BI__builtin_ia32_pabsd256:
13340   case X86::BI__builtin_ia32_pabsq128:
13341   case X86::BI__builtin_ia32_pabsq256:
13342   case X86::BI__builtin_ia32_pabsb512:
13343   case X86::BI__builtin_ia32_pabsw512:
13344   case X86::BI__builtin_ia32_pabsd512:
13345   case X86::BI__builtin_ia32_pabsq512:
13346     return EmitX86Abs(*this, Ops);
13347 
13348   case X86::BI__builtin_ia32_pmaxsb128:
13349   case X86::BI__builtin_ia32_pmaxsw128:
13350   case X86::BI__builtin_ia32_pmaxsd128:
13351   case X86::BI__builtin_ia32_pmaxsq128:
13352   case X86::BI__builtin_ia32_pmaxsb256:
13353   case X86::BI__builtin_ia32_pmaxsw256:
13354   case X86::BI__builtin_ia32_pmaxsd256:
13355   case X86::BI__builtin_ia32_pmaxsq256:
13356   case X86::BI__builtin_ia32_pmaxsb512:
13357   case X86::BI__builtin_ia32_pmaxsw512:
13358   case X86::BI__builtin_ia32_pmaxsd512:
13359   case X86::BI__builtin_ia32_pmaxsq512:
13360     return EmitX86MinMax(*this, ICmpInst::ICMP_SGT, Ops);
13361   case X86::BI__builtin_ia32_pmaxub128:
13362   case X86::BI__builtin_ia32_pmaxuw128:
13363   case X86::BI__builtin_ia32_pmaxud128:
13364   case X86::BI__builtin_ia32_pmaxuq128:
13365   case X86::BI__builtin_ia32_pmaxub256:
13366   case X86::BI__builtin_ia32_pmaxuw256:
13367   case X86::BI__builtin_ia32_pmaxud256:
13368   case X86::BI__builtin_ia32_pmaxuq256:
13369   case X86::BI__builtin_ia32_pmaxub512:
13370   case X86::BI__builtin_ia32_pmaxuw512:
13371   case X86::BI__builtin_ia32_pmaxud512:
13372   case X86::BI__builtin_ia32_pmaxuq512:
13373     return EmitX86MinMax(*this, ICmpInst::ICMP_UGT, Ops);
13374   case X86::BI__builtin_ia32_pminsb128:
13375   case X86::BI__builtin_ia32_pminsw128:
13376   case X86::BI__builtin_ia32_pminsd128:
13377   case X86::BI__builtin_ia32_pminsq128:
13378   case X86::BI__builtin_ia32_pminsb256:
13379   case X86::BI__builtin_ia32_pminsw256:
13380   case X86::BI__builtin_ia32_pminsd256:
13381   case X86::BI__builtin_ia32_pminsq256:
13382   case X86::BI__builtin_ia32_pminsb512:
13383   case X86::BI__builtin_ia32_pminsw512:
13384   case X86::BI__builtin_ia32_pminsd512:
13385   case X86::BI__builtin_ia32_pminsq512:
13386     return EmitX86MinMax(*this, ICmpInst::ICMP_SLT, Ops);
13387   case X86::BI__builtin_ia32_pminub128:
13388   case X86::BI__builtin_ia32_pminuw128:
13389   case X86::BI__builtin_ia32_pminud128:
13390   case X86::BI__builtin_ia32_pminuq128:
13391   case X86::BI__builtin_ia32_pminub256:
13392   case X86::BI__builtin_ia32_pminuw256:
13393   case X86::BI__builtin_ia32_pminud256:
13394   case X86::BI__builtin_ia32_pminuq256:
13395   case X86::BI__builtin_ia32_pminub512:
13396   case X86::BI__builtin_ia32_pminuw512:
13397   case X86::BI__builtin_ia32_pminud512:
13398   case X86::BI__builtin_ia32_pminuq512:
13399     return EmitX86MinMax(*this, ICmpInst::ICMP_ULT, Ops);
13400 
13401   case X86::BI__builtin_ia32_pmuludq128:
13402   case X86::BI__builtin_ia32_pmuludq256:
13403   case X86::BI__builtin_ia32_pmuludq512:
13404     return EmitX86Muldq(*this, /*IsSigned*/false, Ops);
13405 
13406   case X86::BI__builtin_ia32_pmuldq128:
13407   case X86::BI__builtin_ia32_pmuldq256:
13408   case X86::BI__builtin_ia32_pmuldq512:
13409     return EmitX86Muldq(*this, /*IsSigned*/true, Ops);
13410 
13411   case X86::BI__builtin_ia32_pternlogd512_mask:
13412   case X86::BI__builtin_ia32_pternlogq512_mask:
13413   case X86::BI__builtin_ia32_pternlogd128_mask:
13414   case X86::BI__builtin_ia32_pternlogd256_mask:
13415   case X86::BI__builtin_ia32_pternlogq128_mask:
13416   case X86::BI__builtin_ia32_pternlogq256_mask:
13417     return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops);
13418 
13419   case X86::BI__builtin_ia32_pternlogd512_maskz:
13420   case X86::BI__builtin_ia32_pternlogq512_maskz:
13421   case X86::BI__builtin_ia32_pternlogd128_maskz:
13422   case X86::BI__builtin_ia32_pternlogd256_maskz:
13423   case X86::BI__builtin_ia32_pternlogq128_maskz:
13424   case X86::BI__builtin_ia32_pternlogq256_maskz:
13425     return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops);
13426 
13427   case X86::BI__builtin_ia32_vpshldd128:
13428   case X86::BI__builtin_ia32_vpshldd256:
13429   case X86::BI__builtin_ia32_vpshldd512:
13430   case X86::BI__builtin_ia32_vpshldq128:
13431   case X86::BI__builtin_ia32_vpshldq256:
13432   case X86::BI__builtin_ia32_vpshldq512:
13433   case X86::BI__builtin_ia32_vpshldw128:
13434   case X86::BI__builtin_ia32_vpshldw256:
13435   case X86::BI__builtin_ia32_vpshldw512:
13436     return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
13437 
13438   case X86::BI__builtin_ia32_vpshrdd128:
13439   case X86::BI__builtin_ia32_vpshrdd256:
13440   case X86::BI__builtin_ia32_vpshrdd512:
13441   case X86::BI__builtin_ia32_vpshrdq128:
13442   case X86::BI__builtin_ia32_vpshrdq256:
13443   case X86::BI__builtin_ia32_vpshrdq512:
13444   case X86::BI__builtin_ia32_vpshrdw128:
13445   case X86::BI__builtin_ia32_vpshrdw256:
13446   case X86::BI__builtin_ia32_vpshrdw512:
13447     // Ops 0 and 1 are swapped.
13448     return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
13449 
13450   case X86::BI__builtin_ia32_vpshldvd128:
13451   case X86::BI__builtin_ia32_vpshldvd256:
13452   case X86::BI__builtin_ia32_vpshldvd512:
13453   case X86::BI__builtin_ia32_vpshldvq128:
13454   case X86::BI__builtin_ia32_vpshldvq256:
13455   case X86::BI__builtin_ia32_vpshldvq512:
13456   case X86::BI__builtin_ia32_vpshldvw128:
13457   case X86::BI__builtin_ia32_vpshldvw256:
13458   case X86::BI__builtin_ia32_vpshldvw512:
13459     return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
13460 
13461   case X86::BI__builtin_ia32_vpshrdvd128:
13462   case X86::BI__builtin_ia32_vpshrdvd256:
13463   case X86::BI__builtin_ia32_vpshrdvd512:
13464   case X86::BI__builtin_ia32_vpshrdvq128:
13465   case X86::BI__builtin_ia32_vpshrdvq256:
13466   case X86::BI__builtin_ia32_vpshrdvq512:
13467   case X86::BI__builtin_ia32_vpshrdvw128:
13468   case X86::BI__builtin_ia32_vpshrdvw256:
13469   case X86::BI__builtin_ia32_vpshrdvw512:
13470     // Ops 0 and 1 are swapped.
13471     return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
13472 
13473   // 3DNow!
13474   case X86::BI__builtin_ia32_pswapdsf:
13475   case X86::BI__builtin_ia32_pswapdsi: {
13476     llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
13477     Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
13478     llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
13479     return Builder.CreateCall(F, Ops, "pswapd");
13480   }
13481   case X86::BI__builtin_ia32_rdrand16_step:
13482   case X86::BI__builtin_ia32_rdrand32_step:
13483   case X86::BI__builtin_ia32_rdrand64_step:
13484   case X86::BI__builtin_ia32_rdseed16_step:
13485   case X86::BI__builtin_ia32_rdseed32_step:
13486   case X86::BI__builtin_ia32_rdseed64_step: {
13487     Intrinsic::ID ID;
13488     switch (BuiltinID) {
13489     default: llvm_unreachable("Unsupported intrinsic!");
13490     case X86::BI__builtin_ia32_rdrand16_step:
13491       ID = Intrinsic::x86_rdrand_16;
13492       break;
13493     case X86::BI__builtin_ia32_rdrand32_step:
13494       ID = Intrinsic::x86_rdrand_32;
13495       break;
13496     case X86::BI__builtin_ia32_rdrand64_step:
13497       ID = Intrinsic::x86_rdrand_64;
13498       break;
13499     case X86::BI__builtin_ia32_rdseed16_step:
13500       ID = Intrinsic::x86_rdseed_16;
13501       break;
13502     case X86::BI__builtin_ia32_rdseed32_step:
13503       ID = Intrinsic::x86_rdseed_32;
13504       break;
13505     case X86::BI__builtin_ia32_rdseed64_step:
13506       ID = Intrinsic::x86_rdseed_64;
13507       break;
13508     }
13509 
13510     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
13511     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
13512                                       Ops[0]);
13513     return Builder.CreateExtractValue(Call, 1);
13514   }
13515   case X86::BI__builtin_ia32_addcarryx_u32:
13516   case X86::BI__builtin_ia32_addcarryx_u64:
13517   case X86::BI__builtin_ia32_subborrow_u32:
13518   case X86::BI__builtin_ia32_subborrow_u64: {
13519     Intrinsic::ID IID;
13520     switch (BuiltinID) {
13521     default: llvm_unreachable("Unsupported intrinsic!");
13522     case X86::BI__builtin_ia32_addcarryx_u32:
13523       IID = Intrinsic::x86_addcarry_32;
13524       break;
13525     case X86::BI__builtin_ia32_addcarryx_u64:
13526       IID = Intrinsic::x86_addcarry_64;
13527       break;
13528     case X86::BI__builtin_ia32_subborrow_u32:
13529       IID = Intrinsic::x86_subborrow_32;
13530       break;
13531     case X86::BI__builtin_ia32_subborrow_u64:
13532       IID = Intrinsic::x86_subborrow_64;
13533       break;
13534     }
13535 
13536     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID),
13537                                      { Ops[0], Ops[1], Ops[2] });
13538     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
13539                                       Ops[3]);
13540     return Builder.CreateExtractValue(Call, 0);
13541   }
13542 
13543   case X86::BI__builtin_ia32_fpclassps128_mask:
13544   case X86::BI__builtin_ia32_fpclassps256_mask:
13545   case X86::BI__builtin_ia32_fpclassps512_mask:
13546   case X86::BI__builtin_ia32_fpclasspd128_mask:
13547   case X86::BI__builtin_ia32_fpclasspd256_mask:
13548   case X86::BI__builtin_ia32_fpclasspd512_mask: {
13549     unsigned NumElts =
13550         cast<llvm::VectorType>(Ops[0]->getType())->getNumElements();
13551     Value *MaskIn = Ops[2];
13552     Ops.erase(&Ops[2]);
13553 
13554     Intrinsic::ID ID;
13555     switch (BuiltinID) {
13556     default: llvm_unreachable("Unsupported intrinsic!");
13557     case X86::BI__builtin_ia32_fpclassps128_mask:
13558       ID = Intrinsic::x86_avx512_fpclass_ps_128;
13559       break;
13560     case X86::BI__builtin_ia32_fpclassps256_mask:
13561       ID = Intrinsic::x86_avx512_fpclass_ps_256;
13562       break;
13563     case X86::BI__builtin_ia32_fpclassps512_mask:
13564       ID = Intrinsic::x86_avx512_fpclass_ps_512;
13565       break;
13566     case X86::BI__builtin_ia32_fpclasspd128_mask:
13567       ID = Intrinsic::x86_avx512_fpclass_pd_128;
13568       break;
13569     case X86::BI__builtin_ia32_fpclasspd256_mask:
13570       ID = Intrinsic::x86_avx512_fpclass_pd_256;
13571       break;
13572     case X86::BI__builtin_ia32_fpclasspd512_mask:
13573       ID = Intrinsic::x86_avx512_fpclass_pd_512;
13574       break;
13575     }
13576 
13577     Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
13578     return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn);
13579   }
13580 
13581   case X86::BI__builtin_ia32_vp2intersect_q_512:
13582   case X86::BI__builtin_ia32_vp2intersect_q_256:
13583   case X86::BI__builtin_ia32_vp2intersect_q_128:
13584   case X86::BI__builtin_ia32_vp2intersect_d_512:
13585   case X86::BI__builtin_ia32_vp2intersect_d_256:
13586   case X86::BI__builtin_ia32_vp2intersect_d_128: {
13587     unsigned NumElts =
13588         cast<llvm::VectorType>(Ops[0]->getType())->getNumElements();
13589     Intrinsic::ID ID;
13590 
13591     switch (BuiltinID) {
13592     default: llvm_unreachable("Unsupported intrinsic!");
13593     case X86::BI__builtin_ia32_vp2intersect_q_512:
13594       ID = Intrinsic::x86_avx512_vp2intersect_q_512;
13595       break;
13596     case X86::BI__builtin_ia32_vp2intersect_q_256:
13597       ID = Intrinsic::x86_avx512_vp2intersect_q_256;
13598       break;
13599     case X86::BI__builtin_ia32_vp2intersect_q_128:
13600       ID = Intrinsic::x86_avx512_vp2intersect_q_128;
13601       break;
13602     case X86::BI__builtin_ia32_vp2intersect_d_512:
13603       ID = Intrinsic::x86_avx512_vp2intersect_d_512;
13604       break;
13605     case X86::BI__builtin_ia32_vp2intersect_d_256:
13606       ID = Intrinsic::x86_avx512_vp2intersect_d_256;
13607       break;
13608     case X86::BI__builtin_ia32_vp2intersect_d_128:
13609       ID = Intrinsic::x86_avx512_vp2intersect_d_128;
13610       break;
13611     }
13612 
13613     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]});
13614     Value *Result = Builder.CreateExtractValue(Call, 0);
13615     Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
13616     Builder.CreateDefaultAlignedStore(Result, Ops[2]);
13617 
13618     Result = Builder.CreateExtractValue(Call, 1);
13619     Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
13620     return Builder.CreateDefaultAlignedStore(Result, Ops[3]);
13621   }
13622 
13623   case X86::BI__builtin_ia32_vpmultishiftqb128:
13624   case X86::BI__builtin_ia32_vpmultishiftqb256:
13625   case X86::BI__builtin_ia32_vpmultishiftqb512: {
13626     Intrinsic::ID ID;
13627     switch (BuiltinID) {
13628     default: llvm_unreachable("Unsupported intrinsic!");
13629     case X86::BI__builtin_ia32_vpmultishiftqb128:
13630       ID = Intrinsic::x86_avx512_pmultishift_qb_128;
13631       break;
13632     case X86::BI__builtin_ia32_vpmultishiftqb256:
13633       ID = Intrinsic::x86_avx512_pmultishift_qb_256;
13634       break;
13635     case X86::BI__builtin_ia32_vpmultishiftqb512:
13636       ID = Intrinsic::x86_avx512_pmultishift_qb_512;
13637       break;
13638     }
13639 
13640     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
13641   }
13642 
13643   case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
13644   case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
13645   case X86::BI__builtin_ia32_vpshufbitqmb512_mask: {
13646     unsigned NumElts =
13647         cast<llvm::VectorType>(Ops[0]->getType())->getNumElements();
13648     Value *MaskIn = Ops[2];
13649     Ops.erase(&Ops[2]);
13650 
13651     Intrinsic::ID ID;
13652     switch (BuiltinID) {
13653     default: llvm_unreachable("Unsupported intrinsic!");
13654     case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
13655       ID = Intrinsic::x86_avx512_vpshufbitqmb_128;
13656       break;
13657     case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
13658       ID = Intrinsic::x86_avx512_vpshufbitqmb_256;
13659       break;
13660     case X86::BI__builtin_ia32_vpshufbitqmb512_mask:
13661       ID = Intrinsic::x86_avx512_vpshufbitqmb_512;
13662       break;
13663     }
13664 
13665     Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
13666     return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn);
13667   }
13668 
13669   // packed comparison intrinsics
13670   case X86::BI__builtin_ia32_cmpeqps:
13671   case X86::BI__builtin_ia32_cmpeqpd:
13672     return getVectorFCmpIR(CmpInst::FCMP_OEQ, /*IsSignaling*/false);
13673   case X86::BI__builtin_ia32_cmpltps:
13674   case X86::BI__builtin_ia32_cmpltpd:
13675     return getVectorFCmpIR(CmpInst::FCMP_OLT, /*IsSignaling*/true);
13676   case X86::BI__builtin_ia32_cmpleps:
13677   case X86::BI__builtin_ia32_cmplepd:
13678     return getVectorFCmpIR(CmpInst::FCMP_OLE, /*IsSignaling*/true);
13679   case X86::BI__builtin_ia32_cmpunordps:
13680   case X86::BI__builtin_ia32_cmpunordpd:
13681     return getVectorFCmpIR(CmpInst::FCMP_UNO, /*IsSignaling*/false);
13682   case X86::BI__builtin_ia32_cmpneqps:
13683   case X86::BI__builtin_ia32_cmpneqpd:
13684     return getVectorFCmpIR(CmpInst::FCMP_UNE, /*IsSignaling*/false);
13685   case X86::BI__builtin_ia32_cmpnltps:
13686   case X86::BI__builtin_ia32_cmpnltpd:
13687     return getVectorFCmpIR(CmpInst::FCMP_UGE, /*IsSignaling*/true);
13688   case X86::BI__builtin_ia32_cmpnleps:
13689   case X86::BI__builtin_ia32_cmpnlepd:
13690     return getVectorFCmpIR(CmpInst::FCMP_UGT, /*IsSignaling*/true);
13691   case X86::BI__builtin_ia32_cmpordps:
13692   case X86::BI__builtin_ia32_cmpordpd:
13693     return getVectorFCmpIR(CmpInst::FCMP_ORD, /*IsSignaling*/false);
13694   case X86::BI__builtin_ia32_cmpps:
13695   case X86::BI__builtin_ia32_cmpps256:
13696   case X86::BI__builtin_ia32_cmppd:
13697   case X86::BI__builtin_ia32_cmppd256:
13698   case X86::BI__builtin_ia32_cmpps128_mask:
13699   case X86::BI__builtin_ia32_cmpps256_mask:
13700   case X86::BI__builtin_ia32_cmpps512_mask:
13701   case X86::BI__builtin_ia32_cmppd128_mask:
13702   case X86::BI__builtin_ia32_cmppd256_mask:
13703   case X86::BI__builtin_ia32_cmppd512_mask: {
13704     // Lowering vector comparisons to fcmp instructions, while
13705     // ignoring signalling behaviour requested
13706     // ignoring rounding mode requested
13707     // This is is only possible as long as FENV_ACCESS is not implemented.
13708     // See also: https://reviews.llvm.org/D45616
13709 
13710     // The third argument is the comparison condition, and integer in the
13711     // range [0, 31]
13712     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f;
13713 
13714     // Lowering to IR fcmp instruction.
13715     // Ignoring requested signaling behaviour,
13716     // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT.
13717     FCmpInst::Predicate Pred;
13718     bool IsSignaling;
13719     // Predicates for 16-31 repeat the 0-15 predicates. Only the signalling
13720     // behavior is inverted. We'll handle that after the switch.
13721     switch (CC & 0xf) {
13722     case 0x00: Pred = FCmpInst::FCMP_OEQ;   IsSignaling = false; break;
13723     case 0x01: Pred = FCmpInst::FCMP_OLT;   IsSignaling = true;  break;
13724     case 0x02: Pred = FCmpInst::FCMP_OLE;   IsSignaling = true;  break;
13725     case 0x03: Pred = FCmpInst::FCMP_UNO;   IsSignaling = false; break;
13726     case 0x04: Pred = FCmpInst::FCMP_UNE;   IsSignaling = false; break;
13727     case 0x05: Pred = FCmpInst::FCMP_UGE;   IsSignaling = true;  break;
13728     case 0x06: Pred = FCmpInst::FCMP_UGT;   IsSignaling = true;  break;
13729     case 0x07: Pred = FCmpInst::FCMP_ORD;   IsSignaling = false; break;
13730     case 0x08: Pred = FCmpInst::FCMP_UEQ;   IsSignaling = false; break;
13731     case 0x09: Pred = FCmpInst::FCMP_ULT;   IsSignaling = true;  break;
13732     case 0x0a: Pred = FCmpInst::FCMP_ULE;   IsSignaling = true;  break;
13733     case 0x0b: Pred = FCmpInst::FCMP_FALSE; IsSignaling = false; break;
13734     case 0x0c: Pred = FCmpInst::FCMP_ONE;   IsSignaling = false; break;
13735     case 0x0d: Pred = FCmpInst::FCMP_OGE;   IsSignaling = true;  break;
13736     case 0x0e: Pred = FCmpInst::FCMP_OGT;   IsSignaling = true;  break;
13737     case 0x0f: Pred = FCmpInst::FCMP_TRUE;  IsSignaling = false; break;
13738     default: llvm_unreachable("Unhandled CC");
13739     }
13740 
13741     // Invert the signalling behavior for 16-31.
13742     if (CC & 0x10)
13743       IsSignaling = !IsSignaling;
13744 
13745     // If the predicate is true or false and we're using constrained intrinsics,
13746     // we don't have a compare intrinsic we can use. Just use the legacy X86
13747     // specific intrinsic.
13748     if ((Pred == FCmpInst::FCMP_TRUE || Pred == FCmpInst::FCMP_FALSE) &&
13749         Builder.getIsFPConstrained()) {
13750 
13751       Intrinsic::ID IID;
13752       switch (BuiltinID) {
13753       default: llvm_unreachable("Unexpected builtin");
13754       case X86::BI__builtin_ia32_cmpps:
13755         IID = Intrinsic::x86_sse_cmp_ps;
13756         break;
13757       case X86::BI__builtin_ia32_cmpps256:
13758         IID = Intrinsic::x86_avx_cmp_ps_256;
13759         break;
13760       case X86::BI__builtin_ia32_cmppd:
13761         IID = Intrinsic::x86_sse2_cmp_pd;
13762         break;
13763       case X86::BI__builtin_ia32_cmppd256:
13764         IID = Intrinsic::x86_avx_cmp_pd_256;
13765         break;
13766       case X86::BI__builtin_ia32_cmpps512_mask:
13767         IID = Intrinsic::x86_avx512_cmp_ps_512;
13768         break;
13769       case X86::BI__builtin_ia32_cmppd512_mask:
13770         IID = Intrinsic::x86_avx512_cmp_pd_512;
13771         break;
13772       case X86::BI__builtin_ia32_cmpps128_mask:
13773         IID = Intrinsic::x86_avx512_cmp_ps_128;
13774         break;
13775       case X86::BI__builtin_ia32_cmpps256_mask:
13776         IID = Intrinsic::x86_avx512_cmp_ps_256;
13777         break;
13778       case X86::BI__builtin_ia32_cmppd128_mask:
13779         IID = Intrinsic::x86_avx512_cmp_pd_128;
13780         break;
13781       case X86::BI__builtin_ia32_cmppd256_mask:
13782         IID = Intrinsic::x86_avx512_cmp_pd_256;
13783         break;
13784       }
13785 
13786       Function *Intr = CGM.getIntrinsic(IID);
13787       if (cast<llvm::VectorType>(Intr->getReturnType())
13788               ->getElementType()
13789               ->isIntegerTy(1)) {
13790         unsigned NumElts =
13791             cast<llvm::VectorType>(Ops[0]->getType())->getNumElements();
13792         Value *MaskIn = Ops[3];
13793         Ops.erase(&Ops[3]);
13794 
13795         Value *Cmp = Builder.CreateCall(Intr, Ops);
13796         return EmitX86MaskedCompareResult(*this, Cmp, NumElts, MaskIn);
13797       }
13798 
13799       return Builder.CreateCall(Intr, Ops);
13800     }
13801 
13802     // Builtins without the _mask suffix return a vector of integers
13803     // of the same width as the input vectors
13804     switch (BuiltinID) {
13805     case X86::BI__builtin_ia32_cmpps512_mask:
13806     case X86::BI__builtin_ia32_cmppd512_mask:
13807     case X86::BI__builtin_ia32_cmpps128_mask:
13808     case X86::BI__builtin_ia32_cmpps256_mask:
13809     case X86::BI__builtin_ia32_cmppd128_mask:
13810     case X86::BI__builtin_ia32_cmppd256_mask: {
13811       // FIXME: Support SAE.
13812       unsigned NumElts =
13813           cast<llvm::VectorType>(Ops[0]->getType())->getNumElements();
13814       Value *Cmp;
13815       if (IsSignaling)
13816         Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
13817       else
13818         Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
13819       return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]);
13820     }
13821     default:
13822       return getVectorFCmpIR(Pred, IsSignaling);
13823     }
13824   }
13825 
13826   // SSE scalar comparison intrinsics
13827   case X86::BI__builtin_ia32_cmpeqss:
13828     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
13829   case X86::BI__builtin_ia32_cmpltss:
13830     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
13831   case X86::BI__builtin_ia32_cmpless:
13832     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
13833   case X86::BI__builtin_ia32_cmpunordss:
13834     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
13835   case X86::BI__builtin_ia32_cmpneqss:
13836     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
13837   case X86::BI__builtin_ia32_cmpnltss:
13838     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
13839   case X86::BI__builtin_ia32_cmpnless:
13840     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
13841   case X86::BI__builtin_ia32_cmpordss:
13842     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
13843   case X86::BI__builtin_ia32_cmpeqsd:
13844     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
13845   case X86::BI__builtin_ia32_cmpltsd:
13846     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
13847   case X86::BI__builtin_ia32_cmplesd:
13848     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
13849   case X86::BI__builtin_ia32_cmpunordsd:
13850     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
13851   case X86::BI__builtin_ia32_cmpneqsd:
13852     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
13853   case X86::BI__builtin_ia32_cmpnltsd:
13854     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
13855   case X86::BI__builtin_ia32_cmpnlesd:
13856     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
13857   case X86::BI__builtin_ia32_cmpordsd:
13858     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
13859 
13860   // f16c half2float intrinsics
13861   case X86::BI__builtin_ia32_vcvtph2ps:
13862   case X86::BI__builtin_ia32_vcvtph2ps256:
13863   case X86::BI__builtin_ia32_vcvtph2ps_mask:
13864   case X86::BI__builtin_ia32_vcvtph2ps256_mask:
13865   case X86::BI__builtin_ia32_vcvtph2ps512_mask:
13866     return EmitX86CvtF16ToFloatExpr(*this, Ops, ConvertType(E->getType()));
13867 
13868 // AVX512 bf16 intrinsics
13869   case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: {
13870     Ops[2] = getMaskVecValue(
13871         *this, Ops[2],
13872         cast<llvm::VectorType>(Ops[0]->getType())->getNumElements());
13873     Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128;
13874     return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
13875   }
13876   case X86::BI__builtin_ia32_cvtsbf162ss_32:
13877     return EmitX86CvtBF16ToFloatExpr(*this, E, Ops);
13878 
13879   case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
13880   case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: {
13881     Intrinsic::ID IID;
13882     switch (BuiltinID) {
13883     default: llvm_unreachable("Unsupported intrinsic!");
13884     case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
13885       IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256;
13886       break;
13887     case X86::BI__builtin_ia32_cvtneps2bf16_512_mask:
13888       IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512;
13889       break;
13890     }
13891     Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]);
13892     return EmitX86Select(*this, Ops[2], Res, Ops[1]);
13893   }
13894 
13895   case X86::BI__emul:
13896   case X86::BI__emulu: {
13897     llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
13898     bool isSigned = (BuiltinID == X86::BI__emul);
13899     Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
13900     Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
13901     return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
13902   }
13903   case X86::BI__mulh:
13904   case X86::BI__umulh:
13905   case X86::BI_mul128:
13906   case X86::BI_umul128: {
13907     llvm::Type *ResType = ConvertType(E->getType());
13908     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
13909 
13910     bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
13911     Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
13912     Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
13913 
13914     Value *MulResult, *HigherBits;
13915     if (IsSigned) {
13916       MulResult = Builder.CreateNSWMul(LHS, RHS);
13917       HigherBits = Builder.CreateAShr(MulResult, 64);
13918     } else {
13919       MulResult = Builder.CreateNUWMul(LHS, RHS);
13920       HigherBits = Builder.CreateLShr(MulResult, 64);
13921     }
13922     HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
13923 
13924     if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
13925       return HigherBits;
13926 
13927     Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
13928     Builder.CreateStore(HigherBits, HighBitsAddress);
13929     return Builder.CreateIntCast(MulResult, ResType, IsSigned);
13930   }
13931 
13932   case X86::BI__faststorefence: {
13933     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
13934                                llvm::SyncScope::System);
13935   }
13936   case X86::BI__shiftleft128:
13937   case X86::BI__shiftright128: {
13938     // FIXME: Once fshl/fshr no longer add an unneeded and and cmov, do this:
13939     // llvm::Function *F = CGM.getIntrinsic(
13940     //   BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr,
13941     //   Int64Ty);
13942     // Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
13943     // return Builder.CreateCall(F, Ops);
13944     llvm::Type *Int128Ty = Builder.getInt128Ty();
13945     Value *HighPart128 =
13946         Builder.CreateShl(Builder.CreateZExt(Ops[1], Int128Ty), 64);
13947     Value *LowPart128 = Builder.CreateZExt(Ops[0], Int128Ty);
13948     Value *Val = Builder.CreateOr(HighPart128, LowPart128);
13949     Value *Amt = Builder.CreateAnd(Builder.CreateZExt(Ops[2], Int128Ty),
13950                                    llvm::ConstantInt::get(Int128Ty, 0x3f));
13951     Value *Res;
13952     if (BuiltinID == X86::BI__shiftleft128)
13953       Res = Builder.CreateLShr(Builder.CreateShl(Val, Amt), 64);
13954     else
13955       Res = Builder.CreateLShr(Val, Amt);
13956     return Builder.CreateTrunc(Res, Int64Ty);
13957   }
13958   case X86::BI_ReadWriteBarrier:
13959   case X86::BI_ReadBarrier:
13960   case X86::BI_WriteBarrier: {
13961     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
13962                                llvm::SyncScope::SingleThread);
13963   }
13964   case X86::BI_BitScanForward:
13965   case X86::BI_BitScanForward64:
13966     return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
13967   case X86::BI_BitScanReverse:
13968   case X86::BI_BitScanReverse64:
13969     return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
13970 
13971   case X86::BI_InterlockedAnd64:
13972     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
13973   case X86::BI_InterlockedExchange64:
13974     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
13975   case X86::BI_InterlockedExchangeAdd64:
13976     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
13977   case X86::BI_InterlockedExchangeSub64:
13978     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
13979   case X86::BI_InterlockedOr64:
13980     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
13981   case X86::BI_InterlockedXor64:
13982     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
13983   case X86::BI_InterlockedDecrement64:
13984     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
13985   case X86::BI_InterlockedIncrement64:
13986     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
13987   case X86::BI_InterlockedCompareExchange128: {
13988     // InterlockedCompareExchange128 doesn't directly refer to 128bit ints,
13989     // instead it takes pointers to 64bit ints for Destination and
13990     // ComparandResult, and exchange is taken as two 64bit ints (high & low).
13991     // The previous value is written to ComparandResult, and success is
13992     // returned.
13993 
13994     llvm::Type *Int128Ty = Builder.getInt128Ty();
13995     llvm::Type *Int128PtrTy = Int128Ty->getPointerTo();
13996 
13997     Value *Destination =
13998         Builder.CreateBitCast(Ops[0], Int128PtrTy);
13999     Value *ExchangeHigh128 = Builder.CreateZExt(Ops[1], Int128Ty);
14000     Value *ExchangeLow128 = Builder.CreateZExt(Ops[2], Int128Ty);
14001     Address ComparandResult(Builder.CreateBitCast(Ops[3], Int128PtrTy),
14002                             getContext().toCharUnitsFromBits(128));
14003 
14004     Value *Exchange = Builder.CreateOr(
14005         Builder.CreateShl(ExchangeHigh128, 64, "", false, false),
14006         ExchangeLow128);
14007 
14008     Value *Comparand = Builder.CreateLoad(ComparandResult);
14009 
14010     AtomicCmpXchgInst *CXI =
14011         Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
14012                                     AtomicOrdering::SequentiallyConsistent,
14013                                     AtomicOrdering::SequentiallyConsistent);
14014     CXI->setVolatile(true);
14015 
14016     // Write the result back to the inout pointer.
14017     Builder.CreateStore(Builder.CreateExtractValue(CXI, 0), ComparandResult);
14018 
14019     // Get the success boolean and zero extend it to i8.
14020     Value *Success = Builder.CreateExtractValue(CXI, 1);
14021     return Builder.CreateZExt(Success, ConvertType(E->getType()));
14022   }
14023 
14024   case X86::BI_AddressOfReturnAddress: {
14025     Function *F =
14026         CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
14027     return Builder.CreateCall(F);
14028   }
14029   case X86::BI__stosb: {
14030     // We treat __stosb as a volatile memset - it may not generate "rep stosb"
14031     // instruction, but it will create a memset that won't be optimized away.
14032     return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], Align(1), true);
14033   }
14034   case X86::BI__ud2:
14035     // llvm.trap makes a ud2a instruction on x86.
14036     return EmitTrapCall(Intrinsic::trap);
14037   case X86::BI__int2c: {
14038     // This syscall signals a driver assertion failure in x86 NT kernels.
14039     llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
14040     llvm::InlineAsm *IA =
14041         llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true);
14042     llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
14043         getLLVMContext(), llvm::AttributeList::FunctionIndex,
14044         llvm::Attribute::NoReturn);
14045     llvm::CallInst *CI = Builder.CreateCall(IA);
14046     CI->setAttributes(NoReturnAttr);
14047     return CI;
14048   }
14049   case X86::BI__readfsbyte:
14050   case X86::BI__readfsword:
14051   case X86::BI__readfsdword:
14052   case X86::BI__readfsqword: {
14053     llvm::Type *IntTy = ConvertType(E->getType());
14054     Value *Ptr =
14055         Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257));
14056     LoadInst *Load = Builder.CreateAlignedLoad(
14057         IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
14058     Load->setVolatile(true);
14059     return Load;
14060   }
14061   case X86::BI__readgsbyte:
14062   case X86::BI__readgsword:
14063   case X86::BI__readgsdword:
14064   case X86::BI__readgsqword: {
14065     llvm::Type *IntTy = ConvertType(E->getType());
14066     Value *Ptr =
14067         Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256));
14068     LoadInst *Load = Builder.CreateAlignedLoad(
14069         IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
14070     Load->setVolatile(true);
14071     return Load;
14072   }
14073   case X86::BI__builtin_ia32_paddsb512:
14074   case X86::BI__builtin_ia32_paddsw512:
14075   case X86::BI__builtin_ia32_paddsb256:
14076   case X86::BI__builtin_ia32_paddsw256:
14077   case X86::BI__builtin_ia32_paddsb128:
14078   case X86::BI__builtin_ia32_paddsw128:
14079     return EmitX86AddSubSatExpr(*this, Ops, true, true);
14080   case X86::BI__builtin_ia32_paddusb512:
14081   case X86::BI__builtin_ia32_paddusw512:
14082   case X86::BI__builtin_ia32_paddusb256:
14083   case X86::BI__builtin_ia32_paddusw256:
14084   case X86::BI__builtin_ia32_paddusb128:
14085   case X86::BI__builtin_ia32_paddusw128:
14086     return EmitX86AddSubSatExpr(*this, Ops, false, true);
14087   case X86::BI__builtin_ia32_psubsb512:
14088   case X86::BI__builtin_ia32_psubsw512:
14089   case X86::BI__builtin_ia32_psubsb256:
14090   case X86::BI__builtin_ia32_psubsw256:
14091   case X86::BI__builtin_ia32_psubsb128:
14092   case X86::BI__builtin_ia32_psubsw128:
14093     return EmitX86AddSubSatExpr(*this, Ops, true, false);
14094   case X86::BI__builtin_ia32_psubusb512:
14095   case X86::BI__builtin_ia32_psubusw512:
14096   case X86::BI__builtin_ia32_psubusb256:
14097   case X86::BI__builtin_ia32_psubusw256:
14098   case X86::BI__builtin_ia32_psubusb128:
14099   case X86::BI__builtin_ia32_psubusw128:
14100     return EmitX86AddSubSatExpr(*this, Ops, false, false);
14101   }
14102 }
14103 
14104 Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
14105                                            const CallExpr *E) {
14106   SmallVector<Value*, 4> Ops;
14107 
14108   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
14109     Ops.push_back(EmitScalarExpr(E->getArg(i)));
14110 
14111   Intrinsic::ID ID = Intrinsic::not_intrinsic;
14112 
14113   switch (BuiltinID) {
14114   default: return nullptr;
14115 
14116   // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
14117   // call __builtin_readcyclecounter.
14118   case PPC::BI__builtin_ppc_get_timebase:
14119     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
14120 
14121   // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
14122   case PPC::BI__builtin_altivec_lvx:
14123   case PPC::BI__builtin_altivec_lvxl:
14124   case PPC::BI__builtin_altivec_lvebx:
14125   case PPC::BI__builtin_altivec_lvehx:
14126   case PPC::BI__builtin_altivec_lvewx:
14127   case PPC::BI__builtin_altivec_lvsl:
14128   case PPC::BI__builtin_altivec_lvsr:
14129   case PPC::BI__builtin_vsx_lxvd2x:
14130   case PPC::BI__builtin_vsx_lxvw4x:
14131   case PPC::BI__builtin_vsx_lxvd2x_be:
14132   case PPC::BI__builtin_vsx_lxvw4x_be:
14133   case PPC::BI__builtin_vsx_lxvl:
14134   case PPC::BI__builtin_vsx_lxvll:
14135   {
14136     if(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
14137        BuiltinID == PPC::BI__builtin_vsx_lxvll){
14138       Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
14139     }else {
14140       Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
14141       Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
14142       Ops.pop_back();
14143     }
14144 
14145     switch (BuiltinID) {
14146     default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
14147     case PPC::BI__builtin_altivec_lvx:
14148       ID = Intrinsic::ppc_altivec_lvx;
14149       break;
14150     case PPC::BI__builtin_altivec_lvxl:
14151       ID = Intrinsic::ppc_altivec_lvxl;
14152       break;
14153     case PPC::BI__builtin_altivec_lvebx:
14154       ID = Intrinsic::ppc_altivec_lvebx;
14155       break;
14156     case PPC::BI__builtin_altivec_lvehx:
14157       ID = Intrinsic::ppc_altivec_lvehx;
14158       break;
14159     case PPC::BI__builtin_altivec_lvewx:
14160       ID = Intrinsic::ppc_altivec_lvewx;
14161       break;
14162     case PPC::BI__builtin_altivec_lvsl:
14163       ID = Intrinsic::ppc_altivec_lvsl;
14164       break;
14165     case PPC::BI__builtin_altivec_lvsr:
14166       ID = Intrinsic::ppc_altivec_lvsr;
14167       break;
14168     case PPC::BI__builtin_vsx_lxvd2x:
14169       ID = Intrinsic::ppc_vsx_lxvd2x;
14170       break;
14171     case PPC::BI__builtin_vsx_lxvw4x:
14172       ID = Intrinsic::ppc_vsx_lxvw4x;
14173       break;
14174     case PPC::BI__builtin_vsx_lxvd2x_be:
14175       ID = Intrinsic::ppc_vsx_lxvd2x_be;
14176       break;
14177     case PPC::BI__builtin_vsx_lxvw4x_be:
14178       ID = Intrinsic::ppc_vsx_lxvw4x_be;
14179       break;
14180     case PPC::BI__builtin_vsx_lxvl:
14181       ID = Intrinsic::ppc_vsx_lxvl;
14182       break;
14183     case PPC::BI__builtin_vsx_lxvll:
14184       ID = Intrinsic::ppc_vsx_lxvll;
14185       break;
14186     }
14187     llvm::Function *F = CGM.getIntrinsic(ID);
14188     return Builder.CreateCall(F, Ops, "");
14189   }
14190 
14191   // vec_st, vec_xst_be
14192   case PPC::BI__builtin_altivec_stvx:
14193   case PPC::BI__builtin_altivec_stvxl:
14194   case PPC::BI__builtin_altivec_stvebx:
14195   case PPC::BI__builtin_altivec_stvehx:
14196   case PPC::BI__builtin_altivec_stvewx:
14197   case PPC::BI__builtin_vsx_stxvd2x:
14198   case PPC::BI__builtin_vsx_stxvw4x:
14199   case PPC::BI__builtin_vsx_stxvd2x_be:
14200   case PPC::BI__builtin_vsx_stxvw4x_be:
14201   case PPC::BI__builtin_vsx_stxvl:
14202   case PPC::BI__builtin_vsx_stxvll:
14203   {
14204     if(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
14205       BuiltinID == PPC::BI__builtin_vsx_stxvll ){
14206       Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
14207     }else {
14208       Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
14209       Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
14210       Ops.pop_back();
14211     }
14212 
14213     switch (BuiltinID) {
14214     default: llvm_unreachable("Unsupported st intrinsic!");
14215     case PPC::BI__builtin_altivec_stvx:
14216       ID = Intrinsic::ppc_altivec_stvx;
14217       break;
14218     case PPC::BI__builtin_altivec_stvxl:
14219       ID = Intrinsic::ppc_altivec_stvxl;
14220       break;
14221     case PPC::BI__builtin_altivec_stvebx:
14222       ID = Intrinsic::ppc_altivec_stvebx;
14223       break;
14224     case PPC::BI__builtin_altivec_stvehx:
14225       ID = Intrinsic::ppc_altivec_stvehx;
14226       break;
14227     case PPC::BI__builtin_altivec_stvewx:
14228       ID = Intrinsic::ppc_altivec_stvewx;
14229       break;
14230     case PPC::BI__builtin_vsx_stxvd2x:
14231       ID = Intrinsic::ppc_vsx_stxvd2x;
14232       break;
14233     case PPC::BI__builtin_vsx_stxvw4x:
14234       ID = Intrinsic::ppc_vsx_stxvw4x;
14235       break;
14236     case PPC::BI__builtin_vsx_stxvd2x_be:
14237       ID = Intrinsic::ppc_vsx_stxvd2x_be;
14238       break;
14239     case PPC::BI__builtin_vsx_stxvw4x_be:
14240       ID = Intrinsic::ppc_vsx_stxvw4x_be;
14241       break;
14242     case PPC::BI__builtin_vsx_stxvl:
14243       ID = Intrinsic::ppc_vsx_stxvl;
14244       break;
14245     case PPC::BI__builtin_vsx_stxvll:
14246       ID = Intrinsic::ppc_vsx_stxvll;
14247       break;
14248     }
14249     llvm::Function *F = CGM.getIntrinsic(ID);
14250     return Builder.CreateCall(F, Ops, "");
14251   }
14252   // Square root
14253   case PPC::BI__builtin_vsx_xvsqrtsp:
14254   case PPC::BI__builtin_vsx_xvsqrtdp: {
14255     llvm::Type *ResultType = ConvertType(E->getType());
14256     Value *X = EmitScalarExpr(E->getArg(0));
14257     if (Builder.getIsFPConstrained()) {
14258       llvm::Function *F = CGM.getIntrinsic(
14259           Intrinsic::experimental_constrained_sqrt, ResultType);
14260       return Builder.CreateConstrainedFPCall(F, X);
14261     } else {
14262       llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
14263       return Builder.CreateCall(F, X);
14264     }
14265   }
14266   // Count leading zeros
14267   case PPC::BI__builtin_altivec_vclzb:
14268   case PPC::BI__builtin_altivec_vclzh:
14269   case PPC::BI__builtin_altivec_vclzw:
14270   case PPC::BI__builtin_altivec_vclzd: {
14271     llvm::Type *ResultType = ConvertType(E->getType());
14272     Value *X = EmitScalarExpr(E->getArg(0));
14273     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
14274     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
14275     return Builder.CreateCall(F, {X, Undef});
14276   }
14277   case PPC::BI__builtin_altivec_vctzb:
14278   case PPC::BI__builtin_altivec_vctzh:
14279   case PPC::BI__builtin_altivec_vctzw:
14280   case PPC::BI__builtin_altivec_vctzd: {
14281     llvm::Type *ResultType = ConvertType(E->getType());
14282     Value *X = EmitScalarExpr(E->getArg(0));
14283     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
14284     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
14285     return Builder.CreateCall(F, {X, Undef});
14286   }
14287   case PPC::BI__builtin_altivec_vpopcntb:
14288   case PPC::BI__builtin_altivec_vpopcnth:
14289   case PPC::BI__builtin_altivec_vpopcntw:
14290   case PPC::BI__builtin_altivec_vpopcntd: {
14291     llvm::Type *ResultType = ConvertType(E->getType());
14292     Value *X = EmitScalarExpr(E->getArg(0));
14293     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
14294     return Builder.CreateCall(F, X);
14295   }
14296   // Copy sign
14297   case PPC::BI__builtin_vsx_xvcpsgnsp:
14298   case PPC::BI__builtin_vsx_xvcpsgndp: {
14299     llvm::Type *ResultType = ConvertType(E->getType());
14300     Value *X = EmitScalarExpr(E->getArg(0));
14301     Value *Y = EmitScalarExpr(E->getArg(1));
14302     ID = Intrinsic::copysign;
14303     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
14304     return Builder.CreateCall(F, {X, Y});
14305   }
14306   // Rounding/truncation
14307   case PPC::BI__builtin_vsx_xvrspip:
14308   case PPC::BI__builtin_vsx_xvrdpip:
14309   case PPC::BI__builtin_vsx_xvrdpim:
14310   case PPC::BI__builtin_vsx_xvrspim:
14311   case PPC::BI__builtin_vsx_xvrdpi:
14312   case PPC::BI__builtin_vsx_xvrspi:
14313   case PPC::BI__builtin_vsx_xvrdpic:
14314   case PPC::BI__builtin_vsx_xvrspic:
14315   case PPC::BI__builtin_vsx_xvrdpiz:
14316   case PPC::BI__builtin_vsx_xvrspiz: {
14317     llvm::Type *ResultType = ConvertType(E->getType());
14318     Value *X = EmitScalarExpr(E->getArg(0));
14319     if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
14320         BuiltinID == PPC::BI__builtin_vsx_xvrspim)
14321       ID = Builder.getIsFPConstrained()
14322                ? Intrinsic::experimental_constrained_floor
14323                : Intrinsic::floor;
14324     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
14325              BuiltinID == PPC::BI__builtin_vsx_xvrspi)
14326       ID = Builder.getIsFPConstrained()
14327                ? Intrinsic::experimental_constrained_round
14328                : Intrinsic::round;
14329     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
14330              BuiltinID == PPC::BI__builtin_vsx_xvrspic)
14331       ID = Builder.getIsFPConstrained()
14332                ? Intrinsic::experimental_constrained_nearbyint
14333                : Intrinsic::nearbyint;
14334     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
14335              BuiltinID == PPC::BI__builtin_vsx_xvrspip)
14336       ID = Builder.getIsFPConstrained()
14337                ? Intrinsic::experimental_constrained_ceil
14338                : Intrinsic::ceil;
14339     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
14340              BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
14341       ID = Builder.getIsFPConstrained()
14342                ? Intrinsic::experimental_constrained_trunc
14343                : Intrinsic::trunc;
14344     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
14345     return Builder.getIsFPConstrained() ? Builder.CreateConstrainedFPCall(F, X)
14346                                         : Builder.CreateCall(F, X);
14347   }
14348 
14349   // Absolute value
14350   case PPC::BI__builtin_vsx_xvabsdp:
14351   case PPC::BI__builtin_vsx_xvabssp: {
14352     llvm::Type *ResultType = ConvertType(E->getType());
14353     Value *X = EmitScalarExpr(E->getArg(0));
14354     llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
14355     return Builder.CreateCall(F, X);
14356   }
14357 
14358   // FMA variations
14359   case PPC::BI__builtin_vsx_xvmaddadp:
14360   case PPC::BI__builtin_vsx_xvmaddasp:
14361   case PPC::BI__builtin_vsx_xvnmaddadp:
14362   case PPC::BI__builtin_vsx_xvnmaddasp:
14363   case PPC::BI__builtin_vsx_xvmsubadp:
14364   case PPC::BI__builtin_vsx_xvmsubasp:
14365   case PPC::BI__builtin_vsx_xvnmsubadp:
14366   case PPC::BI__builtin_vsx_xvnmsubasp: {
14367     llvm::Type *ResultType = ConvertType(E->getType());
14368     Value *X = EmitScalarExpr(E->getArg(0));
14369     Value *Y = EmitScalarExpr(E->getArg(1));
14370     Value *Z = EmitScalarExpr(E->getArg(2));
14371     llvm::Function *F;
14372     if (Builder.getIsFPConstrained())
14373       F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
14374     else
14375       F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
14376     switch (BuiltinID) {
14377       case PPC::BI__builtin_vsx_xvmaddadp:
14378       case PPC::BI__builtin_vsx_xvmaddasp:
14379         if (Builder.getIsFPConstrained())
14380           return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
14381         else
14382           return Builder.CreateCall(F, {X, Y, Z});
14383       case PPC::BI__builtin_vsx_xvnmaddadp:
14384       case PPC::BI__builtin_vsx_xvnmaddasp:
14385         if (Builder.getIsFPConstrained())
14386           return Builder.CreateFNeg(
14387               Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg");
14388         else
14389           return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
14390       case PPC::BI__builtin_vsx_xvmsubadp:
14391       case PPC::BI__builtin_vsx_xvmsubasp:
14392         if (Builder.getIsFPConstrained())
14393           return Builder.CreateConstrainedFPCall(
14394               F, {X, Y, Builder.CreateFNeg(Z, "neg")});
14395         else
14396           return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
14397       case PPC::BI__builtin_vsx_xvnmsubadp:
14398       case PPC::BI__builtin_vsx_xvnmsubasp:
14399         if (Builder.getIsFPConstrained())
14400           return Builder.CreateFNeg(
14401               Builder.CreateConstrainedFPCall(
14402                   F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
14403               "neg");
14404         else
14405           return Builder.CreateFNeg(
14406               Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
14407               "neg");
14408     }
14409     llvm_unreachable("Unknown FMA operation");
14410     return nullptr; // Suppress no-return warning
14411   }
14412 
14413   case PPC::BI__builtin_vsx_insertword: {
14414     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
14415 
14416     // Third argument is a compile time constant int. It must be clamped to
14417     // to the range [0, 12].
14418     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
14419     assert(ArgCI &&
14420            "Third arg to xxinsertw intrinsic must be constant integer");
14421     const int64_t MaxIndex = 12;
14422     int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
14423 
14424     // The builtin semantics don't exactly match the xxinsertw instructions
14425     // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
14426     // word from the first argument, and inserts it in the second argument. The
14427     // instruction extracts the word from its second input register and inserts
14428     // it into its first input register, so swap the first and second arguments.
14429     std::swap(Ops[0], Ops[1]);
14430 
14431     // Need to cast the second argument from a vector of unsigned int to a
14432     // vector of long long.
14433     Ops[1] =
14434         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2));
14435 
14436     if (getTarget().isLittleEndian()) {
14437       // Reverse the double words in the vector we will extract from.
14438       Ops[0] =
14439           Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
14440       Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ArrayRef<int>{1, 0});
14441 
14442       // Reverse the index.
14443       Index = MaxIndex - Index;
14444     }
14445 
14446     // Intrinsic expects the first arg to be a vector of int.
14447     Ops[0] =
14448         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
14449     Ops[2] = ConstantInt::getSigned(Int32Ty, Index);
14450     return Builder.CreateCall(F, Ops);
14451   }
14452 
14453   case PPC::BI__builtin_vsx_extractuword: {
14454     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
14455 
14456     // Intrinsic expects the first argument to be a vector of doublewords.
14457     Ops[0] =
14458         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
14459 
14460     // The second argument is a compile time constant int that needs to
14461     // be clamped to the range [0, 12].
14462     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[1]);
14463     assert(ArgCI &&
14464            "Second Arg to xxextractuw intrinsic must be a constant integer!");
14465     const int64_t MaxIndex = 12;
14466     int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
14467 
14468     if (getTarget().isLittleEndian()) {
14469       // Reverse the index.
14470       Index = MaxIndex - Index;
14471       Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
14472 
14473       // Emit the call, then reverse the double words of the results vector.
14474       Value *Call = Builder.CreateCall(F, Ops);
14475 
14476       Value *ShuffleCall =
14477           Builder.CreateShuffleVector(Call, Call, ArrayRef<int>{1, 0});
14478       return ShuffleCall;
14479     } else {
14480       Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
14481       return Builder.CreateCall(F, Ops);
14482     }
14483   }
14484 
14485   case PPC::BI__builtin_vsx_xxpermdi: {
14486     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
14487     assert(ArgCI && "Third arg must be constant integer!");
14488 
14489     unsigned Index = ArgCI->getZExtValue();
14490     Ops[0] =
14491         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
14492     Ops[1] =
14493         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2));
14494 
14495     // Account for endianness by treating this as just a shuffle. So we use the
14496     // same indices for both LE and BE in order to produce expected results in
14497     // both cases.
14498     int ElemIdx0 = (Index & 2) >> 1;
14499     int ElemIdx1 = 2 + (Index & 1);
14500 
14501     int ShuffleElts[2] = {ElemIdx0, ElemIdx1};
14502     Value *ShuffleCall =
14503         Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts);
14504     QualType BIRetType = E->getType();
14505     auto RetTy = ConvertType(BIRetType);
14506     return Builder.CreateBitCast(ShuffleCall, RetTy);
14507   }
14508 
14509   case PPC::BI__builtin_vsx_xxsldwi: {
14510     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
14511     assert(ArgCI && "Third argument must be a compile time constant");
14512     unsigned Index = ArgCI->getZExtValue() & 0x3;
14513     Ops[0] =
14514         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
14515     Ops[1] =
14516         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int32Ty, 4));
14517 
14518     // Create a shuffle mask
14519     int ElemIdx0;
14520     int ElemIdx1;
14521     int ElemIdx2;
14522     int ElemIdx3;
14523     if (getTarget().isLittleEndian()) {
14524       // Little endian element N comes from element 8+N-Index of the
14525       // concatenated wide vector (of course, using modulo arithmetic on
14526       // the total number of elements).
14527       ElemIdx0 = (8 - Index) % 8;
14528       ElemIdx1 = (9 - Index) % 8;
14529       ElemIdx2 = (10 - Index) % 8;
14530       ElemIdx3 = (11 - Index) % 8;
14531     } else {
14532       // Big endian ElemIdx<N> = Index + N
14533       ElemIdx0 = Index;
14534       ElemIdx1 = Index + 1;
14535       ElemIdx2 = Index + 2;
14536       ElemIdx3 = Index + 3;
14537     }
14538 
14539     int ShuffleElts[4] = {ElemIdx0, ElemIdx1, ElemIdx2, ElemIdx3};
14540     Value *ShuffleCall =
14541         Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts);
14542     QualType BIRetType = E->getType();
14543     auto RetTy = ConvertType(BIRetType);
14544     return Builder.CreateBitCast(ShuffleCall, RetTy);
14545   }
14546 
14547   case PPC::BI__builtin_pack_vector_int128: {
14548     bool isLittleEndian = getTarget().isLittleEndian();
14549     Value *UndefValue =
14550         llvm::UndefValue::get(llvm::FixedVectorType::get(Ops[0]->getType(), 2));
14551     Value *Res = Builder.CreateInsertElement(
14552         UndefValue, Ops[0], (uint64_t)(isLittleEndian ? 1 : 0));
14553     Res = Builder.CreateInsertElement(Res, Ops[1],
14554                                       (uint64_t)(isLittleEndian ? 0 : 1));
14555     return Builder.CreateBitCast(Res, ConvertType(E->getType()));
14556   }
14557 
14558   case PPC::BI__builtin_unpack_vector_int128: {
14559     ConstantInt *Index = cast<ConstantInt>(Ops[1]);
14560     Value *Unpacked = Builder.CreateBitCast(
14561         Ops[0], llvm::FixedVectorType::get(ConvertType(E->getType()), 2));
14562 
14563     if (getTarget().isLittleEndian())
14564       Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue());
14565 
14566     return Builder.CreateExtractElement(Unpacked, Index);
14567   }
14568   }
14569 }
14570 
14571 namespace {
14572 // If \p E is not null pointer, insert address space cast to match return
14573 // type of \p E if necessary.
14574 Value *EmitAMDGPUDispatchPtr(CodeGenFunction &CGF,
14575                              const CallExpr *E = nullptr) {
14576   auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_dispatch_ptr);
14577   auto *Call = CGF.Builder.CreateCall(F);
14578   Call->addAttribute(
14579       AttributeList::ReturnIndex,
14580       Attribute::getWithDereferenceableBytes(Call->getContext(), 64));
14581   Call->addAttribute(AttributeList::ReturnIndex,
14582                      Attribute::getWithAlignment(Call->getContext(), Align(4)));
14583   if (!E)
14584     return Call;
14585   QualType BuiltinRetType = E->getType();
14586   auto *RetTy = cast<llvm::PointerType>(CGF.ConvertType(BuiltinRetType));
14587   if (RetTy == Call->getType())
14588     return Call;
14589   return CGF.Builder.CreateAddrSpaceCast(Call, RetTy);
14590 }
14591 
14592 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
14593 Value *EmitAMDGPUWorkGroupSize(CodeGenFunction &CGF, unsigned Index) {
14594   const unsigned XOffset = 4;
14595   auto *DP = EmitAMDGPUDispatchPtr(CGF);
14596   // Indexing the HSA kernel_dispatch_packet struct.
14597   auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 2);
14598   auto *GEP = CGF.Builder.CreateGEP(DP, Offset);
14599   auto *DstTy =
14600       CGF.Int16Ty->getPointerTo(GEP->getType()->getPointerAddressSpace());
14601   auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy);
14602   auto *LD = CGF.Builder.CreateLoad(Address(Cast, CharUnits::fromQuantity(2)));
14603   llvm::MDBuilder MDHelper(CGF.getLLVMContext());
14604   llvm::MDNode *RNode = MDHelper.createRange(APInt(16, 1),
14605       APInt(16, CGF.getTarget().getMaxOpenCLWorkGroupSize() + 1));
14606   LD->setMetadata(llvm::LLVMContext::MD_range, RNode);
14607   LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
14608       llvm::MDNode::get(CGF.getLLVMContext(), None));
14609   return LD;
14610 }
14611 } // namespace
14612 
14613 // For processing memory ordering and memory scope arguments of various
14614 // amdgcn builtins.
14615 // \p Order takes a C++11 comptabile memory-ordering specifier and converts
14616 // it into LLVM's memory ordering specifier using atomic C ABI, and writes
14617 // to \p AO. \p Scope takes a const char * and converts it into AMDGCN
14618 // specific SyncScopeID and writes it to \p SSID.
14619 bool CodeGenFunction::ProcessOrderScopeAMDGCN(Value *Order, Value *Scope,
14620                                               llvm::AtomicOrdering &AO,
14621                                               llvm::SyncScope::ID &SSID) {
14622   if (isa<llvm::ConstantInt>(Order)) {
14623     int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
14624 
14625     // Map C11/C++11 memory ordering to LLVM memory ordering
14626     switch (static_cast<llvm::AtomicOrderingCABI>(ord)) {
14627     case llvm::AtomicOrderingCABI::acquire:
14628       AO = llvm::AtomicOrdering::Acquire;
14629       break;
14630     case llvm::AtomicOrderingCABI::release:
14631       AO = llvm::AtomicOrdering::Release;
14632       break;
14633     case llvm::AtomicOrderingCABI::acq_rel:
14634       AO = llvm::AtomicOrdering::AcquireRelease;
14635       break;
14636     case llvm::AtomicOrderingCABI::seq_cst:
14637       AO = llvm::AtomicOrdering::SequentiallyConsistent;
14638       break;
14639     case llvm::AtomicOrderingCABI::consume:
14640     case llvm::AtomicOrderingCABI::relaxed:
14641       break;
14642     }
14643 
14644     StringRef scp;
14645     llvm::getConstantStringInfo(Scope, scp);
14646     SSID = getLLVMContext().getOrInsertSyncScopeID(scp);
14647     return true;
14648   }
14649   return false;
14650 }
14651 
14652 Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
14653                                               const CallExpr *E) {
14654   llvm::AtomicOrdering AO = llvm::AtomicOrdering::SequentiallyConsistent;
14655   llvm::SyncScope::ID SSID;
14656   switch (BuiltinID) {
14657   case AMDGPU::BI__builtin_amdgcn_div_scale:
14658   case AMDGPU::BI__builtin_amdgcn_div_scalef: {
14659     // Translate from the intrinsics's struct return to the builtin's out
14660     // argument.
14661 
14662     Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
14663 
14664     llvm::Value *X = EmitScalarExpr(E->getArg(0));
14665     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
14666     llvm::Value *Z = EmitScalarExpr(E->getArg(2));
14667 
14668     llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
14669                                            X->getType());
14670 
14671     llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
14672 
14673     llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
14674     llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
14675 
14676     llvm::Type *RealFlagType
14677       = FlagOutPtr.getPointer()->getType()->getPointerElementType();
14678 
14679     llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
14680     Builder.CreateStore(FlagExt, FlagOutPtr);
14681     return Result;
14682   }
14683   case AMDGPU::BI__builtin_amdgcn_div_fmas:
14684   case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
14685     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
14686     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
14687     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
14688     llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
14689 
14690     llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
14691                                       Src0->getType());
14692     llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
14693     return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
14694   }
14695 
14696   case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
14697     return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle);
14698   case AMDGPU::BI__builtin_amdgcn_mov_dpp8:
14699     return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_mov_dpp8);
14700   case AMDGPU::BI__builtin_amdgcn_mov_dpp:
14701   case AMDGPU::BI__builtin_amdgcn_update_dpp: {
14702     llvm::SmallVector<llvm::Value *, 6> Args;
14703     for (unsigned I = 0; I != E->getNumArgs(); ++I)
14704       Args.push_back(EmitScalarExpr(E->getArg(I)));
14705     assert(Args.size() == 5 || Args.size() == 6);
14706     if (Args.size() == 5)
14707       Args.insert(Args.begin(), llvm::UndefValue::get(Args[0]->getType()));
14708     Function *F =
14709         CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType());
14710     return Builder.CreateCall(F, Args);
14711   }
14712   case AMDGPU::BI__builtin_amdgcn_div_fixup:
14713   case AMDGPU::BI__builtin_amdgcn_div_fixupf:
14714   case AMDGPU::BI__builtin_amdgcn_div_fixuph:
14715     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup);
14716   case AMDGPU::BI__builtin_amdgcn_trig_preop:
14717   case AMDGPU::BI__builtin_amdgcn_trig_preopf:
14718     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
14719   case AMDGPU::BI__builtin_amdgcn_rcp:
14720   case AMDGPU::BI__builtin_amdgcn_rcpf:
14721   case AMDGPU::BI__builtin_amdgcn_rcph:
14722     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp);
14723   case AMDGPU::BI__builtin_amdgcn_sqrt:
14724   case AMDGPU::BI__builtin_amdgcn_sqrtf:
14725   case AMDGPU::BI__builtin_amdgcn_sqrth:
14726     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sqrt);
14727   case AMDGPU::BI__builtin_amdgcn_rsq:
14728   case AMDGPU::BI__builtin_amdgcn_rsqf:
14729   case AMDGPU::BI__builtin_amdgcn_rsqh:
14730     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq);
14731   case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
14732   case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
14733     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp);
14734   case AMDGPU::BI__builtin_amdgcn_sinf:
14735   case AMDGPU::BI__builtin_amdgcn_sinh:
14736     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin);
14737   case AMDGPU::BI__builtin_amdgcn_cosf:
14738   case AMDGPU::BI__builtin_amdgcn_cosh:
14739     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos);
14740   case AMDGPU::BI__builtin_amdgcn_dispatch_ptr:
14741     return EmitAMDGPUDispatchPtr(*this, E);
14742   case AMDGPU::BI__builtin_amdgcn_log_clampf:
14743     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp);
14744   case AMDGPU::BI__builtin_amdgcn_ldexp:
14745   case AMDGPU::BI__builtin_amdgcn_ldexpf:
14746   case AMDGPU::BI__builtin_amdgcn_ldexph:
14747     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp);
14748   case AMDGPU::BI__builtin_amdgcn_frexp_mant:
14749   case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
14750   case AMDGPU::BI__builtin_amdgcn_frexp_manth:
14751     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant);
14752   case AMDGPU::BI__builtin_amdgcn_frexp_exp:
14753   case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
14754     Value *Src0 = EmitScalarExpr(E->getArg(0));
14755     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
14756                                 { Builder.getInt32Ty(), Src0->getType() });
14757     return Builder.CreateCall(F, Src0);
14758   }
14759   case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
14760     Value *Src0 = EmitScalarExpr(E->getArg(0));
14761     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
14762                                 { Builder.getInt16Ty(), Src0->getType() });
14763     return Builder.CreateCall(F, Src0);
14764   }
14765   case AMDGPU::BI__builtin_amdgcn_fract:
14766   case AMDGPU::BI__builtin_amdgcn_fractf:
14767   case AMDGPU::BI__builtin_amdgcn_fracth:
14768     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract);
14769   case AMDGPU::BI__builtin_amdgcn_lerp:
14770     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp);
14771   case AMDGPU::BI__builtin_amdgcn_ubfe:
14772     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_ubfe);
14773   case AMDGPU::BI__builtin_amdgcn_sbfe:
14774     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_sbfe);
14775   case AMDGPU::BI__builtin_amdgcn_uicmp:
14776   case AMDGPU::BI__builtin_amdgcn_uicmpl:
14777   case AMDGPU::BI__builtin_amdgcn_sicmp:
14778   case AMDGPU::BI__builtin_amdgcn_sicmpl: {
14779     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
14780     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
14781     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
14782 
14783     // FIXME-GFX10: How should 32 bit mask be handled?
14784     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp,
14785       { Builder.getInt64Ty(), Src0->getType() });
14786     return Builder.CreateCall(F, { Src0, Src1, Src2 });
14787   }
14788   case AMDGPU::BI__builtin_amdgcn_fcmp:
14789   case AMDGPU::BI__builtin_amdgcn_fcmpf: {
14790     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
14791     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
14792     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
14793 
14794     // FIXME-GFX10: How should 32 bit mask be handled?
14795     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp,
14796       { Builder.getInt64Ty(), Src0->getType() });
14797     return Builder.CreateCall(F, { Src0, Src1, Src2 });
14798   }
14799   case AMDGPU::BI__builtin_amdgcn_class:
14800   case AMDGPU::BI__builtin_amdgcn_classf:
14801   case AMDGPU::BI__builtin_amdgcn_classh:
14802     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
14803   case AMDGPU::BI__builtin_amdgcn_fmed3f:
14804   case AMDGPU::BI__builtin_amdgcn_fmed3h:
14805     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3);
14806   case AMDGPU::BI__builtin_amdgcn_ds_append:
14807   case AMDGPU::BI__builtin_amdgcn_ds_consume: {
14808     Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ?
14809       Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume;
14810     Value *Src0 = EmitScalarExpr(E->getArg(0));
14811     Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() });
14812     return Builder.CreateCall(F, { Src0, Builder.getFalse() });
14813   }
14814   case AMDGPU::BI__builtin_amdgcn_read_exec: {
14815     CallInst *CI = cast<CallInst>(
14816       EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, NormalRead, "exec"));
14817     CI->setConvergent();
14818     return CI;
14819   }
14820   case AMDGPU::BI__builtin_amdgcn_read_exec_lo:
14821   case AMDGPU::BI__builtin_amdgcn_read_exec_hi: {
14822     StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ?
14823       "exec_lo" : "exec_hi";
14824     CallInst *CI = cast<CallInst>(
14825       EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, NormalRead, RegName));
14826     CI->setConvergent();
14827     return CI;
14828   }
14829   // amdgcn workitem
14830   case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
14831     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
14832   case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
14833     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
14834   case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
14835     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
14836 
14837   // amdgcn workgroup size
14838   case AMDGPU::BI__builtin_amdgcn_workgroup_size_x:
14839     return EmitAMDGPUWorkGroupSize(*this, 0);
14840   case AMDGPU::BI__builtin_amdgcn_workgroup_size_y:
14841     return EmitAMDGPUWorkGroupSize(*this, 1);
14842   case AMDGPU::BI__builtin_amdgcn_workgroup_size_z:
14843     return EmitAMDGPUWorkGroupSize(*this, 2);
14844 
14845   // r600 intrinsics
14846   case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
14847   case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
14848     return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee);
14849   case AMDGPU::BI__builtin_r600_read_tidig_x:
14850     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
14851   case AMDGPU::BI__builtin_r600_read_tidig_y:
14852     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
14853   case AMDGPU::BI__builtin_r600_read_tidig_z:
14854     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
14855   case AMDGPU::BI__builtin_amdgcn_alignbit: {
14856     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
14857     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
14858     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
14859     Function *F = CGM.getIntrinsic(Intrinsic::fshr, Src0->getType());
14860     return Builder.CreateCall(F, { Src0, Src1, Src2 });
14861   }
14862 
14863   case AMDGPU::BI__builtin_amdgcn_fence: {
14864     if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(0)),
14865                                 EmitScalarExpr(E->getArg(1)), AO, SSID))
14866       return Builder.CreateFence(AO, SSID);
14867     LLVM_FALLTHROUGH;
14868   }
14869   case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
14870   case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
14871   case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
14872   case AMDGPU::BI__builtin_amdgcn_atomic_dec64: {
14873     unsigned BuiltinAtomicOp;
14874     llvm::Type *ResultType = ConvertType(E->getType());
14875 
14876     switch (BuiltinID) {
14877     case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
14878     case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
14879       BuiltinAtomicOp = Intrinsic::amdgcn_atomic_inc;
14880       break;
14881     case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
14882     case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
14883       BuiltinAtomicOp = Intrinsic::amdgcn_atomic_dec;
14884       break;
14885     }
14886 
14887     Value *Ptr = EmitScalarExpr(E->getArg(0));
14888     Value *Val = EmitScalarExpr(E->getArg(1));
14889 
14890     llvm::Function *F =
14891         CGM.getIntrinsic(BuiltinAtomicOp, {ResultType, Ptr->getType()});
14892 
14893     if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(2)),
14894                                 EmitScalarExpr(E->getArg(3)), AO, SSID)) {
14895 
14896       // llvm.amdgcn.atomic.inc and llvm.amdgcn.atomic.dec expects ordering and
14897       // scope as unsigned values
14898       Value *MemOrder = Builder.getInt32(static_cast<int>(AO));
14899       Value *MemScope = Builder.getInt32(static_cast<int>(SSID));
14900 
14901       QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
14902       bool Volatile =
14903           PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
14904       Value *IsVolatile = Builder.getInt1(static_cast<bool>(Volatile));
14905 
14906       return Builder.CreateCall(F, {Ptr, Val, MemOrder, MemScope, IsVolatile});
14907     }
14908     LLVM_FALLTHROUGH;
14909   }
14910   default:
14911     return nullptr;
14912   }
14913 }
14914 
14915 /// Handle a SystemZ function in which the final argument is a pointer
14916 /// to an int that receives the post-instruction CC value.  At the LLVM level
14917 /// this is represented as a function that returns a {result, cc} pair.
14918 static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
14919                                          unsigned IntrinsicID,
14920                                          const CallExpr *E) {
14921   unsigned NumArgs = E->getNumArgs() - 1;
14922   SmallVector<Value *, 8> Args(NumArgs);
14923   for (unsigned I = 0; I < NumArgs; ++I)
14924     Args[I] = CGF.EmitScalarExpr(E->getArg(I));
14925   Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
14926   Function *F = CGF.CGM.getIntrinsic(IntrinsicID);
14927   Value *Call = CGF.Builder.CreateCall(F, Args);
14928   Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
14929   CGF.Builder.CreateStore(CC, CCPtr);
14930   return CGF.Builder.CreateExtractValue(Call, 0);
14931 }
14932 
14933 Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
14934                                                const CallExpr *E) {
14935   switch (BuiltinID) {
14936   case SystemZ::BI__builtin_tbegin: {
14937     Value *TDB = EmitScalarExpr(E->getArg(0));
14938     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
14939     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
14940     return Builder.CreateCall(F, {TDB, Control});
14941   }
14942   case SystemZ::BI__builtin_tbegin_nofloat: {
14943     Value *TDB = EmitScalarExpr(E->getArg(0));
14944     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
14945     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
14946     return Builder.CreateCall(F, {TDB, Control});
14947   }
14948   case SystemZ::BI__builtin_tbeginc: {
14949     Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
14950     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
14951     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
14952     return Builder.CreateCall(F, {TDB, Control});
14953   }
14954   case SystemZ::BI__builtin_tabort: {
14955     Value *Data = EmitScalarExpr(E->getArg(0));
14956     Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
14957     return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
14958   }
14959   case SystemZ::BI__builtin_non_tx_store: {
14960     Value *Address = EmitScalarExpr(E->getArg(0));
14961     Value *Data = EmitScalarExpr(E->getArg(1));
14962     Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
14963     return Builder.CreateCall(F, {Data, Address});
14964   }
14965 
14966   // Vector builtins.  Note that most vector builtins are mapped automatically
14967   // to target-specific LLVM intrinsics.  The ones handled specially here can
14968   // be represented via standard LLVM IR, which is preferable to enable common
14969   // LLVM optimizations.
14970 
14971   case SystemZ::BI__builtin_s390_vpopctb:
14972   case SystemZ::BI__builtin_s390_vpopcth:
14973   case SystemZ::BI__builtin_s390_vpopctf:
14974   case SystemZ::BI__builtin_s390_vpopctg: {
14975     llvm::Type *ResultType = ConvertType(E->getType());
14976     Value *X = EmitScalarExpr(E->getArg(0));
14977     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
14978     return Builder.CreateCall(F, X);
14979   }
14980 
14981   case SystemZ::BI__builtin_s390_vclzb:
14982   case SystemZ::BI__builtin_s390_vclzh:
14983   case SystemZ::BI__builtin_s390_vclzf:
14984   case SystemZ::BI__builtin_s390_vclzg: {
14985     llvm::Type *ResultType = ConvertType(E->getType());
14986     Value *X = EmitScalarExpr(E->getArg(0));
14987     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
14988     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
14989     return Builder.CreateCall(F, {X, Undef});
14990   }
14991 
14992   case SystemZ::BI__builtin_s390_vctzb:
14993   case SystemZ::BI__builtin_s390_vctzh:
14994   case SystemZ::BI__builtin_s390_vctzf:
14995   case SystemZ::BI__builtin_s390_vctzg: {
14996     llvm::Type *ResultType = ConvertType(E->getType());
14997     Value *X = EmitScalarExpr(E->getArg(0));
14998     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
14999     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
15000     return Builder.CreateCall(F, {X, Undef});
15001   }
15002 
15003   case SystemZ::BI__builtin_s390_vfsqsb:
15004   case SystemZ::BI__builtin_s390_vfsqdb: {
15005     llvm::Type *ResultType = ConvertType(E->getType());
15006     Value *X = EmitScalarExpr(E->getArg(0));
15007     if (Builder.getIsFPConstrained()) {
15008       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, ResultType);
15009       return Builder.CreateConstrainedFPCall(F, { X });
15010     } else {
15011       Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
15012       return Builder.CreateCall(F, X);
15013     }
15014   }
15015   case SystemZ::BI__builtin_s390_vfmasb:
15016   case SystemZ::BI__builtin_s390_vfmadb: {
15017     llvm::Type *ResultType = ConvertType(E->getType());
15018     Value *X = EmitScalarExpr(E->getArg(0));
15019     Value *Y = EmitScalarExpr(E->getArg(1));
15020     Value *Z = EmitScalarExpr(E->getArg(2));
15021     if (Builder.getIsFPConstrained()) {
15022       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15023       return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
15024     } else {
15025       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15026       return Builder.CreateCall(F, {X, Y, Z});
15027     }
15028   }
15029   case SystemZ::BI__builtin_s390_vfmssb:
15030   case SystemZ::BI__builtin_s390_vfmsdb: {
15031     llvm::Type *ResultType = ConvertType(E->getType());
15032     Value *X = EmitScalarExpr(E->getArg(0));
15033     Value *Y = EmitScalarExpr(E->getArg(1));
15034     Value *Z = EmitScalarExpr(E->getArg(2));
15035     if (Builder.getIsFPConstrained()) {
15036       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15037       return Builder.CreateConstrainedFPCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
15038     } else {
15039       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15040       return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
15041     }
15042   }
15043   case SystemZ::BI__builtin_s390_vfnmasb:
15044   case SystemZ::BI__builtin_s390_vfnmadb: {
15045     llvm::Type *ResultType = ConvertType(E->getType());
15046     Value *X = EmitScalarExpr(E->getArg(0));
15047     Value *Y = EmitScalarExpr(E->getArg(1));
15048     Value *Z = EmitScalarExpr(E->getArg(2));
15049     if (Builder.getIsFPConstrained()) {
15050       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15051       return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y,  Z}), "neg");
15052     } else {
15053       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15054       return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
15055     }
15056   }
15057   case SystemZ::BI__builtin_s390_vfnmssb:
15058   case SystemZ::BI__builtin_s390_vfnmsdb: {
15059     llvm::Type *ResultType = ConvertType(E->getType());
15060     Value *X = EmitScalarExpr(E->getArg(0));
15061     Value *Y = EmitScalarExpr(E->getArg(1));
15062     Value *Z = EmitScalarExpr(E->getArg(2));
15063     if (Builder.getIsFPConstrained()) {
15064       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15065       Value *NegZ = Builder.CreateFNeg(Z, "sub");
15066       return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, NegZ}));
15067     } else {
15068       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15069       Value *NegZ = Builder.CreateFNeg(Z, "neg");
15070       return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, NegZ}));
15071     }
15072   }
15073   case SystemZ::BI__builtin_s390_vflpsb:
15074   case SystemZ::BI__builtin_s390_vflpdb: {
15075     llvm::Type *ResultType = ConvertType(E->getType());
15076     Value *X = EmitScalarExpr(E->getArg(0));
15077     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
15078     return Builder.CreateCall(F, X);
15079   }
15080   case SystemZ::BI__builtin_s390_vflnsb:
15081   case SystemZ::BI__builtin_s390_vflndb: {
15082     llvm::Type *ResultType = ConvertType(E->getType());
15083     Value *X = EmitScalarExpr(E->getArg(0));
15084     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
15085     return Builder.CreateFNeg(Builder.CreateCall(F, X), "neg");
15086   }
15087   case SystemZ::BI__builtin_s390_vfisb:
15088   case SystemZ::BI__builtin_s390_vfidb: {
15089     llvm::Type *ResultType = ConvertType(E->getType());
15090     Value *X = EmitScalarExpr(E->getArg(0));
15091     // Constant-fold the M4 and M5 mask arguments.
15092     llvm::APSInt M4, M5;
15093     bool IsConstM4 = E->getArg(1)->isIntegerConstantExpr(M4, getContext());
15094     bool IsConstM5 = E->getArg(2)->isIntegerConstantExpr(M5, getContext());
15095     assert(IsConstM4 && IsConstM5 && "Constant arg isn't actually constant?");
15096     (void)IsConstM4; (void)IsConstM5;
15097     // Check whether this instance can be represented via a LLVM standard
15098     // intrinsic.  We only support some combinations of M4 and M5.
15099     Intrinsic::ID ID = Intrinsic::not_intrinsic;
15100     Intrinsic::ID CI;
15101     switch (M4.getZExtValue()) {
15102     default: break;
15103     case 0:  // IEEE-inexact exception allowed
15104       switch (M5.getZExtValue()) {
15105       default: break;
15106       case 0: ID = Intrinsic::rint;
15107               CI = Intrinsic::experimental_constrained_rint; break;
15108       }
15109       break;
15110     case 4:  // IEEE-inexact exception suppressed
15111       switch (M5.getZExtValue()) {
15112       default: break;
15113       case 0: ID = Intrinsic::nearbyint;
15114               CI = Intrinsic::experimental_constrained_nearbyint; break;
15115       case 1: ID = Intrinsic::round;
15116               CI = Intrinsic::experimental_constrained_round; break;
15117       case 5: ID = Intrinsic::trunc;
15118               CI = Intrinsic::experimental_constrained_trunc; break;
15119       case 6: ID = Intrinsic::ceil;
15120               CI = Intrinsic::experimental_constrained_ceil; break;
15121       case 7: ID = Intrinsic::floor;
15122               CI = Intrinsic::experimental_constrained_floor; break;
15123       }
15124       break;
15125     }
15126     if (ID != Intrinsic::not_intrinsic) {
15127       if (Builder.getIsFPConstrained()) {
15128         Function *F = CGM.getIntrinsic(CI, ResultType);
15129         return Builder.CreateConstrainedFPCall(F, X);
15130       } else {
15131         Function *F = CGM.getIntrinsic(ID, ResultType);
15132         return Builder.CreateCall(F, X);
15133       }
15134     }
15135     switch (BuiltinID) { // FIXME: constrained version?
15136       case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break;
15137       case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break;
15138       default: llvm_unreachable("Unknown BuiltinID");
15139     }
15140     Function *F = CGM.getIntrinsic(ID);
15141     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
15142     Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
15143     return Builder.CreateCall(F, {X, M4Value, M5Value});
15144   }
15145   case SystemZ::BI__builtin_s390_vfmaxsb:
15146   case SystemZ::BI__builtin_s390_vfmaxdb: {
15147     llvm::Type *ResultType = ConvertType(E->getType());
15148     Value *X = EmitScalarExpr(E->getArg(0));
15149     Value *Y = EmitScalarExpr(E->getArg(1));
15150     // Constant-fold the M4 mask argument.
15151     llvm::APSInt M4;
15152     bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext());
15153     assert(IsConstM4 && "Constant arg isn't actually constant?");
15154     (void)IsConstM4;
15155     // Check whether this instance can be represented via a LLVM standard
15156     // intrinsic.  We only support some values of M4.
15157     Intrinsic::ID ID = Intrinsic::not_intrinsic;
15158     Intrinsic::ID CI;
15159     switch (M4.getZExtValue()) {
15160     default: break;
15161     case 4: ID = Intrinsic::maxnum;
15162             CI = Intrinsic::experimental_constrained_maxnum; break;
15163     }
15164     if (ID != Intrinsic::not_intrinsic) {
15165       if (Builder.getIsFPConstrained()) {
15166         Function *F = CGM.getIntrinsic(CI, ResultType);
15167         return Builder.CreateConstrainedFPCall(F, {X, Y});
15168       } else {
15169         Function *F = CGM.getIntrinsic(ID, ResultType);
15170         return Builder.CreateCall(F, {X, Y});
15171       }
15172     }
15173     switch (BuiltinID) {
15174       case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break;
15175       case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break;
15176       default: llvm_unreachable("Unknown BuiltinID");
15177     }
15178     Function *F = CGM.getIntrinsic(ID);
15179     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
15180     return Builder.CreateCall(F, {X, Y, M4Value});
15181   }
15182   case SystemZ::BI__builtin_s390_vfminsb:
15183   case SystemZ::BI__builtin_s390_vfmindb: {
15184     llvm::Type *ResultType = ConvertType(E->getType());
15185     Value *X = EmitScalarExpr(E->getArg(0));
15186     Value *Y = EmitScalarExpr(E->getArg(1));
15187     // Constant-fold the M4 mask argument.
15188     llvm::APSInt M4;
15189     bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext());
15190     assert(IsConstM4 && "Constant arg isn't actually constant?");
15191     (void)IsConstM4;
15192     // Check whether this instance can be represented via a LLVM standard
15193     // intrinsic.  We only support some values of M4.
15194     Intrinsic::ID ID = Intrinsic::not_intrinsic;
15195     Intrinsic::ID CI;
15196     switch (M4.getZExtValue()) {
15197     default: break;
15198     case 4: ID = Intrinsic::minnum;
15199             CI = Intrinsic::experimental_constrained_minnum; break;
15200     }
15201     if (ID != Intrinsic::not_intrinsic) {
15202       if (Builder.getIsFPConstrained()) {
15203         Function *F = CGM.getIntrinsic(CI, ResultType);
15204         return Builder.CreateConstrainedFPCall(F, {X, Y});
15205       } else {
15206         Function *F = CGM.getIntrinsic(ID, ResultType);
15207         return Builder.CreateCall(F, {X, Y});
15208       }
15209     }
15210     switch (BuiltinID) {
15211       case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break;
15212       case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break;
15213       default: llvm_unreachable("Unknown BuiltinID");
15214     }
15215     Function *F = CGM.getIntrinsic(ID);
15216     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
15217     return Builder.CreateCall(F, {X, Y, M4Value});
15218   }
15219 
15220   case SystemZ::BI__builtin_s390_vlbrh:
15221   case SystemZ::BI__builtin_s390_vlbrf:
15222   case SystemZ::BI__builtin_s390_vlbrg: {
15223     llvm::Type *ResultType = ConvertType(E->getType());
15224     Value *X = EmitScalarExpr(E->getArg(0));
15225     Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType);
15226     return Builder.CreateCall(F, X);
15227   }
15228 
15229   // Vector intrinsics that output the post-instruction CC value.
15230 
15231 #define INTRINSIC_WITH_CC(NAME) \
15232     case SystemZ::BI__builtin_##NAME: \
15233       return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
15234 
15235   INTRINSIC_WITH_CC(s390_vpkshs);
15236   INTRINSIC_WITH_CC(s390_vpksfs);
15237   INTRINSIC_WITH_CC(s390_vpksgs);
15238 
15239   INTRINSIC_WITH_CC(s390_vpklshs);
15240   INTRINSIC_WITH_CC(s390_vpklsfs);
15241   INTRINSIC_WITH_CC(s390_vpklsgs);
15242 
15243   INTRINSIC_WITH_CC(s390_vceqbs);
15244   INTRINSIC_WITH_CC(s390_vceqhs);
15245   INTRINSIC_WITH_CC(s390_vceqfs);
15246   INTRINSIC_WITH_CC(s390_vceqgs);
15247 
15248   INTRINSIC_WITH_CC(s390_vchbs);
15249   INTRINSIC_WITH_CC(s390_vchhs);
15250   INTRINSIC_WITH_CC(s390_vchfs);
15251   INTRINSIC_WITH_CC(s390_vchgs);
15252 
15253   INTRINSIC_WITH_CC(s390_vchlbs);
15254   INTRINSIC_WITH_CC(s390_vchlhs);
15255   INTRINSIC_WITH_CC(s390_vchlfs);
15256   INTRINSIC_WITH_CC(s390_vchlgs);
15257 
15258   INTRINSIC_WITH_CC(s390_vfaebs);
15259   INTRINSIC_WITH_CC(s390_vfaehs);
15260   INTRINSIC_WITH_CC(s390_vfaefs);
15261 
15262   INTRINSIC_WITH_CC(s390_vfaezbs);
15263   INTRINSIC_WITH_CC(s390_vfaezhs);
15264   INTRINSIC_WITH_CC(s390_vfaezfs);
15265 
15266   INTRINSIC_WITH_CC(s390_vfeebs);
15267   INTRINSIC_WITH_CC(s390_vfeehs);
15268   INTRINSIC_WITH_CC(s390_vfeefs);
15269 
15270   INTRINSIC_WITH_CC(s390_vfeezbs);
15271   INTRINSIC_WITH_CC(s390_vfeezhs);
15272   INTRINSIC_WITH_CC(s390_vfeezfs);
15273 
15274   INTRINSIC_WITH_CC(s390_vfenebs);
15275   INTRINSIC_WITH_CC(s390_vfenehs);
15276   INTRINSIC_WITH_CC(s390_vfenefs);
15277 
15278   INTRINSIC_WITH_CC(s390_vfenezbs);
15279   INTRINSIC_WITH_CC(s390_vfenezhs);
15280   INTRINSIC_WITH_CC(s390_vfenezfs);
15281 
15282   INTRINSIC_WITH_CC(s390_vistrbs);
15283   INTRINSIC_WITH_CC(s390_vistrhs);
15284   INTRINSIC_WITH_CC(s390_vistrfs);
15285 
15286   INTRINSIC_WITH_CC(s390_vstrcbs);
15287   INTRINSIC_WITH_CC(s390_vstrchs);
15288   INTRINSIC_WITH_CC(s390_vstrcfs);
15289 
15290   INTRINSIC_WITH_CC(s390_vstrczbs);
15291   INTRINSIC_WITH_CC(s390_vstrczhs);
15292   INTRINSIC_WITH_CC(s390_vstrczfs);
15293 
15294   INTRINSIC_WITH_CC(s390_vfcesbs);
15295   INTRINSIC_WITH_CC(s390_vfcedbs);
15296   INTRINSIC_WITH_CC(s390_vfchsbs);
15297   INTRINSIC_WITH_CC(s390_vfchdbs);
15298   INTRINSIC_WITH_CC(s390_vfchesbs);
15299   INTRINSIC_WITH_CC(s390_vfchedbs);
15300 
15301   INTRINSIC_WITH_CC(s390_vftcisb);
15302   INTRINSIC_WITH_CC(s390_vftcidb);
15303 
15304   INTRINSIC_WITH_CC(s390_vstrsb);
15305   INTRINSIC_WITH_CC(s390_vstrsh);
15306   INTRINSIC_WITH_CC(s390_vstrsf);
15307 
15308   INTRINSIC_WITH_CC(s390_vstrszb);
15309   INTRINSIC_WITH_CC(s390_vstrszh);
15310   INTRINSIC_WITH_CC(s390_vstrszf);
15311 
15312 #undef INTRINSIC_WITH_CC
15313 
15314   default:
15315     return nullptr;
15316   }
15317 }
15318 
15319 namespace {
15320 // Helper classes for mapping MMA builtins to particular LLVM intrinsic variant.
15321 struct NVPTXMmaLdstInfo {
15322   unsigned NumResults;  // Number of elements to load/store
15323   // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported.
15324   unsigned IID_col;
15325   unsigned IID_row;
15326 };
15327 
15328 #define MMA_INTR(geom_op_type, layout) \
15329   Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride
15330 #define MMA_LDST(n, geom_op_type)                                              \
15331   { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) }
15332 
15333 static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) {
15334   switch (BuiltinID) {
15335   // FP MMA loads
15336   case NVPTX::BI__hmma_m16n16k16_ld_a:
15337     return MMA_LDST(8, m16n16k16_load_a_f16);
15338   case NVPTX::BI__hmma_m16n16k16_ld_b:
15339     return MMA_LDST(8, m16n16k16_load_b_f16);
15340   case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
15341     return MMA_LDST(4, m16n16k16_load_c_f16);
15342   case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
15343     return MMA_LDST(8, m16n16k16_load_c_f32);
15344   case NVPTX::BI__hmma_m32n8k16_ld_a:
15345     return MMA_LDST(8, m32n8k16_load_a_f16);
15346   case NVPTX::BI__hmma_m32n8k16_ld_b:
15347     return MMA_LDST(8, m32n8k16_load_b_f16);
15348   case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
15349     return MMA_LDST(4, m32n8k16_load_c_f16);
15350   case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
15351     return MMA_LDST(8, m32n8k16_load_c_f32);
15352   case NVPTX::BI__hmma_m8n32k16_ld_a:
15353     return MMA_LDST(8, m8n32k16_load_a_f16);
15354   case NVPTX::BI__hmma_m8n32k16_ld_b:
15355     return MMA_LDST(8, m8n32k16_load_b_f16);
15356   case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
15357     return MMA_LDST(4, m8n32k16_load_c_f16);
15358   case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
15359     return MMA_LDST(8, m8n32k16_load_c_f32);
15360 
15361   // Integer MMA loads
15362   case NVPTX::BI__imma_m16n16k16_ld_a_s8:
15363     return MMA_LDST(2, m16n16k16_load_a_s8);
15364   case NVPTX::BI__imma_m16n16k16_ld_a_u8:
15365     return MMA_LDST(2, m16n16k16_load_a_u8);
15366   case NVPTX::BI__imma_m16n16k16_ld_b_s8:
15367     return MMA_LDST(2, m16n16k16_load_b_s8);
15368   case NVPTX::BI__imma_m16n16k16_ld_b_u8:
15369     return MMA_LDST(2, m16n16k16_load_b_u8);
15370   case NVPTX::BI__imma_m16n16k16_ld_c:
15371     return MMA_LDST(8, m16n16k16_load_c_s32);
15372   case NVPTX::BI__imma_m32n8k16_ld_a_s8:
15373     return MMA_LDST(4, m32n8k16_load_a_s8);
15374   case NVPTX::BI__imma_m32n8k16_ld_a_u8:
15375     return MMA_LDST(4, m32n8k16_load_a_u8);
15376   case NVPTX::BI__imma_m32n8k16_ld_b_s8:
15377     return MMA_LDST(1, m32n8k16_load_b_s8);
15378   case NVPTX::BI__imma_m32n8k16_ld_b_u8:
15379     return MMA_LDST(1, m32n8k16_load_b_u8);
15380   case NVPTX::BI__imma_m32n8k16_ld_c:
15381     return MMA_LDST(8, m32n8k16_load_c_s32);
15382   case NVPTX::BI__imma_m8n32k16_ld_a_s8:
15383     return MMA_LDST(1, m8n32k16_load_a_s8);
15384   case NVPTX::BI__imma_m8n32k16_ld_a_u8:
15385     return MMA_LDST(1, m8n32k16_load_a_u8);
15386   case NVPTX::BI__imma_m8n32k16_ld_b_s8:
15387     return MMA_LDST(4, m8n32k16_load_b_s8);
15388   case NVPTX::BI__imma_m8n32k16_ld_b_u8:
15389     return MMA_LDST(4, m8n32k16_load_b_u8);
15390   case NVPTX::BI__imma_m8n32k16_ld_c:
15391     return MMA_LDST(8, m8n32k16_load_c_s32);
15392 
15393   // Sub-integer MMA loads.
15394   // Only row/col layout is supported by A/B fragments.
15395   case NVPTX::BI__imma_m8n8k32_ld_a_s4:
15396     return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)};
15397   case NVPTX::BI__imma_m8n8k32_ld_a_u4:
15398     return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)};
15399   case NVPTX::BI__imma_m8n8k32_ld_b_s4:
15400     return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0};
15401   case NVPTX::BI__imma_m8n8k32_ld_b_u4:
15402     return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0};
15403   case NVPTX::BI__imma_m8n8k32_ld_c:
15404     return MMA_LDST(2, m8n8k32_load_c_s32);
15405   case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
15406     return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)};
15407   case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
15408     return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0};
15409   case NVPTX::BI__bmma_m8n8k128_ld_c:
15410     return MMA_LDST(2, m8n8k128_load_c_s32);
15411 
15412   // NOTE: We need to follow inconsitent naming scheme used by NVCC.  Unlike
15413   // PTX and LLVM IR where stores always use fragment D, NVCC builtins always
15414   // use fragment C for both loads and stores.
15415   // FP MMA stores.
15416   case NVPTX::BI__hmma_m16n16k16_st_c_f16:
15417     return MMA_LDST(4, m16n16k16_store_d_f16);
15418   case NVPTX::BI__hmma_m16n16k16_st_c_f32:
15419     return MMA_LDST(8, m16n16k16_store_d_f32);
15420   case NVPTX::BI__hmma_m32n8k16_st_c_f16:
15421     return MMA_LDST(4, m32n8k16_store_d_f16);
15422   case NVPTX::BI__hmma_m32n8k16_st_c_f32:
15423     return MMA_LDST(8, m32n8k16_store_d_f32);
15424   case NVPTX::BI__hmma_m8n32k16_st_c_f16:
15425     return MMA_LDST(4, m8n32k16_store_d_f16);
15426   case NVPTX::BI__hmma_m8n32k16_st_c_f32:
15427     return MMA_LDST(8, m8n32k16_store_d_f32);
15428 
15429   // Integer and sub-integer MMA stores.
15430   // Another naming quirk. Unlike other MMA builtins that use PTX types in the
15431   // name, integer loads/stores use LLVM's i32.
15432   case NVPTX::BI__imma_m16n16k16_st_c_i32:
15433     return MMA_LDST(8, m16n16k16_store_d_s32);
15434   case NVPTX::BI__imma_m32n8k16_st_c_i32:
15435     return MMA_LDST(8, m32n8k16_store_d_s32);
15436   case NVPTX::BI__imma_m8n32k16_st_c_i32:
15437     return MMA_LDST(8, m8n32k16_store_d_s32);
15438   case NVPTX::BI__imma_m8n8k32_st_c_i32:
15439     return MMA_LDST(2, m8n8k32_store_d_s32);
15440   case NVPTX::BI__bmma_m8n8k128_st_c_i32:
15441     return MMA_LDST(2, m8n8k128_store_d_s32);
15442 
15443   default:
15444     llvm_unreachable("Unknown MMA builtin");
15445   }
15446 }
15447 #undef MMA_LDST
15448 #undef MMA_INTR
15449 
15450 
15451 struct NVPTXMmaInfo {
15452   unsigned NumEltsA;
15453   unsigned NumEltsB;
15454   unsigned NumEltsC;
15455   unsigned NumEltsD;
15456   std::array<unsigned, 8> Variants;
15457 
15458   unsigned getMMAIntrinsic(int Layout, bool Satf) {
15459     unsigned Index = Layout * 2 + Satf;
15460     if (Index >= Variants.size())
15461       return 0;
15462     return Variants[Index];
15463   }
15464 };
15465 
15466   // Returns an intrinsic that matches Layout and Satf for valid combinations of
15467   // Layout and Satf, 0 otherwise.
15468 static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) {
15469   // clang-format off
15470 #define MMA_VARIANTS(geom, type) {{                                 \
15471       Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type,             \
15472       Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \
15473       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
15474       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
15475       Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type,             \
15476       Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \
15477       Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type,             \
15478       Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite  \
15479     }}
15480 // Sub-integer MMA only supports row.col layout.
15481 #define MMA_VARIANTS_I4(geom, type) {{ \
15482       0, \
15483       0, \
15484       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
15485       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
15486       0, \
15487       0, \
15488       0, \
15489       0  \
15490     }}
15491 // b1 MMA does not support .satfinite.
15492 #define MMA_VARIANTS_B1(geom, type) {{ \
15493       0, \
15494       0, \
15495       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
15496       0, \
15497       0, \
15498       0, \
15499       0, \
15500       0  \
15501     }}
15502     // clang-format on
15503     switch (BuiltinID) {
15504     // FP MMA
15505     // Note that 'type' argument of MMA_VARIANT uses D_C notation, while
15506     // NumEltsN of return value are ordered as A,B,C,D.
15507     case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
15508       return {8, 8, 4, 4, MMA_VARIANTS(m16n16k16, f16_f16)};
15509     case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
15510       return {8, 8, 4, 8, MMA_VARIANTS(m16n16k16, f32_f16)};
15511     case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
15512       return {8, 8, 8, 4, MMA_VARIANTS(m16n16k16, f16_f32)};
15513     case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
15514       return {8, 8, 8, 8, MMA_VARIANTS(m16n16k16, f32_f32)};
15515     case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
15516       return {8, 8, 4, 4, MMA_VARIANTS(m32n8k16, f16_f16)};
15517     case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
15518       return {8, 8, 4, 8, MMA_VARIANTS(m32n8k16, f32_f16)};
15519     case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
15520       return {8, 8, 8, 4, MMA_VARIANTS(m32n8k16, f16_f32)};
15521     case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
15522       return {8, 8, 8, 8, MMA_VARIANTS(m32n8k16, f32_f32)};
15523     case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
15524       return {8, 8, 4, 4, MMA_VARIANTS(m8n32k16, f16_f16)};
15525     case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
15526       return {8, 8, 4, 8, MMA_VARIANTS(m8n32k16, f32_f16)};
15527     case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
15528       return {8, 8, 8, 4, MMA_VARIANTS(m8n32k16, f16_f32)};
15529     case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
15530       return {8, 8, 8, 8, MMA_VARIANTS(m8n32k16, f32_f32)};
15531 
15532     // Integer MMA
15533     case NVPTX::BI__imma_m16n16k16_mma_s8:
15534       return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, s8)};
15535     case NVPTX::BI__imma_m16n16k16_mma_u8:
15536       return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, u8)};
15537     case NVPTX::BI__imma_m32n8k16_mma_s8:
15538       return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, s8)};
15539     case NVPTX::BI__imma_m32n8k16_mma_u8:
15540       return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, u8)};
15541     case NVPTX::BI__imma_m8n32k16_mma_s8:
15542       return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, s8)};
15543     case NVPTX::BI__imma_m8n32k16_mma_u8:
15544       return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, u8)};
15545 
15546     // Sub-integer MMA
15547     case NVPTX::BI__imma_m8n8k32_mma_s4:
15548       return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, s4)};
15549     case NVPTX::BI__imma_m8n8k32_mma_u4:
15550       return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, u4)};
15551     case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
15552       return {1, 1, 2, 2, MMA_VARIANTS_B1(m8n8k128, b1)};
15553     default:
15554       llvm_unreachable("Unexpected builtin ID.");
15555     }
15556 #undef MMA_VARIANTS
15557 #undef MMA_VARIANTS_I4
15558 #undef MMA_VARIANTS_B1
15559 }
15560 
15561 } // namespace
15562 
15563 Value *
15564 CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E) {
15565   auto MakeLdg = [&](unsigned IntrinsicID) {
15566     Value *Ptr = EmitScalarExpr(E->getArg(0));
15567     clang::CharUnits Align =
15568         CGM.getNaturalPointeeTypeAlignment(E->getArg(0)->getType());
15569     return Builder.CreateCall(
15570         CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
15571                                        Ptr->getType()}),
15572         {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())});
15573   };
15574   auto MakeScopedAtomic = [&](unsigned IntrinsicID) {
15575     Value *Ptr = EmitScalarExpr(E->getArg(0));
15576     return Builder.CreateCall(
15577         CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
15578                                        Ptr->getType()}),
15579         {Ptr, EmitScalarExpr(E->getArg(1))});
15580   };
15581   switch (BuiltinID) {
15582   case NVPTX::BI__nvvm_atom_add_gen_i:
15583   case NVPTX::BI__nvvm_atom_add_gen_l:
15584   case NVPTX::BI__nvvm_atom_add_gen_ll:
15585     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
15586 
15587   case NVPTX::BI__nvvm_atom_sub_gen_i:
15588   case NVPTX::BI__nvvm_atom_sub_gen_l:
15589   case NVPTX::BI__nvvm_atom_sub_gen_ll:
15590     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
15591 
15592   case NVPTX::BI__nvvm_atom_and_gen_i:
15593   case NVPTX::BI__nvvm_atom_and_gen_l:
15594   case NVPTX::BI__nvvm_atom_and_gen_ll:
15595     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
15596 
15597   case NVPTX::BI__nvvm_atom_or_gen_i:
15598   case NVPTX::BI__nvvm_atom_or_gen_l:
15599   case NVPTX::BI__nvvm_atom_or_gen_ll:
15600     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
15601 
15602   case NVPTX::BI__nvvm_atom_xor_gen_i:
15603   case NVPTX::BI__nvvm_atom_xor_gen_l:
15604   case NVPTX::BI__nvvm_atom_xor_gen_ll:
15605     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
15606 
15607   case NVPTX::BI__nvvm_atom_xchg_gen_i:
15608   case NVPTX::BI__nvvm_atom_xchg_gen_l:
15609   case NVPTX::BI__nvvm_atom_xchg_gen_ll:
15610     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
15611 
15612   case NVPTX::BI__nvvm_atom_max_gen_i:
15613   case NVPTX::BI__nvvm_atom_max_gen_l:
15614   case NVPTX::BI__nvvm_atom_max_gen_ll:
15615     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
15616 
15617   case NVPTX::BI__nvvm_atom_max_gen_ui:
15618   case NVPTX::BI__nvvm_atom_max_gen_ul:
15619   case NVPTX::BI__nvvm_atom_max_gen_ull:
15620     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
15621 
15622   case NVPTX::BI__nvvm_atom_min_gen_i:
15623   case NVPTX::BI__nvvm_atom_min_gen_l:
15624   case NVPTX::BI__nvvm_atom_min_gen_ll:
15625     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
15626 
15627   case NVPTX::BI__nvvm_atom_min_gen_ui:
15628   case NVPTX::BI__nvvm_atom_min_gen_ul:
15629   case NVPTX::BI__nvvm_atom_min_gen_ull:
15630     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
15631 
15632   case NVPTX::BI__nvvm_atom_cas_gen_i:
15633   case NVPTX::BI__nvvm_atom_cas_gen_l:
15634   case NVPTX::BI__nvvm_atom_cas_gen_ll:
15635     // __nvvm_atom_cas_gen_* should return the old value rather than the
15636     // success flag.
15637     return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
15638 
15639   case NVPTX::BI__nvvm_atom_add_gen_f:
15640   case NVPTX::BI__nvvm_atom_add_gen_d: {
15641     Value *Ptr = EmitScalarExpr(E->getArg(0));
15642     Value *Val = EmitScalarExpr(E->getArg(1));
15643     return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, Ptr, Val,
15644                                    AtomicOrdering::SequentiallyConsistent);
15645   }
15646 
15647   case NVPTX::BI__nvvm_atom_inc_gen_ui: {
15648     Value *Ptr = EmitScalarExpr(E->getArg(0));
15649     Value *Val = EmitScalarExpr(E->getArg(1));
15650     Function *FnALI32 =
15651         CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
15652     return Builder.CreateCall(FnALI32, {Ptr, Val});
15653   }
15654 
15655   case NVPTX::BI__nvvm_atom_dec_gen_ui: {
15656     Value *Ptr = EmitScalarExpr(E->getArg(0));
15657     Value *Val = EmitScalarExpr(E->getArg(1));
15658     Function *FnALD32 =
15659         CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
15660     return Builder.CreateCall(FnALD32, {Ptr, Val});
15661   }
15662 
15663   case NVPTX::BI__nvvm_ldg_c:
15664   case NVPTX::BI__nvvm_ldg_c2:
15665   case NVPTX::BI__nvvm_ldg_c4:
15666   case NVPTX::BI__nvvm_ldg_s:
15667   case NVPTX::BI__nvvm_ldg_s2:
15668   case NVPTX::BI__nvvm_ldg_s4:
15669   case NVPTX::BI__nvvm_ldg_i:
15670   case NVPTX::BI__nvvm_ldg_i2:
15671   case NVPTX::BI__nvvm_ldg_i4:
15672   case NVPTX::BI__nvvm_ldg_l:
15673   case NVPTX::BI__nvvm_ldg_ll:
15674   case NVPTX::BI__nvvm_ldg_ll2:
15675   case NVPTX::BI__nvvm_ldg_uc:
15676   case NVPTX::BI__nvvm_ldg_uc2:
15677   case NVPTX::BI__nvvm_ldg_uc4:
15678   case NVPTX::BI__nvvm_ldg_us:
15679   case NVPTX::BI__nvvm_ldg_us2:
15680   case NVPTX::BI__nvvm_ldg_us4:
15681   case NVPTX::BI__nvvm_ldg_ui:
15682   case NVPTX::BI__nvvm_ldg_ui2:
15683   case NVPTX::BI__nvvm_ldg_ui4:
15684   case NVPTX::BI__nvvm_ldg_ul:
15685   case NVPTX::BI__nvvm_ldg_ull:
15686   case NVPTX::BI__nvvm_ldg_ull2:
15687     // PTX Interoperability section 2.2: "For a vector with an even number of
15688     // elements, its alignment is set to number of elements times the alignment
15689     // of its member: n*alignof(t)."
15690     return MakeLdg(Intrinsic::nvvm_ldg_global_i);
15691   case NVPTX::BI__nvvm_ldg_f:
15692   case NVPTX::BI__nvvm_ldg_f2:
15693   case NVPTX::BI__nvvm_ldg_f4:
15694   case NVPTX::BI__nvvm_ldg_d:
15695   case NVPTX::BI__nvvm_ldg_d2:
15696     return MakeLdg(Intrinsic::nvvm_ldg_global_f);
15697 
15698   case NVPTX::BI__nvvm_atom_cta_add_gen_i:
15699   case NVPTX::BI__nvvm_atom_cta_add_gen_l:
15700   case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
15701     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta);
15702   case NVPTX::BI__nvvm_atom_sys_add_gen_i:
15703   case NVPTX::BI__nvvm_atom_sys_add_gen_l:
15704   case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
15705     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys);
15706   case NVPTX::BI__nvvm_atom_cta_add_gen_f:
15707   case NVPTX::BI__nvvm_atom_cta_add_gen_d:
15708     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta);
15709   case NVPTX::BI__nvvm_atom_sys_add_gen_f:
15710   case NVPTX::BI__nvvm_atom_sys_add_gen_d:
15711     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys);
15712   case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
15713   case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
15714   case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
15715     return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta);
15716   case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
15717   case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
15718   case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
15719     return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys);
15720   case NVPTX::BI__nvvm_atom_cta_max_gen_i:
15721   case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
15722   case NVPTX::BI__nvvm_atom_cta_max_gen_l:
15723   case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
15724   case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
15725   case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
15726     return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta);
15727   case NVPTX::BI__nvvm_atom_sys_max_gen_i:
15728   case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
15729   case NVPTX::BI__nvvm_atom_sys_max_gen_l:
15730   case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
15731   case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
15732   case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
15733     return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys);
15734   case NVPTX::BI__nvvm_atom_cta_min_gen_i:
15735   case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
15736   case NVPTX::BI__nvvm_atom_cta_min_gen_l:
15737   case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
15738   case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
15739   case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
15740     return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta);
15741   case NVPTX::BI__nvvm_atom_sys_min_gen_i:
15742   case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
15743   case NVPTX::BI__nvvm_atom_sys_min_gen_l:
15744   case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
15745   case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
15746   case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
15747     return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys);
15748   case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
15749     return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta);
15750   case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
15751     return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta);
15752   case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
15753     return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys);
15754   case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
15755     return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys);
15756   case NVPTX::BI__nvvm_atom_cta_and_gen_i:
15757   case NVPTX::BI__nvvm_atom_cta_and_gen_l:
15758   case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
15759     return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta);
15760   case NVPTX::BI__nvvm_atom_sys_and_gen_i:
15761   case NVPTX::BI__nvvm_atom_sys_and_gen_l:
15762   case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
15763     return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys);
15764   case NVPTX::BI__nvvm_atom_cta_or_gen_i:
15765   case NVPTX::BI__nvvm_atom_cta_or_gen_l:
15766   case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
15767     return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta);
15768   case NVPTX::BI__nvvm_atom_sys_or_gen_i:
15769   case NVPTX::BI__nvvm_atom_sys_or_gen_l:
15770   case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
15771     return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys);
15772   case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
15773   case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
15774   case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
15775     return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta);
15776   case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
15777   case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
15778   case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
15779     return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys);
15780   case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
15781   case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
15782   case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
15783     Value *Ptr = EmitScalarExpr(E->getArg(0));
15784     return Builder.CreateCall(
15785         CGM.getIntrinsic(
15786             Intrinsic::nvvm_atomic_cas_gen_i_cta,
15787             {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
15788         {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
15789   }
15790   case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
15791   case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
15792   case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
15793     Value *Ptr = EmitScalarExpr(E->getArg(0));
15794     return Builder.CreateCall(
15795         CGM.getIntrinsic(
15796             Intrinsic::nvvm_atomic_cas_gen_i_sys,
15797             {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
15798         {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
15799   }
15800   case NVPTX::BI__nvvm_match_all_sync_i32p:
15801   case NVPTX::BI__nvvm_match_all_sync_i64p: {
15802     Value *Mask = EmitScalarExpr(E->getArg(0));
15803     Value *Val = EmitScalarExpr(E->getArg(1));
15804     Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2));
15805     Value *ResultPair = Builder.CreateCall(
15806         CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p
15807                              ? Intrinsic::nvvm_match_all_sync_i32p
15808                              : Intrinsic::nvvm_match_all_sync_i64p),
15809         {Mask, Val});
15810     Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1),
15811                                      PredOutPtr.getElementType());
15812     Builder.CreateStore(Pred, PredOutPtr);
15813     return Builder.CreateExtractValue(ResultPair, 0);
15814   }
15815 
15816   // FP MMA loads
15817   case NVPTX::BI__hmma_m16n16k16_ld_a:
15818   case NVPTX::BI__hmma_m16n16k16_ld_b:
15819   case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
15820   case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
15821   case NVPTX::BI__hmma_m32n8k16_ld_a:
15822   case NVPTX::BI__hmma_m32n8k16_ld_b:
15823   case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
15824   case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
15825   case NVPTX::BI__hmma_m8n32k16_ld_a:
15826   case NVPTX::BI__hmma_m8n32k16_ld_b:
15827   case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
15828   case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
15829   // Integer MMA loads.
15830   case NVPTX::BI__imma_m16n16k16_ld_a_s8:
15831   case NVPTX::BI__imma_m16n16k16_ld_a_u8:
15832   case NVPTX::BI__imma_m16n16k16_ld_b_s8:
15833   case NVPTX::BI__imma_m16n16k16_ld_b_u8:
15834   case NVPTX::BI__imma_m16n16k16_ld_c:
15835   case NVPTX::BI__imma_m32n8k16_ld_a_s8:
15836   case NVPTX::BI__imma_m32n8k16_ld_a_u8:
15837   case NVPTX::BI__imma_m32n8k16_ld_b_s8:
15838   case NVPTX::BI__imma_m32n8k16_ld_b_u8:
15839   case NVPTX::BI__imma_m32n8k16_ld_c:
15840   case NVPTX::BI__imma_m8n32k16_ld_a_s8:
15841   case NVPTX::BI__imma_m8n32k16_ld_a_u8:
15842   case NVPTX::BI__imma_m8n32k16_ld_b_s8:
15843   case NVPTX::BI__imma_m8n32k16_ld_b_u8:
15844   case NVPTX::BI__imma_m8n32k16_ld_c:
15845   // Sub-integer MMA loads.
15846   case NVPTX::BI__imma_m8n8k32_ld_a_s4:
15847   case NVPTX::BI__imma_m8n8k32_ld_a_u4:
15848   case NVPTX::BI__imma_m8n8k32_ld_b_s4:
15849   case NVPTX::BI__imma_m8n8k32_ld_b_u4:
15850   case NVPTX::BI__imma_m8n8k32_ld_c:
15851   case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
15852   case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
15853   case NVPTX::BI__bmma_m8n8k128_ld_c:
15854   {
15855     Address Dst = EmitPointerWithAlignment(E->getArg(0));
15856     Value *Src = EmitScalarExpr(E->getArg(1));
15857     Value *Ldm = EmitScalarExpr(E->getArg(2));
15858     llvm::APSInt isColMajorArg;
15859     if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext()))
15860       return nullptr;
15861     bool isColMajor = isColMajorArg.getSExtValue();
15862     NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
15863     unsigned IID = isColMajor ? II.IID_col : II.IID_row;
15864     if (IID == 0)
15865       return nullptr;
15866 
15867     Value *Result =
15868         Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm});
15869 
15870     // Save returned values.
15871     assert(II.NumResults);
15872     if (II.NumResults == 1) {
15873       Builder.CreateAlignedStore(Result, Dst.getPointer(),
15874                                  CharUnits::fromQuantity(4));
15875     } else {
15876       for (unsigned i = 0; i < II.NumResults; ++i) {
15877         Builder.CreateAlignedStore(
15878             Builder.CreateBitCast(Builder.CreateExtractValue(Result, i),
15879                                   Dst.getElementType()),
15880             Builder.CreateGEP(Dst.getPointer(),
15881                               llvm::ConstantInt::get(IntTy, i)),
15882             CharUnits::fromQuantity(4));
15883       }
15884     }
15885     return Result;
15886   }
15887 
15888   case NVPTX::BI__hmma_m16n16k16_st_c_f16:
15889   case NVPTX::BI__hmma_m16n16k16_st_c_f32:
15890   case NVPTX::BI__hmma_m32n8k16_st_c_f16:
15891   case NVPTX::BI__hmma_m32n8k16_st_c_f32:
15892   case NVPTX::BI__hmma_m8n32k16_st_c_f16:
15893   case NVPTX::BI__hmma_m8n32k16_st_c_f32:
15894   case NVPTX::BI__imma_m16n16k16_st_c_i32:
15895   case NVPTX::BI__imma_m32n8k16_st_c_i32:
15896   case NVPTX::BI__imma_m8n32k16_st_c_i32:
15897   case NVPTX::BI__imma_m8n8k32_st_c_i32:
15898   case NVPTX::BI__bmma_m8n8k128_st_c_i32: {
15899     Value *Dst = EmitScalarExpr(E->getArg(0));
15900     Address Src = EmitPointerWithAlignment(E->getArg(1));
15901     Value *Ldm = EmitScalarExpr(E->getArg(2));
15902     llvm::APSInt isColMajorArg;
15903     if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext()))
15904       return nullptr;
15905     bool isColMajor = isColMajorArg.getSExtValue();
15906     NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
15907     unsigned IID = isColMajor ? II.IID_col : II.IID_row;
15908     if (IID == 0)
15909       return nullptr;
15910     Function *Intrinsic =
15911         CGM.getIntrinsic(IID, Dst->getType());
15912     llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1);
15913     SmallVector<Value *, 10> Values = {Dst};
15914     for (unsigned i = 0; i < II.NumResults; ++i) {
15915       Value *V = Builder.CreateAlignedLoad(
15916           Builder.CreateGEP(Src.getPointer(), llvm::ConstantInt::get(IntTy, i)),
15917           CharUnits::fromQuantity(4));
15918       Values.push_back(Builder.CreateBitCast(V, ParamType));
15919     }
15920     Values.push_back(Ldm);
15921     Value *Result = Builder.CreateCall(Intrinsic, Values);
15922     return Result;
15923   }
15924 
15925   // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) -->
15926   // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf>
15927   case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
15928   case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
15929   case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
15930   case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
15931   case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
15932   case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
15933   case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
15934   case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
15935   case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
15936   case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
15937   case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
15938   case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
15939   case NVPTX::BI__imma_m16n16k16_mma_s8:
15940   case NVPTX::BI__imma_m16n16k16_mma_u8:
15941   case NVPTX::BI__imma_m32n8k16_mma_s8:
15942   case NVPTX::BI__imma_m32n8k16_mma_u8:
15943   case NVPTX::BI__imma_m8n32k16_mma_s8:
15944   case NVPTX::BI__imma_m8n32k16_mma_u8:
15945   case NVPTX::BI__imma_m8n8k32_mma_s4:
15946   case NVPTX::BI__imma_m8n8k32_mma_u4:
15947   case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1: {
15948     Address Dst = EmitPointerWithAlignment(E->getArg(0));
15949     Address SrcA = EmitPointerWithAlignment(E->getArg(1));
15950     Address SrcB = EmitPointerWithAlignment(E->getArg(2));
15951     Address SrcC = EmitPointerWithAlignment(E->getArg(3));
15952     llvm::APSInt LayoutArg;
15953     if (!E->getArg(4)->isIntegerConstantExpr(LayoutArg, getContext()))
15954       return nullptr;
15955     int Layout = LayoutArg.getSExtValue();
15956     if (Layout < 0 || Layout > 3)
15957       return nullptr;
15958     llvm::APSInt SatfArg;
15959     if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1)
15960       SatfArg = 0;  // .b1 does not have satf argument.
15961     else if (!E->getArg(5)->isIntegerConstantExpr(SatfArg, getContext()))
15962       return nullptr;
15963     bool Satf = SatfArg.getSExtValue();
15964     NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID);
15965     unsigned IID = MI.getMMAIntrinsic(Layout, Satf);
15966     if (IID == 0)  // Unsupported combination of Layout/Satf.
15967       return nullptr;
15968 
15969     SmallVector<Value *, 24> Values;
15970     Function *Intrinsic = CGM.getIntrinsic(IID);
15971     llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0);
15972     // Load A
15973     for (unsigned i = 0; i < MI.NumEltsA; ++i) {
15974       Value *V = Builder.CreateAlignedLoad(
15975           Builder.CreateGEP(SrcA.getPointer(),
15976                             llvm::ConstantInt::get(IntTy, i)),
15977           CharUnits::fromQuantity(4));
15978       Values.push_back(Builder.CreateBitCast(V, AType));
15979     }
15980     // Load B
15981     llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA);
15982     for (unsigned i = 0; i < MI.NumEltsB; ++i) {
15983       Value *V = Builder.CreateAlignedLoad(
15984           Builder.CreateGEP(SrcB.getPointer(),
15985                             llvm::ConstantInt::get(IntTy, i)),
15986           CharUnits::fromQuantity(4));
15987       Values.push_back(Builder.CreateBitCast(V, BType));
15988     }
15989     // Load C
15990     llvm::Type *CType =
15991         Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB);
15992     for (unsigned i = 0; i < MI.NumEltsC; ++i) {
15993       Value *V = Builder.CreateAlignedLoad(
15994           Builder.CreateGEP(SrcC.getPointer(),
15995                             llvm::ConstantInt::get(IntTy, i)),
15996           CharUnits::fromQuantity(4));
15997       Values.push_back(Builder.CreateBitCast(V, CType));
15998     }
15999     Value *Result = Builder.CreateCall(Intrinsic, Values);
16000     llvm::Type *DType = Dst.getElementType();
16001     for (unsigned i = 0; i < MI.NumEltsD; ++i)
16002       Builder.CreateAlignedStore(
16003           Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType),
16004           Builder.CreateGEP(Dst.getPointer(), llvm::ConstantInt::get(IntTy, i)),
16005           CharUnits::fromQuantity(4));
16006     return Result;
16007   }
16008   default:
16009     return nullptr;
16010   }
16011 }
16012 
16013 namespace {
16014 struct BuiltinAlignArgs {
16015   llvm::Value *Src = nullptr;
16016   llvm::Type *SrcType = nullptr;
16017   llvm::Value *Alignment = nullptr;
16018   llvm::Value *Mask = nullptr;
16019   llvm::IntegerType *IntType = nullptr;
16020 
16021   BuiltinAlignArgs(const CallExpr *E, CodeGenFunction &CGF) {
16022     QualType AstType = E->getArg(0)->getType();
16023     if (AstType->isArrayType())
16024       Src = CGF.EmitArrayToPointerDecay(E->getArg(0)).getPointer();
16025     else
16026       Src = CGF.EmitScalarExpr(E->getArg(0));
16027     SrcType = Src->getType();
16028     if (SrcType->isPointerTy()) {
16029       IntType = IntegerType::get(
16030           CGF.getLLVMContext(),
16031           CGF.CGM.getDataLayout().getIndexTypeSizeInBits(SrcType));
16032     } else {
16033       assert(SrcType->isIntegerTy());
16034       IntType = cast<llvm::IntegerType>(SrcType);
16035     }
16036     Alignment = CGF.EmitScalarExpr(E->getArg(1));
16037     Alignment = CGF.Builder.CreateZExtOrTrunc(Alignment, IntType, "alignment");
16038     auto *One = llvm::ConstantInt::get(IntType, 1);
16039     Mask = CGF.Builder.CreateSub(Alignment, One, "mask");
16040   }
16041 };
16042 } // namespace
16043 
16044 /// Generate (x & (y-1)) == 0.
16045 RValue CodeGenFunction::EmitBuiltinIsAligned(const CallExpr *E) {
16046   BuiltinAlignArgs Args(E, *this);
16047   llvm::Value *SrcAddress = Args.Src;
16048   if (Args.SrcType->isPointerTy())
16049     SrcAddress =
16050         Builder.CreateBitOrPointerCast(Args.Src, Args.IntType, "src_addr");
16051   return RValue::get(Builder.CreateICmpEQ(
16052       Builder.CreateAnd(SrcAddress, Args.Mask, "set_bits"),
16053       llvm::Constant::getNullValue(Args.IntType), "is_aligned"));
16054 }
16055 
16056 /// Generate (x & ~(y-1)) to align down or ((x+(y-1)) & ~(y-1)) to align up.
16057 /// Note: For pointer types we can avoid ptrtoint/inttoptr pairs by using the
16058 /// llvm.ptrmask instrinsic (with a GEP before in the align_up case).
16059 /// TODO: actually use ptrmask once most optimization passes know about it.
16060 RValue CodeGenFunction::EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp) {
16061   BuiltinAlignArgs Args(E, *this);
16062   llvm::Value *SrcAddr = Args.Src;
16063   if (Args.Src->getType()->isPointerTy())
16064     SrcAddr = Builder.CreatePtrToInt(Args.Src, Args.IntType, "intptr");
16065   llvm::Value *SrcForMask = SrcAddr;
16066   if (AlignUp) {
16067     // When aligning up we have to first add the mask to ensure we go over the
16068     // next alignment value and then align down to the next valid multiple.
16069     // By adding the mask, we ensure that align_up on an already aligned
16070     // value will not change the value.
16071     SrcForMask = Builder.CreateAdd(SrcForMask, Args.Mask, "over_boundary");
16072   }
16073   // Invert the mask to only clear the lower bits.
16074   llvm::Value *InvertedMask = Builder.CreateNot(Args.Mask, "inverted_mask");
16075   llvm::Value *Result =
16076       Builder.CreateAnd(SrcForMask, InvertedMask, "aligned_result");
16077   if (Args.Src->getType()->isPointerTy()) {
16078     /// TODO: Use ptrmask instead of ptrtoint+gep once it is optimized well.
16079     // Result = Builder.CreateIntrinsic(
16080     //  Intrinsic::ptrmask, {Args.SrcType, SrcForMask->getType(), Args.IntType},
16081     //  {SrcForMask, NegatedMask}, nullptr, "aligned_result");
16082     Result->setName("aligned_intptr");
16083     llvm::Value *Difference = Builder.CreateSub(Result, SrcAddr, "diff");
16084     // The result must point to the same underlying allocation. This means we
16085     // can use an inbounds GEP to enable better optimization.
16086     Value *Base = EmitCastToVoidPtr(Args.Src);
16087     if (getLangOpts().isSignedOverflowDefined())
16088       Result = Builder.CreateGEP(Base, Difference, "aligned_result");
16089     else
16090       Result = EmitCheckedInBoundsGEP(Base, Difference,
16091                                       /*SignedIndices=*/true,
16092                                       /*isSubtraction=*/!AlignUp,
16093                                       E->getExprLoc(), "aligned_result");
16094     Result = Builder.CreatePointerCast(Result, Args.SrcType);
16095     // Emit an alignment assumption to ensure that the new alignment is
16096     // propagated to loads/stores, etc.
16097     emitAlignmentAssumption(Result, E, E->getExprLoc(), Args.Alignment);
16098   }
16099   assert(Result->getType() == Args.SrcType);
16100   return RValue::get(Result);
16101 }
16102 
16103 Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
16104                                                    const CallExpr *E) {
16105   switch (BuiltinID) {
16106   case WebAssembly::BI__builtin_wasm_memory_size: {
16107     llvm::Type *ResultType = ConvertType(E->getType());
16108     Value *I = EmitScalarExpr(E->getArg(0));
16109     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
16110     return Builder.CreateCall(Callee, I);
16111   }
16112   case WebAssembly::BI__builtin_wasm_memory_grow: {
16113     llvm::Type *ResultType = ConvertType(E->getType());
16114     Value *Args[] = {
16115       EmitScalarExpr(E->getArg(0)),
16116       EmitScalarExpr(E->getArg(1))
16117     };
16118     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType);
16119     return Builder.CreateCall(Callee, Args);
16120   }
16121   case WebAssembly::BI__builtin_wasm_tls_size: {
16122     llvm::Type *ResultType = ConvertType(E->getType());
16123     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType);
16124     return Builder.CreateCall(Callee);
16125   }
16126   case WebAssembly::BI__builtin_wasm_tls_align: {
16127     llvm::Type *ResultType = ConvertType(E->getType());
16128     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType);
16129     return Builder.CreateCall(Callee);
16130   }
16131   case WebAssembly::BI__builtin_wasm_tls_base: {
16132     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base);
16133     return Builder.CreateCall(Callee);
16134   }
16135   case WebAssembly::BI__builtin_wasm_throw: {
16136     Value *Tag = EmitScalarExpr(E->getArg(0));
16137     Value *Obj = EmitScalarExpr(E->getArg(1));
16138     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw);
16139     return Builder.CreateCall(Callee, {Tag, Obj});
16140   }
16141   case WebAssembly::BI__builtin_wasm_rethrow_in_catch: {
16142     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow_in_catch);
16143     return Builder.CreateCall(Callee);
16144   }
16145   case WebAssembly::BI__builtin_wasm_atomic_wait_i32: {
16146     Value *Addr = EmitScalarExpr(E->getArg(0));
16147     Value *Expected = EmitScalarExpr(E->getArg(1));
16148     Value *Timeout = EmitScalarExpr(E->getArg(2));
16149     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_wait_i32);
16150     return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
16151   }
16152   case WebAssembly::BI__builtin_wasm_atomic_wait_i64: {
16153     Value *Addr = EmitScalarExpr(E->getArg(0));
16154     Value *Expected = EmitScalarExpr(E->getArg(1));
16155     Value *Timeout = EmitScalarExpr(E->getArg(2));
16156     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_wait_i64);
16157     return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
16158   }
16159   case WebAssembly::BI__builtin_wasm_atomic_notify: {
16160     Value *Addr = EmitScalarExpr(E->getArg(0));
16161     Value *Count = EmitScalarExpr(E->getArg(1));
16162     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_notify);
16163     return Builder.CreateCall(Callee, {Addr, Count});
16164   }
16165   case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32:
16166   case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64:
16167   case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32:
16168   case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: {
16169     Value *Src = EmitScalarExpr(E->getArg(0));
16170     llvm::Type *ResT = ConvertType(E->getType());
16171     Function *Callee =
16172         CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()});
16173     return Builder.CreateCall(Callee, {Src});
16174   }
16175   case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32:
16176   case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64:
16177   case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32:
16178   case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: {
16179     Value *Src = EmitScalarExpr(E->getArg(0));
16180     llvm::Type *ResT = ConvertType(E->getType());
16181     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned,
16182                                         {ResT, Src->getType()});
16183     return Builder.CreateCall(Callee, {Src});
16184   }
16185   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32:
16186   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64:
16187   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32:
16188   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64:
16189   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4: {
16190     Value *Src = EmitScalarExpr(E->getArg(0));
16191     llvm::Type *ResT = ConvertType(E->getType());
16192     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_signed,
16193                                      {ResT, Src->getType()});
16194     return Builder.CreateCall(Callee, {Src});
16195   }
16196   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32:
16197   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64:
16198   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32:
16199   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64:
16200   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4: {
16201     Value *Src = EmitScalarExpr(E->getArg(0));
16202     llvm::Type *ResT = ConvertType(E->getType());
16203     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_unsigned,
16204                                      {ResT, Src->getType()});
16205     return Builder.CreateCall(Callee, {Src});
16206   }
16207   case WebAssembly::BI__builtin_wasm_min_f32:
16208   case WebAssembly::BI__builtin_wasm_min_f64:
16209   case WebAssembly::BI__builtin_wasm_min_f32x4:
16210   case WebAssembly::BI__builtin_wasm_min_f64x2: {
16211     Value *LHS = EmitScalarExpr(E->getArg(0));
16212     Value *RHS = EmitScalarExpr(E->getArg(1));
16213     Function *Callee = CGM.getIntrinsic(Intrinsic::minimum,
16214                                      ConvertType(E->getType()));
16215     return Builder.CreateCall(Callee, {LHS, RHS});
16216   }
16217   case WebAssembly::BI__builtin_wasm_max_f32:
16218   case WebAssembly::BI__builtin_wasm_max_f64:
16219   case WebAssembly::BI__builtin_wasm_max_f32x4:
16220   case WebAssembly::BI__builtin_wasm_max_f64x2: {
16221     Value *LHS = EmitScalarExpr(E->getArg(0));
16222     Value *RHS = EmitScalarExpr(E->getArg(1));
16223     Function *Callee = CGM.getIntrinsic(Intrinsic::maximum,
16224                                      ConvertType(E->getType()));
16225     return Builder.CreateCall(Callee, {LHS, RHS});
16226   }
16227   case WebAssembly::BI__builtin_wasm_pmin_f32x4:
16228   case WebAssembly::BI__builtin_wasm_pmin_f64x2: {
16229     Value *LHS = EmitScalarExpr(E->getArg(0));
16230     Value *RHS = EmitScalarExpr(E->getArg(1));
16231     Function *Callee =
16232         CGM.getIntrinsic(Intrinsic::wasm_pmin, ConvertType(E->getType()));
16233     return Builder.CreateCall(Callee, {LHS, RHS});
16234   }
16235   case WebAssembly::BI__builtin_wasm_pmax_f32x4:
16236   case WebAssembly::BI__builtin_wasm_pmax_f64x2: {
16237     Value *LHS = EmitScalarExpr(E->getArg(0));
16238     Value *RHS = EmitScalarExpr(E->getArg(1));
16239     Function *Callee =
16240         CGM.getIntrinsic(Intrinsic::wasm_pmax, ConvertType(E->getType()));
16241     return Builder.CreateCall(Callee, {LHS, RHS});
16242   }
16243   case WebAssembly::BI__builtin_wasm_ceil_f32x4:
16244   case WebAssembly::BI__builtin_wasm_floor_f32x4:
16245   case WebAssembly::BI__builtin_wasm_trunc_f32x4:
16246   case WebAssembly::BI__builtin_wasm_nearest_f32x4:
16247   case WebAssembly::BI__builtin_wasm_ceil_f64x2:
16248   case WebAssembly::BI__builtin_wasm_floor_f64x2:
16249   case WebAssembly::BI__builtin_wasm_trunc_f64x2:
16250   case WebAssembly::BI__builtin_wasm_nearest_f64x2: {
16251     unsigned IntNo;
16252     switch (BuiltinID) {
16253     case WebAssembly::BI__builtin_wasm_ceil_f32x4:
16254     case WebAssembly::BI__builtin_wasm_ceil_f64x2:
16255       IntNo = Intrinsic::wasm_ceil;
16256       break;
16257     case WebAssembly::BI__builtin_wasm_floor_f32x4:
16258     case WebAssembly::BI__builtin_wasm_floor_f64x2:
16259       IntNo = Intrinsic::wasm_floor;
16260       break;
16261     case WebAssembly::BI__builtin_wasm_trunc_f32x4:
16262     case WebAssembly::BI__builtin_wasm_trunc_f64x2:
16263       IntNo = Intrinsic::wasm_trunc;
16264       break;
16265     case WebAssembly::BI__builtin_wasm_nearest_f32x4:
16266     case WebAssembly::BI__builtin_wasm_nearest_f64x2:
16267       IntNo = Intrinsic::wasm_nearest;
16268       break;
16269     default:
16270       llvm_unreachable("unexpected builtin ID");
16271     }
16272     Value *Value = EmitScalarExpr(E->getArg(0));
16273     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
16274     return Builder.CreateCall(Callee, Value);
16275   }
16276   case WebAssembly::BI__builtin_wasm_swizzle_v8x16: {
16277     Value *Src = EmitScalarExpr(E->getArg(0));
16278     Value *Indices = EmitScalarExpr(E->getArg(1));
16279     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle);
16280     return Builder.CreateCall(Callee, {Src, Indices});
16281   }
16282   case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
16283   case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
16284   case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
16285   case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
16286   case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
16287   case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
16288   case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
16289   case WebAssembly::BI__builtin_wasm_extract_lane_f64x2: {
16290     llvm::APSInt LaneConst;
16291     if (!E->getArg(1)->isIntegerConstantExpr(LaneConst, getContext()))
16292       llvm_unreachable("Constant arg isn't actually constant?");
16293     Value *Vec = EmitScalarExpr(E->getArg(0));
16294     Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
16295     Value *Extract = Builder.CreateExtractElement(Vec, Lane);
16296     switch (BuiltinID) {
16297     case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
16298     case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
16299       return Builder.CreateSExt(Extract, ConvertType(E->getType()));
16300     case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
16301     case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
16302       return Builder.CreateZExt(Extract, ConvertType(E->getType()));
16303     case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
16304     case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
16305     case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
16306     case WebAssembly::BI__builtin_wasm_extract_lane_f64x2:
16307       return Extract;
16308     default:
16309       llvm_unreachable("unexpected builtin ID");
16310     }
16311   }
16312   case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
16313   case WebAssembly::BI__builtin_wasm_replace_lane_i16x8:
16314   case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
16315   case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
16316   case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
16317   case WebAssembly::BI__builtin_wasm_replace_lane_f64x2: {
16318     llvm::APSInt LaneConst;
16319     if (!E->getArg(1)->isIntegerConstantExpr(LaneConst, getContext()))
16320       llvm_unreachable("Constant arg isn't actually constant?");
16321     Value *Vec = EmitScalarExpr(E->getArg(0));
16322     Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
16323     Value *Val = EmitScalarExpr(E->getArg(2));
16324     switch (BuiltinID) {
16325     case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
16326     case WebAssembly::BI__builtin_wasm_replace_lane_i16x8: {
16327       llvm::Type *ElemType =
16328           cast<llvm::VectorType>(ConvertType(E->getType()))->getElementType();
16329       Value *Trunc = Builder.CreateTrunc(Val, ElemType);
16330       return Builder.CreateInsertElement(Vec, Trunc, Lane);
16331     }
16332     case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
16333     case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
16334     case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
16335     case WebAssembly::BI__builtin_wasm_replace_lane_f64x2:
16336       return Builder.CreateInsertElement(Vec, Val, Lane);
16337     default:
16338       llvm_unreachable("unexpected builtin ID");
16339     }
16340   }
16341   case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16:
16342   case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16:
16343   case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8:
16344   case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8:
16345   case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16:
16346   case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16:
16347   case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8:
16348   case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8: {
16349     unsigned IntNo;
16350     switch (BuiltinID) {
16351     case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16:
16352     case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8:
16353       IntNo = Intrinsic::sadd_sat;
16354       break;
16355     case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16:
16356     case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8:
16357       IntNo = Intrinsic::uadd_sat;
16358       break;
16359     case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16:
16360     case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8:
16361       IntNo = Intrinsic::wasm_sub_saturate_signed;
16362       break;
16363     case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16:
16364     case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8:
16365       IntNo = Intrinsic::wasm_sub_saturate_unsigned;
16366       break;
16367     default:
16368       llvm_unreachable("unexpected builtin ID");
16369     }
16370     Value *LHS = EmitScalarExpr(E->getArg(0));
16371     Value *RHS = EmitScalarExpr(E->getArg(1));
16372     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
16373     return Builder.CreateCall(Callee, {LHS, RHS});
16374   }
16375   case WebAssembly::BI__builtin_wasm_abs_i8x16:
16376   case WebAssembly::BI__builtin_wasm_abs_i16x8:
16377   case WebAssembly::BI__builtin_wasm_abs_i32x4: {
16378     Value *Vec = EmitScalarExpr(E->getArg(0));
16379     Value *Neg = Builder.CreateNeg(Vec, "neg");
16380     Constant *Zero = llvm::Constant::getNullValue(Vec->getType());
16381     Value *ICmp = Builder.CreateICmpSLT(Vec, Zero, "abscond");
16382     return Builder.CreateSelect(ICmp, Neg, Vec, "abs");
16383   }
16384   case WebAssembly::BI__builtin_wasm_min_s_i8x16:
16385   case WebAssembly::BI__builtin_wasm_min_u_i8x16:
16386   case WebAssembly::BI__builtin_wasm_max_s_i8x16:
16387   case WebAssembly::BI__builtin_wasm_max_u_i8x16:
16388   case WebAssembly::BI__builtin_wasm_min_s_i16x8:
16389   case WebAssembly::BI__builtin_wasm_min_u_i16x8:
16390   case WebAssembly::BI__builtin_wasm_max_s_i16x8:
16391   case WebAssembly::BI__builtin_wasm_max_u_i16x8:
16392   case WebAssembly::BI__builtin_wasm_min_s_i32x4:
16393   case WebAssembly::BI__builtin_wasm_min_u_i32x4:
16394   case WebAssembly::BI__builtin_wasm_max_s_i32x4:
16395   case WebAssembly::BI__builtin_wasm_max_u_i32x4: {
16396     Value *LHS = EmitScalarExpr(E->getArg(0));
16397     Value *RHS = EmitScalarExpr(E->getArg(1));
16398     Value *ICmp;
16399     switch (BuiltinID) {
16400     case WebAssembly::BI__builtin_wasm_min_s_i8x16:
16401     case WebAssembly::BI__builtin_wasm_min_s_i16x8:
16402     case WebAssembly::BI__builtin_wasm_min_s_i32x4:
16403       ICmp = Builder.CreateICmpSLT(LHS, RHS);
16404       break;
16405     case WebAssembly::BI__builtin_wasm_min_u_i8x16:
16406     case WebAssembly::BI__builtin_wasm_min_u_i16x8:
16407     case WebAssembly::BI__builtin_wasm_min_u_i32x4:
16408       ICmp = Builder.CreateICmpULT(LHS, RHS);
16409       break;
16410     case WebAssembly::BI__builtin_wasm_max_s_i8x16:
16411     case WebAssembly::BI__builtin_wasm_max_s_i16x8:
16412     case WebAssembly::BI__builtin_wasm_max_s_i32x4:
16413       ICmp = Builder.CreateICmpSGT(LHS, RHS);
16414       break;
16415     case WebAssembly::BI__builtin_wasm_max_u_i8x16:
16416     case WebAssembly::BI__builtin_wasm_max_u_i16x8:
16417     case WebAssembly::BI__builtin_wasm_max_u_i32x4:
16418       ICmp = Builder.CreateICmpUGT(LHS, RHS);
16419       break;
16420     default:
16421       llvm_unreachable("unexpected builtin ID");
16422     }
16423     return Builder.CreateSelect(ICmp, LHS, RHS);
16424   }
16425   case WebAssembly::BI__builtin_wasm_avgr_u_i8x16:
16426   case WebAssembly::BI__builtin_wasm_avgr_u_i16x8: {
16427     Value *LHS = EmitScalarExpr(E->getArg(0));
16428     Value *RHS = EmitScalarExpr(E->getArg(1));
16429     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_avgr_unsigned,
16430                                         ConvertType(E->getType()));
16431     return Builder.CreateCall(Callee, {LHS, RHS});
16432   }
16433   case WebAssembly::BI__builtin_wasm_bitselect: {
16434     Value *V1 = EmitScalarExpr(E->getArg(0));
16435     Value *V2 = EmitScalarExpr(E->getArg(1));
16436     Value *C = EmitScalarExpr(E->getArg(2));
16437     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_bitselect,
16438                                      ConvertType(E->getType()));
16439     return Builder.CreateCall(Callee, {V1, V2, C});
16440   }
16441   case WebAssembly::BI__builtin_wasm_dot_s_i32x4_i16x8: {
16442     Value *LHS = EmitScalarExpr(E->getArg(0));
16443     Value *RHS = EmitScalarExpr(E->getArg(1));
16444     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_dot);
16445     return Builder.CreateCall(Callee, {LHS, RHS});
16446   }
16447   case WebAssembly::BI__builtin_wasm_any_true_i8x16:
16448   case WebAssembly::BI__builtin_wasm_any_true_i16x8:
16449   case WebAssembly::BI__builtin_wasm_any_true_i32x4:
16450   case WebAssembly::BI__builtin_wasm_any_true_i64x2:
16451   case WebAssembly::BI__builtin_wasm_all_true_i8x16:
16452   case WebAssembly::BI__builtin_wasm_all_true_i16x8:
16453   case WebAssembly::BI__builtin_wasm_all_true_i32x4:
16454   case WebAssembly::BI__builtin_wasm_all_true_i64x2: {
16455     unsigned IntNo;
16456     switch (BuiltinID) {
16457     case WebAssembly::BI__builtin_wasm_any_true_i8x16:
16458     case WebAssembly::BI__builtin_wasm_any_true_i16x8:
16459     case WebAssembly::BI__builtin_wasm_any_true_i32x4:
16460     case WebAssembly::BI__builtin_wasm_any_true_i64x2:
16461       IntNo = Intrinsic::wasm_anytrue;
16462       break;
16463     case WebAssembly::BI__builtin_wasm_all_true_i8x16:
16464     case WebAssembly::BI__builtin_wasm_all_true_i16x8:
16465     case WebAssembly::BI__builtin_wasm_all_true_i32x4:
16466     case WebAssembly::BI__builtin_wasm_all_true_i64x2:
16467       IntNo = Intrinsic::wasm_alltrue;
16468       break;
16469     default:
16470       llvm_unreachable("unexpected builtin ID");
16471     }
16472     Value *Vec = EmitScalarExpr(E->getArg(0));
16473     Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType());
16474     return Builder.CreateCall(Callee, {Vec});
16475   }
16476   case WebAssembly::BI__builtin_wasm_bitmask_i8x16:
16477   case WebAssembly::BI__builtin_wasm_bitmask_i16x8:
16478   case WebAssembly::BI__builtin_wasm_bitmask_i32x4: {
16479     Value *Vec = EmitScalarExpr(E->getArg(0));
16480     Function *Callee =
16481         CGM.getIntrinsic(Intrinsic::wasm_bitmask, Vec->getType());
16482     return Builder.CreateCall(Callee, {Vec});
16483   }
16484   case WebAssembly::BI__builtin_wasm_abs_f32x4:
16485   case WebAssembly::BI__builtin_wasm_abs_f64x2: {
16486     Value *Vec = EmitScalarExpr(E->getArg(0));
16487     Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType());
16488     return Builder.CreateCall(Callee, {Vec});
16489   }
16490   case WebAssembly::BI__builtin_wasm_sqrt_f32x4:
16491   case WebAssembly::BI__builtin_wasm_sqrt_f64x2: {
16492     Value *Vec = EmitScalarExpr(E->getArg(0));
16493     Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType());
16494     return Builder.CreateCall(Callee, {Vec});
16495   }
16496   case WebAssembly::BI__builtin_wasm_qfma_f32x4:
16497   case WebAssembly::BI__builtin_wasm_qfms_f32x4:
16498   case WebAssembly::BI__builtin_wasm_qfma_f64x2:
16499   case WebAssembly::BI__builtin_wasm_qfms_f64x2: {
16500     Value *A = EmitScalarExpr(E->getArg(0));
16501     Value *B = EmitScalarExpr(E->getArg(1));
16502     Value *C = EmitScalarExpr(E->getArg(2));
16503     unsigned IntNo;
16504     switch (BuiltinID) {
16505     case WebAssembly::BI__builtin_wasm_qfma_f32x4:
16506     case WebAssembly::BI__builtin_wasm_qfma_f64x2:
16507       IntNo = Intrinsic::wasm_qfma;
16508       break;
16509     case WebAssembly::BI__builtin_wasm_qfms_f32x4:
16510     case WebAssembly::BI__builtin_wasm_qfms_f64x2:
16511       IntNo = Intrinsic::wasm_qfms;
16512       break;
16513     default:
16514       llvm_unreachable("unexpected builtin ID");
16515     }
16516     Function *Callee = CGM.getIntrinsic(IntNo, A->getType());
16517     return Builder.CreateCall(Callee, {A, B, C});
16518   }
16519   case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
16520   case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
16521   case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
16522   case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: {
16523     Value *Low = EmitScalarExpr(E->getArg(0));
16524     Value *High = EmitScalarExpr(E->getArg(1));
16525     unsigned IntNo;
16526     switch (BuiltinID) {
16527     case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
16528     case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
16529       IntNo = Intrinsic::wasm_narrow_signed;
16530       break;
16531     case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
16532     case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4:
16533       IntNo = Intrinsic::wasm_narrow_unsigned;
16534       break;
16535     default:
16536       llvm_unreachable("unexpected builtin ID");
16537     }
16538     Function *Callee =
16539         CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()});
16540     return Builder.CreateCall(Callee, {Low, High});
16541   }
16542   case WebAssembly::BI__builtin_wasm_widen_low_s_i16x8_i8x16:
16543   case WebAssembly::BI__builtin_wasm_widen_high_s_i16x8_i8x16:
16544   case WebAssembly::BI__builtin_wasm_widen_low_u_i16x8_i8x16:
16545   case WebAssembly::BI__builtin_wasm_widen_high_u_i16x8_i8x16:
16546   case WebAssembly::BI__builtin_wasm_widen_low_s_i32x4_i16x8:
16547   case WebAssembly::BI__builtin_wasm_widen_high_s_i32x4_i16x8:
16548   case WebAssembly::BI__builtin_wasm_widen_low_u_i32x4_i16x8:
16549   case WebAssembly::BI__builtin_wasm_widen_high_u_i32x4_i16x8: {
16550     Value *Vec = EmitScalarExpr(E->getArg(0));
16551     unsigned IntNo;
16552     switch (BuiltinID) {
16553     case WebAssembly::BI__builtin_wasm_widen_low_s_i16x8_i8x16:
16554     case WebAssembly::BI__builtin_wasm_widen_low_s_i32x4_i16x8:
16555       IntNo = Intrinsic::wasm_widen_low_signed;
16556       break;
16557     case WebAssembly::BI__builtin_wasm_widen_high_s_i16x8_i8x16:
16558     case WebAssembly::BI__builtin_wasm_widen_high_s_i32x4_i16x8:
16559       IntNo = Intrinsic::wasm_widen_high_signed;
16560       break;
16561     case WebAssembly::BI__builtin_wasm_widen_low_u_i16x8_i8x16:
16562     case WebAssembly::BI__builtin_wasm_widen_low_u_i32x4_i16x8:
16563       IntNo = Intrinsic::wasm_widen_low_unsigned;
16564       break;
16565     case WebAssembly::BI__builtin_wasm_widen_high_u_i16x8_i8x16:
16566     case WebAssembly::BI__builtin_wasm_widen_high_u_i32x4_i16x8:
16567       IntNo = Intrinsic::wasm_widen_high_unsigned;
16568       break;
16569     default:
16570       llvm_unreachable("unexpected builtin ID");
16571     }
16572     Function *Callee =
16573         CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Vec->getType()});
16574     return Builder.CreateCall(Callee, Vec);
16575   }
16576   case WebAssembly::BI__builtin_wasm_shuffle_v8x16: {
16577     Value *Ops[18];
16578     size_t OpIdx = 0;
16579     Ops[OpIdx++] = EmitScalarExpr(E->getArg(0));
16580     Ops[OpIdx++] = EmitScalarExpr(E->getArg(1));
16581     while (OpIdx < 18) {
16582       llvm::APSInt LaneConst;
16583       if (!E->getArg(OpIdx)->isIntegerConstantExpr(LaneConst, getContext()))
16584         llvm_unreachable("Constant arg isn't actually constant?");
16585       Ops[OpIdx++] = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
16586     }
16587     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_shuffle);
16588     return Builder.CreateCall(Callee, Ops);
16589   }
16590   default:
16591     return nullptr;
16592   }
16593 }
16594 
16595 static std::pair<Intrinsic::ID, unsigned>
16596 getIntrinsicForHexagonNonGCCBuiltin(unsigned BuiltinID) {
16597   struct Info {
16598     unsigned BuiltinID;
16599     Intrinsic::ID IntrinsicID;
16600     unsigned VecLen;
16601   };
16602   Info Infos[] = {
16603 #define CUSTOM_BUILTIN_MAPPING(x,s) \
16604   { Hexagon::BI__builtin_HEXAGON_##x, Intrinsic::hexagon_##x, s },
16605     CUSTOM_BUILTIN_MAPPING(L2_loadrub_pci, 0)
16606     CUSTOM_BUILTIN_MAPPING(L2_loadrb_pci, 0)
16607     CUSTOM_BUILTIN_MAPPING(L2_loadruh_pci, 0)
16608     CUSTOM_BUILTIN_MAPPING(L2_loadrh_pci, 0)
16609     CUSTOM_BUILTIN_MAPPING(L2_loadri_pci, 0)
16610     CUSTOM_BUILTIN_MAPPING(L2_loadrd_pci, 0)
16611     CUSTOM_BUILTIN_MAPPING(L2_loadrub_pcr, 0)
16612     CUSTOM_BUILTIN_MAPPING(L2_loadrb_pcr, 0)
16613     CUSTOM_BUILTIN_MAPPING(L2_loadruh_pcr, 0)
16614     CUSTOM_BUILTIN_MAPPING(L2_loadrh_pcr, 0)
16615     CUSTOM_BUILTIN_MAPPING(L2_loadri_pcr, 0)
16616     CUSTOM_BUILTIN_MAPPING(L2_loadrd_pcr, 0)
16617     CUSTOM_BUILTIN_MAPPING(S2_storerb_pci, 0)
16618     CUSTOM_BUILTIN_MAPPING(S2_storerh_pci, 0)
16619     CUSTOM_BUILTIN_MAPPING(S2_storerf_pci, 0)
16620     CUSTOM_BUILTIN_MAPPING(S2_storeri_pci, 0)
16621     CUSTOM_BUILTIN_MAPPING(S2_storerd_pci, 0)
16622     CUSTOM_BUILTIN_MAPPING(S2_storerb_pcr, 0)
16623     CUSTOM_BUILTIN_MAPPING(S2_storerh_pcr, 0)
16624     CUSTOM_BUILTIN_MAPPING(S2_storerf_pcr, 0)
16625     CUSTOM_BUILTIN_MAPPING(S2_storeri_pcr, 0)
16626     CUSTOM_BUILTIN_MAPPING(S2_storerd_pcr, 0)
16627     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq, 64)
16628     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq, 64)
16629     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq, 64)
16630     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq, 64)
16631     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq_128B, 128)
16632     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq_128B, 128)
16633     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq_128B, 128)
16634     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq_128B, 128)
16635 #include "clang/Basic/BuiltinsHexagonMapCustomDep.def"
16636 #undef CUSTOM_BUILTIN_MAPPING
16637   };
16638 
16639   auto CmpInfo = [] (Info A, Info B) { return A.BuiltinID < B.BuiltinID; };
16640   static const bool SortOnce = (llvm::sort(Infos, CmpInfo), true);
16641   (void)SortOnce;
16642 
16643   const Info *F = std::lower_bound(std::begin(Infos), std::end(Infos),
16644                                    Info{BuiltinID, 0, 0}, CmpInfo);
16645   if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
16646     return {Intrinsic::not_intrinsic, 0};
16647 
16648   return {F->IntrinsicID, F->VecLen};
16649 }
16650 
16651 Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID,
16652                                                const CallExpr *E) {
16653   Intrinsic::ID ID;
16654   unsigned VecLen;
16655   std::tie(ID, VecLen) = getIntrinsicForHexagonNonGCCBuiltin(BuiltinID);
16656 
16657   auto MakeCircOp = [this, E](unsigned IntID, bool IsLoad) {
16658     // The base pointer is passed by address, so it needs to be loaded.
16659     Address A = EmitPointerWithAlignment(E->getArg(0));
16660     Address BP = Address(
16661         Builder.CreateBitCast(A.getPointer(), Int8PtrPtrTy), A.getAlignment());
16662     llvm::Value *Base = Builder.CreateLoad(BP);
16663     // The treatment of both loads and stores is the same: the arguments for
16664     // the builtin are the same as the arguments for the intrinsic.
16665     // Load:
16666     //   builtin(Base, Inc, Mod, Start) -> intr(Base, Inc, Mod, Start)
16667     //   builtin(Base, Mod, Start)      -> intr(Base, Mod, Start)
16668     // Store:
16669     //   builtin(Base, Inc, Mod, Val, Start) -> intr(Base, Inc, Mod, Val, Start)
16670     //   builtin(Base, Mod, Val, Start)      -> intr(Base, Mod, Val, Start)
16671     SmallVector<llvm::Value*,5> Ops = { Base };
16672     for (unsigned i = 1, e = E->getNumArgs(); i != e; ++i)
16673       Ops.push_back(EmitScalarExpr(E->getArg(i)));
16674 
16675     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
16676     // The load intrinsics generate two results (Value, NewBase), stores
16677     // generate one (NewBase). The new base address needs to be stored.
16678     llvm::Value *NewBase = IsLoad ? Builder.CreateExtractValue(Result, 1)
16679                                   : Result;
16680     llvm::Value *LV = Builder.CreateBitCast(
16681         EmitScalarExpr(E->getArg(0)), NewBase->getType()->getPointerTo());
16682     Address Dest = EmitPointerWithAlignment(E->getArg(0));
16683     llvm::Value *RetVal =
16684         Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
16685     if (IsLoad)
16686       RetVal = Builder.CreateExtractValue(Result, 0);
16687     return RetVal;
16688   };
16689 
16690   // Handle the conversion of bit-reverse load intrinsics to bit code.
16691   // The intrinsic call after this function only reads from memory and the
16692   // write to memory is dealt by the store instruction.
16693   auto MakeBrevLd = [this, E](unsigned IntID, llvm::Type *DestTy) {
16694     // The intrinsic generates one result, which is the new value for the base
16695     // pointer. It needs to be returned. The result of the load instruction is
16696     // passed to intrinsic by address, so the value needs to be stored.
16697     llvm::Value *BaseAddress =
16698         Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
16699 
16700     // Expressions like &(*pt++) will be incremented per evaluation.
16701     // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression
16702     // per call.
16703     Address DestAddr = EmitPointerWithAlignment(E->getArg(1));
16704     DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy),
16705                        DestAddr.getAlignment());
16706     llvm::Value *DestAddress = DestAddr.getPointer();
16707 
16708     // Operands are Base, Dest, Modifier.
16709     // The intrinsic format in LLVM IR is defined as
16710     // { ValueType, i8* } (i8*, i32).
16711     llvm::Value *Result = Builder.CreateCall(
16712         CGM.getIntrinsic(IntID), {BaseAddress, EmitScalarExpr(E->getArg(2))});
16713 
16714     // The value needs to be stored as the variable is passed by reference.
16715     llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0);
16716 
16717     // The store needs to be truncated to fit the destination type.
16718     // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs
16719     // to be handled with stores of respective destination type.
16720     DestVal = Builder.CreateTrunc(DestVal, DestTy);
16721 
16722     llvm::Value *DestForStore =
16723         Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo());
16724     Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment());
16725     // The updated value of the base pointer is returned.
16726     return Builder.CreateExtractValue(Result, 1);
16727   };
16728 
16729   auto V2Q = [this, VecLen] (llvm::Value *Vec) {
16730     Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandvrt_128B
16731                                      : Intrinsic::hexagon_V6_vandvrt;
16732     return Builder.CreateCall(CGM.getIntrinsic(ID),
16733                               {Vec, Builder.getInt32(-1)});
16734   };
16735   auto Q2V = [this, VecLen] (llvm::Value *Pred) {
16736     Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandqrt_128B
16737                                      : Intrinsic::hexagon_V6_vandqrt;
16738     return Builder.CreateCall(CGM.getIntrinsic(ID),
16739                               {Pred, Builder.getInt32(-1)});
16740   };
16741 
16742   switch (BuiltinID) {
16743   // These intrinsics return a tuple {Vector, VectorPred} in LLVM IR,
16744   // and the corresponding C/C++ builtins use loads/stores to update
16745   // the predicate.
16746   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry:
16747   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B:
16748   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry:
16749   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: {
16750     // Get the type from the 0-th argument.
16751     llvm::Type *VecType = ConvertType(E->getArg(0)->getType());
16752     Address PredAddr = Builder.CreateBitCast(
16753         EmitPointerWithAlignment(E->getArg(2)), VecType->getPointerTo(0));
16754     llvm::Value *PredIn = V2Q(Builder.CreateLoad(PredAddr));
16755     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID),
16756         {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), PredIn});
16757 
16758     llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1);
16759     Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.getPointer(),
16760         PredAddr.getAlignment());
16761     return Builder.CreateExtractValue(Result, 0);
16762   }
16763 
16764   case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci:
16765   case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci:
16766   case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci:
16767   case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci:
16768   case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci:
16769   case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci:
16770   case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr:
16771   case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr:
16772   case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr:
16773   case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr:
16774   case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr:
16775   case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr:
16776     return MakeCircOp(ID, /*IsLoad=*/true);
16777   case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci:
16778   case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci:
16779   case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci:
16780   case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci:
16781   case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci:
16782   case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr:
16783   case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr:
16784   case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr:
16785   case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr:
16786   case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr:
16787     return MakeCircOp(ID, /*IsLoad=*/false);
16788   case Hexagon::BI__builtin_brev_ldub:
16789     return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty);
16790   case Hexagon::BI__builtin_brev_ldb:
16791     return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty);
16792   case Hexagon::BI__builtin_brev_lduh:
16793     return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty);
16794   case Hexagon::BI__builtin_brev_ldh:
16795     return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty);
16796   case Hexagon::BI__builtin_brev_ldw:
16797     return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty);
16798   case Hexagon::BI__builtin_brev_ldd:
16799     return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty);
16800 
16801   default: {
16802     if (ID == Intrinsic::not_intrinsic)
16803       return nullptr;
16804 
16805     auto IsVectorPredTy = [](llvm::Type *T) {
16806       return T->isVectorTy() &&
16807              cast<llvm::VectorType>(T)->getElementType()->isIntegerTy(1);
16808     };
16809 
16810     llvm::Function *IntrFn = CGM.getIntrinsic(ID);
16811     llvm::FunctionType *IntrTy = IntrFn->getFunctionType();
16812     SmallVector<llvm::Value*,4> Ops;
16813     for (unsigned i = 0, e = IntrTy->getNumParams(); i != e; ++i) {
16814       llvm::Type *T = IntrTy->getParamType(i);
16815       const Expr *A = E->getArg(i);
16816       if (IsVectorPredTy(T)) {
16817         // There will be an implicit cast to a boolean vector. Strip it.
16818         if (auto *Cast = dyn_cast<ImplicitCastExpr>(A)) {
16819           if (Cast->getCastKind() == CK_BitCast)
16820             A = Cast->getSubExpr();
16821         }
16822         Ops.push_back(V2Q(EmitScalarExpr(A)));
16823       } else {
16824         Ops.push_back(EmitScalarExpr(A));
16825       }
16826     }
16827 
16828     llvm::Value *Call = Builder.CreateCall(IntrFn, Ops);
16829     if (IsVectorPredTy(IntrTy->getReturnType()))
16830       Call = Q2V(Call);
16831 
16832     return Call;
16833   } // default
16834   } // switch
16835 
16836   return nullptr;
16837 }
16838