1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Decl nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGBlocks.h"
14 #include "CGCXXABI.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "ConstantEmitter.h"
22 #include "PatternInit.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclOpenMP.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/CodeGen/CGFunctionInfo.h"
34 #include "clang/Sema/Sema.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/Type.h"
40 #include <optional>
41 
42 using namespace clang;
43 using namespace CodeGen;
44 
45 static_assert(clang::Sema::MaximumAlignment <= llvm::Value::MaximumAlignment,
46               "Clang max alignment greater than what LLVM supports?");
47 
48 void CodeGenFunction::EmitDecl(const Decl &D) {
49   switch (D.getKind()) {
50   case Decl::BuiltinTemplate:
51   case Decl::TranslationUnit:
52   case Decl::ExternCContext:
53   case Decl::Namespace:
54   case Decl::UnresolvedUsingTypename:
55   case Decl::ClassTemplateSpecialization:
56   case Decl::ClassTemplatePartialSpecialization:
57   case Decl::VarTemplateSpecialization:
58   case Decl::VarTemplatePartialSpecialization:
59   case Decl::TemplateTypeParm:
60   case Decl::UnresolvedUsingValue:
61   case Decl::NonTypeTemplateParm:
62   case Decl::CXXDeductionGuide:
63   case Decl::CXXMethod:
64   case Decl::CXXConstructor:
65   case Decl::CXXDestructor:
66   case Decl::CXXConversion:
67   case Decl::Field:
68   case Decl::MSProperty:
69   case Decl::IndirectField:
70   case Decl::ObjCIvar:
71   case Decl::ObjCAtDefsField:
72   case Decl::ParmVar:
73   case Decl::ImplicitParam:
74   case Decl::ClassTemplate:
75   case Decl::VarTemplate:
76   case Decl::FunctionTemplate:
77   case Decl::TypeAliasTemplate:
78   case Decl::TemplateTemplateParm:
79   case Decl::ObjCMethod:
80   case Decl::ObjCCategory:
81   case Decl::ObjCProtocol:
82   case Decl::ObjCInterface:
83   case Decl::ObjCCategoryImpl:
84   case Decl::ObjCImplementation:
85   case Decl::ObjCProperty:
86   case Decl::ObjCCompatibleAlias:
87   case Decl::PragmaComment:
88   case Decl::PragmaDetectMismatch:
89   case Decl::AccessSpec:
90   case Decl::LinkageSpec:
91   case Decl::Export:
92   case Decl::ObjCPropertyImpl:
93   case Decl::FileScopeAsm:
94   case Decl::TopLevelStmt:
95   case Decl::Friend:
96   case Decl::FriendTemplate:
97   case Decl::Block:
98   case Decl::Captured:
99   case Decl::ClassScopeFunctionSpecialization:
100   case Decl::UsingShadow:
101   case Decl::ConstructorUsingShadow:
102   case Decl::ObjCTypeParam:
103   case Decl::Binding:
104   case Decl::UnresolvedUsingIfExists:
105   case Decl::HLSLBuffer:
106     llvm_unreachable("Declaration should not be in declstmts!");
107   case Decl::Record:    // struct/union/class X;
108   case Decl::CXXRecord: // struct/union/class X; [C++]
109     if (CGDebugInfo *DI = getDebugInfo())
110       if (cast<RecordDecl>(D).getDefinition())
111         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(&D)));
112     return;
113   case Decl::Enum:      // enum X;
114     if (CGDebugInfo *DI = getDebugInfo())
115       if (cast<EnumDecl>(D).getDefinition())
116         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(&D)));
117     return;
118   case Decl::Function:     // void X();
119   case Decl::EnumConstant: // enum ? { X = ? }
120   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
121   case Decl::Label:        // __label__ x;
122   case Decl::Import:
123   case Decl::MSGuid:    // __declspec(uuid("..."))
124   case Decl::UnnamedGlobalConstant:
125   case Decl::TemplateParamObject:
126   case Decl::OMPThreadPrivate:
127   case Decl::OMPAllocate:
128   case Decl::OMPCapturedExpr:
129   case Decl::OMPRequires:
130   case Decl::Empty:
131   case Decl::Concept:
132   case Decl::ImplicitConceptSpecialization:
133   case Decl::LifetimeExtendedTemporary:
134   case Decl::RequiresExprBody:
135     // None of these decls require codegen support.
136     return;
137 
138   case Decl::NamespaceAlias:
139     if (CGDebugInfo *DI = getDebugInfo())
140         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
141     return;
142   case Decl::Using:          // using X; [C++]
143     if (CGDebugInfo *DI = getDebugInfo())
144         DI->EmitUsingDecl(cast<UsingDecl>(D));
145     return;
146   case Decl::UsingEnum: // using enum X; [C++]
147     if (CGDebugInfo *DI = getDebugInfo())
148       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(D));
149     return;
150   case Decl::UsingPack:
151     for (auto *Using : cast<UsingPackDecl>(D).expansions())
152       EmitDecl(*Using);
153     return;
154   case Decl::UsingDirective: // using namespace X; [C++]
155     if (CGDebugInfo *DI = getDebugInfo())
156       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
157     return;
158   case Decl::Var:
159   case Decl::Decomposition: {
160     const VarDecl &VD = cast<VarDecl>(D);
161     assert(VD.isLocalVarDecl() &&
162            "Should not see file-scope variables inside a function!");
163     EmitVarDecl(VD);
164     if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
165       for (auto *B : DD->bindings())
166         if (auto *HD = B->getHoldingVar())
167           EmitVarDecl(*HD);
168     return;
169   }
170 
171   case Decl::OMPDeclareReduction:
172     return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
173 
174   case Decl::OMPDeclareMapper:
175     return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this);
176 
177   case Decl::Typedef:      // typedef int X;
178   case Decl::TypeAlias: {  // using X = int; [C++0x]
179     QualType Ty = cast<TypedefNameDecl>(D).getUnderlyingType();
180     if (CGDebugInfo *DI = getDebugInfo())
181       DI->EmitAndRetainType(Ty);
182     if (Ty->isVariablyModifiedType())
183       EmitVariablyModifiedType(Ty);
184     return;
185   }
186   }
187 }
188 
189 /// EmitVarDecl - This method handles emission of any variable declaration
190 /// inside a function, including static vars etc.
191 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
192   if (D.hasExternalStorage())
193     // Don't emit it now, allow it to be emitted lazily on its first use.
194     return;
195 
196   // Some function-scope variable does not have static storage but still
197   // needs to be emitted like a static variable, e.g. a function-scope
198   // variable in constant address space in OpenCL.
199   if (D.getStorageDuration() != SD_Automatic) {
200     // Static sampler variables translated to function calls.
201     if (D.getType()->isSamplerT())
202       return;
203 
204     llvm::GlobalValue::LinkageTypes Linkage =
205         CGM.getLLVMLinkageVarDefinition(&D, /*IsConstant=*/false);
206 
207     // FIXME: We need to force the emission/use of a guard variable for
208     // some variables even if we can constant-evaluate them because
209     // we can't guarantee every translation unit will constant-evaluate them.
210 
211     return EmitStaticVarDecl(D, Linkage);
212   }
213 
214   if (D.getType().getAddressSpace() == LangAS::opencl_local)
215     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
216 
217   assert(D.hasLocalStorage());
218   return EmitAutoVarDecl(D);
219 }
220 
221 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
222   if (CGM.getLangOpts().CPlusPlus)
223     return CGM.getMangledName(&D).str();
224 
225   // If this isn't C++, we don't need a mangled name, just a pretty one.
226   assert(!D.isExternallyVisible() && "name shouldn't matter");
227   std::string ContextName;
228   const DeclContext *DC = D.getDeclContext();
229   if (auto *CD = dyn_cast<CapturedDecl>(DC))
230     DC = cast<DeclContext>(CD->getNonClosureContext());
231   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
232     ContextName = std::string(CGM.getMangledName(FD));
233   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
234     ContextName = std::string(CGM.getBlockMangledName(GlobalDecl(), BD));
235   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
236     ContextName = OMD->getSelector().getAsString();
237   else
238     llvm_unreachable("Unknown context for static var decl");
239 
240   ContextName += "." + D.getNameAsString();
241   return ContextName;
242 }
243 
244 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
245     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
246   // In general, we don't always emit static var decls once before we reference
247   // them. It is possible to reference them before emitting the function that
248   // contains them, and it is possible to emit the containing function multiple
249   // times.
250   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
251     return ExistingGV;
252 
253   QualType Ty = D.getType();
254   assert(Ty->isConstantSizeType() && "VLAs can't be static");
255 
256   // Use the label if the variable is renamed with the asm-label extension.
257   std::string Name;
258   if (D.hasAttr<AsmLabelAttr>())
259     Name = std::string(getMangledName(&D));
260   else
261     Name = getStaticDeclName(*this, D);
262 
263   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
264   LangAS AS = GetGlobalVarAddressSpace(&D);
265   unsigned TargetAS = getContext().getTargetAddressSpace(AS);
266 
267   // OpenCL variables in local address space and CUDA shared
268   // variables cannot have an initializer.
269   llvm::Constant *Init = nullptr;
270   if (Ty.getAddressSpace() == LangAS::opencl_local ||
271       D.hasAttr<CUDASharedAttr>() || D.hasAttr<LoaderUninitializedAttr>())
272     Init = llvm::UndefValue::get(LTy);
273   else
274     Init = EmitNullConstant(Ty);
275 
276   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
277       getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name,
278       nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
279   GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign());
280 
281   if (supportsCOMDAT() && GV->isWeakForLinker())
282     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
283 
284   if (D.getTLSKind())
285     setTLSMode(GV, D);
286 
287   setGVProperties(GV, &D);
288 
289   // Make sure the result is of the correct type.
290   LangAS ExpectedAS = Ty.getAddressSpace();
291   llvm::Constant *Addr = GV;
292   if (AS != ExpectedAS) {
293     Addr = getTargetCodeGenInfo().performAddrSpaceCast(
294         *this, GV, AS, ExpectedAS,
295         LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS)));
296   }
297 
298   setStaticLocalDeclAddress(&D, Addr);
299 
300   // Ensure that the static local gets initialized by making sure the parent
301   // function gets emitted eventually.
302   const Decl *DC = cast<Decl>(D.getDeclContext());
303 
304   // We can't name blocks or captured statements directly, so try to emit their
305   // parents.
306   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
307     DC = DC->getNonClosureContext();
308     // FIXME: Ensure that global blocks get emitted.
309     if (!DC)
310       return Addr;
311   }
312 
313   GlobalDecl GD;
314   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
315     GD = GlobalDecl(CD, Ctor_Base);
316   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
317     GD = GlobalDecl(DD, Dtor_Base);
318   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
319     GD = GlobalDecl(FD);
320   else {
321     // Don't do anything for Obj-C method decls or global closures. We should
322     // never defer them.
323     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
324   }
325   if (GD.getDecl()) {
326     // Disable emission of the parent function for the OpenMP device codegen.
327     CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this);
328     (void)GetAddrOfGlobal(GD);
329   }
330 
331   return Addr;
332 }
333 
334 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
335 /// global variable that has already been created for it.  If the initializer
336 /// has a different type than GV does, this may free GV and return a different
337 /// one.  Otherwise it just returns GV.
338 llvm::GlobalVariable *
339 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
340                                                llvm::GlobalVariable *GV) {
341   ConstantEmitter emitter(*this);
342   llvm::Constant *Init = emitter.tryEmitForInitializer(D);
343 
344   // If constant emission failed, then this should be a C++ static
345   // initializer.
346   if (!Init) {
347     if (!getLangOpts().CPlusPlus)
348       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
349     else if (D.hasFlexibleArrayInit(getContext()))
350       CGM.ErrorUnsupported(D.getInit(), "flexible array initializer");
351     else if (HaveInsertPoint()) {
352       // Since we have a static initializer, this global variable can't
353       // be constant.
354       GV->setConstant(false);
355 
356       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
357     }
358     return GV;
359   }
360 
361 #ifndef NDEBUG
362   CharUnits VarSize = CGM.getContext().getTypeSizeInChars(D.getType()) +
363                       D.getFlexibleArrayInitChars(getContext());
364   CharUnits CstSize = CharUnits::fromQuantity(
365       CGM.getDataLayout().getTypeAllocSize(Init->getType()));
366   assert(VarSize == CstSize && "Emitted constant has unexpected size");
367 #endif
368 
369   // The initializer may differ in type from the global. Rewrite
370   // the global to match the initializer.  (We have to do this
371   // because some types, like unions, can't be completely represented
372   // in the LLVM type system.)
373   if (GV->getValueType() != Init->getType()) {
374     llvm::GlobalVariable *OldGV = GV;
375 
376     GV = new llvm::GlobalVariable(
377         CGM.getModule(), Init->getType(), OldGV->isConstant(),
378         OldGV->getLinkage(), Init, "",
379         /*InsertBefore*/ OldGV, OldGV->getThreadLocalMode(),
380         OldGV->getType()->getPointerAddressSpace());
381     GV->setVisibility(OldGV->getVisibility());
382     GV->setDSOLocal(OldGV->isDSOLocal());
383     GV->setComdat(OldGV->getComdat());
384 
385     // Steal the name of the old global
386     GV->takeName(OldGV);
387 
388     // Replace all uses of the old global with the new global
389     llvm::Constant *NewPtrForOldDecl =
390     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
391     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
392 
393     // Erase the old global, since it is no longer used.
394     OldGV->eraseFromParent();
395   }
396 
397   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
398   GV->setInitializer(Init);
399 
400   emitter.finalize(GV);
401 
402   if (D.needsDestruction(getContext()) == QualType::DK_cxx_destructor &&
403       HaveInsertPoint()) {
404     // We have a constant initializer, but a nontrivial destructor. We still
405     // need to perform a guarded "initialization" in order to register the
406     // destructor.
407     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
408   }
409 
410   return GV;
411 }
412 
413 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
414                                       llvm::GlobalValue::LinkageTypes Linkage) {
415   // Check to see if we already have a global variable for this
416   // declaration.  This can happen when double-emitting function
417   // bodies, e.g. with complete and base constructors.
418   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
419   CharUnits alignment = getContext().getDeclAlign(&D);
420 
421   // Store into LocalDeclMap before generating initializer to handle
422   // circular references.
423   llvm::Type *elemTy = ConvertTypeForMem(D.getType());
424   setAddrOfLocalVar(&D, Address(addr, elemTy, alignment));
425 
426   // We can't have a VLA here, but we can have a pointer to a VLA,
427   // even though that doesn't really make any sense.
428   // Make sure to evaluate VLA bounds now so that we have them for later.
429   if (D.getType()->isVariablyModifiedType())
430     EmitVariablyModifiedType(D.getType());
431 
432   // Save the type in case adding the initializer forces a type change.
433   llvm::Type *expectedType = addr->getType();
434 
435   llvm::GlobalVariable *var =
436     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
437 
438   // CUDA's local and local static __shared__ variables should not
439   // have any non-empty initializers. This is ensured by Sema.
440   // Whatever initializer such variable may have when it gets here is
441   // a no-op and should not be emitted.
442   bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
443                          D.hasAttr<CUDASharedAttr>();
444   // If this value has an initializer, emit it.
445   if (D.getInit() && !isCudaSharedVar)
446     var = AddInitializerToStaticVarDecl(D, var);
447 
448   var->setAlignment(alignment.getAsAlign());
449 
450   if (D.hasAttr<AnnotateAttr>())
451     CGM.AddGlobalAnnotations(&D, var);
452 
453   if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
454     var->addAttribute("bss-section", SA->getName());
455   if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
456     var->addAttribute("data-section", SA->getName());
457   if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
458     var->addAttribute("rodata-section", SA->getName());
459   if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>())
460     var->addAttribute("relro-section", SA->getName());
461 
462   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
463     var->setSection(SA->getName());
464 
465   if (D.hasAttr<RetainAttr>())
466     CGM.addUsedGlobal(var);
467   else if (D.hasAttr<UsedAttr>())
468     CGM.addUsedOrCompilerUsedGlobal(var);
469 
470   // We may have to cast the constant because of the initializer
471   // mismatch above.
472   //
473   // FIXME: It is really dangerous to store this in the map; if anyone
474   // RAUW's the GV uses of this constant will be invalid.
475   llvm::Constant *castedAddr =
476     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
477   LocalDeclMap.find(&D)->second = Address(castedAddr, elemTy, alignment);
478   CGM.setStaticLocalDeclAddress(&D, castedAddr);
479 
480   CGM.getSanitizerMetadata()->reportGlobal(var, D);
481 
482   // Emit global variable debug descriptor for static vars.
483   CGDebugInfo *DI = getDebugInfo();
484   if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) {
485     DI->setLocation(D.getLocation());
486     DI->EmitGlobalVariable(var, &D);
487   }
488 }
489 
490 namespace {
491   struct DestroyObject final : EHScopeStack::Cleanup {
492     DestroyObject(Address addr, QualType type,
493                   CodeGenFunction::Destroyer *destroyer,
494                   bool useEHCleanupForArray)
495       : addr(addr), type(type), destroyer(destroyer),
496         useEHCleanupForArray(useEHCleanupForArray) {}
497 
498     Address addr;
499     QualType type;
500     CodeGenFunction::Destroyer *destroyer;
501     bool useEHCleanupForArray;
502 
503     void Emit(CodeGenFunction &CGF, Flags flags) override {
504       // Don't use an EH cleanup recursively from an EH cleanup.
505       bool useEHCleanupForArray =
506         flags.isForNormalCleanup() && this->useEHCleanupForArray;
507 
508       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
509     }
510   };
511 
512   template <class Derived>
513   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
514     DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag)
515         : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {}
516 
517     llvm::Value *NRVOFlag;
518     Address Loc;
519     QualType Ty;
520 
521     void Emit(CodeGenFunction &CGF, Flags flags) override {
522       // Along the exceptions path we always execute the dtor.
523       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
524 
525       llvm::BasicBlock *SkipDtorBB = nullptr;
526       if (NRVO) {
527         // If we exited via NRVO, we skip the destructor call.
528         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
529         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
530         llvm::Value *DidNRVO =
531           CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
532         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
533         CGF.EmitBlock(RunDtorBB);
534       }
535 
536       static_cast<Derived *>(this)->emitDestructorCall(CGF);
537 
538       if (NRVO) CGF.EmitBlock(SkipDtorBB);
539     }
540 
541     virtual ~DestroyNRVOVariable() = default;
542   };
543 
544   struct DestroyNRVOVariableCXX final
545       : DestroyNRVOVariable<DestroyNRVOVariableCXX> {
546     DestroyNRVOVariableCXX(Address addr, QualType type,
547                            const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag)
548         : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag),
549           Dtor(Dtor) {}
550 
551     const CXXDestructorDecl *Dtor;
552 
553     void emitDestructorCall(CodeGenFunction &CGF) {
554       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
555                                 /*ForVirtualBase=*/false,
556                                 /*Delegating=*/false, Loc, Ty);
557     }
558   };
559 
560   struct DestroyNRVOVariableC final
561       : DestroyNRVOVariable<DestroyNRVOVariableC> {
562     DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty)
563         : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {}
564 
565     void emitDestructorCall(CodeGenFunction &CGF) {
566       CGF.destroyNonTrivialCStruct(CGF, Loc, Ty);
567     }
568   };
569 
570   struct CallStackRestore final : EHScopeStack::Cleanup {
571     Address Stack;
572     CallStackRestore(Address Stack) : Stack(Stack) {}
573     bool isRedundantBeforeReturn() override { return true; }
574     void Emit(CodeGenFunction &CGF, Flags flags) override {
575       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
576       llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
577       CGF.Builder.CreateCall(F, V);
578     }
579   };
580 
581   struct ExtendGCLifetime final : EHScopeStack::Cleanup {
582     const VarDecl &Var;
583     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
584 
585     void Emit(CodeGenFunction &CGF, Flags flags) override {
586       // Compute the address of the local variable, in case it's a
587       // byref or something.
588       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
589                       Var.getType(), VK_LValue, SourceLocation());
590       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
591                                                 SourceLocation());
592       CGF.EmitExtendGCLifetime(value);
593     }
594   };
595 
596   struct CallCleanupFunction final : EHScopeStack::Cleanup {
597     llvm::Constant *CleanupFn;
598     const CGFunctionInfo &FnInfo;
599     const VarDecl &Var;
600 
601     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
602                         const VarDecl *Var)
603       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
604 
605     void Emit(CodeGenFunction &CGF, Flags flags) override {
606       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
607                       Var.getType(), VK_LValue, SourceLocation());
608       // Compute the address of the local variable, in case it's a byref
609       // or something.
610       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(CGF);
611 
612       // In some cases, the type of the function argument will be different from
613       // the type of the pointer. An example of this is
614       // void f(void* arg);
615       // __attribute__((cleanup(f))) void *g;
616       //
617       // To fix this we insert a bitcast here.
618       QualType ArgTy = FnInfo.arg_begin()->type;
619       llvm::Value *Arg =
620         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
621 
622       CallArgList Args;
623       Args.add(RValue::get(Arg),
624                CGF.getContext().getPointerType(Var.getType()));
625       auto Callee = CGCallee::forDirect(CleanupFn);
626       CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
627     }
628   };
629 } // end anonymous namespace
630 
631 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
632 /// variable with lifetime.
633 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
634                                     Address addr,
635                                     Qualifiers::ObjCLifetime lifetime) {
636   switch (lifetime) {
637   case Qualifiers::OCL_None:
638     llvm_unreachable("present but none");
639 
640   case Qualifiers::OCL_ExplicitNone:
641     // nothing to do
642     break;
643 
644   case Qualifiers::OCL_Strong: {
645     CodeGenFunction::Destroyer *destroyer =
646       (var.hasAttr<ObjCPreciseLifetimeAttr>()
647        ? CodeGenFunction::destroyARCStrongPrecise
648        : CodeGenFunction::destroyARCStrongImprecise);
649 
650     CleanupKind cleanupKind = CGF.getARCCleanupKind();
651     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
652                     cleanupKind & EHCleanup);
653     break;
654   }
655   case Qualifiers::OCL_Autoreleasing:
656     // nothing to do
657     break;
658 
659   case Qualifiers::OCL_Weak:
660     // __weak objects always get EH cleanups; otherwise, exceptions
661     // could cause really nasty crashes instead of mere leaks.
662     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
663                     CodeGenFunction::destroyARCWeak,
664                     /*useEHCleanup*/ true);
665     break;
666   }
667 }
668 
669 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
670   if (const Expr *e = dyn_cast<Expr>(s)) {
671     // Skip the most common kinds of expressions that make
672     // hierarchy-walking expensive.
673     s = e = e->IgnoreParenCasts();
674 
675     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
676       return (ref->getDecl() == &var);
677     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
678       const BlockDecl *block = be->getBlockDecl();
679       for (const auto &I : block->captures()) {
680         if (I.getVariable() == &var)
681           return true;
682       }
683     }
684   }
685 
686   for (const Stmt *SubStmt : s->children())
687     // SubStmt might be null; as in missing decl or conditional of an if-stmt.
688     if (SubStmt && isAccessedBy(var, SubStmt))
689       return true;
690 
691   return false;
692 }
693 
694 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
695   if (!decl) return false;
696   if (!isa<VarDecl>(decl)) return false;
697   const VarDecl *var = cast<VarDecl>(decl);
698   return isAccessedBy(*var, e);
699 }
700 
701 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
702                                    const LValue &destLV, const Expr *init) {
703   bool needsCast = false;
704 
705   while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
706     switch (castExpr->getCastKind()) {
707     // Look through casts that don't require representation changes.
708     case CK_NoOp:
709     case CK_BitCast:
710     case CK_BlockPointerToObjCPointerCast:
711       needsCast = true;
712       break;
713 
714     // If we find an l-value to r-value cast from a __weak variable,
715     // emit this operation as a copy or move.
716     case CK_LValueToRValue: {
717       const Expr *srcExpr = castExpr->getSubExpr();
718       if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
719         return false;
720 
721       // Emit the source l-value.
722       LValue srcLV = CGF.EmitLValue(srcExpr);
723 
724       // Handle a formal type change to avoid asserting.
725       auto srcAddr = srcLV.getAddress(CGF);
726       if (needsCast) {
727         srcAddr = CGF.Builder.CreateElementBitCast(
728             srcAddr, destLV.getAddress(CGF).getElementType());
729       }
730 
731       // If it was an l-value, use objc_copyWeak.
732       if (srcExpr->isLValue()) {
733         CGF.EmitARCCopyWeak(destLV.getAddress(CGF), srcAddr);
734       } else {
735         assert(srcExpr->isXValue());
736         CGF.EmitARCMoveWeak(destLV.getAddress(CGF), srcAddr);
737       }
738       return true;
739     }
740 
741     // Stop at anything else.
742     default:
743       return false;
744     }
745 
746     init = castExpr->getSubExpr();
747   }
748   return false;
749 }
750 
751 static void drillIntoBlockVariable(CodeGenFunction &CGF,
752                                    LValue &lvalue,
753                                    const VarDecl *var) {
754   lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(CGF), var));
755 }
756 
757 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS,
758                                            SourceLocation Loc) {
759   if (!SanOpts.has(SanitizerKind::NullabilityAssign))
760     return;
761 
762   auto Nullability = LHS.getType()->getNullability();
763   if (!Nullability || *Nullability != NullabilityKind::NonNull)
764     return;
765 
766   // Check if the right hand side of the assignment is nonnull, if the left
767   // hand side must be nonnull.
768   SanitizerScope SanScope(this);
769   llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS);
770   llvm::Constant *StaticData[] = {
771       EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()),
772       llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused.
773       llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)};
774   EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}},
775             SanitizerHandler::TypeMismatch, StaticData, RHS);
776 }
777 
778 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
779                                      LValue lvalue, bool capturedByInit) {
780   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
781   if (!lifetime) {
782     llvm::Value *value = EmitScalarExpr(init);
783     if (capturedByInit)
784       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
785     EmitNullabilityCheck(lvalue, value, init->getExprLoc());
786     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
787     return;
788   }
789 
790   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
791     init = DIE->getExpr();
792 
793   // If we're emitting a value with lifetime, we have to do the
794   // initialization *before* we leave the cleanup scopes.
795   if (auto *EWC = dyn_cast<ExprWithCleanups>(init)) {
796     CodeGenFunction::RunCleanupsScope Scope(*this);
797     return EmitScalarInit(EWC->getSubExpr(), D, lvalue, capturedByInit);
798   }
799 
800   // We have to maintain the illusion that the variable is
801   // zero-initialized.  If the variable might be accessed in its
802   // initializer, zero-initialize before running the initializer, then
803   // actually perform the initialization with an assign.
804   bool accessedByInit = false;
805   if (lifetime != Qualifiers::OCL_ExplicitNone)
806     accessedByInit = (capturedByInit || isAccessedBy(D, init));
807   if (accessedByInit) {
808     LValue tempLV = lvalue;
809     // Drill down to the __block object if necessary.
810     if (capturedByInit) {
811       // We can use a simple GEP for this because it can't have been
812       // moved yet.
813       tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(*this),
814                                               cast<VarDecl>(D),
815                                               /*follow*/ false));
816     }
817 
818     auto ty =
819         cast<llvm::PointerType>(tempLV.getAddress(*this).getElementType());
820     llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());
821 
822     // If __weak, we want to use a barrier under certain conditions.
823     if (lifetime == Qualifiers::OCL_Weak)
824       EmitARCInitWeak(tempLV.getAddress(*this), zero);
825 
826     // Otherwise just do a simple store.
827     else
828       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
829   }
830 
831   // Emit the initializer.
832   llvm::Value *value = nullptr;
833 
834   switch (lifetime) {
835   case Qualifiers::OCL_None:
836     llvm_unreachable("present but none");
837 
838   case Qualifiers::OCL_Strong: {
839     if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) {
840       value = EmitARCRetainScalarExpr(init);
841       break;
842     }
843     // If D is pseudo-strong, treat it like __unsafe_unretained here. This means
844     // that we omit the retain, and causes non-autoreleased return values to be
845     // immediately released.
846     [[fallthrough]];
847   }
848 
849   case Qualifiers::OCL_ExplicitNone:
850     value = EmitARCUnsafeUnretainedScalarExpr(init);
851     break;
852 
853   case Qualifiers::OCL_Weak: {
854     // If it's not accessed by the initializer, try to emit the
855     // initialization with a copy or move.
856     if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
857       return;
858     }
859 
860     // No way to optimize a producing initializer into this.  It's not
861     // worth optimizing for, because the value will immediately
862     // disappear in the common case.
863     value = EmitScalarExpr(init);
864 
865     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
866     if (accessedByInit)
867       EmitARCStoreWeak(lvalue.getAddress(*this), value, /*ignored*/ true);
868     else
869       EmitARCInitWeak(lvalue.getAddress(*this), value);
870     return;
871   }
872 
873   case Qualifiers::OCL_Autoreleasing:
874     value = EmitARCRetainAutoreleaseScalarExpr(init);
875     break;
876   }
877 
878   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
879 
880   EmitNullabilityCheck(lvalue, value, init->getExprLoc());
881 
882   // If the variable might have been accessed by its initializer, we
883   // might have to initialize with a barrier.  We have to do this for
884   // both __weak and __strong, but __weak got filtered out above.
885   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
886     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
887     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
888     EmitARCRelease(oldValue, ARCImpreciseLifetime);
889     return;
890   }
891 
892   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
893 }
894 
895 /// Decide whether we can emit the non-zero parts of the specified initializer
896 /// with equal or fewer than NumStores scalar stores.
897 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init,
898                                                unsigned &NumStores) {
899   // Zero and Undef never requires any extra stores.
900   if (isa<llvm::ConstantAggregateZero>(Init) ||
901       isa<llvm::ConstantPointerNull>(Init) ||
902       isa<llvm::UndefValue>(Init))
903     return true;
904   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
905       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
906       isa<llvm::ConstantExpr>(Init))
907     return Init->isNullValue() || NumStores--;
908 
909   // See if we can emit each element.
910   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
911     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
912       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
913       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
914         return false;
915     }
916     return true;
917   }
918 
919   if (llvm::ConstantDataSequential *CDS =
920         dyn_cast<llvm::ConstantDataSequential>(Init)) {
921     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
922       llvm::Constant *Elt = CDS->getElementAsConstant(i);
923       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
924         return false;
925     }
926     return true;
927   }
928 
929   // Anything else is hard and scary.
930   return false;
931 }
932 
933 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
934 /// the scalar stores that would be required.
935 static void emitStoresForInitAfterBZero(CodeGenModule &CGM,
936                                         llvm::Constant *Init, Address Loc,
937                                         bool isVolatile, CGBuilderTy &Builder,
938                                         bool IsAutoInit) {
939   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
940          "called emitStoresForInitAfterBZero for zero or undef value.");
941 
942   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
943       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
944       isa<llvm::ConstantExpr>(Init)) {
945     auto *I = Builder.CreateStore(Init, Loc, isVolatile);
946     if (IsAutoInit)
947       I->addAnnotationMetadata("auto-init");
948     return;
949   }
950 
951   if (llvm::ConstantDataSequential *CDS =
952           dyn_cast<llvm::ConstantDataSequential>(Init)) {
953     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
954       llvm::Constant *Elt = CDS->getElementAsConstant(i);
955 
956       // If necessary, get a pointer to the element and emit it.
957       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
958         emitStoresForInitAfterBZero(
959             CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile,
960             Builder, IsAutoInit);
961     }
962     return;
963   }
964 
965   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
966          "Unknown value type!");
967 
968   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
969     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
970 
971     // If necessary, get a pointer to the element and emit it.
972     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
973       emitStoresForInitAfterBZero(CGM, Elt,
974                                   Builder.CreateConstInBoundsGEP2_32(Loc, 0, i),
975                                   isVolatile, Builder, IsAutoInit);
976   }
977 }
978 
979 /// Decide whether we should use bzero plus some stores to initialize a local
980 /// variable instead of using a memcpy from a constant global.  It is beneficial
981 /// to use bzero if the global is all zeros, or mostly zeros and large.
982 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init,
983                                                  uint64_t GlobalSize) {
984   // If a global is all zeros, always use a bzero.
985   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
986 
987   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
988   // do it if it will require 6 or fewer scalar stores.
989   // TODO: Should budget depends on the size?  Avoiding a large global warrants
990   // plopping in more stores.
991   unsigned StoreBudget = 6;
992   uint64_t SizeLimit = 32;
993 
994   return GlobalSize > SizeLimit &&
995          canEmitInitWithFewStoresAfterBZero(Init, StoreBudget);
996 }
997 
998 /// Decide whether we should use memset to initialize a local variable instead
999 /// of using a memcpy from a constant global. Assumes we've already decided to
1000 /// not user bzero.
1001 /// FIXME We could be more clever, as we are for bzero above, and generate
1002 ///       memset followed by stores. It's unclear that's worth the effort.
1003 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init,
1004                                                 uint64_t GlobalSize,
1005                                                 const llvm::DataLayout &DL) {
1006   uint64_t SizeLimit = 32;
1007   if (GlobalSize <= SizeLimit)
1008     return nullptr;
1009   return llvm::isBytewiseValue(Init, DL);
1010 }
1011 
1012 /// Decide whether we want to split a constant structure or array store into a
1013 /// sequence of its fields' stores. This may cost us code size and compilation
1014 /// speed, but plays better with store optimizations.
1015 static bool shouldSplitConstantStore(CodeGenModule &CGM,
1016                                      uint64_t GlobalByteSize) {
1017   // Don't break things that occupy more than one cacheline.
1018   uint64_t ByteSizeLimit = 64;
1019   if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1020     return false;
1021   if (GlobalByteSize <= ByteSizeLimit)
1022     return true;
1023   return false;
1024 }
1025 
1026 enum class IsPattern { No, Yes };
1027 
1028 /// Generate a constant filled with either a pattern or zeroes.
1029 static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern,
1030                                         llvm::Type *Ty) {
1031   if (isPattern == IsPattern::Yes)
1032     return initializationPatternFor(CGM, Ty);
1033   else
1034     return llvm::Constant::getNullValue(Ty);
1035 }
1036 
1037 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1038                                         llvm::Constant *constant);
1039 
1040 /// Helper function for constWithPadding() to deal with padding in structures.
1041 static llvm::Constant *constStructWithPadding(CodeGenModule &CGM,
1042                                               IsPattern isPattern,
1043                                               llvm::StructType *STy,
1044                                               llvm::Constant *constant) {
1045   const llvm::DataLayout &DL = CGM.getDataLayout();
1046   const llvm::StructLayout *Layout = DL.getStructLayout(STy);
1047   llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
1048   unsigned SizeSoFar = 0;
1049   SmallVector<llvm::Constant *, 8> Values;
1050   bool NestedIntact = true;
1051   for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
1052     unsigned CurOff = Layout->getElementOffset(i);
1053     if (SizeSoFar < CurOff) {
1054       assert(!STy->isPacked());
1055       auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar);
1056       Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1057     }
1058     llvm::Constant *CurOp;
1059     if (constant->isZeroValue())
1060       CurOp = llvm::Constant::getNullValue(STy->getElementType(i));
1061     else
1062       CurOp = cast<llvm::Constant>(constant->getAggregateElement(i));
1063     auto *NewOp = constWithPadding(CGM, isPattern, CurOp);
1064     if (CurOp != NewOp)
1065       NestedIntact = false;
1066     Values.push_back(NewOp);
1067     SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType());
1068   }
1069   unsigned TotalSize = Layout->getSizeInBytes();
1070   if (SizeSoFar < TotalSize) {
1071     auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar);
1072     Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1073   }
1074   if (NestedIntact && Values.size() == STy->getNumElements())
1075     return constant;
1076   return llvm::ConstantStruct::getAnon(Values, STy->isPacked());
1077 }
1078 
1079 /// Replace all padding bytes in a given constant with either a pattern byte or
1080 /// 0x00.
1081 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1082                                         llvm::Constant *constant) {
1083   llvm::Type *OrigTy = constant->getType();
1084   if (const auto STy = dyn_cast<llvm::StructType>(OrigTy))
1085     return constStructWithPadding(CGM, isPattern, STy, constant);
1086   if (auto *ArrayTy = dyn_cast<llvm::ArrayType>(OrigTy)) {
1087     llvm::SmallVector<llvm::Constant *, 8> Values;
1088     uint64_t Size = ArrayTy->getNumElements();
1089     if (!Size)
1090       return constant;
1091     llvm::Type *ElemTy = ArrayTy->getElementType();
1092     bool ZeroInitializer = constant->isNullValue();
1093     llvm::Constant *OpValue, *PaddedOp;
1094     if (ZeroInitializer) {
1095       OpValue = llvm::Constant::getNullValue(ElemTy);
1096       PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1097     }
1098     for (unsigned Op = 0; Op != Size; ++Op) {
1099       if (!ZeroInitializer) {
1100         OpValue = constant->getAggregateElement(Op);
1101         PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1102       }
1103       Values.push_back(PaddedOp);
1104     }
1105     auto *NewElemTy = Values[0]->getType();
1106     if (NewElemTy == ElemTy)
1107       return constant;
1108     auto *NewArrayTy = llvm::ArrayType::get(NewElemTy, Size);
1109     return llvm::ConstantArray::get(NewArrayTy, Values);
1110   }
1111   // FIXME: Add handling for tail padding in vectors. Vectors don't
1112   // have padding between or inside elements, but the total amount of
1113   // data can be less than the allocated size.
1114   return constant;
1115 }
1116 
1117 Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D,
1118                                                llvm::Constant *Constant,
1119                                                CharUnits Align) {
1120   auto FunctionName = [&](const DeclContext *DC) -> std::string {
1121     if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1122       if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD))
1123         return CC->getNameAsString();
1124       if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD))
1125         return CD->getNameAsString();
1126       return std::string(getMangledName(FD));
1127     } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) {
1128       return OM->getNameAsString();
1129     } else if (isa<BlockDecl>(DC)) {
1130       return "<block>";
1131     } else if (isa<CapturedDecl>(DC)) {
1132       return "<captured>";
1133     } else {
1134       llvm_unreachable("expected a function or method");
1135     }
1136   };
1137 
1138   // Form a simple per-variable cache of these values in case we find we
1139   // want to reuse them.
1140   llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D];
1141   if (!CacheEntry || CacheEntry->getInitializer() != Constant) {
1142     auto *Ty = Constant->getType();
1143     bool isConstant = true;
1144     llvm::GlobalVariable *InsertBefore = nullptr;
1145     unsigned AS =
1146         getContext().getTargetAddressSpace(GetGlobalConstantAddressSpace());
1147     std::string Name;
1148     if (D.hasGlobalStorage())
1149       Name = getMangledName(&D).str() + ".const";
1150     else if (const DeclContext *DC = D.getParentFunctionOrMethod())
1151       Name = ("__const." + FunctionName(DC) + "." + D.getName()).str();
1152     else
1153       llvm_unreachable("local variable has no parent function or method");
1154     llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1155         getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage,
1156         Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS);
1157     GV->setAlignment(Align.getAsAlign());
1158     GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1159     CacheEntry = GV;
1160   } else if (CacheEntry->getAlignment() < uint64_t(Align.getQuantity())) {
1161     CacheEntry->setAlignment(Align.getAsAlign());
1162   }
1163 
1164   return Address(CacheEntry, CacheEntry->getValueType(), Align);
1165 }
1166 
1167 static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM,
1168                                                 const VarDecl &D,
1169                                                 CGBuilderTy &Builder,
1170                                                 llvm::Constant *Constant,
1171                                                 CharUnits Align) {
1172   Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align);
1173   return Builder.CreateElementBitCast(SrcPtr, CGM.Int8Ty);
1174 }
1175 
1176 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D,
1177                                   Address Loc, bool isVolatile,
1178                                   CGBuilderTy &Builder,
1179                                   llvm::Constant *constant, bool IsAutoInit) {
1180   auto *Ty = constant->getType();
1181   uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty);
1182   if (!ConstantSize)
1183     return;
1184 
1185   bool canDoSingleStore = Ty->isIntOrIntVectorTy() ||
1186                           Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy();
1187   if (canDoSingleStore) {
1188     auto *I = Builder.CreateStore(constant, Loc, isVolatile);
1189     if (IsAutoInit)
1190       I->addAnnotationMetadata("auto-init");
1191     return;
1192   }
1193 
1194   auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize);
1195 
1196   // If the initializer is all or mostly the same, codegen with bzero / memset
1197   // then do a few stores afterward.
1198   if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) {
1199     auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0),
1200                                    SizeVal, isVolatile);
1201     if (IsAutoInit)
1202       I->addAnnotationMetadata("auto-init");
1203 
1204     bool valueAlreadyCorrect =
1205         constant->isNullValue() || isa<llvm::UndefValue>(constant);
1206     if (!valueAlreadyCorrect) {
1207       Loc = Builder.CreateElementBitCast(Loc, Ty);
1208       emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder,
1209                                   IsAutoInit);
1210     }
1211     return;
1212   }
1213 
1214   // If the initializer is a repeated byte pattern, use memset.
1215   llvm::Value *Pattern =
1216       shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout());
1217   if (Pattern) {
1218     uint64_t Value = 0x00;
1219     if (!isa<llvm::UndefValue>(Pattern)) {
1220       const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue();
1221       assert(AP.getBitWidth() <= 8);
1222       Value = AP.getLimitedValue();
1223     }
1224     auto *I = Builder.CreateMemSet(
1225         Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal, isVolatile);
1226     if (IsAutoInit)
1227       I->addAnnotationMetadata("auto-init");
1228     return;
1229   }
1230 
1231   // If the initializer is small, use a handful of stores.
1232   if (shouldSplitConstantStore(CGM, ConstantSize)) {
1233     if (auto *STy = dyn_cast<llvm::StructType>(Ty)) {
1234       // FIXME: handle the case when STy != Loc.getElementType().
1235       if (STy == Loc.getElementType()) {
1236         for (unsigned i = 0; i != constant->getNumOperands(); i++) {
1237           Address EltPtr = Builder.CreateStructGEP(Loc, i);
1238           emitStoresForConstant(
1239               CGM, D, EltPtr, isVolatile, Builder,
1240               cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)),
1241               IsAutoInit);
1242         }
1243         return;
1244       }
1245     } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) {
1246       // FIXME: handle the case when ATy != Loc.getElementType().
1247       if (ATy == Loc.getElementType()) {
1248         for (unsigned i = 0; i != ATy->getNumElements(); i++) {
1249           Address EltPtr = Builder.CreateConstArrayGEP(Loc, i);
1250           emitStoresForConstant(
1251               CGM, D, EltPtr, isVolatile, Builder,
1252               cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)),
1253               IsAutoInit);
1254         }
1255         return;
1256       }
1257     }
1258   }
1259 
1260   // Copy from a global.
1261   auto *I =
1262       Builder.CreateMemCpy(Loc,
1263                            createUnnamedGlobalForMemcpyFrom(
1264                                CGM, D, Builder, constant, Loc.getAlignment()),
1265                            SizeVal, isVolatile);
1266   if (IsAutoInit)
1267     I->addAnnotationMetadata("auto-init");
1268 }
1269 
1270 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D,
1271                                   Address Loc, bool isVolatile,
1272                                   CGBuilderTy &Builder) {
1273   llvm::Type *ElTy = Loc.getElementType();
1274   llvm::Constant *constant =
1275       constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy));
1276   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant,
1277                         /*IsAutoInit=*/true);
1278 }
1279 
1280 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D,
1281                                      Address Loc, bool isVolatile,
1282                                      CGBuilderTy &Builder) {
1283   llvm::Type *ElTy = Loc.getElementType();
1284   llvm::Constant *constant = constWithPadding(
1285       CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1286   assert(!isa<llvm::UndefValue>(constant));
1287   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant,
1288                         /*IsAutoInit=*/true);
1289 }
1290 
1291 static bool containsUndef(llvm::Constant *constant) {
1292   auto *Ty = constant->getType();
1293   if (isa<llvm::UndefValue>(constant))
1294     return true;
1295   if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())
1296     for (llvm::Use &Op : constant->operands())
1297       if (containsUndef(cast<llvm::Constant>(Op)))
1298         return true;
1299   return false;
1300 }
1301 
1302 static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern,
1303                                     llvm::Constant *constant) {
1304   auto *Ty = constant->getType();
1305   if (isa<llvm::UndefValue>(constant))
1306     return patternOrZeroFor(CGM, isPattern, Ty);
1307   if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()))
1308     return constant;
1309   if (!containsUndef(constant))
1310     return constant;
1311   llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands());
1312   for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) {
1313     auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op));
1314     Values[Op] = replaceUndef(CGM, isPattern, OpValue);
1315   }
1316   if (Ty->isStructTy())
1317     return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values);
1318   if (Ty->isArrayTy())
1319     return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values);
1320   assert(Ty->isVectorTy());
1321   return llvm::ConstantVector::get(Values);
1322 }
1323 
1324 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
1325 /// variable declaration with auto, register, or no storage class specifier.
1326 /// These turn into simple stack objects, or GlobalValues depending on target.
1327 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
1328   AutoVarEmission emission = EmitAutoVarAlloca(D);
1329   EmitAutoVarInit(emission);
1330   EmitAutoVarCleanups(emission);
1331 }
1332 
1333 /// Emit a lifetime.begin marker if some criteria are satisfied.
1334 /// \return a pointer to the temporary size Value if a marker was emitted, null
1335 /// otherwise
1336 llvm::Value *CodeGenFunction::EmitLifetimeStart(llvm::TypeSize Size,
1337                                                 llvm::Value *Addr) {
1338   if (!ShouldEmitLifetimeMarkers)
1339     return nullptr;
1340 
1341   assert(Addr->getType()->getPointerAddressSpace() ==
1342              CGM.getDataLayout().getAllocaAddrSpace() &&
1343          "Pointer should be in alloca address space");
1344   llvm::Value *SizeV = llvm::ConstantInt::get(
1345       Int64Ty, Size.isScalable() ? -1 : Size.getFixedValue());
1346   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1347   llvm::CallInst *C =
1348       Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
1349   C->setDoesNotThrow();
1350   return SizeV;
1351 }
1352 
1353 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
1354   assert(Addr->getType()->getPointerAddressSpace() ==
1355              CGM.getDataLayout().getAllocaAddrSpace() &&
1356          "Pointer should be in alloca address space");
1357   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1358   llvm::CallInst *C =
1359       Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
1360   C->setDoesNotThrow();
1361 }
1362 
1363 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions(
1364     CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) {
1365   // For each dimension stores its QualType and corresponding
1366   // size-expression Value.
1367   SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions;
1368   SmallVector<IdentifierInfo *, 4> VLAExprNames;
1369 
1370   // Break down the array into individual dimensions.
1371   QualType Type1D = D.getType();
1372   while (getContext().getAsVariableArrayType(Type1D)) {
1373     auto VlaSize = getVLAElements1D(Type1D);
1374     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1375       Dimensions.emplace_back(C, Type1D.getUnqualifiedType());
1376     else {
1377       // Generate a locally unique name for the size expression.
1378       Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++);
1379       SmallString<12> Buffer;
1380       StringRef NameRef = Name.toStringRef(Buffer);
1381       auto &Ident = getContext().Idents.getOwn(NameRef);
1382       VLAExprNames.push_back(&Ident);
1383       auto SizeExprAddr =
1384           CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef);
1385       Builder.CreateStore(VlaSize.NumElts, SizeExprAddr);
1386       Dimensions.emplace_back(SizeExprAddr.getPointer(),
1387                               Type1D.getUnqualifiedType());
1388     }
1389     Type1D = VlaSize.Type;
1390   }
1391 
1392   if (!EmitDebugInfo)
1393     return;
1394 
1395   // Register each dimension's size-expression with a DILocalVariable,
1396   // so that it can be used by CGDebugInfo when instantiating a DISubrange
1397   // to describe this array.
1398   unsigned NameIdx = 0;
1399   for (auto &VlaSize : Dimensions) {
1400     llvm::Metadata *MD;
1401     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1402       MD = llvm::ConstantAsMetadata::get(C);
1403     else {
1404       // Create an artificial VarDecl to generate debug info for.
1405       IdentifierInfo *NameIdent = VLAExprNames[NameIdx++];
1406       assert(cast<llvm::PointerType>(VlaSize.NumElts->getType())
1407                  ->isOpaqueOrPointeeTypeMatches(SizeTy) &&
1408              "Number of VLA elements must be SizeTy");
1409       auto QT = getContext().getIntTypeForBitwidth(
1410           SizeTy->getScalarSizeInBits(), false);
1411       auto *ArtificialDecl = VarDecl::Create(
1412           getContext(), const_cast<DeclContext *>(D.getDeclContext()),
1413           D.getLocation(), D.getLocation(), NameIdent, QT,
1414           getContext().CreateTypeSourceInfo(QT), SC_Auto);
1415       ArtificialDecl->setImplicit();
1416 
1417       MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts,
1418                                          Builder);
1419     }
1420     assert(MD && "No Size expression debug node created");
1421     DI->registerVLASizeExpression(VlaSize.Type, MD);
1422   }
1423 }
1424 
1425 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
1426 /// local variable.  Does not emit initialization or destruction.
1427 CodeGenFunction::AutoVarEmission
1428 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
1429   QualType Ty = D.getType();
1430   assert(
1431       Ty.getAddressSpace() == LangAS::Default ||
1432       (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL));
1433 
1434   AutoVarEmission emission(D);
1435 
1436   bool isEscapingByRef = D.isEscapingByref();
1437   emission.IsEscapingByRef = isEscapingByRef;
1438 
1439   CharUnits alignment = getContext().getDeclAlign(&D);
1440 
1441   // If the type is variably-modified, emit all the VLA sizes for it.
1442   if (Ty->isVariablyModifiedType())
1443     EmitVariablyModifiedType(Ty);
1444 
1445   auto *DI = getDebugInfo();
1446   bool EmitDebugInfo = DI && CGM.getCodeGenOpts().hasReducedDebugInfo();
1447 
1448   Address address = Address::invalid();
1449   Address AllocaAddr = Address::invalid();
1450   Address OpenMPLocalAddr = Address::invalid();
1451   if (CGM.getLangOpts().OpenMPIRBuilder)
1452     OpenMPLocalAddr = OMPBuilderCBHelpers::getAddressOfLocalVariable(*this, &D);
1453   else
1454     OpenMPLocalAddr =
1455         getLangOpts().OpenMP
1456             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
1457             : Address::invalid();
1458 
1459   bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable();
1460 
1461   if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
1462     address = OpenMPLocalAddr;
1463     AllocaAddr = OpenMPLocalAddr;
1464   } else if (Ty->isConstantSizeType()) {
1465     // If this value is an array or struct with a statically determinable
1466     // constant initializer, there are optimizations we can do.
1467     //
1468     // TODO: We should constant-evaluate the initializer of any variable,
1469     // as long as it is initialized by a constant expression. Currently,
1470     // isConstantInitializer produces wrong answers for structs with
1471     // reference or bitfield members, and a few other cases, and checking
1472     // for POD-ness protects us from some of these.
1473     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
1474         (D.isConstexpr() ||
1475          ((Ty.isPODType(getContext()) ||
1476            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
1477           D.getInit()->isConstantInitializer(getContext(), false)))) {
1478 
1479       // If the variable's a const type, and it's neither an NRVO
1480       // candidate nor a __block variable and has no mutable members,
1481       // emit it as a global instead.
1482       // Exception is if a variable is located in non-constant address space
1483       // in OpenCL.
1484       if ((!getLangOpts().OpenCL ||
1485            Ty.getAddressSpace() == LangAS::opencl_constant) &&
1486           (CGM.getCodeGenOpts().MergeAllConstants && !NRVO &&
1487            !isEscapingByRef && CGM.isTypeConstant(Ty, true))) {
1488         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
1489 
1490         // Signal this condition to later callbacks.
1491         emission.Addr = Address::invalid();
1492         assert(emission.wasEmittedAsGlobal());
1493         return emission;
1494       }
1495 
1496       // Otherwise, tell the initialization code that we're in this case.
1497       emission.IsConstantAggregate = true;
1498     }
1499 
1500     // A normal fixed sized variable becomes an alloca in the entry block,
1501     // unless:
1502     // - it's an NRVO variable.
1503     // - we are compiling OpenMP and it's an OpenMP local variable.
1504     if (NRVO) {
1505       // The named return value optimization: allocate this variable in the
1506       // return slot, so that we can elide the copy when returning this
1507       // variable (C++0x [class.copy]p34).
1508       address = ReturnValue;
1509       AllocaAddr = ReturnValue;
1510 
1511       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1512         const auto *RD = RecordTy->getDecl();
1513         const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1514         if ((CXXRD && !CXXRD->hasTrivialDestructor()) ||
1515             RD->isNonTrivialToPrimitiveDestroy()) {
1516           // Create a flag that is used to indicate when the NRVO was applied
1517           // to this variable. Set it to zero to indicate that NRVO was not
1518           // applied.
1519           llvm::Value *Zero = Builder.getFalse();
1520           Address NRVOFlag =
1521               CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo",
1522                                /*ArraySize=*/nullptr, &AllocaAddr);
1523           EnsureInsertPoint();
1524           Builder.CreateStore(Zero, NRVOFlag);
1525 
1526           // Record the NRVO flag for this variable.
1527           NRVOFlags[&D] = NRVOFlag.getPointer();
1528           emission.NRVOFlag = NRVOFlag.getPointer();
1529         }
1530       }
1531     } else {
1532       CharUnits allocaAlignment;
1533       llvm::Type *allocaTy;
1534       if (isEscapingByRef) {
1535         auto &byrefInfo = getBlockByrefInfo(&D);
1536         allocaTy = byrefInfo.Type;
1537         allocaAlignment = byrefInfo.ByrefAlignment;
1538       } else {
1539         allocaTy = ConvertTypeForMem(Ty);
1540         allocaAlignment = alignment;
1541       }
1542 
1543       // Create the alloca.  Note that we set the name separately from
1544       // building the instruction so that it's there even in no-asserts
1545       // builds.
1546       address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(),
1547                                  /*ArraySize=*/nullptr, &AllocaAddr);
1548 
1549       // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1550       // the catch parameter starts in the catchpad instruction, and we can't
1551       // insert code in those basic blocks.
1552       bool IsMSCatchParam =
1553           D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
1554 
1555       // Emit a lifetime intrinsic if meaningful. There's no point in doing this
1556       // if we don't have a valid insertion point (?).
1557       if (HaveInsertPoint() && !IsMSCatchParam) {
1558         // If there's a jump into the lifetime of this variable, its lifetime
1559         // gets broken up into several regions in IR, which requires more work
1560         // to handle correctly. For now, just omit the intrinsics; this is a
1561         // rare case, and it's better to just be conservatively correct.
1562         // PR28267.
1563         //
1564         // We have to do this in all language modes if there's a jump past the
1565         // declaration. We also have to do it in C if there's a jump to an
1566         // earlier point in the current block because non-VLA lifetimes begin as
1567         // soon as the containing block is entered, not when its variables
1568         // actually come into scope; suppressing the lifetime annotations
1569         // completely in this case is unnecessarily pessimistic, but again, this
1570         // is rare.
1571         if (!Bypasses.IsBypassed(&D) &&
1572             !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) {
1573           llvm::TypeSize Size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
1574           emission.SizeForLifetimeMarkers =
1575               EmitLifetimeStart(Size, AllocaAddr.getPointer());
1576         }
1577       } else {
1578         assert(!emission.useLifetimeMarkers());
1579       }
1580     }
1581   } else {
1582     EnsureInsertPoint();
1583 
1584     if (!DidCallStackSave) {
1585       // Save the stack.
1586       Address Stack =
1587         CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
1588 
1589       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
1590       llvm::Value *V = Builder.CreateCall(F);
1591       Builder.CreateStore(V, Stack);
1592 
1593       DidCallStackSave = true;
1594 
1595       // Push a cleanup block and restore the stack there.
1596       // FIXME: in general circumstances, this should be an EH cleanup.
1597       pushStackRestore(NormalCleanup, Stack);
1598     }
1599 
1600     auto VlaSize = getVLASize(Ty);
1601     llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type);
1602 
1603     // Allocate memory for the array.
1604     address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts,
1605                                &AllocaAddr);
1606 
1607     // If we have debug info enabled, properly describe the VLA dimensions for
1608     // this type by registering the vla size expression for each of the
1609     // dimensions.
1610     EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo);
1611   }
1612 
1613   setAddrOfLocalVar(&D, address);
1614   emission.Addr = address;
1615   emission.AllocaAddr = AllocaAddr;
1616 
1617   // Emit debug info for local var declaration.
1618   if (EmitDebugInfo && HaveInsertPoint()) {
1619     Address DebugAddr = address;
1620     bool UsePointerValue = NRVO && ReturnValuePointer.isValid();
1621     DI->setLocation(D.getLocation());
1622 
1623     // If NRVO, use a pointer to the return address.
1624     if (UsePointerValue) {
1625       DebugAddr = ReturnValuePointer;
1626       AllocaAddr = ReturnValuePointer;
1627     }
1628     (void)DI->EmitDeclareOfAutoVariable(&D, AllocaAddr.getPointer(), Builder,
1629                                         UsePointerValue);
1630   }
1631 
1632   if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint())
1633     EmitVarAnnotations(&D, address.getPointer());
1634 
1635   // Make sure we call @llvm.lifetime.end.
1636   if (emission.useLifetimeMarkers())
1637     EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
1638                                          emission.getOriginalAllocatedAddress(),
1639                                          emission.getSizeForLifetimeMarkers());
1640 
1641   return emission;
1642 }
1643 
1644 static bool isCapturedBy(const VarDecl &, const Expr *);
1645 
1646 /// Determines whether the given __block variable is potentially
1647 /// captured by the given statement.
1648 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) {
1649   if (const Expr *E = dyn_cast<Expr>(S))
1650     return isCapturedBy(Var, E);
1651   for (const Stmt *SubStmt : S->children())
1652     if (isCapturedBy(Var, SubStmt))
1653       return true;
1654   return false;
1655 }
1656 
1657 /// Determines whether the given __block variable is potentially
1658 /// captured by the given expression.
1659 static bool isCapturedBy(const VarDecl &Var, const Expr *E) {
1660   // Skip the most common kinds of expressions that make
1661   // hierarchy-walking expensive.
1662   E = E->IgnoreParenCasts();
1663 
1664   if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) {
1665     const BlockDecl *Block = BE->getBlockDecl();
1666     for (const auto &I : Block->captures()) {
1667       if (I.getVariable() == &Var)
1668         return true;
1669     }
1670 
1671     // No need to walk into the subexpressions.
1672     return false;
1673   }
1674 
1675   if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
1676     const CompoundStmt *CS = SE->getSubStmt();
1677     for (const auto *BI : CS->body())
1678       if (const auto *BIE = dyn_cast<Expr>(BI)) {
1679         if (isCapturedBy(Var, BIE))
1680           return true;
1681       }
1682       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1683           // special case declarations
1684           for (const auto *I : DS->decls()) {
1685               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1686                 const Expr *Init = VD->getInit();
1687                 if (Init && isCapturedBy(Var, Init))
1688                   return true;
1689               }
1690           }
1691       }
1692       else
1693         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1694         // Later, provide code to poke into statements for capture analysis.
1695         return true;
1696     return false;
1697   }
1698 
1699   for (const Stmt *SubStmt : E->children())
1700     if (isCapturedBy(Var, SubStmt))
1701       return true;
1702 
1703   return false;
1704 }
1705 
1706 /// Determine whether the given initializer is trivial in the sense
1707 /// that it requires no code to be generated.
1708 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1709   if (!Init)
1710     return true;
1711 
1712   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1713     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1714       if (Constructor->isTrivial() &&
1715           Constructor->isDefaultConstructor() &&
1716           !Construct->requiresZeroInitialization())
1717         return true;
1718 
1719   return false;
1720 }
1721 
1722 void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type,
1723                                                       const VarDecl &D,
1724                                                       Address Loc) {
1725   auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit();
1726   CharUnits Size = getContext().getTypeSizeInChars(type);
1727   bool isVolatile = type.isVolatileQualified();
1728   if (!Size.isZero()) {
1729     switch (trivialAutoVarInit) {
1730     case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1731       llvm_unreachable("Uninitialized handled by caller");
1732     case LangOptions::TrivialAutoVarInitKind::Zero:
1733       if (CGM.stopAutoInit())
1734         return;
1735       emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder);
1736       break;
1737     case LangOptions::TrivialAutoVarInitKind::Pattern:
1738       if (CGM.stopAutoInit())
1739         return;
1740       emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder);
1741       break;
1742     }
1743     return;
1744   }
1745 
1746   // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to
1747   // them, so emit a memcpy with the VLA size to initialize each element.
1748   // Technically zero-sized or negative-sized VLAs are undefined, and UBSan
1749   // will catch that code, but there exists code which generates zero-sized
1750   // VLAs. Be nice and initialize whatever they requested.
1751   const auto *VlaType = getContext().getAsVariableArrayType(type);
1752   if (!VlaType)
1753     return;
1754   auto VlaSize = getVLASize(VlaType);
1755   auto SizeVal = VlaSize.NumElts;
1756   CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1757   switch (trivialAutoVarInit) {
1758   case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1759     llvm_unreachable("Uninitialized handled by caller");
1760 
1761   case LangOptions::TrivialAutoVarInitKind::Zero: {
1762     if (CGM.stopAutoInit())
1763       return;
1764     if (!EltSize.isOne())
1765       SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1766     auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0),
1767                                    SizeVal, isVolatile);
1768     I->addAnnotationMetadata("auto-init");
1769     break;
1770   }
1771 
1772   case LangOptions::TrivialAutoVarInitKind::Pattern: {
1773     if (CGM.stopAutoInit())
1774       return;
1775     llvm::Type *ElTy = Loc.getElementType();
1776     llvm::Constant *Constant = constWithPadding(
1777         CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1778     CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type);
1779     llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop");
1780     llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop");
1781     llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont");
1782     llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ(
1783         SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0),
1784         "vla.iszerosized");
1785     Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB);
1786     EmitBlock(SetupBB);
1787     if (!EltSize.isOne())
1788       SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1789     llvm::Value *BaseSizeInChars =
1790         llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity());
1791     Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin");
1792     llvm::Value *End = Builder.CreateInBoundsGEP(
1793         Begin.getElementType(), Begin.getPointer(), SizeVal, "vla.end");
1794     llvm::BasicBlock *OriginBB = Builder.GetInsertBlock();
1795     EmitBlock(LoopBB);
1796     llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur");
1797     Cur->addIncoming(Begin.getPointer(), OriginBB);
1798     CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize);
1799     auto *I =
1800         Builder.CreateMemCpy(Address(Cur, Int8Ty, CurAlign),
1801                              createUnnamedGlobalForMemcpyFrom(
1802                                  CGM, D, Builder, Constant, ConstantAlign),
1803                              BaseSizeInChars, isVolatile);
1804     I->addAnnotationMetadata("auto-init");
1805     llvm::Value *Next =
1806         Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next");
1807     llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone");
1808     Builder.CreateCondBr(Done, ContBB, LoopBB);
1809     Cur->addIncoming(Next, LoopBB);
1810     EmitBlock(ContBB);
1811   } break;
1812   }
1813 }
1814 
1815 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1816   assert(emission.Variable && "emission was not valid!");
1817 
1818   // If this was emitted as a global constant, we're done.
1819   if (emission.wasEmittedAsGlobal()) return;
1820 
1821   const VarDecl &D = *emission.Variable;
1822   auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1823   QualType type = D.getType();
1824 
1825   // If this local has an initializer, emit it now.
1826   const Expr *Init = D.getInit();
1827 
1828   // If we are at an unreachable point, we don't need to emit the initializer
1829   // unless it contains a label.
1830   if (!HaveInsertPoint()) {
1831     if (!Init || !ContainsLabel(Init)) return;
1832     EnsureInsertPoint();
1833   }
1834 
1835   // Initialize the structure of a __block variable.
1836   if (emission.IsEscapingByRef)
1837     emitByrefStructureInit(emission);
1838 
1839   // Initialize the variable here if it doesn't have a initializer and it is a
1840   // C struct that is non-trivial to initialize or an array containing such a
1841   // struct.
1842   if (!Init &&
1843       type.isNonTrivialToPrimitiveDefaultInitialize() ==
1844           QualType::PDIK_Struct) {
1845     LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type);
1846     if (emission.IsEscapingByRef)
1847       drillIntoBlockVariable(*this, Dst, &D);
1848     defaultInitNonTrivialCStructVar(Dst);
1849     return;
1850   }
1851 
1852   // Check whether this is a byref variable that's potentially
1853   // captured and moved by its own initializer.  If so, we'll need to
1854   // emit the initializer first, then copy into the variable.
1855   bool capturedByInit =
1856       Init && emission.IsEscapingByRef && isCapturedBy(D, Init);
1857 
1858   bool locIsByrefHeader = !capturedByInit;
1859   const Address Loc =
1860       locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr;
1861 
1862   // Note: constexpr already initializes everything correctly.
1863   LangOptions::TrivialAutoVarInitKind trivialAutoVarInit =
1864       (D.isConstexpr()
1865            ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1866            : (D.getAttr<UninitializedAttr>()
1867                   ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1868                   : getContext().getLangOpts().getTrivialAutoVarInit()));
1869 
1870   auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) {
1871     if (trivialAutoVarInit ==
1872         LangOptions::TrivialAutoVarInitKind::Uninitialized)
1873       return;
1874 
1875     // Only initialize a __block's storage: we always initialize the header.
1876     if (emission.IsEscapingByRef && !locIsByrefHeader)
1877       Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false);
1878 
1879     return emitZeroOrPatternForAutoVarInit(type, D, Loc);
1880   };
1881 
1882   if (isTrivialInitializer(Init))
1883     return initializeWhatIsTechnicallyUninitialized(Loc);
1884 
1885   llvm::Constant *constant = nullptr;
1886   if (emission.IsConstantAggregate ||
1887       D.mightBeUsableInConstantExpressions(getContext())) {
1888     assert(!capturedByInit && "constant init contains a capturing block?");
1889     constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D);
1890     if (constant && !constant->isZeroValue() &&
1891         (trivialAutoVarInit !=
1892          LangOptions::TrivialAutoVarInitKind::Uninitialized)) {
1893       IsPattern isPattern =
1894           (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern)
1895               ? IsPattern::Yes
1896               : IsPattern::No;
1897       // C guarantees that brace-init with fewer initializers than members in
1898       // the aggregate will initialize the rest of the aggregate as-if it were
1899       // static initialization. In turn static initialization guarantees that
1900       // padding is initialized to zero bits. We could instead pattern-init if D
1901       // has any ImplicitValueInitExpr, but that seems to be unintuitive
1902       // behavior.
1903       constant = constWithPadding(CGM, IsPattern::No,
1904                                   replaceUndef(CGM, isPattern, constant));
1905     }
1906   }
1907 
1908   if (!constant) {
1909     initializeWhatIsTechnicallyUninitialized(Loc);
1910     LValue lv = MakeAddrLValue(Loc, type);
1911     lv.setNonGC(true);
1912     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1913   }
1914 
1915   if (!emission.IsConstantAggregate) {
1916     // For simple scalar/complex initialization, store the value directly.
1917     LValue lv = MakeAddrLValue(Loc, type);
1918     lv.setNonGC(true);
1919     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1920   }
1921 
1922   emitStoresForConstant(CGM, D, Builder.CreateElementBitCast(Loc, CGM.Int8Ty),
1923                         type.isVolatileQualified(), Builder, constant,
1924                         /*IsAutoInit=*/false);
1925 }
1926 
1927 /// Emit an expression as an initializer for an object (variable, field, etc.)
1928 /// at the given location.  The expression is not necessarily the normal
1929 /// initializer for the object, and the address is not necessarily
1930 /// its normal location.
1931 ///
1932 /// \param init the initializing expression
1933 /// \param D the object to act as if we're initializing
1934 /// \param lvalue the lvalue to initialize
1935 /// \param capturedByInit true if \p D is a __block variable
1936 ///   whose address is potentially changed by the initializer
1937 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1938                                      LValue lvalue, bool capturedByInit) {
1939   QualType type = D->getType();
1940 
1941   if (type->isReferenceType()) {
1942     RValue rvalue = EmitReferenceBindingToExpr(init);
1943     if (capturedByInit)
1944       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1945     EmitStoreThroughLValue(rvalue, lvalue, true);
1946     return;
1947   }
1948   switch (getEvaluationKind(type)) {
1949   case TEK_Scalar:
1950     EmitScalarInit(init, D, lvalue, capturedByInit);
1951     return;
1952   case TEK_Complex: {
1953     ComplexPairTy complex = EmitComplexExpr(init);
1954     if (capturedByInit)
1955       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1956     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1957     return;
1958   }
1959   case TEK_Aggregate:
1960     if (type->isAtomicType()) {
1961       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1962     } else {
1963       AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap;
1964       if (isa<VarDecl>(D))
1965         Overlap = AggValueSlot::DoesNotOverlap;
1966       else if (auto *FD = dyn_cast<FieldDecl>(D))
1967         Overlap = getOverlapForFieldInit(FD);
1968       // TODO: how can we delay here if D is captured by its initializer?
1969       EmitAggExpr(init, AggValueSlot::forLValue(
1970                             lvalue, *this, AggValueSlot::IsDestructed,
1971                             AggValueSlot::DoesNotNeedGCBarriers,
1972                             AggValueSlot::IsNotAliased, Overlap));
1973     }
1974     return;
1975   }
1976   llvm_unreachable("bad evaluation kind");
1977 }
1978 
1979 /// Enter a destroy cleanup for the given local variable.
1980 void CodeGenFunction::emitAutoVarTypeCleanup(
1981                             const CodeGenFunction::AutoVarEmission &emission,
1982                             QualType::DestructionKind dtorKind) {
1983   assert(dtorKind != QualType::DK_none);
1984 
1985   // Note that for __block variables, we want to destroy the
1986   // original stack object, not the possibly forwarded object.
1987   Address addr = emission.getObjectAddress(*this);
1988 
1989   const VarDecl *var = emission.Variable;
1990   QualType type = var->getType();
1991 
1992   CleanupKind cleanupKind = NormalAndEHCleanup;
1993   CodeGenFunction::Destroyer *destroyer = nullptr;
1994 
1995   switch (dtorKind) {
1996   case QualType::DK_none:
1997     llvm_unreachable("no cleanup for trivially-destructible variable");
1998 
1999   case QualType::DK_cxx_destructor:
2000     // If there's an NRVO flag on the emission, we need a different
2001     // cleanup.
2002     if (emission.NRVOFlag) {
2003       assert(!type->isArrayType());
2004       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
2005       EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor,
2006                                                   emission.NRVOFlag);
2007       return;
2008     }
2009     break;
2010 
2011   case QualType::DK_objc_strong_lifetime:
2012     // Suppress cleanups for pseudo-strong variables.
2013     if (var->isARCPseudoStrong()) return;
2014 
2015     // Otherwise, consider whether to use an EH cleanup or not.
2016     cleanupKind = getARCCleanupKind();
2017 
2018     // Use the imprecise destroyer by default.
2019     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
2020       destroyer = CodeGenFunction::destroyARCStrongImprecise;
2021     break;
2022 
2023   case QualType::DK_objc_weak_lifetime:
2024     break;
2025 
2026   case QualType::DK_nontrivial_c_struct:
2027     destroyer = CodeGenFunction::destroyNonTrivialCStruct;
2028     if (emission.NRVOFlag) {
2029       assert(!type->isArrayType());
2030       EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr,
2031                                                 emission.NRVOFlag, type);
2032       return;
2033     }
2034     break;
2035   }
2036 
2037   // If we haven't chosen a more specific destroyer, use the default.
2038   if (!destroyer) destroyer = getDestroyer(dtorKind);
2039 
2040   // Use an EH cleanup in array destructors iff the destructor itself
2041   // is being pushed as an EH cleanup.
2042   bool useEHCleanup = (cleanupKind & EHCleanup);
2043   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
2044                                      useEHCleanup);
2045 }
2046 
2047 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
2048   assert(emission.Variable && "emission was not valid!");
2049 
2050   // If this was emitted as a global constant, we're done.
2051   if (emission.wasEmittedAsGlobal()) return;
2052 
2053   // If we don't have an insertion point, we're done.  Sema prevents
2054   // us from jumping into any of these scopes anyway.
2055   if (!HaveInsertPoint()) return;
2056 
2057   const VarDecl &D = *emission.Variable;
2058 
2059   // Check the type for a cleanup.
2060   if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext()))
2061     emitAutoVarTypeCleanup(emission, dtorKind);
2062 
2063   // In GC mode, honor objc_precise_lifetime.
2064   if (getLangOpts().getGC() != LangOptions::NonGC &&
2065       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
2066     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
2067   }
2068 
2069   // Handle the cleanup attribute.
2070   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
2071     const FunctionDecl *FD = CA->getFunctionDecl();
2072 
2073     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
2074     assert(F && "Could not find function!");
2075 
2076     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
2077     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
2078   }
2079 
2080   // If this is a block variable, call _Block_object_destroy
2081   // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
2082   // mode.
2083   if (emission.IsEscapingByRef &&
2084       CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
2085     BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF;
2086     if (emission.Variable->getType().isObjCGCWeak())
2087       Flags |= BLOCK_FIELD_IS_WEAK;
2088     enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags,
2089                       /*LoadBlockVarAddr*/ false,
2090                       cxxDestructorCanThrow(emission.Variable->getType()));
2091   }
2092 }
2093 
2094 CodeGenFunction::Destroyer *
2095 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
2096   switch (kind) {
2097   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
2098   case QualType::DK_cxx_destructor:
2099     return destroyCXXObject;
2100   case QualType::DK_objc_strong_lifetime:
2101     return destroyARCStrongPrecise;
2102   case QualType::DK_objc_weak_lifetime:
2103     return destroyARCWeak;
2104   case QualType::DK_nontrivial_c_struct:
2105     return destroyNonTrivialCStruct;
2106   }
2107   llvm_unreachable("Unknown DestructionKind");
2108 }
2109 
2110 /// pushEHDestroy - Push the standard destructor for the given type as
2111 /// an EH-only cleanup.
2112 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
2113                                     Address addr, QualType type) {
2114   assert(dtorKind && "cannot push destructor for trivial type");
2115   assert(needsEHCleanup(dtorKind));
2116 
2117   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
2118 }
2119 
2120 /// pushDestroy - Push the standard destructor for the given type as
2121 /// at least a normal cleanup.
2122 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
2123                                   Address addr, QualType type) {
2124   assert(dtorKind && "cannot push destructor for trivial type");
2125 
2126   CleanupKind cleanupKind = getCleanupKind(dtorKind);
2127   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
2128               cleanupKind & EHCleanup);
2129 }
2130 
2131 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
2132                                   QualType type, Destroyer *destroyer,
2133                                   bool useEHCleanupForArray) {
2134   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
2135                                      destroyer, useEHCleanupForArray);
2136 }
2137 
2138 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
2139   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
2140 }
2141 
2142 void CodeGenFunction::pushLifetimeExtendedDestroy(CleanupKind cleanupKind,
2143                                                   Address addr, QualType type,
2144                                                   Destroyer *destroyer,
2145                                                   bool useEHCleanupForArray) {
2146   // If we're not in a conditional branch, we don't need to bother generating a
2147   // conditional cleanup.
2148   if (!isInConditionalBranch()) {
2149     // Push an EH-only cleanup for the object now.
2150     // FIXME: When popping normal cleanups, we need to keep this EH cleanup
2151     // around in case a temporary's destructor throws an exception.
2152     if (cleanupKind & EHCleanup)
2153       EHStack.pushCleanup<DestroyObject>(
2154           static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
2155           destroyer, useEHCleanupForArray);
2156 
2157     return pushCleanupAfterFullExprWithActiveFlag<DestroyObject>(
2158         cleanupKind, Address::invalid(), addr, type, destroyer, useEHCleanupForArray);
2159   }
2160 
2161   // Otherwise, we should only destroy the object if it's been initialized.
2162   // Re-use the active flag and saved address across both the EH and end of
2163   // scope cleanups.
2164 
2165   using SavedType = typename DominatingValue<Address>::saved_type;
2166   using ConditionalCleanupType =
2167       EHScopeStack::ConditionalCleanup<DestroyObject, Address, QualType,
2168                                        Destroyer *, bool>;
2169 
2170   Address ActiveFlag = createCleanupActiveFlag();
2171   SavedType SavedAddr = saveValueInCond(addr);
2172 
2173   if (cleanupKind & EHCleanup) {
2174     EHStack.pushCleanup<ConditionalCleanupType>(
2175         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), SavedAddr, type,
2176         destroyer, useEHCleanupForArray);
2177     initFullExprCleanupWithFlag(ActiveFlag);
2178   }
2179 
2180   pushCleanupAfterFullExprWithActiveFlag<ConditionalCleanupType>(
2181       cleanupKind, ActiveFlag, SavedAddr, type, destroyer,
2182       useEHCleanupForArray);
2183 }
2184 
2185 /// emitDestroy - Immediately perform the destruction of the given
2186 /// object.
2187 ///
2188 /// \param addr - the address of the object; a type*
2189 /// \param type - the type of the object; if an array type, all
2190 ///   objects are destroyed in reverse order
2191 /// \param destroyer - the function to call to destroy individual
2192 ///   elements
2193 /// \param useEHCleanupForArray - whether an EH cleanup should be
2194 ///   used when destroying array elements, in case one of the
2195 ///   destructions throws an exception
2196 void CodeGenFunction::emitDestroy(Address addr, QualType type,
2197                                   Destroyer *destroyer,
2198                                   bool useEHCleanupForArray) {
2199   const ArrayType *arrayType = getContext().getAsArrayType(type);
2200   if (!arrayType)
2201     return destroyer(*this, addr, type);
2202 
2203   llvm::Value *length = emitArrayLength(arrayType, type, addr);
2204 
2205   CharUnits elementAlign =
2206     addr.getAlignment()
2207         .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
2208 
2209   // Normally we have to check whether the array is zero-length.
2210   bool checkZeroLength = true;
2211 
2212   // But if the array length is constant, we can suppress that.
2213   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
2214     // ...and if it's constant zero, we can just skip the entire thing.
2215     if (constLength->isZero()) return;
2216     checkZeroLength = false;
2217   }
2218 
2219   llvm::Value *begin = addr.getPointer();
2220   llvm::Value *end =
2221       Builder.CreateInBoundsGEP(addr.getElementType(), begin, length);
2222   emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2223                    checkZeroLength, useEHCleanupForArray);
2224 }
2225 
2226 /// emitArrayDestroy - Destroys all the elements of the given array,
2227 /// beginning from last to first.  The array cannot be zero-length.
2228 ///
2229 /// \param begin - a type* denoting the first element of the array
2230 /// \param end - a type* denoting one past the end of the array
2231 /// \param elementType - the element type of the array
2232 /// \param destroyer - the function to call to destroy elements
2233 /// \param useEHCleanup - whether to push an EH cleanup to destroy
2234 ///   the remaining elements in case the destruction of a single
2235 ///   element throws
2236 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
2237                                        llvm::Value *end,
2238                                        QualType elementType,
2239                                        CharUnits elementAlign,
2240                                        Destroyer *destroyer,
2241                                        bool checkZeroLength,
2242                                        bool useEHCleanup) {
2243   assert(!elementType->isArrayType());
2244 
2245   // The basic structure here is a do-while loop, because we don't
2246   // need to check for the zero-element case.
2247   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
2248   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
2249 
2250   if (checkZeroLength) {
2251     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
2252                                                 "arraydestroy.isempty");
2253     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
2254   }
2255 
2256   // Enter the loop body, making that address the current address.
2257   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
2258   EmitBlock(bodyBB);
2259   llvm::PHINode *elementPast =
2260     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
2261   elementPast->addIncoming(end, entryBB);
2262 
2263   // Shift the address back by one element.
2264   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
2265   llvm::Type *llvmElementType = ConvertTypeForMem(elementType);
2266   llvm::Value *element = Builder.CreateInBoundsGEP(
2267       llvmElementType, elementPast, negativeOne, "arraydestroy.element");
2268 
2269   if (useEHCleanup)
2270     pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
2271                                    destroyer);
2272 
2273   // Perform the actual destruction there.
2274   destroyer(*this, Address(element, llvmElementType, elementAlign),
2275             elementType);
2276 
2277   if (useEHCleanup)
2278     PopCleanupBlock();
2279 
2280   // Check whether we've reached the end.
2281   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
2282   Builder.CreateCondBr(done, doneBB, bodyBB);
2283   elementPast->addIncoming(element, Builder.GetInsertBlock());
2284 
2285   // Done.
2286   EmitBlock(doneBB);
2287 }
2288 
2289 /// Perform partial array destruction as if in an EH cleanup.  Unlike
2290 /// emitArrayDestroy, the element type here may still be an array type.
2291 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
2292                                     llvm::Value *begin, llvm::Value *end,
2293                                     QualType type, CharUnits elementAlign,
2294                                     CodeGenFunction::Destroyer *destroyer) {
2295   llvm::Type *elemTy = CGF.ConvertTypeForMem(type);
2296 
2297   // If the element type is itself an array, drill down.
2298   unsigned arrayDepth = 0;
2299   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
2300     // VLAs don't require a GEP index to walk into.
2301     if (!isa<VariableArrayType>(arrayType))
2302       arrayDepth++;
2303     type = arrayType->getElementType();
2304   }
2305 
2306   if (arrayDepth) {
2307     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
2308 
2309     SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
2310     begin = CGF.Builder.CreateInBoundsGEP(
2311         elemTy, begin, gepIndices, "pad.arraybegin");
2312     end = CGF.Builder.CreateInBoundsGEP(
2313         elemTy, end, gepIndices, "pad.arrayend");
2314   }
2315 
2316   // Destroy the array.  We don't ever need an EH cleanup because we
2317   // assume that we're in an EH cleanup ourselves, so a throwing
2318   // destructor causes an immediate terminate.
2319   CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2320                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
2321 }
2322 
2323 namespace {
2324   /// RegularPartialArrayDestroy - a cleanup which performs a partial
2325   /// array destroy where the end pointer is regularly determined and
2326   /// does not need to be loaded from a local.
2327   class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2328     llvm::Value *ArrayBegin;
2329     llvm::Value *ArrayEnd;
2330     QualType ElementType;
2331     CodeGenFunction::Destroyer *Destroyer;
2332     CharUnits ElementAlign;
2333   public:
2334     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
2335                                QualType elementType, CharUnits elementAlign,
2336                                CodeGenFunction::Destroyer *destroyer)
2337       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
2338         ElementType(elementType), Destroyer(destroyer),
2339         ElementAlign(elementAlign) {}
2340 
2341     void Emit(CodeGenFunction &CGF, Flags flags) override {
2342       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
2343                               ElementType, ElementAlign, Destroyer);
2344     }
2345   };
2346 
2347   /// IrregularPartialArrayDestroy - a cleanup which performs a
2348   /// partial array destroy where the end pointer is irregularly
2349   /// determined and must be loaded from a local.
2350   class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2351     llvm::Value *ArrayBegin;
2352     Address ArrayEndPointer;
2353     QualType ElementType;
2354     CodeGenFunction::Destroyer *Destroyer;
2355     CharUnits ElementAlign;
2356   public:
2357     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
2358                                  Address arrayEndPointer,
2359                                  QualType elementType,
2360                                  CharUnits elementAlign,
2361                                  CodeGenFunction::Destroyer *destroyer)
2362       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
2363         ElementType(elementType), Destroyer(destroyer),
2364         ElementAlign(elementAlign) {}
2365 
2366     void Emit(CodeGenFunction &CGF, Flags flags) override {
2367       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
2368       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
2369                               ElementType, ElementAlign, Destroyer);
2370     }
2371   };
2372 } // end anonymous namespace
2373 
2374 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
2375 /// already-constructed elements of the given array.  The cleanup
2376 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2377 ///
2378 /// \param elementType - the immediate element type of the array;
2379 ///   possibly still an array type
2380 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2381                                                        Address arrayEndPointer,
2382                                                        QualType elementType,
2383                                                        CharUnits elementAlign,
2384                                                        Destroyer *destroyer) {
2385   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
2386                                                     arrayBegin, arrayEndPointer,
2387                                                     elementType, elementAlign,
2388                                                     destroyer);
2389 }
2390 
2391 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
2392 /// already-constructed elements of the given array.  The cleanup
2393 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2394 ///
2395 /// \param elementType - the immediate element type of the array;
2396 ///   possibly still an array type
2397 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2398                                                      llvm::Value *arrayEnd,
2399                                                      QualType elementType,
2400                                                      CharUnits elementAlign,
2401                                                      Destroyer *destroyer) {
2402   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
2403                                                   arrayBegin, arrayEnd,
2404                                                   elementType, elementAlign,
2405                                                   destroyer);
2406 }
2407 
2408 /// Lazily declare the @llvm.lifetime.start intrinsic.
2409 llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() {
2410   if (LifetimeStartFn)
2411     return LifetimeStartFn;
2412   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
2413     llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy);
2414   return LifetimeStartFn;
2415 }
2416 
2417 /// Lazily declare the @llvm.lifetime.end intrinsic.
2418 llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() {
2419   if (LifetimeEndFn)
2420     return LifetimeEndFn;
2421   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
2422     llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy);
2423   return LifetimeEndFn;
2424 }
2425 
2426 namespace {
2427   /// A cleanup to perform a release of an object at the end of a
2428   /// function.  This is used to balance out the incoming +1 of a
2429   /// ns_consumed argument when we can't reasonably do that just by
2430   /// not doing the initial retain for a __block argument.
2431   struct ConsumeARCParameter final : EHScopeStack::Cleanup {
2432     ConsumeARCParameter(llvm::Value *param,
2433                         ARCPreciseLifetime_t precise)
2434       : Param(param), Precise(precise) {}
2435 
2436     llvm::Value *Param;
2437     ARCPreciseLifetime_t Precise;
2438 
2439     void Emit(CodeGenFunction &CGF, Flags flags) override {
2440       CGF.EmitARCRelease(Param, Precise);
2441     }
2442   };
2443 } // end anonymous namespace
2444 
2445 /// Emit an alloca (or GlobalValue depending on target)
2446 /// for the specified parameter and set up LocalDeclMap.
2447 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
2448                                    unsigned ArgNo) {
2449   bool NoDebugInfo = false;
2450   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
2451   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
2452          "Invalid argument to EmitParmDecl");
2453 
2454   Arg.getAnyValue()->setName(D.getName());
2455 
2456   QualType Ty = D.getType();
2457 
2458   // Use better IR generation for certain implicit parameters.
2459   if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
2460     // The only implicit argument a block has is its literal.
2461     // This may be passed as an inalloca'ed value on Windows x86.
2462     if (BlockInfo) {
2463       llvm::Value *V = Arg.isIndirect()
2464                            ? Builder.CreateLoad(Arg.getIndirectAddress())
2465                            : Arg.getDirectValue();
2466       setBlockContextParameter(IPD, ArgNo, V);
2467       return;
2468     }
2469     // Suppressing debug info for ThreadPrivateVar parameters, else it hides
2470     // debug info of TLS variables.
2471     NoDebugInfo =
2472         (IPD->getParameterKind() == ImplicitParamDecl::ThreadPrivateVar);
2473   }
2474 
2475   Address DeclPtr = Address::invalid();
2476   Address AllocaPtr = Address::invalid();
2477   bool DoStore = false;
2478   bool IsScalar = hasScalarEvaluationKind(Ty);
2479   // If we already have a pointer to the argument, reuse the input pointer.
2480   if (Arg.isIndirect()) {
2481     // If we have a prettier pointer type at this point, bitcast to that.
2482     DeclPtr = Arg.getIndirectAddress();
2483     DeclPtr = Builder.CreateElementBitCast(DeclPtr, ConvertTypeForMem(Ty),
2484                                            D.getName());
2485     // Indirect argument is in alloca address space, which may be different
2486     // from the default address space.
2487     auto AllocaAS = CGM.getASTAllocaAddressSpace();
2488     auto *V = DeclPtr.getPointer();
2489     AllocaPtr = DeclPtr;
2490     auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS;
2491     auto DestLangAS =
2492         getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default;
2493     if (SrcLangAS != DestLangAS) {
2494       assert(getContext().getTargetAddressSpace(SrcLangAS) ==
2495              CGM.getDataLayout().getAllocaAddrSpace());
2496       auto DestAS = getContext().getTargetAddressSpace(DestLangAS);
2497       auto *T = DeclPtr.getElementType()->getPointerTo(DestAS);
2498       DeclPtr = DeclPtr.withPointer(getTargetHooks().performAddrSpaceCast(
2499           *this, V, SrcLangAS, DestLangAS, T, true));
2500     }
2501 
2502     // Push a destructor cleanup for this parameter if the ABI requires it.
2503     // Don't push a cleanup in a thunk for a method that will also emit a
2504     // cleanup.
2505     if (Ty->isRecordType() && !CurFuncIsThunk &&
2506         Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
2507       if (QualType::DestructionKind DtorKind =
2508               D.needsDestruction(getContext())) {
2509         assert((DtorKind == QualType::DK_cxx_destructor ||
2510                 DtorKind == QualType::DK_nontrivial_c_struct) &&
2511                "unexpected destructor type");
2512         pushDestroy(DtorKind, DeclPtr, Ty);
2513         CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] =
2514             EHStack.stable_begin();
2515       }
2516     }
2517   } else {
2518     // Check if the parameter address is controlled by OpenMP runtime.
2519     Address OpenMPLocalAddr =
2520         getLangOpts().OpenMP
2521             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
2522             : Address::invalid();
2523     if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
2524       DeclPtr = OpenMPLocalAddr;
2525       AllocaPtr = DeclPtr;
2526     } else {
2527       // Otherwise, create a temporary to hold the value.
2528       DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
2529                               D.getName() + ".addr", &AllocaPtr);
2530     }
2531     DoStore = true;
2532   }
2533 
2534   llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
2535 
2536   LValue lv = MakeAddrLValue(DeclPtr, Ty);
2537   if (IsScalar) {
2538     Qualifiers qs = Ty.getQualifiers();
2539     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
2540       // We honor __attribute__((ns_consumed)) for types with lifetime.
2541       // For __strong, it's handled by just skipping the initial retain;
2542       // otherwise we have to balance out the initial +1 with an extra
2543       // cleanup to do the release at the end of the function.
2544       bool isConsumed = D.hasAttr<NSConsumedAttr>();
2545 
2546       // If a parameter is pseudo-strong then we can omit the implicit retain.
2547       if (D.isARCPseudoStrong()) {
2548         assert(lt == Qualifiers::OCL_Strong &&
2549                "pseudo-strong variable isn't strong?");
2550         assert(qs.hasConst() && "pseudo-strong variable should be const!");
2551         lt = Qualifiers::OCL_ExplicitNone;
2552       }
2553 
2554       // Load objects passed indirectly.
2555       if (Arg.isIndirect() && !ArgVal)
2556         ArgVal = Builder.CreateLoad(DeclPtr);
2557 
2558       if (lt == Qualifiers::OCL_Strong) {
2559         if (!isConsumed) {
2560           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2561             // use objc_storeStrong(&dest, value) for retaining the
2562             // object. But first, store a null into 'dest' because
2563             // objc_storeStrong attempts to release its old value.
2564             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
2565             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
2566             EmitARCStoreStrongCall(lv.getAddress(*this), ArgVal, true);
2567             DoStore = false;
2568           }
2569           else
2570           // Don't use objc_retainBlock for block pointers, because we
2571           // don't want to Block_copy something just because we got it
2572           // as a parameter.
2573             ArgVal = EmitARCRetainNonBlock(ArgVal);
2574         }
2575       } else {
2576         // Push the cleanup for a consumed parameter.
2577         if (isConsumed) {
2578           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
2579                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
2580           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
2581                                                    precise);
2582         }
2583 
2584         if (lt == Qualifiers::OCL_Weak) {
2585           EmitARCInitWeak(DeclPtr, ArgVal);
2586           DoStore = false; // The weak init is a store, no need to do two.
2587         }
2588       }
2589 
2590       // Enter the cleanup scope.
2591       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
2592     }
2593   }
2594 
2595   // Store the initial value into the alloca.
2596   if (DoStore)
2597     EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
2598 
2599   setAddrOfLocalVar(&D, DeclPtr);
2600 
2601   // Emit debug info for param declarations in non-thunk functions.
2602   if (CGDebugInfo *DI = getDebugInfo()) {
2603     if (CGM.getCodeGenOpts().hasReducedDebugInfo() && !CurFuncIsThunk &&
2604         !NoDebugInfo) {
2605       llvm::DILocalVariable *DILocalVar = DI->EmitDeclareOfArgVariable(
2606           &D, AllocaPtr.getPointer(), ArgNo, Builder);
2607       if (const auto *Var = dyn_cast_or_null<ParmVarDecl>(&D))
2608         DI->getParamDbgMappings().insert({Var, DILocalVar});
2609     }
2610   }
2611 
2612   if (D.hasAttr<AnnotateAttr>())
2613     EmitVarAnnotations(&D, DeclPtr.getPointer());
2614 
2615   // We can only check return value nullability if all arguments to the
2616   // function satisfy their nullability preconditions. This makes it necessary
2617   // to emit null checks for args in the function body itself.
2618   if (requiresReturnValueNullabilityCheck()) {
2619     auto Nullability = Ty->getNullability();
2620     if (Nullability && *Nullability == NullabilityKind::NonNull) {
2621       SanitizerScope SanScope(this);
2622       RetValNullabilityPrecondition =
2623           Builder.CreateAnd(RetValNullabilityPrecondition,
2624                             Builder.CreateIsNotNull(Arg.getAnyValue()));
2625     }
2626   }
2627 }
2628 
2629 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
2630                                             CodeGenFunction *CGF) {
2631   if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
2632     return;
2633   getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
2634 }
2635 
2636 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D,
2637                                          CodeGenFunction *CGF) {
2638   if (!LangOpts.OpenMP || LangOpts.OpenMPSimd ||
2639       (!LangOpts.EmitAllDecls && !D->isUsed()))
2640     return;
2641   getOpenMPRuntime().emitUserDefinedMapper(D, CGF);
2642 }
2643 
2644 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) {
2645   getOpenMPRuntime().processRequiresDirective(D);
2646 }
2647 
2648 void CodeGenModule::EmitOMPAllocateDecl(const OMPAllocateDecl *D) {
2649   for (const Expr *E : D->varlists()) {
2650     const auto *DE = cast<DeclRefExpr>(E);
2651     const auto *VD = cast<VarDecl>(DE->getDecl());
2652 
2653     // Skip all but globals.
2654     if (!VD->hasGlobalStorage())
2655       continue;
2656 
2657     // Check if the global has been materialized yet or not. If not, we are done
2658     // as any later generation will utilize the OMPAllocateDeclAttr. However, if
2659     // we already emitted the global we might have done so before the
2660     // OMPAllocateDeclAttr was attached, leading to the wrong address space
2661     // (potentially). While not pretty, common practise is to remove the old IR
2662     // global and generate a new one, so we do that here too. Uses are replaced
2663     // properly.
2664     StringRef MangledName = getMangledName(VD);
2665     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2666     if (!Entry)
2667       continue;
2668 
2669     // We can also keep the existing global if the address space is what we
2670     // expect it to be, if not, it is replaced.
2671     QualType ASTTy = VD->getType();
2672     clang::LangAS GVAS = GetGlobalVarAddressSpace(VD);
2673     auto TargetAS = getContext().getTargetAddressSpace(GVAS);
2674     if (Entry->getType()->getAddressSpace() == TargetAS)
2675       continue;
2676 
2677     // Make a new global with the correct type / address space.
2678     llvm::Type *Ty = getTypes().ConvertTypeForMem(ASTTy);
2679     llvm::PointerType *PTy = llvm::PointerType::get(Ty, TargetAS);
2680 
2681     // Replace all uses of the old global with a cast. Since we mutate the type
2682     // in place we neeed an intermediate that takes the spot of the old entry
2683     // until we can create the cast.
2684     llvm::GlobalVariable *DummyGV = new llvm::GlobalVariable(
2685         getModule(), Entry->getValueType(), false,
2686         llvm::GlobalValue::CommonLinkage, nullptr, "dummy", nullptr,
2687         llvm::GlobalVariable::NotThreadLocal, Entry->getAddressSpace());
2688     Entry->replaceAllUsesWith(DummyGV);
2689 
2690     Entry->mutateType(PTy);
2691     llvm::Constant *NewPtrForOldDecl =
2692         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2693             Entry, DummyGV->getType());
2694 
2695     // Now we have a casted version of the changed global, the dummy can be
2696     // replaced and deleted.
2697     DummyGV->replaceAllUsesWith(NewPtrForOldDecl);
2698     DummyGV->eraseFromParent();
2699   }
2700 }
2701 
2702 std::optional<CharUnits>
2703 CodeGenModule::getOMPAllocateAlignment(const VarDecl *VD) {
2704   if (const auto *AA = VD->getAttr<OMPAllocateDeclAttr>()) {
2705     if (Expr *Alignment = AA->getAlignment()) {
2706       unsigned UserAlign =
2707           Alignment->EvaluateKnownConstInt(getContext()).getExtValue();
2708       CharUnits NaturalAlign =
2709           getNaturalTypeAlignment(VD->getType().getNonReferenceType());
2710 
2711       // OpenMP5.1 pg 185 lines 7-10
2712       //   Each item in the align modifier list must be aligned to the maximum
2713       //   of the specified alignment and the type's natural alignment.
2714       return CharUnits::fromQuantity(
2715           std::max<unsigned>(UserAlign, NaturalAlign.getQuantity()));
2716     }
2717   }
2718   return std::nullopt;
2719 }
2720