1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Decl nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGBlocks.h"
14 #include "CGCXXABI.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "ConstantEmitter.h"
22 #include "PatternInit.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclOpenMP.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/CodeGen/CGFunctionInfo.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/GlobalVariable.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/Type.h"
39 
40 using namespace clang;
41 using namespace CodeGen;
42 
43 void CodeGenFunction::EmitDecl(const Decl &D) {
44   switch (D.getKind()) {
45   case Decl::BuiltinTemplate:
46   case Decl::TranslationUnit:
47   case Decl::ExternCContext:
48   case Decl::Namespace:
49   case Decl::UnresolvedUsingTypename:
50   case Decl::ClassTemplateSpecialization:
51   case Decl::ClassTemplatePartialSpecialization:
52   case Decl::VarTemplateSpecialization:
53   case Decl::VarTemplatePartialSpecialization:
54   case Decl::TemplateTypeParm:
55   case Decl::UnresolvedUsingValue:
56   case Decl::NonTypeTemplateParm:
57   case Decl::CXXDeductionGuide:
58   case Decl::CXXMethod:
59   case Decl::CXXConstructor:
60   case Decl::CXXDestructor:
61   case Decl::CXXConversion:
62   case Decl::Field:
63   case Decl::MSProperty:
64   case Decl::IndirectField:
65   case Decl::ObjCIvar:
66   case Decl::ObjCAtDefsField:
67   case Decl::ParmVar:
68   case Decl::ImplicitParam:
69   case Decl::ClassTemplate:
70   case Decl::VarTemplate:
71   case Decl::FunctionTemplate:
72   case Decl::TypeAliasTemplate:
73   case Decl::TemplateTemplateParm:
74   case Decl::ObjCMethod:
75   case Decl::ObjCCategory:
76   case Decl::ObjCProtocol:
77   case Decl::ObjCInterface:
78   case Decl::ObjCCategoryImpl:
79   case Decl::ObjCImplementation:
80   case Decl::ObjCProperty:
81   case Decl::ObjCCompatibleAlias:
82   case Decl::PragmaComment:
83   case Decl::PragmaDetectMismatch:
84   case Decl::AccessSpec:
85   case Decl::LinkageSpec:
86   case Decl::Export:
87   case Decl::ObjCPropertyImpl:
88   case Decl::FileScopeAsm:
89   case Decl::Friend:
90   case Decl::FriendTemplate:
91   case Decl::Block:
92   case Decl::Captured:
93   case Decl::ClassScopeFunctionSpecialization:
94   case Decl::UsingShadow:
95   case Decl::ConstructorUsingShadow:
96   case Decl::ObjCTypeParam:
97   case Decl::Binding:
98     llvm_unreachable("Declaration should not be in declstmts!");
99   case Decl::Function:  // void X();
100   case Decl::Record:    // struct/union/class X;
101   case Decl::Enum:      // enum X;
102   case Decl::EnumConstant: // enum ? { X = ? }
103   case Decl::CXXRecord: // struct/union/class X; [C++]
104   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
105   case Decl::Label:        // __label__ x;
106   case Decl::Import:
107   case Decl::OMPThreadPrivate:
108   case Decl::OMPAllocate:
109   case Decl::OMPCapturedExpr:
110   case Decl::OMPRequires:
111   case Decl::Empty:
112   case Decl::Concept:
113   case Decl::LifetimeExtendedTemporary:
114   case Decl::RequiresExprBody:
115     // None of these decls require codegen support.
116     return;
117 
118   case Decl::NamespaceAlias:
119     if (CGDebugInfo *DI = getDebugInfo())
120         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
121     return;
122   case Decl::Using:          // using X; [C++]
123     if (CGDebugInfo *DI = getDebugInfo())
124         DI->EmitUsingDecl(cast<UsingDecl>(D));
125     return;
126   case Decl::UsingPack:
127     for (auto *Using : cast<UsingPackDecl>(D).expansions())
128       EmitDecl(*Using);
129     return;
130   case Decl::UsingDirective: // using namespace X; [C++]
131     if (CGDebugInfo *DI = getDebugInfo())
132       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
133     return;
134   case Decl::Var:
135   case Decl::Decomposition: {
136     const VarDecl &VD = cast<VarDecl>(D);
137     assert(VD.isLocalVarDecl() &&
138            "Should not see file-scope variables inside a function!");
139     EmitVarDecl(VD);
140     if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
141       for (auto *B : DD->bindings())
142         if (auto *HD = B->getHoldingVar())
143           EmitVarDecl(*HD);
144     return;
145   }
146 
147   case Decl::OMPDeclareReduction:
148     return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
149 
150   case Decl::OMPDeclareMapper:
151     return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this);
152 
153   case Decl::Typedef:      // typedef int X;
154   case Decl::TypeAlias: {  // using X = int; [C++0x]
155     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
156     QualType Ty = TD.getUnderlyingType();
157 
158     if (Ty->isVariablyModifiedType())
159       EmitVariablyModifiedType(Ty);
160 
161     return;
162   }
163   }
164 }
165 
166 /// EmitVarDecl - This method handles emission of any variable declaration
167 /// inside a function, including static vars etc.
168 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
169   if (D.hasExternalStorage())
170     // Don't emit it now, allow it to be emitted lazily on its first use.
171     return;
172 
173   // Some function-scope variable does not have static storage but still
174   // needs to be emitted like a static variable, e.g. a function-scope
175   // variable in constant address space in OpenCL.
176   if (D.getStorageDuration() != SD_Automatic) {
177     // Static sampler variables translated to function calls.
178     if (D.getType()->isSamplerT())
179       return;
180 
181     llvm::GlobalValue::LinkageTypes Linkage =
182         CGM.getLLVMLinkageVarDefinition(&D, /*IsConstant=*/false);
183 
184     // FIXME: We need to force the emission/use of a guard variable for
185     // some variables even if we can constant-evaluate them because
186     // we can't guarantee every translation unit will constant-evaluate them.
187 
188     return EmitStaticVarDecl(D, Linkage);
189   }
190 
191   if (D.getType().getAddressSpace() == LangAS::opencl_local)
192     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
193 
194   assert(D.hasLocalStorage());
195   return EmitAutoVarDecl(D);
196 }
197 
198 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
199   if (CGM.getLangOpts().CPlusPlus)
200     return CGM.getMangledName(&D).str();
201 
202   // If this isn't C++, we don't need a mangled name, just a pretty one.
203   assert(!D.isExternallyVisible() && "name shouldn't matter");
204   std::string ContextName;
205   const DeclContext *DC = D.getDeclContext();
206   if (auto *CD = dyn_cast<CapturedDecl>(DC))
207     DC = cast<DeclContext>(CD->getNonClosureContext());
208   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
209     ContextName = CGM.getMangledName(FD);
210   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
211     ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
212   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
213     ContextName = OMD->getSelector().getAsString();
214   else
215     llvm_unreachable("Unknown context for static var decl");
216 
217   ContextName += "." + D.getNameAsString();
218   return ContextName;
219 }
220 
221 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
222     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
223   // In general, we don't always emit static var decls once before we reference
224   // them. It is possible to reference them before emitting the function that
225   // contains them, and it is possible to emit the containing function multiple
226   // times.
227   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
228     return ExistingGV;
229 
230   QualType Ty = D.getType();
231   assert(Ty->isConstantSizeType() && "VLAs can't be static");
232 
233   // Use the label if the variable is renamed with the asm-label extension.
234   std::string Name;
235   if (D.hasAttr<AsmLabelAttr>())
236     Name = getMangledName(&D);
237   else
238     Name = getStaticDeclName(*this, D);
239 
240   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
241   LangAS AS = GetGlobalVarAddressSpace(&D);
242   unsigned TargetAS = getContext().getTargetAddressSpace(AS);
243 
244   // OpenCL variables in local address space and CUDA shared
245   // variables cannot have an initializer.
246   llvm::Constant *Init = nullptr;
247   if (Ty.getAddressSpace() == LangAS::opencl_local ||
248       D.hasAttr<CUDASharedAttr>())
249     Init = llvm::UndefValue::get(LTy);
250   else
251     Init = EmitNullConstant(Ty);
252 
253   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
254       getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name,
255       nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
256   GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign());
257 
258   if (supportsCOMDAT() && GV->isWeakForLinker())
259     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
260 
261   if (D.getTLSKind())
262     setTLSMode(GV, D);
263 
264   setGVProperties(GV, &D);
265 
266   // Make sure the result is of the correct type.
267   LangAS ExpectedAS = Ty.getAddressSpace();
268   llvm::Constant *Addr = GV;
269   if (AS != ExpectedAS) {
270     Addr = getTargetCodeGenInfo().performAddrSpaceCast(
271         *this, GV, AS, ExpectedAS,
272         LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS)));
273   }
274 
275   setStaticLocalDeclAddress(&D, Addr);
276 
277   // Ensure that the static local gets initialized by making sure the parent
278   // function gets emitted eventually.
279   const Decl *DC = cast<Decl>(D.getDeclContext());
280 
281   // We can't name blocks or captured statements directly, so try to emit their
282   // parents.
283   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
284     DC = DC->getNonClosureContext();
285     // FIXME: Ensure that global blocks get emitted.
286     if (!DC)
287       return Addr;
288   }
289 
290   GlobalDecl GD;
291   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
292     GD = GlobalDecl(CD, Ctor_Base);
293   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
294     GD = GlobalDecl(DD, Dtor_Base);
295   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
296     GD = GlobalDecl(FD);
297   else {
298     // Don't do anything for Obj-C method decls or global closures. We should
299     // never defer them.
300     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
301   }
302   if (GD.getDecl()) {
303     // Disable emission of the parent function for the OpenMP device codegen.
304     CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this);
305     (void)GetAddrOfGlobal(GD);
306   }
307 
308   return Addr;
309 }
310 
311 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
312 /// global variable that has already been created for it.  If the initializer
313 /// has a different type than GV does, this may free GV and return a different
314 /// one.  Otherwise it just returns GV.
315 llvm::GlobalVariable *
316 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
317                                                llvm::GlobalVariable *GV) {
318   ConstantEmitter emitter(*this);
319   llvm::Constant *Init = emitter.tryEmitForInitializer(D);
320 
321   // If constant emission failed, then this should be a C++ static
322   // initializer.
323   if (!Init) {
324     if (!getLangOpts().CPlusPlus)
325       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
326     else if (HaveInsertPoint()) {
327       // Since we have a static initializer, this global variable can't
328       // be constant.
329       GV->setConstant(false);
330 
331       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
332     }
333     return GV;
334   }
335 
336   // The initializer may differ in type from the global. Rewrite
337   // the global to match the initializer.  (We have to do this
338   // because some types, like unions, can't be completely represented
339   // in the LLVM type system.)
340   if (GV->getType()->getElementType() != Init->getType()) {
341     llvm::GlobalVariable *OldGV = GV;
342 
343     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
344                                   OldGV->isConstant(),
345                                   OldGV->getLinkage(), Init, "",
346                                   /*InsertBefore*/ OldGV,
347                                   OldGV->getThreadLocalMode(),
348                            CGM.getContext().getTargetAddressSpace(D.getType()));
349     GV->setVisibility(OldGV->getVisibility());
350     GV->setDSOLocal(OldGV->isDSOLocal());
351     GV->setComdat(OldGV->getComdat());
352 
353     // Steal the name of the old global
354     GV->takeName(OldGV);
355 
356     // Replace all uses of the old global with the new global
357     llvm::Constant *NewPtrForOldDecl =
358     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
359     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
360 
361     // Erase the old global, since it is no longer used.
362     OldGV->eraseFromParent();
363   }
364 
365   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
366   GV->setInitializer(Init);
367 
368   emitter.finalize(GV);
369 
370   if (D.needsDestruction(getContext()) == QualType::DK_cxx_destructor &&
371       HaveInsertPoint()) {
372     // We have a constant initializer, but a nontrivial destructor. We still
373     // need to perform a guarded "initialization" in order to register the
374     // destructor.
375     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
376   }
377 
378   return GV;
379 }
380 
381 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
382                                       llvm::GlobalValue::LinkageTypes Linkage) {
383   // Check to see if we already have a global variable for this
384   // declaration.  This can happen when double-emitting function
385   // bodies, e.g. with complete and base constructors.
386   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
387   CharUnits alignment = getContext().getDeclAlign(&D);
388 
389   // Store into LocalDeclMap before generating initializer to handle
390   // circular references.
391   setAddrOfLocalVar(&D, Address(addr, alignment));
392 
393   // We can't have a VLA here, but we can have a pointer to a VLA,
394   // even though that doesn't really make any sense.
395   // Make sure to evaluate VLA bounds now so that we have them for later.
396   if (D.getType()->isVariablyModifiedType())
397     EmitVariablyModifiedType(D.getType());
398 
399   // Save the type in case adding the initializer forces a type change.
400   llvm::Type *expectedType = addr->getType();
401 
402   llvm::GlobalVariable *var =
403     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
404 
405   // CUDA's local and local static __shared__ variables should not
406   // have any non-empty initializers. This is ensured by Sema.
407   // Whatever initializer such variable may have when it gets here is
408   // a no-op and should not be emitted.
409   bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
410                          D.hasAttr<CUDASharedAttr>();
411   // If this value has an initializer, emit it.
412   if (D.getInit() && !isCudaSharedVar)
413     var = AddInitializerToStaticVarDecl(D, var);
414 
415   var->setAlignment(alignment.getAsAlign());
416 
417   if (D.hasAttr<AnnotateAttr>())
418     CGM.AddGlobalAnnotations(&D, var);
419 
420   if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
421     var->addAttribute("bss-section", SA->getName());
422   if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
423     var->addAttribute("data-section", SA->getName());
424   if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
425     var->addAttribute("rodata-section", SA->getName());
426   if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>())
427     var->addAttribute("relro-section", SA->getName());
428 
429   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
430     var->setSection(SA->getName());
431 
432   if (D.hasAttr<UsedAttr>())
433     CGM.addUsedGlobal(var);
434 
435   // We may have to cast the constant because of the initializer
436   // mismatch above.
437   //
438   // FIXME: It is really dangerous to store this in the map; if anyone
439   // RAUW's the GV uses of this constant will be invalid.
440   llvm::Constant *castedAddr =
441     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
442   if (var != castedAddr)
443     LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
444   CGM.setStaticLocalDeclAddress(&D, castedAddr);
445 
446   CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
447 
448   // Emit global variable debug descriptor for static vars.
449   CGDebugInfo *DI = getDebugInfo();
450   if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) {
451     DI->setLocation(D.getLocation());
452     DI->EmitGlobalVariable(var, &D);
453   }
454 }
455 
456 namespace {
457   struct DestroyObject final : EHScopeStack::Cleanup {
458     DestroyObject(Address addr, QualType type,
459                   CodeGenFunction::Destroyer *destroyer,
460                   bool useEHCleanupForArray)
461       : addr(addr), type(type), destroyer(destroyer),
462         useEHCleanupForArray(useEHCleanupForArray) {}
463 
464     Address addr;
465     QualType type;
466     CodeGenFunction::Destroyer *destroyer;
467     bool useEHCleanupForArray;
468 
469     void Emit(CodeGenFunction &CGF, Flags flags) override {
470       // Don't use an EH cleanup recursively from an EH cleanup.
471       bool useEHCleanupForArray =
472         flags.isForNormalCleanup() && this->useEHCleanupForArray;
473 
474       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
475     }
476   };
477 
478   template <class Derived>
479   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
480     DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag)
481         : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {}
482 
483     llvm::Value *NRVOFlag;
484     Address Loc;
485     QualType Ty;
486 
487     void Emit(CodeGenFunction &CGF, Flags flags) override {
488       // Along the exceptions path we always execute the dtor.
489       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
490 
491       llvm::BasicBlock *SkipDtorBB = nullptr;
492       if (NRVO) {
493         // If we exited via NRVO, we skip the destructor call.
494         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
495         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
496         llvm::Value *DidNRVO =
497           CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
498         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
499         CGF.EmitBlock(RunDtorBB);
500       }
501 
502       static_cast<Derived *>(this)->emitDestructorCall(CGF);
503 
504       if (NRVO) CGF.EmitBlock(SkipDtorBB);
505     }
506 
507     virtual ~DestroyNRVOVariable() = default;
508   };
509 
510   struct DestroyNRVOVariableCXX final
511       : DestroyNRVOVariable<DestroyNRVOVariableCXX> {
512     DestroyNRVOVariableCXX(Address addr, QualType type,
513                            const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag)
514         : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag),
515           Dtor(Dtor) {}
516 
517     const CXXDestructorDecl *Dtor;
518 
519     void emitDestructorCall(CodeGenFunction &CGF) {
520       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
521                                 /*ForVirtualBase=*/false,
522                                 /*Delegating=*/false, Loc, Ty);
523     }
524   };
525 
526   struct DestroyNRVOVariableC final
527       : DestroyNRVOVariable<DestroyNRVOVariableC> {
528     DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty)
529         : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {}
530 
531     void emitDestructorCall(CodeGenFunction &CGF) {
532       CGF.destroyNonTrivialCStruct(CGF, Loc, Ty);
533     }
534   };
535 
536   struct CallStackRestore final : EHScopeStack::Cleanup {
537     Address Stack;
538     CallStackRestore(Address Stack) : Stack(Stack) {}
539     void Emit(CodeGenFunction &CGF, Flags flags) override {
540       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
541       llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
542       CGF.Builder.CreateCall(F, V);
543     }
544   };
545 
546   struct ExtendGCLifetime final : EHScopeStack::Cleanup {
547     const VarDecl &Var;
548     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
549 
550     void Emit(CodeGenFunction &CGF, Flags flags) override {
551       // Compute the address of the local variable, in case it's a
552       // byref or something.
553       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
554                       Var.getType(), VK_LValue, SourceLocation());
555       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
556                                                 SourceLocation());
557       CGF.EmitExtendGCLifetime(value);
558     }
559   };
560 
561   struct CallCleanupFunction final : EHScopeStack::Cleanup {
562     llvm::Constant *CleanupFn;
563     const CGFunctionInfo &FnInfo;
564     const VarDecl &Var;
565 
566     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
567                         const VarDecl *Var)
568       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
569 
570     void Emit(CodeGenFunction &CGF, Flags flags) override {
571       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
572                       Var.getType(), VK_LValue, SourceLocation());
573       // Compute the address of the local variable, in case it's a byref
574       // or something.
575       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(CGF);
576 
577       // In some cases, the type of the function argument will be different from
578       // the type of the pointer. An example of this is
579       // void f(void* arg);
580       // __attribute__((cleanup(f))) void *g;
581       //
582       // To fix this we insert a bitcast here.
583       QualType ArgTy = FnInfo.arg_begin()->type;
584       llvm::Value *Arg =
585         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
586 
587       CallArgList Args;
588       Args.add(RValue::get(Arg),
589                CGF.getContext().getPointerType(Var.getType()));
590       auto Callee = CGCallee::forDirect(CleanupFn);
591       CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
592     }
593   };
594 } // end anonymous namespace
595 
596 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
597 /// variable with lifetime.
598 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
599                                     Address addr,
600                                     Qualifiers::ObjCLifetime lifetime) {
601   switch (lifetime) {
602   case Qualifiers::OCL_None:
603     llvm_unreachable("present but none");
604 
605   case Qualifiers::OCL_ExplicitNone:
606     // nothing to do
607     break;
608 
609   case Qualifiers::OCL_Strong: {
610     CodeGenFunction::Destroyer *destroyer =
611       (var.hasAttr<ObjCPreciseLifetimeAttr>()
612        ? CodeGenFunction::destroyARCStrongPrecise
613        : CodeGenFunction::destroyARCStrongImprecise);
614 
615     CleanupKind cleanupKind = CGF.getARCCleanupKind();
616     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
617                     cleanupKind & EHCleanup);
618     break;
619   }
620   case Qualifiers::OCL_Autoreleasing:
621     // nothing to do
622     break;
623 
624   case Qualifiers::OCL_Weak:
625     // __weak objects always get EH cleanups; otherwise, exceptions
626     // could cause really nasty crashes instead of mere leaks.
627     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
628                     CodeGenFunction::destroyARCWeak,
629                     /*useEHCleanup*/ true);
630     break;
631   }
632 }
633 
634 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
635   if (const Expr *e = dyn_cast<Expr>(s)) {
636     // Skip the most common kinds of expressions that make
637     // hierarchy-walking expensive.
638     s = e = e->IgnoreParenCasts();
639 
640     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
641       return (ref->getDecl() == &var);
642     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
643       const BlockDecl *block = be->getBlockDecl();
644       for (const auto &I : block->captures()) {
645         if (I.getVariable() == &var)
646           return true;
647       }
648     }
649   }
650 
651   for (const Stmt *SubStmt : s->children())
652     // SubStmt might be null; as in missing decl or conditional of an if-stmt.
653     if (SubStmt && isAccessedBy(var, SubStmt))
654       return true;
655 
656   return false;
657 }
658 
659 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
660   if (!decl) return false;
661   if (!isa<VarDecl>(decl)) return false;
662   const VarDecl *var = cast<VarDecl>(decl);
663   return isAccessedBy(*var, e);
664 }
665 
666 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
667                                    const LValue &destLV, const Expr *init) {
668   bool needsCast = false;
669 
670   while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
671     switch (castExpr->getCastKind()) {
672     // Look through casts that don't require representation changes.
673     case CK_NoOp:
674     case CK_BitCast:
675     case CK_BlockPointerToObjCPointerCast:
676       needsCast = true;
677       break;
678 
679     // If we find an l-value to r-value cast from a __weak variable,
680     // emit this operation as a copy or move.
681     case CK_LValueToRValue: {
682       const Expr *srcExpr = castExpr->getSubExpr();
683       if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
684         return false;
685 
686       // Emit the source l-value.
687       LValue srcLV = CGF.EmitLValue(srcExpr);
688 
689       // Handle a formal type change to avoid asserting.
690       auto srcAddr = srcLV.getAddress(CGF);
691       if (needsCast) {
692         srcAddr = CGF.Builder.CreateElementBitCast(
693             srcAddr, destLV.getAddress(CGF).getElementType());
694       }
695 
696       // If it was an l-value, use objc_copyWeak.
697       if (srcExpr->getValueKind() == VK_LValue) {
698         CGF.EmitARCCopyWeak(destLV.getAddress(CGF), srcAddr);
699       } else {
700         assert(srcExpr->getValueKind() == VK_XValue);
701         CGF.EmitARCMoveWeak(destLV.getAddress(CGF), srcAddr);
702       }
703       return true;
704     }
705 
706     // Stop at anything else.
707     default:
708       return false;
709     }
710 
711     init = castExpr->getSubExpr();
712   }
713   return false;
714 }
715 
716 static void drillIntoBlockVariable(CodeGenFunction &CGF,
717                                    LValue &lvalue,
718                                    const VarDecl *var) {
719   lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(CGF), var));
720 }
721 
722 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS,
723                                            SourceLocation Loc) {
724   if (!SanOpts.has(SanitizerKind::NullabilityAssign))
725     return;
726 
727   auto Nullability = LHS.getType()->getNullability(getContext());
728   if (!Nullability || *Nullability != NullabilityKind::NonNull)
729     return;
730 
731   // Check if the right hand side of the assignment is nonnull, if the left
732   // hand side must be nonnull.
733   SanitizerScope SanScope(this);
734   llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS);
735   llvm::Constant *StaticData[] = {
736       EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()),
737       llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused.
738       llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)};
739   EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}},
740             SanitizerHandler::TypeMismatch, StaticData, RHS);
741 }
742 
743 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
744                                      LValue lvalue, bool capturedByInit) {
745   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
746   if (!lifetime) {
747     llvm::Value *value = EmitScalarExpr(init);
748     if (capturedByInit)
749       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
750     EmitNullabilityCheck(lvalue, value, init->getExprLoc());
751     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
752     return;
753   }
754 
755   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
756     init = DIE->getExpr();
757 
758   // If we're emitting a value with lifetime, we have to do the
759   // initialization *before* we leave the cleanup scopes.
760   if (const FullExpr *fe = dyn_cast<FullExpr>(init)) {
761     enterFullExpression(fe);
762     init = fe->getSubExpr();
763   }
764   CodeGenFunction::RunCleanupsScope Scope(*this);
765 
766   // We have to maintain the illusion that the variable is
767   // zero-initialized.  If the variable might be accessed in its
768   // initializer, zero-initialize before running the initializer, then
769   // actually perform the initialization with an assign.
770   bool accessedByInit = false;
771   if (lifetime != Qualifiers::OCL_ExplicitNone)
772     accessedByInit = (capturedByInit || isAccessedBy(D, init));
773   if (accessedByInit) {
774     LValue tempLV = lvalue;
775     // Drill down to the __block object if necessary.
776     if (capturedByInit) {
777       // We can use a simple GEP for this because it can't have been
778       // moved yet.
779       tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(*this),
780                                               cast<VarDecl>(D),
781                                               /*follow*/ false));
782     }
783 
784     auto ty =
785         cast<llvm::PointerType>(tempLV.getAddress(*this).getElementType());
786     llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());
787 
788     // If __weak, we want to use a barrier under certain conditions.
789     if (lifetime == Qualifiers::OCL_Weak)
790       EmitARCInitWeak(tempLV.getAddress(*this), zero);
791 
792     // Otherwise just do a simple store.
793     else
794       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
795   }
796 
797   // Emit the initializer.
798   llvm::Value *value = nullptr;
799 
800   switch (lifetime) {
801   case Qualifiers::OCL_None:
802     llvm_unreachable("present but none");
803 
804   case Qualifiers::OCL_Strong: {
805     if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) {
806       value = EmitARCRetainScalarExpr(init);
807       break;
808     }
809     // If D is pseudo-strong, treat it like __unsafe_unretained here. This means
810     // that we omit the retain, and causes non-autoreleased return values to be
811     // immediately released.
812     LLVM_FALLTHROUGH;
813   }
814 
815   case Qualifiers::OCL_ExplicitNone:
816     value = EmitARCUnsafeUnretainedScalarExpr(init);
817     break;
818 
819   case Qualifiers::OCL_Weak: {
820     // If it's not accessed by the initializer, try to emit the
821     // initialization with a copy or move.
822     if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
823       return;
824     }
825 
826     // No way to optimize a producing initializer into this.  It's not
827     // worth optimizing for, because the value will immediately
828     // disappear in the common case.
829     value = EmitScalarExpr(init);
830 
831     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
832     if (accessedByInit)
833       EmitARCStoreWeak(lvalue.getAddress(*this), value, /*ignored*/ true);
834     else
835       EmitARCInitWeak(lvalue.getAddress(*this), value);
836     return;
837   }
838 
839   case Qualifiers::OCL_Autoreleasing:
840     value = EmitARCRetainAutoreleaseScalarExpr(init);
841     break;
842   }
843 
844   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
845 
846   EmitNullabilityCheck(lvalue, value, init->getExprLoc());
847 
848   // If the variable might have been accessed by its initializer, we
849   // might have to initialize with a barrier.  We have to do this for
850   // both __weak and __strong, but __weak got filtered out above.
851   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
852     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
853     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
854     EmitARCRelease(oldValue, ARCImpreciseLifetime);
855     return;
856   }
857 
858   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
859 }
860 
861 /// Decide whether we can emit the non-zero parts of the specified initializer
862 /// with equal or fewer than NumStores scalar stores.
863 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init,
864                                                unsigned &NumStores) {
865   // Zero and Undef never requires any extra stores.
866   if (isa<llvm::ConstantAggregateZero>(Init) ||
867       isa<llvm::ConstantPointerNull>(Init) ||
868       isa<llvm::UndefValue>(Init))
869     return true;
870   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
871       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
872       isa<llvm::ConstantExpr>(Init))
873     return Init->isNullValue() || NumStores--;
874 
875   // See if we can emit each element.
876   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
877     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
878       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
879       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
880         return false;
881     }
882     return true;
883   }
884 
885   if (llvm::ConstantDataSequential *CDS =
886         dyn_cast<llvm::ConstantDataSequential>(Init)) {
887     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
888       llvm::Constant *Elt = CDS->getElementAsConstant(i);
889       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
890         return false;
891     }
892     return true;
893   }
894 
895   // Anything else is hard and scary.
896   return false;
897 }
898 
899 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
900 /// the scalar stores that would be required.
901 static void emitStoresForInitAfterBZero(CodeGenModule &CGM,
902                                         llvm::Constant *Init, Address Loc,
903                                         bool isVolatile, CGBuilderTy &Builder) {
904   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
905          "called emitStoresForInitAfterBZero for zero or undef value.");
906 
907   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
908       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
909       isa<llvm::ConstantExpr>(Init)) {
910     Builder.CreateStore(Init, Loc, isVolatile);
911     return;
912   }
913 
914   if (llvm::ConstantDataSequential *CDS =
915           dyn_cast<llvm::ConstantDataSequential>(Init)) {
916     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
917       llvm::Constant *Elt = CDS->getElementAsConstant(i);
918 
919       // If necessary, get a pointer to the element and emit it.
920       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
921         emitStoresForInitAfterBZero(
922             CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile,
923             Builder);
924     }
925     return;
926   }
927 
928   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
929          "Unknown value type!");
930 
931   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
932     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
933 
934     // If necessary, get a pointer to the element and emit it.
935     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
936       emitStoresForInitAfterBZero(CGM, Elt,
937                                   Builder.CreateConstInBoundsGEP2_32(Loc, 0, i),
938                                   isVolatile, Builder);
939   }
940 }
941 
942 /// Decide whether we should use bzero plus some stores to initialize a local
943 /// variable instead of using a memcpy from a constant global.  It is beneficial
944 /// to use bzero if the global is all zeros, or mostly zeros and large.
945 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init,
946                                                  uint64_t GlobalSize) {
947   // If a global is all zeros, always use a bzero.
948   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
949 
950   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
951   // do it if it will require 6 or fewer scalar stores.
952   // TODO: Should budget depends on the size?  Avoiding a large global warrants
953   // plopping in more stores.
954   unsigned StoreBudget = 6;
955   uint64_t SizeLimit = 32;
956 
957   return GlobalSize > SizeLimit &&
958          canEmitInitWithFewStoresAfterBZero(Init, StoreBudget);
959 }
960 
961 /// Decide whether we should use memset to initialize a local variable instead
962 /// of using a memcpy from a constant global. Assumes we've already decided to
963 /// not user bzero.
964 /// FIXME We could be more clever, as we are for bzero above, and generate
965 ///       memset followed by stores. It's unclear that's worth the effort.
966 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init,
967                                                 uint64_t GlobalSize,
968                                                 const llvm::DataLayout &DL) {
969   uint64_t SizeLimit = 32;
970   if (GlobalSize <= SizeLimit)
971     return nullptr;
972   return llvm::isBytewiseValue(Init, DL);
973 }
974 
975 /// Decide whether we want to split a constant structure or array store into a
976 /// sequence of its fields' stores. This may cost us code size and compilation
977 /// speed, but plays better with store optimizations.
978 static bool shouldSplitConstantStore(CodeGenModule &CGM,
979                                      uint64_t GlobalByteSize) {
980   // Don't break things that occupy more than one cacheline.
981   uint64_t ByteSizeLimit = 64;
982   if (CGM.getCodeGenOpts().OptimizationLevel == 0)
983     return false;
984   if (GlobalByteSize <= ByteSizeLimit)
985     return true;
986   return false;
987 }
988 
989 enum class IsPattern { No, Yes };
990 
991 /// Generate a constant filled with either a pattern or zeroes.
992 static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern,
993                                         llvm::Type *Ty) {
994   if (isPattern == IsPattern::Yes)
995     return initializationPatternFor(CGM, Ty);
996   else
997     return llvm::Constant::getNullValue(Ty);
998 }
999 
1000 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1001                                         llvm::Constant *constant);
1002 
1003 /// Helper function for constWithPadding() to deal with padding in structures.
1004 static llvm::Constant *constStructWithPadding(CodeGenModule &CGM,
1005                                               IsPattern isPattern,
1006                                               llvm::StructType *STy,
1007                                               llvm::Constant *constant) {
1008   const llvm::DataLayout &DL = CGM.getDataLayout();
1009   const llvm::StructLayout *Layout = DL.getStructLayout(STy);
1010   llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
1011   unsigned SizeSoFar = 0;
1012   SmallVector<llvm::Constant *, 8> Values;
1013   bool NestedIntact = true;
1014   for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
1015     unsigned CurOff = Layout->getElementOffset(i);
1016     if (SizeSoFar < CurOff) {
1017       assert(!STy->isPacked());
1018       auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar);
1019       Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1020     }
1021     llvm::Constant *CurOp;
1022     if (constant->isZeroValue())
1023       CurOp = llvm::Constant::getNullValue(STy->getElementType(i));
1024     else
1025       CurOp = cast<llvm::Constant>(constant->getAggregateElement(i));
1026     auto *NewOp = constWithPadding(CGM, isPattern, CurOp);
1027     if (CurOp != NewOp)
1028       NestedIntact = false;
1029     Values.push_back(NewOp);
1030     SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType());
1031   }
1032   unsigned TotalSize = Layout->getSizeInBytes();
1033   if (SizeSoFar < TotalSize) {
1034     auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar);
1035     Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1036   }
1037   if (NestedIntact && Values.size() == STy->getNumElements())
1038     return constant;
1039   return llvm::ConstantStruct::getAnon(Values, STy->isPacked());
1040 }
1041 
1042 /// Replace all padding bytes in a given constant with either a pattern byte or
1043 /// 0x00.
1044 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1045                                         llvm::Constant *constant) {
1046   llvm::Type *OrigTy = constant->getType();
1047   if (const auto STy = dyn_cast<llvm::StructType>(OrigTy))
1048     return constStructWithPadding(CGM, isPattern, STy, constant);
1049   if (auto *STy = dyn_cast<llvm::SequentialType>(OrigTy)) {
1050     llvm::SmallVector<llvm::Constant *, 8> Values;
1051     unsigned Size = STy->getNumElements();
1052     if (!Size)
1053       return constant;
1054     llvm::Type *ElemTy = STy->getElementType();
1055     bool ZeroInitializer = constant->isZeroValue();
1056     llvm::Constant *OpValue, *PaddedOp;
1057     if (ZeroInitializer) {
1058       OpValue = llvm::Constant::getNullValue(ElemTy);
1059       PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1060     }
1061     for (unsigned Op = 0; Op != Size; ++Op) {
1062       if (!ZeroInitializer) {
1063         OpValue = constant->getAggregateElement(Op);
1064         PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1065       }
1066       Values.push_back(PaddedOp);
1067     }
1068     auto *NewElemTy = Values[0]->getType();
1069     if (NewElemTy == ElemTy)
1070       return constant;
1071     if (OrigTy->isArrayTy()) {
1072       auto *ArrayTy = llvm::ArrayType::get(NewElemTy, Size);
1073       return llvm::ConstantArray::get(ArrayTy, Values);
1074     } else {
1075       return llvm::ConstantVector::get(Values);
1076     }
1077   }
1078   return constant;
1079 }
1080 
1081 Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D,
1082                                                llvm::Constant *Constant,
1083                                                CharUnits Align) {
1084   auto FunctionName = [&](const DeclContext *DC) -> std::string {
1085     if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1086       if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD))
1087         return CC->getNameAsString();
1088       if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD))
1089         return CD->getNameAsString();
1090       return getMangledName(FD);
1091     } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) {
1092       return OM->getNameAsString();
1093     } else if (isa<BlockDecl>(DC)) {
1094       return "<block>";
1095     } else if (isa<CapturedDecl>(DC)) {
1096       return "<captured>";
1097     } else {
1098       llvm_unreachable("expected a function or method");
1099     }
1100   };
1101 
1102   // Form a simple per-variable cache of these values in case we find we
1103   // want to reuse them.
1104   llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D];
1105   if (!CacheEntry || CacheEntry->getInitializer() != Constant) {
1106     auto *Ty = Constant->getType();
1107     bool isConstant = true;
1108     llvm::GlobalVariable *InsertBefore = nullptr;
1109     unsigned AS =
1110         getContext().getTargetAddressSpace(getStringLiteralAddressSpace());
1111     std::string Name;
1112     if (D.hasGlobalStorage())
1113       Name = getMangledName(&D).str() + ".const";
1114     else if (const DeclContext *DC = D.getParentFunctionOrMethod())
1115       Name = ("__const." + FunctionName(DC) + "." + D.getName()).str();
1116     else
1117       llvm_unreachable("local variable has no parent function or method");
1118     llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1119         getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage,
1120         Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS);
1121     GV->setAlignment(Align.getAsAlign());
1122     GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1123     CacheEntry = GV;
1124   } else if (CacheEntry->getAlignment() < Align.getQuantity()) {
1125     CacheEntry->setAlignment(Align.getAsAlign());
1126   }
1127 
1128   return Address(CacheEntry, Align);
1129 }
1130 
1131 static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM,
1132                                                 const VarDecl &D,
1133                                                 CGBuilderTy &Builder,
1134                                                 llvm::Constant *Constant,
1135                                                 CharUnits Align) {
1136   Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align);
1137   llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(),
1138                                                    SrcPtr.getAddressSpace());
1139   if (SrcPtr.getType() != BP)
1140     SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1141   return SrcPtr;
1142 }
1143 
1144 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D,
1145                                   Address Loc, bool isVolatile,
1146                                   CGBuilderTy &Builder,
1147                                   llvm::Constant *constant) {
1148   auto *Ty = constant->getType();
1149   uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty);
1150   if (!ConstantSize)
1151     return;
1152 
1153   bool canDoSingleStore = Ty->isIntOrIntVectorTy() ||
1154                           Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy();
1155   if (canDoSingleStore) {
1156     Builder.CreateStore(constant, Loc, isVolatile);
1157     return;
1158   }
1159 
1160   auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize);
1161 
1162   // If the initializer is all or mostly the same, codegen with bzero / memset
1163   // then do a few stores afterward.
1164   if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) {
1165     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0), SizeVal,
1166                          isVolatile);
1167 
1168     bool valueAlreadyCorrect =
1169         constant->isNullValue() || isa<llvm::UndefValue>(constant);
1170     if (!valueAlreadyCorrect) {
1171       Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace()));
1172       emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder);
1173     }
1174     return;
1175   }
1176 
1177   // If the initializer is a repeated byte pattern, use memset.
1178   llvm::Value *Pattern =
1179       shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout());
1180   if (Pattern) {
1181     uint64_t Value = 0x00;
1182     if (!isa<llvm::UndefValue>(Pattern)) {
1183       const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue();
1184       assert(AP.getBitWidth() <= 8);
1185       Value = AP.getLimitedValue();
1186     }
1187     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal,
1188                          isVolatile);
1189     return;
1190   }
1191 
1192   // If the initializer is small, use a handful of stores.
1193   if (shouldSplitConstantStore(CGM, ConstantSize)) {
1194     if (auto *STy = dyn_cast<llvm::StructType>(Ty)) {
1195       // FIXME: handle the case when STy != Loc.getElementType().
1196       if (STy == Loc.getElementType()) {
1197         for (unsigned i = 0; i != constant->getNumOperands(); i++) {
1198           Address EltPtr = Builder.CreateStructGEP(Loc, i);
1199           emitStoresForConstant(
1200               CGM, D, EltPtr, isVolatile, Builder,
1201               cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)));
1202         }
1203         return;
1204       }
1205     } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) {
1206       // FIXME: handle the case when ATy != Loc.getElementType().
1207       if (ATy == Loc.getElementType()) {
1208         for (unsigned i = 0; i != ATy->getNumElements(); i++) {
1209           Address EltPtr = Builder.CreateConstArrayGEP(Loc, i);
1210           emitStoresForConstant(
1211               CGM, D, EltPtr, isVolatile, Builder,
1212               cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)));
1213         }
1214         return;
1215       }
1216     }
1217   }
1218 
1219   // Copy from a global.
1220   Builder.CreateMemCpy(Loc,
1221                        createUnnamedGlobalForMemcpyFrom(
1222                            CGM, D, Builder, constant, Loc.getAlignment()),
1223                        SizeVal, isVolatile);
1224 }
1225 
1226 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D,
1227                                   Address Loc, bool isVolatile,
1228                                   CGBuilderTy &Builder) {
1229   llvm::Type *ElTy = Loc.getElementType();
1230   llvm::Constant *constant =
1231       constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy));
1232   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
1233 }
1234 
1235 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D,
1236                                      Address Loc, bool isVolatile,
1237                                      CGBuilderTy &Builder) {
1238   llvm::Type *ElTy = Loc.getElementType();
1239   llvm::Constant *constant = constWithPadding(
1240       CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1241   assert(!isa<llvm::UndefValue>(constant));
1242   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
1243 }
1244 
1245 static bool containsUndef(llvm::Constant *constant) {
1246   auto *Ty = constant->getType();
1247   if (isa<llvm::UndefValue>(constant))
1248     return true;
1249   if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())
1250     for (llvm::Use &Op : constant->operands())
1251       if (containsUndef(cast<llvm::Constant>(Op)))
1252         return true;
1253   return false;
1254 }
1255 
1256 static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern,
1257                                     llvm::Constant *constant) {
1258   auto *Ty = constant->getType();
1259   if (isa<llvm::UndefValue>(constant))
1260     return patternOrZeroFor(CGM, isPattern, Ty);
1261   if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()))
1262     return constant;
1263   if (!containsUndef(constant))
1264     return constant;
1265   llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands());
1266   for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) {
1267     auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op));
1268     Values[Op] = replaceUndef(CGM, isPattern, OpValue);
1269   }
1270   if (Ty->isStructTy())
1271     return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values);
1272   if (Ty->isArrayTy())
1273     return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values);
1274   assert(Ty->isVectorTy());
1275   return llvm::ConstantVector::get(Values);
1276 }
1277 
1278 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
1279 /// variable declaration with auto, register, or no storage class specifier.
1280 /// These turn into simple stack objects, or GlobalValues depending on target.
1281 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
1282   AutoVarEmission emission = EmitAutoVarAlloca(D);
1283   EmitAutoVarInit(emission);
1284   EmitAutoVarCleanups(emission);
1285 }
1286 
1287 /// Emit a lifetime.begin marker if some criteria are satisfied.
1288 /// \return a pointer to the temporary size Value if a marker was emitted, null
1289 /// otherwise
1290 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
1291                                                 llvm::Value *Addr) {
1292   if (!ShouldEmitLifetimeMarkers)
1293     return nullptr;
1294 
1295   assert(Addr->getType()->getPointerAddressSpace() ==
1296              CGM.getDataLayout().getAllocaAddrSpace() &&
1297          "Pointer should be in alloca address space");
1298   llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
1299   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1300   llvm::CallInst *C =
1301       Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
1302   C->setDoesNotThrow();
1303   return SizeV;
1304 }
1305 
1306 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
1307   assert(Addr->getType()->getPointerAddressSpace() ==
1308              CGM.getDataLayout().getAllocaAddrSpace() &&
1309          "Pointer should be in alloca address space");
1310   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1311   llvm::CallInst *C =
1312       Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
1313   C->setDoesNotThrow();
1314 }
1315 
1316 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions(
1317     CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) {
1318   // For each dimension stores its QualType and corresponding
1319   // size-expression Value.
1320   SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions;
1321   SmallVector<IdentifierInfo *, 4> VLAExprNames;
1322 
1323   // Break down the array into individual dimensions.
1324   QualType Type1D = D.getType();
1325   while (getContext().getAsVariableArrayType(Type1D)) {
1326     auto VlaSize = getVLAElements1D(Type1D);
1327     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1328       Dimensions.emplace_back(C, Type1D.getUnqualifiedType());
1329     else {
1330       // Generate a locally unique name for the size expression.
1331       Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++);
1332       SmallString<12> Buffer;
1333       StringRef NameRef = Name.toStringRef(Buffer);
1334       auto &Ident = getContext().Idents.getOwn(NameRef);
1335       VLAExprNames.push_back(&Ident);
1336       auto SizeExprAddr =
1337           CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef);
1338       Builder.CreateStore(VlaSize.NumElts, SizeExprAddr);
1339       Dimensions.emplace_back(SizeExprAddr.getPointer(),
1340                               Type1D.getUnqualifiedType());
1341     }
1342     Type1D = VlaSize.Type;
1343   }
1344 
1345   if (!EmitDebugInfo)
1346     return;
1347 
1348   // Register each dimension's size-expression with a DILocalVariable,
1349   // so that it can be used by CGDebugInfo when instantiating a DISubrange
1350   // to describe this array.
1351   unsigned NameIdx = 0;
1352   for (auto &VlaSize : Dimensions) {
1353     llvm::Metadata *MD;
1354     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1355       MD = llvm::ConstantAsMetadata::get(C);
1356     else {
1357       // Create an artificial VarDecl to generate debug info for.
1358       IdentifierInfo *NameIdent = VLAExprNames[NameIdx++];
1359       auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType();
1360       auto QT = getContext().getIntTypeForBitwidth(
1361           VlaExprTy->getScalarSizeInBits(), false);
1362       auto *ArtificialDecl = VarDecl::Create(
1363           getContext(), const_cast<DeclContext *>(D.getDeclContext()),
1364           D.getLocation(), D.getLocation(), NameIdent, QT,
1365           getContext().CreateTypeSourceInfo(QT), SC_Auto);
1366       ArtificialDecl->setImplicit();
1367 
1368       MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts,
1369                                          Builder);
1370     }
1371     assert(MD && "No Size expression debug node created");
1372     DI->registerVLASizeExpression(VlaSize.Type, MD);
1373   }
1374 }
1375 
1376 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
1377 /// local variable.  Does not emit initialization or destruction.
1378 CodeGenFunction::AutoVarEmission
1379 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
1380   QualType Ty = D.getType();
1381   assert(
1382       Ty.getAddressSpace() == LangAS::Default ||
1383       (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL));
1384 
1385   AutoVarEmission emission(D);
1386 
1387   bool isEscapingByRef = D.isEscapingByref();
1388   emission.IsEscapingByRef = isEscapingByRef;
1389 
1390   CharUnits alignment = getContext().getDeclAlign(&D);
1391 
1392   // If the type is variably-modified, emit all the VLA sizes for it.
1393   if (Ty->isVariablyModifiedType())
1394     EmitVariablyModifiedType(Ty);
1395 
1396   auto *DI = getDebugInfo();
1397   bool EmitDebugInfo = DI && CGM.getCodeGenOpts().hasReducedDebugInfo();
1398 
1399   Address address = Address::invalid();
1400   Address AllocaAddr = Address::invalid();
1401   Address OpenMPLocalAddr =
1402       getLangOpts().OpenMP
1403           ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
1404           : Address::invalid();
1405   bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable();
1406 
1407   if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
1408     address = OpenMPLocalAddr;
1409   } else if (Ty->isConstantSizeType()) {
1410     // If this value is an array or struct with a statically determinable
1411     // constant initializer, there are optimizations we can do.
1412     //
1413     // TODO: We should constant-evaluate the initializer of any variable,
1414     // as long as it is initialized by a constant expression. Currently,
1415     // isConstantInitializer produces wrong answers for structs with
1416     // reference or bitfield members, and a few other cases, and checking
1417     // for POD-ness protects us from some of these.
1418     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
1419         (D.isConstexpr() ||
1420          ((Ty.isPODType(getContext()) ||
1421            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
1422           D.getInit()->isConstantInitializer(getContext(), false)))) {
1423 
1424       // If the variable's a const type, and it's neither an NRVO
1425       // candidate nor a __block variable and has no mutable members,
1426       // emit it as a global instead.
1427       // Exception is if a variable is located in non-constant address space
1428       // in OpenCL.
1429       if ((!getLangOpts().OpenCL ||
1430            Ty.getAddressSpace() == LangAS::opencl_constant) &&
1431           (CGM.getCodeGenOpts().MergeAllConstants && !NRVO &&
1432            !isEscapingByRef && CGM.isTypeConstant(Ty, true))) {
1433         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
1434 
1435         // Signal this condition to later callbacks.
1436         emission.Addr = Address::invalid();
1437         assert(emission.wasEmittedAsGlobal());
1438         return emission;
1439       }
1440 
1441       // Otherwise, tell the initialization code that we're in this case.
1442       emission.IsConstantAggregate = true;
1443     }
1444 
1445     // A normal fixed sized variable becomes an alloca in the entry block,
1446     // unless:
1447     // - it's an NRVO variable.
1448     // - we are compiling OpenMP and it's an OpenMP local variable.
1449     if (NRVO) {
1450       // The named return value optimization: allocate this variable in the
1451       // return slot, so that we can elide the copy when returning this
1452       // variable (C++0x [class.copy]p34).
1453       address = ReturnValue;
1454 
1455       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1456         const auto *RD = RecordTy->getDecl();
1457         const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1458         if ((CXXRD && !CXXRD->hasTrivialDestructor()) ||
1459             RD->isNonTrivialToPrimitiveDestroy()) {
1460           // Create a flag that is used to indicate when the NRVO was applied
1461           // to this variable. Set it to zero to indicate that NRVO was not
1462           // applied.
1463           llvm::Value *Zero = Builder.getFalse();
1464           Address NRVOFlag =
1465             CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
1466           EnsureInsertPoint();
1467           Builder.CreateStore(Zero, NRVOFlag);
1468 
1469           // Record the NRVO flag for this variable.
1470           NRVOFlags[&D] = NRVOFlag.getPointer();
1471           emission.NRVOFlag = NRVOFlag.getPointer();
1472         }
1473       }
1474     } else {
1475       CharUnits allocaAlignment;
1476       llvm::Type *allocaTy;
1477       if (isEscapingByRef) {
1478         auto &byrefInfo = getBlockByrefInfo(&D);
1479         allocaTy = byrefInfo.Type;
1480         allocaAlignment = byrefInfo.ByrefAlignment;
1481       } else {
1482         allocaTy = ConvertTypeForMem(Ty);
1483         allocaAlignment = alignment;
1484       }
1485 
1486       // Create the alloca.  Note that we set the name separately from
1487       // building the instruction so that it's there even in no-asserts
1488       // builds.
1489       address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(),
1490                                  /*ArraySize=*/nullptr, &AllocaAddr);
1491 
1492       // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1493       // the catch parameter starts in the catchpad instruction, and we can't
1494       // insert code in those basic blocks.
1495       bool IsMSCatchParam =
1496           D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
1497 
1498       // Emit a lifetime intrinsic if meaningful. There's no point in doing this
1499       // if we don't have a valid insertion point (?).
1500       if (HaveInsertPoint() && !IsMSCatchParam) {
1501         // If there's a jump into the lifetime of this variable, its lifetime
1502         // gets broken up into several regions in IR, which requires more work
1503         // to handle correctly. For now, just omit the intrinsics; this is a
1504         // rare case, and it's better to just be conservatively correct.
1505         // PR28267.
1506         //
1507         // We have to do this in all language modes if there's a jump past the
1508         // declaration. We also have to do it in C if there's a jump to an
1509         // earlier point in the current block because non-VLA lifetimes begin as
1510         // soon as the containing block is entered, not when its variables
1511         // actually come into scope; suppressing the lifetime annotations
1512         // completely in this case is unnecessarily pessimistic, but again, this
1513         // is rare.
1514         if (!Bypasses.IsBypassed(&D) &&
1515             !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) {
1516           uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
1517           emission.SizeForLifetimeMarkers =
1518               EmitLifetimeStart(size, AllocaAddr.getPointer());
1519         }
1520       } else {
1521         assert(!emission.useLifetimeMarkers());
1522       }
1523     }
1524   } else {
1525     EnsureInsertPoint();
1526 
1527     if (!DidCallStackSave) {
1528       // Save the stack.
1529       Address Stack =
1530         CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
1531 
1532       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
1533       llvm::Value *V = Builder.CreateCall(F);
1534       Builder.CreateStore(V, Stack);
1535 
1536       DidCallStackSave = true;
1537 
1538       // Push a cleanup block and restore the stack there.
1539       // FIXME: in general circumstances, this should be an EH cleanup.
1540       pushStackRestore(NormalCleanup, Stack);
1541     }
1542 
1543     auto VlaSize = getVLASize(Ty);
1544     llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type);
1545 
1546     // Allocate memory for the array.
1547     address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts,
1548                                &AllocaAddr);
1549 
1550     // If we have debug info enabled, properly describe the VLA dimensions for
1551     // this type by registering the vla size expression for each of the
1552     // dimensions.
1553     EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo);
1554   }
1555 
1556   setAddrOfLocalVar(&D, address);
1557   emission.Addr = address;
1558   emission.AllocaAddr = AllocaAddr;
1559 
1560   // Emit debug info for local var declaration.
1561   if (EmitDebugInfo && HaveInsertPoint()) {
1562     Address DebugAddr = address;
1563     bool UsePointerValue = NRVO && ReturnValuePointer.isValid();
1564     DI->setLocation(D.getLocation());
1565 
1566     // If NRVO, use a pointer to the return address.
1567     if (UsePointerValue)
1568       DebugAddr = ReturnValuePointer;
1569 
1570     (void)DI->EmitDeclareOfAutoVariable(&D, DebugAddr.getPointer(), Builder,
1571                                         UsePointerValue);
1572   }
1573 
1574   if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint())
1575     EmitVarAnnotations(&D, address.getPointer());
1576 
1577   // Make sure we call @llvm.lifetime.end.
1578   if (emission.useLifetimeMarkers())
1579     EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
1580                                          emission.getOriginalAllocatedAddress(),
1581                                          emission.getSizeForLifetimeMarkers());
1582 
1583   return emission;
1584 }
1585 
1586 static bool isCapturedBy(const VarDecl &, const Expr *);
1587 
1588 /// Determines whether the given __block variable is potentially
1589 /// captured by the given statement.
1590 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) {
1591   if (const Expr *E = dyn_cast<Expr>(S))
1592     return isCapturedBy(Var, E);
1593   for (const Stmt *SubStmt : S->children())
1594     if (isCapturedBy(Var, SubStmt))
1595       return true;
1596   return false;
1597 }
1598 
1599 /// Determines whether the given __block variable is potentially
1600 /// captured by the given expression.
1601 static bool isCapturedBy(const VarDecl &Var, const Expr *E) {
1602   // Skip the most common kinds of expressions that make
1603   // hierarchy-walking expensive.
1604   E = E->IgnoreParenCasts();
1605 
1606   if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) {
1607     const BlockDecl *Block = BE->getBlockDecl();
1608     for (const auto &I : Block->captures()) {
1609       if (I.getVariable() == &Var)
1610         return true;
1611     }
1612 
1613     // No need to walk into the subexpressions.
1614     return false;
1615   }
1616 
1617   if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
1618     const CompoundStmt *CS = SE->getSubStmt();
1619     for (const auto *BI : CS->body())
1620       if (const auto *BIE = dyn_cast<Expr>(BI)) {
1621         if (isCapturedBy(Var, BIE))
1622           return true;
1623       }
1624       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1625           // special case declarations
1626           for (const auto *I : DS->decls()) {
1627               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1628                 const Expr *Init = VD->getInit();
1629                 if (Init && isCapturedBy(Var, Init))
1630                   return true;
1631               }
1632           }
1633       }
1634       else
1635         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1636         // Later, provide code to poke into statements for capture analysis.
1637         return true;
1638     return false;
1639   }
1640 
1641   for (const Stmt *SubStmt : E->children())
1642     if (isCapturedBy(Var, SubStmt))
1643       return true;
1644 
1645   return false;
1646 }
1647 
1648 /// Determine whether the given initializer is trivial in the sense
1649 /// that it requires no code to be generated.
1650 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1651   if (!Init)
1652     return true;
1653 
1654   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1655     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1656       if (Constructor->isTrivial() &&
1657           Constructor->isDefaultConstructor() &&
1658           !Construct->requiresZeroInitialization())
1659         return true;
1660 
1661   return false;
1662 }
1663 
1664 void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type,
1665                                                       const VarDecl &D,
1666                                                       Address Loc) {
1667   auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit();
1668   CharUnits Size = getContext().getTypeSizeInChars(type);
1669   bool isVolatile = type.isVolatileQualified();
1670   if (!Size.isZero()) {
1671     switch (trivialAutoVarInit) {
1672     case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1673       llvm_unreachable("Uninitialized handled by caller");
1674     case LangOptions::TrivialAutoVarInitKind::Zero:
1675       emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder);
1676       break;
1677     case LangOptions::TrivialAutoVarInitKind::Pattern:
1678       emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder);
1679       break;
1680     }
1681     return;
1682   }
1683 
1684   // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to
1685   // them, so emit a memcpy with the VLA size to initialize each element.
1686   // Technically zero-sized or negative-sized VLAs are undefined, and UBSan
1687   // will catch that code, but there exists code which generates zero-sized
1688   // VLAs. Be nice and initialize whatever they requested.
1689   const auto *VlaType = getContext().getAsVariableArrayType(type);
1690   if (!VlaType)
1691     return;
1692   auto VlaSize = getVLASize(VlaType);
1693   auto SizeVal = VlaSize.NumElts;
1694   CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1695   switch (trivialAutoVarInit) {
1696   case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1697     llvm_unreachable("Uninitialized handled by caller");
1698 
1699   case LangOptions::TrivialAutoVarInitKind::Zero:
1700     if (!EltSize.isOne())
1701       SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1702     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1703                          isVolatile);
1704     break;
1705 
1706   case LangOptions::TrivialAutoVarInitKind::Pattern: {
1707     llvm::Type *ElTy = Loc.getElementType();
1708     llvm::Constant *Constant = constWithPadding(
1709         CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1710     CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type);
1711     llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop");
1712     llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop");
1713     llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont");
1714     llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ(
1715         SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0),
1716         "vla.iszerosized");
1717     Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB);
1718     EmitBlock(SetupBB);
1719     if (!EltSize.isOne())
1720       SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1721     llvm::Value *BaseSizeInChars =
1722         llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity());
1723     Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin");
1724     llvm::Value *End =
1725         Builder.CreateInBoundsGEP(Begin.getPointer(), SizeVal, "vla.end");
1726     llvm::BasicBlock *OriginBB = Builder.GetInsertBlock();
1727     EmitBlock(LoopBB);
1728     llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur");
1729     Cur->addIncoming(Begin.getPointer(), OriginBB);
1730     CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize);
1731     Builder.CreateMemCpy(Address(Cur, CurAlign),
1732                          createUnnamedGlobalForMemcpyFrom(
1733                              CGM, D, Builder, Constant, ConstantAlign),
1734                          BaseSizeInChars, isVolatile);
1735     llvm::Value *Next =
1736         Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next");
1737     llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone");
1738     Builder.CreateCondBr(Done, ContBB, LoopBB);
1739     Cur->addIncoming(Next, LoopBB);
1740     EmitBlock(ContBB);
1741   } break;
1742   }
1743 }
1744 
1745 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1746   assert(emission.Variable && "emission was not valid!");
1747 
1748   // If this was emitted as a global constant, we're done.
1749   if (emission.wasEmittedAsGlobal()) return;
1750 
1751   const VarDecl &D = *emission.Variable;
1752   auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1753   QualType type = D.getType();
1754 
1755   // If this local has an initializer, emit it now.
1756   const Expr *Init = D.getInit();
1757 
1758   // If we are at an unreachable point, we don't need to emit the initializer
1759   // unless it contains a label.
1760   if (!HaveInsertPoint()) {
1761     if (!Init || !ContainsLabel(Init)) return;
1762     EnsureInsertPoint();
1763   }
1764 
1765   // Initialize the structure of a __block variable.
1766   if (emission.IsEscapingByRef)
1767     emitByrefStructureInit(emission);
1768 
1769   // Initialize the variable here if it doesn't have a initializer and it is a
1770   // C struct that is non-trivial to initialize or an array containing such a
1771   // struct.
1772   if (!Init &&
1773       type.isNonTrivialToPrimitiveDefaultInitialize() ==
1774           QualType::PDIK_Struct) {
1775     LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type);
1776     if (emission.IsEscapingByRef)
1777       drillIntoBlockVariable(*this, Dst, &D);
1778     defaultInitNonTrivialCStructVar(Dst);
1779     return;
1780   }
1781 
1782   // Check whether this is a byref variable that's potentially
1783   // captured and moved by its own initializer.  If so, we'll need to
1784   // emit the initializer first, then copy into the variable.
1785   bool capturedByInit =
1786       Init && emission.IsEscapingByRef && isCapturedBy(D, Init);
1787 
1788   bool locIsByrefHeader = !capturedByInit;
1789   const Address Loc =
1790       locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr;
1791 
1792   // Note: constexpr already initializes everything correctly.
1793   LangOptions::TrivialAutoVarInitKind trivialAutoVarInit =
1794       (D.isConstexpr()
1795            ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1796            : (D.getAttr<UninitializedAttr>()
1797                   ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1798                   : getContext().getLangOpts().getTrivialAutoVarInit()));
1799 
1800   auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) {
1801     if (trivialAutoVarInit ==
1802         LangOptions::TrivialAutoVarInitKind::Uninitialized)
1803       return;
1804 
1805     // Only initialize a __block's storage: we always initialize the header.
1806     if (emission.IsEscapingByRef && !locIsByrefHeader)
1807       Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false);
1808 
1809     return emitZeroOrPatternForAutoVarInit(type, D, Loc);
1810   };
1811 
1812   if (isTrivialInitializer(Init))
1813     return initializeWhatIsTechnicallyUninitialized(Loc);
1814 
1815   llvm::Constant *constant = nullptr;
1816   if (emission.IsConstantAggregate ||
1817       D.mightBeUsableInConstantExpressions(getContext())) {
1818     assert(!capturedByInit && "constant init contains a capturing block?");
1819     constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D);
1820     if (constant && !constant->isZeroValue() &&
1821         (trivialAutoVarInit !=
1822          LangOptions::TrivialAutoVarInitKind::Uninitialized)) {
1823       IsPattern isPattern =
1824           (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern)
1825               ? IsPattern::Yes
1826               : IsPattern::No;
1827       // C guarantees that brace-init with fewer initializers than members in
1828       // the aggregate will initialize the rest of the aggregate as-if it were
1829       // static initialization. In turn static initialization guarantees that
1830       // padding is initialized to zero bits. We could instead pattern-init if D
1831       // has any ImplicitValueInitExpr, but that seems to be unintuitive
1832       // behavior.
1833       constant = constWithPadding(CGM, IsPattern::No,
1834                                   replaceUndef(CGM, isPattern, constant));
1835     }
1836   }
1837 
1838   if (!constant) {
1839     initializeWhatIsTechnicallyUninitialized(Loc);
1840     LValue lv = MakeAddrLValue(Loc, type);
1841     lv.setNonGC(true);
1842     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1843   }
1844 
1845   if (!emission.IsConstantAggregate) {
1846     // For simple scalar/complex initialization, store the value directly.
1847     LValue lv = MakeAddrLValue(Loc, type);
1848     lv.setNonGC(true);
1849     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1850   }
1851 
1852   llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace());
1853   emitStoresForConstant(
1854       CGM, D, (Loc.getType() == BP) ? Loc : Builder.CreateBitCast(Loc, BP),
1855       type.isVolatileQualified(), Builder, constant);
1856 }
1857 
1858 /// Emit an expression as an initializer for an object (variable, field, etc.)
1859 /// at the given location.  The expression is not necessarily the normal
1860 /// initializer for the object, and the address is not necessarily
1861 /// its normal location.
1862 ///
1863 /// \param init the initializing expression
1864 /// \param D the object to act as if we're initializing
1865 /// \param loc the address to initialize; its type is a pointer
1866 ///   to the LLVM mapping of the object's type
1867 /// \param alignment the alignment of the address
1868 /// \param capturedByInit true if \p D is a __block variable
1869 ///   whose address is potentially changed by the initializer
1870 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1871                                      LValue lvalue, bool capturedByInit) {
1872   QualType type = D->getType();
1873 
1874   if (type->isReferenceType()) {
1875     RValue rvalue = EmitReferenceBindingToExpr(init);
1876     if (capturedByInit)
1877       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1878     EmitStoreThroughLValue(rvalue, lvalue, true);
1879     return;
1880   }
1881   switch (getEvaluationKind(type)) {
1882   case TEK_Scalar:
1883     EmitScalarInit(init, D, lvalue, capturedByInit);
1884     return;
1885   case TEK_Complex: {
1886     ComplexPairTy complex = EmitComplexExpr(init);
1887     if (capturedByInit)
1888       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1889     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1890     return;
1891   }
1892   case TEK_Aggregate:
1893     if (type->isAtomicType()) {
1894       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1895     } else {
1896       AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap;
1897       if (isa<VarDecl>(D))
1898         Overlap = AggValueSlot::DoesNotOverlap;
1899       else if (auto *FD = dyn_cast<FieldDecl>(D))
1900         Overlap = getOverlapForFieldInit(FD);
1901       // TODO: how can we delay here if D is captured by its initializer?
1902       EmitAggExpr(init, AggValueSlot::forLValue(
1903                             lvalue, *this, AggValueSlot::IsDestructed,
1904                             AggValueSlot::DoesNotNeedGCBarriers,
1905                             AggValueSlot::IsNotAliased, Overlap));
1906     }
1907     return;
1908   }
1909   llvm_unreachable("bad evaluation kind");
1910 }
1911 
1912 /// Enter a destroy cleanup for the given local variable.
1913 void CodeGenFunction::emitAutoVarTypeCleanup(
1914                             const CodeGenFunction::AutoVarEmission &emission,
1915                             QualType::DestructionKind dtorKind) {
1916   assert(dtorKind != QualType::DK_none);
1917 
1918   // Note that for __block variables, we want to destroy the
1919   // original stack object, not the possibly forwarded object.
1920   Address addr = emission.getObjectAddress(*this);
1921 
1922   const VarDecl *var = emission.Variable;
1923   QualType type = var->getType();
1924 
1925   CleanupKind cleanupKind = NormalAndEHCleanup;
1926   CodeGenFunction::Destroyer *destroyer = nullptr;
1927 
1928   switch (dtorKind) {
1929   case QualType::DK_none:
1930     llvm_unreachable("no cleanup for trivially-destructible variable");
1931 
1932   case QualType::DK_cxx_destructor:
1933     // If there's an NRVO flag on the emission, we need a different
1934     // cleanup.
1935     if (emission.NRVOFlag) {
1936       assert(!type->isArrayType());
1937       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1938       EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor,
1939                                                   emission.NRVOFlag);
1940       return;
1941     }
1942     break;
1943 
1944   case QualType::DK_objc_strong_lifetime:
1945     // Suppress cleanups for pseudo-strong variables.
1946     if (var->isARCPseudoStrong()) return;
1947 
1948     // Otherwise, consider whether to use an EH cleanup or not.
1949     cleanupKind = getARCCleanupKind();
1950 
1951     // Use the imprecise destroyer by default.
1952     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1953       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1954     break;
1955 
1956   case QualType::DK_objc_weak_lifetime:
1957     break;
1958 
1959   case QualType::DK_nontrivial_c_struct:
1960     destroyer = CodeGenFunction::destroyNonTrivialCStruct;
1961     if (emission.NRVOFlag) {
1962       assert(!type->isArrayType());
1963       EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr,
1964                                                 emission.NRVOFlag, type);
1965       return;
1966     }
1967     break;
1968   }
1969 
1970   // If we haven't chosen a more specific destroyer, use the default.
1971   if (!destroyer) destroyer = getDestroyer(dtorKind);
1972 
1973   // Use an EH cleanup in array destructors iff the destructor itself
1974   // is being pushed as an EH cleanup.
1975   bool useEHCleanup = (cleanupKind & EHCleanup);
1976   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1977                                      useEHCleanup);
1978 }
1979 
1980 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1981   assert(emission.Variable && "emission was not valid!");
1982 
1983   // If this was emitted as a global constant, we're done.
1984   if (emission.wasEmittedAsGlobal()) return;
1985 
1986   // If we don't have an insertion point, we're done.  Sema prevents
1987   // us from jumping into any of these scopes anyway.
1988   if (!HaveInsertPoint()) return;
1989 
1990   const VarDecl &D = *emission.Variable;
1991 
1992   // Check the type for a cleanup.
1993   if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext()))
1994     emitAutoVarTypeCleanup(emission, dtorKind);
1995 
1996   // In GC mode, honor objc_precise_lifetime.
1997   if (getLangOpts().getGC() != LangOptions::NonGC &&
1998       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1999     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
2000   }
2001 
2002   // Handle the cleanup attribute.
2003   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
2004     const FunctionDecl *FD = CA->getFunctionDecl();
2005 
2006     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
2007     assert(F && "Could not find function!");
2008 
2009     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
2010     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
2011   }
2012 
2013   // If this is a block variable, call _Block_object_destroy
2014   // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
2015   // mode.
2016   if (emission.IsEscapingByRef &&
2017       CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
2018     BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF;
2019     if (emission.Variable->getType().isObjCGCWeak())
2020       Flags |= BLOCK_FIELD_IS_WEAK;
2021     enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags,
2022                       /*LoadBlockVarAddr*/ false,
2023                       cxxDestructorCanThrow(emission.Variable->getType()));
2024   }
2025 }
2026 
2027 CodeGenFunction::Destroyer *
2028 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
2029   switch (kind) {
2030   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
2031   case QualType::DK_cxx_destructor:
2032     return destroyCXXObject;
2033   case QualType::DK_objc_strong_lifetime:
2034     return destroyARCStrongPrecise;
2035   case QualType::DK_objc_weak_lifetime:
2036     return destroyARCWeak;
2037   case QualType::DK_nontrivial_c_struct:
2038     return destroyNonTrivialCStruct;
2039   }
2040   llvm_unreachable("Unknown DestructionKind");
2041 }
2042 
2043 /// pushEHDestroy - Push the standard destructor for the given type as
2044 /// an EH-only cleanup.
2045 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
2046                                     Address addr, QualType type) {
2047   assert(dtorKind && "cannot push destructor for trivial type");
2048   assert(needsEHCleanup(dtorKind));
2049 
2050   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
2051 }
2052 
2053 /// pushDestroy - Push the standard destructor for the given type as
2054 /// at least a normal cleanup.
2055 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
2056                                   Address addr, QualType type) {
2057   assert(dtorKind && "cannot push destructor for trivial type");
2058 
2059   CleanupKind cleanupKind = getCleanupKind(dtorKind);
2060   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
2061               cleanupKind & EHCleanup);
2062 }
2063 
2064 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
2065                                   QualType type, Destroyer *destroyer,
2066                                   bool useEHCleanupForArray) {
2067   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
2068                                      destroyer, useEHCleanupForArray);
2069 }
2070 
2071 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
2072   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
2073 }
2074 
2075 void CodeGenFunction::pushLifetimeExtendedDestroy(
2076     CleanupKind cleanupKind, Address addr, QualType type,
2077     Destroyer *destroyer, bool useEHCleanupForArray) {
2078   // Push an EH-only cleanup for the object now.
2079   // FIXME: When popping normal cleanups, we need to keep this EH cleanup
2080   // around in case a temporary's destructor throws an exception.
2081   if (cleanupKind & EHCleanup)
2082     EHStack.pushCleanup<DestroyObject>(
2083         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
2084         destroyer, useEHCleanupForArray);
2085 
2086   // Remember that we need to push a full cleanup for the object at the
2087   // end of the full-expression.
2088   pushCleanupAfterFullExpr<DestroyObject>(
2089       cleanupKind, addr, type, destroyer, useEHCleanupForArray);
2090 }
2091 
2092 /// emitDestroy - Immediately perform the destruction of the given
2093 /// object.
2094 ///
2095 /// \param addr - the address of the object; a type*
2096 /// \param type - the type of the object; if an array type, all
2097 ///   objects are destroyed in reverse order
2098 /// \param destroyer - the function to call to destroy individual
2099 ///   elements
2100 /// \param useEHCleanupForArray - whether an EH cleanup should be
2101 ///   used when destroying array elements, in case one of the
2102 ///   destructions throws an exception
2103 void CodeGenFunction::emitDestroy(Address addr, QualType type,
2104                                   Destroyer *destroyer,
2105                                   bool useEHCleanupForArray) {
2106   const ArrayType *arrayType = getContext().getAsArrayType(type);
2107   if (!arrayType)
2108     return destroyer(*this, addr, type);
2109 
2110   llvm::Value *length = emitArrayLength(arrayType, type, addr);
2111 
2112   CharUnits elementAlign =
2113     addr.getAlignment()
2114         .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
2115 
2116   // Normally we have to check whether the array is zero-length.
2117   bool checkZeroLength = true;
2118 
2119   // But if the array length is constant, we can suppress that.
2120   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
2121     // ...and if it's constant zero, we can just skip the entire thing.
2122     if (constLength->isZero()) return;
2123     checkZeroLength = false;
2124   }
2125 
2126   llvm::Value *begin = addr.getPointer();
2127   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
2128   emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2129                    checkZeroLength, useEHCleanupForArray);
2130 }
2131 
2132 /// emitArrayDestroy - Destroys all the elements of the given array,
2133 /// beginning from last to first.  The array cannot be zero-length.
2134 ///
2135 /// \param begin - a type* denoting the first element of the array
2136 /// \param end - a type* denoting one past the end of the array
2137 /// \param elementType - the element type of the array
2138 /// \param destroyer - the function to call to destroy elements
2139 /// \param useEHCleanup - whether to push an EH cleanup to destroy
2140 ///   the remaining elements in case the destruction of a single
2141 ///   element throws
2142 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
2143                                        llvm::Value *end,
2144                                        QualType elementType,
2145                                        CharUnits elementAlign,
2146                                        Destroyer *destroyer,
2147                                        bool checkZeroLength,
2148                                        bool useEHCleanup) {
2149   assert(!elementType->isArrayType());
2150 
2151   // The basic structure here is a do-while loop, because we don't
2152   // need to check for the zero-element case.
2153   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
2154   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
2155 
2156   if (checkZeroLength) {
2157     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
2158                                                 "arraydestroy.isempty");
2159     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
2160   }
2161 
2162   // Enter the loop body, making that address the current address.
2163   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
2164   EmitBlock(bodyBB);
2165   llvm::PHINode *elementPast =
2166     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
2167   elementPast->addIncoming(end, entryBB);
2168 
2169   // Shift the address back by one element.
2170   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
2171   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
2172                                                    "arraydestroy.element");
2173 
2174   if (useEHCleanup)
2175     pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
2176                                    destroyer);
2177 
2178   // Perform the actual destruction there.
2179   destroyer(*this, Address(element, elementAlign), elementType);
2180 
2181   if (useEHCleanup)
2182     PopCleanupBlock();
2183 
2184   // Check whether we've reached the end.
2185   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
2186   Builder.CreateCondBr(done, doneBB, bodyBB);
2187   elementPast->addIncoming(element, Builder.GetInsertBlock());
2188 
2189   // Done.
2190   EmitBlock(doneBB);
2191 }
2192 
2193 /// Perform partial array destruction as if in an EH cleanup.  Unlike
2194 /// emitArrayDestroy, the element type here may still be an array type.
2195 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
2196                                     llvm::Value *begin, llvm::Value *end,
2197                                     QualType type, CharUnits elementAlign,
2198                                     CodeGenFunction::Destroyer *destroyer) {
2199   // If the element type is itself an array, drill down.
2200   unsigned arrayDepth = 0;
2201   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
2202     // VLAs don't require a GEP index to walk into.
2203     if (!isa<VariableArrayType>(arrayType))
2204       arrayDepth++;
2205     type = arrayType->getElementType();
2206   }
2207 
2208   if (arrayDepth) {
2209     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
2210 
2211     SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
2212     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
2213     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
2214   }
2215 
2216   // Destroy the array.  We don't ever need an EH cleanup because we
2217   // assume that we're in an EH cleanup ourselves, so a throwing
2218   // destructor causes an immediate terminate.
2219   CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2220                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
2221 }
2222 
2223 namespace {
2224   /// RegularPartialArrayDestroy - a cleanup which performs a partial
2225   /// array destroy where the end pointer is regularly determined and
2226   /// does not need to be loaded from a local.
2227   class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2228     llvm::Value *ArrayBegin;
2229     llvm::Value *ArrayEnd;
2230     QualType ElementType;
2231     CodeGenFunction::Destroyer *Destroyer;
2232     CharUnits ElementAlign;
2233   public:
2234     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
2235                                QualType elementType, CharUnits elementAlign,
2236                                CodeGenFunction::Destroyer *destroyer)
2237       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
2238         ElementType(elementType), Destroyer(destroyer),
2239         ElementAlign(elementAlign) {}
2240 
2241     void Emit(CodeGenFunction &CGF, Flags flags) override {
2242       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
2243                               ElementType, ElementAlign, Destroyer);
2244     }
2245   };
2246 
2247   /// IrregularPartialArrayDestroy - a cleanup which performs a
2248   /// partial array destroy where the end pointer is irregularly
2249   /// determined and must be loaded from a local.
2250   class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2251     llvm::Value *ArrayBegin;
2252     Address ArrayEndPointer;
2253     QualType ElementType;
2254     CodeGenFunction::Destroyer *Destroyer;
2255     CharUnits ElementAlign;
2256   public:
2257     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
2258                                  Address arrayEndPointer,
2259                                  QualType elementType,
2260                                  CharUnits elementAlign,
2261                                  CodeGenFunction::Destroyer *destroyer)
2262       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
2263         ElementType(elementType), Destroyer(destroyer),
2264         ElementAlign(elementAlign) {}
2265 
2266     void Emit(CodeGenFunction &CGF, Flags flags) override {
2267       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
2268       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
2269                               ElementType, ElementAlign, Destroyer);
2270     }
2271   };
2272 } // end anonymous namespace
2273 
2274 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
2275 /// already-constructed elements of the given array.  The cleanup
2276 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2277 ///
2278 /// \param elementType - the immediate element type of the array;
2279 ///   possibly still an array type
2280 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2281                                                        Address arrayEndPointer,
2282                                                        QualType elementType,
2283                                                        CharUnits elementAlign,
2284                                                        Destroyer *destroyer) {
2285   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
2286                                                     arrayBegin, arrayEndPointer,
2287                                                     elementType, elementAlign,
2288                                                     destroyer);
2289 }
2290 
2291 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
2292 /// already-constructed elements of the given array.  The cleanup
2293 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2294 ///
2295 /// \param elementType - the immediate element type of the array;
2296 ///   possibly still an array type
2297 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2298                                                      llvm::Value *arrayEnd,
2299                                                      QualType elementType,
2300                                                      CharUnits elementAlign,
2301                                                      Destroyer *destroyer) {
2302   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
2303                                                   arrayBegin, arrayEnd,
2304                                                   elementType, elementAlign,
2305                                                   destroyer);
2306 }
2307 
2308 /// Lazily declare the @llvm.lifetime.start intrinsic.
2309 llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() {
2310   if (LifetimeStartFn)
2311     return LifetimeStartFn;
2312   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
2313     llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy);
2314   return LifetimeStartFn;
2315 }
2316 
2317 /// Lazily declare the @llvm.lifetime.end intrinsic.
2318 llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() {
2319   if (LifetimeEndFn)
2320     return LifetimeEndFn;
2321   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
2322     llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy);
2323   return LifetimeEndFn;
2324 }
2325 
2326 namespace {
2327   /// A cleanup to perform a release of an object at the end of a
2328   /// function.  This is used to balance out the incoming +1 of a
2329   /// ns_consumed argument when we can't reasonably do that just by
2330   /// not doing the initial retain for a __block argument.
2331   struct ConsumeARCParameter final : EHScopeStack::Cleanup {
2332     ConsumeARCParameter(llvm::Value *param,
2333                         ARCPreciseLifetime_t precise)
2334       : Param(param), Precise(precise) {}
2335 
2336     llvm::Value *Param;
2337     ARCPreciseLifetime_t Precise;
2338 
2339     void Emit(CodeGenFunction &CGF, Flags flags) override {
2340       CGF.EmitARCRelease(Param, Precise);
2341     }
2342   };
2343 } // end anonymous namespace
2344 
2345 /// Emit an alloca (or GlobalValue depending on target)
2346 /// for the specified parameter and set up LocalDeclMap.
2347 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
2348                                    unsigned ArgNo) {
2349   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
2350   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
2351          "Invalid argument to EmitParmDecl");
2352 
2353   Arg.getAnyValue()->setName(D.getName());
2354 
2355   QualType Ty = D.getType();
2356 
2357   // Use better IR generation for certain implicit parameters.
2358   if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
2359     // The only implicit argument a block has is its literal.
2360     // This may be passed as an inalloca'ed value on Windows x86.
2361     if (BlockInfo) {
2362       llvm::Value *V = Arg.isIndirect()
2363                            ? Builder.CreateLoad(Arg.getIndirectAddress())
2364                            : Arg.getDirectValue();
2365       setBlockContextParameter(IPD, ArgNo, V);
2366       return;
2367     }
2368   }
2369 
2370   Address DeclPtr = Address::invalid();
2371   bool DoStore = false;
2372   bool IsScalar = hasScalarEvaluationKind(Ty);
2373   // If we already have a pointer to the argument, reuse the input pointer.
2374   if (Arg.isIndirect()) {
2375     DeclPtr = Arg.getIndirectAddress();
2376     // If we have a prettier pointer type at this point, bitcast to that.
2377     unsigned AS = DeclPtr.getType()->getAddressSpace();
2378     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
2379     if (DeclPtr.getType() != IRTy)
2380       DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
2381     // Indirect argument is in alloca address space, which may be different
2382     // from the default address space.
2383     auto AllocaAS = CGM.getASTAllocaAddressSpace();
2384     auto *V = DeclPtr.getPointer();
2385     auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS;
2386     auto DestLangAS =
2387         getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default;
2388     if (SrcLangAS != DestLangAS) {
2389       assert(getContext().getTargetAddressSpace(SrcLangAS) ==
2390              CGM.getDataLayout().getAllocaAddrSpace());
2391       auto DestAS = getContext().getTargetAddressSpace(DestLangAS);
2392       auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS);
2393       DeclPtr = Address(getTargetHooks().performAddrSpaceCast(
2394                             *this, V, SrcLangAS, DestLangAS, T, true),
2395                         DeclPtr.getAlignment());
2396     }
2397 
2398     // Push a destructor cleanup for this parameter if the ABI requires it.
2399     // Don't push a cleanup in a thunk for a method that will also emit a
2400     // cleanup.
2401     if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk &&
2402         Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
2403       if (QualType::DestructionKind DtorKind =
2404               D.needsDestruction(getContext())) {
2405         assert((DtorKind == QualType::DK_cxx_destructor ||
2406                 DtorKind == QualType::DK_nontrivial_c_struct) &&
2407                "unexpected destructor type");
2408         pushDestroy(DtorKind, DeclPtr, Ty);
2409         CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] =
2410             EHStack.stable_begin();
2411       }
2412     }
2413   } else {
2414     // Check if the parameter address is controlled by OpenMP runtime.
2415     Address OpenMPLocalAddr =
2416         getLangOpts().OpenMP
2417             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
2418             : Address::invalid();
2419     if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
2420       DeclPtr = OpenMPLocalAddr;
2421     } else {
2422       // Otherwise, create a temporary to hold the value.
2423       DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
2424                               D.getName() + ".addr");
2425     }
2426     DoStore = true;
2427   }
2428 
2429   llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
2430 
2431   LValue lv = MakeAddrLValue(DeclPtr, Ty);
2432   if (IsScalar) {
2433     Qualifiers qs = Ty.getQualifiers();
2434     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
2435       // We honor __attribute__((ns_consumed)) for types with lifetime.
2436       // For __strong, it's handled by just skipping the initial retain;
2437       // otherwise we have to balance out the initial +1 with an extra
2438       // cleanup to do the release at the end of the function.
2439       bool isConsumed = D.hasAttr<NSConsumedAttr>();
2440 
2441       // If a parameter is pseudo-strong then we can omit the implicit retain.
2442       if (D.isARCPseudoStrong()) {
2443         assert(lt == Qualifiers::OCL_Strong &&
2444                "pseudo-strong variable isn't strong?");
2445         assert(qs.hasConst() && "pseudo-strong variable should be const!");
2446         lt = Qualifiers::OCL_ExplicitNone;
2447       }
2448 
2449       // Load objects passed indirectly.
2450       if (Arg.isIndirect() && !ArgVal)
2451         ArgVal = Builder.CreateLoad(DeclPtr);
2452 
2453       if (lt == Qualifiers::OCL_Strong) {
2454         if (!isConsumed) {
2455           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2456             // use objc_storeStrong(&dest, value) for retaining the
2457             // object. But first, store a null into 'dest' because
2458             // objc_storeStrong attempts to release its old value.
2459             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
2460             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
2461             EmitARCStoreStrongCall(lv.getAddress(*this), ArgVal, true);
2462             DoStore = false;
2463           }
2464           else
2465           // Don't use objc_retainBlock for block pointers, because we
2466           // don't want to Block_copy something just because we got it
2467           // as a parameter.
2468             ArgVal = EmitARCRetainNonBlock(ArgVal);
2469         }
2470       } else {
2471         // Push the cleanup for a consumed parameter.
2472         if (isConsumed) {
2473           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
2474                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
2475           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
2476                                                    precise);
2477         }
2478 
2479         if (lt == Qualifiers::OCL_Weak) {
2480           EmitARCInitWeak(DeclPtr, ArgVal);
2481           DoStore = false; // The weak init is a store, no need to do two.
2482         }
2483       }
2484 
2485       // Enter the cleanup scope.
2486       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
2487     }
2488   }
2489 
2490   // Store the initial value into the alloca.
2491   if (DoStore)
2492     EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
2493 
2494   setAddrOfLocalVar(&D, DeclPtr);
2495 
2496   // Emit debug info for param declarations in non-thunk functions.
2497   if (CGDebugInfo *DI = getDebugInfo()) {
2498     if (CGM.getCodeGenOpts().hasReducedDebugInfo() && !CurFuncIsThunk) {
2499       DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder);
2500     }
2501   }
2502 
2503   if (D.hasAttr<AnnotateAttr>())
2504     EmitVarAnnotations(&D, DeclPtr.getPointer());
2505 
2506   // We can only check return value nullability if all arguments to the
2507   // function satisfy their nullability preconditions. This makes it necessary
2508   // to emit null checks for args in the function body itself.
2509   if (requiresReturnValueNullabilityCheck()) {
2510     auto Nullability = Ty->getNullability(getContext());
2511     if (Nullability && *Nullability == NullabilityKind::NonNull) {
2512       SanitizerScope SanScope(this);
2513       RetValNullabilityPrecondition =
2514           Builder.CreateAnd(RetValNullabilityPrecondition,
2515                             Builder.CreateIsNotNull(Arg.getAnyValue()));
2516     }
2517   }
2518 }
2519 
2520 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
2521                                             CodeGenFunction *CGF) {
2522   if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
2523     return;
2524   getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
2525 }
2526 
2527 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D,
2528                                          CodeGenFunction *CGF) {
2529   if (!LangOpts.OpenMP || LangOpts.OpenMPSimd ||
2530       (!LangOpts.EmitAllDecls && !D->isUsed()))
2531     return;
2532   getOpenMPRuntime().emitUserDefinedMapper(D, CGF);
2533 }
2534 
2535 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) {
2536   getOpenMPRuntime().checkArchForUnifiedAddressing(D);
2537 }
2538