1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCall.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/NSAPI.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/CodeGenOptions.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "llvm/ADT/Hashing.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/Support/ConvertUTF.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/Path.h"
40 #include "llvm/Transforms/Utils/SanitizerStats.h"
41 
42 #include <string>
43 
44 using namespace clang;
45 using namespace CodeGen;
46 
47 //===--------------------------------------------------------------------===//
48 //                        Miscellaneous Helper Methods
49 //===--------------------------------------------------------------------===//
50 
51 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
52   unsigned addressSpace =
53       cast<llvm::PointerType>(value->getType())->getAddressSpace();
54 
55   llvm::PointerType *destType = Int8PtrTy;
56   if (addressSpace)
57     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
58 
59   if (value->getType() == destType) return value;
60   return Builder.CreateBitCast(value, destType);
61 }
62 
63 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
64 /// block.
65 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
66                                                      CharUnits Align,
67                                                      const Twine &Name,
68                                                      llvm::Value *ArraySize) {
69   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
70   Alloca->setAlignment(Align.getAsAlign());
71   return Address(Alloca, Align);
72 }
73 
74 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
75 /// block. The alloca is casted to default address space if necessary.
76 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
77                                           const Twine &Name,
78                                           llvm::Value *ArraySize,
79                                           Address *AllocaAddr) {
80   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
81   if (AllocaAddr)
82     *AllocaAddr = Alloca;
83   llvm::Value *V = Alloca.getPointer();
84   // Alloca always returns a pointer in alloca address space, which may
85   // be different from the type defined by the language. For example,
86   // in C++ the auto variables are in the default address space. Therefore
87   // cast alloca to the default address space when necessary.
88   if (getASTAllocaAddressSpace() != LangAS::Default) {
89     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
90     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
91     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
92     // otherwise alloca is inserted at the current insertion point of the
93     // builder.
94     if (!ArraySize)
95       Builder.SetInsertPoint(AllocaInsertPt);
96     V = getTargetHooks().performAddrSpaceCast(
97         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
98         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
99   }
100 
101   return Address(V, Align);
102 }
103 
104 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
105 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
106 /// insertion point of the builder.
107 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
108                                                     const Twine &Name,
109                                                     llvm::Value *ArraySize) {
110   if (ArraySize)
111     return Builder.CreateAlloca(Ty, ArraySize, Name);
112   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
113                               ArraySize, Name, AllocaInsertPt);
114 }
115 
116 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
117 /// default alignment of the corresponding LLVM type, which is *not*
118 /// guaranteed to be related in any way to the expected alignment of
119 /// an AST type that might have been lowered to Ty.
120 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
121                                                       const Twine &Name) {
122   CharUnits Align =
123     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
124   return CreateTempAlloca(Ty, Align, Name);
125 }
126 
127 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
128   auto *Alloca = Var.getPointer();
129   assert(isa<llvm::AllocaInst>(Alloca) ||
130          (isa<llvm::AddrSpaceCastInst>(Alloca) &&
131           isa<llvm::AllocaInst>(
132               cast<llvm::AddrSpaceCastInst>(Alloca)->getPointerOperand())));
133 
134   auto *Store = new llvm::StoreInst(Init, Alloca, /*volatile*/ false,
135                                     Var.getAlignment().getAsAlign());
136   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
137   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
138 }
139 
140 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
141   CharUnits Align = getContext().getTypeAlignInChars(Ty);
142   return CreateTempAlloca(ConvertType(Ty), Align, Name);
143 }
144 
145 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
146                                        Address *Alloca) {
147   // FIXME: Should we prefer the preferred type alignment here?
148   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
149 }
150 
151 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
152                                        const Twine &Name, Address *Alloca) {
153   Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
154                                     /*ArraySize=*/nullptr, Alloca);
155 
156   if (Ty->isConstantMatrixType()) {
157     auto *ArrayTy = cast<llvm::ArrayType>(Result.getType()->getElementType());
158     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
159                                                 ArrayTy->getNumElements());
160 
161     Result = Address(
162         Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()),
163         Result.getAlignment());
164   }
165   return Result;
166 }
167 
168 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
169                                                   const Twine &Name) {
170   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
171 }
172 
173 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
174                                                   const Twine &Name) {
175   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
176                                   Name);
177 }
178 
179 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
180 /// expression and compare the result against zero, returning an Int1Ty value.
181 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
182   PGO.setCurrentStmt(E);
183   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
184     llvm::Value *MemPtr = EmitScalarExpr(E);
185     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
186   }
187 
188   QualType BoolTy = getContext().BoolTy;
189   SourceLocation Loc = E->getExprLoc();
190   CGFPOptionsRAII FPOptsRAII(*this, E);
191   if (!E->getType()->isAnyComplexType())
192     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
193 
194   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
195                                        Loc);
196 }
197 
198 /// EmitIgnoredExpr - Emit code to compute the specified expression,
199 /// ignoring the result.
200 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
201   if (E->isRValue())
202     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
203 
204   // Just emit it as an l-value and drop the result.
205   EmitLValue(E);
206 }
207 
208 /// EmitAnyExpr - Emit code to compute the specified expression which
209 /// can have any type.  The result is returned as an RValue struct.
210 /// If this is an aggregate expression, AggSlot indicates where the
211 /// result should be returned.
212 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
213                                     AggValueSlot aggSlot,
214                                     bool ignoreResult) {
215   switch (getEvaluationKind(E->getType())) {
216   case TEK_Scalar:
217     return RValue::get(EmitScalarExpr(E, ignoreResult));
218   case TEK_Complex:
219     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
220   case TEK_Aggregate:
221     if (!ignoreResult && aggSlot.isIgnored())
222       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
223     EmitAggExpr(E, aggSlot);
224     return aggSlot.asRValue();
225   }
226   llvm_unreachable("bad evaluation kind");
227 }
228 
229 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
230 /// always be accessible even if no aggregate location is provided.
231 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
232   AggValueSlot AggSlot = AggValueSlot::ignored();
233 
234   if (hasAggregateEvaluationKind(E->getType()))
235     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
236   return EmitAnyExpr(E, AggSlot);
237 }
238 
239 /// EmitAnyExprToMem - Evaluate an expression into a given memory
240 /// location.
241 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
242                                        Address Location,
243                                        Qualifiers Quals,
244                                        bool IsInit) {
245   // FIXME: This function should take an LValue as an argument.
246   switch (getEvaluationKind(E->getType())) {
247   case TEK_Complex:
248     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
249                               /*isInit*/ false);
250     return;
251 
252   case TEK_Aggregate: {
253     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
254                                          AggValueSlot::IsDestructed_t(IsInit),
255                                          AggValueSlot::DoesNotNeedGCBarriers,
256                                          AggValueSlot::IsAliased_t(!IsInit),
257                                          AggValueSlot::MayOverlap));
258     return;
259   }
260 
261   case TEK_Scalar: {
262     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
263     LValue LV = MakeAddrLValue(Location, E->getType());
264     EmitStoreThroughLValue(RV, LV);
265     return;
266   }
267   }
268   llvm_unreachable("bad evaluation kind");
269 }
270 
271 static void
272 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
273                      const Expr *E, Address ReferenceTemporary) {
274   // Objective-C++ ARC:
275   //   If we are binding a reference to a temporary that has ownership, we
276   //   need to perform retain/release operations on the temporary.
277   //
278   // FIXME: This should be looking at E, not M.
279   if (auto Lifetime = M->getType().getObjCLifetime()) {
280     switch (Lifetime) {
281     case Qualifiers::OCL_None:
282     case Qualifiers::OCL_ExplicitNone:
283       // Carry on to normal cleanup handling.
284       break;
285 
286     case Qualifiers::OCL_Autoreleasing:
287       // Nothing to do; cleaned up by an autorelease pool.
288       return;
289 
290     case Qualifiers::OCL_Strong:
291     case Qualifiers::OCL_Weak:
292       switch (StorageDuration Duration = M->getStorageDuration()) {
293       case SD_Static:
294         // Note: we intentionally do not register a cleanup to release
295         // the object on program termination.
296         return;
297 
298       case SD_Thread:
299         // FIXME: We should probably register a cleanup in this case.
300         return;
301 
302       case SD_Automatic:
303       case SD_FullExpression:
304         CodeGenFunction::Destroyer *Destroy;
305         CleanupKind CleanupKind;
306         if (Lifetime == Qualifiers::OCL_Strong) {
307           const ValueDecl *VD = M->getExtendingDecl();
308           bool Precise =
309               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
310           CleanupKind = CGF.getARCCleanupKind();
311           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
312                             : &CodeGenFunction::destroyARCStrongImprecise;
313         } else {
314           // __weak objects always get EH cleanups; otherwise, exceptions
315           // could cause really nasty crashes instead of mere leaks.
316           CleanupKind = NormalAndEHCleanup;
317           Destroy = &CodeGenFunction::destroyARCWeak;
318         }
319         if (Duration == SD_FullExpression)
320           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
321                           M->getType(), *Destroy,
322                           CleanupKind & EHCleanup);
323         else
324           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
325                                           M->getType(),
326                                           *Destroy, CleanupKind & EHCleanup);
327         return;
328 
329       case SD_Dynamic:
330         llvm_unreachable("temporary cannot have dynamic storage duration");
331       }
332       llvm_unreachable("unknown storage duration");
333     }
334   }
335 
336   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
337   if (const RecordType *RT =
338           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
339     // Get the destructor for the reference temporary.
340     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
341     if (!ClassDecl->hasTrivialDestructor())
342       ReferenceTemporaryDtor = ClassDecl->getDestructor();
343   }
344 
345   if (!ReferenceTemporaryDtor)
346     return;
347 
348   // Call the destructor for the temporary.
349   switch (M->getStorageDuration()) {
350   case SD_Static:
351   case SD_Thread: {
352     llvm::FunctionCallee CleanupFn;
353     llvm::Constant *CleanupArg;
354     if (E->getType()->isArrayType()) {
355       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
356           ReferenceTemporary, E->getType(),
357           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
358           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
359       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
360     } else {
361       CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
362           GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
363       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
364     }
365     CGF.CGM.getCXXABI().registerGlobalDtor(
366         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
367     break;
368   }
369 
370   case SD_FullExpression:
371     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
372                     CodeGenFunction::destroyCXXObject,
373                     CGF.getLangOpts().Exceptions);
374     break;
375 
376   case SD_Automatic:
377     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
378                                     ReferenceTemporary, E->getType(),
379                                     CodeGenFunction::destroyCXXObject,
380                                     CGF.getLangOpts().Exceptions);
381     break;
382 
383   case SD_Dynamic:
384     llvm_unreachable("temporary cannot have dynamic storage duration");
385   }
386 }
387 
388 static Address createReferenceTemporary(CodeGenFunction &CGF,
389                                         const MaterializeTemporaryExpr *M,
390                                         const Expr *Inner,
391                                         Address *Alloca = nullptr) {
392   auto &TCG = CGF.getTargetHooks();
393   switch (M->getStorageDuration()) {
394   case SD_FullExpression:
395   case SD_Automatic: {
396     // If we have a constant temporary array or record try to promote it into a
397     // constant global under the same rules a normal constant would've been
398     // promoted. This is easier on the optimizer and generally emits fewer
399     // instructions.
400     QualType Ty = Inner->getType();
401     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
402         (Ty->isArrayType() || Ty->isRecordType()) &&
403         CGF.CGM.isTypeConstant(Ty, true))
404       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
405         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
406           auto AS = AddrSpace.getValue();
407           auto *GV = new llvm::GlobalVariable(
408               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
409               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
410               llvm::GlobalValue::NotThreadLocal,
411               CGF.getContext().getTargetAddressSpace(AS));
412           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
413           GV->setAlignment(alignment.getAsAlign());
414           llvm::Constant *C = GV;
415           if (AS != LangAS::Default)
416             C = TCG.performAddrSpaceCast(
417                 CGF.CGM, GV, AS, LangAS::Default,
418                 GV->getValueType()->getPointerTo(
419                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
420           // FIXME: Should we put the new global into a COMDAT?
421           return Address(C, alignment);
422         }
423       }
424     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
425   }
426   case SD_Thread:
427   case SD_Static:
428     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
429 
430   case SD_Dynamic:
431     llvm_unreachable("temporary can't have dynamic storage duration");
432   }
433   llvm_unreachable("unknown storage duration");
434 }
435 
436 /// Helper method to check if the underlying ABI is AAPCS
437 static bool isAAPCS(const TargetInfo &TargetInfo) {
438   return TargetInfo.getABI().startswith("aapcs");
439 }
440 
441 LValue CodeGenFunction::
442 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
443   const Expr *E = M->getSubExpr();
444 
445   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
446           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
447          "Reference should never be pseudo-strong!");
448 
449   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
450   // as that will cause the lifetime adjustment to be lost for ARC
451   auto ownership = M->getType().getObjCLifetime();
452   if (ownership != Qualifiers::OCL_None &&
453       ownership != Qualifiers::OCL_ExplicitNone) {
454     Address Object = createReferenceTemporary(*this, M, E);
455     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
456       Object = Address(llvm::ConstantExpr::getBitCast(Var,
457                            ConvertTypeForMem(E->getType())
458                              ->getPointerTo(Object.getAddressSpace())),
459                        Object.getAlignment());
460 
461       // createReferenceTemporary will promote the temporary to a global with a
462       // constant initializer if it can.  It can only do this to a value of
463       // ARC-manageable type if the value is global and therefore "immune" to
464       // ref-counting operations.  Therefore we have no need to emit either a
465       // dynamic initialization or a cleanup and we can just return the address
466       // of the temporary.
467       if (Var->hasInitializer())
468         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
469 
470       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
471     }
472     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
473                                        AlignmentSource::Decl);
474 
475     switch (getEvaluationKind(E->getType())) {
476     default: llvm_unreachable("expected scalar or aggregate expression");
477     case TEK_Scalar:
478       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
479       break;
480     case TEK_Aggregate: {
481       EmitAggExpr(E, AggValueSlot::forAddr(Object,
482                                            E->getType().getQualifiers(),
483                                            AggValueSlot::IsDestructed,
484                                            AggValueSlot::DoesNotNeedGCBarriers,
485                                            AggValueSlot::IsNotAliased,
486                                            AggValueSlot::DoesNotOverlap));
487       break;
488     }
489     }
490 
491     pushTemporaryCleanup(*this, M, E, Object);
492     return RefTempDst;
493   }
494 
495   SmallVector<const Expr *, 2> CommaLHSs;
496   SmallVector<SubobjectAdjustment, 2> Adjustments;
497   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
498 
499   for (const auto &Ignored : CommaLHSs)
500     EmitIgnoredExpr(Ignored);
501 
502   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
503     if (opaque->getType()->isRecordType()) {
504       assert(Adjustments.empty());
505       return EmitOpaqueValueLValue(opaque);
506     }
507   }
508 
509   // Create and initialize the reference temporary.
510   Address Alloca = Address::invalid();
511   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
512   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
513           Object.getPointer()->stripPointerCasts())) {
514     Object = Address(llvm::ConstantExpr::getBitCast(
515                          cast<llvm::Constant>(Object.getPointer()),
516                          ConvertTypeForMem(E->getType())->getPointerTo()),
517                      Object.getAlignment());
518     // If the temporary is a global and has a constant initializer or is a
519     // constant temporary that we promoted to a global, we may have already
520     // initialized it.
521     if (!Var->hasInitializer()) {
522       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
523       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
524     }
525   } else {
526     switch (M->getStorageDuration()) {
527     case SD_Automatic:
528       if (auto *Size = EmitLifetimeStart(
529               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
530               Alloca.getPointer())) {
531         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
532                                                   Alloca, Size);
533       }
534       break;
535 
536     case SD_FullExpression: {
537       if (!ShouldEmitLifetimeMarkers)
538         break;
539 
540       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
541       // marker. Instead, start the lifetime of a conditional temporary earlier
542       // so that it's unconditional. Don't do this with sanitizers which need
543       // more precise lifetime marks.
544       ConditionalEvaluation *OldConditional = nullptr;
545       CGBuilderTy::InsertPoint OldIP;
546       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
547           !SanOpts.has(SanitizerKind::HWAddress) &&
548           !SanOpts.has(SanitizerKind::Memory) &&
549           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
550         OldConditional = OutermostConditional;
551         OutermostConditional = nullptr;
552 
553         OldIP = Builder.saveIP();
554         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
555         Builder.restoreIP(CGBuilderTy::InsertPoint(
556             Block, llvm::BasicBlock::iterator(Block->back())));
557       }
558 
559       if (auto *Size = EmitLifetimeStart(
560               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
561               Alloca.getPointer())) {
562         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
563                                              Size);
564       }
565 
566       if (OldConditional) {
567         OutermostConditional = OldConditional;
568         Builder.restoreIP(OldIP);
569       }
570       break;
571     }
572 
573     default:
574       break;
575     }
576     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
577   }
578   pushTemporaryCleanup(*this, M, E, Object);
579 
580   // Perform derived-to-base casts and/or field accesses, to get from the
581   // temporary object we created (and, potentially, for which we extended
582   // the lifetime) to the subobject we're binding the reference to.
583   for (unsigned I = Adjustments.size(); I != 0; --I) {
584     SubobjectAdjustment &Adjustment = Adjustments[I-1];
585     switch (Adjustment.Kind) {
586     case SubobjectAdjustment::DerivedToBaseAdjustment:
587       Object =
588           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
589                                 Adjustment.DerivedToBase.BasePath->path_begin(),
590                                 Adjustment.DerivedToBase.BasePath->path_end(),
591                                 /*NullCheckValue=*/ false, E->getExprLoc());
592       break;
593 
594     case SubobjectAdjustment::FieldAdjustment: {
595       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
596       LV = EmitLValueForField(LV, Adjustment.Field);
597       assert(LV.isSimple() &&
598              "materialized temporary field is not a simple lvalue");
599       Object = LV.getAddress(*this);
600       break;
601     }
602 
603     case SubobjectAdjustment::MemberPointerAdjustment: {
604       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
605       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
606                                                Adjustment.Ptr.MPT);
607       break;
608     }
609     }
610   }
611 
612   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
613 }
614 
615 RValue
616 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
617   // Emit the expression as an lvalue.
618   LValue LV = EmitLValue(E);
619   assert(LV.isSimple());
620   llvm::Value *Value = LV.getPointer(*this);
621 
622   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
623     // C++11 [dcl.ref]p5 (as amended by core issue 453):
624     //   If a glvalue to which a reference is directly bound designates neither
625     //   an existing object or function of an appropriate type nor a region of
626     //   storage of suitable size and alignment to contain an object of the
627     //   reference's type, the behavior is undefined.
628     QualType Ty = E->getType();
629     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
630   }
631 
632   return RValue::get(Value);
633 }
634 
635 
636 /// getAccessedFieldNo - Given an encoded value and a result number, return the
637 /// input field number being accessed.
638 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
639                                              const llvm::Constant *Elts) {
640   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
641       ->getZExtValue();
642 }
643 
644 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
645 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
646                                     llvm::Value *High) {
647   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
648   llvm::Value *K47 = Builder.getInt64(47);
649   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
650   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
651   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
652   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
653   return Builder.CreateMul(B1, KMul);
654 }
655 
656 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
657   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
658          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
659 }
660 
661 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
662   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
663   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
664          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
665           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
666           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
667 }
668 
669 bool CodeGenFunction::sanitizePerformTypeCheck() const {
670   return SanOpts.has(SanitizerKind::Null) |
671          SanOpts.has(SanitizerKind::Alignment) |
672          SanOpts.has(SanitizerKind::ObjectSize) |
673          SanOpts.has(SanitizerKind::Vptr);
674 }
675 
676 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
677                                     llvm::Value *Ptr, QualType Ty,
678                                     CharUnits Alignment,
679                                     SanitizerSet SkippedChecks,
680                                     llvm::Value *ArraySize) {
681   if (!sanitizePerformTypeCheck())
682     return;
683 
684   // Don't check pointers outside the default address space. The null check
685   // isn't correct, the object-size check isn't supported by LLVM, and we can't
686   // communicate the addresses to the runtime handler for the vptr check.
687   if (Ptr->getType()->getPointerAddressSpace())
688     return;
689 
690   // Don't check pointers to volatile data. The behavior here is implementation-
691   // defined.
692   if (Ty.isVolatileQualified())
693     return;
694 
695   SanitizerScope SanScope(this);
696 
697   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
698   llvm::BasicBlock *Done = nullptr;
699 
700   // Quickly determine whether we have a pointer to an alloca. It's possible
701   // to skip null checks, and some alignment checks, for these pointers. This
702   // can reduce compile-time significantly.
703   auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
704 
705   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
706   llvm::Value *IsNonNull = nullptr;
707   bool IsGuaranteedNonNull =
708       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
709   bool AllowNullPointers = isNullPointerAllowed(TCK);
710   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
711       !IsGuaranteedNonNull) {
712     // The glvalue must not be an empty glvalue.
713     IsNonNull = Builder.CreateIsNotNull(Ptr);
714 
715     // The IR builder can constant-fold the null check if the pointer points to
716     // a constant.
717     IsGuaranteedNonNull = IsNonNull == True;
718 
719     // Skip the null check if the pointer is known to be non-null.
720     if (!IsGuaranteedNonNull) {
721       if (AllowNullPointers) {
722         // When performing pointer casts, it's OK if the value is null.
723         // Skip the remaining checks in that case.
724         Done = createBasicBlock("null");
725         llvm::BasicBlock *Rest = createBasicBlock("not.null");
726         Builder.CreateCondBr(IsNonNull, Rest, Done);
727         EmitBlock(Rest);
728       } else {
729         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
730       }
731     }
732   }
733 
734   if (SanOpts.has(SanitizerKind::ObjectSize) &&
735       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
736       !Ty->isIncompleteType()) {
737     uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity();
738     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
739     if (ArraySize)
740       Size = Builder.CreateMul(Size, ArraySize);
741 
742     // Degenerate case: new X[0] does not need an objectsize check.
743     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
744     if (!ConstantSize || !ConstantSize->isNullValue()) {
745       // The glvalue must refer to a large enough storage region.
746       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
747       //        to check this.
748       // FIXME: Get object address space
749       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
750       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
751       llvm::Value *Min = Builder.getFalse();
752       llvm::Value *NullIsUnknown = Builder.getFalse();
753       llvm::Value *Dynamic = Builder.getFalse();
754       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
755       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
756           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
757       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
758     }
759   }
760 
761   uint64_t AlignVal = 0;
762   llvm::Value *PtrAsInt = nullptr;
763 
764   if (SanOpts.has(SanitizerKind::Alignment) &&
765       !SkippedChecks.has(SanitizerKind::Alignment)) {
766     AlignVal = Alignment.getQuantity();
767     if (!Ty->isIncompleteType() && !AlignVal)
768       AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr,
769                                              /*ForPointeeType=*/true)
770                      .getQuantity();
771 
772     // The glvalue must be suitably aligned.
773     if (AlignVal > 1 &&
774         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
775       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
776       llvm::Value *Align = Builder.CreateAnd(
777           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
778       llvm::Value *Aligned =
779           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
780       if (Aligned != True)
781         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
782     }
783   }
784 
785   if (Checks.size() > 0) {
786     // Make sure we're not losing information. Alignment needs to be a power of
787     // 2
788     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
789     llvm::Constant *StaticData[] = {
790         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
791         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
792         llvm::ConstantInt::get(Int8Ty, TCK)};
793     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
794               PtrAsInt ? PtrAsInt : Ptr);
795   }
796 
797   // If possible, check that the vptr indicates that there is a subobject of
798   // type Ty at offset zero within this object.
799   //
800   // C++11 [basic.life]p5,6:
801   //   [For storage which does not refer to an object within its lifetime]
802   //   The program has undefined behavior if:
803   //    -- the [pointer or glvalue] is used to access a non-static data member
804   //       or call a non-static member function
805   if (SanOpts.has(SanitizerKind::Vptr) &&
806       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
807     // Ensure that the pointer is non-null before loading it. If there is no
808     // compile-time guarantee, reuse the run-time null check or emit a new one.
809     if (!IsGuaranteedNonNull) {
810       if (!IsNonNull)
811         IsNonNull = Builder.CreateIsNotNull(Ptr);
812       if (!Done)
813         Done = createBasicBlock("vptr.null");
814       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
815       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
816       EmitBlock(VptrNotNull);
817     }
818 
819     // Compute a hash of the mangled name of the type.
820     //
821     // FIXME: This is not guaranteed to be deterministic! Move to a
822     //        fingerprinting mechanism once LLVM provides one. For the time
823     //        being the implementation happens to be deterministic.
824     SmallString<64> MangledName;
825     llvm::raw_svector_ostream Out(MangledName);
826     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
827                                                      Out);
828 
829     // Blacklist based on the mangled type.
830     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
831             SanitizerKind::Vptr, Out.str())) {
832       llvm::hash_code TypeHash = hash_value(Out.str());
833 
834       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
835       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
836       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
837       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
838       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
839       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
840 
841       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
842       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
843 
844       // Look the hash up in our cache.
845       const int CacheSize = 128;
846       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
847       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
848                                                      "__ubsan_vptr_type_cache");
849       llvm::Value *Slot = Builder.CreateAnd(Hash,
850                                             llvm::ConstantInt::get(IntPtrTy,
851                                                                    CacheSize-1));
852       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
853       llvm::Value *CacheVal =
854         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
855                                   getPointerAlign());
856 
857       // If the hash isn't in the cache, call a runtime handler to perform the
858       // hard work of checking whether the vptr is for an object of the right
859       // type. This will either fill in the cache and return, or produce a
860       // diagnostic.
861       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
862       llvm::Constant *StaticData[] = {
863         EmitCheckSourceLocation(Loc),
864         EmitCheckTypeDescriptor(Ty),
865         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
866         llvm::ConstantInt::get(Int8Ty, TCK)
867       };
868       llvm::Value *DynamicData[] = { Ptr, Hash };
869       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
870                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
871                 DynamicData);
872     }
873   }
874 
875   if (Done) {
876     Builder.CreateBr(Done);
877     EmitBlock(Done);
878   }
879 }
880 
881 /// Determine whether this expression refers to a flexible array member in a
882 /// struct. We disable array bounds checks for such members.
883 static bool isFlexibleArrayMemberExpr(const Expr *E) {
884   // For compatibility with existing code, we treat arrays of length 0 or
885   // 1 as flexible array members.
886   // FIXME: This is inconsistent with the warning code in SemaChecking. Unify
887   // the two mechanisms.
888   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
889   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
890     // FIXME: Sema doesn't treat [1] as a flexible array member if the bound
891     // was produced by macro expansion.
892     if (CAT->getSize().ugt(1))
893       return false;
894   } else if (!isa<IncompleteArrayType>(AT))
895     return false;
896 
897   E = E->IgnoreParens();
898 
899   // A flexible array member must be the last member in the class.
900   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
901     // FIXME: If the base type of the member expr is not FD->getParent(),
902     // this should not be treated as a flexible array member access.
903     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
904       // FIXME: Sema doesn't treat a T[1] union member as a flexible array
905       // member, only a T[0] or T[] member gets that treatment.
906       if (FD->getParent()->isUnion())
907         return true;
908       RecordDecl::field_iterator FI(
909           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
910       return ++FI == FD->getParent()->field_end();
911     }
912   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
913     return IRE->getDecl()->getNextIvar() == nullptr;
914   }
915 
916   return false;
917 }
918 
919 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
920                                                    QualType EltTy) {
921   ASTContext &C = getContext();
922   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
923   if (!EltSize)
924     return nullptr;
925 
926   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
927   if (!ArrayDeclRef)
928     return nullptr;
929 
930   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
931   if (!ParamDecl)
932     return nullptr;
933 
934   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
935   if (!POSAttr)
936     return nullptr;
937 
938   // Don't load the size if it's a lower bound.
939   int POSType = POSAttr->getType();
940   if (POSType != 0 && POSType != 1)
941     return nullptr;
942 
943   // Find the implicit size parameter.
944   auto PassedSizeIt = SizeArguments.find(ParamDecl);
945   if (PassedSizeIt == SizeArguments.end())
946     return nullptr;
947 
948   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
949   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
950   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
951   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
952                                               C.getSizeType(), E->getExprLoc());
953   llvm::Value *SizeOfElement =
954       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
955   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
956 }
957 
958 /// If Base is known to point to the start of an array, return the length of
959 /// that array. Return 0 if the length cannot be determined.
960 static llvm::Value *getArrayIndexingBound(
961     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
962   // For the vector indexing extension, the bound is the number of elements.
963   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
964     IndexedType = Base->getType();
965     return CGF.Builder.getInt32(VT->getNumElements());
966   }
967 
968   Base = Base->IgnoreParens();
969 
970   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
971     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
972         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
973       IndexedType = CE->getSubExpr()->getType();
974       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
975       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
976         return CGF.Builder.getInt(CAT->getSize());
977       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
978         return CGF.getVLASize(VAT).NumElts;
979       // Ignore pass_object_size here. It's not applicable on decayed pointers.
980     }
981   }
982 
983   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
984   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
985     IndexedType = Base->getType();
986     return POS;
987   }
988 
989   return nullptr;
990 }
991 
992 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
993                                       llvm::Value *Index, QualType IndexType,
994                                       bool Accessed) {
995   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
996          "should not be called unless adding bounds checks");
997   SanitizerScope SanScope(this);
998 
999   QualType IndexedType;
1000   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
1001   if (!Bound)
1002     return;
1003 
1004   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
1005   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
1006   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
1007 
1008   llvm::Constant *StaticData[] = {
1009     EmitCheckSourceLocation(E->getExprLoc()),
1010     EmitCheckTypeDescriptor(IndexedType),
1011     EmitCheckTypeDescriptor(IndexType)
1012   };
1013   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
1014                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
1015   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
1016             SanitizerHandler::OutOfBounds, StaticData, Index);
1017 }
1018 
1019 
1020 CodeGenFunction::ComplexPairTy CodeGenFunction::
1021 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1022                          bool isInc, bool isPre) {
1023   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
1024 
1025   llvm::Value *NextVal;
1026   if (isa<llvm::IntegerType>(InVal.first->getType())) {
1027     uint64_t AmountVal = isInc ? 1 : -1;
1028     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
1029 
1030     // Add the inc/dec to the real part.
1031     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1032   } else {
1033     QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1034     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1035     if (!isInc)
1036       FVal.changeSign();
1037     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1038 
1039     // Add the inc/dec to the real part.
1040     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1041   }
1042 
1043   ComplexPairTy IncVal(NextVal, InVal.second);
1044 
1045   // Store the updated result through the lvalue.
1046   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1047   if (getLangOpts().OpenMP)
1048     CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1049                                                               E->getSubExpr());
1050 
1051   // If this is a postinc, return the value read from memory, otherwise use the
1052   // updated value.
1053   return isPre ? IncVal : InVal;
1054 }
1055 
1056 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1057                                              CodeGenFunction *CGF) {
1058   // Bind VLAs in the cast type.
1059   if (CGF && E->getType()->isVariablyModifiedType())
1060     CGF->EmitVariablyModifiedType(E->getType());
1061 
1062   if (CGDebugInfo *DI = getModuleDebugInfo())
1063     DI->EmitExplicitCastType(E->getType());
1064 }
1065 
1066 //===----------------------------------------------------------------------===//
1067 //                         LValue Expression Emission
1068 //===----------------------------------------------------------------------===//
1069 
1070 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1071 /// derive a more accurate bound on the alignment of the pointer.
1072 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1073                                                   LValueBaseInfo *BaseInfo,
1074                                                   TBAAAccessInfo *TBAAInfo) {
1075   // We allow this with ObjC object pointers because of fragile ABIs.
1076   assert(E->getType()->isPointerType() ||
1077          E->getType()->isObjCObjectPointerType());
1078   E = E->IgnoreParens();
1079 
1080   // Casts:
1081   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1082     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1083       CGM.EmitExplicitCastExprType(ECE, this);
1084 
1085     switch (CE->getCastKind()) {
1086     // Non-converting casts (but not C's implicit conversion from void*).
1087     case CK_BitCast:
1088     case CK_NoOp:
1089     case CK_AddressSpaceConversion:
1090       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1091         if (PtrTy->getPointeeType()->isVoidType())
1092           break;
1093 
1094         LValueBaseInfo InnerBaseInfo;
1095         TBAAAccessInfo InnerTBAAInfo;
1096         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1097                                                 &InnerBaseInfo,
1098                                                 &InnerTBAAInfo);
1099         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1100         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1101 
1102         if (isa<ExplicitCastExpr>(CE)) {
1103           LValueBaseInfo TargetTypeBaseInfo;
1104           TBAAAccessInfo TargetTypeTBAAInfo;
1105           CharUnits Align = CGM.getNaturalPointeeTypeAlignment(
1106               E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo);
1107           if (TBAAInfo)
1108             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1109                                                  TargetTypeTBAAInfo);
1110           // If the source l-value is opaque, honor the alignment of the
1111           // casted-to type.
1112           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1113             if (BaseInfo)
1114               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1115             Addr = Address(Addr.getPointer(), Align);
1116           }
1117         }
1118 
1119         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1120             CE->getCastKind() == CK_BitCast) {
1121           if (auto PT = E->getType()->getAs<PointerType>())
1122             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1123                                       /*MayBeNull=*/true,
1124                                       CodeGenFunction::CFITCK_UnrelatedCast,
1125                                       CE->getBeginLoc());
1126         }
1127         return CE->getCastKind() != CK_AddressSpaceConversion
1128                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1129                    : Builder.CreateAddrSpaceCast(Addr,
1130                                                  ConvertType(E->getType()));
1131       }
1132       break;
1133 
1134     // Array-to-pointer decay.
1135     case CK_ArrayToPointerDecay:
1136       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1137 
1138     // Derived-to-base conversions.
1139     case CK_UncheckedDerivedToBase:
1140     case CK_DerivedToBase: {
1141       // TODO: Support accesses to members of base classes in TBAA. For now, we
1142       // conservatively pretend that the complete object is of the base class
1143       // type.
1144       if (TBAAInfo)
1145         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1146       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1147       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1148       return GetAddressOfBaseClass(Addr, Derived,
1149                                    CE->path_begin(), CE->path_end(),
1150                                    ShouldNullCheckClassCastValue(CE),
1151                                    CE->getExprLoc());
1152     }
1153 
1154     // TODO: Is there any reason to treat base-to-derived conversions
1155     // specially?
1156     default:
1157       break;
1158     }
1159   }
1160 
1161   // Unary &.
1162   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1163     if (UO->getOpcode() == UO_AddrOf) {
1164       LValue LV = EmitLValue(UO->getSubExpr());
1165       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1166       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1167       return LV.getAddress(*this);
1168     }
1169   }
1170 
1171   // TODO: conditional operators, comma.
1172 
1173   // Otherwise, use the alignment of the type.
1174   CharUnits Align =
1175       CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo);
1176   return Address(EmitScalarExpr(E), Align);
1177 }
1178 
1179 llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) {
1180   llvm::Value *V = RV.getScalarVal();
1181   if (auto MPT = T->getAs<MemberPointerType>())
1182     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT);
1183   return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
1184 }
1185 
1186 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1187   if (Ty->isVoidType())
1188     return RValue::get(nullptr);
1189 
1190   switch (getEvaluationKind(Ty)) {
1191   case TEK_Complex: {
1192     llvm::Type *EltTy =
1193       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1194     llvm::Value *U = llvm::UndefValue::get(EltTy);
1195     return RValue::getComplex(std::make_pair(U, U));
1196   }
1197 
1198   // If this is a use of an undefined aggregate type, the aggregate must have an
1199   // identifiable address.  Just because the contents of the value are undefined
1200   // doesn't mean that the address can't be taken and compared.
1201   case TEK_Aggregate: {
1202     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1203     return RValue::getAggregate(DestPtr);
1204   }
1205 
1206   case TEK_Scalar:
1207     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1208   }
1209   llvm_unreachable("bad evaluation kind");
1210 }
1211 
1212 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1213                                               const char *Name) {
1214   ErrorUnsupported(E, Name);
1215   return GetUndefRValue(E->getType());
1216 }
1217 
1218 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1219                                               const char *Name) {
1220   ErrorUnsupported(E, Name);
1221   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1222   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1223                         E->getType());
1224 }
1225 
1226 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1227   const Expr *Base = Obj;
1228   while (!isa<CXXThisExpr>(Base)) {
1229     // The result of a dynamic_cast can be null.
1230     if (isa<CXXDynamicCastExpr>(Base))
1231       return false;
1232 
1233     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1234       Base = CE->getSubExpr();
1235     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1236       Base = PE->getSubExpr();
1237     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1238       if (UO->getOpcode() == UO_Extension)
1239         Base = UO->getSubExpr();
1240       else
1241         return false;
1242     } else {
1243       return false;
1244     }
1245   }
1246   return true;
1247 }
1248 
1249 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1250   LValue LV;
1251   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1252     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1253   else
1254     LV = EmitLValue(E);
1255   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1256     SanitizerSet SkippedChecks;
1257     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1258       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1259       if (IsBaseCXXThis)
1260         SkippedChecks.set(SanitizerKind::Alignment, true);
1261       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1262         SkippedChecks.set(SanitizerKind::Null, true);
1263     }
1264     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
1265                   LV.getAlignment(), SkippedChecks);
1266   }
1267   return LV;
1268 }
1269 
1270 /// EmitLValue - Emit code to compute a designator that specifies the location
1271 /// of the expression.
1272 ///
1273 /// This can return one of two things: a simple address or a bitfield reference.
1274 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1275 /// an LLVM pointer type.
1276 ///
1277 /// If this returns a bitfield reference, nothing about the pointee type of the
1278 /// LLVM value is known: For example, it may not be a pointer to an integer.
1279 ///
1280 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1281 /// this method guarantees that the returned pointer type will point to an LLVM
1282 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1283 /// length type, this is not possible.
1284 ///
1285 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1286   ApplyDebugLocation DL(*this, E);
1287   switch (E->getStmtClass()) {
1288   default: return EmitUnsupportedLValue(E, "l-value expression");
1289 
1290   case Expr::ObjCPropertyRefExprClass:
1291     llvm_unreachable("cannot emit a property reference directly");
1292 
1293   case Expr::ObjCSelectorExprClass:
1294     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1295   case Expr::ObjCIsaExprClass:
1296     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1297   case Expr::BinaryOperatorClass:
1298     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1299   case Expr::CompoundAssignOperatorClass: {
1300     QualType Ty = E->getType();
1301     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1302       Ty = AT->getValueType();
1303     if (!Ty->isAnyComplexType())
1304       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1305     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1306   }
1307   case Expr::CallExprClass:
1308   case Expr::CXXMemberCallExprClass:
1309   case Expr::CXXOperatorCallExprClass:
1310   case Expr::UserDefinedLiteralClass:
1311     return EmitCallExprLValue(cast<CallExpr>(E));
1312   case Expr::CXXRewrittenBinaryOperatorClass:
1313     return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
1314   case Expr::VAArgExprClass:
1315     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1316   case Expr::DeclRefExprClass:
1317     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1318   case Expr::ConstantExprClass: {
1319     const ConstantExpr *CE = cast<ConstantExpr>(E);
1320     if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) {
1321       QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit())
1322                              ->getCallReturnType(getContext());
1323       return MakeNaturalAlignAddrLValue(Result, RetType);
1324     }
1325     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1326   }
1327   case Expr::ParenExprClass:
1328     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1329   case Expr::GenericSelectionExprClass:
1330     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1331   case Expr::PredefinedExprClass:
1332     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1333   case Expr::StringLiteralClass:
1334     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1335   case Expr::ObjCEncodeExprClass:
1336     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1337   case Expr::PseudoObjectExprClass:
1338     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1339   case Expr::InitListExprClass:
1340     return EmitInitListLValue(cast<InitListExpr>(E));
1341   case Expr::CXXTemporaryObjectExprClass:
1342   case Expr::CXXConstructExprClass:
1343     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1344   case Expr::CXXBindTemporaryExprClass:
1345     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1346   case Expr::CXXUuidofExprClass:
1347     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1348   case Expr::LambdaExprClass:
1349     return EmitAggExprToLValue(E);
1350 
1351   case Expr::ExprWithCleanupsClass: {
1352     const auto *cleanups = cast<ExprWithCleanups>(E);
1353     RunCleanupsScope Scope(*this);
1354     LValue LV = EmitLValue(cleanups->getSubExpr());
1355     if (LV.isSimple()) {
1356       // Defend against branches out of gnu statement expressions surrounded by
1357       // cleanups.
1358       llvm::Value *V = LV.getPointer(*this);
1359       Scope.ForceCleanup({&V});
1360       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1361                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1362     }
1363     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1364     // bitfield lvalue or some other non-simple lvalue?
1365     return LV;
1366   }
1367 
1368   case Expr::CXXDefaultArgExprClass: {
1369     auto *DAE = cast<CXXDefaultArgExpr>(E);
1370     CXXDefaultArgExprScope Scope(*this, DAE);
1371     return EmitLValue(DAE->getExpr());
1372   }
1373   case Expr::CXXDefaultInitExprClass: {
1374     auto *DIE = cast<CXXDefaultInitExpr>(E);
1375     CXXDefaultInitExprScope Scope(*this, DIE);
1376     return EmitLValue(DIE->getExpr());
1377   }
1378   case Expr::CXXTypeidExprClass:
1379     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1380 
1381   case Expr::ObjCMessageExprClass:
1382     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1383   case Expr::ObjCIvarRefExprClass:
1384     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1385   case Expr::StmtExprClass:
1386     return EmitStmtExprLValue(cast<StmtExpr>(E));
1387   case Expr::UnaryOperatorClass:
1388     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1389   case Expr::ArraySubscriptExprClass:
1390     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1391   case Expr::MatrixSubscriptExprClass:
1392     return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E));
1393   case Expr::OMPArraySectionExprClass:
1394     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1395   case Expr::ExtVectorElementExprClass:
1396     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1397   case Expr::MemberExprClass:
1398     return EmitMemberExpr(cast<MemberExpr>(E));
1399   case Expr::CompoundLiteralExprClass:
1400     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1401   case Expr::ConditionalOperatorClass:
1402     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1403   case Expr::BinaryConditionalOperatorClass:
1404     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1405   case Expr::ChooseExprClass:
1406     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1407   case Expr::OpaqueValueExprClass:
1408     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1409   case Expr::SubstNonTypeTemplateParmExprClass:
1410     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1411   case Expr::ImplicitCastExprClass:
1412   case Expr::CStyleCastExprClass:
1413   case Expr::CXXFunctionalCastExprClass:
1414   case Expr::CXXStaticCastExprClass:
1415   case Expr::CXXDynamicCastExprClass:
1416   case Expr::CXXReinterpretCastExprClass:
1417   case Expr::CXXConstCastExprClass:
1418   case Expr::CXXAddrspaceCastExprClass:
1419   case Expr::ObjCBridgedCastExprClass:
1420     return EmitCastLValue(cast<CastExpr>(E));
1421 
1422   case Expr::MaterializeTemporaryExprClass:
1423     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1424 
1425   case Expr::CoawaitExprClass:
1426     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1427   case Expr::CoyieldExprClass:
1428     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1429   }
1430 }
1431 
1432 /// Given an object of the given canonical type, can we safely copy a
1433 /// value out of it based on its initializer?
1434 static bool isConstantEmittableObjectType(QualType type) {
1435   assert(type.isCanonical());
1436   assert(!type->isReferenceType());
1437 
1438   // Must be const-qualified but non-volatile.
1439   Qualifiers qs = type.getLocalQualifiers();
1440   if (!qs.hasConst() || qs.hasVolatile()) return false;
1441 
1442   // Otherwise, all object types satisfy this except C++ classes with
1443   // mutable subobjects or non-trivial copy/destroy behavior.
1444   if (const auto *RT = dyn_cast<RecordType>(type))
1445     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1446       if (RD->hasMutableFields() || !RD->isTrivial())
1447         return false;
1448 
1449   return true;
1450 }
1451 
1452 /// Can we constant-emit a load of a reference to a variable of the
1453 /// given type?  This is different from predicates like
1454 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1455 /// in situations that don't necessarily satisfy the language's rules
1456 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1457 /// to do this with const float variables even if those variables
1458 /// aren't marked 'constexpr'.
1459 enum ConstantEmissionKind {
1460   CEK_None,
1461   CEK_AsReferenceOnly,
1462   CEK_AsValueOrReference,
1463   CEK_AsValueOnly
1464 };
1465 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1466   type = type.getCanonicalType();
1467   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1468     if (isConstantEmittableObjectType(ref->getPointeeType()))
1469       return CEK_AsValueOrReference;
1470     return CEK_AsReferenceOnly;
1471   }
1472   if (isConstantEmittableObjectType(type))
1473     return CEK_AsValueOnly;
1474   return CEK_None;
1475 }
1476 
1477 /// Try to emit a reference to the given value without producing it as
1478 /// an l-value.  This is just an optimization, but it avoids us needing
1479 /// to emit global copies of variables if they're named without triggering
1480 /// a formal use in a context where we can't emit a direct reference to them,
1481 /// for instance if a block or lambda or a member of a local class uses a
1482 /// const int variable or constexpr variable from an enclosing function.
1483 CodeGenFunction::ConstantEmission
1484 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1485   ValueDecl *value = refExpr->getDecl();
1486 
1487   // The value needs to be an enum constant or a constant variable.
1488   ConstantEmissionKind CEK;
1489   if (isa<ParmVarDecl>(value)) {
1490     CEK = CEK_None;
1491   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1492     CEK = checkVarTypeForConstantEmission(var->getType());
1493   } else if (isa<EnumConstantDecl>(value)) {
1494     CEK = CEK_AsValueOnly;
1495   } else {
1496     CEK = CEK_None;
1497   }
1498   if (CEK == CEK_None) return ConstantEmission();
1499 
1500   Expr::EvalResult result;
1501   bool resultIsReference;
1502   QualType resultType;
1503 
1504   // It's best to evaluate all the way as an r-value if that's permitted.
1505   if (CEK != CEK_AsReferenceOnly &&
1506       refExpr->EvaluateAsRValue(result, getContext())) {
1507     resultIsReference = false;
1508     resultType = refExpr->getType();
1509 
1510   // Otherwise, try to evaluate as an l-value.
1511   } else if (CEK != CEK_AsValueOnly &&
1512              refExpr->EvaluateAsLValue(result, getContext())) {
1513     resultIsReference = true;
1514     resultType = value->getType();
1515 
1516   // Failure.
1517   } else {
1518     return ConstantEmission();
1519   }
1520 
1521   // In any case, if the initializer has side-effects, abandon ship.
1522   if (result.HasSideEffects)
1523     return ConstantEmission();
1524 
1525   // In CUDA/HIP device compilation, a lambda may capture a reference variable
1526   // referencing a global host variable by copy. In this case the lambda should
1527   // make a copy of the value of the global host variable. The DRE of the
1528   // captured reference variable cannot be emitted as load from the host
1529   // global variable as compile time constant, since the host variable is not
1530   // accessible on device. The DRE of the captured reference variable has to be
1531   // loaded from captures.
1532   if (CGM.getLangOpts().CUDAIsDevice && result.Val.isLValue() &&
1533       refExpr->refersToEnclosingVariableOrCapture()) {
1534     auto *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl);
1535     if (MD && MD->getParent()->isLambda() &&
1536         MD->getOverloadedOperator() == OO_Call) {
1537       const APValue::LValueBase &base = result.Val.getLValueBase();
1538       if (const ValueDecl *D = base.dyn_cast<const ValueDecl *>()) {
1539         if (const VarDecl *VD = dyn_cast<const VarDecl>(D)) {
1540           if (!VD->hasAttr<CUDADeviceAttr>()) {
1541             return ConstantEmission();
1542           }
1543         }
1544       }
1545     }
1546   }
1547 
1548   // Emit as a constant.
1549   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1550                                                result.Val, resultType);
1551 
1552   // Make sure we emit a debug reference to the global variable.
1553   // This should probably fire even for
1554   if (isa<VarDecl>(value)) {
1555     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1556       EmitDeclRefExprDbgValue(refExpr, result.Val);
1557   } else {
1558     assert(isa<EnumConstantDecl>(value));
1559     EmitDeclRefExprDbgValue(refExpr, result.Val);
1560   }
1561 
1562   // If we emitted a reference constant, we need to dereference that.
1563   if (resultIsReference)
1564     return ConstantEmission::forReference(C);
1565 
1566   return ConstantEmission::forValue(C);
1567 }
1568 
1569 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1570                                                         const MemberExpr *ME) {
1571   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1572     // Try to emit static variable member expressions as DREs.
1573     return DeclRefExpr::Create(
1574         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1575         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1576         ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1577   }
1578   return nullptr;
1579 }
1580 
1581 CodeGenFunction::ConstantEmission
1582 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1583   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1584     return tryEmitAsConstant(DRE);
1585   return ConstantEmission();
1586 }
1587 
1588 llvm::Value *CodeGenFunction::emitScalarConstant(
1589     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1590   assert(Constant && "not a constant");
1591   if (Constant.isReference())
1592     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1593                             E->getExprLoc())
1594         .getScalarVal();
1595   return Constant.getValue();
1596 }
1597 
1598 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1599                                                SourceLocation Loc) {
1600   return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
1601                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1602                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1603 }
1604 
1605 static bool hasBooleanRepresentation(QualType Ty) {
1606   if (Ty->isBooleanType())
1607     return true;
1608 
1609   if (const EnumType *ET = Ty->getAs<EnumType>())
1610     return ET->getDecl()->getIntegerType()->isBooleanType();
1611 
1612   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1613     return hasBooleanRepresentation(AT->getValueType());
1614 
1615   return false;
1616 }
1617 
1618 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1619                             llvm::APInt &Min, llvm::APInt &End,
1620                             bool StrictEnums, bool IsBool) {
1621   const EnumType *ET = Ty->getAs<EnumType>();
1622   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1623                                 ET && !ET->getDecl()->isFixed();
1624   if (!IsBool && !IsRegularCPlusPlusEnum)
1625     return false;
1626 
1627   if (IsBool) {
1628     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1629     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1630   } else {
1631     const EnumDecl *ED = ET->getDecl();
1632     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1633     unsigned Bitwidth = LTy->getScalarSizeInBits();
1634     unsigned NumNegativeBits = ED->getNumNegativeBits();
1635     unsigned NumPositiveBits = ED->getNumPositiveBits();
1636 
1637     if (NumNegativeBits) {
1638       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1639       assert(NumBits <= Bitwidth);
1640       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1641       Min = -End;
1642     } else {
1643       assert(NumPositiveBits <= Bitwidth);
1644       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1645       Min = llvm::APInt(Bitwidth, 0);
1646     }
1647   }
1648   return true;
1649 }
1650 
1651 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1652   llvm::APInt Min, End;
1653   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1654                        hasBooleanRepresentation(Ty)))
1655     return nullptr;
1656 
1657   llvm::MDBuilder MDHelper(getLLVMContext());
1658   return MDHelper.createRange(Min, End);
1659 }
1660 
1661 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1662                                            SourceLocation Loc) {
1663   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1664   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1665   if (!HasBoolCheck && !HasEnumCheck)
1666     return false;
1667 
1668   bool IsBool = hasBooleanRepresentation(Ty) ||
1669                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1670   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1671   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1672   if (!NeedsBoolCheck && !NeedsEnumCheck)
1673     return false;
1674 
1675   // Single-bit booleans don't need to be checked. Special-case this to avoid
1676   // a bit width mismatch when handling bitfield values. This is handled by
1677   // EmitFromMemory for the non-bitfield case.
1678   if (IsBool &&
1679       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1680     return false;
1681 
1682   llvm::APInt Min, End;
1683   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1684     return true;
1685 
1686   auto &Ctx = getLLVMContext();
1687   SanitizerScope SanScope(this);
1688   llvm::Value *Check;
1689   --End;
1690   if (!Min) {
1691     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1692   } else {
1693     llvm::Value *Upper =
1694         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1695     llvm::Value *Lower =
1696         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1697     Check = Builder.CreateAnd(Upper, Lower);
1698   }
1699   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1700                                   EmitCheckTypeDescriptor(Ty)};
1701   SanitizerMask Kind =
1702       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1703   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1704             StaticArgs, EmitCheckValue(Value));
1705   return true;
1706 }
1707 
1708 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1709                                                QualType Ty,
1710                                                SourceLocation Loc,
1711                                                LValueBaseInfo BaseInfo,
1712                                                TBAAAccessInfo TBAAInfo,
1713                                                bool isNontemporal) {
1714   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1715     // For better performance, handle vector loads differently.
1716     if (Ty->isVectorType()) {
1717       const llvm::Type *EltTy = Addr.getElementType();
1718 
1719       const auto *VTy = cast<llvm::FixedVectorType>(EltTy);
1720 
1721       // Handle vectors of size 3 like size 4 for better performance.
1722       if (VTy->getNumElements() == 3) {
1723 
1724         // Bitcast to vec4 type.
1725         auto *vec4Ty = llvm::FixedVectorType::get(VTy->getElementType(), 4);
1726         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1727         // Now load value.
1728         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1729 
1730         // Shuffle vector to get vec3.
1731         V = Builder.CreateShuffleVector(V, ArrayRef<int>{0, 1, 2},
1732                                         "extractVec");
1733         return EmitFromMemory(V, Ty);
1734       }
1735     }
1736   }
1737 
1738   // Atomic operations have to be done on integral types.
1739   LValue AtomicLValue =
1740       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1741   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1742     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1743   }
1744 
1745   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1746   if (isNontemporal) {
1747     llvm::MDNode *Node = llvm::MDNode::get(
1748         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1749     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1750   }
1751 
1752   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1753 
1754   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1755     // In order to prevent the optimizer from throwing away the check, don't
1756     // attach range metadata to the load.
1757   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1758     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1759       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1760 
1761   return EmitFromMemory(Load, Ty);
1762 }
1763 
1764 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1765   // Bool has a different representation in memory than in registers.
1766   if (hasBooleanRepresentation(Ty)) {
1767     // This should really always be an i1, but sometimes it's already
1768     // an i8, and it's awkward to track those cases down.
1769     if (Value->getType()->isIntegerTy(1))
1770       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1771     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1772            "wrong value rep of bool");
1773   }
1774 
1775   return Value;
1776 }
1777 
1778 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1779   // Bool has a different representation in memory than in registers.
1780   if (hasBooleanRepresentation(Ty)) {
1781     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1782            "wrong value rep of bool");
1783     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1784   }
1785 
1786   return Value;
1787 }
1788 
1789 // Convert the pointer of \p Addr to a pointer to a vector (the value type of
1790 // MatrixType), if it points to a array (the memory type of MatrixType).
1791 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF,
1792                                          bool IsVector = true) {
1793   auto *ArrayTy = dyn_cast<llvm::ArrayType>(
1794       cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType());
1795   if (ArrayTy && IsVector) {
1796     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
1797                                                 ArrayTy->getNumElements());
1798 
1799     return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy));
1800   }
1801   auto *VectorTy = dyn_cast<llvm::VectorType>(
1802       cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType());
1803   if (VectorTy && !IsVector) {
1804     auto *ArrayTy = llvm::ArrayType::get(
1805         VectorTy->getElementType(),
1806         cast<llvm::FixedVectorType>(VectorTy)->getNumElements());
1807 
1808     return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy));
1809   }
1810 
1811   return Addr;
1812 }
1813 
1814 // Emit a store of a matrix LValue. This may require casting the original
1815 // pointer to memory address (ArrayType) to a pointer to the value type
1816 // (VectorType).
1817 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue,
1818                                     bool isInit, CodeGenFunction &CGF) {
1819   Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF,
1820                                            value->getType()->isVectorTy());
1821   CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(),
1822                         lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit,
1823                         lvalue.isNontemporal());
1824 }
1825 
1826 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1827                                         bool Volatile, QualType Ty,
1828                                         LValueBaseInfo BaseInfo,
1829                                         TBAAAccessInfo TBAAInfo,
1830                                         bool isInit, bool isNontemporal) {
1831   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1832     // Handle vectors differently to get better performance.
1833     if (Ty->isVectorType()) {
1834       llvm::Type *SrcTy = Value->getType();
1835       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1836       // Handle vec3 special.
1837       if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) {
1838         // Our source is a vec3, do a shuffle vector to make it a vec4.
1839         Value = Builder.CreateShuffleVector(Value, ArrayRef<int>{0, 1, 2, -1},
1840                                             "extractVec");
1841         SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4);
1842       }
1843       if (Addr.getElementType() != SrcTy) {
1844         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1845       }
1846     }
1847   }
1848 
1849   Value = EmitToMemory(Value, Ty);
1850 
1851   LValue AtomicLValue =
1852       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1853   if (Ty->isAtomicType() ||
1854       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1855     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1856     return;
1857   }
1858 
1859   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1860   if (isNontemporal) {
1861     llvm::MDNode *Node =
1862         llvm::MDNode::get(Store->getContext(),
1863                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1864     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1865   }
1866 
1867   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1868 }
1869 
1870 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1871                                         bool isInit) {
1872   if (lvalue.getType()->isConstantMatrixType()) {
1873     EmitStoreOfMatrixScalar(value, lvalue, isInit, *this);
1874     return;
1875   }
1876 
1877   EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
1878                     lvalue.getType(), lvalue.getBaseInfo(),
1879                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1880 }
1881 
1882 // Emit a load of a LValue of matrix type. This may require casting the pointer
1883 // to memory address (ArrayType) to a pointer to the value type (VectorType).
1884 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc,
1885                                      CodeGenFunction &CGF) {
1886   assert(LV.getType()->isConstantMatrixType());
1887   Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF);
1888   LV.setAddress(Addr);
1889   return RValue::get(CGF.EmitLoadOfScalar(LV, Loc));
1890 }
1891 
1892 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1893 /// method emits the address of the lvalue, then loads the result as an rvalue,
1894 /// returning the rvalue.
1895 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1896   if (LV.isObjCWeak()) {
1897     // load of a __weak object.
1898     Address AddrWeakObj = LV.getAddress(*this);
1899     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1900                                                              AddrWeakObj));
1901   }
1902   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1903     // In MRC mode, we do a load+autorelease.
1904     if (!getLangOpts().ObjCAutoRefCount) {
1905       return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
1906     }
1907 
1908     // In ARC mode, we load retained and then consume the value.
1909     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
1910     Object = EmitObjCConsumeObject(LV.getType(), Object);
1911     return RValue::get(Object);
1912   }
1913 
1914   if (LV.isSimple()) {
1915     assert(!LV.getType()->isFunctionType());
1916 
1917     if (LV.getType()->isConstantMatrixType())
1918       return EmitLoadOfMatrixLValue(LV, Loc, *this);
1919 
1920     // Everything needs a load.
1921     return RValue::get(EmitLoadOfScalar(LV, Loc));
1922   }
1923 
1924   if (LV.isVectorElt()) {
1925     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1926                                               LV.isVolatileQualified());
1927     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1928                                                     "vecext"));
1929   }
1930 
1931   // If this is a reference to a subset of the elements of a vector, either
1932   // shuffle the input or extract/insert them as appropriate.
1933   if (LV.isExtVectorElt()) {
1934     return EmitLoadOfExtVectorElementLValue(LV);
1935   }
1936 
1937   // Global Register variables always invoke intrinsics
1938   if (LV.isGlobalReg())
1939     return EmitLoadOfGlobalRegLValue(LV);
1940 
1941   if (LV.isMatrixElt()) {
1942     llvm::LoadInst *Load =
1943         Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified());
1944     return RValue::get(
1945         Builder.CreateExtractElement(Load, LV.getMatrixIdx(), "matrixext"));
1946   }
1947 
1948   assert(LV.isBitField() && "Unknown LValue type!");
1949   return EmitLoadOfBitfieldLValue(LV, Loc);
1950 }
1951 
1952 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1953                                                  SourceLocation Loc) {
1954   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1955 
1956   // Get the output type.
1957   llvm::Type *ResLTy = ConvertType(LV.getType());
1958 
1959   Address Ptr = LV.getBitFieldAddress();
1960   llvm::Value *Val =
1961       Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1962 
1963   bool UseVolatile = LV.isVolatileQualified() &&
1964                      Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
1965   const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
1966   const unsigned StorageSize =
1967       UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
1968   if (Info.IsSigned) {
1969     assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize);
1970     unsigned HighBits = StorageSize - Offset - Info.Size;
1971     if (HighBits)
1972       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1973     if (Offset + HighBits)
1974       Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr");
1975   } else {
1976     if (Offset)
1977       Val = Builder.CreateLShr(Val, Offset, "bf.lshr");
1978     if (static_cast<unsigned>(Offset) + Info.Size < StorageSize)
1979       Val = Builder.CreateAnd(
1980           Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear");
1981   }
1982   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1983   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1984   return RValue::get(Val);
1985 }
1986 
1987 // If this is a reference to a subset of the elements of a vector, create an
1988 // appropriate shufflevector.
1989 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1990   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1991                                         LV.isVolatileQualified());
1992 
1993   const llvm::Constant *Elts = LV.getExtVectorElts();
1994 
1995   // If the result of the expression is a non-vector type, we must be extracting
1996   // a single element.  Just codegen as an extractelement.
1997   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1998   if (!ExprVT) {
1999     unsigned InIdx = getAccessedFieldNo(0, Elts);
2000     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2001     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
2002   }
2003 
2004   // Always use shuffle vector to try to retain the original program structure
2005   unsigned NumResultElts = ExprVT->getNumElements();
2006 
2007   SmallVector<int, 4> Mask;
2008   for (unsigned i = 0; i != NumResultElts; ++i)
2009     Mask.push_back(getAccessedFieldNo(i, Elts));
2010 
2011   Vec = Builder.CreateShuffleVector(Vec, Mask);
2012   return RValue::get(Vec);
2013 }
2014 
2015 /// Generates lvalue for partial ext_vector access.
2016 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
2017   Address VectorAddress = LV.getExtVectorAddress();
2018   QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
2019   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
2020 
2021   Address CastToPointerElement =
2022     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
2023                                  "conv.ptr.element");
2024 
2025   const llvm::Constant *Elts = LV.getExtVectorElts();
2026   unsigned ix = getAccessedFieldNo(0, Elts);
2027 
2028   Address VectorBasePtrPlusIx =
2029     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
2030                                    "vector.elt");
2031 
2032   return VectorBasePtrPlusIx;
2033 }
2034 
2035 /// Load of global gamed gegisters are always calls to intrinsics.
2036 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
2037   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
2038          "Bad type for register variable");
2039   llvm::MDNode *RegName = cast<llvm::MDNode>(
2040       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
2041 
2042   // We accept integer and pointer types only
2043   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
2044   llvm::Type *Ty = OrigTy;
2045   if (OrigTy->isPointerTy())
2046     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2047   llvm::Type *Types[] = { Ty };
2048 
2049   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
2050   llvm::Value *Call = Builder.CreateCall(
2051       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
2052   if (OrigTy->isPointerTy())
2053     Call = Builder.CreateIntToPtr(Call, OrigTy);
2054   return RValue::get(Call);
2055 }
2056 
2057 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2058 /// lvalue, where both are guaranteed to the have the same type, and that type
2059 /// is 'Ty'.
2060 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
2061                                              bool isInit) {
2062   if (!Dst.isSimple()) {
2063     if (Dst.isVectorElt()) {
2064       // Read/modify/write the vector, inserting the new element.
2065       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
2066                                             Dst.isVolatileQualified());
2067       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2068                                         Dst.getVectorIdx(), "vecins");
2069       Builder.CreateStore(Vec, Dst.getVectorAddress(),
2070                           Dst.isVolatileQualified());
2071       return;
2072     }
2073 
2074     // If this is an update of extended vector elements, insert them as
2075     // appropriate.
2076     if (Dst.isExtVectorElt())
2077       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
2078 
2079     if (Dst.isGlobalReg())
2080       return EmitStoreThroughGlobalRegLValue(Src, Dst);
2081 
2082     if (Dst.isMatrixElt()) {
2083       llvm::Value *Vec = Builder.CreateLoad(Dst.getMatrixAddress());
2084       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2085                                         Dst.getMatrixIdx(), "matins");
2086       Builder.CreateStore(Vec, Dst.getMatrixAddress(),
2087                           Dst.isVolatileQualified());
2088       return;
2089     }
2090 
2091     assert(Dst.isBitField() && "Unknown LValue type");
2092     return EmitStoreThroughBitfieldLValue(Src, Dst);
2093   }
2094 
2095   // There's special magic for assigning into an ARC-qualified l-value.
2096   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
2097     switch (Lifetime) {
2098     case Qualifiers::OCL_None:
2099       llvm_unreachable("present but none");
2100 
2101     case Qualifiers::OCL_ExplicitNone:
2102       // nothing special
2103       break;
2104 
2105     case Qualifiers::OCL_Strong:
2106       if (isInit) {
2107         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
2108         break;
2109       }
2110       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
2111       return;
2112 
2113     case Qualifiers::OCL_Weak:
2114       if (isInit)
2115         // Initialize and then skip the primitive store.
2116         EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
2117       else
2118         EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
2119                          /*ignore*/ true);
2120       return;
2121 
2122     case Qualifiers::OCL_Autoreleasing:
2123       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
2124                                                      Src.getScalarVal()));
2125       // fall into the normal path
2126       break;
2127     }
2128   }
2129 
2130   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
2131     // load of a __weak object.
2132     Address LvalueDst = Dst.getAddress(*this);
2133     llvm::Value *src = Src.getScalarVal();
2134      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
2135     return;
2136   }
2137 
2138   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
2139     // load of a __strong object.
2140     Address LvalueDst = Dst.getAddress(*this);
2141     llvm::Value *src = Src.getScalarVal();
2142     if (Dst.isObjCIvar()) {
2143       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2144       llvm::Type *ResultType = IntPtrTy;
2145       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2146       llvm::Value *RHS = dst.getPointer();
2147       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2148       llvm::Value *LHS =
2149         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2150                                "sub.ptr.lhs.cast");
2151       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2152       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2153                                               BytesBetween);
2154     } else if (Dst.isGlobalObjCRef()) {
2155       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2156                                                 Dst.isThreadLocalRef());
2157     }
2158     else
2159       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2160     return;
2161   }
2162 
2163   assert(Src.isScalar() && "Can't emit an agg store with this method");
2164   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2165 }
2166 
2167 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2168                                                      llvm::Value **Result) {
2169   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2170   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2171   Address Ptr = Dst.getBitFieldAddress();
2172 
2173   // Get the source value, truncated to the width of the bit-field.
2174   llvm::Value *SrcVal = Src.getScalarVal();
2175 
2176   // Cast the source to the storage type and shift it into place.
2177   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2178                                  /*isSigned=*/false);
2179   llvm::Value *MaskedVal = SrcVal;
2180 
2181   const bool UseVolatile =
2182       CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() &&
2183       Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
2184   const unsigned StorageSize =
2185       UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
2186   const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
2187   // See if there are other bits in the bitfield's storage we'll need to load
2188   // and mask together with source before storing.
2189   if (StorageSize != Info.Size) {
2190     assert(StorageSize > Info.Size && "Invalid bitfield size.");
2191     llvm::Value *Val =
2192         Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2193 
2194     // Mask the source value as needed.
2195     if (!hasBooleanRepresentation(Dst.getType()))
2196       SrcVal = Builder.CreateAnd(
2197           SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size),
2198           "bf.value");
2199     MaskedVal = SrcVal;
2200     if (Offset)
2201       SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl");
2202 
2203     // Mask out the original value.
2204     Val = Builder.CreateAnd(
2205         Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size),
2206         "bf.clear");
2207 
2208     // Or together the unchanged values and the source value.
2209     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2210   } else {
2211     assert(Offset == 0);
2212     // According to the AACPS:
2213     // When a volatile bit-field is written, and its container does not overlap
2214     // with any non-bit-field member, its container must be read exactly once
2215     // and written exactly once using the access width appropriate to the type
2216     // of the container. The two accesses are not atomic.
2217     if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) &&
2218         CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad)
2219       Builder.CreateLoad(Ptr, true, "bf.load");
2220   }
2221 
2222   // Write the new value back out.
2223   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2224 
2225   // Return the new value of the bit-field, if requested.
2226   if (Result) {
2227     llvm::Value *ResultVal = MaskedVal;
2228 
2229     // Sign extend the value if needed.
2230     if (Info.IsSigned) {
2231       assert(Info.Size <= StorageSize);
2232       unsigned HighBits = StorageSize - Info.Size;
2233       if (HighBits) {
2234         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2235         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2236       }
2237     }
2238 
2239     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2240                                       "bf.result.cast");
2241     *Result = EmitFromMemory(ResultVal, Dst.getType());
2242   }
2243 }
2244 
2245 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2246                                                                LValue Dst) {
2247   // This access turns into a read/modify/write of the vector.  Load the input
2248   // value now.
2249   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2250                                         Dst.isVolatileQualified());
2251   const llvm::Constant *Elts = Dst.getExtVectorElts();
2252 
2253   llvm::Value *SrcVal = Src.getScalarVal();
2254 
2255   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2256     unsigned NumSrcElts = VTy->getNumElements();
2257     unsigned NumDstElts =
2258         cast<llvm::FixedVectorType>(Vec->getType())->getNumElements();
2259     if (NumDstElts == NumSrcElts) {
2260       // Use shuffle vector is the src and destination are the same number of
2261       // elements and restore the vector mask since it is on the side it will be
2262       // stored.
2263       SmallVector<int, 4> Mask(NumDstElts);
2264       for (unsigned i = 0; i != NumSrcElts; ++i)
2265         Mask[getAccessedFieldNo(i, Elts)] = i;
2266 
2267       Vec = Builder.CreateShuffleVector(SrcVal, Mask);
2268     } else if (NumDstElts > NumSrcElts) {
2269       // Extended the source vector to the same length and then shuffle it
2270       // into the destination.
2271       // FIXME: since we're shuffling with undef, can we just use the indices
2272       //        into that?  This could be simpler.
2273       SmallVector<int, 4> ExtMask;
2274       for (unsigned i = 0; i != NumSrcElts; ++i)
2275         ExtMask.push_back(i);
2276       ExtMask.resize(NumDstElts, -1);
2277       llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(SrcVal, ExtMask);
2278       // build identity
2279       SmallVector<int, 4> Mask;
2280       for (unsigned i = 0; i != NumDstElts; ++i)
2281         Mask.push_back(i);
2282 
2283       // When the vector size is odd and .odd or .hi is used, the last element
2284       // of the Elts constant array will be one past the size of the vector.
2285       // Ignore the last element here, if it is greater than the mask size.
2286       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2287         NumSrcElts--;
2288 
2289       // modify when what gets shuffled in
2290       for (unsigned i = 0; i != NumSrcElts; ++i)
2291         Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts;
2292       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask);
2293     } else {
2294       // We should never shorten the vector
2295       llvm_unreachable("unexpected shorten vector length");
2296     }
2297   } else {
2298     // If the Src is a scalar (not a vector) it must be updating one element.
2299     unsigned InIdx = getAccessedFieldNo(0, Elts);
2300     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2301     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2302   }
2303 
2304   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2305                       Dst.isVolatileQualified());
2306 }
2307 
2308 /// Store of global named registers are always calls to intrinsics.
2309 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2310   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2311          "Bad type for register variable");
2312   llvm::MDNode *RegName = cast<llvm::MDNode>(
2313       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2314   assert(RegName && "Register LValue is not metadata");
2315 
2316   // We accept integer and pointer types only
2317   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2318   llvm::Type *Ty = OrigTy;
2319   if (OrigTy->isPointerTy())
2320     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2321   llvm::Type *Types[] = { Ty };
2322 
2323   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2324   llvm::Value *Value = Src.getScalarVal();
2325   if (OrigTy->isPointerTy())
2326     Value = Builder.CreatePtrToInt(Value, Ty);
2327   Builder.CreateCall(
2328       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2329 }
2330 
2331 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2332 // generating write-barries API. It is currently a global, ivar,
2333 // or neither.
2334 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2335                                  LValue &LV,
2336                                  bool IsMemberAccess=false) {
2337   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2338     return;
2339 
2340   if (isa<ObjCIvarRefExpr>(E)) {
2341     QualType ExpTy = E->getType();
2342     if (IsMemberAccess && ExpTy->isPointerType()) {
2343       // If ivar is a structure pointer, assigning to field of
2344       // this struct follows gcc's behavior and makes it a non-ivar
2345       // writer-barrier conservatively.
2346       ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2347       if (ExpTy->isRecordType()) {
2348         LV.setObjCIvar(false);
2349         return;
2350       }
2351     }
2352     LV.setObjCIvar(true);
2353     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2354     LV.setBaseIvarExp(Exp->getBase());
2355     LV.setObjCArray(E->getType()->isArrayType());
2356     return;
2357   }
2358 
2359   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2360     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2361       if (VD->hasGlobalStorage()) {
2362         LV.setGlobalObjCRef(true);
2363         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2364       }
2365     }
2366     LV.setObjCArray(E->getType()->isArrayType());
2367     return;
2368   }
2369 
2370   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2371     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2372     return;
2373   }
2374 
2375   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2376     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2377     if (LV.isObjCIvar()) {
2378       // If cast is to a structure pointer, follow gcc's behavior and make it
2379       // a non-ivar write-barrier.
2380       QualType ExpTy = E->getType();
2381       if (ExpTy->isPointerType())
2382         ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2383       if (ExpTy->isRecordType())
2384         LV.setObjCIvar(false);
2385     }
2386     return;
2387   }
2388 
2389   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2390     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2391     return;
2392   }
2393 
2394   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2395     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2396     return;
2397   }
2398 
2399   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2400     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2401     return;
2402   }
2403 
2404   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2405     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2406     return;
2407   }
2408 
2409   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2410     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2411     if (LV.isObjCIvar() && !LV.isObjCArray())
2412       // Using array syntax to assigning to what an ivar points to is not
2413       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2414       LV.setObjCIvar(false);
2415     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2416       // Using array syntax to assigning to what global points to is not
2417       // same as assigning to the global itself. {id *G;} G[i] = 0;
2418       LV.setGlobalObjCRef(false);
2419     return;
2420   }
2421 
2422   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2423     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2424     // We don't know if member is an 'ivar', but this flag is looked at
2425     // only in the context of LV.isObjCIvar().
2426     LV.setObjCArray(E->getType()->isArrayType());
2427     return;
2428   }
2429 }
2430 
2431 static llvm::Value *
2432 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2433                                 llvm::Value *V, llvm::Type *IRType,
2434                                 StringRef Name = StringRef()) {
2435   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2436   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2437 }
2438 
2439 static LValue EmitThreadPrivateVarDeclLValue(
2440     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2441     llvm::Type *RealVarTy, SourceLocation Loc) {
2442   if (CGF.CGM.getLangOpts().OpenMPIRBuilder)
2443     Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate(
2444         CGF, VD, Addr, Loc);
2445   else
2446     Addr =
2447         CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2448 
2449   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2450   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2451 }
2452 
2453 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2454                                            const VarDecl *VD, QualType T) {
2455   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2456       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2457   // Return an invalid address if variable is MT_To and unified
2458   // memory is not enabled. For all other cases: MT_Link and
2459   // MT_To with unified memory, return a valid address.
2460   if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2461                !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2462     return Address::invalid();
2463   assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2464           (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2465            CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2466          "Expected link clause OR to clause with unified memory enabled.");
2467   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2468   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2469   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2470 }
2471 
2472 Address
2473 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2474                                      LValueBaseInfo *PointeeBaseInfo,
2475                                      TBAAAccessInfo *PointeeTBAAInfo) {
2476   llvm::LoadInst *Load =
2477       Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
2478   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2479 
2480   CharUnits Align = CGM.getNaturalTypeAlignment(
2481       RefLVal.getType()->getPointeeType(), PointeeBaseInfo, PointeeTBAAInfo,
2482       /* forPointeeType= */ true);
2483   return Address(Load, Align);
2484 }
2485 
2486 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2487   LValueBaseInfo PointeeBaseInfo;
2488   TBAAAccessInfo PointeeTBAAInfo;
2489   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2490                                             &PointeeTBAAInfo);
2491   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2492                         PointeeBaseInfo, PointeeTBAAInfo);
2493 }
2494 
2495 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2496                                            const PointerType *PtrTy,
2497                                            LValueBaseInfo *BaseInfo,
2498                                            TBAAAccessInfo *TBAAInfo) {
2499   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2500   return Address(Addr, CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(),
2501                                                    BaseInfo, TBAAInfo,
2502                                                    /*forPointeeType=*/true));
2503 }
2504 
2505 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2506                                                 const PointerType *PtrTy) {
2507   LValueBaseInfo BaseInfo;
2508   TBAAAccessInfo TBAAInfo;
2509   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2510   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2511 }
2512 
2513 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2514                                       const Expr *E, const VarDecl *VD) {
2515   QualType T = E->getType();
2516 
2517   // If it's thread_local, emit a call to its wrapper function instead.
2518   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2519       CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2520     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2521   // Check if the variable is marked as declare target with link clause in
2522   // device codegen.
2523   if (CGF.getLangOpts().OpenMPIsDevice) {
2524     Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2525     if (Addr.isValid())
2526       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2527   }
2528 
2529   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2530   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2531   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2532   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2533   Address Addr(V, Alignment);
2534   // Emit reference to the private copy of the variable if it is an OpenMP
2535   // threadprivate variable.
2536   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2537       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2538     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2539                                           E->getExprLoc());
2540   }
2541   LValue LV = VD->getType()->isReferenceType() ?
2542       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2543                                     AlignmentSource::Decl) :
2544       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2545   setObjCGCLValueClass(CGF.getContext(), E, LV);
2546   return LV;
2547 }
2548 
2549 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2550                                                GlobalDecl GD) {
2551   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2552   if (FD->hasAttr<WeakRefAttr>()) {
2553     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2554     return aliasee.getPointer();
2555   }
2556 
2557   llvm::Constant *V = CGM.GetAddrOfFunction(GD);
2558   if (!FD->hasPrototype()) {
2559     if (const FunctionProtoType *Proto =
2560             FD->getType()->getAs<FunctionProtoType>()) {
2561       // Ugly case: for a K&R-style definition, the type of the definition
2562       // isn't the same as the type of a use.  Correct for this with a
2563       // bitcast.
2564       QualType NoProtoType =
2565           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2566       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2567       V = llvm::ConstantExpr::getBitCast(V,
2568                                       CGM.getTypes().ConvertType(NoProtoType));
2569     }
2570   }
2571   return V;
2572 }
2573 
2574 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E,
2575                                      GlobalDecl GD) {
2576   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2577   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD);
2578   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2579   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2580                             AlignmentSource::Decl);
2581 }
2582 
2583 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2584                                       llvm::Value *ThisValue) {
2585   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2586   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2587   return CGF.EmitLValueForField(LV, FD);
2588 }
2589 
2590 /// Named Registers are named metadata pointing to the register name
2591 /// which will be read from/written to as an argument to the intrinsic
2592 /// @llvm.read/write_register.
2593 /// So far, only the name is being passed down, but other options such as
2594 /// register type, allocation type or even optimization options could be
2595 /// passed down via the metadata node.
2596 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2597   SmallString<64> Name("llvm.named.register.");
2598   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2599   assert(Asm->getLabel().size() < 64-Name.size() &&
2600       "Register name too big");
2601   Name.append(Asm->getLabel());
2602   llvm::NamedMDNode *M =
2603     CGM.getModule().getOrInsertNamedMetadata(Name);
2604   if (M->getNumOperands() == 0) {
2605     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2606                                               Asm->getLabel());
2607     llvm::Metadata *Ops[] = {Str};
2608     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2609   }
2610 
2611   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2612 
2613   llvm::Value *Ptr =
2614     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2615   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2616 }
2617 
2618 /// Determine whether we can emit a reference to \p VD from the current
2619 /// context, despite not necessarily having seen an odr-use of the variable in
2620 /// this context.
2621 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2622                                                const DeclRefExpr *E,
2623                                                const VarDecl *VD,
2624                                                bool IsConstant) {
2625   // For a variable declared in an enclosing scope, do not emit a spurious
2626   // reference even if we have a capture, as that will emit an unwarranted
2627   // reference to our capture state, and will likely generate worse code than
2628   // emitting a local copy.
2629   if (E->refersToEnclosingVariableOrCapture())
2630     return false;
2631 
2632   // For a local declaration declared in this function, we can always reference
2633   // it even if we don't have an odr-use.
2634   if (VD->hasLocalStorage()) {
2635     return VD->getDeclContext() ==
2636            dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2637   }
2638 
2639   // For a global declaration, we can emit a reference to it if we know
2640   // for sure that we are able to emit a definition of it.
2641   VD = VD->getDefinition(CGF.getContext());
2642   if (!VD)
2643     return false;
2644 
2645   // Don't emit a spurious reference if it might be to a variable that only
2646   // exists on a different device / target.
2647   // FIXME: This is unnecessarily broad. Check whether this would actually be a
2648   // cross-target reference.
2649   if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2650       CGF.getLangOpts().OpenCL) {
2651     return false;
2652   }
2653 
2654   // We can emit a spurious reference only if the linkage implies that we'll
2655   // be emitting a non-interposable symbol that will be retained until link
2656   // time.
2657   switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2658   case llvm::GlobalValue::ExternalLinkage:
2659   case llvm::GlobalValue::LinkOnceODRLinkage:
2660   case llvm::GlobalValue::WeakODRLinkage:
2661   case llvm::GlobalValue::InternalLinkage:
2662   case llvm::GlobalValue::PrivateLinkage:
2663     return true;
2664   default:
2665     return false;
2666   }
2667 }
2668 
2669 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2670   const NamedDecl *ND = E->getDecl();
2671   QualType T = E->getType();
2672 
2673   assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2674          "should not emit an unevaluated operand");
2675 
2676   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2677     // Global Named registers access via intrinsics only
2678     if (VD->getStorageClass() == SC_Register &&
2679         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2680       return EmitGlobalNamedRegister(VD, CGM);
2681 
2682     // If this DeclRefExpr does not constitute an odr-use of the variable,
2683     // we're not permitted to emit a reference to it in general, and it might
2684     // not be captured if capture would be necessary for a use. Emit the
2685     // constant value directly instead.
2686     if (E->isNonOdrUse() == NOUR_Constant &&
2687         (VD->getType()->isReferenceType() ||
2688          !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2689       VD->getAnyInitializer(VD);
2690       llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2691           E->getLocation(), *VD->evaluateValue(), VD->getType());
2692       assert(Val && "failed to emit constant expression");
2693 
2694       Address Addr = Address::invalid();
2695       if (!VD->getType()->isReferenceType()) {
2696         // Spill the constant value to a global.
2697         Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2698                                            getContext().getDeclAlign(VD));
2699         llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2700         auto *PTy = llvm::PointerType::get(
2701             VarTy, getContext().getTargetAddressSpace(VD->getType()));
2702         if (PTy != Addr.getType())
2703           Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy);
2704       } else {
2705         // Should we be using the alignment of the constant pointer we emitted?
2706         CharUnits Alignment =
2707             CGM.getNaturalTypeAlignment(E->getType(),
2708                                         /* BaseInfo= */ nullptr,
2709                                         /* TBAAInfo= */ nullptr,
2710                                         /* forPointeeType= */ true);
2711         Addr = Address(Val, Alignment);
2712       }
2713       return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2714     }
2715 
2716     // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2717 
2718     // Check for captured variables.
2719     if (E->refersToEnclosingVariableOrCapture()) {
2720       VD = VD->getCanonicalDecl();
2721       if (auto *FD = LambdaCaptureFields.lookup(VD))
2722         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2723       if (CapturedStmtInfo) {
2724         auto I = LocalDeclMap.find(VD);
2725         if (I != LocalDeclMap.end()) {
2726           LValue CapLVal;
2727           if (VD->getType()->isReferenceType())
2728             CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
2729                                                 AlignmentSource::Decl);
2730           else
2731             CapLVal = MakeAddrLValue(I->second, T);
2732           // Mark lvalue as nontemporal if the variable is marked as nontemporal
2733           // in simd context.
2734           if (getLangOpts().OpenMP &&
2735               CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2736             CapLVal.setNontemporal(/*Value=*/true);
2737           return CapLVal;
2738         }
2739         LValue CapLVal =
2740             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2741                                     CapturedStmtInfo->getContextValue());
2742         CapLVal = MakeAddrLValue(
2743             Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)),
2744             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2745             CapLVal.getTBAAInfo());
2746         // Mark lvalue as nontemporal if the variable is marked as nontemporal
2747         // in simd context.
2748         if (getLangOpts().OpenMP &&
2749             CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2750           CapLVal.setNontemporal(/*Value=*/true);
2751         return CapLVal;
2752       }
2753 
2754       assert(isa<BlockDecl>(CurCodeDecl));
2755       Address addr = GetAddrOfBlockDecl(VD);
2756       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2757     }
2758   }
2759 
2760   // FIXME: We should be able to assert this for FunctionDecls as well!
2761   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2762   // those with a valid source location.
2763   assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2764           !E->getLocation().isValid()) &&
2765          "Should not use decl without marking it used!");
2766 
2767   if (ND->hasAttr<WeakRefAttr>()) {
2768     const auto *VD = cast<ValueDecl>(ND);
2769     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2770     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2771   }
2772 
2773   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2774     // Check if this is a global variable.
2775     if (VD->hasLinkage() || VD->isStaticDataMember())
2776       return EmitGlobalVarDeclLValue(*this, E, VD);
2777 
2778     Address addr = Address::invalid();
2779 
2780     // The variable should generally be present in the local decl map.
2781     auto iter = LocalDeclMap.find(VD);
2782     if (iter != LocalDeclMap.end()) {
2783       addr = iter->second;
2784 
2785     // Otherwise, it might be static local we haven't emitted yet for
2786     // some reason; most likely, because it's in an outer function.
2787     } else if (VD->isStaticLocal()) {
2788       addr = Address(CGM.getOrCreateStaticVarDecl(
2789           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)),
2790                      getContext().getDeclAlign(VD));
2791 
2792     // No other cases for now.
2793     } else {
2794       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2795     }
2796 
2797 
2798     // Check for OpenMP threadprivate variables.
2799     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2800         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2801       return EmitThreadPrivateVarDeclLValue(
2802           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2803           E->getExprLoc());
2804     }
2805 
2806     // Drill into block byref variables.
2807     bool isBlockByref = VD->isEscapingByref();
2808     if (isBlockByref) {
2809       addr = emitBlockByrefAddress(addr, VD);
2810     }
2811 
2812     // Drill into reference types.
2813     LValue LV = VD->getType()->isReferenceType() ?
2814         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2815         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2816 
2817     bool isLocalStorage = VD->hasLocalStorage();
2818 
2819     bool NonGCable = isLocalStorage &&
2820                      !VD->getType()->isReferenceType() &&
2821                      !isBlockByref;
2822     if (NonGCable) {
2823       LV.getQuals().removeObjCGCAttr();
2824       LV.setNonGC(true);
2825     }
2826 
2827     bool isImpreciseLifetime =
2828       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2829     if (isImpreciseLifetime)
2830       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2831     setObjCGCLValueClass(getContext(), E, LV);
2832     return LV;
2833   }
2834 
2835   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2836     return EmitFunctionDeclLValue(*this, E, FD);
2837 
2838   // FIXME: While we're emitting a binding from an enclosing scope, all other
2839   // DeclRefExprs we see should be implicitly treated as if they also refer to
2840   // an enclosing scope.
2841   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2842     return EmitLValue(BD->getBinding());
2843 
2844   // We can form DeclRefExprs naming GUID declarations when reconstituting
2845   // non-type template parameters into expressions.
2846   if (const auto *GD = dyn_cast<MSGuidDecl>(ND))
2847     return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T,
2848                           AlignmentSource::Decl);
2849 
2850   if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND))
2851     return MakeAddrLValue(CGM.GetAddrOfTemplateParamObject(TPO), T,
2852                           AlignmentSource::Decl);
2853 
2854   llvm_unreachable("Unhandled DeclRefExpr");
2855 }
2856 
2857 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2858   // __extension__ doesn't affect lvalue-ness.
2859   if (E->getOpcode() == UO_Extension)
2860     return EmitLValue(E->getSubExpr());
2861 
2862   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2863   switch (E->getOpcode()) {
2864   default: llvm_unreachable("Unknown unary operator lvalue!");
2865   case UO_Deref: {
2866     QualType T = E->getSubExpr()->getType()->getPointeeType();
2867     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2868 
2869     LValueBaseInfo BaseInfo;
2870     TBAAAccessInfo TBAAInfo;
2871     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2872                                             &TBAAInfo);
2873     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2874     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2875 
2876     // We should not generate __weak write barrier on indirect reference
2877     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2878     // But, we continue to generate __strong write barrier on indirect write
2879     // into a pointer to object.
2880     if (getLangOpts().ObjC &&
2881         getLangOpts().getGC() != LangOptions::NonGC &&
2882         LV.isObjCWeak())
2883       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2884     return LV;
2885   }
2886   case UO_Real:
2887   case UO_Imag: {
2888     LValue LV = EmitLValue(E->getSubExpr());
2889     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2890 
2891     // __real is valid on scalars.  This is a faster way of testing that.
2892     // __imag can only produce an rvalue on scalars.
2893     if (E->getOpcode() == UO_Real &&
2894         !LV.getAddress(*this).getElementType()->isStructTy()) {
2895       assert(E->getSubExpr()->getType()->isArithmeticType());
2896       return LV;
2897     }
2898 
2899     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2900 
2901     Address Component =
2902         (E->getOpcode() == UO_Real
2903              ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
2904              : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
2905     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2906                                    CGM.getTBAAInfoForSubobject(LV, T));
2907     ElemLV.getQuals().addQualifiers(LV.getQuals());
2908     return ElemLV;
2909   }
2910   case UO_PreInc:
2911   case UO_PreDec: {
2912     LValue LV = EmitLValue(E->getSubExpr());
2913     bool isInc = E->getOpcode() == UO_PreInc;
2914 
2915     if (E->getType()->isAnyComplexType())
2916       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2917     else
2918       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2919     return LV;
2920   }
2921   }
2922 }
2923 
2924 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2925   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2926                         E->getType(), AlignmentSource::Decl);
2927 }
2928 
2929 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2930   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2931                         E->getType(), AlignmentSource::Decl);
2932 }
2933 
2934 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2935   auto SL = E->getFunctionName();
2936   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2937   StringRef FnName = CurFn->getName();
2938   if (FnName.startswith("\01"))
2939     FnName = FnName.substr(1);
2940   StringRef NameItems[] = {
2941       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2942   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2943   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2944     std::string Name = std::string(SL->getString());
2945     if (!Name.empty()) {
2946       unsigned Discriminator =
2947           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2948       if (Discriminator)
2949         Name += "_" + Twine(Discriminator + 1).str();
2950       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2951       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2952     } else {
2953       auto C =
2954           CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str());
2955       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2956     }
2957   }
2958   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2959   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2960 }
2961 
2962 /// Emit a type description suitable for use by a runtime sanitizer library. The
2963 /// format of a type descriptor is
2964 ///
2965 /// \code
2966 ///   { i16 TypeKind, i16 TypeInfo }
2967 /// \endcode
2968 ///
2969 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2970 /// integer, 1 for a floating point value, and -1 for anything else.
2971 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2972   // Only emit each type's descriptor once.
2973   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2974     return C;
2975 
2976   uint16_t TypeKind = -1;
2977   uint16_t TypeInfo = 0;
2978 
2979   if (T->isIntegerType()) {
2980     TypeKind = 0;
2981     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2982                (T->isSignedIntegerType() ? 1 : 0);
2983   } else if (T->isFloatingType()) {
2984     TypeKind = 1;
2985     TypeInfo = getContext().getTypeSize(T);
2986   }
2987 
2988   // Format the type name as if for a diagnostic, including quotes and
2989   // optionally an 'aka'.
2990   SmallString<32> Buffer;
2991   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2992                                     (intptr_t)T.getAsOpaquePtr(),
2993                                     StringRef(), StringRef(), None, Buffer,
2994                                     None);
2995 
2996   llvm::Constant *Components[] = {
2997     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2998     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2999   };
3000   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
3001 
3002   auto *GV = new llvm::GlobalVariable(
3003       CGM.getModule(), Descriptor->getType(),
3004       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
3005   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3006   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
3007 
3008   // Remember the descriptor for this type.
3009   CGM.setTypeDescriptorInMap(T, GV);
3010 
3011   return GV;
3012 }
3013 
3014 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
3015   llvm::Type *TargetTy = IntPtrTy;
3016 
3017   if (V->getType() == TargetTy)
3018     return V;
3019 
3020   // Floating-point types which fit into intptr_t are bitcast to integers
3021   // and then passed directly (after zero-extension, if necessary).
3022   if (V->getType()->isFloatingPointTy()) {
3023     unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedSize();
3024     if (Bits <= TargetTy->getIntegerBitWidth())
3025       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
3026                                                          Bits));
3027   }
3028 
3029   // Integers which fit in intptr_t are zero-extended and passed directly.
3030   if (V->getType()->isIntegerTy() &&
3031       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
3032     return Builder.CreateZExt(V, TargetTy);
3033 
3034   // Pointers are passed directly, everything else is passed by address.
3035   if (!V->getType()->isPointerTy()) {
3036     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
3037     Builder.CreateStore(V, Ptr);
3038     V = Ptr.getPointer();
3039   }
3040   return Builder.CreatePtrToInt(V, TargetTy);
3041 }
3042 
3043 /// Emit a representation of a SourceLocation for passing to a handler
3044 /// in a sanitizer runtime library. The format for this data is:
3045 /// \code
3046 ///   struct SourceLocation {
3047 ///     const char *Filename;
3048 ///     int32_t Line, Column;
3049 ///   };
3050 /// \endcode
3051 /// For an invalid SourceLocation, the Filename pointer is null.
3052 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
3053   llvm::Constant *Filename;
3054   int Line, Column;
3055 
3056   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
3057   if (PLoc.isValid()) {
3058     StringRef FilenameString = PLoc.getFilename();
3059 
3060     int PathComponentsToStrip =
3061         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
3062     if (PathComponentsToStrip < 0) {
3063       assert(PathComponentsToStrip != INT_MIN);
3064       int PathComponentsToKeep = -PathComponentsToStrip;
3065       auto I = llvm::sys::path::rbegin(FilenameString);
3066       auto E = llvm::sys::path::rend(FilenameString);
3067       while (I != E && --PathComponentsToKeep)
3068         ++I;
3069 
3070       FilenameString = FilenameString.substr(I - E);
3071     } else if (PathComponentsToStrip > 0) {
3072       auto I = llvm::sys::path::begin(FilenameString);
3073       auto E = llvm::sys::path::end(FilenameString);
3074       while (I != E && PathComponentsToStrip--)
3075         ++I;
3076 
3077       if (I != E)
3078         FilenameString =
3079             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
3080       else
3081         FilenameString = llvm::sys::path::filename(FilenameString);
3082     }
3083 
3084     auto FilenameGV =
3085         CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src");
3086     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
3087                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
3088     Filename = FilenameGV.getPointer();
3089     Line = PLoc.getLine();
3090     Column = PLoc.getColumn();
3091   } else {
3092     Filename = llvm::Constant::getNullValue(Int8PtrTy);
3093     Line = Column = 0;
3094   }
3095 
3096   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
3097                             Builder.getInt32(Column)};
3098 
3099   return llvm::ConstantStruct::getAnon(Data);
3100 }
3101 
3102 namespace {
3103 /// Specify under what conditions this check can be recovered
3104 enum class CheckRecoverableKind {
3105   /// Always terminate program execution if this check fails.
3106   Unrecoverable,
3107   /// Check supports recovering, runtime has both fatal (noreturn) and
3108   /// non-fatal handlers for this check.
3109   Recoverable,
3110   /// Runtime conditionally aborts, always need to support recovery.
3111   AlwaysRecoverable
3112 };
3113 }
3114 
3115 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
3116   assert(Kind.countPopulation() == 1);
3117   if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
3118     return CheckRecoverableKind::AlwaysRecoverable;
3119   else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
3120     return CheckRecoverableKind::Unrecoverable;
3121   else
3122     return CheckRecoverableKind::Recoverable;
3123 }
3124 
3125 namespace {
3126 struct SanitizerHandlerInfo {
3127   char const *const Name;
3128   unsigned Version;
3129 };
3130 }
3131 
3132 const SanitizerHandlerInfo SanitizerHandlers[] = {
3133 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
3134     LIST_SANITIZER_CHECKS
3135 #undef SANITIZER_CHECK
3136 };
3137 
3138 static void emitCheckHandlerCall(CodeGenFunction &CGF,
3139                                  llvm::FunctionType *FnType,
3140                                  ArrayRef<llvm::Value *> FnArgs,
3141                                  SanitizerHandler CheckHandler,
3142                                  CheckRecoverableKind RecoverKind, bool IsFatal,
3143                                  llvm::BasicBlock *ContBB) {
3144   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
3145   Optional<ApplyDebugLocation> DL;
3146   if (!CGF.Builder.getCurrentDebugLocation()) {
3147     // Ensure that the call has at least an artificial debug location.
3148     DL.emplace(CGF, SourceLocation());
3149   }
3150   bool NeedsAbortSuffix =
3151       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
3152   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
3153   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
3154   const StringRef CheckName = CheckInfo.Name;
3155   std::string FnName = "__ubsan_handle_" + CheckName.str();
3156   if (CheckInfo.Version && !MinimalRuntime)
3157     FnName += "_v" + llvm::utostr(CheckInfo.Version);
3158   if (MinimalRuntime)
3159     FnName += "_minimal";
3160   if (NeedsAbortSuffix)
3161     FnName += "_abort";
3162   bool MayReturn =
3163       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
3164 
3165   llvm::AttrBuilder B;
3166   if (!MayReturn) {
3167     B.addAttribute(llvm::Attribute::NoReturn)
3168         .addAttribute(llvm::Attribute::NoUnwind);
3169   }
3170   B.addAttribute(llvm::Attribute::UWTable);
3171 
3172   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
3173       FnType, FnName,
3174       llvm::AttributeList::get(CGF.getLLVMContext(),
3175                                llvm::AttributeList::FunctionIndex, B),
3176       /*Local=*/true);
3177   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
3178   if (!MayReturn) {
3179     HandlerCall->setDoesNotReturn();
3180     CGF.Builder.CreateUnreachable();
3181   } else {
3182     CGF.Builder.CreateBr(ContBB);
3183   }
3184 }
3185 
3186 void CodeGenFunction::EmitCheck(
3187     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3188     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3189     ArrayRef<llvm::Value *> DynamicArgs) {
3190   assert(IsSanitizerScope);
3191   assert(Checked.size() > 0);
3192   assert(CheckHandler >= 0 &&
3193          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
3194   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3195 
3196   llvm::Value *FatalCond = nullptr;
3197   llvm::Value *RecoverableCond = nullptr;
3198   llvm::Value *TrapCond = nullptr;
3199   for (int i = 0, n = Checked.size(); i < n; ++i) {
3200     llvm::Value *Check = Checked[i].first;
3201     // -fsanitize-trap= overrides -fsanitize-recover=.
3202     llvm::Value *&Cond =
3203         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3204             ? TrapCond
3205             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3206                   ? RecoverableCond
3207                   : FatalCond;
3208     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3209   }
3210 
3211   if (TrapCond)
3212     EmitTrapCheck(TrapCond, CheckHandler);
3213   if (!FatalCond && !RecoverableCond)
3214     return;
3215 
3216   llvm::Value *JointCond;
3217   if (FatalCond && RecoverableCond)
3218     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3219   else
3220     JointCond = FatalCond ? FatalCond : RecoverableCond;
3221   assert(JointCond);
3222 
3223   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3224   assert(SanOpts.has(Checked[0].second));
3225 #ifndef NDEBUG
3226   for (int i = 1, n = Checked.size(); i < n; ++i) {
3227     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3228            "All recoverable kinds in a single check must be same!");
3229     assert(SanOpts.has(Checked[i].second));
3230   }
3231 #endif
3232 
3233   llvm::BasicBlock *Cont = createBasicBlock("cont");
3234   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3235   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3236   // Give hint that we very much don't expect to execute the handler
3237   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3238   llvm::MDBuilder MDHelper(getLLVMContext());
3239   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3240   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3241   EmitBlock(Handlers);
3242 
3243   // Handler functions take an i8* pointing to the (handler-specific) static
3244   // information block, followed by a sequence of intptr_t arguments
3245   // representing operand values.
3246   SmallVector<llvm::Value *, 4> Args;
3247   SmallVector<llvm::Type *, 4> ArgTypes;
3248   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3249     Args.reserve(DynamicArgs.size() + 1);
3250     ArgTypes.reserve(DynamicArgs.size() + 1);
3251 
3252     // Emit handler arguments and create handler function type.
3253     if (!StaticArgs.empty()) {
3254       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3255       auto *InfoPtr =
3256           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3257                                    llvm::GlobalVariable::PrivateLinkage, Info);
3258       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3259       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3260       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3261       ArgTypes.push_back(Int8PtrTy);
3262     }
3263 
3264     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3265       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3266       ArgTypes.push_back(IntPtrTy);
3267     }
3268   }
3269 
3270   llvm::FunctionType *FnType =
3271     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3272 
3273   if (!FatalCond || !RecoverableCond) {
3274     // Simple case: we need to generate a single handler call, either
3275     // fatal, or non-fatal.
3276     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3277                          (FatalCond != nullptr), Cont);
3278   } else {
3279     // Emit two handler calls: first one for set of unrecoverable checks,
3280     // another one for recoverable.
3281     llvm::BasicBlock *NonFatalHandlerBB =
3282         createBasicBlock("non_fatal." + CheckName);
3283     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3284     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3285     EmitBlock(FatalHandlerBB);
3286     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3287                          NonFatalHandlerBB);
3288     EmitBlock(NonFatalHandlerBB);
3289     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3290                          Cont);
3291   }
3292 
3293   EmitBlock(Cont);
3294 }
3295 
3296 void CodeGenFunction::EmitCfiSlowPathCheck(
3297     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3298     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3299   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3300 
3301   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3302   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3303 
3304   llvm::MDBuilder MDHelper(getLLVMContext());
3305   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3306   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3307 
3308   EmitBlock(CheckBB);
3309 
3310   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3311 
3312   llvm::CallInst *CheckCall;
3313   llvm::FunctionCallee SlowPathFn;
3314   if (WithDiag) {
3315     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3316     auto *InfoPtr =
3317         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3318                                  llvm::GlobalVariable::PrivateLinkage, Info);
3319     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3320     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3321 
3322     SlowPathFn = CGM.getModule().getOrInsertFunction(
3323         "__cfi_slowpath_diag",
3324         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3325                                 false));
3326     CheckCall = Builder.CreateCall(
3327         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3328   } else {
3329     SlowPathFn = CGM.getModule().getOrInsertFunction(
3330         "__cfi_slowpath",
3331         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3332     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3333   }
3334 
3335   CGM.setDSOLocal(
3336       cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3337   CheckCall->setDoesNotThrow();
3338 
3339   EmitBlock(Cont);
3340 }
3341 
3342 // Emit a stub for __cfi_check function so that the linker knows about this
3343 // symbol in LTO mode.
3344 void CodeGenFunction::EmitCfiCheckStub() {
3345   llvm::Module *M = &CGM.getModule();
3346   auto &Ctx = M->getContext();
3347   llvm::Function *F = llvm::Function::Create(
3348       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3349       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3350   CGM.setDSOLocal(F);
3351   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3352   // FIXME: consider emitting an intrinsic call like
3353   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3354   // which can be lowered in CrossDSOCFI pass to the actual contents of
3355   // __cfi_check. This would allow inlining of __cfi_check calls.
3356   llvm::CallInst::Create(
3357       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3358   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3359 }
3360 
3361 // This function is basically a switch over the CFI failure kind, which is
3362 // extracted from CFICheckFailData (1st function argument). Each case is either
3363 // llvm.trap or a call to one of the two runtime handlers, based on
3364 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3365 // failure kind) traps, but this should really never happen.  CFICheckFailData
3366 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3367 // check kind; in this case __cfi_check_fail traps as well.
3368 void CodeGenFunction::EmitCfiCheckFail() {
3369   SanitizerScope SanScope(this);
3370   FunctionArgList Args;
3371   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3372                             ImplicitParamDecl::Other);
3373   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3374                             ImplicitParamDecl::Other);
3375   Args.push_back(&ArgData);
3376   Args.push_back(&ArgAddr);
3377 
3378   const CGFunctionInfo &FI =
3379     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3380 
3381   llvm::Function *F = llvm::Function::Create(
3382       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3383       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3384 
3385   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F);
3386   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3387   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3388 
3389   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3390                 SourceLocation());
3391 
3392   // This function should not be affected by blacklist. This function does
3393   // not have a source location, but "src:*" would still apply. Revert any
3394   // changes to SanOpts made in StartFunction.
3395   SanOpts = CGM.getLangOpts().Sanitize;
3396 
3397   llvm::Value *Data =
3398       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3399                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3400   llvm::Value *Addr =
3401       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3402                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3403 
3404   // Data == nullptr means the calling module has trap behaviour for this check.
3405   llvm::Value *DataIsNotNullPtr =
3406       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3407   EmitTrapCheck(DataIsNotNullPtr, SanitizerHandler::CFICheckFail);
3408 
3409   llvm::StructType *SourceLocationTy =
3410       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3411   llvm::StructType *CfiCheckFailDataTy =
3412       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3413 
3414   llvm::Value *V = Builder.CreateConstGEP2_32(
3415       CfiCheckFailDataTy,
3416       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3417       0);
3418   Address CheckKindAddr(V, getIntAlign());
3419   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3420 
3421   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3422       CGM.getLLVMContext(),
3423       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3424   llvm::Value *ValidVtable = Builder.CreateZExt(
3425       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3426                          {Addr, AllVtables}),
3427       IntPtrTy);
3428 
3429   const std::pair<int, SanitizerMask> CheckKinds[] = {
3430       {CFITCK_VCall, SanitizerKind::CFIVCall},
3431       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3432       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3433       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3434       {CFITCK_ICall, SanitizerKind::CFIICall}};
3435 
3436   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3437   for (auto CheckKindMaskPair : CheckKinds) {
3438     int Kind = CheckKindMaskPair.first;
3439     SanitizerMask Mask = CheckKindMaskPair.second;
3440     llvm::Value *Cond =
3441         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3442     if (CGM.getLangOpts().Sanitize.has(Mask))
3443       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3444                 {Data, Addr, ValidVtable});
3445     else
3446       EmitTrapCheck(Cond, SanitizerHandler::CFICheckFail);
3447   }
3448 
3449   FinishFunction();
3450   // The only reference to this function will be created during LTO link.
3451   // Make sure it survives until then.
3452   CGM.addUsedGlobal(F);
3453 }
3454 
3455 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3456   if (SanOpts.has(SanitizerKind::Unreachable)) {
3457     SanitizerScope SanScope(this);
3458     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3459                              SanitizerKind::Unreachable),
3460               SanitizerHandler::BuiltinUnreachable,
3461               EmitCheckSourceLocation(Loc), None);
3462   }
3463   Builder.CreateUnreachable();
3464 }
3465 
3466 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked,
3467                                     SanitizerHandler CheckHandlerID) {
3468   llvm::BasicBlock *Cont = createBasicBlock("cont");
3469 
3470   // If we're optimizing, collapse all calls to trap down to just one per
3471   // check-type per function to save on code size.
3472   if (TrapBBs.size() <= CheckHandlerID)
3473     TrapBBs.resize(CheckHandlerID + 1);
3474   llvm::BasicBlock *&TrapBB = TrapBBs[CheckHandlerID];
3475 
3476   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3477     TrapBB = createBasicBlock("trap");
3478     Builder.CreateCondBr(Checked, Cont, TrapBB);
3479     EmitBlock(TrapBB);
3480 
3481     llvm::CallInst *TrapCall =
3482         Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::ubsantrap),
3483                            llvm::ConstantInt::get(CGM.Int8Ty, CheckHandlerID));
3484 
3485     if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3486       auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3487                                     CGM.getCodeGenOpts().TrapFuncName);
3488       TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3489     }
3490     TrapCall->setDoesNotReturn();
3491     TrapCall->setDoesNotThrow();
3492     Builder.CreateUnreachable();
3493   } else {
3494     auto Call = TrapBB->begin();
3495     assert(isa<llvm::CallInst>(Call) && "Expected call in trap BB");
3496 
3497     Call->applyMergedLocation(Call->getDebugLoc(),
3498                               Builder.getCurrentDebugLocation());
3499     Builder.CreateCondBr(Checked, Cont, TrapBB);
3500   }
3501 
3502   EmitBlock(Cont);
3503 }
3504 
3505 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3506   llvm::CallInst *TrapCall =
3507       Builder.CreateCall(CGM.getIntrinsic(IntrID));
3508 
3509   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3510     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3511                                   CGM.getCodeGenOpts().TrapFuncName);
3512     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3513   }
3514 
3515   return TrapCall;
3516 }
3517 
3518 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3519                                                  LValueBaseInfo *BaseInfo,
3520                                                  TBAAAccessInfo *TBAAInfo) {
3521   assert(E->getType()->isArrayType() &&
3522          "Array to pointer decay must have array source type!");
3523 
3524   // Expressions of array type can't be bitfields or vector elements.
3525   LValue LV = EmitLValue(E);
3526   Address Addr = LV.getAddress(*this);
3527 
3528   // If the array type was an incomplete type, we need to make sure
3529   // the decay ends up being the right type.
3530   llvm::Type *NewTy = ConvertType(E->getType());
3531   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3532 
3533   // Note that VLA pointers are always decayed, so we don't need to do
3534   // anything here.
3535   if (!E->getType()->isVariableArrayType()) {
3536     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3537            "Expected pointer to array");
3538     Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3539   }
3540 
3541   // The result of this decay conversion points to an array element within the
3542   // base lvalue. However, since TBAA currently does not support representing
3543   // accesses to elements of member arrays, we conservatively represent accesses
3544   // to the pointee object as if it had no any base lvalue specified.
3545   // TODO: Support TBAA for member arrays.
3546   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3547   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3548   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3549 
3550   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3551 }
3552 
3553 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3554 /// array to pointer, return the array subexpression.
3555 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3556   // If this isn't just an array->pointer decay, bail out.
3557   const auto *CE = dyn_cast<CastExpr>(E);
3558   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3559     return nullptr;
3560 
3561   // If this is a decay from variable width array, bail out.
3562   const Expr *SubExpr = CE->getSubExpr();
3563   if (SubExpr->getType()->isVariableArrayType())
3564     return nullptr;
3565 
3566   return SubExpr;
3567 }
3568 
3569 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3570                                           llvm::Value *ptr,
3571                                           ArrayRef<llvm::Value*> indices,
3572                                           bool inbounds,
3573                                           bool signedIndices,
3574                                           SourceLocation loc,
3575                                     const llvm::Twine &name = "arrayidx") {
3576   if (inbounds) {
3577     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3578                                       CodeGenFunction::NotSubtraction, loc,
3579                                       name);
3580   } else {
3581     return CGF.Builder.CreateGEP(ptr, indices, name);
3582   }
3583 }
3584 
3585 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3586                                       llvm::Value *idx,
3587                                       CharUnits eltSize) {
3588   // If we have a constant index, we can use the exact offset of the
3589   // element we're accessing.
3590   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3591     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3592     return arrayAlign.alignmentAtOffset(offset);
3593 
3594   // Otherwise, use the worst-case alignment for any element.
3595   } else {
3596     return arrayAlign.alignmentOfArrayElement(eltSize);
3597   }
3598 }
3599 
3600 static QualType getFixedSizeElementType(const ASTContext &ctx,
3601                                         const VariableArrayType *vla) {
3602   QualType eltType;
3603   do {
3604     eltType = vla->getElementType();
3605   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3606   return eltType;
3607 }
3608 
3609 /// Given an array base, check whether its member access belongs to a record
3610 /// with preserve_access_index attribute or not.
3611 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
3612   if (!ArrayBase || !CGF.getDebugInfo())
3613     return false;
3614 
3615   // Only support base as either a MemberExpr or DeclRefExpr.
3616   // DeclRefExpr to cover cases like:
3617   //    struct s { int a; int b[10]; };
3618   //    struct s *p;
3619   //    p[1].a
3620   // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3621   // p->b[5] is a MemberExpr example.
3622   const Expr *E = ArrayBase->IgnoreImpCasts();
3623   if (const auto *ME = dyn_cast<MemberExpr>(E))
3624     return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3625 
3626   if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3627     const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
3628     if (!VarDef)
3629       return false;
3630 
3631     const auto *PtrT = VarDef->getType()->getAs<PointerType>();
3632     if (!PtrT)
3633       return false;
3634 
3635     const auto *PointeeT = PtrT->getPointeeType()
3636                              ->getUnqualifiedDesugaredType();
3637     if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
3638       return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3639     return false;
3640   }
3641 
3642   return false;
3643 }
3644 
3645 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3646                                      ArrayRef<llvm::Value *> indices,
3647                                      QualType eltType, bool inbounds,
3648                                      bool signedIndices, SourceLocation loc,
3649                                      QualType *arrayType = nullptr,
3650                                      const Expr *Base = nullptr,
3651                                      const llvm::Twine &name = "arrayidx") {
3652   // All the indices except that last must be zero.
3653 #ifndef NDEBUG
3654   for (auto idx : indices.drop_back())
3655     assert(isa<llvm::ConstantInt>(idx) &&
3656            cast<llvm::ConstantInt>(idx)->isZero());
3657 #endif
3658 
3659   // Determine the element size of the statically-sized base.  This is
3660   // the thing that the indices are expressed in terms of.
3661   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3662     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3663   }
3664 
3665   // We can use that to compute the best alignment of the element.
3666   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3667   CharUnits eltAlign =
3668     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3669 
3670   llvm::Value *eltPtr;
3671   auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3672   if (!LastIndex ||
3673       (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
3674     eltPtr = emitArraySubscriptGEP(
3675         CGF, addr.getPointer(), indices, inbounds, signedIndices,
3676         loc, name);
3677   } else {
3678     // Remember the original array subscript for bpf target
3679     unsigned idx = LastIndex->getZExtValue();
3680     llvm::DIType *DbgInfo = nullptr;
3681     if (arrayType)
3682       DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
3683     eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
3684                                                         addr.getPointer(),
3685                                                         indices.size() - 1,
3686                                                         idx, DbgInfo);
3687   }
3688 
3689   return Address(eltPtr, eltAlign);
3690 }
3691 
3692 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3693                                                bool Accessed) {
3694   // The index must always be an integer, which is not an aggregate.  Emit it
3695   // in lexical order (this complexity is, sadly, required by C++17).
3696   llvm::Value *IdxPre =
3697       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3698   bool SignedIndices = false;
3699   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3700     auto *Idx = IdxPre;
3701     if (E->getLHS() != E->getIdx()) {
3702       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3703       Idx = EmitScalarExpr(E->getIdx());
3704     }
3705 
3706     QualType IdxTy = E->getIdx()->getType();
3707     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3708     SignedIndices |= IdxSigned;
3709 
3710     if (SanOpts.has(SanitizerKind::ArrayBounds))
3711       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3712 
3713     // Extend or truncate the index type to 32 or 64-bits.
3714     if (Promote && Idx->getType() != IntPtrTy)
3715       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3716 
3717     return Idx;
3718   };
3719   IdxPre = nullptr;
3720 
3721   // If the base is a vector type, then we are forming a vector element lvalue
3722   // with this subscript.
3723   if (E->getBase()->getType()->isVectorType() &&
3724       !isa<ExtVectorElementExpr>(E->getBase())) {
3725     // Emit the vector as an lvalue to get its address.
3726     LValue LHS = EmitLValue(E->getBase());
3727     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3728     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3729     return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
3730                                  E->getBase()->getType(), LHS.getBaseInfo(),
3731                                  TBAAAccessInfo());
3732   }
3733 
3734   // All the other cases basically behave like simple offsetting.
3735 
3736   // Handle the extvector case we ignored above.
3737   if (isa<ExtVectorElementExpr>(E->getBase())) {
3738     LValue LV = EmitLValue(E->getBase());
3739     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3740     Address Addr = EmitExtVectorElementLValue(LV);
3741 
3742     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3743     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3744                                  SignedIndices, E->getExprLoc());
3745     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3746                           CGM.getTBAAInfoForSubobject(LV, EltType));
3747   }
3748 
3749   LValueBaseInfo EltBaseInfo;
3750   TBAAAccessInfo EltTBAAInfo;
3751   Address Addr = Address::invalid();
3752   if (const VariableArrayType *vla =
3753            getContext().getAsVariableArrayType(E->getType())) {
3754     // The base must be a pointer, which is not an aggregate.  Emit
3755     // it.  It needs to be emitted first in case it's what captures
3756     // the VLA bounds.
3757     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3758     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3759 
3760     // The element count here is the total number of non-VLA elements.
3761     llvm::Value *numElements = getVLASize(vla).NumElts;
3762 
3763     // Effectively, the multiply by the VLA size is part of the GEP.
3764     // GEP indexes are signed, and scaling an index isn't permitted to
3765     // signed-overflow, so we use the same semantics for our explicit
3766     // multiply.  We suppress this if overflow is not undefined behavior.
3767     if (getLangOpts().isSignedOverflowDefined()) {
3768       Idx = Builder.CreateMul(Idx, numElements);
3769     } else {
3770       Idx = Builder.CreateNSWMul(Idx, numElements);
3771     }
3772 
3773     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3774                                  !getLangOpts().isSignedOverflowDefined(),
3775                                  SignedIndices, E->getExprLoc());
3776 
3777   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3778     // Indexing over an interface, as in "NSString *P; P[4];"
3779 
3780     // Emit the base pointer.
3781     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3782     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3783 
3784     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3785     llvm::Value *InterfaceSizeVal =
3786         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3787 
3788     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3789 
3790     // We don't necessarily build correct LLVM struct types for ObjC
3791     // interfaces, so we can't rely on GEP to do this scaling
3792     // correctly, so we need to cast to i8*.  FIXME: is this actually
3793     // true?  A lot of other things in the fragile ABI would break...
3794     llvm::Type *OrigBaseTy = Addr.getType();
3795     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3796 
3797     // Do the GEP.
3798     CharUnits EltAlign =
3799       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3800     llvm::Value *EltPtr =
3801         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3802                               SignedIndices, E->getExprLoc());
3803     Addr = Address(EltPtr, EltAlign);
3804 
3805     // Cast back.
3806     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3807   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3808     // If this is A[i] where A is an array, the frontend will have decayed the
3809     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3810     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3811     // "gep x, i" here.  Emit one "gep A, 0, i".
3812     assert(Array->getType()->isArrayType() &&
3813            "Array to pointer decay must have array source type!");
3814     LValue ArrayLV;
3815     // For simple multidimensional array indexing, set the 'accessed' flag for
3816     // better bounds-checking of the base expression.
3817     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3818       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3819     else
3820       ArrayLV = EmitLValue(Array);
3821     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3822 
3823     // Propagate the alignment from the array itself to the result.
3824     QualType arrayType = Array->getType();
3825     Addr = emitArraySubscriptGEP(
3826         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3827         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3828         E->getExprLoc(), &arrayType, E->getBase());
3829     EltBaseInfo = ArrayLV.getBaseInfo();
3830     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3831   } else {
3832     // The base must be a pointer; emit it with an estimate of its alignment.
3833     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3834     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3835     QualType ptrType = E->getBase()->getType();
3836     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3837                                  !getLangOpts().isSignedOverflowDefined(),
3838                                  SignedIndices, E->getExprLoc(), &ptrType,
3839                                  E->getBase());
3840   }
3841 
3842   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3843 
3844   if (getLangOpts().ObjC &&
3845       getLangOpts().getGC() != LangOptions::NonGC) {
3846     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3847     setObjCGCLValueClass(getContext(), E, LV);
3848   }
3849   return LV;
3850 }
3851 
3852 LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) {
3853   assert(
3854       !E->isIncomplete() &&
3855       "incomplete matrix subscript expressions should be rejected during Sema");
3856   LValue Base = EmitLValue(E->getBase());
3857   llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx());
3858   llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx());
3859   llvm::Value *NumRows = Builder.getIntN(
3860       RowIdx->getType()->getScalarSizeInBits(),
3861       E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows());
3862   llvm::Value *FinalIdx =
3863       Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx);
3864   return LValue::MakeMatrixElt(
3865       MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx,
3866       E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo());
3867 }
3868 
3869 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3870                                        LValueBaseInfo &BaseInfo,
3871                                        TBAAAccessInfo &TBAAInfo,
3872                                        QualType BaseTy, QualType ElTy,
3873                                        bool IsLowerBound) {
3874   LValue BaseLVal;
3875   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3876     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3877     if (BaseTy->isArrayType()) {
3878       Address Addr = BaseLVal.getAddress(CGF);
3879       BaseInfo = BaseLVal.getBaseInfo();
3880 
3881       // If the array type was an incomplete type, we need to make sure
3882       // the decay ends up being the right type.
3883       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3884       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3885 
3886       // Note that VLA pointers are always decayed, so we don't need to do
3887       // anything here.
3888       if (!BaseTy->isVariableArrayType()) {
3889         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3890                "Expected pointer to array");
3891         Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3892       }
3893 
3894       return CGF.Builder.CreateElementBitCast(Addr,
3895                                               CGF.ConvertTypeForMem(ElTy));
3896     }
3897     LValueBaseInfo TypeBaseInfo;
3898     TBAAAccessInfo TypeTBAAInfo;
3899     CharUnits Align =
3900         CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo);
3901     BaseInfo.mergeForCast(TypeBaseInfo);
3902     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3903     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align);
3904   }
3905   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3906 }
3907 
3908 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3909                                                 bool IsLowerBound) {
3910   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3911   QualType ResultExprTy;
3912   if (auto *AT = getContext().getAsArrayType(BaseTy))
3913     ResultExprTy = AT->getElementType();
3914   else
3915     ResultExprTy = BaseTy->getPointeeType();
3916   llvm::Value *Idx = nullptr;
3917   if (IsLowerBound || E->getColonLocFirst().isInvalid()) {
3918     // Requesting lower bound or upper bound, but without provided length and
3919     // without ':' symbol for the default length -> length = 1.
3920     // Idx = LowerBound ?: 0;
3921     if (auto *LowerBound = E->getLowerBound()) {
3922       Idx = Builder.CreateIntCast(
3923           EmitScalarExpr(LowerBound), IntPtrTy,
3924           LowerBound->getType()->hasSignedIntegerRepresentation());
3925     } else
3926       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3927   } else {
3928     // Try to emit length or lower bound as constant. If this is possible, 1
3929     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3930     // IR (LB + Len) - 1.
3931     auto &C = CGM.getContext();
3932     auto *Length = E->getLength();
3933     llvm::APSInt ConstLength;
3934     if (Length) {
3935       // Idx = LowerBound + Length - 1;
3936       if (Optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) {
3937         ConstLength = CL->zextOrTrunc(PointerWidthInBits);
3938         Length = nullptr;
3939       }
3940       auto *LowerBound = E->getLowerBound();
3941       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3942       if (LowerBound) {
3943         if (Optional<llvm::APSInt> LB = LowerBound->getIntegerConstantExpr(C)) {
3944           ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits);
3945           LowerBound = nullptr;
3946         }
3947       }
3948       if (!Length)
3949         --ConstLength;
3950       else if (!LowerBound)
3951         --ConstLowerBound;
3952 
3953       if (Length || LowerBound) {
3954         auto *LowerBoundVal =
3955             LowerBound
3956                 ? Builder.CreateIntCast(
3957                       EmitScalarExpr(LowerBound), IntPtrTy,
3958                       LowerBound->getType()->hasSignedIntegerRepresentation())
3959                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3960         auto *LengthVal =
3961             Length
3962                 ? Builder.CreateIntCast(
3963                       EmitScalarExpr(Length), IntPtrTy,
3964                       Length->getType()->hasSignedIntegerRepresentation())
3965                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3966         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3967                                 /*HasNUW=*/false,
3968                                 !getLangOpts().isSignedOverflowDefined());
3969         if (Length && LowerBound) {
3970           Idx = Builder.CreateSub(
3971               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3972               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3973         }
3974       } else
3975         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3976     } else {
3977       // Idx = ArraySize - 1;
3978       QualType ArrayTy = BaseTy->isPointerType()
3979                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3980                              : BaseTy;
3981       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3982         Length = VAT->getSizeExpr();
3983         if (Optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) {
3984           ConstLength = *L;
3985           Length = nullptr;
3986         }
3987       } else {
3988         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3989         ConstLength = CAT->getSize();
3990       }
3991       if (Length) {
3992         auto *LengthVal = Builder.CreateIntCast(
3993             EmitScalarExpr(Length), IntPtrTy,
3994             Length->getType()->hasSignedIntegerRepresentation());
3995         Idx = Builder.CreateSub(
3996             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3997             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3998       } else {
3999         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
4000         --ConstLength;
4001         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
4002       }
4003     }
4004   }
4005   assert(Idx);
4006 
4007   Address EltPtr = Address::invalid();
4008   LValueBaseInfo BaseInfo;
4009   TBAAAccessInfo TBAAInfo;
4010   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
4011     // The base must be a pointer, which is not an aggregate.  Emit
4012     // it.  It needs to be emitted first in case it's what captures
4013     // the VLA bounds.
4014     Address Base =
4015         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
4016                                 BaseTy, VLA->getElementType(), IsLowerBound);
4017     // The element count here is the total number of non-VLA elements.
4018     llvm::Value *NumElements = getVLASize(VLA).NumElts;
4019 
4020     // Effectively, the multiply by the VLA size is part of the GEP.
4021     // GEP indexes are signed, and scaling an index isn't permitted to
4022     // signed-overflow, so we use the same semantics for our explicit
4023     // multiply.  We suppress this if overflow is not undefined behavior.
4024     if (getLangOpts().isSignedOverflowDefined())
4025       Idx = Builder.CreateMul(Idx, NumElements);
4026     else
4027       Idx = Builder.CreateNSWMul(Idx, NumElements);
4028     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
4029                                    !getLangOpts().isSignedOverflowDefined(),
4030                                    /*signedIndices=*/false, E->getExprLoc());
4031   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
4032     // If this is A[i] where A is an array, the frontend will have decayed the
4033     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
4034     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
4035     // "gep x, i" here.  Emit one "gep A, 0, i".
4036     assert(Array->getType()->isArrayType() &&
4037            "Array to pointer decay must have array source type!");
4038     LValue ArrayLV;
4039     // For simple multidimensional array indexing, set the 'accessed' flag for
4040     // better bounds-checking of the base expression.
4041     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
4042       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
4043     else
4044       ArrayLV = EmitLValue(Array);
4045 
4046     // Propagate the alignment from the array itself to the result.
4047     EltPtr = emitArraySubscriptGEP(
4048         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
4049         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
4050         /*signedIndices=*/false, E->getExprLoc());
4051     BaseInfo = ArrayLV.getBaseInfo();
4052     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
4053   } else {
4054     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
4055                                            TBAAInfo, BaseTy, ResultExprTy,
4056                                            IsLowerBound);
4057     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
4058                                    !getLangOpts().isSignedOverflowDefined(),
4059                                    /*signedIndices=*/false, E->getExprLoc());
4060   }
4061 
4062   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
4063 }
4064 
4065 LValue CodeGenFunction::
4066 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
4067   // Emit the base vector as an l-value.
4068   LValue Base;
4069 
4070   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
4071   if (E->isArrow()) {
4072     // If it is a pointer to a vector, emit the address and form an lvalue with
4073     // it.
4074     LValueBaseInfo BaseInfo;
4075     TBAAAccessInfo TBAAInfo;
4076     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
4077     const auto *PT = E->getBase()->getType()->castAs<PointerType>();
4078     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
4079     Base.getQuals().removeObjCGCAttr();
4080   } else if (E->getBase()->isGLValue()) {
4081     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
4082     // emit the base as an lvalue.
4083     assert(E->getBase()->getType()->isVectorType());
4084     Base = EmitLValue(E->getBase());
4085   } else {
4086     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
4087     assert(E->getBase()->getType()->isVectorType() &&
4088            "Result must be a vector");
4089     llvm::Value *Vec = EmitScalarExpr(E->getBase());
4090 
4091     // Store the vector to memory (because LValue wants an address).
4092     Address VecMem = CreateMemTemp(E->getBase()->getType());
4093     Builder.CreateStore(Vec, VecMem);
4094     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
4095                           AlignmentSource::Decl);
4096   }
4097 
4098   QualType type =
4099     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
4100 
4101   // Encode the element access list into a vector of unsigned indices.
4102   SmallVector<uint32_t, 4> Indices;
4103   E->getEncodedElementAccess(Indices);
4104 
4105   if (Base.isSimple()) {
4106     llvm::Constant *CV =
4107         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
4108     return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
4109                                     Base.getBaseInfo(), TBAAAccessInfo());
4110   }
4111   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
4112 
4113   llvm::Constant *BaseElts = Base.getExtVectorElts();
4114   SmallVector<llvm::Constant *, 4> CElts;
4115 
4116   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
4117     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
4118   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
4119   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
4120                                   Base.getBaseInfo(), TBAAAccessInfo());
4121 }
4122 
4123 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
4124   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
4125     EmitIgnoredExpr(E->getBase());
4126     return EmitDeclRefLValue(DRE);
4127   }
4128 
4129   Expr *BaseExpr = E->getBase();
4130   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
4131   LValue BaseLV;
4132   if (E->isArrow()) {
4133     LValueBaseInfo BaseInfo;
4134     TBAAAccessInfo TBAAInfo;
4135     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
4136     QualType PtrTy = BaseExpr->getType()->getPointeeType();
4137     SanitizerSet SkippedChecks;
4138     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
4139     if (IsBaseCXXThis)
4140       SkippedChecks.set(SanitizerKind::Alignment, true);
4141     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
4142       SkippedChecks.set(SanitizerKind::Null, true);
4143     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
4144                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
4145     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
4146   } else
4147     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
4148 
4149   NamedDecl *ND = E->getMemberDecl();
4150   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
4151     LValue LV = EmitLValueForField(BaseLV, Field);
4152     setObjCGCLValueClass(getContext(), E, LV);
4153     if (getLangOpts().OpenMP) {
4154       // If the member was explicitly marked as nontemporal, mark it as
4155       // nontemporal. If the base lvalue is marked as nontemporal, mark access
4156       // to children as nontemporal too.
4157       if ((IsWrappedCXXThis(BaseExpr) &&
4158            CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
4159           BaseLV.isNontemporal())
4160         LV.setNontemporal(/*Value=*/true);
4161     }
4162     return LV;
4163   }
4164 
4165   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
4166     return EmitFunctionDeclLValue(*this, E, FD);
4167 
4168   llvm_unreachable("Unhandled member declaration!");
4169 }
4170 
4171 /// Given that we are currently emitting a lambda, emit an l-value for
4172 /// one of its members.
4173 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
4174   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
4175   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
4176   QualType LambdaTagType =
4177     getContext().getTagDeclType(Field->getParent());
4178   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
4179   return EmitLValueForField(LambdaLV, Field);
4180 }
4181 
4182 /// Get the field index in the debug info. The debug info structure/union
4183 /// will ignore the unnamed bitfields.
4184 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
4185                                              unsigned FieldIndex) {
4186   unsigned I = 0, Skipped = 0;
4187 
4188   for (auto F : Rec->getDefinition()->fields()) {
4189     if (I == FieldIndex)
4190       break;
4191     if (F->isUnnamedBitfield())
4192       Skipped++;
4193     I++;
4194   }
4195 
4196   return FieldIndex - Skipped;
4197 }
4198 
4199 /// Get the address of a zero-sized field within a record. The resulting
4200 /// address doesn't necessarily have the right type.
4201 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
4202                                        const FieldDecl *Field) {
4203   CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
4204       CGF.getContext().getFieldOffset(Field));
4205   if (Offset.isZero())
4206     return Base;
4207   Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
4208   return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
4209 }
4210 
4211 /// Drill down to the storage of a field without walking into
4212 /// reference types.
4213 ///
4214 /// The resulting address doesn't necessarily have the right type.
4215 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
4216                                       const FieldDecl *field) {
4217   if (field->isZeroSize(CGF.getContext()))
4218     return emitAddrOfZeroSizeField(CGF, base, field);
4219 
4220   const RecordDecl *rec = field->getParent();
4221 
4222   unsigned idx =
4223     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4224 
4225   return CGF.Builder.CreateStructGEP(base, idx, field->getName());
4226 }
4227 
4228 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base,
4229                                         Address addr, const FieldDecl *field) {
4230   const RecordDecl *rec = field->getParent();
4231   llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(
4232       base.getType(), rec->getLocation());
4233 
4234   unsigned idx =
4235       CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4236 
4237   return CGF.Builder.CreatePreserveStructAccessIndex(
4238       addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
4239 }
4240 
4241 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
4242   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
4243   if (!RD)
4244     return false;
4245 
4246   if (RD->isDynamicClass())
4247     return true;
4248 
4249   for (const auto &Base : RD->bases())
4250     if (hasAnyVptr(Base.getType(), Context))
4251       return true;
4252 
4253   for (const FieldDecl *Field : RD->fields())
4254     if (hasAnyVptr(Field->getType(), Context))
4255       return true;
4256 
4257   return false;
4258 }
4259 
4260 LValue CodeGenFunction::EmitLValueForField(LValue base,
4261                                            const FieldDecl *field) {
4262   LValueBaseInfo BaseInfo = base.getBaseInfo();
4263 
4264   if (field->isBitField()) {
4265     const CGRecordLayout &RL =
4266         CGM.getTypes().getCGRecordLayout(field->getParent());
4267     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
4268     const bool UseVolatile = isAAPCS(CGM.getTarget()) &&
4269                              CGM.getCodeGenOpts().AAPCSBitfieldWidth &&
4270                              Info.VolatileStorageSize != 0 &&
4271                              field->getType()
4272                                  .withCVRQualifiers(base.getVRQualifiers())
4273                                  .isVolatileQualified();
4274     Address Addr = base.getAddress(*this);
4275     unsigned Idx = RL.getLLVMFieldNo(field);
4276     const RecordDecl *rec = field->getParent();
4277     if (!UseVolatile) {
4278       if (!IsInPreservedAIRegion &&
4279           (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4280         if (Idx != 0)
4281           // For structs, we GEP to the field that the record layout suggests.
4282           Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
4283       } else {
4284         llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4285             getContext().getRecordType(rec), rec->getLocation());
4286         Addr = Builder.CreatePreserveStructAccessIndex(
4287             Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()),
4288             DbgInfo);
4289       }
4290     }
4291     const unsigned SS =
4292         UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
4293     // Get the access type.
4294     llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS);
4295     if (Addr.getElementType() != FieldIntTy)
4296       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
4297     if (UseVolatile) {
4298       const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity();
4299       if (VolatileOffset)
4300         Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset);
4301     }
4302 
4303     QualType fieldType =
4304         field->getType().withCVRQualifiers(base.getVRQualifiers());
4305     // TODO: Support TBAA for bit fields.
4306     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4307     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4308                                 TBAAAccessInfo());
4309   }
4310 
4311   // Fields of may-alias structures are may-alias themselves.
4312   // FIXME: this should get propagated down through anonymous structs
4313   // and unions.
4314   QualType FieldType = field->getType();
4315   const RecordDecl *rec = field->getParent();
4316   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4317   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4318   TBAAAccessInfo FieldTBAAInfo;
4319   if (base.getTBAAInfo().isMayAlias() ||
4320           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4321     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4322   } else if (rec->isUnion()) {
4323     // TODO: Support TBAA for unions.
4324     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4325   } else {
4326     // If no base type been assigned for the base access, then try to generate
4327     // one for this base lvalue.
4328     FieldTBAAInfo = base.getTBAAInfo();
4329     if (!FieldTBAAInfo.BaseType) {
4330         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4331         assert(!FieldTBAAInfo.Offset &&
4332                "Nonzero offset for an access with no base type!");
4333     }
4334 
4335     // Adjust offset to be relative to the base type.
4336     const ASTRecordLayout &Layout =
4337         getContext().getASTRecordLayout(field->getParent());
4338     unsigned CharWidth = getContext().getCharWidth();
4339     if (FieldTBAAInfo.BaseType)
4340       FieldTBAAInfo.Offset +=
4341           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4342 
4343     // Update the final access type and size.
4344     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4345     FieldTBAAInfo.Size =
4346         getContext().getTypeSizeInChars(FieldType).getQuantity();
4347   }
4348 
4349   Address addr = base.getAddress(*this);
4350   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4351     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4352         ClassDef->isDynamicClass()) {
4353       // Getting to any field of dynamic object requires stripping dynamic
4354       // information provided by invariant.group.  This is because accessing
4355       // fields may leak the real address of dynamic object, which could result
4356       // in miscompilation when leaked pointer would be compared.
4357       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4358       addr = Address(stripped, addr.getAlignment());
4359     }
4360   }
4361 
4362   unsigned RecordCVR = base.getVRQualifiers();
4363   if (rec->isUnion()) {
4364     // For unions, there is no pointer adjustment.
4365     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4366         hasAnyVptr(FieldType, getContext()))
4367       // Because unions can easily skip invariant.barriers, we need to add
4368       // a barrier every time CXXRecord field with vptr is referenced.
4369       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
4370                      addr.getAlignment());
4371 
4372     if (IsInPreservedAIRegion ||
4373         (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4374       // Remember the original union field index
4375       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(),
4376           rec->getLocation());
4377       addr = Address(
4378           Builder.CreatePreserveUnionAccessIndex(
4379               addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4380           addr.getAlignment());
4381     }
4382 
4383     if (FieldType->isReferenceType())
4384       addr = Builder.CreateElementBitCast(
4385           addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4386   } else {
4387     if (!IsInPreservedAIRegion &&
4388         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
4389       // For structs, we GEP to the field that the record layout suggests.
4390       addr = emitAddrOfFieldStorage(*this, addr, field);
4391     else
4392       // Remember the original struct field index
4393       addr = emitPreserveStructAccess(*this, base, addr, field);
4394   }
4395 
4396   // If this is a reference field, load the reference right now.
4397   if (FieldType->isReferenceType()) {
4398     LValue RefLVal =
4399         MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4400     if (RecordCVR & Qualifiers::Volatile)
4401       RefLVal.getQuals().addVolatile();
4402     addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4403 
4404     // Qualifiers on the struct don't apply to the referencee.
4405     RecordCVR = 0;
4406     FieldType = FieldType->getPointeeType();
4407   }
4408 
4409   // Make sure that the address is pointing to the right type.  This is critical
4410   // for both unions and structs.  A union needs a bitcast, a struct element
4411   // will need a bitcast if the LLVM type laid out doesn't match the desired
4412   // type.
4413   addr = Builder.CreateElementBitCast(
4414       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4415 
4416   if (field->hasAttr<AnnotateAttr>())
4417     addr = EmitFieldAnnotations(field, addr);
4418 
4419   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4420   LV.getQuals().addCVRQualifiers(RecordCVR);
4421 
4422   // __weak attribute on a field is ignored.
4423   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4424     LV.getQuals().removeObjCGCAttr();
4425 
4426   return LV;
4427 }
4428 
4429 LValue
4430 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4431                                                   const FieldDecl *Field) {
4432   QualType FieldType = Field->getType();
4433 
4434   if (!FieldType->isReferenceType())
4435     return EmitLValueForField(Base, Field);
4436 
4437   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);
4438 
4439   // Make sure that the address is pointing to the right type.
4440   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4441   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4442 
4443   // TODO: Generate TBAA information that describes this access as a structure
4444   // member access and not just an access to an object of the field's type. This
4445   // should be similar to what we do in EmitLValueForField().
4446   LValueBaseInfo BaseInfo = Base.getBaseInfo();
4447   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4448   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4449   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4450                         CGM.getTBAAInfoForSubobject(Base, FieldType));
4451 }
4452 
4453 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4454   if (E->isFileScope()) {
4455     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4456     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4457   }
4458   if (E->getType()->isVariablyModifiedType())
4459     // make sure to emit the VLA size.
4460     EmitVariablyModifiedType(E->getType());
4461 
4462   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4463   const Expr *InitExpr = E->getInitializer();
4464   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4465 
4466   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4467                    /*Init*/ true);
4468 
4469   // Block-scope compound literals are destroyed at the end of the enclosing
4470   // scope in C.
4471   if (!getLangOpts().CPlusPlus)
4472     if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
4473       pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr,
4474                                   E->getType(), getDestroyer(DtorKind),
4475                                   DtorKind & EHCleanup);
4476 
4477   return Result;
4478 }
4479 
4480 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4481   if (!E->isGLValue())
4482     // Initializing an aggregate temporary in C++11: T{...}.
4483     return EmitAggExprToLValue(E);
4484 
4485   // An lvalue initializer list must be initializing a reference.
4486   assert(E->isTransparent() && "non-transparent glvalue init list");
4487   return EmitLValue(E->getInit(0));
4488 }
4489 
4490 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4491 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4492 /// LValue is returned and the current block has been terminated.
4493 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4494                                                     const Expr *Operand) {
4495   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4496     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4497     return None;
4498   }
4499 
4500   return CGF.EmitLValue(Operand);
4501 }
4502 
4503 LValue CodeGenFunction::
4504 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4505   if (!expr->isGLValue()) {
4506     // ?: here should be an aggregate.
4507     assert(hasAggregateEvaluationKind(expr->getType()) &&
4508            "Unexpected conditional operator!");
4509     return EmitAggExprToLValue(expr);
4510   }
4511 
4512   OpaqueValueMapping binding(*this, expr);
4513 
4514   const Expr *condExpr = expr->getCond();
4515   bool CondExprBool;
4516   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4517     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4518     if (!CondExprBool) std::swap(live, dead);
4519 
4520     if (!ContainsLabel(dead)) {
4521       // If the true case is live, we need to track its region.
4522       if (CondExprBool)
4523         incrementProfileCounter(expr);
4524       // If a throw expression we emit it and return an undefined lvalue
4525       // because it can't be used.
4526       if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(live->IgnoreParens())) {
4527         EmitCXXThrowExpr(ThrowExpr);
4528         llvm::Type *Ty =
4529             llvm::PointerType::getUnqual(ConvertType(dead->getType()));
4530         return MakeAddrLValue(
4531             Address(llvm::UndefValue::get(Ty), CharUnits::One()),
4532             dead->getType());
4533       }
4534       return EmitLValue(live);
4535     }
4536   }
4537 
4538   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4539   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4540   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4541 
4542   ConditionalEvaluation eval(*this);
4543   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4544 
4545   // Any temporaries created here are conditional.
4546   EmitBlock(lhsBlock);
4547   incrementProfileCounter(expr);
4548   eval.begin(*this);
4549   Optional<LValue> lhs =
4550       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4551   eval.end(*this);
4552 
4553   if (lhs && !lhs->isSimple())
4554     return EmitUnsupportedLValue(expr, "conditional operator");
4555 
4556   lhsBlock = Builder.GetInsertBlock();
4557   if (lhs)
4558     Builder.CreateBr(contBlock);
4559 
4560   // Any temporaries created here are conditional.
4561   EmitBlock(rhsBlock);
4562   eval.begin(*this);
4563   Optional<LValue> rhs =
4564       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4565   eval.end(*this);
4566   if (rhs && !rhs->isSimple())
4567     return EmitUnsupportedLValue(expr, "conditional operator");
4568   rhsBlock = Builder.GetInsertBlock();
4569 
4570   EmitBlock(contBlock);
4571 
4572   if (lhs && rhs) {
4573     llvm::PHINode *phi =
4574         Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue");
4575     phi->addIncoming(lhs->getPointer(*this), lhsBlock);
4576     phi->addIncoming(rhs->getPointer(*this), rhsBlock);
4577     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4578     AlignmentSource alignSource =
4579       std::max(lhs->getBaseInfo().getAlignmentSource(),
4580                rhs->getBaseInfo().getAlignmentSource());
4581     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4582         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4583     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4584                           TBAAInfo);
4585   } else {
4586     assert((lhs || rhs) &&
4587            "both operands of glvalue conditional are throw-expressions?");
4588     return lhs ? *lhs : *rhs;
4589   }
4590 }
4591 
4592 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4593 /// type. If the cast is to a reference, we can have the usual lvalue result,
4594 /// otherwise if a cast is needed by the code generator in an lvalue context,
4595 /// then it must mean that we need the address of an aggregate in order to
4596 /// access one of its members.  This can happen for all the reasons that casts
4597 /// are permitted with aggregate result, including noop aggregate casts, and
4598 /// cast from scalar to union.
4599 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4600   switch (E->getCastKind()) {
4601   case CK_ToVoid:
4602   case CK_BitCast:
4603   case CK_LValueToRValueBitCast:
4604   case CK_ArrayToPointerDecay:
4605   case CK_FunctionToPointerDecay:
4606   case CK_NullToMemberPointer:
4607   case CK_NullToPointer:
4608   case CK_IntegralToPointer:
4609   case CK_PointerToIntegral:
4610   case CK_PointerToBoolean:
4611   case CK_VectorSplat:
4612   case CK_IntegralCast:
4613   case CK_BooleanToSignedIntegral:
4614   case CK_IntegralToBoolean:
4615   case CK_IntegralToFloating:
4616   case CK_FloatingToIntegral:
4617   case CK_FloatingToBoolean:
4618   case CK_FloatingCast:
4619   case CK_FloatingRealToComplex:
4620   case CK_FloatingComplexToReal:
4621   case CK_FloatingComplexToBoolean:
4622   case CK_FloatingComplexCast:
4623   case CK_FloatingComplexToIntegralComplex:
4624   case CK_IntegralRealToComplex:
4625   case CK_IntegralComplexToReal:
4626   case CK_IntegralComplexToBoolean:
4627   case CK_IntegralComplexCast:
4628   case CK_IntegralComplexToFloatingComplex:
4629   case CK_DerivedToBaseMemberPointer:
4630   case CK_BaseToDerivedMemberPointer:
4631   case CK_MemberPointerToBoolean:
4632   case CK_ReinterpretMemberPointer:
4633   case CK_AnyPointerToBlockPointerCast:
4634   case CK_ARCProduceObject:
4635   case CK_ARCConsumeObject:
4636   case CK_ARCReclaimReturnedObject:
4637   case CK_ARCExtendBlockObject:
4638   case CK_CopyAndAutoreleaseBlockObject:
4639   case CK_IntToOCLSampler:
4640   case CK_FloatingToFixedPoint:
4641   case CK_FixedPointToFloating:
4642   case CK_FixedPointCast:
4643   case CK_FixedPointToBoolean:
4644   case CK_FixedPointToIntegral:
4645   case CK_IntegralToFixedPoint:
4646     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4647 
4648   case CK_Dependent:
4649     llvm_unreachable("dependent cast kind in IR gen!");
4650 
4651   case CK_BuiltinFnToFnPtr:
4652     llvm_unreachable("builtin functions are handled elsewhere");
4653 
4654   // These are never l-values; just use the aggregate emission code.
4655   case CK_NonAtomicToAtomic:
4656   case CK_AtomicToNonAtomic:
4657     return EmitAggExprToLValue(E);
4658 
4659   case CK_Dynamic: {
4660     LValue LV = EmitLValue(E->getSubExpr());
4661     Address V = LV.getAddress(*this);
4662     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4663     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4664   }
4665 
4666   case CK_ConstructorConversion:
4667   case CK_UserDefinedConversion:
4668   case CK_CPointerToObjCPointerCast:
4669   case CK_BlockPointerToObjCPointerCast:
4670   case CK_NoOp:
4671   case CK_LValueToRValue:
4672     return EmitLValue(E->getSubExpr());
4673 
4674   case CK_UncheckedDerivedToBase:
4675   case CK_DerivedToBase: {
4676     const auto *DerivedClassTy =
4677         E->getSubExpr()->getType()->castAs<RecordType>();
4678     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4679 
4680     LValue LV = EmitLValue(E->getSubExpr());
4681     Address This = LV.getAddress(*this);
4682 
4683     // Perform the derived-to-base conversion
4684     Address Base = GetAddressOfBaseClass(
4685         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4686         /*NullCheckValue=*/false, E->getExprLoc());
4687 
4688     // TODO: Support accesses to members of base classes in TBAA. For now, we
4689     // conservatively pretend that the complete object is of the base class
4690     // type.
4691     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4692                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4693   }
4694   case CK_ToUnion:
4695     return EmitAggExprToLValue(E);
4696   case CK_BaseToDerived: {
4697     const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
4698     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4699 
4700     LValue LV = EmitLValue(E->getSubExpr());
4701 
4702     // Perform the base-to-derived conversion
4703     Address Derived = GetAddressOfDerivedClass(
4704         LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
4705         /*NullCheckValue=*/false);
4706 
4707     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4708     // performed and the object is not of the derived type.
4709     if (sanitizePerformTypeCheck())
4710       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4711                     Derived.getPointer(), E->getType());
4712 
4713     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4714       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4715                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4716                                 E->getBeginLoc());
4717 
4718     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4719                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4720   }
4721   case CK_LValueBitCast: {
4722     // This must be a reinterpret_cast (or c-style equivalent).
4723     const auto *CE = cast<ExplicitCastExpr>(E);
4724 
4725     CGM.EmitExplicitCastExprType(CE, this);
4726     LValue LV = EmitLValue(E->getSubExpr());
4727     Address V = Builder.CreateBitCast(LV.getAddress(*this),
4728                                       ConvertType(CE->getTypeAsWritten()));
4729 
4730     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4731       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4732                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4733                                 E->getBeginLoc());
4734 
4735     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4736                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4737   }
4738   case CK_AddressSpaceConversion: {
4739     LValue LV = EmitLValue(E->getSubExpr());
4740     QualType DestTy = getContext().getPointerType(E->getType());
4741     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4742         *this, LV.getPointer(*this),
4743         E->getSubExpr()->getType().getAddressSpace(),
4744         E->getType().getAddressSpace(), ConvertType(DestTy));
4745     return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()),
4746                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4747   }
4748   case CK_ObjCObjectLValueCast: {
4749     LValue LV = EmitLValue(E->getSubExpr());
4750     Address V = Builder.CreateElementBitCast(LV.getAddress(*this),
4751                                              ConvertType(E->getType()));
4752     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4753                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4754   }
4755   case CK_ZeroToOCLOpaqueType:
4756     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4757   }
4758 
4759   llvm_unreachable("Unhandled lvalue cast kind?");
4760 }
4761 
4762 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4763   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4764   return getOrCreateOpaqueLValueMapping(e);
4765 }
4766 
4767 LValue
4768 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4769   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4770 
4771   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4772       it = OpaqueLValues.find(e);
4773 
4774   if (it != OpaqueLValues.end())
4775     return it->second;
4776 
4777   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4778   return EmitLValue(e->getSourceExpr());
4779 }
4780 
4781 RValue
4782 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4783   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4784 
4785   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4786       it = OpaqueRValues.find(e);
4787 
4788   if (it != OpaqueRValues.end())
4789     return it->second;
4790 
4791   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4792   return EmitAnyExpr(e->getSourceExpr());
4793 }
4794 
4795 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4796                                            const FieldDecl *FD,
4797                                            SourceLocation Loc) {
4798   QualType FT = FD->getType();
4799   LValue FieldLV = EmitLValueForField(LV, FD);
4800   switch (getEvaluationKind(FT)) {
4801   case TEK_Complex:
4802     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4803   case TEK_Aggregate:
4804     return FieldLV.asAggregateRValue(*this);
4805   case TEK_Scalar:
4806     // This routine is used to load fields one-by-one to perform a copy, so
4807     // don't load reference fields.
4808     if (FD->getType()->isReferenceType())
4809       return RValue::get(FieldLV.getPointer(*this));
4810     // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
4811     // primitive load.
4812     if (FieldLV.isBitField())
4813       return EmitLoadOfLValue(FieldLV, Loc);
4814     return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
4815   }
4816   llvm_unreachable("bad evaluation kind");
4817 }
4818 
4819 //===--------------------------------------------------------------------===//
4820 //                             Expression Emission
4821 //===--------------------------------------------------------------------===//
4822 
4823 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4824                                      ReturnValueSlot ReturnValue) {
4825   // Builtins never have block type.
4826   if (E->getCallee()->getType()->isBlockPointerType())
4827     return EmitBlockCallExpr(E, ReturnValue);
4828 
4829   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4830     return EmitCXXMemberCallExpr(CE, ReturnValue);
4831 
4832   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4833     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4834 
4835   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4836     if (const CXXMethodDecl *MD =
4837           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4838       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4839 
4840   CGCallee callee = EmitCallee(E->getCallee());
4841 
4842   if (callee.isBuiltin()) {
4843     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4844                            E, ReturnValue);
4845   }
4846 
4847   if (callee.isPseudoDestructor()) {
4848     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4849   }
4850 
4851   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4852 }
4853 
4854 /// Emit a CallExpr without considering whether it might be a subclass.
4855 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4856                                            ReturnValueSlot ReturnValue) {
4857   CGCallee Callee = EmitCallee(E->getCallee());
4858   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4859 }
4860 
4861 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) {
4862   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4863 
4864   if (auto builtinID = FD->getBuiltinID()) {
4865     // Replaceable builtin provide their own implementation of a builtin. Unless
4866     // we are in the builtin implementation itself, don't call the actual
4867     // builtin. If we are in the builtin implementation, avoid trivial infinite
4868     // recursion.
4869     if (!FD->isInlineBuiltinDeclaration() ||
4870         CGF.CurFn->getName() == FD->getName())
4871       return CGCallee::forBuiltin(builtinID, FD);
4872   }
4873 
4874   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
4875   return CGCallee::forDirect(calleePtr, GD);
4876 }
4877 
4878 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4879   E = E->IgnoreParens();
4880 
4881   // Look through function-to-pointer decay.
4882   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4883     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4884         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4885       return EmitCallee(ICE->getSubExpr());
4886     }
4887 
4888   // Resolve direct calls.
4889   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4890     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4891       return EmitDirectCallee(*this, FD);
4892     }
4893   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4894     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4895       EmitIgnoredExpr(ME->getBase());
4896       return EmitDirectCallee(*this, FD);
4897     }
4898 
4899   // Look through template substitutions.
4900   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4901     return EmitCallee(NTTP->getReplacement());
4902 
4903   // Treat pseudo-destructor calls differently.
4904   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4905     return CGCallee::forPseudoDestructor(PDE);
4906   }
4907 
4908   // Otherwise, we have an indirect reference.
4909   llvm::Value *calleePtr;
4910   QualType functionType;
4911   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4912     calleePtr = EmitScalarExpr(E);
4913     functionType = ptrType->getPointeeType();
4914   } else {
4915     functionType = E->getType();
4916     calleePtr = EmitLValue(E).getPointer(*this);
4917   }
4918   assert(functionType->isFunctionType());
4919 
4920   GlobalDecl GD;
4921   if (const auto *VD =
4922           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4923     GD = GlobalDecl(VD);
4924 
4925   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4926   CGCallee callee(calleeInfo, calleePtr);
4927   return callee;
4928 }
4929 
4930 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4931   // Comma expressions just emit their LHS then their RHS as an l-value.
4932   if (E->getOpcode() == BO_Comma) {
4933     EmitIgnoredExpr(E->getLHS());
4934     EnsureInsertPoint();
4935     return EmitLValue(E->getRHS());
4936   }
4937 
4938   if (E->getOpcode() == BO_PtrMemD ||
4939       E->getOpcode() == BO_PtrMemI)
4940     return EmitPointerToDataMemberBinaryExpr(E);
4941 
4942   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4943 
4944   // Note that in all of these cases, __block variables need the RHS
4945   // evaluated first just in case the variable gets moved by the RHS.
4946 
4947   switch (getEvaluationKind(E->getType())) {
4948   case TEK_Scalar: {
4949     switch (E->getLHS()->getType().getObjCLifetime()) {
4950     case Qualifiers::OCL_Strong:
4951       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4952 
4953     case Qualifiers::OCL_Autoreleasing:
4954       return EmitARCStoreAutoreleasing(E).first;
4955 
4956     // No reason to do any of these differently.
4957     case Qualifiers::OCL_None:
4958     case Qualifiers::OCL_ExplicitNone:
4959     case Qualifiers::OCL_Weak:
4960       break;
4961     }
4962 
4963     RValue RV = EmitAnyExpr(E->getRHS());
4964     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4965     if (RV.isScalar())
4966       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4967     EmitStoreThroughLValue(RV, LV);
4968     if (getLangOpts().OpenMP)
4969       CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
4970                                                                 E->getLHS());
4971     return LV;
4972   }
4973 
4974   case TEK_Complex:
4975     return EmitComplexAssignmentLValue(E);
4976 
4977   case TEK_Aggregate:
4978     return EmitAggExprToLValue(E);
4979   }
4980   llvm_unreachable("bad evaluation kind");
4981 }
4982 
4983 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4984   RValue RV = EmitCallExpr(E);
4985 
4986   if (!RV.isScalar())
4987     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4988                           AlignmentSource::Decl);
4989 
4990   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4991          "Can't have a scalar return unless the return type is a "
4992          "reference type!");
4993 
4994   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4995 }
4996 
4997 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4998   // FIXME: This shouldn't require another copy.
4999   return EmitAggExprToLValue(E);
5000 }
5001 
5002 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
5003   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
5004          && "binding l-value to type which needs a temporary");
5005   AggValueSlot Slot = CreateAggTemp(E->getType());
5006   EmitCXXConstructExpr(E, Slot);
5007   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5008 }
5009 
5010 LValue
5011 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
5012   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
5013 }
5014 
5015 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
5016   return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()),
5017                                       ConvertType(E->getType()));
5018 }
5019 
5020 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
5021   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
5022                         AlignmentSource::Decl);
5023 }
5024 
5025 LValue
5026 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
5027   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
5028   Slot.setExternallyDestructed();
5029   EmitAggExpr(E->getSubExpr(), Slot);
5030   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
5031   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5032 }
5033 
5034 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
5035   RValue RV = EmitObjCMessageExpr(E);
5036 
5037   if (!RV.isScalar())
5038     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5039                           AlignmentSource::Decl);
5040 
5041   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
5042          "Can't have a scalar return unless the return type is a "
5043          "reference type!");
5044 
5045   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5046 }
5047 
5048 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
5049   Address V =
5050     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
5051   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
5052 }
5053 
5054 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
5055                                              const ObjCIvarDecl *Ivar) {
5056   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
5057 }
5058 
5059 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
5060                                           llvm::Value *BaseValue,
5061                                           const ObjCIvarDecl *Ivar,
5062                                           unsigned CVRQualifiers) {
5063   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
5064                                                    Ivar, CVRQualifiers);
5065 }
5066 
5067 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
5068   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
5069   llvm::Value *BaseValue = nullptr;
5070   const Expr *BaseExpr = E->getBase();
5071   Qualifiers BaseQuals;
5072   QualType ObjectTy;
5073   if (E->isArrow()) {
5074     BaseValue = EmitScalarExpr(BaseExpr);
5075     ObjectTy = BaseExpr->getType()->getPointeeType();
5076     BaseQuals = ObjectTy.getQualifiers();
5077   } else {
5078     LValue BaseLV = EmitLValue(BaseExpr);
5079     BaseValue = BaseLV.getPointer(*this);
5080     ObjectTy = BaseExpr->getType();
5081     BaseQuals = ObjectTy.getQualifiers();
5082   }
5083 
5084   LValue LV =
5085     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
5086                       BaseQuals.getCVRQualifiers());
5087   setObjCGCLValueClass(getContext(), E, LV);
5088   return LV;
5089 }
5090 
5091 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
5092   // Can only get l-value for message expression returning aggregate type
5093   RValue RV = EmitAnyExprToTemp(E);
5094   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5095                         AlignmentSource::Decl);
5096 }
5097 
5098 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
5099                                  const CallExpr *E, ReturnValueSlot ReturnValue,
5100                                  llvm::Value *Chain) {
5101   // Get the actual function type. The callee type will always be a pointer to
5102   // function type or a block pointer type.
5103   assert(CalleeType->isFunctionPointerType() &&
5104          "Call must have function pointer type!");
5105 
5106   const Decl *TargetDecl =
5107       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
5108 
5109   CalleeType = getContext().getCanonicalType(CalleeType);
5110 
5111   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
5112 
5113   CGCallee Callee = OrigCallee;
5114 
5115   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
5116       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5117     if (llvm::Constant *PrefixSig =
5118             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
5119       SanitizerScope SanScope(this);
5120       // Remove any (C++17) exception specifications, to allow calling e.g. a
5121       // noexcept function through a non-noexcept pointer.
5122       auto ProtoTy =
5123         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
5124       llvm::Constant *FTRTTIConst =
5125           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
5126       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
5127       llvm::StructType *PrefixStructTy = llvm::StructType::get(
5128           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
5129 
5130       llvm::Value *CalleePtr = Callee.getFunctionPointer();
5131 
5132       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
5133           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
5134       llvm::Value *CalleeSigPtr =
5135           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
5136       llvm::Value *CalleeSig =
5137           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
5138       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
5139 
5140       llvm::BasicBlock *Cont = createBasicBlock("cont");
5141       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
5142       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
5143 
5144       EmitBlock(TypeCheck);
5145       llvm::Value *CalleeRTTIPtr =
5146           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
5147       llvm::Value *CalleeRTTIEncoded =
5148           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
5149       llvm::Value *CalleeRTTI =
5150           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
5151       llvm::Value *CalleeRTTIMatch =
5152           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
5153       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
5154                                       EmitCheckTypeDescriptor(CalleeType)};
5155       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
5156                 SanitizerHandler::FunctionTypeMismatch, StaticData,
5157                 {CalleePtr, CalleeRTTI, FTRTTIConst});
5158 
5159       Builder.CreateBr(Cont);
5160       EmitBlock(Cont);
5161     }
5162   }
5163 
5164   const auto *FnType = cast<FunctionType>(PointeeType);
5165 
5166   // If we are checking indirect calls and this call is indirect, check that the
5167   // function pointer is a member of the bit set for the function type.
5168   if (SanOpts.has(SanitizerKind::CFIICall) &&
5169       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5170     SanitizerScope SanScope(this);
5171     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
5172 
5173     llvm::Metadata *MD;
5174     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
5175       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
5176     else
5177       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
5178 
5179     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
5180 
5181     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5182     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
5183     llvm::Value *TypeTest = Builder.CreateCall(
5184         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
5185 
5186     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
5187     llvm::Constant *StaticData[] = {
5188         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
5189         EmitCheckSourceLocation(E->getBeginLoc()),
5190         EmitCheckTypeDescriptor(QualType(FnType, 0)),
5191     };
5192     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
5193       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
5194                            CastedCallee, StaticData);
5195     } else {
5196       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
5197                 SanitizerHandler::CFICheckFail, StaticData,
5198                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
5199     }
5200   }
5201 
5202   CallArgList Args;
5203   if (Chain)
5204     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
5205              CGM.getContext().VoidPtrTy);
5206 
5207   // C++17 requires that we evaluate arguments to a call using assignment syntax
5208   // right-to-left, and that we evaluate arguments to certain other operators
5209   // left-to-right. Note that we allow this to override the order dictated by
5210   // the calling convention on the MS ABI, which means that parameter
5211   // destruction order is not necessarily reverse construction order.
5212   // FIXME: Revisit this based on C++ committee response to unimplementability.
5213   EvaluationOrder Order = EvaluationOrder::Default;
5214   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
5215     if (OCE->isAssignmentOp())
5216       Order = EvaluationOrder::ForceRightToLeft;
5217     else {
5218       switch (OCE->getOperator()) {
5219       case OO_LessLess:
5220       case OO_GreaterGreater:
5221       case OO_AmpAmp:
5222       case OO_PipePipe:
5223       case OO_Comma:
5224       case OO_ArrowStar:
5225         Order = EvaluationOrder::ForceLeftToRight;
5226         break;
5227       default:
5228         break;
5229       }
5230     }
5231   }
5232 
5233   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
5234                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
5235 
5236   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
5237       Args, FnType, /*ChainCall=*/Chain);
5238 
5239   // C99 6.5.2.2p6:
5240   //   If the expression that denotes the called function has a type
5241   //   that does not include a prototype, [the default argument
5242   //   promotions are performed]. If the number of arguments does not
5243   //   equal the number of parameters, the behavior is undefined. If
5244   //   the function is defined with a type that includes a prototype,
5245   //   and either the prototype ends with an ellipsis (, ...) or the
5246   //   types of the arguments after promotion are not compatible with
5247   //   the types of the parameters, the behavior is undefined. If the
5248   //   function is defined with a type that does not include a
5249   //   prototype, and the types of the arguments after promotion are
5250   //   not compatible with those of the parameters after promotion,
5251   //   the behavior is undefined [except in some trivial cases].
5252   // That is, in the general case, we should assume that a call
5253   // through an unprototyped function type works like a *non-variadic*
5254   // call.  The way we make this work is to cast to the exact type
5255   // of the promoted arguments.
5256   //
5257   // Chain calls use this same code path to add the invisible chain parameter
5258   // to the function type.
5259   if (isa<FunctionNoProtoType>(FnType) || Chain) {
5260     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
5261     int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace();
5262     CalleeTy = CalleeTy->getPointerTo(AS);
5263 
5264     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5265     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
5266     Callee.setFunctionPointer(CalleePtr);
5267   }
5268 
5269   llvm::CallBase *CallOrInvoke = nullptr;
5270   RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
5271                          E->getExprLoc());
5272 
5273   // Generate function declaration DISuprogram in order to be used
5274   // in debug info about call sites.
5275   if (CGDebugInfo *DI = getDebugInfo()) {
5276     if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl))
5277       DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0),
5278                                   CalleeDecl);
5279   }
5280 
5281   return Call;
5282 }
5283 
5284 LValue CodeGenFunction::
5285 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
5286   Address BaseAddr = Address::invalid();
5287   if (E->getOpcode() == BO_PtrMemI) {
5288     BaseAddr = EmitPointerWithAlignment(E->getLHS());
5289   } else {
5290     BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
5291   }
5292 
5293   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
5294   const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
5295 
5296   LValueBaseInfo BaseInfo;
5297   TBAAAccessInfo TBAAInfo;
5298   Address MemberAddr =
5299     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
5300                                     &TBAAInfo);
5301 
5302   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
5303 }
5304 
5305 /// Given the address of a temporary variable, produce an r-value of
5306 /// its type.
5307 RValue CodeGenFunction::convertTempToRValue(Address addr,
5308                                             QualType type,
5309                                             SourceLocation loc) {
5310   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
5311   switch (getEvaluationKind(type)) {
5312   case TEK_Complex:
5313     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
5314   case TEK_Aggregate:
5315     return lvalue.asAggregateRValue(*this);
5316   case TEK_Scalar:
5317     return RValue::get(EmitLoadOfScalar(lvalue, loc));
5318   }
5319   llvm_unreachable("bad evaluation kind");
5320 }
5321 
5322 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
5323   assert(Val->getType()->isFPOrFPVectorTy());
5324   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
5325     return;
5326 
5327   llvm::MDBuilder MDHelper(getLLVMContext());
5328   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
5329 
5330   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
5331 }
5332 
5333 namespace {
5334   struct LValueOrRValue {
5335     LValue LV;
5336     RValue RV;
5337   };
5338 }
5339 
5340 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
5341                                            const PseudoObjectExpr *E,
5342                                            bool forLValue,
5343                                            AggValueSlot slot) {
5344   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5345 
5346   // Find the result expression, if any.
5347   const Expr *resultExpr = E->getResultExpr();
5348   LValueOrRValue result;
5349 
5350   for (PseudoObjectExpr::const_semantics_iterator
5351          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
5352     const Expr *semantic = *i;
5353 
5354     // If this semantic expression is an opaque value, bind it
5355     // to the result of its source expression.
5356     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
5357       // Skip unique OVEs.
5358       if (ov->isUnique()) {
5359         assert(ov != resultExpr &&
5360                "A unique OVE cannot be used as the result expression");
5361         continue;
5362       }
5363 
5364       // If this is the result expression, we may need to evaluate
5365       // directly into the slot.
5366       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5367       OVMA opaqueData;
5368       if (ov == resultExpr && ov->isRValue() && !forLValue &&
5369           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5370         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5371         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5372                                        AlignmentSource::Decl);
5373         opaqueData = OVMA::bind(CGF, ov, LV);
5374         result.RV = slot.asRValue();
5375 
5376       // Otherwise, emit as normal.
5377       } else {
5378         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5379 
5380         // If this is the result, also evaluate the result now.
5381         if (ov == resultExpr) {
5382           if (forLValue)
5383             result.LV = CGF.EmitLValue(ov);
5384           else
5385             result.RV = CGF.EmitAnyExpr(ov, slot);
5386         }
5387       }
5388 
5389       opaques.push_back(opaqueData);
5390 
5391     // Otherwise, if the expression is the result, evaluate it
5392     // and remember the result.
5393     } else if (semantic == resultExpr) {
5394       if (forLValue)
5395         result.LV = CGF.EmitLValue(semantic);
5396       else
5397         result.RV = CGF.EmitAnyExpr(semantic, slot);
5398 
5399     // Otherwise, evaluate the expression in an ignored context.
5400     } else {
5401       CGF.EmitIgnoredExpr(semantic);
5402     }
5403   }
5404 
5405   // Unbind all the opaques now.
5406   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5407     opaques[i].unbind(CGF);
5408 
5409   return result;
5410 }
5411 
5412 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5413                                                AggValueSlot slot) {
5414   return emitPseudoObjectExpr(*this, E, false, slot).RV;
5415 }
5416 
5417 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5418   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
5419 }
5420