1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Aggregate Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Intrinsics.h"
29 using namespace clang;
30 using namespace CodeGen;
31 
32 //===----------------------------------------------------------------------===//
33 //                        Aggregate Expression Emitter
34 //===----------------------------------------------------------------------===//
35 
36 namespace  {
37 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
38   CodeGenFunction &CGF;
39   CGBuilderTy &Builder;
40   AggValueSlot Dest;
41   bool IsResultUnused;
42 
43   AggValueSlot EnsureSlot(QualType T) {
44     if (!Dest.isIgnored()) return Dest;
45     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
46   }
47   void EnsureDest(QualType T) {
48     if (!Dest.isIgnored()) return;
49     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
50   }
51 
52   // Calls `Fn` with a valid return value slot, potentially creating a temporary
53   // to do so. If a temporary is created, an appropriate copy into `Dest` will
54   // be emitted, as will lifetime markers.
55   //
56   // The given function should take a ReturnValueSlot, and return an RValue that
57   // points to said slot.
58   void withReturnValueSlot(const Expr *E,
59                            llvm::function_ref<RValue(ReturnValueSlot)> Fn);
60 
61 public:
62   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
63     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
64     IsResultUnused(IsResultUnused) { }
65 
66   //===--------------------------------------------------------------------===//
67   //                               Utilities
68   //===--------------------------------------------------------------------===//
69 
70   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
71   /// represents a value lvalue, this method emits the address of the lvalue,
72   /// then loads the result into DestPtr.
73   void EmitAggLoadOfLValue(const Expr *E);
74 
75   enum ExprValueKind {
76     EVK_RValue,
77     EVK_NonRValue
78   };
79 
80   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
81   /// SrcIsRValue is true if source comes from an RValue.
82   void EmitFinalDestCopy(QualType type, const LValue &src,
83                          ExprValueKind SrcValueKind = EVK_NonRValue);
84   void EmitFinalDestCopy(QualType type, RValue src);
85   void EmitCopy(QualType type, const AggValueSlot &dest,
86                 const AggValueSlot &src);
87 
88   void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, QualType ArrayQTy,
89                      Expr *ExprToVisit, ArrayRef<Expr *> Args,
90                      Expr *ArrayFiller);
91 
92   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
93     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
94       return AggValueSlot::NeedsGCBarriers;
95     return AggValueSlot::DoesNotNeedGCBarriers;
96   }
97 
98   bool TypeRequiresGCollection(QualType T);
99 
100   //===--------------------------------------------------------------------===//
101   //                            Visitor Methods
102   //===--------------------------------------------------------------------===//
103 
104   void Visit(Expr *E) {
105     ApplyDebugLocation DL(CGF, E);
106     StmtVisitor<AggExprEmitter>::Visit(E);
107   }
108 
109   void VisitStmt(Stmt *S) {
110     CGF.ErrorUnsupported(S, "aggregate expression");
111   }
112   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
113   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
114     Visit(GE->getResultExpr());
115   }
116   void VisitCoawaitExpr(CoawaitExpr *E) {
117     CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused);
118   }
119   void VisitCoyieldExpr(CoyieldExpr *E) {
120     CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused);
121   }
122   void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); }
123   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
124   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
125     return Visit(E->getReplacement());
126   }
127 
128   void VisitConstantExpr(ConstantExpr *E) {
129     EnsureDest(E->getType());
130 
131     if (llvm::Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
132       Address StoreDest = Dest.getAddress();
133       // The emitted value is guaranteed to have the same size as the
134       // destination but can have a different type. Just do a bitcast in this
135       // case to avoid incorrect GEPs.
136       if (Result->getType() != StoreDest.getType())
137         StoreDest = StoreDest.withElementType(Result->getType());
138 
139       CGF.EmitAggregateStore(Result, StoreDest,
140                              E->getType().isVolatileQualified());
141       return;
142     }
143     return Visit(E->getSubExpr());
144   }
145 
146   // l-values.
147   void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); }
148   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
149   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
150   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
151   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
152   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
153     EmitAggLoadOfLValue(E);
154   }
155   void VisitPredefinedExpr(const PredefinedExpr *E) {
156     EmitAggLoadOfLValue(E);
157   }
158 
159   // Operators.
160   void VisitCastExpr(CastExpr *E);
161   void VisitCallExpr(const CallExpr *E);
162   void VisitStmtExpr(const StmtExpr *E);
163   void VisitBinaryOperator(const BinaryOperator *BO);
164   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
165   void VisitBinAssign(const BinaryOperator *E);
166   void VisitBinComma(const BinaryOperator *E);
167   void VisitBinCmp(const BinaryOperator *E);
168   void VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
169     Visit(E->getSemanticForm());
170   }
171 
172   void VisitObjCMessageExpr(ObjCMessageExpr *E);
173   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
174     EmitAggLoadOfLValue(E);
175   }
176 
177   void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
178   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
179   void VisitChooseExpr(const ChooseExpr *CE);
180   void VisitInitListExpr(InitListExpr *E);
181   void VisitCXXParenListOrInitListExpr(Expr *ExprToVisit, ArrayRef<Expr *> Args,
182                                        FieldDecl *InitializedFieldInUnion,
183                                        Expr *ArrayFiller);
184   void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
185                               llvm::Value *outerBegin = nullptr);
186   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
187   void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
188   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
189     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
190     Visit(DAE->getExpr());
191   }
192   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
193     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
194     Visit(DIE->getExpr());
195   }
196   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
197   void VisitCXXConstructExpr(const CXXConstructExpr *E);
198   void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
199   void VisitLambdaExpr(LambdaExpr *E);
200   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
201   void VisitExprWithCleanups(ExprWithCleanups *E);
202   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
203   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
204   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
205   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
206 
207   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
208     if (E->isGLValue()) {
209       LValue LV = CGF.EmitPseudoObjectLValue(E);
210       return EmitFinalDestCopy(E->getType(), LV);
211     }
212 
213     AggValueSlot Slot = EnsureSlot(E->getType());
214     bool NeedsDestruction =
215         !Slot.isExternallyDestructed() &&
216         E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
217     if (NeedsDestruction)
218       Slot.setExternallyDestructed();
219     CGF.EmitPseudoObjectRValue(E, Slot);
220     if (NeedsDestruction)
221       CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Slot.getAddress(),
222                       E->getType());
223   }
224 
225   void VisitVAArgExpr(VAArgExpr *E);
226   void VisitCXXParenListInitExpr(CXXParenListInitExpr *E);
227   void VisitCXXParenListOrInitListExpr(Expr *ExprToVisit, ArrayRef<Expr *> Args,
228                                        Expr *ArrayFiller);
229 
230   void EmitInitializationToLValue(Expr *E, LValue Address);
231   void EmitNullInitializationToLValue(LValue Address);
232   //  case Expr::ChooseExprClass:
233   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
234   void VisitAtomicExpr(AtomicExpr *E) {
235     RValue Res = CGF.EmitAtomicExpr(E);
236     EmitFinalDestCopy(E->getType(), Res);
237   }
238 };
239 }  // end anonymous namespace.
240 
241 //===----------------------------------------------------------------------===//
242 //                                Utilities
243 //===----------------------------------------------------------------------===//
244 
245 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
246 /// represents a value lvalue, this method emits the address of the lvalue,
247 /// then loads the result into DestPtr.
248 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
249   LValue LV = CGF.EmitLValue(E);
250 
251   // If the type of the l-value is atomic, then do an atomic load.
252   if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
253     CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
254     return;
255   }
256 
257   EmitFinalDestCopy(E->getType(), LV);
258 }
259 
260 /// True if the given aggregate type requires special GC API calls.
261 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
262   // Only record types have members that might require garbage collection.
263   const RecordType *RecordTy = T->getAs<RecordType>();
264   if (!RecordTy) return false;
265 
266   // Don't mess with non-trivial C++ types.
267   RecordDecl *Record = RecordTy->getDecl();
268   if (isa<CXXRecordDecl>(Record) &&
269       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
270        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
271     return false;
272 
273   // Check whether the type has an object member.
274   return Record->hasObjectMember();
275 }
276 
277 void AggExprEmitter::withReturnValueSlot(
278     const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) {
279   QualType RetTy = E->getType();
280   bool RequiresDestruction =
281       !Dest.isExternallyDestructed() &&
282       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct;
283 
284   // If it makes no observable difference, save a memcpy + temporary.
285   //
286   // We need to always provide our own temporary if destruction is required.
287   // Otherwise, EmitCall will emit its own, notice that it's "unused", and end
288   // its lifetime before we have the chance to emit a proper destructor call.
289   bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() ||
290                  (RequiresDestruction && !Dest.getAddress().isValid());
291 
292   Address RetAddr = Address::invalid();
293   Address RetAllocaAddr = Address::invalid();
294 
295   EHScopeStack::stable_iterator LifetimeEndBlock;
296   llvm::Value *LifetimeSizePtr = nullptr;
297   llvm::IntrinsicInst *LifetimeStartInst = nullptr;
298   if (!UseTemp) {
299     RetAddr = Dest.getAddress();
300   } else {
301     RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr);
302     llvm::TypeSize Size =
303         CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy));
304     LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer());
305     if (LifetimeSizePtr) {
306       LifetimeStartInst =
307           cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint()));
308       assert(LifetimeStartInst->getIntrinsicID() ==
309                  llvm::Intrinsic::lifetime_start &&
310              "Last insertion wasn't a lifetime.start?");
311 
312       CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>(
313           NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr);
314       LifetimeEndBlock = CGF.EHStack.stable_begin();
315     }
316   }
317 
318   RValue Src =
319       EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused,
320                                Dest.isExternallyDestructed()));
321 
322   if (!UseTemp)
323     return;
324 
325   assert(Dest.isIgnored() || Dest.getPointer() != Src.getAggregatePointer());
326   EmitFinalDestCopy(E->getType(), Src);
327 
328   if (!RequiresDestruction && LifetimeStartInst) {
329     // If there's no dtor to run, the copy was the last use of our temporary.
330     // Since we're not guaranteed to be in an ExprWithCleanups, clean up
331     // eagerly.
332     CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst);
333     CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer());
334   }
335 }
336 
337 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
338 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
339   assert(src.isAggregate() && "value must be aggregate value!");
340   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
341   EmitFinalDestCopy(type, srcLV, EVK_RValue);
342 }
343 
344 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
345 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src,
346                                        ExprValueKind SrcValueKind) {
347   // If Dest is ignored, then we're evaluating an aggregate expression
348   // in a context that doesn't care about the result.  Note that loads
349   // from volatile l-values force the existence of a non-ignored
350   // destination.
351   if (Dest.isIgnored())
352     return;
353 
354   // Copy non-trivial C structs here.
355   LValue DstLV = CGF.MakeAddrLValue(
356       Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type);
357 
358   if (SrcValueKind == EVK_RValue) {
359     if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) {
360       if (Dest.isPotentiallyAliased())
361         CGF.callCStructMoveAssignmentOperator(DstLV, src);
362       else
363         CGF.callCStructMoveConstructor(DstLV, src);
364       return;
365     }
366   } else {
367     if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
368       if (Dest.isPotentiallyAliased())
369         CGF.callCStructCopyAssignmentOperator(DstLV, src);
370       else
371         CGF.callCStructCopyConstructor(DstLV, src);
372       return;
373     }
374   }
375 
376   AggValueSlot srcAgg = AggValueSlot::forLValue(
377       src, CGF, AggValueSlot::IsDestructed, needsGC(type),
378       AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
379   EmitCopy(type, Dest, srcAgg);
380 }
381 
382 /// Perform a copy from the source into the destination.
383 ///
384 /// \param type - the type of the aggregate being copied; qualifiers are
385 ///   ignored
386 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
387                               const AggValueSlot &src) {
388   if (dest.requiresGCollection()) {
389     CharUnits sz = dest.getPreferredSize(CGF.getContext(), type);
390     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
391     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
392                                                       dest.getAddress(),
393                                                       src.getAddress(),
394                                                       size);
395     return;
396   }
397 
398   // If the result of the assignment is used, copy the LHS there also.
399   // It's volatile if either side is.  Use the minimum alignment of
400   // the two sides.
401   LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type);
402   LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type);
403   CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(),
404                         dest.isVolatile() || src.isVolatile());
405 }
406 
407 /// Emit the initializer for a std::initializer_list initialized with a
408 /// real initializer list.
409 void
410 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
411   // Emit an array containing the elements.  The array is externally destructed
412   // if the std::initializer_list object is.
413   ASTContext &Ctx = CGF.getContext();
414   LValue Array = CGF.EmitLValue(E->getSubExpr());
415   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
416   Address ArrayPtr = Array.getAddress(CGF);
417 
418   const ConstantArrayType *ArrayType =
419       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
420   assert(ArrayType && "std::initializer_list constructed from non-array");
421 
422   // FIXME: Perform the checks on the field types in SemaInit.
423   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
424   RecordDecl::field_iterator Field = Record->field_begin();
425   if (Field == Record->field_end()) {
426     CGF.ErrorUnsupported(E, "weird std::initializer_list");
427     return;
428   }
429 
430   // Start pointer.
431   if (!Field->getType()->isPointerType() ||
432       !Ctx.hasSameType(Field->getType()->getPointeeType(),
433                        ArrayType->getElementType())) {
434     CGF.ErrorUnsupported(E, "weird std::initializer_list");
435     return;
436   }
437 
438   AggValueSlot Dest = EnsureSlot(E->getType());
439   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
440   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
441   llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
442   llvm::Value *IdxStart[] = { Zero, Zero };
443   llvm::Value *ArrayStart = Builder.CreateInBoundsGEP(
444       ArrayPtr.getElementType(), ArrayPtr.getPointer(), IdxStart, "arraystart");
445   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
446   ++Field;
447 
448   if (Field == Record->field_end()) {
449     CGF.ErrorUnsupported(E, "weird std::initializer_list");
450     return;
451   }
452 
453   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
454   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
455   if (Field->getType()->isPointerType() &&
456       Ctx.hasSameType(Field->getType()->getPointeeType(),
457                       ArrayType->getElementType())) {
458     // End pointer.
459     llvm::Value *IdxEnd[] = { Zero, Size };
460     llvm::Value *ArrayEnd = Builder.CreateInBoundsGEP(
461         ArrayPtr.getElementType(), ArrayPtr.getPointer(), IdxEnd, "arrayend");
462     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
463   } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
464     // Length.
465     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
466   } else {
467     CGF.ErrorUnsupported(E, "weird std::initializer_list");
468     return;
469   }
470 }
471 
472 /// Determine if E is a trivial array filler, that is, one that is
473 /// equivalent to zero-initialization.
474 static bool isTrivialFiller(Expr *E) {
475   if (!E)
476     return true;
477 
478   if (isa<ImplicitValueInitExpr>(E))
479     return true;
480 
481   if (auto *ILE = dyn_cast<InitListExpr>(E)) {
482     if (ILE->getNumInits())
483       return false;
484     return isTrivialFiller(ILE->getArrayFiller());
485   }
486 
487   if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
488     return Cons->getConstructor()->isDefaultConstructor() &&
489            Cons->getConstructor()->isTrivial();
490 
491   // FIXME: Are there other cases where we can avoid emitting an initializer?
492   return false;
493 }
494 
495 /// Emit initialization of an array from an initializer list. ExprToVisit must
496 /// be either an InitListEpxr a CXXParenInitListExpr.
497 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
498                                    QualType ArrayQTy, Expr *ExprToVisit,
499                                    ArrayRef<Expr *> Args, Expr *ArrayFiller) {
500   uint64_t NumInitElements = Args.size();
501 
502   uint64_t NumArrayElements = AType->getNumElements();
503   assert(NumInitElements <= NumArrayElements);
504 
505   QualType elementType =
506       CGF.getContext().getAsArrayType(ArrayQTy)->getElementType();
507 
508   // DestPtr is an array*.  Construct an elementType* by drilling
509   // down a level.
510   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
511   llvm::Value *indices[] = { zero, zero };
512   llvm::Value *begin = Builder.CreateInBoundsGEP(
513       DestPtr.getElementType(), DestPtr.getPointer(), indices,
514       "arrayinit.begin");
515 
516   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
517   CharUnits elementAlign =
518     DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
519   llvm::Type *llvmElementType = CGF.ConvertTypeForMem(elementType);
520 
521   // Consider initializing the array by copying from a global. For this to be
522   // more efficient than per-element initialization, the size of the elements
523   // with explicit initializers should be large enough.
524   if (NumInitElements * elementSize.getQuantity() > 16 &&
525       elementType.isTriviallyCopyableType(CGF.getContext())) {
526     CodeGen::CodeGenModule &CGM = CGF.CGM;
527     ConstantEmitter Emitter(CGF);
528     LangAS AS = ArrayQTy.getAddressSpace();
529     if (llvm::Constant *C =
530             Emitter.tryEmitForInitializer(ExprToVisit, AS, ArrayQTy)) {
531       auto GV = new llvm::GlobalVariable(
532           CGM.getModule(), C->getType(),
533           /* isConstant= */ true, llvm::GlobalValue::PrivateLinkage, C,
534           "constinit",
535           /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal,
536           CGM.getContext().getTargetAddressSpace(AS));
537       Emitter.finalize(GV);
538       CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy);
539       GV->setAlignment(Align.getAsAlign());
540       Address GVAddr(GV, GV->getValueType(), Align);
541       EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GVAddr, ArrayQTy));
542       return;
543     }
544   }
545 
546   // Exception safety requires us to destroy all the
547   // already-constructed members if an initializer throws.
548   // For that, we'll need an EH cleanup.
549   QualType::DestructionKind dtorKind = elementType.isDestructedType();
550   Address endOfInit = Address::invalid();
551   EHScopeStack::stable_iterator cleanup;
552   llvm::Instruction *cleanupDominator = nullptr;
553   if (CGF.needsEHCleanup(dtorKind)) {
554     // In principle we could tell the cleanup where we are more
555     // directly, but the control flow can get so varied here that it
556     // would actually be quite complex.  Therefore we go through an
557     // alloca.
558     endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
559                                      "arrayinit.endOfInit");
560     cleanupDominator = Builder.CreateStore(begin, endOfInit);
561     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
562                                          elementAlign,
563                                          CGF.getDestroyer(dtorKind));
564     cleanup = CGF.EHStack.stable_begin();
565 
566   // Otherwise, remember that we didn't need a cleanup.
567   } else {
568     dtorKind = QualType::DK_none;
569   }
570 
571   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
572 
573   // The 'current element to initialize'.  The invariants on this
574   // variable are complicated.  Essentially, after each iteration of
575   // the loop, it points to the last initialized element, except
576   // that it points to the beginning of the array before any
577   // elements have been initialized.
578   llvm::Value *element = begin;
579 
580   // Emit the explicit initializers.
581   for (uint64_t i = 0; i != NumInitElements; ++i) {
582     // Advance to the next element.
583     if (i > 0) {
584       element = Builder.CreateInBoundsGEP(
585           llvmElementType, element, one, "arrayinit.element");
586 
587       // Tell the cleanup that it needs to destroy up to this
588       // element.  TODO: some of these stores can be trivially
589       // observed to be unnecessary.
590       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
591     }
592 
593     LValue elementLV = CGF.MakeAddrLValue(
594         Address(element, llvmElementType, elementAlign), elementType);
595     EmitInitializationToLValue(Args[i], elementLV);
596   }
597 
598   // Check whether there's a non-trivial array-fill expression.
599   bool hasTrivialFiller = isTrivialFiller(ArrayFiller);
600 
601   // Any remaining elements need to be zero-initialized, possibly
602   // using the filler expression.  We can skip this if the we're
603   // emitting to zeroed memory.
604   if (NumInitElements != NumArrayElements &&
605       !(Dest.isZeroed() && hasTrivialFiller &&
606         CGF.getTypes().isZeroInitializable(elementType))) {
607 
608     // Use an actual loop.  This is basically
609     //   do { *array++ = filler; } while (array != end);
610 
611     // Advance to the start of the rest of the array.
612     if (NumInitElements) {
613       element = Builder.CreateInBoundsGEP(
614           llvmElementType, element, one, "arrayinit.start");
615       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
616     }
617 
618     // Compute the end of the array.
619     llvm::Value *end = Builder.CreateInBoundsGEP(
620         llvmElementType, begin,
621         llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), "arrayinit.end");
622 
623     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
624     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
625 
626     // Jump into the body.
627     CGF.EmitBlock(bodyBB);
628     llvm::PHINode *currentElement =
629       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
630     currentElement->addIncoming(element, entryBB);
631 
632     // Emit the actual filler expression.
633     {
634       // C++1z [class.temporary]p5:
635       //   when a default constructor is called to initialize an element of
636       //   an array with no corresponding initializer [...] the destruction of
637       //   every temporary created in a default argument is sequenced before
638       //   the construction of the next array element, if any
639       CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
640       LValue elementLV = CGF.MakeAddrLValue(
641           Address(currentElement, llvmElementType, elementAlign), elementType);
642       if (ArrayFiller)
643         EmitInitializationToLValue(ArrayFiller, elementLV);
644       else
645         EmitNullInitializationToLValue(elementLV);
646     }
647 
648     // Move on to the next element.
649     llvm::Value *nextElement = Builder.CreateInBoundsGEP(
650         llvmElementType, currentElement, one, "arrayinit.next");
651 
652     // Tell the EH cleanup that we finished with the last element.
653     if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
654 
655     // Leave the loop if we're done.
656     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
657                                              "arrayinit.done");
658     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
659     Builder.CreateCondBr(done, endBB, bodyBB);
660     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
661 
662     CGF.EmitBlock(endBB);
663   }
664 
665   // Leave the partial-array cleanup if we entered one.
666   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
667 }
668 
669 //===----------------------------------------------------------------------===//
670 //                            Visitor Methods
671 //===----------------------------------------------------------------------===//
672 
673 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
674   Visit(E->getSubExpr());
675 }
676 
677 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
678   // If this is a unique OVE, just visit its source expression.
679   if (e->isUnique())
680     Visit(e->getSourceExpr());
681   else
682     EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e));
683 }
684 
685 void
686 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
687   if (Dest.isPotentiallyAliased() &&
688       E->getType().isPODType(CGF.getContext())) {
689     // For a POD type, just emit a load of the lvalue + a copy, because our
690     // compound literal might alias the destination.
691     EmitAggLoadOfLValue(E);
692     return;
693   }
694 
695   AggValueSlot Slot = EnsureSlot(E->getType());
696 
697   // Block-scope compound literals are destroyed at the end of the enclosing
698   // scope in C.
699   bool Destruct =
700       !CGF.getLangOpts().CPlusPlus && !Slot.isExternallyDestructed();
701   if (Destruct)
702     Slot.setExternallyDestructed();
703 
704   CGF.EmitAggExpr(E->getInitializer(), Slot);
705 
706   if (Destruct)
707     if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
708       CGF.pushLifetimeExtendedDestroy(
709           CGF.getCleanupKind(DtorKind), Slot.getAddress(), E->getType(),
710           CGF.getDestroyer(DtorKind), DtorKind & EHCleanup);
711 }
712 
713 /// Attempt to look through various unimportant expressions to find a
714 /// cast of the given kind.
715 static Expr *findPeephole(Expr *op, CastKind kind, const ASTContext &ctx) {
716   op = op->IgnoreParenNoopCasts(ctx);
717   if (auto castE = dyn_cast<CastExpr>(op)) {
718     if (castE->getCastKind() == kind)
719       return castE->getSubExpr();
720   }
721   return nullptr;
722 }
723 
724 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
725   if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
726     CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
727   switch (E->getCastKind()) {
728   case CK_Dynamic: {
729     // FIXME: Can this actually happen? We have no test coverage for it.
730     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
731     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
732                                       CodeGenFunction::TCK_Load);
733     // FIXME: Do we also need to handle property references here?
734     if (LV.isSimple())
735       CGF.EmitDynamicCast(LV.getAddress(CGF), cast<CXXDynamicCastExpr>(E));
736     else
737       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
738 
739     if (!Dest.isIgnored())
740       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
741     break;
742   }
743 
744   case CK_ToUnion: {
745     // Evaluate even if the destination is ignored.
746     if (Dest.isIgnored()) {
747       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
748                       /*ignoreResult=*/true);
749       break;
750     }
751 
752     // GCC union extension
753     QualType Ty = E->getSubExpr()->getType();
754     Address CastPtr = Dest.getAddress().withElementType(CGF.ConvertType(Ty));
755     EmitInitializationToLValue(E->getSubExpr(),
756                                CGF.MakeAddrLValue(CastPtr, Ty));
757     break;
758   }
759 
760   case CK_LValueToRValueBitCast: {
761     if (Dest.isIgnored()) {
762       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
763                       /*ignoreResult=*/true);
764       break;
765     }
766 
767     LValue SourceLV = CGF.EmitLValue(E->getSubExpr());
768     Address SourceAddress =
769         SourceLV.getAddress(CGF).withElementType(CGF.Int8Ty);
770     Address DestAddress = Dest.getAddress().withElementType(CGF.Int8Ty);
771     llvm::Value *SizeVal = llvm::ConstantInt::get(
772         CGF.SizeTy,
773         CGF.getContext().getTypeSizeInChars(E->getType()).getQuantity());
774     Builder.CreateMemCpy(DestAddress, SourceAddress, SizeVal);
775     break;
776   }
777 
778   case CK_DerivedToBase:
779   case CK_BaseToDerived:
780   case CK_UncheckedDerivedToBase: {
781     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
782                 "should have been unpacked before we got here");
783   }
784 
785   case CK_NonAtomicToAtomic:
786   case CK_AtomicToNonAtomic: {
787     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
788 
789     // Determine the atomic and value types.
790     QualType atomicType = E->getSubExpr()->getType();
791     QualType valueType = E->getType();
792     if (isToAtomic) std::swap(atomicType, valueType);
793 
794     assert(atomicType->isAtomicType());
795     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
796                           atomicType->castAs<AtomicType>()->getValueType()));
797 
798     // Just recurse normally if we're ignoring the result or the
799     // atomic type doesn't change representation.
800     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
801       return Visit(E->getSubExpr());
802     }
803 
804     CastKind peepholeTarget =
805       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
806 
807     // These two cases are reverses of each other; try to peephole them.
808     if (Expr *op =
809             findPeephole(E->getSubExpr(), peepholeTarget, CGF.getContext())) {
810       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
811                                                      E->getType()) &&
812            "peephole significantly changed types?");
813       return Visit(op);
814     }
815 
816     // If we're converting an r-value of non-atomic type to an r-value
817     // of atomic type, just emit directly into the relevant sub-object.
818     if (isToAtomic) {
819       AggValueSlot valueDest = Dest;
820       if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
821         // Zero-initialize.  (Strictly speaking, we only need to initialize
822         // the padding at the end, but this is simpler.)
823         if (!Dest.isZeroed())
824           CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
825 
826         // Build a GEP to refer to the subobject.
827         Address valueAddr =
828             CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0);
829         valueDest = AggValueSlot::forAddr(valueAddr,
830                                           valueDest.getQualifiers(),
831                                           valueDest.isExternallyDestructed(),
832                                           valueDest.requiresGCollection(),
833                                           valueDest.isPotentiallyAliased(),
834                                           AggValueSlot::DoesNotOverlap,
835                                           AggValueSlot::IsZeroed);
836       }
837 
838       CGF.EmitAggExpr(E->getSubExpr(), valueDest);
839       return;
840     }
841 
842     // Otherwise, we're converting an atomic type to a non-atomic type.
843     // Make an atomic temporary, emit into that, and then copy the value out.
844     AggValueSlot atomicSlot =
845       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
846     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
847 
848     Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0);
849     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
850     return EmitFinalDestCopy(valueType, rvalue);
851   }
852   case CK_AddressSpaceConversion:
853      return Visit(E->getSubExpr());
854 
855   case CK_LValueToRValue:
856     // If we're loading from a volatile type, force the destination
857     // into existence.
858     if (E->getSubExpr()->getType().isVolatileQualified()) {
859       bool Destruct =
860           !Dest.isExternallyDestructed() &&
861           E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
862       if (Destruct)
863         Dest.setExternallyDestructed();
864       EnsureDest(E->getType());
865       Visit(E->getSubExpr());
866 
867       if (Destruct)
868         CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
869                         E->getType());
870 
871       return;
872     }
873 
874     [[fallthrough]];
875 
876 
877   case CK_NoOp:
878   case CK_UserDefinedConversion:
879   case CK_ConstructorConversion:
880     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
881                                                    E->getType()) &&
882            "Implicit cast types must be compatible");
883     Visit(E->getSubExpr());
884     break;
885 
886   case CK_LValueBitCast:
887     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
888 
889   case CK_Dependent:
890   case CK_BitCast:
891   case CK_ArrayToPointerDecay:
892   case CK_FunctionToPointerDecay:
893   case CK_NullToPointer:
894   case CK_NullToMemberPointer:
895   case CK_BaseToDerivedMemberPointer:
896   case CK_DerivedToBaseMemberPointer:
897   case CK_MemberPointerToBoolean:
898   case CK_ReinterpretMemberPointer:
899   case CK_IntegralToPointer:
900   case CK_PointerToIntegral:
901   case CK_PointerToBoolean:
902   case CK_ToVoid:
903   case CK_VectorSplat:
904   case CK_IntegralCast:
905   case CK_BooleanToSignedIntegral:
906   case CK_IntegralToBoolean:
907   case CK_IntegralToFloating:
908   case CK_FloatingToIntegral:
909   case CK_FloatingToBoolean:
910   case CK_FloatingCast:
911   case CK_CPointerToObjCPointerCast:
912   case CK_BlockPointerToObjCPointerCast:
913   case CK_AnyPointerToBlockPointerCast:
914   case CK_ObjCObjectLValueCast:
915   case CK_FloatingRealToComplex:
916   case CK_FloatingComplexToReal:
917   case CK_FloatingComplexToBoolean:
918   case CK_FloatingComplexCast:
919   case CK_FloatingComplexToIntegralComplex:
920   case CK_IntegralRealToComplex:
921   case CK_IntegralComplexToReal:
922   case CK_IntegralComplexToBoolean:
923   case CK_IntegralComplexCast:
924   case CK_IntegralComplexToFloatingComplex:
925   case CK_ARCProduceObject:
926   case CK_ARCConsumeObject:
927   case CK_ARCReclaimReturnedObject:
928   case CK_ARCExtendBlockObject:
929   case CK_CopyAndAutoreleaseBlockObject:
930   case CK_BuiltinFnToFnPtr:
931   case CK_ZeroToOCLOpaqueType:
932   case CK_MatrixCast:
933 
934   case CK_IntToOCLSampler:
935   case CK_FloatingToFixedPoint:
936   case CK_FixedPointToFloating:
937   case CK_FixedPointCast:
938   case CK_FixedPointToBoolean:
939   case CK_FixedPointToIntegral:
940   case CK_IntegralToFixedPoint:
941     llvm_unreachable("cast kind invalid for aggregate types");
942   }
943 }
944 
945 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
946   if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
947     EmitAggLoadOfLValue(E);
948     return;
949   }
950 
951   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
952     return CGF.EmitCallExpr(E, Slot);
953   });
954 }
955 
956 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
957   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
958     return CGF.EmitObjCMessageExpr(E, Slot);
959   });
960 }
961 
962 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
963   CGF.EmitIgnoredExpr(E->getLHS());
964   Visit(E->getRHS());
965 }
966 
967 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
968   CodeGenFunction::StmtExprEvaluation eval(CGF);
969   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
970 }
971 
972 enum CompareKind {
973   CK_Less,
974   CK_Greater,
975   CK_Equal,
976 };
977 
978 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF,
979                                 const BinaryOperator *E, llvm::Value *LHS,
980                                 llvm::Value *RHS, CompareKind Kind,
981                                 const char *NameSuffix = "") {
982   QualType ArgTy = E->getLHS()->getType();
983   if (const ComplexType *CT = ArgTy->getAs<ComplexType>())
984     ArgTy = CT->getElementType();
985 
986   if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) {
987     assert(Kind == CK_Equal &&
988            "member pointers may only be compared for equality");
989     return CGF.CGM.getCXXABI().EmitMemberPointerComparison(
990         CGF, LHS, RHS, MPT, /*IsInequality*/ false);
991   }
992 
993   // Compute the comparison instructions for the specified comparison kind.
994   struct CmpInstInfo {
995     const char *Name;
996     llvm::CmpInst::Predicate FCmp;
997     llvm::CmpInst::Predicate SCmp;
998     llvm::CmpInst::Predicate UCmp;
999   };
1000   CmpInstInfo InstInfo = [&]() -> CmpInstInfo {
1001     using FI = llvm::FCmpInst;
1002     using II = llvm::ICmpInst;
1003     switch (Kind) {
1004     case CK_Less:
1005       return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT};
1006     case CK_Greater:
1007       return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT};
1008     case CK_Equal:
1009       return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ};
1010     }
1011     llvm_unreachable("Unrecognised CompareKind enum");
1012   }();
1013 
1014   if (ArgTy->hasFloatingRepresentation())
1015     return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS,
1016                               llvm::Twine(InstInfo.Name) + NameSuffix);
1017   if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) {
1018     auto Inst =
1019         ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp;
1020     return Builder.CreateICmp(Inst, LHS, RHS,
1021                               llvm::Twine(InstInfo.Name) + NameSuffix);
1022   }
1023 
1024   llvm_unreachable("unsupported aggregate binary expression should have "
1025                    "already been handled");
1026 }
1027 
1028 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) {
1029   using llvm::BasicBlock;
1030   using llvm::PHINode;
1031   using llvm::Value;
1032   assert(CGF.getContext().hasSameType(E->getLHS()->getType(),
1033                                       E->getRHS()->getType()));
1034   const ComparisonCategoryInfo &CmpInfo =
1035       CGF.getContext().CompCategories.getInfoForType(E->getType());
1036   assert(CmpInfo.Record->isTriviallyCopyable() &&
1037          "cannot copy non-trivially copyable aggregate");
1038 
1039   QualType ArgTy = E->getLHS()->getType();
1040 
1041   if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() &&
1042       !ArgTy->isNullPtrType() && !ArgTy->isPointerType() &&
1043       !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) {
1044     return CGF.ErrorUnsupported(E, "aggregate three-way comparison");
1045   }
1046   bool IsComplex = ArgTy->isAnyComplexType();
1047 
1048   // Evaluate the operands to the expression and extract their values.
1049   auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> {
1050     RValue RV = CGF.EmitAnyExpr(E);
1051     if (RV.isScalar())
1052       return {RV.getScalarVal(), nullptr};
1053     if (RV.isAggregate())
1054       return {RV.getAggregatePointer(), nullptr};
1055     assert(RV.isComplex());
1056     return RV.getComplexVal();
1057   };
1058   auto LHSValues = EmitOperand(E->getLHS()),
1059        RHSValues = EmitOperand(E->getRHS());
1060 
1061   auto EmitCmp = [&](CompareKind K) {
1062     Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first,
1063                              K, IsComplex ? ".r" : "");
1064     if (!IsComplex)
1065       return Cmp;
1066     assert(K == CompareKind::CK_Equal);
1067     Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second,
1068                                  RHSValues.second, K, ".i");
1069     return Builder.CreateAnd(Cmp, CmpImag, "and.eq");
1070   };
1071   auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) {
1072     return Builder.getInt(VInfo->getIntValue());
1073   };
1074 
1075   Value *Select;
1076   if (ArgTy->isNullPtrType()) {
1077     Select = EmitCmpRes(CmpInfo.getEqualOrEquiv());
1078   } else if (!CmpInfo.isPartial()) {
1079     Value *SelectOne =
1080         Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()),
1081                              EmitCmpRes(CmpInfo.getGreater()), "sel.lt");
1082     Select = Builder.CreateSelect(EmitCmp(CK_Equal),
1083                                   EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1084                                   SelectOne, "sel.eq");
1085   } else {
1086     Value *SelectEq = Builder.CreateSelect(
1087         EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1088         EmitCmpRes(CmpInfo.getUnordered()), "sel.eq");
1089     Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater),
1090                                            EmitCmpRes(CmpInfo.getGreater()),
1091                                            SelectEq, "sel.gt");
1092     Select = Builder.CreateSelect(
1093         EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt");
1094   }
1095   // Create the return value in the destination slot.
1096   EnsureDest(E->getType());
1097   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1098 
1099   // Emit the address of the first (and only) field in the comparison category
1100   // type, and initialize it from the constant integer value selected above.
1101   LValue FieldLV = CGF.EmitLValueForFieldInitialization(
1102       DestLV, *CmpInfo.Record->field_begin());
1103   CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true);
1104 
1105   // All done! The result is in the Dest slot.
1106 }
1107 
1108 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
1109   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
1110     VisitPointerToDataMemberBinaryOperator(E);
1111   else
1112     CGF.ErrorUnsupported(E, "aggregate binary expression");
1113 }
1114 
1115 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
1116                                                     const BinaryOperator *E) {
1117   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
1118   EmitFinalDestCopy(E->getType(), LV);
1119 }
1120 
1121 /// Is the value of the given expression possibly a reference to or
1122 /// into a __block variable?
1123 static bool isBlockVarRef(const Expr *E) {
1124   // Make sure we look through parens.
1125   E = E->IgnoreParens();
1126 
1127   // Check for a direct reference to a __block variable.
1128   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
1129     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
1130     return (var && var->hasAttr<BlocksAttr>());
1131   }
1132 
1133   // More complicated stuff.
1134 
1135   // Binary operators.
1136   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
1137     // For an assignment or pointer-to-member operation, just care
1138     // about the LHS.
1139     if (op->isAssignmentOp() || op->isPtrMemOp())
1140       return isBlockVarRef(op->getLHS());
1141 
1142     // For a comma, just care about the RHS.
1143     if (op->getOpcode() == BO_Comma)
1144       return isBlockVarRef(op->getRHS());
1145 
1146     // FIXME: pointer arithmetic?
1147     return false;
1148 
1149   // Check both sides of a conditional operator.
1150   } else if (const AbstractConditionalOperator *op
1151                = dyn_cast<AbstractConditionalOperator>(E)) {
1152     return isBlockVarRef(op->getTrueExpr())
1153         || isBlockVarRef(op->getFalseExpr());
1154 
1155   // OVEs are required to support BinaryConditionalOperators.
1156   } else if (const OpaqueValueExpr *op
1157                = dyn_cast<OpaqueValueExpr>(E)) {
1158     if (const Expr *src = op->getSourceExpr())
1159       return isBlockVarRef(src);
1160 
1161   // Casts are necessary to get things like (*(int*)&var) = foo().
1162   // We don't really care about the kind of cast here, except
1163   // we don't want to look through l2r casts, because it's okay
1164   // to get the *value* in a __block variable.
1165   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
1166     if (cast->getCastKind() == CK_LValueToRValue)
1167       return false;
1168     return isBlockVarRef(cast->getSubExpr());
1169 
1170   // Handle unary operators.  Again, just aggressively look through
1171   // it, ignoring the operation.
1172   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
1173     return isBlockVarRef(uop->getSubExpr());
1174 
1175   // Look into the base of a field access.
1176   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
1177     return isBlockVarRef(mem->getBase());
1178 
1179   // Look into the base of a subscript.
1180   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
1181     return isBlockVarRef(sub->getBase());
1182   }
1183 
1184   return false;
1185 }
1186 
1187 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1188   // For an assignment to work, the value on the right has
1189   // to be compatible with the value on the left.
1190   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
1191                                                  E->getRHS()->getType())
1192          && "Invalid assignment");
1193 
1194   // If the LHS might be a __block variable, and the RHS can
1195   // potentially cause a block copy, we need to evaluate the RHS first
1196   // so that the assignment goes the right place.
1197   // This is pretty semantically fragile.
1198   if (isBlockVarRef(E->getLHS()) &&
1199       E->getRHS()->HasSideEffects(CGF.getContext())) {
1200     // Ensure that we have a destination, and evaluate the RHS into that.
1201     EnsureDest(E->getRHS()->getType());
1202     Visit(E->getRHS());
1203 
1204     // Now emit the LHS and copy into it.
1205     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1206 
1207     // That copy is an atomic copy if the LHS is atomic.
1208     if (LHS.getType()->isAtomicType() ||
1209         CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1210       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1211       return;
1212     }
1213 
1214     EmitCopy(E->getLHS()->getType(),
1215              AggValueSlot::forLValue(LHS, CGF, AggValueSlot::IsDestructed,
1216                                      needsGC(E->getLHS()->getType()),
1217                                      AggValueSlot::IsAliased,
1218                                      AggValueSlot::MayOverlap),
1219              Dest);
1220     return;
1221   }
1222 
1223   LValue LHS = CGF.EmitLValue(E->getLHS());
1224 
1225   // If we have an atomic type, evaluate into the destination and then
1226   // do an atomic copy.
1227   if (LHS.getType()->isAtomicType() ||
1228       CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1229     EnsureDest(E->getRHS()->getType());
1230     Visit(E->getRHS());
1231     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1232     return;
1233   }
1234 
1235   // Codegen the RHS so that it stores directly into the LHS.
1236   AggValueSlot LHSSlot = AggValueSlot::forLValue(
1237       LHS, CGF, AggValueSlot::IsDestructed, needsGC(E->getLHS()->getType()),
1238       AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
1239   // A non-volatile aggregate destination might have volatile member.
1240   if (!LHSSlot.isVolatile() &&
1241       CGF.hasVolatileMember(E->getLHS()->getType()))
1242     LHSSlot.setVolatile(true);
1243 
1244   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
1245 
1246   // Copy into the destination if the assignment isn't ignored.
1247   EmitFinalDestCopy(E->getType(), LHS);
1248 
1249   if (!Dest.isIgnored() && !Dest.isExternallyDestructed() &&
1250       E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
1251     CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
1252                     E->getType());
1253 }
1254 
1255 void AggExprEmitter::
1256 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1257   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1258   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1259   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1260 
1261   // Bind the common expression if necessary.
1262   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1263 
1264   CodeGenFunction::ConditionalEvaluation eval(CGF);
1265   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1266                            CGF.getProfileCount(E));
1267 
1268   // Save whether the destination's lifetime is externally managed.
1269   bool isExternallyDestructed = Dest.isExternallyDestructed();
1270   bool destructNonTrivialCStruct =
1271       !isExternallyDestructed &&
1272       E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
1273   isExternallyDestructed |= destructNonTrivialCStruct;
1274   Dest.setExternallyDestructed(isExternallyDestructed);
1275 
1276   eval.begin(CGF);
1277   CGF.EmitBlock(LHSBlock);
1278   CGF.incrementProfileCounter(E);
1279   Visit(E->getTrueExpr());
1280   eval.end(CGF);
1281 
1282   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
1283   CGF.Builder.CreateBr(ContBlock);
1284 
1285   // If the result of an agg expression is unused, then the emission
1286   // of the LHS might need to create a destination slot.  That's fine
1287   // with us, and we can safely emit the RHS into the same slot, but
1288   // we shouldn't claim that it's already being destructed.
1289   Dest.setExternallyDestructed(isExternallyDestructed);
1290 
1291   eval.begin(CGF);
1292   CGF.EmitBlock(RHSBlock);
1293   Visit(E->getFalseExpr());
1294   eval.end(CGF);
1295 
1296   if (destructNonTrivialCStruct)
1297     CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
1298                     E->getType());
1299 
1300   CGF.EmitBlock(ContBlock);
1301 }
1302 
1303 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
1304   Visit(CE->getChosenSubExpr());
1305 }
1306 
1307 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1308   Address ArgValue = Address::invalid();
1309   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
1310 
1311   // If EmitVAArg fails, emit an error.
1312   if (!ArgPtr.isValid()) {
1313     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
1314     return;
1315   }
1316 
1317   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
1318 }
1319 
1320 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1321   // Ensure that we have a slot, but if we already do, remember
1322   // whether it was externally destructed.
1323   bool wasExternallyDestructed = Dest.isExternallyDestructed();
1324   EnsureDest(E->getType());
1325 
1326   // We're going to push a destructor if there isn't already one.
1327   Dest.setExternallyDestructed();
1328 
1329   Visit(E->getSubExpr());
1330 
1331   // Push that destructor we promised.
1332   if (!wasExternallyDestructed)
1333     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
1334 }
1335 
1336 void
1337 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1338   AggValueSlot Slot = EnsureSlot(E->getType());
1339   CGF.EmitCXXConstructExpr(E, Slot);
1340 }
1341 
1342 void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1343     const CXXInheritedCtorInitExpr *E) {
1344   AggValueSlot Slot = EnsureSlot(E->getType());
1345   CGF.EmitInheritedCXXConstructorCall(
1346       E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1347       E->inheritedFromVBase(), E);
1348 }
1349 
1350 void
1351 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1352   AggValueSlot Slot = EnsureSlot(E->getType());
1353   LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType());
1354 
1355   // We'll need to enter cleanup scopes in case any of the element
1356   // initializers throws an exception.
1357   SmallVector<EHScopeStack::stable_iterator, 16> Cleanups;
1358   llvm::Instruction *CleanupDominator = nullptr;
1359 
1360   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1361   for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
1362                                                e = E->capture_init_end();
1363        i != e; ++i, ++CurField) {
1364     // Emit initialization
1365     LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
1366     if (CurField->hasCapturedVLAType()) {
1367       CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
1368       continue;
1369     }
1370 
1371     EmitInitializationToLValue(*i, LV);
1372 
1373     // Push a destructor if necessary.
1374     if (QualType::DestructionKind DtorKind =
1375             CurField->getType().isDestructedType()) {
1376       assert(LV.isSimple());
1377       if (CGF.needsEHCleanup(DtorKind)) {
1378         if (!CleanupDominator)
1379           CleanupDominator = CGF.Builder.CreateAlignedLoad(
1380               CGF.Int8Ty,
1381               llvm::Constant::getNullValue(CGF.Int8PtrTy),
1382               CharUnits::One()); // placeholder
1383 
1384         CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), CurField->getType(),
1385                         CGF.getDestroyer(DtorKind), false);
1386         Cleanups.push_back(CGF.EHStack.stable_begin());
1387       }
1388     }
1389   }
1390 
1391   // Deactivate all the partial cleanups in reverse order, which
1392   // generally means popping them.
1393   for (unsigned i = Cleanups.size(); i != 0; --i)
1394     CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator);
1395 
1396   // Destroy the placeholder if we made one.
1397   if (CleanupDominator)
1398     CleanupDominator->eraseFromParent();
1399 }
1400 
1401 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1402   CodeGenFunction::RunCleanupsScope cleanups(CGF);
1403   Visit(E->getSubExpr());
1404 }
1405 
1406 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1407   QualType T = E->getType();
1408   AggValueSlot Slot = EnsureSlot(T);
1409   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1410 }
1411 
1412 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1413   QualType T = E->getType();
1414   AggValueSlot Slot = EnsureSlot(T);
1415   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1416 }
1417 
1418 /// Determine whether the given cast kind is known to always convert values
1419 /// with all zero bits in their value representation to values with all zero
1420 /// bits in their value representation.
1421 static bool castPreservesZero(const CastExpr *CE) {
1422   switch (CE->getCastKind()) {
1423     // No-ops.
1424   case CK_NoOp:
1425   case CK_UserDefinedConversion:
1426   case CK_ConstructorConversion:
1427   case CK_BitCast:
1428   case CK_ToUnion:
1429   case CK_ToVoid:
1430     // Conversions between (possibly-complex) integral, (possibly-complex)
1431     // floating-point, and bool.
1432   case CK_BooleanToSignedIntegral:
1433   case CK_FloatingCast:
1434   case CK_FloatingComplexCast:
1435   case CK_FloatingComplexToBoolean:
1436   case CK_FloatingComplexToIntegralComplex:
1437   case CK_FloatingComplexToReal:
1438   case CK_FloatingRealToComplex:
1439   case CK_FloatingToBoolean:
1440   case CK_FloatingToIntegral:
1441   case CK_IntegralCast:
1442   case CK_IntegralComplexCast:
1443   case CK_IntegralComplexToBoolean:
1444   case CK_IntegralComplexToFloatingComplex:
1445   case CK_IntegralComplexToReal:
1446   case CK_IntegralRealToComplex:
1447   case CK_IntegralToBoolean:
1448   case CK_IntegralToFloating:
1449     // Reinterpreting integers as pointers and vice versa.
1450   case CK_IntegralToPointer:
1451   case CK_PointerToIntegral:
1452     // Language extensions.
1453   case CK_VectorSplat:
1454   case CK_MatrixCast:
1455   case CK_NonAtomicToAtomic:
1456   case CK_AtomicToNonAtomic:
1457     return true;
1458 
1459   case CK_BaseToDerivedMemberPointer:
1460   case CK_DerivedToBaseMemberPointer:
1461   case CK_MemberPointerToBoolean:
1462   case CK_NullToMemberPointer:
1463   case CK_ReinterpretMemberPointer:
1464     // FIXME: ABI-dependent.
1465     return false;
1466 
1467   case CK_AnyPointerToBlockPointerCast:
1468   case CK_BlockPointerToObjCPointerCast:
1469   case CK_CPointerToObjCPointerCast:
1470   case CK_ObjCObjectLValueCast:
1471   case CK_IntToOCLSampler:
1472   case CK_ZeroToOCLOpaqueType:
1473     // FIXME: Check these.
1474     return false;
1475 
1476   case CK_FixedPointCast:
1477   case CK_FixedPointToBoolean:
1478   case CK_FixedPointToFloating:
1479   case CK_FixedPointToIntegral:
1480   case CK_FloatingToFixedPoint:
1481   case CK_IntegralToFixedPoint:
1482     // FIXME: Do all fixed-point types represent zero as all 0 bits?
1483     return false;
1484 
1485   case CK_AddressSpaceConversion:
1486   case CK_BaseToDerived:
1487   case CK_DerivedToBase:
1488   case CK_Dynamic:
1489   case CK_NullToPointer:
1490   case CK_PointerToBoolean:
1491     // FIXME: Preserves zeroes only if zero pointers and null pointers have the
1492     // same representation in all involved address spaces.
1493     return false;
1494 
1495   case CK_ARCConsumeObject:
1496   case CK_ARCExtendBlockObject:
1497   case CK_ARCProduceObject:
1498   case CK_ARCReclaimReturnedObject:
1499   case CK_CopyAndAutoreleaseBlockObject:
1500   case CK_ArrayToPointerDecay:
1501   case CK_FunctionToPointerDecay:
1502   case CK_BuiltinFnToFnPtr:
1503   case CK_Dependent:
1504   case CK_LValueBitCast:
1505   case CK_LValueToRValue:
1506   case CK_LValueToRValueBitCast:
1507   case CK_UncheckedDerivedToBase:
1508     return false;
1509   }
1510   llvm_unreachable("Unhandled clang::CastKind enum");
1511 }
1512 
1513 /// isSimpleZero - If emitting this value will obviously just cause a store of
1514 /// zero to memory, return true.  This can return false if uncertain, so it just
1515 /// handles simple cases.
1516 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1517   E = E->IgnoreParens();
1518   while (auto *CE = dyn_cast<CastExpr>(E)) {
1519     if (!castPreservesZero(CE))
1520       break;
1521     E = CE->getSubExpr()->IgnoreParens();
1522   }
1523 
1524   // 0
1525   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1526     return IL->getValue() == 0;
1527   // +0.0
1528   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1529     return FL->getValue().isPosZero();
1530   // int()
1531   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1532       CGF.getTypes().isZeroInitializable(E->getType()))
1533     return true;
1534   // (int*)0 - Null pointer expressions.
1535   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1536     return ICE->getCastKind() == CK_NullToPointer &&
1537            CGF.getTypes().isPointerZeroInitializable(E->getType()) &&
1538            !E->HasSideEffects(CGF.getContext());
1539   // '\0'
1540   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1541     return CL->getValue() == 0;
1542 
1543   // Otherwise, hard case: conservatively return false.
1544   return false;
1545 }
1546 
1547 
1548 void
1549 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1550   QualType type = LV.getType();
1551   // FIXME: Ignore result?
1552   // FIXME: Are initializers affected by volatile?
1553   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1554     // Storing "i32 0" to a zero'd memory location is a noop.
1555     return;
1556   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1557     return EmitNullInitializationToLValue(LV);
1558   } else if (isa<NoInitExpr>(E)) {
1559     // Do nothing.
1560     return;
1561   } else if (type->isReferenceType()) {
1562     RValue RV = CGF.EmitReferenceBindingToExpr(E);
1563     return CGF.EmitStoreThroughLValue(RV, LV);
1564   }
1565 
1566   switch (CGF.getEvaluationKind(type)) {
1567   case TEK_Complex:
1568     CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1569     return;
1570   case TEK_Aggregate:
1571     CGF.EmitAggExpr(
1572         E, AggValueSlot::forLValue(LV, CGF, AggValueSlot::IsDestructed,
1573                                    AggValueSlot::DoesNotNeedGCBarriers,
1574                                    AggValueSlot::IsNotAliased,
1575                                    AggValueSlot::MayOverlap, Dest.isZeroed()));
1576     return;
1577   case TEK_Scalar:
1578     if (LV.isSimple()) {
1579       CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1580     } else {
1581       CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1582     }
1583     return;
1584   }
1585   llvm_unreachable("bad evaluation kind");
1586 }
1587 
1588 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1589   QualType type = lv.getType();
1590 
1591   // If the destination slot is already zeroed out before the aggregate is
1592   // copied into it, we don't have to emit any zeros here.
1593   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1594     return;
1595 
1596   if (CGF.hasScalarEvaluationKind(type)) {
1597     // For non-aggregates, we can store the appropriate null constant.
1598     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1599     // Note that the following is not equivalent to
1600     // EmitStoreThroughBitfieldLValue for ARC types.
1601     if (lv.isBitField()) {
1602       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1603     } else {
1604       assert(lv.isSimple());
1605       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1606     }
1607   } else {
1608     // There's a potential optimization opportunity in combining
1609     // memsets; that would be easy for arrays, but relatively
1610     // difficult for structures with the current code.
1611     CGF.EmitNullInitialization(lv.getAddress(CGF), lv.getType());
1612   }
1613 }
1614 
1615 void AggExprEmitter::VisitCXXParenListInitExpr(CXXParenListInitExpr *E) {
1616   VisitCXXParenListOrInitListExpr(E, E->getInitExprs(),
1617                                   E->getInitializedFieldInUnion(),
1618                                   E->getArrayFiller());
1619 }
1620 
1621 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1622   if (E->hadArrayRangeDesignator())
1623     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1624 
1625   if (E->isTransparent())
1626     return Visit(E->getInit(0));
1627 
1628   VisitCXXParenListOrInitListExpr(
1629       E, E->inits(), E->getInitializedFieldInUnion(), E->getArrayFiller());
1630 }
1631 
1632 void AggExprEmitter::VisitCXXParenListOrInitListExpr(
1633     Expr *ExprToVisit, ArrayRef<Expr *> InitExprs,
1634     FieldDecl *InitializedFieldInUnion, Expr *ArrayFiller) {
1635 #if 0
1636   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1637   // (Length of globals? Chunks of zeroed-out space?).
1638   //
1639   // If we can, prefer a copy from a global; this is a lot less code for long
1640   // globals, and it's easier for the current optimizers to analyze.
1641   if (llvm::Constant *C =
1642           CGF.CGM.EmitConstantExpr(ExprToVisit, ExprToVisit->getType(), &CGF)) {
1643     llvm::GlobalVariable* GV =
1644     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1645                              llvm::GlobalValue::InternalLinkage, C, "");
1646     EmitFinalDestCopy(ExprToVisit->getType(),
1647                       CGF.MakeAddrLValue(GV, ExprToVisit->getType()));
1648     return;
1649   }
1650 #endif
1651 
1652   AggValueSlot Dest = EnsureSlot(ExprToVisit->getType());
1653 
1654   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), ExprToVisit->getType());
1655 
1656   // Handle initialization of an array.
1657   if (ExprToVisit->getType()->isConstantArrayType()) {
1658     auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1659     EmitArrayInit(Dest.getAddress(), AType, ExprToVisit->getType(), ExprToVisit,
1660                   InitExprs, ArrayFiller);
1661     return;
1662   } else if (ExprToVisit->getType()->isVariableArrayType()) {
1663     // A variable array type that has an initializer can only do empty
1664     // initialization. And because this feature is not exposed as an extension
1665     // in C++, we can safely memset the array memory to zero.
1666     assert(InitExprs.size() == 0 &&
1667            "you can only use an empty initializer with VLAs");
1668     CGF.EmitNullInitialization(Dest.getAddress(), ExprToVisit->getType());
1669     return;
1670   }
1671 
1672   assert(ExprToVisit->getType()->isRecordType() &&
1673          "Only support structs/unions here!");
1674 
1675   // Do struct initialization; this code just sets each individual member
1676   // to the approprate value.  This makes bitfield support automatic;
1677   // the disadvantage is that the generated code is more difficult for
1678   // the optimizer, especially with bitfields.
1679   unsigned NumInitElements = InitExprs.size();
1680   RecordDecl *record = ExprToVisit->getType()->castAs<RecordType>()->getDecl();
1681 
1682   // We'll need to enter cleanup scopes in case any of the element
1683   // initializers throws an exception.
1684   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1685   llvm::Instruction *cleanupDominator = nullptr;
1686   auto addCleanup = [&](const EHScopeStack::stable_iterator &cleanup) {
1687     cleanups.push_back(cleanup);
1688     if (!cleanupDominator) // create placeholder once needed
1689       cleanupDominator = CGF.Builder.CreateAlignedLoad(
1690           CGF.Int8Ty, llvm::Constant::getNullValue(CGF.Int8PtrTy),
1691           CharUnits::One());
1692   };
1693 
1694   unsigned curInitIndex = 0;
1695 
1696   // Emit initialization of base classes.
1697   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1698     assert(NumInitElements >= CXXRD->getNumBases() &&
1699            "missing initializer for base class");
1700     for (auto &Base : CXXRD->bases()) {
1701       assert(!Base.isVirtual() && "should not see vbases here");
1702       auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1703       Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1704           Dest.getAddress(), CXXRD, BaseRD,
1705           /*isBaseVirtual*/ false);
1706       AggValueSlot AggSlot = AggValueSlot::forAddr(
1707           V, Qualifiers(),
1708           AggValueSlot::IsDestructed,
1709           AggValueSlot::DoesNotNeedGCBarriers,
1710           AggValueSlot::IsNotAliased,
1711           CGF.getOverlapForBaseInit(CXXRD, BaseRD, Base.isVirtual()));
1712       CGF.EmitAggExpr(InitExprs[curInitIndex++], AggSlot);
1713 
1714       if (QualType::DestructionKind dtorKind =
1715               Base.getType().isDestructedType()) {
1716         CGF.pushDestroy(dtorKind, V, Base.getType());
1717         addCleanup(CGF.EHStack.stable_begin());
1718       }
1719     }
1720   }
1721 
1722   // Prepare a 'this' for CXXDefaultInitExprs.
1723   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1724 
1725   if (record->isUnion()) {
1726     // Only initialize one field of a union. The field itself is
1727     // specified by the initializer list.
1728     if (!InitializedFieldInUnion) {
1729       // Empty union; we have nothing to do.
1730 
1731 #ifndef NDEBUG
1732       // Make sure that it's really an empty and not a failure of
1733       // semantic analysis.
1734       for (const auto *Field : record->fields())
1735         assert((Field->isUnnamedBitfield() || Field->isAnonymousStructOrUnion()) && "Only unnamed bitfields or ananymous class allowed");
1736 #endif
1737       return;
1738     }
1739 
1740     // FIXME: volatility
1741     FieldDecl *Field = InitializedFieldInUnion;
1742 
1743     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1744     if (NumInitElements) {
1745       // Store the initializer into the field
1746       EmitInitializationToLValue(InitExprs[0], FieldLoc);
1747     } else {
1748       // Default-initialize to null.
1749       EmitNullInitializationToLValue(FieldLoc);
1750     }
1751 
1752     return;
1753   }
1754 
1755   // Here we iterate over the fields; this makes it simpler to both
1756   // default-initialize fields and skip over unnamed fields.
1757   for (const auto *field : record->fields()) {
1758     // We're done once we hit the flexible array member.
1759     if (field->getType()->isIncompleteArrayType())
1760       break;
1761 
1762     // Always skip anonymous bitfields.
1763     if (field->isUnnamedBitfield())
1764       continue;
1765 
1766     // We're done if we reach the end of the explicit initializers, we
1767     // have a zeroed object, and the rest of the fields are
1768     // zero-initializable.
1769     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1770         CGF.getTypes().isZeroInitializable(ExprToVisit->getType()))
1771       break;
1772 
1773 
1774     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1775     // We never generate write-barries for initialized fields.
1776     LV.setNonGC(true);
1777 
1778     if (curInitIndex < NumInitElements) {
1779       // Store the initializer into the field.
1780       EmitInitializationToLValue(InitExprs[curInitIndex++], LV);
1781     } else {
1782       // We're out of initializers; default-initialize to null
1783       EmitNullInitializationToLValue(LV);
1784     }
1785 
1786     // Push a destructor if necessary.
1787     // FIXME: if we have an array of structures, all explicitly
1788     // initialized, we can end up pushing a linear number of cleanups.
1789     bool pushedCleanup = false;
1790     if (QualType::DestructionKind dtorKind
1791           = field->getType().isDestructedType()) {
1792       assert(LV.isSimple());
1793       if (CGF.needsEHCleanup(dtorKind)) {
1794         CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), field->getType(),
1795                         CGF.getDestroyer(dtorKind), false);
1796         addCleanup(CGF.EHStack.stable_begin());
1797         pushedCleanup = true;
1798       }
1799     }
1800 
1801     // If the GEP didn't get used because of a dead zero init or something
1802     // else, clean it up for -O0 builds and general tidiness.
1803     if (!pushedCleanup && LV.isSimple())
1804       if (llvm::GetElementPtrInst *GEP =
1805               dyn_cast<llvm::GetElementPtrInst>(LV.getPointer(CGF)))
1806         if (GEP->use_empty())
1807           GEP->eraseFromParent();
1808   }
1809 
1810   // Deactivate all the partial cleanups in reverse order, which
1811   // generally means popping them.
1812   assert((cleanupDominator || cleanups.empty()) &&
1813          "Missing cleanupDominator before deactivating cleanup blocks");
1814   for (unsigned i = cleanups.size(); i != 0; --i)
1815     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1816 
1817   // Destroy the placeholder if we made one.
1818   if (cleanupDominator)
1819     cleanupDominator->eraseFromParent();
1820 }
1821 
1822 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
1823                                             llvm::Value *outerBegin) {
1824   // Emit the common subexpression.
1825   CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr());
1826 
1827   Address destPtr = EnsureSlot(E->getType()).getAddress();
1828   uint64_t numElements = E->getArraySize().getZExtValue();
1829 
1830   if (!numElements)
1831     return;
1832 
1833   // destPtr is an array*. Construct an elementType* by drilling down a level.
1834   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1835   llvm::Value *indices[] = {zero, zero};
1836   llvm::Value *begin = Builder.CreateInBoundsGEP(
1837       destPtr.getElementType(), destPtr.getPointer(), indices,
1838       "arrayinit.begin");
1839 
1840   // Prepare to special-case multidimensional array initialization: we avoid
1841   // emitting multiple destructor loops in that case.
1842   if (!outerBegin)
1843     outerBegin = begin;
1844   ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr());
1845 
1846   QualType elementType =
1847       CGF.getContext().getAsArrayType(E->getType())->getElementType();
1848   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1849   CharUnits elementAlign =
1850       destPtr.getAlignment().alignmentOfArrayElement(elementSize);
1851   llvm::Type *llvmElementType = CGF.ConvertTypeForMem(elementType);
1852 
1853   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1854   llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
1855 
1856   // Jump into the body.
1857   CGF.EmitBlock(bodyBB);
1858   llvm::PHINode *index =
1859       Builder.CreatePHI(zero->getType(), 2, "arrayinit.index");
1860   index->addIncoming(zero, entryBB);
1861   llvm::Value *element =
1862       Builder.CreateInBoundsGEP(llvmElementType, begin, index);
1863 
1864   // Prepare for a cleanup.
1865   QualType::DestructionKind dtorKind = elementType.isDestructedType();
1866   EHScopeStack::stable_iterator cleanup;
1867   if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) {
1868     if (outerBegin->getType() != element->getType())
1869       outerBegin = Builder.CreateBitCast(outerBegin, element->getType());
1870     CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType,
1871                                        elementAlign,
1872                                        CGF.getDestroyer(dtorKind));
1873     cleanup = CGF.EHStack.stable_begin();
1874   } else {
1875     dtorKind = QualType::DK_none;
1876   }
1877 
1878   // Emit the actual filler expression.
1879   {
1880     // Temporaries created in an array initialization loop are destroyed
1881     // at the end of each iteration.
1882     CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
1883     CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index);
1884     LValue elementLV = CGF.MakeAddrLValue(
1885         Address(element, llvmElementType, elementAlign), elementType);
1886 
1887     if (InnerLoop) {
1888       // If the subexpression is an ArrayInitLoopExpr, share its cleanup.
1889       auto elementSlot = AggValueSlot::forLValue(
1890           elementLV, CGF, AggValueSlot::IsDestructed,
1891           AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
1892           AggValueSlot::DoesNotOverlap);
1893       AggExprEmitter(CGF, elementSlot, false)
1894           .VisitArrayInitLoopExpr(InnerLoop, outerBegin);
1895     } else
1896       EmitInitializationToLValue(E->getSubExpr(), elementLV);
1897   }
1898 
1899   // Move on to the next element.
1900   llvm::Value *nextIndex = Builder.CreateNUWAdd(
1901       index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next");
1902   index->addIncoming(nextIndex, Builder.GetInsertBlock());
1903 
1904   // Leave the loop if we're done.
1905   llvm::Value *done = Builder.CreateICmpEQ(
1906       nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements),
1907       "arrayinit.done");
1908   llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
1909   Builder.CreateCondBr(done, endBB, bodyBB);
1910 
1911   CGF.EmitBlock(endBB);
1912 
1913   // Leave the partial-array cleanup if we entered one.
1914   if (dtorKind)
1915     CGF.DeactivateCleanupBlock(cleanup, index);
1916 }
1917 
1918 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1919   AggValueSlot Dest = EnsureSlot(E->getType());
1920 
1921   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1922   EmitInitializationToLValue(E->getBase(), DestLV);
1923   VisitInitListExpr(E->getUpdater());
1924 }
1925 
1926 //===----------------------------------------------------------------------===//
1927 //                        Entry Points into this File
1928 //===----------------------------------------------------------------------===//
1929 
1930 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1931 /// non-zero bytes that will be stored when outputting the initializer for the
1932 /// specified initializer expression.
1933 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1934   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
1935     E = MTE->getSubExpr();
1936   E = E->IgnoreParenNoopCasts(CGF.getContext());
1937 
1938   // 0 and 0.0 won't require any non-zero stores!
1939   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1940 
1941   // If this is an initlist expr, sum up the size of sizes of the (present)
1942   // elements.  If this is something weird, assume the whole thing is non-zero.
1943   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1944   while (ILE && ILE->isTransparent())
1945     ILE = dyn_cast<InitListExpr>(ILE->getInit(0));
1946   if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1947     return CGF.getContext().getTypeSizeInChars(E->getType());
1948 
1949   // InitListExprs for structs have to be handled carefully.  If there are
1950   // reference members, we need to consider the size of the reference, not the
1951   // referencee.  InitListExprs for unions and arrays can't have references.
1952   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1953     if (!RT->isUnionType()) {
1954       RecordDecl *SD = RT->getDecl();
1955       CharUnits NumNonZeroBytes = CharUnits::Zero();
1956 
1957       unsigned ILEElement = 0;
1958       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1959         while (ILEElement != CXXRD->getNumBases())
1960           NumNonZeroBytes +=
1961               GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1962       for (const auto *Field : SD->fields()) {
1963         // We're done once we hit the flexible array member or run out of
1964         // InitListExpr elements.
1965         if (Field->getType()->isIncompleteArrayType() ||
1966             ILEElement == ILE->getNumInits())
1967           break;
1968         if (Field->isUnnamedBitfield())
1969           continue;
1970 
1971         const Expr *E = ILE->getInit(ILEElement++);
1972 
1973         // Reference values are always non-null and have the width of a pointer.
1974         if (Field->getType()->isReferenceType())
1975           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1976               CGF.getTarget().getPointerWidth(LangAS::Default));
1977         else
1978           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1979       }
1980 
1981       return NumNonZeroBytes;
1982     }
1983   }
1984 
1985   // FIXME: This overestimates the number of non-zero bytes for bit-fields.
1986   CharUnits NumNonZeroBytes = CharUnits::Zero();
1987   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1988     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1989   return NumNonZeroBytes;
1990 }
1991 
1992 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1993 /// zeros in it, emit a memset and avoid storing the individual zeros.
1994 ///
1995 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1996                                      CodeGenFunction &CGF) {
1997   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1998   // volatile stores.
1999   if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
2000     return;
2001 
2002   // C++ objects with a user-declared constructor don't need zero'ing.
2003   if (CGF.getLangOpts().CPlusPlus)
2004     if (const RecordType *RT = CGF.getContext()
2005                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
2006       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2007       if (RD->hasUserDeclaredConstructor())
2008         return;
2009     }
2010 
2011   // If the type is 16-bytes or smaller, prefer individual stores over memset.
2012   CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType());
2013   if (Size <= CharUnits::fromQuantity(16))
2014     return;
2015 
2016   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
2017   // we prefer to emit memset + individual stores for the rest.
2018   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
2019   if (NumNonZeroBytes*4 > Size)
2020     return;
2021 
2022   // Okay, it seems like a good idea to use an initial memset, emit the call.
2023   llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
2024 
2025   Address Loc = Slot.getAddress().withElementType(CGF.Int8Ty);
2026   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
2027 
2028   // Tell the AggExprEmitter that the slot is known zero.
2029   Slot.setZeroed();
2030 }
2031 
2032 
2033 
2034 
2035 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
2036 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
2037 /// the value of the aggregate expression is not needed.  If VolatileDest is
2038 /// true, DestPtr cannot be 0.
2039 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
2040   assert(E && hasAggregateEvaluationKind(E->getType()) &&
2041          "Invalid aggregate expression to emit");
2042   assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
2043          "slot has bits but no address");
2044 
2045   // Optimize the slot if possible.
2046   CheckAggExprForMemSetUse(Slot, E, *this);
2047 
2048   AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
2049 }
2050 
2051 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
2052   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
2053   Address Temp = CreateMemTemp(E->getType());
2054   LValue LV = MakeAddrLValue(Temp, E->getType());
2055   EmitAggExpr(E, AggValueSlot::forLValue(
2056                      LV, *this, AggValueSlot::IsNotDestructed,
2057                      AggValueSlot::DoesNotNeedGCBarriers,
2058                      AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap));
2059   return LV;
2060 }
2061 
2062 AggValueSlot::Overlap_t
2063 CodeGenFunction::getOverlapForFieldInit(const FieldDecl *FD) {
2064   if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType())
2065     return AggValueSlot::DoesNotOverlap;
2066 
2067   // If the field lies entirely within the enclosing class's nvsize, its tail
2068   // padding cannot overlap any already-initialized object. (The only subobjects
2069   // with greater addresses that might already be initialized are vbases.)
2070   const RecordDecl *ClassRD = FD->getParent();
2071   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassRD);
2072   if (Layout.getFieldOffset(FD->getFieldIndex()) +
2073           getContext().getTypeSize(FD->getType()) <=
2074       (uint64_t)getContext().toBits(Layout.getNonVirtualSize()))
2075     return AggValueSlot::DoesNotOverlap;
2076 
2077   // The tail padding may contain values we need to preserve.
2078   return AggValueSlot::MayOverlap;
2079 }
2080 
2081 AggValueSlot::Overlap_t CodeGenFunction::getOverlapForBaseInit(
2082     const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) {
2083   // If the most-derived object is a field declared with [[no_unique_address]],
2084   // the tail padding of any virtual base could be reused for other subobjects
2085   // of that field's class.
2086   if (IsVirtual)
2087     return AggValueSlot::MayOverlap;
2088 
2089   // If the base class is laid out entirely within the nvsize of the derived
2090   // class, its tail padding cannot yet be initialized, so we can issue
2091   // stores at the full width of the base class.
2092   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2093   if (Layout.getBaseClassOffset(BaseRD) +
2094           getContext().getASTRecordLayout(BaseRD).getSize() <=
2095       Layout.getNonVirtualSize())
2096     return AggValueSlot::DoesNotOverlap;
2097 
2098   // The tail padding may contain values we need to preserve.
2099   return AggValueSlot::MayOverlap;
2100 }
2101 
2102 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty,
2103                                         AggValueSlot::Overlap_t MayOverlap,
2104                                         bool isVolatile) {
2105   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
2106 
2107   Address DestPtr = Dest.getAddress(*this);
2108   Address SrcPtr = Src.getAddress(*this);
2109 
2110   if (getLangOpts().CPlusPlus) {
2111     if (const RecordType *RT = Ty->getAs<RecordType>()) {
2112       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
2113       assert((Record->hasTrivialCopyConstructor() ||
2114               Record->hasTrivialCopyAssignment() ||
2115               Record->hasTrivialMoveConstructor() ||
2116               Record->hasTrivialMoveAssignment() ||
2117               Record->hasAttr<TrivialABIAttr>() || Record->isUnion()) &&
2118              "Trying to aggregate-copy a type without a trivial copy/move "
2119              "constructor or assignment operator");
2120       // Ignore empty classes in C++.
2121       if (Record->isEmpty())
2122         return;
2123     }
2124   }
2125 
2126   if (getLangOpts().CUDAIsDevice) {
2127     if (Ty->isCUDADeviceBuiltinSurfaceType()) {
2128       if (getTargetHooks().emitCUDADeviceBuiltinSurfaceDeviceCopy(*this, Dest,
2129                                                                   Src))
2130         return;
2131     } else if (Ty->isCUDADeviceBuiltinTextureType()) {
2132       if (getTargetHooks().emitCUDADeviceBuiltinTextureDeviceCopy(*this, Dest,
2133                                                                   Src))
2134         return;
2135     }
2136   }
2137 
2138   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
2139   // C99 6.5.16.1p3, which states "If the value being stored in an object is
2140   // read from another object that overlaps in anyway the storage of the first
2141   // object, then the overlap shall be exact and the two objects shall have
2142   // qualified or unqualified versions of a compatible type."
2143   //
2144   // memcpy is not defined if the source and destination pointers are exactly
2145   // equal, but other compilers do this optimization, and almost every memcpy
2146   // implementation handles this case safely.  If there is a libc that does not
2147   // safely handle this, we can add a target hook.
2148 
2149   // Get data size info for this aggregate. Don't copy the tail padding if this
2150   // might be a potentially-overlapping subobject, since the tail padding might
2151   // be occupied by a different object. Otherwise, copying it is fine.
2152   TypeInfoChars TypeInfo;
2153   if (MayOverlap)
2154     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
2155   else
2156     TypeInfo = getContext().getTypeInfoInChars(Ty);
2157 
2158   llvm::Value *SizeVal = nullptr;
2159   if (TypeInfo.Width.isZero()) {
2160     // But note that getTypeInfo returns 0 for a VLA.
2161     if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
2162             getContext().getAsArrayType(Ty))) {
2163       QualType BaseEltTy;
2164       SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
2165       TypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
2166       assert(!TypeInfo.Width.isZero());
2167       SizeVal = Builder.CreateNUWMul(
2168           SizeVal,
2169           llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity()));
2170     }
2171   }
2172   if (!SizeVal) {
2173     SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity());
2174   }
2175 
2176   // FIXME: If we have a volatile struct, the optimizer can remove what might
2177   // appear to be `extra' memory ops:
2178   //
2179   // volatile struct { int i; } a, b;
2180   //
2181   // int main() {
2182   //   a = b;
2183   //   a = b;
2184   // }
2185   //
2186   // we need to use a different call here.  We use isVolatile to indicate when
2187   // either the source or the destination is volatile.
2188 
2189   DestPtr = DestPtr.withElementType(Int8Ty);
2190   SrcPtr = SrcPtr.withElementType(Int8Ty);
2191 
2192   // Don't do any of the memmove_collectable tests if GC isn't set.
2193   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
2194     // fall through
2195   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
2196     RecordDecl *Record = RecordTy->getDecl();
2197     if (Record->hasObjectMember()) {
2198       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2199                                                     SizeVal);
2200       return;
2201     }
2202   } else if (Ty->isArrayType()) {
2203     QualType BaseType = getContext().getBaseElementType(Ty);
2204     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
2205       if (RecordTy->getDecl()->hasObjectMember()) {
2206         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2207                                                       SizeVal);
2208         return;
2209       }
2210     }
2211   }
2212 
2213   auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
2214 
2215   // Determine the metadata to describe the position of any padding in this
2216   // memcpy, as well as the TBAA tags for the members of the struct, in case
2217   // the optimizer wishes to expand it in to scalar memory operations.
2218   if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
2219     Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
2220 
2221   if (CGM.getCodeGenOpts().NewStructPathTBAA) {
2222     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer(
2223         Dest.getTBAAInfo(), Src.getTBAAInfo());
2224     CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);
2225   }
2226 }
2227