1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with complex types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGOpenMPRuntime.h"
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "ConstantEmitter.h"
17 #include "clang/AST/StmtVisitor.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/MDBuilder.h"
22 #include "llvm/IR/Metadata.h"
23 #include <algorithm>
24 using namespace clang;
25 using namespace CodeGen;
26 
27 //===----------------------------------------------------------------------===//
28 //                        Complex Expression Emitter
29 //===----------------------------------------------------------------------===//
30 
31 typedef CodeGenFunction::ComplexPairTy ComplexPairTy;
32 
33 /// Return the complex type that we are meant to emit.
34 static const ComplexType *getComplexType(QualType type) {
35   type = type.getCanonicalType();
36   if (const ComplexType *comp = dyn_cast<ComplexType>(type)) {
37     return comp;
38   } else {
39     return cast<ComplexType>(cast<AtomicType>(type)->getValueType());
40   }
41 }
42 
43 namespace  {
44 class ComplexExprEmitter
45   : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> {
46   CodeGenFunction &CGF;
47   CGBuilderTy &Builder;
48   bool IgnoreReal;
49   bool IgnoreImag;
50 public:
51   ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false)
52     : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) {
53   }
54 
55 
56   //===--------------------------------------------------------------------===//
57   //                               Utilities
58   //===--------------------------------------------------------------------===//
59 
60   bool TestAndClearIgnoreReal() {
61     bool I = IgnoreReal;
62     IgnoreReal = false;
63     return I;
64   }
65   bool TestAndClearIgnoreImag() {
66     bool I = IgnoreImag;
67     IgnoreImag = false;
68     return I;
69   }
70 
71   /// EmitLoadOfLValue - Given an expression with complex type that represents a
72   /// value l-value, this method emits the address of the l-value, then loads
73   /// and returns the result.
74   ComplexPairTy EmitLoadOfLValue(const Expr *E) {
75     return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc());
76   }
77 
78   ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc);
79 
80   /// EmitStoreOfComplex - Store the specified real/imag parts into the
81   /// specified value pointer.
82   void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit);
83 
84   /// Emit a cast from complex value Val to DestType.
85   ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType,
86                                          QualType DestType, SourceLocation Loc);
87   /// Emit a cast from scalar value Val to DestType.
88   ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType,
89                                         QualType DestType, SourceLocation Loc);
90 
91   //===--------------------------------------------------------------------===//
92   //                            Visitor Methods
93   //===--------------------------------------------------------------------===//
94 
95   ComplexPairTy Visit(Expr *E) {
96     ApplyDebugLocation DL(CGF, E);
97     return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E);
98   }
99 
100   ComplexPairTy VisitStmt(Stmt *S) {
101     S->dump(llvm::errs(), CGF.getContext());
102     llvm_unreachable("Stmt can't have complex result type!");
103   }
104   ComplexPairTy VisitExpr(Expr *S);
105   ComplexPairTy VisitConstantExpr(ConstantExpr *E) {
106     if (llvm::Constant *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E))
107       return ComplexPairTy(Result->getAggregateElement(0U),
108                            Result->getAggregateElement(1U));
109     return Visit(E->getSubExpr());
110   }
111   ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());}
112   ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
113     return Visit(GE->getResultExpr());
114   }
115   ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL);
116   ComplexPairTy
117   VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
118     return Visit(PE->getReplacement());
119   }
120   ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) {
121     return CGF.EmitCoawaitExpr(*S).getComplexVal();
122   }
123   ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) {
124     return CGF.EmitCoyieldExpr(*S).getComplexVal();
125   }
126   ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) {
127     return Visit(E->getSubExpr());
128   }
129 
130   ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant,
131                              Expr *E) {
132     assert(Constant && "not a constant");
133     if (Constant.isReference())
134       return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E),
135                               E->getExprLoc());
136 
137     llvm::Constant *pair = Constant.getValue();
138     return ComplexPairTy(pair->getAggregateElement(0U),
139                          pair->getAggregateElement(1U));
140   }
141 
142   // l-values.
143   ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) {
144     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
145       return emitConstant(Constant, E);
146     return EmitLoadOfLValue(E);
147   }
148   ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
149     return EmitLoadOfLValue(E);
150   }
151   ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) {
152     return CGF.EmitObjCMessageExpr(E).getComplexVal();
153   }
154   ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); }
155   ComplexPairTy VisitMemberExpr(MemberExpr *ME) {
156     if (CodeGenFunction::ConstantEmission Constant =
157             CGF.tryEmitAsConstant(ME)) {
158       CGF.EmitIgnoredExpr(ME->getBase());
159       return emitConstant(Constant, ME);
160     }
161     return EmitLoadOfLValue(ME);
162   }
163   ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) {
164     if (E->isGLValue())
165       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
166                               E->getExprLoc());
167     return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal();
168   }
169 
170   ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) {
171     return CGF.EmitPseudoObjectRValue(E).getComplexVal();
172   }
173 
174   // FIXME: CompoundLiteralExpr
175 
176   ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy);
177   ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) {
178     // Unlike for scalars, we don't have to worry about function->ptr demotion
179     // here.
180     return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
181   }
182   ComplexPairTy VisitCastExpr(CastExpr *E) {
183     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
184       CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
185     return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
186   }
187   ComplexPairTy VisitCallExpr(const CallExpr *E);
188   ComplexPairTy VisitStmtExpr(const StmtExpr *E);
189 
190   // Operators.
191   ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E,
192                                    bool isInc, bool isPre) {
193     LValue LV = CGF.EmitLValue(E->getSubExpr());
194     return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre);
195   }
196   ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) {
197     return VisitPrePostIncDec(E, false, false);
198   }
199   ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) {
200     return VisitPrePostIncDec(E, true, false);
201   }
202   ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) {
203     return VisitPrePostIncDec(E, false, true);
204   }
205   ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) {
206     return VisitPrePostIncDec(E, true, true);
207   }
208   ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
209 
210   ComplexPairTy VisitUnaryPlus(const UnaryOperator *E,
211                                QualType PromotionType = QualType());
212   ComplexPairTy VisitPlus(const UnaryOperator *E, QualType PromotionType);
213   ComplexPairTy VisitUnaryMinus(const UnaryOperator *E,
214                                 QualType PromotionType = QualType());
215   ComplexPairTy VisitMinus(const UnaryOperator *E, QualType PromotionType);
216   ComplexPairTy VisitUnaryNot      (const UnaryOperator *E);
217   // LNot,Real,Imag never return complex.
218   ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) {
219     return Visit(E->getSubExpr());
220   }
221   ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
222     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
223     return Visit(DAE->getExpr());
224   }
225   ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
226     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
227     return Visit(DIE->getExpr());
228   }
229   ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) {
230     CodeGenFunction::RunCleanupsScope Scope(CGF);
231     ComplexPairTy Vals = Visit(E->getSubExpr());
232     // Defend against dominance problems caused by jumps out of expression
233     // evaluation through the shared cleanup block.
234     Scope.ForceCleanup({&Vals.first, &Vals.second});
235     return Vals;
236   }
237   ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
238     assert(E->getType()->isAnyComplexType() && "Expected complex type!");
239     QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
240     llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem));
241     return ComplexPairTy(Null, Null);
242   }
243   ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
244     assert(E->getType()->isAnyComplexType() && "Expected complex type!");
245     QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
246     llvm::Constant *Null =
247                        llvm::Constant::getNullValue(CGF.ConvertType(Elem));
248     return ComplexPairTy(Null, Null);
249   }
250 
251   struct BinOpInfo {
252     ComplexPairTy LHS;
253     ComplexPairTy RHS;
254     QualType Ty;  // Computation Type.
255     FPOptions FPFeatures;
256   };
257 
258   BinOpInfo EmitBinOps(const BinaryOperator *E,
259                        QualType PromotionTy = QualType());
260   ComplexPairTy EmitPromoted(const Expr *E, QualType PromotionTy);
261   ComplexPairTy EmitPromotedComplexOperand(const Expr *E, QualType PromotionTy);
262   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
263                                   ComplexPairTy (ComplexExprEmitter::*Func)
264                                   (const BinOpInfo &),
265                                   RValue &Val);
266   ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E,
267                                    ComplexPairTy (ComplexExprEmitter::*Func)
268                                    (const BinOpInfo &));
269 
270   ComplexPairTy EmitBinAdd(const BinOpInfo &Op);
271   ComplexPairTy EmitBinSub(const BinOpInfo &Op);
272   ComplexPairTy EmitBinMul(const BinOpInfo &Op);
273   ComplexPairTy EmitBinDiv(const BinOpInfo &Op);
274 
275   ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName,
276                                         const BinOpInfo &Op);
277 
278   QualType getPromotionType(QualType Ty) {
279     if (auto *CT = Ty->getAs<ComplexType>()) {
280       QualType ElementType = CT->getElementType();
281       if (ElementType.UseExcessPrecision(CGF.getContext()))
282         return CGF.getContext().getComplexType(CGF.getContext().FloatTy);
283     }
284     if (Ty.UseExcessPrecision(CGF.getContext()))
285       return CGF.getContext().FloatTy;
286     return QualType();
287   }
288 
289 #define HANDLEBINOP(OP)                                                        \
290   ComplexPairTy VisitBin##OP(const BinaryOperator *E) {                        \
291     QualType promotionTy = getPromotionType(E->getType());                     \
292     ComplexPairTy result = EmitBin##OP(EmitBinOps(E, promotionTy));            \
293     if (!promotionTy.isNull())                                                 \
294       result =                                                                 \
295           CGF.EmitUnPromotedValue(result, E->getType());                       \
296     return result;                                                             \
297   }
298 
299   HANDLEBINOP(Mul)
300   HANDLEBINOP(Div)
301   HANDLEBINOP(Add)
302   HANDLEBINOP(Sub)
303 #undef HANDLEBINOP
304 
305   ComplexPairTy VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
306     return Visit(E->getSemanticForm());
307   }
308 
309   // Compound assignments.
310   ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) {
311     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd);
312   }
313   ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) {
314     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub);
315   }
316   ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) {
317     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul);
318   }
319   ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) {
320     return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv);
321   }
322 
323   // GCC rejects rem/and/or/xor for integer complex.
324   // Logical and/or always return int, never complex.
325 
326   // No comparisons produce a complex result.
327 
328   LValue EmitBinAssignLValue(const BinaryOperator *E,
329                              ComplexPairTy &Val);
330   ComplexPairTy VisitBinAssign     (const BinaryOperator *E);
331   ComplexPairTy VisitBinComma      (const BinaryOperator *E);
332 
333 
334   ComplexPairTy
335   VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
336   ComplexPairTy VisitChooseExpr(ChooseExpr *CE);
337 
338   ComplexPairTy VisitInitListExpr(InitListExpr *E);
339 
340   ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
341     return EmitLoadOfLValue(E);
342   }
343 
344   ComplexPairTy VisitVAArgExpr(VAArgExpr *E);
345 
346   ComplexPairTy VisitAtomicExpr(AtomicExpr *E) {
347     return CGF.EmitAtomicExpr(E).getComplexVal();
348   }
349 };
350 }  // end anonymous namespace.
351 
352 //===----------------------------------------------------------------------===//
353 //                                Utilities
354 //===----------------------------------------------------------------------===//
355 
356 Address CodeGenFunction::emitAddrOfRealComponent(Address addr,
357                                                  QualType complexType) {
358   return Builder.CreateStructGEP(addr, 0, addr.getName() + ".realp");
359 }
360 
361 Address CodeGenFunction::emitAddrOfImagComponent(Address addr,
362                                                  QualType complexType) {
363   return Builder.CreateStructGEP(addr, 1, addr.getName() + ".imagp");
364 }
365 
366 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to
367 /// load the real and imaginary pieces, returning them as Real/Imag.
368 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue,
369                                                    SourceLocation loc) {
370   assert(lvalue.isSimple() && "non-simple complex l-value?");
371   if (lvalue.getType()->isAtomicType())
372     return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal();
373 
374   Address SrcPtr = lvalue.getAddress(CGF);
375   bool isVolatile = lvalue.isVolatileQualified();
376 
377   llvm::Value *Real = nullptr, *Imag = nullptr;
378 
379   if (!IgnoreReal || isVolatile) {
380     Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType());
381     Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real");
382   }
383 
384   if (!IgnoreImag || isVolatile) {
385     Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType());
386     Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag");
387   }
388 
389   return ComplexPairTy(Real, Imag);
390 }
391 
392 /// EmitStoreOfComplex - Store the specified real/imag parts into the
393 /// specified value pointer.
394 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue,
395                                             bool isInit) {
396   if (lvalue.getType()->isAtomicType() ||
397       (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue)))
398     return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit);
399 
400   Address Ptr = lvalue.getAddress(CGF);
401   Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType());
402   Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType());
403 
404   Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified());
405   Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified());
406 }
407 
408 
409 
410 //===----------------------------------------------------------------------===//
411 //                            Visitor Methods
412 //===----------------------------------------------------------------------===//
413 
414 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) {
415   CGF.ErrorUnsupported(E, "complex expression");
416   llvm::Type *EltTy =
417     CGF.ConvertType(getComplexType(E->getType())->getElementType());
418   llvm::Value *U = llvm::UndefValue::get(EltTy);
419   return ComplexPairTy(U, U);
420 }
421 
422 ComplexPairTy ComplexExprEmitter::
423 VisitImaginaryLiteral(const ImaginaryLiteral *IL) {
424   llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr());
425   return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag);
426 }
427 
428 
429 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) {
430   if (E->getCallReturnType(CGF.getContext())->isReferenceType())
431     return EmitLoadOfLValue(E);
432 
433   return CGF.EmitCallExpr(E).getComplexVal();
434 }
435 
436 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) {
437   CodeGenFunction::StmtExprEvaluation eval(CGF);
438   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true);
439   assert(RetAlloca.isValid() && "Expected complex return value");
440   return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()),
441                           E->getExprLoc());
442 }
443 
444 /// Emit a cast from complex value Val to DestType.
445 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val,
446                                                            QualType SrcType,
447                                                            QualType DestType,
448                                                            SourceLocation Loc) {
449   // Get the src/dest element type.
450   SrcType = SrcType->castAs<ComplexType>()->getElementType();
451   DestType = DestType->castAs<ComplexType>()->getElementType();
452 
453   // C99 6.3.1.6: When a value of complex type is converted to another
454   // complex type, both the real and imaginary parts follow the conversion
455   // rules for the corresponding real types.
456   if (Val.first)
457     Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc);
458   if (Val.second)
459     Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc);
460   return Val;
461 }
462 
463 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val,
464                                                           QualType SrcType,
465                                                           QualType DestType,
466                                                           SourceLocation Loc) {
467   // Convert the input element to the element type of the complex.
468   DestType = DestType->castAs<ComplexType>()->getElementType();
469   Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc);
470 
471   // Return (realval, 0).
472   return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType()));
473 }
474 
475 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op,
476                                            QualType DestTy) {
477   switch (CK) {
478   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
479 
480   // Atomic to non-atomic casts may be more than a no-op for some platforms and
481   // for some types.
482   case CK_AtomicToNonAtomic:
483   case CK_NonAtomicToAtomic:
484   case CK_NoOp:
485   case CK_LValueToRValue:
486   case CK_UserDefinedConversion:
487     return Visit(Op);
488 
489   case CK_LValueBitCast: {
490     LValue origLV = CGF.EmitLValue(Op);
491     Address V = origLV.getAddress(CGF);
492     V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy));
493     return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc());
494   }
495 
496   case CK_LValueToRValueBitCast: {
497     LValue SourceLVal = CGF.EmitLValue(Op);
498     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
499                                                 CGF.ConvertTypeForMem(DestTy));
500     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
501     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
502     return EmitLoadOfLValue(DestLV, Op->getExprLoc());
503   }
504 
505   case CK_BitCast:
506   case CK_BaseToDerived:
507   case CK_DerivedToBase:
508   case CK_UncheckedDerivedToBase:
509   case CK_Dynamic:
510   case CK_ToUnion:
511   case CK_ArrayToPointerDecay:
512   case CK_FunctionToPointerDecay:
513   case CK_NullToPointer:
514   case CK_NullToMemberPointer:
515   case CK_BaseToDerivedMemberPointer:
516   case CK_DerivedToBaseMemberPointer:
517   case CK_MemberPointerToBoolean:
518   case CK_ReinterpretMemberPointer:
519   case CK_ConstructorConversion:
520   case CK_IntegralToPointer:
521   case CK_PointerToIntegral:
522   case CK_PointerToBoolean:
523   case CK_ToVoid:
524   case CK_VectorSplat:
525   case CK_IntegralCast:
526   case CK_BooleanToSignedIntegral:
527   case CK_IntegralToBoolean:
528   case CK_IntegralToFloating:
529   case CK_FloatingToIntegral:
530   case CK_FloatingToBoolean:
531   case CK_FloatingCast:
532   case CK_CPointerToObjCPointerCast:
533   case CK_BlockPointerToObjCPointerCast:
534   case CK_AnyPointerToBlockPointerCast:
535   case CK_ObjCObjectLValueCast:
536   case CK_FloatingComplexToReal:
537   case CK_FloatingComplexToBoolean:
538   case CK_IntegralComplexToReal:
539   case CK_IntegralComplexToBoolean:
540   case CK_ARCProduceObject:
541   case CK_ARCConsumeObject:
542   case CK_ARCReclaimReturnedObject:
543   case CK_ARCExtendBlockObject:
544   case CK_CopyAndAutoreleaseBlockObject:
545   case CK_BuiltinFnToFnPtr:
546   case CK_ZeroToOCLOpaqueType:
547   case CK_AddressSpaceConversion:
548   case CK_IntToOCLSampler:
549   case CK_FloatingToFixedPoint:
550   case CK_FixedPointToFloating:
551   case CK_FixedPointCast:
552   case CK_FixedPointToBoolean:
553   case CK_FixedPointToIntegral:
554   case CK_IntegralToFixedPoint:
555   case CK_MatrixCast:
556     llvm_unreachable("invalid cast kind for complex value");
557 
558   case CK_FloatingRealToComplex:
559   case CK_IntegralRealToComplex: {
560     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op);
561     return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(),
562                                    DestTy, Op->getExprLoc());
563   }
564 
565   case CK_FloatingComplexCast:
566   case CK_FloatingComplexToIntegralComplex:
567   case CK_IntegralComplexCast:
568   case CK_IntegralComplexToFloatingComplex: {
569     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op);
570     return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy,
571                                     Op->getExprLoc());
572   }
573   }
574 
575   llvm_unreachable("unknown cast resulting in complex value");
576 }
577 
578 ComplexPairTy ComplexExprEmitter::VisitUnaryPlus(const UnaryOperator *E,
579                                                  QualType PromotionType) {
580   QualType promotionTy = PromotionType.isNull()
581                              ? getPromotionType(E->getSubExpr()->getType())
582                              : PromotionType;
583   ComplexPairTy result = VisitPlus(E, promotionTy);
584   if (!promotionTy.isNull())
585     return CGF.EmitUnPromotedValue(result, E->getSubExpr()->getType());
586   return result;
587 }
588 
589 ComplexPairTy ComplexExprEmitter::VisitPlus(const UnaryOperator *E,
590                                             QualType PromotionType) {
591   TestAndClearIgnoreReal();
592   TestAndClearIgnoreImag();
593   if (!PromotionType.isNull())
594     return CGF.EmitPromotedComplexExpr(E->getSubExpr(), PromotionType);
595   return Visit(E->getSubExpr());
596 }
597 
598 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E,
599                                                   QualType PromotionType) {
600   QualType promotionTy = PromotionType.isNull()
601                              ? getPromotionType(E->getSubExpr()->getType())
602                              : PromotionType;
603   ComplexPairTy result = VisitMinus(E, promotionTy);
604   if (!promotionTy.isNull())
605     return CGF.EmitUnPromotedValue(result, E->getSubExpr()->getType());
606   return result;
607 }
608 ComplexPairTy ComplexExprEmitter::VisitMinus(const UnaryOperator *E,
609                                              QualType PromotionType) {
610   TestAndClearIgnoreReal();
611   TestAndClearIgnoreImag();
612   ComplexPairTy Op;
613   if (!PromotionType.isNull())
614     Op = CGF.EmitPromotedComplexExpr(E->getSubExpr(), PromotionType);
615   else
616     Op = Visit(E->getSubExpr());
617 
618   llvm::Value *ResR, *ResI;
619   if (Op.first->getType()->isFloatingPointTy()) {
620     ResR = Builder.CreateFNeg(Op.first,  "neg.r");
621     ResI = Builder.CreateFNeg(Op.second, "neg.i");
622   } else {
623     ResR = Builder.CreateNeg(Op.first,  "neg.r");
624     ResI = Builder.CreateNeg(Op.second, "neg.i");
625   }
626   return ComplexPairTy(ResR, ResI);
627 }
628 
629 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
630   TestAndClearIgnoreReal();
631   TestAndClearIgnoreImag();
632   // ~(a+ib) = a + i*-b
633   ComplexPairTy Op = Visit(E->getSubExpr());
634   llvm::Value *ResI;
635   if (Op.second->getType()->isFloatingPointTy())
636     ResI = Builder.CreateFNeg(Op.second, "conj.i");
637   else
638     ResI = Builder.CreateNeg(Op.second, "conj.i");
639 
640   return ComplexPairTy(Op.first, ResI);
641 }
642 
643 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) {
644   llvm::Value *ResR, *ResI;
645 
646   if (Op.LHS.first->getType()->isFloatingPointTy()) {
647     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures);
648     ResR = Builder.CreateFAdd(Op.LHS.first,  Op.RHS.first,  "add.r");
649     if (Op.LHS.second && Op.RHS.second)
650       ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i");
651     else
652       ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second;
653     assert(ResI && "Only one operand may be real!");
654   } else {
655     ResR = Builder.CreateAdd(Op.LHS.first,  Op.RHS.first,  "add.r");
656     assert(Op.LHS.second && Op.RHS.second &&
657            "Both operands of integer complex operators must be complex!");
658     ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i");
659   }
660   return ComplexPairTy(ResR, ResI);
661 }
662 
663 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) {
664   llvm::Value *ResR, *ResI;
665   if (Op.LHS.first->getType()->isFloatingPointTy()) {
666     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures);
667     ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r");
668     if (Op.LHS.second && Op.RHS.second)
669       ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i");
670     else
671       ResI = Op.LHS.second ? Op.LHS.second
672                            : Builder.CreateFNeg(Op.RHS.second, "sub.i");
673     assert(ResI && "Only one operand may be real!");
674   } else {
675     ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r");
676     assert(Op.LHS.second && Op.RHS.second &&
677            "Both operands of integer complex operators must be complex!");
678     ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i");
679   }
680   return ComplexPairTy(ResR, ResI);
681 }
682 
683 /// Emit a libcall for a binary operation on complex types.
684 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName,
685                                                           const BinOpInfo &Op) {
686   CallArgList Args;
687   Args.add(RValue::get(Op.LHS.first),
688            Op.Ty->castAs<ComplexType>()->getElementType());
689   Args.add(RValue::get(Op.LHS.second),
690            Op.Ty->castAs<ComplexType>()->getElementType());
691   Args.add(RValue::get(Op.RHS.first),
692            Op.Ty->castAs<ComplexType>()->getElementType());
693   Args.add(RValue::get(Op.RHS.second),
694            Op.Ty->castAs<ComplexType>()->getElementType());
695 
696   // We *must* use the full CG function call building logic here because the
697   // complex type has special ABI handling. We also should not forget about
698   // special calling convention which may be used for compiler builtins.
699 
700   // We create a function qualified type to state that this call does not have
701   // any exceptions.
702   FunctionProtoType::ExtProtoInfo EPI;
703   EPI = EPI.withExceptionSpec(
704       FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept));
705   SmallVector<QualType, 4> ArgsQTys(
706       4, Op.Ty->castAs<ComplexType>()->getElementType());
707   QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI);
708   const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall(
709       Args, cast<FunctionType>(FQTy.getTypePtr()), false);
710 
711   llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo);
712   llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction(
713       FTy, LibCallName, llvm::AttributeList(), true);
714   CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>());
715 
716   llvm::CallBase *Call;
717   RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call);
718   Call->setCallingConv(CGF.CGM.getRuntimeCC());
719   return Res.getComplexVal();
720 }
721 
722 /// Lookup the libcall name for a given floating point type complex
723 /// multiply.
724 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) {
725   switch (Ty->getTypeID()) {
726   default:
727     llvm_unreachable("Unsupported floating point type!");
728   case llvm::Type::HalfTyID:
729     return "__mulhc3";
730   case llvm::Type::FloatTyID:
731     return "__mulsc3";
732   case llvm::Type::DoubleTyID:
733     return "__muldc3";
734   case llvm::Type::PPC_FP128TyID:
735     return "__multc3";
736   case llvm::Type::X86_FP80TyID:
737     return "__mulxc3";
738   case llvm::Type::FP128TyID:
739     return "__multc3";
740   }
741 }
742 
743 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
744 // typed values.
745 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) {
746   using llvm::Value;
747   Value *ResR, *ResI;
748   llvm::MDBuilder MDHelper(CGF.getLLVMContext());
749 
750   if (Op.LHS.first->getType()->isFloatingPointTy()) {
751     // The general formulation is:
752     // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c)
753     //
754     // But we can fold away components which would be zero due to a real
755     // operand according to C11 Annex G.5.1p2.
756     // FIXME: C11 also provides for imaginary types which would allow folding
757     // still more of this within the type system.
758 
759     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures);
760     if (Op.LHS.second && Op.RHS.second) {
761       // If both operands are complex, emit the core math directly, and then
762       // test for NaNs. If we find NaNs in the result, we delegate to a libcall
763       // to carefully re-compute the correct infinity representation if
764       // possible. The expectation is that the presence of NaNs here is
765       // *extremely* rare, and so the cost of the libcall is almost irrelevant.
766       // This is good, because the libcall re-computes the core multiplication
767       // exactly the same as we do here and re-tests for NaNs in order to be
768       // a generic complex*complex libcall.
769 
770       // First compute the four products.
771       Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac");
772       Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd");
773       Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad");
774       Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc");
775 
776       // The real part is the difference of the first two, the imaginary part is
777       // the sum of the second.
778       ResR = Builder.CreateFSub(AC, BD, "mul_r");
779       ResI = Builder.CreateFAdd(AD, BC, "mul_i");
780 
781       // Emit the test for the real part becoming NaN and create a branch to
782       // handle it. We test for NaN by comparing the number to itself.
783       Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp");
784       llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont");
785       llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan");
786       llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB);
787       llvm::BasicBlock *OrigBB = Branch->getParent();
788 
789       // Give hint that we very much don't expect to see NaNs.
790       // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
791       llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1);
792       Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
793 
794       // Now test the imaginary part and create its branch.
795       CGF.EmitBlock(INaNBB);
796       Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp");
797       llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall");
798       Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB);
799       Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
800 
801       // Now emit the libcall on this slowest of the slow paths.
802       CGF.EmitBlock(LibCallBB);
803       Value *LibCallR, *LibCallI;
804       std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall(
805           getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op);
806       Builder.CreateBr(ContBB);
807 
808       // Finally continue execution by phi-ing together the different
809       // computation paths.
810       CGF.EmitBlock(ContBB);
811       llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi");
812       RealPHI->addIncoming(ResR, OrigBB);
813       RealPHI->addIncoming(ResR, INaNBB);
814       RealPHI->addIncoming(LibCallR, LibCallBB);
815       llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi");
816       ImagPHI->addIncoming(ResI, OrigBB);
817       ImagPHI->addIncoming(ResI, INaNBB);
818       ImagPHI->addIncoming(LibCallI, LibCallBB);
819       return ComplexPairTy(RealPHI, ImagPHI);
820     }
821     assert((Op.LHS.second || Op.RHS.second) &&
822            "At least one operand must be complex!");
823 
824     // If either of the operands is a real rather than a complex, the
825     // imaginary component is ignored when computing the real component of the
826     // result.
827     ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl");
828 
829     ResI = Op.LHS.second
830                ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il")
831                : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir");
832   } else {
833     assert(Op.LHS.second && Op.RHS.second &&
834            "Both operands of integer complex operators must be complex!");
835     Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl");
836     Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr");
837     ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");
838 
839     Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il");
840     Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir");
841     ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
842   }
843   return ComplexPairTy(ResR, ResI);
844 }
845 
846 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
847 // typed values.
848 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) {
849   llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second;
850   llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second;
851 
852   llvm::Value *DSTr, *DSTi;
853   if (LHSr->getType()->isFloatingPointTy()) {
854     // If we have a complex operand on the RHS and FastMath is not allowed, we
855     // delegate to a libcall to handle all of the complexities and minimize
856     // underflow/overflow cases. When FastMath is allowed we construct the
857     // divide inline using the same algorithm as for integer operands.
858     //
859     // FIXME: We would be able to avoid the libcall in many places if we
860     // supported imaginary types in addition to complex types.
861     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures);
862     if (RHSi && !CGF.getLangOpts().FastMath) {
863       BinOpInfo LibCallOp = Op;
864       // If LHS was a real, supply a null imaginary part.
865       if (!LHSi)
866         LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType());
867 
868       switch (LHSr->getType()->getTypeID()) {
869       default:
870         llvm_unreachable("Unsupported floating point type!");
871       case llvm::Type::HalfTyID:
872         return EmitComplexBinOpLibCall("__divhc3", LibCallOp);
873       case llvm::Type::FloatTyID:
874         return EmitComplexBinOpLibCall("__divsc3", LibCallOp);
875       case llvm::Type::DoubleTyID:
876         return EmitComplexBinOpLibCall("__divdc3", LibCallOp);
877       case llvm::Type::PPC_FP128TyID:
878         return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
879       case llvm::Type::X86_FP80TyID:
880         return EmitComplexBinOpLibCall("__divxc3", LibCallOp);
881       case llvm::Type::FP128TyID:
882         return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
883       }
884     } else if (RHSi) {
885       if (!LHSi)
886         LHSi = llvm::Constant::getNullValue(RHSi->getType());
887 
888       // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
889       llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c
890       llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d
891       llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd
892 
893       llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c
894       llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d
895       llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd
896 
897       llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c
898       llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d
899       llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad
900 
901       DSTr = Builder.CreateFDiv(ACpBD, CCpDD);
902       DSTi = Builder.CreateFDiv(BCmAD, CCpDD);
903     } else {
904       assert(LHSi && "Can have at most one non-complex operand!");
905 
906       DSTr = Builder.CreateFDiv(LHSr, RHSr);
907       DSTi = Builder.CreateFDiv(LHSi, RHSr);
908     }
909   } else {
910     assert(Op.LHS.second && Op.RHS.second &&
911            "Both operands of integer complex operators must be complex!");
912     // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
913     llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c
914     llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d
915     llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd
916 
917     llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c
918     llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d
919     llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd
920 
921     llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c
922     llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d
923     llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad
924 
925     if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) {
926       DSTr = Builder.CreateUDiv(Tmp3, Tmp6);
927       DSTi = Builder.CreateUDiv(Tmp9, Tmp6);
928     } else {
929       DSTr = Builder.CreateSDiv(Tmp3, Tmp6);
930       DSTi = Builder.CreateSDiv(Tmp9, Tmp6);
931     }
932   }
933 
934   return ComplexPairTy(DSTr, DSTi);
935 }
936 
937 ComplexPairTy CodeGenFunction::EmitUnPromotedValue(ComplexPairTy result,
938                                                    QualType UnPromotionType) {
939   llvm::Type *ComplexElementTy =
940       ConvertType(UnPromotionType->castAs<ComplexType>()->getElementType());
941   if (result.first)
942     result.first =
943         Builder.CreateFPTrunc(result.first, ComplexElementTy, "unpromotion");
944   if (result.second)
945     result.second =
946         Builder.CreateFPTrunc(result.second, ComplexElementTy, "unpromotion");
947   return result;
948 }
949 
950 ComplexPairTy CodeGenFunction::EmitPromotedValue(ComplexPairTy result,
951                                                  QualType PromotionType) {
952   llvm::Type *ComplexElementTy =
953       ConvertType(PromotionType->castAs<ComplexType>()->getElementType());
954   if (result.first)
955     result.first = Builder.CreateFPExt(result.first, ComplexElementTy, "ext");
956   if (result.second)
957     result.second = Builder.CreateFPExt(result.second, ComplexElementTy, "ext");
958 
959   return result;
960 }
961 
962 ComplexPairTy ComplexExprEmitter::EmitPromoted(const Expr *E,
963                                                QualType PromotionType) {
964   E = E->IgnoreParens();
965   if (auto BO = dyn_cast<BinaryOperator>(E)) {
966     switch (BO->getOpcode()) {
967 #define HANDLE_BINOP(OP)                                                       \
968   case BO_##OP:                                                                \
969     return EmitBin##OP(EmitBinOps(BO, PromotionType));
970       HANDLE_BINOP(Add)
971       HANDLE_BINOP(Sub)
972       HANDLE_BINOP(Mul)
973       HANDLE_BINOP(Div)
974 #undef HANDLE_BINOP
975     default:
976       break;
977     }
978   } else if (auto UO = dyn_cast<UnaryOperator>(E)) {
979     switch (UO->getOpcode()) {
980     case UO_Minus:
981       return VisitMinus(UO, PromotionType);
982     case UO_Plus:
983       return VisitPlus(UO, PromotionType);
984     default:
985       break;
986     }
987   }
988   auto result = Visit(const_cast<Expr *>(E));
989   if (!PromotionType.isNull())
990     return CGF.EmitPromotedValue(result, PromotionType);
991   else
992     return result;
993 }
994 
995 ComplexPairTy CodeGenFunction::EmitPromotedComplexExpr(const Expr *E,
996                                                        QualType DstTy) {
997   return ComplexExprEmitter(*this).EmitPromoted(E, DstTy);
998 }
999 
1000 ComplexPairTy
1001 ComplexExprEmitter::EmitPromotedComplexOperand(const Expr *E,
1002                                                QualType OverallPromotionType) {
1003   if (E->getType()->isAnyComplexType()) {
1004     if (!OverallPromotionType.isNull())
1005       return CGF.EmitPromotedComplexExpr(E, OverallPromotionType);
1006     else
1007       return Visit(const_cast<Expr *>(E));
1008   } else {
1009     if (!OverallPromotionType.isNull()) {
1010       QualType ComplexElementTy =
1011           OverallPromotionType->castAs<ComplexType>()->getElementType();
1012       return ComplexPairTy(CGF.EmitPromotedScalarExpr(E, ComplexElementTy),
1013                            nullptr);
1014     } else {
1015       return ComplexPairTy(CGF.EmitScalarExpr(E), nullptr);
1016     }
1017   }
1018 }
1019 
1020 ComplexExprEmitter::BinOpInfo
1021 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E,
1022                                QualType PromotionType) {
1023   TestAndClearIgnoreReal();
1024   TestAndClearIgnoreImag();
1025   BinOpInfo Ops;
1026 
1027   Ops.LHS = EmitPromotedComplexOperand(E->getLHS(), PromotionType);
1028   Ops.RHS = EmitPromotedComplexOperand(E->getRHS(), PromotionType);
1029   if (!PromotionType.isNull())
1030     Ops.Ty = PromotionType;
1031   else
1032     Ops.Ty = E->getType();
1033   Ops.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
1034   return Ops;
1035 }
1036 
1037 
1038 LValue ComplexExprEmitter::
1039 EmitCompoundAssignLValue(const CompoundAssignOperator *E,
1040           ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&),
1041                          RValue &Val) {
1042   TestAndClearIgnoreReal();
1043   TestAndClearIgnoreImag();
1044   QualType LHSTy = E->getLHS()->getType();
1045   if (const AtomicType *AT = LHSTy->getAs<AtomicType>())
1046     LHSTy = AT->getValueType();
1047 
1048   BinOpInfo OpInfo;
1049   OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
1050   CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
1051 
1052   // Load the RHS and LHS operands.
1053   // __block variables need to have the rhs evaluated first, plus this should
1054   // improve codegen a little.
1055   QualType PromotionTypeCR;
1056   PromotionTypeCR = getPromotionType(E->getComputationResultType());
1057   if (PromotionTypeCR.isNull())
1058     PromotionTypeCR = E->getComputationResultType();
1059   OpInfo.Ty = PromotionTypeCR;
1060   QualType ComplexElementTy =
1061       OpInfo.Ty->castAs<ComplexType>()->getElementType();
1062   QualType PromotionTypeRHS = getPromotionType(E->getRHS()->getType());
1063 
1064   // The RHS should have been converted to the computation type.
1065   if (E->getRHS()->getType()->isRealFloatingType()) {
1066     if (!PromotionTypeRHS.isNull())
1067       OpInfo.RHS = ComplexPairTy(
1068           CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionTypeRHS), nullptr);
1069     else {
1070       assert(CGF.getContext().hasSameUnqualifiedType(ComplexElementTy,
1071                                                      E->getRHS()->getType()));
1072 
1073       OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
1074     }
1075   } else {
1076     if (!PromotionTypeRHS.isNull()) {
1077       OpInfo.RHS = ComplexPairTy(
1078           CGF.EmitPromotedComplexExpr(E->getRHS(), PromotionTypeRHS));
1079     } else {
1080       assert(CGF.getContext().hasSameUnqualifiedType(OpInfo.Ty,
1081                                                      E->getRHS()->getType()));
1082       OpInfo.RHS = Visit(E->getRHS());
1083     }
1084   }
1085 
1086   LValue LHS = CGF.EmitLValue(E->getLHS());
1087 
1088   // Load from the l-value and convert it.
1089   SourceLocation Loc = E->getExprLoc();
1090   QualType PromotionTypeLHS = getPromotionType(E->getComputationLHSType());
1091   if (LHSTy->isAnyComplexType()) {
1092     ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc);
1093     if (!PromotionTypeLHS.isNull())
1094       OpInfo.LHS =
1095           EmitComplexToComplexCast(LHSVal, LHSTy, PromotionTypeLHS, Loc);
1096     else
1097       OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
1098   } else {
1099     llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc);
1100     // For floating point real operands we can directly pass the scalar form
1101     // to the binary operator emission and potentially get more efficient code.
1102     if (LHSTy->isRealFloatingType()) {
1103       QualType PromotedComplexElementTy;
1104       if (!PromotionTypeLHS.isNull()) {
1105         PromotedComplexElementTy =
1106             cast<ComplexType>(PromotionTypeLHS)->getElementType();
1107         if (!CGF.getContext().hasSameUnqualifiedType(PromotedComplexElementTy,
1108                                                      PromotionTypeLHS))
1109           LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy,
1110                                             PromotedComplexElementTy, Loc);
1111       } else {
1112         if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy))
1113           LHSVal =
1114               CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc);
1115       }
1116       OpInfo.LHS = ComplexPairTy(LHSVal, nullptr);
1117     } else {
1118       OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
1119     }
1120   }
1121 
1122   // Expand the binary operator.
1123   ComplexPairTy Result = (this->*Func)(OpInfo);
1124 
1125   // Truncate the result and store it into the LHS lvalue.
1126   if (LHSTy->isAnyComplexType()) {
1127     ComplexPairTy ResVal =
1128         EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc);
1129     EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false);
1130     Val = RValue::getComplex(ResVal);
1131   } else {
1132     llvm::Value *ResVal =
1133         CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc);
1134     CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false);
1135     Val = RValue::get(ResVal);
1136   }
1137 
1138   return LHS;
1139 }
1140 
1141 // Compound assignments.
1142 ComplexPairTy ComplexExprEmitter::
1143 EmitCompoundAssign(const CompoundAssignOperator *E,
1144                    ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){
1145   RValue Val;
1146   LValue LV = EmitCompoundAssignLValue(E, Func, Val);
1147 
1148   // The result of an assignment in C is the assigned r-value.
1149   if (!CGF.getLangOpts().CPlusPlus)
1150     return Val.getComplexVal();
1151 
1152   // If the lvalue is non-volatile, return the computed value of the assignment.
1153   if (!LV.isVolatileQualified())
1154     return Val.getComplexVal();
1155 
1156   return EmitLoadOfLValue(LV, E->getExprLoc());
1157 }
1158 
1159 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E,
1160                                                ComplexPairTy &Val) {
1161   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
1162                                                  E->getRHS()->getType()) &&
1163          "Invalid assignment");
1164   TestAndClearIgnoreReal();
1165   TestAndClearIgnoreImag();
1166 
1167   // Emit the RHS.  __block variables need the RHS evaluated first.
1168   Val = Visit(E->getRHS());
1169 
1170   // Compute the address to store into.
1171   LValue LHS = CGF.EmitLValue(E->getLHS());
1172 
1173   // Store the result value into the LHS lvalue.
1174   EmitStoreOfComplex(Val, LHS, /*isInit*/ false);
1175 
1176   return LHS;
1177 }
1178 
1179 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1180   ComplexPairTy Val;
1181   LValue LV = EmitBinAssignLValue(E, Val);
1182 
1183   // The result of an assignment in C is the assigned r-value.
1184   if (!CGF.getLangOpts().CPlusPlus)
1185     return Val;
1186 
1187   // If the lvalue is non-volatile, return the computed value of the assignment.
1188   if (!LV.isVolatileQualified())
1189     return Val;
1190 
1191   return EmitLoadOfLValue(LV, E->getExprLoc());
1192 }
1193 
1194 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) {
1195   CGF.EmitIgnoredExpr(E->getLHS());
1196   return Visit(E->getRHS());
1197 }
1198 
1199 ComplexPairTy ComplexExprEmitter::
1200 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1201   TestAndClearIgnoreReal();
1202   TestAndClearIgnoreImag();
1203   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1204   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1205   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1206 
1207   // Bind the common expression if necessary.
1208   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1209 
1210 
1211   CodeGenFunction::ConditionalEvaluation eval(CGF);
1212   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1213                            CGF.getProfileCount(E));
1214 
1215   eval.begin(CGF);
1216   CGF.EmitBlock(LHSBlock);
1217   CGF.incrementProfileCounter(E);
1218   ComplexPairTy LHS = Visit(E->getTrueExpr());
1219   LHSBlock = Builder.GetInsertBlock();
1220   CGF.EmitBranch(ContBlock);
1221   eval.end(CGF);
1222 
1223   eval.begin(CGF);
1224   CGF.EmitBlock(RHSBlock);
1225   ComplexPairTy RHS = Visit(E->getFalseExpr());
1226   RHSBlock = Builder.GetInsertBlock();
1227   CGF.EmitBlock(ContBlock);
1228   eval.end(CGF);
1229 
1230   // Create a PHI node for the real part.
1231   llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r");
1232   RealPN->addIncoming(LHS.first, LHSBlock);
1233   RealPN->addIncoming(RHS.first, RHSBlock);
1234 
1235   // Create a PHI node for the imaginary part.
1236   llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i");
1237   ImagPN->addIncoming(LHS.second, LHSBlock);
1238   ImagPN->addIncoming(RHS.second, RHSBlock);
1239 
1240   return ComplexPairTy(RealPN, ImagPN);
1241 }
1242 
1243 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1244   return Visit(E->getChosenSubExpr());
1245 }
1246 
1247 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) {
1248     bool Ignore = TestAndClearIgnoreReal();
1249     (void)Ignore;
1250     assert (Ignore == false && "init list ignored");
1251     Ignore = TestAndClearIgnoreImag();
1252     (void)Ignore;
1253     assert (Ignore == false && "init list ignored");
1254 
1255   if (E->getNumInits() == 2) {
1256     llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0));
1257     llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1));
1258     return ComplexPairTy(Real, Imag);
1259   } else if (E->getNumInits() == 1) {
1260     return Visit(E->getInit(0));
1261   }
1262 
1263   // Empty init list initializes to null
1264   assert(E->getNumInits() == 0 && "Unexpected number of inits");
1265   QualType Ty = E->getType()->castAs<ComplexType>()->getElementType();
1266   llvm::Type* LTy = CGF.ConvertType(Ty);
1267   llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy);
1268   return ComplexPairTy(zeroConstant, zeroConstant);
1269 }
1270 
1271 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) {
1272   Address ArgValue = Address::invalid();
1273   Address ArgPtr = CGF.EmitVAArg(E, ArgValue);
1274 
1275   if (!ArgPtr.isValid()) {
1276     CGF.ErrorUnsupported(E, "complex va_arg expression");
1277     llvm::Type *EltTy =
1278       CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType());
1279     llvm::Value *U = llvm::UndefValue::get(EltTy);
1280     return ComplexPairTy(U, U);
1281   }
1282 
1283   return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()),
1284                           E->getExprLoc());
1285 }
1286 
1287 //===----------------------------------------------------------------------===//
1288 //                         Entry Point into this File
1289 //===----------------------------------------------------------------------===//
1290 
1291 /// EmitComplexExpr - Emit the computation of the specified expression of
1292 /// complex type, ignoring the result.
1293 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal,
1294                                                bool IgnoreImag) {
1295   assert(E && getComplexType(E->getType()) &&
1296          "Invalid complex expression to emit");
1297 
1298   return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag)
1299       .Visit(const_cast<Expr *>(E));
1300 }
1301 
1302 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest,
1303                                                 bool isInit) {
1304   assert(E && getComplexType(E->getType()) &&
1305          "Invalid complex expression to emit");
1306   ComplexExprEmitter Emitter(*this);
1307   ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E));
1308   Emitter.EmitStoreOfComplex(Val, dest, isInit);
1309 }
1310 
1311 /// EmitStoreOfComplex - Store a complex number into the specified l-value.
1312 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest,
1313                                          bool isInit) {
1314   ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit);
1315 }
1316 
1317 /// EmitLoadOfComplex - Load a complex number from the specified address.
1318 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src,
1319                                                  SourceLocation loc) {
1320   return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc);
1321 }
1322 
1323 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) {
1324   assert(E->getOpcode() == BO_Assign);
1325   ComplexPairTy Val; // ignored
1326   LValue LVal = ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val);
1327   if (getLangOpts().OpenMP)
1328     CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1329                                                               E->getLHS());
1330   return LVal;
1331 }
1332 
1333 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)(
1334     const ComplexExprEmitter::BinOpInfo &);
1335 
1336 static CompoundFunc getComplexOp(BinaryOperatorKind Op) {
1337   switch (Op) {
1338   case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul;
1339   case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv;
1340   case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub;
1341   case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd;
1342   default:
1343     llvm_unreachable("unexpected complex compound assignment");
1344   }
1345 }
1346 
1347 LValue CodeGenFunction::
1348 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) {
1349   CompoundFunc Op = getComplexOp(E->getOpcode());
1350   RValue Val;
1351   return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1352 }
1353 
1354 LValue CodeGenFunction::
1355 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
1356                                     llvm::Value *&Result) {
1357   CompoundFunc Op = getComplexOp(E->getOpcode());
1358   RValue Val;
1359   LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1360   Result = Val.getScalarVal();
1361   return Ret;
1362 }
1363