1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Constant Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGObjCRuntime.h"
15 #include "CGRecordLayout.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "ConstantEmitter.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/APValue.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Attr.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/Basic/Builtins.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/Sequence.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalVariable.h"
32 using namespace clang;
33 using namespace CodeGen;
34 
35 //===----------------------------------------------------------------------===//
36 //                            ConstantAggregateBuilder
37 //===----------------------------------------------------------------------===//
38 
39 namespace {
40 class ConstExprEmitter;
41 
42 struct ConstantAggregateBuilderUtils {
43   CodeGenModule &CGM;
44 
45   ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {}
46 
47   CharUnits getAlignment(const llvm::Constant *C) const {
48     return CharUnits::fromQuantity(
49         CGM.getDataLayout().getABITypeAlignment(C->getType()));
50   }
51 
52   CharUnits getSize(llvm::Type *Ty) const {
53     return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty));
54   }
55 
56   CharUnits getSize(const llvm::Constant *C) const {
57     return getSize(C->getType());
58   }
59 
60   llvm::Constant *getPadding(CharUnits PadSize) const {
61     llvm::Type *Ty = CGM.CharTy;
62     if (PadSize > CharUnits::One())
63       Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
64     return llvm::UndefValue::get(Ty);
65   }
66 
67   llvm::Constant *getZeroes(CharUnits ZeroSize) const {
68     llvm::Type *Ty = llvm::ArrayType::get(CGM.CharTy, ZeroSize.getQuantity());
69     return llvm::ConstantAggregateZero::get(Ty);
70   }
71 };
72 
73 /// Incremental builder for an llvm::Constant* holding a struct or array
74 /// constant.
75 class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils {
76   /// The elements of the constant. These two arrays must have the same size;
77   /// Offsets[i] describes the offset of Elems[i] within the constant. The
78   /// elements are kept in increasing offset order, and we ensure that there
79   /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]).
80   ///
81   /// This may contain explicit padding elements (in order to create a
82   /// natural layout), but need not. Gaps between elements are implicitly
83   /// considered to be filled with undef.
84   llvm::SmallVector<llvm::Constant*, 32> Elems;
85   llvm::SmallVector<CharUnits, 32> Offsets;
86 
87   /// The size of the constant (the maximum end offset of any added element).
88   /// May be larger than the end of Elems.back() if we split the last element
89   /// and removed some trailing undefs.
90   CharUnits Size = CharUnits::Zero();
91 
92   /// This is true only if laying out Elems in order as the elements of a
93   /// non-packed LLVM struct will give the correct layout.
94   bool NaturalLayout = true;
95 
96   bool split(size_t Index, CharUnits Hint);
97   Optional<size_t> splitAt(CharUnits Pos);
98 
99   static llvm::Constant *buildFrom(CodeGenModule &CGM,
100                                    ArrayRef<llvm::Constant *> Elems,
101                                    ArrayRef<CharUnits> Offsets,
102                                    CharUnits StartOffset, CharUnits Size,
103                                    bool NaturalLayout, llvm::Type *DesiredTy,
104                                    bool AllowOversized);
105 
106 public:
107   ConstantAggregateBuilder(CodeGenModule &CGM)
108       : ConstantAggregateBuilderUtils(CGM) {}
109 
110   /// Update or overwrite the value starting at \p Offset with \c C.
111   ///
112   /// \param AllowOverwrite If \c true, this constant might overwrite (part of)
113   ///        a constant that has already been added. This flag is only used to
114   ///        detect bugs.
115   bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite);
116 
117   /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits.
118   bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite);
119 
120   /// Attempt to condense the value starting at \p Offset to a constant of type
121   /// \p DesiredTy.
122   void condense(CharUnits Offset, llvm::Type *DesiredTy);
123 
124   /// Produce a constant representing the entire accumulated value, ideally of
125   /// the specified type. If \p AllowOversized, the constant might be larger
126   /// than implied by \p DesiredTy (eg, if there is a flexible array member).
127   /// Otherwise, the constant will be of exactly the same size as \p DesiredTy
128   /// even if we can't represent it as that type.
129   llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const {
130     return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size,
131                      NaturalLayout, DesiredTy, AllowOversized);
132   }
133 };
134 
135 template<typename Container, typename Range = std::initializer_list<
136                                  typename Container::value_type>>
137 static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) {
138   assert(BeginOff <= EndOff && "invalid replacement range");
139   llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals);
140 }
141 
142 bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset,
143                           bool AllowOverwrite) {
144   // Common case: appending to a layout.
145   if (Offset >= Size) {
146     CharUnits Align = getAlignment(C);
147     CharUnits AlignedSize = Size.alignTo(Align);
148     if (AlignedSize > Offset || Offset.alignTo(Align) != Offset)
149       NaturalLayout = false;
150     else if (AlignedSize < Offset) {
151       Elems.push_back(getPadding(Offset - Size));
152       Offsets.push_back(Size);
153     }
154     Elems.push_back(C);
155     Offsets.push_back(Offset);
156     Size = Offset + getSize(C);
157     return true;
158   }
159 
160   // Uncommon case: constant overlaps what we've already created.
161   llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset);
162   if (!FirstElemToReplace)
163     return false;
164 
165   CharUnits CSize = getSize(C);
166   llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + CSize);
167   if (!LastElemToReplace)
168     return false;
169 
170   assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) &&
171          "unexpectedly overwriting field");
172 
173   replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C});
174   replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset});
175   Size = std::max(Size, Offset + CSize);
176   NaturalLayout = false;
177   return true;
178 }
179 
180 bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits,
181                               bool AllowOverwrite) {
182   const ASTContext &Context = CGM.getContext();
183   const uint64_t CharWidth = CGM.getContext().getCharWidth();
184 
185   // Offset of where we want the first bit to go within the bits of the
186   // current char.
187   unsigned OffsetWithinChar = OffsetInBits % CharWidth;
188 
189   // We split bit-fields up into individual bytes. Walk over the bytes and
190   // update them.
191   for (CharUnits OffsetInChars =
192            Context.toCharUnitsFromBits(OffsetInBits - OffsetWithinChar);
193        /**/; ++OffsetInChars) {
194     // Number of bits we want to fill in this char.
195     unsigned WantedBits =
196         std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar);
197 
198     // Get a char containing the bits we want in the right places. The other
199     // bits have unspecified values.
200     llvm::APInt BitsThisChar = Bits;
201     if (BitsThisChar.getBitWidth() < CharWidth)
202       BitsThisChar = BitsThisChar.zext(CharWidth);
203     if (CGM.getDataLayout().isBigEndian()) {
204       // Figure out how much to shift by. We may need to left-shift if we have
205       // less than one byte of Bits left.
206       int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar;
207       if (Shift > 0)
208         BitsThisChar.lshrInPlace(Shift);
209       else if (Shift < 0)
210         BitsThisChar = BitsThisChar.shl(-Shift);
211     } else {
212       BitsThisChar = BitsThisChar.shl(OffsetWithinChar);
213     }
214     if (BitsThisChar.getBitWidth() > CharWidth)
215       BitsThisChar = BitsThisChar.trunc(CharWidth);
216 
217     if (WantedBits == CharWidth) {
218       // Got a full byte: just add it directly.
219       add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
220           OffsetInChars, AllowOverwrite);
221     } else {
222       // Partial byte: update the existing integer if there is one. If we
223       // can't split out a 1-CharUnit range to update, then we can't add
224       // these bits and fail the entire constant emission.
225       llvm::Optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars);
226       if (!FirstElemToUpdate)
227         return false;
228       llvm::Optional<size_t> LastElemToUpdate =
229           splitAt(OffsetInChars + CharUnits::One());
230       if (!LastElemToUpdate)
231         return false;
232       assert(*LastElemToUpdate - *FirstElemToUpdate < 2 &&
233              "should have at most one element covering one byte");
234 
235       // Figure out which bits we want and discard the rest.
236       llvm::APInt UpdateMask(CharWidth, 0);
237       if (CGM.getDataLayout().isBigEndian())
238         UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits,
239                            CharWidth - OffsetWithinChar);
240       else
241         UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits);
242       BitsThisChar &= UpdateMask;
243 
244       if (*FirstElemToUpdate == *LastElemToUpdate ||
245           Elems[*FirstElemToUpdate]->isNullValue() ||
246           isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) {
247         // All existing bits are either zero or undef.
248         add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
249             OffsetInChars, /*AllowOverwrite*/ true);
250       } else {
251         llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate];
252         // In order to perform a partial update, we need the existing bitwise
253         // value, which we can only extract for a constant int.
254         auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate);
255         if (!CI)
256           return false;
257         // Because this is a 1-CharUnit range, the constant occupying it must
258         // be exactly one CharUnit wide.
259         assert(CI->getBitWidth() == CharWidth && "splitAt failed");
260         assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) &&
261                "unexpectedly overwriting bitfield");
262         BitsThisChar |= (CI->getValue() & ~UpdateMask);
263         ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar);
264       }
265     }
266 
267     // Stop if we've added all the bits.
268     if (WantedBits == Bits.getBitWidth())
269       break;
270 
271     // Remove the consumed bits from Bits.
272     if (!CGM.getDataLayout().isBigEndian())
273       Bits.lshrInPlace(WantedBits);
274     Bits = Bits.trunc(Bits.getBitWidth() - WantedBits);
275 
276     // The remanining bits go at the start of the following bytes.
277     OffsetWithinChar = 0;
278   }
279 
280   return true;
281 }
282 
283 /// Returns a position within Elems and Offsets such that all elements
284 /// before the returned index end before Pos and all elements at or after
285 /// the returned index begin at or after Pos. Splits elements as necessary
286 /// to ensure this. Returns None if we find something we can't split.
287 Optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) {
288   if (Pos >= Size)
289     return Offsets.size();
290 
291   while (true) {
292     auto FirstAfterPos = llvm::upper_bound(Offsets, Pos);
293     if (FirstAfterPos == Offsets.begin())
294       return 0;
295 
296     // If we already have an element starting at Pos, we're done.
297     size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1;
298     if (Offsets[LastAtOrBeforePosIndex] == Pos)
299       return LastAtOrBeforePosIndex;
300 
301     // We found an element starting before Pos. Check for overlap.
302     if (Offsets[LastAtOrBeforePosIndex] +
303         getSize(Elems[LastAtOrBeforePosIndex]) <= Pos)
304       return LastAtOrBeforePosIndex + 1;
305 
306     // Try to decompose it into smaller constants.
307     if (!split(LastAtOrBeforePosIndex, Pos))
308       return None;
309   }
310 }
311 
312 /// Split the constant at index Index, if possible. Return true if we did.
313 /// Hint indicates the location at which we'd like to split, but may be
314 /// ignored.
315 bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) {
316   NaturalLayout = false;
317   llvm::Constant *C = Elems[Index];
318   CharUnits Offset = Offsets[Index];
319 
320   if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) {
321     // Expand the sequence into its contained elements.
322     // FIXME: This assumes vector elements are byte-sized.
323     replace(Elems, Index, Index + 1,
324             llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
325                             [&](unsigned Op) { return CA->getOperand(Op); }));
326     if (isa<llvm::ArrayType>(CA->getType()) ||
327         isa<llvm::VectorType>(CA->getType())) {
328       // Array or vector.
329       llvm::Type *ElemTy =
330           llvm::GetElementPtrInst::getTypeAtIndex(CA->getType(), (uint64_t)0);
331       CharUnits ElemSize = getSize(ElemTy);
332       replace(
333           Offsets, Index, Index + 1,
334           llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
335                           [&](unsigned Op) { return Offset + Op * ElemSize; }));
336     } else {
337       // Must be a struct.
338       auto *ST = cast<llvm::StructType>(CA->getType());
339       const llvm::StructLayout *Layout =
340           CGM.getDataLayout().getStructLayout(ST);
341       replace(Offsets, Index, Index + 1,
342               llvm::map_range(
343                   llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) {
344                     return Offset + CharUnits::fromQuantity(
345                                         Layout->getElementOffset(Op));
346                   }));
347     }
348     return true;
349   }
350 
351   if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) {
352     // Expand the sequence into its contained elements.
353     // FIXME: This assumes vector elements are byte-sized.
354     // FIXME: If possible, split into two ConstantDataSequentials at Hint.
355     CharUnits ElemSize = getSize(CDS->getElementType());
356     replace(Elems, Index, Index + 1,
357             llvm::map_range(llvm::seq(0u, CDS->getNumElements()),
358                             [&](unsigned Elem) {
359                               return CDS->getElementAsConstant(Elem);
360                             }));
361     replace(Offsets, Index, Index + 1,
362             llvm::map_range(
363                 llvm::seq(0u, CDS->getNumElements()),
364                 [&](unsigned Elem) { return Offset + Elem * ElemSize; }));
365     return true;
366   }
367 
368   if (isa<llvm::ConstantAggregateZero>(C)) {
369     // Split into two zeros at the hinted offset.
370     CharUnits ElemSize = getSize(C);
371     assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split");
372     replace(Elems, Index, Index + 1,
373             {getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)});
374     replace(Offsets, Index, Index + 1, {Offset, Hint});
375     return true;
376   }
377 
378   if (isa<llvm::UndefValue>(C)) {
379     // Drop undef; it doesn't contribute to the final layout.
380     replace(Elems, Index, Index + 1, {});
381     replace(Offsets, Index, Index + 1, {});
382     return true;
383   }
384 
385   // FIXME: We could split a ConstantInt if the need ever arose.
386   // We don't need to do this to handle bit-fields because we always eagerly
387   // split them into 1-byte chunks.
388 
389   return false;
390 }
391 
392 static llvm::Constant *
393 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
394                   llvm::Type *CommonElementType, unsigned ArrayBound,
395                   SmallVectorImpl<llvm::Constant *> &Elements,
396                   llvm::Constant *Filler);
397 
398 llvm::Constant *ConstantAggregateBuilder::buildFrom(
399     CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems,
400     ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size,
401     bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) {
402   ConstantAggregateBuilderUtils Utils(CGM);
403 
404   if (Elems.empty())
405     return llvm::UndefValue::get(DesiredTy);
406 
407   auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; };
408 
409   // If we want an array type, see if all the elements are the same type and
410   // appropriately spaced.
411   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) {
412     assert(!AllowOversized && "oversized array emission not supported");
413 
414     bool CanEmitArray = true;
415     llvm::Type *CommonType = Elems[0]->getType();
416     llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType);
417     CharUnits ElemSize = Utils.getSize(ATy->getElementType());
418     SmallVector<llvm::Constant*, 32> ArrayElements;
419     for (size_t I = 0; I != Elems.size(); ++I) {
420       // Skip zeroes; we'll use a zero value as our array filler.
421       if (Elems[I]->isNullValue())
422         continue;
423 
424       // All remaining elements must be the same type.
425       if (Elems[I]->getType() != CommonType ||
426           Offset(I) % ElemSize != 0) {
427         CanEmitArray = false;
428         break;
429       }
430       ArrayElements.resize(Offset(I) / ElemSize + 1, Filler);
431       ArrayElements.back() = Elems[I];
432     }
433 
434     if (CanEmitArray) {
435       return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(),
436                                ArrayElements, Filler);
437     }
438 
439     // Can't emit as an array, carry on to emit as a struct.
440   }
441 
442   // The size of the constant we plan to generate.  This is usually just
443   // the size of the initialized type, but in AllowOversized mode (i.e.
444   // flexible array init), it can be larger.
445   CharUnits DesiredSize = Utils.getSize(DesiredTy);
446   if (Size > DesiredSize) {
447     assert(AllowOversized && "Elems are oversized");
448     DesiredSize = Size;
449   }
450 
451   // The natural alignment of an unpacked LLVM struct with the given elements.
452   CharUnits Align = CharUnits::One();
453   for (llvm::Constant *C : Elems)
454     Align = std::max(Align, Utils.getAlignment(C));
455 
456   // The natural size of an unpacked LLVM struct with the given elements.
457   CharUnits AlignedSize = Size.alignTo(Align);
458 
459   bool Packed = false;
460   ArrayRef<llvm::Constant*> UnpackedElems = Elems;
461   llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage;
462   if (DesiredSize < AlignedSize || DesiredSize.alignTo(Align) != DesiredSize) {
463     // The natural layout would be too big; force use of a packed layout.
464     NaturalLayout = false;
465     Packed = true;
466   } else if (DesiredSize > AlignedSize) {
467     // The natural layout would be too small. Add padding to fix it. (This
468     // is ignored if we choose a packed layout.)
469     UnpackedElemStorage.assign(Elems.begin(), Elems.end());
470     UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size));
471     UnpackedElems = UnpackedElemStorage;
472   }
473 
474   // If we don't have a natural layout, insert padding as necessary.
475   // As we go, double-check to see if we can actually just emit Elems
476   // as a non-packed struct and do so opportunistically if possible.
477   llvm::SmallVector<llvm::Constant*, 32> PackedElems;
478   if (!NaturalLayout) {
479     CharUnits SizeSoFar = CharUnits::Zero();
480     for (size_t I = 0; I != Elems.size(); ++I) {
481       CharUnits Align = Utils.getAlignment(Elems[I]);
482       CharUnits NaturalOffset = SizeSoFar.alignTo(Align);
483       CharUnits DesiredOffset = Offset(I);
484       assert(DesiredOffset >= SizeSoFar && "elements out of order");
485 
486       if (DesiredOffset != NaturalOffset)
487         Packed = true;
488       if (DesiredOffset != SizeSoFar)
489         PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar));
490       PackedElems.push_back(Elems[I]);
491       SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]);
492     }
493     // If we're using the packed layout, pad it out to the desired size if
494     // necessary.
495     if (Packed) {
496       assert(SizeSoFar <= DesiredSize &&
497              "requested size is too small for contents");
498       if (SizeSoFar < DesiredSize)
499         PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar));
500     }
501   }
502 
503   llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements(
504       CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed);
505 
506   // Pick the type to use.  If the type is layout identical to the desired
507   // type then use it, otherwise use whatever the builder produced for us.
508   if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) {
509     if (DesiredSTy->isLayoutIdentical(STy))
510       STy = DesiredSTy;
511   }
512 
513   return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems);
514 }
515 
516 void ConstantAggregateBuilder::condense(CharUnits Offset,
517                                         llvm::Type *DesiredTy) {
518   CharUnits Size = getSize(DesiredTy);
519 
520   llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset);
521   if (!FirstElemToReplace)
522     return;
523   size_t First = *FirstElemToReplace;
524 
525   llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + Size);
526   if (!LastElemToReplace)
527     return;
528   size_t Last = *LastElemToReplace;
529 
530   size_t Length = Last - First;
531   if (Length == 0)
532     return;
533 
534   if (Length == 1 && Offsets[First] == Offset &&
535       getSize(Elems[First]) == Size) {
536     // Re-wrap single element structs if necessary. Otherwise, leave any single
537     // element constant of the right size alone even if it has the wrong type.
538     auto *STy = dyn_cast<llvm::StructType>(DesiredTy);
539     if (STy && STy->getNumElements() == 1 &&
540         STy->getElementType(0) == Elems[First]->getType())
541       Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]);
542     return;
543   }
544 
545   llvm::Constant *Replacement = buildFrom(
546       CGM, makeArrayRef(Elems).slice(First, Length),
547       makeArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy),
548       /*known to have natural layout=*/false, DesiredTy, false);
549   replace(Elems, First, Last, {Replacement});
550   replace(Offsets, First, Last, {Offset});
551 }
552 
553 //===----------------------------------------------------------------------===//
554 //                            ConstStructBuilder
555 //===----------------------------------------------------------------------===//
556 
557 class ConstStructBuilder {
558   CodeGenModule &CGM;
559   ConstantEmitter &Emitter;
560   ConstantAggregateBuilder &Builder;
561   CharUnits StartOffset;
562 
563 public:
564   static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
565                                      InitListExpr *ILE, QualType StructTy);
566   static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
567                                      const APValue &Value, QualType ValTy);
568   static bool UpdateStruct(ConstantEmitter &Emitter,
569                            ConstantAggregateBuilder &Const, CharUnits Offset,
570                            InitListExpr *Updater);
571 
572 private:
573   ConstStructBuilder(ConstantEmitter &Emitter,
574                      ConstantAggregateBuilder &Builder, CharUnits StartOffset)
575       : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder),
576         StartOffset(StartOffset) {}
577 
578   bool AppendField(const FieldDecl *Field, uint64_t FieldOffset,
579                    llvm::Constant *InitExpr, bool AllowOverwrite = false);
580 
581   bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst,
582                    bool AllowOverwrite = false);
583 
584   bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
585                       llvm::ConstantInt *InitExpr, bool AllowOverwrite = false);
586 
587   bool Build(InitListExpr *ILE, bool AllowOverwrite);
588   bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
589              const CXXRecordDecl *VTableClass, CharUnits BaseOffset);
590   llvm::Constant *Finalize(QualType Ty);
591 };
592 
593 bool ConstStructBuilder::AppendField(
594     const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst,
595     bool AllowOverwrite) {
596   const ASTContext &Context = CGM.getContext();
597 
598   CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
599 
600   return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite);
601 }
602 
603 bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars,
604                                      llvm::Constant *InitCst,
605                                      bool AllowOverwrite) {
606   return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite);
607 }
608 
609 bool ConstStructBuilder::AppendBitField(
610     const FieldDecl *Field, uint64_t FieldOffset, llvm::ConstantInt *CI,
611     bool AllowOverwrite) {
612   const CGRecordLayout &RL =
613       CGM.getTypes().getCGRecordLayout(Field->getParent());
614   const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field);
615   llvm::APInt FieldValue = CI->getValue();
616 
617   // Promote the size of FieldValue if necessary
618   // FIXME: This should never occur, but currently it can because initializer
619   // constants are cast to bool, and because clang is not enforcing bitfield
620   // width limits.
621   if (Info.Size > FieldValue.getBitWidth())
622     FieldValue = FieldValue.zext(Info.Size);
623 
624   // Truncate the size of FieldValue to the bit field size.
625   if (Info.Size < FieldValue.getBitWidth())
626     FieldValue = FieldValue.trunc(Info.Size);
627 
628   return Builder.addBits(FieldValue,
629                          CGM.getContext().toBits(StartOffset) + FieldOffset,
630                          AllowOverwrite);
631 }
632 
633 static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter,
634                                       ConstantAggregateBuilder &Const,
635                                       CharUnits Offset, QualType Type,
636                                       InitListExpr *Updater) {
637   if (Type->isRecordType())
638     return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater);
639 
640   auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type);
641   if (!CAT)
642     return false;
643   QualType ElemType = CAT->getElementType();
644   CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType);
645   llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType);
646 
647   llvm::Constant *FillC = nullptr;
648   if (Expr *Filler = Updater->getArrayFiller()) {
649     if (!isa<NoInitExpr>(Filler)) {
650       FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType);
651       if (!FillC)
652         return false;
653     }
654   }
655 
656   unsigned NumElementsToUpdate =
657       FillC ? CAT->getSize().getZExtValue() : Updater->getNumInits();
658   for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) {
659     Expr *Init = nullptr;
660     if (I < Updater->getNumInits())
661       Init = Updater->getInit(I);
662 
663     if (!Init && FillC) {
664       if (!Const.add(FillC, Offset, true))
665         return false;
666     } else if (!Init || isa<NoInitExpr>(Init)) {
667       continue;
668     } else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) {
669       if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType,
670                                      ChildILE))
671         return false;
672       // Attempt to reduce the array element to a single constant if necessary.
673       Const.condense(Offset, ElemTy);
674     } else {
675       llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType);
676       if (!Const.add(Val, Offset, true))
677         return false;
678     }
679   }
680 
681   return true;
682 }
683 
684 bool ConstStructBuilder::Build(InitListExpr *ILE, bool AllowOverwrite) {
685   RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
686   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
687 
688   unsigned FieldNo = -1;
689   unsigned ElementNo = 0;
690 
691   // Bail out if we have base classes. We could support these, but they only
692   // arise in C++1z where we will have already constant folded most interesting
693   // cases. FIXME: There are still a few more cases we can handle this way.
694   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
695     if (CXXRD->getNumBases())
696       return false;
697 
698   for (FieldDecl *Field : RD->fields()) {
699     ++FieldNo;
700 
701     // If this is a union, skip all the fields that aren't being initialized.
702     if (RD->isUnion() &&
703         !declaresSameEntity(ILE->getInitializedFieldInUnion(), Field))
704       continue;
705 
706     // Don't emit anonymous bitfields.
707     if (Field->isUnnamedBitfield())
708       continue;
709 
710     // Get the initializer.  A struct can include fields without initializers,
711     // we just use explicit null values for them.
712     Expr *Init = nullptr;
713     if (ElementNo < ILE->getNumInits())
714       Init = ILE->getInit(ElementNo++);
715     if (Init && isa<NoInitExpr>(Init))
716       continue;
717 
718     // Zero-sized fields are not emitted, but their initializers may still
719     // prevent emission of this struct as a constant.
720     if (Field->isZeroSize(CGM.getContext())) {
721       if (Init->HasSideEffects(CGM.getContext()))
722         return false;
723       continue;
724     }
725 
726     // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr
727     // represents additional overwriting of our current constant value, and not
728     // a new constant to emit independently.
729     if (AllowOverwrite &&
730         (Field->getType()->isArrayType() || Field->getType()->isRecordType())) {
731       if (auto *SubILE = dyn_cast<InitListExpr>(Init)) {
732         CharUnits Offset = CGM.getContext().toCharUnitsFromBits(
733             Layout.getFieldOffset(FieldNo));
734         if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset,
735                                        Field->getType(), SubILE))
736           return false;
737         // If we split apart the field's value, try to collapse it down to a
738         // single value now.
739         Builder.condense(StartOffset + Offset,
740                          CGM.getTypes().ConvertTypeForMem(Field->getType()));
741         continue;
742       }
743     }
744 
745     llvm::Constant *EltInit =
746         Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType())
747              : Emitter.emitNullForMemory(Field->getType());
748     if (!EltInit)
749       return false;
750 
751     if (!Field->isBitField()) {
752       // Handle non-bitfield members.
753       if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit,
754                        AllowOverwrite))
755         return false;
756       // After emitting a non-empty field with [[no_unique_address]], we may
757       // need to overwrite its tail padding.
758       if (Field->hasAttr<NoUniqueAddressAttr>())
759         AllowOverwrite = true;
760     } else {
761       // Otherwise we have a bitfield.
762       if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) {
763         if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI,
764                             AllowOverwrite))
765           return false;
766       } else {
767         // We are trying to initialize a bitfield with a non-trivial constant,
768         // this must require run-time code.
769         return false;
770       }
771     }
772   }
773 
774   return true;
775 }
776 
777 namespace {
778 struct BaseInfo {
779   BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
780     : Decl(Decl), Offset(Offset), Index(Index) {
781   }
782 
783   const CXXRecordDecl *Decl;
784   CharUnits Offset;
785   unsigned Index;
786 
787   bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
788 };
789 }
790 
791 bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
792                                bool IsPrimaryBase,
793                                const CXXRecordDecl *VTableClass,
794                                CharUnits Offset) {
795   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
796 
797   if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
798     // Add a vtable pointer, if we need one and it hasn't already been added.
799     if (Layout.hasOwnVFPtr()) {
800       llvm::Constant *VTableAddressPoint =
801           CGM.getCXXABI().getVTableAddressPointForConstExpr(
802               BaseSubobject(CD, Offset), VTableClass);
803       if (!AppendBytes(Offset, VTableAddressPoint))
804         return false;
805     }
806 
807     // Accumulate and sort bases, in order to visit them in address order, which
808     // may not be the same as declaration order.
809     SmallVector<BaseInfo, 8> Bases;
810     Bases.reserve(CD->getNumBases());
811     unsigned BaseNo = 0;
812     for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
813          BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
814       assert(!Base->isVirtual() && "should not have virtual bases here");
815       const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
816       CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
817       Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo));
818     }
819     llvm::stable_sort(Bases);
820 
821     for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
822       BaseInfo &Base = Bases[I];
823 
824       bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
825       Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase,
826             VTableClass, Offset + Base.Offset);
827     }
828   }
829 
830   unsigned FieldNo = 0;
831   uint64_t OffsetBits = CGM.getContext().toBits(Offset);
832 
833   bool AllowOverwrite = false;
834   for (RecordDecl::field_iterator Field = RD->field_begin(),
835        FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
836     // If this is a union, skip all the fields that aren't being initialized.
837     if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field))
838       continue;
839 
840     // Don't emit anonymous bitfields or zero-sized fields.
841     if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext()))
842       continue;
843 
844     // Emit the value of the initializer.
845     const APValue &FieldValue =
846       RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
847     llvm::Constant *EltInit =
848       Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType());
849     if (!EltInit)
850       return false;
851 
852     if (!Field->isBitField()) {
853       // Handle non-bitfield members.
854       if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
855                        EltInit, AllowOverwrite))
856         return false;
857       // After emitting a non-empty field with [[no_unique_address]], we may
858       // need to overwrite its tail padding.
859       if (Field->hasAttr<NoUniqueAddressAttr>())
860         AllowOverwrite = true;
861     } else {
862       // Otherwise we have a bitfield.
863       if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
864                           cast<llvm::ConstantInt>(EltInit), AllowOverwrite))
865         return false;
866     }
867   }
868 
869   return true;
870 }
871 
872 llvm::Constant *ConstStructBuilder::Finalize(QualType Type) {
873   Type = Type.getNonReferenceType();
874   RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
875   llvm::Type *ValTy = CGM.getTypes().ConvertType(Type);
876   return Builder.build(ValTy, RD->hasFlexibleArrayMember());
877 }
878 
879 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
880                                                 InitListExpr *ILE,
881                                                 QualType ValTy) {
882   ConstantAggregateBuilder Const(Emitter.CGM);
883   ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
884 
885   if (!Builder.Build(ILE, /*AllowOverwrite*/false))
886     return nullptr;
887 
888   return Builder.Finalize(ValTy);
889 }
890 
891 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
892                                                 const APValue &Val,
893                                                 QualType ValTy) {
894   ConstantAggregateBuilder Const(Emitter.CGM);
895   ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
896 
897   const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
898   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
899   if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero()))
900     return nullptr;
901 
902   return Builder.Finalize(ValTy);
903 }
904 
905 bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter,
906                                       ConstantAggregateBuilder &Const,
907                                       CharUnits Offset, InitListExpr *Updater) {
908   return ConstStructBuilder(Emitter, Const, Offset)
909       .Build(Updater, /*AllowOverwrite*/ true);
910 }
911 
912 //===----------------------------------------------------------------------===//
913 //                             ConstExprEmitter
914 //===----------------------------------------------------------------------===//
915 
916 static ConstantAddress tryEmitGlobalCompoundLiteral(CodeGenModule &CGM,
917                                                     CodeGenFunction *CGF,
918                                               const CompoundLiteralExpr *E) {
919   CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType());
920   if (llvm::GlobalVariable *Addr =
921           CGM.getAddrOfConstantCompoundLiteralIfEmitted(E))
922     return ConstantAddress(Addr, Addr->getValueType(), Align);
923 
924   LangAS addressSpace = E->getType().getAddressSpace();
925 
926   ConstantEmitter emitter(CGM, CGF);
927   llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(),
928                                                     addressSpace, E->getType());
929   if (!C) {
930     assert(!E->isFileScope() &&
931            "file-scope compound literal did not have constant initializer!");
932     return ConstantAddress::invalid();
933   }
934 
935   auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(),
936                                      CGM.isTypeConstant(E->getType(), true),
937                                      llvm::GlobalValue::InternalLinkage,
938                                      C, ".compoundliteral", nullptr,
939                                      llvm::GlobalVariable::NotThreadLocal,
940                     CGM.getContext().getTargetAddressSpace(addressSpace));
941   emitter.finalize(GV);
942   GV->setAlignment(Align.getAsAlign());
943   CGM.setAddrOfConstantCompoundLiteral(E, GV);
944   return ConstantAddress(GV, GV->getValueType(), Align);
945 }
946 
947 static llvm::Constant *
948 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
949                   llvm::Type *CommonElementType, unsigned ArrayBound,
950                   SmallVectorImpl<llvm::Constant *> &Elements,
951                   llvm::Constant *Filler) {
952   // Figure out how long the initial prefix of non-zero elements is.
953   unsigned NonzeroLength = ArrayBound;
954   if (Elements.size() < NonzeroLength && Filler->isNullValue())
955     NonzeroLength = Elements.size();
956   if (NonzeroLength == Elements.size()) {
957     while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue())
958       --NonzeroLength;
959   }
960 
961   if (NonzeroLength == 0)
962     return llvm::ConstantAggregateZero::get(DesiredType);
963 
964   // Add a zeroinitializer array filler if we have lots of trailing zeroes.
965   unsigned TrailingZeroes = ArrayBound - NonzeroLength;
966   if (TrailingZeroes >= 8) {
967     assert(Elements.size() >= NonzeroLength &&
968            "missing initializer for non-zero element");
969 
970     // If all the elements had the same type up to the trailing zeroes, emit a
971     // struct of two arrays (the nonzero data and the zeroinitializer).
972     if (CommonElementType && NonzeroLength >= 8) {
973       llvm::Constant *Initial = llvm::ConstantArray::get(
974           llvm::ArrayType::get(CommonElementType, NonzeroLength),
975           makeArrayRef(Elements).take_front(NonzeroLength));
976       Elements.resize(2);
977       Elements[0] = Initial;
978     } else {
979       Elements.resize(NonzeroLength + 1);
980     }
981 
982     auto *FillerType =
983         CommonElementType ? CommonElementType : DesiredType->getElementType();
984     FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes);
985     Elements.back() = llvm::ConstantAggregateZero::get(FillerType);
986     CommonElementType = nullptr;
987   } else if (Elements.size() != ArrayBound) {
988     // Otherwise pad to the right size with the filler if necessary.
989     Elements.resize(ArrayBound, Filler);
990     if (Filler->getType() != CommonElementType)
991       CommonElementType = nullptr;
992   }
993 
994   // If all elements have the same type, just emit an array constant.
995   if (CommonElementType)
996     return llvm::ConstantArray::get(
997         llvm::ArrayType::get(CommonElementType, ArrayBound), Elements);
998 
999   // We have mixed types. Use a packed struct.
1000   llvm::SmallVector<llvm::Type *, 16> Types;
1001   Types.reserve(Elements.size());
1002   for (llvm::Constant *Elt : Elements)
1003     Types.push_back(Elt->getType());
1004   llvm::StructType *SType =
1005       llvm::StructType::get(CGM.getLLVMContext(), Types, true);
1006   return llvm::ConstantStruct::get(SType, Elements);
1007 }
1008 
1009 // This class only needs to handle arrays, structs and unions. Outside C++11
1010 // mode, we don't currently constant fold those types.  All other types are
1011 // handled by constant folding.
1012 //
1013 // Constant folding is currently missing support for a few features supported
1014 // here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr.
1015 class ConstExprEmitter :
1016   public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> {
1017   CodeGenModule &CGM;
1018   ConstantEmitter &Emitter;
1019   llvm::LLVMContext &VMContext;
1020 public:
1021   ConstExprEmitter(ConstantEmitter &emitter)
1022     : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) {
1023   }
1024 
1025   //===--------------------------------------------------------------------===//
1026   //                            Visitor Methods
1027   //===--------------------------------------------------------------------===//
1028 
1029   llvm::Constant *VisitStmt(Stmt *S, QualType T) {
1030     return nullptr;
1031   }
1032 
1033   llvm::Constant *VisitConstantExpr(ConstantExpr *CE, QualType T) {
1034     if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(CE))
1035       return Result;
1036     return Visit(CE->getSubExpr(), T);
1037   }
1038 
1039   llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) {
1040     return Visit(PE->getSubExpr(), T);
1041   }
1042 
1043   llvm::Constant *
1044   VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE,
1045                                     QualType T) {
1046     return Visit(PE->getReplacement(), T);
1047   }
1048 
1049   llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE,
1050                                             QualType T) {
1051     return Visit(GE->getResultExpr(), T);
1052   }
1053 
1054   llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) {
1055     return Visit(CE->getChosenSubExpr(), T);
1056   }
1057 
1058   llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) {
1059     return Visit(E->getInitializer(), T);
1060   }
1061 
1062   llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) {
1063     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
1064       CGM.EmitExplicitCastExprType(ECE, Emitter.CGF);
1065     Expr *subExpr = E->getSubExpr();
1066 
1067     switch (E->getCastKind()) {
1068     case CK_ToUnion: {
1069       // GCC cast to union extension
1070       assert(E->getType()->isUnionType() &&
1071              "Destination type is not union type!");
1072 
1073       auto field = E->getTargetUnionField();
1074 
1075       auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType());
1076       if (!C) return nullptr;
1077 
1078       auto destTy = ConvertType(destType);
1079       if (C->getType() == destTy) return C;
1080 
1081       // Build a struct with the union sub-element as the first member,
1082       // and padded to the appropriate size.
1083       SmallVector<llvm::Constant*, 2> Elts;
1084       SmallVector<llvm::Type*, 2> Types;
1085       Elts.push_back(C);
1086       Types.push_back(C->getType());
1087       unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType());
1088       unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy);
1089 
1090       assert(CurSize <= TotalSize && "Union size mismatch!");
1091       if (unsigned NumPadBytes = TotalSize - CurSize) {
1092         llvm::Type *Ty = CGM.CharTy;
1093         if (NumPadBytes > 1)
1094           Ty = llvm::ArrayType::get(Ty, NumPadBytes);
1095 
1096         Elts.push_back(llvm::UndefValue::get(Ty));
1097         Types.push_back(Ty);
1098       }
1099 
1100       llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false);
1101       return llvm::ConstantStruct::get(STy, Elts);
1102     }
1103 
1104     case CK_AddressSpaceConversion: {
1105       auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1106       if (!C) return nullptr;
1107       LangAS destAS = E->getType()->getPointeeType().getAddressSpace();
1108       LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace();
1109       llvm::Type *destTy = ConvertType(E->getType());
1110       return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS,
1111                                                              destAS, destTy);
1112     }
1113 
1114     case CK_LValueToRValue: {
1115       // We don't really support doing lvalue-to-rvalue conversions here; any
1116       // interesting conversions should be done in Evaluate().  But as a
1117       // special case, allow compound literals to support the gcc extension
1118       // allowing "struct x {int x;} x = (struct x) {};".
1119       if (auto *E = dyn_cast<CompoundLiteralExpr>(subExpr->IgnoreParens()))
1120         return Visit(E->getInitializer(), destType);
1121       return nullptr;
1122     }
1123 
1124     case CK_AtomicToNonAtomic:
1125     case CK_NonAtomicToAtomic:
1126     case CK_NoOp:
1127     case CK_ConstructorConversion:
1128       return Visit(subExpr, destType);
1129 
1130     case CK_IntToOCLSampler:
1131       llvm_unreachable("global sampler variables are not generated");
1132 
1133     case CK_Dependent: llvm_unreachable("saw dependent cast!");
1134 
1135     case CK_BuiltinFnToFnPtr:
1136       llvm_unreachable("builtin functions are handled elsewhere");
1137 
1138     case CK_ReinterpretMemberPointer:
1139     case CK_DerivedToBaseMemberPointer:
1140     case CK_BaseToDerivedMemberPointer: {
1141       auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1142       if (!C) return nullptr;
1143       return CGM.getCXXABI().EmitMemberPointerConversion(E, C);
1144     }
1145 
1146     // These will never be supported.
1147     case CK_ObjCObjectLValueCast:
1148     case CK_ARCProduceObject:
1149     case CK_ARCConsumeObject:
1150     case CK_ARCReclaimReturnedObject:
1151     case CK_ARCExtendBlockObject:
1152     case CK_CopyAndAutoreleaseBlockObject:
1153       return nullptr;
1154 
1155     // These don't need to be handled here because Evaluate knows how to
1156     // evaluate them in the cases where they can be folded.
1157     case CK_BitCast:
1158     case CK_ToVoid:
1159     case CK_Dynamic:
1160     case CK_LValueBitCast:
1161     case CK_LValueToRValueBitCast:
1162     case CK_NullToMemberPointer:
1163     case CK_UserDefinedConversion:
1164     case CK_CPointerToObjCPointerCast:
1165     case CK_BlockPointerToObjCPointerCast:
1166     case CK_AnyPointerToBlockPointerCast:
1167     case CK_ArrayToPointerDecay:
1168     case CK_FunctionToPointerDecay:
1169     case CK_BaseToDerived:
1170     case CK_DerivedToBase:
1171     case CK_UncheckedDerivedToBase:
1172     case CK_MemberPointerToBoolean:
1173     case CK_VectorSplat:
1174     case CK_FloatingRealToComplex:
1175     case CK_FloatingComplexToReal:
1176     case CK_FloatingComplexToBoolean:
1177     case CK_FloatingComplexCast:
1178     case CK_FloatingComplexToIntegralComplex:
1179     case CK_IntegralRealToComplex:
1180     case CK_IntegralComplexToReal:
1181     case CK_IntegralComplexToBoolean:
1182     case CK_IntegralComplexCast:
1183     case CK_IntegralComplexToFloatingComplex:
1184     case CK_PointerToIntegral:
1185     case CK_PointerToBoolean:
1186     case CK_NullToPointer:
1187     case CK_IntegralCast:
1188     case CK_BooleanToSignedIntegral:
1189     case CK_IntegralToPointer:
1190     case CK_IntegralToBoolean:
1191     case CK_IntegralToFloating:
1192     case CK_FloatingToIntegral:
1193     case CK_FloatingToBoolean:
1194     case CK_FloatingCast:
1195     case CK_FloatingToFixedPoint:
1196     case CK_FixedPointToFloating:
1197     case CK_FixedPointCast:
1198     case CK_FixedPointToBoolean:
1199     case CK_FixedPointToIntegral:
1200     case CK_IntegralToFixedPoint:
1201     case CK_ZeroToOCLOpaqueType:
1202     case CK_MatrixCast:
1203       return nullptr;
1204     }
1205     llvm_unreachable("Invalid CastKind");
1206   }
1207 
1208   llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) {
1209     // No need for a DefaultInitExprScope: we don't handle 'this' in a
1210     // constant expression.
1211     return Visit(DIE->getExpr(), T);
1212   }
1213 
1214   llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) {
1215     return Visit(E->getSubExpr(), T);
1216   }
1217 
1218   llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E,
1219                                                 QualType T) {
1220     return Visit(E->getSubExpr(), T);
1221   }
1222 
1223   llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) {
1224     auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType());
1225     assert(CAT && "can't emit array init for non-constant-bound array");
1226     unsigned NumInitElements = ILE->getNumInits();
1227     unsigned NumElements = CAT->getSize().getZExtValue();
1228 
1229     // Initialising an array requires us to automatically
1230     // initialise any elements that have not been initialised explicitly
1231     unsigned NumInitableElts = std::min(NumInitElements, NumElements);
1232 
1233     QualType EltType = CAT->getElementType();
1234 
1235     // Initialize remaining array elements.
1236     llvm::Constant *fillC = nullptr;
1237     if (Expr *filler = ILE->getArrayFiller()) {
1238       fillC = Emitter.tryEmitAbstractForMemory(filler, EltType);
1239       if (!fillC)
1240         return nullptr;
1241     }
1242 
1243     // Copy initializer elements.
1244     SmallVector<llvm::Constant*, 16> Elts;
1245     if (fillC && fillC->isNullValue())
1246       Elts.reserve(NumInitableElts + 1);
1247     else
1248       Elts.reserve(NumElements);
1249 
1250     llvm::Type *CommonElementType = nullptr;
1251     for (unsigned i = 0; i < NumInitableElts; ++i) {
1252       Expr *Init = ILE->getInit(i);
1253       llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType);
1254       if (!C)
1255         return nullptr;
1256       if (i == 0)
1257         CommonElementType = C->getType();
1258       else if (C->getType() != CommonElementType)
1259         CommonElementType = nullptr;
1260       Elts.push_back(C);
1261     }
1262 
1263     llvm::ArrayType *Desired =
1264         cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType()));
1265     return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
1266                              fillC);
1267   }
1268 
1269   llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) {
1270     return ConstStructBuilder::BuildStruct(Emitter, ILE, T);
1271   }
1272 
1273   llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E,
1274                                              QualType T) {
1275     return CGM.EmitNullConstant(T);
1276   }
1277 
1278   llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) {
1279     if (ILE->isTransparent())
1280       return Visit(ILE->getInit(0), T);
1281 
1282     if (ILE->getType()->isArrayType())
1283       return EmitArrayInitialization(ILE, T);
1284 
1285     if (ILE->getType()->isRecordType())
1286       return EmitRecordInitialization(ILE, T);
1287 
1288     return nullptr;
1289   }
1290 
1291   llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E,
1292                                                 QualType destType) {
1293     auto C = Visit(E->getBase(), destType);
1294     if (!C)
1295       return nullptr;
1296 
1297     ConstantAggregateBuilder Const(CGM);
1298     Const.add(C, CharUnits::Zero(), false);
1299 
1300     if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType,
1301                                    E->getUpdater()))
1302       return nullptr;
1303 
1304     llvm::Type *ValTy = CGM.getTypes().ConvertType(destType);
1305     bool HasFlexibleArray = false;
1306     if (auto *RT = destType->getAs<RecordType>())
1307       HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember();
1308     return Const.build(ValTy, HasFlexibleArray);
1309   }
1310 
1311   llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) {
1312     if (!E->getConstructor()->isTrivial())
1313       return nullptr;
1314 
1315     // Only default and copy/move constructors can be trivial.
1316     if (E->getNumArgs()) {
1317       assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
1318       assert(E->getConstructor()->isCopyOrMoveConstructor() &&
1319              "trivial ctor has argument but isn't a copy/move ctor");
1320 
1321       Expr *Arg = E->getArg(0);
1322       assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
1323              "argument to copy ctor is of wrong type");
1324 
1325       return Visit(Arg, Ty);
1326     }
1327 
1328     return CGM.EmitNullConstant(Ty);
1329   }
1330 
1331   llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) {
1332     // This is a string literal initializing an array in an initializer.
1333     return CGM.GetConstantArrayFromStringLiteral(E);
1334   }
1335 
1336   llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) {
1337     // This must be an @encode initializing an array in a static initializer.
1338     // Don't emit it as the address of the string, emit the string data itself
1339     // as an inline array.
1340     std::string Str;
1341     CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1342     const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T);
1343 
1344     // Resize the string to the right size, adding zeros at the end, or
1345     // truncating as needed.
1346     Str.resize(CAT->getSize().getZExtValue(), '\0');
1347     return llvm::ConstantDataArray::getString(VMContext, Str, false);
1348   }
1349 
1350   llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) {
1351     return Visit(E->getSubExpr(), T);
1352   }
1353 
1354   // Utility methods
1355   llvm::Type *ConvertType(QualType T) {
1356     return CGM.getTypes().ConvertType(T);
1357   }
1358 };
1359 
1360 }  // end anonymous namespace.
1361 
1362 llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C,
1363                                                         AbstractState saved) {
1364   Abstract = saved.OldValue;
1365 
1366   assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() &&
1367          "created a placeholder while doing an abstract emission?");
1368 
1369   // No validation necessary for now.
1370   // No cleanup to do for now.
1371   return C;
1372 }
1373 
1374 llvm::Constant *
1375 ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) {
1376   auto state = pushAbstract();
1377   auto C = tryEmitPrivateForVarInit(D);
1378   return validateAndPopAbstract(C, state);
1379 }
1380 
1381 llvm::Constant *
1382 ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) {
1383   auto state = pushAbstract();
1384   auto C = tryEmitPrivate(E, destType);
1385   return validateAndPopAbstract(C, state);
1386 }
1387 
1388 llvm::Constant *
1389 ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) {
1390   auto state = pushAbstract();
1391   auto C = tryEmitPrivate(value, destType);
1392   return validateAndPopAbstract(C, state);
1393 }
1394 
1395 llvm::Constant *ConstantEmitter::tryEmitConstantExpr(const ConstantExpr *CE) {
1396   if (!CE->hasAPValueResult())
1397     return nullptr;
1398   const Expr *Inner = CE->getSubExpr()->IgnoreImplicit();
1399   QualType RetType;
1400   if (auto *Call = dyn_cast<CallExpr>(Inner))
1401     RetType = Call->getCallReturnType(CGM.getContext());
1402   else if (auto *Ctor = dyn_cast<CXXConstructExpr>(Inner))
1403     RetType = Ctor->getType();
1404   llvm::Constant *Res =
1405       emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), RetType);
1406   return Res;
1407 }
1408 
1409 llvm::Constant *
1410 ConstantEmitter::emitAbstract(const Expr *E, QualType destType) {
1411   auto state = pushAbstract();
1412   auto C = tryEmitPrivate(E, destType);
1413   C = validateAndPopAbstract(C, state);
1414   if (!C) {
1415     CGM.Error(E->getExprLoc(),
1416               "internal error: could not emit constant value \"abstractly\"");
1417     C = CGM.EmitNullConstant(destType);
1418   }
1419   return C;
1420 }
1421 
1422 llvm::Constant *
1423 ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value,
1424                               QualType destType) {
1425   auto state = pushAbstract();
1426   auto C = tryEmitPrivate(value, destType);
1427   C = validateAndPopAbstract(C, state);
1428   if (!C) {
1429     CGM.Error(loc,
1430               "internal error: could not emit constant value \"abstractly\"");
1431     C = CGM.EmitNullConstant(destType);
1432   }
1433   return C;
1434 }
1435 
1436 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) {
1437   initializeNonAbstract(D.getType().getAddressSpace());
1438   return markIfFailed(tryEmitPrivateForVarInit(D));
1439 }
1440 
1441 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E,
1442                                                        LangAS destAddrSpace,
1443                                                        QualType destType) {
1444   initializeNonAbstract(destAddrSpace);
1445   return markIfFailed(tryEmitPrivateForMemory(E, destType));
1446 }
1447 
1448 llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value,
1449                                                     LangAS destAddrSpace,
1450                                                     QualType destType) {
1451   initializeNonAbstract(destAddrSpace);
1452   auto C = tryEmitPrivateForMemory(value, destType);
1453   assert(C && "couldn't emit constant value non-abstractly?");
1454   return C;
1455 }
1456 
1457 llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() {
1458   assert(!Abstract && "cannot get current address for abstract constant");
1459 
1460 
1461 
1462   // Make an obviously ill-formed global that should blow up compilation
1463   // if it survives.
1464   auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true,
1465                                          llvm::GlobalValue::PrivateLinkage,
1466                                          /*init*/ nullptr,
1467                                          /*name*/ "",
1468                                          /*before*/ nullptr,
1469                                          llvm::GlobalVariable::NotThreadLocal,
1470                                          CGM.getContext().getTargetAddressSpace(DestAddressSpace));
1471 
1472   PlaceholderAddresses.push_back(std::make_pair(nullptr, global));
1473 
1474   return global;
1475 }
1476 
1477 void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal,
1478                                            llvm::GlobalValue *placeholder) {
1479   assert(!PlaceholderAddresses.empty());
1480   assert(PlaceholderAddresses.back().first == nullptr);
1481   assert(PlaceholderAddresses.back().second == placeholder);
1482   PlaceholderAddresses.back().first = signal;
1483 }
1484 
1485 namespace {
1486   struct ReplacePlaceholders {
1487     CodeGenModule &CGM;
1488 
1489     /// The base address of the global.
1490     llvm::Constant *Base;
1491     llvm::Type *BaseValueTy = nullptr;
1492 
1493     /// The placeholder addresses that were registered during emission.
1494     llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses;
1495 
1496     /// The locations of the placeholder signals.
1497     llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations;
1498 
1499     /// The current index stack.  We use a simple unsigned stack because
1500     /// we assume that placeholders will be relatively sparse in the
1501     /// initializer, but we cache the index values we find just in case.
1502     llvm::SmallVector<unsigned, 8> Indices;
1503     llvm::SmallVector<llvm::Constant*, 8> IndexValues;
1504 
1505     ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base,
1506                         ArrayRef<std::pair<llvm::Constant*,
1507                                            llvm::GlobalVariable*>> addresses)
1508         : CGM(CGM), Base(base),
1509           PlaceholderAddresses(addresses.begin(), addresses.end()) {
1510     }
1511 
1512     void replaceInInitializer(llvm::Constant *init) {
1513       // Remember the type of the top-most initializer.
1514       BaseValueTy = init->getType();
1515 
1516       // Initialize the stack.
1517       Indices.push_back(0);
1518       IndexValues.push_back(nullptr);
1519 
1520       // Recurse into the initializer.
1521       findLocations(init);
1522 
1523       // Check invariants.
1524       assert(IndexValues.size() == Indices.size() && "mismatch");
1525       assert(Indices.size() == 1 && "didn't pop all indices");
1526 
1527       // Do the replacement; this basically invalidates 'init'.
1528       assert(Locations.size() == PlaceholderAddresses.size() &&
1529              "missed a placeholder?");
1530 
1531       // We're iterating over a hashtable, so this would be a source of
1532       // non-determinism in compiler output *except* that we're just
1533       // messing around with llvm::Constant structures, which never itself
1534       // does anything that should be visible in compiler output.
1535       for (auto &entry : Locations) {
1536         assert(entry.first->getParent() == nullptr && "not a placeholder!");
1537         entry.first->replaceAllUsesWith(entry.second);
1538         entry.first->eraseFromParent();
1539       }
1540     }
1541 
1542   private:
1543     void findLocations(llvm::Constant *init) {
1544       // Recurse into aggregates.
1545       if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) {
1546         for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) {
1547           Indices.push_back(i);
1548           IndexValues.push_back(nullptr);
1549 
1550           findLocations(agg->getOperand(i));
1551 
1552           IndexValues.pop_back();
1553           Indices.pop_back();
1554         }
1555         return;
1556       }
1557 
1558       // Otherwise, check for registered constants.
1559       while (true) {
1560         auto it = PlaceholderAddresses.find(init);
1561         if (it != PlaceholderAddresses.end()) {
1562           setLocation(it->second);
1563           break;
1564         }
1565 
1566         // Look through bitcasts or other expressions.
1567         if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) {
1568           init = expr->getOperand(0);
1569         } else {
1570           break;
1571         }
1572       }
1573     }
1574 
1575     void setLocation(llvm::GlobalVariable *placeholder) {
1576       assert(Locations.find(placeholder) == Locations.end() &&
1577              "already found location for placeholder!");
1578 
1579       // Lazily fill in IndexValues with the values from Indices.
1580       // We do this in reverse because we should always have a strict
1581       // prefix of indices from the start.
1582       assert(Indices.size() == IndexValues.size());
1583       for (size_t i = Indices.size() - 1; i != size_t(-1); --i) {
1584         if (IndexValues[i]) {
1585 #ifndef NDEBUG
1586           for (size_t j = 0; j != i + 1; ++j) {
1587             assert(IndexValues[j] &&
1588                    isa<llvm::ConstantInt>(IndexValues[j]) &&
1589                    cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue()
1590                      == Indices[j]);
1591           }
1592 #endif
1593           break;
1594         }
1595 
1596         IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]);
1597       }
1598 
1599       // Form a GEP and then bitcast to the placeholder type so that the
1600       // replacement will succeed.
1601       llvm::Constant *location =
1602         llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy,
1603                                                      Base, IndexValues);
1604       location = llvm::ConstantExpr::getBitCast(location,
1605                                                 placeholder->getType());
1606 
1607       Locations.insert({placeholder, location});
1608     }
1609   };
1610 }
1611 
1612 void ConstantEmitter::finalize(llvm::GlobalVariable *global) {
1613   assert(InitializedNonAbstract &&
1614          "finalizing emitter that was used for abstract emission?");
1615   assert(!Finalized && "finalizing emitter multiple times");
1616   assert(global->getInitializer());
1617 
1618   // Note that we might also be Failed.
1619   Finalized = true;
1620 
1621   if (!PlaceholderAddresses.empty()) {
1622     ReplacePlaceholders(CGM, global, PlaceholderAddresses)
1623       .replaceInInitializer(global->getInitializer());
1624     PlaceholderAddresses.clear(); // satisfy
1625   }
1626 }
1627 
1628 ConstantEmitter::~ConstantEmitter() {
1629   assert((!InitializedNonAbstract || Finalized || Failed) &&
1630          "not finalized after being initialized for non-abstract emission");
1631   assert(PlaceholderAddresses.empty() && "unhandled placeholders");
1632 }
1633 
1634 static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) {
1635   if (auto AT = type->getAs<AtomicType>()) {
1636     return CGM.getContext().getQualifiedType(AT->getValueType(),
1637                                              type.getQualifiers());
1638   }
1639   return type;
1640 }
1641 
1642 llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) {
1643   // Make a quick check if variable can be default NULL initialized
1644   // and avoid going through rest of code which may do, for c++11,
1645   // initialization of memory to all NULLs.
1646   if (!D.hasLocalStorage()) {
1647     QualType Ty = CGM.getContext().getBaseElementType(D.getType());
1648     if (Ty->isRecordType())
1649       if (const CXXConstructExpr *E =
1650           dyn_cast_or_null<CXXConstructExpr>(D.getInit())) {
1651         const CXXConstructorDecl *CD = E->getConstructor();
1652         if (CD->isTrivial() && CD->isDefaultConstructor())
1653           return CGM.EmitNullConstant(D.getType());
1654       }
1655     InConstantContext = true;
1656   }
1657 
1658   QualType destType = D.getType();
1659 
1660   // Try to emit the initializer.  Note that this can allow some things that
1661   // are not allowed by tryEmitPrivateForMemory alone.
1662   if (auto value = D.evaluateValue()) {
1663     return tryEmitPrivateForMemory(*value, destType);
1664   }
1665 
1666   // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a
1667   // reference is a constant expression, and the reference binds to a temporary,
1668   // then constant initialization is performed. ConstExprEmitter will
1669   // incorrectly emit a prvalue constant in this case, and the calling code
1670   // interprets that as the (pointer) value of the reference, rather than the
1671   // desired value of the referee.
1672   if (destType->isReferenceType())
1673     return nullptr;
1674 
1675   const Expr *E = D.getInit();
1676   assert(E && "No initializer to emit");
1677 
1678   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1679   auto C =
1680     ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), nonMemoryDestType);
1681   return (C ? emitForMemory(C, destType) : nullptr);
1682 }
1683 
1684 llvm::Constant *
1685 ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) {
1686   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1687   auto C = tryEmitAbstract(E, nonMemoryDestType);
1688   return (C ? emitForMemory(C, destType) : nullptr);
1689 }
1690 
1691 llvm::Constant *
1692 ConstantEmitter::tryEmitAbstractForMemory(const APValue &value,
1693                                           QualType destType) {
1694   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1695   auto C = tryEmitAbstract(value, nonMemoryDestType);
1696   return (C ? emitForMemory(C, destType) : nullptr);
1697 }
1698 
1699 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E,
1700                                                          QualType destType) {
1701   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1702   llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType);
1703   return (C ? emitForMemory(C, destType) : nullptr);
1704 }
1705 
1706 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value,
1707                                                          QualType destType) {
1708   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1709   auto C = tryEmitPrivate(value, nonMemoryDestType);
1710   return (C ? emitForMemory(C, destType) : nullptr);
1711 }
1712 
1713 llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM,
1714                                                llvm::Constant *C,
1715                                                QualType destType) {
1716   // For an _Atomic-qualified constant, we may need to add tail padding.
1717   if (auto AT = destType->getAs<AtomicType>()) {
1718     QualType destValueType = AT->getValueType();
1719     C = emitForMemory(CGM, C, destValueType);
1720 
1721     uint64_t innerSize = CGM.getContext().getTypeSize(destValueType);
1722     uint64_t outerSize = CGM.getContext().getTypeSize(destType);
1723     if (innerSize == outerSize)
1724       return C;
1725 
1726     assert(innerSize < outerSize && "emitted over-large constant for atomic");
1727     llvm::Constant *elts[] = {
1728       C,
1729       llvm::ConstantAggregateZero::get(
1730           llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8))
1731     };
1732     return llvm::ConstantStruct::getAnon(elts);
1733   }
1734 
1735   // Zero-extend bool.
1736   if (C->getType()->isIntegerTy(1)) {
1737     llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType);
1738     return llvm::ConstantExpr::getZExt(C, boolTy);
1739   }
1740 
1741   return C;
1742 }
1743 
1744 llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E,
1745                                                 QualType destType) {
1746   assert(!destType->isVoidType() && "can't emit a void constant");
1747 
1748   Expr::EvalResult Result;
1749 
1750   bool Success = false;
1751 
1752   if (destType->isReferenceType())
1753     Success = E->EvaluateAsLValue(Result, CGM.getContext());
1754   else
1755     Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext);
1756 
1757   llvm::Constant *C;
1758   if (Success && !Result.HasSideEffects)
1759     C = tryEmitPrivate(Result.Val, destType);
1760   else
1761     C = ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), destType);
1762 
1763   return C;
1764 }
1765 
1766 llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) {
1767   return getTargetCodeGenInfo().getNullPointer(*this, T, QT);
1768 }
1769 
1770 namespace {
1771 /// A struct which can be used to peephole certain kinds of finalization
1772 /// that normally happen during l-value emission.
1773 struct ConstantLValue {
1774   llvm::Constant *Value;
1775   bool HasOffsetApplied;
1776 
1777   /*implicit*/ ConstantLValue(llvm::Constant *value,
1778                               bool hasOffsetApplied = false)
1779     : Value(value), HasOffsetApplied(hasOffsetApplied) {}
1780 
1781   /*implicit*/ ConstantLValue(ConstantAddress address)
1782     : ConstantLValue(address.getPointer()) {}
1783 };
1784 
1785 /// A helper class for emitting constant l-values.
1786 class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter,
1787                                                       ConstantLValue> {
1788   CodeGenModule &CGM;
1789   ConstantEmitter &Emitter;
1790   const APValue &Value;
1791   QualType DestType;
1792 
1793   // Befriend StmtVisitorBase so that we don't have to expose Visit*.
1794   friend StmtVisitorBase;
1795 
1796 public:
1797   ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value,
1798                         QualType destType)
1799     : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {}
1800 
1801   llvm::Constant *tryEmit();
1802 
1803 private:
1804   llvm::Constant *tryEmitAbsolute(llvm::Type *destTy);
1805   ConstantLValue tryEmitBase(const APValue::LValueBase &base);
1806 
1807   ConstantLValue VisitStmt(const Stmt *S) { return nullptr; }
1808   ConstantLValue VisitConstantExpr(const ConstantExpr *E);
1809   ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
1810   ConstantLValue VisitStringLiteral(const StringLiteral *E);
1811   ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E);
1812   ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
1813   ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E);
1814   ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E);
1815   ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E);
1816   ConstantLValue VisitCallExpr(const CallExpr *E);
1817   ConstantLValue VisitBlockExpr(const BlockExpr *E);
1818   ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E);
1819   ConstantLValue VisitMaterializeTemporaryExpr(
1820                                          const MaterializeTemporaryExpr *E);
1821 
1822   bool hasNonZeroOffset() const {
1823     return !Value.getLValueOffset().isZero();
1824   }
1825 
1826   /// Return the value offset.
1827   llvm::Constant *getOffset() {
1828     return llvm::ConstantInt::get(CGM.Int64Ty,
1829                                   Value.getLValueOffset().getQuantity());
1830   }
1831 
1832   /// Apply the value offset to the given constant.
1833   llvm::Constant *applyOffset(llvm::Constant *C) {
1834     if (!hasNonZeroOffset())
1835       return C;
1836 
1837     llvm::Type *origPtrTy = C->getType();
1838     unsigned AS = origPtrTy->getPointerAddressSpace();
1839     llvm::Type *charPtrTy = CGM.Int8Ty->getPointerTo(AS);
1840     C = llvm::ConstantExpr::getBitCast(C, charPtrTy);
1841     C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset());
1842     C = llvm::ConstantExpr::getPointerCast(C, origPtrTy);
1843     return C;
1844   }
1845 };
1846 
1847 }
1848 
1849 llvm::Constant *ConstantLValueEmitter::tryEmit() {
1850   const APValue::LValueBase &base = Value.getLValueBase();
1851 
1852   // The destination type should be a pointer or reference
1853   // type, but it might also be a cast thereof.
1854   //
1855   // FIXME: the chain of casts required should be reflected in the APValue.
1856   // We need this in order to correctly handle things like a ptrtoint of a
1857   // non-zero null pointer and addrspace casts that aren't trivially
1858   // represented in LLVM IR.
1859   auto destTy = CGM.getTypes().ConvertTypeForMem(DestType);
1860   assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy));
1861 
1862   // If there's no base at all, this is a null or absolute pointer,
1863   // possibly cast back to an integer type.
1864   if (!base) {
1865     return tryEmitAbsolute(destTy);
1866   }
1867 
1868   // Otherwise, try to emit the base.
1869   ConstantLValue result = tryEmitBase(base);
1870 
1871   // If that failed, we're done.
1872   llvm::Constant *value = result.Value;
1873   if (!value) return nullptr;
1874 
1875   // Apply the offset if necessary and not already done.
1876   if (!result.HasOffsetApplied) {
1877     value = applyOffset(value);
1878   }
1879 
1880   // Convert to the appropriate type; this could be an lvalue for
1881   // an integer.  FIXME: performAddrSpaceCast
1882   if (isa<llvm::PointerType>(destTy))
1883     return llvm::ConstantExpr::getPointerCast(value, destTy);
1884 
1885   return llvm::ConstantExpr::getPtrToInt(value, destTy);
1886 }
1887 
1888 /// Try to emit an absolute l-value, such as a null pointer or an integer
1889 /// bitcast to pointer type.
1890 llvm::Constant *
1891 ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) {
1892   // If we're producing a pointer, this is easy.
1893   auto destPtrTy = cast<llvm::PointerType>(destTy);
1894   if (Value.isNullPointer()) {
1895     // FIXME: integer offsets from non-zero null pointers.
1896     return CGM.getNullPointer(destPtrTy, DestType);
1897   }
1898 
1899   // Convert the integer to a pointer-sized integer before converting it
1900   // to a pointer.
1901   // FIXME: signedness depends on the original integer type.
1902   auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy);
1903   llvm::Constant *C;
1904   C = llvm::ConstantExpr::getIntegerCast(getOffset(), intptrTy,
1905                                          /*isSigned*/ false);
1906   C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy);
1907   return C;
1908 }
1909 
1910 ConstantLValue
1911 ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) {
1912   // Handle values.
1913   if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) {
1914     // The constant always points to the canonical declaration. We want to look
1915     // at properties of the most recent declaration at the point of emission.
1916     D = cast<ValueDecl>(D->getMostRecentDecl());
1917 
1918     if (D->hasAttr<WeakRefAttr>())
1919       return CGM.GetWeakRefReference(D).getPointer();
1920 
1921     if (auto FD = dyn_cast<FunctionDecl>(D))
1922       return CGM.GetAddrOfFunction(FD);
1923 
1924     if (auto VD = dyn_cast<VarDecl>(D)) {
1925       // We can never refer to a variable with local storage.
1926       if (!VD->hasLocalStorage()) {
1927         if (VD->isFileVarDecl() || VD->hasExternalStorage())
1928           return CGM.GetAddrOfGlobalVar(VD);
1929 
1930         if (VD->isLocalVarDecl()) {
1931           return CGM.getOrCreateStaticVarDecl(
1932               *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false));
1933         }
1934       }
1935     }
1936 
1937     if (auto *GD = dyn_cast<MSGuidDecl>(D))
1938       return CGM.GetAddrOfMSGuidDecl(GD);
1939 
1940     if (auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(D))
1941       return CGM.GetAddrOfUnnamedGlobalConstantDecl(GCD);
1942 
1943     if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D))
1944       return CGM.GetAddrOfTemplateParamObject(TPO);
1945 
1946     return nullptr;
1947   }
1948 
1949   // Handle typeid(T).
1950   if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>()) {
1951     llvm::Type *StdTypeInfoPtrTy =
1952         CGM.getTypes().ConvertType(base.getTypeInfoType())->getPointerTo();
1953     llvm::Constant *TypeInfo =
1954         CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0));
1955     if (TypeInfo->getType() != StdTypeInfoPtrTy)
1956       TypeInfo = llvm::ConstantExpr::getBitCast(TypeInfo, StdTypeInfoPtrTy);
1957     return TypeInfo;
1958   }
1959 
1960   // Otherwise, it must be an expression.
1961   return Visit(base.get<const Expr*>());
1962 }
1963 
1964 ConstantLValue
1965 ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) {
1966   if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(E))
1967     return Result;
1968   return Visit(E->getSubExpr());
1969 }
1970 
1971 ConstantLValue
1972 ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
1973   return tryEmitGlobalCompoundLiteral(CGM, Emitter.CGF, E);
1974 }
1975 
1976 ConstantLValue
1977 ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) {
1978   return CGM.GetAddrOfConstantStringFromLiteral(E);
1979 }
1980 
1981 ConstantLValue
1982 ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
1983   return CGM.GetAddrOfConstantStringFromObjCEncode(E);
1984 }
1985 
1986 static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S,
1987                                                     QualType T,
1988                                                     CodeGenModule &CGM) {
1989   auto C = CGM.getObjCRuntime().GenerateConstantString(S);
1990   return C.getElementBitCast(CGM.getTypes().ConvertTypeForMem(T));
1991 }
1992 
1993 ConstantLValue
1994 ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
1995   return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM);
1996 }
1997 
1998 ConstantLValue
1999 ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
2000   assert(E->isExpressibleAsConstantInitializer() &&
2001          "this boxed expression can't be emitted as a compile-time constant");
2002   auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts());
2003   return emitConstantObjCStringLiteral(SL, E->getType(), CGM);
2004 }
2005 
2006 ConstantLValue
2007 ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) {
2008   return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName());
2009 }
2010 
2011 ConstantLValue
2012 ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) {
2013   assert(Emitter.CGF && "Invalid address of label expression outside function");
2014   llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel());
2015   Ptr = llvm::ConstantExpr::getBitCast(Ptr,
2016                                    CGM.getTypes().ConvertType(E->getType()));
2017   return Ptr;
2018 }
2019 
2020 ConstantLValue
2021 ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) {
2022   unsigned builtin = E->getBuiltinCallee();
2023   if (builtin == Builtin::BI__builtin_function_start)
2024     return CGM.GetFunctionStart(
2025         E->getArg(0)->getAsBuiltinConstantDeclRef(CGM.getContext()));
2026   if (builtin != Builtin::BI__builtin___CFStringMakeConstantString &&
2027       builtin != Builtin::BI__builtin___NSStringMakeConstantString)
2028     return nullptr;
2029 
2030   auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts());
2031   if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) {
2032     return CGM.getObjCRuntime().GenerateConstantString(literal);
2033   } else {
2034     // FIXME: need to deal with UCN conversion issues.
2035     return CGM.GetAddrOfConstantCFString(literal);
2036   }
2037 }
2038 
2039 ConstantLValue
2040 ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) {
2041   StringRef functionName;
2042   if (auto CGF = Emitter.CGF)
2043     functionName = CGF->CurFn->getName();
2044   else
2045     functionName = "global";
2046 
2047   return CGM.GetAddrOfGlobalBlock(E, functionName);
2048 }
2049 
2050 ConstantLValue
2051 ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
2052   QualType T;
2053   if (E->isTypeOperand())
2054     T = E->getTypeOperand(CGM.getContext());
2055   else
2056     T = E->getExprOperand()->getType();
2057   return CGM.GetAddrOfRTTIDescriptor(T);
2058 }
2059 
2060 ConstantLValue
2061 ConstantLValueEmitter::VisitMaterializeTemporaryExpr(
2062                                             const MaterializeTemporaryExpr *E) {
2063   assert(E->getStorageDuration() == SD_Static);
2064   SmallVector<const Expr *, 2> CommaLHSs;
2065   SmallVector<SubobjectAdjustment, 2> Adjustments;
2066   const Expr *Inner =
2067       E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
2068   return CGM.GetAddrOfGlobalTemporary(E, Inner);
2069 }
2070 
2071 llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value,
2072                                                 QualType DestType) {
2073   switch (Value.getKind()) {
2074   case APValue::None:
2075   case APValue::Indeterminate:
2076     // Out-of-lifetime and indeterminate values can be modeled as 'undef'.
2077     return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType));
2078   case APValue::LValue:
2079     return ConstantLValueEmitter(*this, Value, DestType).tryEmit();
2080   case APValue::Int:
2081     return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt());
2082   case APValue::FixedPoint:
2083     return llvm::ConstantInt::get(CGM.getLLVMContext(),
2084                                   Value.getFixedPoint().getValue());
2085   case APValue::ComplexInt: {
2086     llvm::Constant *Complex[2];
2087 
2088     Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2089                                         Value.getComplexIntReal());
2090     Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2091                                         Value.getComplexIntImag());
2092 
2093     // FIXME: the target may want to specify that this is packed.
2094     llvm::StructType *STy =
2095         llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2096     return llvm::ConstantStruct::get(STy, Complex);
2097   }
2098   case APValue::Float: {
2099     const llvm::APFloat &Init = Value.getFloat();
2100     if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() &&
2101         !CGM.getContext().getLangOpts().NativeHalfType &&
2102         CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics())
2103       return llvm::ConstantInt::get(CGM.getLLVMContext(),
2104                                     Init.bitcastToAPInt());
2105     else
2106       return llvm::ConstantFP::get(CGM.getLLVMContext(), Init);
2107   }
2108   case APValue::ComplexFloat: {
2109     llvm::Constant *Complex[2];
2110 
2111     Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2112                                        Value.getComplexFloatReal());
2113     Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2114                                        Value.getComplexFloatImag());
2115 
2116     // FIXME: the target may want to specify that this is packed.
2117     llvm::StructType *STy =
2118         llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2119     return llvm::ConstantStruct::get(STy, Complex);
2120   }
2121   case APValue::Vector: {
2122     unsigned NumElts = Value.getVectorLength();
2123     SmallVector<llvm::Constant *, 4> Inits(NumElts);
2124 
2125     for (unsigned I = 0; I != NumElts; ++I) {
2126       const APValue &Elt = Value.getVectorElt(I);
2127       if (Elt.isInt())
2128         Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt());
2129       else if (Elt.isFloat())
2130         Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat());
2131       else
2132         llvm_unreachable("unsupported vector element type");
2133     }
2134     return llvm::ConstantVector::get(Inits);
2135   }
2136   case APValue::AddrLabelDiff: {
2137     const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
2138     const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
2139     llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType());
2140     llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType());
2141     if (!LHS || !RHS) return nullptr;
2142 
2143     // Compute difference
2144     llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType);
2145     LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy);
2146     RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy);
2147     llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);
2148 
2149     // LLVM is a bit sensitive about the exact format of the
2150     // address-of-label difference; make sure to truncate after
2151     // the subtraction.
2152     return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
2153   }
2154   case APValue::Struct:
2155   case APValue::Union:
2156     return ConstStructBuilder::BuildStruct(*this, Value, DestType);
2157   case APValue::Array: {
2158     const ArrayType *ArrayTy = CGM.getContext().getAsArrayType(DestType);
2159     unsigned NumElements = Value.getArraySize();
2160     unsigned NumInitElts = Value.getArrayInitializedElts();
2161 
2162     // Emit array filler, if there is one.
2163     llvm::Constant *Filler = nullptr;
2164     if (Value.hasArrayFiller()) {
2165       Filler = tryEmitAbstractForMemory(Value.getArrayFiller(),
2166                                         ArrayTy->getElementType());
2167       if (!Filler)
2168         return nullptr;
2169     }
2170 
2171     // Emit initializer elements.
2172     SmallVector<llvm::Constant*, 16> Elts;
2173     if (Filler && Filler->isNullValue())
2174       Elts.reserve(NumInitElts + 1);
2175     else
2176       Elts.reserve(NumElements);
2177 
2178     llvm::Type *CommonElementType = nullptr;
2179     for (unsigned I = 0; I < NumInitElts; ++I) {
2180       llvm::Constant *C = tryEmitPrivateForMemory(
2181           Value.getArrayInitializedElt(I), ArrayTy->getElementType());
2182       if (!C) return nullptr;
2183 
2184       if (I == 0)
2185         CommonElementType = C->getType();
2186       else if (C->getType() != CommonElementType)
2187         CommonElementType = nullptr;
2188       Elts.push_back(C);
2189     }
2190 
2191     llvm::ArrayType *Desired =
2192         cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType));
2193     return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
2194                              Filler);
2195   }
2196   case APValue::MemberPointer:
2197     return CGM.getCXXABI().EmitMemberPointer(Value, DestType);
2198   }
2199   llvm_unreachable("Unknown APValue kind");
2200 }
2201 
2202 llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted(
2203     const CompoundLiteralExpr *E) {
2204   return EmittedCompoundLiterals.lookup(E);
2205 }
2206 
2207 void CodeGenModule::setAddrOfConstantCompoundLiteral(
2208     const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) {
2209   bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second;
2210   (void)Ok;
2211   assert(Ok && "CLE has already been emitted!");
2212 }
2213 
2214 ConstantAddress
2215 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
2216   assert(E->isFileScope() && "not a file-scope compound literal expr");
2217   return tryEmitGlobalCompoundLiteral(*this, nullptr, E);
2218 }
2219 
2220 llvm::Constant *
2221 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
2222   // Member pointer constants always have a very particular form.
2223   const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
2224   const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
2225 
2226   // A member function pointer.
2227   if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
2228     return getCXXABI().EmitMemberFunctionPointer(method);
2229 
2230   // Otherwise, a member data pointer.
2231   uint64_t fieldOffset = getContext().getFieldOffset(decl);
2232   CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
2233   return getCXXABI().EmitMemberDataPointer(type, chars);
2234 }
2235 
2236 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2237                                                llvm::Type *baseType,
2238                                                const CXXRecordDecl *base);
2239 
2240 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
2241                                         const RecordDecl *record,
2242                                         bool asCompleteObject) {
2243   const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
2244   llvm::StructType *structure =
2245     (asCompleteObject ? layout.getLLVMType()
2246                       : layout.getBaseSubobjectLLVMType());
2247 
2248   unsigned numElements = structure->getNumElements();
2249   std::vector<llvm::Constant *> elements(numElements);
2250 
2251   auto CXXR = dyn_cast<CXXRecordDecl>(record);
2252   // Fill in all the bases.
2253   if (CXXR) {
2254     for (const auto &I : CXXR->bases()) {
2255       if (I.isVirtual()) {
2256         // Ignore virtual bases; if we're laying out for a complete
2257         // object, we'll lay these out later.
2258         continue;
2259       }
2260 
2261       const CXXRecordDecl *base =
2262         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2263 
2264       // Ignore empty bases.
2265       if (base->isEmpty() ||
2266           CGM.getContext().getASTRecordLayout(base).getNonVirtualSize()
2267               .isZero())
2268         continue;
2269 
2270       unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
2271       llvm::Type *baseType = structure->getElementType(fieldIndex);
2272       elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2273     }
2274   }
2275 
2276   // Fill in all the fields.
2277   for (const auto *Field : record->fields()) {
2278     // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
2279     // will fill in later.)
2280     if (!Field->isBitField() && !Field->isZeroSize(CGM.getContext())) {
2281       unsigned fieldIndex = layout.getLLVMFieldNo(Field);
2282       elements[fieldIndex] = CGM.EmitNullConstant(Field->getType());
2283     }
2284 
2285     // For unions, stop after the first named field.
2286     if (record->isUnion()) {
2287       if (Field->getIdentifier())
2288         break;
2289       if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
2290         if (FieldRD->findFirstNamedDataMember())
2291           break;
2292     }
2293   }
2294 
2295   // Fill in the virtual bases, if we're working with the complete object.
2296   if (CXXR && asCompleteObject) {
2297     for (const auto &I : CXXR->vbases()) {
2298       const CXXRecordDecl *base =
2299         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2300 
2301       // Ignore empty bases.
2302       if (base->isEmpty())
2303         continue;
2304 
2305       unsigned fieldIndex = layout.getVirtualBaseIndex(base);
2306 
2307       // We might have already laid this field out.
2308       if (elements[fieldIndex]) continue;
2309 
2310       llvm::Type *baseType = structure->getElementType(fieldIndex);
2311       elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2312     }
2313   }
2314 
2315   // Now go through all other fields and zero them out.
2316   for (unsigned i = 0; i != numElements; ++i) {
2317     if (!elements[i])
2318       elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
2319   }
2320 
2321   return llvm::ConstantStruct::get(structure, elements);
2322 }
2323 
2324 /// Emit the null constant for a base subobject.
2325 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2326                                                llvm::Type *baseType,
2327                                                const CXXRecordDecl *base) {
2328   const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
2329 
2330   // Just zero out bases that don't have any pointer to data members.
2331   if (baseLayout.isZeroInitializableAsBase())
2332     return llvm::Constant::getNullValue(baseType);
2333 
2334   // Otherwise, we can just use its null constant.
2335   return EmitNullConstant(CGM, base, /*asCompleteObject=*/false);
2336 }
2337 
2338 llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM,
2339                                                    QualType T) {
2340   return emitForMemory(CGM, CGM.EmitNullConstant(T), T);
2341 }
2342 
2343 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
2344   if (T->getAs<PointerType>())
2345     return getNullPointer(
2346         cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T);
2347 
2348   if (getTypes().isZeroInitializable(T))
2349     return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
2350 
2351   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
2352     llvm::ArrayType *ATy =
2353       cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
2354 
2355     QualType ElementTy = CAT->getElementType();
2356 
2357     llvm::Constant *Element =
2358       ConstantEmitter::emitNullForMemory(*this, ElementTy);
2359     unsigned NumElements = CAT->getSize().getZExtValue();
2360     SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
2361     return llvm::ConstantArray::get(ATy, Array);
2362   }
2363 
2364   if (const RecordType *RT = T->getAs<RecordType>())
2365     return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true);
2366 
2367   assert(T->isMemberDataPointerType() &&
2368          "Should only see pointers to data members here!");
2369 
2370   return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
2371 }
2372 
2373 llvm::Constant *
2374 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
2375   return ::EmitNullConstant(*this, Record, false);
2376 }
2377