1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Constant Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGObjCRuntime.h"
15 #include "CGRecordLayout.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "ConstantEmitter.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/APValue.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Attr.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/Basic/Builtins.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/Sequence.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalVariable.h"
32 using namespace clang;
33 using namespace CodeGen;
34 
35 //===----------------------------------------------------------------------===//
36 //                            ConstantAggregateBuilder
37 //===----------------------------------------------------------------------===//
38 
39 namespace {
40 class ConstExprEmitter;
41 
42 struct ConstantAggregateBuilderUtils {
43   CodeGenModule &CGM;
44 
45   ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {}
46 
47   CharUnits getAlignment(const llvm::Constant *C) const {
48     return CharUnits::fromQuantity(
49         CGM.getDataLayout().getABITypeAlignment(C->getType()));
50   }
51 
52   CharUnits getSize(llvm::Type *Ty) const {
53     return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty));
54   }
55 
56   CharUnits getSize(const llvm::Constant *C) const {
57     return getSize(C->getType());
58   }
59 
60   llvm::Constant *getPadding(CharUnits PadSize) const {
61     llvm::Type *Ty = CGM.CharTy;
62     if (PadSize > CharUnits::One())
63       Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
64     return llvm::UndefValue::get(Ty);
65   }
66 
67   llvm::Constant *getZeroes(CharUnits ZeroSize) const {
68     llvm::Type *Ty = llvm::ArrayType::get(CGM.CharTy, ZeroSize.getQuantity());
69     return llvm::ConstantAggregateZero::get(Ty);
70   }
71 };
72 
73 /// Incremental builder for an llvm::Constant* holding a struct or array
74 /// constant.
75 class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils {
76   /// The elements of the constant. These two arrays must have the same size;
77   /// Offsets[i] describes the offset of Elems[i] within the constant. The
78   /// elements are kept in increasing offset order, and we ensure that there
79   /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]).
80   ///
81   /// This may contain explicit padding elements (in order to create a
82   /// natural layout), but need not. Gaps between elements are implicitly
83   /// considered to be filled with undef.
84   llvm::SmallVector<llvm::Constant*, 32> Elems;
85   llvm::SmallVector<CharUnits, 32> Offsets;
86 
87   /// The size of the constant (the maximum end offset of any added element).
88   /// May be larger than the end of Elems.back() if we split the last element
89   /// and removed some trailing undefs.
90   CharUnits Size = CharUnits::Zero();
91 
92   /// This is true only if laying out Elems in order as the elements of a
93   /// non-packed LLVM struct will give the correct layout.
94   bool NaturalLayout = true;
95 
96   bool split(size_t Index, CharUnits Hint);
97   Optional<size_t> splitAt(CharUnits Pos);
98 
99   static llvm::Constant *buildFrom(CodeGenModule &CGM,
100                                    ArrayRef<llvm::Constant *> Elems,
101                                    ArrayRef<CharUnits> Offsets,
102                                    CharUnits StartOffset, CharUnits Size,
103                                    bool NaturalLayout, llvm::Type *DesiredTy,
104                                    bool AllowOversized);
105 
106 public:
107   ConstantAggregateBuilder(CodeGenModule &CGM)
108       : ConstantAggregateBuilderUtils(CGM) {}
109 
110   /// Update or overwrite the value starting at \p Offset with \c C.
111   ///
112   /// \param AllowOverwrite If \c true, this constant might overwrite (part of)
113   ///        a constant that has already been added. This flag is only used to
114   ///        detect bugs.
115   bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite);
116 
117   /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits.
118   bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite);
119 
120   /// Attempt to condense the value starting at \p Offset to a constant of type
121   /// \p DesiredTy.
122   void condense(CharUnits Offset, llvm::Type *DesiredTy);
123 
124   /// Produce a constant representing the entire accumulated value, ideally of
125   /// the specified type. If \p AllowOversized, the constant might be larger
126   /// than implied by \p DesiredTy (eg, if there is a flexible array member).
127   /// Otherwise, the constant will be of exactly the same size as \p DesiredTy
128   /// even if we can't represent it as that type.
129   llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const {
130     return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size,
131                      NaturalLayout, DesiredTy, AllowOversized);
132   }
133 };
134 
135 template<typename Container, typename Range = std::initializer_list<
136                                  typename Container::value_type>>
137 static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) {
138   assert(BeginOff <= EndOff && "invalid replacement range");
139   llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals);
140 }
141 
142 bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset,
143                           bool AllowOverwrite) {
144   // Common case: appending to a layout.
145   if (Offset >= Size) {
146     CharUnits Align = getAlignment(C);
147     CharUnits AlignedSize = Size.alignTo(Align);
148     if (AlignedSize > Offset || Offset.alignTo(Align) != Offset)
149       NaturalLayout = false;
150     else if (AlignedSize < Offset) {
151       Elems.push_back(getPadding(Offset - Size));
152       Offsets.push_back(Size);
153     }
154     Elems.push_back(C);
155     Offsets.push_back(Offset);
156     Size = Offset + getSize(C);
157     return true;
158   }
159 
160   // Uncommon case: constant overlaps what we've already created.
161   llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset);
162   if (!FirstElemToReplace)
163     return false;
164 
165   CharUnits CSize = getSize(C);
166   llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + CSize);
167   if (!LastElemToReplace)
168     return false;
169 
170   assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) &&
171          "unexpectedly overwriting field");
172 
173   replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C});
174   replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset});
175   Size = std::max(Size, Offset + CSize);
176   NaturalLayout = false;
177   return true;
178 }
179 
180 bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits,
181                               bool AllowOverwrite) {
182   const ASTContext &Context = CGM.getContext();
183   const uint64_t CharWidth = CGM.getContext().getCharWidth();
184 
185   // Offset of where we want the first bit to go within the bits of the
186   // current char.
187   unsigned OffsetWithinChar = OffsetInBits % CharWidth;
188 
189   // We split bit-fields up into individual bytes. Walk over the bytes and
190   // update them.
191   for (CharUnits OffsetInChars =
192            Context.toCharUnitsFromBits(OffsetInBits - OffsetWithinChar);
193        /**/; ++OffsetInChars) {
194     // Number of bits we want to fill in this char.
195     unsigned WantedBits =
196         std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar);
197 
198     // Get a char containing the bits we want in the right places. The other
199     // bits have unspecified values.
200     llvm::APInt BitsThisChar = Bits;
201     if (BitsThisChar.getBitWidth() < CharWidth)
202       BitsThisChar = BitsThisChar.zext(CharWidth);
203     if (CGM.getDataLayout().isBigEndian()) {
204       // Figure out how much to shift by. We may need to left-shift if we have
205       // less than one byte of Bits left.
206       int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar;
207       if (Shift > 0)
208         BitsThisChar.lshrInPlace(Shift);
209       else if (Shift < 0)
210         BitsThisChar = BitsThisChar.shl(-Shift);
211     } else {
212       BitsThisChar = BitsThisChar.shl(OffsetWithinChar);
213     }
214     if (BitsThisChar.getBitWidth() > CharWidth)
215       BitsThisChar = BitsThisChar.trunc(CharWidth);
216 
217     if (WantedBits == CharWidth) {
218       // Got a full byte: just add it directly.
219       add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
220           OffsetInChars, AllowOverwrite);
221     } else {
222       // Partial byte: update the existing integer if there is one. If we
223       // can't split out a 1-CharUnit range to update, then we can't add
224       // these bits and fail the entire constant emission.
225       llvm::Optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars);
226       if (!FirstElemToUpdate)
227         return false;
228       llvm::Optional<size_t> LastElemToUpdate =
229           splitAt(OffsetInChars + CharUnits::One());
230       if (!LastElemToUpdate)
231         return false;
232       assert(*LastElemToUpdate - *FirstElemToUpdate < 2 &&
233              "should have at most one element covering one byte");
234 
235       // Figure out which bits we want and discard the rest.
236       llvm::APInt UpdateMask(CharWidth, 0);
237       if (CGM.getDataLayout().isBigEndian())
238         UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits,
239                            CharWidth - OffsetWithinChar);
240       else
241         UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits);
242       BitsThisChar &= UpdateMask;
243 
244       if (*FirstElemToUpdate == *LastElemToUpdate ||
245           Elems[*FirstElemToUpdate]->isNullValue() ||
246           isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) {
247         // All existing bits are either zero or undef.
248         add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
249             OffsetInChars, /*AllowOverwrite*/ true);
250       } else {
251         llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate];
252         // In order to perform a partial update, we need the existing bitwise
253         // value, which we can only extract for a constant int.
254         auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate);
255         if (!CI)
256           return false;
257         // Because this is a 1-CharUnit range, the constant occupying it must
258         // be exactly one CharUnit wide.
259         assert(CI->getBitWidth() == CharWidth && "splitAt failed");
260         assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) &&
261                "unexpectedly overwriting bitfield");
262         BitsThisChar |= (CI->getValue() & ~UpdateMask);
263         ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar);
264       }
265     }
266 
267     // Stop if we've added all the bits.
268     if (WantedBits == Bits.getBitWidth())
269       break;
270 
271     // Remove the consumed bits from Bits.
272     if (!CGM.getDataLayout().isBigEndian())
273       Bits.lshrInPlace(WantedBits);
274     Bits = Bits.trunc(Bits.getBitWidth() - WantedBits);
275 
276     // The remanining bits go at the start of the following bytes.
277     OffsetWithinChar = 0;
278   }
279 
280   return true;
281 }
282 
283 /// Returns a position within Elems and Offsets such that all elements
284 /// before the returned index end before Pos and all elements at or after
285 /// the returned index begin at or after Pos. Splits elements as necessary
286 /// to ensure this. Returns None if we find something we can't split.
287 Optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) {
288   if (Pos >= Size)
289     return Offsets.size();
290 
291   while (true) {
292     auto FirstAfterPos = llvm::upper_bound(Offsets, Pos);
293     if (FirstAfterPos == Offsets.begin())
294       return 0;
295 
296     // If we already have an element starting at Pos, we're done.
297     size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1;
298     if (Offsets[LastAtOrBeforePosIndex] == Pos)
299       return LastAtOrBeforePosIndex;
300 
301     // We found an element starting before Pos. Check for overlap.
302     if (Offsets[LastAtOrBeforePosIndex] +
303         getSize(Elems[LastAtOrBeforePosIndex]) <= Pos)
304       return LastAtOrBeforePosIndex + 1;
305 
306     // Try to decompose it into smaller constants.
307     if (!split(LastAtOrBeforePosIndex, Pos))
308       return None;
309   }
310 }
311 
312 /// Split the constant at index Index, if possible. Return true if we did.
313 /// Hint indicates the location at which we'd like to split, but may be
314 /// ignored.
315 bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) {
316   NaturalLayout = false;
317   llvm::Constant *C = Elems[Index];
318   CharUnits Offset = Offsets[Index];
319 
320   if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) {
321     // Expand the sequence into its contained elements.
322     // FIXME: This assumes vector elements are byte-sized.
323     replace(Elems, Index, Index + 1,
324             llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
325                             [&](unsigned Op) { return CA->getOperand(Op); }));
326     if (isa<llvm::ArrayType>(CA->getType()) ||
327         isa<llvm::VectorType>(CA->getType())) {
328       // Array or vector.
329       llvm::Type *ElemTy =
330           llvm::GetElementPtrInst::getTypeAtIndex(CA->getType(), (uint64_t)0);
331       CharUnits ElemSize = getSize(ElemTy);
332       replace(
333           Offsets, Index, Index + 1,
334           llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
335                           [&](unsigned Op) { return Offset + Op * ElemSize; }));
336     } else {
337       // Must be a struct.
338       auto *ST = cast<llvm::StructType>(CA->getType());
339       const llvm::StructLayout *Layout =
340           CGM.getDataLayout().getStructLayout(ST);
341       replace(Offsets, Index, Index + 1,
342               llvm::map_range(
343                   llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) {
344                     return Offset + CharUnits::fromQuantity(
345                                         Layout->getElementOffset(Op));
346                   }));
347     }
348     return true;
349   }
350 
351   if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) {
352     // Expand the sequence into its contained elements.
353     // FIXME: This assumes vector elements are byte-sized.
354     // FIXME: If possible, split into two ConstantDataSequentials at Hint.
355     CharUnits ElemSize = getSize(CDS->getElementType());
356     replace(Elems, Index, Index + 1,
357             llvm::map_range(llvm::seq(0u, CDS->getNumElements()),
358                             [&](unsigned Elem) {
359                               return CDS->getElementAsConstant(Elem);
360                             }));
361     replace(Offsets, Index, Index + 1,
362             llvm::map_range(
363                 llvm::seq(0u, CDS->getNumElements()),
364                 [&](unsigned Elem) { return Offset + Elem * ElemSize; }));
365     return true;
366   }
367 
368   if (isa<llvm::ConstantAggregateZero>(C)) {
369     // Split into two zeros at the hinted offset.
370     CharUnits ElemSize = getSize(C);
371     assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split");
372     replace(Elems, Index, Index + 1,
373             {getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)});
374     replace(Offsets, Index, Index + 1, {Offset, Hint});
375     return true;
376   }
377 
378   if (isa<llvm::UndefValue>(C)) {
379     // Drop undef; it doesn't contribute to the final layout.
380     replace(Elems, Index, Index + 1, {});
381     replace(Offsets, Index, Index + 1, {});
382     return true;
383   }
384 
385   // FIXME: We could split a ConstantInt if the need ever arose.
386   // We don't need to do this to handle bit-fields because we always eagerly
387   // split them into 1-byte chunks.
388 
389   return false;
390 }
391 
392 static llvm::Constant *
393 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
394                   llvm::Type *CommonElementType, unsigned ArrayBound,
395                   SmallVectorImpl<llvm::Constant *> &Elements,
396                   llvm::Constant *Filler);
397 
398 llvm::Constant *ConstantAggregateBuilder::buildFrom(
399     CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems,
400     ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size,
401     bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) {
402   ConstantAggregateBuilderUtils Utils(CGM);
403 
404   if (Elems.empty())
405     return llvm::UndefValue::get(DesiredTy);
406 
407   auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; };
408 
409   // If we want an array type, see if all the elements are the same type and
410   // appropriately spaced.
411   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) {
412     assert(!AllowOversized && "oversized array emission not supported");
413 
414     bool CanEmitArray = true;
415     llvm::Type *CommonType = Elems[0]->getType();
416     llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType);
417     CharUnits ElemSize = Utils.getSize(ATy->getElementType());
418     SmallVector<llvm::Constant*, 32> ArrayElements;
419     for (size_t I = 0; I != Elems.size(); ++I) {
420       // Skip zeroes; we'll use a zero value as our array filler.
421       if (Elems[I]->isNullValue())
422         continue;
423 
424       // All remaining elements must be the same type.
425       if (Elems[I]->getType() != CommonType ||
426           Offset(I) % ElemSize != 0) {
427         CanEmitArray = false;
428         break;
429       }
430       ArrayElements.resize(Offset(I) / ElemSize + 1, Filler);
431       ArrayElements.back() = Elems[I];
432     }
433 
434     if (CanEmitArray) {
435       return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(),
436                                ArrayElements, Filler);
437     }
438 
439     // Can't emit as an array, carry on to emit as a struct.
440   }
441 
442   CharUnits DesiredSize = Utils.getSize(DesiredTy);
443   CharUnits Align = CharUnits::One();
444   for (llvm::Constant *C : Elems)
445     Align = std::max(Align, Utils.getAlignment(C));
446   CharUnits AlignedSize = Size.alignTo(Align);
447 
448   bool Packed = false;
449   ArrayRef<llvm::Constant*> UnpackedElems = Elems;
450   llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage;
451   if ((DesiredSize < AlignedSize && !AllowOversized) ||
452       DesiredSize.alignTo(Align) != DesiredSize) {
453     // The natural layout would be the wrong size; force use of a packed layout.
454     NaturalLayout = false;
455     Packed = true;
456   } else if (DesiredSize > AlignedSize) {
457     // The constant would be too small. Add padding to fix it.
458     UnpackedElemStorage.assign(Elems.begin(), Elems.end());
459     UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size));
460     UnpackedElems = UnpackedElemStorage;
461   }
462 
463   // If we don't have a natural layout, insert padding as necessary.
464   // As we go, double-check to see if we can actually just emit Elems
465   // as a non-packed struct and do so opportunistically if possible.
466   llvm::SmallVector<llvm::Constant*, 32> PackedElems;
467   if (!NaturalLayout) {
468     CharUnits SizeSoFar = CharUnits::Zero();
469     for (size_t I = 0; I != Elems.size(); ++I) {
470       CharUnits Align = Utils.getAlignment(Elems[I]);
471       CharUnits NaturalOffset = SizeSoFar.alignTo(Align);
472       CharUnits DesiredOffset = Offset(I);
473       assert(DesiredOffset >= SizeSoFar && "elements out of order");
474 
475       if (DesiredOffset != NaturalOffset)
476         Packed = true;
477       if (DesiredOffset != SizeSoFar)
478         PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar));
479       PackedElems.push_back(Elems[I]);
480       SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]);
481     }
482     // If we're using the packed layout, pad it out to the desired size if
483     // necessary.
484     if (Packed) {
485       assert((SizeSoFar <= DesiredSize || AllowOversized) &&
486              "requested size is too small for contents");
487       if (SizeSoFar < DesiredSize)
488         PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar));
489     }
490   }
491 
492   llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements(
493       CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed);
494 
495   // Pick the type to use.  If the type is layout identical to the desired
496   // type then use it, otherwise use whatever the builder produced for us.
497   if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) {
498     if (DesiredSTy->isLayoutIdentical(STy))
499       STy = DesiredSTy;
500   }
501 
502   return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems);
503 }
504 
505 void ConstantAggregateBuilder::condense(CharUnits Offset,
506                                         llvm::Type *DesiredTy) {
507   CharUnits Size = getSize(DesiredTy);
508 
509   llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset);
510   if (!FirstElemToReplace)
511     return;
512   size_t First = *FirstElemToReplace;
513 
514   llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + Size);
515   if (!LastElemToReplace)
516     return;
517   size_t Last = *LastElemToReplace;
518 
519   size_t Length = Last - First;
520   if (Length == 0)
521     return;
522 
523   if (Length == 1 && Offsets[First] == Offset &&
524       getSize(Elems[First]) == Size) {
525     // Re-wrap single element structs if necessary. Otherwise, leave any single
526     // element constant of the right size alone even if it has the wrong type.
527     auto *STy = dyn_cast<llvm::StructType>(DesiredTy);
528     if (STy && STy->getNumElements() == 1 &&
529         STy->getElementType(0) == Elems[First]->getType())
530       Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]);
531     return;
532   }
533 
534   llvm::Constant *Replacement = buildFrom(
535       CGM, makeArrayRef(Elems).slice(First, Length),
536       makeArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy),
537       /*known to have natural layout=*/false, DesiredTy, false);
538   replace(Elems, First, Last, {Replacement});
539   replace(Offsets, First, Last, {Offset});
540 }
541 
542 //===----------------------------------------------------------------------===//
543 //                            ConstStructBuilder
544 //===----------------------------------------------------------------------===//
545 
546 class ConstStructBuilder {
547   CodeGenModule &CGM;
548   ConstantEmitter &Emitter;
549   ConstantAggregateBuilder &Builder;
550   CharUnits StartOffset;
551 
552 public:
553   static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
554                                      InitListExpr *ILE, QualType StructTy);
555   static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
556                                      const APValue &Value, QualType ValTy);
557   static bool UpdateStruct(ConstantEmitter &Emitter,
558                            ConstantAggregateBuilder &Const, CharUnits Offset,
559                            InitListExpr *Updater);
560 
561 private:
562   ConstStructBuilder(ConstantEmitter &Emitter,
563                      ConstantAggregateBuilder &Builder, CharUnits StartOffset)
564       : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder),
565         StartOffset(StartOffset) {}
566 
567   bool AppendField(const FieldDecl *Field, uint64_t FieldOffset,
568                    llvm::Constant *InitExpr, bool AllowOverwrite = false);
569 
570   bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst,
571                    bool AllowOverwrite = false);
572 
573   bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
574                       llvm::ConstantInt *InitExpr, bool AllowOverwrite = false);
575 
576   bool Build(InitListExpr *ILE, bool AllowOverwrite);
577   bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
578              const CXXRecordDecl *VTableClass, CharUnits BaseOffset);
579   llvm::Constant *Finalize(QualType Ty);
580 };
581 
582 bool ConstStructBuilder::AppendField(
583     const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst,
584     bool AllowOverwrite) {
585   const ASTContext &Context = CGM.getContext();
586 
587   CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
588 
589   return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite);
590 }
591 
592 bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars,
593                                      llvm::Constant *InitCst,
594                                      bool AllowOverwrite) {
595   return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite);
596 }
597 
598 bool ConstStructBuilder::AppendBitField(
599     const FieldDecl *Field, uint64_t FieldOffset, llvm::ConstantInt *CI,
600     bool AllowOverwrite) {
601   const CGRecordLayout &RL =
602       CGM.getTypes().getCGRecordLayout(Field->getParent());
603   const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field);
604   llvm::APInt FieldValue = CI->getValue();
605 
606   // Promote the size of FieldValue if necessary
607   // FIXME: This should never occur, but currently it can because initializer
608   // constants are cast to bool, and because clang is not enforcing bitfield
609   // width limits.
610   if (Info.Size > FieldValue.getBitWidth())
611     FieldValue = FieldValue.zext(Info.Size);
612 
613   // Truncate the size of FieldValue to the bit field size.
614   if (Info.Size < FieldValue.getBitWidth())
615     FieldValue = FieldValue.trunc(Info.Size);
616 
617   return Builder.addBits(FieldValue,
618                          CGM.getContext().toBits(StartOffset) + FieldOffset,
619                          AllowOverwrite);
620 }
621 
622 static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter,
623                                       ConstantAggregateBuilder &Const,
624                                       CharUnits Offset, QualType Type,
625                                       InitListExpr *Updater) {
626   if (Type->isRecordType())
627     return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater);
628 
629   auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type);
630   if (!CAT)
631     return false;
632   QualType ElemType = CAT->getElementType();
633   CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType);
634   llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType);
635 
636   llvm::Constant *FillC = nullptr;
637   if (Expr *Filler = Updater->getArrayFiller()) {
638     if (!isa<NoInitExpr>(Filler)) {
639       FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType);
640       if (!FillC)
641         return false;
642     }
643   }
644 
645   unsigned NumElementsToUpdate =
646       FillC ? CAT->getSize().getZExtValue() : Updater->getNumInits();
647   for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) {
648     Expr *Init = nullptr;
649     if (I < Updater->getNumInits())
650       Init = Updater->getInit(I);
651 
652     if (!Init && FillC) {
653       if (!Const.add(FillC, Offset, true))
654         return false;
655     } else if (!Init || isa<NoInitExpr>(Init)) {
656       continue;
657     } else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) {
658       if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType,
659                                      ChildILE))
660         return false;
661       // Attempt to reduce the array element to a single constant if necessary.
662       Const.condense(Offset, ElemTy);
663     } else {
664       llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType);
665       if (!Const.add(Val, Offset, true))
666         return false;
667     }
668   }
669 
670   return true;
671 }
672 
673 bool ConstStructBuilder::Build(InitListExpr *ILE, bool AllowOverwrite) {
674   RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
675   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
676 
677   unsigned FieldNo = -1;
678   unsigned ElementNo = 0;
679 
680   // Bail out if we have base classes. We could support these, but they only
681   // arise in C++1z where we will have already constant folded most interesting
682   // cases. FIXME: There are still a few more cases we can handle this way.
683   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
684     if (CXXRD->getNumBases())
685       return false;
686 
687   for (FieldDecl *Field : RD->fields()) {
688     ++FieldNo;
689 
690     // If this is a union, skip all the fields that aren't being initialized.
691     if (RD->isUnion() &&
692         !declaresSameEntity(ILE->getInitializedFieldInUnion(), Field))
693       continue;
694 
695     // Don't emit anonymous bitfields or zero-sized fields.
696     if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext()))
697       continue;
698 
699     // Get the initializer.  A struct can include fields without initializers,
700     // we just use explicit null values for them.
701     Expr *Init = nullptr;
702     if (ElementNo < ILE->getNumInits())
703       Init = ILE->getInit(ElementNo++);
704     if (Init && isa<NoInitExpr>(Init))
705       continue;
706 
707     // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr
708     // represents additional overwriting of our current constant value, and not
709     // a new constant to emit independently.
710     if (AllowOverwrite &&
711         (Field->getType()->isArrayType() || Field->getType()->isRecordType())) {
712       if (auto *SubILE = dyn_cast<InitListExpr>(Init)) {
713         CharUnits Offset = CGM.getContext().toCharUnitsFromBits(
714             Layout.getFieldOffset(FieldNo));
715         if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset,
716                                        Field->getType(), SubILE))
717           return false;
718         // If we split apart the field's value, try to collapse it down to a
719         // single value now.
720         Builder.condense(StartOffset + Offset,
721                          CGM.getTypes().ConvertTypeForMem(Field->getType()));
722         continue;
723       }
724     }
725 
726     llvm::Constant *EltInit =
727         Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType())
728              : Emitter.emitNullForMemory(Field->getType());
729     if (!EltInit)
730       return false;
731 
732     if (!Field->isBitField()) {
733       // Handle non-bitfield members.
734       if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit,
735                        AllowOverwrite))
736         return false;
737       // After emitting a non-empty field with [[no_unique_address]], we may
738       // need to overwrite its tail padding.
739       if (Field->hasAttr<NoUniqueAddressAttr>())
740         AllowOverwrite = true;
741     } else {
742       // Otherwise we have a bitfield.
743       if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) {
744         if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI,
745                             AllowOverwrite))
746           return false;
747       } else {
748         // We are trying to initialize a bitfield with a non-trivial constant,
749         // this must require run-time code.
750         return false;
751       }
752     }
753   }
754 
755   return true;
756 }
757 
758 namespace {
759 struct BaseInfo {
760   BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
761     : Decl(Decl), Offset(Offset), Index(Index) {
762   }
763 
764   const CXXRecordDecl *Decl;
765   CharUnits Offset;
766   unsigned Index;
767 
768   bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
769 };
770 }
771 
772 bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
773                                bool IsPrimaryBase,
774                                const CXXRecordDecl *VTableClass,
775                                CharUnits Offset) {
776   const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
777 
778   if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
779     // Add a vtable pointer, if we need one and it hasn't already been added.
780     if (Layout.hasOwnVFPtr()) {
781       llvm::Constant *VTableAddressPoint =
782           CGM.getCXXABI().getVTableAddressPointForConstExpr(
783               BaseSubobject(CD, Offset), VTableClass);
784       if (!AppendBytes(Offset, VTableAddressPoint))
785         return false;
786     }
787 
788     // Accumulate and sort bases, in order to visit them in address order, which
789     // may not be the same as declaration order.
790     SmallVector<BaseInfo, 8> Bases;
791     Bases.reserve(CD->getNumBases());
792     unsigned BaseNo = 0;
793     for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
794          BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
795       assert(!Base->isVirtual() && "should not have virtual bases here");
796       const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
797       CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
798       Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo));
799     }
800     llvm::stable_sort(Bases);
801 
802     for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
803       BaseInfo &Base = Bases[I];
804 
805       bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
806       Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase,
807             VTableClass, Offset + Base.Offset);
808     }
809   }
810 
811   unsigned FieldNo = 0;
812   uint64_t OffsetBits = CGM.getContext().toBits(Offset);
813 
814   bool AllowOverwrite = false;
815   for (RecordDecl::field_iterator Field = RD->field_begin(),
816        FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
817     // If this is a union, skip all the fields that aren't being initialized.
818     if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field))
819       continue;
820 
821     // Don't emit anonymous bitfields or zero-sized fields.
822     if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext()))
823       continue;
824 
825     // Emit the value of the initializer.
826     const APValue &FieldValue =
827       RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
828     llvm::Constant *EltInit =
829       Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType());
830     if (!EltInit)
831       return false;
832 
833     if (!Field->isBitField()) {
834       // Handle non-bitfield members.
835       if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
836                        EltInit, AllowOverwrite))
837         return false;
838       // After emitting a non-empty field with [[no_unique_address]], we may
839       // need to overwrite its tail padding.
840       if (Field->hasAttr<NoUniqueAddressAttr>())
841         AllowOverwrite = true;
842     } else {
843       // Otherwise we have a bitfield.
844       if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
845                           cast<llvm::ConstantInt>(EltInit), AllowOverwrite))
846         return false;
847     }
848   }
849 
850   return true;
851 }
852 
853 llvm::Constant *ConstStructBuilder::Finalize(QualType Type) {
854   RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
855   llvm::Type *ValTy = CGM.getTypes().ConvertType(Type);
856   return Builder.build(ValTy, RD->hasFlexibleArrayMember());
857 }
858 
859 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
860                                                 InitListExpr *ILE,
861                                                 QualType ValTy) {
862   ConstantAggregateBuilder Const(Emitter.CGM);
863   ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
864 
865   if (!Builder.Build(ILE, /*AllowOverwrite*/false))
866     return nullptr;
867 
868   return Builder.Finalize(ValTy);
869 }
870 
871 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
872                                                 const APValue &Val,
873                                                 QualType ValTy) {
874   ConstantAggregateBuilder Const(Emitter.CGM);
875   ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
876 
877   const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
878   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
879   if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero()))
880     return nullptr;
881 
882   return Builder.Finalize(ValTy);
883 }
884 
885 bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter,
886                                       ConstantAggregateBuilder &Const,
887                                       CharUnits Offset, InitListExpr *Updater) {
888   return ConstStructBuilder(Emitter, Const, Offset)
889       .Build(Updater, /*AllowOverwrite*/ true);
890 }
891 
892 //===----------------------------------------------------------------------===//
893 //                             ConstExprEmitter
894 //===----------------------------------------------------------------------===//
895 
896 static ConstantAddress tryEmitGlobalCompoundLiteral(CodeGenModule &CGM,
897                                                     CodeGenFunction *CGF,
898                                               const CompoundLiteralExpr *E) {
899   CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType());
900   if (llvm::GlobalVariable *Addr =
901           CGM.getAddrOfConstantCompoundLiteralIfEmitted(E))
902     return ConstantAddress(Addr, Align);
903 
904   LangAS addressSpace = E->getType().getAddressSpace();
905 
906   ConstantEmitter emitter(CGM, CGF);
907   llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(),
908                                                     addressSpace, E->getType());
909   if (!C) {
910     assert(!E->isFileScope() &&
911            "file-scope compound literal did not have constant initializer!");
912     return ConstantAddress::invalid();
913   }
914 
915   auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(),
916                                      CGM.isTypeConstant(E->getType(), true),
917                                      llvm::GlobalValue::InternalLinkage,
918                                      C, ".compoundliteral", nullptr,
919                                      llvm::GlobalVariable::NotThreadLocal,
920                     CGM.getContext().getTargetAddressSpace(addressSpace));
921   emitter.finalize(GV);
922   GV->setAlignment(Align.getAsAlign());
923   CGM.setAddrOfConstantCompoundLiteral(E, GV);
924   return ConstantAddress(GV, Align);
925 }
926 
927 static llvm::Constant *
928 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
929                   llvm::Type *CommonElementType, unsigned ArrayBound,
930                   SmallVectorImpl<llvm::Constant *> &Elements,
931                   llvm::Constant *Filler) {
932   // Figure out how long the initial prefix of non-zero elements is.
933   unsigned NonzeroLength = ArrayBound;
934   if (Elements.size() < NonzeroLength && Filler->isNullValue())
935     NonzeroLength = Elements.size();
936   if (NonzeroLength == Elements.size()) {
937     while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue())
938       --NonzeroLength;
939   }
940 
941   if (NonzeroLength == 0)
942     return llvm::ConstantAggregateZero::get(DesiredType);
943 
944   // Add a zeroinitializer array filler if we have lots of trailing zeroes.
945   unsigned TrailingZeroes = ArrayBound - NonzeroLength;
946   if (TrailingZeroes >= 8) {
947     assert(Elements.size() >= NonzeroLength &&
948            "missing initializer for non-zero element");
949 
950     // If all the elements had the same type up to the trailing zeroes, emit a
951     // struct of two arrays (the nonzero data and the zeroinitializer).
952     if (CommonElementType && NonzeroLength >= 8) {
953       llvm::Constant *Initial = llvm::ConstantArray::get(
954           llvm::ArrayType::get(CommonElementType, NonzeroLength),
955           makeArrayRef(Elements).take_front(NonzeroLength));
956       Elements.resize(2);
957       Elements[0] = Initial;
958     } else {
959       Elements.resize(NonzeroLength + 1);
960     }
961 
962     auto *FillerType =
963         CommonElementType ? CommonElementType : DesiredType->getElementType();
964     FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes);
965     Elements.back() = llvm::ConstantAggregateZero::get(FillerType);
966     CommonElementType = nullptr;
967   } else if (Elements.size() != ArrayBound) {
968     // Otherwise pad to the right size with the filler if necessary.
969     Elements.resize(ArrayBound, Filler);
970     if (Filler->getType() != CommonElementType)
971       CommonElementType = nullptr;
972   }
973 
974   // If all elements have the same type, just emit an array constant.
975   if (CommonElementType)
976     return llvm::ConstantArray::get(
977         llvm::ArrayType::get(CommonElementType, ArrayBound), Elements);
978 
979   // We have mixed types. Use a packed struct.
980   llvm::SmallVector<llvm::Type *, 16> Types;
981   Types.reserve(Elements.size());
982   for (llvm::Constant *Elt : Elements)
983     Types.push_back(Elt->getType());
984   llvm::StructType *SType =
985       llvm::StructType::get(CGM.getLLVMContext(), Types, true);
986   return llvm::ConstantStruct::get(SType, Elements);
987 }
988 
989 // This class only needs to handle arrays, structs and unions. Outside C++11
990 // mode, we don't currently constant fold those types.  All other types are
991 // handled by constant folding.
992 //
993 // Constant folding is currently missing support for a few features supported
994 // here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr.
995 class ConstExprEmitter :
996   public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> {
997   CodeGenModule &CGM;
998   ConstantEmitter &Emitter;
999   llvm::LLVMContext &VMContext;
1000 public:
1001   ConstExprEmitter(ConstantEmitter &emitter)
1002     : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) {
1003   }
1004 
1005   //===--------------------------------------------------------------------===//
1006   //                            Visitor Methods
1007   //===--------------------------------------------------------------------===//
1008 
1009   llvm::Constant *VisitStmt(Stmt *S, QualType T) {
1010     return nullptr;
1011   }
1012 
1013   llvm::Constant *VisitConstantExpr(ConstantExpr *CE, QualType T) {
1014     if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(CE))
1015       return Result;
1016     return Visit(CE->getSubExpr(), T);
1017   }
1018 
1019   llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) {
1020     return Visit(PE->getSubExpr(), T);
1021   }
1022 
1023   llvm::Constant *
1024   VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE,
1025                                     QualType T) {
1026     return Visit(PE->getReplacement(), T);
1027   }
1028 
1029   llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE,
1030                                             QualType T) {
1031     return Visit(GE->getResultExpr(), T);
1032   }
1033 
1034   llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) {
1035     return Visit(CE->getChosenSubExpr(), T);
1036   }
1037 
1038   llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) {
1039     return Visit(E->getInitializer(), T);
1040   }
1041 
1042   llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) {
1043     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
1044       CGM.EmitExplicitCastExprType(ECE, Emitter.CGF);
1045     Expr *subExpr = E->getSubExpr();
1046 
1047     switch (E->getCastKind()) {
1048     case CK_ToUnion: {
1049       // GCC cast to union extension
1050       assert(E->getType()->isUnionType() &&
1051              "Destination type is not union type!");
1052 
1053       auto field = E->getTargetUnionField();
1054 
1055       auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType());
1056       if (!C) return nullptr;
1057 
1058       auto destTy = ConvertType(destType);
1059       if (C->getType() == destTy) return C;
1060 
1061       // Build a struct with the union sub-element as the first member,
1062       // and padded to the appropriate size.
1063       SmallVector<llvm::Constant*, 2> Elts;
1064       SmallVector<llvm::Type*, 2> Types;
1065       Elts.push_back(C);
1066       Types.push_back(C->getType());
1067       unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType());
1068       unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy);
1069 
1070       assert(CurSize <= TotalSize && "Union size mismatch!");
1071       if (unsigned NumPadBytes = TotalSize - CurSize) {
1072         llvm::Type *Ty = CGM.CharTy;
1073         if (NumPadBytes > 1)
1074           Ty = llvm::ArrayType::get(Ty, NumPadBytes);
1075 
1076         Elts.push_back(llvm::UndefValue::get(Ty));
1077         Types.push_back(Ty);
1078       }
1079 
1080       llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false);
1081       return llvm::ConstantStruct::get(STy, Elts);
1082     }
1083 
1084     case CK_AddressSpaceConversion: {
1085       auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1086       if (!C) return nullptr;
1087       LangAS destAS = E->getType()->getPointeeType().getAddressSpace();
1088       LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace();
1089       llvm::Type *destTy = ConvertType(E->getType());
1090       return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS,
1091                                                              destAS, destTy);
1092     }
1093 
1094     case CK_LValueToRValue:
1095     case CK_AtomicToNonAtomic:
1096     case CK_NonAtomicToAtomic:
1097     case CK_NoOp:
1098     case CK_ConstructorConversion:
1099       return Visit(subExpr, destType);
1100 
1101     case CK_IntToOCLSampler:
1102       llvm_unreachable("global sampler variables are not generated");
1103 
1104     case CK_Dependent: llvm_unreachable("saw dependent cast!");
1105 
1106     case CK_BuiltinFnToFnPtr:
1107       llvm_unreachable("builtin functions are handled elsewhere");
1108 
1109     case CK_ReinterpretMemberPointer:
1110     case CK_DerivedToBaseMemberPointer:
1111     case CK_BaseToDerivedMemberPointer: {
1112       auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1113       if (!C) return nullptr;
1114       return CGM.getCXXABI().EmitMemberPointerConversion(E, C);
1115     }
1116 
1117     // These will never be supported.
1118     case CK_ObjCObjectLValueCast:
1119     case CK_ARCProduceObject:
1120     case CK_ARCConsumeObject:
1121     case CK_ARCReclaimReturnedObject:
1122     case CK_ARCExtendBlockObject:
1123     case CK_CopyAndAutoreleaseBlockObject:
1124       return nullptr;
1125 
1126     // These don't need to be handled here because Evaluate knows how to
1127     // evaluate them in the cases where they can be folded.
1128     case CK_BitCast:
1129     case CK_ToVoid:
1130     case CK_Dynamic:
1131     case CK_LValueBitCast:
1132     case CK_LValueToRValueBitCast:
1133     case CK_NullToMemberPointer:
1134     case CK_UserDefinedConversion:
1135     case CK_CPointerToObjCPointerCast:
1136     case CK_BlockPointerToObjCPointerCast:
1137     case CK_AnyPointerToBlockPointerCast:
1138     case CK_ArrayToPointerDecay:
1139     case CK_FunctionToPointerDecay:
1140     case CK_BaseToDerived:
1141     case CK_DerivedToBase:
1142     case CK_UncheckedDerivedToBase:
1143     case CK_MemberPointerToBoolean:
1144     case CK_VectorSplat:
1145     case CK_FloatingRealToComplex:
1146     case CK_FloatingComplexToReal:
1147     case CK_FloatingComplexToBoolean:
1148     case CK_FloatingComplexCast:
1149     case CK_FloatingComplexToIntegralComplex:
1150     case CK_IntegralRealToComplex:
1151     case CK_IntegralComplexToReal:
1152     case CK_IntegralComplexToBoolean:
1153     case CK_IntegralComplexCast:
1154     case CK_IntegralComplexToFloatingComplex:
1155     case CK_PointerToIntegral:
1156     case CK_PointerToBoolean:
1157     case CK_NullToPointer:
1158     case CK_IntegralCast:
1159     case CK_BooleanToSignedIntegral:
1160     case CK_IntegralToPointer:
1161     case CK_IntegralToBoolean:
1162     case CK_IntegralToFloating:
1163     case CK_FloatingToIntegral:
1164     case CK_FloatingToBoolean:
1165     case CK_FloatingCast:
1166     case CK_FloatingToFixedPoint:
1167     case CK_FixedPointToFloating:
1168     case CK_FixedPointCast:
1169     case CK_FixedPointToBoolean:
1170     case CK_FixedPointToIntegral:
1171     case CK_IntegralToFixedPoint:
1172     case CK_ZeroToOCLOpaqueType:
1173     case CK_MatrixCast:
1174       return nullptr;
1175     }
1176     llvm_unreachable("Invalid CastKind");
1177   }
1178 
1179   llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) {
1180     // No need for a DefaultInitExprScope: we don't handle 'this' in a
1181     // constant expression.
1182     return Visit(DIE->getExpr(), T);
1183   }
1184 
1185   llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) {
1186     return Visit(E->getSubExpr(), T);
1187   }
1188 
1189   llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E,
1190                                                 QualType T) {
1191     return Visit(E->getSubExpr(), T);
1192   }
1193 
1194   llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) {
1195     auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType());
1196     assert(CAT && "can't emit array init for non-constant-bound array");
1197     unsigned NumInitElements = ILE->getNumInits();
1198     unsigned NumElements = CAT->getSize().getZExtValue();
1199 
1200     // Initialising an array requires us to automatically
1201     // initialise any elements that have not been initialised explicitly
1202     unsigned NumInitableElts = std::min(NumInitElements, NumElements);
1203 
1204     QualType EltType = CAT->getElementType();
1205 
1206     // Initialize remaining array elements.
1207     llvm::Constant *fillC = nullptr;
1208     if (Expr *filler = ILE->getArrayFiller()) {
1209       fillC = Emitter.tryEmitAbstractForMemory(filler, EltType);
1210       if (!fillC)
1211         return nullptr;
1212     }
1213 
1214     // Copy initializer elements.
1215     SmallVector<llvm::Constant*, 16> Elts;
1216     if (fillC && fillC->isNullValue())
1217       Elts.reserve(NumInitableElts + 1);
1218     else
1219       Elts.reserve(NumElements);
1220 
1221     llvm::Type *CommonElementType = nullptr;
1222     for (unsigned i = 0; i < NumInitableElts; ++i) {
1223       Expr *Init = ILE->getInit(i);
1224       llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType);
1225       if (!C)
1226         return nullptr;
1227       if (i == 0)
1228         CommonElementType = C->getType();
1229       else if (C->getType() != CommonElementType)
1230         CommonElementType = nullptr;
1231       Elts.push_back(C);
1232     }
1233 
1234     llvm::ArrayType *Desired =
1235         cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType()));
1236     return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
1237                              fillC);
1238   }
1239 
1240   llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) {
1241     return ConstStructBuilder::BuildStruct(Emitter, ILE, T);
1242   }
1243 
1244   llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E,
1245                                              QualType T) {
1246     return CGM.EmitNullConstant(T);
1247   }
1248 
1249   llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) {
1250     if (ILE->isTransparent())
1251       return Visit(ILE->getInit(0), T);
1252 
1253     if (ILE->getType()->isArrayType())
1254       return EmitArrayInitialization(ILE, T);
1255 
1256     if (ILE->getType()->isRecordType())
1257       return EmitRecordInitialization(ILE, T);
1258 
1259     return nullptr;
1260   }
1261 
1262   llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E,
1263                                                 QualType destType) {
1264     auto C = Visit(E->getBase(), destType);
1265     if (!C)
1266       return nullptr;
1267 
1268     ConstantAggregateBuilder Const(CGM);
1269     Const.add(C, CharUnits::Zero(), false);
1270 
1271     if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType,
1272                                    E->getUpdater()))
1273       return nullptr;
1274 
1275     llvm::Type *ValTy = CGM.getTypes().ConvertType(destType);
1276     bool HasFlexibleArray = false;
1277     if (auto *RT = destType->getAs<RecordType>())
1278       HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember();
1279     return Const.build(ValTy, HasFlexibleArray);
1280   }
1281 
1282   llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) {
1283     if (!E->getConstructor()->isTrivial())
1284       return nullptr;
1285 
1286     // Only default and copy/move constructors can be trivial.
1287     if (E->getNumArgs()) {
1288       assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
1289       assert(E->getConstructor()->isCopyOrMoveConstructor() &&
1290              "trivial ctor has argument but isn't a copy/move ctor");
1291 
1292       Expr *Arg = E->getArg(0);
1293       assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
1294              "argument to copy ctor is of wrong type");
1295 
1296       return Visit(Arg, Ty);
1297     }
1298 
1299     return CGM.EmitNullConstant(Ty);
1300   }
1301 
1302   llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) {
1303     // This is a string literal initializing an array in an initializer.
1304     return CGM.GetConstantArrayFromStringLiteral(E);
1305   }
1306 
1307   llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) {
1308     // This must be an @encode initializing an array in a static initializer.
1309     // Don't emit it as the address of the string, emit the string data itself
1310     // as an inline array.
1311     std::string Str;
1312     CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1313     const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T);
1314 
1315     // Resize the string to the right size, adding zeros at the end, or
1316     // truncating as needed.
1317     Str.resize(CAT->getSize().getZExtValue(), '\0');
1318     return llvm::ConstantDataArray::getString(VMContext, Str, false);
1319   }
1320 
1321   llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) {
1322     return Visit(E->getSubExpr(), T);
1323   }
1324 
1325   // Utility methods
1326   llvm::Type *ConvertType(QualType T) {
1327     return CGM.getTypes().ConvertType(T);
1328   }
1329 };
1330 
1331 }  // end anonymous namespace.
1332 
1333 llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C,
1334                                                         AbstractState saved) {
1335   Abstract = saved.OldValue;
1336 
1337   assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() &&
1338          "created a placeholder while doing an abstract emission?");
1339 
1340   // No validation necessary for now.
1341   // No cleanup to do for now.
1342   return C;
1343 }
1344 
1345 llvm::Constant *
1346 ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) {
1347   auto state = pushAbstract();
1348   auto C = tryEmitPrivateForVarInit(D);
1349   return validateAndPopAbstract(C, state);
1350 }
1351 
1352 llvm::Constant *
1353 ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) {
1354   auto state = pushAbstract();
1355   auto C = tryEmitPrivate(E, destType);
1356   return validateAndPopAbstract(C, state);
1357 }
1358 
1359 llvm::Constant *
1360 ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) {
1361   auto state = pushAbstract();
1362   auto C = tryEmitPrivate(value, destType);
1363   return validateAndPopAbstract(C, state);
1364 }
1365 
1366 llvm::Constant *ConstantEmitter::tryEmitConstantExpr(const ConstantExpr *CE) {
1367   if (!CE->hasAPValueResult())
1368     return nullptr;
1369   const Expr *Inner = CE->getSubExpr()->IgnoreImplicit();
1370   QualType RetType;
1371   if (auto *Call = dyn_cast<CallExpr>(Inner))
1372     RetType = Call->getCallReturnType(CGF->getContext());
1373   else if (auto *Ctor = dyn_cast<CXXConstructExpr>(Inner))
1374     RetType = Ctor->getType();
1375   llvm::Constant *Res =
1376       emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), RetType);
1377   return Res;
1378 }
1379 
1380 llvm::Constant *
1381 ConstantEmitter::emitAbstract(const Expr *E, QualType destType) {
1382   auto state = pushAbstract();
1383   auto C = tryEmitPrivate(E, destType);
1384   C = validateAndPopAbstract(C, state);
1385   if (!C) {
1386     CGM.Error(E->getExprLoc(),
1387               "internal error: could not emit constant value \"abstractly\"");
1388     C = CGM.EmitNullConstant(destType);
1389   }
1390   return C;
1391 }
1392 
1393 llvm::Constant *
1394 ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value,
1395                               QualType destType) {
1396   auto state = pushAbstract();
1397   auto C = tryEmitPrivate(value, destType);
1398   C = validateAndPopAbstract(C, state);
1399   if (!C) {
1400     CGM.Error(loc,
1401               "internal error: could not emit constant value \"abstractly\"");
1402     C = CGM.EmitNullConstant(destType);
1403   }
1404   return C;
1405 }
1406 
1407 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) {
1408   initializeNonAbstract(D.getType().getAddressSpace());
1409   return markIfFailed(tryEmitPrivateForVarInit(D));
1410 }
1411 
1412 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E,
1413                                                        LangAS destAddrSpace,
1414                                                        QualType destType) {
1415   initializeNonAbstract(destAddrSpace);
1416   return markIfFailed(tryEmitPrivateForMemory(E, destType));
1417 }
1418 
1419 llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value,
1420                                                     LangAS destAddrSpace,
1421                                                     QualType destType) {
1422   initializeNonAbstract(destAddrSpace);
1423   auto C = tryEmitPrivateForMemory(value, destType);
1424   assert(C && "couldn't emit constant value non-abstractly?");
1425   return C;
1426 }
1427 
1428 llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() {
1429   assert(!Abstract && "cannot get current address for abstract constant");
1430 
1431 
1432 
1433   // Make an obviously ill-formed global that should blow up compilation
1434   // if it survives.
1435   auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true,
1436                                          llvm::GlobalValue::PrivateLinkage,
1437                                          /*init*/ nullptr,
1438                                          /*name*/ "",
1439                                          /*before*/ nullptr,
1440                                          llvm::GlobalVariable::NotThreadLocal,
1441                                          CGM.getContext().getTargetAddressSpace(DestAddressSpace));
1442 
1443   PlaceholderAddresses.push_back(std::make_pair(nullptr, global));
1444 
1445   return global;
1446 }
1447 
1448 void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal,
1449                                            llvm::GlobalValue *placeholder) {
1450   assert(!PlaceholderAddresses.empty());
1451   assert(PlaceholderAddresses.back().first == nullptr);
1452   assert(PlaceholderAddresses.back().second == placeholder);
1453   PlaceholderAddresses.back().first = signal;
1454 }
1455 
1456 namespace {
1457   struct ReplacePlaceholders {
1458     CodeGenModule &CGM;
1459 
1460     /// The base address of the global.
1461     llvm::Constant *Base;
1462     llvm::Type *BaseValueTy = nullptr;
1463 
1464     /// The placeholder addresses that were registered during emission.
1465     llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses;
1466 
1467     /// The locations of the placeholder signals.
1468     llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations;
1469 
1470     /// The current index stack.  We use a simple unsigned stack because
1471     /// we assume that placeholders will be relatively sparse in the
1472     /// initializer, but we cache the index values we find just in case.
1473     llvm::SmallVector<unsigned, 8> Indices;
1474     llvm::SmallVector<llvm::Constant*, 8> IndexValues;
1475 
1476     ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base,
1477                         ArrayRef<std::pair<llvm::Constant*,
1478                                            llvm::GlobalVariable*>> addresses)
1479         : CGM(CGM), Base(base),
1480           PlaceholderAddresses(addresses.begin(), addresses.end()) {
1481     }
1482 
1483     void replaceInInitializer(llvm::Constant *init) {
1484       // Remember the type of the top-most initializer.
1485       BaseValueTy = init->getType();
1486 
1487       // Initialize the stack.
1488       Indices.push_back(0);
1489       IndexValues.push_back(nullptr);
1490 
1491       // Recurse into the initializer.
1492       findLocations(init);
1493 
1494       // Check invariants.
1495       assert(IndexValues.size() == Indices.size() && "mismatch");
1496       assert(Indices.size() == 1 && "didn't pop all indices");
1497 
1498       // Do the replacement; this basically invalidates 'init'.
1499       assert(Locations.size() == PlaceholderAddresses.size() &&
1500              "missed a placeholder?");
1501 
1502       // We're iterating over a hashtable, so this would be a source of
1503       // non-determinism in compiler output *except* that we're just
1504       // messing around with llvm::Constant structures, which never itself
1505       // does anything that should be visible in compiler output.
1506       for (auto &entry : Locations) {
1507         assert(entry.first->getParent() == nullptr && "not a placeholder!");
1508         entry.first->replaceAllUsesWith(entry.second);
1509         entry.first->eraseFromParent();
1510       }
1511     }
1512 
1513   private:
1514     void findLocations(llvm::Constant *init) {
1515       // Recurse into aggregates.
1516       if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) {
1517         for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) {
1518           Indices.push_back(i);
1519           IndexValues.push_back(nullptr);
1520 
1521           findLocations(agg->getOperand(i));
1522 
1523           IndexValues.pop_back();
1524           Indices.pop_back();
1525         }
1526         return;
1527       }
1528 
1529       // Otherwise, check for registered constants.
1530       while (true) {
1531         auto it = PlaceholderAddresses.find(init);
1532         if (it != PlaceholderAddresses.end()) {
1533           setLocation(it->second);
1534           break;
1535         }
1536 
1537         // Look through bitcasts or other expressions.
1538         if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) {
1539           init = expr->getOperand(0);
1540         } else {
1541           break;
1542         }
1543       }
1544     }
1545 
1546     void setLocation(llvm::GlobalVariable *placeholder) {
1547       assert(Locations.find(placeholder) == Locations.end() &&
1548              "already found location for placeholder!");
1549 
1550       // Lazily fill in IndexValues with the values from Indices.
1551       // We do this in reverse because we should always have a strict
1552       // prefix of indices from the start.
1553       assert(Indices.size() == IndexValues.size());
1554       for (size_t i = Indices.size() - 1; i != size_t(-1); --i) {
1555         if (IndexValues[i]) {
1556 #ifndef NDEBUG
1557           for (size_t j = 0; j != i + 1; ++j) {
1558             assert(IndexValues[j] &&
1559                    isa<llvm::ConstantInt>(IndexValues[j]) &&
1560                    cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue()
1561                      == Indices[j]);
1562           }
1563 #endif
1564           break;
1565         }
1566 
1567         IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]);
1568       }
1569 
1570       // Form a GEP and then bitcast to the placeholder type so that the
1571       // replacement will succeed.
1572       llvm::Constant *location =
1573         llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy,
1574                                                      Base, IndexValues);
1575       location = llvm::ConstantExpr::getBitCast(location,
1576                                                 placeholder->getType());
1577 
1578       Locations.insert({placeholder, location});
1579     }
1580   };
1581 }
1582 
1583 void ConstantEmitter::finalize(llvm::GlobalVariable *global) {
1584   assert(InitializedNonAbstract &&
1585          "finalizing emitter that was used for abstract emission?");
1586   assert(!Finalized && "finalizing emitter multiple times");
1587   assert(global->getInitializer());
1588 
1589   // Note that we might also be Failed.
1590   Finalized = true;
1591 
1592   if (!PlaceholderAddresses.empty()) {
1593     ReplacePlaceholders(CGM, global, PlaceholderAddresses)
1594       .replaceInInitializer(global->getInitializer());
1595     PlaceholderAddresses.clear(); // satisfy
1596   }
1597 }
1598 
1599 ConstantEmitter::~ConstantEmitter() {
1600   assert((!InitializedNonAbstract || Finalized || Failed) &&
1601          "not finalized after being initialized for non-abstract emission");
1602   assert(PlaceholderAddresses.empty() && "unhandled placeholders");
1603 }
1604 
1605 static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) {
1606   if (auto AT = type->getAs<AtomicType>()) {
1607     return CGM.getContext().getQualifiedType(AT->getValueType(),
1608                                              type.getQualifiers());
1609   }
1610   return type;
1611 }
1612 
1613 llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) {
1614   // Make a quick check if variable can be default NULL initialized
1615   // and avoid going through rest of code which may do, for c++11,
1616   // initialization of memory to all NULLs.
1617   if (!D.hasLocalStorage()) {
1618     QualType Ty = CGM.getContext().getBaseElementType(D.getType());
1619     if (Ty->isRecordType())
1620       if (const CXXConstructExpr *E =
1621           dyn_cast_or_null<CXXConstructExpr>(D.getInit())) {
1622         const CXXConstructorDecl *CD = E->getConstructor();
1623         if (CD->isTrivial() && CD->isDefaultConstructor())
1624           return CGM.EmitNullConstant(D.getType());
1625       }
1626     InConstantContext = true;
1627   }
1628 
1629   QualType destType = D.getType();
1630 
1631   // Try to emit the initializer.  Note that this can allow some things that
1632   // are not allowed by tryEmitPrivateForMemory alone.
1633   if (auto value = D.evaluateValue()) {
1634     return tryEmitPrivateForMemory(*value, destType);
1635   }
1636 
1637   // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a
1638   // reference is a constant expression, and the reference binds to a temporary,
1639   // then constant initialization is performed. ConstExprEmitter will
1640   // incorrectly emit a prvalue constant in this case, and the calling code
1641   // interprets that as the (pointer) value of the reference, rather than the
1642   // desired value of the referee.
1643   if (destType->isReferenceType())
1644     return nullptr;
1645 
1646   const Expr *E = D.getInit();
1647   assert(E && "No initializer to emit");
1648 
1649   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1650   auto C =
1651     ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), nonMemoryDestType);
1652   return (C ? emitForMemory(C, destType) : nullptr);
1653 }
1654 
1655 llvm::Constant *
1656 ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) {
1657   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1658   auto C = tryEmitAbstract(E, nonMemoryDestType);
1659   return (C ? emitForMemory(C, destType) : nullptr);
1660 }
1661 
1662 llvm::Constant *
1663 ConstantEmitter::tryEmitAbstractForMemory(const APValue &value,
1664                                           QualType destType) {
1665   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1666   auto C = tryEmitAbstract(value, nonMemoryDestType);
1667   return (C ? emitForMemory(C, destType) : nullptr);
1668 }
1669 
1670 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E,
1671                                                          QualType destType) {
1672   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1673   llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType);
1674   return (C ? emitForMemory(C, destType) : nullptr);
1675 }
1676 
1677 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value,
1678                                                          QualType destType) {
1679   auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1680   auto C = tryEmitPrivate(value, nonMemoryDestType);
1681   return (C ? emitForMemory(C, destType) : nullptr);
1682 }
1683 
1684 llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM,
1685                                                llvm::Constant *C,
1686                                                QualType destType) {
1687   // For an _Atomic-qualified constant, we may need to add tail padding.
1688   if (auto AT = destType->getAs<AtomicType>()) {
1689     QualType destValueType = AT->getValueType();
1690     C = emitForMemory(CGM, C, destValueType);
1691 
1692     uint64_t innerSize = CGM.getContext().getTypeSize(destValueType);
1693     uint64_t outerSize = CGM.getContext().getTypeSize(destType);
1694     if (innerSize == outerSize)
1695       return C;
1696 
1697     assert(innerSize < outerSize && "emitted over-large constant for atomic");
1698     llvm::Constant *elts[] = {
1699       C,
1700       llvm::ConstantAggregateZero::get(
1701           llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8))
1702     };
1703     return llvm::ConstantStruct::getAnon(elts);
1704   }
1705 
1706   // Zero-extend bool.
1707   if (C->getType()->isIntegerTy(1)) {
1708     llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType);
1709     return llvm::ConstantExpr::getZExt(C, boolTy);
1710   }
1711 
1712   return C;
1713 }
1714 
1715 llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E,
1716                                                 QualType destType) {
1717   Expr::EvalResult Result;
1718 
1719   bool Success = false;
1720 
1721   if (destType->isReferenceType())
1722     Success = E->EvaluateAsLValue(Result, CGM.getContext());
1723   else
1724     Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext);
1725 
1726   llvm::Constant *C;
1727   if (Success && !Result.HasSideEffects)
1728     C = tryEmitPrivate(Result.Val, destType);
1729   else
1730     C = ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), destType);
1731 
1732   return C;
1733 }
1734 
1735 llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) {
1736   return getTargetCodeGenInfo().getNullPointer(*this, T, QT);
1737 }
1738 
1739 namespace {
1740 /// A struct which can be used to peephole certain kinds of finalization
1741 /// that normally happen during l-value emission.
1742 struct ConstantLValue {
1743   llvm::Constant *Value;
1744   bool HasOffsetApplied;
1745 
1746   /*implicit*/ ConstantLValue(llvm::Constant *value,
1747                               bool hasOffsetApplied = false)
1748     : Value(value), HasOffsetApplied(hasOffsetApplied) {}
1749 
1750   /*implicit*/ ConstantLValue(ConstantAddress address)
1751     : ConstantLValue(address.getPointer()) {}
1752 };
1753 
1754 /// A helper class for emitting constant l-values.
1755 class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter,
1756                                                       ConstantLValue> {
1757   CodeGenModule &CGM;
1758   ConstantEmitter &Emitter;
1759   const APValue &Value;
1760   QualType DestType;
1761 
1762   // Befriend StmtVisitorBase so that we don't have to expose Visit*.
1763   friend StmtVisitorBase;
1764 
1765 public:
1766   ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value,
1767                         QualType destType)
1768     : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {}
1769 
1770   llvm::Constant *tryEmit();
1771 
1772 private:
1773   llvm::Constant *tryEmitAbsolute(llvm::Type *destTy);
1774   ConstantLValue tryEmitBase(const APValue::LValueBase &base);
1775 
1776   ConstantLValue VisitStmt(const Stmt *S) { return nullptr; }
1777   ConstantLValue VisitConstantExpr(const ConstantExpr *E);
1778   ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
1779   ConstantLValue VisitStringLiteral(const StringLiteral *E);
1780   ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E);
1781   ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
1782   ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E);
1783   ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E);
1784   ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E);
1785   ConstantLValue VisitCallExpr(const CallExpr *E);
1786   ConstantLValue VisitBlockExpr(const BlockExpr *E);
1787   ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E);
1788   ConstantLValue VisitMaterializeTemporaryExpr(
1789                                          const MaterializeTemporaryExpr *E);
1790 
1791   bool hasNonZeroOffset() const {
1792     return !Value.getLValueOffset().isZero();
1793   }
1794 
1795   /// Return the value offset.
1796   llvm::Constant *getOffset() {
1797     return llvm::ConstantInt::get(CGM.Int64Ty,
1798                                   Value.getLValueOffset().getQuantity());
1799   }
1800 
1801   /// Apply the value offset to the given constant.
1802   llvm::Constant *applyOffset(llvm::Constant *C) {
1803     if (!hasNonZeroOffset())
1804       return C;
1805 
1806     llvm::Type *origPtrTy = C->getType();
1807     unsigned AS = origPtrTy->getPointerAddressSpace();
1808     llvm::Type *charPtrTy = CGM.Int8Ty->getPointerTo(AS);
1809     C = llvm::ConstantExpr::getBitCast(C, charPtrTy);
1810     C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset());
1811     C = llvm::ConstantExpr::getPointerCast(C, origPtrTy);
1812     return C;
1813   }
1814 };
1815 
1816 }
1817 
1818 llvm::Constant *ConstantLValueEmitter::tryEmit() {
1819   const APValue::LValueBase &base = Value.getLValueBase();
1820 
1821   // The destination type should be a pointer or reference
1822   // type, but it might also be a cast thereof.
1823   //
1824   // FIXME: the chain of casts required should be reflected in the APValue.
1825   // We need this in order to correctly handle things like a ptrtoint of a
1826   // non-zero null pointer and addrspace casts that aren't trivially
1827   // represented in LLVM IR.
1828   auto destTy = CGM.getTypes().ConvertTypeForMem(DestType);
1829   assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy));
1830 
1831   // If there's no base at all, this is a null or absolute pointer,
1832   // possibly cast back to an integer type.
1833   if (!base) {
1834     return tryEmitAbsolute(destTy);
1835   }
1836 
1837   // Otherwise, try to emit the base.
1838   ConstantLValue result = tryEmitBase(base);
1839 
1840   // If that failed, we're done.
1841   llvm::Constant *value = result.Value;
1842   if (!value) return nullptr;
1843 
1844   // Apply the offset if necessary and not already done.
1845   if (!result.HasOffsetApplied) {
1846     value = applyOffset(value);
1847   }
1848 
1849   // Convert to the appropriate type; this could be an lvalue for
1850   // an integer.  FIXME: performAddrSpaceCast
1851   if (isa<llvm::PointerType>(destTy))
1852     return llvm::ConstantExpr::getPointerCast(value, destTy);
1853 
1854   return llvm::ConstantExpr::getPtrToInt(value, destTy);
1855 }
1856 
1857 /// Try to emit an absolute l-value, such as a null pointer or an integer
1858 /// bitcast to pointer type.
1859 llvm::Constant *
1860 ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) {
1861   // If we're producing a pointer, this is easy.
1862   auto destPtrTy = cast<llvm::PointerType>(destTy);
1863   if (Value.isNullPointer()) {
1864     // FIXME: integer offsets from non-zero null pointers.
1865     return CGM.getNullPointer(destPtrTy, DestType);
1866   }
1867 
1868   // Convert the integer to a pointer-sized integer before converting it
1869   // to a pointer.
1870   // FIXME: signedness depends on the original integer type.
1871   auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy);
1872   llvm::Constant *C;
1873   C = llvm::ConstantExpr::getIntegerCast(getOffset(), intptrTy,
1874                                          /*isSigned*/ false);
1875   C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy);
1876   return C;
1877 }
1878 
1879 ConstantLValue
1880 ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) {
1881   // Handle values.
1882   if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) {
1883     // The constant always points to the canonical declaration. We want to look
1884     // at properties of the most recent declaration at the point of emission.
1885     D = cast<ValueDecl>(D->getMostRecentDecl());
1886 
1887     if (D->hasAttr<WeakRefAttr>())
1888       return CGM.GetWeakRefReference(D).getPointer();
1889 
1890     if (auto FD = dyn_cast<FunctionDecl>(D))
1891       return CGM.GetAddrOfFunction(FD);
1892 
1893     if (auto VD = dyn_cast<VarDecl>(D)) {
1894       // We can never refer to a variable with local storage.
1895       if (!VD->hasLocalStorage()) {
1896         if (VD->isFileVarDecl() || VD->hasExternalStorage())
1897           return CGM.GetAddrOfGlobalVar(VD);
1898 
1899         if (VD->isLocalVarDecl()) {
1900           return CGM.getOrCreateStaticVarDecl(
1901               *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false));
1902         }
1903       }
1904     }
1905 
1906     if (auto *GD = dyn_cast<MSGuidDecl>(D))
1907       return CGM.GetAddrOfMSGuidDecl(GD);
1908 
1909     if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D))
1910       return CGM.GetAddrOfTemplateParamObject(TPO);
1911 
1912     return nullptr;
1913   }
1914 
1915   // Handle typeid(T).
1916   if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>()) {
1917     llvm::Type *StdTypeInfoPtrTy =
1918         CGM.getTypes().ConvertType(base.getTypeInfoType())->getPointerTo();
1919     llvm::Constant *TypeInfo =
1920         CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0));
1921     if (TypeInfo->getType() != StdTypeInfoPtrTy)
1922       TypeInfo = llvm::ConstantExpr::getBitCast(TypeInfo, StdTypeInfoPtrTy);
1923     return TypeInfo;
1924   }
1925 
1926   // Otherwise, it must be an expression.
1927   return Visit(base.get<const Expr*>());
1928 }
1929 
1930 ConstantLValue
1931 ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) {
1932   if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(E))
1933     return Result;
1934   return Visit(E->getSubExpr());
1935 }
1936 
1937 ConstantLValue
1938 ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
1939   return tryEmitGlobalCompoundLiteral(CGM, Emitter.CGF, E);
1940 }
1941 
1942 ConstantLValue
1943 ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) {
1944   return CGM.GetAddrOfConstantStringFromLiteral(E);
1945 }
1946 
1947 ConstantLValue
1948 ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
1949   return CGM.GetAddrOfConstantStringFromObjCEncode(E);
1950 }
1951 
1952 static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S,
1953                                                     QualType T,
1954                                                     CodeGenModule &CGM) {
1955   auto C = CGM.getObjCRuntime().GenerateConstantString(S);
1956   return C.getElementBitCast(CGM.getTypes().ConvertTypeForMem(T));
1957 }
1958 
1959 ConstantLValue
1960 ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
1961   return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM);
1962 }
1963 
1964 ConstantLValue
1965 ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
1966   assert(E->isExpressibleAsConstantInitializer() &&
1967          "this boxed expression can't be emitted as a compile-time constant");
1968   auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts());
1969   return emitConstantObjCStringLiteral(SL, E->getType(), CGM);
1970 }
1971 
1972 ConstantLValue
1973 ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) {
1974   return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName());
1975 }
1976 
1977 ConstantLValue
1978 ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) {
1979   assert(Emitter.CGF && "Invalid address of label expression outside function");
1980   llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel());
1981   Ptr = llvm::ConstantExpr::getBitCast(Ptr,
1982                                    CGM.getTypes().ConvertType(E->getType()));
1983   return Ptr;
1984 }
1985 
1986 ConstantLValue
1987 ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) {
1988   unsigned builtin = E->getBuiltinCallee();
1989   if (builtin != Builtin::BI__builtin___CFStringMakeConstantString &&
1990       builtin != Builtin::BI__builtin___NSStringMakeConstantString)
1991     return nullptr;
1992 
1993   auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts());
1994   if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) {
1995     return CGM.getObjCRuntime().GenerateConstantString(literal);
1996   } else {
1997     // FIXME: need to deal with UCN conversion issues.
1998     return CGM.GetAddrOfConstantCFString(literal);
1999   }
2000 }
2001 
2002 ConstantLValue
2003 ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) {
2004   StringRef functionName;
2005   if (auto CGF = Emitter.CGF)
2006     functionName = CGF->CurFn->getName();
2007   else
2008     functionName = "global";
2009 
2010   return CGM.GetAddrOfGlobalBlock(E, functionName);
2011 }
2012 
2013 ConstantLValue
2014 ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
2015   QualType T;
2016   if (E->isTypeOperand())
2017     T = E->getTypeOperand(CGM.getContext());
2018   else
2019     T = E->getExprOperand()->getType();
2020   return CGM.GetAddrOfRTTIDescriptor(T);
2021 }
2022 
2023 ConstantLValue
2024 ConstantLValueEmitter::VisitMaterializeTemporaryExpr(
2025                                             const MaterializeTemporaryExpr *E) {
2026   assert(E->getStorageDuration() == SD_Static);
2027   SmallVector<const Expr *, 2> CommaLHSs;
2028   SmallVector<SubobjectAdjustment, 2> Adjustments;
2029   const Expr *Inner =
2030       E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
2031   return CGM.GetAddrOfGlobalTemporary(E, Inner);
2032 }
2033 
2034 llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value,
2035                                                 QualType DestType) {
2036   switch (Value.getKind()) {
2037   case APValue::None:
2038   case APValue::Indeterminate:
2039     // Out-of-lifetime and indeterminate values can be modeled as 'undef'.
2040     return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType));
2041   case APValue::LValue:
2042     return ConstantLValueEmitter(*this, Value, DestType).tryEmit();
2043   case APValue::Int:
2044     return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt());
2045   case APValue::FixedPoint:
2046     return llvm::ConstantInt::get(CGM.getLLVMContext(),
2047                                   Value.getFixedPoint().getValue());
2048   case APValue::ComplexInt: {
2049     llvm::Constant *Complex[2];
2050 
2051     Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2052                                         Value.getComplexIntReal());
2053     Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2054                                         Value.getComplexIntImag());
2055 
2056     // FIXME: the target may want to specify that this is packed.
2057     llvm::StructType *STy =
2058         llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2059     return llvm::ConstantStruct::get(STy, Complex);
2060   }
2061   case APValue::Float: {
2062     const llvm::APFloat &Init = Value.getFloat();
2063     if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() &&
2064         !CGM.getContext().getLangOpts().NativeHalfType &&
2065         CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics())
2066       return llvm::ConstantInt::get(CGM.getLLVMContext(),
2067                                     Init.bitcastToAPInt());
2068     else
2069       return llvm::ConstantFP::get(CGM.getLLVMContext(), Init);
2070   }
2071   case APValue::ComplexFloat: {
2072     llvm::Constant *Complex[2];
2073 
2074     Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2075                                        Value.getComplexFloatReal());
2076     Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2077                                        Value.getComplexFloatImag());
2078 
2079     // FIXME: the target may want to specify that this is packed.
2080     llvm::StructType *STy =
2081         llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2082     return llvm::ConstantStruct::get(STy, Complex);
2083   }
2084   case APValue::Vector: {
2085     unsigned NumElts = Value.getVectorLength();
2086     SmallVector<llvm::Constant *, 4> Inits(NumElts);
2087 
2088     for (unsigned I = 0; I != NumElts; ++I) {
2089       const APValue &Elt = Value.getVectorElt(I);
2090       if (Elt.isInt())
2091         Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt());
2092       else if (Elt.isFloat())
2093         Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat());
2094       else
2095         llvm_unreachable("unsupported vector element type");
2096     }
2097     return llvm::ConstantVector::get(Inits);
2098   }
2099   case APValue::AddrLabelDiff: {
2100     const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
2101     const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
2102     llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType());
2103     llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType());
2104     if (!LHS || !RHS) return nullptr;
2105 
2106     // Compute difference
2107     llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType);
2108     LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy);
2109     RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy);
2110     llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);
2111 
2112     // LLVM is a bit sensitive about the exact format of the
2113     // address-of-label difference; make sure to truncate after
2114     // the subtraction.
2115     return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
2116   }
2117   case APValue::Struct:
2118   case APValue::Union:
2119     return ConstStructBuilder::BuildStruct(*this, Value, DestType);
2120   case APValue::Array: {
2121     const ArrayType *ArrayTy = CGM.getContext().getAsArrayType(DestType);
2122     unsigned NumElements = Value.getArraySize();
2123     unsigned NumInitElts = Value.getArrayInitializedElts();
2124 
2125     // Emit array filler, if there is one.
2126     llvm::Constant *Filler = nullptr;
2127     if (Value.hasArrayFiller()) {
2128       Filler = tryEmitAbstractForMemory(Value.getArrayFiller(),
2129                                         ArrayTy->getElementType());
2130       if (!Filler)
2131         return nullptr;
2132     }
2133 
2134     // Emit initializer elements.
2135     SmallVector<llvm::Constant*, 16> Elts;
2136     if (Filler && Filler->isNullValue())
2137       Elts.reserve(NumInitElts + 1);
2138     else
2139       Elts.reserve(NumElements);
2140 
2141     llvm::Type *CommonElementType = nullptr;
2142     for (unsigned I = 0; I < NumInitElts; ++I) {
2143       llvm::Constant *C = tryEmitPrivateForMemory(
2144           Value.getArrayInitializedElt(I), ArrayTy->getElementType());
2145       if (!C) return nullptr;
2146 
2147       if (I == 0)
2148         CommonElementType = C->getType();
2149       else if (C->getType() != CommonElementType)
2150         CommonElementType = nullptr;
2151       Elts.push_back(C);
2152     }
2153 
2154     llvm::ArrayType *Desired =
2155         cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType));
2156     return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
2157                              Filler);
2158   }
2159   case APValue::MemberPointer:
2160     return CGM.getCXXABI().EmitMemberPointer(Value, DestType);
2161   }
2162   llvm_unreachable("Unknown APValue kind");
2163 }
2164 
2165 llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted(
2166     const CompoundLiteralExpr *E) {
2167   return EmittedCompoundLiterals.lookup(E);
2168 }
2169 
2170 void CodeGenModule::setAddrOfConstantCompoundLiteral(
2171     const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) {
2172   bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second;
2173   (void)Ok;
2174   assert(Ok && "CLE has already been emitted!");
2175 }
2176 
2177 ConstantAddress
2178 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
2179   assert(E->isFileScope() && "not a file-scope compound literal expr");
2180   return tryEmitGlobalCompoundLiteral(*this, nullptr, E);
2181 }
2182 
2183 llvm::Constant *
2184 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
2185   // Member pointer constants always have a very particular form.
2186   const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
2187   const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
2188 
2189   // A member function pointer.
2190   if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
2191     return getCXXABI().EmitMemberFunctionPointer(method);
2192 
2193   // Otherwise, a member data pointer.
2194   uint64_t fieldOffset = getContext().getFieldOffset(decl);
2195   CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
2196   return getCXXABI().EmitMemberDataPointer(type, chars);
2197 }
2198 
2199 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2200                                                llvm::Type *baseType,
2201                                                const CXXRecordDecl *base);
2202 
2203 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
2204                                         const RecordDecl *record,
2205                                         bool asCompleteObject) {
2206   const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
2207   llvm::StructType *structure =
2208     (asCompleteObject ? layout.getLLVMType()
2209                       : layout.getBaseSubobjectLLVMType());
2210 
2211   unsigned numElements = structure->getNumElements();
2212   std::vector<llvm::Constant *> elements(numElements);
2213 
2214   auto CXXR = dyn_cast<CXXRecordDecl>(record);
2215   // Fill in all the bases.
2216   if (CXXR) {
2217     for (const auto &I : CXXR->bases()) {
2218       if (I.isVirtual()) {
2219         // Ignore virtual bases; if we're laying out for a complete
2220         // object, we'll lay these out later.
2221         continue;
2222       }
2223 
2224       const CXXRecordDecl *base =
2225         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2226 
2227       // Ignore empty bases.
2228       if (base->isEmpty() ||
2229           CGM.getContext().getASTRecordLayout(base).getNonVirtualSize()
2230               .isZero())
2231         continue;
2232 
2233       unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
2234       llvm::Type *baseType = structure->getElementType(fieldIndex);
2235       elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2236     }
2237   }
2238 
2239   // Fill in all the fields.
2240   for (const auto *Field : record->fields()) {
2241     // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
2242     // will fill in later.)
2243     if (!Field->isBitField() && !Field->isZeroSize(CGM.getContext())) {
2244       unsigned fieldIndex = layout.getLLVMFieldNo(Field);
2245       elements[fieldIndex] = CGM.EmitNullConstant(Field->getType());
2246     }
2247 
2248     // For unions, stop after the first named field.
2249     if (record->isUnion()) {
2250       if (Field->getIdentifier())
2251         break;
2252       if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
2253         if (FieldRD->findFirstNamedDataMember())
2254           break;
2255     }
2256   }
2257 
2258   // Fill in the virtual bases, if we're working with the complete object.
2259   if (CXXR && asCompleteObject) {
2260     for (const auto &I : CXXR->vbases()) {
2261       const CXXRecordDecl *base =
2262         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2263 
2264       // Ignore empty bases.
2265       if (base->isEmpty())
2266         continue;
2267 
2268       unsigned fieldIndex = layout.getVirtualBaseIndex(base);
2269 
2270       // We might have already laid this field out.
2271       if (elements[fieldIndex]) continue;
2272 
2273       llvm::Type *baseType = structure->getElementType(fieldIndex);
2274       elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2275     }
2276   }
2277 
2278   // Now go through all other fields and zero them out.
2279   for (unsigned i = 0; i != numElements; ++i) {
2280     if (!elements[i])
2281       elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
2282   }
2283 
2284   return llvm::ConstantStruct::get(structure, elements);
2285 }
2286 
2287 /// Emit the null constant for a base subobject.
2288 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2289                                                llvm::Type *baseType,
2290                                                const CXXRecordDecl *base) {
2291   const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
2292 
2293   // Just zero out bases that don't have any pointer to data members.
2294   if (baseLayout.isZeroInitializableAsBase())
2295     return llvm::Constant::getNullValue(baseType);
2296 
2297   // Otherwise, we can just use its null constant.
2298   return EmitNullConstant(CGM, base, /*asCompleteObject=*/false);
2299 }
2300 
2301 llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM,
2302                                                    QualType T) {
2303   return emitForMemory(CGM, CGM.EmitNullConstant(T), T);
2304 }
2305 
2306 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
2307   if (T->getAs<PointerType>())
2308     return getNullPointer(
2309         cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T);
2310 
2311   if (getTypes().isZeroInitializable(T))
2312     return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
2313 
2314   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
2315     llvm::ArrayType *ATy =
2316       cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
2317 
2318     QualType ElementTy = CAT->getElementType();
2319 
2320     llvm::Constant *Element =
2321       ConstantEmitter::emitNullForMemory(*this, ElementTy);
2322     unsigned NumElements = CAT->getSize().getZExtValue();
2323     SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
2324     return llvm::ConstantArray::get(ATy, Array);
2325   }
2326 
2327   if (const RecordType *RT = T->getAs<RecordType>())
2328     return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true);
2329 
2330   assert(T->isMemberDataPointerType() &&
2331          "Should only see pointers to data members here!");
2332 
2333   return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
2334 }
2335 
2336 llvm::Constant *
2337 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
2338   return ::EmitNullConstant(*this, Record, false);
2339 }
2340