1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/FixedPoint.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/GetElementPtrTypeIterator.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/IntrinsicsPowerPC.h"
40 #include "llvm/IR/MatrixBuilder.h"
41 #include "llvm/IR/Module.h"
42 #include <cstdarg>
43 
44 using namespace clang;
45 using namespace CodeGen;
46 using llvm::Value;
47 
48 //===----------------------------------------------------------------------===//
49 //                         Scalar Expression Emitter
50 //===----------------------------------------------------------------------===//
51 
52 namespace {
53 
54 /// Determine whether the given binary operation may overflow.
55 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
56 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
57 /// the returned overflow check is precise. The returned value is 'true' for
58 /// all other opcodes, to be conservative.
59 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
60                              BinaryOperator::Opcode Opcode, bool Signed,
61                              llvm::APInt &Result) {
62   // Assume overflow is possible, unless we can prove otherwise.
63   bool Overflow = true;
64   const auto &LHSAP = LHS->getValue();
65   const auto &RHSAP = RHS->getValue();
66   if (Opcode == BO_Add) {
67     if (Signed)
68       Result = LHSAP.sadd_ov(RHSAP, Overflow);
69     else
70       Result = LHSAP.uadd_ov(RHSAP, Overflow);
71   } else if (Opcode == BO_Sub) {
72     if (Signed)
73       Result = LHSAP.ssub_ov(RHSAP, Overflow);
74     else
75       Result = LHSAP.usub_ov(RHSAP, Overflow);
76   } else if (Opcode == BO_Mul) {
77     if (Signed)
78       Result = LHSAP.smul_ov(RHSAP, Overflow);
79     else
80       Result = LHSAP.umul_ov(RHSAP, Overflow);
81   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
82     if (Signed && !RHS->isZero())
83       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
84     else
85       return false;
86   }
87   return Overflow;
88 }
89 
90 struct BinOpInfo {
91   Value *LHS;
92   Value *RHS;
93   QualType Ty;  // Computation Type.
94   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
95   FPOptions FPFeatures;
96   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
97 
98   /// Check if the binop can result in integer overflow.
99   bool mayHaveIntegerOverflow() const {
100     // Without constant input, we can't rule out overflow.
101     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
102     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
103     if (!LHSCI || !RHSCI)
104       return true;
105 
106     llvm::APInt Result;
107     return ::mayHaveIntegerOverflow(
108         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
109   }
110 
111   /// Check if the binop computes a division or a remainder.
112   bool isDivremOp() const {
113     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
114            Opcode == BO_RemAssign;
115   }
116 
117   /// Check if the binop can result in an integer division by zero.
118   bool mayHaveIntegerDivisionByZero() const {
119     if (isDivremOp())
120       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
121         return CI->isZero();
122     return true;
123   }
124 
125   /// Check if the binop can result in a float division by zero.
126   bool mayHaveFloatDivisionByZero() const {
127     if (isDivremOp())
128       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
129         return CFP->isZero();
130     return true;
131   }
132 
133   /// Check if at least one operand is a fixed point type. In such cases, this
134   /// operation did not follow usual arithmetic conversion and both operands
135   /// might not be of the same type.
136   bool isFixedPointOp() const {
137     // We cannot simply check the result type since comparison operations return
138     // an int.
139     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
140       QualType LHSType = BinOp->getLHS()->getType();
141       QualType RHSType = BinOp->getRHS()->getType();
142       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
143     }
144     if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
145       return UnOp->getSubExpr()->getType()->isFixedPointType();
146     return false;
147   }
148 };
149 
150 static bool MustVisitNullValue(const Expr *E) {
151   // If a null pointer expression's type is the C++0x nullptr_t, then
152   // it's not necessarily a simple constant and it must be evaluated
153   // for its potential side effects.
154   return E->getType()->isNullPtrType();
155 }
156 
157 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
158 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
159                                                         const Expr *E) {
160   const Expr *Base = E->IgnoreImpCasts();
161   if (E == Base)
162     return llvm::None;
163 
164   QualType BaseTy = Base->getType();
165   if (!BaseTy->isPromotableIntegerType() ||
166       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
167     return llvm::None;
168 
169   return BaseTy;
170 }
171 
172 /// Check if \p E is a widened promoted integer.
173 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
174   return getUnwidenedIntegerType(Ctx, E).hasValue();
175 }
176 
177 /// Check if we can skip the overflow check for \p Op.
178 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
179   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
180          "Expected a unary or binary operator");
181 
182   // If the binop has constant inputs and we can prove there is no overflow,
183   // we can elide the overflow check.
184   if (!Op.mayHaveIntegerOverflow())
185     return true;
186 
187   // If a unary op has a widened operand, the op cannot overflow.
188   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
189     return !UO->canOverflow();
190 
191   // We usually don't need overflow checks for binops with widened operands.
192   // Multiplication with promoted unsigned operands is a special case.
193   const auto *BO = cast<BinaryOperator>(Op.E);
194   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
195   if (!OptionalLHSTy)
196     return false;
197 
198   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
199   if (!OptionalRHSTy)
200     return false;
201 
202   QualType LHSTy = *OptionalLHSTy;
203   QualType RHSTy = *OptionalRHSTy;
204 
205   // This is the simple case: binops without unsigned multiplication, and with
206   // widened operands. No overflow check is needed here.
207   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
208       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
209     return true;
210 
211   // For unsigned multiplication the overflow check can be elided if either one
212   // of the unpromoted types are less than half the size of the promoted type.
213   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
214   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
215          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
216 }
217 
218 class ScalarExprEmitter
219   : public StmtVisitor<ScalarExprEmitter, Value*> {
220   CodeGenFunction &CGF;
221   CGBuilderTy &Builder;
222   bool IgnoreResultAssign;
223   llvm::LLVMContext &VMContext;
224 public:
225 
226   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
227     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
228       VMContext(cgf.getLLVMContext()) {
229   }
230 
231   //===--------------------------------------------------------------------===//
232   //                               Utilities
233   //===--------------------------------------------------------------------===//
234 
235   bool TestAndClearIgnoreResultAssign() {
236     bool I = IgnoreResultAssign;
237     IgnoreResultAssign = false;
238     return I;
239   }
240 
241   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
242   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
243   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
244     return CGF.EmitCheckedLValue(E, TCK);
245   }
246 
247   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
248                       const BinOpInfo &Info);
249 
250   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
251     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
252   }
253 
254   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
255     const AlignValueAttr *AVAttr = nullptr;
256     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
257       const ValueDecl *VD = DRE->getDecl();
258 
259       if (VD->getType()->isReferenceType()) {
260         if (const auto *TTy =
261             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
262           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
263       } else {
264         // Assumptions for function parameters are emitted at the start of the
265         // function, so there is no need to repeat that here,
266         // unless the alignment-assumption sanitizer is enabled,
267         // then we prefer the assumption over alignment attribute
268         // on IR function param.
269         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
270           return;
271 
272         AVAttr = VD->getAttr<AlignValueAttr>();
273       }
274     }
275 
276     if (!AVAttr)
277       if (const auto *TTy =
278           dyn_cast<TypedefType>(E->getType()))
279         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
280 
281     if (!AVAttr)
282       return;
283 
284     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
285     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
286     CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
287   }
288 
289   /// EmitLoadOfLValue - Given an expression with complex type that represents a
290   /// value l-value, this method emits the address of the l-value, then loads
291   /// and returns the result.
292   Value *EmitLoadOfLValue(const Expr *E) {
293     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
294                                 E->getExprLoc());
295 
296     EmitLValueAlignmentAssumption(E, V);
297     return V;
298   }
299 
300   /// EmitConversionToBool - Convert the specified expression value to a
301   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
302   Value *EmitConversionToBool(Value *Src, QualType DstTy);
303 
304   /// Emit a check that a conversion from a floating-point type does not
305   /// overflow.
306   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
307                                 Value *Src, QualType SrcType, QualType DstType,
308                                 llvm::Type *DstTy, SourceLocation Loc);
309 
310   /// Known implicit conversion check kinds.
311   /// Keep in sync with the enum of the same name in ubsan_handlers.h
312   enum ImplicitConversionCheckKind : unsigned char {
313     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
314     ICCK_UnsignedIntegerTruncation = 1,
315     ICCK_SignedIntegerTruncation = 2,
316     ICCK_IntegerSignChange = 3,
317     ICCK_SignedIntegerTruncationOrSignChange = 4,
318   };
319 
320   /// Emit a check that an [implicit] truncation of an integer  does not
321   /// discard any bits. It is not UB, so we use the value after truncation.
322   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
323                                   QualType DstType, SourceLocation Loc);
324 
325   /// Emit a check that an [implicit] conversion of an integer does not change
326   /// the sign of the value. It is not UB, so we use the value after conversion.
327   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
328   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
329                                   QualType DstType, SourceLocation Loc);
330 
331   /// Emit a conversion from the specified type to the specified destination
332   /// type, both of which are LLVM scalar types.
333   struct ScalarConversionOpts {
334     bool TreatBooleanAsSigned;
335     bool EmitImplicitIntegerTruncationChecks;
336     bool EmitImplicitIntegerSignChangeChecks;
337 
338     ScalarConversionOpts()
339         : TreatBooleanAsSigned(false),
340           EmitImplicitIntegerTruncationChecks(false),
341           EmitImplicitIntegerSignChangeChecks(false) {}
342 
343     ScalarConversionOpts(clang::SanitizerSet SanOpts)
344         : TreatBooleanAsSigned(false),
345           EmitImplicitIntegerTruncationChecks(
346               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
347           EmitImplicitIntegerSignChangeChecks(
348               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
349   };
350   Value *
351   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
352                        SourceLocation Loc,
353                        ScalarConversionOpts Opts = ScalarConversionOpts());
354 
355   /// Convert between either a fixed point and other fixed point or fixed point
356   /// and an integer.
357   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
358                                   SourceLocation Loc);
359   Value *EmitFixedPointConversion(Value *Src, FixedPointSemantics &SrcFixedSema,
360                                   FixedPointSemantics &DstFixedSema,
361                                   SourceLocation Loc,
362                                   bool DstIsInteger = false);
363 
364   /// Emit a conversion from the specified complex type to the specified
365   /// destination type, where the destination type is an LLVM scalar type.
366   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
367                                        QualType SrcTy, QualType DstTy,
368                                        SourceLocation Loc);
369 
370   /// EmitNullValue - Emit a value that corresponds to null for the given type.
371   Value *EmitNullValue(QualType Ty);
372 
373   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
374   Value *EmitFloatToBoolConversion(Value *V) {
375     // Compare against 0.0 for fp scalars.
376     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
377     return Builder.CreateFCmpUNE(V, Zero, "tobool");
378   }
379 
380   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
381   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
382     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
383 
384     return Builder.CreateICmpNE(V, Zero, "tobool");
385   }
386 
387   Value *EmitIntToBoolConversion(Value *V) {
388     // Because of the type rules of C, we often end up computing a
389     // logical value, then zero extending it to int, then wanting it
390     // as a logical value again.  Optimize this common case.
391     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
392       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
393         Value *Result = ZI->getOperand(0);
394         // If there aren't any more uses, zap the instruction to save space.
395         // Note that there can be more uses, for example if this
396         // is the result of an assignment.
397         if (ZI->use_empty())
398           ZI->eraseFromParent();
399         return Result;
400       }
401     }
402 
403     return Builder.CreateIsNotNull(V, "tobool");
404   }
405 
406   //===--------------------------------------------------------------------===//
407   //                            Visitor Methods
408   //===--------------------------------------------------------------------===//
409 
410   Value *Visit(Expr *E) {
411     ApplyDebugLocation DL(CGF, E);
412     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
413   }
414 
415   Value *VisitStmt(Stmt *S) {
416     S->dump(llvm::errs(), CGF.getContext());
417     llvm_unreachable("Stmt can't have complex result type!");
418   }
419   Value *VisitExpr(Expr *S);
420 
421   Value *VisitConstantExpr(ConstantExpr *E) {
422     if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
423       if (E->isGLValue())
424         return CGF.Builder.CreateLoad(Address(
425             Result, CGF.getContext().getTypeAlignInChars(E->getType())));
426       return Result;
427     }
428     return Visit(E->getSubExpr());
429   }
430   Value *VisitParenExpr(ParenExpr *PE) {
431     return Visit(PE->getSubExpr());
432   }
433   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
434     return Visit(E->getReplacement());
435   }
436   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
437     return Visit(GE->getResultExpr());
438   }
439   Value *VisitCoawaitExpr(CoawaitExpr *S) {
440     return CGF.EmitCoawaitExpr(*S).getScalarVal();
441   }
442   Value *VisitCoyieldExpr(CoyieldExpr *S) {
443     return CGF.EmitCoyieldExpr(*S).getScalarVal();
444   }
445   Value *VisitUnaryCoawait(const UnaryOperator *E) {
446     return Visit(E->getSubExpr());
447   }
448 
449   // Leaves.
450   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
451     return Builder.getInt(E->getValue());
452   }
453   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
454     return Builder.getInt(E->getValue());
455   }
456   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
457     return llvm::ConstantFP::get(VMContext, E->getValue());
458   }
459   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
460     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
461   }
462   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
463     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
464   }
465   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
466     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
467   }
468   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
469     return EmitNullValue(E->getType());
470   }
471   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
472     return EmitNullValue(E->getType());
473   }
474   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
475   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
476   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
477     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
478     return Builder.CreateBitCast(V, ConvertType(E->getType()));
479   }
480 
481   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
482     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
483   }
484 
485   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
486     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
487   }
488 
489   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
490     if (E->isGLValue())
491       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
492                               E->getExprLoc());
493 
494     // Otherwise, assume the mapping is the scalar directly.
495     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
496   }
497 
498   // l-values.
499   Value *VisitDeclRefExpr(DeclRefExpr *E) {
500     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
501       return CGF.emitScalarConstant(Constant, E);
502     return EmitLoadOfLValue(E);
503   }
504 
505   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
506     return CGF.EmitObjCSelectorExpr(E);
507   }
508   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
509     return CGF.EmitObjCProtocolExpr(E);
510   }
511   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
512     return EmitLoadOfLValue(E);
513   }
514   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
515     if (E->getMethodDecl() &&
516         E->getMethodDecl()->getReturnType()->isReferenceType())
517       return EmitLoadOfLValue(E);
518     return CGF.EmitObjCMessageExpr(E).getScalarVal();
519   }
520 
521   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
522     LValue LV = CGF.EmitObjCIsaExpr(E);
523     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
524     return V;
525   }
526 
527   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
528     VersionTuple Version = E->getVersion();
529 
530     // If we're checking for a platform older than our minimum deployment
531     // target, we can fold the check away.
532     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
533       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
534 
535     Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
536     llvm::Value *Args[] = {
537         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
538         llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
539         llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
540     };
541 
542     return CGF.EmitBuiltinAvailable(Args);
543   }
544 
545   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
546   Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
547   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
548   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
549   Value *VisitMemberExpr(MemberExpr *E);
550   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
551   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
552     // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
553     // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
554     // literals aren't l-values in C++. We do so simply because that's the
555     // cleanest way to handle compound literals in C++.
556     // See the discussion here: https://reviews.llvm.org/D64464
557     return EmitLoadOfLValue(E);
558   }
559 
560   Value *VisitInitListExpr(InitListExpr *E);
561 
562   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
563     assert(CGF.getArrayInitIndex() &&
564            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
565     return CGF.getArrayInitIndex();
566   }
567 
568   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
569     return EmitNullValue(E->getType());
570   }
571   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
572     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
573     return VisitCastExpr(E);
574   }
575   Value *VisitCastExpr(CastExpr *E);
576 
577   Value *VisitCallExpr(const CallExpr *E) {
578     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
579       return EmitLoadOfLValue(E);
580 
581     Value *V = CGF.EmitCallExpr(E).getScalarVal();
582 
583     EmitLValueAlignmentAssumption(E, V);
584     return V;
585   }
586 
587   Value *VisitStmtExpr(const StmtExpr *E);
588 
589   // Unary Operators.
590   Value *VisitUnaryPostDec(const UnaryOperator *E) {
591     LValue LV = EmitLValue(E->getSubExpr());
592     return EmitScalarPrePostIncDec(E, LV, false, false);
593   }
594   Value *VisitUnaryPostInc(const UnaryOperator *E) {
595     LValue LV = EmitLValue(E->getSubExpr());
596     return EmitScalarPrePostIncDec(E, LV, true, false);
597   }
598   Value *VisitUnaryPreDec(const UnaryOperator *E) {
599     LValue LV = EmitLValue(E->getSubExpr());
600     return EmitScalarPrePostIncDec(E, LV, false, true);
601   }
602   Value *VisitUnaryPreInc(const UnaryOperator *E) {
603     LValue LV = EmitLValue(E->getSubExpr());
604     return EmitScalarPrePostIncDec(E, LV, true, true);
605   }
606 
607   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
608                                                   llvm::Value *InVal,
609                                                   bool IsInc);
610 
611   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
612                                        bool isInc, bool isPre);
613 
614 
615   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
616     if (isa<MemberPointerType>(E->getType())) // never sugared
617       return CGF.CGM.getMemberPointerConstant(E);
618 
619     return EmitLValue(E->getSubExpr()).getPointer(CGF);
620   }
621   Value *VisitUnaryDeref(const UnaryOperator *E) {
622     if (E->getType()->isVoidType())
623       return Visit(E->getSubExpr()); // the actual value should be unused
624     return EmitLoadOfLValue(E);
625   }
626   Value *VisitUnaryPlus(const UnaryOperator *E) {
627     // This differs from gcc, though, most likely due to a bug in gcc.
628     TestAndClearIgnoreResultAssign();
629     return Visit(E->getSubExpr());
630   }
631   Value *VisitUnaryMinus    (const UnaryOperator *E);
632   Value *VisitUnaryNot      (const UnaryOperator *E);
633   Value *VisitUnaryLNot     (const UnaryOperator *E);
634   Value *VisitUnaryReal     (const UnaryOperator *E);
635   Value *VisitUnaryImag     (const UnaryOperator *E);
636   Value *VisitUnaryExtension(const UnaryOperator *E) {
637     return Visit(E->getSubExpr());
638   }
639 
640   // C++
641   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
642     return EmitLoadOfLValue(E);
643   }
644   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
645     auto &Ctx = CGF.getContext();
646     APValue Evaluated =
647         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
648     return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
649                                              SLE->getType());
650   }
651 
652   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
653     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
654     return Visit(DAE->getExpr());
655   }
656   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
657     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
658     return Visit(DIE->getExpr());
659   }
660   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
661     return CGF.LoadCXXThis();
662   }
663 
664   Value *VisitExprWithCleanups(ExprWithCleanups *E);
665   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
666     return CGF.EmitCXXNewExpr(E);
667   }
668   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
669     CGF.EmitCXXDeleteExpr(E);
670     return nullptr;
671   }
672 
673   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
674     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
675   }
676 
677   Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
678     return Builder.getInt1(E->isSatisfied());
679   }
680 
681   Value *VisitRequiresExpr(const RequiresExpr *E) {
682     return Builder.getInt1(E->isSatisfied());
683   }
684 
685   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
686     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
687   }
688 
689   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
690     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
691   }
692 
693   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
694     // C++ [expr.pseudo]p1:
695     //   The result shall only be used as the operand for the function call
696     //   operator (), and the result of such a call has type void. The only
697     //   effect is the evaluation of the postfix-expression before the dot or
698     //   arrow.
699     CGF.EmitScalarExpr(E->getBase());
700     return nullptr;
701   }
702 
703   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
704     return EmitNullValue(E->getType());
705   }
706 
707   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
708     CGF.EmitCXXThrowExpr(E);
709     return nullptr;
710   }
711 
712   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
713     return Builder.getInt1(E->getValue());
714   }
715 
716   // Binary Operators.
717   Value *EmitMul(const BinOpInfo &Ops) {
718     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
719       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
720       case LangOptions::SOB_Defined:
721         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
722       case LangOptions::SOB_Undefined:
723         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
724           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
725         LLVM_FALLTHROUGH;
726       case LangOptions::SOB_Trapping:
727         if (CanElideOverflowCheck(CGF.getContext(), Ops))
728           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
729         return EmitOverflowCheckedBinOp(Ops);
730       }
731     }
732 
733     if (Ops.Ty->isConstantMatrixType()) {
734       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
735       // We need to check the types of the operands of the operator to get the
736       // correct matrix dimensions.
737       auto *BO = cast<BinaryOperator>(Ops.E);
738       auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
739           BO->getLHS()->getType().getCanonicalType());
740       auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
741           BO->getRHS()->getType().getCanonicalType());
742       if (LHSMatTy && RHSMatTy)
743         return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
744                                        LHSMatTy->getNumColumns(),
745                                        RHSMatTy->getNumColumns());
746       return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
747     }
748 
749     if (Ops.Ty->isUnsignedIntegerType() &&
750         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
751         !CanElideOverflowCheck(CGF.getContext(), Ops))
752       return EmitOverflowCheckedBinOp(Ops);
753 
754     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
755       //  Preserve the old values
756       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
757       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
758     }
759     if (Ops.isFixedPointOp())
760       return EmitFixedPointBinOp(Ops);
761     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
762   }
763   /// Create a binary op that checks for overflow.
764   /// Currently only supports +, - and *.
765   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
766 
767   // Check for undefined division and modulus behaviors.
768   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
769                                                   llvm::Value *Zero,bool isDiv);
770   // Common helper for getting how wide LHS of shift is.
771   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
772 
773   // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
774   // non powers of two.
775   Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
776 
777   Value *EmitDiv(const BinOpInfo &Ops);
778   Value *EmitRem(const BinOpInfo &Ops);
779   Value *EmitAdd(const BinOpInfo &Ops);
780   Value *EmitSub(const BinOpInfo &Ops);
781   Value *EmitShl(const BinOpInfo &Ops);
782   Value *EmitShr(const BinOpInfo &Ops);
783   Value *EmitAnd(const BinOpInfo &Ops) {
784     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
785   }
786   Value *EmitXor(const BinOpInfo &Ops) {
787     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
788   }
789   Value *EmitOr (const BinOpInfo &Ops) {
790     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
791   }
792 
793   // Helper functions for fixed point binary operations.
794   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
795 
796   BinOpInfo EmitBinOps(const BinaryOperator *E);
797   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
798                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
799                                   Value *&Result);
800 
801   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
802                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
803 
804   // Binary operators and binary compound assignment operators.
805 #define HANDLEBINOP(OP) \
806   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
807     return Emit ## OP(EmitBinOps(E));                                      \
808   }                                                                        \
809   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
810     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
811   }
812   HANDLEBINOP(Mul)
813   HANDLEBINOP(Div)
814   HANDLEBINOP(Rem)
815   HANDLEBINOP(Add)
816   HANDLEBINOP(Sub)
817   HANDLEBINOP(Shl)
818   HANDLEBINOP(Shr)
819   HANDLEBINOP(And)
820   HANDLEBINOP(Xor)
821   HANDLEBINOP(Or)
822 #undef HANDLEBINOP
823 
824   // Comparisons.
825   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
826                      llvm::CmpInst::Predicate SICmpOpc,
827                      llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
828 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
829     Value *VisitBin##CODE(const BinaryOperator *E) { \
830       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
831                          llvm::FCmpInst::FP, SIG); }
832   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
833   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
834   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
835   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
836   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
837   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
838 #undef VISITCOMP
839 
840   Value *VisitBinAssign     (const BinaryOperator *E);
841 
842   Value *VisitBinLAnd       (const BinaryOperator *E);
843   Value *VisitBinLOr        (const BinaryOperator *E);
844   Value *VisitBinComma      (const BinaryOperator *E);
845 
846   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
847   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
848 
849   Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
850     return Visit(E->getSemanticForm());
851   }
852 
853   // Other Operators.
854   Value *VisitBlockExpr(const BlockExpr *BE);
855   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
856   Value *VisitChooseExpr(ChooseExpr *CE);
857   Value *VisitVAArgExpr(VAArgExpr *VE);
858   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
859     return CGF.EmitObjCStringLiteral(E);
860   }
861   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
862     return CGF.EmitObjCBoxedExpr(E);
863   }
864   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
865     return CGF.EmitObjCArrayLiteral(E);
866   }
867   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
868     return CGF.EmitObjCDictionaryLiteral(E);
869   }
870   Value *VisitAsTypeExpr(AsTypeExpr *CE);
871   Value *VisitAtomicExpr(AtomicExpr *AE);
872 };
873 }  // end anonymous namespace.
874 
875 //===----------------------------------------------------------------------===//
876 //                                Utilities
877 //===----------------------------------------------------------------------===//
878 
879 /// EmitConversionToBool - Convert the specified expression value to a
880 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
881 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
882   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
883 
884   if (SrcType->isRealFloatingType())
885     return EmitFloatToBoolConversion(Src);
886 
887   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
888     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
889 
890   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
891          "Unknown scalar type to convert");
892 
893   if (isa<llvm::IntegerType>(Src->getType()))
894     return EmitIntToBoolConversion(Src);
895 
896   assert(isa<llvm::PointerType>(Src->getType()));
897   return EmitPointerToBoolConversion(Src, SrcType);
898 }
899 
900 void ScalarExprEmitter::EmitFloatConversionCheck(
901     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
902     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
903   assert(SrcType->isFloatingType() && "not a conversion from floating point");
904   if (!isa<llvm::IntegerType>(DstTy))
905     return;
906 
907   CodeGenFunction::SanitizerScope SanScope(&CGF);
908   using llvm::APFloat;
909   using llvm::APSInt;
910 
911   llvm::Value *Check = nullptr;
912   const llvm::fltSemantics &SrcSema =
913     CGF.getContext().getFloatTypeSemantics(OrigSrcType);
914 
915   // Floating-point to integer. This has undefined behavior if the source is
916   // +-Inf, NaN, or doesn't fit into the destination type (after truncation
917   // to an integer).
918   unsigned Width = CGF.getContext().getIntWidth(DstType);
919   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
920 
921   APSInt Min = APSInt::getMinValue(Width, Unsigned);
922   APFloat MinSrc(SrcSema, APFloat::uninitialized);
923   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
924       APFloat::opOverflow)
925     // Don't need an overflow check for lower bound. Just check for
926     // -Inf/NaN.
927     MinSrc = APFloat::getInf(SrcSema, true);
928   else
929     // Find the largest value which is too small to represent (before
930     // truncation toward zero).
931     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
932 
933   APSInt Max = APSInt::getMaxValue(Width, Unsigned);
934   APFloat MaxSrc(SrcSema, APFloat::uninitialized);
935   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
936       APFloat::opOverflow)
937     // Don't need an overflow check for upper bound. Just check for
938     // +Inf/NaN.
939     MaxSrc = APFloat::getInf(SrcSema, false);
940   else
941     // Find the smallest value which is too large to represent (before
942     // truncation toward zero).
943     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
944 
945   // If we're converting from __half, convert the range to float to match
946   // the type of src.
947   if (OrigSrcType->isHalfType()) {
948     const llvm::fltSemantics &Sema =
949       CGF.getContext().getFloatTypeSemantics(SrcType);
950     bool IsInexact;
951     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
952     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
953   }
954 
955   llvm::Value *GE =
956     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
957   llvm::Value *LE =
958     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
959   Check = Builder.CreateAnd(GE, LE);
960 
961   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
962                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
963                                   CGF.EmitCheckTypeDescriptor(DstType)};
964   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
965                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
966 }
967 
968 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
969 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
970 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
971                  std::pair<llvm::Value *, SanitizerMask>>
972 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
973                                  QualType DstType, CGBuilderTy &Builder) {
974   llvm::Type *SrcTy = Src->getType();
975   llvm::Type *DstTy = Dst->getType();
976   (void)DstTy; // Only used in assert()
977 
978   // This should be truncation of integral types.
979   assert(Src != Dst);
980   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
981   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
982          "non-integer llvm type");
983 
984   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
985   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
986 
987   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
988   // Else, it is a signed truncation.
989   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
990   SanitizerMask Mask;
991   if (!SrcSigned && !DstSigned) {
992     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
993     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
994   } else {
995     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
996     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
997   }
998 
999   llvm::Value *Check = nullptr;
1000   // 1. Extend the truncated value back to the same width as the Src.
1001   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
1002   // 2. Equality-compare with the original source value
1003   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
1004   // If the comparison result is 'i1 false', then the truncation was lossy.
1005   return std::make_pair(Kind, std::make_pair(Check, Mask));
1006 }
1007 
1008 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
1009     QualType SrcType, QualType DstType) {
1010   return SrcType->isIntegerType() && DstType->isIntegerType();
1011 }
1012 
1013 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1014                                                    Value *Dst, QualType DstType,
1015                                                    SourceLocation Loc) {
1016   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1017     return;
1018 
1019   // We only care about int->int conversions here.
1020   // We ignore conversions to/from pointer and/or bool.
1021   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1022                                                                        DstType))
1023     return;
1024 
1025   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1026   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1027   // This must be truncation. Else we do not care.
1028   if (SrcBits <= DstBits)
1029     return;
1030 
1031   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1032 
1033   // If the integer sign change sanitizer is enabled,
1034   // and we are truncating from larger unsigned type to smaller signed type,
1035   // let that next sanitizer deal with it.
1036   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1037   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1038   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1039       (!SrcSigned && DstSigned))
1040     return;
1041 
1042   CodeGenFunction::SanitizerScope SanScope(&CGF);
1043 
1044   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1045             std::pair<llvm::Value *, SanitizerMask>>
1046       Check =
1047           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1048   // If the comparison result is 'i1 false', then the truncation was lossy.
1049 
1050   // Do we care about this type of truncation?
1051   if (!CGF.SanOpts.has(Check.second.second))
1052     return;
1053 
1054   llvm::Constant *StaticArgs[] = {
1055       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1056       CGF.EmitCheckTypeDescriptor(DstType),
1057       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1058   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1059                 {Src, Dst});
1060 }
1061 
1062 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1063 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1064 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1065                  std::pair<llvm::Value *, SanitizerMask>>
1066 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1067                                  QualType DstType, CGBuilderTy &Builder) {
1068   llvm::Type *SrcTy = Src->getType();
1069   llvm::Type *DstTy = Dst->getType();
1070 
1071   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1072          "non-integer llvm type");
1073 
1074   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1075   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1076   (void)SrcSigned; // Only used in assert()
1077   (void)DstSigned; // Only used in assert()
1078   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1079   unsigned DstBits = DstTy->getScalarSizeInBits();
1080   (void)SrcBits; // Only used in assert()
1081   (void)DstBits; // Only used in assert()
1082 
1083   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1084          "either the widths should be different, or the signednesses.");
1085 
1086   // NOTE: zero value is considered to be non-negative.
1087   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1088                                        const char *Name) -> Value * {
1089     // Is this value a signed type?
1090     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1091     llvm::Type *VTy = V->getType();
1092     if (!VSigned) {
1093       // If the value is unsigned, then it is never negative.
1094       // FIXME: can we encounter non-scalar VTy here?
1095       return llvm::ConstantInt::getFalse(VTy->getContext());
1096     }
1097     // Get the zero of the same type with which we will be comparing.
1098     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1099     // %V.isnegative = icmp slt %V, 0
1100     // I.e is %V *strictly* less than zero, does it have negative value?
1101     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1102                               llvm::Twine(Name) + "." + V->getName() +
1103                                   ".negativitycheck");
1104   };
1105 
1106   // 1. Was the old Value negative?
1107   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1108   // 2. Is the new Value negative?
1109   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1110   // 3. Now, was the 'negativity status' preserved during the conversion?
1111   //    NOTE: conversion from negative to zero is considered to change the sign.
1112   //    (We want to get 'false' when the conversion changed the sign)
1113   //    So we should just equality-compare the negativity statuses.
1114   llvm::Value *Check = nullptr;
1115   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1116   // If the comparison result is 'false', then the conversion changed the sign.
1117   return std::make_pair(
1118       ScalarExprEmitter::ICCK_IntegerSignChange,
1119       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1120 }
1121 
1122 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1123                                                    Value *Dst, QualType DstType,
1124                                                    SourceLocation Loc) {
1125   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1126     return;
1127 
1128   llvm::Type *SrcTy = Src->getType();
1129   llvm::Type *DstTy = Dst->getType();
1130 
1131   // We only care about int->int conversions here.
1132   // We ignore conversions to/from pointer and/or bool.
1133   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1134                                                                        DstType))
1135     return;
1136 
1137   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1138   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1139   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1140   unsigned DstBits = DstTy->getScalarSizeInBits();
1141 
1142   // Now, we do not need to emit the check in *all* of the cases.
1143   // We can avoid emitting it in some obvious cases where it would have been
1144   // dropped by the opt passes (instcombine) always anyways.
1145   // If it's a cast between effectively the same type, no check.
1146   // NOTE: this is *not* equivalent to checking the canonical types.
1147   if (SrcSigned == DstSigned && SrcBits == DstBits)
1148     return;
1149   // At least one of the values needs to have signed type.
1150   // If both are unsigned, then obviously, neither of them can be negative.
1151   if (!SrcSigned && !DstSigned)
1152     return;
1153   // If the conversion is to *larger* *signed* type, then no check is needed.
1154   // Because either sign-extension happens (so the sign will remain),
1155   // or zero-extension will happen (the sign bit will be zero.)
1156   if ((DstBits > SrcBits) && DstSigned)
1157     return;
1158   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1159       (SrcBits > DstBits) && SrcSigned) {
1160     // If the signed integer truncation sanitizer is enabled,
1161     // and this is a truncation from signed type, then no check is needed.
1162     // Because here sign change check is interchangeable with truncation check.
1163     return;
1164   }
1165   // That's it. We can't rule out any more cases with the data we have.
1166 
1167   CodeGenFunction::SanitizerScope SanScope(&CGF);
1168 
1169   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1170             std::pair<llvm::Value *, SanitizerMask>>
1171       Check;
1172 
1173   // Each of these checks needs to return 'false' when an issue was detected.
1174   ImplicitConversionCheckKind CheckKind;
1175   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1176   // So we can 'and' all the checks together, and still get 'false',
1177   // if at least one of the checks detected an issue.
1178 
1179   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1180   CheckKind = Check.first;
1181   Checks.emplace_back(Check.second);
1182 
1183   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1184       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1185     // If the signed integer truncation sanitizer was enabled,
1186     // and we are truncating from larger unsigned type to smaller signed type,
1187     // let's handle the case we skipped in that check.
1188     Check =
1189         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1190     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1191     Checks.emplace_back(Check.second);
1192     // If the comparison result is 'i1 false', then the truncation was lossy.
1193   }
1194 
1195   llvm::Constant *StaticArgs[] = {
1196       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1197       CGF.EmitCheckTypeDescriptor(DstType),
1198       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1199   // EmitCheck() will 'and' all the checks together.
1200   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1201                 {Src, Dst});
1202 }
1203 
1204 /// Emit a conversion from the specified type to the specified destination type,
1205 /// both of which are LLVM scalar types.
1206 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1207                                                QualType DstType,
1208                                                SourceLocation Loc,
1209                                                ScalarConversionOpts Opts) {
1210   // All conversions involving fixed point types should be handled by the
1211   // EmitFixedPoint family functions. This is done to prevent bloating up this
1212   // function more, and although fixed point numbers are represented by
1213   // integers, we do not want to follow any logic that assumes they should be
1214   // treated as integers.
1215   // TODO(leonardchan): When necessary, add another if statement checking for
1216   // conversions to fixed point types from other types.
1217   if (SrcType->isFixedPointType()) {
1218     if (DstType->isBooleanType())
1219       // It is important that we check this before checking if the dest type is
1220       // an integer because booleans are technically integer types.
1221       // We do not need to check the padding bit on unsigned types if unsigned
1222       // padding is enabled because overflow into this bit is undefined
1223       // behavior.
1224       return Builder.CreateIsNotNull(Src, "tobool");
1225     if (DstType->isFixedPointType() || DstType->isIntegerType())
1226       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1227 
1228     llvm_unreachable(
1229         "Unhandled scalar conversion from a fixed point type to another type.");
1230   } else if (DstType->isFixedPointType()) {
1231     if (SrcType->isIntegerType())
1232       // This also includes converting booleans and enums to fixed point types.
1233       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1234 
1235     llvm_unreachable(
1236         "Unhandled scalar conversion to a fixed point type from another type.");
1237   }
1238 
1239   QualType NoncanonicalSrcType = SrcType;
1240   QualType NoncanonicalDstType = DstType;
1241 
1242   SrcType = CGF.getContext().getCanonicalType(SrcType);
1243   DstType = CGF.getContext().getCanonicalType(DstType);
1244   if (SrcType == DstType) return Src;
1245 
1246   if (DstType->isVoidType()) return nullptr;
1247 
1248   llvm::Value *OrigSrc = Src;
1249   QualType OrigSrcType = SrcType;
1250   llvm::Type *SrcTy = Src->getType();
1251 
1252   // Handle conversions to bool first, they are special: comparisons against 0.
1253   if (DstType->isBooleanType())
1254     return EmitConversionToBool(Src, SrcType);
1255 
1256   llvm::Type *DstTy = ConvertType(DstType);
1257 
1258   // Cast from half through float if half isn't a native type.
1259   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1260     // Cast to FP using the intrinsic if the half type itself isn't supported.
1261     if (DstTy->isFloatingPointTy()) {
1262       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1263         return Builder.CreateCall(
1264             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1265             Src);
1266     } else {
1267       // Cast to other types through float, using either the intrinsic or FPExt,
1268       // depending on whether the half type itself is supported
1269       // (as opposed to operations on half, available with NativeHalfType).
1270       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1271         Src = Builder.CreateCall(
1272             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1273                                  CGF.CGM.FloatTy),
1274             Src);
1275       } else {
1276         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1277       }
1278       SrcType = CGF.getContext().FloatTy;
1279       SrcTy = CGF.FloatTy;
1280     }
1281   }
1282 
1283   // Ignore conversions like int -> uint.
1284   if (SrcTy == DstTy) {
1285     if (Opts.EmitImplicitIntegerSignChangeChecks)
1286       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1287                                  NoncanonicalDstType, Loc);
1288 
1289     return Src;
1290   }
1291 
1292   // Handle pointer conversions next: pointers can only be converted to/from
1293   // other pointers and integers. Check for pointer types in terms of LLVM, as
1294   // some native types (like Obj-C id) may map to a pointer type.
1295   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1296     // The source value may be an integer, or a pointer.
1297     if (isa<llvm::PointerType>(SrcTy))
1298       return Builder.CreateBitCast(Src, DstTy, "conv");
1299 
1300     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1301     // First, convert to the correct width so that we control the kind of
1302     // extension.
1303     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1304     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1305     llvm::Value* IntResult =
1306         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1307     // Then, cast to pointer.
1308     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1309   }
1310 
1311   if (isa<llvm::PointerType>(SrcTy)) {
1312     // Must be an ptr to int cast.
1313     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1314     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1315   }
1316 
1317   // A scalar can be splatted to an extended vector of the same element type
1318   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1319     // Sema should add casts to make sure that the source expression's type is
1320     // the same as the vector's element type (sans qualifiers)
1321     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1322                SrcType.getTypePtr() &&
1323            "Splatted expr doesn't match with vector element type?");
1324 
1325     // Splat the element across to all elements
1326     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1327     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1328   }
1329 
1330   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1331     // Allow bitcast from vector to integer/fp of the same size.
1332     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1333     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1334     if (SrcSize == DstSize)
1335       return Builder.CreateBitCast(Src, DstTy, "conv");
1336 
1337     // Conversions between vectors of different sizes are not allowed except
1338     // when vectors of half are involved. Operations on storage-only half
1339     // vectors require promoting half vector operands to float vectors and
1340     // truncating the result, which is either an int or float vector, to a
1341     // short or half vector.
1342 
1343     // Source and destination are both expected to be vectors.
1344     llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1345     llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1346     (void)DstElementTy;
1347 
1348     assert(((SrcElementTy->isIntegerTy() &&
1349              DstElementTy->isIntegerTy()) ||
1350             (SrcElementTy->isFloatingPointTy() &&
1351              DstElementTy->isFloatingPointTy())) &&
1352            "unexpected conversion between a floating-point vector and an "
1353            "integer vector");
1354 
1355     // Truncate an i32 vector to an i16 vector.
1356     if (SrcElementTy->isIntegerTy())
1357       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1358 
1359     // Truncate a float vector to a half vector.
1360     if (SrcSize > DstSize)
1361       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1362 
1363     // Promote a half vector to a float vector.
1364     return Builder.CreateFPExt(Src, DstTy, "conv");
1365   }
1366 
1367   // Finally, we have the arithmetic types: real int/float.
1368   Value *Res = nullptr;
1369   llvm::Type *ResTy = DstTy;
1370 
1371   // An overflowing conversion has undefined behavior if either the source type
1372   // or the destination type is a floating-point type. However, we consider the
1373   // range of representable values for all floating-point types to be
1374   // [-inf,+inf], so no overflow can ever happen when the destination type is a
1375   // floating-point type.
1376   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1377       OrigSrcType->isFloatingType())
1378     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1379                              Loc);
1380 
1381   // Cast to half through float if half isn't a native type.
1382   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1383     // Make sure we cast in a single step if from another FP type.
1384     if (SrcTy->isFloatingPointTy()) {
1385       // Use the intrinsic if the half type itself isn't supported
1386       // (as opposed to operations on half, available with NativeHalfType).
1387       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1388         return Builder.CreateCall(
1389             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1390       // If the half type is supported, just use an fptrunc.
1391       return Builder.CreateFPTrunc(Src, DstTy);
1392     }
1393     DstTy = CGF.FloatTy;
1394   }
1395 
1396   if (isa<llvm::IntegerType>(SrcTy)) {
1397     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1398     if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1399       InputSigned = true;
1400     }
1401     if (isa<llvm::IntegerType>(DstTy))
1402       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1403     else if (InputSigned)
1404       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1405     else
1406       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1407   } else if (isa<llvm::IntegerType>(DstTy)) {
1408     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
1409     if (DstType->isSignedIntegerOrEnumerationType())
1410       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1411     else
1412       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1413   } else {
1414     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
1415            "Unknown real conversion");
1416     if (DstTy->getTypeID() < SrcTy->getTypeID())
1417       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1418     else
1419       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1420   }
1421 
1422   if (DstTy != ResTy) {
1423     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1424       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1425       Res = Builder.CreateCall(
1426         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1427         Res);
1428     } else {
1429       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1430     }
1431   }
1432 
1433   if (Opts.EmitImplicitIntegerTruncationChecks)
1434     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1435                                NoncanonicalDstType, Loc);
1436 
1437   if (Opts.EmitImplicitIntegerSignChangeChecks)
1438     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1439                                NoncanonicalDstType, Loc);
1440 
1441   return Res;
1442 }
1443 
1444 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1445                                                    QualType DstTy,
1446                                                    SourceLocation Loc) {
1447   FixedPointSemantics SrcFPSema =
1448       CGF.getContext().getFixedPointSemantics(SrcTy);
1449   FixedPointSemantics DstFPSema =
1450       CGF.getContext().getFixedPointSemantics(DstTy);
1451   return EmitFixedPointConversion(Src, SrcFPSema, DstFPSema, Loc,
1452                                   DstTy->isIntegerType());
1453 }
1454 
1455 Value *ScalarExprEmitter::EmitFixedPointConversion(
1456     Value *Src, FixedPointSemantics &SrcFPSema, FixedPointSemantics &DstFPSema,
1457     SourceLocation Loc, bool DstIsInteger) {
1458   using llvm::APInt;
1459   using llvm::ConstantInt;
1460   using llvm::Value;
1461 
1462   unsigned SrcWidth = SrcFPSema.getWidth();
1463   unsigned DstWidth = DstFPSema.getWidth();
1464   unsigned SrcScale = SrcFPSema.getScale();
1465   unsigned DstScale = DstFPSema.getScale();
1466   bool SrcIsSigned = SrcFPSema.isSigned();
1467   bool DstIsSigned = DstFPSema.isSigned();
1468 
1469   llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth);
1470 
1471   Value *Result = Src;
1472   unsigned ResultWidth = SrcWidth;
1473 
1474   // Downscale.
1475   if (DstScale < SrcScale) {
1476     // When converting to integers, we round towards zero. For negative numbers,
1477     // right shifting rounds towards negative infinity. In this case, we can
1478     // just round up before shifting.
1479     if (DstIsInteger && SrcIsSigned) {
1480       Value *Zero = llvm::Constant::getNullValue(Result->getType());
1481       Value *IsNegative = Builder.CreateICmpSLT(Result, Zero);
1482       Value *LowBits = ConstantInt::get(
1483           CGF.getLLVMContext(), APInt::getLowBitsSet(ResultWidth, SrcScale));
1484       Value *Rounded = Builder.CreateAdd(Result, LowBits);
1485       Result = Builder.CreateSelect(IsNegative, Rounded, Result);
1486     }
1487 
1488     Result = SrcIsSigned
1489                  ? Builder.CreateAShr(Result, SrcScale - DstScale, "downscale")
1490                  : Builder.CreateLShr(Result, SrcScale - DstScale, "downscale");
1491   }
1492 
1493   if (!DstFPSema.isSaturated()) {
1494     // Resize.
1495     Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1496 
1497     // Upscale.
1498     if (DstScale > SrcScale)
1499       Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1500   } else {
1501     // Adjust the number of fractional bits.
1502     if (DstScale > SrcScale) {
1503       // Compare to DstWidth to prevent resizing twice.
1504       ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth);
1505       llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth);
1506       Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize");
1507       Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1508     }
1509 
1510     // Handle saturation.
1511     bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits();
1512     if (LessIntBits) {
1513       Value *Max = ConstantInt::get(
1514           CGF.getLLVMContext(),
1515           APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth));
1516       Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max)
1517                                    : Builder.CreateICmpUGT(Result, Max);
1518       Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax");
1519     }
1520     // Cannot overflow min to dest type if src is unsigned since all fixed
1521     // point types can cover the unsigned min of 0.
1522     if (SrcIsSigned && (LessIntBits || !DstIsSigned)) {
1523       Value *Min = ConstantInt::get(
1524           CGF.getLLVMContext(),
1525           APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth));
1526       Value *TooLow = Builder.CreateICmpSLT(Result, Min);
1527       Result = Builder.CreateSelect(TooLow, Min, Result, "satmin");
1528     }
1529 
1530     // Resize the integer part to get the final destination size.
1531     if (ResultWidth != DstWidth)
1532       Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1533   }
1534   return Result;
1535 }
1536 
1537 /// Emit a conversion from the specified complex type to the specified
1538 /// destination type, where the destination type is an LLVM scalar type.
1539 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1540     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1541     SourceLocation Loc) {
1542   // Get the source element type.
1543   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1544 
1545   // Handle conversions to bool first, they are special: comparisons against 0.
1546   if (DstTy->isBooleanType()) {
1547     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1548     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1549     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1550     return Builder.CreateOr(Src.first, Src.second, "tobool");
1551   }
1552 
1553   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1554   // the imaginary part of the complex value is discarded and the value of the
1555   // real part is converted according to the conversion rules for the
1556   // corresponding real type.
1557   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1558 }
1559 
1560 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1561   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1562 }
1563 
1564 /// Emit a sanitization check for the given "binary" operation (which
1565 /// might actually be a unary increment which has been lowered to a binary
1566 /// operation). The check passes if all values in \p Checks (which are \c i1),
1567 /// are \c true.
1568 void ScalarExprEmitter::EmitBinOpCheck(
1569     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1570   assert(CGF.IsSanitizerScope);
1571   SanitizerHandler Check;
1572   SmallVector<llvm::Constant *, 4> StaticData;
1573   SmallVector<llvm::Value *, 2> DynamicData;
1574 
1575   BinaryOperatorKind Opcode = Info.Opcode;
1576   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1577     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1578 
1579   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1580   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1581   if (UO && UO->getOpcode() == UO_Minus) {
1582     Check = SanitizerHandler::NegateOverflow;
1583     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1584     DynamicData.push_back(Info.RHS);
1585   } else {
1586     if (BinaryOperator::isShiftOp(Opcode)) {
1587       // Shift LHS negative or too large, or RHS out of bounds.
1588       Check = SanitizerHandler::ShiftOutOfBounds;
1589       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1590       StaticData.push_back(
1591         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1592       StaticData.push_back(
1593         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1594     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1595       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1596       Check = SanitizerHandler::DivremOverflow;
1597       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1598     } else {
1599       // Arithmetic overflow (+, -, *).
1600       switch (Opcode) {
1601       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1602       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1603       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1604       default: llvm_unreachable("unexpected opcode for bin op check");
1605       }
1606       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1607     }
1608     DynamicData.push_back(Info.LHS);
1609     DynamicData.push_back(Info.RHS);
1610   }
1611 
1612   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1613 }
1614 
1615 //===----------------------------------------------------------------------===//
1616 //                            Visitor Methods
1617 //===----------------------------------------------------------------------===//
1618 
1619 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1620   CGF.ErrorUnsupported(E, "scalar expression");
1621   if (E->getType()->isVoidType())
1622     return nullptr;
1623   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1624 }
1625 
1626 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1627   // Vector Mask Case
1628   if (E->getNumSubExprs() == 2) {
1629     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1630     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1631     Value *Mask;
1632 
1633     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
1634     unsigned LHSElts = LTy->getNumElements();
1635 
1636     Mask = RHS;
1637 
1638     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1639 
1640     // Mask off the high bits of each shuffle index.
1641     Value *MaskBits =
1642         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1643     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1644 
1645     // newv = undef
1646     // mask = mask & maskbits
1647     // for each elt
1648     //   n = extract mask i
1649     //   x = extract val n
1650     //   newv = insert newv, x, i
1651     auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1652                                            MTy->getNumElements());
1653     Value* NewV = llvm::UndefValue::get(RTy);
1654     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1655       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1656       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1657 
1658       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1659       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1660     }
1661     return NewV;
1662   }
1663 
1664   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1665   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1666 
1667   SmallVector<int, 32> Indices;
1668   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1669     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1670     // Check for -1 and output it as undef in the IR.
1671     if (Idx.isSigned() && Idx.isAllOnesValue())
1672       Indices.push_back(-1);
1673     else
1674       Indices.push_back(Idx.getZExtValue());
1675   }
1676 
1677   return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1678 }
1679 
1680 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1681   QualType SrcType = E->getSrcExpr()->getType(),
1682            DstType = E->getType();
1683 
1684   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1685 
1686   SrcType = CGF.getContext().getCanonicalType(SrcType);
1687   DstType = CGF.getContext().getCanonicalType(DstType);
1688   if (SrcType == DstType) return Src;
1689 
1690   assert(SrcType->isVectorType() &&
1691          "ConvertVector source type must be a vector");
1692   assert(DstType->isVectorType() &&
1693          "ConvertVector destination type must be a vector");
1694 
1695   llvm::Type *SrcTy = Src->getType();
1696   llvm::Type *DstTy = ConvertType(DstType);
1697 
1698   // Ignore conversions like int -> uint.
1699   if (SrcTy == DstTy)
1700     return Src;
1701 
1702   QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1703            DstEltType = DstType->castAs<VectorType>()->getElementType();
1704 
1705   assert(SrcTy->isVectorTy() &&
1706          "ConvertVector source IR type must be a vector");
1707   assert(DstTy->isVectorTy() &&
1708          "ConvertVector destination IR type must be a vector");
1709 
1710   llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1711              *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1712 
1713   if (DstEltType->isBooleanType()) {
1714     assert((SrcEltTy->isFloatingPointTy() ||
1715             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1716 
1717     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1718     if (SrcEltTy->isFloatingPointTy()) {
1719       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1720     } else {
1721       return Builder.CreateICmpNE(Src, Zero, "tobool");
1722     }
1723   }
1724 
1725   // We have the arithmetic types: real int/float.
1726   Value *Res = nullptr;
1727 
1728   if (isa<llvm::IntegerType>(SrcEltTy)) {
1729     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1730     if (isa<llvm::IntegerType>(DstEltTy))
1731       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1732     else if (InputSigned)
1733       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1734     else
1735       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1736   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1737     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1738     if (DstEltType->isSignedIntegerOrEnumerationType())
1739       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1740     else
1741       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1742   } else {
1743     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1744            "Unknown real conversion");
1745     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1746       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1747     else
1748       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1749   }
1750 
1751   return Res;
1752 }
1753 
1754 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1755   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1756     CGF.EmitIgnoredExpr(E->getBase());
1757     return CGF.emitScalarConstant(Constant, E);
1758   } else {
1759     Expr::EvalResult Result;
1760     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1761       llvm::APSInt Value = Result.Val.getInt();
1762       CGF.EmitIgnoredExpr(E->getBase());
1763       return Builder.getInt(Value);
1764     }
1765   }
1766 
1767   return EmitLoadOfLValue(E);
1768 }
1769 
1770 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1771   TestAndClearIgnoreResultAssign();
1772 
1773   // Emit subscript expressions in rvalue context's.  For most cases, this just
1774   // loads the lvalue formed by the subscript expr.  However, we have to be
1775   // careful, because the base of a vector subscript is occasionally an rvalue,
1776   // so we can't get it as an lvalue.
1777   if (!E->getBase()->getType()->isVectorType())
1778     return EmitLoadOfLValue(E);
1779 
1780   // Handle the vector case.  The base must be a vector, the index must be an
1781   // integer value.
1782   Value *Base = Visit(E->getBase());
1783   Value *Idx  = Visit(E->getIdx());
1784   QualType IdxTy = E->getIdx()->getType();
1785 
1786   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1787     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1788 
1789   return Builder.CreateExtractElement(Base, Idx, "vecext");
1790 }
1791 
1792 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
1793   TestAndClearIgnoreResultAssign();
1794 
1795   // Handle the vector case.  The base must be a vector, the index must be an
1796   // integer value.
1797   Value *RowIdx = Visit(E->getRowIdx());
1798   Value *ColumnIdx = Visit(E->getColumnIdx());
1799   Value *Matrix = Visit(E->getBase());
1800 
1801   // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
1802   llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
1803   return MB.CreateExtractElement(
1804       Matrix, RowIdx, ColumnIdx,
1805       E->getBase()->getType()->getAs<ConstantMatrixType>()->getNumRows());
1806 }
1807 
1808 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1809                       unsigned Off) {
1810   int MV = SVI->getMaskValue(Idx);
1811   if (MV == -1)
1812     return -1;
1813   return Off + MV;
1814 }
1815 
1816 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1817   assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
1818          "Index operand too large for shufflevector mask!");
1819   return C->getZExtValue();
1820 }
1821 
1822 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1823   bool Ignore = TestAndClearIgnoreResultAssign();
1824   (void)Ignore;
1825   assert (Ignore == false && "init list ignored");
1826   unsigned NumInitElements = E->getNumInits();
1827 
1828   if (E->hadArrayRangeDesignator())
1829     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1830 
1831   llvm::VectorType *VType =
1832     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1833 
1834   if (!VType) {
1835     if (NumInitElements == 0) {
1836       // C++11 value-initialization for the scalar.
1837       return EmitNullValue(E->getType());
1838     }
1839     // We have a scalar in braces. Just use the first element.
1840     return Visit(E->getInit(0));
1841   }
1842 
1843   unsigned ResElts = VType->getNumElements();
1844 
1845   // Loop over initializers collecting the Value for each, and remembering
1846   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1847   // us to fold the shuffle for the swizzle into the shuffle for the vector
1848   // initializer, since LLVM optimizers generally do not want to touch
1849   // shuffles.
1850   unsigned CurIdx = 0;
1851   bool VIsUndefShuffle = false;
1852   llvm::Value *V = llvm::UndefValue::get(VType);
1853   for (unsigned i = 0; i != NumInitElements; ++i) {
1854     Expr *IE = E->getInit(i);
1855     Value *Init = Visit(IE);
1856     SmallVector<int, 16> Args;
1857 
1858     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1859 
1860     // Handle scalar elements.  If the scalar initializer is actually one
1861     // element of a different vector of the same width, use shuffle instead of
1862     // extract+insert.
1863     if (!VVT) {
1864       if (isa<ExtVectorElementExpr>(IE)) {
1865         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1866 
1867         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1868           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1869           Value *LHS = nullptr, *RHS = nullptr;
1870           if (CurIdx == 0) {
1871             // insert into undef -> shuffle (src, undef)
1872             // shufflemask must use an i32
1873             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1874             Args.resize(ResElts, -1);
1875 
1876             LHS = EI->getVectorOperand();
1877             RHS = V;
1878             VIsUndefShuffle = true;
1879           } else if (VIsUndefShuffle) {
1880             // insert into undefshuffle && size match -> shuffle (v, src)
1881             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1882             for (unsigned j = 0; j != CurIdx; ++j)
1883               Args.push_back(getMaskElt(SVV, j, 0));
1884             Args.push_back(ResElts + C->getZExtValue());
1885             Args.resize(ResElts, -1);
1886 
1887             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1888             RHS = EI->getVectorOperand();
1889             VIsUndefShuffle = false;
1890           }
1891           if (!Args.empty()) {
1892             V = Builder.CreateShuffleVector(LHS, RHS, Args);
1893             ++CurIdx;
1894             continue;
1895           }
1896         }
1897       }
1898       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1899                                       "vecinit");
1900       VIsUndefShuffle = false;
1901       ++CurIdx;
1902       continue;
1903     }
1904 
1905     unsigned InitElts = VVT->getNumElements();
1906 
1907     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1908     // input is the same width as the vector being constructed, generate an
1909     // optimized shuffle of the swizzle input into the result.
1910     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1911     if (isa<ExtVectorElementExpr>(IE)) {
1912       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1913       Value *SVOp = SVI->getOperand(0);
1914       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1915 
1916       if (OpTy->getNumElements() == ResElts) {
1917         for (unsigned j = 0; j != CurIdx; ++j) {
1918           // If the current vector initializer is a shuffle with undef, merge
1919           // this shuffle directly into it.
1920           if (VIsUndefShuffle) {
1921             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
1922           } else {
1923             Args.push_back(j);
1924           }
1925         }
1926         for (unsigned j = 0, je = InitElts; j != je; ++j)
1927           Args.push_back(getMaskElt(SVI, j, Offset));
1928         Args.resize(ResElts, -1);
1929 
1930         if (VIsUndefShuffle)
1931           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1932 
1933         Init = SVOp;
1934       }
1935     }
1936 
1937     // Extend init to result vector length, and then shuffle its contribution
1938     // to the vector initializer into V.
1939     if (Args.empty()) {
1940       for (unsigned j = 0; j != InitElts; ++j)
1941         Args.push_back(j);
1942       Args.resize(ResElts, -1);
1943       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), Args,
1944                                          "vext");
1945 
1946       Args.clear();
1947       for (unsigned j = 0; j != CurIdx; ++j)
1948         Args.push_back(j);
1949       for (unsigned j = 0; j != InitElts; ++j)
1950         Args.push_back(j + Offset);
1951       Args.resize(ResElts, -1);
1952     }
1953 
1954     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1955     // merging subsequent shuffles into this one.
1956     if (CurIdx == 0)
1957       std::swap(V, Init);
1958     V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
1959     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1960     CurIdx += InitElts;
1961   }
1962 
1963   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1964   // Emit remaining default initializers.
1965   llvm::Type *EltTy = VType->getElementType();
1966 
1967   // Emit remaining default initializers
1968   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1969     Value *Idx = Builder.getInt32(CurIdx);
1970     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1971     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1972   }
1973   return V;
1974 }
1975 
1976 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1977   const Expr *E = CE->getSubExpr();
1978 
1979   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1980     return false;
1981 
1982   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1983     // We always assume that 'this' is never null.
1984     return false;
1985   }
1986 
1987   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1988     // And that glvalue casts are never null.
1989     if (ICE->getValueKind() != VK_RValue)
1990       return false;
1991   }
1992 
1993   return true;
1994 }
1995 
1996 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1997 // have to handle a more broad range of conversions than explicit casts, as they
1998 // handle things like function to ptr-to-function decay etc.
1999 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
2000   Expr *E = CE->getSubExpr();
2001   QualType DestTy = CE->getType();
2002   CastKind Kind = CE->getCastKind();
2003 
2004   // These cases are generally not written to ignore the result of
2005   // evaluating their sub-expressions, so we clear this now.
2006   bool Ignored = TestAndClearIgnoreResultAssign();
2007 
2008   // Since almost all cast kinds apply to scalars, this switch doesn't have
2009   // a default case, so the compiler will warn on a missing case.  The cases
2010   // are in the same order as in the CastKind enum.
2011   switch (Kind) {
2012   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
2013   case CK_BuiltinFnToFnPtr:
2014     llvm_unreachable("builtin functions are handled elsewhere");
2015 
2016   case CK_LValueBitCast:
2017   case CK_ObjCObjectLValueCast: {
2018     Address Addr = EmitLValue(E).getAddress(CGF);
2019     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
2020     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
2021     return EmitLoadOfLValue(LV, CE->getExprLoc());
2022   }
2023 
2024   case CK_LValueToRValueBitCast: {
2025     LValue SourceLVal = CGF.EmitLValue(E);
2026     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
2027                                                 CGF.ConvertTypeForMem(DestTy));
2028     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2029     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2030     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2031   }
2032 
2033   case CK_CPointerToObjCPointerCast:
2034   case CK_BlockPointerToObjCPointerCast:
2035   case CK_AnyPointerToBlockPointerCast:
2036   case CK_BitCast: {
2037     Value *Src = Visit(const_cast<Expr*>(E));
2038     llvm::Type *SrcTy = Src->getType();
2039     llvm::Type *DstTy = ConvertType(DestTy);
2040     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
2041         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
2042       llvm_unreachable("wrong cast for pointers in different address spaces"
2043                        "(must be an address space cast)!");
2044     }
2045 
2046     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2047       if (auto PT = DestTy->getAs<PointerType>())
2048         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
2049                                       /*MayBeNull=*/true,
2050                                       CodeGenFunction::CFITCK_UnrelatedCast,
2051                                       CE->getBeginLoc());
2052     }
2053 
2054     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2055       const QualType SrcType = E->getType();
2056 
2057       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2058         // Casting to pointer that could carry dynamic information (provided by
2059         // invariant.group) requires launder.
2060         Src = Builder.CreateLaunderInvariantGroup(Src);
2061       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2062         // Casting to pointer that does not carry dynamic information (provided
2063         // by invariant.group) requires stripping it.  Note that we don't do it
2064         // if the source could not be dynamic type and destination could be
2065         // dynamic because dynamic information is already laundered.  It is
2066         // because launder(strip(src)) == launder(src), so there is no need to
2067         // add extra strip before launder.
2068         Src = Builder.CreateStripInvariantGroup(Src);
2069       }
2070     }
2071 
2072     // Update heapallocsite metadata when there is an explicit pointer cast.
2073     if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
2074       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) {
2075         QualType PointeeType = DestTy->getPointeeType();
2076         if (!PointeeType.isNull())
2077           CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
2078                                                        CE->getExprLoc());
2079       }
2080     }
2081 
2082     return Builder.CreateBitCast(Src, DstTy);
2083   }
2084   case CK_AddressSpaceConversion: {
2085     Expr::EvalResult Result;
2086     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2087         Result.Val.isNullPointer()) {
2088       // If E has side effect, it is emitted even if its final result is a
2089       // null pointer. In that case, a DCE pass should be able to
2090       // eliminate the useless instructions emitted during translating E.
2091       if (Result.HasSideEffects)
2092         Visit(E);
2093       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2094           ConvertType(DestTy)), DestTy);
2095     }
2096     // Since target may map different address spaces in AST to the same address
2097     // space, an address space conversion may end up as a bitcast.
2098     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2099         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2100         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2101   }
2102   case CK_AtomicToNonAtomic:
2103   case CK_NonAtomicToAtomic:
2104   case CK_NoOp:
2105   case CK_UserDefinedConversion:
2106     return Visit(const_cast<Expr*>(E));
2107 
2108   case CK_BaseToDerived: {
2109     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2110     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2111 
2112     Address Base = CGF.EmitPointerWithAlignment(E);
2113     Address Derived =
2114       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2115                                    CE->path_begin(), CE->path_end(),
2116                                    CGF.ShouldNullCheckClassCastValue(CE));
2117 
2118     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2119     // performed and the object is not of the derived type.
2120     if (CGF.sanitizePerformTypeCheck())
2121       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2122                         Derived.getPointer(), DestTy->getPointeeType());
2123 
2124     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2125       CGF.EmitVTablePtrCheckForCast(
2126           DestTy->getPointeeType(), Derived.getPointer(),
2127           /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2128           CE->getBeginLoc());
2129 
2130     return Derived.getPointer();
2131   }
2132   case CK_UncheckedDerivedToBase:
2133   case CK_DerivedToBase: {
2134     // The EmitPointerWithAlignment path does this fine; just discard
2135     // the alignment.
2136     return CGF.EmitPointerWithAlignment(CE).getPointer();
2137   }
2138 
2139   case CK_Dynamic: {
2140     Address V = CGF.EmitPointerWithAlignment(E);
2141     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2142     return CGF.EmitDynamicCast(V, DCE);
2143   }
2144 
2145   case CK_ArrayToPointerDecay:
2146     return CGF.EmitArrayToPointerDecay(E).getPointer();
2147   case CK_FunctionToPointerDecay:
2148     return EmitLValue(E).getPointer(CGF);
2149 
2150   case CK_NullToPointer:
2151     if (MustVisitNullValue(E))
2152       CGF.EmitIgnoredExpr(E);
2153 
2154     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2155                               DestTy);
2156 
2157   case CK_NullToMemberPointer: {
2158     if (MustVisitNullValue(E))
2159       CGF.EmitIgnoredExpr(E);
2160 
2161     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2162     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2163   }
2164 
2165   case CK_ReinterpretMemberPointer:
2166   case CK_BaseToDerivedMemberPointer:
2167   case CK_DerivedToBaseMemberPointer: {
2168     Value *Src = Visit(E);
2169 
2170     // Note that the AST doesn't distinguish between checked and
2171     // unchecked member pointer conversions, so we always have to
2172     // implement checked conversions here.  This is inefficient when
2173     // actual control flow may be required in order to perform the
2174     // check, which it is for data member pointers (but not member
2175     // function pointers on Itanium and ARM).
2176     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2177   }
2178 
2179   case CK_ARCProduceObject:
2180     return CGF.EmitARCRetainScalarExpr(E);
2181   case CK_ARCConsumeObject:
2182     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2183   case CK_ARCReclaimReturnedObject:
2184     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2185   case CK_ARCExtendBlockObject:
2186     return CGF.EmitARCExtendBlockObject(E);
2187 
2188   case CK_CopyAndAutoreleaseBlockObject:
2189     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2190 
2191   case CK_FloatingRealToComplex:
2192   case CK_FloatingComplexCast:
2193   case CK_IntegralRealToComplex:
2194   case CK_IntegralComplexCast:
2195   case CK_IntegralComplexToFloatingComplex:
2196   case CK_FloatingComplexToIntegralComplex:
2197   case CK_ConstructorConversion:
2198   case CK_ToUnion:
2199     llvm_unreachable("scalar cast to non-scalar value");
2200 
2201   case CK_LValueToRValue:
2202     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2203     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2204     return Visit(const_cast<Expr*>(E));
2205 
2206   case CK_IntegralToPointer: {
2207     Value *Src = Visit(const_cast<Expr*>(E));
2208 
2209     // First, convert to the correct width so that we control the kind of
2210     // extension.
2211     auto DestLLVMTy = ConvertType(DestTy);
2212     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2213     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2214     llvm::Value* IntResult =
2215       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2216 
2217     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2218 
2219     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2220       // Going from integer to pointer that could be dynamic requires reloading
2221       // dynamic information from invariant.group.
2222       if (DestTy.mayBeDynamicClass())
2223         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2224     }
2225     return IntToPtr;
2226   }
2227   case CK_PointerToIntegral: {
2228     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2229     auto *PtrExpr = Visit(E);
2230 
2231     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2232       const QualType SrcType = E->getType();
2233 
2234       // Casting to integer requires stripping dynamic information as it does
2235       // not carries it.
2236       if (SrcType.mayBeDynamicClass())
2237         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2238     }
2239 
2240     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2241   }
2242   case CK_ToVoid: {
2243     CGF.EmitIgnoredExpr(E);
2244     return nullptr;
2245   }
2246   case CK_VectorSplat: {
2247     llvm::Type *DstTy = ConvertType(DestTy);
2248     Value *Elt = Visit(const_cast<Expr*>(E));
2249     // Splat the element across to all elements
2250     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
2251     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2252   }
2253 
2254   case CK_FixedPointCast:
2255     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2256                                 CE->getExprLoc());
2257 
2258   case CK_FixedPointToBoolean:
2259     assert(E->getType()->isFixedPointType() &&
2260            "Expected src type to be fixed point type");
2261     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2262     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2263                                 CE->getExprLoc());
2264 
2265   case CK_FixedPointToIntegral:
2266     assert(E->getType()->isFixedPointType() &&
2267            "Expected src type to be fixed point type");
2268     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2269     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2270                                 CE->getExprLoc());
2271 
2272   case CK_IntegralToFixedPoint:
2273     assert(E->getType()->isIntegerType() &&
2274            "Expected src type to be an integer");
2275     assert(DestTy->isFixedPointType() &&
2276            "Expected dest type to be fixed point type");
2277     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2278                                 CE->getExprLoc());
2279 
2280   case CK_IntegralCast: {
2281     ScalarConversionOpts Opts;
2282     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2283       if (!ICE->isPartOfExplicitCast())
2284         Opts = ScalarConversionOpts(CGF.SanOpts);
2285     }
2286     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2287                                 CE->getExprLoc(), Opts);
2288   }
2289   case CK_IntegralToFloating:
2290   case CK_FloatingToIntegral:
2291   case CK_FloatingCast:
2292     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2293                                 CE->getExprLoc());
2294   case CK_BooleanToSignedIntegral: {
2295     ScalarConversionOpts Opts;
2296     Opts.TreatBooleanAsSigned = true;
2297     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2298                                 CE->getExprLoc(), Opts);
2299   }
2300   case CK_IntegralToBoolean:
2301     return EmitIntToBoolConversion(Visit(E));
2302   case CK_PointerToBoolean:
2303     return EmitPointerToBoolConversion(Visit(E), E->getType());
2304   case CK_FloatingToBoolean:
2305     return EmitFloatToBoolConversion(Visit(E));
2306   case CK_MemberPointerToBoolean: {
2307     llvm::Value *MemPtr = Visit(E);
2308     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2309     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2310   }
2311 
2312   case CK_FloatingComplexToReal:
2313   case CK_IntegralComplexToReal:
2314     return CGF.EmitComplexExpr(E, false, true).first;
2315 
2316   case CK_FloatingComplexToBoolean:
2317   case CK_IntegralComplexToBoolean: {
2318     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2319 
2320     // TODO: kill this function off, inline appropriate case here
2321     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2322                                          CE->getExprLoc());
2323   }
2324 
2325   case CK_ZeroToOCLOpaqueType: {
2326     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2327             DestTy->isOCLIntelSubgroupAVCType()) &&
2328            "CK_ZeroToOCLEvent cast on non-event type");
2329     return llvm::Constant::getNullValue(ConvertType(DestTy));
2330   }
2331 
2332   case CK_IntToOCLSampler:
2333     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2334 
2335   } // end of switch
2336 
2337   llvm_unreachable("unknown scalar cast");
2338 }
2339 
2340 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2341   CodeGenFunction::StmtExprEvaluation eval(CGF);
2342   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2343                                            !E->getType()->isVoidType());
2344   if (!RetAlloca.isValid())
2345     return nullptr;
2346   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2347                               E->getExprLoc());
2348 }
2349 
2350 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2351   CodeGenFunction::RunCleanupsScope Scope(CGF);
2352   Value *V = Visit(E->getSubExpr());
2353   // Defend against dominance problems caused by jumps out of expression
2354   // evaluation through the shared cleanup block.
2355   Scope.ForceCleanup({&V});
2356   return V;
2357 }
2358 
2359 //===----------------------------------------------------------------------===//
2360 //                             Unary Operators
2361 //===----------------------------------------------------------------------===//
2362 
2363 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2364                                            llvm::Value *InVal, bool IsInc,
2365                                            FPOptions FPFeatures) {
2366   BinOpInfo BinOp;
2367   BinOp.LHS = InVal;
2368   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2369   BinOp.Ty = E->getType();
2370   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2371   BinOp.FPFeatures = FPFeatures;
2372   BinOp.E = E;
2373   return BinOp;
2374 }
2375 
2376 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2377     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2378   llvm::Value *Amount =
2379       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2380   StringRef Name = IsInc ? "inc" : "dec";
2381   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2382   case LangOptions::SOB_Defined:
2383     return Builder.CreateAdd(InVal, Amount, Name);
2384   case LangOptions::SOB_Undefined:
2385     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2386       return Builder.CreateNSWAdd(InVal, Amount, Name);
2387     LLVM_FALLTHROUGH;
2388   case LangOptions::SOB_Trapping:
2389     if (!E->canOverflow())
2390       return Builder.CreateNSWAdd(InVal, Amount, Name);
2391     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2392         E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2393   }
2394   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2395 }
2396 
2397 namespace {
2398 /// Handles check and update for lastprivate conditional variables.
2399 class OMPLastprivateConditionalUpdateRAII {
2400 private:
2401   CodeGenFunction &CGF;
2402   const UnaryOperator *E;
2403 
2404 public:
2405   OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2406                                       const UnaryOperator *E)
2407       : CGF(CGF), E(E) {}
2408   ~OMPLastprivateConditionalUpdateRAII() {
2409     if (CGF.getLangOpts().OpenMP)
2410       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2411           CGF, E->getSubExpr());
2412   }
2413 };
2414 } // namespace
2415 
2416 llvm::Value *
2417 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2418                                            bool isInc, bool isPre) {
2419   OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2420   QualType type = E->getSubExpr()->getType();
2421   llvm::PHINode *atomicPHI = nullptr;
2422   llvm::Value *value;
2423   llvm::Value *input;
2424 
2425   int amount = (isInc ? 1 : -1);
2426   bool isSubtraction = !isInc;
2427 
2428   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2429     type = atomicTy->getValueType();
2430     if (isInc && type->isBooleanType()) {
2431       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2432       if (isPre) {
2433         Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2434             ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2435         return Builder.getTrue();
2436       }
2437       // For atomic bool increment, we just store true and return it for
2438       // preincrement, do an atomic swap with true for postincrement
2439       return Builder.CreateAtomicRMW(
2440           llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2441           llvm::AtomicOrdering::SequentiallyConsistent);
2442     }
2443     // Special case for atomic increment / decrement on integers, emit
2444     // atomicrmw instructions.  We skip this if we want to be doing overflow
2445     // checking, and fall into the slow path with the atomic cmpxchg loop.
2446     if (!type->isBooleanType() && type->isIntegerType() &&
2447         !(type->isUnsignedIntegerType() &&
2448           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2449         CGF.getLangOpts().getSignedOverflowBehavior() !=
2450             LangOptions::SOB_Trapping) {
2451       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2452         llvm::AtomicRMWInst::Sub;
2453       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2454         llvm::Instruction::Sub;
2455       llvm::Value *amt = CGF.EmitToMemory(
2456           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2457       llvm::Value *old =
2458           Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2459                                   llvm::AtomicOrdering::SequentiallyConsistent);
2460       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2461     }
2462     value = EmitLoadOfLValue(LV, E->getExprLoc());
2463     input = value;
2464     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2465     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2466     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2467     value = CGF.EmitToMemory(value, type);
2468     Builder.CreateBr(opBB);
2469     Builder.SetInsertPoint(opBB);
2470     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2471     atomicPHI->addIncoming(value, startBB);
2472     value = atomicPHI;
2473   } else {
2474     value = EmitLoadOfLValue(LV, E->getExprLoc());
2475     input = value;
2476   }
2477 
2478   // Special case of integer increment that we have to check first: bool++.
2479   // Due to promotion rules, we get:
2480   //   bool++ -> bool = bool + 1
2481   //          -> bool = (int)bool + 1
2482   //          -> bool = ((int)bool + 1 != 0)
2483   // An interesting aspect of this is that increment is always true.
2484   // Decrement does not have this property.
2485   if (isInc && type->isBooleanType()) {
2486     value = Builder.getTrue();
2487 
2488   // Most common case by far: integer increment.
2489   } else if (type->isIntegerType()) {
2490     QualType promotedType;
2491     bool canPerformLossyDemotionCheck = false;
2492     if (type->isPromotableIntegerType()) {
2493       promotedType = CGF.getContext().getPromotedIntegerType(type);
2494       assert(promotedType != type && "Shouldn't promote to the same type.");
2495       canPerformLossyDemotionCheck = true;
2496       canPerformLossyDemotionCheck &=
2497           CGF.getContext().getCanonicalType(type) !=
2498           CGF.getContext().getCanonicalType(promotedType);
2499       canPerformLossyDemotionCheck &=
2500           PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2501               type, promotedType);
2502       assert((!canPerformLossyDemotionCheck ||
2503               type->isSignedIntegerOrEnumerationType() ||
2504               promotedType->isSignedIntegerOrEnumerationType() ||
2505               ConvertType(type)->getScalarSizeInBits() ==
2506                   ConvertType(promotedType)->getScalarSizeInBits()) &&
2507              "The following check expects that if we do promotion to different "
2508              "underlying canonical type, at least one of the types (either "
2509              "base or promoted) will be signed, or the bitwidths will match.");
2510     }
2511     if (CGF.SanOpts.hasOneOf(
2512             SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2513         canPerformLossyDemotionCheck) {
2514       // While `x += 1` (for `x` with width less than int) is modeled as
2515       // promotion+arithmetics+demotion, and we can catch lossy demotion with
2516       // ease; inc/dec with width less than int can't overflow because of
2517       // promotion rules, so we omit promotion+demotion, which means that we can
2518       // not catch lossy "demotion". Because we still want to catch these cases
2519       // when the sanitizer is enabled, we perform the promotion, then perform
2520       // the increment/decrement in the wider type, and finally
2521       // perform the demotion. This will catch lossy demotions.
2522 
2523       value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2524       Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2525       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2526       // Do pass non-default ScalarConversionOpts so that sanitizer check is
2527       // emitted.
2528       value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2529                                    ScalarConversionOpts(CGF.SanOpts));
2530 
2531       // Note that signed integer inc/dec with width less than int can't
2532       // overflow because of promotion rules; we're just eliding a few steps
2533       // here.
2534     } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2535       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2536     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2537                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2538       value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2539           E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2540     } else {
2541       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2542       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2543     }
2544 
2545   // Next most common: pointer increment.
2546   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2547     QualType type = ptr->getPointeeType();
2548 
2549     // VLA types don't have constant size.
2550     if (const VariableArrayType *vla
2551           = CGF.getContext().getAsVariableArrayType(type)) {
2552       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2553       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2554       if (CGF.getLangOpts().isSignedOverflowDefined())
2555         value = Builder.CreateGEP(value, numElts, "vla.inc");
2556       else
2557         value = CGF.EmitCheckedInBoundsGEP(
2558             value, numElts, /*SignedIndices=*/false, isSubtraction,
2559             E->getExprLoc(), "vla.inc");
2560 
2561     // Arithmetic on function pointers (!) is just +-1.
2562     } else if (type->isFunctionType()) {
2563       llvm::Value *amt = Builder.getInt32(amount);
2564 
2565       value = CGF.EmitCastToVoidPtr(value);
2566       if (CGF.getLangOpts().isSignedOverflowDefined())
2567         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2568       else
2569         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2570                                            isSubtraction, E->getExprLoc(),
2571                                            "incdec.funcptr");
2572       value = Builder.CreateBitCast(value, input->getType());
2573 
2574     // For everything else, we can just do a simple increment.
2575     } else {
2576       llvm::Value *amt = Builder.getInt32(amount);
2577       if (CGF.getLangOpts().isSignedOverflowDefined())
2578         value = Builder.CreateGEP(value, amt, "incdec.ptr");
2579       else
2580         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2581                                            isSubtraction, E->getExprLoc(),
2582                                            "incdec.ptr");
2583     }
2584 
2585   // Vector increment/decrement.
2586   } else if (type->isVectorType()) {
2587     if (type->hasIntegerRepresentation()) {
2588       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2589 
2590       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2591     } else {
2592       value = Builder.CreateFAdd(
2593                   value,
2594                   llvm::ConstantFP::get(value->getType(), amount),
2595                   isInc ? "inc" : "dec");
2596     }
2597 
2598   // Floating point.
2599   } else if (type->isRealFloatingType()) {
2600     // Add the inc/dec to the real part.
2601     llvm::Value *amt;
2602 
2603     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2604       // Another special case: half FP increment should be done via float
2605       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2606         value = Builder.CreateCall(
2607             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2608                                  CGF.CGM.FloatTy),
2609             input, "incdec.conv");
2610       } else {
2611         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2612       }
2613     }
2614 
2615     if (value->getType()->isFloatTy())
2616       amt = llvm::ConstantFP::get(VMContext,
2617                                   llvm::APFloat(static_cast<float>(amount)));
2618     else if (value->getType()->isDoubleTy())
2619       amt = llvm::ConstantFP::get(VMContext,
2620                                   llvm::APFloat(static_cast<double>(amount)));
2621     else {
2622       // Remaining types are Half, LongDouble or __float128. Convert from float.
2623       llvm::APFloat F(static_cast<float>(amount));
2624       bool ignored;
2625       const llvm::fltSemantics *FS;
2626       // Don't use getFloatTypeSemantics because Half isn't
2627       // necessarily represented using the "half" LLVM type.
2628       if (value->getType()->isFP128Ty())
2629         FS = &CGF.getTarget().getFloat128Format();
2630       else if (value->getType()->isHalfTy())
2631         FS = &CGF.getTarget().getHalfFormat();
2632       else
2633         FS = &CGF.getTarget().getLongDoubleFormat();
2634       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2635       amt = llvm::ConstantFP::get(VMContext, F);
2636     }
2637     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2638 
2639     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2640       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2641         value = Builder.CreateCall(
2642             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2643                                  CGF.CGM.FloatTy),
2644             value, "incdec.conv");
2645       } else {
2646         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2647       }
2648     }
2649 
2650   // Fixed-point types.
2651   } else if (type->isFixedPointType()) {
2652     // Fixed-point types are tricky. In some cases, it isn't possible to
2653     // represent a 1 or a -1 in the type at all. Piggyback off of
2654     // EmitFixedPointBinOp to avoid having to reimplement saturation.
2655     BinOpInfo Info;
2656     Info.E = E;
2657     Info.Ty = E->getType();
2658     Info.Opcode = isInc ? BO_Add : BO_Sub;
2659     Info.LHS = value;
2660     Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
2661     // If the type is signed, it's better to represent this as +(-1) or -(-1),
2662     // since -1 is guaranteed to be representable.
2663     if (type->isSignedFixedPointType()) {
2664       Info.Opcode = isInc ? BO_Sub : BO_Add;
2665       Info.RHS = Builder.CreateNeg(Info.RHS);
2666     }
2667     // Now, convert from our invented integer literal to the type of the unary
2668     // op. This will upscale and saturate if necessary. This value can become
2669     // undef in some cases.
2670     FixedPointSemantics SrcSema =
2671         FixedPointSemantics::GetIntegerSemantics(value->getType()
2672                                                       ->getScalarSizeInBits(),
2673                                                  /*IsSigned=*/true);
2674     FixedPointSemantics DstSema =
2675         CGF.getContext().getFixedPointSemantics(Info.Ty);
2676     Info.RHS = EmitFixedPointConversion(Info.RHS, SrcSema, DstSema,
2677                                         E->getExprLoc());
2678     value = EmitFixedPointBinOp(Info);
2679 
2680   // Objective-C pointer types.
2681   } else {
2682     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2683     value = CGF.EmitCastToVoidPtr(value);
2684 
2685     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2686     if (!isInc) size = -size;
2687     llvm::Value *sizeValue =
2688       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2689 
2690     if (CGF.getLangOpts().isSignedOverflowDefined())
2691       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2692     else
2693       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2694                                          /*SignedIndices=*/false, isSubtraction,
2695                                          E->getExprLoc(), "incdec.objptr");
2696     value = Builder.CreateBitCast(value, input->getType());
2697   }
2698 
2699   if (atomicPHI) {
2700     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2701     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2702     auto Pair = CGF.EmitAtomicCompareExchange(
2703         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2704     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2705     llvm::Value *success = Pair.second;
2706     atomicPHI->addIncoming(old, curBlock);
2707     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2708     Builder.SetInsertPoint(contBB);
2709     return isPre ? value : input;
2710   }
2711 
2712   // Store the updated result through the lvalue.
2713   if (LV.isBitField())
2714     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2715   else
2716     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2717 
2718   // If this is a postinc, return the value read from memory, otherwise use the
2719   // updated value.
2720   return isPre ? value : input;
2721 }
2722 
2723 
2724 
2725 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2726   TestAndClearIgnoreResultAssign();
2727   Value *Op = Visit(E->getSubExpr());
2728 
2729   // Generate a unary FNeg for FP ops.
2730   if (Op->getType()->isFPOrFPVectorTy())
2731     return Builder.CreateFNeg(Op, "fneg");
2732 
2733   // Emit unary minus with EmitSub so we handle overflow cases etc.
2734   BinOpInfo BinOp;
2735   BinOp.RHS = Op;
2736   BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2737   BinOp.Ty = E->getType();
2738   BinOp.Opcode = BO_Sub;
2739   BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2740   BinOp.E = E;
2741   return EmitSub(BinOp);
2742 }
2743 
2744 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2745   TestAndClearIgnoreResultAssign();
2746   Value *Op = Visit(E->getSubExpr());
2747   return Builder.CreateNot(Op, "neg");
2748 }
2749 
2750 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2751   // Perform vector logical not on comparison with zero vector.
2752   if (E->getType()->isVectorType() &&
2753       E->getType()->castAs<VectorType>()->getVectorKind() ==
2754           VectorType::GenericVector) {
2755     Value *Oper = Visit(E->getSubExpr());
2756     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2757     Value *Result;
2758     if (Oper->getType()->isFPOrFPVectorTy()) {
2759       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
2760           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
2761       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2762     } else
2763       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2764     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2765   }
2766 
2767   // Compare operand to zero.
2768   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2769 
2770   // Invert value.
2771   // TODO: Could dynamically modify easy computations here.  For example, if
2772   // the operand is an icmp ne, turn into icmp eq.
2773   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2774 
2775   // ZExt result to the expr type.
2776   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2777 }
2778 
2779 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2780   // Try folding the offsetof to a constant.
2781   Expr::EvalResult EVResult;
2782   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2783     llvm::APSInt Value = EVResult.Val.getInt();
2784     return Builder.getInt(Value);
2785   }
2786 
2787   // Loop over the components of the offsetof to compute the value.
2788   unsigned n = E->getNumComponents();
2789   llvm::Type* ResultType = ConvertType(E->getType());
2790   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2791   QualType CurrentType = E->getTypeSourceInfo()->getType();
2792   for (unsigned i = 0; i != n; ++i) {
2793     OffsetOfNode ON = E->getComponent(i);
2794     llvm::Value *Offset = nullptr;
2795     switch (ON.getKind()) {
2796     case OffsetOfNode::Array: {
2797       // Compute the index
2798       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2799       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2800       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2801       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2802 
2803       // Save the element type
2804       CurrentType =
2805           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2806 
2807       // Compute the element size
2808       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2809           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2810 
2811       // Multiply out to compute the result
2812       Offset = Builder.CreateMul(Idx, ElemSize);
2813       break;
2814     }
2815 
2816     case OffsetOfNode::Field: {
2817       FieldDecl *MemberDecl = ON.getField();
2818       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2819       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2820 
2821       // Compute the index of the field in its parent.
2822       unsigned i = 0;
2823       // FIXME: It would be nice if we didn't have to loop here!
2824       for (RecordDecl::field_iterator Field = RD->field_begin(),
2825                                       FieldEnd = RD->field_end();
2826            Field != FieldEnd; ++Field, ++i) {
2827         if (*Field == MemberDecl)
2828           break;
2829       }
2830       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2831 
2832       // Compute the offset to the field
2833       int64_t OffsetInt = RL.getFieldOffset(i) /
2834                           CGF.getContext().getCharWidth();
2835       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2836 
2837       // Save the element type.
2838       CurrentType = MemberDecl->getType();
2839       break;
2840     }
2841 
2842     case OffsetOfNode::Identifier:
2843       llvm_unreachable("dependent __builtin_offsetof");
2844 
2845     case OffsetOfNode::Base: {
2846       if (ON.getBase()->isVirtual()) {
2847         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2848         continue;
2849       }
2850 
2851       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2852       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2853 
2854       // Save the element type.
2855       CurrentType = ON.getBase()->getType();
2856 
2857       // Compute the offset to the base.
2858       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2859       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2860       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2861       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2862       break;
2863     }
2864     }
2865     Result = Builder.CreateAdd(Result, Offset);
2866   }
2867   return Result;
2868 }
2869 
2870 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2871 /// argument of the sizeof expression as an integer.
2872 Value *
2873 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2874                               const UnaryExprOrTypeTraitExpr *E) {
2875   QualType TypeToSize = E->getTypeOfArgument();
2876   if (E->getKind() == UETT_SizeOf) {
2877     if (const VariableArrayType *VAT =
2878           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2879       if (E->isArgumentType()) {
2880         // sizeof(type) - make sure to emit the VLA size.
2881         CGF.EmitVariablyModifiedType(TypeToSize);
2882       } else {
2883         // C99 6.5.3.4p2: If the argument is an expression of type
2884         // VLA, it is evaluated.
2885         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2886       }
2887 
2888       auto VlaSize = CGF.getVLASize(VAT);
2889       llvm::Value *size = VlaSize.NumElts;
2890 
2891       // Scale the number of non-VLA elements by the non-VLA element size.
2892       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2893       if (!eltSize.isOne())
2894         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2895 
2896       return size;
2897     }
2898   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2899     auto Alignment =
2900         CGF.getContext()
2901             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2902                 E->getTypeOfArgument()->getPointeeType()))
2903             .getQuantity();
2904     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2905   }
2906 
2907   // If this isn't sizeof(vla), the result must be constant; use the constant
2908   // folding logic so we don't have to duplicate it here.
2909   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2910 }
2911 
2912 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2913   Expr *Op = E->getSubExpr();
2914   if (Op->getType()->isAnyComplexType()) {
2915     // If it's an l-value, load through the appropriate subobject l-value.
2916     // Note that we have to ask E because Op might be an l-value that
2917     // this won't work for, e.g. an Obj-C property.
2918     if (E->isGLValue())
2919       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2920                                   E->getExprLoc()).getScalarVal();
2921 
2922     // Otherwise, calculate and project.
2923     return CGF.EmitComplexExpr(Op, false, true).first;
2924   }
2925 
2926   return Visit(Op);
2927 }
2928 
2929 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2930   Expr *Op = E->getSubExpr();
2931   if (Op->getType()->isAnyComplexType()) {
2932     // If it's an l-value, load through the appropriate subobject l-value.
2933     // Note that we have to ask E because Op might be an l-value that
2934     // this won't work for, e.g. an Obj-C property.
2935     if (Op->isGLValue())
2936       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2937                                   E->getExprLoc()).getScalarVal();
2938 
2939     // Otherwise, calculate and project.
2940     return CGF.EmitComplexExpr(Op, true, false).second;
2941   }
2942 
2943   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2944   // effects are evaluated, but not the actual value.
2945   if (Op->isGLValue())
2946     CGF.EmitLValue(Op);
2947   else
2948     CGF.EmitScalarExpr(Op, true);
2949   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2950 }
2951 
2952 //===----------------------------------------------------------------------===//
2953 //                           Binary Operators
2954 //===----------------------------------------------------------------------===//
2955 
2956 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2957   TestAndClearIgnoreResultAssign();
2958   BinOpInfo Result;
2959   Result.LHS = Visit(E->getLHS());
2960   Result.RHS = Visit(E->getRHS());
2961   Result.Ty  = E->getType();
2962   Result.Opcode = E->getOpcode();
2963   Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2964   Result.E = E;
2965   return Result;
2966 }
2967 
2968 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2969                                               const CompoundAssignOperator *E,
2970                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2971                                                    Value *&Result) {
2972   QualType LHSTy = E->getLHS()->getType();
2973   BinOpInfo OpInfo;
2974 
2975   if (E->getComputationResultType()->isAnyComplexType())
2976     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2977 
2978   // Emit the RHS first.  __block variables need to have the rhs evaluated
2979   // first, plus this should improve codegen a little.
2980   OpInfo.RHS = Visit(E->getRHS());
2981   OpInfo.Ty = E->getComputationResultType();
2982   OpInfo.Opcode = E->getOpcode();
2983   OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2984   OpInfo.E = E;
2985   // Load/convert the LHS.
2986   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2987 
2988   llvm::PHINode *atomicPHI = nullptr;
2989   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2990     QualType type = atomicTy->getValueType();
2991     if (!type->isBooleanType() && type->isIntegerType() &&
2992         !(type->isUnsignedIntegerType() &&
2993           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2994         CGF.getLangOpts().getSignedOverflowBehavior() !=
2995             LangOptions::SOB_Trapping) {
2996       llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
2997       llvm::Instruction::BinaryOps Op;
2998       switch (OpInfo.Opcode) {
2999         // We don't have atomicrmw operands for *, %, /, <<, >>
3000         case BO_MulAssign: case BO_DivAssign:
3001         case BO_RemAssign:
3002         case BO_ShlAssign:
3003         case BO_ShrAssign:
3004           break;
3005         case BO_AddAssign:
3006           AtomicOp = llvm::AtomicRMWInst::Add;
3007           Op = llvm::Instruction::Add;
3008           break;
3009         case BO_SubAssign:
3010           AtomicOp = llvm::AtomicRMWInst::Sub;
3011           Op = llvm::Instruction::Sub;
3012           break;
3013         case BO_AndAssign:
3014           AtomicOp = llvm::AtomicRMWInst::And;
3015           Op = llvm::Instruction::And;
3016           break;
3017         case BO_XorAssign:
3018           AtomicOp = llvm::AtomicRMWInst::Xor;
3019           Op = llvm::Instruction::Xor;
3020           break;
3021         case BO_OrAssign:
3022           AtomicOp = llvm::AtomicRMWInst::Or;
3023           Op = llvm::Instruction::Or;
3024           break;
3025         default:
3026           llvm_unreachable("Invalid compound assignment type");
3027       }
3028       if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
3029         llvm::Value *Amt = CGF.EmitToMemory(
3030             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
3031                                  E->getExprLoc()),
3032             LHSTy);
3033         Value *OldVal = Builder.CreateAtomicRMW(
3034             AtomicOp, LHSLV.getPointer(CGF), Amt,
3035             llvm::AtomicOrdering::SequentiallyConsistent);
3036 
3037         // Since operation is atomic, the result type is guaranteed to be the
3038         // same as the input in LLVM terms.
3039         Result = Builder.CreateBinOp(Op, OldVal, Amt);
3040         return LHSLV;
3041       }
3042     }
3043     // FIXME: For floating point types, we should be saving and restoring the
3044     // floating point environment in the loop.
3045     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
3046     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
3047     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3048     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
3049     Builder.CreateBr(opBB);
3050     Builder.SetInsertPoint(opBB);
3051     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
3052     atomicPHI->addIncoming(OpInfo.LHS, startBB);
3053     OpInfo.LHS = atomicPHI;
3054   }
3055   else
3056     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3057 
3058   SourceLocation Loc = E->getExprLoc();
3059   OpInfo.LHS =
3060       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
3061 
3062   // Expand the binary operator.
3063   Result = (this->*Func)(OpInfo);
3064 
3065   // Convert the result back to the LHS type,
3066   // potentially with Implicit Conversion sanitizer check.
3067   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
3068                                 Loc, ScalarConversionOpts(CGF.SanOpts));
3069 
3070   if (atomicPHI) {
3071     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3072     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3073     auto Pair = CGF.EmitAtomicCompareExchange(
3074         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3075     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3076     llvm::Value *success = Pair.second;
3077     atomicPHI->addIncoming(old, curBlock);
3078     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3079     Builder.SetInsertPoint(contBB);
3080     return LHSLV;
3081   }
3082 
3083   // Store the result value into the LHS lvalue. Bit-fields are handled
3084   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3085   // 'An assignment expression has the value of the left operand after the
3086   // assignment...'.
3087   if (LHSLV.isBitField())
3088     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3089   else
3090     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3091 
3092   if (CGF.getLangOpts().OpenMP)
3093     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3094                                                                   E->getLHS());
3095   return LHSLV;
3096 }
3097 
3098 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3099                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3100   bool Ignore = TestAndClearIgnoreResultAssign();
3101   Value *RHS = nullptr;
3102   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3103 
3104   // If the result is clearly ignored, return now.
3105   if (Ignore)
3106     return nullptr;
3107 
3108   // The result of an assignment in C is the assigned r-value.
3109   if (!CGF.getLangOpts().CPlusPlus)
3110     return RHS;
3111 
3112   // If the lvalue is non-volatile, return the computed value of the assignment.
3113   if (!LHS.isVolatileQualified())
3114     return RHS;
3115 
3116   // Otherwise, reload the value.
3117   return EmitLoadOfLValue(LHS, E->getExprLoc());
3118 }
3119 
3120 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3121     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3122   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3123 
3124   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3125     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3126                                     SanitizerKind::IntegerDivideByZero));
3127   }
3128 
3129   const auto *BO = cast<BinaryOperator>(Ops.E);
3130   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3131       Ops.Ty->hasSignedIntegerRepresentation() &&
3132       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3133       Ops.mayHaveIntegerOverflow()) {
3134     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3135 
3136     llvm::Value *IntMin =
3137       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3138     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
3139 
3140     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3141     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3142     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3143     Checks.push_back(
3144         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3145   }
3146 
3147   if (Checks.size() > 0)
3148     EmitBinOpCheck(Checks, Ops);
3149 }
3150 
3151 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3152   {
3153     CodeGenFunction::SanitizerScope SanScope(&CGF);
3154     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3155          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3156         Ops.Ty->isIntegerType() &&
3157         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3158       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3159       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3160     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3161                Ops.Ty->isRealFloatingType() &&
3162                Ops.mayHaveFloatDivisionByZero()) {
3163       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3164       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3165       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3166                      Ops);
3167     }
3168   }
3169 
3170   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3171     llvm::Value *Val;
3172     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3173     Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3174     if (CGF.getLangOpts().OpenCL &&
3175         !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
3176       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3177       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3178       // build option allows an application to specify that single precision
3179       // floating-point divide (x/y and 1/x) and sqrt used in the program
3180       // source are correctly rounded.
3181       llvm::Type *ValTy = Val->getType();
3182       if (ValTy->isFloatTy() ||
3183           (isa<llvm::VectorType>(ValTy) &&
3184            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3185         CGF.SetFPAccuracy(Val, 2.5);
3186     }
3187     return Val;
3188   }
3189   else if (Ops.isFixedPointOp())
3190     return EmitFixedPointBinOp(Ops);
3191   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3192     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3193   else
3194     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3195 }
3196 
3197 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3198   // Rem in C can't be a floating point type: C99 6.5.5p2.
3199   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3200        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3201       Ops.Ty->isIntegerType() &&
3202       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3203     CodeGenFunction::SanitizerScope SanScope(&CGF);
3204     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3205     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3206   }
3207 
3208   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3209     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3210   else
3211     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3212 }
3213 
3214 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3215   unsigned IID;
3216   unsigned OpID = 0;
3217 
3218   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3219   switch (Ops.Opcode) {
3220   case BO_Add:
3221   case BO_AddAssign:
3222     OpID = 1;
3223     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3224                      llvm::Intrinsic::uadd_with_overflow;
3225     break;
3226   case BO_Sub:
3227   case BO_SubAssign:
3228     OpID = 2;
3229     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3230                      llvm::Intrinsic::usub_with_overflow;
3231     break;
3232   case BO_Mul:
3233   case BO_MulAssign:
3234     OpID = 3;
3235     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3236                      llvm::Intrinsic::umul_with_overflow;
3237     break;
3238   default:
3239     llvm_unreachable("Unsupported operation for overflow detection");
3240   }
3241   OpID <<= 1;
3242   if (isSigned)
3243     OpID |= 1;
3244 
3245   CodeGenFunction::SanitizerScope SanScope(&CGF);
3246   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3247 
3248   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3249 
3250   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3251   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3252   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3253 
3254   // Handle overflow with llvm.trap if no custom handler has been specified.
3255   const std::string *handlerName =
3256     &CGF.getLangOpts().OverflowHandler;
3257   if (handlerName->empty()) {
3258     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3259     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3260     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3261       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3262       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3263                               : SanitizerKind::UnsignedIntegerOverflow;
3264       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3265     } else
3266       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
3267     return result;
3268   }
3269 
3270   // Branch in case of overflow.
3271   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3272   llvm::BasicBlock *continueBB =
3273       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3274   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3275 
3276   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3277 
3278   // If an overflow handler is set, then we want to call it and then use its
3279   // result, if it returns.
3280   Builder.SetInsertPoint(overflowBB);
3281 
3282   // Get the overflow handler.
3283   llvm::Type *Int8Ty = CGF.Int8Ty;
3284   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3285   llvm::FunctionType *handlerTy =
3286       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3287   llvm::FunctionCallee handler =
3288       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3289 
3290   // Sign extend the args to 64-bit, so that we can use the same handler for
3291   // all types of overflow.
3292   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3293   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3294 
3295   // Call the handler with the two arguments, the operation, and the size of
3296   // the result.
3297   llvm::Value *handlerArgs[] = {
3298     lhs,
3299     rhs,
3300     Builder.getInt8(OpID),
3301     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3302   };
3303   llvm::Value *handlerResult =
3304     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3305 
3306   // Truncate the result back to the desired size.
3307   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3308   Builder.CreateBr(continueBB);
3309 
3310   Builder.SetInsertPoint(continueBB);
3311   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3312   phi->addIncoming(result, initialBB);
3313   phi->addIncoming(handlerResult, overflowBB);
3314 
3315   return phi;
3316 }
3317 
3318 /// Emit pointer + index arithmetic.
3319 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3320                                     const BinOpInfo &op,
3321                                     bool isSubtraction) {
3322   // Must have binary (not unary) expr here.  Unary pointer
3323   // increment/decrement doesn't use this path.
3324   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3325 
3326   Value *pointer = op.LHS;
3327   Expr *pointerOperand = expr->getLHS();
3328   Value *index = op.RHS;
3329   Expr *indexOperand = expr->getRHS();
3330 
3331   // In a subtraction, the LHS is always the pointer.
3332   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3333     std::swap(pointer, index);
3334     std::swap(pointerOperand, indexOperand);
3335   }
3336 
3337   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3338 
3339   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3340   auto &DL = CGF.CGM.getDataLayout();
3341   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3342 
3343   // Some versions of glibc and gcc use idioms (particularly in their malloc
3344   // routines) that add a pointer-sized integer (known to be a pointer value)
3345   // to a null pointer in order to cast the value back to an integer or as
3346   // part of a pointer alignment algorithm.  This is undefined behavior, but
3347   // we'd like to be able to compile programs that use it.
3348   //
3349   // Normally, we'd generate a GEP with a null-pointer base here in response
3350   // to that code, but it's also UB to dereference a pointer created that
3351   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3352   // generate a direct cast of the integer value to a pointer.
3353   //
3354   // The idiom (p = nullptr + N) is not met if any of the following are true:
3355   //
3356   //   The operation is subtraction.
3357   //   The index is not pointer-sized.
3358   //   The pointer type is not byte-sized.
3359   //
3360   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3361                                                        op.Opcode,
3362                                                        expr->getLHS(),
3363                                                        expr->getRHS()))
3364     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3365 
3366   if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3367     // Zero-extend or sign-extend the pointer value according to
3368     // whether the index is signed or not.
3369     index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3370                                       "idx.ext");
3371   }
3372 
3373   // If this is subtraction, negate the index.
3374   if (isSubtraction)
3375     index = CGF.Builder.CreateNeg(index, "idx.neg");
3376 
3377   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3378     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3379                         /*Accessed*/ false);
3380 
3381   const PointerType *pointerType
3382     = pointerOperand->getType()->getAs<PointerType>();
3383   if (!pointerType) {
3384     QualType objectType = pointerOperand->getType()
3385                                         ->castAs<ObjCObjectPointerType>()
3386                                         ->getPointeeType();
3387     llvm::Value *objectSize
3388       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3389 
3390     index = CGF.Builder.CreateMul(index, objectSize);
3391 
3392     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3393     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3394     return CGF.Builder.CreateBitCast(result, pointer->getType());
3395   }
3396 
3397   QualType elementType = pointerType->getPointeeType();
3398   if (const VariableArrayType *vla
3399         = CGF.getContext().getAsVariableArrayType(elementType)) {
3400     // The element count here is the total number of non-VLA elements.
3401     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3402 
3403     // Effectively, the multiply by the VLA size is part of the GEP.
3404     // GEP indexes are signed, and scaling an index isn't permitted to
3405     // signed-overflow, so we use the same semantics for our explicit
3406     // multiply.  We suppress this if overflow is not undefined behavior.
3407     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3408       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3409       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3410     } else {
3411       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3412       pointer =
3413           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3414                                      op.E->getExprLoc(), "add.ptr");
3415     }
3416     return pointer;
3417   }
3418 
3419   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3420   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3421   // future proof.
3422   if (elementType->isVoidType() || elementType->isFunctionType()) {
3423     Value *result = CGF.EmitCastToVoidPtr(pointer);
3424     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3425     return CGF.Builder.CreateBitCast(result, pointer->getType());
3426   }
3427 
3428   if (CGF.getLangOpts().isSignedOverflowDefined())
3429     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3430 
3431   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3432                                     op.E->getExprLoc(), "add.ptr");
3433 }
3434 
3435 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3436 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3437 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3438 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3439 // efficient operations.
3440 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
3441                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3442                            bool negMul, bool negAdd) {
3443   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3444 
3445   Value *MulOp0 = MulOp->getOperand(0);
3446   Value *MulOp1 = MulOp->getOperand(1);
3447   if (negMul)
3448     MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
3449   if (negAdd)
3450     Addend = Builder.CreateFNeg(Addend, "neg");
3451 
3452   Value *FMulAdd = nullptr;
3453   if (Builder.getIsFPConstrained()) {
3454     assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
3455            "Only constrained operation should be created when Builder is in FP "
3456            "constrained mode");
3457     FMulAdd = Builder.CreateConstrainedFPCall(
3458         CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
3459                              Addend->getType()),
3460         {MulOp0, MulOp1, Addend});
3461   } else {
3462     FMulAdd = Builder.CreateCall(
3463         CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3464         {MulOp0, MulOp1, Addend});
3465   }
3466   MulOp->eraseFromParent();
3467 
3468   return FMulAdd;
3469 }
3470 
3471 // Check whether it would be legal to emit an fmuladd intrinsic call to
3472 // represent op and if so, build the fmuladd.
3473 //
3474 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3475 // Does NOT check the type of the operation - it's assumed that this function
3476 // will be called from contexts where it's known that the type is contractable.
3477 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3478                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3479                          bool isSub=false) {
3480 
3481   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3482           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3483          "Only fadd/fsub can be the root of an fmuladd.");
3484 
3485   // Check whether this op is marked as fusable.
3486   if (!op.FPFeatures.allowFPContractWithinStatement())
3487     return nullptr;
3488 
3489   // We have a potentially fusable op. Look for a mul on one of the operands.
3490   // Also, make sure that the mul result isn't used directly. In that case,
3491   // there's no point creating a muladd operation.
3492   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3493     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3494         LHSBinOp->use_empty())
3495       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3496   }
3497   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3498     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3499         RHSBinOp->use_empty())
3500       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3501   }
3502 
3503   if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) {
3504     if (LHSBinOp->getIntrinsicID() ==
3505             llvm::Intrinsic::experimental_constrained_fmul &&
3506         LHSBinOp->use_empty())
3507       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3508   }
3509   if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) {
3510     if (RHSBinOp->getIntrinsicID() ==
3511             llvm::Intrinsic::experimental_constrained_fmul &&
3512         RHSBinOp->use_empty())
3513       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3514   }
3515 
3516   return nullptr;
3517 }
3518 
3519 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3520   if (op.LHS->getType()->isPointerTy() ||
3521       op.RHS->getType()->isPointerTy())
3522     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3523 
3524   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3525     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3526     case LangOptions::SOB_Defined:
3527       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3528     case LangOptions::SOB_Undefined:
3529       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3530         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3531       LLVM_FALLTHROUGH;
3532     case LangOptions::SOB_Trapping:
3533       if (CanElideOverflowCheck(CGF.getContext(), op))
3534         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3535       return EmitOverflowCheckedBinOp(op);
3536     }
3537   }
3538 
3539   if (op.Ty->isConstantMatrixType()) {
3540     llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3541     return MB.CreateAdd(op.LHS, op.RHS);
3542   }
3543 
3544   if (op.Ty->isUnsignedIntegerType() &&
3545       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3546       !CanElideOverflowCheck(CGF.getContext(), op))
3547     return EmitOverflowCheckedBinOp(op);
3548 
3549   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3550     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3551     // Try to form an fmuladd.
3552     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3553       return FMulAdd;
3554 
3555     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
3556   }
3557 
3558   if (op.isFixedPointOp())
3559     return EmitFixedPointBinOp(op);
3560 
3561   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3562 }
3563 
3564 /// The resulting value must be calculated with exact precision, so the operands
3565 /// may not be the same type.
3566 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3567   using llvm::APSInt;
3568   using llvm::ConstantInt;
3569 
3570   // This is either a binary operation where at least one of the operands is
3571   // a fixed-point type, or a unary operation where the operand is a fixed-point
3572   // type. The result type of a binary operation is determined by
3573   // Sema::handleFixedPointConversions().
3574   QualType ResultTy = op.Ty;
3575   QualType LHSTy, RHSTy;
3576   if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
3577     RHSTy = BinOp->getRHS()->getType();
3578     if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
3579       // For compound assignment, the effective type of the LHS at this point
3580       // is the computation LHS type, not the actual LHS type, and the final
3581       // result type is not the type of the expression but rather the
3582       // computation result type.
3583       LHSTy = CAO->getComputationLHSType();
3584       ResultTy = CAO->getComputationResultType();
3585     } else
3586       LHSTy = BinOp->getLHS()->getType();
3587   } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
3588     LHSTy = UnOp->getSubExpr()->getType();
3589     RHSTy = UnOp->getSubExpr()->getType();
3590   }
3591   ASTContext &Ctx = CGF.getContext();
3592   Value *LHS = op.LHS;
3593   Value *RHS = op.RHS;
3594 
3595   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3596   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3597   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3598   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3599 
3600   // Convert the operands to the full precision type.
3601   Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema,
3602                                             op.E->getExprLoc());
3603   Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema,
3604                                             op.E->getExprLoc());
3605 
3606   // Perform the actual operation.
3607   Value *Result;
3608   switch (op.Opcode) {
3609   case BO_AddAssign:
3610   case BO_Add: {
3611     if (CommonFixedSema.isSaturated()) {
3612       llvm::Intrinsic::ID IID = CommonFixedSema.isSigned()
3613                                     ? llvm::Intrinsic::sadd_sat
3614                                     : llvm::Intrinsic::uadd_sat;
3615       Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3616     } else {
3617       Result = Builder.CreateAdd(FullLHS, FullRHS);
3618     }
3619     break;
3620   }
3621   case BO_SubAssign:
3622   case BO_Sub: {
3623     if (CommonFixedSema.isSaturated()) {
3624       llvm::Intrinsic::ID IID = CommonFixedSema.isSigned()
3625                                     ? llvm::Intrinsic::ssub_sat
3626                                     : llvm::Intrinsic::usub_sat;
3627       Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3628     } else {
3629       Result = Builder.CreateSub(FullLHS, FullRHS);
3630     }
3631     break;
3632   }
3633   case BO_MulAssign:
3634   case BO_Mul: {
3635     llvm::Intrinsic::ID IID;
3636     if (CommonFixedSema.isSaturated())
3637       IID = CommonFixedSema.isSigned() ? llvm::Intrinsic::smul_fix_sat
3638                                        : llvm::Intrinsic::umul_fix_sat;
3639     else
3640       IID = CommonFixedSema.isSigned() ? llvm::Intrinsic::smul_fix
3641                                        : llvm::Intrinsic::umul_fix;
3642     Result = Builder.CreateIntrinsic(IID, {FullLHS->getType()},
3643         {FullLHS, FullRHS, Builder.getInt32(CommonFixedSema.getScale())});
3644     break;
3645   }
3646   case BO_DivAssign:
3647   case BO_Div: {
3648     llvm::Intrinsic::ID IID;
3649     if (CommonFixedSema.isSaturated())
3650       IID = CommonFixedSema.isSigned() ? llvm::Intrinsic::sdiv_fix_sat
3651                                        : llvm::Intrinsic::udiv_fix_sat;
3652     else
3653       IID = CommonFixedSema.isSigned() ? llvm::Intrinsic::sdiv_fix
3654                                        : llvm::Intrinsic::udiv_fix;
3655     Result = Builder.CreateIntrinsic(IID, {FullLHS->getType()},
3656         {FullLHS, FullRHS, Builder.getInt32(CommonFixedSema.getScale())});
3657     break;
3658   }
3659   case BO_LT:
3660     return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS)
3661                                       : Builder.CreateICmpULT(FullLHS, FullRHS);
3662   case BO_GT:
3663     return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS)
3664                                       : Builder.CreateICmpUGT(FullLHS, FullRHS);
3665   case BO_LE:
3666     return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS)
3667                                       : Builder.CreateICmpULE(FullLHS, FullRHS);
3668   case BO_GE:
3669     return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS)
3670                                       : Builder.CreateICmpUGE(FullLHS, FullRHS);
3671   case BO_EQ:
3672     // For equality operations, we assume any padding bits on unsigned types are
3673     // zero'd out. They could be overwritten through non-saturating operations
3674     // that cause overflow, but this leads to undefined behavior.
3675     return Builder.CreateICmpEQ(FullLHS, FullRHS);
3676   case BO_NE:
3677     return Builder.CreateICmpNE(FullLHS, FullRHS);
3678   case BO_Shl:
3679   case BO_Shr:
3680   case BO_Cmp:
3681   case BO_LAnd:
3682   case BO_LOr:
3683   case BO_ShlAssign:
3684   case BO_ShrAssign:
3685     llvm_unreachable("Found unimplemented fixed point binary operation");
3686   case BO_PtrMemD:
3687   case BO_PtrMemI:
3688   case BO_Rem:
3689   case BO_Xor:
3690   case BO_And:
3691   case BO_Or:
3692   case BO_Assign:
3693   case BO_RemAssign:
3694   case BO_AndAssign:
3695   case BO_XorAssign:
3696   case BO_OrAssign:
3697   case BO_Comma:
3698     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3699   }
3700 
3701   // Convert to the result type.
3702   return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema,
3703                                   op.E->getExprLoc());
3704 }
3705 
3706 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3707   // The LHS is always a pointer if either side is.
3708   if (!op.LHS->getType()->isPointerTy()) {
3709     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3710       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3711       case LangOptions::SOB_Defined:
3712         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3713       case LangOptions::SOB_Undefined:
3714         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3715           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3716         LLVM_FALLTHROUGH;
3717       case LangOptions::SOB_Trapping:
3718         if (CanElideOverflowCheck(CGF.getContext(), op))
3719           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3720         return EmitOverflowCheckedBinOp(op);
3721       }
3722     }
3723 
3724     if (op.Ty->isConstantMatrixType()) {
3725       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3726       return MB.CreateSub(op.LHS, op.RHS);
3727     }
3728 
3729     if (op.Ty->isUnsignedIntegerType() &&
3730         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3731         !CanElideOverflowCheck(CGF.getContext(), op))
3732       return EmitOverflowCheckedBinOp(op);
3733 
3734     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3735       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3736       // Try to form an fmuladd.
3737       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3738         return FMulAdd;
3739       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
3740     }
3741 
3742     if (op.isFixedPointOp())
3743       return EmitFixedPointBinOp(op);
3744 
3745     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3746   }
3747 
3748   // If the RHS is not a pointer, then we have normal pointer
3749   // arithmetic.
3750   if (!op.RHS->getType()->isPointerTy())
3751     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3752 
3753   // Otherwise, this is a pointer subtraction.
3754 
3755   // Do the raw subtraction part.
3756   llvm::Value *LHS
3757     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3758   llvm::Value *RHS
3759     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3760   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3761 
3762   // Okay, figure out the element size.
3763   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3764   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3765 
3766   llvm::Value *divisor = nullptr;
3767 
3768   // For a variable-length array, this is going to be non-constant.
3769   if (const VariableArrayType *vla
3770         = CGF.getContext().getAsVariableArrayType(elementType)) {
3771     auto VlaSize = CGF.getVLASize(vla);
3772     elementType = VlaSize.Type;
3773     divisor = VlaSize.NumElts;
3774 
3775     // Scale the number of non-VLA elements by the non-VLA element size.
3776     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3777     if (!eltSize.isOne())
3778       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3779 
3780   // For everything elese, we can just compute it, safe in the
3781   // assumption that Sema won't let anything through that we can't
3782   // safely compute the size of.
3783   } else {
3784     CharUnits elementSize;
3785     // Handle GCC extension for pointer arithmetic on void* and
3786     // function pointer types.
3787     if (elementType->isVoidType() || elementType->isFunctionType())
3788       elementSize = CharUnits::One();
3789     else
3790       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3791 
3792     // Don't even emit the divide for element size of 1.
3793     if (elementSize.isOne())
3794       return diffInChars;
3795 
3796     divisor = CGF.CGM.getSize(elementSize);
3797   }
3798 
3799   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3800   // pointer difference in C is only defined in the case where both operands
3801   // are pointing to elements of an array.
3802   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3803 }
3804 
3805 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3806   llvm::IntegerType *Ty;
3807   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3808     Ty = cast<llvm::IntegerType>(VT->getElementType());
3809   else
3810     Ty = cast<llvm::IntegerType>(LHS->getType());
3811   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3812 }
3813 
3814 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
3815                                               const Twine &Name) {
3816   llvm::IntegerType *Ty;
3817   if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3818     Ty = cast<llvm::IntegerType>(VT->getElementType());
3819   else
3820     Ty = cast<llvm::IntegerType>(LHS->getType());
3821 
3822   if (llvm::isPowerOf2_64(Ty->getBitWidth()))
3823         return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);
3824 
3825   return Builder.CreateURem(
3826       RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
3827 }
3828 
3829 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3830   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3831   // RHS to the same size as the LHS.
3832   Value *RHS = Ops.RHS;
3833   if (Ops.LHS->getType() != RHS->getType())
3834     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3835 
3836   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3837                       Ops.Ty->hasSignedIntegerRepresentation() &&
3838                       !CGF.getLangOpts().isSignedOverflowDefined() &&
3839                       !CGF.getLangOpts().CPlusPlus20;
3840   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3841   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3842   if (CGF.getLangOpts().OpenCL)
3843     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
3844   else if ((SanitizeBase || SanitizeExponent) &&
3845            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3846     CodeGenFunction::SanitizerScope SanScope(&CGF);
3847     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3848     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3849     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3850 
3851     if (SanitizeExponent) {
3852       Checks.push_back(
3853           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3854     }
3855 
3856     if (SanitizeBase) {
3857       // Check whether we are shifting any non-zero bits off the top of the
3858       // integer. We only emit this check if exponent is valid - otherwise
3859       // instructions below will have undefined behavior themselves.
3860       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3861       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3862       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3863       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3864       llvm::Value *PromotedWidthMinusOne =
3865           (RHS == Ops.RHS) ? WidthMinusOne
3866                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3867       CGF.EmitBlock(CheckShiftBase);
3868       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3869           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3870                                      /*NUW*/ true, /*NSW*/ true),
3871           "shl.check");
3872       if (CGF.getLangOpts().CPlusPlus) {
3873         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3874         // Under C++11's rules, shifting a 1 bit into the sign bit is
3875         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3876         // define signed left shifts, so we use the C99 and C++11 rules there).
3877         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3878         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3879       }
3880       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3881       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3882       CGF.EmitBlock(Cont);
3883       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3884       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3885       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3886       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
3887     }
3888 
3889     assert(!Checks.empty());
3890     EmitBinOpCheck(Checks, Ops);
3891   }
3892 
3893   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3894 }
3895 
3896 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3897   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3898   // RHS to the same size as the LHS.
3899   Value *RHS = Ops.RHS;
3900   if (Ops.LHS->getType() != RHS->getType())
3901     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3902 
3903   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3904   if (CGF.getLangOpts().OpenCL)
3905     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
3906   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3907            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3908     CodeGenFunction::SanitizerScope SanScope(&CGF);
3909     llvm::Value *Valid =
3910         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3911     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3912   }
3913 
3914   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3915     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3916   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3917 }
3918 
3919 enum IntrinsicType { VCMPEQ, VCMPGT };
3920 // return corresponding comparison intrinsic for given vector type
3921 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3922                                         BuiltinType::Kind ElemKind) {
3923   switch (ElemKind) {
3924   default: llvm_unreachable("unexpected element type");
3925   case BuiltinType::Char_U:
3926   case BuiltinType::UChar:
3927     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3928                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3929   case BuiltinType::Char_S:
3930   case BuiltinType::SChar:
3931     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3932                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3933   case BuiltinType::UShort:
3934     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3935                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3936   case BuiltinType::Short:
3937     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3938                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3939   case BuiltinType::UInt:
3940     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3941                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3942   case BuiltinType::Int:
3943     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3944                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3945   case BuiltinType::ULong:
3946   case BuiltinType::ULongLong:
3947     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3948                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3949   case BuiltinType::Long:
3950   case BuiltinType::LongLong:
3951     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3952                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3953   case BuiltinType::Float:
3954     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3955                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3956   case BuiltinType::Double:
3957     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3958                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3959   }
3960 }
3961 
3962 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3963                                       llvm::CmpInst::Predicate UICmpOpc,
3964                                       llvm::CmpInst::Predicate SICmpOpc,
3965                                       llvm::CmpInst::Predicate FCmpOpc,
3966                                       bool IsSignaling) {
3967   TestAndClearIgnoreResultAssign();
3968   Value *Result;
3969   QualType LHSTy = E->getLHS()->getType();
3970   QualType RHSTy = E->getRHS()->getType();
3971   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3972     assert(E->getOpcode() == BO_EQ ||
3973            E->getOpcode() == BO_NE);
3974     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3975     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3976     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3977                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3978   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3979     BinOpInfo BOInfo = EmitBinOps(E);
3980     Value *LHS = BOInfo.LHS;
3981     Value *RHS = BOInfo.RHS;
3982 
3983     // If AltiVec, the comparison results in a numeric type, so we use
3984     // intrinsics comparing vectors and giving 0 or 1 as a result
3985     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3986       // constants for mapping CR6 register bits to predicate result
3987       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3988 
3989       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3990 
3991       // in several cases vector arguments order will be reversed
3992       Value *FirstVecArg = LHS,
3993             *SecondVecArg = RHS;
3994 
3995       QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
3996       BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
3997 
3998       switch(E->getOpcode()) {
3999       default: llvm_unreachable("is not a comparison operation");
4000       case BO_EQ:
4001         CR6 = CR6_LT;
4002         ID = GetIntrinsic(VCMPEQ, ElementKind);
4003         break;
4004       case BO_NE:
4005         CR6 = CR6_EQ;
4006         ID = GetIntrinsic(VCMPEQ, ElementKind);
4007         break;
4008       case BO_LT:
4009         CR6 = CR6_LT;
4010         ID = GetIntrinsic(VCMPGT, ElementKind);
4011         std::swap(FirstVecArg, SecondVecArg);
4012         break;
4013       case BO_GT:
4014         CR6 = CR6_LT;
4015         ID = GetIntrinsic(VCMPGT, ElementKind);
4016         break;
4017       case BO_LE:
4018         if (ElementKind == BuiltinType::Float) {
4019           CR6 = CR6_LT;
4020           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4021           std::swap(FirstVecArg, SecondVecArg);
4022         }
4023         else {
4024           CR6 = CR6_EQ;
4025           ID = GetIntrinsic(VCMPGT, ElementKind);
4026         }
4027         break;
4028       case BO_GE:
4029         if (ElementKind == BuiltinType::Float) {
4030           CR6 = CR6_LT;
4031           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4032         }
4033         else {
4034           CR6 = CR6_EQ;
4035           ID = GetIntrinsic(VCMPGT, ElementKind);
4036           std::swap(FirstVecArg, SecondVecArg);
4037         }
4038         break;
4039       }
4040 
4041       Value *CR6Param = Builder.getInt32(CR6);
4042       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
4043       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
4044 
4045       // The result type of intrinsic may not be same as E->getType().
4046       // If E->getType() is not BoolTy, EmitScalarConversion will do the
4047       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
4048       // do nothing, if ResultTy is not i1 at the same time, it will cause
4049       // crash later.
4050       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
4051       if (ResultTy->getBitWidth() > 1 &&
4052           E->getType() == CGF.getContext().BoolTy)
4053         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
4054       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4055                                   E->getExprLoc());
4056     }
4057 
4058     if (BOInfo.isFixedPointOp()) {
4059       Result = EmitFixedPointBinOp(BOInfo);
4060     } else if (LHS->getType()->isFPOrFPVectorTy()) {
4061       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
4062       if (!IsSignaling)
4063         Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
4064       else
4065         Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
4066     } else if (LHSTy->hasSignedIntegerRepresentation()) {
4067       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
4068     } else {
4069       // Unsigned integers and pointers.
4070 
4071       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4072           !isa<llvm::ConstantPointerNull>(LHS) &&
4073           !isa<llvm::ConstantPointerNull>(RHS)) {
4074 
4075         // Dynamic information is required to be stripped for comparisons,
4076         // because it could leak the dynamic information.  Based on comparisons
4077         // of pointers to dynamic objects, the optimizer can replace one pointer
4078         // with another, which might be incorrect in presence of invariant
4079         // groups. Comparison with null is safe because null does not carry any
4080         // dynamic information.
4081         if (LHSTy.mayBeDynamicClass())
4082           LHS = Builder.CreateStripInvariantGroup(LHS);
4083         if (RHSTy.mayBeDynamicClass())
4084           RHS = Builder.CreateStripInvariantGroup(RHS);
4085       }
4086 
4087       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4088     }
4089 
4090     // If this is a vector comparison, sign extend the result to the appropriate
4091     // vector integer type and return it (don't convert to bool).
4092     if (LHSTy->isVectorType())
4093       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4094 
4095   } else {
4096     // Complex Comparison: can only be an equality comparison.
4097     CodeGenFunction::ComplexPairTy LHS, RHS;
4098     QualType CETy;
4099     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4100       LHS = CGF.EmitComplexExpr(E->getLHS());
4101       CETy = CTy->getElementType();
4102     } else {
4103       LHS.first = Visit(E->getLHS());
4104       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4105       CETy = LHSTy;
4106     }
4107     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4108       RHS = CGF.EmitComplexExpr(E->getRHS());
4109       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4110                                                      CTy->getElementType()) &&
4111              "The element types must always match.");
4112       (void)CTy;
4113     } else {
4114       RHS.first = Visit(E->getRHS());
4115       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4116       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4117              "The element types must always match.");
4118     }
4119 
4120     Value *ResultR, *ResultI;
4121     if (CETy->isRealFloatingType()) {
4122       // As complex comparisons can only be equality comparisons, they
4123       // are never signaling comparisons.
4124       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4125       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4126     } else {
4127       // Complex comparisons can only be equality comparisons.  As such, signed
4128       // and unsigned opcodes are the same.
4129       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4130       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4131     }
4132 
4133     if (E->getOpcode() == BO_EQ) {
4134       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4135     } else {
4136       assert(E->getOpcode() == BO_NE &&
4137              "Complex comparison other than == or != ?");
4138       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4139     }
4140   }
4141 
4142   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4143                               E->getExprLoc());
4144 }
4145 
4146 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4147   bool Ignore = TestAndClearIgnoreResultAssign();
4148 
4149   Value *RHS;
4150   LValue LHS;
4151 
4152   switch (E->getLHS()->getType().getObjCLifetime()) {
4153   case Qualifiers::OCL_Strong:
4154     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4155     break;
4156 
4157   case Qualifiers::OCL_Autoreleasing:
4158     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4159     break;
4160 
4161   case Qualifiers::OCL_ExplicitNone:
4162     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4163     break;
4164 
4165   case Qualifiers::OCL_Weak:
4166     RHS = Visit(E->getRHS());
4167     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4168     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
4169     break;
4170 
4171   case Qualifiers::OCL_None:
4172     // __block variables need to have the rhs evaluated first, plus
4173     // this should improve codegen just a little.
4174     RHS = Visit(E->getRHS());
4175     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4176 
4177     // Store the value into the LHS.  Bit-fields are handled specially
4178     // because the result is altered by the store, i.e., [C99 6.5.16p1]
4179     // 'An assignment expression has the value of the left operand after
4180     // the assignment...'.
4181     if (LHS.isBitField()) {
4182       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4183     } else {
4184       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4185       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4186     }
4187   }
4188 
4189   // If the result is clearly ignored, return now.
4190   if (Ignore)
4191     return nullptr;
4192 
4193   // The result of an assignment in C is the assigned r-value.
4194   if (!CGF.getLangOpts().CPlusPlus)
4195     return RHS;
4196 
4197   // If the lvalue is non-volatile, return the computed value of the assignment.
4198   if (!LHS.isVolatileQualified())
4199     return RHS;
4200 
4201   // Otherwise, reload the value.
4202   return EmitLoadOfLValue(LHS, E->getExprLoc());
4203 }
4204 
4205 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4206   // Perform vector logical and on comparisons with zero vectors.
4207   if (E->getType()->isVectorType()) {
4208     CGF.incrementProfileCounter(E);
4209 
4210     Value *LHS = Visit(E->getLHS());
4211     Value *RHS = Visit(E->getRHS());
4212     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4213     if (LHS->getType()->isFPOrFPVectorTy()) {
4214       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4215           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4216       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4217       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4218     } else {
4219       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4220       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4221     }
4222     Value *And = Builder.CreateAnd(LHS, RHS);
4223     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4224   }
4225 
4226   llvm::Type *ResTy = ConvertType(E->getType());
4227 
4228   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4229   // If we have 1 && X, just emit X without inserting the control flow.
4230   bool LHSCondVal;
4231   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4232     if (LHSCondVal) { // If we have 1 && X, just emit X.
4233       CGF.incrementProfileCounter(E);
4234 
4235       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4236       // ZExt result to int or bool.
4237       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4238     }
4239 
4240     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4241     if (!CGF.ContainsLabel(E->getRHS()))
4242       return llvm::Constant::getNullValue(ResTy);
4243   }
4244 
4245   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4246   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4247 
4248   CodeGenFunction::ConditionalEvaluation eval(CGF);
4249 
4250   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4251   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4252                            CGF.getProfileCount(E->getRHS()));
4253 
4254   // Any edges into the ContBlock are now from an (indeterminate number of)
4255   // edges from this first condition.  All of these values will be false.  Start
4256   // setting up the PHI node in the Cont Block for this.
4257   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4258                                             "", ContBlock);
4259   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4260        PI != PE; ++PI)
4261     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4262 
4263   eval.begin(CGF);
4264   CGF.EmitBlock(RHSBlock);
4265   CGF.incrementProfileCounter(E);
4266   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4267   eval.end(CGF);
4268 
4269   // Reaquire the RHS block, as there may be subblocks inserted.
4270   RHSBlock = Builder.GetInsertBlock();
4271 
4272   // Emit an unconditional branch from this block to ContBlock.
4273   {
4274     // There is no need to emit line number for unconditional branch.
4275     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4276     CGF.EmitBlock(ContBlock);
4277   }
4278   // Insert an entry into the phi node for the edge with the value of RHSCond.
4279   PN->addIncoming(RHSCond, RHSBlock);
4280 
4281   // Artificial location to preserve the scope information
4282   {
4283     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4284     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4285   }
4286 
4287   // ZExt result to int.
4288   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4289 }
4290 
4291 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4292   // Perform vector logical or on comparisons with zero vectors.
4293   if (E->getType()->isVectorType()) {
4294     CGF.incrementProfileCounter(E);
4295 
4296     Value *LHS = Visit(E->getLHS());
4297     Value *RHS = Visit(E->getRHS());
4298     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4299     if (LHS->getType()->isFPOrFPVectorTy()) {
4300       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4301           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4302       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4303       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4304     } else {
4305       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4306       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4307     }
4308     Value *Or = Builder.CreateOr(LHS, RHS);
4309     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4310   }
4311 
4312   llvm::Type *ResTy = ConvertType(E->getType());
4313 
4314   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4315   // If we have 0 || X, just emit X without inserting the control flow.
4316   bool LHSCondVal;
4317   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4318     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4319       CGF.incrementProfileCounter(E);
4320 
4321       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4322       // ZExt result to int or bool.
4323       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4324     }
4325 
4326     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4327     if (!CGF.ContainsLabel(E->getRHS()))
4328       return llvm::ConstantInt::get(ResTy, 1);
4329   }
4330 
4331   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4332   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4333 
4334   CodeGenFunction::ConditionalEvaluation eval(CGF);
4335 
4336   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4337   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4338                            CGF.getCurrentProfileCount() -
4339                                CGF.getProfileCount(E->getRHS()));
4340 
4341   // Any edges into the ContBlock are now from an (indeterminate number of)
4342   // edges from this first condition.  All of these values will be true.  Start
4343   // setting up the PHI node in the Cont Block for this.
4344   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4345                                             "", ContBlock);
4346   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4347        PI != PE; ++PI)
4348     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4349 
4350   eval.begin(CGF);
4351 
4352   // Emit the RHS condition as a bool value.
4353   CGF.EmitBlock(RHSBlock);
4354   CGF.incrementProfileCounter(E);
4355   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4356 
4357   eval.end(CGF);
4358 
4359   // Reaquire the RHS block, as there may be subblocks inserted.
4360   RHSBlock = Builder.GetInsertBlock();
4361 
4362   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4363   // into the phi node for the edge with the value of RHSCond.
4364   CGF.EmitBlock(ContBlock);
4365   PN->addIncoming(RHSCond, RHSBlock);
4366 
4367   // ZExt result to int.
4368   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4369 }
4370 
4371 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4372   CGF.EmitIgnoredExpr(E->getLHS());
4373   CGF.EnsureInsertPoint();
4374   return Visit(E->getRHS());
4375 }
4376 
4377 //===----------------------------------------------------------------------===//
4378 //                             Other Operators
4379 //===----------------------------------------------------------------------===//
4380 
4381 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4382 /// expression is cheap enough and side-effect-free enough to evaluate
4383 /// unconditionally instead of conditionally.  This is used to convert control
4384 /// flow into selects in some cases.
4385 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4386                                                    CodeGenFunction &CGF) {
4387   // Anything that is an integer or floating point constant is fine.
4388   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4389 
4390   // Even non-volatile automatic variables can't be evaluated unconditionally.
4391   // Referencing a thread_local may cause non-trivial initialization work to
4392   // occur. If we're inside a lambda and one of the variables is from the scope
4393   // outside the lambda, that function may have returned already. Reading its
4394   // locals is a bad idea. Also, these reads may introduce races there didn't
4395   // exist in the source-level program.
4396 }
4397 
4398 
4399 Value *ScalarExprEmitter::
4400 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4401   TestAndClearIgnoreResultAssign();
4402 
4403   // Bind the common expression if necessary.
4404   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4405 
4406   Expr *condExpr = E->getCond();
4407   Expr *lhsExpr = E->getTrueExpr();
4408   Expr *rhsExpr = E->getFalseExpr();
4409 
4410   // If the condition constant folds and can be elided, try to avoid emitting
4411   // the condition and the dead arm.
4412   bool CondExprBool;
4413   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4414     Expr *live = lhsExpr, *dead = rhsExpr;
4415     if (!CondExprBool) std::swap(live, dead);
4416 
4417     // If the dead side doesn't have labels we need, just emit the Live part.
4418     if (!CGF.ContainsLabel(dead)) {
4419       if (CondExprBool)
4420         CGF.incrementProfileCounter(E);
4421       Value *Result = Visit(live);
4422 
4423       // If the live part is a throw expression, it acts like it has a void
4424       // type, so evaluating it returns a null Value*.  However, a conditional
4425       // with non-void type must return a non-null Value*.
4426       if (!Result && !E->getType()->isVoidType())
4427         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4428 
4429       return Result;
4430     }
4431   }
4432 
4433   // OpenCL: If the condition is a vector, we can treat this condition like
4434   // the select function.
4435   if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
4436       condExpr->getType()->isExtVectorType()) {
4437     CGF.incrementProfileCounter(E);
4438 
4439     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4440     llvm::Value *LHS = Visit(lhsExpr);
4441     llvm::Value *RHS = Visit(rhsExpr);
4442 
4443     llvm::Type *condType = ConvertType(condExpr->getType());
4444     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
4445 
4446     unsigned numElem = vecTy->getNumElements();
4447     llvm::Type *elemType = vecTy->getElementType();
4448 
4449     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4450     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4451     llvm::Value *tmp = Builder.CreateSExt(
4452         TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
4453     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4454 
4455     // Cast float to int to perform ANDs if necessary.
4456     llvm::Value *RHSTmp = RHS;
4457     llvm::Value *LHSTmp = LHS;
4458     bool wasCast = false;
4459     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4460     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4461       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4462       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4463       wasCast = true;
4464     }
4465 
4466     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4467     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4468     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4469     if (wasCast)
4470       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4471 
4472     return tmp5;
4473   }
4474 
4475   if (condExpr->getType()->isVectorType()) {
4476     CGF.incrementProfileCounter(E);
4477 
4478     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4479     llvm::Value *LHS = Visit(lhsExpr);
4480     llvm::Value *RHS = Visit(rhsExpr);
4481 
4482     llvm::Type *CondType = ConvertType(condExpr->getType());
4483     auto *VecTy = cast<llvm::VectorType>(CondType);
4484     llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
4485 
4486     CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
4487     return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
4488   }
4489 
4490   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4491   // select instead of as control flow.  We can only do this if it is cheap and
4492   // safe to evaluate the LHS and RHS unconditionally.
4493   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4494       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4495     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4496     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4497 
4498     CGF.incrementProfileCounter(E, StepV);
4499 
4500     llvm::Value *LHS = Visit(lhsExpr);
4501     llvm::Value *RHS = Visit(rhsExpr);
4502     if (!LHS) {
4503       // If the conditional has void type, make sure we return a null Value*.
4504       assert(!RHS && "LHS and RHS types must match");
4505       return nullptr;
4506     }
4507     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4508   }
4509 
4510   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4511   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4512   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4513 
4514   CodeGenFunction::ConditionalEvaluation eval(CGF);
4515   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4516                            CGF.getProfileCount(lhsExpr));
4517 
4518   CGF.EmitBlock(LHSBlock);
4519   CGF.incrementProfileCounter(E);
4520   eval.begin(CGF);
4521   Value *LHS = Visit(lhsExpr);
4522   eval.end(CGF);
4523 
4524   LHSBlock = Builder.GetInsertBlock();
4525   Builder.CreateBr(ContBlock);
4526 
4527   CGF.EmitBlock(RHSBlock);
4528   eval.begin(CGF);
4529   Value *RHS = Visit(rhsExpr);
4530   eval.end(CGF);
4531 
4532   RHSBlock = Builder.GetInsertBlock();
4533   CGF.EmitBlock(ContBlock);
4534 
4535   // If the LHS or RHS is a throw expression, it will be legitimately null.
4536   if (!LHS)
4537     return RHS;
4538   if (!RHS)
4539     return LHS;
4540 
4541   // Create a PHI node for the real part.
4542   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4543   PN->addIncoming(LHS, LHSBlock);
4544   PN->addIncoming(RHS, RHSBlock);
4545   return PN;
4546 }
4547 
4548 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4549   return Visit(E->getChosenSubExpr());
4550 }
4551 
4552 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4553   QualType Ty = VE->getType();
4554 
4555   if (Ty->isVariablyModifiedType())
4556     CGF.EmitVariablyModifiedType(Ty);
4557 
4558   Address ArgValue = Address::invalid();
4559   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4560 
4561   llvm::Type *ArgTy = ConvertType(VE->getType());
4562 
4563   // If EmitVAArg fails, emit an error.
4564   if (!ArgPtr.isValid()) {
4565     CGF.ErrorUnsupported(VE, "va_arg expression");
4566     return llvm::UndefValue::get(ArgTy);
4567   }
4568 
4569   // FIXME Volatility.
4570   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4571 
4572   // If EmitVAArg promoted the type, we must truncate it.
4573   if (ArgTy != Val->getType()) {
4574     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4575       Val = Builder.CreateIntToPtr(Val, ArgTy);
4576     else
4577       Val = Builder.CreateTrunc(Val, ArgTy);
4578   }
4579 
4580   return Val;
4581 }
4582 
4583 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4584   return CGF.EmitBlockLiteral(block);
4585 }
4586 
4587 // Convert a vec3 to vec4, or vice versa.
4588 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4589                                  Value *Src, unsigned NumElementsDst) {
4590   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
4591   static constexpr int Mask[] = {0, 1, 2, -1};
4592   return Builder.CreateShuffleVector(Src, UnV,
4593                                      llvm::makeArrayRef(Mask, NumElementsDst));
4594 }
4595 
4596 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4597 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4598 // but could be scalar or vectors of different lengths, and either can be
4599 // pointer.
4600 // There are 4 cases:
4601 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4602 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4603 // 3. pointer -> non-pointer
4604 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4605 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4606 // 4. non-pointer -> pointer
4607 //   a) intptr_t -> pointer       : needs 1 inttoptr
4608 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4609 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4610 // allow casting directly between pointer types and non-integer non-pointer
4611 // types.
4612 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4613                                            const llvm::DataLayout &DL,
4614                                            Value *Src, llvm::Type *DstTy,
4615                                            StringRef Name = "") {
4616   auto SrcTy = Src->getType();
4617 
4618   // Case 1.
4619   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4620     return Builder.CreateBitCast(Src, DstTy, Name);
4621 
4622   // Case 2.
4623   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4624     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4625 
4626   // Case 3.
4627   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4628     // Case 3b.
4629     if (!DstTy->isIntegerTy())
4630       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4631     // Cases 3a and 3b.
4632     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4633   }
4634 
4635   // Case 4b.
4636   if (!SrcTy->isIntegerTy())
4637     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4638   // Cases 4a and 4b.
4639   return Builder.CreateIntToPtr(Src, DstTy, Name);
4640 }
4641 
4642 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4643   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4644   llvm::Type *DstTy = ConvertType(E->getType());
4645 
4646   llvm::Type *SrcTy = Src->getType();
4647   unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
4648     cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
4649   unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
4650     cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
4651 
4652   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4653   // vector to get a vec4, then a bitcast if the target type is different.
4654   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4655     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4656 
4657     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4658       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4659                                          DstTy);
4660     }
4661 
4662     Src->setName("astype");
4663     return Src;
4664   }
4665 
4666   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4667   // to vec4 if the original type is not vec4, then a shuffle vector to
4668   // get a vec3.
4669   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4670     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4671       auto *Vec4Ty = llvm::FixedVectorType::get(
4672           cast<llvm::VectorType>(DstTy)->getElementType(), 4);
4673       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4674                                          Vec4Ty);
4675     }
4676 
4677     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4678     Src->setName("astype");
4679     return Src;
4680   }
4681 
4682   return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4683                                       Src, DstTy, "astype");
4684 }
4685 
4686 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4687   return CGF.EmitAtomicExpr(E).getScalarVal();
4688 }
4689 
4690 //===----------------------------------------------------------------------===//
4691 //                         Entry Point into this File
4692 //===----------------------------------------------------------------------===//
4693 
4694 /// Emit the computation of the specified expression of scalar type, ignoring
4695 /// the result.
4696 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4697   assert(E && hasScalarEvaluationKind(E->getType()) &&
4698          "Invalid scalar expression to emit");
4699 
4700   return ScalarExprEmitter(*this, IgnoreResultAssign)
4701       .Visit(const_cast<Expr *>(E));
4702 }
4703 
4704 /// Emit a conversion from the specified type to the specified destination type,
4705 /// both of which are LLVM scalar types.
4706 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4707                                              QualType DstTy,
4708                                              SourceLocation Loc) {
4709   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4710          "Invalid scalar expression to emit");
4711   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4712 }
4713 
4714 /// Emit a conversion from the specified complex type to the specified
4715 /// destination type, where the destination type is an LLVM scalar type.
4716 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4717                                                       QualType SrcTy,
4718                                                       QualType DstTy,
4719                                                       SourceLocation Loc) {
4720   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4721          "Invalid complex -> scalar conversion");
4722   return ScalarExprEmitter(*this)
4723       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4724 }
4725 
4726 
4727 llvm::Value *CodeGenFunction::
4728 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4729                         bool isInc, bool isPre) {
4730   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4731 }
4732 
4733 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4734   // object->isa or (*object).isa
4735   // Generate code as for: *(Class*)object
4736 
4737   Expr *BaseExpr = E->getBase();
4738   Address Addr = Address::invalid();
4739   if (BaseExpr->isRValue()) {
4740     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4741   } else {
4742     Addr = EmitLValue(BaseExpr).getAddress(*this);
4743   }
4744 
4745   // Cast the address to Class*.
4746   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4747   return MakeAddrLValue(Addr, E->getType());
4748 }
4749 
4750 
4751 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4752                                             const CompoundAssignOperator *E) {
4753   ScalarExprEmitter Scalar(*this);
4754   Value *Result = nullptr;
4755   switch (E->getOpcode()) {
4756 #define COMPOUND_OP(Op)                                                       \
4757     case BO_##Op##Assign:                                                     \
4758       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4759                                              Result)
4760   COMPOUND_OP(Mul);
4761   COMPOUND_OP(Div);
4762   COMPOUND_OP(Rem);
4763   COMPOUND_OP(Add);
4764   COMPOUND_OP(Sub);
4765   COMPOUND_OP(Shl);
4766   COMPOUND_OP(Shr);
4767   COMPOUND_OP(And);
4768   COMPOUND_OP(Xor);
4769   COMPOUND_OP(Or);
4770 #undef COMPOUND_OP
4771 
4772   case BO_PtrMemD:
4773   case BO_PtrMemI:
4774   case BO_Mul:
4775   case BO_Div:
4776   case BO_Rem:
4777   case BO_Add:
4778   case BO_Sub:
4779   case BO_Shl:
4780   case BO_Shr:
4781   case BO_LT:
4782   case BO_GT:
4783   case BO_LE:
4784   case BO_GE:
4785   case BO_EQ:
4786   case BO_NE:
4787   case BO_Cmp:
4788   case BO_And:
4789   case BO_Xor:
4790   case BO_Or:
4791   case BO_LAnd:
4792   case BO_LOr:
4793   case BO_Assign:
4794   case BO_Comma:
4795     llvm_unreachable("Not valid compound assignment operators");
4796   }
4797 
4798   llvm_unreachable("Unhandled compound assignment operator");
4799 }
4800 
4801 struct GEPOffsetAndOverflow {
4802   // The total (signed) byte offset for the GEP.
4803   llvm::Value *TotalOffset;
4804   // The offset overflow flag - true if the total offset overflows.
4805   llvm::Value *OffsetOverflows;
4806 };
4807 
4808 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
4809 /// and compute the total offset it applies from it's base pointer BasePtr.
4810 /// Returns offset in bytes and a boolean flag whether an overflow happened
4811 /// during evaluation.
4812 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
4813                                                  llvm::LLVMContext &VMContext,
4814                                                  CodeGenModule &CGM,
4815                                                  CGBuilderTy &Builder) {
4816   const auto &DL = CGM.getDataLayout();
4817 
4818   // The total (signed) byte offset for the GEP.
4819   llvm::Value *TotalOffset = nullptr;
4820 
4821   // Was the GEP already reduced to a constant?
4822   if (isa<llvm::Constant>(GEPVal)) {
4823     // Compute the offset by casting both pointers to integers and subtracting:
4824     // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
4825     Value *BasePtr_int =
4826         Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
4827     Value *GEPVal_int =
4828         Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
4829     TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
4830     return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
4831   }
4832 
4833   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4834   assert(GEP->getPointerOperand() == BasePtr &&
4835          "BasePtr must be the the base of the GEP.");
4836   assert(GEP->isInBounds() && "Expected inbounds GEP");
4837 
4838   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4839 
4840   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4841   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4842   auto *SAddIntrinsic =
4843       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4844   auto *SMulIntrinsic =
4845       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4846 
4847   // The offset overflow flag - true if the total offset overflows.
4848   llvm::Value *OffsetOverflows = Builder.getFalse();
4849 
4850   /// Return the result of the given binary operation.
4851   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4852                   llvm::Value *RHS) -> llvm::Value * {
4853     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
4854 
4855     // If the operands are constants, return a constant result.
4856     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4857       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4858         llvm::APInt N;
4859         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4860                                                   /*Signed=*/true, N);
4861         if (HasOverflow)
4862           OffsetOverflows = Builder.getTrue();
4863         return llvm::ConstantInt::get(VMContext, N);
4864       }
4865     }
4866 
4867     // Otherwise, compute the result with checked arithmetic.
4868     auto *ResultAndOverflow = Builder.CreateCall(
4869         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4870     OffsetOverflows = Builder.CreateOr(
4871         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4872     return Builder.CreateExtractValue(ResultAndOverflow, 0);
4873   };
4874 
4875   // Determine the total byte offset by looking at each GEP operand.
4876   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4877        GTI != GTE; ++GTI) {
4878     llvm::Value *LocalOffset;
4879     auto *Index = GTI.getOperand();
4880     // Compute the local offset contributed by this indexing step:
4881     if (auto *STy = GTI.getStructTypeOrNull()) {
4882       // For struct indexing, the local offset is the byte position of the
4883       // specified field.
4884       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4885       LocalOffset = llvm::ConstantInt::get(
4886           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4887     } else {
4888       // Otherwise this is array-like indexing. The local offset is the index
4889       // multiplied by the element size.
4890       auto *ElementSize = llvm::ConstantInt::get(
4891           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4892       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4893       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4894     }
4895 
4896     // If this is the first offset, set it as the total offset. Otherwise, add
4897     // the local offset into the running total.
4898     if (!TotalOffset || TotalOffset == Zero)
4899       TotalOffset = LocalOffset;
4900     else
4901       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4902   }
4903 
4904   return {TotalOffset, OffsetOverflows};
4905 }
4906 
4907 Value *
4908 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
4909                                         bool SignedIndices, bool IsSubtraction,
4910                                         SourceLocation Loc, const Twine &Name) {
4911   Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
4912 
4913   // If the pointer overflow sanitizer isn't enabled, do nothing.
4914   if (!SanOpts.has(SanitizerKind::PointerOverflow))
4915     return GEPVal;
4916 
4917   llvm::Type *PtrTy = Ptr->getType();
4918 
4919   // Perform nullptr-and-offset check unless the nullptr is defined.
4920   bool PerformNullCheck = !NullPointerIsDefined(
4921       Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
4922   // Check for overflows unless the GEP got constant-folded,
4923   // and only in the default address space
4924   bool PerformOverflowCheck =
4925       !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
4926 
4927   if (!(PerformNullCheck || PerformOverflowCheck))
4928     return GEPVal;
4929 
4930   const auto &DL = CGM.getDataLayout();
4931 
4932   SanitizerScope SanScope(this);
4933   llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
4934 
4935   GEPOffsetAndOverflow EvaluatedGEP =
4936       EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
4937 
4938   assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
4939           EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
4940          "If the offset got constant-folded, we don't expect that there was an "
4941          "overflow.");
4942 
4943   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4944 
4945   // Common case: if the total offset is zero, and we are using C++ semantics,
4946   // where nullptr+0 is defined, don't emit a check.
4947   if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
4948     return GEPVal;
4949 
4950   // Now that we've computed the total offset, add it to the base pointer (with
4951   // wrapping semantics).
4952   auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
4953   auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
4954 
4955   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
4956 
4957   if (PerformNullCheck) {
4958     // In C++, if the base pointer evaluates to a null pointer value,
4959     // the only valid  pointer this inbounds GEP can produce is also
4960     // a null pointer, so the offset must also evaluate to zero.
4961     // Likewise, if we have non-zero base pointer, we can not get null pointer
4962     // as a result, so the offset can not be -intptr_t(BasePtr).
4963     // In other words, both pointers are either null, or both are non-null,
4964     // or the behaviour is undefined.
4965     //
4966     // C, however, is more strict in this regard, and gives more
4967     // optimization opportunities: in C, additionally, nullptr+0 is undefined.
4968     // So both the input to the 'gep inbounds' AND the output must not be null.
4969     auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
4970     auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
4971     auto *Valid =
4972         CGM.getLangOpts().CPlusPlus
4973             ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
4974             : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
4975     Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
4976   }
4977 
4978   if (PerformOverflowCheck) {
4979     // The GEP is valid if:
4980     // 1) The total offset doesn't overflow, and
4981     // 2) The sign of the difference between the computed address and the base
4982     // pointer matches the sign of the total offset.
4983     llvm::Value *ValidGEP;
4984     auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
4985     if (SignedIndices) {
4986       // GEP is computed as `unsigned base + signed offset`, therefore:
4987       // * If offset was positive, then the computed pointer can not be
4988       //   [unsigned] less than the base pointer, unless it overflowed.
4989       // * If offset was negative, then the computed pointer can not be
4990       //   [unsigned] greater than the bas pointere, unless it overflowed.
4991       auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4992       auto *PosOrZeroOffset =
4993           Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
4994       llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
4995       ValidGEP =
4996           Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
4997     } else if (!IsSubtraction) {
4998       // GEP is computed as `unsigned base + unsigned offset`,  therefore the
4999       // computed pointer can not be [unsigned] less than base pointer,
5000       // unless there was an overflow.
5001       // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
5002       ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5003     } else {
5004       // GEP is computed as `unsigned base - unsigned offset`, therefore the
5005       // computed pointer can not be [unsigned] greater than base pointer,
5006       // unless there was an overflow.
5007       // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
5008       ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
5009     }
5010     ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
5011     Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
5012   }
5013 
5014   assert(!Checks.empty() && "Should have produced some checks.");
5015 
5016   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
5017   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
5018   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
5019   EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
5020 
5021   return GEPVal;
5022 }
5023