1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Objective-C code as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/StmtObjC.h"
23 #include "clang/Basic/Diagnostic.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
32 static TryEmitResult
33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
34 static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
35                                    QualType ET,
36                                    RValue Result);
37 
38 /// Given the address of a variable of pointer type, find the correct
39 /// null to store into it.
40 static llvm::Constant *getNullForVariable(Address addr) {
41   llvm::Type *type = addr.getElementType();
42   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
43 }
44 
45 /// Emits an instance of NSConstantString representing the object.
46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
47 {
48   llvm::Constant *C =
49       CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
50   // FIXME: This bitcast should just be made an invariant on the Runtime.
51   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
52 }
53 
54 /// EmitObjCBoxedExpr - This routine generates code to call
55 /// the appropriate expression boxing method. This will either be
56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
57 /// or [NSValue valueWithBytes:objCType:].
58 ///
59 llvm::Value *
60 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
61   // Generate the correct selector for this literal's concrete type.
62   // Get the method.
63   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
64   const Expr *SubExpr = E->getSubExpr();
65 
66   if (E->isExpressibleAsConstantInitializer()) {
67     ConstantEmitter ConstEmitter(CGM);
68     return ConstEmitter.tryEmitAbstract(E, E->getType());
69   }
70 
71   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
72   Selector Sel = BoxingMethod->getSelector();
73 
74   // Generate a reference to the class pointer, which will be the receiver.
75   // Assumes that the method was introduced in the class that should be
76   // messaged (avoids pulling it out of the result type).
77   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
78   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
79   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
80 
81   CallArgList Args;
82   const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
83   QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
84 
85   // ObjCBoxedExpr supports boxing of structs and unions
86   // via [NSValue valueWithBytes:objCType:]
87   const QualType ValueType(SubExpr->getType().getCanonicalType());
88   if (ValueType->isObjCBoxableRecordType()) {
89     // Emit CodeGen for first parameter
90     // and cast value to correct type
91     Address Temporary = CreateMemTemp(SubExpr->getType());
92     EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
93     Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT));
94     Args.add(RValue::get(BitCast.getPointer()), ArgQT);
95 
96     // Create char array to store type encoding
97     std::string Str;
98     getContext().getObjCEncodingForType(ValueType, Str);
99     llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
100 
101     // Cast type encoding to correct type
102     const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
103     QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
104     llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
105 
106     Args.add(RValue::get(Cast), EncodingQT);
107   } else {
108     Args.add(EmitAnyExpr(SubExpr), ArgQT);
109   }
110 
111   RValue result = Runtime.GenerateMessageSend(
112       *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
113       Args, ClassDecl, BoxingMethod);
114   return Builder.CreateBitCast(result.getScalarVal(),
115                                ConvertType(E->getType()));
116 }
117 
118 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
119                                     const ObjCMethodDecl *MethodWithObjects) {
120   ASTContext &Context = CGM.getContext();
121   const ObjCDictionaryLiteral *DLE = nullptr;
122   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
123   if (!ALE)
124     DLE = cast<ObjCDictionaryLiteral>(E);
125 
126   // Optimize empty collections by referencing constants, when available.
127   uint64_t NumElements =
128     ALE ? ALE->getNumElements() : DLE->getNumElements();
129   if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
130     StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
131     QualType IdTy(CGM.getContext().getObjCIdType());
132     llvm::Constant *Constant =
133         CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
134     LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
135     llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc());
136     cast<llvm::LoadInst>(Ptr)->setMetadata(
137         CGM.getModule().getMDKindID("invariant.load"),
138         llvm::MDNode::get(getLLVMContext(), None));
139     return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
140   }
141 
142   // Compute the type of the array we're initializing.
143   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
144                             NumElements);
145   QualType ElementType = Context.getObjCIdType().withConst();
146   QualType ElementArrayType
147     = Context.getConstantArrayType(ElementType, APNumElements, nullptr,
148                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
149 
150   // Allocate the temporary array(s).
151   Address Objects = CreateMemTemp(ElementArrayType, "objects");
152   Address Keys = Address::invalid();
153   if (DLE)
154     Keys = CreateMemTemp(ElementArrayType, "keys");
155 
156   // In ARC, we may need to do extra work to keep all the keys and
157   // values alive until after the call.
158   SmallVector<llvm::Value *, 16> NeededObjects;
159   bool TrackNeededObjects =
160     (getLangOpts().ObjCAutoRefCount &&
161     CGM.getCodeGenOpts().OptimizationLevel != 0);
162 
163   // Perform the actual initialialization of the array(s).
164   for (uint64_t i = 0; i < NumElements; i++) {
165     if (ALE) {
166       // Emit the element and store it to the appropriate array slot.
167       const Expr *Rhs = ALE->getElement(i);
168       LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
169                                  ElementType, AlignmentSource::Decl);
170 
171       llvm::Value *value = EmitScalarExpr(Rhs);
172       EmitStoreThroughLValue(RValue::get(value), LV, true);
173       if (TrackNeededObjects) {
174         NeededObjects.push_back(value);
175       }
176     } else {
177       // Emit the key and store it to the appropriate array slot.
178       const Expr *Key = DLE->getKeyValueElement(i).Key;
179       LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i),
180                                     ElementType, AlignmentSource::Decl);
181       llvm::Value *keyValue = EmitScalarExpr(Key);
182       EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
183 
184       // Emit the value and store it to the appropriate array slot.
185       const Expr *Value = DLE->getKeyValueElement(i).Value;
186       LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
187                                       ElementType, AlignmentSource::Decl);
188       llvm::Value *valueValue = EmitScalarExpr(Value);
189       EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
190       if (TrackNeededObjects) {
191         NeededObjects.push_back(keyValue);
192         NeededObjects.push_back(valueValue);
193       }
194     }
195   }
196 
197   // Generate the argument list.
198   CallArgList Args;
199   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
200   const ParmVarDecl *argDecl = *PI++;
201   QualType ArgQT = argDecl->getType().getUnqualifiedType();
202   Args.add(RValue::get(Objects.getPointer()), ArgQT);
203   if (DLE) {
204     argDecl = *PI++;
205     ArgQT = argDecl->getType().getUnqualifiedType();
206     Args.add(RValue::get(Keys.getPointer()), ArgQT);
207   }
208   argDecl = *PI;
209   ArgQT = argDecl->getType().getUnqualifiedType();
210   llvm::Value *Count =
211     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
212   Args.add(RValue::get(Count), ArgQT);
213 
214   // Generate a reference to the class pointer, which will be the receiver.
215   Selector Sel = MethodWithObjects->getSelector();
216   QualType ResultType = E->getType();
217   const ObjCObjectPointerType *InterfacePointerType
218     = ResultType->getAsObjCInterfacePointerType();
219   ObjCInterfaceDecl *Class
220     = InterfacePointerType->getObjectType()->getInterface();
221   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
222   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
223 
224   // Generate the message send.
225   RValue result = Runtime.GenerateMessageSend(
226       *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
227       Receiver, Args, Class, MethodWithObjects);
228 
229   // The above message send needs these objects, but in ARC they are
230   // passed in a buffer that is essentially __unsafe_unretained.
231   // Therefore we must prevent the optimizer from releasing them until
232   // after the call.
233   if (TrackNeededObjects) {
234     EmitARCIntrinsicUse(NeededObjects);
235   }
236 
237   return Builder.CreateBitCast(result.getScalarVal(),
238                                ConvertType(E->getType()));
239 }
240 
241 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
242   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
243 }
244 
245 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
246                                             const ObjCDictionaryLiteral *E) {
247   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
248 }
249 
250 /// Emit a selector.
251 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
252   // Untyped selector.
253   // Note that this implementation allows for non-constant strings to be passed
254   // as arguments to @selector().  Currently, the only thing preventing this
255   // behaviour is the type checking in the front end.
256   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
257 }
258 
259 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
260   // FIXME: This should pass the Decl not the name.
261   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
262 }
263 
264 /// Adjust the type of an Objective-C object that doesn't match up due
265 /// to type erasure at various points, e.g., related result types or the use
266 /// of parameterized classes.
267 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
268                                    RValue Result) {
269   if (!ExpT->isObjCRetainableType())
270     return Result;
271 
272   // If the converted types are the same, we're done.
273   llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
274   if (ExpLLVMTy == Result.getScalarVal()->getType())
275     return Result;
276 
277   // We have applied a substitution. Cast the rvalue appropriately.
278   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
279                                                ExpLLVMTy));
280 }
281 
282 /// Decide whether to extend the lifetime of the receiver of a
283 /// returns-inner-pointer message.
284 static bool
285 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
286   switch (message->getReceiverKind()) {
287 
288   // For a normal instance message, we should extend unless the
289   // receiver is loaded from a variable with precise lifetime.
290   case ObjCMessageExpr::Instance: {
291     const Expr *receiver = message->getInstanceReceiver();
292 
293     // Look through OVEs.
294     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
295       if (opaque->getSourceExpr())
296         receiver = opaque->getSourceExpr()->IgnoreParens();
297     }
298 
299     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
300     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
301     receiver = ice->getSubExpr()->IgnoreParens();
302 
303     // Look through OVEs.
304     if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
305       if (opaque->getSourceExpr())
306         receiver = opaque->getSourceExpr()->IgnoreParens();
307     }
308 
309     // Only __strong variables.
310     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
311       return true;
312 
313     // All ivars and fields have precise lifetime.
314     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
315       return false;
316 
317     // Otherwise, check for variables.
318     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
319     if (!declRef) return true;
320     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
321     if (!var) return true;
322 
323     // All variables have precise lifetime except local variables with
324     // automatic storage duration that aren't specially marked.
325     return (var->hasLocalStorage() &&
326             !var->hasAttr<ObjCPreciseLifetimeAttr>());
327   }
328 
329   case ObjCMessageExpr::Class:
330   case ObjCMessageExpr::SuperClass:
331     // It's never necessary for class objects.
332     return false;
333 
334   case ObjCMessageExpr::SuperInstance:
335     // We generally assume that 'self' lives throughout a method call.
336     return false;
337   }
338 
339   llvm_unreachable("invalid receiver kind");
340 }
341 
342 /// Given an expression of ObjC pointer type, check whether it was
343 /// immediately loaded from an ARC __weak l-value.
344 static const Expr *findWeakLValue(const Expr *E) {
345   assert(E->getType()->isObjCRetainableType());
346   E = E->IgnoreParens();
347   if (auto CE = dyn_cast<CastExpr>(E)) {
348     if (CE->getCastKind() == CK_LValueToRValue) {
349       if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
350         return CE->getSubExpr();
351     }
352   }
353 
354   return nullptr;
355 }
356 
357 /// The ObjC runtime may provide entrypoints that are likely to be faster
358 /// than an ordinary message send of the appropriate selector.
359 ///
360 /// The entrypoints are guaranteed to be equivalent to just sending the
361 /// corresponding message.  If the entrypoint is implemented naively as just a
362 /// message send, using it is a trade-off: it sacrifices a few cycles of
363 /// overhead to save a small amount of code.  However, it's possible for
364 /// runtimes to detect and special-case classes that use "standard"
365 /// behavior; if that's dynamically a large proportion of all objects, using
366 /// the entrypoint will also be faster than using a message send.
367 ///
368 /// If the runtime does support a required entrypoint, then this method will
369 /// generate a call and return the resulting value.  Otherwise it will return
370 /// None and the caller can generate a msgSend instead.
371 static Optional<llvm::Value *>
372 tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType,
373                                   llvm::Value *Receiver,
374                                   const CallArgList& Args, Selector Sel,
375                                   const ObjCMethodDecl *method,
376                                   bool isClassMessage) {
377   auto &CGM = CGF.CGM;
378   if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls)
379     return None;
380 
381   auto &Runtime = CGM.getLangOpts().ObjCRuntime;
382   switch (Sel.getMethodFamily()) {
383   case OMF_alloc:
384     if (isClassMessage &&
385         Runtime.shouldUseRuntimeFunctionsForAlloc() &&
386         ResultType->isObjCObjectPointerType()) {
387         // [Foo alloc] -> objc_alloc(Foo) or
388         // [self alloc] -> objc_alloc(self)
389         if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc")
390           return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType));
391         // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or
392         // [self allocWithZone:nil] -> objc_allocWithZone(self)
393         if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 &&
394             Args.size() == 1 && Args.front().getType()->isPointerType() &&
395             Sel.getNameForSlot(0) == "allocWithZone") {
396           const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal();
397           if (isa<llvm::ConstantPointerNull>(arg))
398             return CGF.EmitObjCAllocWithZone(Receiver,
399                                              CGF.ConvertType(ResultType));
400           return None;
401         }
402     }
403     break;
404 
405   case OMF_autorelease:
406     if (ResultType->isObjCObjectPointerType() &&
407         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
408         Runtime.shouldUseARCFunctionsForRetainRelease())
409       return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType));
410     break;
411 
412   case OMF_retain:
413     if (ResultType->isObjCObjectPointerType() &&
414         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
415         Runtime.shouldUseARCFunctionsForRetainRelease())
416       return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType));
417     break;
418 
419   case OMF_release:
420     if (ResultType->isVoidType() &&
421         CGM.getLangOpts().getGC() == LangOptions::NonGC &&
422         Runtime.shouldUseARCFunctionsForRetainRelease()) {
423       CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime);
424       return nullptr;
425     }
426     break;
427 
428   default:
429     break;
430   }
431   return None;
432 }
433 
434 CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend(
435     CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType,
436     Selector Sel, llvm::Value *Receiver, const CallArgList &Args,
437     const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method,
438     bool isClassMessage) {
439   if (Optional<llvm::Value *> SpecializedResult =
440           tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args,
441                                             Sel, Method, isClassMessage)) {
442     return RValue::get(SpecializedResult.getValue());
443   }
444   return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID,
445                              Method);
446 }
447 
448 /// Instead of '[[MyClass alloc] init]', try to generate
449 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
450 /// caller side, as well as the optimized objc_alloc.
451 static Optional<llvm::Value *>
452 tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) {
453   auto &Runtime = CGF.getLangOpts().ObjCRuntime;
454   if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit())
455     return None;
456 
457   // Match the exact pattern '[[MyClass alloc] init]'.
458   Selector Sel = OME->getSelector();
459   if (OME->getReceiverKind() != ObjCMessageExpr::Instance ||
460       !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() ||
461       Sel.getNameForSlot(0) != "init")
462     return None;
463 
464   // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]'
465   // with 'cls' a Class.
466   auto *SubOME =
467       dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts());
468   if (!SubOME)
469     return None;
470   Selector SubSel = SubOME->getSelector();
471 
472   if (!SubOME->getType()->isObjCObjectPointerType() ||
473       !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc")
474     return None;
475 
476   llvm::Value *Receiver = nullptr;
477   switch (SubOME->getReceiverKind()) {
478   case ObjCMessageExpr::Instance:
479     if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType())
480       return None;
481     Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver());
482     break;
483 
484   case ObjCMessageExpr::Class: {
485     QualType ReceiverType = SubOME->getClassReceiver();
486     const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>();
487     const ObjCInterfaceDecl *ID = ObjTy->getInterface();
488     assert(ID && "null interface should be impossible here");
489     Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID);
490     break;
491   }
492   case ObjCMessageExpr::SuperInstance:
493   case ObjCMessageExpr::SuperClass:
494     return None;
495   }
496 
497   return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType()));
498 }
499 
500 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
501                                             ReturnValueSlot Return) {
502   // Only the lookup mechanism and first two arguments of the method
503   // implementation vary between runtimes.  We can get the receiver and
504   // arguments in generic code.
505 
506   bool isDelegateInit = E->isDelegateInitCall();
507 
508   const ObjCMethodDecl *method = E->getMethodDecl();
509 
510   // If the method is -retain, and the receiver's being loaded from
511   // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
512   if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
513       method->getMethodFamily() == OMF_retain) {
514     if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
515       LValue lvalue = EmitLValue(lvalueExpr);
516       llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress(*this));
517       return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
518     }
519   }
520 
521   if (Optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E))
522     return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val));
523 
524   // We don't retain the receiver in delegate init calls, and this is
525   // safe because the receiver value is always loaded from 'self',
526   // which we zero out.  We don't want to Block_copy block receivers,
527   // though.
528   bool retainSelf =
529     (!isDelegateInit &&
530      CGM.getLangOpts().ObjCAutoRefCount &&
531      method &&
532      method->hasAttr<NSConsumesSelfAttr>());
533 
534   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
535   bool isSuperMessage = false;
536   bool isClassMessage = false;
537   ObjCInterfaceDecl *OID = nullptr;
538   // Find the receiver
539   QualType ReceiverType;
540   llvm::Value *Receiver = nullptr;
541   switch (E->getReceiverKind()) {
542   case ObjCMessageExpr::Instance:
543     ReceiverType = E->getInstanceReceiver()->getType();
544     isClassMessage = ReceiverType->isObjCClassType();
545     if (retainSelf) {
546       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
547                                                    E->getInstanceReceiver());
548       Receiver = ter.getPointer();
549       if (ter.getInt()) retainSelf = false;
550     } else
551       Receiver = EmitScalarExpr(E->getInstanceReceiver());
552     break;
553 
554   case ObjCMessageExpr::Class: {
555     ReceiverType = E->getClassReceiver();
556     OID = ReceiverType->castAs<ObjCObjectType>()->getInterface();
557     assert(OID && "Invalid Objective-C class message send");
558     Receiver = Runtime.GetClass(*this, OID);
559     isClassMessage = true;
560     break;
561   }
562 
563   case ObjCMessageExpr::SuperInstance:
564     ReceiverType = E->getSuperType();
565     Receiver = LoadObjCSelf();
566     isSuperMessage = true;
567     break;
568 
569   case ObjCMessageExpr::SuperClass:
570     ReceiverType = E->getSuperType();
571     Receiver = LoadObjCSelf();
572     isSuperMessage = true;
573     isClassMessage = true;
574     break;
575   }
576 
577   if (retainSelf)
578     Receiver = EmitARCRetainNonBlock(Receiver);
579 
580   // In ARC, we sometimes want to "extend the lifetime"
581   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
582   // messages.
583   if (getLangOpts().ObjCAutoRefCount && method &&
584       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
585       shouldExtendReceiverForInnerPointerMessage(E))
586     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
587 
588   QualType ResultType = method ? method->getReturnType() : E->getType();
589 
590   CallArgList Args;
591   EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
592 
593   // For delegate init calls in ARC, do an unsafe store of null into
594   // self.  This represents the call taking direct ownership of that
595   // value.  We have to do this after emitting the other call
596   // arguments because they might also reference self, but we don't
597   // have to worry about any of them modifying self because that would
598   // be an undefined read and write of an object in unordered
599   // expressions.
600   if (isDelegateInit) {
601     assert(getLangOpts().ObjCAutoRefCount &&
602            "delegate init calls should only be marked in ARC");
603 
604     // Do an unsafe store of null into self.
605     Address selfAddr =
606       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
607     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
608   }
609 
610   RValue result;
611   if (isSuperMessage) {
612     // super is only valid in an Objective-C method
613     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
614     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
615     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
616                                               E->getSelector(),
617                                               OMD->getClassInterface(),
618                                               isCategoryImpl,
619                                               Receiver,
620                                               isClassMessage,
621                                               Args,
622                                               method);
623   } else {
624     // Call runtime methods directly if we can.
625     result = Runtime.GeneratePossiblySpecializedMessageSend(
626         *this, Return, ResultType, E->getSelector(), Receiver, Args, OID,
627         method, isClassMessage);
628   }
629 
630   // For delegate init calls in ARC, implicitly store the result of
631   // the call back into self.  This takes ownership of the value.
632   if (isDelegateInit) {
633     Address selfAddr =
634       GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
635     llvm::Value *newSelf = result.getScalarVal();
636 
637     // The delegate return type isn't necessarily a matching type; in
638     // fact, it's quite likely to be 'id'.
639     llvm::Type *selfTy = selfAddr.getElementType();
640     newSelf = Builder.CreateBitCast(newSelf, selfTy);
641 
642     Builder.CreateStore(newSelf, selfAddr);
643   }
644 
645   return AdjustObjCObjectType(*this, E->getType(), result);
646 }
647 
648 namespace {
649 struct FinishARCDealloc final : EHScopeStack::Cleanup {
650   void Emit(CodeGenFunction &CGF, Flags flags) override {
651     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
652 
653     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
654     const ObjCInterfaceDecl *iface = impl->getClassInterface();
655     if (!iface->getSuperClass()) return;
656 
657     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
658 
659     // Call [super dealloc] if we have a superclass.
660     llvm::Value *self = CGF.LoadObjCSelf();
661 
662     CallArgList args;
663     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
664                                                       CGF.getContext().VoidTy,
665                                                       method->getSelector(),
666                                                       iface,
667                                                       isCategory,
668                                                       self,
669                                                       /*is class msg*/ false,
670                                                       args,
671                                                       method);
672   }
673 };
674 }
675 
676 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
677 /// the LLVM function and sets the other context used by
678 /// CodeGenFunction.
679 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
680                                       const ObjCContainerDecl *CD) {
681   SourceLocation StartLoc = OMD->getBeginLoc();
682   FunctionArgList args;
683   // Check if we should generate debug info for this method.
684   if (OMD->hasAttr<NoDebugAttr>())
685     DebugInfo = nullptr; // disable debug info indefinitely for this function
686 
687   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
688 
689   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
690   if (OMD->isDirectMethod()) {
691     Fn->setVisibility(llvm::Function::HiddenVisibility);
692     CGM.SetLLVMFunctionAttributes(OMD, FI, Fn);
693     CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn);
694   } else {
695     CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
696   }
697 
698   args.push_back(OMD->getSelfDecl());
699   args.push_back(OMD->getCmdDecl());
700 
701   args.append(OMD->param_begin(), OMD->param_end());
702 
703   CurGD = OMD;
704   CurEHLocation = OMD->getEndLoc();
705 
706   StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
707                 OMD->getLocation(), StartLoc);
708 
709   if (OMD->isDirectMethod()) {
710     // This function is a direct call, it has to implement a nil check
711     // on entry.
712     //
713     // TODO: possibly have several entry points to elide the check
714     CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD);
715   }
716 
717   // In ARC, certain methods get an extra cleanup.
718   if (CGM.getLangOpts().ObjCAutoRefCount &&
719       OMD->isInstanceMethod() &&
720       OMD->getSelector().isUnarySelector()) {
721     const IdentifierInfo *ident =
722       OMD->getSelector().getIdentifierInfoForSlot(0);
723     if (ident->isStr("dealloc"))
724       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
725   }
726 }
727 
728 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
729                                               LValue lvalue, QualType type);
730 
731 /// Generate an Objective-C method.  An Objective-C method is a C function with
732 /// its pointer, name, and types registered in the class structure.
733 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
734   StartObjCMethod(OMD, OMD->getClassInterface());
735   PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
736   assert(isa<CompoundStmt>(OMD->getBody()));
737   incrementProfileCounter(OMD->getBody());
738   EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
739   FinishFunction(OMD->getBodyRBrace());
740 }
741 
742 /// emitStructGetterCall - Call the runtime function to load a property
743 /// into the return value slot.
744 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
745                                  bool isAtomic, bool hasStrong) {
746   ASTContext &Context = CGF.getContext();
747 
748   Address src =
749       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
750           .getAddress(CGF);
751 
752   // objc_copyStruct (ReturnValue, &structIvar,
753   //                  sizeof (Type of Ivar), isAtomic, false);
754   CallArgList args;
755 
756   Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
757   args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy);
758 
759   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
760   args.add(RValue::get(src.getPointer()), Context.VoidPtrTy);
761 
762   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
763   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
764   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
765   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
766 
767   llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
768   CGCallee callee = CGCallee::forDirect(fn);
769   CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
770                callee, ReturnValueSlot(), args);
771 }
772 
773 /// Determine whether the given architecture supports unaligned atomic
774 /// accesses.  They don't have to be fast, just faster than a function
775 /// call and a mutex.
776 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
777   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
778   // currently supported by the backend.)
779   return 0;
780 }
781 
782 /// Return the maximum size that permits atomic accesses for the given
783 /// architecture.
784 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
785                                         llvm::Triple::ArchType arch) {
786   // ARM has 8-byte atomic accesses, but it's not clear whether we
787   // want to rely on them here.
788 
789   // In the default case, just assume that any size up to a pointer is
790   // fine given adequate alignment.
791   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
792 }
793 
794 namespace {
795   class PropertyImplStrategy {
796   public:
797     enum StrategyKind {
798       /// The 'native' strategy is to use the architecture's provided
799       /// reads and writes.
800       Native,
801 
802       /// Use objc_setProperty and objc_getProperty.
803       GetSetProperty,
804 
805       /// Use objc_setProperty for the setter, but use expression
806       /// evaluation for the getter.
807       SetPropertyAndExpressionGet,
808 
809       /// Use objc_copyStruct.
810       CopyStruct,
811 
812       /// The 'expression' strategy is to emit normal assignment or
813       /// lvalue-to-rvalue expressions.
814       Expression
815     };
816 
817     StrategyKind getKind() const { return StrategyKind(Kind); }
818 
819     bool hasStrongMember() const { return HasStrong; }
820     bool isAtomic() const { return IsAtomic; }
821     bool isCopy() const { return IsCopy; }
822 
823     CharUnits getIvarSize() const { return IvarSize; }
824     CharUnits getIvarAlignment() const { return IvarAlignment; }
825 
826     PropertyImplStrategy(CodeGenModule &CGM,
827                          const ObjCPropertyImplDecl *propImpl);
828 
829   private:
830     unsigned Kind : 8;
831     unsigned IsAtomic : 1;
832     unsigned IsCopy : 1;
833     unsigned HasStrong : 1;
834 
835     CharUnits IvarSize;
836     CharUnits IvarAlignment;
837   };
838 }
839 
840 /// Pick an implementation strategy for the given property synthesis.
841 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
842                                      const ObjCPropertyImplDecl *propImpl) {
843   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
844   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
845 
846   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
847   IsAtomic = prop->isAtomic();
848   HasStrong = false; // doesn't matter here.
849 
850   // Evaluate the ivar's size and alignment.
851   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
852   QualType ivarType = ivar->getType();
853   std::tie(IvarSize, IvarAlignment) =
854       CGM.getContext().getTypeInfoInChars(ivarType);
855 
856   // If we have a copy property, we always have to use getProperty/setProperty.
857   // TODO: we could actually use setProperty and an expression for non-atomics.
858   if (IsCopy) {
859     Kind = GetSetProperty;
860     return;
861   }
862 
863   // Handle retain.
864   if (setterKind == ObjCPropertyDecl::Retain) {
865     // In GC-only, there's nothing special that needs to be done.
866     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
867       // fallthrough
868 
869     // In ARC, if the property is non-atomic, use expression emission,
870     // which translates to objc_storeStrong.  This isn't required, but
871     // it's slightly nicer.
872     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
873       // Using standard expression emission for the setter is only
874       // acceptable if the ivar is __strong, which won't be true if
875       // the property is annotated with __attribute__((NSObject)).
876       // TODO: falling all the way back to objc_setProperty here is
877       // just laziness, though;  we could still use objc_storeStrong
878       // if we hacked it right.
879       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
880         Kind = Expression;
881       else
882         Kind = SetPropertyAndExpressionGet;
883       return;
884 
885     // Otherwise, we need to at least use setProperty.  However, if
886     // the property isn't atomic, we can use normal expression
887     // emission for the getter.
888     } else if (!IsAtomic) {
889       Kind = SetPropertyAndExpressionGet;
890       return;
891 
892     // Otherwise, we have to use both setProperty and getProperty.
893     } else {
894       Kind = GetSetProperty;
895       return;
896     }
897   }
898 
899   // If we're not atomic, just use expression accesses.
900   if (!IsAtomic) {
901     Kind = Expression;
902     return;
903   }
904 
905   // Properties on bitfield ivars need to be emitted using expression
906   // accesses even if they're nominally atomic.
907   if (ivar->isBitField()) {
908     Kind = Expression;
909     return;
910   }
911 
912   // GC-qualified or ARC-qualified ivars need to be emitted as
913   // expressions.  This actually works out to being atomic anyway,
914   // except for ARC __strong, but that should trigger the above code.
915   if (ivarType.hasNonTrivialObjCLifetime() ||
916       (CGM.getLangOpts().getGC() &&
917        CGM.getContext().getObjCGCAttrKind(ivarType))) {
918     Kind = Expression;
919     return;
920   }
921 
922   // Compute whether the ivar has strong members.
923   if (CGM.getLangOpts().getGC())
924     if (const RecordType *recordType = ivarType->getAs<RecordType>())
925       HasStrong = recordType->getDecl()->hasObjectMember();
926 
927   // We can never access structs with object members with a native
928   // access, because we need to use write barriers.  This is what
929   // objc_copyStruct is for.
930   if (HasStrong) {
931     Kind = CopyStruct;
932     return;
933   }
934 
935   // Otherwise, this is target-dependent and based on the size and
936   // alignment of the ivar.
937 
938   // If the size of the ivar is not a power of two, give up.  We don't
939   // want to get into the business of doing compare-and-swaps.
940   if (!IvarSize.isPowerOfTwo()) {
941     Kind = CopyStruct;
942     return;
943   }
944 
945   llvm::Triple::ArchType arch =
946     CGM.getTarget().getTriple().getArch();
947 
948   // Most architectures require memory to fit within a single cache
949   // line, so the alignment has to be at least the size of the access.
950   // Otherwise we have to grab a lock.
951   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
952     Kind = CopyStruct;
953     return;
954   }
955 
956   // If the ivar's size exceeds the architecture's maximum atomic
957   // access size, we have to use CopyStruct.
958   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
959     Kind = CopyStruct;
960     return;
961   }
962 
963   // Otherwise, we can use native loads and stores.
964   Kind = Native;
965 }
966 
967 /// Generate an Objective-C property getter function.
968 ///
969 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
970 /// is illegal within a category.
971 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
972                                          const ObjCPropertyImplDecl *PID) {
973   llvm::Constant *AtomicHelperFn =
974       CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
975   ObjCMethodDecl *OMD = PID->getGetterMethodDecl();
976   assert(OMD && "Invalid call to generate getter (empty method)");
977   StartObjCMethod(OMD, IMP->getClassInterface());
978 
979   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
980 
981   FinishFunction(OMD->getEndLoc());
982 }
983 
984 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
985   const Expr *getter = propImpl->getGetterCXXConstructor();
986   if (!getter) return true;
987 
988   // Sema only makes only of these when the ivar has a C++ class type,
989   // so the form is pretty constrained.
990 
991   // If the property has a reference type, we might just be binding a
992   // reference, in which case the result will be a gl-value.  We should
993   // treat this as a non-trivial operation.
994   if (getter->isGLValue())
995     return false;
996 
997   // If we selected a trivial copy-constructor, we're okay.
998   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
999     return (construct->getConstructor()->isTrivial());
1000 
1001   // The constructor might require cleanups (in which case it's never
1002   // trivial).
1003   assert(isa<ExprWithCleanups>(getter));
1004   return false;
1005 }
1006 
1007 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
1008 /// copy the ivar into the resturn slot.
1009 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
1010                                           llvm::Value *returnAddr,
1011                                           ObjCIvarDecl *ivar,
1012                                           llvm::Constant *AtomicHelperFn) {
1013   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
1014   //                           AtomicHelperFn);
1015   CallArgList args;
1016 
1017   // The 1st argument is the return Slot.
1018   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
1019 
1020   // The 2nd argument is the address of the ivar.
1021   llvm::Value *ivarAddr =
1022       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1023           .getPointer(CGF);
1024   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1025   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1026 
1027   // Third argument is the helper function.
1028   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1029 
1030   llvm::FunctionCallee copyCppAtomicObjectFn =
1031       CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
1032   CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
1033   CGF.EmitCall(
1034       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1035                callee, ReturnValueSlot(), args);
1036 }
1037 
1038 void
1039 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1040                                         const ObjCPropertyImplDecl *propImpl,
1041                                         const ObjCMethodDecl *GetterMethodDecl,
1042                                         llvm::Constant *AtomicHelperFn) {
1043   // If there's a non-trivial 'get' expression, we just have to emit that.
1044   if (!hasTrivialGetExpr(propImpl)) {
1045     if (!AtomicHelperFn) {
1046       auto *ret = ReturnStmt::Create(getContext(), SourceLocation(),
1047                                      propImpl->getGetterCXXConstructor(),
1048                                      /* NRVOCandidate=*/nullptr);
1049       EmitReturnStmt(*ret);
1050     }
1051     else {
1052       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1053       emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(),
1054                                     ivar, AtomicHelperFn);
1055     }
1056     return;
1057   }
1058 
1059   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1060   QualType propType = prop->getType();
1061   ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl();
1062 
1063   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1064 
1065   // Pick an implementation strategy.
1066   PropertyImplStrategy strategy(CGM, propImpl);
1067   switch (strategy.getKind()) {
1068   case PropertyImplStrategy::Native: {
1069     // We don't need to do anything for a zero-size struct.
1070     if (strategy.getIvarSize().isZero())
1071       return;
1072 
1073     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1074 
1075     // Currently, all atomic accesses have to be through integer
1076     // types, so there's no point in trying to pick a prettier type.
1077     uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
1078     llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
1079     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1080 
1081     // Perform an atomic load.  This does not impose ordering constraints.
1082     Address ivarAddr = LV.getAddress(*this);
1083     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1084     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
1085     load->setAtomic(llvm::AtomicOrdering::Unordered);
1086 
1087     // Store that value into the return address.  Doing this with a
1088     // bitcast is likely to produce some pretty ugly IR, but it's not
1089     // the *most* terrible thing in the world.
1090     llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
1091     uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
1092     llvm::Value *ivarVal = load;
1093     if (ivarSize > retTySize) {
1094       llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
1095       ivarVal = Builder.CreateTrunc(load, newTy);
1096       bitcastType = newTy->getPointerTo();
1097     }
1098     Builder.CreateStore(ivarVal,
1099                         Builder.CreateBitCast(ReturnValue, bitcastType));
1100 
1101     // Make sure we don't do an autorelease.
1102     AutoreleaseResult = false;
1103     return;
1104   }
1105 
1106   case PropertyImplStrategy::GetSetProperty: {
1107     llvm::FunctionCallee getPropertyFn =
1108         CGM.getObjCRuntime().GetPropertyGetFunction();
1109     if (!getPropertyFn) {
1110       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
1111       return;
1112     }
1113     CGCallee callee = CGCallee::forDirect(getPropertyFn);
1114 
1115     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
1116     // FIXME: Can't this be simpler? This might even be worse than the
1117     // corresponding gcc code.
1118     llvm::Value *cmd =
1119       Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd");
1120     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1121     llvm::Value *ivarOffset =
1122       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1123 
1124     CallArgList args;
1125     args.add(RValue::get(self), getContext().getObjCIdType());
1126     args.add(RValue::get(cmd), getContext().getObjCSelType());
1127     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1128     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1129              getContext().BoolTy);
1130 
1131     // FIXME: We shouldn't need to get the function info here, the
1132     // runtime already should have computed it to build the function.
1133     llvm::CallBase *CallInstruction;
1134     RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall(
1135                              getContext().getObjCIdType(), args),
1136                          callee, ReturnValueSlot(), args, &CallInstruction);
1137     if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
1138       call->setTailCall();
1139 
1140     // We need to fix the type here. Ivars with copy & retain are
1141     // always objects so we don't need to worry about complex or
1142     // aggregates.
1143     RV = RValue::get(Builder.CreateBitCast(
1144         RV.getScalarVal(),
1145         getTypes().ConvertType(getterMethod->getReturnType())));
1146 
1147     EmitReturnOfRValue(RV, propType);
1148 
1149     // objc_getProperty does an autorelease, so we should suppress ours.
1150     AutoreleaseResult = false;
1151 
1152     return;
1153   }
1154 
1155   case PropertyImplStrategy::CopyStruct:
1156     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
1157                          strategy.hasStrongMember());
1158     return;
1159 
1160   case PropertyImplStrategy::Expression:
1161   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1162     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1163 
1164     QualType ivarType = ivar->getType();
1165     switch (getEvaluationKind(ivarType)) {
1166     case TEK_Complex: {
1167       ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
1168       EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
1169                          /*init*/ true);
1170       return;
1171     }
1172     case TEK_Aggregate: {
1173       // The return value slot is guaranteed to not be aliased, but
1174       // that's not necessarily the same as "on the stack", so
1175       // we still potentially need objc_memmove_collectable.
1176       EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
1177                         /* Src= */ LV, ivarType, getOverlapForReturnValue());
1178       return;
1179     }
1180     case TEK_Scalar: {
1181       llvm::Value *value;
1182       if (propType->isReferenceType()) {
1183         value = LV.getAddress(*this).getPointer();
1184       } else {
1185         // We want to load and autoreleaseReturnValue ARC __weak ivars.
1186         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1187           if (getLangOpts().ObjCAutoRefCount) {
1188             value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1189           } else {
1190             value = EmitARCLoadWeak(LV.getAddress(*this));
1191           }
1192 
1193         // Otherwise we want to do a simple load, suppressing the
1194         // final autorelease.
1195         } else {
1196           value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1197           AutoreleaseResult = false;
1198         }
1199 
1200         value = Builder.CreateBitCast(
1201             value, ConvertType(GetterMethodDecl->getReturnType()));
1202       }
1203 
1204       EmitReturnOfRValue(RValue::get(value), propType);
1205       return;
1206     }
1207     }
1208     llvm_unreachable("bad evaluation kind");
1209   }
1210 
1211   }
1212   llvm_unreachable("bad @property implementation strategy!");
1213 }
1214 
1215 /// emitStructSetterCall - Call the runtime function to store the value
1216 /// from the first formal parameter into the given ivar.
1217 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1218                                  ObjCIvarDecl *ivar) {
1219   // objc_copyStruct (&structIvar, &Arg,
1220   //                  sizeof (struct something), true, false);
1221   CallArgList args;
1222 
1223   // The first argument is the address of the ivar.
1224   llvm::Value *ivarAddr =
1225       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1226           .getPointer(CGF);
1227   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1228   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1229 
1230   // The second argument is the address of the parameter variable.
1231   ParmVarDecl *argVar = *OMD->param_begin();
1232   DeclRefExpr argRef(CGF.getContext(), argVar, false,
1233                      argVar->getType().getNonReferenceType(), VK_LValue,
1234                      SourceLocation());
1235   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1236   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1237   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1238 
1239   // The third argument is the sizeof the type.
1240   llvm::Value *size =
1241     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1242   args.add(RValue::get(size), CGF.getContext().getSizeType());
1243 
1244   // The fourth argument is the 'isAtomic' flag.
1245   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1246 
1247   // The fifth argument is the 'hasStrong' flag.
1248   // FIXME: should this really always be false?
1249   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1250 
1251   llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1252   CGCallee callee = CGCallee::forDirect(fn);
1253   CGF.EmitCall(
1254       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1255                callee, ReturnValueSlot(), args);
1256 }
1257 
1258 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1259 /// the value from the first formal parameter into the given ivar, using
1260 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1261 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1262                                           ObjCMethodDecl *OMD,
1263                                           ObjCIvarDecl *ivar,
1264                                           llvm::Constant *AtomicHelperFn) {
1265   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1266   //                           AtomicHelperFn);
1267   CallArgList args;
1268 
1269   // The first argument is the address of the ivar.
1270   llvm::Value *ivarAddr =
1271       CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1272           .getPointer(CGF);
1273   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1274   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1275 
1276   // The second argument is the address of the parameter variable.
1277   ParmVarDecl *argVar = *OMD->param_begin();
1278   DeclRefExpr argRef(CGF.getContext(), argVar, false,
1279                      argVar->getType().getNonReferenceType(), VK_LValue,
1280                      SourceLocation());
1281   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1282   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1283   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1284 
1285   // Third argument is the helper function.
1286   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1287 
1288   llvm::FunctionCallee fn =
1289       CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1290   CGCallee callee = CGCallee::forDirect(fn);
1291   CGF.EmitCall(
1292       CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1293                callee, ReturnValueSlot(), args);
1294 }
1295 
1296 
1297 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1298   Expr *setter = PID->getSetterCXXAssignment();
1299   if (!setter) return true;
1300 
1301   // Sema only makes only of these when the ivar has a C++ class type,
1302   // so the form is pretty constrained.
1303 
1304   // An operator call is trivial if the function it calls is trivial.
1305   // This also implies that there's nothing non-trivial going on with
1306   // the arguments, because operator= can only be trivial if it's a
1307   // synthesized assignment operator and therefore both parameters are
1308   // references.
1309   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1310     if (const FunctionDecl *callee
1311           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1312       if (callee->isTrivial())
1313         return true;
1314     return false;
1315   }
1316 
1317   assert(isa<ExprWithCleanups>(setter));
1318   return false;
1319 }
1320 
1321 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1322   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1323     return false;
1324   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1325 }
1326 
1327 void
1328 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1329                                         const ObjCPropertyImplDecl *propImpl,
1330                                         llvm::Constant *AtomicHelperFn) {
1331   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1332   ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl();
1333 
1334   // Just use the setter expression if Sema gave us one and it's
1335   // non-trivial.
1336   if (!hasTrivialSetExpr(propImpl)) {
1337     if (!AtomicHelperFn)
1338       // If non-atomic, assignment is called directly.
1339       EmitStmt(propImpl->getSetterCXXAssignment());
1340     else
1341       // If atomic, assignment is called via a locking api.
1342       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1343                                     AtomicHelperFn);
1344     return;
1345   }
1346 
1347   PropertyImplStrategy strategy(CGM, propImpl);
1348   switch (strategy.getKind()) {
1349   case PropertyImplStrategy::Native: {
1350     // We don't need to do anything for a zero-size struct.
1351     if (strategy.getIvarSize().isZero())
1352       return;
1353 
1354     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1355 
1356     LValue ivarLValue =
1357       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1358     Address ivarAddr = ivarLValue.getAddress(*this);
1359 
1360     // Currently, all atomic accesses have to be through integer
1361     // types, so there's no point in trying to pick a prettier type.
1362     llvm::Type *bitcastType =
1363       llvm::Type::getIntNTy(getLLVMContext(),
1364                             getContext().toBits(strategy.getIvarSize()));
1365 
1366     // Cast both arguments to the chosen operation type.
1367     argAddr = Builder.CreateElementBitCast(argAddr, bitcastType);
1368     ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1369 
1370     // This bitcast load is likely to cause some nasty IR.
1371     llvm::Value *load = Builder.CreateLoad(argAddr);
1372 
1373     // Perform an atomic store.  There are no memory ordering requirements.
1374     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1375     store->setAtomic(llvm::AtomicOrdering::Unordered);
1376     return;
1377   }
1378 
1379   case PropertyImplStrategy::GetSetProperty:
1380   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1381 
1382     llvm::FunctionCallee setOptimizedPropertyFn = nullptr;
1383     llvm::FunctionCallee setPropertyFn = nullptr;
1384     if (UseOptimizedSetter(CGM)) {
1385       // 10.8 and iOS 6.0 code and GC is off
1386       setOptimizedPropertyFn =
1387           CGM.getObjCRuntime().GetOptimizedPropertySetFunction(
1388               strategy.isAtomic(), strategy.isCopy());
1389       if (!setOptimizedPropertyFn) {
1390         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1391         return;
1392       }
1393     }
1394     else {
1395       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1396       if (!setPropertyFn) {
1397         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1398         return;
1399       }
1400     }
1401 
1402     // Emit objc_setProperty((id) self, _cmd, offset, arg,
1403     //                       <is-atomic>, <is-copy>).
1404     llvm::Value *cmd =
1405       Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl()));
1406     llvm::Value *self =
1407       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1408     llvm::Value *ivarOffset =
1409       EmitIvarOffset(classImpl->getClassInterface(), ivar);
1410     Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1411     llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1412     arg = Builder.CreateBitCast(arg, VoidPtrTy);
1413 
1414     CallArgList args;
1415     args.add(RValue::get(self), getContext().getObjCIdType());
1416     args.add(RValue::get(cmd), getContext().getObjCSelType());
1417     if (setOptimizedPropertyFn) {
1418       args.add(RValue::get(arg), getContext().getObjCIdType());
1419       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1420       CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1421       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1422                callee, ReturnValueSlot(), args);
1423     } else {
1424       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1425       args.add(RValue::get(arg), getContext().getObjCIdType());
1426       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1427                getContext().BoolTy);
1428       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1429                getContext().BoolTy);
1430       // FIXME: We shouldn't need to get the function info here, the runtime
1431       // already should have computed it to build the function.
1432       CGCallee callee = CGCallee::forDirect(setPropertyFn);
1433       EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1434                callee, ReturnValueSlot(), args);
1435     }
1436 
1437     return;
1438   }
1439 
1440   case PropertyImplStrategy::CopyStruct:
1441     emitStructSetterCall(*this, setterMethod, ivar);
1442     return;
1443 
1444   case PropertyImplStrategy::Expression:
1445     break;
1446   }
1447 
1448   // Otherwise, fake up some ASTs and emit a normal assignment.
1449   ValueDecl *selfDecl = setterMethod->getSelfDecl();
1450   DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(),
1451                    VK_LValue, SourceLocation());
1452   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1453                             selfDecl->getType(), CK_LValueToRValue, &self,
1454                             VK_RValue);
1455   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1456                           SourceLocation(), SourceLocation(),
1457                           &selfLoad, true, true);
1458 
1459   ParmVarDecl *argDecl = *setterMethod->param_begin();
1460   QualType argType = argDecl->getType().getNonReferenceType();
1461   DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue,
1462                   SourceLocation());
1463   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1464                            argType.getUnqualifiedType(), CK_LValueToRValue,
1465                            &arg, VK_RValue);
1466 
1467   // The property type can differ from the ivar type in some situations with
1468   // Objective-C pointer types, we can always bit cast the RHS in these cases.
1469   // The following absurdity is just to ensure well-formed IR.
1470   CastKind argCK = CK_NoOp;
1471   if (ivarRef.getType()->isObjCObjectPointerType()) {
1472     if (argLoad.getType()->isObjCObjectPointerType())
1473       argCK = CK_BitCast;
1474     else if (argLoad.getType()->isBlockPointerType())
1475       argCK = CK_BlockPointerToObjCPointerCast;
1476     else
1477       argCK = CK_CPointerToObjCPointerCast;
1478   } else if (ivarRef.getType()->isBlockPointerType()) {
1479      if (argLoad.getType()->isBlockPointerType())
1480       argCK = CK_BitCast;
1481     else
1482       argCK = CK_AnyPointerToBlockPointerCast;
1483   } else if (ivarRef.getType()->isPointerType()) {
1484     argCK = CK_BitCast;
1485   }
1486   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1487                            ivarRef.getType(), argCK, &argLoad,
1488                            VK_RValue);
1489   Expr *finalArg = &argLoad;
1490   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1491                                            argLoad.getType()))
1492     finalArg = &argCast;
1493 
1494 
1495   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1496                         ivarRef.getType(), VK_RValue, OK_Ordinary,
1497                         SourceLocation(), FPOptions());
1498   EmitStmt(&assign);
1499 }
1500 
1501 /// Generate an Objective-C property setter function.
1502 ///
1503 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1504 /// is illegal within a category.
1505 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1506                                          const ObjCPropertyImplDecl *PID) {
1507   llvm::Constant *AtomicHelperFn =
1508       CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1509   ObjCMethodDecl *OMD = PID->getSetterMethodDecl();
1510   assert(OMD && "Invalid call to generate setter (empty method)");
1511   StartObjCMethod(OMD, IMP->getClassInterface());
1512 
1513   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1514 
1515   FinishFunction(OMD->getEndLoc());
1516 }
1517 
1518 namespace {
1519   struct DestroyIvar final : EHScopeStack::Cleanup {
1520   private:
1521     llvm::Value *addr;
1522     const ObjCIvarDecl *ivar;
1523     CodeGenFunction::Destroyer *destroyer;
1524     bool useEHCleanupForArray;
1525   public:
1526     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1527                 CodeGenFunction::Destroyer *destroyer,
1528                 bool useEHCleanupForArray)
1529       : addr(addr), ivar(ivar), destroyer(destroyer),
1530         useEHCleanupForArray(useEHCleanupForArray) {}
1531 
1532     void Emit(CodeGenFunction &CGF, Flags flags) override {
1533       LValue lvalue
1534         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1535       CGF.emitDestroy(lvalue.getAddress(CGF), ivar->getType(), destroyer,
1536                       flags.isForNormalCleanup() && useEHCleanupForArray);
1537     }
1538   };
1539 }
1540 
1541 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1542 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1543                                       Address addr,
1544                                       QualType type) {
1545   llvm::Value *null = getNullForVariable(addr);
1546   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1547 }
1548 
1549 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1550                                   ObjCImplementationDecl *impl) {
1551   CodeGenFunction::RunCleanupsScope scope(CGF);
1552 
1553   llvm::Value *self = CGF.LoadObjCSelf();
1554 
1555   const ObjCInterfaceDecl *iface = impl->getClassInterface();
1556   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1557        ivar; ivar = ivar->getNextIvar()) {
1558     QualType type = ivar->getType();
1559 
1560     // Check whether the ivar is a destructible type.
1561     QualType::DestructionKind dtorKind = type.isDestructedType();
1562     if (!dtorKind) continue;
1563 
1564     CodeGenFunction::Destroyer *destroyer = nullptr;
1565 
1566     // Use a call to objc_storeStrong to destroy strong ivars, for the
1567     // general benefit of the tools.
1568     if (dtorKind == QualType::DK_objc_strong_lifetime) {
1569       destroyer = destroyARCStrongWithStore;
1570 
1571     // Otherwise use the default for the destruction kind.
1572     } else {
1573       destroyer = CGF.getDestroyer(dtorKind);
1574     }
1575 
1576     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1577 
1578     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1579                                          cleanupKind & EHCleanup);
1580   }
1581 
1582   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1583 }
1584 
1585 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1586                                                  ObjCMethodDecl *MD,
1587                                                  bool ctor) {
1588   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1589   StartObjCMethod(MD, IMP->getClassInterface());
1590 
1591   // Emit .cxx_construct.
1592   if (ctor) {
1593     // Suppress the final autorelease in ARC.
1594     AutoreleaseResult = false;
1595 
1596     for (const auto *IvarInit : IMP->inits()) {
1597       FieldDecl *Field = IvarInit->getAnyMember();
1598       ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1599       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1600                                     LoadObjCSelf(), Ivar, 0);
1601       EmitAggExpr(IvarInit->getInit(),
1602                   AggValueSlot::forLValue(LV, *this, AggValueSlot::IsDestructed,
1603                                           AggValueSlot::DoesNotNeedGCBarriers,
1604                                           AggValueSlot::IsNotAliased,
1605                                           AggValueSlot::DoesNotOverlap));
1606     }
1607     // constructor returns 'self'.
1608     CodeGenTypes &Types = CGM.getTypes();
1609     QualType IdTy(CGM.getContext().getObjCIdType());
1610     llvm::Value *SelfAsId =
1611       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1612     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1613 
1614   // Emit .cxx_destruct.
1615   } else {
1616     emitCXXDestructMethod(*this, IMP);
1617   }
1618   FinishFunction();
1619 }
1620 
1621 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1622   VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1623   DeclRefExpr DRE(getContext(), Self,
1624                   /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1625                   Self->getType(), VK_LValue, SourceLocation());
1626   return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1627 }
1628 
1629 QualType CodeGenFunction::TypeOfSelfObject() {
1630   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1631   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1632   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1633     getContext().getCanonicalType(selfDecl->getType()));
1634   return PTy->getPointeeType();
1635 }
1636 
1637 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1638   llvm::FunctionCallee EnumerationMutationFnPtr =
1639       CGM.getObjCRuntime().EnumerationMutationFunction();
1640   if (!EnumerationMutationFnPtr) {
1641     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1642     return;
1643   }
1644   CGCallee EnumerationMutationFn =
1645     CGCallee::forDirect(EnumerationMutationFnPtr);
1646 
1647   CGDebugInfo *DI = getDebugInfo();
1648   if (DI)
1649     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1650 
1651   RunCleanupsScope ForScope(*this);
1652 
1653   // The local variable comes into scope immediately.
1654   AutoVarEmission variable = AutoVarEmission::invalid();
1655   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1656     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1657 
1658   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1659 
1660   // Fast enumeration state.
1661   QualType StateTy = CGM.getObjCFastEnumerationStateType();
1662   Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1663   EmitNullInitialization(StatePtr, StateTy);
1664 
1665   // Number of elements in the items array.
1666   static const unsigned NumItems = 16;
1667 
1668   // Fetch the countByEnumeratingWithState:objects:count: selector.
1669   IdentifierInfo *II[] = {
1670     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1671     &CGM.getContext().Idents.get("objects"),
1672     &CGM.getContext().Idents.get("count")
1673   };
1674   Selector FastEnumSel =
1675     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1676 
1677   QualType ItemsTy =
1678     getContext().getConstantArrayType(getContext().getObjCIdType(),
1679                                       llvm::APInt(32, NumItems), nullptr,
1680                                       ArrayType::Normal, 0);
1681   Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1682 
1683   // Emit the collection pointer.  In ARC, we do a retain.
1684   llvm::Value *Collection;
1685   if (getLangOpts().ObjCAutoRefCount) {
1686     Collection = EmitARCRetainScalarExpr(S.getCollection());
1687 
1688     // Enter a cleanup to do the release.
1689     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1690   } else {
1691     Collection = EmitScalarExpr(S.getCollection());
1692   }
1693 
1694   // The 'continue' label needs to appear within the cleanup for the
1695   // collection object.
1696   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1697 
1698   // Send it our message:
1699   CallArgList Args;
1700 
1701   // The first argument is a temporary of the enumeration-state type.
1702   Args.add(RValue::get(StatePtr.getPointer()),
1703            getContext().getPointerType(StateTy));
1704 
1705   // The second argument is a temporary array with space for NumItems
1706   // pointers.  We'll actually be loading elements from the array
1707   // pointer written into the control state; this buffer is so that
1708   // collections that *aren't* backed by arrays can still queue up
1709   // batches of elements.
1710   Args.add(RValue::get(ItemsPtr.getPointer()),
1711            getContext().getPointerType(ItemsTy));
1712 
1713   // The third argument is the capacity of that temporary array.
1714   llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
1715   llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
1716   Args.add(RValue::get(Count), getContext().getNSUIntegerType());
1717 
1718   // Start the enumeration.
1719   RValue CountRV =
1720       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1721                                                getContext().getNSUIntegerType(),
1722                                                FastEnumSel, Collection, Args);
1723 
1724   // The initial number of objects that were returned in the buffer.
1725   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1726 
1727   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1728   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1729 
1730   llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);
1731 
1732   // If the limit pointer was zero to begin with, the collection is
1733   // empty; skip all this. Set the branch weight assuming this has the same
1734   // probability of exiting the loop as any other loop exit.
1735   uint64_t EntryCount = getCurrentProfileCount();
1736   Builder.CreateCondBr(
1737       Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1738       LoopInitBB,
1739       createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1740 
1741   // Otherwise, initialize the loop.
1742   EmitBlock(LoopInitBB);
1743 
1744   // Save the initial mutations value.  This is the value at an
1745   // address that was written into the state object by
1746   // countByEnumeratingWithState:objects:count:.
1747   Address StateMutationsPtrPtr =
1748       Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1749   llvm::Value *StateMutationsPtr
1750     = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1751 
1752   llvm::Value *initialMutations =
1753     Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1754                               "forcoll.initial-mutations");
1755 
1756   // Start looping.  This is the point we return to whenever we have a
1757   // fresh, non-empty batch of objects.
1758   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1759   EmitBlock(LoopBodyBB);
1760 
1761   // The current index into the buffer.
1762   llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
1763   index->addIncoming(zero, LoopInitBB);
1764 
1765   // The current buffer size.
1766   llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
1767   count->addIncoming(initialBufferLimit, LoopInitBB);
1768 
1769   incrementProfileCounter(&S);
1770 
1771   // Check whether the mutations value has changed from where it was
1772   // at start.  StateMutationsPtr should actually be invariant between
1773   // refreshes.
1774   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1775   llvm::Value *currentMutations
1776     = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1777                                 "statemutations");
1778 
1779   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1780   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1781 
1782   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1783                        WasNotMutatedBB, WasMutatedBB);
1784 
1785   // If so, call the enumeration-mutation function.
1786   EmitBlock(WasMutatedBB);
1787   llvm::Value *V =
1788     Builder.CreateBitCast(Collection,
1789                           ConvertType(getContext().getObjCIdType()));
1790   CallArgList Args2;
1791   Args2.add(RValue::get(V), getContext().getObjCIdType());
1792   // FIXME: We shouldn't need to get the function info here, the runtime already
1793   // should have computed it to build the function.
1794   EmitCall(
1795           CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
1796            EnumerationMutationFn, ReturnValueSlot(), Args2);
1797 
1798   // Otherwise, or if the mutation function returns, just continue.
1799   EmitBlock(WasNotMutatedBB);
1800 
1801   // Initialize the element variable.
1802   RunCleanupsScope elementVariableScope(*this);
1803   bool elementIsVariable;
1804   LValue elementLValue;
1805   QualType elementType;
1806   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1807     // Initialize the variable, in case it's a __block variable or something.
1808     EmitAutoVarInit(variable);
1809 
1810     const VarDecl *D = cast<VarDecl>(SD->getSingleDecl());
1811     DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false,
1812                         D->getType(), VK_LValue, SourceLocation());
1813     elementLValue = EmitLValue(&tempDRE);
1814     elementType = D->getType();
1815     elementIsVariable = true;
1816 
1817     if (D->isARCPseudoStrong())
1818       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1819   } else {
1820     elementLValue = LValue(); // suppress warning
1821     elementType = cast<Expr>(S.getElement())->getType();
1822     elementIsVariable = false;
1823   }
1824   llvm::Type *convertedElementType = ConvertType(elementType);
1825 
1826   // Fetch the buffer out of the enumeration state.
1827   // TODO: this pointer should actually be invariant between
1828   // refreshes, which would help us do certain loop optimizations.
1829   Address StateItemsPtr =
1830       Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1831   llvm::Value *EnumStateItems =
1832     Builder.CreateLoad(StateItemsPtr, "stateitems");
1833 
1834   // Fetch the value at the current index from the buffer.
1835   llvm::Value *CurrentItemPtr =
1836     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1837   llvm::Value *CurrentItem =
1838     Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign());
1839 
1840   // Cast that value to the right type.
1841   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1842                                       "currentitem");
1843 
1844   // Make sure we have an l-value.  Yes, this gets evaluated every
1845   // time through the loop.
1846   if (!elementIsVariable) {
1847     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1848     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1849   } else {
1850     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
1851                            /*isInit*/ true);
1852   }
1853 
1854   // If we do have an element variable, this assignment is the end of
1855   // its initialization.
1856   if (elementIsVariable)
1857     EmitAutoVarCleanups(variable);
1858 
1859   // Perform the loop body, setting up break and continue labels.
1860   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1861   {
1862     RunCleanupsScope Scope(*this);
1863     EmitStmt(S.getBody());
1864   }
1865   BreakContinueStack.pop_back();
1866 
1867   // Destroy the element variable now.
1868   elementVariableScope.ForceCleanup();
1869 
1870   // Check whether there are more elements.
1871   EmitBlock(AfterBody.getBlock());
1872 
1873   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1874 
1875   // First we check in the local buffer.
1876   llvm::Value *indexPlusOne =
1877       Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));
1878 
1879   // If we haven't overrun the buffer yet, we can continue.
1880   // Set the branch weights based on the simplifying assumption that this is
1881   // like a while-loop, i.e., ignoring that the false branch fetches more
1882   // elements and then returns to the loop.
1883   Builder.CreateCondBr(
1884       Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
1885       createProfileWeights(getProfileCount(S.getBody()), EntryCount));
1886 
1887   index->addIncoming(indexPlusOne, AfterBody.getBlock());
1888   count->addIncoming(count, AfterBody.getBlock());
1889 
1890   // Otherwise, we have to fetch more elements.
1891   EmitBlock(FetchMoreBB);
1892 
1893   CountRV =
1894       CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1895                                                getContext().getNSUIntegerType(),
1896                                                FastEnumSel, Collection, Args);
1897 
1898   // If we got a zero count, we're done.
1899   llvm::Value *refetchCount = CountRV.getScalarVal();
1900 
1901   // (note that the message send might split FetchMoreBB)
1902   index->addIncoming(zero, Builder.GetInsertBlock());
1903   count->addIncoming(refetchCount, Builder.GetInsertBlock());
1904 
1905   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1906                        EmptyBB, LoopBodyBB);
1907 
1908   // No more elements.
1909   EmitBlock(EmptyBB);
1910 
1911   if (!elementIsVariable) {
1912     // If the element was not a declaration, set it to be null.
1913 
1914     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1915     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1916     EmitStoreThroughLValue(RValue::get(null), elementLValue);
1917   }
1918 
1919   if (DI)
1920     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1921 
1922   ForScope.ForceCleanup();
1923   EmitBlock(LoopEnd.getBlock());
1924 }
1925 
1926 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1927   CGM.getObjCRuntime().EmitTryStmt(*this, S);
1928 }
1929 
1930 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1931   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1932 }
1933 
1934 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1935                                               const ObjCAtSynchronizedStmt &S) {
1936   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1937 }
1938 
1939 namespace {
1940   struct CallObjCRelease final : EHScopeStack::Cleanup {
1941     CallObjCRelease(llvm::Value *object) : object(object) {}
1942     llvm::Value *object;
1943 
1944     void Emit(CodeGenFunction &CGF, Flags flags) override {
1945       // Releases at the end of the full-expression are imprecise.
1946       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1947     }
1948   };
1949 }
1950 
1951 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1952 /// release at the end of the full-expression.
1953 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1954                                                     llvm::Value *object) {
1955   // If we're in a conditional branch, we need to make the cleanup
1956   // conditional.
1957   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1958   return object;
1959 }
1960 
1961 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1962                                                            llvm::Value *value) {
1963   return EmitARCRetainAutorelease(type, value);
1964 }
1965 
1966 /// Given a number of pointers, inform the optimizer that they're
1967 /// being intrinsically used up until this point in the program.
1968 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
1969   llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use;
1970   if (!fn)
1971     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use);
1972 
1973   // This isn't really a "runtime" function, but as an intrinsic it
1974   // doesn't really matter as long as we align things up.
1975   EmitNounwindRuntimeCall(fn, values);
1976 }
1977 
1978 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) {
1979   if (auto *F = dyn_cast<llvm::Function>(RTF)) {
1980     // If the target runtime doesn't naturally support ARC, emit weak
1981     // references to the runtime support library.  We don't really
1982     // permit this to fail, but we need a particular relocation style.
1983     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
1984         !CGM.getTriple().isOSBinFormatCOFF()) {
1985       F->setLinkage(llvm::Function::ExternalWeakLinkage);
1986     }
1987   }
1988 }
1989 
1990 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM,
1991                                          llvm::FunctionCallee RTF) {
1992   setARCRuntimeFunctionLinkage(CGM, RTF.getCallee());
1993 }
1994 
1995 /// Perform an operation having the signature
1996 ///   i8* (i8*)
1997 /// where a null input causes a no-op and returns null.
1998 static llvm::Value *emitARCValueOperation(
1999     CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType,
2000     llvm::Function *&fn, llvm::Intrinsic::ID IntID,
2001     llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) {
2002   if (isa<llvm::ConstantPointerNull>(value))
2003     return value;
2004 
2005   if (!fn) {
2006     fn = CGF.CGM.getIntrinsic(IntID);
2007     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2008   }
2009 
2010   // Cast the argument to 'id'.
2011   llvm::Type *origType = returnType ? returnType : value->getType();
2012   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2013 
2014   // Call the function.
2015   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
2016   call->setTailCallKind(tailKind);
2017 
2018   // Cast the result back to the original type.
2019   return CGF.Builder.CreateBitCast(call, origType);
2020 }
2021 
2022 /// Perform an operation having the following signature:
2023 ///   i8* (i8**)
2024 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr,
2025                                          llvm::Function *&fn,
2026                                          llvm::Intrinsic::ID IntID) {
2027   if (!fn) {
2028     fn = CGF.CGM.getIntrinsic(IntID);
2029     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2030   }
2031 
2032   // Cast the argument to 'id*'.
2033   llvm::Type *origType = addr.getElementType();
2034   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
2035 
2036   // Call the function.
2037   llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
2038 
2039   // Cast the result back to a dereference of the original type.
2040   if (origType != CGF.Int8PtrTy)
2041     result = CGF.Builder.CreateBitCast(result, origType);
2042 
2043   return result;
2044 }
2045 
2046 /// Perform an operation having the following signature:
2047 ///   i8* (i8**, i8*)
2048 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr,
2049                                           llvm::Value *value,
2050                                           llvm::Function *&fn,
2051                                           llvm::Intrinsic::ID IntID,
2052                                           bool ignored) {
2053   assert(addr.getElementType() == value->getType());
2054 
2055   if (!fn) {
2056     fn = CGF.CGM.getIntrinsic(IntID);
2057     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2058   }
2059 
2060   llvm::Type *origType = value->getType();
2061 
2062   llvm::Value *args[] = {
2063     CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
2064     CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
2065   };
2066   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
2067 
2068   if (ignored) return nullptr;
2069 
2070   return CGF.Builder.CreateBitCast(result, origType);
2071 }
2072 
2073 /// Perform an operation having the following signature:
2074 ///   void (i8**, i8**)
2075 static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src,
2076                                  llvm::Function *&fn,
2077                                  llvm::Intrinsic::ID IntID) {
2078   assert(dst.getType() == src.getType());
2079 
2080   if (!fn) {
2081     fn = CGF.CGM.getIntrinsic(IntID);
2082     setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2083   }
2084 
2085   llvm::Value *args[] = {
2086     CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
2087     CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy)
2088   };
2089   CGF.EmitNounwindRuntimeCall(fn, args);
2090 }
2091 
2092 /// Perform an operation having the signature
2093 ///   i8* (i8*)
2094 /// where a null input causes a no-op and returns null.
2095 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF,
2096                                            llvm::Value *value,
2097                                            llvm::Type *returnType,
2098                                            llvm::FunctionCallee &fn,
2099                                            StringRef fnName) {
2100   if (isa<llvm::ConstantPointerNull>(value))
2101     return value;
2102 
2103   if (!fn) {
2104     llvm::FunctionType *fnType =
2105       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
2106     fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName);
2107 
2108     // We have Native ARC, so set nonlazybind attribute for performance
2109     if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2110       if (fnName == "objc_retain")
2111         f->addFnAttr(llvm::Attribute::NonLazyBind);
2112   }
2113 
2114   // Cast the argument to 'id'.
2115   llvm::Type *origType = returnType ? returnType : value->getType();
2116   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2117 
2118   // Call the function.
2119   llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value);
2120 
2121   // Cast the result back to the original type.
2122   return CGF.Builder.CreateBitCast(Inst, origType);
2123 }
2124 
2125 /// Produce the code to do a retain.  Based on the type, calls one of:
2126 ///   call i8* \@objc_retain(i8* %value)
2127 ///   call i8* \@objc_retainBlock(i8* %value)
2128 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
2129   if (type->isBlockPointerType())
2130     return EmitARCRetainBlock(value, /*mandatory*/ false);
2131   else
2132     return EmitARCRetainNonBlock(value);
2133 }
2134 
2135 /// Retain the given object, with normal retain semantics.
2136 ///   call i8* \@objc_retain(i8* %value)
2137 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
2138   return emitARCValueOperation(*this, value, nullptr,
2139                                CGM.getObjCEntrypoints().objc_retain,
2140                                llvm::Intrinsic::objc_retain);
2141 }
2142 
2143 /// Retain the given block, with _Block_copy semantics.
2144 ///   call i8* \@objc_retainBlock(i8* %value)
2145 ///
2146 /// \param mandatory - If false, emit the call with metadata
2147 /// indicating that it's okay for the optimizer to eliminate this call
2148 /// if it can prove that the block never escapes except down the stack.
2149 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
2150                                                  bool mandatory) {
2151   llvm::Value *result
2152     = emitARCValueOperation(*this, value, nullptr,
2153                             CGM.getObjCEntrypoints().objc_retainBlock,
2154                             llvm::Intrinsic::objc_retainBlock);
2155 
2156   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2157   // tell the optimizer that it doesn't need to do this copy if the
2158   // block doesn't escape, where being passed as an argument doesn't
2159   // count as escaping.
2160   if (!mandatory && isa<llvm::Instruction>(result)) {
2161     llvm::CallInst *call
2162       = cast<llvm::CallInst>(result->stripPointerCasts());
2163     assert(call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock);
2164 
2165     call->setMetadata("clang.arc.copy_on_escape",
2166                       llvm::MDNode::get(Builder.getContext(), None));
2167   }
2168 
2169   return result;
2170 }
2171 
2172 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
2173   // Fetch the void(void) inline asm which marks that we're going to
2174   // do something with the autoreleased return value.
2175   llvm::InlineAsm *&marker
2176     = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
2177   if (!marker) {
2178     StringRef assembly
2179       = CGF.CGM.getTargetCodeGenInfo()
2180            .getARCRetainAutoreleasedReturnValueMarker();
2181 
2182     // If we have an empty assembly string, there's nothing to do.
2183     if (assembly.empty()) {
2184 
2185     // Otherwise, at -O0, build an inline asm that we're going to call
2186     // in a moment.
2187     } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2188       llvm::FunctionType *type =
2189         llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2190 
2191       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2192 
2193     // If we're at -O1 and above, we don't want to litter the code
2194     // with this marker yet, so leave a breadcrumb for the ARC
2195     // optimizer to pick up.
2196     } else {
2197       const char *markerKey = "clang.arc.retainAutoreleasedReturnValueMarker";
2198       if (!CGF.CGM.getModule().getModuleFlag(markerKey)) {
2199         auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly);
2200         CGF.CGM.getModule().addModuleFlag(llvm::Module::Error, markerKey, str);
2201       }
2202     }
2203   }
2204 
2205   // Call the marker asm if we made one, which we do only at -O0.
2206   if (marker)
2207     CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker));
2208 }
2209 
2210 /// Retain the given object which is the result of a function call.
2211 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2212 ///
2213 /// Yes, this function name is one character away from a different
2214 /// call with completely different semantics.
2215 llvm::Value *
2216 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2217   emitAutoreleasedReturnValueMarker(*this);
2218   llvm::CallInst::TailCallKind tailKind =
2219       CGM.getTargetCodeGenInfo()
2220               .shouldSuppressTailCallsOfRetainAutoreleasedReturnValue()
2221           ? llvm::CallInst::TCK_NoTail
2222           : llvm::CallInst::TCK_None;
2223   return emitARCValueOperation(
2224       *this, value, nullptr,
2225       CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue,
2226       llvm::Intrinsic::objc_retainAutoreleasedReturnValue, tailKind);
2227 }
2228 
2229 /// Claim a possibly-autoreleased return value at +0.  This is only
2230 /// valid to do in contexts which do not rely on the retain to keep
2231 /// the object valid for all of its uses; for example, when
2232 /// the value is ignored, or when it is being assigned to an
2233 /// __unsafe_unretained variable.
2234 ///
2235 ///   call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2236 llvm::Value *
2237 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2238   emitAutoreleasedReturnValueMarker(*this);
2239   return emitARCValueOperation(*this, value, nullptr,
2240               CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue,
2241                      llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue);
2242 }
2243 
2244 /// Release the given object.
2245 ///   call void \@objc_release(i8* %value)
2246 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2247                                      ARCPreciseLifetime_t precise) {
2248   if (isa<llvm::ConstantPointerNull>(value)) return;
2249 
2250   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release;
2251   if (!fn) {
2252     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_release);
2253     setARCRuntimeFunctionLinkage(CGM, fn);
2254   }
2255 
2256   // Cast the argument to 'id'.
2257   value = Builder.CreateBitCast(value, Int8PtrTy);
2258 
2259   // Call objc_release.
2260   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2261 
2262   if (precise == ARCImpreciseLifetime) {
2263     call->setMetadata("clang.imprecise_release",
2264                       llvm::MDNode::get(Builder.getContext(), None));
2265   }
2266 }
2267 
2268 /// Destroy a __strong variable.
2269 ///
2270 /// At -O0, emit a call to store 'null' into the address;
2271 /// instrumenting tools prefer this because the address is exposed,
2272 /// but it's relatively cumbersome to optimize.
2273 ///
2274 /// At -O1 and above, just load and call objc_release.
2275 ///
2276 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
2277 void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2278                                            ARCPreciseLifetime_t precise) {
2279   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2280     llvm::Value *null = getNullForVariable(addr);
2281     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2282     return;
2283   }
2284 
2285   llvm::Value *value = Builder.CreateLoad(addr);
2286   EmitARCRelease(value, precise);
2287 }
2288 
2289 /// Store into a strong object.  Always calls this:
2290 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2291 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2292                                                      llvm::Value *value,
2293                                                      bool ignored) {
2294   assert(addr.getElementType() == value->getType());
2295 
2296   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2297   if (!fn) {
2298     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_storeStrong);
2299     setARCRuntimeFunctionLinkage(CGM, fn);
2300   }
2301 
2302   llvm::Value *args[] = {
2303     Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy),
2304     Builder.CreateBitCast(value, Int8PtrTy)
2305   };
2306   EmitNounwindRuntimeCall(fn, args);
2307 
2308   if (ignored) return nullptr;
2309   return value;
2310 }
2311 
2312 /// Store into a strong object.  Sometimes calls this:
2313 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2314 /// Other times, breaks it down into components.
2315 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2316                                                  llvm::Value *newValue,
2317                                                  bool ignored) {
2318   QualType type = dst.getType();
2319   bool isBlock = type->isBlockPointerType();
2320 
2321   // Use a store barrier at -O0 unless this is a block type or the
2322   // lvalue is inadequately aligned.
2323   if (shouldUseFusedARCCalls() &&
2324       !isBlock &&
2325       (dst.getAlignment().isZero() ||
2326        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2327     return EmitARCStoreStrongCall(dst.getAddress(*this), newValue, ignored);
2328   }
2329 
2330   // Otherwise, split it out.
2331 
2332   // Retain the new value.
2333   newValue = EmitARCRetain(type, newValue);
2334 
2335   // Read the old value.
2336   llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2337 
2338   // Store.  We do this before the release so that any deallocs won't
2339   // see the old value.
2340   EmitStoreOfScalar(newValue, dst);
2341 
2342   // Finally, release the old value.
2343   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2344 
2345   return newValue;
2346 }
2347 
2348 /// Autorelease the given object.
2349 ///   call i8* \@objc_autorelease(i8* %value)
2350 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2351   return emitARCValueOperation(*this, value, nullptr,
2352                                CGM.getObjCEntrypoints().objc_autorelease,
2353                                llvm::Intrinsic::objc_autorelease);
2354 }
2355 
2356 /// Autorelease the given object.
2357 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2358 llvm::Value *
2359 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2360   return emitARCValueOperation(*this, value, nullptr,
2361                             CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2362                                llvm::Intrinsic::objc_autoreleaseReturnValue,
2363                                llvm::CallInst::TCK_Tail);
2364 }
2365 
2366 /// Do a fused retain/autorelease of the given object.
2367 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2368 llvm::Value *
2369 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2370   return emitARCValueOperation(*this, value, nullptr,
2371                      CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2372                              llvm::Intrinsic::objc_retainAutoreleaseReturnValue,
2373                                llvm::CallInst::TCK_Tail);
2374 }
2375 
2376 /// Do a fused retain/autorelease of the given object.
2377 ///   call i8* \@objc_retainAutorelease(i8* %value)
2378 /// or
2379 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2380 ///   call i8* \@objc_autorelease(i8* %retain)
2381 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2382                                                        llvm::Value *value) {
2383   if (!type->isBlockPointerType())
2384     return EmitARCRetainAutoreleaseNonBlock(value);
2385 
2386   if (isa<llvm::ConstantPointerNull>(value)) return value;
2387 
2388   llvm::Type *origType = value->getType();
2389   value = Builder.CreateBitCast(value, Int8PtrTy);
2390   value = EmitARCRetainBlock(value, /*mandatory*/ true);
2391   value = EmitARCAutorelease(value);
2392   return Builder.CreateBitCast(value, origType);
2393 }
2394 
2395 /// Do a fused retain/autorelease of the given object.
2396 ///   call i8* \@objc_retainAutorelease(i8* %value)
2397 llvm::Value *
2398 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2399   return emitARCValueOperation(*this, value, nullptr,
2400                                CGM.getObjCEntrypoints().objc_retainAutorelease,
2401                                llvm::Intrinsic::objc_retainAutorelease);
2402 }
2403 
2404 /// i8* \@objc_loadWeak(i8** %addr)
2405 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2406 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2407   return emitARCLoadOperation(*this, addr,
2408                               CGM.getObjCEntrypoints().objc_loadWeak,
2409                               llvm::Intrinsic::objc_loadWeak);
2410 }
2411 
2412 /// i8* \@objc_loadWeakRetained(i8** %addr)
2413 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2414   return emitARCLoadOperation(*this, addr,
2415                               CGM.getObjCEntrypoints().objc_loadWeakRetained,
2416                               llvm::Intrinsic::objc_loadWeakRetained);
2417 }
2418 
2419 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2420 /// Returns %value.
2421 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2422                                                llvm::Value *value,
2423                                                bool ignored) {
2424   return emitARCStoreOperation(*this, addr, value,
2425                                CGM.getObjCEntrypoints().objc_storeWeak,
2426                                llvm::Intrinsic::objc_storeWeak, ignored);
2427 }
2428 
2429 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2430 /// Returns %value.  %addr is known to not have a current weak entry.
2431 /// Essentially equivalent to:
2432 ///   *addr = nil; objc_storeWeak(addr, value);
2433 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2434   // If we're initializing to null, just write null to memory; no need
2435   // to get the runtime involved.  But don't do this if optimization
2436   // is enabled, because accounting for this would make the optimizer
2437   // much more complicated.
2438   if (isa<llvm::ConstantPointerNull>(value) &&
2439       CGM.getCodeGenOpts().OptimizationLevel == 0) {
2440     Builder.CreateStore(value, addr);
2441     return;
2442   }
2443 
2444   emitARCStoreOperation(*this, addr, value,
2445                         CGM.getObjCEntrypoints().objc_initWeak,
2446                         llvm::Intrinsic::objc_initWeak, /*ignored*/ true);
2447 }
2448 
2449 /// void \@objc_destroyWeak(i8** %addr)
2450 /// Essentially objc_storeWeak(addr, nil).
2451 void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2452   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2453   if (!fn) {
2454     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_destroyWeak);
2455     setARCRuntimeFunctionLinkage(CGM, fn);
2456   }
2457 
2458   // Cast the argument to 'id*'.
2459   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2460 
2461   EmitNounwindRuntimeCall(fn, addr.getPointer());
2462 }
2463 
2464 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2465 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2466 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2467 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2468   emitARCCopyOperation(*this, dst, src,
2469                        CGM.getObjCEntrypoints().objc_moveWeak,
2470                        llvm::Intrinsic::objc_moveWeak);
2471 }
2472 
2473 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2474 /// Disregards the current value in %dest.  Essentially
2475 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2476 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2477   emitARCCopyOperation(*this, dst, src,
2478                        CGM.getObjCEntrypoints().objc_copyWeak,
2479                        llvm::Intrinsic::objc_copyWeak);
2480 }
2481 
2482 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr,
2483                                             Address SrcAddr) {
2484   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2485   Object = EmitObjCConsumeObject(Ty, Object);
2486   EmitARCStoreWeak(DstAddr, Object, false);
2487 }
2488 
2489 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr,
2490                                             Address SrcAddr) {
2491   llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2492   Object = EmitObjCConsumeObject(Ty, Object);
2493   EmitARCStoreWeak(DstAddr, Object, false);
2494   EmitARCDestroyWeak(SrcAddr);
2495 }
2496 
2497 /// Produce the code to do a objc_autoreleasepool_push.
2498 ///   call i8* \@objc_autoreleasePoolPush(void)
2499 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2500   llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2501   if (!fn) {
2502     fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush);
2503     setARCRuntimeFunctionLinkage(CGM, fn);
2504   }
2505 
2506   return EmitNounwindRuntimeCall(fn);
2507 }
2508 
2509 /// Produce the code to do a primitive release.
2510 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2511 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2512   assert(value->getType() == Int8PtrTy);
2513 
2514   if (getInvokeDest()) {
2515     // Call the runtime method not the intrinsic if we are handling exceptions
2516     llvm::FunctionCallee &fn =
2517         CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke;
2518     if (!fn) {
2519       llvm::FunctionType *fnType =
2520         llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2521       fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop");
2522       setARCRuntimeFunctionLinkage(CGM, fn);
2523     }
2524 
2525     // objc_autoreleasePoolPop can throw.
2526     EmitRuntimeCallOrInvoke(fn, value);
2527   } else {
2528     llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2529     if (!fn) {
2530       fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop);
2531       setARCRuntimeFunctionLinkage(CGM, fn);
2532     }
2533 
2534     EmitRuntimeCall(fn, value);
2535   }
2536 }
2537 
2538 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2539 /// Which is: [[NSAutoreleasePool alloc] init];
2540 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2541 /// init is declared as: - (id) init; in its NSObject super class.
2542 ///
2543 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2544   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2545   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2546   // [NSAutoreleasePool alloc]
2547   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2548   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2549   CallArgList Args;
2550   RValue AllocRV =
2551     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2552                                 getContext().getObjCIdType(),
2553                                 AllocSel, Receiver, Args);
2554 
2555   // [Receiver init]
2556   Receiver = AllocRV.getScalarVal();
2557   II = &CGM.getContext().Idents.get("init");
2558   Selector InitSel = getContext().Selectors.getSelector(0, &II);
2559   RValue InitRV =
2560     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2561                                 getContext().getObjCIdType(),
2562                                 InitSel, Receiver, Args);
2563   return InitRV.getScalarVal();
2564 }
2565 
2566 /// Allocate the given objc object.
2567 ///   call i8* \@objc_alloc(i8* %value)
2568 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value,
2569                                             llvm::Type *resultType) {
2570   return emitObjCValueOperation(*this, value, resultType,
2571                                 CGM.getObjCEntrypoints().objc_alloc,
2572                                 "objc_alloc");
2573 }
2574 
2575 /// Allocate the given objc object.
2576 ///   call i8* \@objc_allocWithZone(i8* %value)
2577 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value,
2578                                                     llvm::Type *resultType) {
2579   return emitObjCValueOperation(*this, value, resultType,
2580                                 CGM.getObjCEntrypoints().objc_allocWithZone,
2581                                 "objc_allocWithZone");
2582 }
2583 
2584 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value,
2585                                                 llvm::Type *resultType) {
2586   return emitObjCValueOperation(*this, value, resultType,
2587                                 CGM.getObjCEntrypoints().objc_alloc_init,
2588                                 "objc_alloc_init");
2589 }
2590 
2591 /// Produce the code to do a primitive release.
2592 /// [tmp drain];
2593 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2594   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2595   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2596   CallArgList Args;
2597   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2598                               getContext().VoidTy, DrainSel, Arg, Args);
2599 }
2600 
2601 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2602                                               Address addr,
2603                                               QualType type) {
2604   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2605 }
2606 
2607 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2608                                                 Address addr,
2609                                                 QualType type) {
2610   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2611 }
2612 
2613 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2614                                      Address addr,
2615                                      QualType type) {
2616   CGF.EmitARCDestroyWeak(addr);
2617 }
2618 
2619 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr,
2620                                           QualType type) {
2621   llvm::Value *value = CGF.Builder.CreateLoad(addr);
2622   CGF.EmitARCIntrinsicUse(value);
2623 }
2624 
2625 /// Autorelease the given object.
2626 ///   call i8* \@objc_autorelease(i8* %value)
2627 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value,
2628                                                   llvm::Type *returnType) {
2629   return emitObjCValueOperation(
2630       *this, value, returnType,
2631       CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction,
2632       "objc_autorelease");
2633 }
2634 
2635 /// Retain the given object, with normal retain semantics.
2636 ///   call i8* \@objc_retain(i8* %value)
2637 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value,
2638                                                      llvm::Type *returnType) {
2639   return emitObjCValueOperation(
2640       *this, value, returnType,
2641       CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain");
2642 }
2643 
2644 /// Release the given object.
2645 ///   call void \@objc_release(i8* %value)
2646 void CodeGenFunction::EmitObjCRelease(llvm::Value *value,
2647                                       ARCPreciseLifetime_t precise) {
2648   if (isa<llvm::ConstantPointerNull>(value)) return;
2649 
2650   llvm::FunctionCallee &fn =
2651       CGM.getObjCEntrypoints().objc_releaseRuntimeFunction;
2652   if (!fn) {
2653     llvm::FunctionType *fnType =
2654         llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2655     fn = CGM.CreateRuntimeFunction(fnType, "objc_release");
2656     setARCRuntimeFunctionLinkage(CGM, fn);
2657     // We have Native ARC, so set nonlazybind attribute for performance
2658     if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2659       f->addFnAttr(llvm::Attribute::NonLazyBind);
2660   }
2661 
2662   // Cast the argument to 'id'.
2663   value = Builder.CreateBitCast(value, Int8PtrTy);
2664 
2665   // Call objc_release.
2666   llvm::CallBase *call = EmitCallOrInvoke(fn, value);
2667 
2668   if (precise == ARCImpreciseLifetime) {
2669     call->setMetadata("clang.imprecise_release",
2670                       llvm::MDNode::get(Builder.getContext(), None));
2671   }
2672 }
2673 
2674 namespace {
2675   struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2676     llvm::Value *Token;
2677 
2678     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2679 
2680     void Emit(CodeGenFunction &CGF, Flags flags) override {
2681       CGF.EmitObjCAutoreleasePoolPop(Token);
2682     }
2683   };
2684   struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2685     llvm::Value *Token;
2686 
2687     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2688 
2689     void Emit(CodeGenFunction &CGF, Flags flags) override {
2690       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2691     }
2692   };
2693 }
2694 
2695 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2696   if (CGM.getLangOpts().ObjCAutoRefCount)
2697     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2698   else
2699     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2700 }
2701 
2702 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) {
2703   switch (lifetime) {
2704   case Qualifiers::OCL_None:
2705   case Qualifiers::OCL_ExplicitNone:
2706   case Qualifiers::OCL_Strong:
2707   case Qualifiers::OCL_Autoreleasing:
2708     return true;
2709 
2710   case Qualifiers::OCL_Weak:
2711     return false;
2712   }
2713 
2714   llvm_unreachable("impossible lifetime!");
2715 }
2716 
2717 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2718                                                   LValue lvalue,
2719                                                   QualType type) {
2720   llvm::Value *result;
2721   bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime());
2722   if (shouldRetain) {
2723     result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal();
2724   } else {
2725     assert(type.getObjCLifetime() == Qualifiers::OCL_Weak);
2726     result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress(CGF));
2727   }
2728   return TryEmitResult(result, !shouldRetain);
2729 }
2730 
2731 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2732                                                   const Expr *e) {
2733   e = e->IgnoreParens();
2734   QualType type = e->getType();
2735 
2736   // If we're loading retained from a __strong xvalue, we can avoid
2737   // an extra retain/release pair by zeroing out the source of this
2738   // "move" operation.
2739   if (e->isXValue() &&
2740       !type.isConstQualified() &&
2741       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2742     // Emit the lvalue.
2743     LValue lv = CGF.EmitLValue(e);
2744 
2745     // Load the object pointer.
2746     llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2747                                                SourceLocation()).getScalarVal();
2748 
2749     // Set the source pointer to NULL.
2750     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress(CGF)), lv);
2751 
2752     return TryEmitResult(result, true);
2753   }
2754 
2755   // As a very special optimization, in ARC++, if the l-value is the
2756   // result of a non-volatile assignment, do a simple retain of the
2757   // result of the call to objc_storeWeak instead of reloading.
2758   if (CGF.getLangOpts().CPlusPlus &&
2759       !type.isVolatileQualified() &&
2760       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2761       isa<BinaryOperator>(e) &&
2762       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2763     return TryEmitResult(CGF.EmitScalarExpr(e), false);
2764 
2765   // Try to emit code for scalar constant instead of emitting LValue and
2766   // loading it because we are not guaranteed to have an l-value. One of such
2767   // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2768   if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) {
2769     auto *DRE = const_cast<DeclRefExpr *>(decl_expr);
2770     if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE))
2771       return TryEmitResult(CGF.emitScalarConstant(constant, DRE),
2772                            !shouldRetainObjCLifetime(type.getObjCLifetime()));
2773   }
2774 
2775   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2776 }
2777 
2778 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2779                                          llvm::Value *value)>
2780   ValueTransform;
2781 
2782 /// Insert code immediately after a call.
2783 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2784                                               llvm::Value *value,
2785                                               ValueTransform doAfterCall,
2786                                               ValueTransform doFallback) {
2787   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2788     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2789 
2790     // Place the retain immediately following the call.
2791     CGF.Builder.SetInsertPoint(call->getParent(),
2792                                ++llvm::BasicBlock::iterator(call));
2793     value = doAfterCall(CGF, value);
2794 
2795     CGF.Builder.restoreIP(ip);
2796     return value;
2797   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2798     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2799 
2800     // Place the retain at the beginning of the normal destination block.
2801     llvm::BasicBlock *BB = invoke->getNormalDest();
2802     CGF.Builder.SetInsertPoint(BB, BB->begin());
2803     value = doAfterCall(CGF, value);
2804 
2805     CGF.Builder.restoreIP(ip);
2806     return value;
2807 
2808   // Bitcasts can arise because of related-result returns.  Rewrite
2809   // the operand.
2810   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2811     llvm::Value *operand = bitcast->getOperand(0);
2812     operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2813     bitcast->setOperand(0, operand);
2814     return bitcast;
2815 
2816   // Generic fall-back case.
2817   } else {
2818     // Retain using the non-block variant: we never need to do a copy
2819     // of a block that's been returned to us.
2820     return doFallback(CGF, value);
2821   }
2822 }
2823 
2824 /// Given that the given expression is some sort of call (which does
2825 /// not return retained), emit a retain following it.
2826 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
2827                                             const Expr *e) {
2828   llvm::Value *value = CGF.EmitScalarExpr(e);
2829   return emitARCOperationAfterCall(CGF, value,
2830            [](CodeGenFunction &CGF, llvm::Value *value) {
2831              return CGF.EmitARCRetainAutoreleasedReturnValue(value);
2832            },
2833            [](CodeGenFunction &CGF, llvm::Value *value) {
2834              return CGF.EmitARCRetainNonBlock(value);
2835            });
2836 }
2837 
2838 /// Given that the given expression is some sort of call (which does
2839 /// not return retained), perform an unsafeClaim following it.
2840 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
2841                                                  const Expr *e) {
2842   llvm::Value *value = CGF.EmitScalarExpr(e);
2843   return emitARCOperationAfterCall(CGF, value,
2844            [](CodeGenFunction &CGF, llvm::Value *value) {
2845              return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
2846            },
2847            [](CodeGenFunction &CGF, llvm::Value *value) {
2848              return value;
2849            });
2850 }
2851 
2852 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
2853                                                       bool allowUnsafeClaim) {
2854   if (allowUnsafeClaim &&
2855       CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
2856     return emitARCUnsafeClaimCallResult(*this, E);
2857   } else {
2858     llvm::Value *value = emitARCRetainCallResult(*this, E);
2859     return EmitObjCConsumeObject(E->getType(), value);
2860   }
2861 }
2862 
2863 /// Determine whether it might be important to emit a separate
2864 /// objc_retain_block on the result of the given expression, or
2865 /// whether it's okay to just emit it in a +1 context.
2866 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2867   assert(e->getType()->isBlockPointerType());
2868   e = e->IgnoreParens();
2869 
2870   // For future goodness, emit block expressions directly in +1
2871   // contexts if we can.
2872   if (isa<BlockExpr>(e))
2873     return false;
2874 
2875   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2876     switch (cast->getCastKind()) {
2877     // Emitting these operations in +1 contexts is goodness.
2878     case CK_LValueToRValue:
2879     case CK_ARCReclaimReturnedObject:
2880     case CK_ARCConsumeObject:
2881     case CK_ARCProduceObject:
2882       return false;
2883 
2884     // These operations preserve a block type.
2885     case CK_NoOp:
2886     case CK_BitCast:
2887       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2888 
2889     // These operations are known to be bad (or haven't been considered).
2890     case CK_AnyPointerToBlockPointerCast:
2891     default:
2892       return true;
2893     }
2894   }
2895 
2896   return true;
2897 }
2898 
2899 namespace {
2900 /// A CRTP base class for emitting expressions of retainable object
2901 /// pointer type in ARC.
2902 template <typename Impl, typename Result> class ARCExprEmitter {
2903 protected:
2904   CodeGenFunction &CGF;
2905   Impl &asImpl() { return *static_cast<Impl*>(this); }
2906 
2907   ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
2908 
2909 public:
2910   Result visit(const Expr *e);
2911   Result visitCastExpr(const CastExpr *e);
2912   Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
2913   Result visitBlockExpr(const BlockExpr *e);
2914   Result visitBinaryOperator(const BinaryOperator *e);
2915   Result visitBinAssign(const BinaryOperator *e);
2916   Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
2917   Result visitBinAssignAutoreleasing(const BinaryOperator *e);
2918   Result visitBinAssignWeak(const BinaryOperator *e);
2919   Result visitBinAssignStrong(const BinaryOperator *e);
2920 
2921   // Minimal implementation:
2922   //   Result visitLValueToRValue(const Expr *e)
2923   //   Result visitConsumeObject(const Expr *e)
2924   //   Result visitExtendBlockObject(const Expr *e)
2925   //   Result visitReclaimReturnedObject(const Expr *e)
2926   //   Result visitCall(const Expr *e)
2927   //   Result visitExpr(const Expr *e)
2928   //
2929   //   Result emitBitCast(Result result, llvm::Type *resultType)
2930   //   llvm::Value *getValueOfResult(Result result)
2931 };
2932 }
2933 
2934 /// Try to emit a PseudoObjectExpr under special ARC rules.
2935 ///
2936 /// This massively duplicates emitPseudoObjectRValue.
2937 template <typename Impl, typename Result>
2938 Result
2939 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
2940   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2941 
2942   // Find the result expression.
2943   const Expr *resultExpr = E->getResultExpr();
2944   assert(resultExpr);
2945   Result result;
2946 
2947   for (PseudoObjectExpr::const_semantics_iterator
2948          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2949     const Expr *semantic = *i;
2950 
2951     // If this semantic expression is an opaque value, bind it
2952     // to the result of its source expression.
2953     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2954       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2955       OVMA opaqueData;
2956 
2957       // If this semantic is the result of the pseudo-object
2958       // expression, try to evaluate the source as +1.
2959       if (ov == resultExpr) {
2960         assert(!OVMA::shouldBindAsLValue(ov));
2961         result = asImpl().visit(ov->getSourceExpr());
2962         opaqueData = OVMA::bind(CGF, ov,
2963                             RValue::get(asImpl().getValueOfResult(result)));
2964 
2965       // Otherwise, just bind it.
2966       } else {
2967         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2968       }
2969       opaques.push_back(opaqueData);
2970 
2971     // Otherwise, if the expression is the result, evaluate it
2972     // and remember the result.
2973     } else if (semantic == resultExpr) {
2974       result = asImpl().visit(semantic);
2975 
2976     // Otherwise, evaluate the expression in an ignored context.
2977     } else {
2978       CGF.EmitIgnoredExpr(semantic);
2979     }
2980   }
2981 
2982   // Unbind all the opaques now.
2983   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2984     opaques[i].unbind(CGF);
2985 
2986   return result;
2987 }
2988 
2989 template <typename Impl, typename Result>
2990 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) {
2991   // The default implementation just forwards the expression to visitExpr.
2992   return asImpl().visitExpr(e);
2993 }
2994 
2995 template <typename Impl, typename Result>
2996 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
2997   switch (e->getCastKind()) {
2998 
2999   // No-op casts don't change the type, so we just ignore them.
3000   case CK_NoOp:
3001     return asImpl().visit(e->getSubExpr());
3002 
3003   // These casts can change the type.
3004   case CK_CPointerToObjCPointerCast:
3005   case CK_BlockPointerToObjCPointerCast:
3006   case CK_AnyPointerToBlockPointerCast:
3007   case CK_BitCast: {
3008     llvm::Type *resultType = CGF.ConvertType(e->getType());
3009     assert(e->getSubExpr()->getType()->hasPointerRepresentation());
3010     Result result = asImpl().visit(e->getSubExpr());
3011     return asImpl().emitBitCast(result, resultType);
3012   }
3013 
3014   // Handle some casts specially.
3015   case CK_LValueToRValue:
3016     return asImpl().visitLValueToRValue(e->getSubExpr());
3017   case CK_ARCConsumeObject:
3018     return asImpl().visitConsumeObject(e->getSubExpr());
3019   case CK_ARCExtendBlockObject:
3020     return asImpl().visitExtendBlockObject(e->getSubExpr());
3021   case CK_ARCReclaimReturnedObject:
3022     return asImpl().visitReclaimReturnedObject(e->getSubExpr());
3023 
3024   // Otherwise, use the default logic.
3025   default:
3026     return asImpl().visitExpr(e);
3027   }
3028 }
3029 
3030 template <typename Impl, typename Result>
3031 Result
3032 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
3033   switch (e->getOpcode()) {
3034   case BO_Comma:
3035     CGF.EmitIgnoredExpr(e->getLHS());
3036     CGF.EnsureInsertPoint();
3037     return asImpl().visit(e->getRHS());
3038 
3039   case BO_Assign:
3040     return asImpl().visitBinAssign(e);
3041 
3042   default:
3043     return asImpl().visitExpr(e);
3044   }
3045 }
3046 
3047 template <typename Impl, typename Result>
3048 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
3049   switch (e->getLHS()->getType().getObjCLifetime()) {
3050   case Qualifiers::OCL_ExplicitNone:
3051     return asImpl().visitBinAssignUnsafeUnretained(e);
3052 
3053   case Qualifiers::OCL_Weak:
3054     return asImpl().visitBinAssignWeak(e);
3055 
3056   case Qualifiers::OCL_Autoreleasing:
3057     return asImpl().visitBinAssignAutoreleasing(e);
3058 
3059   case Qualifiers::OCL_Strong:
3060     return asImpl().visitBinAssignStrong(e);
3061 
3062   case Qualifiers::OCL_None:
3063     return asImpl().visitExpr(e);
3064   }
3065   llvm_unreachable("bad ObjC ownership qualifier");
3066 }
3067 
3068 /// The default rule for __unsafe_unretained emits the RHS recursively,
3069 /// stores into the unsafe variable, and propagates the result outward.
3070 template <typename Impl, typename Result>
3071 Result ARCExprEmitter<Impl,Result>::
3072                     visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
3073   // Recursively emit the RHS.
3074   // For __block safety, do this before emitting the LHS.
3075   Result result = asImpl().visit(e->getRHS());
3076 
3077   // Perform the store.
3078   LValue lvalue =
3079     CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
3080   CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
3081                              lvalue);
3082 
3083   return result;
3084 }
3085 
3086 template <typename Impl, typename Result>
3087 Result
3088 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
3089   return asImpl().visitExpr(e);
3090 }
3091 
3092 template <typename Impl, typename Result>
3093 Result
3094 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
3095   return asImpl().visitExpr(e);
3096 }
3097 
3098 template <typename Impl, typename Result>
3099 Result
3100 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
3101   return asImpl().visitExpr(e);
3102 }
3103 
3104 /// The general expression-emission logic.
3105 template <typename Impl, typename Result>
3106 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
3107   // We should *never* see a nested full-expression here, because if
3108   // we fail to emit at +1, our caller must not retain after we close
3109   // out the full-expression.  This isn't as important in the unsafe
3110   // emitter.
3111   assert(!isa<ExprWithCleanups>(e));
3112 
3113   // Look through parens, __extension__, generic selection, etc.
3114   e = e->IgnoreParens();
3115 
3116   // Handle certain kinds of casts.
3117   if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
3118     return asImpl().visitCastExpr(ce);
3119 
3120   // Handle the comma operator.
3121   } else if (auto op = dyn_cast<BinaryOperator>(e)) {
3122     return asImpl().visitBinaryOperator(op);
3123 
3124   // TODO: handle conditional operators here
3125 
3126   // For calls and message sends, use the retained-call logic.
3127   // Delegate inits are a special case in that they're the only
3128   // returns-retained expression that *isn't* surrounded by
3129   // a consume.
3130   } else if (isa<CallExpr>(e) ||
3131              (isa<ObjCMessageExpr>(e) &&
3132               !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
3133     return asImpl().visitCall(e);
3134 
3135   // Look through pseudo-object expressions.
3136   } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
3137     return asImpl().visitPseudoObjectExpr(pseudo);
3138   } else if (auto *be = dyn_cast<BlockExpr>(e))
3139     return asImpl().visitBlockExpr(be);
3140 
3141   return asImpl().visitExpr(e);
3142 }
3143 
3144 namespace {
3145 
3146 /// An emitter for +1 results.
3147 struct ARCRetainExprEmitter :
3148   public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
3149 
3150   ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3151 
3152   llvm::Value *getValueOfResult(TryEmitResult result) {
3153     return result.getPointer();
3154   }
3155 
3156   TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
3157     llvm::Value *value = result.getPointer();
3158     value = CGF.Builder.CreateBitCast(value, resultType);
3159     result.setPointer(value);
3160     return result;
3161   }
3162 
3163   TryEmitResult visitLValueToRValue(const Expr *e) {
3164     return tryEmitARCRetainLoadOfScalar(CGF, e);
3165   }
3166 
3167   /// For consumptions, just emit the subexpression and thus elide
3168   /// the retain/release pair.
3169   TryEmitResult visitConsumeObject(const Expr *e) {
3170     llvm::Value *result = CGF.EmitScalarExpr(e);
3171     return TryEmitResult(result, true);
3172   }
3173 
3174   TryEmitResult visitBlockExpr(const BlockExpr *e) {
3175     TryEmitResult result = visitExpr(e);
3176     // Avoid the block-retain if this is a block literal that doesn't need to be
3177     // copied to the heap.
3178     if (e->getBlockDecl()->canAvoidCopyToHeap())
3179       result.setInt(true);
3180     return result;
3181   }
3182 
3183   /// Block extends are net +0.  Naively, we could just recurse on
3184   /// the subexpression, but actually we need to ensure that the
3185   /// value is copied as a block, so there's a little filter here.
3186   TryEmitResult visitExtendBlockObject(const Expr *e) {
3187     llvm::Value *result; // will be a +0 value
3188 
3189     // If we can't safely assume the sub-expression will produce a
3190     // block-copied value, emit the sub-expression at +0.
3191     if (shouldEmitSeparateBlockRetain(e)) {
3192       result = CGF.EmitScalarExpr(e);
3193 
3194     // Otherwise, try to emit the sub-expression at +1 recursively.
3195     } else {
3196       TryEmitResult subresult = asImpl().visit(e);
3197 
3198       // If that produced a retained value, just use that.
3199       if (subresult.getInt()) {
3200         return subresult;
3201       }
3202 
3203       // Otherwise it's +0.
3204       result = subresult.getPointer();
3205     }
3206 
3207     // Retain the object as a block.
3208     result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
3209     return TryEmitResult(result, true);
3210   }
3211 
3212   /// For reclaims, emit the subexpression as a retained call and
3213   /// skip the consumption.
3214   TryEmitResult visitReclaimReturnedObject(const Expr *e) {
3215     llvm::Value *result = emitARCRetainCallResult(CGF, e);
3216     return TryEmitResult(result, true);
3217   }
3218 
3219   /// When we have an undecorated call, retroactively do a claim.
3220   TryEmitResult visitCall(const Expr *e) {
3221     llvm::Value *result = emitARCRetainCallResult(CGF, e);
3222     return TryEmitResult(result, true);
3223   }
3224 
3225   // TODO: maybe special-case visitBinAssignWeak?
3226 
3227   TryEmitResult visitExpr(const Expr *e) {
3228     // We didn't find an obvious production, so emit what we've got and
3229     // tell the caller that we didn't manage to retain.
3230     llvm::Value *result = CGF.EmitScalarExpr(e);
3231     return TryEmitResult(result, false);
3232   }
3233 };
3234 }
3235 
3236 static TryEmitResult
3237 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
3238   return ARCRetainExprEmitter(CGF).visit(e);
3239 }
3240 
3241 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
3242                                                 LValue lvalue,
3243                                                 QualType type) {
3244   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
3245   llvm::Value *value = result.getPointer();
3246   if (!result.getInt())
3247     value = CGF.EmitARCRetain(type, value);
3248   return value;
3249 }
3250 
3251 /// EmitARCRetainScalarExpr - Semantically equivalent to
3252 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
3253 /// best-effort attempt to peephole expressions that naturally produce
3254 /// retained objects.
3255 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
3256   // The retain needs to happen within the full-expression.
3257   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3258     enterFullExpression(cleanups);
3259     RunCleanupsScope scope(*this);
3260     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
3261   }
3262 
3263   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3264   llvm::Value *value = result.getPointer();
3265   if (!result.getInt())
3266     value = EmitARCRetain(e->getType(), value);
3267   return value;
3268 }
3269 
3270 llvm::Value *
3271 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
3272   // The retain needs to happen within the full-expression.
3273   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3274     enterFullExpression(cleanups);
3275     RunCleanupsScope scope(*this);
3276     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
3277   }
3278 
3279   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3280   llvm::Value *value = result.getPointer();
3281   if (result.getInt())
3282     value = EmitARCAutorelease(value);
3283   else
3284     value = EmitARCRetainAutorelease(e->getType(), value);
3285   return value;
3286 }
3287 
3288 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
3289   llvm::Value *result;
3290   bool doRetain;
3291 
3292   if (shouldEmitSeparateBlockRetain(e)) {
3293     result = EmitScalarExpr(e);
3294     doRetain = true;
3295   } else {
3296     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
3297     result = subresult.getPointer();
3298     doRetain = !subresult.getInt();
3299   }
3300 
3301   if (doRetain)
3302     result = EmitARCRetainBlock(result, /*mandatory*/ true);
3303   return EmitObjCConsumeObject(e->getType(), result);
3304 }
3305 
3306 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
3307   // In ARC, retain and autorelease the expression.
3308   if (getLangOpts().ObjCAutoRefCount) {
3309     // Do so before running any cleanups for the full-expression.
3310     // EmitARCRetainAutoreleaseScalarExpr does this for us.
3311     return EmitARCRetainAutoreleaseScalarExpr(expr);
3312   }
3313 
3314   // Otherwise, use the normal scalar-expression emission.  The
3315   // exception machinery doesn't do anything special with the
3316   // exception like retaining it, so there's no safety associated with
3317   // only running cleanups after the throw has started, and when it
3318   // matters it tends to be substantially inferior code.
3319   return EmitScalarExpr(expr);
3320 }
3321 
3322 namespace {
3323 
3324 /// An emitter for assigning into an __unsafe_unretained context.
3325 struct ARCUnsafeUnretainedExprEmitter :
3326   public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3327 
3328   ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3329 
3330   llvm::Value *getValueOfResult(llvm::Value *value) {
3331     return value;
3332   }
3333 
3334   llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3335     return CGF.Builder.CreateBitCast(value, resultType);
3336   }
3337 
3338   llvm::Value *visitLValueToRValue(const Expr *e) {
3339     return CGF.EmitScalarExpr(e);
3340   }
3341 
3342   /// For consumptions, just emit the subexpression and perform the
3343   /// consumption like normal.
3344   llvm::Value *visitConsumeObject(const Expr *e) {
3345     llvm::Value *value = CGF.EmitScalarExpr(e);
3346     return CGF.EmitObjCConsumeObject(e->getType(), value);
3347   }
3348 
3349   /// No special logic for block extensions.  (This probably can't
3350   /// actually happen in this emitter, though.)
3351   llvm::Value *visitExtendBlockObject(const Expr *e) {
3352     return CGF.EmitARCExtendBlockObject(e);
3353   }
3354 
3355   /// For reclaims, perform an unsafeClaim if that's enabled.
3356   llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3357     return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3358   }
3359 
3360   /// When we have an undecorated call, just emit it without adding
3361   /// the unsafeClaim.
3362   llvm::Value *visitCall(const Expr *e) {
3363     return CGF.EmitScalarExpr(e);
3364   }
3365 
3366   /// Just do normal scalar emission in the default case.
3367   llvm::Value *visitExpr(const Expr *e) {
3368     return CGF.EmitScalarExpr(e);
3369   }
3370 };
3371 }
3372 
3373 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3374                                                       const Expr *e) {
3375   return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3376 }
3377 
3378 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3379 /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3380 /// avoiding any spurious retains, including by performing reclaims
3381 /// with objc_unsafeClaimAutoreleasedReturnValue.
3382 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3383   // Look through full-expressions.
3384   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3385     enterFullExpression(cleanups);
3386     RunCleanupsScope scope(*this);
3387     return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3388   }
3389 
3390   return emitARCUnsafeUnretainedScalarExpr(*this, e);
3391 }
3392 
3393 std::pair<LValue,llvm::Value*>
3394 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3395                                               bool ignored) {
3396   // Evaluate the RHS first.  If we're ignoring the result, assume
3397   // that we can emit at an unsafe +0.
3398   llvm::Value *value;
3399   if (ignored) {
3400     value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
3401   } else {
3402     value = EmitScalarExpr(e->getRHS());
3403   }
3404 
3405   // Emit the LHS and perform the store.
3406   LValue lvalue = EmitLValue(e->getLHS());
3407   EmitStoreOfScalar(value, lvalue);
3408 
3409   return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3410 }
3411 
3412 std::pair<LValue,llvm::Value*>
3413 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3414                                     bool ignored) {
3415   // Evaluate the RHS first.
3416   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3417   llvm::Value *value = result.getPointer();
3418 
3419   bool hasImmediateRetain = result.getInt();
3420 
3421   // If we didn't emit a retained object, and the l-value is of block
3422   // type, then we need to emit the block-retain immediately in case
3423   // it invalidates the l-value.
3424   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3425     value = EmitARCRetainBlock(value, /*mandatory*/ false);
3426     hasImmediateRetain = true;
3427   }
3428 
3429   LValue lvalue = EmitLValue(e->getLHS());
3430 
3431   // If the RHS was emitted retained, expand this.
3432   if (hasImmediateRetain) {
3433     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3434     EmitStoreOfScalar(value, lvalue);
3435     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3436   } else {
3437     value = EmitARCStoreStrong(lvalue, value, ignored);
3438   }
3439 
3440   return std::pair<LValue,llvm::Value*>(lvalue, value);
3441 }
3442 
3443 std::pair<LValue,llvm::Value*>
3444 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3445   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3446   LValue lvalue = EmitLValue(e->getLHS());
3447 
3448   EmitStoreOfScalar(value, lvalue);
3449 
3450   return std::pair<LValue,llvm::Value*>(lvalue, value);
3451 }
3452 
3453 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3454                                           const ObjCAutoreleasePoolStmt &ARPS) {
3455   const Stmt *subStmt = ARPS.getSubStmt();
3456   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3457 
3458   CGDebugInfo *DI = getDebugInfo();
3459   if (DI)
3460     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3461 
3462   // Keep track of the current cleanup stack depth.
3463   RunCleanupsScope Scope(*this);
3464   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3465     llvm::Value *token = EmitObjCAutoreleasePoolPush();
3466     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3467   } else {
3468     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3469     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3470   }
3471 
3472   for (const auto *I : S.body())
3473     EmitStmt(I);
3474 
3475   if (DI)
3476     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3477 }
3478 
3479 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3480 /// make sure it survives garbage collection until this point.
3481 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3482   // We just use an inline assembly.
3483   llvm::FunctionType *extenderType
3484     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3485   llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType,
3486                                                    /* assembly */ "",
3487                                                    /* constraints */ "r",
3488                                                    /* side effects */ true);
3489 
3490   object = Builder.CreateBitCast(object, VoidPtrTy);
3491   EmitNounwindRuntimeCall(extender, object);
3492 }
3493 
3494 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3495 /// non-trivial copy assignment function, produce following helper function.
3496 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3497 ///
3498 llvm::Constant *
3499 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3500                                         const ObjCPropertyImplDecl *PID) {
3501   if (!getLangOpts().CPlusPlus ||
3502       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3503     return nullptr;
3504   QualType Ty = PID->getPropertyIvarDecl()->getType();
3505   if (!Ty->isRecordType())
3506     return nullptr;
3507   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3508   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
3509     return nullptr;
3510   llvm::Constant *HelperFn = nullptr;
3511   if (hasTrivialSetExpr(PID))
3512     return nullptr;
3513   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3514   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3515     return HelperFn;
3516 
3517   ASTContext &C = getContext();
3518   IdentifierInfo *II
3519     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3520 
3521   QualType ReturnTy = C.VoidTy;
3522   QualType DestTy = C.getPointerType(Ty);
3523   QualType SrcTy = Ty;
3524   SrcTy.addConst();
3525   SrcTy = C.getPointerType(SrcTy);
3526 
3527   SmallVector<QualType, 2> ArgTys;
3528   ArgTys.push_back(DestTy);
3529   ArgTys.push_back(SrcTy);
3530   QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3531 
3532   FunctionDecl *FD = FunctionDecl::Create(
3533       C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3534       FunctionTy, nullptr, SC_Static, false, false);
3535 
3536   FunctionArgList args;
3537   ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
3538                             ImplicitParamDecl::Other);
3539   args.push_back(&DstDecl);
3540   ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
3541                             ImplicitParamDecl::Other);
3542   args.push_back(&SrcDecl);
3543 
3544   const CGFunctionInfo &FI =
3545       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3546 
3547   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3548 
3549   llvm::Function *Fn =
3550     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3551                            "__assign_helper_atomic_property_",
3552                            &CGM.getModule());
3553 
3554   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3555 
3556   StartFunction(FD, ReturnTy, Fn, FI, args);
3557 
3558   DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue,
3559                       SourceLocation());
3560   UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
3561                     VK_LValue, OK_Ordinary, SourceLocation(), false);
3562 
3563   DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue,
3564                       SourceLocation());
3565   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3566                     VK_LValue, OK_Ordinary, SourceLocation(), false);
3567 
3568   Expr *Args[2] = { &DST, &SRC };
3569   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3570   CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
3571       C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(),
3572       VK_LValue, SourceLocation(), FPOptions());
3573 
3574   EmitStmt(TheCall);
3575 
3576   FinishFunction();
3577   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3578   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3579   return HelperFn;
3580 }
3581 
3582 llvm::Constant *
3583 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3584                                             const ObjCPropertyImplDecl *PID) {
3585   if (!getLangOpts().CPlusPlus ||
3586       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3587     return nullptr;
3588   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3589   QualType Ty = PD->getType();
3590   if (!Ty->isRecordType())
3591     return nullptr;
3592   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
3593     return nullptr;
3594   llvm::Constant *HelperFn = nullptr;
3595   if (hasTrivialGetExpr(PID))
3596     return nullptr;
3597   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3598   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3599     return HelperFn;
3600 
3601   ASTContext &C = getContext();
3602   IdentifierInfo *II =
3603       &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3604 
3605   QualType ReturnTy = C.VoidTy;
3606   QualType DestTy = C.getPointerType(Ty);
3607   QualType SrcTy = Ty;
3608   SrcTy.addConst();
3609   SrcTy = C.getPointerType(SrcTy);
3610 
3611   SmallVector<QualType, 2> ArgTys;
3612   ArgTys.push_back(DestTy);
3613   ArgTys.push_back(SrcTy);
3614   QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3615 
3616   FunctionDecl *FD = FunctionDecl::Create(
3617       C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3618       FunctionTy, nullptr, SC_Static, false, false);
3619 
3620   FunctionArgList args;
3621   ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
3622                             ImplicitParamDecl::Other);
3623   args.push_back(&DstDecl);
3624   ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
3625                             ImplicitParamDecl::Other);
3626   args.push_back(&SrcDecl);
3627 
3628   const CGFunctionInfo &FI =
3629       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3630 
3631   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3632 
3633   llvm::Function *Fn = llvm::Function::Create(
3634       LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_",
3635       &CGM.getModule());
3636 
3637   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3638 
3639   StartFunction(FD, ReturnTy, Fn, FI, args);
3640 
3641   DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue,
3642                       SourceLocation());
3643 
3644   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3645                     VK_LValue, OK_Ordinary, SourceLocation(), false);
3646 
3647   CXXConstructExpr *CXXConstExpr =
3648     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3649 
3650   SmallVector<Expr*, 4> ConstructorArgs;
3651   ConstructorArgs.push_back(&SRC);
3652   ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3653                          CXXConstExpr->arg_end());
3654 
3655   CXXConstructExpr *TheCXXConstructExpr =
3656     CXXConstructExpr::Create(C, Ty, SourceLocation(),
3657                              CXXConstExpr->getConstructor(),
3658                              CXXConstExpr->isElidable(),
3659                              ConstructorArgs,
3660                              CXXConstExpr->hadMultipleCandidates(),
3661                              CXXConstExpr->isListInitialization(),
3662                              CXXConstExpr->isStdInitListInitialization(),
3663                              CXXConstExpr->requiresZeroInitialization(),
3664                              CXXConstExpr->getConstructionKind(),
3665                              SourceRange());
3666 
3667   DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue,
3668                       SourceLocation());
3669 
3670   RValue DV = EmitAnyExpr(&DstExpr);
3671   CharUnits Alignment
3672     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3673   EmitAggExpr(TheCXXConstructExpr,
3674               AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment),
3675                                     Qualifiers(),
3676                                     AggValueSlot::IsDestructed,
3677                                     AggValueSlot::DoesNotNeedGCBarriers,
3678                                     AggValueSlot::IsNotAliased,
3679                                     AggValueSlot::DoesNotOverlap));
3680 
3681   FinishFunction();
3682   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3683   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3684   return HelperFn;
3685 }
3686 
3687 llvm::Value *
3688 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3689   // Get selectors for retain/autorelease.
3690   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3691   Selector CopySelector =
3692       getContext().Selectors.getNullarySelector(CopyID);
3693   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3694   Selector AutoreleaseSelector =
3695       getContext().Selectors.getNullarySelector(AutoreleaseID);
3696 
3697   // Emit calls to retain/autorelease.
3698   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3699   llvm::Value *Val = Block;
3700   RValue Result;
3701   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3702                                        Ty, CopySelector,
3703                                        Val, CallArgList(), nullptr, nullptr);
3704   Val = Result.getScalarVal();
3705   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3706                                        Ty, AutoreleaseSelector,
3707                                        Val, CallArgList(), nullptr, nullptr);
3708   Val = Result.getScalarVal();
3709   return Val;
3710 }
3711 
3712 llvm::Value *
3713 CodeGenFunction::EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args) {
3714   assert(Args.size() == 3 && "Expected 3 argument here!");
3715 
3716   if (!CGM.IsOSVersionAtLeastFn) {
3717     llvm::FunctionType *FTy =
3718         llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
3719     CGM.IsOSVersionAtLeastFn =
3720         CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
3721   }
3722 
3723   llvm::Value *CallRes =
3724       EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args);
3725 
3726   return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
3727 }
3728 
3729 void CodeGenModule::emitAtAvailableLinkGuard() {
3730   if (!IsOSVersionAtLeastFn)
3731     return;
3732   // @available requires CoreFoundation only on Darwin.
3733   if (!Target.getTriple().isOSDarwin())
3734     return;
3735   // Add -framework CoreFoundation to the linker commands. We still want to
3736   // emit the core foundation reference down below because otherwise if
3737   // CoreFoundation is not used in the code, the linker won't link the
3738   // framework.
3739   auto &Context = getLLVMContext();
3740   llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3741                              llvm::MDString::get(Context, "CoreFoundation")};
3742   LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
3743   // Emit a reference to a symbol from CoreFoundation to ensure that
3744   // CoreFoundation is linked into the final binary.
3745   llvm::FunctionType *FTy =
3746       llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
3747   llvm::FunctionCallee CFFunc =
3748       CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
3749 
3750   llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
3751   llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction(
3752       CheckFTy, "__clang_at_available_requires_core_foundation_framework",
3753       llvm::AttributeList(), /*Local=*/true);
3754   llvm::Function *CFLinkCheckFunc =
3755       cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts());
3756   if (CFLinkCheckFunc->empty()) {
3757     CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
3758     CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
3759     CodeGenFunction CGF(*this);
3760     CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
3761     CGF.EmitNounwindRuntimeCall(CFFunc,
3762                                 llvm::Constant::getNullValue(VoidPtrTy));
3763     CGF.Builder.CreateUnreachable();
3764     addCompilerUsedGlobal(CFLinkCheckFunc);
3765   }
3766 }
3767 
3768 CGObjCRuntime::~CGObjCRuntime() {}
3769