1 //===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder  ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Builder implementation for CGRecordLayout objects.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGRecordLayout.h"
14 #include "CGCXXABI.h"
15 #include "CodeGenTypes.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/CodeGenOptions.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Type.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 using namespace clang;
30 using namespace CodeGen;
31 
32 namespace {
33 /// The CGRecordLowering is responsible for lowering an ASTRecordLayout to an
34 /// llvm::Type.  Some of the lowering is straightforward, some is not.  Here we
35 /// detail some of the complexities and weirdnesses here.
36 /// * LLVM does not have unions - Unions can, in theory be represented by any
37 ///   llvm::Type with correct size.  We choose a field via a specific heuristic
38 ///   and add padding if necessary.
39 /// * LLVM does not have bitfields - Bitfields are collected into contiguous
40 ///   runs and allocated as a single storage type for the run.  ASTRecordLayout
41 ///   contains enough information to determine where the runs break.  Microsoft
42 ///   and Itanium follow different rules and use different codepaths.
43 /// * It is desired that, when possible, bitfields use the appropriate iN type
44 ///   when lowered to llvm types.  For example unsigned x : 24 gets lowered to
45 ///   i24.  This isn't always possible because i24 has storage size of 32 bit
46 ///   and if it is possible to use that extra byte of padding we must use
47 ///   [i8 x 3] instead of i24.  The function clipTailPadding does this.
48 ///   C++ examples that require clipping:
49 ///   struct { int a : 24; char b; }; // a must be clipped, b goes at offset 3
50 ///   struct A { int a : 24; }; // a must be clipped because a struct like B
51 //    could exist: struct B : A { char b; }; // b goes at offset 3
52 /// * Clang ignores 0 sized bitfields and 0 sized bases but *not* zero sized
53 ///   fields.  The existing asserts suggest that LLVM assumes that *every* field
54 ///   has an underlying storage type.  Therefore empty structures containing
55 ///   zero sized subobjects such as empty records or zero sized arrays still get
56 ///   a zero sized (empty struct) storage type.
57 /// * Clang reads the complete type rather than the base type when generating
58 ///   code to access fields.  Bitfields in tail position with tail padding may
59 ///   be clipped in the base class but not the complete class (we may discover
60 ///   that the tail padding is not used in the complete class.) However,
61 ///   because LLVM reads from the complete type it can generate incorrect code
62 ///   if we do not clip the tail padding off of the bitfield in the complete
63 ///   layout.  This introduces a somewhat awkward extra unnecessary clip stage.
64 ///   The location of the clip is stored internally as a sentinel of type
65 ///   SCISSOR.  If LLVM were updated to read base types (which it probably
66 ///   should because locations of things such as VBases are bogus in the llvm
67 ///   type anyway) then we could eliminate the SCISSOR.
68 /// * Itanium allows nearly empty primary virtual bases.  These bases don't get
69 ///   get their own storage because they're laid out as part of another base
70 ///   or at the beginning of the structure.  Determining if a VBase actually
71 ///   gets storage awkwardly involves a walk of all bases.
72 /// * VFPtrs and VBPtrs do *not* make a record NotZeroInitializable.
73 struct CGRecordLowering {
74   // MemberInfo is a helper structure that contains information about a record
75   // member.  In additional to the standard member types, there exists a
76   // sentinel member type that ensures correct rounding.
77   struct MemberInfo {
78     CharUnits Offset;
79     enum InfoKind { VFPtr, VBPtr, Field, Base, VBase, Scissor } Kind;
80     llvm::Type *Data;
81     union {
82       const FieldDecl *FD;
83       const CXXRecordDecl *RD;
84     };
85     MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
86                const FieldDecl *FD = nullptr)
87       : Offset(Offset), Kind(Kind), Data(Data), FD(FD) {}
88     MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
89                const CXXRecordDecl *RD)
90       : Offset(Offset), Kind(Kind), Data(Data), RD(RD) {}
91     // MemberInfos are sorted so we define a < operator.
92     bool operator <(const MemberInfo& a) const { return Offset < a.Offset; }
93   };
94   // The constructor.
95   CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D, bool Packed);
96   // Short helper routines.
97   /// Constructs a MemberInfo instance from an offset and llvm::Type *.
98   MemberInfo StorageInfo(CharUnits Offset, llvm::Type *Data) {
99     return MemberInfo(Offset, MemberInfo::Field, Data);
100   }
101 
102   /// The Microsoft bitfield layout rule allocates discrete storage
103   /// units of the field's formal type and only combines adjacent
104   /// fields of the same formal type.  We want to emit a layout with
105   /// these discrete storage units instead of combining them into a
106   /// continuous run.
107   bool isDiscreteBitFieldABI() {
108     return Context.getTargetInfo().getCXXABI().isMicrosoft() ||
109            D->isMsStruct(Context);
110   }
111 
112   /// The Itanium base layout rule allows virtual bases to overlap
113   /// other bases, which complicates layout in specific ways.
114   ///
115   /// Note specifically that the ms_struct attribute doesn't change this.
116   bool isOverlappingVBaseABI() {
117     return !Context.getTargetInfo().getCXXABI().isMicrosoft();
118   }
119 
120   /// Wraps llvm::Type::getIntNTy with some implicit arguments.
121   llvm::Type *getIntNType(uint64_t NumBits) {
122     return llvm::Type::getIntNTy(Types.getLLVMContext(),
123                                  (unsigned)llvm::alignTo(NumBits, 8));
124   }
125   /// Gets an llvm type of size NumBytes and alignment 1.
126   llvm::Type *getByteArrayType(CharUnits NumBytes) {
127     assert(!NumBytes.isZero() && "Empty byte arrays aren't allowed.");
128     llvm::Type *Type = llvm::Type::getInt8Ty(Types.getLLVMContext());
129     return NumBytes == CharUnits::One() ? Type :
130         (llvm::Type *)llvm::ArrayType::get(Type, NumBytes.getQuantity());
131   }
132   /// Gets the storage type for a field decl and handles storage
133   /// for itanium bitfields that are smaller than their declared type.
134   llvm::Type *getStorageType(const FieldDecl *FD) {
135     llvm::Type *Type = Types.ConvertTypeForMem(FD->getType());
136     if (!FD->isBitField()) return Type;
137     if (isDiscreteBitFieldABI()) return Type;
138     return getIntNType(std::min(FD->getBitWidthValue(Context),
139                              (unsigned)Context.toBits(getSize(Type))));
140   }
141   /// Gets the llvm Basesubobject type from a CXXRecordDecl.
142   llvm::Type *getStorageType(const CXXRecordDecl *RD) {
143     return Types.getCGRecordLayout(RD).getBaseSubobjectLLVMType();
144   }
145   CharUnits bitsToCharUnits(uint64_t BitOffset) {
146     return Context.toCharUnitsFromBits(BitOffset);
147   }
148   CharUnits getSize(llvm::Type *Type) {
149     return CharUnits::fromQuantity(DataLayout.getTypeAllocSize(Type));
150   }
151   CharUnits getAlignment(llvm::Type *Type) {
152     return CharUnits::fromQuantity(DataLayout.getABITypeAlignment(Type));
153   }
154   bool isZeroInitializable(const FieldDecl *FD) {
155     return Types.isZeroInitializable(FD->getType());
156   }
157   bool isZeroInitializable(const RecordDecl *RD) {
158     return Types.isZeroInitializable(RD);
159   }
160   void appendPaddingBytes(CharUnits Size) {
161     if (!Size.isZero())
162       FieldTypes.push_back(getByteArrayType(Size));
163   }
164   uint64_t getFieldBitOffset(const FieldDecl *FD) {
165     return Layout.getFieldOffset(FD->getFieldIndex());
166   }
167   // Layout routines.
168   void setBitFieldInfo(const FieldDecl *FD, CharUnits StartOffset,
169                        llvm::Type *StorageType);
170   /// Lowers an ASTRecordLayout to a llvm type.
171   void lower(bool NonVirtualBaseType);
172   void lowerUnion();
173   void accumulateFields();
174   void accumulateBitFields(RecordDecl::field_iterator Field,
175                         RecordDecl::field_iterator FieldEnd);
176   void accumulateBases();
177   void accumulateVPtrs();
178   void accumulateVBases();
179   /// Recursively searches all of the bases to find out if a vbase is
180   /// not the primary vbase of some base class.
181   bool hasOwnStorage(const CXXRecordDecl *Decl, const CXXRecordDecl *Query);
182   void calculateZeroInit();
183   /// Lowers bitfield storage types to I8 arrays for bitfields with tail
184   /// padding that is or can potentially be used.
185   void clipTailPadding();
186   /// Determines if we need a packed llvm struct.
187   void determinePacked(bool NVBaseType);
188   /// Inserts padding everywhere it's needed.
189   void insertPadding();
190   /// Fills out the structures that are ultimately consumed.
191   void fillOutputFields();
192   // Input memoization fields.
193   CodeGenTypes &Types;
194   const ASTContext &Context;
195   const RecordDecl *D;
196   const CXXRecordDecl *RD;
197   const ASTRecordLayout &Layout;
198   const llvm::DataLayout &DataLayout;
199   // Helpful intermediate data-structures.
200   std::vector<MemberInfo> Members;
201   // Output fields, consumed by CodeGenTypes::ComputeRecordLayout.
202   SmallVector<llvm::Type *, 16> FieldTypes;
203   llvm::DenseMap<const FieldDecl *, unsigned> Fields;
204   llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields;
205   llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases;
206   llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases;
207   bool IsZeroInitializable : 1;
208   bool IsZeroInitializableAsBase : 1;
209   bool Packed : 1;
210 private:
211   CGRecordLowering(const CGRecordLowering &) = delete;
212   void operator =(const CGRecordLowering &) = delete;
213 };
214 } // namespace {
215 
216 CGRecordLowering::CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D,
217                                    bool Packed)
218     : Types(Types), Context(Types.getContext()), D(D),
219       RD(dyn_cast<CXXRecordDecl>(D)),
220       Layout(Types.getContext().getASTRecordLayout(D)),
221       DataLayout(Types.getDataLayout()), IsZeroInitializable(true),
222       IsZeroInitializableAsBase(true), Packed(Packed) {}
223 
224 void CGRecordLowering::setBitFieldInfo(
225     const FieldDecl *FD, CharUnits StartOffset, llvm::Type *StorageType) {
226   CGBitFieldInfo &Info = BitFields[FD->getCanonicalDecl()];
227   Info.IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
228   Info.Offset = (unsigned)(getFieldBitOffset(FD) - Context.toBits(StartOffset));
229   Info.Size = FD->getBitWidthValue(Context);
230   Info.StorageSize = (unsigned)DataLayout.getTypeAllocSizeInBits(StorageType);
231   Info.StorageOffset = StartOffset;
232   if (Info.Size > Info.StorageSize)
233     Info.Size = Info.StorageSize;
234   // Reverse the bit offsets for big endian machines. Because we represent
235   // a bitfield as a single large integer load, we can imagine the bits
236   // counting from the most-significant-bit instead of the
237   // least-significant-bit.
238   if (DataLayout.isBigEndian())
239     Info.Offset = Info.StorageSize - (Info.Offset + Info.Size);
240 }
241 
242 void CGRecordLowering::lower(bool NVBaseType) {
243   // The lowering process implemented in this function takes a variety of
244   // carefully ordered phases.
245   // 1) Store all members (fields and bases) in a list and sort them by offset.
246   // 2) Add a 1-byte capstone member at the Size of the structure.
247   // 3) Clip bitfield storages members if their tail padding is or might be
248   //    used by another field or base.  The clipping process uses the capstone
249   //    by treating it as another object that occurs after the record.
250   // 4) Determine if the llvm-struct requires packing.  It's important that this
251   //    phase occur after clipping, because clipping changes the llvm type.
252   //    This phase reads the offset of the capstone when determining packedness
253   //    and updates the alignment of the capstone to be equal of the alignment
254   //    of the record after doing so.
255   // 5) Insert padding everywhere it is needed.  This phase requires 'Packed' to
256   //    have been computed and needs to know the alignment of the record in
257   //    order to understand if explicit tail padding is needed.
258   // 6) Remove the capstone, we don't need it anymore.
259   // 7) Determine if this record can be zero-initialized.  This phase could have
260   //    been placed anywhere after phase 1.
261   // 8) Format the complete list of members in a way that can be consumed by
262   //    CodeGenTypes::ComputeRecordLayout.
263   CharUnits Size = NVBaseType ? Layout.getNonVirtualSize() : Layout.getSize();
264   if (D->isUnion())
265     return lowerUnion();
266   accumulateFields();
267   // RD implies C++.
268   if (RD) {
269     accumulateVPtrs();
270     accumulateBases();
271     if (Members.empty())
272       return appendPaddingBytes(Size);
273     if (!NVBaseType)
274       accumulateVBases();
275   }
276   llvm::stable_sort(Members);
277   Members.push_back(StorageInfo(Size, getIntNType(8)));
278   clipTailPadding();
279   determinePacked(NVBaseType);
280   insertPadding();
281   Members.pop_back();
282   calculateZeroInit();
283   fillOutputFields();
284 }
285 
286 void CGRecordLowering::lowerUnion() {
287   CharUnits LayoutSize = Layout.getSize();
288   llvm::Type *StorageType = nullptr;
289   bool SeenNamedMember = false;
290   // Iterate through the fields setting bitFieldInfo and the Fields array. Also
291   // locate the "most appropriate" storage type.  The heuristic for finding the
292   // storage type isn't necessary, the first (non-0-length-bitfield) field's
293   // type would work fine and be simpler but would be different than what we've
294   // been doing and cause lit tests to change.
295   for (const auto *Field : D->fields()) {
296     if (Field->isBitField()) {
297       if (Field->isZeroLengthBitField(Context))
298         continue;
299       llvm::Type *FieldType = getStorageType(Field);
300       if (LayoutSize < getSize(FieldType))
301         FieldType = getByteArrayType(LayoutSize);
302       setBitFieldInfo(Field, CharUnits::Zero(), FieldType);
303     }
304     Fields[Field->getCanonicalDecl()] = 0;
305     llvm::Type *FieldType = getStorageType(Field);
306     // Compute zero-initializable status.
307     // This union might not be zero initialized: it may contain a pointer to
308     // data member which might have some exotic initialization sequence.
309     // If this is the case, then we aught not to try and come up with a "better"
310     // type, it might not be very easy to come up with a Constant which
311     // correctly initializes it.
312     if (!SeenNamedMember) {
313       SeenNamedMember = Field->getIdentifier();
314       if (!SeenNamedMember)
315         if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
316           SeenNamedMember = FieldRD->findFirstNamedDataMember();
317       if (SeenNamedMember && !isZeroInitializable(Field)) {
318         IsZeroInitializable = IsZeroInitializableAsBase = false;
319         StorageType = FieldType;
320       }
321     }
322     // Because our union isn't zero initializable, we won't be getting a better
323     // storage type.
324     if (!IsZeroInitializable)
325       continue;
326     // Conditionally update our storage type if we've got a new "better" one.
327     if (!StorageType ||
328         getAlignment(FieldType) >  getAlignment(StorageType) ||
329         (getAlignment(FieldType) == getAlignment(StorageType) &&
330         getSize(FieldType) > getSize(StorageType)))
331       StorageType = FieldType;
332   }
333   // If we have no storage type just pad to the appropriate size and return.
334   if (!StorageType)
335     return appendPaddingBytes(LayoutSize);
336   // If our storage size was bigger than our required size (can happen in the
337   // case of packed bitfields on Itanium) then just use an I8 array.
338   if (LayoutSize < getSize(StorageType))
339     StorageType = getByteArrayType(LayoutSize);
340   FieldTypes.push_back(StorageType);
341   appendPaddingBytes(LayoutSize - getSize(StorageType));
342   // Set packed if we need it.
343   if (LayoutSize % getAlignment(StorageType))
344     Packed = true;
345 }
346 
347 void CGRecordLowering::accumulateFields() {
348   for (RecordDecl::field_iterator Field = D->field_begin(),
349                                   FieldEnd = D->field_end();
350     Field != FieldEnd;) {
351     if (Field->isBitField()) {
352       RecordDecl::field_iterator Start = Field;
353       // Iterate to gather the list of bitfields.
354       for (++Field; Field != FieldEnd && Field->isBitField(); ++Field);
355       accumulateBitFields(Start, Field);
356     } else if (!Field->isZeroSize(Context)) {
357       Members.push_back(MemberInfo(
358           bitsToCharUnits(getFieldBitOffset(*Field)), MemberInfo::Field,
359           getStorageType(*Field), *Field));
360       ++Field;
361     } else {
362       ++Field;
363     }
364   }
365 }
366 
367 void
368 CGRecordLowering::accumulateBitFields(RecordDecl::field_iterator Field,
369                                       RecordDecl::field_iterator FieldEnd) {
370   // Run stores the first element of the current run of bitfields.  FieldEnd is
371   // used as a special value to note that we don't have a current run.  A
372   // bitfield run is a contiguous collection of bitfields that can be stored in
373   // the same storage block.  Zero-sized bitfields and bitfields that would
374   // cross an alignment boundary break a run and start a new one.
375   RecordDecl::field_iterator Run = FieldEnd;
376   // Tail is the offset of the first bit off the end of the current run.  It's
377   // used to determine if the ASTRecordLayout is treating these two bitfields as
378   // contiguous.  StartBitOffset is offset of the beginning of the Run.
379   uint64_t StartBitOffset, Tail = 0;
380   if (isDiscreteBitFieldABI()) {
381     for (; Field != FieldEnd; ++Field) {
382       uint64_t BitOffset = getFieldBitOffset(*Field);
383       // Zero-width bitfields end runs.
384       if (Field->isZeroLengthBitField(Context)) {
385         Run = FieldEnd;
386         continue;
387       }
388       llvm::Type *Type = Types.ConvertTypeForMem(Field->getType());
389       // If we don't have a run yet, or don't live within the previous run's
390       // allocated storage then we allocate some storage and start a new run.
391       if (Run == FieldEnd || BitOffset >= Tail) {
392         Run = Field;
393         StartBitOffset = BitOffset;
394         Tail = StartBitOffset + DataLayout.getTypeAllocSizeInBits(Type);
395         // Add the storage member to the record.  This must be added to the
396         // record before the bitfield members so that it gets laid out before
397         // the bitfields it contains get laid out.
398         Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
399       }
400       // Bitfields get the offset of their storage but come afterward and remain
401       // there after a stable sort.
402       Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
403                                    MemberInfo::Field, nullptr, *Field));
404     }
405     return;
406   }
407 
408   // Check if OffsetInRecord is better as a single field run. When OffsetInRecord
409   // has legal integer width, and its bitfield offset is naturally aligned, it
410   // is better to make the bitfield a separate storage component so as it can be
411   // accessed directly with lower cost.
412   auto IsBetterAsSingleFieldRun = [&](uint64_t OffsetInRecord,
413                                       uint64_t StartBitOffset) {
414     if (!Types.getCodeGenOpts().FineGrainedBitfieldAccesses)
415       return false;
416     if (!DataLayout.isLegalInteger(OffsetInRecord))
417       return false;
418     // Make sure StartBitOffset is natually aligned if it is treated as an
419     // IType integer.
420      if (StartBitOffset %
421             Context.toBits(getAlignment(getIntNType(OffsetInRecord))) !=
422         0)
423       return false;
424     return true;
425   };
426 
427   // The start field is better as a single field run.
428   bool StartFieldAsSingleRun = false;
429   for (;;) {
430     // Check to see if we need to start a new run.
431     if (Run == FieldEnd) {
432       // If we're out of fields, return.
433       if (Field == FieldEnd)
434         break;
435       // Any non-zero-length bitfield can start a new run.
436       if (!Field->isZeroLengthBitField(Context)) {
437         Run = Field;
438         StartBitOffset = getFieldBitOffset(*Field);
439         Tail = StartBitOffset + Field->getBitWidthValue(Context);
440         StartFieldAsSingleRun = IsBetterAsSingleFieldRun(Tail - StartBitOffset,
441                                                          StartBitOffset);
442       }
443       ++Field;
444       continue;
445     }
446 
447     // If the start field of a new run is better as a single run, or
448     // if current field (or consecutive fields) is better as a single run, or
449     // if current field has zero width bitfield and either
450     // UseZeroLengthBitfieldAlignment or UseBitFieldTypeAlignment is set to
451     // true, or
452     // if the offset of current field is inconsistent with the offset of
453     // previous field plus its offset,
454     // skip the block below and go ahead to emit the storage.
455     // Otherwise, try to add bitfields to the run.
456     if (!StartFieldAsSingleRun && Field != FieldEnd &&
457         !IsBetterAsSingleFieldRun(Tail - StartBitOffset, StartBitOffset) &&
458         (!Field->isZeroLengthBitField(Context) ||
459          (!Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
460           !Context.getTargetInfo().useBitFieldTypeAlignment())) &&
461         Tail == getFieldBitOffset(*Field)) {
462       Tail += Field->getBitWidthValue(Context);
463       ++Field;
464       continue;
465     }
466 
467     // We've hit a break-point in the run and need to emit a storage field.
468     llvm::Type *Type = getIntNType(Tail - StartBitOffset);
469     // Add the storage member to the record and set the bitfield info for all of
470     // the bitfields in the run.  Bitfields get the offset of their storage but
471     // come afterward and remain there after a stable sort.
472     Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
473     for (; Run != Field; ++Run)
474       Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
475                                    MemberInfo::Field, nullptr, *Run));
476     Run = FieldEnd;
477     StartFieldAsSingleRun = false;
478   }
479 }
480 
481 void CGRecordLowering::accumulateBases() {
482   // If we've got a primary virtual base, we need to add it with the bases.
483   if (Layout.isPrimaryBaseVirtual()) {
484     const CXXRecordDecl *BaseDecl = Layout.getPrimaryBase();
485     Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::Base,
486                                  getStorageType(BaseDecl), BaseDecl));
487   }
488   // Accumulate the non-virtual bases.
489   for (const auto &Base : RD->bases()) {
490     if (Base.isVirtual())
491       continue;
492 
493     // Bases can be zero-sized even if not technically empty if they
494     // contain only a trailing array member.
495     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
496     if (!BaseDecl->isEmpty() &&
497         !Context.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero())
498       Members.push_back(MemberInfo(Layout.getBaseClassOffset(BaseDecl),
499           MemberInfo::Base, getStorageType(BaseDecl), BaseDecl));
500   }
501 }
502 
503 void CGRecordLowering::accumulateVPtrs() {
504   if (Layout.hasOwnVFPtr())
505     Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::VFPtr,
506         llvm::FunctionType::get(getIntNType(32), /*isVarArg=*/true)->
507             getPointerTo()->getPointerTo()));
508   if (Layout.hasOwnVBPtr())
509     Members.push_back(MemberInfo(Layout.getVBPtrOffset(), MemberInfo::VBPtr,
510         llvm::Type::getInt32PtrTy(Types.getLLVMContext())));
511 }
512 
513 void CGRecordLowering::accumulateVBases() {
514   CharUnits ScissorOffset = Layout.getNonVirtualSize();
515   // In the itanium ABI, it's possible to place a vbase at a dsize that is
516   // smaller than the nvsize.  Here we check to see if such a base is placed
517   // before the nvsize and set the scissor offset to that, instead of the
518   // nvsize.
519   if (isOverlappingVBaseABI())
520     for (const auto &Base : RD->vbases()) {
521       const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
522       if (BaseDecl->isEmpty())
523         continue;
524       // If the vbase is a primary virtual base of some base, then it doesn't
525       // get its own storage location but instead lives inside of that base.
526       if (Context.isNearlyEmpty(BaseDecl) && !hasOwnStorage(RD, BaseDecl))
527         continue;
528       ScissorOffset = std::min(ScissorOffset,
529                                Layout.getVBaseClassOffset(BaseDecl));
530     }
531   Members.push_back(MemberInfo(ScissorOffset, MemberInfo::Scissor, nullptr,
532                                RD));
533   for (const auto &Base : RD->vbases()) {
534     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
535     if (BaseDecl->isEmpty())
536       continue;
537     CharUnits Offset = Layout.getVBaseClassOffset(BaseDecl);
538     // If the vbase is a primary virtual base of some base, then it doesn't
539     // get its own storage location but instead lives inside of that base.
540     if (isOverlappingVBaseABI() &&
541         Context.isNearlyEmpty(BaseDecl) &&
542         !hasOwnStorage(RD, BaseDecl)) {
543       Members.push_back(MemberInfo(Offset, MemberInfo::VBase, nullptr,
544                                    BaseDecl));
545       continue;
546     }
547     // If we've got a vtordisp, add it as a storage type.
548     if (Layout.getVBaseOffsetsMap().find(BaseDecl)->second.hasVtorDisp())
549       Members.push_back(StorageInfo(Offset - CharUnits::fromQuantity(4),
550                                     getIntNType(32)));
551     Members.push_back(MemberInfo(Offset, MemberInfo::VBase,
552                                  getStorageType(BaseDecl), BaseDecl));
553   }
554 }
555 
556 bool CGRecordLowering::hasOwnStorage(const CXXRecordDecl *Decl,
557                                      const CXXRecordDecl *Query) {
558   const ASTRecordLayout &DeclLayout = Context.getASTRecordLayout(Decl);
559   if (DeclLayout.isPrimaryBaseVirtual() && DeclLayout.getPrimaryBase() == Query)
560     return false;
561   for (const auto &Base : Decl->bases())
562     if (!hasOwnStorage(Base.getType()->getAsCXXRecordDecl(), Query))
563       return false;
564   return true;
565 }
566 
567 void CGRecordLowering::calculateZeroInit() {
568   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
569                                                MemberEnd = Members.end();
570        IsZeroInitializableAsBase && Member != MemberEnd; ++Member) {
571     if (Member->Kind == MemberInfo::Field) {
572       if (!Member->FD || isZeroInitializable(Member->FD))
573         continue;
574       IsZeroInitializable = IsZeroInitializableAsBase = false;
575     } else if (Member->Kind == MemberInfo::Base ||
576                Member->Kind == MemberInfo::VBase) {
577       if (isZeroInitializable(Member->RD))
578         continue;
579       IsZeroInitializable = false;
580       if (Member->Kind == MemberInfo::Base)
581         IsZeroInitializableAsBase = false;
582     }
583   }
584 }
585 
586 void CGRecordLowering::clipTailPadding() {
587   std::vector<MemberInfo>::iterator Prior = Members.begin();
588   CharUnits Tail = getSize(Prior->Data);
589   for (std::vector<MemberInfo>::iterator Member = Prior + 1,
590                                          MemberEnd = Members.end();
591        Member != MemberEnd; ++Member) {
592     // Only members with data and the scissor can cut into tail padding.
593     if (!Member->Data && Member->Kind != MemberInfo::Scissor)
594       continue;
595     if (Member->Offset < Tail) {
596       assert(Prior->Kind == MemberInfo::Field &&
597              "Only storage fields have tail padding!");
598       if (!Prior->FD || Prior->FD->isBitField())
599         Prior->Data = getByteArrayType(bitsToCharUnits(llvm::alignTo(
600             cast<llvm::IntegerType>(Prior->Data)->getIntegerBitWidth(), 8)));
601       else {
602         assert(Prior->FD->hasAttr<NoUniqueAddressAttr>() &&
603                "should not have reused this field's tail padding");
604         Prior->Data = getByteArrayType(
605             Context.getTypeInfoDataSizeInChars(Prior->FD->getType()).first);
606       }
607     }
608     if (Member->Data)
609       Prior = Member;
610     Tail = Prior->Offset + getSize(Prior->Data);
611   }
612 }
613 
614 void CGRecordLowering::determinePacked(bool NVBaseType) {
615   if (Packed)
616     return;
617   CharUnits Alignment = CharUnits::One();
618   CharUnits NVAlignment = CharUnits::One();
619   CharUnits NVSize =
620       !NVBaseType && RD ? Layout.getNonVirtualSize() : CharUnits::Zero();
621   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
622                                                MemberEnd = Members.end();
623        Member != MemberEnd; ++Member) {
624     if (!Member->Data)
625       continue;
626     // If any member falls at an offset that it not a multiple of its alignment,
627     // then the entire record must be packed.
628     if (Member->Offset % getAlignment(Member->Data))
629       Packed = true;
630     if (Member->Offset < NVSize)
631       NVAlignment = std::max(NVAlignment, getAlignment(Member->Data));
632     Alignment = std::max(Alignment, getAlignment(Member->Data));
633   }
634   // If the size of the record (the capstone's offset) is not a multiple of the
635   // record's alignment, it must be packed.
636   if (Members.back().Offset % Alignment)
637     Packed = true;
638   // If the non-virtual sub-object is not a multiple of the non-virtual
639   // sub-object's alignment, it must be packed.  We cannot have a packed
640   // non-virtual sub-object and an unpacked complete object or vise versa.
641   if (NVSize % NVAlignment)
642     Packed = true;
643   // Update the alignment of the sentinel.
644   if (!Packed)
645     Members.back().Data = getIntNType(Context.toBits(Alignment));
646 }
647 
648 void CGRecordLowering::insertPadding() {
649   std::vector<std::pair<CharUnits, CharUnits> > Padding;
650   CharUnits Size = CharUnits::Zero();
651   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
652                                                MemberEnd = Members.end();
653        Member != MemberEnd; ++Member) {
654     if (!Member->Data)
655       continue;
656     CharUnits Offset = Member->Offset;
657     assert(Offset >= Size);
658     // Insert padding if we need to.
659     if (Offset !=
660         Size.alignTo(Packed ? CharUnits::One() : getAlignment(Member->Data)))
661       Padding.push_back(std::make_pair(Size, Offset - Size));
662     Size = Offset + getSize(Member->Data);
663   }
664   if (Padding.empty())
665     return;
666   // Add the padding to the Members list and sort it.
667   for (std::vector<std::pair<CharUnits, CharUnits> >::const_iterator
668         Pad = Padding.begin(), PadEnd = Padding.end();
669         Pad != PadEnd; ++Pad)
670     Members.push_back(StorageInfo(Pad->first, getByteArrayType(Pad->second)));
671   llvm::stable_sort(Members);
672 }
673 
674 void CGRecordLowering::fillOutputFields() {
675   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
676                                                MemberEnd = Members.end();
677        Member != MemberEnd; ++Member) {
678     if (Member->Data)
679       FieldTypes.push_back(Member->Data);
680     if (Member->Kind == MemberInfo::Field) {
681       if (Member->FD)
682         Fields[Member->FD->getCanonicalDecl()] = FieldTypes.size() - 1;
683       // A field without storage must be a bitfield.
684       if (!Member->Data)
685         setBitFieldInfo(Member->FD, Member->Offset, FieldTypes.back());
686     } else if (Member->Kind == MemberInfo::Base)
687       NonVirtualBases[Member->RD] = FieldTypes.size() - 1;
688     else if (Member->Kind == MemberInfo::VBase)
689       VirtualBases[Member->RD] = FieldTypes.size() - 1;
690   }
691 }
692 
693 CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
694                                         const FieldDecl *FD,
695                                         uint64_t Offset, uint64_t Size,
696                                         uint64_t StorageSize,
697                                         CharUnits StorageOffset) {
698   // This function is vestigial from CGRecordLayoutBuilder days but is still
699   // used in GCObjCRuntime.cpp.  That usage has a "fixme" attached to it that
700   // when addressed will allow for the removal of this function.
701   llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType());
702   CharUnits TypeSizeInBytes =
703     CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(Ty));
704   uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes);
705 
706   bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
707 
708   if (Size > TypeSizeInBits) {
709     // We have a wide bit-field. The extra bits are only used for padding, so
710     // if we have a bitfield of type T, with size N:
711     //
712     // T t : N;
713     //
714     // We can just assume that it's:
715     //
716     // T t : sizeof(T);
717     //
718     Size = TypeSizeInBits;
719   }
720 
721   // Reverse the bit offsets for big endian machines. Because we represent
722   // a bitfield as a single large integer load, we can imagine the bits
723   // counting from the most-significant-bit instead of the
724   // least-significant-bit.
725   if (Types.getDataLayout().isBigEndian()) {
726     Offset = StorageSize - (Offset + Size);
727   }
728 
729   return CGBitFieldInfo(Offset, Size, IsSigned, StorageSize, StorageOffset);
730 }
731 
732 CGRecordLayout *CodeGenTypes::ComputeRecordLayout(const RecordDecl *D,
733                                                   llvm::StructType *Ty) {
734   CGRecordLowering Builder(*this, D, /*Packed=*/false);
735 
736   Builder.lower(/*NonVirtualBaseType=*/false);
737 
738   // If we're in C++, compute the base subobject type.
739   llvm::StructType *BaseTy = nullptr;
740   if (isa<CXXRecordDecl>(D) && !D->isUnion() && !D->hasAttr<FinalAttr>()) {
741     BaseTy = Ty;
742     if (Builder.Layout.getNonVirtualSize() != Builder.Layout.getSize()) {
743       CGRecordLowering BaseBuilder(*this, D, /*Packed=*/Builder.Packed);
744       BaseBuilder.lower(/*NonVirtualBaseType=*/true);
745       BaseTy = llvm::StructType::create(
746           getLLVMContext(), BaseBuilder.FieldTypes, "", BaseBuilder.Packed);
747       addRecordTypeName(D, BaseTy, ".base");
748       // BaseTy and Ty must agree on their packedness for getLLVMFieldNo to work
749       // on both of them with the same index.
750       assert(Builder.Packed == BaseBuilder.Packed &&
751              "Non-virtual and complete types must agree on packedness");
752     }
753   }
754 
755   // Fill in the struct *after* computing the base type.  Filling in the body
756   // signifies that the type is no longer opaque and record layout is complete,
757   // but we may need to recursively layout D while laying D out as a base type.
758   Ty->setBody(Builder.FieldTypes, Builder.Packed);
759 
760   CGRecordLayout *RL =
761     new CGRecordLayout(Ty, BaseTy, Builder.IsZeroInitializable,
762                         Builder.IsZeroInitializableAsBase);
763 
764   RL->NonVirtualBases.swap(Builder.NonVirtualBases);
765   RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases);
766 
767   // Add all the field numbers.
768   RL->FieldInfo.swap(Builder.Fields);
769 
770   // Add bitfield info.
771   RL->BitFields.swap(Builder.BitFields);
772 
773   // Dump the layout, if requested.
774   if (getContext().getLangOpts().DumpRecordLayouts) {
775     llvm::outs() << "\n*** Dumping IRgen Record Layout\n";
776     llvm::outs() << "Record: ";
777     D->dump(llvm::outs());
778     llvm::outs() << "\nLayout: ";
779     RL->print(llvm::outs());
780   }
781 
782 #ifndef NDEBUG
783   // Verify that the computed LLVM struct size matches the AST layout size.
784   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D);
785 
786   uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize());
787   assert(TypeSizeInBits == getDataLayout().getTypeAllocSizeInBits(Ty) &&
788          "Type size mismatch!");
789 
790   if (BaseTy) {
791     CharUnits NonVirtualSize  = Layout.getNonVirtualSize();
792 
793     uint64_t AlignedNonVirtualTypeSizeInBits =
794       getContext().toBits(NonVirtualSize);
795 
796     assert(AlignedNonVirtualTypeSizeInBits ==
797            getDataLayout().getTypeAllocSizeInBits(BaseTy) &&
798            "Type size mismatch!");
799   }
800 
801   // Verify that the LLVM and AST field offsets agree.
802   llvm::StructType *ST = RL->getLLVMType();
803   const llvm::StructLayout *SL = getDataLayout().getStructLayout(ST);
804 
805   const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D);
806   RecordDecl::field_iterator it = D->field_begin();
807   for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) {
808     const FieldDecl *FD = *it;
809 
810     // Ignore zero-sized fields.
811     if (FD->isZeroSize(getContext()))
812       continue;
813 
814     // For non-bit-fields, just check that the LLVM struct offset matches the
815     // AST offset.
816     if (!FD->isBitField()) {
817       unsigned FieldNo = RL->getLLVMFieldNo(FD);
818       assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) &&
819              "Invalid field offset!");
820       continue;
821     }
822 
823     // Ignore unnamed bit-fields.
824     if (!FD->getDeclName())
825       continue;
826 
827     const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD);
828     llvm::Type *ElementTy = ST->getTypeAtIndex(RL->getLLVMFieldNo(FD));
829 
830     // Unions have overlapping elements dictating their layout, but for
831     // non-unions we can verify that this section of the layout is the exact
832     // expected size.
833     if (D->isUnion()) {
834       // For unions we verify that the start is zero and the size
835       // is in-bounds. However, on BE systems, the offset may be non-zero, but
836       // the size + offset should match the storage size in that case as it
837       // "starts" at the back.
838       if (getDataLayout().isBigEndian())
839         assert(static_cast<unsigned>(Info.Offset + Info.Size) ==
840                Info.StorageSize &&
841                "Big endian union bitfield does not end at the back");
842       else
843         assert(Info.Offset == 0 &&
844                "Little endian union bitfield with a non-zero offset");
845       assert(Info.StorageSize <= SL->getSizeInBits() &&
846              "Union not large enough for bitfield storage");
847     } else {
848       assert(Info.StorageSize ==
849              getDataLayout().getTypeAllocSizeInBits(ElementTy) &&
850              "Storage size does not match the element type size");
851     }
852     assert(Info.Size > 0 && "Empty bitfield!");
853     assert(static_cast<unsigned>(Info.Offset) + Info.Size <= Info.StorageSize &&
854            "Bitfield outside of its allocated storage");
855   }
856 #endif
857 
858   return RL;
859 }
860 
861 void CGRecordLayout::print(raw_ostream &OS) const {
862   OS << "<CGRecordLayout\n";
863   OS << "  LLVMType:" << *CompleteObjectType << "\n";
864   if (BaseSubobjectType)
865     OS << "  NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n";
866   OS << "  IsZeroInitializable:" << IsZeroInitializable << "\n";
867   OS << "  BitFields:[\n";
868 
869   // Print bit-field infos in declaration order.
870   std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs;
871   for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator
872          it = BitFields.begin(), ie = BitFields.end();
873        it != ie; ++it) {
874     const RecordDecl *RD = it->first->getParent();
875     unsigned Index = 0;
876     for (RecordDecl::field_iterator
877            it2 = RD->field_begin(); *it2 != it->first; ++it2)
878       ++Index;
879     BFIs.push_back(std::make_pair(Index, &it->second));
880   }
881   llvm::array_pod_sort(BFIs.begin(), BFIs.end());
882   for (unsigned i = 0, e = BFIs.size(); i != e; ++i) {
883     OS.indent(4);
884     BFIs[i].second->print(OS);
885     OS << "\n";
886   }
887 
888   OS << "]>\n";
889 }
890 
891 LLVM_DUMP_METHOD void CGRecordLayout::dump() const {
892   print(llvm::errs());
893 }
894 
895 void CGBitFieldInfo::print(raw_ostream &OS) const {
896   OS << "<CGBitFieldInfo"
897      << " Offset:" << Offset
898      << " Size:" << Size
899      << " IsSigned:" << IsSigned
900      << " StorageSize:" << StorageSize
901      << " StorageOffset:" << StorageOffset.getQuantity() << ">";
902 }
903 
904 LLVM_DUMP_METHOD void CGBitFieldInfo::dump() const {
905   print(llvm::errs());
906 }
907