1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Stmt nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGOpenMPRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/Stmt.h"
21 #include "clang/AST/StmtVisitor.h"
22 #include "clang/Basic/Builtins.h"
23 #include "clang/Basic/DiagnosticSema.h"
24 #include "clang/Basic/PrettyStackTrace.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/IR/Assumptions.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/MDBuilder.h"
34 #include "llvm/Support/SaveAndRestore.h"
35 
36 using namespace clang;
37 using namespace CodeGen;
38 
39 //===----------------------------------------------------------------------===//
40 //                              Statement Emission
41 //===----------------------------------------------------------------------===//
42 
43 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
44   if (CGDebugInfo *DI = getDebugInfo()) {
45     SourceLocation Loc;
46     Loc = S->getBeginLoc();
47     DI->EmitLocation(Builder, Loc);
48 
49     LastStopPoint = Loc;
50   }
51 }
52 
53 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) {
54   assert(S && "Null statement?");
55   PGO.setCurrentStmt(S);
56 
57   // These statements have their own debug info handling.
58   if (EmitSimpleStmt(S, Attrs))
59     return;
60 
61   // Check if we are generating unreachable code.
62   if (!HaveInsertPoint()) {
63     // If so, and the statement doesn't contain a label, then we do not need to
64     // generate actual code. This is safe because (1) the current point is
65     // unreachable, so we don't need to execute the code, and (2) we've already
66     // handled the statements which update internal data structures (like the
67     // local variable map) which could be used by subsequent statements.
68     if (!ContainsLabel(S)) {
69       // Verify that any decl statements were handled as simple, they may be in
70       // scope of subsequent reachable statements.
71       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
72       return;
73     }
74 
75     // Otherwise, make a new block to hold the code.
76     EnsureInsertPoint();
77   }
78 
79   // Generate a stoppoint if we are emitting debug info.
80   EmitStopPoint(S);
81 
82   // Ignore all OpenMP directives except for simd if OpenMP with Simd is
83   // enabled.
84   if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) {
85     if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) {
86       EmitSimpleOMPExecutableDirective(*D);
87       return;
88     }
89   }
90 
91   switch (S->getStmtClass()) {
92   case Stmt::NoStmtClass:
93   case Stmt::CXXCatchStmtClass:
94   case Stmt::SEHExceptStmtClass:
95   case Stmt::SEHFinallyStmtClass:
96   case Stmt::MSDependentExistsStmtClass:
97     llvm_unreachable("invalid statement class to emit generically");
98   case Stmt::NullStmtClass:
99   case Stmt::CompoundStmtClass:
100   case Stmt::DeclStmtClass:
101   case Stmt::LabelStmtClass:
102   case Stmt::AttributedStmtClass:
103   case Stmt::GotoStmtClass:
104   case Stmt::BreakStmtClass:
105   case Stmt::ContinueStmtClass:
106   case Stmt::DefaultStmtClass:
107   case Stmt::CaseStmtClass:
108   case Stmt::SEHLeaveStmtClass:
109     llvm_unreachable("should have emitted these statements as simple");
110 
111 #define STMT(Type, Base)
112 #define ABSTRACT_STMT(Op)
113 #define EXPR(Type, Base) \
114   case Stmt::Type##Class:
115 #include "clang/AST/StmtNodes.inc"
116   {
117     // Remember the block we came in on.
118     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
119     assert(incoming && "expression emission must have an insertion point");
120 
121     EmitIgnoredExpr(cast<Expr>(S));
122 
123     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
124     assert(outgoing && "expression emission cleared block!");
125 
126     // The expression emitters assume (reasonably!) that the insertion
127     // point is always set.  To maintain that, the call-emission code
128     // for noreturn functions has to enter a new block with no
129     // predecessors.  We want to kill that block and mark the current
130     // insertion point unreachable in the common case of a call like
131     // "exit();".  Since expression emission doesn't otherwise create
132     // blocks with no predecessors, we can just test for that.
133     // However, we must be careful not to do this to our incoming
134     // block, because *statement* emission does sometimes create
135     // reachable blocks which will have no predecessors until later in
136     // the function.  This occurs with, e.g., labels that are not
137     // reachable by fallthrough.
138     if (incoming != outgoing && outgoing->use_empty()) {
139       outgoing->eraseFromParent();
140       Builder.ClearInsertionPoint();
141     }
142     break;
143   }
144 
145   case Stmt::IndirectGotoStmtClass:
146     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
147 
148   case Stmt::IfStmtClass:      EmitIfStmt(cast<IfStmt>(*S));              break;
149   case Stmt::WhileStmtClass:   EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break;
150   case Stmt::DoStmtClass:      EmitDoStmt(cast<DoStmt>(*S), Attrs);       break;
151   case Stmt::ForStmtClass:     EmitForStmt(cast<ForStmt>(*S), Attrs);     break;
152 
153   case Stmt::ReturnStmtClass:  EmitReturnStmt(cast<ReturnStmt>(*S));      break;
154 
155   case Stmt::SwitchStmtClass:  EmitSwitchStmt(cast<SwitchStmt>(*S));      break;
156   case Stmt::GCCAsmStmtClass:  // Intentional fall-through.
157   case Stmt::MSAsmStmtClass:   EmitAsmStmt(cast<AsmStmt>(*S));            break;
158   case Stmt::CoroutineBodyStmtClass:
159     EmitCoroutineBody(cast<CoroutineBodyStmt>(*S));
160     break;
161   case Stmt::CoreturnStmtClass:
162     EmitCoreturnStmt(cast<CoreturnStmt>(*S));
163     break;
164   case Stmt::CapturedStmtClass: {
165     const CapturedStmt *CS = cast<CapturedStmt>(S);
166     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
167     }
168     break;
169   case Stmt::ObjCAtTryStmtClass:
170     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
171     break;
172   case Stmt::ObjCAtCatchStmtClass:
173     llvm_unreachable(
174                     "@catch statements should be handled by EmitObjCAtTryStmt");
175   case Stmt::ObjCAtFinallyStmtClass:
176     llvm_unreachable(
177                   "@finally statements should be handled by EmitObjCAtTryStmt");
178   case Stmt::ObjCAtThrowStmtClass:
179     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
180     break;
181   case Stmt::ObjCAtSynchronizedStmtClass:
182     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
183     break;
184   case Stmt::ObjCForCollectionStmtClass:
185     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
186     break;
187   case Stmt::ObjCAutoreleasePoolStmtClass:
188     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
189     break;
190 
191   case Stmt::CXXTryStmtClass:
192     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
193     break;
194   case Stmt::CXXForRangeStmtClass:
195     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs);
196     break;
197   case Stmt::SEHTryStmtClass:
198     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
199     break;
200   case Stmt::OMPMetaDirectiveClass:
201     EmitOMPMetaDirective(cast<OMPMetaDirective>(*S));
202     break;
203   case Stmt::OMPCanonicalLoopClass:
204     EmitOMPCanonicalLoop(cast<OMPCanonicalLoop>(S));
205     break;
206   case Stmt::OMPParallelDirectiveClass:
207     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
208     break;
209   case Stmt::OMPSimdDirectiveClass:
210     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
211     break;
212   case Stmt::OMPTileDirectiveClass:
213     EmitOMPTileDirective(cast<OMPTileDirective>(*S));
214     break;
215   case Stmt::OMPUnrollDirectiveClass:
216     EmitOMPUnrollDirective(cast<OMPUnrollDirective>(*S));
217     break;
218   case Stmt::OMPForDirectiveClass:
219     EmitOMPForDirective(cast<OMPForDirective>(*S));
220     break;
221   case Stmt::OMPForSimdDirectiveClass:
222     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
223     break;
224   case Stmt::OMPSectionsDirectiveClass:
225     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
226     break;
227   case Stmt::OMPSectionDirectiveClass:
228     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
229     break;
230   case Stmt::OMPSingleDirectiveClass:
231     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
232     break;
233   case Stmt::OMPMasterDirectiveClass:
234     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
235     break;
236   case Stmt::OMPCriticalDirectiveClass:
237     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
238     break;
239   case Stmt::OMPParallelForDirectiveClass:
240     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
241     break;
242   case Stmt::OMPParallelForSimdDirectiveClass:
243     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
244     break;
245   case Stmt::OMPParallelMasterDirectiveClass:
246     EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S));
247     break;
248   case Stmt::OMPParallelSectionsDirectiveClass:
249     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
250     break;
251   case Stmt::OMPTaskDirectiveClass:
252     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
253     break;
254   case Stmt::OMPTaskyieldDirectiveClass:
255     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
256     break;
257   case Stmt::OMPBarrierDirectiveClass:
258     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
259     break;
260   case Stmt::OMPTaskwaitDirectiveClass:
261     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
262     break;
263   case Stmt::OMPTaskgroupDirectiveClass:
264     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
265     break;
266   case Stmt::OMPFlushDirectiveClass:
267     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
268     break;
269   case Stmt::OMPDepobjDirectiveClass:
270     EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S));
271     break;
272   case Stmt::OMPScanDirectiveClass:
273     EmitOMPScanDirective(cast<OMPScanDirective>(*S));
274     break;
275   case Stmt::OMPOrderedDirectiveClass:
276     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
277     break;
278   case Stmt::OMPAtomicDirectiveClass:
279     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
280     break;
281   case Stmt::OMPTargetDirectiveClass:
282     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
283     break;
284   case Stmt::OMPTeamsDirectiveClass:
285     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
286     break;
287   case Stmt::OMPCancellationPointDirectiveClass:
288     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
289     break;
290   case Stmt::OMPCancelDirectiveClass:
291     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
292     break;
293   case Stmt::OMPTargetDataDirectiveClass:
294     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
295     break;
296   case Stmt::OMPTargetEnterDataDirectiveClass:
297     EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
298     break;
299   case Stmt::OMPTargetExitDataDirectiveClass:
300     EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
301     break;
302   case Stmt::OMPTargetParallelDirectiveClass:
303     EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
304     break;
305   case Stmt::OMPTargetParallelForDirectiveClass:
306     EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
307     break;
308   case Stmt::OMPTaskLoopDirectiveClass:
309     EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
310     break;
311   case Stmt::OMPTaskLoopSimdDirectiveClass:
312     EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
313     break;
314   case Stmt::OMPMasterTaskLoopDirectiveClass:
315     EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S));
316     break;
317   case Stmt::OMPMaskedTaskLoopDirectiveClass:
318     llvm_unreachable("masked taskloop directive not supported yet.");
319     break;
320   case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
321     EmitOMPMasterTaskLoopSimdDirective(
322         cast<OMPMasterTaskLoopSimdDirective>(*S));
323     break;
324   case Stmt::OMPMaskedTaskLoopSimdDirectiveClass:
325     llvm_unreachable("masked taskloop simd directive not supported yet.");
326     break;
327   case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
328     EmitOMPParallelMasterTaskLoopDirective(
329         cast<OMPParallelMasterTaskLoopDirective>(*S));
330     break;
331   case Stmt::OMPParallelMaskedTaskLoopDirectiveClass:
332     llvm_unreachable("parallel masked taskloop directive not supported yet.");
333     break;
334   case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
335     EmitOMPParallelMasterTaskLoopSimdDirective(
336         cast<OMPParallelMasterTaskLoopSimdDirective>(*S));
337     break;
338   case Stmt::OMPParallelMaskedTaskLoopSimdDirectiveClass:
339     llvm_unreachable(
340         "parallel masked taskloop simd directive not supported yet.");
341     break;
342   case Stmt::OMPDistributeDirectiveClass:
343     EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
344     break;
345   case Stmt::OMPTargetUpdateDirectiveClass:
346     EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S));
347     break;
348   case Stmt::OMPDistributeParallelForDirectiveClass:
349     EmitOMPDistributeParallelForDirective(
350         cast<OMPDistributeParallelForDirective>(*S));
351     break;
352   case Stmt::OMPDistributeParallelForSimdDirectiveClass:
353     EmitOMPDistributeParallelForSimdDirective(
354         cast<OMPDistributeParallelForSimdDirective>(*S));
355     break;
356   case Stmt::OMPDistributeSimdDirectiveClass:
357     EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S));
358     break;
359   case Stmt::OMPTargetParallelForSimdDirectiveClass:
360     EmitOMPTargetParallelForSimdDirective(
361         cast<OMPTargetParallelForSimdDirective>(*S));
362     break;
363   case Stmt::OMPTargetSimdDirectiveClass:
364     EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S));
365     break;
366   case Stmt::OMPTeamsDistributeDirectiveClass:
367     EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S));
368     break;
369   case Stmt::OMPTeamsDistributeSimdDirectiveClass:
370     EmitOMPTeamsDistributeSimdDirective(
371         cast<OMPTeamsDistributeSimdDirective>(*S));
372     break;
373   case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
374     EmitOMPTeamsDistributeParallelForSimdDirective(
375         cast<OMPTeamsDistributeParallelForSimdDirective>(*S));
376     break;
377   case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
378     EmitOMPTeamsDistributeParallelForDirective(
379         cast<OMPTeamsDistributeParallelForDirective>(*S));
380     break;
381   case Stmt::OMPTargetTeamsDirectiveClass:
382     EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S));
383     break;
384   case Stmt::OMPTargetTeamsDistributeDirectiveClass:
385     EmitOMPTargetTeamsDistributeDirective(
386         cast<OMPTargetTeamsDistributeDirective>(*S));
387     break;
388   case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
389     EmitOMPTargetTeamsDistributeParallelForDirective(
390         cast<OMPTargetTeamsDistributeParallelForDirective>(*S));
391     break;
392   case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
393     EmitOMPTargetTeamsDistributeParallelForSimdDirective(
394         cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S));
395     break;
396   case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
397     EmitOMPTargetTeamsDistributeSimdDirective(
398         cast<OMPTargetTeamsDistributeSimdDirective>(*S));
399     break;
400   case Stmt::OMPInteropDirectiveClass:
401     EmitOMPInteropDirective(cast<OMPInteropDirective>(*S));
402     break;
403   case Stmt::OMPDispatchDirectiveClass:
404     llvm_unreachable("Dispatch directive not supported yet.");
405     break;
406   case Stmt::OMPMaskedDirectiveClass:
407     EmitOMPMaskedDirective(cast<OMPMaskedDirective>(*S));
408     break;
409   case Stmt::OMPGenericLoopDirectiveClass:
410     EmitOMPGenericLoopDirective(cast<OMPGenericLoopDirective>(*S));
411     break;
412   case Stmt::OMPTeamsGenericLoopDirectiveClass:
413     llvm_unreachable("teams loop directive not supported yet.");
414     break;
415   case Stmt::OMPTargetTeamsGenericLoopDirectiveClass:
416     llvm_unreachable("target teams loop directive not supported yet.");
417     break;
418   case Stmt::OMPParallelGenericLoopDirectiveClass:
419     llvm_unreachable("parallel loop directive not supported yet.");
420     break;
421   case Stmt::OMPTargetParallelGenericLoopDirectiveClass:
422     llvm_unreachable("target parallel loop directive not supported yet.");
423     break;
424   case Stmt::OMPParallelMaskedDirectiveClass:
425     llvm_unreachable("parallel masked directive not supported yet.");
426     break;
427   }
428 }
429 
430 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S,
431                                      ArrayRef<const Attr *> Attrs) {
432   switch (S->getStmtClass()) {
433   default:
434     return false;
435   case Stmt::NullStmtClass:
436     break;
437   case Stmt::CompoundStmtClass:
438     EmitCompoundStmt(cast<CompoundStmt>(*S));
439     break;
440   case Stmt::DeclStmtClass:
441     EmitDeclStmt(cast<DeclStmt>(*S));
442     break;
443   case Stmt::LabelStmtClass:
444     EmitLabelStmt(cast<LabelStmt>(*S));
445     break;
446   case Stmt::AttributedStmtClass:
447     EmitAttributedStmt(cast<AttributedStmt>(*S));
448     break;
449   case Stmt::GotoStmtClass:
450     EmitGotoStmt(cast<GotoStmt>(*S));
451     break;
452   case Stmt::BreakStmtClass:
453     EmitBreakStmt(cast<BreakStmt>(*S));
454     break;
455   case Stmt::ContinueStmtClass:
456     EmitContinueStmt(cast<ContinueStmt>(*S));
457     break;
458   case Stmt::DefaultStmtClass:
459     EmitDefaultStmt(cast<DefaultStmt>(*S), Attrs);
460     break;
461   case Stmt::CaseStmtClass:
462     EmitCaseStmt(cast<CaseStmt>(*S), Attrs);
463     break;
464   case Stmt::SEHLeaveStmtClass:
465     EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S));
466     break;
467   }
468   return true;
469 }
470 
471 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
472 /// this captures the expression result of the last sub-statement and returns it
473 /// (for use by the statement expression extension).
474 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
475                                           AggValueSlot AggSlot) {
476   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
477                              "LLVM IR generation of compound statement ('{}')");
478 
479   // Keep track of the current cleanup stack depth, including debug scopes.
480   LexicalScope Scope(*this, S.getSourceRange());
481 
482   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
483 }
484 
485 Address
486 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
487                                               bool GetLast,
488                                               AggValueSlot AggSlot) {
489 
490   const Stmt *ExprResult = S.getStmtExprResult();
491   assert((!GetLast || (GetLast && ExprResult)) &&
492          "If GetLast is true then the CompoundStmt must have a StmtExprResult");
493 
494   Address RetAlloca = Address::invalid();
495 
496   for (auto *CurStmt : S.body()) {
497     if (GetLast && ExprResult == CurStmt) {
498       // We have to special case labels here.  They are statements, but when put
499       // at the end of a statement expression, they yield the value of their
500       // subexpression.  Handle this by walking through all labels we encounter,
501       // emitting them before we evaluate the subexpr.
502       // Similar issues arise for attributed statements.
503       while (!isa<Expr>(ExprResult)) {
504         if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) {
505           EmitLabel(LS->getDecl());
506           ExprResult = LS->getSubStmt();
507         } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) {
508           // FIXME: Update this if we ever have attributes that affect the
509           // semantics of an expression.
510           ExprResult = AS->getSubStmt();
511         } else {
512           llvm_unreachable("unknown value statement");
513         }
514       }
515 
516       EnsureInsertPoint();
517 
518       const Expr *E = cast<Expr>(ExprResult);
519       QualType ExprTy = E->getType();
520       if (hasAggregateEvaluationKind(ExprTy)) {
521         EmitAggExpr(E, AggSlot);
522       } else {
523         // We can't return an RValue here because there might be cleanups at
524         // the end of the StmtExpr.  Because of that, we have to emit the result
525         // here into a temporary alloca.
526         RetAlloca = CreateMemTemp(ExprTy);
527         EmitAnyExprToMem(E, RetAlloca, Qualifiers(),
528                          /*IsInit*/ false);
529       }
530     } else {
531       EmitStmt(CurStmt);
532     }
533   }
534 
535   return RetAlloca;
536 }
537 
538 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
539   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
540 
541   // If there is a cleanup stack, then we it isn't worth trying to
542   // simplify this block (we would need to remove it from the scope map
543   // and cleanup entry).
544   if (!EHStack.empty())
545     return;
546 
547   // Can only simplify direct branches.
548   if (!BI || !BI->isUnconditional())
549     return;
550 
551   // Can only simplify empty blocks.
552   if (BI->getIterator() != BB->begin())
553     return;
554 
555   BB->replaceAllUsesWith(BI->getSuccessor(0));
556   BI->eraseFromParent();
557   BB->eraseFromParent();
558 }
559 
560 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
561   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
562 
563   // Fall out of the current block (if necessary).
564   EmitBranch(BB);
565 
566   if (IsFinished && BB->use_empty()) {
567     delete BB;
568     return;
569   }
570 
571   // Place the block after the current block, if possible, or else at
572   // the end of the function.
573   if (CurBB && CurBB->getParent())
574     CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
575   else
576     CurFn->getBasicBlockList().push_back(BB);
577   Builder.SetInsertPoint(BB);
578 }
579 
580 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
581   // Emit a branch from the current block to the target one if this
582   // was a real block.  If this was just a fall-through block after a
583   // terminator, don't emit it.
584   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
585 
586   if (!CurBB || CurBB->getTerminator()) {
587     // If there is no insert point or the previous block is already
588     // terminated, don't touch it.
589   } else {
590     // Otherwise, create a fall-through branch.
591     Builder.CreateBr(Target);
592   }
593 
594   Builder.ClearInsertionPoint();
595 }
596 
597 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
598   bool inserted = false;
599   for (llvm::User *u : block->users()) {
600     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
601       CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
602                                              block);
603       inserted = true;
604       break;
605     }
606   }
607 
608   if (!inserted)
609     CurFn->getBasicBlockList().push_back(block);
610 
611   Builder.SetInsertPoint(block);
612 }
613 
614 CodeGenFunction::JumpDest
615 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
616   JumpDest &Dest = LabelMap[D];
617   if (Dest.isValid()) return Dest;
618 
619   // Create, but don't insert, the new block.
620   Dest = JumpDest(createBasicBlock(D->getName()),
621                   EHScopeStack::stable_iterator::invalid(),
622                   NextCleanupDestIndex++);
623   return Dest;
624 }
625 
626 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
627   // Add this label to the current lexical scope if we're within any
628   // normal cleanups.  Jumps "in" to this label --- when permitted by
629   // the language --- may need to be routed around such cleanups.
630   if (EHStack.hasNormalCleanups() && CurLexicalScope)
631     CurLexicalScope->addLabel(D);
632 
633   JumpDest &Dest = LabelMap[D];
634 
635   // If we didn't need a forward reference to this label, just go
636   // ahead and create a destination at the current scope.
637   if (!Dest.isValid()) {
638     Dest = getJumpDestInCurrentScope(D->getName());
639 
640   // Otherwise, we need to give this label a target depth and remove
641   // it from the branch-fixups list.
642   } else {
643     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
644     Dest.setScopeDepth(EHStack.stable_begin());
645     ResolveBranchFixups(Dest.getBlock());
646   }
647 
648   EmitBlock(Dest.getBlock());
649 
650   // Emit debug info for labels.
651   if (CGDebugInfo *DI = getDebugInfo()) {
652     if (CGM.getCodeGenOpts().hasReducedDebugInfo()) {
653       DI->setLocation(D->getLocation());
654       DI->EmitLabel(D, Builder);
655     }
656   }
657 
658   incrementProfileCounter(D->getStmt());
659 }
660 
661 /// Change the cleanup scope of the labels in this lexical scope to
662 /// match the scope of the enclosing context.
663 void CodeGenFunction::LexicalScope::rescopeLabels() {
664   assert(!Labels.empty());
665   EHScopeStack::stable_iterator innermostScope
666     = CGF.EHStack.getInnermostNormalCleanup();
667 
668   // Change the scope depth of all the labels.
669   for (SmallVectorImpl<const LabelDecl*>::const_iterator
670          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
671     assert(CGF.LabelMap.count(*i));
672     JumpDest &dest = CGF.LabelMap.find(*i)->second;
673     assert(dest.getScopeDepth().isValid());
674     assert(innermostScope.encloses(dest.getScopeDepth()));
675     dest.setScopeDepth(innermostScope);
676   }
677 
678   // Reparent the labels if the new scope also has cleanups.
679   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
680     ParentScope->Labels.append(Labels.begin(), Labels.end());
681   }
682 }
683 
684 
685 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
686   EmitLabel(S.getDecl());
687 
688   // IsEHa - emit eha.scope.begin if it's a side entry of a scope
689   if (getLangOpts().EHAsynch && S.isSideEntry())
690     EmitSehCppScopeBegin();
691 
692   EmitStmt(S.getSubStmt());
693 }
694 
695 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
696   bool nomerge = false;
697   bool noinline = false;
698   bool alwaysinline = false;
699   const CallExpr *musttail = nullptr;
700 
701   for (const auto *A : S.getAttrs()) {
702     switch (A->getKind()) {
703     default:
704       break;
705     case attr::NoMerge:
706       nomerge = true;
707       break;
708     case attr::NoInline:
709       noinline = true;
710       break;
711     case attr::AlwaysInline:
712       alwaysinline = true;
713       break;
714     case attr::MustTail:
715       const Stmt *Sub = S.getSubStmt();
716       const ReturnStmt *R = cast<ReturnStmt>(Sub);
717       musttail = cast<CallExpr>(R->getRetValue()->IgnoreParens());
718       break;
719     }
720   }
721   SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge);
722   SaveAndRestore<bool> save_noinline(InNoInlineAttributedStmt, noinline);
723   SaveAndRestore<bool> save_alwaysinline(InAlwaysInlineAttributedStmt,
724                                          alwaysinline);
725   SaveAndRestore<const CallExpr *> save_musttail(MustTailCall, musttail);
726   EmitStmt(S.getSubStmt(), S.getAttrs());
727 }
728 
729 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
730   // If this code is reachable then emit a stop point (if generating
731   // debug info). We have to do this ourselves because we are on the
732   // "simple" statement path.
733   if (HaveInsertPoint())
734     EmitStopPoint(&S);
735 
736   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
737 }
738 
739 
740 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
741   if (const LabelDecl *Target = S.getConstantTarget()) {
742     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
743     return;
744   }
745 
746   // Ensure that we have an i8* for our PHI node.
747   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
748                                          Int8PtrTy, "addr");
749   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
750 
751   // Get the basic block for the indirect goto.
752   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
753 
754   // The first instruction in the block has to be the PHI for the switch dest,
755   // add an entry for this branch.
756   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
757 
758   EmitBranch(IndGotoBB);
759 }
760 
761 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
762   // The else branch of a consteval if statement is always the only branch that
763   // can be runtime evaluated.
764   if (S.isConsteval()) {
765     const Stmt *Executed = S.isNegatedConsteval() ? S.getThen() : S.getElse();
766     if (Executed) {
767       RunCleanupsScope ExecutedScope(*this);
768       EmitStmt(Executed);
769     }
770     return;
771   }
772 
773   // C99 6.8.4.1: The first substatement is executed if the expression compares
774   // unequal to 0.  The condition must be a scalar type.
775   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
776 
777   if (S.getInit())
778     EmitStmt(S.getInit());
779 
780   if (S.getConditionVariable())
781     EmitDecl(*S.getConditionVariable());
782 
783   // If the condition constant folds and can be elided, try to avoid emitting
784   // the condition and the dead arm of the if/else.
785   bool CondConstant;
786   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant,
787                                    S.isConstexpr())) {
788     // Figure out which block (then or else) is executed.
789     const Stmt *Executed = S.getThen();
790     const Stmt *Skipped  = S.getElse();
791     if (!CondConstant)  // Condition false?
792       std::swap(Executed, Skipped);
793 
794     // If the skipped block has no labels in it, just emit the executed block.
795     // This avoids emitting dead code and simplifies the CFG substantially.
796     if (S.isConstexpr() || !ContainsLabel(Skipped)) {
797       if (CondConstant)
798         incrementProfileCounter(&S);
799       if (Executed) {
800         RunCleanupsScope ExecutedScope(*this);
801         EmitStmt(Executed);
802       }
803       return;
804     }
805   }
806 
807   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
808   // the conditional branch.
809   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
810   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
811   llvm::BasicBlock *ElseBlock = ContBlock;
812   if (S.getElse())
813     ElseBlock = createBasicBlock("if.else");
814 
815   // Prefer the PGO based weights over the likelihood attribute.
816   // When the build isn't optimized the metadata isn't used, so don't generate
817   // it.
818   Stmt::Likelihood LH = Stmt::LH_None;
819   uint64_t Count = getProfileCount(S.getThen());
820   if (!Count && CGM.getCodeGenOpts().OptimizationLevel)
821     LH = Stmt::getLikelihood(S.getThen(), S.getElse());
822   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Count, LH);
823 
824   // Emit the 'then' code.
825   EmitBlock(ThenBlock);
826   incrementProfileCounter(&S);
827   {
828     RunCleanupsScope ThenScope(*this);
829     EmitStmt(S.getThen());
830   }
831   EmitBranch(ContBlock);
832 
833   // Emit the 'else' code if present.
834   if (const Stmt *Else = S.getElse()) {
835     {
836       // There is no need to emit line number for an unconditional branch.
837       auto NL = ApplyDebugLocation::CreateEmpty(*this);
838       EmitBlock(ElseBlock);
839     }
840     {
841       RunCleanupsScope ElseScope(*this);
842       EmitStmt(Else);
843     }
844     {
845       // There is no need to emit line number for an unconditional branch.
846       auto NL = ApplyDebugLocation::CreateEmpty(*this);
847       EmitBranch(ContBlock);
848     }
849   }
850 
851   // Emit the continuation block for code after the if.
852   EmitBlock(ContBlock, true);
853 }
854 
855 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
856                                     ArrayRef<const Attr *> WhileAttrs) {
857   // Emit the header for the loop, which will also become
858   // the continue target.
859   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
860   EmitBlock(LoopHeader.getBlock());
861 
862   // Create an exit block for when the condition fails, which will
863   // also become the break target.
864   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
865 
866   // Store the blocks to use for break and continue.
867   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
868 
869   // C++ [stmt.while]p2:
870   //   When the condition of a while statement is a declaration, the
871   //   scope of the variable that is declared extends from its point
872   //   of declaration (3.3.2) to the end of the while statement.
873   //   [...]
874   //   The object created in a condition is destroyed and created
875   //   with each iteration of the loop.
876   RunCleanupsScope ConditionScope(*this);
877 
878   if (S.getConditionVariable())
879     EmitDecl(*S.getConditionVariable());
880 
881   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
882   // evaluation of the controlling expression takes place before each
883   // execution of the loop body.
884   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
885 
886   // while(1) is common, avoid extra exit blocks.  Be sure
887   // to correctly handle break/continue though.
888   llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal);
889   bool CondIsConstInt = C != nullptr;
890   bool EmitBoolCondBranch = !CondIsConstInt || !C->isOne();
891   const SourceRange &R = S.getSourceRange();
892   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(),
893                  WhileAttrs, SourceLocToDebugLoc(R.getBegin()),
894                  SourceLocToDebugLoc(R.getEnd()),
895                  checkIfLoopMustProgress(CondIsConstInt));
896 
897   // As long as the condition is true, go to the loop body.
898   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
899   if (EmitBoolCondBranch) {
900     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
901     if (ConditionScope.requiresCleanups())
902       ExitBlock = createBasicBlock("while.exit");
903     llvm::MDNode *Weights =
904         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
905     if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
906       BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
907           BoolCondVal, Stmt::getLikelihood(S.getBody()));
908     Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, Weights);
909 
910     if (ExitBlock != LoopExit.getBlock()) {
911       EmitBlock(ExitBlock);
912       EmitBranchThroughCleanup(LoopExit);
913     }
914   } else if (const Attr *A = Stmt::getLikelihoodAttr(S.getBody())) {
915     CGM.getDiags().Report(A->getLocation(),
916                           diag::warn_attribute_has_no_effect_on_infinite_loop)
917         << A << A->getRange();
918     CGM.getDiags().Report(
919         S.getWhileLoc(),
920         diag::note_attribute_has_no_effect_on_infinite_loop_here)
921         << SourceRange(S.getWhileLoc(), S.getRParenLoc());
922   }
923 
924   // Emit the loop body.  We have to emit this in a cleanup scope
925   // because it might be a singleton DeclStmt.
926   {
927     RunCleanupsScope BodyScope(*this);
928     EmitBlock(LoopBody);
929     incrementProfileCounter(&S);
930     EmitStmt(S.getBody());
931   }
932 
933   BreakContinueStack.pop_back();
934 
935   // Immediately force cleanup.
936   ConditionScope.ForceCleanup();
937 
938   EmitStopPoint(&S);
939   // Branch to the loop header again.
940   EmitBranch(LoopHeader.getBlock());
941 
942   LoopStack.pop();
943 
944   // Emit the exit block.
945   EmitBlock(LoopExit.getBlock(), true);
946 
947   // The LoopHeader typically is just a branch if we skipped emitting
948   // a branch, try to erase it.
949   if (!EmitBoolCondBranch)
950     SimplifyForwardingBlocks(LoopHeader.getBlock());
951 }
952 
953 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
954                                  ArrayRef<const Attr *> DoAttrs) {
955   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
956   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
957 
958   uint64_t ParentCount = getCurrentProfileCount();
959 
960   // Store the blocks to use for break and continue.
961   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
962 
963   // Emit the body of the loop.
964   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
965 
966   EmitBlockWithFallThrough(LoopBody, &S);
967   {
968     RunCleanupsScope BodyScope(*this);
969     EmitStmt(S.getBody());
970   }
971 
972   EmitBlock(LoopCond.getBlock());
973 
974   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
975   // after each execution of the loop body."
976 
977   // Evaluate the conditional in the while header.
978   // C99 6.8.5p2/p4: The first substatement is executed if the expression
979   // compares unequal to 0.  The condition must be a scalar type.
980   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
981 
982   BreakContinueStack.pop_back();
983 
984   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
985   // to correctly handle break/continue though.
986   llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal);
987   bool CondIsConstInt = C;
988   bool EmitBoolCondBranch = !C || !C->isZero();
989 
990   const SourceRange &R = S.getSourceRange();
991   LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs,
992                  SourceLocToDebugLoc(R.getBegin()),
993                  SourceLocToDebugLoc(R.getEnd()),
994                  checkIfLoopMustProgress(CondIsConstInt));
995 
996   // As long as the condition is true, iterate the loop.
997   if (EmitBoolCondBranch) {
998     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
999     Builder.CreateCondBr(
1000         BoolCondVal, LoopBody, LoopExit.getBlock(),
1001         createProfileWeightsForLoop(S.getCond(), BackedgeCount));
1002   }
1003 
1004   LoopStack.pop();
1005 
1006   // Emit the exit block.
1007   EmitBlock(LoopExit.getBlock());
1008 
1009   // The DoCond block typically is just a branch if we skipped
1010   // emitting a branch, try to erase it.
1011   if (!EmitBoolCondBranch)
1012     SimplifyForwardingBlocks(LoopCond.getBlock());
1013 }
1014 
1015 void CodeGenFunction::EmitForStmt(const ForStmt &S,
1016                                   ArrayRef<const Attr *> ForAttrs) {
1017   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
1018 
1019   LexicalScope ForScope(*this, S.getSourceRange());
1020 
1021   // Evaluate the first part before the loop.
1022   if (S.getInit())
1023     EmitStmt(S.getInit());
1024 
1025   // Start the loop with a block that tests the condition.
1026   // If there's an increment, the continue scope will be overwritten
1027   // later.
1028   JumpDest CondDest = getJumpDestInCurrentScope("for.cond");
1029   llvm::BasicBlock *CondBlock = CondDest.getBlock();
1030   EmitBlock(CondBlock);
1031 
1032   Expr::EvalResult Result;
1033   bool CondIsConstInt =
1034       !S.getCond() || S.getCond()->EvaluateAsInt(Result, getContext());
1035 
1036   const SourceRange &R = S.getSourceRange();
1037   LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
1038                  SourceLocToDebugLoc(R.getBegin()),
1039                  SourceLocToDebugLoc(R.getEnd()),
1040                  checkIfLoopMustProgress(CondIsConstInt));
1041 
1042   // Create a cleanup scope for the condition variable cleanups.
1043   LexicalScope ConditionScope(*this, S.getSourceRange());
1044 
1045   // If the for loop doesn't have an increment we can just use the condition as
1046   // the continue block. Otherwise, if there is no condition variable, we can
1047   // form the continue block now. If there is a condition variable, we can't
1048   // form the continue block until after we've emitted the condition, because
1049   // the condition is in scope in the increment, but Sema's jump diagnostics
1050   // ensure that there are no continues from the condition variable that jump
1051   // to the loop increment.
1052   JumpDest Continue;
1053   if (!S.getInc())
1054     Continue = CondDest;
1055   else if (!S.getConditionVariable())
1056     Continue = getJumpDestInCurrentScope("for.inc");
1057   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1058 
1059   if (S.getCond()) {
1060     // If the for statement has a condition scope, emit the local variable
1061     // declaration.
1062     if (S.getConditionVariable()) {
1063       EmitDecl(*S.getConditionVariable());
1064 
1065       // We have entered the condition variable's scope, so we're now able to
1066       // jump to the continue block.
1067       Continue = S.getInc() ? getJumpDestInCurrentScope("for.inc") : CondDest;
1068       BreakContinueStack.back().ContinueBlock = Continue;
1069     }
1070 
1071     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1072     // If there are any cleanups between here and the loop-exit scope,
1073     // create a block to stage a loop exit along.
1074     if (ForScope.requiresCleanups())
1075       ExitBlock = createBasicBlock("for.cond.cleanup");
1076 
1077     // As long as the condition is true, iterate the loop.
1078     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
1079 
1080     // C99 6.8.5p2/p4: The first substatement is executed if the expression
1081     // compares unequal to 0.  The condition must be a scalar type.
1082     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1083     llvm::MDNode *Weights =
1084         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
1085     if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
1086       BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
1087           BoolCondVal, Stmt::getLikelihood(S.getBody()));
1088 
1089     Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights);
1090 
1091     if (ExitBlock != LoopExit.getBlock()) {
1092       EmitBlock(ExitBlock);
1093       EmitBranchThroughCleanup(LoopExit);
1094     }
1095 
1096     EmitBlock(ForBody);
1097   } else {
1098     // Treat it as a non-zero constant.  Don't even create a new block for the
1099     // body, just fall into it.
1100   }
1101   incrementProfileCounter(&S);
1102 
1103   {
1104     // Create a separate cleanup scope for the body, in case it is not
1105     // a compound statement.
1106     RunCleanupsScope BodyScope(*this);
1107     EmitStmt(S.getBody());
1108   }
1109 
1110   // If there is an increment, emit it next.
1111   if (S.getInc()) {
1112     EmitBlock(Continue.getBlock());
1113     EmitStmt(S.getInc());
1114   }
1115 
1116   BreakContinueStack.pop_back();
1117 
1118   ConditionScope.ForceCleanup();
1119 
1120   EmitStopPoint(&S);
1121   EmitBranch(CondBlock);
1122 
1123   ForScope.ForceCleanup();
1124 
1125   LoopStack.pop();
1126 
1127   // Emit the fall-through block.
1128   EmitBlock(LoopExit.getBlock(), true);
1129 }
1130 
1131 void
1132 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
1133                                      ArrayRef<const Attr *> ForAttrs) {
1134   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
1135 
1136   LexicalScope ForScope(*this, S.getSourceRange());
1137 
1138   // Evaluate the first pieces before the loop.
1139   if (S.getInit())
1140     EmitStmt(S.getInit());
1141   EmitStmt(S.getRangeStmt());
1142   EmitStmt(S.getBeginStmt());
1143   EmitStmt(S.getEndStmt());
1144 
1145   // Start the loop with a block that tests the condition.
1146   // If there's an increment, the continue scope will be overwritten
1147   // later.
1148   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
1149   EmitBlock(CondBlock);
1150 
1151   const SourceRange &R = S.getSourceRange();
1152   LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
1153                  SourceLocToDebugLoc(R.getBegin()),
1154                  SourceLocToDebugLoc(R.getEnd()));
1155 
1156   // If there are any cleanups between here and the loop-exit scope,
1157   // create a block to stage a loop exit along.
1158   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1159   if (ForScope.requiresCleanups())
1160     ExitBlock = createBasicBlock("for.cond.cleanup");
1161 
1162   // The loop body, consisting of the specified body and the loop variable.
1163   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
1164 
1165   // The body is executed if the expression, contextually converted
1166   // to bool, is true.
1167   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1168   llvm::MDNode *Weights =
1169       createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
1170   if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
1171     BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
1172         BoolCondVal, Stmt::getLikelihood(S.getBody()));
1173   Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights);
1174 
1175   if (ExitBlock != LoopExit.getBlock()) {
1176     EmitBlock(ExitBlock);
1177     EmitBranchThroughCleanup(LoopExit);
1178   }
1179 
1180   EmitBlock(ForBody);
1181   incrementProfileCounter(&S);
1182 
1183   // Create a block for the increment. In case of a 'continue', we jump there.
1184   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
1185 
1186   // Store the blocks to use for break and continue.
1187   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1188 
1189   {
1190     // Create a separate cleanup scope for the loop variable and body.
1191     LexicalScope BodyScope(*this, S.getSourceRange());
1192     EmitStmt(S.getLoopVarStmt());
1193     EmitStmt(S.getBody());
1194   }
1195 
1196   EmitStopPoint(&S);
1197   // If there is an increment, emit it next.
1198   EmitBlock(Continue.getBlock());
1199   EmitStmt(S.getInc());
1200 
1201   BreakContinueStack.pop_back();
1202 
1203   EmitBranch(CondBlock);
1204 
1205   ForScope.ForceCleanup();
1206 
1207   LoopStack.pop();
1208 
1209   // Emit the fall-through block.
1210   EmitBlock(LoopExit.getBlock(), true);
1211 }
1212 
1213 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
1214   if (RV.isScalar()) {
1215     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
1216   } else if (RV.isAggregate()) {
1217     LValue Dest = MakeAddrLValue(ReturnValue, Ty);
1218     LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty);
1219     EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue());
1220   } else {
1221     EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
1222                        /*init*/ true);
1223   }
1224   EmitBranchThroughCleanup(ReturnBlock);
1225 }
1226 
1227 namespace {
1228 // RAII struct used to save and restore a return statment's result expression.
1229 struct SaveRetExprRAII {
1230   SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF)
1231       : OldRetExpr(CGF.RetExpr), CGF(CGF) {
1232     CGF.RetExpr = RetExpr;
1233   }
1234   ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; }
1235   const Expr *OldRetExpr;
1236   CodeGenFunction &CGF;
1237 };
1238 } // namespace
1239 
1240 /// If we have 'return f(...);', where both caller and callee are SwiftAsync,
1241 /// codegen it as 'tail call ...; ret void;'.
1242 static void makeTailCallIfSwiftAsync(const CallExpr *CE, CGBuilderTy &Builder,
1243                                      const CGFunctionInfo *CurFnInfo) {
1244   auto calleeQualType = CE->getCallee()->getType();
1245   const FunctionType *calleeType = nullptr;
1246   if (calleeQualType->isFunctionPointerType() ||
1247       calleeQualType->isFunctionReferenceType() ||
1248       calleeQualType->isBlockPointerType() ||
1249       calleeQualType->isMemberFunctionPointerType()) {
1250     calleeType = calleeQualType->getPointeeType()->castAs<FunctionType>();
1251   } else if (auto *ty = dyn_cast<FunctionType>(calleeQualType)) {
1252     calleeType = ty;
1253   } else if (auto CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
1254     if (auto methodDecl = CMCE->getMethodDecl()) {
1255       // getMethodDecl() doesn't handle member pointers at the moment.
1256       calleeType = methodDecl->getType()->castAs<FunctionType>();
1257     } else {
1258       return;
1259     }
1260   } else {
1261     return;
1262   }
1263   if (calleeType->getCallConv() == CallingConv::CC_SwiftAsync &&
1264       (CurFnInfo->getASTCallingConvention() == CallingConv::CC_SwiftAsync)) {
1265     auto CI = cast<llvm::CallInst>(&Builder.GetInsertBlock()->back());
1266     CI->setTailCallKind(llvm::CallInst::TCK_MustTail);
1267     Builder.CreateRetVoid();
1268     Builder.ClearInsertionPoint();
1269   }
1270 }
1271 
1272 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
1273 /// if the function returns void, or may be missing one if the function returns
1274 /// non-void.  Fun stuff :).
1275 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
1276   if (requiresReturnValueCheck()) {
1277     llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc());
1278     auto *SLocPtr =
1279         new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false,
1280                                  llvm::GlobalVariable::PrivateLinkage, SLoc);
1281     SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1282     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr);
1283     assert(ReturnLocation.isValid() && "No valid return location");
1284     Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy),
1285                         ReturnLocation);
1286   }
1287 
1288   // Returning from an outlined SEH helper is UB, and we already warn on it.
1289   if (IsOutlinedSEHHelper) {
1290     Builder.CreateUnreachable();
1291     Builder.ClearInsertionPoint();
1292   }
1293 
1294   // Emit the result value, even if unused, to evaluate the side effects.
1295   const Expr *RV = S.getRetValue();
1296 
1297   // Record the result expression of the return statement. The recorded
1298   // expression is used to determine whether a block capture's lifetime should
1299   // end at the end of the full expression as opposed to the end of the scope
1300   // enclosing the block expression.
1301   //
1302   // This permits a small, easily-implemented exception to our over-conservative
1303   // rules about not jumping to statements following block literals with
1304   // non-trivial cleanups.
1305   SaveRetExprRAII SaveRetExpr(RV, *this);
1306 
1307   RunCleanupsScope cleanupScope(*this);
1308   if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV))
1309     RV = EWC->getSubExpr();
1310   // FIXME: Clean this up by using an LValue for ReturnTemp,
1311   // EmitStoreThroughLValue, and EmitAnyExpr.
1312   // Check if the NRVO candidate was not globalized in OpenMP mode.
1313   if (getLangOpts().ElideConstructors && S.getNRVOCandidate() &&
1314       S.getNRVOCandidate()->isNRVOVariable() &&
1315       (!getLangOpts().OpenMP ||
1316        !CGM.getOpenMPRuntime()
1317             .getAddressOfLocalVariable(*this, S.getNRVOCandidate())
1318             .isValid())) {
1319     // Apply the named return value optimization for this return statement,
1320     // which means doing nothing: the appropriate result has already been
1321     // constructed into the NRVO variable.
1322 
1323     // If there is an NRVO flag for this variable, set it to 1 into indicate
1324     // that the cleanup code should not destroy the variable.
1325     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
1326       Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
1327   } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
1328     // Make sure not to return anything, but evaluate the expression
1329     // for side effects.
1330     if (RV) {
1331       EmitAnyExpr(RV);
1332       if (auto *CE = dyn_cast<CallExpr>(RV))
1333         makeTailCallIfSwiftAsync(CE, Builder, CurFnInfo);
1334     }
1335   } else if (!RV) {
1336     // Do nothing (return value is left uninitialized)
1337   } else if (FnRetTy->isReferenceType()) {
1338     // If this function returns a reference, take the address of the expression
1339     // rather than the value.
1340     RValue Result = EmitReferenceBindingToExpr(RV);
1341     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
1342   } else {
1343     switch (getEvaluationKind(RV->getType())) {
1344     case TEK_Scalar:
1345       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1346       break;
1347     case TEK_Complex:
1348       EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
1349                                 /*isInit*/ true);
1350       break;
1351     case TEK_Aggregate:
1352       EmitAggExpr(RV, AggValueSlot::forAddr(
1353                           ReturnValue, Qualifiers(),
1354                           AggValueSlot::IsDestructed,
1355                           AggValueSlot::DoesNotNeedGCBarriers,
1356                           AggValueSlot::IsNotAliased,
1357                           getOverlapForReturnValue()));
1358       break;
1359     }
1360   }
1361 
1362   ++NumReturnExprs;
1363   if (!RV || RV->isEvaluatable(getContext()))
1364     ++NumSimpleReturnExprs;
1365 
1366   cleanupScope.ForceCleanup();
1367   EmitBranchThroughCleanup(ReturnBlock);
1368 }
1369 
1370 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1371   // As long as debug info is modeled with instructions, we have to ensure we
1372   // have a place to insert here and write the stop point here.
1373   if (HaveInsertPoint())
1374     EmitStopPoint(&S);
1375 
1376   for (const auto *I : S.decls())
1377     EmitDecl(*I);
1378 }
1379 
1380 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1381   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1382 
1383   // If this code is reachable then emit a stop point (if generating
1384   // debug info). We have to do this ourselves because we are on the
1385   // "simple" statement path.
1386   if (HaveInsertPoint())
1387     EmitStopPoint(&S);
1388 
1389   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1390 }
1391 
1392 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1393   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1394 
1395   // If this code is reachable then emit a stop point (if generating
1396   // debug info). We have to do this ourselves because we are on the
1397   // "simple" statement path.
1398   if (HaveInsertPoint())
1399     EmitStopPoint(&S);
1400 
1401   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1402 }
1403 
1404 /// EmitCaseStmtRange - If case statement range is not too big then
1405 /// add multiple cases to switch instruction, one for each value within
1406 /// the range. If range is too big then emit "if" condition check.
1407 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S,
1408                                         ArrayRef<const Attr *> Attrs) {
1409   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1410 
1411   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1412   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1413 
1414   // Emit the code for this case. We do this first to make sure it is
1415   // properly chained from our predecessor before generating the
1416   // switch machinery to enter this block.
1417   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1418   EmitBlockWithFallThrough(CaseDest, &S);
1419   EmitStmt(S.getSubStmt());
1420 
1421   // If range is empty, do nothing.
1422   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1423     return;
1424 
1425   Stmt::Likelihood LH = Stmt::getLikelihood(Attrs);
1426   llvm::APInt Range = RHS - LHS;
1427   // FIXME: parameters such as this should not be hardcoded.
1428   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1429     // Range is small enough to add multiple switch instruction cases.
1430     uint64_t Total = getProfileCount(&S);
1431     unsigned NCases = Range.getZExtValue() + 1;
1432     // We only have one region counter for the entire set of cases here, so we
1433     // need to divide the weights evenly between the generated cases, ensuring
1434     // that the total weight is preserved. E.g., a weight of 5 over three cases
1435     // will be distributed as weights of 2, 2, and 1.
1436     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1437     for (unsigned I = 0; I != NCases; ++I) {
1438       if (SwitchWeights)
1439         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1440       else if (SwitchLikelihood)
1441         SwitchLikelihood->push_back(LH);
1442 
1443       if (Rem)
1444         Rem--;
1445       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1446       ++LHS;
1447     }
1448     return;
1449   }
1450 
1451   // The range is too big. Emit "if" condition into a new block,
1452   // making sure to save and restore the current insertion point.
1453   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1454 
1455   // Push this test onto the chain of range checks (which terminates
1456   // in the default basic block). The switch's default will be changed
1457   // to the top of this chain after switch emission is complete.
1458   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1459   CaseRangeBlock = createBasicBlock("sw.caserange");
1460 
1461   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1462   Builder.SetInsertPoint(CaseRangeBlock);
1463 
1464   // Emit range check.
1465   llvm::Value *Diff =
1466     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1467   llvm::Value *Cond =
1468     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1469 
1470   llvm::MDNode *Weights = nullptr;
1471   if (SwitchWeights) {
1472     uint64_t ThisCount = getProfileCount(&S);
1473     uint64_t DefaultCount = (*SwitchWeights)[0];
1474     Weights = createProfileWeights(ThisCount, DefaultCount);
1475 
1476     // Since we're chaining the switch default through each large case range, we
1477     // need to update the weight for the default, ie, the first case, to include
1478     // this case.
1479     (*SwitchWeights)[0] += ThisCount;
1480   } else if (SwitchLikelihood)
1481     Cond = emitCondLikelihoodViaExpectIntrinsic(Cond, LH);
1482 
1483   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1484 
1485   // Restore the appropriate insertion point.
1486   if (RestoreBB)
1487     Builder.SetInsertPoint(RestoreBB);
1488   else
1489     Builder.ClearInsertionPoint();
1490 }
1491 
1492 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S,
1493                                    ArrayRef<const Attr *> Attrs) {
1494   // If there is no enclosing switch instance that we're aware of, then this
1495   // case statement and its block can be elided.  This situation only happens
1496   // when we've constant-folded the switch, are emitting the constant case,
1497   // and part of the constant case includes another case statement.  For
1498   // instance: switch (4) { case 4: do { case 5: } while (1); }
1499   if (!SwitchInsn) {
1500     EmitStmt(S.getSubStmt());
1501     return;
1502   }
1503 
1504   // Handle case ranges.
1505   if (S.getRHS()) {
1506     EmitCaseStmtRange(S, Attrs);
1507     return;
1508   }
1509 
1510   llvm::ConstantInt *CaseVal =
1511     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1512   if (SwitchLikelihood)
1513     SwitchLikelihood->push_back(Stmt::getLikelihood(Attrs));
1514 
1515   // If the body of the case is just a 'break', try to not emit an empty block.
1516   // If we're profiling or we're not optimizing, leave the block in for better
1517   // debug and coverage analysis.
1518   if (!CGM.getCodeGenOpts().hasProfileClangInstr() &&
1519       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1520       isa<BreakStmt>(S.getSubStmt())) {
1521     JumpDest Block = BreakContinueStack.back().BreakBlock;
1522 
1523     // Only do this optimization if there are no cleanups that need emitting.
1524     if (isObviouslyBranchWithoutCleanups(Block)) {
1525       if (SwitchWeights)
1526         SwitchWeights->push_back(getProfileCount(&S));
1527       SwitchInsn->addCase(CaseVal, Block.getBlock());
1528 
1529       // If there was a fallthrough into this case, make sure to redirect it to
1530       // the end of the switch as well.
1531       if (Builder.GetInsertBlock()) {
1532         Builder.CreateBr(Block.getBlock());
1533         Builder.ClearInsertionPoint();
1534       }
1535       return;
1536     }
1537   }
1538 
1539   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1540   EmitBlockWithFallThrough(CaseDest, &S);
1541   if (SwitchWeights)
1542     SwitchWeights->push_back(getProfileCount(&S));
1543   SwitchInsn->addCase(CaseVal, CaseDest);
1544 
1545   // Recursively emitting the statement is acceptable, but is not wonderful for
1546   // code where we have many case statements nested together, i.e.:
1547   //  case 1:
1548   //    case 2:
1549   //      case 3: etc.
1550   // Handling this recursively will create a new block for each case statement
1551   // that falls through to the next case which is IR intensive.  It also causes
1552   // deep recursion which can run into stack depth limitations.  Handle
1553   // sequential non-range case statements specially.
1554   //
1555   // TODO When the next case has a likelihood attribute the code returns to the
1556   // recursive algorithm. Maybe improve this case if it becomes common practice
1557   // to use a lot of attributes.
1558   const CaseStmt *CurCase = &S;
1559   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1560 
1561   // Otherwise, iteratively add consecutive cases to this switch stmt.
1562   while (NextCase && NextCase->getRHS() == nullptr) {
1563     CurCase = NextCase;
1564     llvm::ConstantInt *CaseVal =
1565       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1566 
1567     if (SwitchWeights)
1568       SwitchWeights->push_back(getProfileCount(NextCase));
1569     if (CGM.getCodeGenOpts().hasProfileClangInstr()) {
1570       CaseDest = createBasicBlock("sw.bb");
1571       EmitBlockWithFallThrough(CaseDest, CurCase);
1572     }
1573     // Since this loop is only executed when the CaseStmt has no attributes
1574     // use a hard-coded value.
1575     if (SwitchLikelihood)
1576       SwitchLikelihood->push_back(Stmt::LH_None);
1577 
1578     SwitchInsn->addCase(CaseVal, CaseDest);
1579     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1580   }
1581 
1582   // Generate a stop point for debug info if the case statement is
1583   // followed by a default statement. A fallthrough case before a
1584   // default case gets its own branch target.
1585   if (CurCase->getSubStmt()->getStmtClass() == Stmt::DefaultStmtClass)
1586     EmitStopPoint(CurCase);
1587 
1588   // Normal default recursion for non-cases.
1589   EmitStmt(CurCase->getSubStmt());
1590 }
1591 
1592 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S,
1593                                       ArrayRef<const Attr *> Attrs) {
1594   // If there is no enclosing switch instance that we're aware of, then this
1595   // default statement can be elided. This situation only happens when we've
1596   // constant-folded the switch.
1597   if (!SwitchInsn) {
1598     EmitStmt(S.getSubStmt());
1599     return;
1600   }
1601 
1602   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1603   assert(DefaultBlock->empty() &&
1604          "EmitDefaultStmt: Default block already defined?");
1605 
1606   if (SwitchLikelihood)
1607     SwitchLikelihood->front() = Stmt::getLikelihood(Attrs);
1608 
1609   EmitBlockWithFallThrough(DefaultBlock, &S);
1610 
1611   EmitStmt(S.getSubStmt());
1612 }
1613 
1614 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1615 /// constant value that is being switched on, see if we can dead code eliminate
1616 /// the body of the switch to a simple series of statements to emit.  Basically,
1617 /// on a switch (5) we want to find these statements:
1618 ///    case 5:
1619 ///      printf(...);    <--
1620 ///      ++i;            <--
1621 ///      break;
1622 ///
1623 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1624 /// transformation (for example, one of the elided statements contains a label
1625 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1626 /// should include statements after it (e.g. the printf() line is a substmt of
1627 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1628 /// statement, then return CSFC_Success.
1629 ///
1630 /// If Case is non-null, then we are looking for the specified case, checking
1631 /// that nothing we jump over contains labels.  If Case is null, then we found
1632 /// the case and are looking for the break.
1633 ///
1634 /// If the recursive walk actually finds our Case, then we set FoundCase to
1635 /// true.
1636 ///
1637 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1638 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1639                                             const SwitchCase *Case,
1640                                             bool &FoundCase,
1641                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1642   // If this is a null statement, just succeed.
1643   if (!S)
1644     return Case ? CSFC_Success : CSFC_FallThrough;
1645 
1646   // If this is the switchcase (case 4: or default) that we're looking for, then
1647   // we're in business.  Just add the substatement.
1648   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1649     if (S == Case) {
1650       FoundCase = true;
1651       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1652                                       ResultStmts);
1653     }
1654 
1655     // Otherwise, this is some other case or default statement, just ignore it.
1656     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1657                                     ResultStmts);
1658   }
1659 
1660   // If we are in the live part of the code and we found our break statement,
1661   // return a success!
1662   if (!Case && isa<BreakStmt>(S))
1663     return CSFC_Success;
1664 
1665   // If this is a switch statement, then it might contain the SwitchCase, the
1666   // break, or neither.
1667   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1668     // Handle this as two cases: we might be looking for the SwitchCase (if so
1669     // the skipped statements must be skippable) or we might already have it.
1670     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1671     bool StartedInLiveCode = FoundCase;
1672     unsigned StartSize = ResultStmts.size();
1673 
1674     // If we've not found the case yet, scan through looking for it.
1675     if (Case) {
1676       // Keep track of whether we see a skipped declaration.  The code could be
1677       // using the declaration even if it is skipped, so we can't optimize out
1678       // the decl if the kept statements might refer to it.
1679       bool HadSkippedDecl = false;
1680 
1681       // If we're looking for the case, just see if we can skip each of the
1682       // substatements.
1683       for (; Case && I != E; ++I) {
1684         HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I);
1685 
1686         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1687         case CSFC_Failure: return CSFC_Failure;
1688         case CSFC_Success:
1689           // A successful result means that either 1) that the statement doesn't
1690           // have the case and is skippable, or 2) does contain the case value
1691           // and also contains the break to exit the switch.  In the later case,
1692           // we just verify the rest of the statements are elidable.
1693           if (FoundCase) {
1694             // If we found the case and skipped declarations, we can't do the
1695             // optimization.
1696             if (HadSkippedDecl)
1697               return CSFC_Failure;
1698 
1699             for (++I; I != E; ++I)
1700               if (CodeGenFunction::ContainsLabel(*I, true))
1701                 return CSFC_Failure;
1702             return CSFC_Success;
1703           }
1704           break;
1705         case CSFC_FallThrough:
1706           // If we have a fallthrough condition, then we must have found the
1707           // case started to include statements.  Consider the rest of the
1708           // statements in the compound statement as candidates for inclusion.
1709           assert(FoundCase && "Didn't find case but returned fallthrough?");
1710           // We recursively found Case, so we're not looking for it anymore.
1711           Case = nullptr;
1712 
1713           // If we found the case and skipped declarations, we can't do the
1714           // optimization.
1715           if (HadSkippedDecl)
1716             return CSFC_Failure;
1717           break;
1718         }
1719       }
1720 
1721       if (!FoundCase)
1722         return CSFC_Success;
1723 
1724       assert(!HadSkippedDecl && "fallthrough after skipping decl");
1725     }
1726 
1727     // If we have statements in our range, then we know that the statements are
1728     // live and need to be added to the set of statements we're tracking.
1729     bool AnyDecls = false;
1730     for (; I != E; ++I) {
1731       AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I);
1732 
1733       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1734       case CSFC_Failure: return CSFC_Failure;
1735       case CSFC_FallThrough:
1736         // A fallthrough result means that the statement was simple and just
1737         // included in ResultStmt, keep adding them afterwards.
1738         break;
1739       case CSFC_Success:
1740         // A successful result means that we found the break statement and
1741         // stopped statement inclusion.  We just ensure that any leftover stmts
1742         // are skippable and return success ourselves.
1743         for (++I; I != E; ++I)
1744           if (CodeGenFunction::ContainsLabel(*I, true))
1745             return CSFC_Failure;
1746         return CSFC_Success;
1747       }
1748     }
1749 
1750     // If we're about to fall out of a scope without hitting a 'break;', we
1751     // can't perform the optimization if there were any decls in that scope
1752     // (we'd lose their end-of-lifetime).
1753     if (AnyDecls) {
1754       // If the entire compound statement was live, there's one more thing we
1755       // can try before giving up: emit the whole thing as a single statement.
1756       // We can do that unless the statement contains a 'break;'.
1757       // FIXME: Such a break must be at the end of a construct within this one.
1758       // We could emit this by just ignoring the BreakStmts entirely.
1759       if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) {
1760         ResultStmts.resize(StartSize);
1761         ResultStmts.push_back(S);
1762       } else {
1763         return CSFC_Failure;
1764       }
1765     }
1766 
1767     return CSFC_FallThrough;
1768   }
1769 
1770   // Okay, this is some other statement that we don't handle explicitly, like a
1771   // for statement or increment etc.  If we are skipping over this statement,
1772   // just verify it doesn't have labels, which would make it invalid to elide.
1773   if (Case) {
1774     if (CodeGenFunction::ContainsLabel(S, true))
1775       return CSFC_Failure;
1776     return CSFC_Success;
1777   }
1778 
1779   // Otherwise, we want to include this statement.  Everything is cool with that
1780   // so long as it doesn't contain a break out of the switch we're in.
1781   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1782 
1783   // Otherwise, everything is great.  Include the statement and tell the caller
1784   // that we fall through and include the next statement as well.
1785   ResultStmts.push_back(S);
1786   return CSFC_FallThrough;
1787 }
1788 
1789 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1790 /// then invoke CollectStatementsForCase to find the list of statements to emit
1791 /// for a switch on constant.  See the comment above CollectStatementsForCase
1792 /// for more details.
1793 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1794                                        const llvm::APSInt &ConstantCondValue,
1795                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1796                                        ASTContext &C,
1797                                        const SwitchCase *&ResultCase) {
1798   // First step, find the switch case that is being branched to.  We can do this
1799   // efficiently by scanning the SwitchCase list.
1800   const SwitchCase *Case = S.getSwitchCaseList();
1801   const DefaultStmt *DefaultCase = nullptr;
1802 
1803   for (; Case; Case = Case->getNextSwitchCase()) {
1804     // It's either a default or case.  Just remember the default statement in
1805     // case we're not jumping to any numbered cases.
1806     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1807       DefaultCase = DS;
1808       continue;
1809     }
1810 
1811     // Check to see if this case is the one we're looking for.
1812     const CaseStmt *CS = cast<CaseStmt>(Case);
1813     // Don't handle case ranges yet.
1814     if (CS->getRHS()) return false;
1815 
1816     // If we found our case, remember it as 'case'.
1817     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1818       break;
1819   }
1820 
1821   // If we didn't find a matching case, we use a default if it exists, or we
1822   // elide the whole switch body!
1823   if (!Case) {
1824     // It is safe to elide the body of the switch if it doesn't contain labels
1825     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1826     if (!DefaultCase)
1827       return !CodeGenFunction::ContainsLabel(&S);
1828     Case = DefaultCase;
1829   }
1830 
1831   // Ok, we know which case is being jumped to, try to collect all the
1832   // statements that follow it.  This can fail for a variety of reasons.  Also,
1833   // check to see that the recursive walk actually found our case statement.
1834   // Insane cases like this can fail to find it in the recursive walk since we
1835   // don't handle every stmt kind:
1836   // switch (4) {
1837   //   while (1) {
1838   //     case 4: ...
1839   bool FoundCase = false;
1840   ResultCase = Case;
1841   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1842                                   ResultStmts) != CSFC_Failure &&
1843          FoundCase;
1844 }
1845 
1846 static Optional<SmallVector<uint64_t, 16>>
1847 getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods) {
1848   // Are there enough branches to weight them?
1849   if (Likelihoods.size() <= 1)
1850     return None;
1851 
1852   uint64_t NumUnlikely = 0;
1853   uint64_t NumNone = 0;
1854   uint64_t NumLikely = 0;
1855   for (const auto LH : Likelihoods) {
1856     switch (LH) {
1857     case Stmt::LH_Unlikely:
1858       ++NumUnlikely;
1859       break;
1860     case Stmt::LH_None:
1861       ++NumNone;
1862       break;
1863     case Stmt::LH_Likely:
1864       ++NumLikely;
1865       break;
1866     }
1867   }
1868 
1869   // Is there a likelihood attribute used?
1870   if (NumUnlikely == 0 && NumLikely == 0)
1871     return None;
1872 
1873   // When multiple cases share the same code they can be combined during
1874   // optimization. In that case the weights of the branch will be the sum of
1875   // the individual weights. Make sure the combined sum of all neutral cases
1876   // doesn't exceed the value of a single likely attribute.
1877   // The additions both avoid divisions by 0 and make sure the weights of None
1878   // don't exceed the weight of Likely.
1879   const uint64_t Likely = INT32_MAX / (NumLikely + 2);
1880   const uint64_t None = Likely / (NumNone + 1);
1881   const uint64_t Unlikely = 0;
1882 
1883   SmallVector<uint64_t, 16> Result;
1884   Result.reserve(Likelihoods.size());
1885   for (const auto LH : Likelihoods) {
1886     switch (LH) {
1887     case Stmt::LH_Unlikely:
1888       Result.push_back(Unlikely);
1889       break;
1890     case Stmt::LH_None:
1891       Result.push_back(None);
1892       break;
1893     case Stmt::LH_Likely:
1894       Result.push_back(Likely);
1895       break;
1896     }
1897   }
1898 
1899   return Result;
1900 }
1901 
1902 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1903   // Handle nested switch statements.
1904   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1905   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1906   SmallVector<Stmt::Likelihood, 16> *SavedSwitchLikelihood = SwitchLikelihood;
1907   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1908 
1909   // See if we can constant fold the condition of the switch and therefore only
1910   // emit the live case statement (if any) of the switch.
1911   llvm::APSInt ConstantCondValue;
1912   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1913     SmallVector<const Stmt*, 4> CaseStmts;
1914     const SwitchCase *Case = nullptr;
1915     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1916                                    getContext(), Case)) {
1917       if (Case)
1918         incrementProfileCounter(Case);
1919       RunCleanupsScope ExecutedScope(*this);
1920 
1921       if (S.getInit())
1922         EmitStmt(S.getInit());
1923 
1924       // Emit the condition variable if needed inside the entire cleanup scope
1925       // used by this special case for constant folded switches.
1926       if (S.getConditionVariable())
1927         EmitDecl(*S.getConditionVariable());
1928 
1929       // At this point, we are no longer "within" a switch instance, so
1930       // we can temporarily enforce this to ensure that any embedded case
1931       // statements are not emitted.
1932       SwitchInsn = nullptr;
1933 
1934       // Okay, we can dead code eliminate everything except this case.  Emit the
1935       // specified series of statements and we're good.
1936       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1937         EmitStmt(CaseStmts[i]);
1938       incrementProfileCounter(&S);
1939 
1940       // Now we want to restore the saved switch instance so that nested
1941       // switches continue to function properly
1942       SwitchInsn = SavedSwitchInsn;
1943 
1944       return;
1945     }
1946   }
1947 
1948   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1949 
1950   RunCleanupsScope ConditionScope(*this);
1951 
1952   if (S.getInit())
1953     EmitStmt(S.getInit());
1954 
1955   if (S.getConditionVariable())
1956     EmitDecl(*S.getConditionVariable());
1957   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1958 
1959   // Create basic block to hold stuff that comes after switch
1960   // statement. We also need to create a default block now so that
1961   // explicit case ranges tests can have a place to jump to on
1962   // failure.
1963   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1964   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1965   if (PGO.haveRegionCounts()) {
1966     // Walk the SwitchCase list to find how many there are.
1967     uint64_t DefaultCount = 0;
1968     unsigned NumCases = 0;
1969     for (const SwitchCase *Case = S.getSwitchCaseList();
1970          Case;
1971          Case = Case->getNextSwitchCase()) {
1972       if (isa<DefaultStmt>(Case))
1973         DefaultCount = getProfileCount(Case);
1974       NumCases += 1;
1975     }
1976     SwitchWeights = new SmallVector<uint64_t, 16>();
1977     SwitchWeights->reserve(NumCases);
1978     // The default needs to be first. We store the edge count, so we already
1979     // know the right weight.
1980     SwitchWeights->push_back(DefaultCount);
1981   } else if (CGM.getCodeGenOpts().OptimizationLevel) {
1982     SwitchLikelihood = new SmallVector<Stmt::Likelihood, 16>();
1983     // Initialize the default case.
1984     SwitchLikelihood->push_back(Stmt::LH_None);
1985   }
1986 
1987   CaseRangeBlock = DefaultBlock;
1988 
1989   // Clear the insertion point to indicate we are in unreachable code.
1990   Builder.ClearInsertionPoint();
1991 
1992   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1993   // then reuse last ContinueBlock.
1994   JumpDest OuterContinue;
1995   if (!BreakContinueStack.empty())
1996     OuterContinue = BreakContinueStack.back().ContinueBlock;
1997 
1998   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1999 
2000   // Emit switch body.
2001   EmitStmt(S.getBody());
2002 
2003   BreakContinueStack.pop_back();
2004 
2005   // Update the default block in case explicit case range tests have
2006   // been chained on top.
2007   SwitchInsn->setDefaultDest(CaseRangeBlock);
2008 
2009   // If a default was never emitted:
2010   if (!DefaultBlock->getParent()) {
2011     // If we have cleanups, emit the default block so that there's a
2012     // place to jump through the cleanups from.
2013     if (ConditionScope.requiresCleanups()) {
2014       EmitBlock(DefaultBlock);
2015 
2016     // Otherwise, just forward the default block to the switch end.
2017     } else {
2018       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
2019       delete DefaultBlock;
2020     }
2021   }
2022 
2023   ConditionScope.ForceCleanup();
2024 
2025   // Emit continuation.
2026   EmitBlock(SwitchExit.getBlock(), true);
2027   incrementProfileCounter(&S);
2028 
2029   // If the switch has a condition wrapped by __builtin_unpredictable,
2030   // create metadata that specifies that the switch is unpredictable.
2031   // Don't bother if not optimizing because that metadata would not be used.
2032   auto *Call = dyn_cast<CallExpr>(S.getCond());
2033   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
2034     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
2035     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
2036       llvm::MDBuilder MDHelper(getLLVMContext());
2037       SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
2038                               MDHelper.createUnpredictable());
2039     }
2040   }
2041 
2042   if (SwitchWeights) {
2043     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
2044            "switch weights do not match switch cases");
2045     // If there's only one jump destination there's no sense weighting it.
2046     if (SwitchWeights->size() > 1)
2047       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
2048                               createProfileWeights(*SwitchWeights));
2049     delete SwitchWeights;
2050   } else if (SwitchLikelihood) {
2051     assert(SwitchLikelihood->size() == 1 + SwitchInsn->getNumCases() &&
2052            "switch likelihoods do not match switch cases");
2053     Optional<SmallVector<uint64_t, 16>> LHW =
2054         getLikelihoodWeights(*SwitchLikelihood);
2055     if (LHW) {
2056       llvm::MDBuilder MDHelper(CGM.getLLVMContext());
2057       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
2058                               createProfileWeights(*LHW));
2059     }
2060     delete SwitchLikelihood;
2061   }
2062   SwitchInsn = SavedSwitchInsn;
2063   SwitchWeights = SavedSwitchWeights;
2064   SwitchLikelihood = SavedSwitchLikelihood;
2065   CaseRangeBlock = SavedCRBlock;
2066 }
2067 
2068 static std::string
2069 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
2070                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
2071   std::string Result;
2072 
2073   while (*Constraint) {
2074     switch (*Constraint) {
2075     default:
2076       Result += Target.convertConstraint(Constraint);
2077       break;
2078     // Ignore these
2079     case '*':
2080     case '?':
2081     case '!':
2082     case '=': // Will see this and the following in mult-alt constraints.
2083     case '+':
2084       break;
2085     case '#': // Ignore the rest of the constraint alternative.
2086       while (Constraint[1] && Constraint[1] != ',')
2087         Constraint++;
2088       break;
2089     case '&':
2090     case '%':
2091       Result += *Constraint;
2092       while (Constraint[1] && Constraint[1] == *Constraint)
2093         Constraint++;
2094       break;
2095     case ',':
2096       Result += "|";
2097       break;
2098     case 'g':
2099       Result += "imr";
2100       break;
2101     case '[': {
2102       assert(OutCons &&
2103              "Must pass output names to constraints with a symbolic name");
2104       unsigned Index;
2105       bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
2106       assert(result && "Could not resolve symbolic name"); (void)result;
2107       Result += llvm::utostr(Index);
2108       break;
2109     }
2110     }
2111 
2112     Constraint++;
2113   }
2114 
2115   return Result;
2116 }
2117 
2118 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
2119 /// as using a particular register add that as a constraint that will be used
2120 /// in this asm stmt.
2121 static std::string
2122 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
2123                        const TargetInfo &Target, CodeGenModule &CGM,
2124                        const AsmStmt &Stmt, const bool EarlyClobber,
2125                        std::string *GCCReg = nullptr) {
2126   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
2127   if (!AsmDeclRef)
2128     return Constraint;
2129   const ValueDecl &Value = *AsmDeclRef->getDecl();
2130   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
2131   if (!Variable)
2132     return Constraint;
2133   if (Variable->getStorageClass() != SC_Register)
2134     return Constraint;
2135   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
2136   if (!Attr)
2137     return Constraint;
2138   StringRef Register = Attr->getLabel();
2139   assert(Target.isValidGCCRegisterName(Register));
2140   // We're using validateOutputConstraint here because we only care if
2141   // this is a register constraint.
2142   TargetInfo::ConstraintInfo Info(Constraint, "");
2143   if (Target.validateOutputConstraint(Info) &&
2144       !Info.allowsRegister()) {
2145     CGM.ErrorUnsupported(&Stmt, "__asm__");
2146     return Constraint;
2147   }
2148   // Canonicalize the register here before returning it.
2149   Register = Target.getNormalizedGCCRegisterName(Register);
2150   if (GCCReg != nullptr)
2151     *GCCReg = Register.str();
2152   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
2153 }
2154 
2155 std::pair<llvm::Value*, llvm::Type *> CodeGenFunction::EmitAsmInputLValue(
2156     const TargetInfo::ConstraintInfo &Info, LValue InputValue,
2157     QualType InputType, std::string &ConstraintStr, SourceLocation Loc) {
2158   if (Info.allowsRegister() || !Info.allowsMemory()) {
2159     if (CodeGenFunction::hasScalarEvaluationKind(InputType))
2160       return {EmitLoadOfLValue(InputValue, Loc).getScalarVal(), nullptr};
2161 
2162     llvm::Type *Ty = ConvertType(InputType);
2163     uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
2164     if ((Size <= 64 && llvm::isPowerOf2_64(Size)) ||
2165         getTargetHooks().isScalarizableAsmOperand(*this, Ty)) {
2166       Ty = llvm::IntegerType::get(getLLVMContext(), Size);
2167 
2168       return {Builder.CreateLoad(Builder.CreateElementBitCast(
2169                   InputValue.getAddress(*this), Ty)),
2170               nullptr};
2171     }
2172   }
2173 
2174   Address Addr = InputValue.getAddress(*this);
2175   ConstraintStr += '*';
2176   return {Addr.getPointer(), Addr.getElementType()};
2177 }
2178 
2179 std::pair<llvm::Value *, llvm::Type *>
2180 CodeGenFunction::EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2181                               const Expr *InputExpr,
2182                               std::string &ConstraintStr) {
2183   // If this can't be a register or memory, i.e., has to be a constant
2184   // (immediate or symbolic), try to emit it as such.
2185   if (!Info.allowsRegister() && !Info.allowsMemory()) {
2186     if (Info.requiresImmediateConstant()) {
2187       Expr::EvalResult EVResult;
2188       InputExpr->EvaluateAsRValue(EVResult, getContext(), true);
2189 
2190       llvm::APSInt IntResult;
2191       if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(),
2192                                           getContext()))
2193         return {llvm::ConstantInt::get(getLLVMContext(), IntResult), nullptr};
2194     }
2195 
2196     Expr::EvalResult Result;
2197     if (InputExpr->EvaluateAsInt(Result, getContext()))
2198       return {llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt()),
2199               nullptr};
2200   }
2201 
2202   if (Info.allowsRegister() || !Info.allowsMemory())
2203     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
2204       return {EmitScalarExpr(InputExpr), nullptr};
2205   if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
2206     return {EmitScalarExpr(InputExpr), nullptr};
2207   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
2208   LValue Dest = EmitLValue(InputExpr);
2209   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
2210                             InputExpr->getExprLoc());
2211 }
2212 
2213 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
2214 /// asm call instruction.  The !srcloc MDNode contains a list of constant
2215 /// integers which are the source locations of the start of each line in the
2216 /// asm.
2217 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
2218                                       CodeGenFunction &CGF) {
2219   SmallVector<llvm::Metadata *, 8> Locs;
2220   // Add the location of the first line to the MDNode.
2221   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2222       CGF.Int64Ty, Str->getBeginLoc().getRawEncoding())));
2223   StringRef StrVal = Str->getString();
2224   if (!StrVal.empty()) {
2225     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
2226     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
2227     unsigned StartToken = 0;
2228     unsigned ByteOffset = 0;
2229 
2230     // Add the location of the start of each subsequent line of the asm to the
2231     // MDNode.
2232     for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
2233       if (StrVal[i] != '\n') continue;
2234       SourceLocation LineLoc = Str->getLocationOfByte(
2235           i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
2236       Locs.push_back(llvm::ConstantAsMetadata::get(
2237           llvm::ConstantInt::get(CGF.Int64Ty, LineLoc.getRawEncoding())));
2238     }
2239   }
2240 
2241   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
2242 }
2243 
2244 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect,
2245                               bool HasUnwindClobber, bool ReadOnly,
2246                               bool ReadNone, bool NoMerge, const AsmStmt &S,
2247                               const std::vector<llvm::Type *> &ResultRegTypes,
2248                               const std::vector<llvm::Type *> &ArgElemTypes,
2249                               CodeGenFunction &CGF,
2250                               std::vector<llvm::Value *> &RegResults) {
2251   if (!HasUnwindClobber)
2252     Result.addFnAttr(llvm::Attribute::NoUnwind);
2253 
2254   if (NoMerge)
2255     Result.addFnAttr(llvm::Attribute::NoMerge);
2256   // Attach readnone and readonly attributes.
2257   if (!HasSideEffect) {
2258     if (ReadNone)
2259       Result.addFnAttr(llvm::Attribute::ReadNone);
2260     else if (ReadOnly)
2261       Result.addFnAttr(llvm::Attribute::ReadOnly);
2262   }
2263 
2264   // Add elementtype attribute for indirect constraints.
2265   for (auto Pair : llvm::enumerate(ArgElemTypes)) {
2266     if (Pair.value()) {
2267       auto Attr = llvm::Attribute::get(
2268           CGF.getLLVMContext(), llvm::Attribute::ElementType, Pair.value());
2269       Result.addParamAttr(Pair.index(), Attr);
2270     }
2271   }
2272 
2273   // Slap the source location of the inline asm into a !srcloc metadata on the
2274   // call.
2275   if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
2276     Result.setMetadata("srcloc",
2277                        getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF));
2278   else {
2279     // At least put the line number on MS inline asm blobs.
2280     llvm::Constant *Loc =
2281         llvm::ConstantInt::get(CGF.Int64Ty, S.getAsmLoc().getRawEncoding());
2282     Result.setMetadata("srcloc",
2283                        llvm::MDNode::get(CGF.getLLVMContext(),
2284                                          llvm::ConstantAsMetadata::get(Loc)));
2285   }
2286 
2287   if (CGF.getLangOpts().assumeFunctionsAreConvergent())
2288     // Conservatively, mark all inline asm blocks in CUDA or OpenCL as
2289     // convergent (meaning, they may call an intrinsically convergent op, such
2290     // as bar.sync, and so can't have certain optimizations applied around
2291     // them).
2292     Result.addFnAttr(llvm::Attribute::Convergent);
2293   // Extract all of the register value results from the asm.
2294   if (ResultRegTypes.size() == 1) {
2295     RegResults.push_back(&Result);
2296   } else {
2297     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2298       llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult");
2299       RegResults.push_back(Tmp);
2300     }
2301   }
2302 }
2303 
2304 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
2305   // Pop all cleanup blocks at the end of the asm statement.
2306   CodeGenFunction::RunCleanupsScope Cleanups(*this);
2307 
2308   // Assemble the final asm string.
2309   std::string AsmString = S.generateAsmString(getContext());
2310 
2311   // Get all the output and input constraints together.
2312   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2313   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2314 
2315   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2316     StringRef Name;
2317     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2318       Name = GAS->getOutputName(i);
2319     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
2320     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
2321     assert(IsValid && "Failed to parse output constraint");
2322     OutputConstraintInfos.push_back(Info);
2323   }
2324 
2325   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2326     StringRef Name;
2327     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2328       Name = GAS->getInputName(i);
2329     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
2330     bool IsValid =
2331       getTarget().validateInputConstraint(OutputConstraintInfos, Info);
2332     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
2333     InputConstraintInfos.push_back(Info);
2334   }
2335 
2336   std::string Constraints;
2337 
2338   std::vector<LValue> ResultRegDests;
2339   std::vector<QualType> ResultRegQualTys;
2340   std::vector<llvm::Type *> ResultRegTypes;
2341   std::vector<llvm::Type *> ResultTruncRegTypes;
2342   std::vector<llvm::Type *> ArgTypes;
2343   std::vector<llvm::Type *> ArgElemTypes;
2344   std::vector<llvm::Value*> Args;
2345   llvm::BitVector ResultTypeRequiresCast;
2346 
2347   // Keep track of inout constraints.
2348   std::string InOutConstraints;
2349   std::vector<llvm::Value*> InOutArgs;
2350   std::vector<llvm::Type*> InOutArgTypes;
2351   std::vector<llvm::Type*> InOutArgElemTypes;
2352 
2353   // Keep track of out constraints for tied input operand.
2354   std::vector<std::string> OutputConstraints;
2355 
2356   // Keep track of defined physregs.
2357   llvm::SmallSet<std::string, 8> PhysRegOutputs;
2358 
2359   // An inline asm can be marked readonly if it meets the following conditions:
2360   //  - it doesn't have any sideeffects
2361   //  - it doesn't clobber memory
2362   //  - it doesn't return a value by-reference
2363   // It can be marked readnone if it doesn't have any input memory constraints
2364   // in addition to meeting the conditions listed above.
2365   bool ReadOnly = true, ReadNone = true;
2366 
2367   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2368     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
2369 
2370     // Simplify the output constraint.
2371     std::string OutputConstraint(S.getOutputConstraint(i));
2372     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
2373                                           getTarget(), &OutputConstraintInfos);
2374 
2375     const Expr *OutExpr = S.getOutputExpr(i);
2376     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
2377 
2378     std::string GCCReg;
2379     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
2380                                               getTarget(), CGM, S,
2381                                               Info.earlyClobber(),
2382                                               &GCCReg);
2383     // Give an error on multiple outputs to same physreg.
2384     if (!GCCReg.empty() && !PhysRegOutputs.insert(GCCReg).second)
2385       CGM.Error(S.getAsmLoc(), "multiple outputs to hard register: " + GCCReg);
2386 
2387     OutputConstraints.push_back(OutputConstraint);
2388     LValue Dest = EmitLValue(OutExpr);
2389     if (!Constraints.empty())
2390       Constraints += ',';
2391 
2392     // If this is a register output, then make the inline asm return it
2393     // by-value.  If this is a memory result, return the value by-reference.
2394     QualType QTy = OutExpr->getType();
2395     const bool IsScalarOrAggregate = hasScalarEvaluationKind(QTy) ||
2396                                      hasAggregateEvaluationKind(QTy);
2397     if (!Info.allowsMemory() && IsScalarOrAggregate) {
2398 
2399       Constraints += "=" + OutputConstraint;
2400       ResultRegQualTys.push_back(QTy);
2401       ResultRegDests.push_back(Dest);
2402 
2403       llvm::Type *Ty = ConvertTypeForMem(QTy);
2404       const bool RequiresCast = Info.allowsRegister() &&
2405           (getTargetHooks().isScalarizableAsmOperand(*this, Ty) ||
2406            Ty->isAggregateType());
2407 
2408       ResultTruncRegTypes.push_back(Ty);
2409       ResultTypeRequiresCast.push_back(RequiresCast);
2410 
2411       if (RequiresCast) {
2412         unsigned Size = getContext().getTypeSize(QTy);
2413         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
2414       }
2415       ResultRegTypes.push_back(Ty);
2416       // If this output is tied to an input, and if the input is larger, then
2417       // we need to set the actual result type of the inline asm node to be the
2418       // same as the input type.
2419       if (Info.hasMatchingInput()) {
2420         unsigned InputNo;
2421         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
2422           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
2423           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
2424             break;
2425         }
2426         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
2427 
2428         QualType InputTy = S.getInputExpr(InputNo)->getType();
2429         QualType OutputType = OutExpr->getType();
2430 
2431         uint64_t InputSize = getContext().getTypeSize(InputTy);
2432         if (getContext().getTypeSize(OutputType) < InputSize) {
2433           // Form the asm to return the value as a larger integer or fp type.
2434           ResultRegTypes.back() = ConvertType(InputTy);
2435         }
2436       }
2437       if (llvm::Type* AdjTy =
2438             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2439                                                  ResultRegTypes.back()))
2440         ResultRegTypes.back() = AdjTy;
2441       else {
2442         CGM.getDiags().Report(S.getAsmLoc(),
2443                               diag::err_asm_invalid_type_in_input)
2444             << OutExpr->getType() << OutputConstraint;
2445       }
2446 
2447       // Update largest vector width for any vector types.
2448       if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back()))
2449         LargestVectorWidth =
2450             std::max((uint64_t)LargestVectorWidth,
2451                      VT->getPrimitiveSizeInBits().getKnownMinSize());
2452     } else {
2453       Address DestAddr = Dest.getAddress(*this);
2454       // Matrix types in memory are represented by arrays, but accessed through
2455       // vector pointers, with the alignment specified on the access operation.
2456       // For inline assembly, update pointer arguments to use vector pointers.
2457       // Otherwise there will be a mis-match if the matrix is also an
2458       // input-argument which is represented as vector.
2459       if (isa<MatrixType>(OutExpr->getType().getCanonicalType()))
2460         DestAddr = Builder.CreateElementBitCast(
2461             DestAddr, ConvertType(OutExpr->getType()));
2462 
2463       ArgTypes.push_back(DestAddr.getType());
2464       ArgElemTypes.push_back(DestAddr.getElementType());
2465       Args.push_back(DestAddr.getPointer());
2466       Constraints += "=*";
2467       Constraints += OutputConstraint;
2468       ReadOnly = ReadNone = false;
2469     }
2470 
2471     if (Info.isReadWrite()) {
2472       InOutConstraints += ',';
2473 
2474       const Expr *InputExpr = S.getOutputExpr(i);
2475       llvm::Value *Arg;
2476       llvm::Type *ArgElemType;
2477       std::tie(Arg, ArgElemType) = EmitAsmInputLValue(
2478           Info, Dest, InputExpr->getType(), InOutConstraints,
2479           InputExpr->getExprLoc());
2480 
2481       if (llvm::Type* AdjTy =
2482           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2483                                                Arg->getType()))
2484         Arg = Builder.CreateBitCast(Arg, AdjTy);
2485 
2486       // Update largest vector width for any vector types.
2487       if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2488         LargestVectorWidth =
2489             std::max((uint64_t)LargestVectorWidth,
2490                      VT->getPrimitiveSizeInBits().getKnownMinSize());
2491       // Only tie earlyclobber physregs.
2492       if (Info.allowsRegister() && (GCCReg.empty() || Info.earlyClobber()))
2493         InOutConstraints += llvm::utostr(i);
2494       else
2495         InOutConstraints += OutputConstraint;
2496 
2497       InOutArgTypes.push_back(Arg->getType());
2498       InOutArgElemTypes.push_back(ArgElemType);
2499       InOutArgs.push_back(Arg);
2500     }
2501   }
2502 
2503   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
2504   // to the return value slot. Only do this when returning in registers.
2505   if (isa<MSAsmStmt>(&S)) {
2506     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
2507     if (RetAI.isDirect() || RetAI.isExtend()) {
2508       // Make a fake lvalue for the return value slot.
2509       LValue ReturnSlot = MakeAddrLValueWithoutTBAA(ReturnValue, FnRetTy);
2510       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
2511           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
2512           ResultRegDests, AsmString, S.getNumOutputs());
2513       SawAsmBlock = true;
2514     }
2515   }
2516 
2517   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2518     const Expr *InputExpr = S.getInputExpr(i);
2519 
2520     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2521 
2522     if (Info.allowsMemory())
2523       ReadNone = false;
2524 
2525     if (!Constraints.empty())
2526       Constraints += ',';
2527 
2528     // Simplify the input constraint.
2529     std::string InputConstraint(S.getInputConstraint(i));
2530     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
2531                                          &OutputConstraintInfos);
2532 
2533     InputConstraint = AddVariableConstraints(
2534         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
2535         getTarget(), CGM, S, false /* No EarlyClobber */);
2536 
2537     std::string ReplaceConstraint (InputConstraint);
2538     llvm::Value *Arg;
2539     llvm::Type *ArgElemType;
2540     std::tie(Arg, ArgElemType) = EmitAsmInput(Info, InputExpr, Constraints);
2541 
2542     // If this input argument is tied to a larger output result, extend the
2543     // input to be the same size as the output.  The LLVM backend wants to see
2544     // the input and output of a matching constraint be the same size.  Note
2545     // that GCC does not define what the top bits are here.  We use zext because
2546     // that is usually cheaper, but LLVM IR should really get an anyext someday.
2547     if (Info.hasTiedOperand()) {
2548       unsigned Output = Info.getTiedOperand();
2549       QualType OutputType = S.getOutputExpr(Output)->getType();
2550       QualType InputTy = InputExpr->getType();
2551 
2552       if (getContext().getTypeSize(OutputType) >
2553           getContext().getTypeSize(InputTy)) {
2554         // Use ptrtoint as appropriate so that we can do our extension.
2555         if (isa<llvm::PointerType>(Arg->getType()))
2556           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
2557         llvm::Type *OutputTy = ConvertType(OutputType);
2558         if (isa<llvm::IntegerType>(OutputTy))
2559           Arg = Builder.CreateZExt(Arg, OutputTy);
2560         else if (isa<llvm::PointerType>(OutputTy))
2561           Arg = Builder.CreateZExt(Arg, IntPtrTy);
2562         else if (OutputTy->isFloatingPointTy())
2563           Arg = Builder.CreateFPExt(Arg, OutputTy);
2564       }
2565       // Deal with the tied operands' constraint code in adjustInlineAsmType.
2566       ReplaceConstraint = OutputConstraints[Output];
2567     }
2568     if (llvm::Type* AdjTy =
2569           getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint,
2570                                                    Arg->getType()))
2571       Arg = Builder.CreateBitCast(Arg, AdjTy);
2572     else
2573       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
2574           << InputExpr->getType() << InputConstraint;
2575 
2576     // Update largest vector width for any vector types.
2577     if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2578       LargestVectorWidth =
2579           std::max((uint64_t)LargestVectorWidth,
2580                    VT->getPrimitiveSizeInBits().getKnownMinSize());
2581 
2582     ArgTypes.push_back(Arg->getType());
2583     ArgElemTypes.push_back(ArgElemType);
2584     Args.push_back(Arg);
2585     Constraints += InputConstraint;
2586   }
2587 
2588   // Append the "input" part of inout constraints.
2589   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
2590     ArgTypes.push_back(InOutArgTypes[i]);
2591     ArgElemTypes.push_back(InOutArgElemTypes[i]);
2592     Args.push_back(InOutArgs[i]);
2593   }
2594   Constraints += InOutConstraints;
2595 
2596   // Labels
2597   SmallVector<llvm::BasicBlock *, 16> Transfer;
2598   llvm::BasicBlock *Fallthrough = nullptr;
2599   bool IsGCCAsmGoto = false;
2600   if (const auto *GS =  dyn_cast<GCCAsmStmt>(&S)) {
2601     IsGCCAsmGoto = GS->isAsmGoto();
2602     if (IsGCCAsmGoto) {
2603       for (const auto *E : GS->labels()) {
2604         JumpDest Dest = getJumpDestForLabel(E->getLabel());
2605         Transfer.push_back(Dest.getBlock());
2606         if (!Constraints.empty())
2607           Constraints += ',';
2608         Constraints += "!i";
2609       }
2610       Fallthrough = createBasicBlock("asm.fallthrough");
2611     }
2612   }
2613 
2614   bool HasUnwindClobber = false;
2615 
2616   // Clobbers
2617   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
2618     StringRef Clobber = S.getClobber(i);
2619 
2620     if (Clobber == "memory")
2621       ReadOnly = ReadNone = false;
2622     else if (Clobber == "unwind") {
2623       HasUnwindClobber = true;
2624       continue;
2625     } else if (Clobber != "cc") {
2626       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
2627       if (CGM.getCodeGenOpts().StackClashProtector &&
2628           getTarget().isSPRegName(Clobber)) {
2629         CGM.getDiags().Report(S.getAsmLoc(),
2630                               diag::warn_stack_clash_protection_inline_asm);
2631       }
2632     }
2633 
2634     if (isa<MSAsmStmt>(&S)) {
2635       if (Clobber == "eax" || Clobber == "edx") {
2636         if (Constraints.find("=&A") != std::string::npos)
2637           continue;
2638         std::string::size_type position1 =
2639             Constraints.find("={" + Clobber.str() + "}");
2640         if (position1 != std::string::npos) {
2641           Constraints.insert(position1 + 1, "&");
2642           continue;
2643         }
2644         std::string::size_type position2 = Constraints.find("=A");
2645         if (position2 != std::string::npos) {
2646           Constraints.insert(position2 + 1, "&");
2647           continue;
2648         }
2649       }
2650     }
2651     if (!Constraints.empty())
2652       Constraints += ',';
2653 
2654     Constraints += "~{";
2655     Constraints += Clobber;
2656     Constraints += '}';
2657   }
2658 
2659   assert(!(HasUnwindClobber && IsGCCAsmGoto) &&
2660          "unwind clobber can't be used with asm goto");
2661 
2662   // Add machine specific clobbers
2663   std::string MachineClobbers = getTarget().getClobbers();
2664   if (!MachineClobbers.empty()) {
2665     if (!Constraints.empty())
2666       Constraints += ',';
2667     Constraints += MachineClobbers;
2668   }
2669 
2670   llvm::Type *ResultType;
2671   if (ResultRegTypes.empty())
2672     ResultType = VoidTy;
2673   else if (ResultRegTypes.size() == 1)
2674     ResultType = ResultRegTypes[0];
2675   else
2676     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2677 
2678   llvm::FunctionType *FTy =
2679     llvm::FunctionType::get(ResultType, ArgTypes, false);
2680 
2681   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2682 
2683   llvm::InlineAsm::AsmDialect GnuAsmDialect =
2684       CGM.getCodeGenOpts().getInlineAsmDialect() == CodeGenOptions::IAD_ATT
2685           ? llvm::InlineAsm::AD_ATT
2686           : llvm::InlineAsm::AD_Intel;
2687   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2688     llvm::InlineAsm::AD_Intel : GnuAsmDialect;
2689 
2690   llvm::InlineAsm *IA = llvm::InlineAsm::get(
2691       FTy, AsmString, Constraints, HasSideEffect,
2692       /* IsAlignStack */ false, AsmDialect, HasUnwindClobber);
2693   std::vector<llvm::Value*> RegResults;
2694   if (IsGCCAsmGoto) {
2695     llvm::CallBrInst *Result =
2696         Builder.CreateCallBr(IA, Fallthrough, Transfer, Args);
2697     EmitBlock(Fallthrough);
2698     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false,
2699                       ReadOnly, ReadNone, InNoMergeAttributedStmt, S,
2700                       ResultRegTypes, ArgElemTypes, *this, RegResults);
2701   } else if (HasUnwindClobber) {
2702     llvm::CallBase *Result = EmitCallOrInvoke(IA, Args, "");
2703     UpdateAsmCallInst(*Result, HasSideEffect, true, ReadOnly, ReadNone,
2704                       InNoMergeAttributedStmt, S, ResultRegTypes, ArgElemTypes,
2705                       *this, RegResults);
2706   } else {
2707     llvm::CallInst *Result =
2708         Builder.CreateCall(IA, Args, getBundlesForFunclet(IA));
2709     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false,
2710                       ReadOnly, ReadNone, InNoMergeAttributedStmt, S,
2711                       ResultRegTypes, ArgElemTypes, *this, RegResults);
2712   }
2713 
2714   assert(RegResults.size() == ResultRegTypes.size());
2715   assert(RegResults.size() == ResultTruncRegTypes.size());
2716   assert(RegResults.size() == ResultRegDests.size());
2717   // ResultRegDests can be also populated by addReturnRegisterOutputs() above,
2718   // in which case its size may grow.
2719   assert(ResultTypeRequiresCast.size() <= ResultRegDests.size());
2720   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2721     llvm::Value *Tmp = RegResults[i];
2722     llvm::Type *TruncTy = ResultTruncRegTypes[i];
2723 
2724     // If the result type of the LLVM IR asm doesn't match the result type of
2725     // the expression, do the conversion.
2726     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2727 
2728       // Truncate the integer result to the right size, note that TruncTy can be
2729       // a pointer.
2730       if (TruncTy->isFloatingPointTy())
2731         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2732       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2733         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2734         Tmp = Builder.CreateTrunc(Tmp,
2735                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2736         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2737       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2738         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2739         Tmp = Builder.CreatePtrToInt(Tmp,
2740                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2741         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2742       } else if (TruncTy->isIntegerTy()) {
2743         Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy);
2744       } else if (TruncTy->isVectorTy()) {
2745         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2746       }
2747     }
2748 
2749     LValue Dest = ResultRegDests[i];
2750     // ResultTypeRequiresCast elements correspond to the first
2751     // ResultTypeRequiresCast.size() elements of RegResults.
2752     if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) {
2753       unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]);
2754       Address A = Builder.CreateElementBitCast(Dest.getAddress(*this),
2755                                                ResultRegTypes[i]);
2756       if (getTargetHooks().isScalarizableAsmOperand(*this, TruncTy)) {
2757         Builder.CreateStore(Tmp, A);
2758         continue;
2759       }
2760 
2761       QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false);
2762       if (Ty.isNull()) {
2763         const Expr *OutExpr = S.getOutputExpr(i);
2764         CGM.getDiags().Report(OutExpr->getExprLoc(),
2765                               diag::err_store_value_to_reg);
2766         return;
2767       }
2768       Dest = MakeAddrLValue(A, Ty);
2769     }
2770     EmitStoreThroughLValue(RValue::get(Tmp), Dest);
2771   }
2772 }
2773 
2774 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2775   const RecordDecl *RD = S.getCapturedRecordDecl();
2776   QualType RecordTy = getContext().getRecordType(RD);
2777 
2778   // Initialize the captured struct.
2779   LValue SlotLV =
2780     MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2781 
2782   RecordDecl::field_iterator CurField = RD->field_begin();
2783   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
2784                                                  E = S.capture_init_end();
2785        I != E; ++I, ++CurField) {
2786     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2787     if (CurField->hasCapturedVLAType()) {
2788       EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
2789     } else {
2790       EmitInitializerForField(*CurField, LV, *I);
2791     }
2792   }
2793 
2794   return SlotLV;
2795 }
2796 
2797 /// Generate an outlined function for the body of a CapturedStmt, store any
2798 /// captured variables into the captured struct, and call the outlined function.
2799 llvm::Function *
2800 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2801   LValue CapStruct = InitCapturedStruct(S);
2802 
2803   // Emit the CapturedDecl
2804   CodeGenFunction CGF(CGM, true);
2805   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2806   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2807   delete CGF.CapturedStmtInfo;
2808 
2809   // Emit call to the helper function.
2810   EmitCallOrInvoke(F, CapStruct.getPointer(*this));
2811 
2812   return F;
2813 }
2814 
2815 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2816   LValue CapStruct = InitCapturedStruct(S);
2817   return CapStruct.getAddress(*this);
2818 }
2819 
2820 /// Creates the outlined function for a CapturedStmt.
2821 llvm::Function *
2822 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2823   assert(CapturedStmtInfo &&
2824     "CapturedStmtInfo should be set when generating the captured function");
2825   const CapturedDecl *CD = S.getCapturedDecl();
2826   const RecordDecl *RD = S.getCapturedRecordDecl();
2827   SourceLocation Loc = S.getBeginLoc();
2828   assert(CD->hasBody() && "missing CapturedDecl body");
2829 
2830   // Build the argument list.
2831   ASTContext &Ctx = CGM.getContext();
2832   FunctionArgList Args;
2833   Args.append(CD->param_begin(), CD->param_end());
2834 
2835   // Create the function declaration.
2836   const CGFunctionInfo &FuncInfo =
2837     CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
2838   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2839 
2840   llvm::Function *F =
2841     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2842                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2843   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2844   if (CD->isNothrow())
2845     F->addFnAttr(llvm::Attribute::NoUnwind);
2846 
2847   // Generate the function.
2848   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
2849                 CD->getBody()->getBeginLoc());
2850   // Set the context parameter in CapturedStmtInfo.
2851   Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2852   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2853 
2854   // Initialize variable-length arrays.
2855   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2856                                            Ctx.getTagDeclType(RD));
2857   for (auto *FD : RD->fields()) {
2858     if (FD->hasCapturedVLAType()) {
2859       auto *ExprArg =
2860           EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc())
2861               .getScalarVal();
2862       auto VAT = FD->getCapturedVLAType();
2863       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2864     }
2865   }
2866 
2867   // If 'this' is captured, load it into CXXThisValue.
2868   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2869     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2870     LValue ThisLValue = EmitLValueForField(Base, FD);
2871     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2872   }
2873 
2874   PGO.assignRegionCounters(GlobalDecl(CD), F);
2875   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2876   FinishFunction(CD->getBodyRBrace());
2877 
2878   return F;
2879 }
2880