1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with C++ code generation of virtual tables.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/Basic/CodeGenOptions.h"
20 #include "clang/CodeGen/CGFunctionInfo.h"
21 #include "clang/CodeGen/ConstantInitBuilder.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/Support/Format.h"
24 #include "llvm/Transforms/Utils/Cloning.h"
25 #include <algorithm>
26 #include <cstdio>
27 
28 using namespace clang;
29 using namespace CodeGen;
30 
31 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM)
32     : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {}
33 
34 llvm::Constant *CodeGenModule::GetAddrOfThunk(StringRef Name, llvm::Type *FnTy,
35                                               GlobalDecl GD) {
36   return GetOrCreateLLVMFunction(Name, FnTy, GD, /*ForVTable=*/true,
37                                  /*DontDefer=*/true, /*IsThunk=*/true);
38 }
39 
40 static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk,
41                                llvm::Function *ThunkFn, bool ForVTable,
42                                GlobalDecl GD) {
43   CGM.setFunctionLinkage(GD, ThunkFn);
44   CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD,
45                                   !Thunk.Return.isEmpty());
46 
47   // Set the right visibility.
48   CGM.setGVProperties(ThunkFn, GD);
49 
50   if (!CGM.getCXXABI().exportThunk()) {
51     ThunkFn->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
52     ThunkFn->setDSOLocal(true);
53   }
54 
55   if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker())
56     ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
57 }
58 
59 #ifndef NDEBUG
60 static bool similar(const ABIArgInfo &infoL, CanQualType typeL,
61                     const ABIArgInfo &infoR, CanQualType typeR) {
62   return (infoL.getKind() == infoR.getKind() &&
63           (typeL == typeR ||
64            (isa<PointerType>(typeL) && isa<PointerType>(typeR)) ||
65            (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR))));
66 }
67 #endif
68 
69 static RValue PerformReturnAdjustment(CodeGenFunction &CGF,
70                                       QualType ResultType, RValue RV,
71                                       const ThunkInfo &Thunk) {
72   // Emit the return adjustment.
73   bool NullCheckValue = !ResultType->isReferenceType();
74 
75   llvm::BasicBlock *AdjustNull = nullptr;
76   llvm::BasicBlock *AdjustNotNull = nullptr;
77   llvm::BasicBlock *AdjustEnd = nullptr;
78 
79   llvm::Value *ReturnValue = RV.getScalarVal();
80 
81   if (NullCheckValue) {
82     AdjustNull = CGF.createBasicBlock("adjust.null");
83     AdjustNotNull = CGF.createBasicBlock("adjust.notnull");
84     AdjustEnd = CGF.createBasicBlock("adjust.end");
85 
86     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue);
87     CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull);
88     CGF.EmitBlock(AdjustNotNull);
89   }
90 
91   auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl();
92   auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl);
93   ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF,
94                                             Address(ReturnValue, ClassAlign),
95                                             Thunk.Return);
96 
97   if (NullCheckValue) {
98     CGF.Builder.CreateBr(AdjustEnd);
99     CGF.EmitBlock(AdjustNull);
100     CGF.Builder.CreateBr(AdjustEnd);
101     CGF.EmitBlock(AdjustEnd);
102 
103     llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2);
104     PHI->addIncoming(ReturnValue, AdjustNotNull);
105     PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()),
106                      AdjustNull);
107     ReturnValue = PHI;
108   }
109 
110   return RValue::get(ReturnValue);
111 }
112 
113 /// This function clones a function's DISubprogram node and enters it into
114 /// a value map with the intent that the map can be utilized by the cloner
115 /// to short-circuit Metadata node mapping.
116 /// Furthermore, the function resolves any DILocalVariable nodes referenced
117 /// by dbg.value intrinsics so they can be properly mapped during cloning.
118 static void resolveTopLevelMetadata(llvm::Function *Fn,
119                                     llvm::ValueToValueMapTy &VMap) {
120   // Clone the DISubprogram node and put it into the Value map.
121   auto *DIS = Fn->getSubprogram();
122   if (!DIS)
123     return;
124   auto *NewDIS = DIS->replaceWithDistinct(DIS->clone());
125   VMap.MD()[DIS].reset(NewDIS);
126 
127   // Find all llvm.dbg.declare intrinsics and resolve the DILocalVariable nodes
128   // they are referencing.
129   for (auto &BB : Fn->getBasicBlockList()) {
130     for (auto &I : BB) {
131       if (auto *DII = dyn_cast<llvm::DbgVariableIntrinsic>(&I)) {
132         auto *DILocal = DII->getVariable();
133         if (!DILocal->isResolved())
134           DILocal->resolve();
135       }
136     }
137   }
138 }
139 
140 // This function does roughly the same thing as GenerateThunk, but in a
141 // very different way, so that va_start and va_end work correctly.
142 // FIXME: This function assumes "this" is the first non-sret LLVM argument of
143 //        a function, and that there is an alloca built in the entry block
144 //        for all accesses to "this".
145 // FIXME: This function assumes there is only one "ret" statement per function.
146 // FIXME: Cloning isn't correct in the presence of indirect goto!
147 // FIXME: This implementation of thunks bloats codesize by duplicating the
148 //        function definition.  There are alternatives:
149 //        1. Add some sort of stub support to LLVM for cases where we can
150 //           do a this adjustment, then a sibcall.
151 //        2. We could transform the definition to take a va_list instead of an
152 //           actual variable argument list, then have the thunks (including a
153 //           no-op thunk for the regular definition) call va_start/va_end.
154 //           There's a bit of per-call overhead for this solution, but it's
155 //           better for codesize if the definition is long.
156 llvm::Function *
157 CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn,
158                                       const CGFunctionInfo &FnInfo,
159                                       GlobalDecl GD, const ThunkInfo &Thunk) {
160   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
161   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
162   QualType ResultType = FPT->getReturnType();
163 
164   // Get the original function
165   assert(FnInfo.isVariadic());
166   llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo);
167   llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
168   llvm::Function *BaseFn = cast<llvm::Function>(Callee);
169 
170   // Cloning can't work if we don't have a definition. The Microsoft ABI may
171   // require thunks when a definition is not available. Emit an error in these
172   // cases.
173   if (!MD->isDefined()) {
174     CGM.ErrorUnsupported(MD, "return-adjusting thunk with variadic arguments");
175     return Fn;
176   }
177   assert(!BaseFn->isDeclaration() && "cannot clone undefined variadic method");
178 
179   // Clone to thunk.
180   llvm::ValueToValueMapTy VMap;
181 
182   // We are cloning a function while some Metadata nodes are still unresolved.
183   // Ensure that the value mapper does not encounter any of them.
184   resolveTopLevelMetadata(BaseFn, VMap);
185   llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap);
186   Fn->replaceAllUsesWith(NewFn);
187   NewFn->takeName(Fn);
188   Fn->eraseFromParent();
189   Fn = NewFn;
190 
191   // "Initialize" CGF (minimally).
192   CurFn = Fn;
193 
194   // Get the "this" value
195   llvm::Function::arg_iterator AI = Fn->arg_begin();
196   if (CGM.ReturnTypeUsesSRet(FnInfo))
197     ++AI;
198 
199   // Find the first store of "this", which will be to the alloca associated
200   // with "this".
201   Address ThisPtr(&*AI, CGM.getClassPointerAlignment(MD->getParent()));
202   llvm::BasicBlock *EntryBB = &Fn->front();
203   llvm::BasicBlock::iterator ThisStore =
204       std::find_if(EntryBB->begin(), EntryBB->end(), [&](llvm::Instruction &I) {
205         return isa<llvm::StoreInst>(I) &&
206                I.getOperand(0) == ThisPtr.getPointer();
207       });
208   assert(ThisStore != EntryBB->end() &&
209          "Store of this should be in entry block?");
210   // Adjust "this", if necessary.
211   Builder.SetInsertPoint(&*ThisStore);
212   llvm::Value *AdjustedThisPtr =
213       CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This);
214   AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr,
215                                           ThisStore->getOperand(0)->getType());
216   ThisStore->setOperand(0, AdjustedThisPtr);
217 
218   if (!Thunk.Return.isEmpty()) {
219     // Fix up the returned value, if necessary.
220     for (llvm::BasicBlock &BB : *Fn) {
221       llvm::Instruction *T = BB.getTerminator();
222       if (isa<llvm::ReturnInst>(T)) {
223         RValue RV = RValue::get(T->getOperand(0));
224         T->eraseFromParent();
225         Builder.SetInsertPoint(&BB);
226         RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk);
227         Builder.CreateRet(RV.getScalarVal());
228         break;
229       }
230     }
231   }
232 
233   return Fn;
234 }
235 
236 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD,
237                                  const CGFunctionInfo &FnInfo,
238                                  bool IsUnprototyped) {
239   assert(!CurGD.getDecl() && "CurGD was already set!");
240   CurGD = GD;
241   CurFuncIsThunk = true;
242 
243   // Build FunctionArgs.
244   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
245   QualType ThisType = MD->getThisType();
246   QualType ResultType;
247   if (IsUnprototyped)
248     ResultType = CGM.getContext().VoidTy;
249   else if (CGM.getCXXABI().HasThisReturn(GD))
250     ResultType = ThisType;
251   else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
252     ResultType = CGM.getContext().VoidPtrTy;
253   else
254     ResultType = MD->getType()->castAs<FunctionProtoType>()->getReturnType();
255   FunctionArgList FunctionArgs;
256 
257   // Create the implicit 'this' parameter declaration.
258   CGM.getCXXABI().buildThisParam(*this, FunctionArgs);
259 
260   // Add the rest of the parameters, if we have a prototype to work with.
261   if (!IsUnprototyped) {
262     FunctionArgs.append(MD->param_begin(), MD->param_end());
263 
264     if (isa<CXXDestructorDecl>(MD))
265       CGM.getCXXABI().addImplicitStructorParams(*this, ResultType,
266                                                 FunctionArgs);
267   }
268 
269   // Start defining the function.
270   auto NL = ApplyDebugLocation::CreateEmpty(*this);
271   StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs,
272                 MD->getLocation());
273   // Create a scope with an artificial location for the body of this function.
274   auto AL = ApplyDebugLocation::CreateArtificial(*this);
275 
276   // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves.
277   CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
278   CXXThisValue = CXXABIThisValue;
279   CurCodeDecl = MD;
280   CurFuncDecl = MD;
281 }
282 
283 void CodeGenFunction::FinishThunk() {
284   // Clear these to restore the invariants expected by
285   // StartFunction/FinishFunction.
286   CurCodeDecl = nullptr;
287   CurFuncDecl = nullptr;
288 
289   FinishFunction();
290 }
291 
292 void CodeGenFunction::EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
293                                                 const ThunkInfo *Thunk,
294                                                 bool IsUnprototyped) {
295   assert(isa<CXXMethodDecl>(CurGD.getDecl()) &&
296          "Please use a new CGF for this thunk");
297   const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl());
298 
299   // Adjust the 'this' pointer if necessary
300   llvm::Value *AdjustedThisPtr =
301     Thunk ? CGM.getCXXABI().performThisAdjustment(
302                           *this, LoadCXXThisAddress(), Thunk->This)
303           : LoadCXXThis();
304 
305   // If perfect forwarding is required a variadic method, a method using
306   // inalloca, or an unprototyped thunk, use musttail. Emit an error if this
307   // thunk requires a return adjustment, since that is impossible with musttail.
308   if (CurFnInfo->usesInAlloca() || CurFnInfo->isVariadic() || IsUnprototyped) {
309     if (Thunk && !Thunk->Return.isEmpty()) {
310       if (IsUnprototyped)
311         CGM.ErrorUnsupported(
312             MD, "return-adjusting thunk with incomplete parameter type");
313       else if (CurFnInfo->isVariadic())
314         llvm_unreachable("shouldn't try to emit musttail return-adjusting "
315                          "thunks for variadic functions");
316       else
317         CGM.ErrorUnsupported(
318             MD, "non-trivial argument copy for return-adjusting thunk");
319     }
320     EmitMustTailThunk(CurGD, AdjustedThisPtr, Callee);
321     return;
322   }
323 
324   // Start building CallArgs.
325   CallArgList CallArgs;
326   QualType ThisType = MD->getThisType();
327   CallArgs.add(RValue::get(AdjustedThisPtr), ThisType);
328 
329   if (isa<CXXDestructorDecl>(MD))
330     CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs);
331 
332 #ifndef NDEBUG
333   unsigned PrefixArgs = CallArgs.size() - 1;
334 #endif
335   // Add the rest of the arguments.
336   for (const ParmVarDecl *PD : MD->parameters())
337     EmitDelegateCallArg(CallArgs, PD, SourceLocation());
338 
339   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
340 
341 #ifndef NDEBUG
342   const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall(
343       CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1), PrefixArgs);
344   assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() &&
345          CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() &&
346          CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention());
347   assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types
348          similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(),
349                  CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType()));
350   assert(CallFnInfo.arg_size() == CurFnInfo->arg_size());
351   for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i)
352     assert(similar(CallFnInfo.arg_begin()[i].info,
353                    CallFnInfo.arg_begin()[i].type,
354                    CurFnInfo->arg_begin()[i].info,
355                    CurFnInfo->arg_begin()[i].type));
356 #endif
357 
358   // Determine whether we have a return value slot to use.
359   QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD)
360                             ? ThisType
361                             : CGM.getCXXABI().hasMostDerivedReturn(CurGD)
362                                   ? CGM.getContext().VoidPtrTy
363                                   : FPT->getReturnType();
364   ReturnValueSlot Slot;
365   if (!ResultType->isVoidType() &&
366       CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect)
367     Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified());
368 
369   // Now emit our call.
370   llvm::CallBase *CallOrInvoke;
371   RValue RV = EmitCall(*CurFnInfo, CGCallee::forDirect(Callee, CurGD), Slot,
372                        CallArgs, &CallOrInvoke);
373 
374   // Consider return adjustment if we have ThunkInfo.
375   if (Thunk && !Thunk->Return.isEmpty())
376     RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk);
377   else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke))
378     Call->setTailCallKind(llvm::CallInst::TCK_Tail);
379 
380   // Emit return.
381   if (!ResultType->isVoidType() && Slot.isNull())
382     CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType);
383 
384   // Disable the final ARC autorelease.
385   AutoreleaseResult = false;
386 
387   FinishThunk();
388 }
389 
390 void CodeGenFunction::EmitMustTailThunk(GlobalDecl GD,
391                                         llvm::Value *AdjustedThisPtr,
392                                         llvm::FunctionCallee Callee) {
393   // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery
394   // to translate AST arguments into LLVM IR arguments.  For thunks, we know
395   // that the caller prototype more or less matches the callee prototype with
396   // the exception of 'this'.
397   SmallVector<llvm::Value *, 8> Args;
398   for (llvm::Argument &A : CurFn->args())
399     Args.push_back(&A);
400 
401   // Set the adjusted 'this' pointer.
402   const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info;
403   if (ThisAI.isDirect()) {
404     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
405     int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0;
406     llvm::Type *ThisType = Args[ThisArgNo]->getType();
407     if (ThisType != AdjustedThisPtr->getType())
408       AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
409     Args[ThisArgNo] = AdjustedThisPtr;
410   } else {
411     assert(ThisAI.isInAlloca() && "this is passed directly or inalloca");
412     Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl);
413     llvm::Type *ThisType = ThisAddr.getElementType();
414     if (ThisType != AdjustedThisPtr->getType())
415       AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
416     Builder.CreateStore(AdjustedThisPtr, ThisAddr);
417   }
418 
419   // Emit the musttail call manually.  Even if the prologue pushed cleanups, we
420   // don't actually want to run them.
421   llvm::CallInst *Call = Builder.CreateCall(Callee, Args);
422   Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
423 
424   // Apply the standard set of call attributes.
425   unsigned CallingConv;
426   llvm::AttributeList Attrs;
427   CGM.ConstructAttributeList(Callee.getCallee()->getName(), *CurFnInfo, GD,
428                              Attrs, CallingConv, /*AttrOnCallSite=*/true);
429   Call->setAttributes(Attrs);
430   Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
431 
432   if (Call->getType()->isVoidTy())
433     Builder.CreateRetVoid();
434   else
435     Builder.CreateRet(Call);
436 
437   // Finish the function to maintain CodeGenFunction invariants.
438   // FIXME: Don't emit unreachable code.
439   EmitBlock(createBasicBlock());
440   FinishFunction();
441 }
442 
443 void CodeGenFunction::generateThunk(llvm::Function *Fn,
444                                     const CGFunctionInfo &FnInfo, GlobalDecl GD,
445                                     const ThunkInfo &Thunk,
446                                     bool IsUnprototyped) {
447   StartThunk(Fn, GD, FnInfo, IsUnprototyped);
448   // Create a scope with an artificial location for the body of this function.
449   auto AL = ApplyDebugLocation::CreateArtificial(*this);
450 
451   // Get our callee. Use a placeholder type if this method is unprototyped so
452   // that CodeGenModule doesn't try to set attributes.
453   llvm::Type *Ty;
454   if (IsUnprototyped)
455     Ty = llvm::StructType::get(getLLVMContext());
456   else
457     Ty = CGM.getTypes().GetFunctionType(FnInfo);
458 
459   llvm::Constant *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
460 
461   // Fix up the function type for an unprototyped musttail call.
462   if (IsUnprototyped)
463     Callee = llvm::ConstantExpr::getBitCast(Callee, Fn->getType());
464 
465   // Make the call and return the result.
466   EmitCallAndReturnForThunk(llvm::FunctionCallee(Fn->getFunctionType(), Callee),
467                             &Thunk, IsUnprototyped);
468 }
469 
470 static bool shouldEmitVTableThunk(CodeGenModule &CGM, const CXXMethodDecl *MD,
471                                   bool IsUnprototyped, bool ForVTable) {
472   // Always emit thunks in the MS C++ ABI. We cannot rely on other TUs to
473   // provide thunks for us.
474   if (CGM.getTarget().getCXXABI().isMicrosoft())
475     return true;
476 
477   // In the Itanium C++ ABI, vtable thunks are provided by TUs that provide
478   // definitions of the main method. Therefore, emitting thunks with the vtable
479   // is purely an optimization. Emit the thunk if optimizations are enabled and
480   // all of the parameter types are complete.
481   if (ForVTable)
482     return CGM.getCodeGenOpts().OptimizationLevel && !IsUnprototyped;
483 
484   // Always emit thunks along with the method definition.
485   return true;
486 }
487 
488 llvm::Constant *CodeGenVTables::maybeEmitThunk(GlobalDecl GD,
489                                                const ThunkInfo &TI,
490                                                bool ForVTable) {
491   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
492 
493   // First, get a declaration. Compute the mangled name. Don't worry about
494   // getting the function prototype right, since we may only need this
495   // declaration to fill in a vtable slot.
496   SmallString<256> Name;
497   MangleContext &MCtx = CGM.getCXXABI().getMangleContext();
498   llvm::raw_svector_ostream Out(Name);
499   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD))
500     MCtx.mangleCXXDtorThunk(DD, GD.getDtorType(), TI.This, Out);
501   else
502     MCtx.mangleThunk(MD, TI, Out);
503   llvm::Type *ThunkVTableTy = CGM.getTypes().GetFunctionTypeForVTable(GD);
504   llvm::Constant *Thunk = CGM.GetAddrOfThunk(Name, ThunkVTableTy, GD);
505 
506   // If we don't need to emit a definition, return this declaration as is.
507   bool IsUnprototyped = !CGM.getTypes().isFuncTypeConvertible(
508       MD->getType()->castAs<FunctionType>());
509   if (!shouldEmitVTableThunk(CGM, MD, IsUnprototyped, ForVTable))
510     return Thunk;
511 
512   // Arrange a function prototype appropriate for a function definition. In some
513   // cases in the MS ABI, we may need to build an unprototyped musttail thunk.
514   const CGFunctionInfo &FnInfo =
515       IsUnprototyped ? CGM.getTypes().arrangeUnprototypedMustTailThunk(MD)
516                      : CGM.getTypes().arrangeGlobalDeclaration(GD);
517   llvm::FunctionType *ThunkFnTy = CGM.getTypes().GetFunctionType(FnInfo);
518 
519   // If the type of the underlying GlobalValue is wrong, we'll have to replace
520   // it. It should be a declaration.
521   llvm::Function *ThunkFn = cast<llvm::Function>(Thunk->stripPointerCasts());
522   if (ThunkFn->getFunctionType() != ThunkFnTy) {
523     llvm::GlobalValue *OldThunkFn = ThunkFn;
524 
525     assert(OldThunkFn->isDeclaration() && "Shouldn't replace non-declaration");
526 
527     // Remove the name from the old thunk function and get a new thunk.
528     OldThunkFn->setName(StringRef());
529     ThunkFn = llvm::Function::Create(ThunkFnTy, llvm::Function::ExternalLinkage,
530                                      Name.str(), &CGM.getModule());
531     CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn);
532 
533     // If needed, replace the old thunk with a bitcast.
534     if (!OldThunkFn->use_empty()) {
535       llvm::Constant *NewPtrForOldDecl =
536           llvm::ConstantExpr::getBitCast(ThunkFn, OldThunkFn->getType());
537       OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl);
538     }
539 
540     // Remove the old thunk.
541     OldThunkFn->eraseFromParent();
542   }
543 
544   bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions();
545   bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions;
546 
547   if (!ThunkFn->isDeclaration()) {
548     if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) {
549       // There is already a thunk emitted for this function, do nothing.
550       return ThunkFn;
551     }
552 
553     setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD);
554     return ThunkFn;
555   }
556 
557   // If this will be unprototyped, add the "thunk" attribute so that LLVM knows
558   // that the return type is meaningless. These thunks can be used to call
559   // functions with differing return types, and the caller is required to cast
560   // the prototype appropriately to extract the correct value.
561   if (IsUnprototyped)
562     ThunkFn->addFnAttr("thunk");
563 
564   CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn);
565 
566   // Thunks for variadic methods are special because in general variadic
567   // arguments cannot be perferctly forwarded. In the general case, clang
568   // implements such thunks by cloning the original function body. However, for
569   // thunks with no return adjustment on targets that support musttail, we can
570   // use musttail to perfectly forward the variadic arguments.
571   bool ShouldCloneVarArgs = false;
572   if (!IsUnprototyped && ThunkFn->isVarArg()) {
573     ShouldCloneVarArgs = true;
574     if (TI.Return.isEmpty()) {
575       switch (CGM.getTriple().getArch()) {
576       case llvm::Triple::x86_64:
577       case llvm::Triple::x86:
578       case llvm::Triple::aarch64:
579         ShouldCloneVarArgs = false;
580         break;
581       default:
582         break;
583       }
584     }
585   }
586 
587   if (ShouldCloneVarArgs) {
588     if (UseAvailableExternallyLinkage)
589       return ThunkFn;
590     ThunkFn =
591         CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, TI);
592   } else {
593     // Normal thunk body generation.
594     CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, TI, IsUnprototyped);
595   }
596 
597   setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD);
598   return ThunkFn;
599 }
600 
601 void CodeGenVTables::EmitThunks(GlobalDecl GD) {
602   const CXXMethodDecl *MD =
603     cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl();
604 
605   // We don't need to generate thunks for the base destructor.
606   if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
607     return;
608 
609   const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector =
610       VTContext->getThunkInfo(GD);
611 
612   if (!ThunkInfoVector)
613     return;
614 
615   for (const ThunkInfo& Thunk : *ThunkInfoVector)
616     maybeEmitThunk(GD, Thunk, /*ForVTable=*/false);
617 }
618 
619 void CodeGenVTables::addVTableComponent(
620     ConstantArrayBuilder &builder, const VTableLayout &layout,
621     unsigned idx, llvm::Constant *rtti, unsigned &nextVTableThunkIndex) {
622   auto &component = layout.vtable_components()[idx];
623 
624   auto addOffsetConstant = [&](CharUnits offset) {
625     builder.add(llvm::ConstantExpr::getIntToPtr(
626         llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()),
627         CGM.Int8PtrTy));
628   };
629 
630   switch (component.getKind()) {
631   case VTableComponent::CK_VCallOffset:
632     return addOffsetConstant(component.getVCallOffset());
633 
634   case VTableComponent::CK_VBaseOffset:
635     return addOffsetConstant(component.getVBaseOffset());
636 
637   case VTableComponent::CK_OffsetToTop:
638     return addOffsetConstant(component.getOffsetToTop());
639 
640   case VTableComponent::CK_RTTI:
641     return builder.add(llvm::ConstantExpr::getBitCast(rtti, CGM.Int8PtrTy));
642 
643   case VTableComponent::CK_FunctionPointer:
644   case VTableComponent::CK_CompleteDtorPointer:
645   case VTableComponent::CK_DeletingDtorPointer: {
646     GlobalDecl GD;
647 
648     // Get the right global decl.
649     switch (component.getKind()) {
650     default:
651       llvm_unreachable("Unexpected vtable component kind");
652     case VTableComponent::CK_FunctionPointer:
653       GD = component.getFunctionDecl();
654       break;
655     case VTableComponent::CK_CompleteDtorPointer:
656       GD = GlobalDecl(component.getDestructorDecl(), Dtor_Complete);
657       break;
658     case VTableComponent::CK_DeletingDtorPointer:
659       GD = GlobalDecl(component.getDestructorDecl(), Dtor_Deleting);
660       break;
661     }
662 
663     if (CGM.getLangOpts().CUDA) {
664       // Emit NULL for methods we can't codegen on this
665       // side. Otherwise we'd end up with vtable with unresolved
666       // references.
667       const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
668       // OK on device side: functions w/ __device__ attribute
669       // OK on host side: anything except __device__-only functions.
670       bool CanEmitMethod =
671           CGM.getLangOpts().CUDAIsDevice
672               ? MD->hasAttr<CUDADeviceAttr>()
673               : (MD->hasAttr<CUDAHostAttr>() || !MD->hasAttr<CUDADeviceAttr>());
674       if (!CanEmitMethod)
675         return builder.addNullPointer(CGM.Int8PtrTy);
676       // Method is acceptable, continue processing as usual.
677     }
678 
679     auto getSpecialVirtualFn = [&](StringRef name) -> llvm::Constant * {
680       // For NVPTX devices in OpenMP emit special functon as null pointers,
681       // otherwise linking ends up with unresolved references.
682       if (CGM.getLangOpts().OpenMP && CGM.getLangOpts().OpenMPIsDevice &&
683           CGM.getTriple().isNVPTX())
684         return llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
685       llvm::FunctionType *fnTy =
686           llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
687       llvm::Constant *fn = cast<llvm::Constant>(
688           CGM.CreateRuntimeFunction(fnTy, name).getCallee());
689       if (auto f = dyn_cast<llvm::Function>(fn))
690         f->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
691       return llvm::ConstantExpr::getBitCast(fn, CGM.Int8PtrTy);
692     };
693 
694     llvm::Constant *fnPtr;
695 
696     // Pure virtual member functions.
697     if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) {
698       if (!PureVirtualFn)
699         PureVirtualFn =
700           getSpecialVirtualFn(CGM.getCXXABI().GetPureVirtualCallName());
701       fnPtr = PureVirtualFn;
702 
703     // Deleted virtual member functions.
704     } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) {
705       if (!DeletedVirtualFn)
706         DeletedVirtualFn =
707           getSpecialVirtualFn(CGM.getCXXABI().GetDeletedVirtualCallName());
708       fnPtr = DeletedVirtualFn;
709 
710     // Thunks.
711     } else if (nextVTableThunkIndex < layout.vtable_thunks().size() &&
712                layout.vtable_thunks()[nextVTableThunkIndex].first == idx) {
713       auto &thunkInfo = layout.vtable_thunks()[nextVTableThunkIndex].second;
714 
715       nextVTableThunkIndex++;
716       fnPtr = maybeEmitThunk(GD, thunkInfo, /*ForVTable=*/true);
717 
718     // Otherwise we can use the method definition directly.
719     } else {
720       llvm::Type *fnTy = CGM.getTypes().GetFunctionTypeForVTable(GD);
721       fnPtr = CGM.GetAddrOfFunction(GD, fnTy, /*ForVTable=*/true);
722     }
723 
724     fnPtr = llvm::ConstantExpr::getBitCast(fnPtr, CGM.Int8PtrTy);
725     builder.add(fnPtr);
726     return;
727   }
728 
729   case VTableComponent::CK_UnusedFunctionPointer:
730     return builder.addNullPointer(CGM.Int8PtrTy);
731   }
732 
733   llvm_unreachable("Unexpected vtable component kind");
734 }
735 
736 llvm::Type *CodeGenVTables::getVTableType(const VTableLayout &layout) {
737   SmallVector<llvm::Type *, 4> tys;
738   for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i) {
739     tys.push_back(llvm::ArrayType::get(CGM.Int8PtrTy, layout.getVTableSize(i)));
740   }
741 
742   return llvm::StructType::get(CGM.getLLVMContext(), tys);
743 }
744 
745 void CodeGenVTables::createVTableInitializer(ConstantStructBuilder &builder,
746                                              const VTableLayout &layout,
747                                              llvm::Constant *rtti) {
748   unsigned nextVTableThunkIndex = 0;
749   for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i) {
750     auto vtableElem = builder.beginArray(CGM.Int8PtrTy);
751     size_t thisIndex = layout.getVTableOffset(i);
752     size_t nextIndex = thisIndex + layout.getVTableSize(i);
753     for (unsigned i = thisIndex; i != nextIndex; ++i) {
754       addVTableComponent(vtableElem, layout, i, rtti, nextVTableThunkIndex);
755     }
756     vtableElem.finishAndAddTo(builder);
757   }
758 }
759 
760 llvm::GlobalVariable *
761 CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD,
762                                       const BaseSubobject &Base,
763                                       bool BaseIsVirtual,
764                                    llvm::GlobalVariable::LinkageTypes Linkage,
765                                       VTableAddressPointsMapTy& AddressPoints) {
766   if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
767     DI->completeClassData(Base.getBase());
768 
769   std::unique_ptr<VTableLayout> VTLayout(
770       getItaniumVTableContext().createConstructionVTableLayout(
771           Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD));
772 
773   // Add the address points.
774   AddressPoints = VTLayout->getAddressPoints();
775 
776   // Get the mangled construction vtable name.
777   SmallString<256> OutName;
778   llvm::raw_svector_ostream Out(OutName);
779   cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext())
780       .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(),
781                            Base.getBase(), Out);
782   StringRef Name = OutName.str();
783 
784   llvm::Type *VTType = getVTableType(*VTLayout);
785 
786   // Construction vtable symbols are not part of the Itanium ABI, so we cannot
787   // guarantee that they actually will be available externally. Instead, when
788   // emitting an available_externally VTT, we provide references to an internal
789   // linkage construction vtable. The ABI only requires complete-object vtables
790   // to be the same for all instances of a type, not construction vtables.
791   if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage)
792     Linkage = llvm::GlobalVariable::InternalLinkage;
793 
794   unsigned Align = CGM.getDataLayout().getABITypeAlignment(VTType);
795 
796   // Create the variable that will hold the construction vtable.
797   llvm::GlobalVariable *VTable =
798       CGM.CreateOrReplaceCXXRuntimeVariable(Name, VTType, Linkage, Align);
799 
800   // V-tables are always unnamed_addr.
801   VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
802 
803   llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor(
804       CGM.getContext().getTagDeclType(Base.getBase()));
805 
806   // Create and set the initializer.
807   ConstantInitBuilder builder(CGM);
808   auto components = builder.beginStruct();
809   createVTableInitializer(components, *VTLayout, RTTI);
810   components.finishAndSetAsInitializer(VTable);
811 
812   // Set properties only after the initializer has been set to ensure that the
813   // GV is treated as definition and not declaration.
814   assert(!VTable->isDeclaration() && "Shouldn't set properties on declaration");
815   CGM.setGVProperties(VTable, RD);
816 
817   CGM.EmitVTableTypeMetadata(RD, VTable, *VTLayout.get());
818 
819   return VTable;
820 }
821 
822 static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM,
823                                                 const CXXRecordDecl *RD) {
824   return CGM.getCodeGenOpts().OptimizationLevel > 0 &&
825          CGM.getCXXABI().canSpeculativelyEmitVTable(RD);
826 }
827 
828 /// Compute the required linkage of the vtable for the given class.
829 ///
830 /// Note that we only call this at the end of the translation unit.
831 llvm::GlobalVariable::LinkageTypes
832 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
833   if (!RD->isExternallyVisible())
834     return llvm::GlobalVariable::InternalLinkage;
835 
836   // We're at the end of the translation unit, so the current key
837   // function is fully correct.
838   const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD);
839   if (keyFunction && !RD->hasAttr<DLLImportAttr>()) {
840     // If this class has a key function, use that to determine the
841     // linkage of the vtable.
842     const FunctionDecl *def = nullptr;
843     if (keyFunction->hasBody(def))
844       keyFunction = cast<CXXMethodDecl>(def);
845 
846     switch (keyFunction->getTemplateSpecializationKind()) {
847       case TSK_Undeclared:
848       case TSK_ExplicitSpecialization:
849         assert((def || CodeGenOpts.OptimizationLevel > 0 ||
850                 CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo) &&
851                "Shouldn't query vtable linkage without key function, "
852                "optimizations, or debug info");
853         if (!def && CodeGenOpts.OptimizationLevel > 0)
854           return llvm::GlobalVariable::AvailableExternallyLinkage;
855 
856         if (keyFunction->isInlined())
857           return !Context.getLangOpts().AppleKext ?
858                    llvm::GlobalVariable::LinkOnceODRLinkage :
859                    llvm::Function::InternalLinkage;
860 
861         return llvm::GlobalVariable::ExternalLinkage;
862 
863       case TSK_ImplicitInstantiation:
864         return !Context.getLangOpts().AppleKext ?
865                  llvm::GlobalVariable::LinkOnceODRLinkage :
866                  llvm::Function::InternalLinkage;
867 
868       case TSK_ExplicitInstantiationDefinition:
869         return !Context.getLangOpts().AppleKext ?
870                  llvm::GlobalVariable::WeakODRLinkage :
871                  llvm::Function::InternalLinkage;
872 
873       case TSK_ExplicitInstantiationDeclaration:
874         llvm_unreachable("Should not have been asked to emit this");
875     }
876   }
877 
878   // -fapple-kext mode does not support weak linkage, so we must use
879   // internal linkage.
880   if (Context.getLangOpts().AppleKext)
881     return llvm::Function::InternalLinkage;
882 
883   llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage =
884       llvm::GlobalValue::LinkOnceODRLinkage;
885   llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage =
886       llvm::GlobalValue::WeakODRLinkage;
887   if (RD->hasAttr<DLLExportAttr>()) {
888     // Cannot discard exported vtables.
889     DiscardableODRLinkage = NonDiscardableODRLinkage;
890   } else if (RD->hasAttr<DLLImportAttr>()) {
891     // Imported vtables are available externally.
892     DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
893     NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
894   }
895 
896   switch (RD->getTemplateSpecializationKind()) {
897     case TSK_Undeclared:
898     case TSK_ExplicitSpecialization:
899     case TSK_ImplicitInstantiation:
900       return DiscardableODRLinkage;
901 
902     case TSK_ExplicitInstantiationDeclaration:
903       // Explicit instantiations in MSVC do not provide vtables, so we must emit
904       // our own.
905       if (getTarget().getCXXABI().isMicrosoft())
906         return DiscardableODRLinkage;
907       return shouldEmitAvailableExternallyVTable(*this, RD)
908                  ? llvm::GlobalVariable::AvailableExternallyLinkage
909                  : llvm::GlobalVariable::ExternalLinkage;
910 
911     case TSK_ExplicitInstantiationDefinition:
912       return NonDiscardableODRLinkage;
913   }
914 
915   llvm_unreachable("Invalid TemplateSpecializationKind!");
916 }
917 
918 /// This is a callback from Sema to tell us that a particular vtable is
919 /// required to be emitted in this translation unit.
920 ///
921 /// This is only called for vtables that _must_ be emitted (mainly due to key
922 /// functions).  For weak vtables, CodeGen tracks when they are needed and
923 /// emits them as-needed.
924 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) {
925   VTables.GenerateClassData(theClass);
926 }
927 
928 void
929 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) {
930   if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
931     DI->completeClassData(RD);
932 
933   if (RD->getNumVBases())
934     CGM.getCXXABI().emitVirtualInheritanceTables(RD);
935 
936   CGM.getCXXABI().emitVTableDefinitions(*this, RD);
937 }
938 
939 /// At this point in the translation unit, does it appear that can we
940 /// rely on the vtable being defined elsewhere in the program?
941 ///
942 /// The response is really only definitive when called at the end of
943 /// the translation unit.
944 ///
945 /// The only semantic restriction here is that the object file should
946 /// not contain a vtable definition when that vtable is defined
947 /// strongly elsewhere.  Otherwise, we'd just like to avoid emitting
948 /// vtables when unnecessary.
949 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) {
950   assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable.");
951 
952   // We always synthesize vtables if they are needed in the MS ABI. MSVC doesn't
953   // emit them even if there is an explicit template instantiation.
954   if (CGM.getTarget().getCXXABI().isMicrosoft())
955     return false;
956 
957   // If we have an explicit instantiation declaration (and not a
958   // definition), the vtable is defined elsewhere.
959   TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
960   if (TSK == TSK_ExplicitInstantiationDeclaration)
961     return true;
962 
963   // Otherwise, if the class is an instantiated template, the
964   // vtable must be defined here.
965   if (TSK == TSK_ImplicitInstantiation ||
966       TSK == TSK_ExplicitInstantiationDefinition)
967     return false;
968 
969   // Otherwise, if the class doesn't have a key function (possibly
970   // anymore), the vtable must be defined here.
971   const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD);
972   if (!keyFunction)
973     return false;
974 
975   // Otherwise, if we don't have a definition of the key function, the
976   // vtable must be defined somewhere else.
977   return !keyFunction->hasBody();
978 }
979 
980 /// Given that we're currently at the end of the translation unit, and
981 /// we've emitted a reference to the vtable for this class, should
982 /// we define that vtable?
983 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM,
984                                                    const CXXRecordDecl *RD) {
985   // If vtable is internal then it has to be done.
986   if (!CGM.getVTables().isVTableExternal(RD))
987     return true;
988 
989   // If it's external then maybe we will need it as available_externally.
990   return shouldEmitAvailableExternallyVTable(CGM, RD);
991 }
992 
993 /// Given that at some point we emitted a reference to one or more
994 /// vtables, and that we are now at the end of the translation unit,
995 /// decide whether we should emit them.
996 void CodeGenModule::EmitDeferredVTables() {
997 #ifndef NDEBUG
998   // Remember the size of DeferredVTables, because we're going to assume
999   // that this entire operation doesn't modify it.
1000   size_t savedSize = DeferredVTables.size();
1001 #endif
1002 
1003   for (const CXXRecordDecl *RD : DeferredVTables)
1004     if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD))
1005       VTables.GenerateClassData(RD);
1006     else if (shouldOpportunisticallyEmitVTables())
1007       OpportunisticVTables.push_back(RD);
1008 
1009   assert(savedSize == DeferredVTables.size() &&
1010          "deferred extra vtables during vtable emission?");
1011   DeferredVTables.clear();
1012 }
1013 
1014 bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) {
1015   LinkageInfo LV = RD->getLinkageAndVisibility();
1016   if (!isExternallyVisible(LV.getLinkage()))
1017     return true;
1018 
1019   if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>())
1020     return false;
1021 
1022   if (getTriple().isOSBinFormatCOFF()) {
1023     if (RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>())
1024       return false;
1025   } else {
1026     if (LV.getVisibility() != HiddenVisibility)
1027       return false;
1028   }
1029 
1030   if (getCodeGenOpts().LTOVisibilityPublicStd) {
1031     const DeclContext *DC = RD;
1032     while (1) {
1033       auto *D = cast<Decl>(DC);
1034       DC = DC->getParent();
1035       if (isa<TranslationUnitDecl>(DC->getRedeclContext())) {
1036         if (auto *ND = dyn_cast<NamespaceDecl>(D))
1037           if (const IdentifierInfo *II = ND->getIdentifier())
1038             if (II->isStr("std") || II->isStr("stdext"))
1039               return false;
1040         break;
1041       }
1042     }
1043   }
1044 
1045   return true;
1046 }
1047 
1048 llvm::GlobalObject::VCallVisibility
1049 CodeGenModule::GetVCallVisibilityLevel(const CXXRecordDecl *RD) {
1050   LinkageInfo LV = RD->getLinkageAndVisibility();
1051   llvm::GlobalObject::VCallVisibility TypeVis;
1052   if (!isExternallyVisible(LV.getLinkage()))
1053     TypeVis = llvm::GlobalObject::VCallVisibilityTranslationUnit;
1054   else if (HasHiddenLTOVisibility(RD))
1055     TypeVis = llvm::GlobalObject::VCallVisibilityLinkageUnit;
1056   else
1057     TypeVis = llvm::GlobalObject::VCallVisibilityPublic;
1058 
1059   for (auto B : RD->bases())
1060     if (B.getType()->getAsCXXRecordDecl()->isDynamicClass())
1061       TypeVis = std::min(TypeVis,
1062                     GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl()));
1063 
1064   for (auto B : RD->vbases())
1065     if (B.getType()->getAsCXXRecordDecl()->isDynamicClass())
1066       TypeVis = std::min(TypeVis,
1067                     GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl()));
1068 
1069   return TypeVis;
1070 }
1071 
1072 void CodeGenModule::EmitVTableTypeMetadata(const CXXRecordDecl *RD,
1073                                            llvm::GlobalVariable *VTable,
1074                                            const VTableLayout &VTLayout) {
1075   if (!getCodeGenOpts().LTOUnit)
1076     return;
1077 
1078   CharUnits PointerWidth =
1079       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
1080 
1081   typedef std::pair<const CXXRecordDecl *, unsigned> AddressPoint;
1082   std::vector<AddressPoint> AddressPoints;
1083   for (auto &&AP : VTLayout.getAddressPoints())
1084     AddressPoints.push_back(std::make_pair(
1085         AP.first.getBase(), VTLayout.getVTableOffset(AP.second.VTableIndex) +
1086                                 AP.second.AddressPointIndex));
1087 
1088   // Sort the address points for determinism.
1089   llvm::sort(AddressPoints, [this](const AddressPoint &AP1,
1090                                    const AddressPoint &AP2) {
1091     if (&AP1 == &AP2)
1092       return false;
1093 
1094     std::string S1;
1095     llvm::raw_string_ostream O1(S1);
1096     getCXXABI().getMangleContext().mangleTypeName(
1097         QualType(AP1.first->getTypeForDecl(), 0), O1);
1098     O1.flush();
1099 
1100     std::string S2;
1101     llvm::raw_string_ostream O2(S2);
1102     getCXXABI().getMangleContext().mangleTypeName(
1103         QualType(AP2.first->getTypeForDecl(), 0), O2);
1104     O2.flush();
1105 
1106     if (S1 < S2)
1107       return true;
1108     if (S1 != S2)
1109       return false;
1110 
1111     return AP1.second < AP2.second;
1112   });
1113 
1114   ArrayRef<VTableComponent> Comps = VTLayout.vtable_components();
1115   for (auto AP : AddressPoints) {
1116     // Create type metadata for the address point.
1117     AddVTableTypeMetadata(VTable, PointerWidth * AP.second, AP.first);
1118 
1119     // The class associated with each address point could also potentially be
1120     // used for indirect calls via a member function pointer, so we need to
1121     // annotate the address of each function pointer with the appropriate member
1122     // function pointer type.
1123     for (unsigned I = 0; I != Comps.size(); ++I) {
1124       if (Comps[I].getKind() != VTableComponent::CK_FunctionPointer)
1125         continue;
1126       llvm::Metadata *MD = CreateMetadataIdentifierForVirtualMemPtrType(
1127           Context.getMemberPointerType(
1128               Comps[I].getFunctionDecl()->getType(),
1129               Context.getRecordType(AP.first).getTypePtr()));
1130       VTable->addTypeMetadata((PointerWidth * I).getQuantity(), MD);
1131     }
1132   }
1133 
1134   if (getCodeGenOpts().VirtualFunctionElimination) {
1135     llvm::GlobalObject::VCallVisibility TypeVis = GetVCallVisibilityLevel(RD);
1136     if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic)
1137       VTable->addVCallVisibilityMetadata(TypeVis);
1138   }
1139 }
1140