1 //===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes implement wrappers around llvm::Value in order to
10 // fully represent the range of values for C L- and R- values.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CGVALUE_H
15 #define LLVM_CLANG_LIB_CODEGEN_CGVALUE_H
16 
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/Type.h"
19 #include "llvm/IR/Value.h"
20 #include "llvm/IR/Type.h"
21 #include "Address.h"
22 #include "CodeGenTBAA.h"
23 
24 namespace llvm {
25   class Constant;
26   class MDNode;
27 }
28 
29 namespace clang {
30 namespace CodeGen {
31   class AggValueSlot;
32   class CodeGenFunction;
33   struct CGBitFieldInfo;
34 
35 /// RValue - This trivial value class is used to represent the result of an
36 /// expression that is evaluated.  It can be one of three things: either a
37 /// simple LLVM SSA value, a pair of SSA values for complex numbers, or the
38 /// address of an aggregate value in memory.
39 class RValue {
40   enum Flavor { Scalar, Complex, Aggregate };
41 
42   // The shift to make to an aggregate's alignment to make it look
43   // like a pointer.
44   enum { AggAlignShift = 4 };
45 
46   // Stores first value and flavor.
47   llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1;
48   // Stores second value and volatility.
49   llvm::PointerIntPair<llvm::Value *, 1, bool> V2;
50 
51 public:
52   bool isScalar() const { return V1.getInt() == Scalar; }
53   bool isComplex() const { return V1.getInt() == Complex; }
54   bool isAggregate() const { return V1.getInt() == Aggregate; }
55 
56   bool isVolatileQualified() const { return V2.getInt(); }
57 
58   /// getScalarVal() - Return the Value* of this scalar value.
59   llvm::Value *getScalarVal() const {
60     assert(isScalar() && "Not a scalar!");
61     return V1.getPointer();
62   }
63 
64   /// getComplexVal - Return the real/imag components of this complex value.
65   ///
66   std::pair<llvm::Value *, llvm::Value *> getComplexVal() const {
67     return std::make_pair(V1.getPointer(), V2.getPointer());
68   }
69 
70   /// getAggregateAddr() - Return the Value* of the address of the aggregate.
71   Address getAggregateAddress() const {
72     assert(isAggregate() && "Not an aggregate!");
73     auto align = reinterpret_cast<uintptr_t>(V2.getPointer()) >> AggAlignShift;
74     return Address(V1.getPointer(), CharUnits::fromQuantity(align));
75   }
76   llvm::Value *getAggregatePointer() const {
77     assert(isAggregate() && "Not an aggregate!");
78     return V1.getPointer();
79   }
80 
81   static RValue getIgnored() {
82     // FIXME: should we make this a more explicit state?
83     return get(nullptr);
84   }
85 
86   static RValue get(llvm::Value *V) {
87     RValue ER;
88     ER.V1.setPointer(V);
89     ER.V1.setInt(Scalar);
90     ER.V2.setInt(false);
91     return ER;
92   }
93   static RValue getComplex(llvm::Value *V1, llvm::Value *V2) {
94     RValue ER;
95     ER.V1.setPointer(V1);
96     ER.V2.setPointer(V2);
97     ER.V1.setInt(Complex);
98     ER.V2.setInt(false);
99     return ER;
100   }
101   static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) {
102     return getComplex(C.first, C.second);
103   }
104   // FIXME: Aggregate rvalues need to retain information about whether they are
105   // volatile or not.  Remove default to find all places that probably get this
106   // wrong.
107   static RValue getAggregate(Address addr, bool isVolatile = false) {
108     RValue ER;
109     ER.V1.setPointer(addr.getPointer());
110     ER.V1.setInt(Aggregate);
111 
112     auto align = static_cast<uintptr_t>(addr.getAlignment().getQuantity());
113     ER.V2.setPointer(reinterpret_cast<llvm::Value*>(align << AggAlignShift));
114     ER.V2.setInt(isVolatile);
115     return ER;
116   }
117 };
118 
119 /// Does an ARC strong l-value have precise lifetime?
120 enum ARCPreciseLifetime_t {
121   ARCImpreciseLifetime, ARCPreciseLifetime
122 };
123 
124 /// The source of the alignment of an l-value; an expression of
125 /// confidence in the alignment actually matching the estimate.
126 enum class AlignmentSource {
127   /// The l-value was an access to a declared entity or something
128   /// equivalently strong, like the address of an array allocated by a
129   /// language runtime.
130   Decl,
131 
132   /// The l-value was considered opaque, so the alignment was
133   /// determined from a type, but that type was an explicitly-aligned
134   /// typedef.
135   AttributedType,
136 
137   /// The l-value was considered opaque, so the alignment was
138   /// determined from a type.
139   Type
140 };
141 
142 /// Given that the base address has the given alignment source, what's
143 /// our confidence in the alignment of the field?
144 static inline AlignmentSource getFieldAlignmentSource(AlignmentSource Source) {
145   // For now, we don't distinguish fields of opaque pointers from
146   // top-level declarations, but maybe we should.
147   return AlignmentSource::Decl;
148 }
149 
150 class LValueBaseInfo {
151   AlignmentSource AlignSource;
152 
153 public:
154   explicit LValueBaseInfo(AlignmentSource Source = AlignmentSource::Type)
155     : AlignSource(Source) {}
156   AlignmentSource getAlignmentSource() const { return AlignSource; }
157   void setAlignmentSource(AlignmentSource Source) { AlignSource = Source; }
158 
159   void mergeForCast(const LValueBaseInfo &Info) {
160     setAlignmentSource(Info.getAlignmentSource());
161   }
162 };
163 
164 /// LValue - This represents an lvalue references.  Because C/C++ allow
165 /// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a
166 /// bitrange.
167 class LValue {
168   enum {
169     Simple,       // This is a normal l-value, use getAddress().
170     VectorElt,    // This is a vector element l-value (V[i]), use getVector*
171     BitField,     // This is a bitfield l-value, use getBitfield*.
172     ExtVectorElt, // This is an extended vector subset, use getExtVectorComp
173     GlobalReg     // This is a register l-value, use getGlobalReg()
174   } LVType;
175 
176   llvm::Value *V;
177 
178   union {
179     // Index into a vector subscript: V[i]
180     llvm::Value *VectorIdx;
181 
182     // ExtVector element subset: V.xyx
183     llvm::Constant *VectorElts;
184 
185     // BitField start bit and size
186     const CGBitFieldInfo *BitFieldInfo;
187   };
188 
189   QualType Type;
190 
191   // 'const' is unused here
192   Qualifiers Quals;
193 
194   // The alignment to use when accessing this lvalue.  (For vector elements,
195   // this is the alignment of the whole vector.)
196   unsigned Alignment;
197 
198   // objective-c's ivar
199   bool Ivar:1;
200 
201   // objective-c's ivar is an array
202   bool ObjIsArray:1;
203 
204   // LValue is non-gc'able for any reason, including being a parameter or local
205   // variable.
206   bool NonGC: 1;
207 
208   // Lvalue is a global reference of an objective-c object
209   bool GlobalObjCRef : 1;
210 
211   // Lvalue is a thread local reference
212   bool ThreadLocalRef : 1;
213 
214   // Lvalue has ARC imprecise lifetime.  We store this inverted to try
215   // to make the default bitfield pattern all-zeroes.
216   bool ImpreciseLifetime : 1;
217 
218   // This flag shows if a nontemporal load/stores should be used when accessing
219   // this lvalue.
220   bool Nontemporal : 1;
221 
222   LValueBaseInfo BaseInfo;
223   TBAAAccessInfo TBAAInfo;
224 
225   Expr *BaseIvarExp;
226 
227 private:
228   void Initialize(QualType Type, Qualifiers Quals, CharUnits Alignment,
229                   LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
230     assert((!Alignment.isZero() || Type->isIncompleteType()) &&
231            "initializing l-value with zero alignment!");
232     this->Type = Type;
233     this->Quals = Quals;
234     const unsigned MaxAlign = 1U << 31;
235     this->Alignment = Alignment.getQuantity() <= MaxAlign
236                           ? Alignment.getQuantity()
237                           : MaxAlign;
238     assert(this->Alignment == Alignment.getQuantity() &&
239            "Alignment exceeds allowed max!");
240     this->BaseInfo = BaseInfo;
241     this->TBAAInfo = TBAAInfo;
242 
243     // Initialize Objective-C flags.
244     this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false;
245     this->ImpreciseLifetime = false;
246     this->Nontemporal = false;
247     this->ThreadLocalRef = false;
248     this->BaseIvarExp = nullptr;
249   }
250 
251 public:
252   bool isSimple() const { return LVType == Simple; }
253   bool isVectorElt() const { return LVType == VectorElt; }
254   bool isBitField() const { return LVType == BitField; }
255   bool isExtVectorElt() const { return LVType == ExtVectorElt; }
256   bool isGlobalReg() const { return LVType == GlobalReg; }
257 
258   bool isVolatileQualified() const { return Quals.hasVolatile(); }
259   bool isRestrictQualified() const { return Quals.hasRestrict(); }
260   unsigned getVRQualifiers() const {
261     return Quals.getCVRQualifiers() & ~Qualifiers::Const;
262   }
263 
264   QualType getType() const { return Type; }
265 
266   Qualifiers::ObjCLifetime getObjCLifetime() const {
267     return Quals.getObjCLifetime();
268   }
269 
270   bool isObjCIvar() const { return Ivar; }
271   void setObjCIvar(bool Value) { Ivar = Value; }
272 
273   bool isObjCArray() const { return ObjIsArray; }
274   void setObjCArray(bool Value) { ObjIsArray = Value; }
275 
276   bool isNonGC () const { return NonGC; }
277   void setNonGC(bool Value) { NonGC = Value; }
278 
279   bool isGlobalObjCRef() const { return GlobalObjCRef; }
280   void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; }
281 
282   bool isThreadLocalRef() const { return ThreadLocalRef; }
283   void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;}
284 
285   ARCPreciseLifetime_t isARCPreciseLifetime() const {
286     return ARCPreciseLifetime_t(!ImpreciseLifetime);
287   }
288   void setARCPreciseLifetime(ARCPreciseLifetime_t value) {
289     ImpreciseLifetime = (value == ARCImpreciseLifetime);
290   }
291   bool isNontemporal() const { return Nontemporal; }
292   void setNontemporal(bool Value) { Nontemporal = Value; }
293 
294   bool isObjCWeak() const {
295     return Quals.getObjCGCAttr() == Qualifiers::Weak;
296   }
297   bool isObjCStrong() const {
298     return Quals.getObjCGCAttr() == Qualifiers::Strong;
299   }
300 
301   bool isVolatile() const {
302     return Quals.hasVolatile();
303   }
304 
305   Expr *getBaseIvarExp() const { return BaseIvarExp; }
306   void setBaseIvarExp(Expr *V) { BaseIvarExp = V; }
307 
308   TBAAAccessInfo getTBAAInfo() const { return TBAAInfo; }
309   void setTBAAInfo(TBAAAccessInfo Info) { TBAAInfo = Info; }
310 
311   const Qualifiers &getQuals() const { return Quals; }
312   Qualifiers &getQuals() { return Quals; }
313 
314   LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
315 
316   CharUnits getAlignment() const { return CharUnits::fromQuantity(Alignment); }
317   void setAlignment(CharUnits A) { Alignment = A.getQuantity(); }
318 
319   LValueBaseInfo getBaseInfo() const { return BaseInfo; }
320   void setBaseInfo(LValueBaseInfo Info) { BaseInfo = Info; }
321 
322   // simple lvalue
323   llvm::Value *getPointer(CodeGenFunction &CGF) const {
324     assert(isSimple());
325     return V;
326   }
327   Address getAddress(CodeGenFunction &CGF) const {
328     return Address(getPointer(CGF), getAlignment());
329   }
330   void setAddress(Address address) {
331     assert(isSimple());
332     V = address.getPointer();
333     Alignment = address.getAlignment().getQuantity();
334   }
335 
336   // vector elt lvalue
337   Address getVectorAddress() const {
338     return Address(getVectorPointer(), getAlignment());
339   }
340   llvm::Value *getVectorPointer() const { assert(isVectorElt()); return V; }
341   llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; }
342 
343   // extended vector elements.
344   Address getExtVectorAddress() const {
345     return Address(getExtVectorPointer(), getAlignment());
346   }
347   llvm::Value *getExtVectorPointer() const {
348     assert(isExtVectorElt());
349     return V;
350   }
351   llvm::Constant *getExtVectorElts() const {
352     assert(isExtVectorElt());
353     return VectorElts;
354   }
355 
356   // bitfield lvalue
357   Address getBitFieldAddress() const {
358     return Address(getBitFieldPointer(), getAlignment());
359   }
360   llvm::Value *getBitFieldPointer() const { assert(isBitField()); return V; }
361   const CGBitFieldInfo &getBitFieldInfo() const {
362     assert(isBitField());
363     return *BitFieldInfo;
364   }
365 
366   // global register lvalue
367   llvm::Value *getGlobalReg() const { assert(isGlobalReg()); return V; }
368 
369   static LValue MakeAddr(Address address, QualType type, ASTContext &Context,
370                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
371     Qualifiers qs = type.getQualifiers();
372     qs.setObjCGCAttr(Context.getObjCGCAttrKind(type));
373 
374     LValue R;
375     R.LVType = Simple;
376     assert(address.getPointer()->getType()->isPointerTy());
377     R.V = address.getPointer();
378     R.Initialize(type, qs, address.getAlignment(), BaseInfo, TBAAInfo);
379     return R;
380   }
381 
382   static LValue MakeVectorElt(Address vecAddress, llvm::Value *Idx,
383                               QualType type, LValueBaseInfo BaseInfo,
384                               TBAAAccessInfo TBAAInfo) {
385     LValue R;
386     R.LVType = VectorElt;
387     R.V = vecAddress.getPointer();
388     R.VectorIdx = Idx;
389     R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(),
390                  BaseInfo, TBAAInfo);
391     return R;
392   }
393 
394   static LValue MakeExtVectorElt(Address vecAddress, llvm::Constant *Elts,
395                                  QualType type, LValueBaseInfo BaseInfo,
396                                  TBAAAccessInfo TBAAInfo) {
397     LValue R;
398     R.LVType = ExtVectorElt;
399     R.V = vecAddress.getPointer();
400     R.VectorElts = Elts;
401     R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(),
402                  BaseInfo, TBAAInfo);
403     return R;
404   }
405 
406   /// Create a new object to represent a bit-field access.
407   ///
408   /// \param Addr - The base address of the bit-field sequence this
409   /// bit-field refers to.
410   /// \param Info - The information describing how to perform the bit-field
411   /// access.
412   static LValue MakeBitfield(Address Addr, const CGBitFieldInfo &Info,
413                              QualType type, LValueBaseInfo BaseInfo,
414                              TBAAAccessInfo TBAAInfo) {
415     LValue R;
416     R.LVType = BitField;
417     R.V = Addr.getPointer();
418     R.BitFieldInfo = &Info;
419     R.Initialize(type, type.getQualifiers(), Addr.getAlignment(), BaseInfo,
420                  TBAAInfo);
421     return R;
422   }
423 
424   static LValue MakeGlobalReg(Address Reg, QualType type) {
425     LValue R;
426     R.LVType = GlobalReg;
427     R.V = Reg.getPointer();
428     R.Initialize(type, type.getQualifiers(), Reg.getAlignment(),
429                  LValueBaseInfo(AlignmentSource::Decl), TBAAAccessInfo());
430     return R;
431   }
432 
433   RValue asAggregateRValue(CodeGenFunction &CGF) const {
434     return RValue::getAggregate(getAddress(CGF), isVolatileQualified());
435   }
436 };
437 
438 /// An aggregate value slot.
439 class AggValueSlot {
440   /// The address.
441   llvm::Value *Addr;
442 
443   // Qualifiers
444   Qualifiers Quals;
445 
446   unsigned Alignment;
447 
448   /// DestructedFlag - This is set to true if some external code is
449   /// responsible for setting up a destructor for the slot.  Otherwise
450   /// the code which constructs it should push the appropriate cleanup.
451   bool DestructedFlag : 1;
452 
453   /// ObjCGCFlag - This is set to true if writing to the memory in the
454   /// slot might require calling an appropriate Objective-C GC
455   /// barrier.  The exact interaction here is unnecessarily mysterious.
456   bool ObjCGCFlag : 1;
457 
458   /// ZeroedFlag - This is set to true if the memory in the slot is
459   /// known to be zero before the assignment into it.  This means that
460   /// zero fields don't need to be set.
461   bool ZeroedFlag : 1;
462 
463   /// AliasedFlag - This is set to true if the slot might be aliased
464   /// and it's not undefined behavior to access it through such an
465   /// alias.  Note that it's always undefined behavior to access a C++
466   /// object that's under construction through an alias derived from
467   /// outside the construction process.
468   ///
469   /// This flag controls whether calls that produce the aggregate
470   /// value may be evaluated directly into the slot, or whether they
471   /// must be evaluated into an unaliased temporary and then memcpy'ed
472   /// over.  Since it's invalid in general to memcpy a non-POD C++
473   /// object, it's important that this flag never be set when
474   /// evaluating an expression which constructs such an object.
475   bool AliasedFlag : 1;
476 
477   /// This is set to true if the tail padding of this slot might overlap
478   /// another object that may have already been initialized (and whose
479   /// value must be preserved by this initialization). If so, we may only
480   /// store up to the dsize of the type. Otherwise we can widen stores to
481   /// the size of the type.
482   bool OverlapFlag : 1;
483 
484   /// If is set to true, sanitizer checks are already generated for this address
485   /// or not required. For instance, if this address represents an object
486   /// created in 'new' expression, sanitizer checks for memory is made as a part
487   /// of 'operator new' emission and object constructor should not generate
488   /// them.
489   bool SanitizerCheckedFlag : 1;
490 
491 public:
492   enum IsAliased_t { IsNotAliased, IsAliased };
493   enum IsDestructed_t { IsNotDestructed, IsDestructed };
494   enum IsZeroed_t { IsNotZeroed, IsZeroed };
495   enum Overlap_t { DoesNotOverlap, MayOverlap };
496   enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers };
497   enum IsSanitizerChecked_t { IsNotSanitizerChecked, IsSanitizerChecked };
498 
499   /// ignored - Returns an aggregate value slot indicating that the
500   /// aggregate value is being ignored.
501   static AggValueSlot ignored() {
502     return forAddr(Address::invalid(), Qualifiers(), IsNotDestructed,
503                    DoesNotNeedGCBarriers, IsNotAliased, DoesNotOverlap);
504   }
505 
506   /// forAddr - Make a slot for an aggregate value.
507   ///
508   /// \param quals - The qualifiers that dictate how the slot should
509   /// be initialied. Only 'volatile' and the Objective-C lifetime
510   /// qualifiers matter.
511   ///
512   /// \param isDestructed - true if something else is responsible
513   ///   for calling destructors on this object
514   /// \param needsGC - true if the slot is potentially located
515   ///   somewhere that ObjC GC calls should be emitted for
516   static AggValueSlot forAddr(Address addr,
517                               Qualifiers quals,
518                               IsDestructed_t isDestructed,
519                               NeedsGCBarriers_t needsGC,
520                               IsAliased_t isAliased,
521                               Overlap_t mayOverlap,
522                               IsZeroed_t isZeroed = IsNotZeroed,
523                        IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) {
524     AggValueSlot AV;
525     if (addr.isValid()) {
526       AV.Addr = addr.getPointer();
527       AV.Alignment = addr.getAlignment().getQuantity();
528     } else {
529       AV.Addr = nullptr;
530       AV.Alignment = 0;
531     }
532     AV.Quals = quals;
533     AV.DestructedFlag = isDestructed;
534     AV.ObjCGCFlag = needsGC;
535     AV.ZeroedFlag = isZeroed;
536     AV.AliasedFlag = isAliased;
537     AV.OverlapFlag = mayOverlap;
538     AV.SanitizerCheckedFlag = isChecked;
539     return AV;
540   }
541 
542   static AggValueSlot
543   forLValue(const LValue &LV, CodeGenFunction &CGF, IsDestructed_t isDestructed,
544             NeedsGCBarriers_t needsGC, IsAliased_t isAliased,
545             Overlap_t mayOverlap, IsZeroed_t isZeroed = IsNotZeroed,
546             IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) {
547     return forAddr(LV.getAddress(CGF), LV.getQuals(), isDestructed, needsGC,
548                    isAliased, mayOverlap, isZeroed, isChecked);
549   }
550 
551   IsDestructed_t isExternallyDestructed() const {
552     return IsDestructed_t(DestructedFlag);
553   }
554   void setExternallyDestructed(bool destructed = true) {
555     DestructedFlag = destructed;
556   }
557 
558   Qualifiers getQualifiers() const { return Quals; }
559 
560   bool isVolatile() const {
561     return Quals.hasVolatile();
562   }
563 
564   void setVolatile(bool flag) {
565     if (flag)
566       Quals.addVolatile();
567     else
568       Quals.removeVolatile();
569   }
570 
571   Qualifiers::ObjCLifetime getObjCLifetime() const {
572     return Quals.getObjCLifetime();
573   }
574 
575   NeedsGCBarriers_t requiresGCollection() const {
576     return NeedsGCBarriers_t(ObjCGCFlag);
577   }
578 
579   llvm::Value *getPointer() const {
580     return Addr;
581   }
582 
583   Address getAddress() const {
584     return Address(Addr, getAlignment());
585   }
586 
587   bool isIgnored() const {
588     return Addr == nullptr;
589   }
590 
591   CharUnits getAlignment() const {
592     return CharUnits::fromQuantity(Alignment);
593   }
594 
595   IsAliased_t isPotentiallyAliased() const {
596     return IsAliased_t(AliasedFlag);
597   }
598 
599   Overlap_t mayOverlap() const {
600     return Overlap_t(OverlapFlag);
601   }
602 
603   bool isSanitizerChecked() const {
604     return SanitizerCheckedFlag;
605   }
606 
607   RValue asRValue() const {
608     if (isIgnored()) {
609       return RValue::getIgnored();
610     } else {
611       return RValue::getAggregate(getAddress(), isVolatile());
612     }
613   }
614 
615   void setZeroed(bool V = true) { ZeroedFlag = V; }
616   IsZeroed_t isZeroed() const {
617     return IsZeroed_t(ZeroedFlag);
618   }
619 
620   /// Get the preferred size to use when storing a value to this slot. This
621   /// is the type size unless that might overlap another object, in which
622   /// case it's the dsize.
623   CharUnits getPreferredSize(ASTContext &Ctx, QualType Type) const {
624     return mayOverlap() ? Ctx.getTypeInfoDataSizeInChars(Type).first
625                         : Ctx.getTypeSizeInChars(Type);
626   }
627 };
628 
629 }  // end namespace CodeGen
630 }  // end namespace clang
631 
632 #endif
633