1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/Expr.h"
29 #include "clang/AST/StmtCXX.h"
30 #include "clang/AST/StmtObjC.h"
31 #include "clang/Basic/Builtins.h"
32 #include "clang/Basic/CodeGenOptions.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/CodeGen/CGFunctionInfo.h"
35 #include "clang/Frontend/FrontendDiagnostic.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/FPEnv.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/MDBuilder.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/Support/CRC.h"
46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
47 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
48 
49 using namespace clang;
50 using namespace CodeGen;
51 
52 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
53 /// markers.
54 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
55                                       const LangOptions &LangOpts) {
56   if (CGOpts.DisableLifetimeMarkers)
57     return false;
58 
59   // Sanitizers may use markers.
60   if (CGOpts.SanitizeAddressUseAfterScope ||
61       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
62       LangOpts.Sanitize.has(SanitizerKind::Memory))
63     return true;
64 
65   // For now, only in optimized builds.
66   return CGOpts.OptimizationLevel != 0;
67 }
68 
69 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
70     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
71       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
72               CGBuilderInserterTy(this)),
73       SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
74       DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
75       ShouldEmitLifetimeMarkers(
76           shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
77   if (!suppressNewContext)
78     CGM.getCXXABI().getMangleContext().startNewFunction();
79   EHStack.setCGF(this);
80 
81   SetFastMathFlags(CurFPFeatures);
82 }
83 
84 CodeGenFunction::~CodeGenFunction() {
85   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
86 
87   if (getLangOpts().OpenMP && CurFn)
88     CGM.getOpenMPRuntime().functionFinished(*this);
89 
90   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
91   // outlining etc) at some point. Doing it once the function codegen is done
92   // seems to be a reasonable spot. We do it here, as opposed to the deletion
93   // time of the CodeGenModule, because we have to ensure the IR has not yet
94   // been "emitted" to the outside, thus, modifications are still sensible.
95   if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
96     CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
97 }
98 
99 // Map the LangOption for exception behavior into
100 // the corresponding enum in the IR.
101 llvm::fp::ExceptionBehavior
102 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
103 
104   switch (Kind) {
105   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
106   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
107   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
108   default:
109     llvm_unreachable("Unsupported FP Exception Behavior");
110   }
111 }
112 
113 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
114   llvm::FastMathFlags FMF;
115   FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
116   FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
117   FMF.setNoInfs(FPFeatures.getNoHonorInfs());
118   FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
119   FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
120   FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
121   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
122   Builder.setFastMathFlags(FMF);
123 }
124 
125 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
126                                                   const Expr *E)
127     : CGF(CGF) {
128   ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
129 }
130 
131 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
132                                                   FPOptions FPFeatures)
133     : CGF(CGF) {
134   ConstructorHelper(FPFeatures);
135 }
136 
137 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
138   OldFPFeatures = CGF.CurFPFeatures;
139   CGF.CurFPFeatures = FPFeatures;
140 
141   OldExcept = CGF.Builder.getDefaultConstrainedExcept();
142   OldRounding = CGF.Builder.getDefaultConstrainedRounding();
143 
144   if (OldFPFeatures == FPFeatures)
145     return;
146 
147   FMFGuard.emplace(CGF.Builder);
148 
149   llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode();
150   CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
151   auto NewExceptionBehavior =
152       ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
153           FPFeatures.getExceptionMode()));
154   CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
155 
156   CGF.SetFastMathFlags(FPFeatures);
157 
158   assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
159           isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
160           isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
161           (NewExceptionBehavior == llvm::fp::ebIgnore &&
162            NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
163          "FPConstrained should be enabled on entire function");
164 
165   auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
166     auto OldValue =
167         CGF.CurFn->getFnAttribute(Name).getValueAsBool();
168     auto NewValue = OldValue & Value;
169     if (OldValue != NewValue)
170       CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
171   };
172   mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
173   mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
174   mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
175   mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() &&
176                                          FPFeatures.getAllowReciprocal() &&
177                                          FPFeatures.getAllowApproxFunc() &&
178                                          FPFeatures.getNoSignedZero());
179 }
180 
181 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
182   CGF.CurFPFeatures = OldFPFeatures;
183   CGF.Builder.setDefaultConstrainedExcept(OldExcept);
184   CGF.Builder.setDefaultConstrainedRounding(OldRounding);
185 }
186 
187 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
188   LValueBaseInfo BaseInfo;
189   TBAAAccessInfo TBAAInfo;
190   CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
191   Address Addr(V, ConvertTypeForMem(T), Alignment);
192   return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
193 }
194 
195 /// Given a value of type T* that may not be to a complete object,
196 /// construct an l-value with the natural pointee alignment of T.
197 LValue
198 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
199   LValueBaseInfo BaseInfo;
200   TBAAAccessInfo TBAAInfo;
201   CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
202                                                 /* forPointeeType= */ true);
203   Address Addr(V, ConvertTypeForMem(T), Align);
204   return MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
205 }
206 
207 
208 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
209   return CGM.getTypes().ConvertTypeForMem(T);
210 }
211 
212 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
213   return CGM.getTypes().ConvertType(T);
214 }
215 
216 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
217   type = type.getCanonicalType();
218   while (true) {
219     switch (type->getTypeClass()) {
220 #define TYPE(name, parent)
221 #define ABSTRACT_TYPE(name, parent)
222 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
223 #define DEPENDENT_TYPE(name, parent) case Type::name:
224 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
225 #include "clang/AST/TypeNodes.inc"
226       llvm_unreachable("non-canonical or dependent type in IR-generation");
227 
228     case Type::Auto:
229     case Type::DeducedTemplateSpecialization:
230       llvm_unreachable("undeduced type in IR-generation");
231 
232     // Various scalar types.
233     case Type::Builtin:
234     case Type::Pointer:
235     case Type::BlockPointer:
236     case Type::LValueReference:
237     case Type::RValueReference:
238     case Type::MemberPointer:
239     case Type::Vector:
240     case Type::ExtVector:
241     case Type::ConstantMatrix:
242     case Type::FunctionProto:
243     case Type::FunctionNoProto:
244     case Type::Enum:
245     case Type::ObjCObjectPointer:
246     case Type::Pipe:
247     case Type::BitInt:
248       return TEK_Scalar;
249 
250     // Complexes.
251     case Type::Complex:
252       return TEK_Complex;
253 
254     // Arrays, records, and Objective-C objects.
255     case Type::ConstantArray:
256     case Type::IncompleteArray:
257     case Type::VariableArray:
258     case Type::Record:
259     case Type::ObjCObject:
260     case Type::ObjCInterface:
261       return TEK_Aggregate;
262 
263     // We operate on atomic values according to their underlying type.
264     case Type::Atomic:
265       type = cast<AtomicType>(type)->getValueType();
266       continue;
267     }
268     llvm_unreachable("unknown type kind!");
269   }
270 }
271 
272 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
273   // For cleanliness, we try to avoid emitting the return block for
274   // simple cases.
275   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
276 
277   if (CurBB) {
278     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
279 
280     // We have a valid insert point, reuse it if it is empty or there are no
281     // explicit jumps to the return block.
282     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
283       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
284       delete ReturnBlock.getBlock();
285       ReturnBlock = JumpDest();
286     } else
287       EmitBlock(ReturnBlock.getBlock());
288     return llvm::DebugLoc();
289   }
290 
291   // Otherwise, if the return block is the target of a single direct
292   // branch then we can just put the code in that block instead. This
293   // cleans up functions which started with a unified return block.
294   if (ReturnBlock.getBlock()->hasOneUse()) {
295     llvm::BranchInst *BI =
296       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
297     if (BI && BI->isUnconditional() &&
298         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
299       // Record/return the DebugLoc of the simple 'return' expression to be used
300       // later by the actual 'ret' instruction.
301       llvm::DebugLoc Loc = BI->getDebugLoc();
302       Builder.SetInsertPoint(BI->getParent());
303       BI->eraseFromParent();
304       delete ReturnBlock.getBlock();
305       ReturnBlock = JumpDest();
306       return Loc;
307     }
308   }
309 
310   // FIXME: We are at an unreachable point, there is no reason to emit the block
311   // unless it has uses. However, we still need a place to put the debug
312   // region.end for now.
313 
314   EmitBlock(ReturnBlock.getBlock());
315   return llvm::DebugLoc();
316 }
317 
318 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
319   if (!BB) return;
320   if (!BB->use_empty())
321     return CGF.CurFn->getBasicBlockList().push_back(BB);
322   delete BB;
323 }
324 
325 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
326   assert(BreakContinueStack.empty() &&
327          "mismatched push/pop in break/continue stack!");
328 
329   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
330     && NumSimpleReturnExprs == NumReturnExprs
331     && ReturnBlock.getBlock()->use_empty();
332   // Usually the return expression is evaluated before the cleanup
333   // code.  If the function contains only a simple return statement,
334   // such as a constant, the location before the cleanup code becomes
335   // the last useful breakpoint in the function, because the simple
336   // return expression will be evaluated after the cleanup code. To be
337   // safe, set the debug location for cleanup code to the location of
338   // the return statement.  Otherwise the cleanup code should be at the
339   // end of the function's lexical scope.
340   //
341   // If there are multiple branches to the return block, the branch
342   // instructions will get the location of the return statements and
343   // all will be fine.
344   if (CGDebugInfo *DI = getDebugInfo()) {
345     if (OnlySimpleReturnStmts)
346       DI->EmitLocation(Builder, LastStopPoint);
347     else
348       DI->EmitLocation(Builder, EndLoc);
349   }
350 
351   // Pop any cleanups that might have been associated with the
352   // parameters.  Do this in whatever block we're currently in; it's
353   // important to do this before we enter the return block or return
354   // edges will be *really* confused.
355   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
356   bool HasOnlyLifetimeMarkers =
357       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
358   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
359   if (HasCleanups) {
360     // Make sure the line table doesn't jump back into the body for
361     // the ret after it's been at EndLoc.
362     Optional<ApplyDebugLocation> AL;
363     if (CGDebugInfo *DI = getDebugInfo()) {
364       if (OnlySimpleReturnStmts)
365         DI->EmitLocation(Builder, EndLoc);
366       else
367         // We may not have a valid end location. Try to apply it anyway, and
368         // fall back to an artificial location if needed.
369         AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
370     }
371 
372     PopCleanupBlocks(PrologueCleanupDepth);
373   }
374 
375   // Emit function epilog (to return).
376   llvm::DebugLoc Loc = EmitReturnBlock();
377 
378   if (ShouldInstrumentFunction()) {
379     if (CGM.getCodeGenOpts().InstrumentFunctions)
380       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
381     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
382       CurFn->addFnAttr("instrument-function-exit-inlined",
383                        "__cyg_profile_func_exit");
384   }
385 
386   // Emit debug descriptor for function end.
387   if (CGDebugInfo *DI = getDebugInfo())
388     DI->EmitFunctionEnd(Builder, CurFn);
389 
390   // Reset the debug location to that of the simple 'return' expression, if any
391   // rather than that of the end of the function's scope '}'.
392   ApplyDebugLocation AL(*this, Loc);
393   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
394   EmitEndEHSpec(CurCodeDecl);
395 
396   assert(EHStack.empty() &&
397          "did not remove all scopes from cleanup stack!");
398 
399   // If someone did an indirect goto, emit the indirect goto block at the end of
400   // the function.
401   if (IndirectBranch) {
402     EmitBlock(IndirectBranch->getParent());
403     Builder.ClearInsertionPoint();
404   }
405 
406   // If some of our locals escaped, insert a call to llvm.localescape in the
407   // entry block.
408   if (!EscapedLocals.empty()) {
409     // Invert the map from local to index into a simple vector. There should be
410     // no holes.
411     SmallVector<llvm::Value *, 4> EscapeArgs;
412     EscapeArgs.resize(EscapedLocals.size());
413     for (auto &Pair : EscapedLocals)
414       EscapeArgs[Pair.second] = Pair.first;
415     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
416         &CGM.getModule(), llvm::Intrinsic::localescape);
417     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
418   }
419 
420   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
421   llvm::Instruction *Ptr = AllocaInsertPt;
422   AllocaInsertPt = nullptr;
423   Ptr->eraseFromParent();
424 
425   // PostAllocaInsertPt, if created, was lazily created when it was required,
426   // remove it now since it was just created for our own convenience.
427   if (PostAllocaInsertPt) {
428     llvm::Instruction *PostPtr = PostAllocaInsertPt;
429     PostAllocaInsertPt = nullptr;
430     PostPtr->eraseFromParent();
431   }
432 
433   // If someone took the address of a label but never did an indirect goto, we
434   // made a zero entry PHI node, which is illegal, zap it now.
435   if (IndirectBranch) {
436     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
437     if (PN->getNumIncomingValues() == 0) {
438       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
439       PN->eraseFromParent();
440     }
441   }
442 
443   EmitIfUsed(*this, EHResumeBlock);
444   EmitIfUsed(*this, TerminateLandingPad);
445   EmitIfUsed(*this, TerminateHandler);
446   EmitIfUsed(*this, UnreachableBlock);
447 
448   for (const auto &FuncletAndParent : TerminateFunclets)
449     EmitIfUsed(*this, FuncletAndParent.second);
450 
451   if (CGM.getCodeGenOpts().EmitDeclMetadata)
452     EmitDeclMetadata();
453 
454   for (const auto &R : DeferredReplacements) {
455     if (llvm::Value *Old = R.first) {
456       Old->replaceAllUsesWith(R.second);
457       cast<llvm::Instruction>(Old)->eraseFromParent();
458     }
459   }
460   DeferredReplacements.clear();
461 
462   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
463   // PHIs if the current function is a coroutine. We don't do it for all
464   // functions as it may result in slight increase in numbers of instructions
465   // if compiled with no optimizations. We do it for coroutine as the lifetime
466   // of CleanupDestSlot alloca make correct coroutine frame building very
467   // difficult.
468   if (NormalCleanupDest.isValid() && isCoroutine()) {
469     llvm::DominatorTree DT(*CurFn);
470     llvm::PromoteMemToReg(
471         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
472     NormalCleanupDest = Address::invalid();
473   }
474 
475   // Scan function arguments for vector width.
476   for (llvm::Argument &A : CurFn->args())
477     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
478       LargestVectorWidth =
479           std::max((uint64_t)LargestVectorWidth,
480                    VT->getPrimitiveSizeInBits().getKnownMinSize());
481 
482   // Update vector width based on return type.
483   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
484     LargestVectorWidth =
485         std::max((uint64_t)LargestVectorWidth,
486                  VT->getPrimitiveSizeInBits().getKnownMinSize());
487 
488   if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth)
489     LargestVectorWidth = CurFnInfo->getMaxVectorWidth();
490 
491   // Add the required-vector-width attribute. This contains the max width from:
492   // 1. min-vector-width attribute used in the source program.
493   // 2. Any builtins used that have a vector width specified.
494   // 3. Values passed in and out of inline assembly.
495   // 4. Width of vector arguments and return types for this function.
496   // 5. Width of vector aguments and return types for functions called by this
497   //    function.
498   CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
499 
500   // Add vscale_range attribute if appropriate.
501   Optional<std::pair<unsigned, unsigned>> VScaleRange =
502       getContext().getTargetInfo().getVScaleRange(getLangOpts());
503   if (VScaleRange) {
504     CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
505         getLLVMContext(), VScaleRange->first, VScaleRange->second));
506   }
507 
508   // If we generated an unreachable return block, delete it now.
509   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
510     Builder.ClearInsertionPoint();
511     ReturnBlock.getBlock()->eraseFromParent();
512   }
513   if (ReturnValue.isValid()) {
514     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
515     if (RetAlloca && RetAlloca->use_empty()) {
516       RetAlloca->eraseFromParent();
517       ReturnValue = Address::invalid();
518     }
519   }
520 }
521 
522 /// ShouldInstrumentFunction - Return true if the current function should be
523 /// instrumented with __cyg_profile_func_* calls
524 bool CodeGenFunction::ShouldInstrumentFunction() {
525   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
526       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
527       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
528     return false;
529   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
530     return false;
531   return true;
532 }
533 
534 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
535   if (!CurFuncDecl)
536     return false;
537   return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
538 }
539 
540 /// ShouldXRayInstrument - Return true if the current function should be
541 /// instrumented with XRay nop sleds.
542 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
543   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
544 }
545 
546 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
547 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
548 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
549   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
550          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
551           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
552               XRayInstrKind::Custom);
553 }
554 
555 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
556   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
557          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
558           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
559               XRayInstrKind::Typed);
560 }
561 
562 llvm::Value *
563 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
564                                           llvm::Value *EncodedAddr) {
565   // Reconstruct the address of the global.
566   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
567   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
568   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
569   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
570 
571   // Load the original pointer through the global.
572   return Builder.CreateLoad(Address(GOTAddr, Int8PtrTy, getPointerAlign()),
573                             "decoded_addr");
574 }
575 
576 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD,
577                                          llvm::Function *Fn) {
578   if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>())
579     return;
580 
581   llvm::LLVMContext &Context = getLLVMContext();
582 
583   CGM.GenKernelArgMetadata(Fn, FD, this);
584 
585   if (!getLangOpts().OpenCL)
586     return;
587 
588   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
589     QualType HintQTy = A->getTypeHint();
590     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
591     bool IsSignedInteger =
592         HintQTy->isSignedIntegerType() ||
593         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
594     llvm::Metadata *AttrMDArgs[] = {
595         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
596             CGM.getTypes().ConvertType(A->getTypeHint()))),
597         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
598             llvm::IntegerType::get(Context, 32),
599             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
600     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
601   }
602 
603   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
604     llvm::Metadata *AttrMDArgs[] = {
605         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
606         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
607         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
608     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
609   }
610 
611   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
612     llvm::Metadata *AttrMDArgs[] = {
613         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
614         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
615         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
616     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
617   }
618 
619   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
620           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
621     llvm::Metadata *AttrMDArgs[] = {
622         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
623     Fn->setMetadata("intel_reqd_sub_group_size",
624                     llvm::MDNode::get(Context, AttrMDArgs));
625   }
626 }
627 
628 /// Determine whether the function F ends with a return stmt.
629 static bool endsWithReturn(const Decl* F) {
630   const Stmt *Body = nullptr;
631   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
632     Body = FD->getBody();
633   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
634     Body = OMD->getBody();
635 
636   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
637     auto LastStmt = CS->body_rbegin();
638     if (LastStmt != CS->body_rend())
639       return isa<ReturnStmt>(*LastStmt);
640   }
641   return false;
642 }
643 
644 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
645   if (SanOpts.has(SanitizerKind::Thread)) {
646     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
647     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
648   }
649 }
650 
651 /// Check if the return value of this function requires sanitization.
652 bool CodeGenFunction::requiresReturnValueCheck() const {
653   return requiresReturnValueNullabilityCheck() ||
654          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
655           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
656 }
657 
658 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
659   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
660   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
661       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
662       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
663     return false;
664 
665   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
666     return false;
667 
668   if (MD->getNumParams() == 2) {
669     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
670     if (!PT || !PT->isVoidPointerType() ||
671         !PT->getPointeeType().isConstQualified())
672       return false;
673   }
674 
675   return true;
676 }
677 
678 /// Return the UBSan prologue signature for \p FD if one is available.
679 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
680                                             const FunctionDecl *FD) {
681   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
682     if (!MD->isStatic())
683       return nullptr;
684   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
685 }
686 
687 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
688                                     llvm::Function *Fn,
689                                     const CGFunctionInfo &FnInfo,
690                                     const FunctionArgList &Args,
691                                     SourceLocation Loc,
692                                     SourceLocation StartLoc) {
693   assert(!CurFn &&
694          "Do not use a CodeGenFunction object for more than one function");
695 
696   const Decl *D = GD.getDecl();
697 
698   DidCallStackSave = false;
699   CurCodeDecl = D;
700   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
701   if (FD && FD->usesSEHTry())
702     CurSEHParent = FD;
703   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
704   FnRetTy = RetTy;
705   CurFn = Fn;
706   CurFnInfo = &FnInfo;
707   assert(CurFn->isDeclaration() && "Function already has body?");
708 
709   // If this function is ignored for any of the enabled sanitizers,
710   // disable the sanitizer for the function.
711   do {
712 #define SANITIZER(NAME, ID)                                                    \
713   if (SanOpts.empty())                                                         \
714     break;                                                                     \
715   if (SanOpts.has(SanitizerKind::ID))                                          \
716     if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc))                    \
717       SanOpts.set(SanitizerKind::ID, false);
718 
719 #include "clang/Basic/Sanitizers.def"
720 #undef SANITIZER
721   } while (false);
722 
723   if (D) {
724     const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds);
725     bool NoSanitizeCoverage = false;
726 
727     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
728       // Apply the no_sanitize* attributes to SanOpts.
729       SanitizerMask mask = Attr->getMask();
730       SanOpts.Mask &= ~mask;
731       if (mask & SanitizerKind::Address)
732         SanOpts.set(SanitizerKind::KernelAddress, false);
733       if (mask & SanitizerKind::KernelAddress)
734         SanOpts.set(SanitizerKind::Address, false);
735       if (mask & SanitizerKind::HWAddress)
736         SanOpts.set(SanitizerKind::KernelHWAddress, false);
737       if (mask & SanitizerKind::KernelHWAddress)
738         SanOpts.set(SanitizerKind::HWAddress, false);
739 
740       // SanitizeCoverage is not handled by SanOpts.
741       if (Attr->hasCoverage())
742         NoSanitizeCoverage = true;
743     }
744 
745     if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds))
746       Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds);
747 
748     if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
749       Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
750   }
751 
752   if (ShouldSkipSanitizerInstrumentation()) {
753     CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
754   } else {
755     // Apply sanitizer attributes to the function.
756     if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
757       Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
758     if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
759                          SanitizerKind::KernelHWAddress))
760       Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
761     if (SanOpts.has(SanitizerKind::MemtagStack))
762       Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
763     if (SanOpts.has(SanitizerKind::Thread))
764       Fn->addFnAttr(llvm::Attribute::SanitizeThread);
765     if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
766       Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
767   }
768   if (SanOpts.has(SanitizerKind::SafeStack))
769     Fn->addFnAttr(llvm::Attribute::SafeStack);
770   if (SanOpts.has(SanitizerKind::ShadowCallStack))
771     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
772 
773   // Apply fuzzing attribute to the function.
774   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
775     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
776 
777   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
778   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
779   if (SanOpts.has(SanitizerKind::Thread)) {
780     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
781       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
782       if (OMD->getMethodFamily() == OMF_dealloc ||
783           OMD->getMethodFamily() == OMF_initialize ||
784           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
785         markAsIgnoreThreadCheckingAtRuntime(Fn);
786       }
787     }
788   }
789 
790   // Ignore unrelated casts in STL allocate() since the allocator must cast
791   // from void* to T* before object initialization completes. Don't match on the
792   // namespace because not all allocators are in std::
793   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
794     if (matchesStlAllocatorFn(D, getContext()))
795       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
796   }
797 
798   // Ignore null checks in coroutine functions since the coroutines passes
799   // are not aware of how to move the extra UBSan instructions across the split
800   // coroutine boundaries.
801   if (D && SanOpts.has(SanitizerKind::Null))
802     if (FD && FD->getBody() &&
803         FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
804       SanOpts.Mask &= ~SanitizerKind::Null;
805 
806   // Apply xray attributes to the function (as a string, for now)
807   bool AlwaysXRayAttr = false;
808   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
809     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
810             XRayInstrKind::FunctionEntry) ||
811         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
812             XRayInstrKind::FunctionExit)) {
813       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
814         Fn->addFnAttr("function-instrument", "xray-always");
815         AlwaysXRayAttr = true;
816       }
817       if (XRayAttr->neverXRayInstrument())
818         Fn->addFnAttr("function-instrument", "xray-never");
819       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
820         if (ShouldXRayInstrumentFunction())
821           Fn->addFnAttr("xray-log-args",
822                         llvm::utostr(LogArgs->getArgumentCount()));
823     }
824   } else {
825     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
826       Fn->addFnAttr(
827           "xray-instruction-threshold",
828           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
829   }
830 
831   if (ShouldXRayInstrumentFunction()) {
832     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
833       Fn->addFnAttr("xray-ignore-loops");
834 
835     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
836             XRayInstrKind::FunctionExit))
837       Fn->addFnAttr("xray-skip-exit");
838 
839     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
840             XRayInstrKind::FunctionEntry))
841       Fn->addFnAttr("xray-skip-entry");
842 
843     auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
844     if (FuncGroups > 1) {
845       auto FuncName = llvm::makeArrayRef<uint8_t>(
846           CurFn->getName().bytes_begin(), CurFn->getName().bytes_end());
847       auto Group = crc32(FuncName) % FuncGroups;
848       if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
849           !AlwaysXRayAttr)
850         Fn->addFnAttr("function-instrument", "xray-never");
851     }
852   }
853 
854   if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone)
855     if (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc))
856       Fn->addFnAttr(llvm::Attribute::NoProfile);
857 
858   unsigned Count, Offset;
859   if (const auto *Attr =
860           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
861     Count = Attr->getCount();
862     Offset = Attr->getOffset();
863   } else {
864     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
865     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
866   }
867   if (Count && Offset <= Count) {
868     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
869     if (Offset)
870       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
871   }
872   // Instruct that functions for COFF/CodeView targets should start with a
873   // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
874   // backends as they don't need it -- instructions on these architectures are
875   // always atomically patchable at runtime.
876   if (CGM.getCodeGenOpts().HotPatch &&
877       getContext().getTargetInfo().getTriple().isX86())
878     Fn->addFnAttr("patchable-function", "prologue-short-redirect");
879 
880   // Add no-jump-tables value.
881   if (CGM.getCodeGenOpts().NoUseJumpTables)
882     Fn->addFnAttr("no-jump-tables", "true");
883 
884   // Add no-inline-line-tables value.
885   if (CGM.getCodeGenOpts().NoInlineLineTables)
886     Fn->addFnAttr("no-inline-line-tables");
887 
888   // Add profile-sample-accurate value.
889   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
890     Fn->addFnAttr("profile-sample-accurate");
891 
892   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
893     Fn->addFnAttr("use-sample-profile");
894 
895   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
896     Fn->addFnAttr("cfi-canonical-jump-table");
897 
898   if (D && D->hasAttr<NoProfileFunctionAttr>())
899     Fn->addFnAttr(llvm::Attribute::NoProfile);
900 
901   if (D) {
902     // Function attributes take precedence over command line flags.
903     if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) {
904       switch (A->getThunkType()) {
905       case FunctionReturnThunksAttr::Kind::Keep:
906         break;
907       case FunctionReturnThunksAttr::Kind::Extern:
908         Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
909         break;
910       }
911     } else if (CGM.getCodeGenOpts().FunctionReturnThunks)
912       Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
913   }
914 
915   if (FD && (getLangOpts().OpenCL ||
916              (getLangOpts().HIP && getLangOpts().CUDAIsDevice))) {
917     // Add metadata for a kernel function.
918     EmitKernelMetadata(FD, Fn);
919   }
920 
921   // If we are checking function types, emit a function type signature as
922   // prologue data.
923   if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
924     if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
925       // Remove any (C++17) exception specifications, to allow calling e.g. a
926       // noexcept function through a non-noexcept pointer.
927       auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec(
928           FD->getType(), EST_None);
929       llvm::Constant *FTRTTIConst =
930           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
931       llvm::GlobalVariable *FTRTTIProxy =
932           CGM.GetOrCreateRTTIProxyGlobalVariable(FTRTTIConst);
933       llvm::LLVMContext &Ctx = Fn->getContext();
934       llvm::MDBuilder MDB(Ctx);
935       Fn->setMetadata(llvm::LLVMContext::MD_func_sanitize,
936                       MDB.createRTTIPointerPrologue(PrologueSig, FTRTTIProxy));
937       CGM.addCompilerUsedGlobal(FTRTTIProxy);
938     }
939   }
940 
941   // If we're checking nullability, we need to know whether we can check the
942   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
943   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
944     auto Nullability = FnRetTy->getNullability(getContext());
945     if (Nullability && *Nullability == NullabilityKind::NonNull) {
946       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
947             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
948         RetValNullabilityPrecondition =
949             llvm::ConstantInt::getTrue(getLLVMContext());
950     }
951   }
952 
953   // If we're in C++ mode and the function name is "main", it is guaranteed
954   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
955   // used within a program").
956   //
957   // OpenCL C 2.0 v2.2-11 s6.9.i:
958   //     Recursion is not supported.
959   //
960   // SYCL v1.2.1 s3.10:
961   //     kernels cannot include RTTI information, exception classes,
962   //     recursive code, virtual functions or make use of C++ libraries that
963   //     are not compiled for the device.
964   if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
965              getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
966              (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
967     Fn->addFnAttr(llvm::Attribute::NoRecurse);
968 
969   llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode();
970   llvm::fp::ExceptionBehavior FPExceptionBehavior =
971       ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
972   Builder.setDefaultConstrainedRounding(RM);
973   Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
974   if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
975       (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
976                RM != llvm::RoundingMode::NearestTiesToEven))) {
977     Builder.setIsFPConstrained(true);
978     Fn->addFnAttr(llvm::Attribute::StrictFP);
979   }
980 
981   // If a custom alignment is used, force realigning to this alignment on
982   // any main function which certainly will need it.
983   if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
984              CGM.getCodeGenOpts().StackAlignment))
985     Fn->addFnAttr("stackrealign");
986 
987   // "main" doesn't need to zero out call-used registers.
988   if (FD && FD->isMain())
989     Fn->removeFnAttr("zero-call-used-regs");
990 
991   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
992 
993   // Create a marker to make it easy to insert allocas into the entryblock
994   // later.  Don't create this with the builder, because we don't want it
995   // folded.
996   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
997   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
998 
999   ReturnBlock = getJumpDestInCurrentScope("return");
1000 
1001   Builder.SetInsertPoint(EntryBB);
1002 
1003   // If we're checking the return value, allocate space for a pointer to a
1004   // precise source location of the checked return statement.
1005   if (requiresReturnValueCheck()) {
1006     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1007     Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1008                         ReturnLocation);
1009   }
1010 
1011   // Emit subprogram debug descriptor.
1012   if (CGDebugInfo *DI = getDebugInfo()) {
1013     // Reconstruct the type from the argument list so that implicit parameters,
1014     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1015     // convention.
1016     DI->emitFunctionStart(GD, Loc, StartLoc,
1017                           DI->getFunctionType(FD, RetTy, Args), CurFn,
1018                           CurFuncIsThunk);
1019   }
1020 
1021   if (ShouldInstrumentFunction()) {
1022     if (CGM.getCodeGenOpts().InstrumentFunctions)
1023       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1024     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1025       CurFn->addFnAttr("instrument-function-entry-inlined",
1026                        "__cyg_profile_func_enter");
1027     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1028       CurFn->addFnAttr("instrument-function-entry-inlined",
1029                        "__cyg_profile_func_enter_bare");
1030   }
1031 
1032   // Since emitting the mcount call here impacts optimizations such as function
1033   // inlining, we just add an attribute to insert a mcount call in backend.
1034   // The attribute "counting-function" is set to mcount function name which is
1035   // architecture dependent.
1036   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1037     // Calls to fentry/mcount should not be generated if function has
1038     // the no_instrument_function attribute.
1039     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1040       if (CGM.getCodeGenOpts().CallFEntry)
1041         Fn->addFnAttr("fentry-call", "true");
1042       else {
1043         Fn->addFnAttr("instrument-function-entry-inlined",
1044                       getTarget().getMCountName());
1045       }
1046       if (CGM.getCodeGenOpts().MNopMCount) {
1047         if (!CGM.getCodeGenOpts().CallFEntry)
1048           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1049             << "-mnop-mcount" << "-mfentry";
1050         Fn->addFnAttr("mnop-mcount");
1051       }
1052 
1053       if (CGM.getCodeGenOpts().RecordMCount) {
1054         if (!CGM.getCodeGenOpts().CallFEntry)
1055           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1056             << "-mrecord-mcount" << "-mfentry";
1057         Fn->addFnAttr("mrecord-mcount");
1058       }
1059     }
1060   }
1061 
1062   if (CGM.getCodeGenOpts().PackedStack) {
1063     if (getContext().getTargetInfo().getTriple().getArch() !=
1064         llvm::Triple::systemz)
1065       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1066         << "-mpacked-stack";
1067     Fn->addFnAttr("packed-stack");
1068   }
1069 
1070   if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1071       !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1072     Fn->addFnAttr("warn-stack-size",
1073                   std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1074 
1075   if (RetTy->isVoidType()) {
1076     // Void type; nothing to return.
1077     ReturnValue = Address::invalid();
1078 
1079     // Count the implicit return.
1080     if (!endsWithReturn(D))
1081       ++NumReturnExprs;
1082   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1083     // Indirect return; emit returned value directly into sret slot.
1084     // This reduces code size, and affects correctness in C++.
1085     auto AI = CurFn->arg_begin();
1086     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1087       ++AI;
1088     ReturnValue = Address(&*AI, ConvertType(RetTy),
1089                           CurFnInfo->getReturnInfo().getIndirectAlign());
1090     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1091       ReturnValuePointer =
1092           CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1093       Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1094                               ReturnValue.getPointer(), Int8PtrTy),
1095                           ReturnValuePointer);
1096     }
1097   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1098              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1099     // Load the sret pointer from the argument struct and return into that.
1100     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1101     llvm::Function::arg_iterator EI = CurFn->arg_end();
1102     --EI;
1103     llvm::Value *Addr = Builder.CreateStructGEP(
1104         CurFnInfo->getArgStruct(), &*EI, Idx);
1105     llvm::Type *Ty =
1106         cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1107     ReturnValuePointer = Address(Addr, Ty, getPointerAlign());
1108     Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1109     ReturnValue =
1110         Address(Addr, ConvertType(RetTy), CGM.getNaturalTypeAlignment(RetTy));
1111   } else {
1112     ReturnValue = CreateIRTemp(RetTy, "retval");
1113 
1114     // Tell the epilog emitter to autorelease the result.  We do this
1115     // now so that various specialized functions can suppress it
1116     // during their IR-generation.
1117     if (getLangOpts().ObjCAutoRefCount &&
1118         !CurFnInfo->isReturnsRetained() &&
1119         RetTy->isObjCRetainableType())
1120       AutoreleaseResult = true;
1121   }
1122 
1123   EmitStartEHSpec(CurCodeDecl);
1124 
1125   PrologueCleanupDepth = EHStack.stable_begin();
1126 
1127   // Emit OpenMP specific initialization of the device functions.
1128   if (getLangOpts().OpenMP && CurCodeDecl)
1129     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1130 
1131   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1132 
1133   if (isa_and_nonnull<CXXMethodDecl>(D) &&
1134       cast<CXXMethodDecl>(D)->isInstance()) {
1135     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1136     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1137     if (MD->getParent()->isLambda() &&
1138         MD->getOverloadedOperator() == OO_Call) {
1139       // We're in a lambda; figure out the captures.
1140       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1141                                         LambdaThisCaptureField);
1142       if (LambdaThisCaptureField) {
1143         // If the lambda captures the object referred to by '*this' - either by
1144         // value or by reference, make sure CXXThisValue points to the correct
1145         // object.
1146 
1147         // Get the lvalue for the field (which is a copy of the enclosing object
1148         // or contains the address of the enclosing object).
1149         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1150         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1151           // If the enclosing object was captured by value, just use its address.
1152           CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1153         } else {
1154           // Load the lvalue pointed to by the field, since '*this' was captured
1155           // by reference.
1156           CXXThisValue =
1157               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1158         }
1159       }
1160       for (auto *FD : MD->getParent()->fields()) {
1161         if (FD->hasCapturedVLAType()) {
1162           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1163                                            SourceLocation()).getScalarVal();
1164           auto VAT = FD->getCapturedVLAType();
1165           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1166         }
1167       }
1168     } else {
1169       // Not in a lambda; just use 'this' from the method.
1170       // FIXME: Should we generate a new load for each use of 'this'?  The
1171       // fast register allocator would be happier...
1172       CXXThisValue = CXXABIThisValue;
1173     }
1174 
1175     // Check the 'this' pointer once per function, if it's available.
1176     if (CXXABIThisValue) {
1177       SanitizerSet SkippedChecks;
1178       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1179       QualType ThisTy = MD->getThisType();
1180 
1181       // If this is the call operator of a lambda with no capture-default, it
1182       // may have a static invoker function, which may call this operator with
1183       // a null 'this' pointer.
1184       if (isLambdaCallOperator(MD) &&
1185           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1186         SkippedChecks.set(SanitizerKind::Null, true);
1187 
1188       EmitTypeCheck(
1189           isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1190           Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1191     }
1192   }
1193 
1194   // If any of the arguments have a variably modified type, make sure to
1195   // emit the type size, but only if the function is not naked. Naked functions
1196   // have no prolog to run this evaluation.
1197   if (!FD || !FD->hasAttr<NakedAttr>()) {
1198     for (const VarDecl *VD : Args) {
1199       // Dig out the type as written from ParmVarDecls; it's unclear whether
1200       // the standard (C99 6.9.1p10) requires this, but we're following the
1201       // precedent set by gcc.
1202       QualType Ty;
1203       if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1204         Ty = PVD->getOriginalType();
1205       else
1206         Ty = VD->getType();
1207 
1208       if (Ty->isVariablyModifiedType())
1209         EmitVariablyModifiedType(Ty);
1210     }
1211   }
1212   // Emit a location at the end of the prologue.
1213   if (CGDebugInfo *DI = getDebugInfo())
1214     DI->EmitLocation(Builder, StartLoc);
1215   // TODO: Do we need to handle this in two places like we do with
1216   // target-features/target-cpu?
1217   if (CurFuncDecl)
1218     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1219       LargestVectorWidth = VecWidth->getVectorWidth();
1220 }
1221 
1222 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1223   incrementProfileCounter(Body);
1224   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1225     EmitCompoundStmtWithoutScope(*S);
1226   else
1227     EmitStmt(Body);
1228 
1229   // This is checked after emitting the function body so we know if there
1230   // are any permitted infinite loops.
1231   if (checkIfFunctionMustProgress())
1232     CurFn->addFnAttr(llvm::Attribute::MustProgress);
1233 }
1234 
1235 /// When instrumenting to collect profile data, the counts for some blocks
1236 /// such as switch cases need to not include the fall-through counts, so
1237 /// emit a branch around the instrumentation code. When not instrumenting,
1238 /// this just calls EmitBlock().
1239 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1240                                                const Stmt *S) {
1241   llvm::BasicBlock *SkipCountBB = nullptr;
1242   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1243     // When instrumenting for profiling, the fallthrough to certain
1244     // statements needs to skip over the instrumentation code so that we
1245     // get an accurate count.
1246     SkipCountBB = createBasicBlock("skipcount");
1247     EmitBranch(SkipCountBB);
1248   }
1249   EmitBlock(BB);
1250   uint64_t CurrentCount = getCurrentProfileCount();
1251   incrementProfileCounter(S);
1252   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1253   if (SkipCountBB)
1254     EmitBlock(SkipCountBB);
1255 }
1256 
1257 /// Tries to mark the given function nounwind based on the
1258 /// non-existence of any throwing calls within it.  We believe this is
1259 /// lightweight enough to do at -O0.
1260 static void TryMarkNoThrow(llvm::Function *F) {
1261   // LLVM treats 'nounwind' on a function as part of the type, so we
1262   // can't do this on functions that can be overwritten.
1263   if (F->isInterposable()) return;
1264 
1265   for (llvm::BasicBlock &BB : *F)
1266     for (llvm::Instruction &I : BB)
1267       if (I.mayThrow())
1268         return;
1269 
1270   F->setDoesNotThrow();
1271 }
1272 
1273 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1274                                                FunctionArgList &Args) {
1275   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1276   QualType ResTy = FD->getReturnType();
1277 
1278   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1279   if (MD && MD->isInstance()) {
1280     if (CGM.getCXXABI().HasThisReturn(GD))
1281       ResTy = MD->getThisType();
1282     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1283       ResTy = CGM.getContext().VoidPtrTy;
1284     CGM.getCXXABI().buildThisParam(*this, Args);
1285   }
1286 
1287   // The base version of an inheriting constructor whose constructed base is a
1288   // virtual base is not passed any arguments (because it doesn't actually call
1289   // the inherited constructor).
1290   bool PassedParams = true;
1291   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1292     if (auto Inherited = CD->getInheritedConstructor())
1293       PassedParams =
1294           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1295 
1296   if (PassedParams) {
1297     for (auto *Param : FD->parameters()) {
1298       Args.push_back(Param);
1299       if (!Param->hasAttr<PassObjectSizeAttr>())
1300         continue;
1301 
1302       auto *Implicit = ImplicitParamDecl::Create(
1303           getContext(), Param->getDeclContext(), Param->getLocation(),
1304           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1305       SizeArguments[Param] = Implicit;
1306       Args.push_back(Implicit);
1307     }
1308   }
1309 
1310   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1311     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1312 
1313   return ResTy;
1314 }
1315 
1316 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1317                                    const CGFunctionInfo &FnInfo) {
1318   assert(Fn && "generating code for null Function");
1319   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1320   CurGD = GD;
1321 
1322   FunctionArgList Args;
1323   QualType ResTy = BuildFunctionArgList(GD, Args);
1324 
1325   if (FD->isInlineBuiltinDeclaration()) {
1326     // When generating code for a builtin with an inline declaration, use a
1327     // mangled name to hold the actual body, while keeping an external
1328     // definition in case the function pointer is referenced somewhere.
1329     std::string FDInlineName = (Fn->getName() + ".inline").str();
1330     llvm::Module *M = Fn->getParent();
1331     llvm::Function *Clone = M->getFunction(FDInlineName);
1332     if (!Clone) {
1333       Clone = llvm::Function::Create(Fn->getFunctionType(),
1334                                      llvm::GlobalValue::InternalLinkage,
1335                                      Fn->getAddressSpace(), FDInlineName, M);
1336       Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1337     }
1338     Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1339     Fn = Clone;
1340   } else {
1341     // Detect the unusual situation where an inline version is shadowed by a
1342     // non-inline version. In that case we should pick the external one
1343     // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1344     // to detect that situation before we reach codegen, so do some late
1345     // replacement.
1346     for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1347          PD = PD->getPreviousDecl()) {
1348       if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1349         std::string FDInlineName = (Fn->getName() + ".inline").str();
1350         llvm::Module *M = Fn->getParent();
1351         if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1352           Clone->replaceAllUsesWith(Fn);
1353           Clone->eraseFromParent();
1354         }
1355         break;
1356       }
1357     }
1358   }
1359 
1360   // Check if we should generate debug info for this function.
1361   if (FD->hasAttr<NoDebugAttr>()) {
1362     // Clear non-distinct debug info that was possibly attached to the function
1363     // due to an earlier declaration without the nodebug attribute
1364     Fn->setSubprogram(nullptr);
1365     // Disable debug info indefinitely for this function
1366     DebugInfo = nullptr;
1367   }
1368 
1369   // The function might not have a body if we're generating thunks for a
1370   // function declaration.
1371   SourceRange BodyRange;
1372   if (Stmt *Body = FD->getBody())
1373     BodyRange = Body->getSourceRange();
1374   else
1375     BodyRange = FD->getLocation();
1376   CurEHLocation = BodyRange.getEnd();
1377 
1378   // Use the location of the start of the function to determine where
1379   // the function definition is located. By default use the location
1380   // of the declaration as the location for the subprogram. A function
1381   // may lack a declaration in the source code if it is created by code
1382   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1383   SourceLocation Loc = FD->getLocation();
1384 
1385   // If this is a function specialization then use the pattern body
1386   // as the location for the function.
1387   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1388     if (SpecDecl->hasBody(SpecDecl))
1389       Loc = SpecDecl->getLocation();
1390 
1391   Stmt *Body = FD->getBody();
1392 
1393   if (Body) {
1394     // Coroutines always emit lifetime markers.
1395     if (isa<CoroutineBodyStmt>(Body))
1396       ShouldEmitLifetimeMarkers = true;
1397 
1398     // Initialize helper which will detect jumps which can cause invalid
1399     // lifetime markers.
1400     if (ShouldEmitLifetimeMarkers)
1401       Bypasses.Init(Body);
1402   }
1403 
1404   // Emit the standard function prologue.
1405   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1406 
1407   // Save parameters for coroutine function.
1408   if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1409     llvm::append_range(FnArgs, FD->parameters());
1410 
1411   // Generate the body of the function.
1412   PGO.assignRegionCounters(GD, CurFn);
1413   if (isa<CXXDestructorDecl>(FD))
1414     EmitDestructorBody(Args);
1415   else if (isa<CXXConstructorDecl>(FD))
1416     EmitConstructorBody(Args);
1417   else if (getLangOpts().CUDA &&
1418            !getLangOpts().CUDAIsDevice &&
1419            FD->hasAttr<CUDAGlobalAttr>())
1420     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1421   else if (isa<CXXMethodDecl>(FD) &&
1422            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1423     // The lambda static invoker function is special, because it forwards or
1424     // clones the body of the function call operator (but is actually static).
1425     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1426   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1427              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1428               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1429     // Implicit copy-assignment gets the same special treatment as implicit
1430     // copy-constructors.
1431     emitImplicitAssignmentOperatorBody(Args);
1432   } else if (Body) {
1433     EmitFunctionBody(Body);
1434   } else
1435     llvm_unreachable("no definition for emitted function");
1436 
1437   // C++11 [stmt.return]p2:
1438   //   Flowing off the end of a function [...] results in undefined behavior in
1439   //   a value-returning function.
1440   // C11 6.9.1p12:
1441   //   If the '}' that terminates a function is reached, and the value of the
1442   //   function call is used by the caller, the behavior is undefined.
1443   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1444       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1445     bool ShouldEmitUnreachable =
1446         CGM.getCodeGenOpts().StrictReturn ||
1447         !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1448     if (SanOpts.has(SanitizerKind::Return)) {
1449       SanitizerScope SanScope(this);
1450       llvm::Value *IsFalse = Builder.getFalse();
1451       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1452                 SanitizerHandler::MissingReturn,
1453                 EmitCheckSourceLocation(FD->getLocation()), None);
1454     } else if (ShouldEmitUnreachable) {
1455       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1456         EmitTrapCall(llvm::Intrinsic::trap);
1457     }
1458     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1459       Builder.CreateUnreachable();
1460       Builder.ClearInsertionPoint();
1461     }
1462   }
1463 
1464   // Emit the standard function epilogue.
1465   FinishFunction(BodyRange.getEnd());
1466 
1467   // If we haven't marked the function nothrow through other means, do
1468   // a quick pass now to see if we can.
1469   if (!CurFn->doesNotThrow())
1470     TryMarkNoThrow(CurFn);
1471 }
1472 
1473 /// ContainsLabel - Return true if the statement contains a label in it.  If
1474 /// this statement is not executed normally, it not containing a label means
1475 /// that we can just remove the code.
1476 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1477   // Null statement, not a label!
1478   if (!S) return false;
1479 
1480   // If this is a label, we have to emit the code, consider something like:
1481   // if (0) {  ...  foo:  bar(); }  goto foo;
1482   //
1483   // TODO: If anyone cared, we could track __label__'s, since we know that you
1484   // can't jump to one from outside their declared region.
1485   if (isa<LabelStmt>(S))
1486     return true;
1487 
1488   // If this is a case/default statement, and we haven't seen a switch, we have
1489   // to emit the code.
1490   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1491     return true;
1492 
1493   // If this is a switch statement, we want to ignore cases below it.
1494   if (isa<SwitchStmt>(S))
1495     IgnoreCaseStmts = true;
1496 
1497   // Scan subexpressions for verboten labels.
1498   for (const Stmt *SubStmt : S->children())
1499     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1500       return true;
1501 
1502   return false;
1503 }
1504 
1505 /// containsBreak - Return true if the statement contains a break out of it.
1506 /// If the statement (recursively) contains a switch or loop with a break
1507 /// inside of it, this is fine.
1508 bool CodeGenFunction::containsBreak(const Stmt *S) {
1509   // Null statement, not a label!
1510   if (!S) return false;
1511 
1512   // If this is a switch or loop that defines its own break scope, then we can
1513   // include it and anything inside of it.
1514   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1515       isa<ForStmt>(S))
1516     return false;
1517 
1518   if (isa<BreakStmt>(S))
1519     return true;
1520 
1521   // Scan subexpressions for verboten breaks.
1522   for (const Stmt *SubStmt : S->children())
1523     if (containsBreak(SubStmt))
1524       return true;
1525 
1526   return false;
1527 }
1528 
1529 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1530   if (!S) return false;
1531 
1532   // Some statement kinds add a scope and thus never add a decl to the current
1533   // scope. Note, this list is longer than the list of statements that might
1534   // have an unscoped decl nested within them, but this way is conservatively
1535   // correct even if more statement kinds are added.
1536   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1537       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1538       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1539       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1540     return false;
1541 
1542   if (isa<DeclStmt>(S))
1543     return true;
1544 
1545   for (const Stmt *SubStmt : S->children())
1546     if (mightAddDeclToScope(SubStmt))
1547       return true;
1548 
1549   return false;
1550 }
1551 
1552 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1553 /// to a constant, or if it does but contains a label, return false.  If it
1554 /// constant folds return true and set the boolean result in Result.
1555 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1556                                                    bool &ResultBool,
1557                                                    bool AllowLabels) {
1558   llvm::APSInt ResultInt;
1559   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1560     return false;
1561 
1562   ResultBool = ResultInt.getBoolValue();
1563   return true;
1564 }
1565 
1566 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1567 /// to a constant, or if it does but contains a label, return false.  If it
1568 /// constant folds return true and set the folded value.
1569 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1570                                                    llvm::APSInt &ResultInt,
1571                                                    bool AllowLabels) {
1572   // FIXME: Rename and handle conversion of other evaluatable things
1573   // to bool.
1574   Expr::EvalResult Result;
1575   if (!Cond->EvaluateAsInt(Result, getContext()))
1576     return false;  // Not foldable, not integer or not fully evaluatable.
1577 
1578   llvm::APSInt Int = Result.Val.getInt();
1579   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1580     return false;  // Contains a label.
1581 
1582   ResultInt = Int;
1583   return true;
1584 }
1585 
1586 /// Determine whether the given condition is an instrumentable condition
1587 /// (i.e. no "&&" or "||").
1588 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1589   // Bypass simplistic logical-NOT operator before determining whether the
1590   // condition contains any other logical operator.
1591   if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens()))
1592     if (UnOp->getOpcode() == UO_LNot)
1593       C = UnOp->getSubExpr();
1594 
1595   const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens());
1596   return (!BOp || !BOp->isLogicalOp());
1597 }
1598 
1599 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1600 /// increments a profile counter based on the semantics of the given logical
1601 /// operator opcode.  This is used to instrument branch condition coverage for
1602 /// logical operators.
1603 void CodeGenFunction::EmitBranchToCounterBlock(
1604     const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1605     llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1606     Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1607   // If not instrumenting, just emit a branch.
1608   bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1609   if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1610     return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1611 
1612   llvm::BasicBlock *ThenBlock = nullptr;
1613   llvm::BasicBlock *ElseBlock = nullptr;
1614   llvm::BasicBlock *NextBlock = nullptr;
1615 
1616   // Create the block we'll use to increment the appropriate counter.
1617   llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1618 
1619   // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1620   // means we need to evaluate the condition and increment the counter on TRUE:
1621   //
1622   // if (Cond)
1623   //   goto CounterIncrBlock;
1624   // else
1625   //   goto FalseBlock;
1626   //
1627   // CounterIncrBlock:
1628   //   Counter++;
1629   //   goto TrueBlock;
1630 
1631   if (LOp == BO_LAnd) {
1632     ThenBlock = CounterIncrBlock;
1633     ElseBlock = FalseBlock;
1634     NextBlock = TrueBlock;
1635   }
1636 
1637   // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1638   // we need to evaluate the condition and increment the counter on FALSE:
1639   //
1640   // if (Cond)
1641   //   goto TrueBlock;
1642   // else
1643   //   goto CounterIncrBlock;
1644   //
1645   // CounterIncrBlock:
1646   //   Counter++;
1647   //   goto FalseBlock;
1648 
1649   else if (LOp == BO_LOr) {
1650     ThenBlock = TrueBlock;
1651     ElseBlock = CounterIncrBlock;
1652     NextBlock = FalseBlock;
1653   } else {
1654     llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1655   }
1656 
1657   // Emit Branch based on condition.
1658   EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1659 
1660   // Emit the block containing the counter increment(s).
1661   EmitBlock(CounterIncrBlock);
1662 
1663   // Increment corresponding counter; if index not provided, use Cond as index.
1664   incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1665 
1666   // Go to the next block.
1667   EmitBranch(NextBlock);
1668 }
1669 
1670 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1671 /// statement) to the specified blocks.  Based on the condition, this might try
1672 /// to simplify the codegen of the conditional based on the branch.
1673 /// \param LH The value of the likelihood attribute on the True branch.
1674 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1675                                            llvm::BasicBlock *TrueBlock,
1676                                            llvm::BasicBlock *FalseBlock,
1677                                            uint64_t TrueCount,
1678                                            Stmt::Likelihood LH) {
1679   Cond = Cond->IgnoreParens();
1680 
1681   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1682 
1683     // Handle X && Y in a condition.
1684     if (CondBOp->getOpcode() == BO_LAnd) {
1685       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1686       // folded if the case was simple enough.
1687       bool ConstantBool = false;
1688       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1689           ConstantBool) {
1690         // br(1 && X) -> br(X).
1691         incrementProfileCounter(CondBOp);
1692         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1693                                         FalseBlock, TrueCount, LH);
1694       }
1695 
1696       // If we have "X && 1", simplify the code to use an uncond branch.
1697       // "X && 0" would have been constant folded to 0.
1698       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1699           ConstantBool) {
1700         // br(X && 1) -> br(X).
1701         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1702                                         FalseBlock, TrueCount, LH, CondBOp);
1703       }
1704 
1705       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1706       // want to jump to the FalseBlock.
1707       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1708       // The counter tells us how often we evaluate RHS, and all of TrueCount
1709       // can be propagated to that branch.
1710       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1711 
1712       ConditionalEvaluation eval(*this);
1713       {
1714         ApplyDebugLocation DL(*this, Cond);
1715         // Propagate the likelihood attribute like __builtin_expect
1716         // __builtin_expect(X && Y, 1) -> X and Y are likely
1717         // __builtin_expect(X && Y, 0) -> only Y is unlikely
1718         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1719                              LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1720         EmitBlock(LHSTrue);
1721       }
1722 
1723       incrementProfileCounter(CondBOp);
1724       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1725 
1726       // Any temporaries created here are conditional.
1727       eval.begin(*this);
1728       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1729                                FalseBlock, TrueCount, LH);
1730       eval.end(*this);
1731 
1732       return;
1733     }
1734 
1735     if (CondBOp->getOpcode() == BO_LOr) {
1736       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1737       // folded if the case was simple enough.
1738       bool ConstantBool = false;
1739       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1740           !ConstantBool) {
1741         // br(0 || X) -> br(X).
1742         incrementProfileCounter(CondBOp);
1743         return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1744                                         FalseBlock, TrueCount, LH);
1745       }
1746 
1747       // If we have "X || 0", simplify the code to use an uncond branch.
1748       // "X || 1" would have been constant folded to 1.
1749       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1750           !ConstantBool) {
1751         // br(X || 0) -> br(X).
1752         return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1753                                         FalseBlock, TrueCount, LH, CondBOp);
1754       }
1755 
1756       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1757       // want to jump to the TrueBlock.
1758       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1759       // We have the count for entry to the RHS and for the whole expression
1760       // being true, so we can divy up True count between the short circuit and
1761       // the RHS.
1762       uint64_t LHSCount =
1763           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1764       uint64_t RHSCount = TrueCount - LHSCount;
1765 
1766       ConditionalEvaluation eval(*this);
1767       {
1768         // Propagate the likelihood attribute like __builtin_expect
1769         // __builtin_expect(X || Y, 1) -> only Y is likely
1770         // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1771         ApplyDebugLocation DL(*this, Cond);
1772         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1773                              LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1774         EmitBlock(LHSFalse);
1775       }
1776 
1777       incrementProfileCounter(CondBOp);
1778       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1779 
1780       // Any temporaries created here are conditional.
1781       eval.begin(*this);
1782       EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1783                                RHSCount, LH);
1784 
1785       eval.end(*this);
1786 
1787       return;
1788     }
1789   }
1790 
1791   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1792     // br(!x, t, f) -> br(x, f, t)
1793     if (CondUOp->getOpcode() == UO_LNot) {
1794       // Negate the count.
1795       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1796       // The values of the enum are chosen to make this negation possible.
1797       LH = static_cast<Stmt::Likelihood>(-LH);
1798       // Negate the condition and swap the destination blocks.
1799       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1800                                   FalseCount, LH);
1801     }
1802   }
1803 
1804   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1805     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1806     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1807     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1808 
1809     // The ConditionalOperator itself has no likelihood information for its
1810     // true and false branches. This matches the behavior of __builtin_expect.
1811     ConditionalEvaluation cond(*this);
1812     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1813                          getProfileCount(CondOp), Stmt::LH_None);
1814 
1815     // When computing PGO branch weights, we only know the overall count for
1816     // the true block. This code is essentially doing tail duplication of the
1817     // naive code-gen, introducing new edges for which counts are not
1818     // available. Divide the counts proportionally between the LHS and RHS of
1819     // the conditional operator.
1820     uint64_t LHSScaledTrueCount = 0;
1821     if (TrueCount) {
1822       double LHSRatio =
1823           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1824       LHSScaledTrueCount = TrueCount * LHSRatio;
1825     }
1826 
1827     cond.begin(*this);
1828     EmitBlock(LHSBlock);
1829     incrementProfileCounter(CondOp);
1830     {
1831       ApplyDebugLocation DL(*this, Cond);
1832       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1833                            LHSScaledTrueCount, LH);
1834     }
1835     cond.end(*this);
1836 
1837     cond.begin(*this);
1838     EmitBlock(RHSBlock);
1839     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1840                          TrueCount - LHSScaledTrueCount, LH);
1841     cond.end(*this);
1842 
1843     return;
1844   }
1845 
1846   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1847     // Conditional operator handling can give us a throw expression as a
1848     // condition for a case like:
1849     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1850     // Fold this to:
1851     //   br(c, throw x, br(y, t, f))
1852     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1853     return;
1854   }
1855 
1856   // Emit the code with the fully general case.
1857   llvm::Value *CondV;
1858   {
1859     ApplyDebugLocation DL(*this, Cond);
1860     CondV = EvaluateExprAsBool(Cond);
1861   }
1862 
1863   llvm::MDNode *Weights = nullptr;
1864   llvm::MDNode *Unpredictable = nullptr;
1865 
1866   // If the branch has a condition wrapped by __builtin_unpredictable,
1867   // create metadata that specifies that the branch is unpredictable.
1868   // Don't bother if not optimizing because that metadata would not be used.
1869   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1870   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1871     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1872     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1873       llvm::MDBuilder MDHelper(getLLVMContext());
1874       Unpredictable = MDHelper.createUnpredictable();
1875     }
1876   }
1877 
1878   // If there is a Likelihood knowledge for the cond, lower it.
1879   // Note that if not optimizing this won't emit anything.
1880   llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
1881   if (CondV != NewCondV)
1882     CondV = NewCondV;
1883   else {
1884     // Otherwise, lower profile counts. Note that we do this even at -O0.
1885     uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1886     Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
1887   }
1888 
1889   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1890 }
1891 
1892 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1893 /// specified stmt yet.
1894 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1895   CGM.ErrorUnsupported(S, Type);
1896 }
1897 
1898 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1899 /// variable-length array whose elements have a non-zero bit-pattern.
1900 ///
1901 /// \param baseType the inner-most element type of the array
1902 /// \param src - a char* pointing to the bit-pattern for a single
1903 /// base element of the array
1904 /// \param sizeInChars - the total size of the VLA, in chars
1905 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1906                                Address dest, Address src,
1907                                llvm::Value *sizeInChars) {
1908   CGBuilderTy &Builder = CGF.Builder;
1909 
1910   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1911   llvm::Value *baseSizeInChars
1912     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1913 
1914   Address begin =
1915     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1916   llvm::Value *end = Builder.CreateInBoundsGEP(
1917       begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end");
1918 
1919   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1920   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1921   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1922 
1923   // Make a loop over the VLA.  C99 guarantees that the VLA element
1924   // count must be nonzero.
1925   CGF.EmitBlock(loopBB);
1926 
1927   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1928   cur->addIncoming(begin.getPointer(), originBB);
1929 
1930   CharUnits curAlign =
1931     dest.getAlignment().alignmentOfArrayElement(baseSize);
1932 
1933   // memcpy the individual element bit-pattern.
1934   Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars,
1935                        /*volatile*/ false);
1936 
1937   // Go to the next element.
1938   llvm::Value *next =
1939     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1940 
1941   // Leave if that's the end of the VLA.
1942   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1943   Builder.CreateCondBr(done, contBB, loopBB);
1944   cur->addIncoming(next, loopBB);
1945 
1946   CGF.EmitBlock(contBB);
1947 }
1948 
1949 void
1950 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1951   // Ignore empty classes in C++.
1952   if (getLangOpts().CPlusPlus) {
1953     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1954       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1955         return;
1956     }
1957   }
1958 
1959   // Cast the dest ptr to the appropriate i8 pointer type.
1960   if (DestPtr.getElementType() != Int8Ty)
1961     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1962 
1963   // Get size and alignment info for this aggregate.
1964   CharUnits size = getContext().getTypeSizeInChars(Ty);
1965 
1966   llvm::Value *SizeVal;
1967   const VariableArrayType *vla;
1968 
1969   // Don't bother emitting a zero-byte memset.
1970   if (size.isZero()) {
1971     // But note that getTypeInfo returns 0 for a VLA.
1972     if (const VariableArrayType *vlaType =
1973           dyn_cast_or_null<VariableArrayType>(
1974                                           getContext().getAsArrayType(Ty))) {
1975       auto VlaSize = getVLASize(vlaType);
1976       SizeVal = VlaSize.NumElts;
1977       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1978       if (!eltSize.isOne())
1979         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1980       vla = vlaType;
1981     } else {
1982       return;
1983     }
1984   } else {
1985     SizeVal = CGM.getSize(size);
1986     vla = nullptr;
1987   }
1988 
1989   // If the type contains a pointer to data member we can't memset it to zero.
1990   // Instead, create a null constant and copy it to the destination.
1991   // TODO: there are other patterns besides zero that we can usefully memset,
1992   // like -1, which happens to be the pattern used by member-pointers.
1993   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1994     // For a VLA, emit a single element, then splat that over the VLA.
1995     if (vla) Ty = getContext().getBaseElementType(vla);
1996 
1997     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1998 
1999     llvm::GlobalVariable *NullVariable =
2000       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
2001                                /*isConstant=*/true,
2002                                llvm::GlobalVariable::PrivateLinkage,
2003                                NullConstant, Twine());
2004     CharUnits NullAlign = DestPtr.getAlignment();
2005     NullVariable->setAlignment(NullAlign.getAsAlign());
2006     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
2007                    Builder.getInt8Ty(), NullAlign);
2008 
2009     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2010 
2011     // Get and call the appropriate llvm.memcpy overload.
2012     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2013     return;
2014   }
2015 
2016   // Otherwise, just memset the whole thing to zero.  This is legal
2017   // because in LLVM, all default initializers (other than the ones we just
2018   // handled above) are guaranteed to have a bit pattern of all zeros.
2019   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2020 }
2021 
2022 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2023   // Make sure that there is a block for the indirect goto.
2024   if (!IndirectBranch)
2025     GetIndirectGotoBlock();
2026 
2027   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2028 
2029   // Make sure the indirect branch includes all of the address-taken blocks.
2030   IndirectBranch->addDestination(BB);
2031   return llvm::BlockAddress::get(CurFn, BB);
2032 }
2033 
2034 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2035   // If we already made the indirect branch for indirect goto, return its block.
2036   if (IndirectBranch) return IndirectBranch->getParent();
2037 
2038   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2039 
2040   // Create the PHI node that indirect gotos will add entries to.
2041   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2042                                               "indirect.goto.dest");
2043 
2044   // Create the indirect branch instruction.
2045   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2046   return IndirectBranch->getParent();
2047 }
2048 
2049 /// Computes the length of an array in elements, as well as the base
2050 /// element type and a properly-typed first element pointer.
2051 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2052                                               QualType &baseType,
2053                                               Address &addr) {
2054   const ArrayType *arrayType = origArrayType;
2055 
2056   // If it's a VLA, we have to load the stored size.  Note that
2057   // this is the size of the VLA in bytes, not its size in elements.
2058   llvm::Value *numVLAElements = nullptr;
2059   if (isa<VariableArrayType>(arrayType)) {
2060     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2061 
2062     // Walk into all VLAs.  This doesn't require changes to addr,
2063     // which has type T* where T is the first non-VLA element type.
2064     do {
2065       QualType elementType = arrayType->getElementType();
2066       arrayType = getContext().getAsArrayType(elementType);
2067 
2068       // If we only have VLA components, 'addr' requires no adjustment.
2069       if (!arrayType) {
2070         baseType = elementType;
2071         return numVLAElements;
2072       }
2073     } while (isa<VariableArrayType>(arrayType));
2074 
2075     // We get out here only if we find a constant array type
2076     // inside the VLA.
2077   }
2078 
2079   // We have some number of constant-length arrays, so addr should
2080   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
2081   // down to the first element of addr.
2082   SmallVector<llvm::Value*, 8> gepIndices;
2083 
2084   // GEP down to the array type.
2085   llvm::ConstantInt *zero = Builder.getInt32(0);
2086   gepIndices.push_back(zero);
2087 
2088   uint64_t countFromCLAs = 1;
2089   QualType eltType;
2090 
2091   llvm::ArrayType *llvmArrayType =
2092     dyn_cast<llvm::ArrayType>(addr.getElementType());
2093   while (llvmArrayType) {
2094     assert(isa<ConstantArrayType>(arrayType));
2095     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
2096              == llvmArrayType->getNumElements());
2097 
2098     gepIndices.push_back(zero);
2099     countFromCLAs *= llvmArrayType->getNumElements();
2100     eltType = arrayType->getElementType();
2101 
2102     llvmArrayType =
2103       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2104     arrayType = getContext().getAsArrayType(arrayType->getElementType());
2105     assert((!llvmArrayType || arrayType) &&
2106            "LLVM and Clang types are out-of-synch");
2107   }
2108 
2109   if (arrayType) {
2110     // From this point onwards, the Clang array type has been emitted
2111     // as some other type (probably a packed struct). Compute the array
2112     // size, and just emit the 'begin' expression as a bitcast.
2113     while (arrayType) {
2114       countFromCLAs *=
2115           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
2116       eltType = arrayType->getElementType();
2117       arrayType = getContext().getAsArrayType(eltType);
2118     }
2119 
2120     llvm::Type *baseType = ConvertType(eltType);
2121     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
2122   } else {
2123     // Create the actual GEP.
2124     addr = Address(Builder.CreateInBoundsGEP(
2125         addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"),
2126         ConvertTypeForMem(eltType),
2127         addr.getAlignment());
2128   }
2129 
2130   baseType = eltType;
2131 
2132   llvm::Value *numElements
2133     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2134 
2135   // If we had any VLA dimensions, factor them in.
2136   if (numVLAElements)
2137     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2138 
2139   return numElements;
2140 }
2141 
2142 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2143   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2144   assert(vla && "type was not a variable array type!");
2145   return getVLASize(vla);
2146 }
2147 
2148 CodeGenFunction::VlaSizePair
2149 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2150   // The number of elements so far; always size_t.
2151   llvm::Value *numElements = nullptr;
2152 
2153   QualType elementType;
2154   do {
2155     elementType = type->getElementType();
2156     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2157     assert(vlaSize && "no size for VLA!");
2158     assert(vlaSize->getType() == SizeTy);
2159 
2160     if (!numElements) {
2161       numElements = vlaSize;
2162     } else {
2163       // It's undefined behavior if this wraps around, so mark it that way.
2164       // FIXME: Teach -fsanitize=undefined to trap this.
2165       numElements = Builder.CreateNUWMul(numElements, vlaSize);
2166     }
2167   } while ((type = getContext().getAsVariableArrayType(elementType)));
2168 
2169   return { numElements, elementType };
2170 }
2171 
2172 CodeGenFunction::VlaSizePair
2173 CodeGenFunction::getVLAElements1D(QualType type) {
2174   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2175   assert(vla && "type was not a variable array type!");
2176   return getVLAElements1D(vla);
2177 }
2178 
2179 CodeGenFunction::VlaSizePair
2180 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2181   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2182   assert(VlaSize && "no size for VLA!");
2183   assert(VlaSize->getType() == SizeTy);
2184   return { VlaSize, Vla->getElementType() };
2185 }
2186 
2187 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2188   assert(type->isVariablyModifiedType() &&
2189          "Must pass variably modified type to EmitVLASizes!");
2190 
2191   EnsureInsertPoint();
2192 
2193   // We're going to walk down into the type and look for VLA
2194   // expressions.
2195   do {
2196     assert(type->isVariablyModifiedType());
2197 
2198     const Type *ty = type.getTypePtr();
2199     switch (ty->getTypeClass()) {
2200 
2201 #define TYPE(Class, Base)
2202 #define ABSTRACT_TYPE(Class, Base)
2203 #define NON_CANONICAL_TYPE(Class, Base)
2204 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2205 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2206 #include "clang/AST/TypeNodes.inc"
2207       llvm_unreachable("unexpected dependent type!");
2208 
2209     // These types are never variably-modified.
2210     case Type::Builtin:
2211     case Type::Complex:
2212     case Type::Vector:
2213     case Type::ExtVector:
2214     case Type::ConstantMatrix:
2215     case Type::Record:
2216     case Type::Enum:
2217     case Type::Elaborated:
2218     case Type::Using:
2219     case Type::TemplateSpecialization:
2220     case Type::ObjCTypeParam:
2221     case Type::ObjCObject:
2222     case Type::ObjCInterface:
2223     case Type::ObjCObjectPointer:
2224     case Type::BitInt:
2225       llvm_unreachable("type class is never variably-modified!");
2226 
2227     case Type::Adjusted:
2228       type = cast<AdjustedType>(ty)->getAdjustedType();
2229       break;
2230 
2231     case Type::Decayed:
2232       type = cast<DecayedType>(ty)->getPointeeType();
2233       break;
2234 
2235     case Type::Pointer:
2236       type = cast<PointerType>(ty)->getPointeeType();
2237       break;
2238 
2239     case Type::BlockPointer:
2240       type = cast<BlockPointerType>(ty)->getPointeeType();
2241       break;
2242 
2243     case Type::LValueReference:
2244     case Type::RValueReference:
2245       type = cast<ReferenceType>(ty)->getPointeeType();
2246       break;
2247 
2248     case Type::MemberPointer:
2249       type = cast<MemberPointerType>(ty)->getPointeeType();
2250       break;
2251 
2252     case Type::ConstantArray:
2253     case Type::IncompleteArray:
2254       // Losing element qualification here is fine.
2255       type = cast<ArrayType>(ty)->getElementType();
2256       break;
2257 
2258     case Type::VariableArray: {
2259       // Losing element qualification here is fine.
2260       const VariableArrayType *vat = cast<VariableArrayType>(ty);
2261 
2262       // Unknown size indication requires no size computation.
2263       // Otherwise, evaluate and record it.
2264       if (const Expr *sizeExpr = vat->getSizeExpr()) {
2265         // It's possible that we might have emitted this already,
2266         // e.g. with a typedef and a pointer to it.
2267         llvm::Value *&entry = VLASizeMap[sizeExpr];
2268         if (!entry) {
2269           llvm::Value *size = EmitScalarExpr(sizeExpr);
2270 
2271           // C11 6.7.6.2p5:
2272           //   If the size is an expression that is not an integer constant
2273           //   expression [...] each time it is evaluated it shall have a value
2274           //   greater than zero.
2275           if (SanOpts.has(SanitizerKind::VLABound)) {
2276             SanitizerScope SanScope(this);
2277             llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2278             clang::QualType SEType = sizeExpr->getType();
2279             llvm::Value *CheckCondition =
2280                 SEType->isSignedIntegerType()
2281                     ? Builder.CreateICmpSGT(size, Zero)
2282                     : Builder.CreateICmpUGT(size, Zero);
2283             llvm::Constant *StaticArgs[] = {
2284                 EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2285                 EmitCheckTypeDescriptor(SEType)};
2286             EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2287                       SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2288           }
2289 
2290           // Always zexting here would be wrong if it weren't
2291           // undefined behavior to have a negative bound.
2292           // FIXME: What about when size's type is larger than size_t?
2293           entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2294         }
2295       }
2296       type = vat->getElementType();
2297       break;
2298     }
2299 
2300     case Type::FunctionProto:
2301     case Type::FunctionNoProto:
2302       type = cast<FunctionType>(ty)->getReturnType();
2303       break;
2304 
2305     case Type::Paren:
2306     case Type::TypeOf:
2307     case Type::UnaryTransform:
2308     case Type::Attributed:
2309     case Type::BTFTagAttributed:
2310     case Type::SubstTemplateTypeParm:
2311     case Type::MacroQualified:
2312       // Keep walking after single level desugaring.
2313       type = type.getSingleStepDesugaredType(getContext());
2314       break;
2315 
2316     case Type::Typedef:
2317     case Type::Decltype:
2318     case Type::Auto:
2319     case Type::DeducedTemplateSpecialization:
2320       // Stop walking: nothing to do.
2321       return;
2322 
2323     case Type::TypeOfExpr:
2324       // Stop walking: emit typeof expression.
2325       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2326       return;
2327 
2328     case Type::Atomic:
2329       type = cast<AtomicType>(ty)->getValueType();
2330       break;
2331 
2332     case Type::Pipe:
2333       type = cast<PipeType>(ty)->getElementType();
2334       break;
2335     }
2336   } while (type->isVariablyModifiedType());
2337 }
2338 
2339 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2340   if (getContext().getBuiltinVaListType()->isArrayType())
2341     return EmitPointerWithAlignment(E);
2342   return EmitLValue(E).getAddress(*this);
2343 }
2344 
2345 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2346   return EmitLValue(E).getAddress(*this);
2347 }
2348 
2349 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2350                                               const APValue &Init) {
2351   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2352   if (CGDebugInfo *Dbg = getDebugInfo())
2353     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2354       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2355 }
2356 
2357 CodeGenFunction::PeepholeProtection
2358 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2359   // At the moment, the only aggressive peephole we do in IR gen
2360   // is trunc(zext) folding, but if we add more, we can easily
2361   // extend this protection.
2362 
2363   if (!rvalue.isScalar()) return PeepholeProtection();
2364   llvm::Value *value = rvalue.getScalarVal();
2365   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2366 
2367   // Just make an extra bitcast.
2368   assert(HaveInsertPoint());
2369   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2370                                                   Builder.GetInsertBlock());
2371 
2372   PeepholeProtection protection;
2373   protection.Inst = inst;
2374   return protection;
2375 }
2376 
2377 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2378   if (!protection.Inst) return;
2379 
2380   // In theory, we could try to duplicate the peepholes now, but whatever.
2381   protection.Inst->eraseFromParent();
2382 }
2383 
2384 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2385                                               QualType Ty, SourceLocation Loc,
2386                                               SourceLocation AssumptionLoc,
2387                                               llvm::Value *Alignment,
2388                                               llvm::Value *OffsetValue) {
2389   if (Alignment->getType() != IntPtrTy)
2390     Alignment =
2391         Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2392   if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2393     OffsetValue =
2394         Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2395   llvm::Value *TheCheck = nullptr;
2396   if (SanOpts.has(SanitizerKind::Alignment)) {
2397     llvm::Value *PtrIntValue =
2398         Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2399 
2400     if (OffsetValue) {
2401       bool IsOffsetZero = false;
2402       if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2403         IsOffsetZero = CI->isZero();
2404 
2405       if (!IsOffsetZero)
2406         PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2407     }
2408 
2409     llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2410     llvm::Value *Mask =
2411         Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2412     llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2413     TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2414   }
2415   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2416       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2417 
2418   if (!SanOpts.has(SanitizerKind::Alignment))
2419     return;
2420   emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2421                                OffsetValue, TheCheck, Assumption);
2422 }
2423 
2424 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2425                                               const Expr *E,
2426                                               SourceLocation AssumptionLoc,
2427                                               llvm::Value *Alignment,
2428                                               llvm::Value *OffsetValue) {
2429   if (auto *CE = dyn_cast<CastExpr>(E))
2430     E = CE->getSubExprAsWritten();
2431   QualType Ty = E->getType();
2432   SourceLocation Loc = E->getExprLoc();
2433 
2434   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2435                           OffsetValue);
2436 }
2437 
2438 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2439                                                  llvm::Value *AnnotatedVal,
2440                                                  StringRef AnnotationStr,
2441                                                  SourceLocation Location,
2442                                                  const AnnotateAttr *Attr) {
2443   SmallVector<llvm::Value *, 5> Args = {
2444       AnnotatedVal,
2445       Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2446       Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2447       CGM.EmitAnnotationLineNo(Location),
2448   };
2449   if (Attr)
2450     Args.push_back(CGM.EmitAnnotationArgs(Attr));
2451   return Builder.CreateCall(AnnotationFn, Args);
2452 }
2453 
2454 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2455   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2456   // FIXME We create a new bitcast for every annotation because that's what
2457   // llvm-gcc was doing.
2458   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2459     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2460                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2461                        I->getAnnotation(), D->getLocation(), I);
2462 }
2463 
2464 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2465                                               Address Addr) {
2466   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2467   llvm::Value *V = Addr.getPointer();
2468   llvm::Type *VTy = V->getType();
2469   auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2470   unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2471   llvm::PointerType *IntrinTy =
2472       llvm::PointerType::getWithSamePointeeType(CGM.Int8PtrTy, AS);
2473   llvm::Function *F =
2474       CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, IntrinTy);
2475 
2476   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2477     // FIXME Always emit the cast inst so we can differentiate between
2478     // annotation on the first field of a struct and annotation on the struct
2479     // itself.
2480     if (VTy != IntrinTy)
2481       V = Builder.CreateBitCast(V, IntrinTy);
2482     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2483     V = Builder.CreateBitCast(V, VTy);
2484   }
2485 
2486   return Address(V, Addr.getElementType(), Addr.getAlignment());
2487 }
2488 
2489 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2490 
2491 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2492     : CGF(CGF) {
2493   assert(!CGF->IsSanitizerScope);
2494   CGF->IsSanitizerScope = true;
2495 }
2496 
2497 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2498   CGF->IsSanitizerScope = false;
2499 }
2500 
2501 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2502                                    const llvm::Twine &Name,
2503                                    llvm::BasicBlock *BB,
2504                                    llvm::BasicBlock::iterator InsertPt) const {
2505   LoopStack.InsertHelper(I);
2506   if (IsSanitizerScope)
2507     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2508 }
2509 
2510 void CGBuilderInserter::InsertHelper(
2511     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2512     llvm::BasicBlock::iterator InsertPt) const {
2513   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2514   if (CGF)
2515     CGF->InsertHelper(I, Name, BB, InsertPt);
2516 }
2517 
2518 // Emits an error if we don't have a valid set of target features for the
2519 // called function.
2520 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2521                                           const FunctionDecl *TargetDecl) {
2522   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2523 }
2524 
2525 // Emits an error if we don't have a valid set of target features for the
2526 // called function.
2527 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2528                                           const FunctionDecl *TargetDecl) {
2529   // Early exit if this is an indirect call.
2530   if (!TargetDecl)
2531     return;
2532 
2533   // Get the current enclosing function if it exists. If it doesn't
2534   // we can't check the target features anyhow.
2535   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2536   if (!FD)
2537     return;
2538 
2539   // Grab the required features for the call. For a builtin this is listed in
2540   // the td file with the default cpu, for an always_inline function this is any
2541   // listed cpu and any listed features.
2542   unsigned BuiltinID = TargetDecl->getBuiltinID();
2543   std::string MissingFeature;
2544   llvm::StringMap<bool> CallerFeatureMap;
2545   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2546   if (BuiltinID) {
2547     StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2548     if (!Builtin::evaluateRequiredTargetFeatures(
2549         FeatureList, CallerFeatureMap)) {
2550       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2551           << TargetDecl->getDeclName()
2552           << FeatureList;
2553     }
2554   } else if (!TargetDecl->isMultiVersion() &&
2555              TargetDecl->hasAttr<TargetAttr>()) {
2556     // Get the required features for the callee.
2557 
2558     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2559     ParsedTargetAttr ParsedAttr =
2560         CGM.getContext().filterFunctionTargetAttrs(TD);
2561 
2562     SmallVector<StringRef, 1> ReqFeatures;
2563     llvm::StringMap<bool> CalleeFeatureMap;
2564     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2565 
2566     for (const auto &F : ParsedAttr.Features) {
2567       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2568         ReqFeatures.push_back(StringRef(F).substr(1));
2569     }
2570 
2571     for (const auto &F : CalleeFeatureMap) {
2572       // Only positive features are "required".
2573       if (F.getValue())
2574         ReqFeatures.push_back(F.getKey());
2575     }
2576     if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2577       if (!CallerFeatureMap.lookup(Feature)) {
2578         MissingFeature = Feature.str();
2579         return false;
2580       }
2581       return true;
2582     }))
2583       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2584           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2585   }
2586 }
2587 
2588 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2589   if (!CGM.getCodeGenOpts().SanitizeStats)
2590     return;
2591 
2592   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2593   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2594   CGM.getSanStats().create(IRB, SSK);
2595 }
2596 
2597 llvm::Value *
2598 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2599   llvm::Value *Condition = nullptr;
2600 
2601   if (!RO.Conditions.Architecture.empty())
2602     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2603 
2604   if (!RO.Conditions.Features.empty()) {
2605     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2606     Condition =
2607         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2608   }
2609   return Condition;
2610 }
2611 
2612 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2613                                              llvm::Function *Resolver,
2614                                              CGBuilderTy &Builder,
2615                                              llvm::Function *FuncToReturn,
2616                                              bool SupportsIFunc) {
2617   if (SupportsIFunc) {
2618     Builder.CreateRet(FuncToReturn);
2619     return;
2620   }
2621 
2622   llvm::SmallVector<llvm::Value *, 10> Args(
2623       llvm::make_pointer_range(Resolver->args()));
2624 
2625   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2626   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2627 
2628   if (Resolver->getReturnType()->isVoidTy())
2629     Builder.CreateRetVoid();
2630   else
2631     Builder.CreateRet(Result);
2632 }
2633 
2634 void CodeGenFunction::EmitMultiVersionResolver(
2635     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2636   assert(getContext().getTargetInfo().getTriple().isX86() &&
2637          "Only implemented for x86 targets");
2638 
2639   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2640 
2641   // Main function's basic block.
2642   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2643   Builder.SetInsertPoint(CurBlock);
2644   EmitX86CpuInit();
2645 
2646   for (const MultiVersionResolverOption &RO : Options) {
2647     Builder.SetInsertPoint(CurBlock);
2648     llvm::Value *Condition = FormResolverCondition(RO);
2649 
2650     // The 'default' or 'generic' case.
2651     if (!Condition) {
2652       assert(&RO == Options.end() - 1 &&
2653              "Default or Generic case must be last");
2654       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2655                                        SupportsIFunc);
2656       return;
2657     }
2658 
2659     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2660     CGBuilderTy RetBuilder(*this, RetBlock);
2661     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2662                                      SupportsIFunc);
2663     CurBlock = createBasicBlock("resolver_else", Resolver);
2664     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2665   }
2666 
2667   // If no generic/default, emit an unreachable.
2668   Builder.SetInsertPoint(CurBlock);
2669   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2670   TrapCall->setDoesNotReturn();
2671   TrapCall->setDoesNotThrow();
2672   Builder.CreateUnreachable();
2673   Builder.ClearInsertionPoint();
2674 }
2675 
2676 // Loc - where the diagnostic will point, where in the source code this
2677 //  alignment has failed.
2678 // SecondaryLoc - if present (will be present if sufficiently different from
2679 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2680 //  It should be the location where the __attribute__((assume_aligned))
2681 //  was written e.g.
2682 void CodeGenFunction::emitAlignmentAssumptionCheck(
2683     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2684     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2685     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2686     llvm::Instruction *Assumption) {
2687   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2688          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2689              llvm::Intrinsic::getDeclaration(
2690                  Builder.GetInsertBlock()->getParent()->getParent(),
2691                  llvm::Intrinsic::assume) &&
2692          "Assumption should be a call to llvm.assume().");
2693   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2694          "Assumption should be the last instruction of the basic block, "
2695          "since the basic block is still being generated.");
2696 
2697   if (!SanOpts.has(SanitizerKind::Alignment))
2698     return;
2699 
2700   // Don't check pointers to volatile data. The behavior here is implementation-
2701   // defined.
2702   if (Ty->getPointeeType().isVolatileQualified())
2703     return;
2704 
2705   // We need to temorairly remove the assumption so we can insert the
2706   // sanitizer check before it, else the check will be dropped by optimizations.
2707   Assumption->removeFromParent();
2708 
2709   {
2710     SanitizerScope SanScope(this);
2711 
2712     if (!OffsetValue)
2713       OffsetValue = Builder.getInt1(false); // no offset.
2714 
2715     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2716                                     EmitCheckSourceLocation(SecondaryLoc),
2717                                     EmitCheckTypeDescriptor(Ty)};
2718     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2719                                   EmitCheckValue(Alignment),
2720                                   EmitCheckValue(OffsetValue)};
2721     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2722               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2723   }
2724 
2725   // We are now in the (new, empty) "cont" basic block.
2726   // Reintroduce the assumption.
2727   Builder.Insert(Assumption);
2728   // FIXME: Assumption still has it's original basic block as it's Parent.
2729 }
2730 
2731 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2732   if (CGDebugInfo *DI = getDebugInfo())
2733     return DI->SourceLocToDebugLoc(Location);
2734 
2735   return llvm::DebugLoc();
2736 }
2737 
2738 llvm::Value *
2739 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
2740                                                       Stmt::Likelihood LH) {
2741   switch (LH) {
2742   case Stmt::LH_None:
2743     return Cond;
2744   case Stmt::LH_Likely:
2745   case Stmt::LH_Unlikely:
2746     // Don't generate llvm.expect on -O0 as the backend won't use it for
2747     // anything.
2748     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2749       return Cond;
2750     llvm::Type *CondTy = Cond->getType();
2751     assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
2752     llvm::Function *FnExpect =
2753         CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
2754     llvm::Value *ExpectedValueOfCond =
2755         llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
2756     return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
2757                               Cond->getName() + ".expval");
2758   }
2759   llvm_unreachable("Unknown Likelihood");
2760 }
2761 
2762 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec,
2763                                                     unsigned NumElementsDst,
2764                                                     const llvm::Twine &Name) {
2765   auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType());
2766   unsigned NumElementsSrc = SrcTy->getNumElements();
2767   if (NumElementsSrc == NumElementsDst)
2768     return SrcVec;
2769 
2770   std::vector<int> ShuffleMask(NumElementsDst, -1);
2771   for (unsigned MaskIdx = 0;
2772        MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx)
2773     ShuffleMask[MaskIdx] = MaskIdx;
2774 
2775   return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name);
2776 }
2777