1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/CharUnits.h"
32 #include "clang/AST/DeclCXX.h"
33 #include "clang/AST/DeclObjC.h"
34 #include "clang/AST/DeclTemplate.h"
35 #include "clang/AST/Mangle.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/StringSwitch.h"
53 #include "llvm/Analysis/TargetLibraryInfo.h"
54 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
55 #include "llvm/IR/AttributeMask.h"
56 #include "llvm/IR/CallingConv.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/ProfileSummary.h"
62 #include "llvm/ProfileData/InstrProfReader.h"
63 #include "llvm/ProfileData/SampleProf.h"
64 #include "llvm/Support/CRC.h"
65 #include "llvm/Support/CodeGen.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/ConvertUTF.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/TimeProfiler.h"
70 #include "llvm/Support/xxhash.h"
71 #include "llvm/TargetParser/Triple.h"
72 #include "llvm/TargetParser/X86TargetParser.h"
73 #include <optional>
74 
75 using namespace clang;
76 using namespace CodeGen;
77 
78 static llvm::cl::opt<bool> LimitedCoverage(
79     "limited-coverage-experimental", llvm::cl::Hidden,
80     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
81 
82 static const char AnnotationSection[] = "llvm.metadata";
83 
84 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
85   switch (CGM.getContext().getCXXABIKind()) {
86   case TargetCXXABI::AppleARM64:
87   case TargetCXXABI::Fuchsia:
88   case TargetCXXABI::GenericAArch64:
89   case TargetCXXABI::GenericARM:
90   case TargetCXXABI::iOS:
91   case TargetCXXABI::WatchOS:
92   case TargetCXXABI::GenericMIPS:
93   case TargetCXXABI::GenericItanium:
94   case TargetCXXABI::WebAssembly:
95   case TargetCXXABI::XL:
96     return CreateItaniumCXXABI(CGM);
97   case TargetCXXABI::Microsoft:
98     return CreateMicrosoftCXXABI(CGM);
99   }
100 
101   llvm_unreachable("invalid C++ ABI kind");
102 }
103 
104 static std::unique_ptr<TargetCodeGenInfo>
105 createTargetCodeGenInfo(CodeGenModule &CGM) {
106   const TargetInfo &Target = CGM.getTarget();
107   const llvm::Triple &Triple = Target.getTriple();
108   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
109 
110   switch (Triple.getArch()) {
111   default:
112     return createDefaultTargetCodeGenInfo(CGM);
113 
114   case llvm::Triple::le32:
115     return createPNaClTargetCodeGenInfo(CGM);
116   case llvm::Triple::m68k:
117     return createM68kTargetCodeGenInfo(CGM);
118   case llvm::Triple::mips:
119   case llvm::Triple::mipsel:
120     if (Triple.getOS() == llvm::Triple::NaCl)
121       return createPNaClTargetCodeGenInfo(CGM);
122     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
123 
124   case llvm::Triple::mips64:
125   case llvm::Triple::mips64el:
126     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
127 
128   case llvm::Triple::avr: {
129     // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
130     // on avrtiny. For passing return value, R18~R25 are used on avr, and
131     // R22~R25 are used on avrtiny.
132     unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
133     unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
134     return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
135   }
136 
137   case llvm::Triple::aarch64:
138   case llvm::Triple::aarch64_32:
139   case llvm::Triple::aarch64_be: {
140     AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
141     if (Target.getABI() == "darwinpcs")
142       Kind = AArch64ABIKind::DarwinPCS;
143     else if (Triple.isOSWindows())
144       return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
145 
146     return createAArch64TargetCodeGenInfo(CGM, Kind);
147   }
148 
149   case llvm::Triple::wasm32:
150   case llvm::Triple::wasm64: {
151     WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
152     if (Target.getABI() == "experimental-mv")
153       Kind = WebAssemblyABIKind::ExperimentalMV;
154     return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
155   }
156 
157   case llvm::Triple::arm:
158   case llvm::Triple::armeb:
159   case llvm::Triple::thumb:
160   case llvm::Triple::thumbeb: {
161     if (Triple.getOS() == llvm::Triple::Win32)
162       return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
163 
164     ARMABIKind Kind = ARMABIKind::AAPCS;
165     StringRef ABIStr = Target.getABI();
166     if (ABIStr == "apcs-gnu")
167       Kind = ARMABIKind::APCS;
168     else if (ABIStr == "aapcs16")
169       Kind = ARMABIKind::AAPCS16_VFP;
170     else if (CodeGenOpts.FloatABI == "hard" ||
171              (CodeGenOpts.FloatABI != "soft" &&
172               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
173                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
174                Triple.getEnvironment() == llvm::Triple::EABIHF)))
175       Kind = ARMABIKind::AAPCS_VFP;
176 
177     return createARMTargetCodeGenInfo(CGM, Kind);
178   }
179 
180   case llvm::Triple::ppc: {
181     if (Triple.isOSAIX())
182       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
183 
184     bool IsSoftFloat =
185         CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
186     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
187   }
188   case llvm::Triple::ppcle: {
189     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
190     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
191   }
192   case llvm::Triple::ppc64:
193     if (Triple.isOSAIX())
194       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
195 
196     if (Triple.isOSBinFormatELF()) {
197       PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
198       if (Target.getABI() == "elfv2")
199         Kind = PPC64_SVR4_ABIKind::ELFv2;
200       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
201 
202       return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
203     }
204     return createPPC64TargetCodeGenInfo(CGM);
205   case llvm::Triple::ppc64le: {
206     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
207     PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
208     if (Target.getABI() == "elfv1")
209       Kind = PPC64_SVR4_ABIKind::ELFv1;
210     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
211 
212     return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
213   }
214 
215   case llvm::Triple::nvptx:
216   case llvm::Triple::nvptx64:
217     return createNVPTXTargetCodeGenInfo(CGM);
218 
219   case llvm::Triple::msp430:
220     return createMSP430TargetCodeGenInfo(CGM);
221 
222   case llvm::Triple::riscv32:
223   case llvm::Triple::riscv64: {
224     StringRef ABIStr = Target.getABI();
225     unsigned XLen = Target.getPointerWidth(LangAS::Default);
226     unsigned ABIFLen = 0;
227     if (ABIStr.endswith("f"))
228       ABIFLen = 32;
229     else if (ABIStr.endswith("d"))
230       ABIFLen = 64;
231     return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen);
232   }
233 
234   case llvm::Triple::systemz: {
235     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
236     bool HasVector = !SoftFloat && Target.getABI() == "vector";
237     return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
238   }
239 
240   case llvm::Triple::tce:
241   case llvm::Triple::tcele:
242     return createTCETargetCodeGenInfo(CGM);
243 
244   case llvm::Triple::x86: {
245     bool IsDarwinVectorABI = Triple.isOSDarwin();
246     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
247 
248     if (Triple.getOS() == llvm::Triple::Win32) {
249       return createWinX86_32TargetCodeGenInfo(
250           CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
251           CodeGenOpts.NumRegisterParameters);
252     }
253     return createX86_32TargetCodeGenInfo(
254         CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
255         CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
256   }
257 
258   case llvm::Triple::x86_64: {
259     StringRef ABI = Target.getABI();
260     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
261                                : ABI == "avx"  ? X86AVXABILevel::AVX
262                                                : X86AVXABILevel::None);
263 
264     switch (Triple.getOS()) {
265     case llvm::Triple::Win32:
266       return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
267     default:
268       return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
269     }
270   }
271   case llvm::Triple::hexagon:
272     return createHexagonTargetCodeGenInfo(CGM);
273   case llvm::Triple::lanai:
274     return createLanaiTargetCodeGenInfo(CGM);
275   case llvm::Triple::r600:
276     return createAMDGPUTargetCodeGenInfo(CGM);
277   case llvm::Triple::amdgcn:
278     return createAMDGPUTargetCodeGenInfo(CGM);
279   case llvm::Triple::sparc:
280     return createSparcV8TargetCodeGenInfo(CGM);
281   case llvm::Triple::sparcv9:
282     return createSparcV9TargetCodeGenInfo(CGM);
283   case llvm::Triple::xcore:
284     return createXCoreTargetCodeGenInfo(CGM);
285   case llvm::Triple::arc:
286     return createARCTargetCodeGenInfo(CGM);
287   case llvm::Triple::spir:
288   case llvm::Triple::spir64:
289     return createCommonSPIRTargetCodeGenInfo(CGM);
290   case llvm::Triple::spirv32:
291   case llvm::Triple::spirv64:
292     return createSPIRVTargetCodeGenInfo(CGM);
293   case llvm::Triple::ve:
294     return createVETargetCodeGenInfo(CGM);
295   case llvm::Triple::csky: {
296     bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
297     bool hasFP64 =
298         Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
299     return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
300                                             : hasFP64   ? 64
301                                                         : 32);
302   }
303   case llvm::Triple::bpfeb:
304   case llvm::Triple::bpfel:
305     return createBPFTargetCodeGenInfo(CGM);
306   case llvm::Triple::loongarch32:
307   case llvm::Triple::loongarch64: {
308     StringRef ABIStr = Target.getABI();
309     unsigned ABIFRLen = 0;
310     if (ABIStr.endswith("f"))
311       ABIFRLen = 32;
312     else if (ABIStr.endswith("d"))
313       ABIFRLen = 64;
314     return createLoongArchTargetCodeGenInfo(
315         CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
316   }
317   }
318 }
319 
320 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
321   if (!TheTargetCodeGenInfo)
322     TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
323   return *TheTargetCodeGenInfo;
324 }
325 
326 CodeGenModule::CodeGenModule(ASTContext &C,
327                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
328                              const HeaderSearchOptions &HSO,
329                              const PreprocessorOptions &PPO,
330                              const CodeGenOptions &CGO, llvm::Module &M,
331                              DiagnosticsEngine &diags,
332                              CoverageSourceInfo *CoverageInfo)
333     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
334       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
335       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
336       VMContext(M.getContext()), Types(*this), VTables(*this),
337       SanitizerMD(new SanitizerMetadata(*this)) {
338 
339   // Initialize the type cache.
340   llvm::LLVMContext &LLVMContext = M.getContext();
341   VoidTy = llvm::Type::getVoidTy(LLVMContext);
342   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
343   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
344   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
345   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
346   HalfTy = llvm::Type::getHalfTy(LLVMContext);
347   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
348   FloatTy = llvm::Type::getFloatTy(LLVMContext);
349   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
350   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
351   PointerAlignInBytes =
352       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
353           .getQuantity();
354   SizeSizeInBytes =
355     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
356   IntAlignInBytes =
357     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
358   CharTy =
359     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
360   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
361   IntPtrTy = llvm::IntegerType::get(LLVMContext,
362     C.getTargetInfo().getMaxPointerWidth());
363   Int8PtrTy = Int8Ty->getPointerTo(0);
364   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
365   const llvm::DataLayout &DL = M.getDataLayout();
366   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
367   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
368   ConstGlobalsPtrTy = Int8Ty->getPointerTo(
369       C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
370   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
371 
372   // Build C++20 Module initializers.
373   // TODO: Add Microsoft here once we know the mangling required for the
374   // initializers.
375   CXX20ModuleInits =
376       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
377                                        ItaniumMangleContext::MK_Itanium;
378 
379   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
380 
381   if (LangOpts.ObjC)
382     createObjCRuntime();
383   if (LangOpts.OpenCL)
384     createOpenCLRuntime();
385   if (LangOpts.OpenMP)
386     createOpenMPRuntime();
387   if (LangOpts.CUDA)
388     createCUDARuntime();
389   if (LangOpts.HLSL)
390     createHLSLRuntime();
391 
392   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
393   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
394       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
395     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
396                                getCXXABI().getMangleContext()));
397 
398   // If debug info or coverage generation is enabled, create the CGDebugInfo
399   // object.
400   if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
401       CodeGenOpts.CoverageNotesFile.size() ||
402       CodeGenOpts.CoverageDataFile.size())
403     DebugInfo.reset(new CGDebugInfo(*this));
404 
405   Block.GlobalUniqueCount = 0;
406 
407   if (C.getLangOpts().ObjC)
408     ObjCData.reset(new ObjCEntrypoints());
409 
410   if (CodeGenOpts.hasProfileClangUse()) {
411     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
412         CodeGenOpts.ProfileInstrumentUsePath, *FS,
413         CodeGenOpts.ProfileRemappingFile);
414     // We're checking for profile read errors in CompilerInvocation, so if
415     // there was an error it should've already been caught. If it hasn't been
416     // somehow, trip an assertion.
417     assert(ReaderOrErr);
418     PGOReader = std::move(ReaderOrErr.get());
419   }
420 
421   // If coverage mapping generation is enabled, create the
422   // CoverageMappingModuleGen object.
423   if (CodeGenOpts.CoverageMapping)
424     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
425 
426   // Generate the module name hash here if needed.
427   if (CodeGenOpts.UniqueInternalLinkageNames &&
428       !getModule().getSourceFileName().empty()) {
429     std::string Path = getModule().getSourceFileName();
430     // Check if a path substitution is needed from the MacroPrefixMap.
431     for (const auto &Entry : LangOpts.MacroPrefixMap)
432       if (Path.rfind(Entry.first, 0) != std::string::npos) {
433         Path = Entry.second + Path.substr(Entry.first.size());
434         break;
435       }
436     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
437   }
438 }
439 
440 CodeGenModule::~CodeGenModule() {}
441 
442 void CodeGenModule::createObjCRuntime() {
443   // This is just isGNUFamily(), but we want to force implementors of
444   // new ABIs to decide how best to do this.
445   switch (LangOpts.ObjCRuntime.getKind()) {
446   case ObjCRuntime::GNUstep:
447   case ObjCRuntime::GCC:
448   case ObjCRuntime::ObjFW:
449     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
450     return;
451 
452   case ObjCRuntime::FragileMacOSX:
453   case ObjCRuntime::MacOSX:
454   case ObjCRuntime::iOS:
455   case ObjCRuntime::WatchOS:
456     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
457     return;
458   }
459   llvm_unreachable("bad runtime kind");
460 }
461 
462 void CodeGenModule::createOpenCLRuntime() {
463   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
464 }
465 
466 void CodeGenModule::createOpenMPRuntime() {
467   // Select a specialized code generation class based on the target, if any.
468   // If it does not exist use the default implementation.
469   switch (getTriple().getArch()) {
470   case llvm::Triple::nvptx:
471   case llvm::Triple::nvptx64:
472   case llvm::Triple::amdgcn:
473     assert(getLangOpts().OpenMPIsTargetDevice &&
474            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
475     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
476     break;
477   default:
478     if (LangOpts.OpenMPSimd)
479       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
480     else
481       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
482     break;
483   }
484 }
485 
486 void CodeGenModule::createCUDARuntime() {
487   CUDARuntime.reset(CreateNVCUDARuntime(*this));
488 }
489 
490 void CodeGenModule::createHLSLRuntime() {
491   HLSLRuntime.reset(new CGHLSLRuntime(*this));
492 }
493 
494 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
495   Replacements[Name] = C;
496 }
497 
498 void CodeGenModule::applyReplacements() {
499   for (auto &I : Replacements) {
500     StringRef MangledName = I.first;
501     llvm::Constant *Replacement = I.second;
502     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
503     if (!Entry)
504       continue;
505     auto *OldF = cast<llvm::Function>(Entry);
506     auto *NewF = dyn_cast<llvm::Function>(Replacement);
507     if (!NewF) {
508       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
509         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
510       } else {
511         auto *CE = cast<llvm::ConstantExpr>(Replacement);
512         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
513                CE->getOpcode() == llvm::Instruction::GetElementPtr);
514         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
515       }
516     }
517 
518     // Replace old with new, but keep the old order.
519     OldF->replaceAllUsesWith(Replacement);
520     if (NewF) {
521       NewF->removeFromParent();
522       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
523                                                        NewF);
524     }
525     OldF->eraseFromParent();
526   }
527 }
528 
529 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
530   GlobalValReplacements.push_back(std::make_pair(GV, C));
531 }
532 
533 void CodeGenModule::applyGlobalValReplacements() {
534   for (auto &I : GlobalValReplacements) {
535     llvm::GlobalValue *GV = I.first;
536     llvm::Constant *C = I.second;
537 
538     GV->replaceAllUsesWith(C);
539     GV->eraseFromParent();
540   }
541 }
542 
543 // This is only used in aliases that we created and we know they have a
544 // linear structure.
545 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
546   const llvm::Constant *C;
547   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
548     C = GA->getAliasee();
549   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
550     C = GI->getResolver();
551   else
552     return GV;
553 
554   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
555   if (!AliaseeGV)
556     return nullptr;
557 
558   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
559   if (FinalGV == GV)
560     return nullptr;
561 
562   return FinalGV;
563 }
564 
565 static bool checkAliasedGlobal(
566     DiagnosticsEngine &Diags, SourceLocation Location, bool IsIFunc,
567     const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
568     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
569     SourceRange AliasRange) {
570   GV = getAliasedGlobal(Alias);
571   if (!GV) {
572     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
573     return false;
574   }
575 
576   if (GV->isDeclaration()) {
577     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
578     Diags.Report(Location, diag::note_alias_requires_mangled_name)
579         << IsIFunc << IsIFunc;
580     // Provide a note if the given function is not found and exists as a
581     // mangled name.
582     for (const auto &[Decl, Name] : MangledDeclNames) {
583       if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
584         if (ND->getName() == GV->getName()) {
585           Diags.Report(Location, diag::note_alias_mangled_name_alternative)
586               << Name
587               << FixItHint::CreateReplacement(
588                      AliasRange,
589                      (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
590                          .str());
591         }
592       }
593     }
594     return false;
595   }
596 
597   if (IsIFunc) {
598     // Check resolver function type.
599     const auto *F = dyn_cast<llvm::Function>(GV);
600     if (!F) {
601       Diags.Report(Location, diag::err_alias_to_undefined)
602           << IsIFunc << IsIFunc;
603       return false;
604     }
605 
606     llvm::FunctionType *FTy = F->getFunctionType();
607     if (!FTy->getReturnType()->isPointerTy()) {
608       Diags.Report(Location, diag::err_ifunc_resolver_return);
609       return false;
610     }
611   }
612 
613   return true;
614 }
615 
616 void CodeGenModule::checkAliases() {
617   // Check if the constructed aliases are well formed. It is really unfortunate
618   // that we have to do this in CodeGen, but we only construct mangled names
619   // and aliases during codegen.
620   bool Error = false;
621   DiagnosticsEngine &Diags = getDiags();
622   for (const GlobalDecl &GD : Aliases) {
623     const auto *D = cast<ValueDecl>(GD.getDecl());
624     SourceLocation Location;
625     SourceRange Range;
626     bool IsIFunc = D->hasAttr<IFuncAttr>();
627     if (const Attr *A = D->getDefiningAttr()) {
628       Location = A->getLocation();
629       Range = A->getRange();
630     } else
631       llvm_unreachable("Not an alias or ifunc?");
632 
633     StringRef MangledName = getMangledName(GD);
634     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
635     const llvm::GlobalValue *GV = nullptr;
636     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV,
637                             MangledDeclNames, Range)) {
638       Error = true;
639       continue;
640     }
641 
642     llvm::Constant *Aliasee =
643         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
644                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
645 
646     llvm::GlobalValue *AliaseeGV;
647     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
648       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
649     else
650       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
651 
652     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
653       StringRef AliasSection = SA->getName();
654       if (AliasSection != AliaseeGV->getSection())
655         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
656             << AliasSection << IsIFunc << IsIFunc;
657     }
658 
659     // We have to handle alias to weak aliases in here. LLVM itself disallows
660     // this since the object semantics would not match the IL one. For
661     // compatibility with gcc we implement it by just pointing the alias
662     // to its aliasee's aliasee. We also warn, since the user is probably
663     // expecting the link to be weak.
664     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
665       if (GA->isInterposable()) {
666         Diags.Report(Location, diag::warn_alias_to_weak_alias)
667             << GV->getName() << GA->getName() << IsIFunc;
668         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
669             GA->getAliasee(), Alias->getType());
670 
671         if (IsIFunc)
672           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
673         else
674           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
675       }
676     }
677   }
678   if (!Error)
679     return;
680 
681   for (const GlobalDecl &GD : Aliases) {
682     StringRef MangledName = getMangledName(GD);
683     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
684     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
685     Alias->eraseFromParent();
686   }
687 }
688 
689 void CodeGenModule::clear() {
690   DeferredDeclsToEmit.clear();
691   EmittedDeferredDecls.clear();
692   if (OpenMPRuntime)
693     OpenMPRuntime->clear();
694 }
695 
696 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
697                                        StringRef MainFile) {
698   if (!hasDiagnostics())
699     return;
700   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
701     if (MainFile.empty())
702       MainFile = "<stdin>";
703     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
704   } else {
705     if (Mismatched > 0)
706       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
707 
708     if (Missing > 0)
709       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
710   }
711 }
712 
713 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
714                                              llvm::Module &M) {
715   if (!LO.VisibilityFromDLLStorageClass)
716     return;
717 
718   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
719       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
720   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
721       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
722   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
723       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
724   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
725       CodeGenModule::GetLLVMVisibility(
726           LO.getExternDeclNoDLLStorageClassVisibility());
727 
728   for (llvm::GlobalValue &GV : M.global_values()) {
729     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
730       continue;
731 
732     // Reset DSO locality before setting the visibility. This removes
733     // any effects that visibility options and annotations may have
734     // had on the DSO locality. Setting the visibility will implicitly set
735     // appropriate globals to DSO Local; however, this will be pessimistic
736     // w.r.t. to the normal compiler IRGen.
737     GV.setDSOLocal(false);
738 
739     if (GV.isDeclarationForLinker()) {
740       GV.setVisibility(GV.getDLLStorageClass() ==
741                                llvm::GlobalValue::DLLImportStorageClass
742                            ? ExternDeclDLLImportVisibility
743                            : ExternDeclNoDLLStorageClassVisibility);
744     } else {
745       GV.setVisibility(GV.getDLLStorageClass() ==
746                                llvm::GlobalValue::DLLExportStorageClass
747                            ? DLLExportVisibility
748                            : NoDLLStorageClassVisibility);
749     }
750 
751     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
752   }
753 }
754 
755 void CodeGenModule::Release() {
756   Module *Primary = getContext().getCurrentNamedModule();
757   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
758     EmitModuleInitializers(Primary);
759   EmitDeferred();
760   DeferredDecls.insert(EmittedDeferredDecls.begin(),
761                        EmittedDeferredDecls.end());
762   EmittedDeferredDecls.clear();
763   EmitVTablesOpportunistically();
764   applyGlobalValReplacements();
765   applyReplacements();
766   emitMultiVersionFunctions();
767 
768   if (Context.getLangOpts().IncrementalExtensions &&
769       GlobalTopLevelStmtBlockInFlight.first) {
770     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
771     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
772     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
773   }
774 
775   // Module implementations are initialized the same way as a regular TU that
776   // imports one or more modules.
777   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
778     EmitCXXModuleInitFunc(Primary);
779   else
780     EmitCXXGlobalInitFunc();
781   EmitCXXGlobalCleanUpFunc();
782   registerGlobalDtorsWithAtExit();
783   EmitCXXThreadLocalInitFunc();
784   if (ObjCRuntime)
785     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
786       AddGlobalCtor(ObjCInitFunction);
787   if (Context.getLangOpts().CUDA && CUDARuntime) {
788     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
789       AddGlobalCtor(CudaCtorFunction);
790   }
791   if (OpenMPRuntime) {
792     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
793             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
794       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
795     }
796     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
797     OpenMPRuntime->clear();
798   }
799   if (PGOReader) {
800     getModule().setProfileSummary(
801         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
802         llvm::ProfileSummary::PSK_Instr);
803     if (PGOStats.hasDiagnostics())
804       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
805   }
806   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
807     return L.LexOrder < R.LexOrder;
808   });
809   EmitCtorList(GlobalCtors, "llvm.global_ctors");
810   EmitCtorList(GlobalDtors, "llvm.global_dtors");
811   EmitGlobalAnnotations();
812   EmitStaticExternCAliases();
813   checkAliases();
814   EmitDeferredUnusedCoverageMappings();
815   CodeGenPGO(*this).setValueProfilingFlag(getModule());
816   if (CoverageMapping)
817     CoverageMapping->emit();
818   if (CodeGenOpts.SanitizeCfiCrossDso) {
819     CodeGenFunction(*this).EmitCfiCheckFail();
820     CodeGenFunction(*this).EmitCfiCheckStub();
821   }
822   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
823     finalizeKCFITypes();
824   emitAtAvailableLinkGuard();
825   if (Context.getTargetInfo().getTriple().isWasm())
826     EmitMainVoidAlias();
827 
828   if (getTriple().isAMDGPU()) {
829     // Emit amdgpu_code_object_version module flag, which is code object version
830     // times 100.
831     if (getTarget().getTargetOpts().CodeObjectVersion !=
832         TargetOptions::COV_None) {
833       getModule().addModuleFlag(llvm::Module::Error,
834                                 "amdgpu_code_object_version",
835                                 getTarget().getTargetOpts().CodeObjectVersion);
836     }
837 
838     // Currently, "-mprintf-kind" option is only supported for HIP
839     if (LangOpts.HIP) {
840       auto *MDStr = llvm::MDString::get(
841           getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
842                              TargetOptions::AMDGPUPrintfKind::Hostcall)
843                                 ? "hostcall"
844                                 : "buffered");
845       getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
846                                 MDStr);
847     }
848   }
849 
850   // Emit a global array containing all external kernels or device variables
851   // used by host functions and mark it as used for CUDA/HIP. This is necessary
852   // to get kernels or device variables in archives linked in even if these
853   // kernels or device variables are only used in host functions.
854   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
855     SmallVector<llvm::Constant *, 8> UsedArray;
856     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
857       GlobalDecl GD;
858       if (auto *FD = dyn_cast<FunctionDecl>(D))
859         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
860       else
861         GD = GlobalDecl(D);
862       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
863           GetAddrOfGlobal(GD), Int8PtrTy));
864     }
865 
866     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
867 
868     auto *GV = new llvm::GlobalVariable(
869         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
870         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
871     addCompilerUsedGlobal(GV);
872   }
873 
874   emitLLVMUsed();
875   if (SanStats)
876     SanStats->finish();
877 
878   if (CodeGenOpts.Autolink &&
879       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
880     EmitModuleLinkOptions();
881   }
882 
883   // On ELF we pass the dependent library specifiers directly to the linker
884   // without manipulating them. This is in contrast to other platforms where
885   // they are mapped to a specific linker option by the compiler. This
886   // difference is a result of the greater variety of ELF linkers and the fact
887   // that ELF linkers tend to handle libraries in a more complicated fashion
888   // than on other platforms. This forces us to defer handling the dependent
889   // libs to the linker.
890   //
891   // CUDA/HIP device and host libraries are different. Currently there is no
892   // way to differentiate dependent libraries for host or device. Existing
893   // usage of #pragma comment(lib, *) is intended for host libraries on
894   // Windows. Therefore emit llvm.dependent-libraries only for host.
895   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
896     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
897     for (auto *MD : ELFDependentLibraries)
898       NMD->addOperand(MD);
899   }
900 
901   // Record mregparm value now so it is visible through rest of codegen.
902   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
903     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
904                               CodeGenOpts.NumRegisterParameters);
905 
906   if (CodeGenOpts.DwarfVersion) {
907     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
908                               CodeGenOpts.DwarfVersion);
909   }
910 
911   if (CodeGenOpts.Dwarf64)
912     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
913 
914   if (Context.getLangOpts().SemanticInterposition)
915     // Require various optimization to respect semantic interposition.
916     getModule().setSemanticInterposition(true);
917 
918   if (CodeGenOpts.EmitCodeView) {
919     // Indicate that we want CodeView in the metadata.
920     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
921   }
922   if (CodeGenOpts.CodeViewGHash) {
923     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
924   }
925   if (CodeGenOpts.ControlFlowGuard) {
926     // Function ID tables and checks for Control Flow Guard (cfguard=2).
927     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
928   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
929     // Function ID tables for Control Flow Guard (cfguard=1).
930     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
931   }
932   if (CodeGenOpts.EHContGuard) {
933     // Function ID tables for EH Continuation Guard.
934     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
935   }
936   if (Context.getLangOpts().Kernel) {
937     // Note if we are compiling with /kernel.
938     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
939   }
940   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
941     // We don't support LTO with 2 with different StrictVTablePointers
942     // FIXME: we could support it by stripping all the information introduced
943     // by StrictVTablePointers.
944 
945     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
946 
947     llvm::Metadata *Ops[2] = {
948               llvm::MDString::get(VMContext, "StrictVTablePointers"),
949               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
950                   llvm::Type::getInt32Ty(VMContext), 1))};
951 
952     getModule().addModuleFlag(llvm::Module::Require,
953                               "StrictVTablePointersRequirement",
954                               llvm::MDNode::get(VMContext, Ops));
955   }
956   if (getModuleDebugInfo())
957     // We support a single version in the linked module. The LLVM
958     // parser will drop debug info with a different version number
959     // (and warn about it, too).
960     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
961                               llvm::DEBUG_METADATA_VERSION);
962 
963   // We need to record the widths of enums and wchar_t, so that we can generate
964   // the correct build attributes in the ARM backend. wchar_size is also used by
965   // TargetLibraryInfo.
966   uint64_t WCharWidth =
967       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
968   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
969 
970   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
971   if (   Arch == llvm::Triple::arm
972       || Arch == llvm::Triple::armeb
973       || Arch == llvm::Triple::thumb
974       || Arch == llvm::Triple::thumbeb) {
975     // The minimum width of an enum in bytes
976     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
977     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
978   }
979 
980   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
981     StringRef ABIStr = Target.getABI();
982     llvm::LLVMContext &Ctx = TheModule.getContext();
983     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
984                               llvm::MDString::get(Ctx, ABIStr));
985   }
986 
987   if (CodeGenOpts.SanitizeCfiCrossDso) {
988     // Indicate that we want cross-DSO control flow integrity checks.
989     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
990   }
991 
992   if (CodeGenOpts.WholeProgramVTables) {
993     // Indicate whether VFE was enabled for this module, so that the
994     // vcall_visibility metadata added under whole program vtables is handled
995     // appropriately in the optimizer.
996     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
997                               CodeGenOpts.VirtualFunctionElimination);
998   }
999 
1000   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1001     getModule().addModuleFlag(llvm::Module::Override,
1002                               "CFI Canonical Jump Tables",
1003                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1004   }
1005 
1006   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1007     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1008     // KCFI assumes patchable-function-prefix is the same for all indirectly
1009     // called functions. Store the expected offset for code generation.
1010     if (CodeGenOpts.PatchableFunctionEntryOffset)
1011       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1012                                 CodeGenOpts.PatchableFunctionEntryOffset);
1013   }
1014 
1015   if (CodeGenOpts.CFProtectionReturn &&
1016       Target.checkCFProtectionReturnSupported(getDiags())) {
1017     // Indicate that we want to instrument return control flow protection.
1018     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1019                               1);
1020   }
1021 
1022   if (CodeGenOpts.CFProtectionBranch &&
1023       Target.checkCFProtectionBranchSupported(getDiags())) {
1024     // Indicate that we want to instrument branch control flow protection.
1025     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1026                               1);
1027   }
1028 
1029   if (CodeGenOpts.FunctionReturnThunks)
1030     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1031 
1032   if (CodeGenOpts.IndirectBranchCSPrefix)
1033     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1034 
1035   // Add module metadata for return address signing (ignoring
1036   // non-leaf/all) and stack tagging. These are actually turned on by function
1037   // attributes, but we use module metadata to emit build attributes. This is
1038   // needed for LTO, where the function attributes are inside bitcode
1039   // serialised into a global variable by the time build attributes are
1040   // emitted, so we can't access them. LTO objects could be compiled with
1041   // different flags therefore module flags are set to "Min" behavior to achieve
1042   // the same end result of the normal build where e.g BTI is off if any object
1043   // doesn't support it.
1044   if (Context.getTargetInfo().hasFeature("ptrauth") &&
1045       LangOpts.getSignReturnAddressScope() !=
1046           LangOptions::SignReturnAddressScopeKind::None)
1047     getModule().addModuleFlag(llvm::Module::Override,
1048                               "sign-return-address-buildattr", 1);
1049   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1050     getModule().addModuleFlag(llvm::Module::Override,
1051                               "tag-stack-memory-buildattr", 1);
1052 
1053   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
1054       Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
1055       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
1056       Arch == llvm::Triple::aarch64_be) {
1057     if (LangOpts.BranchTargetEnforcement)
1058       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1059                                 1);
1060     if (LangOpts.hasSignReturnAddress())
1061       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1062     if (LangOpts.isSignReturnAddressScopeAll())
1063       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1064                                 1);
1065     if (!LangOpts.isSignReturnAddressWithAKey())
1066       getModule().addModuleFlag(llvm::Module::Min,
1067                                 "sign-return-address-with-bkey", 1);
1068   }
1069 
1070   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1071     llvm::LLVMContext &Ctx = TheModule.getContext();
1072     getModule().addModuleFlag(
1073         llvm::Module::Error, "MemProfProfileFilename",
1074         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1075   }
1076 
1077   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1078     // Indicate whether __nvvm_reflect should be configured to flush denormal
1079     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
1080     // property.)
1081     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1082                               CodeGenOpts.FP32DenormalMode.Output !=
1083                                   llvm::DenormalMode::IEEE);
1084   }
1085 
1086   if (LangOpts.EHAsynch)
1087     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1088 
1089   // Indicate whether this Module was compiled with -fopenmp
1090   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1091     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1092   if (getLangOpts().OpenMPIsTargetDevice)
1093     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1094                               LangOpts.OpenMP);
1095 
1096   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1097   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1098     EmitOpenCLMetadata();
1099     // Emit SPIR version.
1100     if (getTriple().isSPIR()) {
1101       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1102       // opencl.spir.version named metadata.
1103       // C++ for OpenCL has a distinct mapping for version compatibility with
1104       // OpenCL.
1105       auto Version = LangOpts.getOpenCLCompatibleVersion();
1106       llvm::Metadata *SPIRVerElts[] = {
1107           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1108               Int32Ty, Version / 100)),
1109           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1110               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1111       llvm::NamedMDNode *SPIRVerMD =
1112           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1113       llvm::LLVMContext &Ctx = TheModule.getContext();
1114       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1115     }
1116   }
1117 
1118   // HLSL related end of code gen work items.
1119   if (LangOpts.HLSL)
1120     getHLSLRuntime().finishCodeGen();
1121 
1122   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1123     assert(PLevel < 3 && "Invalid PIC Level");
1124     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1125     if (Context.getLangOpts().PIE)
1126       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1127   }
1128 
1129   if (getCodeGenOpts().CodeModel.size() > 0) {
1130     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1131                   .Case("tiny", llvm::CodeModel::Tiny)
1132                   .Case("small", llvm::CodeModel::Small)
1133                   .Case("kernel", llvm::CodeModel::Kernel)
1134                   .Case("medium", llvm::CodeModel::Medium)
1135                   .Case("large", llvm::CodeModel::Large)
1136                   .Default(~0u);
1137     if (CM != ~0u) {
1138       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1139       getModule().setCodeModel(codeModel);
1140     }
1141   }
1142 
1143   if (CodeGenOpts.NoPLT)
1144     getModule().setRtLibUseGOT();
1145   if (getTriple().isOSBinFormatELF() &&
1146       CodeGenOpts.DirectAccessExternalData !=
1147           getModule().getDirectAccessExternalData()) {
1148     getModule().setDirectAccessExternalData(
1149         CodeGenOpts.DirectAccessExternalData);
1150   }
1151   if (CodeGenOpts.UnwindTables)
1152     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1153 
1154   switch (CodeGenOpts.getFramePointer()) {
1155   case CodeGenOptions::FramePointerKind::None:
1156     // 0 ("none") is the default.
1157     break;
1158   case CodeGenOptions::FramePointerKind::NonLeaf:
1159     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1160     break;
1161   case CodeGenOptions::FramePointerKind::All:
1162     getModule().setFramePointer(llvm::FramePointerKind::All);
1163     break;
1164   }
1165 
1166   SimplifyPersonality();
1167 
1168   if (getCodeGenOpts().EmitDeclMetadata)
1169     EmitDeclMetadata();
1170 
1171   if (getCodeGenOpts().CoverageNotesFile.size() ||
1172       getCodeGenOpts().CoverageDataFile.size())
1173     EmitCoverageFile();
1174 
1175   if (CGDebugInfo *DI = getModuleDebugInfo())
1176     DI->finalize();
1177 
1178   if (getCodeGenOpts().EmitVersionIdentMetadata)
1179     EmitVersionIdentMetadata();
1180 
1181   if (!getCodeGenOpts().RecordCommandLine.empty())
1182     EmitCommandLineMetadata();
1183 
1184   if (!getCodeGenOpts().StackProtectorGuard.empty())
1185     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1186   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1187     getModule().setStackProtectorGuardReg(
1188         getCodeGenOpts().StackProtectorGuardReg);
1189   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1190     getModule().setStackProtectorGuardSymbol(
1191         getCodeGenOpts().StackProtectorGuardSymbol);
1192   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1193     getModule().setStackProtectorGuardOffset(
1194         getCodeGenOpts().StackProtectorGuardOffset);
1195   if (getCodeGenOpts().StackAlignment)
1196     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1197   if (getCodeGenOpts().SkipRaxSetup)
1198     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1199 
1200   if (getContext().getTargetInfo().getMaxTLSAlign())
1201     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1202                               getContext().getTargetInfo().getMaxTLSAlign());
1203 
1204   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1205 
1206   EmitBackendOptionsMetadata(getCodeGenOpts());
1207 
1208   // If there is device offloading code embed it in the host now.
1209   EmbedObject(&getModule(), CodeGenOpts, getDiags());
1210 
1211   // Set visibility from DLL storage class
1212   // We do this at the end of LLVM IR generation; after any operation
1213   // that might affect the DLL storage class or the visibility, and
1214   // before anything that might act on these.
1215   setVisibilityFromDLLStorageClass(LangOpts, getModule());
1216 }
1217 
1218 void CodeGenModule::EmitOpenCLMetadata() {
1219   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1220   // opencl.ocl.version named metadata node.
1221   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
1222   auto Version = LangOpts.getOpenCLCompatibleVersion();
1223   llvm::Metadata *OCLVerElts[] = {
1224       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1225           Int32Ty, Version / 100)),
1226       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1227           Int32Ty, (Version % 100) / 10))};
1228   llvm::NamedMDNode *OCLVerMD =
1229       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
1230   llvm::LLVMContext &Ctx = TheModule.getContext();
1231   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1232 }
1233 
1234 void CodeGenModule::EmitBackendOptionsMetadata(
1235     const CodeGenOptions &CodeGenOpts) {
1236   if (getTriple().isRISCV()) {
1237     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1238                               CodeGenOpts.SmallDataLimit);
1239   }
1240 }
1241 
1242 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1243   // Make sure that this type is translated.
1244   Types.UpdateCompletedType(TD);
1245 }
1246 
1247 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1248   // Make sure that this type is translated.
1249   Types.RefreshTypeCacheForClass(RD);
1250 }
1251 
1252 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1253   if (!TBAA)
1254     return nullptr;
1255   return TBAA->getTypeInfo(QTy);
1256 }
1257 
1258 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1259   if (!TBAA)
1260     return TBAAAccessInfo();
1261   if (getLangOpts().CUDAIsDevice) {
1262     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1263     // access info.
1264     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1265       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1266           nullptr)
1267         return TBAAAccessInfo();
1268     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1269       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1270           nullptr)
1271         return TBAAAccessInfo();
1272     }
1273   }
1274   return TBAA->getAccessInfo(AccessType);
1275 }
1276 
1277 TBAAAccessInfo
1278 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1279   if (!TBAA)
1280     return TBAAAccessInfo();
1281   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1282 }
1283 
1284 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1285   if (!TBAA)
1286     return nullptr;
1287   return TBAA->getTBAAStructInfo(QTy);
1288 }
1289 
1290 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1291   if (!TBAA)
1292     return nullptr;
1293   return TBAA->getBaseTypeInfo(QTy);
1294 }
1295 
1296 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1297   if (!TBAA)
1298     return nullptr;
1299   return TBAA->getAccessTagInfo(Info);
1300 }
1301 
1302 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1303                                                    TBAAAccessInfo TargetInfo) {
1304   if (!TBAA)
1305     return TBAAAccessInfo();
1306   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1307 }
1308 
1309 TBAAAccessInfo
1310 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1311                                                    TBAAAccessInfo InfoB) {
1312   if (!TBAA)
1313     return TBAAAccessInfo();
1314   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1315 }
1316 
1317 TBAAAccessInfo
1318 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1319                                               TBAAAccessInfo SrcInfo) {
1320   if (!TBAA)
1321     return TBAAAccessInfo();
1322   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1323 }
1324 
1325 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1326                                                 TBAAAccessInfo TBAAInfo) {
1327   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1328     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1329 }
1330 
1331 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1332     llvm::Instruction *I, const CXXRecordDecl *RD) {
1333   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1334                  llvm::MDNode::get(getLLVMContext(), {}));
1335 }
1336 
1337 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1338   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1339   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1340 }
1341 
1342 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1343 /// specified stmt yet.
1344 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1345   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1346                                                "cannot compile this %0 yet");
1347   std::string Msg = Type;
1348   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1349       << Msg << S->getSourceRange();
1350 }
1351 
1352 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1353 /// specified decl yet.
1354 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1355   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1356                                                "cannot compile this %0 yet");
1357   std::string Msg = Type;
1358   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1359 }
1360 
1361 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1362   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1363 }
1364 
1365 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1366                                         const NamedDecl *D) const {
1367   // Internal definitions always have default visibility.
1368   if (GV->hasLocalLinkage()) {
1369     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1370     return;
1371   }
1372   if (!D)
1373     return;
1374   // Set visibility for definitions, and for declarations if requested globally
1375   // or set explicitly.
1376   LinkageInfo LV = D->getLinkageAndVisibility();
1377   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1378     // Reject incompatible dlllstorage and visibility annotations.
1379     if (!LV.isVisibilityExplicit())
1380       return;
1381     if (GV->hasDLLExportStorageClass()) {
1382       if (LV.getVisibility() == HiddenVisibility)
1383         getDiags().Report(D->getLocation(),
1384                           diag::err_hidden_visibility_dllexport);
1385     } else if (LV.getVisibility() != DefaultVisibility) {
1386       getDiags().Report(D->getLocation(),
1387                         diag::err_non_default_visibility_dllimport);
1388     }
1389     return;
1390   }
1391 
1392   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1393       !GV->isDeclarationForLinker())
1394     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1395 }
1396 
1397 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1398                                  llvm::GlobalValue *GV) {
1399   if (GV->hasLocalLinkage())
1400     return true;
1401 
1402   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1403     return true;
1404 
1405   // DLLImport explicitly marks the GV as external.
1406   if (GV->hasDLLImportStorageClass())
1407     return false;
1408 
1409   const llvm::Triple &TT = CGM.getTriple();
1410   if (TT.isWindowsGNUEnvironment()) {
1411     // In MinGW, variables without DLLImport can still be automatically
1412     // imported from a DLL by the linker; don't mark variables that
1413     // potentially could come from another DLL as DSO local.
1414 
1415     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1416     // (and this actually happens in the public interface of libstdc++), so
1417     // such variables can't be marked as DSO local. (Native TLS variables
1418     // can't be dllimported at all, though.)
1419     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1420         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1421       return false;
1422   }
1423 
1424   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1425   // remain unresolved in the link, they can be resolved to zero, which is
1426   // outside the current DSO.
1427   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1428     return false;
1429 
1430   // Every other GV is local on COFF.
1431   // Make an exception for windows OS in the triple: Some firmware builds use
1432   // *-win32-macho triples. This (accidentally?) produced windows relocations
1433   // without GOT tables in older clang versions; Keep this behaviour.
1434   // FIXME: even thread local variables?
1435   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1436     return true;
1437 
1438   // Only handle COFF and ELF for now.
1439   if (!TT.isOSBinFormatELF())
1440     return false;
1441 
1442   // If this is not an executable, don't assume anything is local.
1443   const auto &CGOpts = CGM.getCodeGenOpts();
1444   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1445   const auto &LOpts = CGM.getLangOpts();
1446   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1447     // On ELF, if -fno-semantic-interposition is specified and the target
1448     // supports local aliases, there will be neither CC1
1449     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1450     // dso_local on the function if using a local alias is preferable (can avoid
1451     // PLT indirection).
1452     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1453       return false;
1454     return !(CGM.getLangOpts().SemanticInterposition ||
1455              CGM.getLangOpts().HalfNoSemanticInterposition);
1456   }
1457 
1458   // A definition cannot be preempted from an executable.
1459   if (!GV->isDeclarationForLinker())
1460     return true;
1461 
1462   // Most PIC code sequences that assume that a symbol is local cannot produce a
1463   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1464   // depended, it seems worth it to handle it here.
1465   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1466     return false;
1467 
1468   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1469   if (TT.isPPC64())
1470     return false;
1471 
1472   if (CGOpts.DirectAccessExternalData) {
1473     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1474     // for non-thread-local variables. If the symbol is not defined in the
1475     // executable, a copy relocation will be needed at link time. dso_local is
1476     // excluded for thread-local variables because they generally don't support
1477     // copy relocations.
1478     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1479       if (!Var->isThreadLocal())
1480         return true;
1481 
1482     // -fno-pic sets dso_local on a function declaration to allow direct
1483     // accesses when taking its address (similar to a data symbol). If the
1484     // function is not defined in the executable, a canonical PLT entry will be
1485     // needed at link time. -fno-direct-access-external-data can avoid the
1486     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1487     // it could just cause trouble without providing perceptible benefits.
1488     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1489       return true;
1490   }
1491 
1492   // If we can use copy relocations we can assume it is local.
1493 
1494   // Otherwise don't assume it is local.
1495   return false;
1496 }
1497 
1498 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1499   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1500 }
1501 
1502 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1503                                           GlobalDecl GD) const {
1504   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1505   // C++ destructors have a few C++ ABI specific special cases.
1506   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1507     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1508     return;
1509   }
1510   setDLLImportDLLExport(GV, D);
1511 }
1512 
1513 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1514                                           const NamedDecl *D) const {
1515   if (D && D->isExternallyVisible()) {
1516     if (D->hasAttr<DLLImportAttr>())
1517       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1518     else if ((D->hasAttr<DLLExportAttr>() ||
1519               shouldMapVisibilityToDLLExport(D)) &&
1520              !GV->isDeclarationForLinker())
1521       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1522   }
1523 }
1524 
1525 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1526                                     GlobalDecl GD) const {
1527   setDLLImportDLLExport(GV, GD);
1528   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1529 }
1530 
1531 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1532                                     const NamedDecl *D) const {
1533   setDLLImportDLLExport(GV, D);
1534   setGVPropertiesAux(GV, D);
1535 }
1536 
1537 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1538                                        const NamedDecl *D) const {
1539   setGlobalVisibility(GV, D);
1540   setDSOLocal(GV);
1541   GV->setPartition(CodeGenOpts.SymbolPartition);
1542 }
1543 
1544 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1545   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1546       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1547       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1548       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1549       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1550 }
1551 
1552 llvm::GlobalVariable::ThreadLocalMode
1553 CodeGenModule::GetDefaultLLVMTLSModel() const {
1554   switch (CodeGenOpts.getDefaultTLSModel()) {
1555   case CodeGenOptions::GeneralDynamicTLSModel:
1556     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1557   case CodeGenOptions::LocalDynamicTLSModel:
1558     return llvm::GlobalVariable::LocalDynamicTLSModel;
1559   case CodeGenOptions::InitialExecTLSModel:
1560     return llvm::GlobalVariable::InitialExecTLSModel;
1561   case CodeGenOptions::LocalExecTLSModel:
1562     return llvm::GlobalVariable::LocalExecTLSModel;
1563   }
1564   llvm_unreachable("Invalid TLS model!");
1565 }
1566 
1567 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1568   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1569 
1570   llvm::GlobalValue::ThreadLocalMode TLM;
1571   TLM = GetDefaultLLVMTLSModel();
1572 
1573   // Override the TLS model if it is explicitly specified.
1574   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1575     TLM = GetLLVMTLSModel(Attr->getModel());
1576   }
1577 
1578   GV->setThreadLocalMode(TLM);
1579 }
1580 
1581 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1582                                           StringRef Name) {
1583   const TargetInfo &Target = CGM.getTarget();
1584   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1585 }
1586 
1587 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1588                                                  const CPUSpecificAttr *Attr,
1589                                                  unsigned CPUIndex,
1590                                                  raw_ostream &Out) {
1591   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1592   // supported.
1593   if (Attr)
1594     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1595   else if (CGM.getTarget().supportsIFunc())
1596     Out << ".resolver";
1597 }
1598 
1599 static void AppendTargetVersionMangling(const CodeGenModule &CGM,
1600                                         const TargetVersionAttr *Attr,
1601                                         raw_ostream &Out) {
1602   if (Attr->isDefaultVersion())
1603     return;
1604   Out << "._";
1605   const TargetInfo &TI = CGM.getTarget();
1606   llvm::SmallVector<StringRef, 8> Feats;
1607   Attr->getFeatures(Feats);
1608   llvm::stable_sort(Feats, [&TI](const StringRef FeatL, const StringRef FeatR) {
1609     return TI.multiVersionSortPriority(FeatL) <
1610            TI.multiVersionSortPriority(FeatR);
1611   });
1612   for (const auto &Feat : Feats) {
1613     Out << 'M';
1614     Out << Feat;
1615   }
1616 }
1617 
1618 static void AppendTargetMangling(const CodeGenModule &CGM,
1619                                  const TargetAttr *Attr, raw_ostream &Out) {
1620   if (Attr->isDefaultVersion())
1621     return;
1622 
1623   Out << '.';
1624   const TargetInfo &Target = CGM.getTarget();
1625   ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr());
1626   llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) {
1627     // Multiversioning doesn't allow "no-${feature}", so we can
1628     // only have "+" prefixes here.
1629     assert(LHS.startswith("+") && RHS.startswith("+") &&
1630            "Features should always have a prefix.");
1631     return Target.multiVersionSortPriority(LHS.substr(1)) >
1632            Target.multiVersionSortPriority(RHS.substr(1));
1633   });
1634 
1635   bool IsFirst = true;
1636 
1637   if (!Info.CPU.empty()) {
1638     IsFirst = false;
1639     Out << "arch_" << Info.CPU;
1640   }
1641 
1642   for (StringRef Feat : Info.Features) {
1643     if (!IsFirst)
1644       Out << '_';
1645     IsFirst = false;
1646     Out << Feat.substr(1);
1647   }
1648 }
1649 
1650 // Returns true if GD is a function decl with internal linkage and
1651 // needs a unique suffix after the mangled name.
1652 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1653                                         CodeGenModule &CGM) {
1654   const Decl *D = GD.getDecl();
1655   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1656          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1657 }
1658 
1659 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1660                                        const TargetClonesAttr *Attr,
1661                                        unsigned VersionIndex,
1662                                        raw_ostream &Out) {
1663   const TargetInfo &TI = CGM.getTarget();
1664   if (TI.getTriple().isAArch64()) {
1665     StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1666     if (FeatureStr == "default")
1667       return;
1668     Out << "._";
1669     SmallVector<StringRef, 8> Features;
1670     FeatureStr.split(Features, "+");
1671     llvm::stable_sort(Features,
1672                       [&TI](const StringRef FeatL, const StringRef FeatR) {
1673                         return TI.multiVersionSortPriority(FeatL) <
1674                                TI.multiVersionSortPriority(FeatR);
1675                       });
1676     for (auto &Feat : Features) {
1677       Out << 'M';
1678       Out << Feat;
1679     }
1680   } else {
1681     Out << '.';
1682     StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1683     if (FeatureStr.startswith("arch="))
1684       Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1685     else
1686       Out << FeatureStr;
1687 
1688     Out << '.' << Attr->getMangledIndex(VersionIndex);
1689   }
1690 }
1691 
1692 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1693                                       const NamedDecl *ND,
1694                                       bool OmitMultiVersionMangling = false) {
1695   SmallString<256> Buffer;
1696   llvm::raw_svector_ostream Out(Buffer);
1697   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1698   if (!CGM.getModuleNameHash().empty())
1699     MC.needsUniqueInternalLinkageNames();
1700   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1701   if (ShouldMangle)
1702     MC.mangleName(GD.getWithDecl(ND), Out);
1703   else {
1704     IdentifierInfo *II = ND->getIdentifier();
1705     assert(II && "Attempt to mangle unnamed decl.");
1706     const auto *FD = dyn_cast<FunctionDecl>(ND);
1707 
1708     if (FD &&
1709         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1710       Out << "__regcall3__" << II->getName();
1711     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1712                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1713       Out << "__device_stub__" << II->getName();
1714     } else {
1715       Out << II->getName();
1716     }
1717   }
1718 
1719   // Check if the module name hash should be appended for internal linkage
1720   // symbols.   This should come before multi-version target suffixes are
1721   // appended. This is to keep the name and module hash suffix of the
1722   // internal linkage function together.  The unique suffix should only be
1723   // added when name mangling is done to make sure that the final name can
1724   // be properly demangled.  For example, for C functions without prototypes,
1725   // name mangling is not done and the unique suffix should not be appeneded
1726   // then.
1727   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1728     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1729            "Hash computed when not explicitly requested");
1730     Out << CGM.getModuleNameHash();
1731   }
1732 
1733   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1734     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1735       switch (FD->getMultiVersionKind()) {
1736       case MultiVersionKind::CPUDispatch:
1737       case MultiVersionKind::CPUSpecific:
1738         AppendCPUSpecificCPUDispatchMangling(CGM,
1739                                              FD->getAttr<CPUSpecificAttr>(),
1740                                              GD.getMultiVersionIndex(), Out);
1741         break;
1742       case MultiVersionKind::Target:
1743         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1744         break;
1745       case MultiVersionKind::TargetVersion:
1746         AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out);
1747         break;
1748       case MultiVersionKind::TargetClones:
1749         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1750                                    GD.getMultiVersionIndex(), Out);
1751         break;
1752       case MultiVersionKind::None:
1753         llvm_unreachable("None multiversion type isn't valid here");
1754       }
1755     }
1756 
1757   // Make unique name for device side static file-scope variable for HIP.
1758   if (CGM.getContext().shouldExternalize(ND) &&
1759       CGM.getLangOpts().GPURelocatableDeviceCode &&
1760       CGM.getLangOpts().CUDAIsDevice)
1761     CGM.printPostfixForExternalizedDecl(Out, ND);
1762 
1763   return std::string(Out.str());
1764 }
1765 
1766 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1767                                             const FunctionDecl *FD,
1768                                             StringRef &CurName) {
1769   if (!FD->isMultiVersion())
1770     return;
1771 
1772   // Get the name of what this would be without the 'target' attribute.  This
1773   // allows us to lookup the version that was emitted when this wasn't a
1774   // multiversion function.
1775   std::string NonTargetName =
1776       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1777   GlobalDecl OtherGD;
1778   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1779     assert(OtherGD.getCanonicalDecl()
1780                .getDecl()
1781                ->getAsFunction()
1782                ->isMultiVersion() &&
1783            "Other GD should now be a multiversioned function");
1784     // OtherFD is the version of this function that was mangled BEFORE
1785     // becoming a MultiVersion function.  It potentially needs to be updated.
1786     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1787                                       .getDecl()
1788                                       ->getAsFunction()
1789                                       ->getMostRecentDecl();
1790     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1791     // This is so that if the initial version was already the 'default'
1792     // version, we don't try to update it.
1793     if (OtherName != NonTargetName) {
1794       // Remove instead of erase, since others may have stored the StringRef
1795       // to this.
1796       const auto ExistingRecord = Manglings.find(NonTargetName);
1797       if (ExistingRecord != std::end(Manglings))
1798         Manglings.remove(&(*ExistingRecord));
1799       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1800       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1801           Result.first->first();
1802       // If this is the current decl is being created, make sure we update the name.
1803       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1804         CurName = OtherNameRef;
1805       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1806         Entry->setName(OtherName);
1807     }
1808   }
1809 }
1810 
1811 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1812   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1813 
1814   // Some ABIs don't have constructor variants.  Make sure that base and
1815   // complete constructors get mangled the same.
1816   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1817     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1818       CXXCtorType OrigCtorType = GD.getCtorType();
1819       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1820       if (OrigCtorType == Ctor_Base)
1821         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1822     }
1823   }
1824 
1825   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1826   // static device variable depends on whether the variable is referenced by
1827   // a host or device host function. Therefore the mangled name cannot be
1828   // cached.
1829   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1830     auto FoundName = MangledDeclNames.find(CanonicalGD);
1831     if (FoundName != MangledDeclNames.end())
1832       return FoundName->second;
1833   }
1834 
1835   // Keep the first result in the case of a mangling collision.
1836   const auto *ND = cast<NamedDecl>(GD.getDecl());
1837   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1838 
1839   // Ensure either we have different ABIs between host and device compilations,
1840   // says host compilation following MSVC ABI but device compilation follows
1841   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1842   // mangling should be the same after name stubbing. The later checking is
1843   // very important as the device kernel name being mangled in host-compilation
1844   // is used to resolve the device binaries to be executed. Inconsistent naming
1845   // result in undefined behavior. Even though we cannot check that naming
1846   // directly between host- and device-compilations, the host- and
1847   // device-mangling in host compilation could help catching certain ones.
1848   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1849          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1850          (getContext().getAuxTargetInfo() &&
1851           (getContext().getAuxTargetInfo()->getCXXABI() !=
1852            getContext().getTargetInfo().getCXXABI())) ||
1853          getCUDARuntime().getDeviceSideName(ND) ==
1854              getMangledNameImpl(
1855                  *this,
1856                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1857                  ND));
1858 
1859   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1860   return MangledDeclNames[CanonicalGD] = Result.first->first();
1861 }
1862 
1863 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1864                                              const BlockDecl *BD) {
1865   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1866   const Decl *D = GD.getDecl();
1867 
1868   SmallString<256> Buffer;
1869   llvm::raw_svector_ostream Out(Buffer);
1870   if (!D)
1871     MangleCtx.mangleGlobalBlock(BD,
1872       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1873   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1874     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1875   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1876     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1877   else
1878     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1879 
1880   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1881   return Result.first->first();
1882 }
1883 
1884 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1885   auto it = MangledDeclNames.begin();
1886   while (it != MangledDeclNames.end()) {
1887     if (it->second == Name)
1888       return it->first;
1889     it++;
1890   }
1891   return GlobalDecl();
1892 }
1893 
1894 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1895   return getModule().getNamedValue(Name);
1896 }
1897 
1898 /// AddGlobalCtor - Add a function to the list that will be called before
1899 /// main() runs.
1900 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1901                                   unsigned LexOrder,
1902                                   llvm::Constant *AssociatedData) {
1903   // FIXME: Type coercion of void()* types.
1904   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
1905 }
1906 
1907 /// AddGlobalDtor - Add a function to the list that will be called
1908 /// when the module is unloaded.
1909 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1910                                   bool IsDtorAttrFunc) {
1911   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1912       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1913     DtorsUsingAtExit[Priority].push_back(Dtor);
1914     return;
1915   }
1916 
1917   // FIXME: Type coercion of void()* types.
1918   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
1919 }
1920 
1921 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1922   if (Fns.empty()) return;
1923 
1924   // Ctor function type is void()*.
1925   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1926   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1927       TheModule.getDataLayout().getProgramAddressSpace());
1928 
1929   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1930   llvm::StructType *CtorStructTy = llvm::StructType::get(
1931       Int32Ty, CtorPFTy, VoidPtrTy);
1932 
1933   // Construct the constructor and destructor arrays.
1934   ConstantInitBuilder builder(*this);
1935   auto ctors = builder.beginArray(CtorStructTy);
1936   for (const auto &I : Fns) {
1937     auto ctor = ctors.beginStruct(CtorStructTy);
1938     ctor.addInt(Int32Ty, I.Priority);
1939     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1940     if (I.AssociatedData)
1941       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1942     else
1943       ctor.addNullPointer(VoidPtrTy);
1944     ctor.finishAndAddTo(ctors);
1945   }
1946 
1947   auto list =
1948     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1949                                 /*constant*/ false,
1950                                 llvm::GlobalValue::AppendingLinkage);
1951 
1952   // The LTO linker doesn't seem to like it when we set an alignment
1953   // on appending variables.  Take it off as a workaround.
1954   list->setAlignment(std::nullopt);
1955 
1956   Fns.clear();
1957 }
1958 
1959 llvm::GlobalValue::LinkageTypes
1960 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1961   const auto *D = cast<FunctionDecl>(GD.getDecl());
1962 
1963   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1964 
1965   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1966     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1967 
1968   if (isa<CXXConstructorDecl>(D) &&
1969       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1970       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1971     // Our approach to inheriting constructors is fundamentally different from
1972     // that used by the MS ABI, so keep our inheriting constructor thunks
1973     // internal rather than trying to pick an unambiguous mangling for them.
1974     return llvm::GlobalValue::InternalLinkage;
1975   }
1976 
1977   return getLLVMLinkageForDeclarator(D, Linkage);
1978 }
1979 
1980 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1981   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1982   if (!MDS) return nullptr;
1983 
1984   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1985 }
1986 
1987 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
1988   if (auto *FnType = T->getAs<FunctionProtoType>())
1989     T = getContext().getFunctionType(
1990         FnType->getReturnType(), FnType->getParamTypes(),
1991         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
1992 
1993   std::string OutName;
1994   llvm::raw_string_ostream Out(OutName);
1995   getCXXABI().getMangleContext().mangleTypeName(
1996       T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
1997 
1998   if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
1999     Out << ".normalized";
2000 
2001   return llvm::ConstantInt::get(Int32Ty,
2002                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
2003 }
2004 
2005 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2006                                               const CGFunctionInfo &Info,
2007                                               llvm::Function *F, bool IsThunk) {
2008   unsigned CallingConv;
2009   llvm::AttributeList PAL;
2010   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2011                          /*AttrOnCallSite=*/false, IsThunk);
2012   F->setAttributes(PAL);
2013   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2014 }
2015 
2016 static void removeImageAccessQualifier(std::string& TyName) {
2017   std::string ReadOnlyQual("__read_only");
2018   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2019   if (ReadOnlyPos != std::string::npos)
2020     // "+ 1" for the space after access qualifier.
2021     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2022   else {
2023     std::string WriteOnlyQual("__write_only");
2024     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2025     if (WriteOnlyPos != std::string::npos)
2026       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2027     else {
2028       std::string ReadWriteQual("__read_write");
2029       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2030       if (ReadWritePos != std::string::npos)
2031         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2032     }
2033   }
2034 }
2035 
2036 // Returns the address space id that should be produced to the
2037 // kernel_arg_addr_space metadata. This is always fixed to the ids
2038 // as specified in the SPIR 2.0 specification in order to differentiate
2039 // for example in clGetKernelArgInfo() implementation between the address
2040 // spaces with targets without unique mapping to the OpenCL address spaces
2041 // (basically all single AS CPUs).
2042 static unsigned ArgInfoAddressSpace(LangAS AS) {
2043   switch (AS) {
2044   case LangAS::opencl_global:
2045     return 1;
2046   case LangAS::opencl_constant:
2047     return 2;
2048   case LangAS::opencl_local:
2049     return 3;
2050   case LangAS::opencl_generic:
2051     return 4; // Not in SPIR 2.0 specs.
2052   case LangAS::opencl_global_device:
2053     return 5;
2054   case LangAS::opencl_global_host:
2055     return 6;
2056   default:
2057     return 0; // Assume private.
2058   }
2059 }
2060 
2061 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2062                                          const FunctionDecl *FD,
2063                                          CodeGenFunction *CGF) {
2064   assert(((FD && CGF) || (!FD && !CGF)) &&
2065          "Incorrect use - FD and CGF should either be both null or not!");
2066   // Create MDNodes that represent the kernel arg metadata.
2067   // Each MDNode is a list in the form of "key", N number of values which is
2068   // the same number of values as their are kernel arguments.
2069 
2070   const PrintingPolicy &Policy = Context.getPrintingPolicy();
2071 
2072   // MDNode for the kernel argument address space qualifiers.
2073   SmallVector<llvm::Metadata *, 8> addressQuals;
2074 
2075   // MDNode for the kernel argument access qualifiers (images only).
2076   SmallVector<llvm::Metadata *, 8> accessQuals;
2077 
2078   // MDNode for the kernel argument type names.
2079   SmallVector<llvm::Metadata *, 8> argTypeNames;
2080 
2081   // MDNode for the kernel argument base type names.
2082   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2083 
2084   // MDNode for the kernel argument type qualifiers.
2085   SmallVector<llvm::Metadata *, 8> argTypeQuals;
2086 
2087   // MDNode for the kernel argument names.
2088   SmallVector<llvm::Metadata *, 8> argNames;
2089 
2090   if (FD && CGF)
2091     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2092       const ParmVarDecl *parm = FD->getParamDecl(i);
2093       // Get argument name.
2094       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2095 
2096       if (!getLangOpts().OpenCL)
2097         continue;
2098       QualType ty = parm->getType();
2099       std::string typeQuals;
2100 
2101       // Get image and pipe access qualifier:
2102       if (ty->isImageType() || ty->isPipeType()) {
2103         const Decl *PDecl = parm;
2104         if (const auto *TD = ty->getAs<TypedefType>())
2105           PDecl = TD->getDecl();
2106         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2107         if (A && A->isWriteOnly())
2108           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2109         else if (A && A->isReadWrite())
2110           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2111         else
2112           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2113       } else
2114         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2115 
2116       auto getTypeSpelling = [&](QualType Ty) {
2117         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2118 
2119         if (Ty.isCanonical()) {
2120           StringRef typeNameRef = typeName;
2121           // Turn "unsigned type" to "utype"
2122           if (typeNameRef.consume_front("unsigned "))
2123             return std::string("u") + typeNameRef.str();
2124           if (typeNameRef.consume_front("signed "))
2125             return typeNameRef.str();
2126         }
2127 
2128         return typeName;
2129       };
2130 
2131       if (ty->isPointerType()) {
2132         QualType pointeeTy = ty->getPointeeType();
2133 
2134         // Get address qualifier.
2135         addressQuals.push_back(
2136             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2137                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2138 
2139         // Get argument type name.
2140         std::string typeName = getTypeSpelling(pointeeTy) + "*";
2141         std::string baseTypeName =
2142             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2143         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2144         argBaseTypeNames.push_back(
2145             llvm::MDString::get(VMContext, baseTypeName));
2146 
2147         // Get argument type qualifiers:
2148         if (ty.isRestrictQualified())
2149           typeQuals = "restrict";
2150         if (pointeeTy.isConstQualified() ||
2151             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2152           typeQuals += typeQuals.empty() ? "const" : " const";
2153         if (pointeeTy.isVolatileQualified())
2154           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2155       } else {
2156         uint32_t AddrSpc = 0;
2157         bool isPipe = ty->isPipeType();
2158         if (ty->isImageType() || isPipe)
2159           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2160 
2161         addressQuals.push_back(
2162             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2163 
2164         // Get argument type name.
2165         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2166         std::string typeName = getTypeSpelling(ty);
2167         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2168 
2169         // Remove access qualifiers on images
2170         // (as they are inseparable from type in clang implementation,
2171         // but OpenCL spec provides a special query to get access qualifier
2172         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2173         if (ty->isImageType()) {
2174           removeImageAccessQualifier(typeName);
2175           removeImageAccessQualifier(baseTypeName);
2176         }
2177 
2178         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2179         argBaseTypeNames.push_back(
2180             llvm::MDString::get(VMContext, baseTypeName));
2181 
2182         if (isPipe)
2183           typeQuals = "pipe";
2184       }
2185       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2186     }
2187 
2188   if (getLangOpts().OpenCL) {
2189     Fn->setMetadata("kernel_arg_addr_space",
2190                     llvm::MDNode::get(VMContext, addressQuals));
2191     Fn->setMetadata("kernel_arg_access_qual",
2192                     llvm::MDNode::get(VMContext, accessQuals));
2193     Fn->setMetadata("kernel_arg_type",
2194                     llvm::MDNode::get(VMContext, argTypeNames));
2195     Fn->setMetadata("kernel_arg_base_type",
2196                     llvm::MDNode::get(VMContext, argBaseTypeNames));
2197     Fn->setMetadata("kernel_arg_type_qual",
2198                     llvm::MDNode::get(VMContext, argTypeQuals));
2199   }
2200   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2201       getCodeGenOpts().HIPSaveKernelArgName)
2202     Fn->setMetadata("kernel_arg_name",
2203                     llvm::MDNode::get(VMContext, argNames));
2204 }
2205 
2206 /// Determines whether the language options require us to model
2207 /// unwind exceptions.  We treat -fexceptions as mandating this
2208 /// except under the fragile ObjC ABI with only ObjC exceptions
2209 /// enabled.  This means, for example, that C with -fexceptions
2210 /// enables this.
2211 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2212   // If exceptions are completely disabled, obviously this is false.
2213   if (!LangOpts.Exceptions) return false;
2214 
2215   // If C++ exceptions are enabled, this is true.
2216   if (LangOpts.CXXExceptions) return true;
2217 
2218   // If ObjC exceptions are enabled, this depends on the ABI.
2219   if (LangOpts.ObjCExceptions) {
2220     return LangOpts.ObjCRuntime.hasUnwindExceptions();
2221   }
2222 
2223   return true;
2224 }
2225 
2226 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2227                                                       const CXXMethodDecl *MD) {
2228   // Check that the type metadata can ever actually be used by a call.
2229   if (!CGM.getCodeGenOpts().LTOUnit ||
2230       !CGM.HasHiddenLTOVisibility(MD->getParent()))
2231     return false;
2232 
2233   // Only functions whose address can be taken with a member function pointer
2234   // need this sort of type metadata.
2235   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
2236          !isa<CXXDestructorDecl>(MD);
2237 }
2238 
2239 std::vector<const CXXRecordDecl *>
2240 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2241   llvm::SetVector<const CXXRecordDecl *> MostBases;
2242 
2243   std::function<void (const CXXRecordDecl *)> CollectMostBases;
2244   CollectMostBases = [&](const CXXRecordDecl *RD) {
2245     if (RD->getNumBases() == 0)
2246       MostBases.insert(RD);
2247     for (const CXXBaseSpecifier &B : RD->bases())
2248       CollectMostBases(B.getType()->getAsCXXRecordDecl());
2249   };
2250   CollectMostBases(RD);
2251   return MostBases.takeVector();
2252 }
2253 
2254 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2255                                                            llvm::Function *F) {
2256   llvm::AttrBuilder B(F->getContext());
2257 
2258   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2259     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2260 
2261   if (CodeGenOpts.StackClashProtector)
2262     B.addAttribute("probe-stack", "inline-asm");
2263 
2264   if (!hasUnwindExceptions(LangOpts))
2265     B.addAttribute(llvm::Attribute::NoUnwind);
2266 
2267   if (D && D->hasAttr<NoStackProtectorAttr>())
2268     ; // Do nothing.
2269   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2270            LangOpts.getStackProtector() == LangOptions::SSPOn)
2271     B.addAttribute(llvm::Attribute::StackProtectStrong);
2272   else if (LangOpts.getStackProtector() == LangOptions::SSPOn)
2273     B.addAttribute(llvm::Attribute::StackProtect);
2274   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
2275     B.addAttribute(llvm::Attribute::StackProtectStrong);
2276   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
2277     B.addAttribute(llvm::Attribute::StackProtectReq);
2278 
2279   if (!D) {
2280     // If we don't have a declaration to control inlining, the function isn't
2281     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2282     // disabled, mark the function as noinline.
2283     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2284         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2285       B.addAttribute(llvm::Attribute::NoInline);
2286 
2287     F->addFnAttrs(B);
2288     return;
2289   }
2290 
2291   // Track whether we need to add the optnone LLVM attribute,
2292   // starting with the default for this optimization level.
2293   bool ShouldAddOptNone =
2294       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2295   // We can't add optnone in the following cases, it won't pass the verifier.
2296   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2297   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2298 
2299   // Add optnone, but do so only if the function isn't always_inline.
2300   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2301       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2302     B.addAttribute(llvm::Attribute::OptimizeNone);
2303 
2304     // OptimizeNone implies noinline; we should not be inlining such functions.
2305     B.addAttribute(llvm::Attribute::NoInline);
2306 
2307     // We still need to handle naked functions even though optnone subsumes
2308     // much of their semantics.
2309     if (D->hasAttr<NakedAttr>())
2310       B.addAttribute(llvm::Attribute::Naked);
2311 
2312     // OptimizeNone wins over OptimizeForSize and MinSize.
2313     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2314     F->removeFnAttr(llvm::Attribute::MinSize);
2315   } else if (D->hasAttr<NakedAttr>()) {
2316     // Naked implies noinline: we should not be inlining such functions.
2317     B.addAttribute(llvm::Attribute::Naked);
2318     B.addAttribute(llvm::Attribute::NoInline);
2319   } else if (D->hasAttr<NoDuplicateAttr>()) {
2320     B.addAttribute(llvm::Attribute::NoDuplicate);
2321   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2322     // Add noinline if the function isn't always_inline.
2323     B.addAttribute(llvm::Attribute::NoInline);
2324   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2325              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2326     // (noinline wins over always_inline, and we can't specify both in IR)
2327     B.addAttribute(llvm::Attribute::AlwaysInline);
2328   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2329     // If we're not inlining, then force everything that isn't always_inline to
2330     // carry an explicit noinline attribute.
2331     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2332       B.addAttribute(llvm::Attribute::NoInline);
2333   } else {
2334     // Otherwise, propagate the inline hint attribute and potentially use its
2335     // absence to mark things as noinline.
2336     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2337       // Search function and template pattern redeclarations for inline.
2338       auto CheckForInline = [](const FunctionDecl *FD) {
2339         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2340           return Redecl->isInlineSpecified();
2341         };
2342         if (any_of(FD->redecls(), CheckRedeclForInline))
2343           return true;
2344         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2345         if (!Pattern)
2346           return false;
2347         return any_of(Pattern->redecls(), CheckRedeclForInline);
2348       };
2349       if (CheckForInline(FD)) {
2350         B.addAttribute(llvm::Attribute::InlineHint);
2351       } else if (CodeGenOpts.getInlining() ==
2352                      CodeGenOptions::OnlyHintInlining &&
2353                  !FD->isInlined() &&
2354                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2355         B.addAttribute(llvm::Attribute::NoInline);
2356       }
2357     }
2358   }
2359 
2360   // Add other optimization related attributes if we are optimizing this
2361   // function.
2362   if (!D->hasAttr<OptimizeNoneAttr>()) {
2363     if (D->hasAttr<ColdAttr>()) {
2364       if (!ShouldAddOptNone)
2365         B.addAttribute(llvm::Attribute::OptimizeForSize);
2366       B.addAttribute(llvm::Attribute::Cold);
2367     }
2368     if (D->hasAttr<HotAttr>())
2369       B.addAttribute(llvm::Attribute::Hot);
2370     if (D->hasAttr<MinSizeAttr>())
2371       B.addAttribute(llvm::Attribute::MinSize);
2372   }
2373 
2374   F->addFnAttrs(B);
2375 
2376   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2377   if (alignment)
2378     F->setAlignment(llvm::Align(alignment));
2379 
2380   if (!D->hasAttr<AlignedAttr>())
2381     if (LangOpts.FunctionAlignment)
2382       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2383 
2384   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2385   // reserve a bit for differentiating between virtual and non-virtual member
2386   // functions. If the current target's C++ ABI requires this and this is a
2387   // member function, set its alignment accordingly.
2388   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2389     if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2)
2390       F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2391   }
2392 
2393   // In the cross-dso CFI mode with canonical jump tables, we want !type
2394   // attributes on definitions only.
2395   if (CodeGenOpts.SanitizeCfiCrossDso &&
2396       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2397     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2398       // Skip available_externally functions. They won't be codegen'ed in the
2399       // current module anyway.
2400       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2401         CreateFunctionTypeMetadataForIcall(FD, F);
2402     }
2403   }
2404 
2405   // Emit type metadata on member functions for member function pointer checks.
2406   // These are only ever necessary on definitions; we're guaranteed that the
2407   // definition will be present in the LTO unit as a result of LTO visibility.
2408   auto *MD = dyn_cast<CXXMethodDecl>(D);
2409   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2410     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2411       llvm::Metadata *Id =
2412           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2413               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2414       F->addTypeMetadata(0, Id);
2415     }
2416   }
2417 }
2418 
2419 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2420   const Decl *D = GD.getDecl();
2421   if (isa_and_nonnull<NamedDecl>(D))
2422     setGVProperties(GV, GD);
2423   else
2424     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2425 
2426   if (D && D->hasAttr<UsedAttr>())
2427     addUsedOrCompilerUsedGlobal(GV);
2428 
2429   if (const auto *VD = dyn_cast_if_present<VarDecl>(D);
2430       VD &&
2431       ((CodeGenOpts.KeepPersistentStorageVariables &&
2432         (VD->getStorageDuration() == SD_Static ||
2433          VD->getStorageDuration() == SD_Thread)) ||
2434        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2435         VD->getType().isConstQualified())))
2436     addUsedOrCompilerUsedGlobal(GV);
2437 }
2438 
2439 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2440                                                 llvm::AttrBuilder &Attrs,
2441                                                 bool SetTargetFeatures) {
2442   // Add target-cpu and target-features attributes to functions. If
2443   // we have a decl for the function and it has a target attribute then
2444   // parse that and add it to the feature set.
2445   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2446   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2447   std::vector<std::string> Features;
2448   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2449   FD = FD ? FD->getMostRecentDecl() : FD;
2450   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2451   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2452   assert((!TD || !TV) && "both target_version and target specified");
2453   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2454   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2455   bool AddedAttr = false;
2456   if (TD || TV || SD || TC) {
2457     llvm::StringMap<bool> FeatureMap;
2458     getContext().getFunctionFeatureMap(FeatureMap, GD);
2459 
2460     // Produce the canonical string for this set of features.
2461     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2462       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2463 
2464     // Now add the target-cpu and target-features to the function.
2465     // While we populated the feature map above, we still need to
2466     // get and parse the target attribute so we can get the cpu for
2467     // the function.
2468     if (TD) {
2469       ParsedTargetAttr ParsedAttr =
2470           Target.parseTargetAttr(TD->getFeaturesStr());
2471       if (!ParsedAttr.CPU.empty() &&
2472           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2473         TargetCPU = ParsedAttr.CPU;
2474         TuneCPU = ""; // Clear the tune CPU.
2475       }
2476       if (!ParsedAttr.Tune.empty() &&
2477           getTarget().isValidCPUName(ParsedAttr.Tune))
2478         TuneCPU = ParsedAttr.Tune;
2479     }
2480 
2481     if (SD) {
2482       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2483       // favor this processor.
2484       TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2485     }
2486   } else {
2487     // Otherwise just add the existing target cpu and target features to the
2488     // function.
2489     Features = getTarget().getTargetOpts().Features;
2490   }
2491 
2492   if (!TargetCPU.empty()) {
2493     Attrs.addAttribute("target-cpu", TargetCPU);
2494     AddedAttr = true;
2495   }
2496   if (!TuneCPU.empty()) {
2497     Attrs.addAttribute("tune-cpu", TuneCPU);
2498     AddedAttr = true;
2499   }
2500   if (!Features.empty() && SetTargetFeatures) {
2501     llvm::erase_if(Features, [&](const std::string& F) {
2502        return getTarget().isReadOnlyFeature(F.substr(1));
2503     });
2504     llvm::sort(Features);
2505     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2506     AddedAttr = true;
2507   }
2508 
2509   return AddedAttr;
2510 }
2511 
2512 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2513                                           llvm::GlobalObject *GO) {
2514   const Decl *D = GD.getDecl();
2515   SetCommonAttributes(GD, GO);
2516 
2517   if (D) {
2518     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2519       if (D->hasAttr<RetainAttr>())
2520         addUsedGlobal(GV);
2521       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2522         GV->addAttribute("bss-section", SA->getName());
2523       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2524         GV->addAttribute("data-section", SA->getName());
2525       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2526         GV->addAttribute("rodata-section", SA->getName());
2527       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2528         GV->addAttribute("relro-section", SA->getName());
2529     }
2530 
2531     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2532       if (D->hasAttr<RetainAttr>())
2533         addUsedGlobal(F);
2534       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2535         if (!D->getAttr<SectionAttr>())
2536           F->addFnAttr("implicit-section-name", SA->getName());
2537 
2538       llvm::AttrBuilder Attrs(F->getContext());
2539       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2540         // We know that GetCPUAndFeaturesAttributes will always have the
2541         // newest set, since it has the newest possible FunctionDecl, so the
2542         // new ones should replace the old.
2543         llvm::AttributeMask RemoveAttrs;
2544         RemoveAttrs.addAttribute("target-cpu");
2545         RemoveAttrs.addAttribute("target-features");
2546         RemoveAttrs.addAttribute("tune-cpu");
2547         F->removeFnAttrs(RemoveAttrs);
2548         F->addFnAttrs(Attrs);
2549       }
2550     }
2551 
2552     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2553       GO->setSection(CSA->getName());
2554     else if (const auto *SA = D->getAttr<SectionAttr>())
2555       GO->setSection(SA->getName());
2556   }
2557 
2558   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2559 }
2560 
2561 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2562                                                   llvm::Function *F,
2563                                                   const CGFunctionInfo &FI) {
2564   const Decl *D = GD.getDecl();
2565   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2566   SetLLVMFunctionAttributesForDefinition(D, F);
2567 
2568   F->setLinkage(llvm::Function::InternalLinkage);
2569 
2570   setNonAliasAttributes(GD, F);
2571 }
2572 
2573 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2574   // Set linkage and visibility in case we never see a definition.
2575   LinkageInfo LV = ND->getLinkageAndVisibility();
2576   // Don't set internal linkage on declarations.
2577   // "extern_weak" is overloaded in LLVM; we probably should have
2578   // separate linkage types for this.
2579   if (isExternallyVisible(LV.getLinkage()) &&
2580       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2581     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2582 }
2583 
2584 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2585                                                        llvm::Function *F) {
2586   // Only if we are checking indirect calls.
2587   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2588     return;
2589 
2590   // Non-static class methods are handled via vtable or member function pointer
2591   // checks elsewhere.
2592   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2593     return;
2594 
2595   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2596   F->addTypeMetadata(0, MD);
2597   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2598 
2599   // Emit a hash-based bit set entry for cross-DSO calls.
2600   if (CodeGenOpts.SanitizeCfiCrossDso)
2601     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2602       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2603 }
2604 
2605 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2606   llvm::LLVMContext &Ctx = F->getContext();
2607   llvm::MDBuilder MDB(Ctx);
2608   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2609                  llvm::MDNode::get(
2610                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2611 }
2612 
2613 static bool allowKCFIIdentifier(StringRef Name) {
2614   // KCFI type identifier constants are only necessary for external assembly
2615   // functions, which means it's safe to skip unusual names. Subset of
2616   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2617   return llvm::all_of(Name, [](const char &C) {
2618     return llvm::isAlnum(C) || C == '_' || C == '.';
2619   });
2620 }
2621 
2622 void CodeGenModule::finalizeKCFITypes() {
2623   llvm::Module &M = getModule();
2624   for (auto &F : M.functions()) {
2625     // Remove KCFI type metadata from non-address-taken local functions.
2626     bool AddressTaken = F.hasAddressTaken();
2627     if (!AddressTaken && F.hasLocalLinkage())
2628       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2629 
2630     // Generate a constant with the expected KCFI type identifier for all
2631     // address-taken function declarations to support annotating indirectly
2632     // called assembly functions.
2633     if (!AddressTaken || !F.isDeclaration())
2634       continue;
2635 
2636     const llvm::ConstantInt *Type;
2637     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2638       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2639     else
2640       continue;
2641 
2642     StringRef Name = F.getName();
2643     if (!allowKCFIIdentifier(Name))
2644       continue;
2645 
2646     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2647                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2648                           .str();
2649     M.appendModuleInlineAsm(Asm);
2650   }
2651 }
2652 
2653 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2654                                           bool IsIncompleteFunction,
2655                                           bool IsThunk) {
2656 
2657   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2658     // If this is an intrinsic function, set the function's attributes
2659     // to the intrinsic's attributes.
2660     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2661     return;
2662   }
2663 
2664   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2665 
2666   if (!IsIncompleteFunction)
2667     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2668                               IsThunk);
2669 
2670   // Add the Returned attribute for "this", except for iOS 5 and earlier
2671   // where substantial code, including the libstdc++ dylib, was compiled with
2672   // GCC and does not actually return "this".
2673   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2674       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2675     assert(!F->arg_empty() &&
2676            F->arg_begin()->getType()
2677              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2678            "unexpected this return");
2679     F->addParamAttr(0, llvm::Attribute::Returned);
2680   }
2681 
2682   // Only a few attributes are set on declarations; these may later be
2683   // overridden by a definition.
2684 
2685   setLinkageForGV(F, FD);
2686   setGVProperties(F, FD);
2687 
2688   // Setup target-specific attributes.
2689   if (!IsIncompleteFunction && F->isDeclaration())
2690     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2691 
2692   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2693     F->setSection(CSA->getName());
2694   else if (const auto *SA = FD->getAttr<SectionAttr>())
2695      F->setSection(SA->getName());
2696 
2697   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2698     if (EA->isError())
2699       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2700     else if (EA->isWarning())
2701       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2702   }
2703 
2704   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2705   if (FD->isInlineBuiltinDeclaration()) {
2706     const FunctionDecl *FDBody;
2707     bool HasBody = FD->hasBody(FDBody);
2708     (void)HasBody;
2709     assert(HasBody && "Inline builtin declarations should always have an "
2710                       "available body!");
2711     if (shouldEmitFunction(FDBody))
2712       F->addFnAttr(llvm::Attribute::NoBuiltin);
2713   }
2714 
2715   if (FD->isReplaceableGlobalAllocationFunction()) {
2716     // A replaceable global allocation function does not act like a builtin by
2717     // default, only if it is invoked by a new-expression or delete-expression.
2718     F->addFnAttr(llvm::Attribute::NoBuiltin);
2719   }
2720 
2721   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2722     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2723   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2724     if (MD->isVirtual())
2725       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2726 
2727   // Don't emit entries for function declarations in the cross-DSO mode. This
2728   // is handled with better precision by the receiving DSO. But if jump tables
2729   // are non-canonical then we need type metadata in order to produce the local
2730   // jump table.
2731   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2732       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2733     CreateFunctionTypeMetadataForIcall(FD, F);
2734 
2735   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2736     setKCFIType(FD, F);
2737 
2738   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2739     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2740 
2741   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2742     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2743 
2744   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2745     // Annotate the callback behavior as metadata:
2746     //  - The callback callee (as argument number).
2747     //  - The callback payloads (as argument numbers).
2748     llvm::LLVMContext &Ctx = F->getContext();
2749     llvm::MDBuilder MDB(Ctx);
2750 
2751     // The payload indices are all but the first one in the encoding. The first
2752     // identifies the callback callee.
2753     int CalleeIdx = *CB->encoding_begin();
2754     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2755     F->addMetadata(llvm::LLVMContext::MD_callback,
2756                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2757                                                CalleeIdx, PayloadIndices,
2758                                                /* VarArgsArePassed */ false)}));
2759   }
2760 }
2761 
2762 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2763   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2764          "Only globals with definition can force usage.");
2765   LLVMUsed.emplace_back(GV);
2766 }
2767 
2768 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2769   assert(!GV->isDeclaration() &&
2770          "Only globals with definition can force usage.");
2771   LLVMCompilerUsed.emplace_back(GV);
2772 }
2773 
2774 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2775   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2776          "Only globals with definition can force usage.");
2777   if (getTriple().isOSBinFormatELF())
2778     LLVMCompilerUsed.emplace_back(GV);
2779   else
2780     LLVMUsed.emplace_back(GV);
2781 }
2782 
2783 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2784                      std::vector<llvm::WeakTrackingVH> &List) {
2785   // Don't create llvm.used if there is no need.
2786   if (List.empty())
2787     return;
2788 
2789   // Convert List to what ConstantArray needs.
2790   SmallVector<llvm::Constant*, 8> UsedArray;
2791   UsedArray.resize(List.size());
2792   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2793     UsedArray[i] =
2794         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2795             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2796   }
2797 
2798   if (UsedArray.empty())
2799     return;
2800   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2801 
2802   auto *GV = new llvm::GlobalVariable(
2803       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2804       llvm::ConstantArray::get(ATy, UsedArray), Name);
2805 
2806   GV->setSection("llvm.metadata");
2807 }
2808 
2809 void CodeGenModule::emitLLVMUsed() {
2810   emitUsed(*this, "llvm.used", LLVMUsed);
2811   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2812 }
2813 
2814 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2815   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2816   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2817 }
2818 
2819 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2820   llvm::SmallString<32> Opt;
2821   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2822   if (Opt.empty())
2823     return;
2824   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2825   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2826 }
2827 
2828 void CodeGenModule::AddDependentLib(StringRef Lib) {
2829   auto &C = getLLVMContext();
2830   if (getTarget().getTriple().isOSBinFormatELF()) {
2831       ELFDependentLibraries.push_back(
2832         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2833     return;
2834   }
2835 
2836   llvm::SmallString<24> Opt;
2837   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2838   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2839   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2840 }
2841 
2842 /// Add link options implied by the given module, including modules
2843 /// it depends on, using a postorder walk.
2844 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2845                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2846                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2847   // Import this module's parent.
2848   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2849     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2850   }
2851 
2852   // Import this module's dependencies.
2853   for (Module *Import : llvm::reverse(Mod->Imports)) {
2854     if (Visited.insert(Import).second)
2855       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2856   }
2857 
2858   // Add linker options to link against the libraries/frameworks
2859   // described by this module.
2860   llvm::LLVMContext &Context = CGM.getLLVMContext();
2861   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2862 
2863   // For modules that use export_as for linking, use that module
2864   // name instead.
2865   if (Mod->UseExportAsModuleLinkName)
2866     return;
2867 
2868   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2869     // Link against a framework.  Frameworks are currently Darwin only, so we
2870     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2871     if (LL.IsFramework) {
2872       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2873                                  llvm::MDString::get(Context, LL.Library)};
2874 
2875       Metadata.push_back(llvm::MDNode::get(Context, Args));
2876       continue;
2877     }
2878 
2879     // Link against a library.
2880     if (IsELF) {
2881       llvm::Metadata *Args[2] = {
2882           llvm::MDString::get(Context, "lib"),
2883           llvm::MDString::get(Context, LL.Library),
2884       };
2885       Metadata.push_back(llvm::MDNode::get(Context, Args));
2886     } else {
2887       llvm::SmallString<24> Opt;
2888       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2889       auto *OptString = llvm::MDString::get(Context, Opt);
2890       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2891     }
2892   }
2893 }
2894 
2895 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
2896   // Emit the initializers in the order that sub-modules appear in the
2897   // source, first Global Module Fragments, if present.
2898   if (auto GMF = Primary->getGlobalModuleFragment()) {
2899     for (Decl *D : getContext().getModuleInitializers(GMF)) {
2900       if (isa<ImportDecl>(D))
2901         continue;
2902       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
2903       EmitTopLevelDecl(D);
2904     }
2905   }
2906   // Second any associated with the module, itself.
2907   for (Decl *D : getContext().getModuleInitializers(Primary)) {
2908     // Skip import decls, the inits for those are called explicitly.
2909     if (isa<ImportDecl>(D))
2910       continue;
2911     EmitTopLevelDecl(D);
2912   }
2913   // Third any associated with the Privat eMOdule Fragment, if present.
2914   if (auto PMF = Primary->getPrivateModuleFragment()) {
2915     for (Decl *D : getContext().getModuleInitializers(PMF)) {
2916       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
2917       EmitTopLevelDecl(D);
2918     }
2919   }
2920 }
2921 
2922 void CodeGenModule::EmitModuleLinkOptions() {
2923   // Collect the set of all of the modules we want to visit to emit link
2924   // options, which is essentially the imported modules and all of their
2925   // non-explicit child modules.
2926   llvm::SetVector<clang::Module *> LinkModules;
2927   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2928   SmallVector<clang::Module *, 16> Stack;
2929 
2930   // Seed the stack with imported modules.
2931   for (Module *M : ImportedModules) {
2932     // Do not add any link flags when an implementation TU of a module imports
2933     // a header of that same module.
2934     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2935         !getLangOpts().isCompilingModule())
2936       continue;
2937     if (Visited.insert(M).second)
2938       Stack.push_back(M);
2939   }
2940 
2941   // Find all of the modules to import, making a little effort to prune
2942   // non-leaf modules.
2943   while (!Stack.empty()) {
2944     clang::Module *Mod = Stack.pop_back_val();
2945 
2946     bool AnyChildren = false;
2947 
2948     // Visit the submodules of this module.
2949     for (const auto &SM : Mod->submodules()) {
2950       // Skip explicit children; they need to be explicitly imported to be
2951       // linked against.
2952       if (SM->IsExplicit)
2953         continue;
2954 
2955       if (Visited.insert(SM).second) {
2956         Stack.push_back(SM);
2957         AnyChildren = true;
2958       }
2959     }
2960 
2961     // We didn't find any children, so add this module to the list of
2962     // modules to link against.
2963     if (!AnyChildren) {
2964       LinkModules.insert(Mod);
2965     }
2966   }
2967 
2968   // Add link options for all of the imported modules in reverse topological
2969   // order.  We don't do anything to try to order import link flags with respect
2970   // to linker options inserted by things like #pragma comment().
2971   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2972   Visited.clear();
2973   for (Module *M : LinkModules)
2974     if (Visited.insert(M).second)
2975       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2976   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2977   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2978 
2979   // Add the linker options metadata flag.
2980   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2981   for (auto *MD : LinkerOptionsMetadata)
2982     NMD->addOperand(MD);
2983 }
2984 
2985 void CodeGenModule::EmitDeferred() {
2986   // Emit deferred declare target declarations.
2987   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2988     getOpenMPRuntime().emitDeferredTargetDecls();
2989 
2990   // Emit code for any potentially referenced deferred decls.  Since a
2991   // previously unused static decl may become used during the generation of code
2992   // for a static function, iterate until no changes are made.
2993 
2994   if (!DeferredVTables.empty()) {
2995     EmitDeferredVTables();
2996 
2997     // Emitting a vtable doesn't directly cause more vtables to
2998     // become deferred, although it can cause functions to be
2999     // emitted that then need those vtables.
3000     assert(DeferredVTables.empty());
3001   }
3002 
3003   // Emit CUDA/HIP static device variables referenced by host code only.
3004   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3005   // needed for further handling.
3006   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3007     llvm::append_range(DeferredDeclsToEmit,
3008                        getContext().CUDADeviceVarODRUsedByHost);
3009 
3010   // Stop if we're out of both deferred vtables and deferred declarations.
3011   if (DeferredDeclsToEmit.empty())
3012     return;
3013 
3014   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3015   // work, it will not interfere with this.
3016   std::vector<GlobalDecl> CurDeclsToEmit;
3017   CurDeclsToEmit.swap(DeferredDeclsToEmit);
3018 
3019   for (GlobalDecl &D : CurDeclsToEmit) {
3020     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3021     // to get GlobalValue with exactly the type we need, not something that
3022     // might had been created for another decl with the same mangled name but
3023     // different type.
3024     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3025         GetAddrOfGlobal(D, ForDefinition));
3026 
3027     // In case of different address spaces, we may still get a cast, even with
3028     // IsForDefinition equal to true. Query mangled names table to get
3029     // GlobalValue.
3030     if (!GV)
3031       GV = GetGlobalValue(getMangledName(D));
3032 
3033     // Make sure GetGlobalValue returned non-null.
3034     assert(GV);
3035 
3036     // Check to see if we've already emitted this.  This is necessary
3037     // for a couple of reasons: first, decls can end up in the
3038     // deferred-decls queue multiple times, and second, decls can end
3039     // up with definitions in unusual ways (e.g. by an extern inline
3040     // function acquiring a strong function redefinition).  Just
3041     // ignore these cases.
3042     if (!GV->isDeclaration())
3043       continue;
3044 
3045     // If this is OpenMP, check if it is legal to emit this global normally.
3046     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3047       continue;
3048 
3049     // Otherwise, emit the definition and move on to the next one.
3050     EmitGlobalDefinition(D, GV);
3051 
3052     // If we found out that we need to emit more decls, do that recursively.
3053     // This has the advantage that the decls are emitted in a DFS and related
3054     // ones are close together, which is convenient for testing.
3055     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3056       EmitDeferred();
3057       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3058     }
3059   }
3060 }
3061 
3062 void CodeGenModule::EmitVTablesOpportunistically() {
3063   // Try to emit external vtables as available_externally if they have emitted
3064   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
3065   // is not allowed to create new references to things that need to be emitted
3066   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3067 
3068   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3069          && "Only emit opportunistic vtables with optimizations");
3070 
3071   for (const CXXRecordDecl *RD : OpportunisticVTables) {
3072     assert(getVTables().isVTableExternal(RD) &&
3073            "This queue should only contain external vtables");
3074     if (getCXXABI().canSpeculativelyEmitVTable(RD))
3075       VTables.GenerateClassData(RD);
3076   }
3077   OpportunisticVTables.clear();
3078 }
3079 
3080 void CodeGenModule::EmitGlobalAnnotations() {
3081   if (Annotations.empty())
3082     return;
3083 
3084   // Create a new global variable for the ConstantStruct in the Module.
3085   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3086     Annotations[0]->getType(), Annotations.size()), Annotations);
3087   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3088                                       llvm::GlobalValue::AppendingLinkage,
3089                                       Array, "llvm.global.annotations");
3090   gv->setSection(AnnotationSection);
3091 }
3092 
3093 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3094   llvm::Constant *&AStr = AnnotationStrings[Str];
3095   if (AStr)
3096     return AStr;
3097 
3098   // Not found yet, create a new global.
3099   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3100   auto *gv = new llvm::GlobalVariable(
3101       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3102       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3103       ConstGlobalsPtrTy->getAddressSpace());
3104   gv->setSection(AnnotationSection);
3105   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3106   AStr = gv;
3107   return gv;
3108 }
3109 
3110 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3111   SourceManager &SM = getContext().getSourceManager();
3112   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3113   if (PLoc.isValid())
3114     return EmitAnnotationString(PLoc.getFilename());
3115   return EmitAnnotationString(SM.getBufferName(Loc));
3116 }
3117 
3118 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3119   SourceManager &SM = getContext().getSourceManager();
3120   PresumedLoc PLoc = SM.getPresumedLoc(L);
3121   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3122     SM.getExpansionLineNumber(L);
3123   return llvm::ConstantInt::get(Int32Ty, LineNo);
3124 }
3125 
3126 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3127   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3128   if (Exprs.empty())
3129     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3130 
3131   llvm::FoldingSetNodeID ID;
3132   for (Expr *E : Exprs) {
3133     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3134   }
3135   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3136   if (Lookup)
3137     return Lookup;
3138 
3139   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3140   LLVMArgs.reserve(Exprs.size());
3141   ConstantEmitter ConstEmiter(*this);
3142   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3143     const auto *CE = cast<clang::ConstantExpr>(E);
3144     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3145                                     CE->getType());
3146   });
3147   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3148   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3149                                       llvm::GlobalValue::PrivateLinkage, Struct,
3150                                       ".args");
3151   GV->setSection(AnnotationSection);
3152   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3153   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
3154 
3155   Lookup = Bitcasted;
3156   return Bitcasted;
3157 }
3158 
3159 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3160                                                 const AnnotateAttr *AA,
3161                                                 SourceLocation L) {
3162   // Get the globals for file name, annotation, and the line number.
3163   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3164                  *UnitGV = EmitAnnotationUnit(L),
3165                  *LineNoCst = EmitAnnotationLineNo(L),
3166                  *Args = EmitAnnotationArgs(AA);
3167 
3168   llvm::Constant *GVInGlobalsAS = GV;
3169   if (GV->getAddressSpace() !=
3170       getDataLayout().getDefaultGlobalsAddressSpace()) {
3171     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3172         GV, GV->getValueType()->getPointerTo(
3173                 getDataLayout().getDefaultGlobalsAddressSpace()));
3174   }
3175 
3176   // Create the ConstantStruct for the global annotation.
3177   llvm::Constant *Fields[] = {
3178       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
3179       llvm::ConstantExpr::getBitCast(AnnoGV, ConstGlobalsPtrTy),
3180       llvm::ConstantExpr::getBitCast(UnitGV, ConstGlobalsPtrTy),
3181       LineNoCst,
3182       Args,
3183   };
3184   return llvm::ConstantStruct::getAnon(Fields);
3185 }
3186 
3187 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3188                                          llvm::GlobalValue *GV) {
3189   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3190   // Get the struct elements for these annotations.
3191   for (const auto *I : D->specific_attrs<AnnotateAttr>())
3192     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3193 }
3194 
3195 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3196                                        SourceLocation Loc) const {
3197   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3198   // NoSanitize by function name.
3199   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3200     return true;
3201   // NoSanitize by location. Check "mainfile" prefix.
3202   auto &SM = Context.getSourceManager();
3203   const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID());
3204   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3205     return true;
3206 
3207   // Check "src" prefix.
3208   if (Loc.isValid())
3209     return NoSanitizeL.containsLocation(Kind, Loc);
3210   // If location is unknown, this may be a compiler-generated function. Assume
3211   // it's located in the main file.
3212   return NoSanitizeL.containsFile(Kind, MainFile.getName());
3213 }
3214 
3215 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3216                                        llvm::GlobalVariable *GV,
3217                                        SourceLocation Loc, QualType Ty,
3218                                        StringRef Category) const {
3219   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3220   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3221     return true;
3222   auto &SM = Context.getSourceManager();
3223   if (NoSanitizeL.containsMainFile(
3224           Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category))
3225     return true;
3226   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3227     return true;
3228 
3229   // Check global type.
3230   if (!Ty.isNull()) {
3231     // Drill down the array types: if global variable of a fixed type is
3232     // not sanitized, we also don't instrument arrays of them.
3233     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3234       Ty = AT->getElementType();
3235     Ty = Ty.getCanonicalType().getUnqualifiedType();
3236     // Only record types (classes, structs etc.) are ignored.
3237     if (Ty->isRecordType()) {
3238       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3239       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3240         return true;
3241     }
3242   }
3243   return false;
3244 }
3245 
3246 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3247                                    StringRef Category) const {
3248   const auto &XRayFilter = getContext().getXRayFilter();
3249   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3250   auto Attr = ImbueAttr::NONE;
3251   if (Loc.isValid())
3252     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3253   if (Attr == ImbueAttr::NONE)
3254     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3255   switch (Attr) {
3256   case ImbueAttr::NONE:
3257     return false;
3258   case ImbueAttr::ALWAYS:
3259     Fn->addFnAttr("function-instrument", "xray-always");
3260     break;
3261   case ImbueAttr::ALWAYS_ARG1:
3262     Fn->addFnAttr("function-instrument", "xray-always");
3263     Fn->addFnAttr("xray-log-args", "1");
3264     break;
3265   case ImbueAttr::NEVER:
3266     Fn->addFnAttr("function-instrument", "xray-never");
3267     break;
3268   }
3269   return true;
3270 }
3271 
3272 ProfileList::ExclusionType
3273 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3274                                               SourceLocation Loc) const {
3275   const auto &ProfileList = getContext().getProfileList();
3276   // If the profile list is empty, then instrument everything.
3277   if (ProfileList.isEmpty())
3278     return ProfileList::Allow;
3279   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3280   // First, check the function name.
3281   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3282     return *V;
3283   // Next, check the source location.
3284   if (Loc.isValid())
3285     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3286       return *V;
3287   // If location is unknown, this may be a compiler-generated function. Assume
3288   // it's located in the main file.
3289   auto &SM = Context.getSourceManager();
3290   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID()))
3291     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3292       return *V;
3293   return ProfileList.getDefault(Kind);
3294 }
3295 
3296 ProfileList::ExclusionType
3297 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3298                                                  SourceLocation Loc) const {
3299   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3300   if (V != ProfileList::Allow)
3301     return V;
3302 
3303   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3304   if (NumGroups > 1) {
3305     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3306     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3307       return ProfileList::Skip;
3308   }
3309   return ProfileList::Allow;
3310 }
3311 
3312 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3313   // Never defer when EmitAllDecls is specified.
3314   if (LangOpts.EmitAllDecls)
3315     return true;
3316 
3317   const auto *VD = dyn_cast<VarDecl>(Global);
3318   if (VD &&
3319       ((CodeGenOpts.KeepPersistentStorageVariables &&
3320         (VD->getStorageDuration() == SD_Static ||
3321          VD->getStorageDuration() == SD_Thread)) ||
3322        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3323         VD->getType().isConstQualified())))
3324     return true;
3325 
3326   return getContext().DeclMustBeEmitted(Global);
3327 }
3328 
3329 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3330   // In OpenMP 5.0 variables and function may be marked as
3331   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3332   // that they must be emitted on the host/device. To be sure we need to have
3333   // seen a declare target with an explicit mentioning of the function, we know
3334   // we have if the level of the declare target attribute is -1. Note that we
3335   // check somewhere else if we should emit this at all.
3336   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3337     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3338         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3339     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3340       return false;
3341   }
3342 
3343   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3344     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3345       // Implicit template instantiations may change linkage if they are later
3346       // explicitly instantiated, so they should not be emitted eagerly.
3347       return false;
3348   }
3349   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3350     if (Context.getInlineVariableDefinitionKind(VD) ==
3351         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3352       // A definition of an inline constexpr static data member may change
3353       // linkage later if it's redeclared outside the class.
3354       return false;
3355     if (CXX20ModuleInits && VD->getOwningModule() &&
3356         !VD->getOwningModule()->isModuleMapModule()) {
3357       // For CXX20, module-owned initializers need to be deferred, since it is
3358       // not known at this point if they will be run for the current module or
3359       // as part of the initializer for an imported one.
3360       return false;
3361     }
3362   }
3363   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3364   // codegen for global variables, because they may be marked as threadprivate.
3365   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3366       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3367       !isTypeConstant(Global->getType(), false, false) &&
3368       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3369     return false;
3370 
3371   return true;
3372 }
3373 
3374 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3375   StringRef Name = getMangledName(GD);
3376 
3377   // The UUID descriptor should be pointer aligned.
3378   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3379 
3380   // Look for an existing global.
3381   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3382     return ConstantAddress(GV, GV->getValueType(), Alignment);
3383 
3384   ConstantEmitter Emitter(*this);
3385   llvm::Constant *Init;
3386 
3387   APValue &V = GD->getAsAPValue();
3388   if (!V.isAbsent()) {
3389     // If possible, emit the APValue version of the initializer. In particular,
3390     // this gets the type of the constant right.
3391     Init = Emitter.emitForInitializer(
3392         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3393   } else {
3394     // As a fallback, directly construct the constant.
3395     // FIXME: This may get padding wrong under esoteric struct layout rules.
3396     // MSVC appears to create a complete type 'struct __s_GUID' that it
3397     // presumably uses to represent these constants.
3398     MSGuidDecl::Parts Parts = GD->getParts();
3399     llvm::Constant *Fields[4] = {
3400         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3401         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3402         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3403         llvm::ConstantDataArray::getRaw(
3404             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3405             Int8Ty)};
3406     Init = llvm::ConstantStruct::getAnon(Fields);
3407   }
3408 
3409   auto *GV = new llvm::GlobalVariable(
3410       getModule(), Init->getType(),
3411       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3412   if (supportsCOMDAT())
3413     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3414   setDSOLocal(GV);
3415 
3416   if (!V.isAbsent()) {
3417     Emitter.finalize(GV);
3418     return ConstantAddress(GV, GV->getValueType(), Alignment);
3419   }
3420 
3421   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3422   llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
3423       GV, Ty->getPointerTo(GV->getAddressSpace()));
3424   return ConstantAddress(Addr, Ty, Alignment);
3425 }
3426 
3427 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3428     const UnnamedGlobalConstantDecl *GCD) {
3429   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3430 
3431   llvm::GlobalVariable **Entry = nullptr;
3432   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3433   if (*Entry)
3434     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3435 
3436   ConstantEmitter Emitter(*this);
3437   llvm::Constant *Init;
3438 
3439   const APValue &V = GCD->getValue();
3440 
3441   assert(!V.isAbsent());
3442   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3443                                     GCD->getType());
3444 
3445   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3446                                       /*isConstant=*/true,
3447                                       llvm::GlobalValue::PrivateLinkage, Init,
3448                                       ".constant");
3449   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3450   GV->setAlignment(Alignment.getAsAlign());
3451 
3452   Emitter.finalize(GV);
3453 
3454   *Entry = GV;
3455   return ConstantAddress(GV, GV->getValueType(), Alignment);
3456 }
3457 
3458 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3459     const TemplateParamObjectDecl *TPO) {
3460   StringRef Name = getMangledName(TPO);
3461   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3462 
3463   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3464     return ConstantAddress(GV, GV->getValueType(), Alignment);
3465 
3466   ConstantEmitter Emitter(*this);
3467   llvm::Constant *Init = Emitter.emitForInitializer(
3468         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3469 
3470   if (!Init) {
3471     ErrorUnsupported(TPO, "template parameter object");
3472     return ConstantAddress::invalid();
3473   }
3474 
3475   llvm::GlobalValue::LinkageTypes Linkage =
3476       isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3477           ? llvm::GlobalValue::LinkOnceODRLinkage
3478           : llvm::GlobalValue::InternalLinkage;
3479   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3480                                       /*isConstant=*/true, Linkage, Init, Name);
3481   setGVProperties(GV, TPO);
3482   if (supportsCOMDAT())
3483     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3484   Emitter.finalize(GV);
3485 
3486   return ConstantAddress(GV, GV->getValueType(), Alignment);
3487 }
3488 
3489 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3490   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3491   assert(AA && "No alias?");
3492 
3493   CharUnits Alignment = getContext().getDeclAlign(VD);
3494   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3495 
3496   // See if there is already something with the target's name in the module.
3497   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3498   if (Entry) {
3499     unsigned AS = getTypes().getTargetAddressSpace(VD->getType());
3500     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
3501     return ConstantAddress(Ptr, DeclTy, Alignment);
3502   }
3503 
3504   llvm::Constant *Aliasee;
3505   if (isa<llvm::FunctionType>(DeclTy))
3506     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3507                                       GlobalDecl(cast<FunctionDecl>(VD)),
3508                                       /*ForVTable=*/false);
3509   else
3510     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3511                                     nullptr);
3512 
3513   auto *F = cast<llvm::GlobalValue>(Aliasee);
3514   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3515   WeakRefReferences.insert(F);
3516 
3517   return ConstantAddress(Aliasee, DeclTy, Alignment);
3518 }
3519 
3520 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3521   const auto *Global = cast<ValueDecl>(GD.getDecl());
3522 
3523   // Weak references don't produce any output by themselves.
3524   if (Global->hasAttr<WeakRefAttr>())
3525     return;
3526 
3527   // If this is an alias definition (which otherwise looks like a declaration)
3528   // emit it now.
3529   if (Global->hasAttr<AliasAttr>())
3530     return EmitAliasDefinition(GD);
3531 
3532   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3533   if (Global->hasAttr<IFuncAttr>())
3534     return emitIFuncDefinition(GD);
3535 
3536   // If this is a cpu_dispatch multiversion function, emit the resolver.
3537   if (Global->hasAttr<CPUDispatchAttr>())
3538     return emitCPUDispatchDefinition(GD);
3539 
3540   // If this is CUDA, be selective about which declarations we emit.
3541   if (LangOpts.CUDA) {
3542     if (LangOpts.CUDAIsDevice) {
3543       if (!Global->hasAttr<CUDADeviceAttr>() &&
3544           !Global->hasAttr<CUDAGlobalAttr>() &&
3545           !Global->hasAttr<CUDAConstantAttr>() &&
3546           !Global->hasAttr<CUDASharedAttr>() &&
3547           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3548           !Global->getType()->isCUDADeviceBuiltinTextureType())
3549         return;
3550     } else {
3551       // We need to emit host-side 'shadows' for all global
3552       // device-side variables because the CUDA runtime needs their
3553       // size and host-side address in order to provide access to
3554       // their device-side incarnations.
3555 
3556       // So device-only functions are the only things we skip.
3557       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3558           Global->hasAttr<CUDADeviceAttr>())
3559         return;
3560 
3561       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3562              "Expected Variable or Function");
3563     }
3564   }
3565 
3566   if (LangOpts.OpenMP) {
3567     // If this is OpenMP, check if it is legal to emit this global normally.
3568     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3569       return;
3570     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3571       if (MustBeEmitted(Global))
3572         EmitOMPDeclareReduction(DRD);
3573       return;
3574     }
3575     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3576       if (MustBeEmitted(Global))
3577         EmitOMPDeclareMapper(DMD);
3578       return;
3579     }
3580   }
3581 
3582   // Ignore declarations, they will be emitted on their first use.
3583   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3584     // Forward declarations are emitted lazily on first use.
3585     if (!FD->doesThisDeclarationHaveABody()) {
3586       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3587         return;
3588 
3589       StringRef MangledName = getMangledName(GD);
3590 
3591       // Compute the function info and LLVM type.
3592       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3593       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3594 
3595       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3596                               /*DontDefer=*/false);
3597       return;
3598     }
3599   } else {
3600     const auto *VD = cast<VarDecl>(Global);
3601     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3602     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3603         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3604       if (LangOpts.OpenMP) {
3605         // Emit declaration of the must-be-emitted declare target variable.
3606         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3607                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3608 
3609           // If this variable has external storage and doesn't require special
3610           // link handling we defer to its canonical definition.
3611           if (VD->hasExternalStorage() &&
3612               Res != OMPDeclareTargetDeclAttr::MT_Link)
3613             return;
3614 
3615           bool UnifiedMemoryEnabled =
3616               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3617           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3618                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3619               !UnifiedMemoryEnabled) {
3620             (void)GetAddrOfGlobalVar(VD);
3621           } else {
3622             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3623                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3624                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3625                      UnifiedMemoryEnabled)) &&
3626                    "Link clause or to clause with unified memory expected.");
3627             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3628           }
3629 
3630           return;
3631         }
3632       }
3633       // If this declaration may have caused an inline variable definition to
3634       // change linkage, make sure that it's emitted.
3635       if (Context.getInlineVariableDefinitionKind(VD) ==
3636           ASTContext::InlineVariableDefinitionKind::Strong)
3637         GetAddrOfGlobalVar(VD);
3638       return;
3639     }
3640   }
3641 
3642   // Defer code generation to first use when possible, e.g. if this is an inline
3643   // function. If the global must always be emitted, do it eagerly if possible
3644   // to benefit from cache locality.
3645   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3646     // Emit the definition if it can't be deferred.
3647     EmitGlobalDefinition(GD);
3648     addEmittedDeferredDecl(GD);
3649     return;
3650   }
3651 
3652   // If we're deferring emission of a C++ variable with an
3653   // initializer, remember the order in which it appeared in the file.
3654   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3655       cast<VarDecl>(Global)->hasInit()) {
3656     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3657     CXXGlobalInits.push_back(nullptr);
3658   }
3659 
3660   StringRef MangledName = getMangledName(GD);
3661   if (GetGlobalValue(MangledName) != nullptr) {
3662     // The value has already been used and should therefore be emitted.
3663     addDeferredDeclToEmit(GD);
3664   } else if (MustBeEmitted(Global)) {
3665     // The value must be emitted, but cannot be emitted eagerly.
3666     assert(!MayBeEmittedEagerly(Global));
3667     addDeferredDeclToEmit(GD);
3668   } else {
3669     // Otherwise, remember that we saw a deferred decl with this name.  The
3670     // first use of the mangled name will cause it to move into
3671     // DeferredDeclsToEmit.
3672     DeferredDecls[MangledName] = GD;
3673   }
3674 }
3675 
3676 // Check if T is a class type with a destructor that's not dllimport.
3677 static bool HasNonDllImportDtor(QualType T) {
3678   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3679     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3680       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3681         return true;
3682 
3683   return false;
3684 }
3685 
3686 namespace {
3687   struct FunctionIsDirectlyRecursive
3688       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3689     const StringRef Name;
3690     const Builtin::Context &BI;
3691     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3692         : Name(N), BI(C) {}
3693 
3694     bool VisitCallExpr(const CallExpr *E) {
3695       const FunctionDecl *FD = E->getDirectCallee();
3696       if (!FD)
3697         return false;
3698       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3699       if (Attr && Name == Attr->getLabel())
3700         return true;
3701       unsigned BuiltinID = FD->getBuiltinID();
3702       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3703         return false;
3704       StringRef BuiltinName = BI.getName(BuiltinID);
3705       if (BuiltinName.startswith("__builtin_") &&
3706           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3707         return true;
3708       }
3709       return false;
3710     }
3711 
3712     bool VisitStmt(const Stmt *S) {
3713       for (const Stmt *Child : S->children())
3714         if (Child && this->Visit(Child))
3715           return true;
3716       return false;
3717     }
3718   };
3719 
3720   // Make sure we're not referencing non-imported vars or functions.
3721   struct DLLImportFunctionVisitor
3722       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3723     bool SafeToInline = true;
3724 
3725     bool shouldVisitImplicitCode() const { return true; }
3726 
3727     bool VisitVarDecl(VarDecl *VD) {
3728       if (VD->getTLSKind()) {
3729         // A thread-local variable cannot be imported.
3730         SafeToInline = false;
3731         return SafeToInline;
3732       }
3733 
3734       // A variable definition might imply a destructor call.
3735       if (VD->isThisDeclarationADefinition())
3736         SafeToInline = !HasNonDllImportDtor(VD->getType());
3737 
3738       return SafeToInline;
3739     }
3740 
3741     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3742       if (const auto *D = E->getTemporary()->getDestructor())
3743         SafeToInline = D->hasAttr<DLLImportAttr>();
3744       return SafeToInline;
3745     }
3746 
3747     bool VisitDeclRefExpr(DeclRefExpr *E) {
3748       ValueDecl *VD = E->getDecl();
3749       if (isa<FunctionDecl>(VD))
3750         SafeToInline = VD->hasAttr<DLLImportAttr>();
3751       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3752         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3753       return SafeToInline;
3754     }
3755 
3756     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3757       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3758       return SafeToInline;
3759     }
3760 
3761     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3762       CXXMethodDecl *M = E->getMethodDecl();
3763       if (!M) {
3764         // Call through a pointer to member function. This is safe to inline.
3765         SafeToInline = true;
3766       } else {
3767         SafeToInline = M->hasAttr<DLLImportAttr>();
3768       }
3769       return SafeToInline;
3770     }
3771 
3772     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3773       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3774       return SafeToInline;
3775     }
3776 
3777     bool VisitCXXNewExpr(CXXNewExpr *E) {
3778       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3779       return SafeToInline;
3780     }
3781   };
3782 }
3783 
3784 // isTriviallyRecursive - Check if this function calls another
3785 // decl that, because of the asm attribute or the other decl being a builtin,
3786 // ends up pointing to itself.
3787 bool
3788 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3789   StringRef Name;
3790   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3791     // asm labels are a special kind of mangling we have to support.
3792     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3793     if (!Attr)
3794       return false;
3795     Name = Attr->getLabel();
3796   } else {
3797     Name = FD->getName();
3798   }
3799 
3800   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3801   const Stmt *Body = FD->getBody();
3802   return Body ? Walker.Visit(Body) : false;
3803 }
3804 
3805 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3806   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3807     return true;
3808   const auto *F = cast<FunctionDecl>(GD.getDecl());
3809   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3810     return false;
3811 
3812   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3813     // Check whether it would be safe to inline this dllimport function.
3814     DLLImportFunctionVisitor Visitor;
3815     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3816     if (!Visitor.SafeToInline)
3817       return false;
3818 
3819     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3820       // Implicit destructor invocations aren't captured in the AST, so the
3821       // check above can't see them. Check for them manually here.
3822       for (const Decl *Member : Dtor->getParent()->decls())
3823         if (isa<FieldDecl>(Member))
3824           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3825             return false;
3826       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3827         if (HasNonDllImportDtor(B.getType()))
3828           return false;
3829     }
3830   }
3831 
3832   // Inline builtins declaration must be emitted. They often are fortified
3833   // functions.
3834   if (F->isInlineBuiltinDeclaration())
3835     return true;
3836 
3837   // PR9614. Avoid cases where the source code is lying to us. An available
3838   // externally function should have an equivalent function somewhere else,
3839   // but a function that calls itself through asm label/`__builtin_` trickery is
3840   // clearly not equivalent to the real implementation.
3841   // This happens in glibc's btowc and in some configure checks.
3842   return !isTriviallyRecursive(F);
3843 }
3844 
3845 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3846   return CodeGenOpts.OptimizationLevel > 0;
3847 }
3848 
3849 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3850                                                        llvm::GlobalValue *GV) {
3851   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3852 
3853   if (FD->isCPUSpecificMultiVersion()) {
3854     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3855     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3856       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3857   } else if (FD->isTargetClonesMultiVersion()) {
3858     auto *Clone = FD->getAttr<TargetClonesAttr>();
3859     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3860       if (Clone->isFirstOfVersion(I))
3861         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3862     // Ensure that the resolver function is also emitted.
3863     GetOrCreateMultiVersionResolver(GD);
3864   } else
3865     EmitGlobalFunctionDefinition(GD, GV);
3866 }
3867 
3868 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3869   const auto *D = cast<ValueDecl>(GD.getDecl());
3870 
3871   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3872                                  Context.getSourceManager(),
3873                                  "Generating code for declaration");
3874 
3875   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3876     // At -O0, don't generate IR for functions with available_externally
3877     // linkage.
3878     if (!shouldEmitFunction(GD))
3879       return;
3880 
3881     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3882       std::string Name;
3883       llvm::raw_string_ostream OS(Name);
3884       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3885                                /*Qualified=*/true);
3886       return Name;
3887     });
3888 
3889     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3890       // Make sure to emit the definition(s) before we emit the thunks.
3891       // This is necessary for the generation of certain thunks.
3892       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3893         ABI->emitCXXStructor(GD);
3894       else if (FD->isMultiVersion())
3895         EmitMultiVersionFunctionDefinition(GD, GV);
3896       else
3897         EmitGlobalFunctionDefinition(GD, GV);
3898 
3899       if (Method->isVirtual())
3900         getVTables().EmitThunks(GD);
3901 
3902       return;
3903     }
3904 
3905     if (FD->isMultiVersion())
3906       return EmitMultiVersionFunctionDefinition(GD, GV);
3907     return EmitGlobalFunctionDefinition(GD, GV);
3908   }
3909 
3910   if (const auto *VD = dyn_cast<VarDecl>(D))
3911     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3912 
3913   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3914 }
3915 
3916 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3917                                                       llvm::Function *NewFn);
3918 
3919 static unsigned
3920 TargetMVPriority(const TargetInfo &TI,
3921                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3922   unsigned Priority = 0;
3923   unsigned NumFeatures = 0;
3924   for (StringRef Feat : RO.Conditions.Features) {
3925     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3926     NumFeatures++;
3927   }
3928 
3929   if (!RO.Conditions.Architecture.empty())
3930     Priority = std::max(
3931         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3932 
3933   Priority += TI.multiVersionFeatureCost() * NumFeatures;
3934 
3935   return Priority;
3936 }
3937 
3938 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3939 // TU can forward declare the function without causing problems.  Particularly
3940 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3941 // work with internal linkage functions, so that the same function name can be
3942 // used with internal linkage in multiple TUs.
3943 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3944                                                        GlobalDecl GD) {
3945   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3946   if (FD->getFormalLinkage() == InternalLinkage)
3947     return llvm::GlobalValue::InternalLinkage;
3948   return llvm::GlobalValue::WeakODRLinkage;
3949 }
3950 
3951 void CodeGenModule::emitMultiVersionFunctions() {
3952   std::vector<GlobalDecl> MVFuncsToEmit;
3953   MultiVersionFuncs.swap(MVFuncsToEmit);
3954   for (GlobalDecl GD : MVFuncsToEmit) {
3955     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3956     assert(FD && "Expected a FunctionDecl");
3957 
3958     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3959     if (FD->isTargetMultiVersion()) {
3960       getContext().forEachMultiversionedFunctionVersion(
3961           FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3962             GlobalDecl CurGD{
3963                 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3964             StringRef MangledName = getMangledName(CurGD);
3965             llvm::Constant *Func = GetGlobalValue(MangledName);
3966             if (!Func) {
3967               if (CurFD->isDefined()) {
3968                 EmitGlobalFunctionDefinition(CurGD, nullptr);
3969                 Func = GetGlobalValue(MangledName);
3970               } else {
3971                 const CGFunctionInfo &FI =
3972                     getTypes().arrangeGlobalDeclaration(GD);
3973                 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3974                 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3975                                          /*DontDefer=*/false, ForDefinition);
3976               }
3977               assert(Func && "This should have just been created");
3978             }
3979             if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) {
3980               const auto *TA = CurFD->getAttr<TargetAttr>();
3981               llvm::SmallVector<StringRef, 8> Feats;
3982               TA->getAddedFeatures(Feats);
3983               Options.emplace_back(cast<llvm::Function>(Func),
3984                                    TA->getArchitecture(), Feats);
3985             } else {
3986               const auto *TVA = CurFD->getAttr<TargetVersionAttr>();
3987               llvm::SmallVector<StringRef, 8> Feats;
3988               TVA->getFeatures(Feats);
3989               Options.emplace_back(cast<llvm::Function>(Func),
3990                                    /*Architecture*/ "", Feats);
3991             }
3992           });
3993     } else if (FD->isTargetClonesMultiVersion()) {
3994       const auto *TC = FD->getAttr<TargetClonesAttr>();
3995       for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3996            ++VersionIndex) {
3997         if (!TC->isFirstOfVersion(VersionIndex))
3998           continue;
3999         GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
4000                          VersionIndex};
4001         StringRef Version = TC->getFeatureStr(VersionIndex);
4002         StringRef MangledName = getMangledName(CurGD);
4003         llvm::Constant *Func = GetGlobalValue(MangledName);
4004         if (!Func) {
4005           if (FD->isDefined()) {
4006             EmitGlobalFunctionDefinition(CurGD, nullptr);
4007             Func = GetGlobalValue(MangledName);
4008           } else {
4009             const CGFunctionInfo &FI =
4010                 getTypes().arrangeGlobalDeclaration(CurGD);
4011             llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4012             Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4013                                      /*DontDefer=*/false, ForDefinition);
4014           }
4015           assert(Func && "This should have just been created");
4016         }
4017 
4018         StringRef Architecture;
4019         llvm::SmallVector<StringRef, 1> Feature;
4020 
4021         if (getTarget().getTriple().isAArch64()) {
4022           if (Version != "default") {
4023             llvm::SmallVector<StringRef, 8> VerFeats;
4024             Version.split(VerFeats, "+");
4025             for (auto &CurFeat : VerFeats)
4026               Feature.push_back(CurFeat.trim());
4027           }
4028         } else {
4029           if (Version.startswith("arch="))
4030             Architecture = Version.drop_front(sizeof("arch=") - 1);
4031           else if (Version != "default")
4032             Feature.push_back(Version);
4033         }
4034 
4035         Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
4036       }
4037     } else {
4038       assert(0 && "Expected a target or target_clones multiversion function");
4039       continue;
4040     }
4041 
4042     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4043     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
4044       ResolverConstant = IFunc->getResolver();
4045     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4046 
4047     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4048 
4049     if (supportsCOMDAT())
4050       ResolverFunc->setComdat(
4051           getModule().getOrInsertComdat(ResolverFunc->getName()));
4052 
4053     const TargetInfo &TI = getTarget();
4054     llvm::stable_sort(
4055         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
4056                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
4057           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
4058         });
4059     CodeGenFunction CGF(*this);
4060     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4061   }
4062 
4063   // Ensure that any additions to the deferred decls list caused by emitting a
4064   // variant are emitted.  This can happen when the variant itself is inline and
4065   // calls a function without linkage.
4066   if (!MVFuncsToEmit.empty())
4067     EmitDeferred();
4068 
4069   // Ensure that any additions to the multiversion funcs list from either the
4070   // deferred decls or the multiversion functions themselves are emitted.
4071   if (!MultiVersionFuncs.empty())
4072     emitMultiVersionFunctions();
4073 }
4074 
4075 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4076   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4077   assert(FD && "Not a FunctionDecl?");
4078   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4079   const auto *DD = FD->getAttr<CPUDispatchAttr>();
4080   assert(DD && "Not a cpu_dispatch Function?");
4081 
4082   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4083   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4084 
4085   StringRef ResolverName = getMangledName(GD);
4086   UpdateMultiVersionNames(GD, FD, ResolverName);
4087 
4088   llvm::Type *ResolverType;
4089   GlobalDecl ResolverGD;
4090   if (getTarget().supportsIFunc()) {
4091     ResolverType = llvm::FunctionType::get(
4092         llvm::PointerType::get(DeclTy,
4093                                getTypes().getTargetAddressSpace(FD->getType())),
4094         false);
4095   }
4096   else {
4097     ResolverType = DeclTy;
4098     ResolverGD = GD;
4099   }
4100 
4101   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4102       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4103   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4104   if (supportsCOMDAT())
4105     ResolverFunc->setComdat(
4106         getModule().getOrInsertComdat(ResolverFunc->getName()));
4107 
4108   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4109   const TargetInfo &Target = getTarget();
4110   unsigned Index = 0;
4111   for (const IdentifierInfo *II : DD->cpus()) {
4112     // Get the name of the target function so we can look it up/create it.
4113     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4114                               getCPUSpecificMangling(*this, II->getName());
4115 
4116     llvm::Constant *Func = GetGlobalValue(MangledName);
4117 
4118     if (!Func) {
4119       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4120       if (ExistingDecl.getDecl() &&
4121           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4122         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4123         Func = GetGlobalValue(MangledName);
4124       } else {
4125         if (!ExistingDecl.getDecl())
4126           ExistingDecl = GD.getWithMultiVersionIndex(Index);
4127 
4128       Func = GetOrCreateLLVMFunction(
4129           MangledName, DeclTy, ExistingDecl,
4130           /*ForVTable=*/false, /*DontDefer=*/true,
4131           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4132       }
4133     }
4134 
4135     llvm::SmallVector<StringRef, 32> Features;
4136     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4137     llvm::transform(Features, Features.begin(),
4138                     [](StringRef Str) { return Str.substr(1); });
4139     llvm::erase_if(Features, [&Target](StringRef Feat) {
4140       return !Target.validateCpuSupports(Feat);
4141     });
4142     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
4143     ++Index;
4144   }
4145 
4146   llvm::stable_sort(
4147       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
4148                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
4149         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
4150                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
4151       });
4152 
4153   // If the list contains multiple 'default' versions, such as when it contains
4154   // 'pentium' and 'generic', don't emit the call to the generic one (since we
4155   // always run on at least a 'pentium'). We do this by deleting the 'least
4156   // advanced' (read, lowest mangling letter).
4157   while (Options.size() > 1 &&
4158          llvm::X86::getCpuSupportsMask(
4159              (Options.end() - 2)->Conditions.Features) == 0) {
4160     StringRef LHSName = (Options.end() - 2)->Function->getName();
4161     StringRef RHSName = (Options.end() - 1)->Function->getName();
4162     if (LHSName.compare(RHSName) < 0)
4163       Options.erase(Options.end() - 2);
4164     else
4165       Options.erase(Options.end() - 1);
4166   }
4167 
4168   CodeGenFunction CGF(*this);
4169   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4170 
4171   if (getTarget().supportsIFunc()) {
4172     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4173     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4174 
4175     // Fix up function declarations that were created for cpu_specific before
4176     // cpu_dispatch was known
4177     if (!isa<llvm::GlobalIFunc>(IFunc)) {
4178       assert(cast<llvm::Function>(IFunc)->isDeclaration());
4179       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
4180                                            &getModule());
4181       GI->takeName(IFunc);
4182       IFunc->replaceAllUsesWith(GI);
4183       IFunc->eraseFromParent();
4184       IFunc = GI;
4185     }
4186 
4187     std::string AliasName = getMangledNameImpl(
4188         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4189     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4190     if (!AliasFunc) {
4191       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
4192                                            &getModule());
4193       SetCommonAttributes(GD, GA);
4194     }
4195   }
4196 }
4197 
4198 /// If a dispatcher for the specified mangled name is not in the module, create
4199 /// and return an llvm Function with the specified type.
4200 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4201   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4202   assert(FD && "Not a FunctionDecl?");
4203 
4204   std::string MangledName =
4205       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4206 
4207   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4208   // a separate resolver).
4209   std::string ResolverName = MangledName;
4210   if (getTarget().supportsIFunc())
4211     ResolverName += ".ifunc";
4212   else if (FD->isTargetMultiVersion())
4213     ResolverName += ".resolver";
4214 
4215   // If the resolver has already been created, just return it.
4216   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
4217     return ResolverGV;
4218 
4219   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4220   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4221 
4222   // The resolver needs to be created. For target and target_clones, defer
4223   // creation until the end of the TU.
4224   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4225     MultiVersionFuncs.push_back(GD);
4226 
4227   // For cpu_specific, don't create an ifunc yet because we don't know if the
4228   // cpu_dispatch will be emitted in this translation unit.
4229   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
4230     llvm::Type *ResolverType = llvm::FunctionType::get(
4231         llvm::PointerType::get(DeclTy,
4232                                getTypes().getTargetAddressSpace(FD->getType())),
4233         false);
4234     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4235         MangledName + ".resolver", ResolverType, GlobalDecl{},
4236         /*ForVTable=*/false);
4237     llvm::GlobalIFunc *GIF =
4238         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
4239                                   "", Resolver, &getModule());
4240     GIF->setName(ResolverName);
4241     SetCommonAttributes(FD, GIF);
4242 
4243     return GIF;
4244   }
4245 
4246   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4247       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4248   assert(isa<llvm::GlobalValue>(Resolver) &&
4249          "Resolver should be created for the first time");
4250   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4251   return Resolver;
4252 }
4253 
4254 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4255 /// module, create and return an llvm Function with the specified type. If there
4256 /// is something in the module with the specified name, return it potentially
4257 /// bitcasted to the right type.
4258 ///
4259 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4260 /// to set the attributes on the function when it is first created.
4261 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4262     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4263     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4264     ForDefinition_t IsForDefinition) {
4265   const Decl *D = GD.getDecl();
4266 
4267   // Any attempts to use a MultiVersion function should result in retrieving
4268   // the iFunc instead. Name Mangling will handle the rest of the changes.
4269   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4270     // For the device mark the function as one that should be emitted.
4271     if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4272         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4273         !DontDefer && !IsForDefinition) {
4274       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4275         GlobalDecl GDDef;
4276         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4277           GDDef = GlobalDecl(CD, GD.getCtorType());
4278         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4279           GDDef = GlobalDecl(DD, GD.getDtorType());
4280         else
4281           GDDef = GlobalDecl(FDDef);
4282         EmitGlobal(GDDef);
4283       }
4284     }
4285 
4286     if (FD->isMultiVersion()) {
4287       UpdateMultiVersionNames(GD, FD, MangledName);
4288       if (!IsForDefinition)
4289         return GetOrCreateMultiVersionResolver(GD);
4290     }
4291   }
4292 
4293   // Lookup the entry, lazily creating it if necessary.
4294   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4295   if (Entry) {
4296     if (WeakRefReferences.erase(Entry)) {
4297       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4298       if (FD && !FD->hasAttr<WeakAttr>())
4299         Entry->setLinkage(llvm::Function::ExternalLinkage);
4300     }
4301 
4302     // Handle dropped DLL attributes.
4303     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4304         !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
4305       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4306       setDSOLocal(Entry);
4307     }
4308 
4309     // If there are two attempts to define the same mangled name, issue an
4310     // error.
4311     if (IsForDefinition && !Entry->isDeclaration()) {
4312       GlobalDecl OtherGD;
4313       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4314       // to make sure that we issue an error only once.
4315       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4316           (GD.getCanonicalDecl().getDecl() !=
4317            OtherGD.getCanonicalDecl().getDecl()) &&
4318           DiagnosedConflictingDefinitions.insert(GD).second) {
4319         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4320             << MangledName;
4321         getDiags().Report(OtherGD.getDecl()->getLocation(),
4322                           diag::note_previous_definition);
4323       }
4324     }
4325 
4326     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4327         (Entry->getValueType() == Ty)) {
4328       return Entry;
4329     }
4330 
4331     // Make sure the result is of the correct type.
4332     // (If function is requested for a definition, we always need to create a new
4333     // function, not just return a bitcast.)
4334     if (!IsForDefinition)
4335       return llvm::ConstantExpr::getBitCast(
4336           Entry, Ty->getPointerTo(Entry->getAddressSpace()));
4337   }
4338 
4339   // This function doesn't have a complete type (for example, the return
4340   // type is an incomplete struct). Use a fake type instead, and make
4341   // sure not to try to set attributes.
4342   bool IsIncompleteFunction = false;
4343 
4344   llvm::FunctionType *FTy;
4345   if (isa<llvm::FunctionType>(Ty)) {
4346     FTy = cast<llvm::FunctionType>(Ty);
4347   } else {
4348     FTy = llvm::FunctionType::get(VoidTy, false);
4349     IsIncompleteFunction = true;
4350   }
4351 
4352   llvm::Function *F =
4353       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4354                              Entry ? StringRef() : MangledName, &getModule());
4355 
4356   // If we already created a function with the same mangled name (but different
4357   // type) before, take its name and add it to the list of functions to be
4358   // replaced with F at the end of CodeGen.
4359   //
4360   // This happens if there is a prototype for a function (e.g. "int f()") and
4361   // then a definition of a different type (e.g. "int f(int x)").
4362   if (Entry) {
4363     F->takeName(Entry);
4364 
4365     // This might be an implementation of a function without a prototype, in
4366     // which case, try to do special replacement of calls which match the new
4367     // prototype.  The really key thing here is that we also potentially drop
4368     // arguments from the call site so as to make a direct call, which makes the
4369     // inliner happier and suppresses a number of optimizer warnings (!) about
4370     // dropping arguments.
4371     if (!Entry->use_empty()) {
4372       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4373       Entry->removeDeadConstantUsers();
4374     }
4375 
4376     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
4377         F, Entry->getValueType()->getPointerTo(Entry->getAddressSpace()));
4378     addGlobalValReplacement(Entry, BC);
4379   }
4380 
4381   assert(F->getName() == MangledName && "name was uniqued!");
4382   if (D)
4383     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4384   if (ExtraAttrs.hasFnAttrs()) {
4385     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4386     F->addFnAttrs(B);
4387   }
4388 
4389   if (!DontDefer) {
4390     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4391     // each other bottoming out with the base dtor.  Therefore we emit non-base
4392     // dtors on usage, even if there is no dtor definition in the TU.
4393     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4394         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4395                                            GD.getDtorType()))
4396       addDeferredDeclToEmit(GD);
4397 
4398     // This is the first use or definition of a mangled name.  If there is a
4399     // deferred decl with this name, remember that we need to emit it at the end
4400     // of the file.
4401     auto DDI = DeferredDecls.find(MangledName);
4402     if (DDI != DeferredDecls.end()) {
4403       // Move the potentially referenced deferred decl to the
4404       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4405       // don't need it anymore).
4406       addDeferredDeclToEmit(DDI->second);
4407       DeferredDecls.erase(DDI);
4408 
4409       // Otherwise, there are cases we have to worry about where we're
4410       // using a declaration for which we must emit a definition but where
4411       // we might not find a top-level definition:
4412       //   - member functions defined inline in their classes
4413       //   - friend functions defined inline in some class
4414       //   - special member functions with implicit definitions
4415       // If we ever change our AST traversal to walk into class methods,
4416       // this will be unnecessary.
4417       //
4418       // We also don't emit a definition for a function if it's going to be an
4419       // entry in a vtable, unless it's already marked as used.
4420     } else if (getLangOpts().CPlusPlus && D) {
4421       // Look for a declaration that's lexically in a record.
4422       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4423            FD = FD->getPreviousDecl()) {
4424         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4425           if (FD->doesThisDeclarationHaveABody()) {
4426             addDeferredDeclToEmit(GD.getWithDecl(FD));
4427             break;
4428           }
4429         }
4430       }
4431     }
4432   }
4433 
4434   // Make sure the result is of the requested type.
4435   if (!IsIncompleteFunction) {
4436     assert(F->getFunctionType() == Ty);
4437     return F;
4438   }
4439 
4440   return llvm::ConstantExpr::getBitCast(F,
4441                                         Ty->getPointerTo(F->getAddressSpace()));
4442 }
4443 
4444 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4445 /// non-null, then this function will use the specified type if it has to
4446 /// create it (this occurs when we see a definition of the function).
4447 llvm::Constant *
4448 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4449                                  bool DontDefer,
4450                                  ForDefinition_t IsForDefinition) {
4451   // If there was no specific requested type, just convert it now.
4452   if (!Ty) {
4453     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4454     Ty = getTypes().ConvertType(FD->getType());
4455   }
4456 
4457   // Devirtualized destructor calls may come through here instead of via
4458   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4459   // of the complete destructor when necessary.
4460   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4461     if (getTarget().getCXXABI().isMicrosoft() &&
4462         GD.getDtorType() == Dtor_Complete &&
4463         DD->getParent()->getNumVBases() == 0)
4464       GD = GlobalDecl(DD, Dtor_Base);
4465   }
4466 
4467   StringRef MangledName = getMangledName(GD);
4468   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4469                                     /*IsThunk=*/false, llvm::AttributeList(),
4470                                     IsForDefinition);
4471   // Returns kernel handle for HIP kernel stub function.
4472   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4473       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4474     auto *Handle = getCUDARuntime().getKernelHandle(
4475         cast<llvm::Function>(F->stripPointerCasts()), GD);
4476     if (IsForDefinition)
4477       return F;
4478     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
4479   }
4480   return F;
4481 }
4482 
4483 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4484   llvm::GlobalValue *F =
4485       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4486 
4487   return llvm::ConstantExpr::getBitCast(
4488       llvm::NoCFIValue::get(F),
4489       llvm::Type::getInt8PtrTy(VMContext, F->getAddressSpace()));
4490 }
4491 
4492 static const FunctionDecl *
4493 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4494   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4495   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4496 
4497   IdentifierInfo &CII = C.Idents.get(Name);
4498   for (const auto *Result : DC->lookup(&CII))
4499     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4500       return FD;
4501 
4502   if (!C.getLangOpts().CPlusPlus)
4503     return nullptr;
4504 
4505   // Demangle the premangled name from getTerminateFn()
4506   IdentifierInfo &CXXII =
4507       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4508           ? C.Idents.get("terminate")
4509           : C.Idents.get(Name);
4510 
4511   for (const auto &N : {"__cxxabiv1", "std"}) {
4512     IdentifierInfo &NS = C.Idents.get(N);
4513     for (const auto *Result : DC->lookup(&NS)) {
4514       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4515       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4516         for (const auto *Result : LSD->lookup(&NS))
4517           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4518             break;
4519 
4520       if (ND)
4521         for (const auto *Result : ND->lookup(&CXXII))
4522           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4523             return FD;
4524     }
4525   }
4526 
4527   return nullptr;
4528 }
4529 
4530 /// CreateRuntimeFunction - Create a new runtime function with the specified
4531 /// type and name.
4532 llvm::FunctionCallee
4533 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4534                                      llvm::AttributeList ExtraAttrs, bool Local,
4535                                      bool AssumeConvergent) {
4536   if (AssumeConvergent) {
4537     ExtraAttrs =
4538         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4539   }
4540 
4541   llvm::Constant *C =
4542       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4543                               /*DontDefer=*/false, /*IsThunk=*/false,
4544                               ExtraAttrs);
4545 
4546   if (auto *F = dyn_cast<llvm::Function>(C)) {
4547     if (F->empty()) {
4548       F->setCallingConv(getRuntimeCC());
4549 
4550       // In Windows Itanium environments, try to mark runtime functions
4551       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4552       // will link their standard library statically or dynamically. Marking
4553       // functions imported when they are not imported can cause linker errors
4554       // and warnings.
4555       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4556           !getCodeGenOpts().LTOVisibilityPublicStd) {
4557         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4558         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4559           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4560           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4561         }
4562       }
4563       setDSOLocal(F);
4564     }
4565   }
4566 
4567   return {FTy, C};
4568 }
4569 
4570 /// isTypeConstant - Determine whether an object of this type can be emitted
4571 /// as a constant.
4572 ///
4573 /// If ExcludeCtor is true, the duration when the object's constructor runs
4574 /// will not be considered. The caller will need to verify that the object is
4575 /// not written to during its construction. ExcludeDtor works similarly.
4576 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor,
4577                                    bool ExcludeDtor) {
4578   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
4579     return false;
4580 
4581   if (Context.getLangOpts().CPlusPlus) {
4582     if (const CXXRecordDecl *Record
4583           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
4584       return ExcludeCtor && !Record->hasMutableFields() &&
4585              (Record->hasTrivialDestructor() || ExcludeDtor);
4586   }
4587 
4588   return true;
4589 }
4590 
4591 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4592 /// create and return an llvm GlobalVariable with the specified type and address
4593 /// space. If there is something in the module with the specified name, return
4594 /// it potentially bitcasted to the right type.
4595 ///
4596 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4597 /// to set the attributes on the global when it is first created.
4598 ///
4599 /// If IsForDefinition is true, it is guaranteed that an actual global with
4600 /// type Ty will be returned, not conversion of a variable with the same
4601 /// mangled name but some other type.
4602 llvm::Constant *
4603 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4604                                      LangAS AddrSpace, const VarDecl *D,
4605                                      ForDefinition_t IsForDefinition) {
4606   // Lookup the entry, lazily creating it if necessary.
4607   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4608   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4609   if (Entry) {
4610     if (WeakRefReferences.erase(Entry)) {
4611       if (D && !D->hasAttr<WeakAttr>())
4612         Entry->setLinkage(llvm::Function::ExternalLinkage);
4613     }
4614 
4615     // Handle dropped DLL attributes.
4616     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4617         !shouldMapVisibilityToDLLExport(D))
4618       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4619 
4620     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4621       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4622 
4623     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4624       return Entry;
4625 
4626     // If there are two attempts to define the same mangled name, issue an
4627     // error.
4628     if (IsForDefinition && !Entry->isDeclaration()) {
4629       GlobalDecl OtherGD;
4630       const VarDecl *OtherD;
4631 
4632       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4633       // to make sure that we issue an error only once.
4634       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4635           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4636           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4637           OtherD->hasInit() &&
4638           DiagnosedConflictingDefinitions.insert(D).second) {
4639         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4640             << MangledName;
4641         getDiags().Report(OtherGD.getDecl()->getLocation(),
4642                           diag::note_previous_definition);
4643       }
4644     }
4645 
4646     // Make sure the result is of the correct type.
4647     if (Entry->getType()->getAddressSpace() != TargetAS) {
4648       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4649                                                   Ty->getPointerTo(TargetAS));
4650     }
4651 
4652     // (If global is requested for a definition, we always need to create a new
4653     // global, not just return a bitcast.)
4654     if (!IsForDefinition)
4655       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4656   }
4657 
4658   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4659 
4660   auto *GV = new llvm::GlobalVariable(
4661       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4662       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4663       getContext().getTargetAddressSpace(DAddrSpace));
4664 
4665   // If we already created a global with the same mangled name (but different
4666   // type) before, take its name and remove it from its parent.
4667   if (Entry) {
4668     GV->takeName(Entry);
4669 
4670     if (!Entry->use_empty()) {
4671       llvm::Constant *NewPtrForOldDecl =
4672           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4673       Entry->replaceAllUsesWith(NewPtrForOldDecl);
4674     }
4675 
4676     Entry->eraseFromParent();
4677   }
4678 
4679   // This is the first use or definition of a mangled name.  If there is a
4680   // deferred decl with this name, remember that we need to emit it at the end
4681   // of the file.
4682   auto DDI = DeferredDecls.find(MangledName);
4683   if (DDI != DeferredDecls.end()) {
4684     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4685     // list, and remove it from DeferredDecls (since we don't need it anymore).
4686     addDeferredDeclToEmit(DDI->second);
4687     DeferredDecls.erase(DDI);
4688   }
4689 
4690   // Handle things which are present even on external declarations.
4691   if (D) {
4692     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4693       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4694 
4695     // FIXME: This code is overly simple and should be merged with other global
4696     // handling.
4697     GV->setConstant(isTypeConstant(D->getType(), false, false));
4698 
4699     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4700 
4701     setLinkageForGV(GV, D);
4702 
4703     if (D->getTLSKind()) {
4704       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4705         CXXThreadLocals.push_back(D);
4706       setTLSMode(GV, *D);
4707     }
4708 
4709     setGVProperties(GV, D);
4710 
4711     // If required by the ABI, treat declarations of static data members with
4712     // inline initializers as definitions.
4713     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4714       EmitGlobalVarDefinition(D);
4715     }
4716 
4717     // Emit section information for extern variables.
4718     if (D->hasExternalStorage()) {
4719       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4720         GV->setSection(SA->getName());
4721     }
4722 
4723     // Handle XCore specific ABI requirements.
4724     if (getTriple().getArch() == llvm::Triple::xcore &&
4725         D->getLanguageLinkage() == CLanguageLinkage &&
4726         D->getType().isConstant(Context) &&
4727         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4728       GV->setSection(".cp.rodata");
4729 
4730     // Check if we a have a const declaration with an initializer, we may be
4731     // able to emit it as available_externally to expose it's value to the
4732     // optimizer.
4733     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4734         D->getType().isConstQualified() && !GV->hasInitializer() &&
4735         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4736       const auto *Record =
4737           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4738       bool HasMutableFields = Record && Record->hasMutableFields();
4739       if (!HasMutableFields) {
4740         const VarDecl *InitDecl;
4741         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4742         if (InitExpr) {
4743           ConstantEmitter emitter(*this);
4744           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4745           if (Init) {
4746             auto *InitType = Init->getType();
4747             if (GV->getValueType() != InitType) {
4748               // The type of the initializer does not match the definition.
4749               // This happens when an initializer has a different type from
4750               // the type of the global (because of padding at the end of a
4751               // structure for instance).
4752               GV->setName(StringRef());
4753               // Make a new global with the correct type, this is now guaranteed
4754               // to work.
4755               auto *NewGV = cast<llvm::GlobalVariable>(
4756                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4757                       ->stripPointerCasts());
4758 
4759               // Erase the old global, since it is no longer used.
4760               GV->eraseFromParent();
4761               GV = NewGV;
4762             } else {
4763               GV->setInitializer(Init);
4764               GV->setConstant(true);
4765               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4766             }
4767             emitter.finalize(GV);
4768           }
4769         }
4770       }
4771     }
4772   }
4773 
4774   if (D &&
4775       D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
4776     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4777     // External HIP managed variables needed to be recorded for transformation
4778     // in both device and host compilations.
4779     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4780         D->hasExternalStorage())
4781       getCUDARuntime().handleVarRegistration(D, *GV);
4782   }
4783 
4784   if (D)
4785     SanitizerMD->reportGlobal(GV, *D);
4786 
4787   LangAS ExpectedAS =
4788       D ? D->getType().getAddressSpace()
4789         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4790   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4791   if (DAddrSpace != ExpectedAS) {
4792     return getTargetCodeGenInfo().performAddrSpaceCast(
4793         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4794   }
4795 
4796   return GV;
4797 }
4798 
4799 llvm::Constant *
4800 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4801   const Decl *D = GD.getDecl();
4802 
4803   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4804     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4805                                 /*DontDefer=*/false, IsForDefinition);
4806 
4807   if (isa<CXXMethodDecl>(D)) {
4808     auto FInfo =
4809         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4810     auto Ty = getTypes().GetFunctionType(*FInfo);
4811     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4812                              IsForDefinition);
4813   }
4814 
4815   if (isa<FunctionDecl>(D)) {
4816     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4817     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4818     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4819                              IsForDefinition);
4820   }
4821 
4822   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4823 }
4824 
4825 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4826     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4827     llvm::Align Alignment) {
4828   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4829   llvm::GlobalVariable *OldGV = nullptr;
4830 
4831   if (GV) {
4832     // Check if the variable has the right type.
4833     if (GV->getValueType() == Ty)
4834       return GV;
4835 
4836     // Because C++ name mangling, the only way we can end up with an already
4837     // existing global with the same name is if it has been declared extern "C".
4838     assert(GV->isDeclaration() && "Declaration has wrong type!");
4839     OldGV = GV;
4840   }
4841 
4842   // Create a new variable.
4843   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4844                                 Linkage, nullptr, Name);
4845 
4846   if (OldGV) {
4847     // Replace occurrences of the old variable if needed.
4848     GV->takeName(OldGV);
4849 
4850     if (!OldGV->use_empty()) {
4851       llvm::Constant *NewPtrForOldDecl =
4852       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4853       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4854     }
4855 
4856     OldGV->eraseFromParent();
4857   }
4858 
4859   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4860       !GV->hasAvailableExternallyLinkage())
4861     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4862 
4863   GV->setAlignment(Alignment);
4864 
4865   return GV;
4866 }
4867 
4868 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4869 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4870 /// then it will be created with the specified type instead of whatever the
4871 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4872 /// that an actual global with type Ty will be returned, not conversion of a
4873 /// variable with the same mangled name but some other type.
4874 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4875                                                   llvm::Type *Ty,
4876                                            ForDefinition_t IsForDefinition) {
4877   assert(D->hasGlobalStorage() && "Not a global variable");
4878   QualType ASTTy = D->getType();
4879   if (!Ty)
4880     Ty = getTypes().ConvertTypeForMem(ASTTy);
4881 
4882   StringRef MangledName = getMangledName(D);
4883   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4884                                IsForDefinition);
4885 }
4886 
4887 /// CreateRuntimeVariable - Create a new runtime global variable with the
4888 /// specified type and name.
4889 llvm::Constant *
4890 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4891                                      StringRef Name) {
4892   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4893                                                        : LangAS::Default;
4894   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4895   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4896   return Ret;
4897 }
4898 
4899 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4900   assert(!D->getInit() && "Cannot emit definite definitions here!");
4901 
4902   StringRef MangledName = getMangledName(D);
4903   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4904 
4905   // We already have a definition, not declaration, with the same mangled name.
4906   // Emitting of declaration is not required (and actually overwrites emitted
4907   // definition).
4908   if (GV && !GV->isDeclaration())
4909     return;
4910 
4911   // If we have not seen a reference to this variable yet, place it into the
4912   // deferred declarations table to be emitted if needed later.
4913   if (!MustBeEmitted(D) && !GV) {
4914       DeferredDecls[MangledName] = D;
4915       return;
4916   }
4917 
4918   // The tentative definition is the only definition.
4919   EmitGlobalVarDefinition(D);
4920 }
4921 
4922 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4923   EmitExternalVarDeclaration(D);
4924 }
4925 
4926 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4927   return Context.toCharUnitsFromBits(
4928       getDataLayout().getTypeStoreSizeInBits(Ty));
4929 }
4930 
4931 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4932   if (LangOpts.OpenCL) {
4933     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4934     assert(AS == LangAS::opencl_global ||
4935            AS == LangAS::opencl_global_device ||
4936            AS == LangAS::opencl_global_host ||
4937            AS == LangAS::opencl_constant ||
4938            AS == LangAS::opencl_local ||
4939            AS >= LangAS::FirstTargetAddressSpace);
4940     return AS;
4941   }
4942 
4943   if (LangOpts.SYCLIsDevice &&
4944       (!D || D->getType().getAddressSpace() == LangAS::Default))
4945     return LangAS::sycl_global;
4946 
4947   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4948     if (D) {
4949       if (D->hasAttr<CUDAConstantAttr>())
4950         return LangAS::cuda_constant;
4951       if (D->hasAttr<CUDASharedAttr>())
4952         return LangAS::cuda_shared;
4953       if (D->hasAttr<CUDADeviceAttr>())
4954         return LangAS::cuda_device;
4955       if (D->getType().isConstQualified())
4956         return LangAS::cuda_constant;
4957     }
4958     return LangAS::cuda_device;
4959   }
4960 
4961   if (LangOpts.OpenMP) {
4962     LangAS AS;
4963     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4964       return AS;
4965   }
4966   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4967 }
4968 
4969 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4970   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4971   if (LangOpts.OpenCL)
4972     return LangAS::opencl_constant;
4973   if (LangOpts.SYCLIsDevice)
4974     return LangAS::sycl_global;
4975   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4976     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4977     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4978     // with OpVariable instructions with Generic storage class which is not
4979     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4980     // UniformConstant storage class is not viable as pointers to it may not be
4981     // casted to Generic pointers which are used to model HIP's "flat" pointers.
4982     return LangAS::cuda_device;
4983   if (auto AS = getTarget().getConstantAddressSpace())
4984     return *AS;
4985   return LangAS::Default;
4986 }
4987 
4988 // In address space agnostic languages, string literals are in default address
4989 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4990 // emitted in constant address space in LLVM IR. To be consistent with other
4991 // parts of AST, string literal global variables in constant address space
4992 // need to be casted to default address space before being put into address
4993 // map and referenced by other part of CodeGen.
4994 // In OpenCL, string literals are in constant address space in AST, therefore
4995 // they should not be casted to default address space.
4996 static llvm::Constant *
4997 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4998                                        llvm::GlobalVariable *GV) {
4999   llvm::Constant *Cast = GV;
5000   if (!CGM.getLangOpts().OpenCL) {
5001     auto AS = CGM.GetGlobalConstantAddressSpace();
5002     if (AS != LangAS::Default)
5003       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5004           CGM, GV, AS, LangAS::Default,
5005           GV->getValueType()->getPointerTo(
5006               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5007   }
5008   return Cast;
5009 }
5010 
5011 template<typename SomeDecl>
5012 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5013                                                llvm::GlobalValue *GV) {
5014   if (!getLangOpts().CPlusPlus)
5015     return;
5016 
5017   // Must have 'used' attribute, or else inline assembly can't rely on
5018   // the name existing.
5019   if (!D->template hasAttr<UsedAttr>())
5020     return;
5021 
5022   // Must have internal linkage and an ordinary name.
5023   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
5024     return;
5025 
5026   // Must be in an extern "C" context. Entities declared directly within
5027   // a record are not extern "C" even if the record is in such a context.
5028   const SomeDecl *First = D->getFirstDecl();
5029   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5030     return;
5031 
5032   // OK, this is an internal linkage entity inside an extern "C" linkage
5033   // specification. Make a note of that so we can give it the "expected"
5034   // mangled name if nothing else is using that name.
5035   std::pair<StaticExternCMap::iterator, bool> R =
5036       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5037 
5038   // If we have multiple internal linkage entities with the same name
5039   // in extern "C" regions, none of them gets that name.
5040   if (!R.second)
5041     R.first->second = nullptr;
5042 }
5043 
5044 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5045   if (!CGM.supportsCOMDAT())
5046     return false;
5047 
5048   if (D.hasAttr<SelectAnyAttr>())
5049     return true;
5050 
5051   GVALinkage Linkage;
5052   if (auto *VD = dyn_cast<VarDecl>(&D))
5053     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5054   else
5055     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5056 
5057   switch (Linkage) {
5058   case GVA_Internal:
5059   case GVA_AvailableExternally:
5060   case GVA_StrongExternal:
5061     return false;
5062   case GVA_DiscardableODR:
5063   case GVA_StrongODR:
5064     return true;
5065   }
5066   llvm_unreachable("No such linkage");
5067 }
5068 
5069 bool CodeGenModule::supportsCOMDAT() const {
5070   return getTriple().supportsCOMDAT();
5071 }
5072 
5073 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5074                                           llvm::GlobalObject &GO) {
5075   if (!shouldBeInCOMDAT(*this, D))
5076     return;
5077   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5078 }
5079 
5080 /// Pass IsTentative as true if you want to create a tentative definition.
5081 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5082                                             bool IsTentative) {
5083   // OpenCL global variables of sampler type are translated to function calls,
5084   // therefore no need to be translated.
5085   QualType ASTTy = D->getType();
5086   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5087     return;
5088 
5089   // If this is OpenMP device, check if it is legal to emit this global
5090   // normally.
5091   if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5092       OpenMPRuntime->emitTargetGlobalVariable(D))
5093     return;
5094 
5095   llvm::TrackingVH<llvm::Constant> Init;
5096   bool NeedsGlobalCtor = false;
5097   // Whether the definition of the variable is available externally.
5098   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5099   // since this is the job for its original source.
5100   bool IsDefinitionAvailableExternally =
5101       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5102   bool NeedsGlobalDtor =
5103       !IsDefinitionAvailableExternally &&
5104       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5105 
5106   const VarDecl *InitDecl;
5107   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5108 
5109   std::optional<ConstantEmitter> emitter;
5110 
5111   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5112   // as part of their declaration."  Sema has already checked for
5113   // error cases, so we just need to set Init to UndefValue.
5114   bool IsCUDASharedVar =
5115       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5116   // Shadows of initialized device-side global variables are also left
5117   // undefined.
5118   // Managed Variables should be initialized on both host side and device side.
5119   bool IsCUDAShadowVar =
5120       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5121       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5122        D->hasAttr<CUDASharedAttr>());
5123   bool IsCUDADeviceShadowVar =
5124       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5125       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5126        D->getType()->isCUDADeviceBuiltinTextureType());
5127   if (getLangOpts().CUDA &&
5128       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5129     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5130   else if (D->hasAttr<LoaderUninitializedAttr>())
5131     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5132   else if (!InitExpr) {
5133     // This is a tentative definition; tentative definitions are
5134     // implicitly initialized with { 0 }.
5135     //
5136     // Note that tentative definitions are only emitted at the end of
5137     // a translation unit, so they should never have incomplete
5138     // type. In addition, EmitTentativeDefinition makes sure that we
5139     // never attempt to emit a tentative definition if a real one
5140     // exists. A use may still exists, however, so we still may need
5141     // to do a RAUW.
5142     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5143     Init = EmitNullConstant(D->getType());
5144   } else {
5145     initializedGlobalDecl = GlobalDecl(D);
5146     emitter.emplace(*this);
5147     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5148     if (!Initializer) {
5149       QualType T = InitExpr->getType();
5150       if (D->getType()->isReferenceType())
5151         T = D->getType();
5152 
5153       if (getLangOpts().CPlusPlus) {
5154         if (InitDecl->hasFlexibleArrayInit(getContext()))
5155           ErrorUnsupported(D, "flexible array initializer");
5156         Init = EmitNullConstant(T);
5157 
5158         if (!IsDefinitionAvailableExternally)
5159           NeedsGlobalCtor = true;
5160       } else {
5161         ErrorUnsupported(D, "static initializer");
5162         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
5163       }
5164     } else {
5165       Init = Initializer;
5166       // We don't need an initializer, so remove the entry for the delayed
5167       // initializer position (just in case this entry was delayed) if we
5168       // also don't need to register a destructor.
5169       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5170         DelayedCXXInitPosition.erase(D);
5171 
5172 #ifndef NDEBUG
5173       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5174                           InitDecl->getFlexibleArrayInitChars(getContext());
5175       CharUnits CstSize = CharUnits::fromQuantity(
5176           getDataLayout().getTypeAllocSize(Init->getType()));
5177       assert(VarSize == CstSize && "Emitted constant has unexpected size");
5178 #endif
5179     }
5180   }
5181 
5182   llvm::Type* InitType = Init->getType();
5183   llvm::Constant *Entry =
5184       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5185 
5186   // Strip off pointer casts if we got them.
5187   Entry = Entry->stripPointerCasts();
5188 
5189   // Entry is now either a Function or GlobalVariable.
5190   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5191 
5192   // We have a definition after a declaration with the wrong type.
5193   // We must make a new GlobalVariable* and update everything that used OldGV
5194   // (a declaration or tentative definition) with the new GlobalVariable*
5195   // (which will be a definition).
5196   //
5197   // This happens if there is a prototype for a global (e.g.
5198   // "extern int x[];") and then a definition of a different type (e.g.
5199   // "int x[10];"). This also happens when an initializer has a different type
5200   // from the type of the global (this happens with unions).
5201   if (!GV || GV->getValueType() != InitType ||
5202       GV->getType()->getAddressSpace() !=
5203           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5204 
5205     // Move the old entry aside so that we'll create a new one.
5206     Entry->setName(StringRef());
5207 
5208     // Make a new global with the correct type, this is now guaranteed to work.
5209     GV = cast<llvm::GlobalVariable>(
5210         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5211             ->stripPointerCasts());
5212 
5213     // Replace all uses of the old global with the new global
5214     llvm::Constant *NewPtrForOldDecl =
5215         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5216                                                              Entry->getType());
5217     Entry->replaceAllUsesWith(NewPtrForOldDecl);
5218 
5219     // Erase the old global, since it is no longer used.
5220     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5221   }
5222 
5223   MaybeHandleStaticInExternC(D, GV);
5224 
5225   if (D->hasAttr<AnnotateAttr>())
5226     AddGlobalAnnotations(D, GV);
5227 
5228   // Set the llvm linkage type as appropriate.
5229   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D);
5230 
5231   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5232   // the device. [...]"
5233   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5234   // __device__, declares a variable that: [...]
5235   // Is accessible from all the threads within the grid and from the host
5236   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5237   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5238   if (LangOpts.CUDA) {
5239     if (LangOpts.CUDAIsDevice) {
5240       if (Linkage != llvm::GlobalValue::InternalLinkage &&
5241           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5242            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5243            D->getType()->isCUDADeviceBuiltinTextureType()))
5244         GV->setExternallyInitialized(true);
5245     } else {
5246       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5247     }
5248     getCUDARuntime().handleVarRegistration(D, *GV);
5249   }
5250 
5251   GV->setInitializer(Init);
5252   if (emitter)
5253     emitter->finalize(GV);
5254 
5255   // If it is safe to mark the global 'constant', do so now.
5256   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
5257                   isTypeConstant(D->getType(), true, true));
5258 
5259   // If it is in a read-only section, mark it 'constant'.
5260   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5261     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5262     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5263       GV->setConstant(true);
5264   }
5265 
5266   CharUnits AlignVal = getContext().getDeclAlign(D);
5267   // Check for alignment specifed in an 'omp allocate' directive.
5268   if (std::optional<CharUnits> AlignValFromAllocate =
5269           getOMPAllocateAlignment(D))
5270     AlignVal = *AlignValFromAllocate;
5271   GV->setAlignment(AlignVal.getAsAlign());
5272 
5273   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5274   // function is only defined alongside the variable, not also alongside
5275   // callers. Normally, all accesses to a thread_local go through the
5276   // thread-wrapper in order to ensure initialization has occurred, underlying
5277   // variable will never be used other than the thread-wrapper, so it can be
5278   // converted to internal linkage.
5279   //
5280   // However, if the variable has the 'constinit' attribute, it _can_ be
5281   // referenced directly, without calling the thread-wrapper, so the linkage
5282   // must not be changed.
5283   //
5284   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5285   // weak or linkonce, the de-duplication semantics are important to preserve,
5286   // so we don't change the linkage.
5287   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5288       Linkage == llvm::GlobalValue::ExternalLinkage &&
5289       Context.getTargetInfo().getTriple().isOSDarwin() &&
5290       !D->hasAttr<ConstInitAttr>())
5291     Linkage = llvm::GlobalValue::InternalLinkage;
5292 
5293   GV->setLinkage(Linkage);
5294   if (D->hasAttr<DLLImportAttr>())
5295     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5296   else if (D->hasAttr<DLLExportAttr>())
5297     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5298   else
5299     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5300 
5301   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5302     // common vars aren't constant even if declared const.
5303     GV->setConstant(false);
5304     // Tentative definition of global variables may be initialized with
5305     // non-zero null pointers. In this case they should have weak linkage
5306     // since common linkage must have zero initializer and must not have
5307     // explicit section therefore cannot have non-zero initial value.
5308     if (!GV->getInitializer()->isNullValue())
5309       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5310   }
5311 
5312   setNonAliasAttributes(D, GV);
5313 
5314   if (D->getTLSKind() && !GV->isThreadLocal()) {
5315     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5316       CXXThreadLocals.push_back(D);
5317     setTLSMode(GV, *D);
5318   }
5319 
5320   maybeSetTrivialComdat(*D, *GV);
5321 
5322   // Emit the initializer function if necessary.
5323   if (NeedsGlobalCtor || NeedsGlobalDtor)
5324     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5325 
5326   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5327 
5328   // Emit global variable debug information.
5329   if (CGDebugInfo *DI = getModuleDebugInfo())
5330     if (getCodeGenOpts().hasReducedDebugInfo())
5331       DI->EmitGlobalVariable(GV, D);
5332 }
5333 
5334 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5335   if (CGDebugInfo *DI = getModuleDebugInfo())
5336     if (getCodeGenOpts().hasReducedDebugInfo()) {
5337       QualType ASTTy = D->getType();
5338       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5339       llvm::Constant *GV =
5340           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5341       DI->EmitExternalVariable(
5342           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5343     }
5344 }
5345 
5346 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5347                                       CodeGenModule &CGM, const VarDecl *D,
5348                                       bool NoCommon) {
5349   // Don't give variables common linkage if -fno-common was specified unless it
5350   // was overridden by a NoCommon attribute.
5351   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5352     return true;
5353 
5354   // C11 6.9.2/2:
5355   //   A declaration of an identifier for an object that has file scope without
5356   //   an initializer, and without a storage-class specifier or with the
5357   //   storage-class specifier static, constitutes a tentative definition.
5358   if (D->getInit() || D->hasExternalStorage())
5359     return true;
5360 
5361   // A variable cannot be both common and exist in a section.
5362   if (D->hasAttr<SectionAttr>())
5363     return true;
5364 
5365   // A variable cannot be both common and exist in a section.
5366   // We don't try to determine which is the right section in the front-end.
5367   // If no specialized section name is applicable, it will resort to default.
5368   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5369       D->hasAttr<PragmaClangDataSectionAttr>() ||
5370       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5371       D->hasAttr<PragmaClangRodataSectionAttr>())
5372     return true;
5373 
5374   // Thread local vars aren't considered common linkage.
5375   if (D->getTLSKind())
5376     return true;
5377 
5378   // Tentative definitions marked with WeakImportAttr are true definitions.
5379   if (D->hasAttr<WeakImportAttr>())
5380     return true;
5381 
5382   // A variable cannot be both common and exist in a comdat.
5383   if (shouldBeInCOMDAT(CGM, *D))
5384     return true;
5385 
5386   // Declarations with a required alignment do not have common linkage in MSVC
5387   // mode.
5388   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5389     if (D->hasAttr<AlignedAttr>())
5390       return true;
5391     QualType VarType = D->getType();
5392     if (Context.isAlignmentRequired(VarType))
5393       return true;
5394 
5395     if (const auto *RT = VarType->getAs<RecordType>()) {
5396       const RecordDecl *RD = RT->getDecl();
5397       for (const FieldDecl *FD : RD->fields()) {
5398         if (FD->isBitField())
5399           continue;
5400         if (FD->hasAttr<AlignedAttr>())
5401           return true;
5402         if (Context.isAlignmentRequired(FD->getType()))
5403           return true;
5404       }
5405     }
5406   }
5407 
5408   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5409   // common symbols, so symbols with greater alignment requirements cannot be
5410   // common.
5411   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5412   // alignments for common symbols via the aligncomm directive, so this
5413   // restriction only applies to MSVC environments.
5414   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5415       Context.getTypeAlignIfKnown(D->getType()) >
5416           Context.toBits(CharUnits::fromQuantity(32)))
5417     return true;
5418 
5419   return false;
5420 }
5421 
5422 llvm::GlobalValue::LinkageTypes
5423 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5424                                            GVALinkage Linkage) {
5425   if (Linkage == GVA_Internal)
5426     return llvm::Function::InternalLinkage;
5427 
5428   if (D->hasAttr<WeakAttr>())
5429     return llvm::GlobalVariable::WeakAnyLinkage;
5430 
5431   if (const auto *FD = D->getAsFunction())
5432     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5433       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5434 
5435   // We are guaranteed to have a strong definition somewhere else,
5436   // so we can use available_externally linkage.
5437   if (Linkage == GVA_AvailableExternally)
5438     return llvm::GlobalValue::AvailableExternallyLinkage;
5439 
5440   // Note that Apple's kernel linker doesn't support symbol
5441   // coalescing, so we need to avoid linkonce and weak linkages there.
5442   // Normally, this means we just map to internal, but for explicit
5443   // instantiations we'll map to external.
5444 
5445   // In C++, the compiler has to emit a definition in every translation unit
5446   // that references the function.  We should use linkonce_odr because
5447   // a) if all references in this translation unit are optimized away, we
5448   // don't need to codegen it.  b) if the function persists, it needs to be
5449   // merged with other definitions. c) C++ has the ODR, so we know the
5450   // definition is dependable.
5451   if (Linkage == GVA_DiscardableODR)
5452     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5453                                             : llvm::Function::InternalLinkage;
5454 
5455   // An explicit instantiation of a template has weak linkage, since
5456   // explicit instantiations can occur in multiple translation units
5457   // and must all be equivalent. However, we are not allowed to
5458   // throw away these explicit instantiations.
5459   //
5460   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5461   // so say that CUDA templates are either external (for kernels) or internal.
5462   // This lets llvm perform aggressive inter-procedural optimizations. For
5463   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5464   // therefore we need to follow the normal linkage paradigm.
5465   if (Linkage == GVA_StrongODR) {
5466     if (getLangOpts().AppleKext)
5467       return llvm::Function::ExternalLinkage;
5468     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5469         !getLangOpts().GPURelocatableDeviceCode)
5470       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5471                                           : llvm::Function::InternalLinkage;
5472     return llvm::Function::WeakODRLinkage;
5473   }
5474 
5475   // C++ doesn't have tentative definitions and thus cannot have common
5476   // linkage.
5477   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5478       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5479                                  CodeGenOpts.NoCommon))
5480     return llvm::GlobalVariable::CommonLinkage;
5481 
5482   // selectany symbols are externally visible, so use weak instead of
5483   // linkonce.  MSVC optimizes away references to const selectany globals, so
5484   // all definitions should be the same and ODR linkage should be used.
5485   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5486   if (D->hasAttr<SelectAnyAttr>())
5487     return llvm::GlobalVariable::WeakODRLinkage;
5488 
5489   // Otherwise, we have strong external linkage.
5490   assert(Linkage == GVA_StrongExternal);
5491   return llvm::GlobalVariable::ExternalLinkage;
5492 }
5493 
5494 llvm::GlobalValue::LinkageTypes
5495 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5496   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5497   return getLLVMLinkageForDeclarator(VD, Linkage);
5498 }
5499 
5500 /// Replace the uses of a function that was declared with a non-proto type.
5501 /// We want to silently drop extra arguments from call sites
5502 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5503                                           llvm::Function *newFn) {
5504   // Fast path.
5505   if (old->use_empty()) return;
5506 
5507   llvm::Type *newRetTy = newFn->getReturnType();
5508   SmallVector<llvm::Value*, 4> newArgs;
5509 
5510   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5511          ui != ue; ) {
5512     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5513     llvm::User *user = use->getUser();
5514 
5515     // Recognize and replace uses of bitcasts.  Most calls to
5516     // unprototyped functions will use bitcasts.
5517     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5518       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5519         replaceUsesOfNonProtoConstant(bitcast, newFn);
5520       continue;
5521     }
5522 
5523     // Recognize calls to the function.
5524     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5525     if (!callSite) continue;
5526     if (!callSite->isCallee(&*use))
5527       continue;
5528 
5529     // If the return types don't match exactly, then we can't
5530     // transform this call unless it's dead.
5531     if (callSite->getType() != newRetTy && !callSite->use_empty())
5532       continue;
5533 
5534     // Get the call site's attribute list.
5535     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5536     llvm::AttributeList oldAttrs = callSite->getAttributes();
5537 
5538     // If the function was passed too few arguments, don't transform.
5539     unsigned newNumArgs = newFn->arg_size();
5540     if (callSite->arg_size() < newNumArgs)
5541       continue;
5542 
5543     // If extra arguments were passed, we silently drop them.
5544     // If any of the types mismatch, we don't transform.
5545     unsigned argNo = 0;
5546     bool dontTransform = false;
5547     for (llvm::Argument &A : newFn->args()) {
5548       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5549         dontTransform = true;
5550         break;
5551       }
5552 
5553       // Add any parameter attributes.
5554       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5555       argNo++;
5556     }
5557     if (dontTransform)
5558       continue;
5559 
5560     // Okay, we can transform this.  Create the new call instruction and copy
5561     // over the required information.
5562     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5563 
5564     // Copy over any operand bundles.
5565     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5566     callSite->getOperandBundlesAsDefs(newBundles);
5567 
5568     llvm::CallBase *newCall;
5569     if (isa<llvm::CallInst>(callSite)) {
5570       newCall =
5571           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5572     } else {
5573       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5574       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5575                                          oldInvoke->getUnwindDest(), newArgs,
5576                                          newBundles, "", callSite);
5577     }
5578     newArgs.clear(); // for the next iteration
5579 
5580     if (!newCall->getType()->isVoidTy())
5581       newCall->takeName(callSite);
5582     newCall->setAttributes(
5583         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5584                                  oldAttrs.getRetAttrs(), newArgAttrs));
5585     newCall->setCallingConv(callSite->getCallingConv());
5586 
5587     // Finally, remove the old call, replacing any uses with the new one.
5588     if (!callSite->use_empty())
5589       callSite->replaceAllUsesWith(newCall);
5590 
5591     // Copy debug location attached to CI.
5592     if (callSite->getDebugLoc())
5593       newCall->setDebugLoc(callSite->getDebugLoc());
5594 
5595     callSite->eraseFromParent();
5596   }
5597 }
5598 
5599 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5600 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5601 /// existing call uses of the old function in the module, this adjusts them to
5602 /// call the new function directly.
5603 ///
5604 /// This is not just a cleanup: the always_inline pass requires direct calls to
5605 /// functions to be able to inline them.  If there is a bitcast in the way, it
5606 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5607 /// run at -O0.
5608 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5609                                                       llvm::Function *NewFn) {
5610   // If we're redefining a global as a function, don't transform it.
5611   if (!isa<llvm::Function>(Old)) return;
5612 
5613   replaceUsesOfNonProtoConstant(Old, NewFn);
5614 }
5615 
5616 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5617   auto DK = VD->isThisDeclarationADefinition();
5618   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5619     return;
5620 
5621   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5622   // If we have a definition, this might be a deferred decl. If the
5623   // instantiation is explicit, make sure we emit it at the end.
5624   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5625     GetAddrOfGlobalVar(VD);
5626 
5627   EmitTopLevelDecl(VD);
5628 }
5629 
5630 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5631                                                  llvm::GlobalValue *GV) {
5632   const auto *D = cast<FunctionDecl>(GD.getDecl());
5633 
5634   // Compute the function info and LLVM type.
5635   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5636   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5637 
5638   // Get or create the prototype for the function.
5639   if (!GV || (GV->getValueType() != Ty))
5640     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5641                                                    /*DontDefer=*/true,
5642                                                    ForDefinition));
5643 
5644   // Already emitted.
5645   if (!GV->isDeclaration())
5646     return;
5647 
5648   // We need to set linkage and visibility on the function before
5649   // generating code for it because various parts of IR generation
5650   // want to propagate this information down (e.g. to local static
5651   // declarations).
5652   auto *Fn = cast<llvm::Function>(GV);
5653   setFunctionLinkage(GD, Fn);
5654 
5655   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5656   setGVProperties(Fn, GD);
5657 
5658   MaybeHandleStaticInExternC(D, Fn);
5659 
5660   maybeSetTrivialComdat(*D, *Fn);
5661 
5662   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5663 
5664   setNonAliasAttributes(GD, Fn);
5665   SetLLVMFunctionAttributesForDefinition(D, Fn);
5666 
5667   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5668     AddGlobalCtor(Fn, CA->getPriority());
5669   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5670     AddGlobalDtor(Fn, DA->getPriority(), true);
5671   if (D->hasAttr<AnnotateAttr>())
5672     AddGlobalAnnotations(D, Fn);
5673 }
5674 
5675 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5676   const auto *D = cast<ValueDecl>(GD.getDecl());
5677   const AliasAttr *AA = D->getAttr<AliasAttr>();
5678   assert(AA && "Not an alias?");
5679 
5680   StringRef MangledName = getMangledName(GD);
5681 
5682   if (AA->getAliasee() == MangledName) {
5683     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5684     return;
5685   }
5686 
5687   // If there is a definition in the module, then it wins over the alias.
5688   // This is dubious, but allow it to be safe.  Just ignore the alias.
5689   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5690   if (Entry && !Entry->isDeclaration())
5691     return;
5692 
5693   Aliases.push_back(GD);
5694 
5695   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5696 
5697   // Create a reference to the named value.  This ensures that it is emitted
5698   // if a deferred decl.
5699   llvm::Constant *Aliasee;
5700   llvm::GlobalValue::LinkageTypes LT;
5701   if (isa<llvm::FunctionType>(DeclTy)) {
5702     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5703                                       /*ForVTable=*/false);
5704     LT = getFunctionLinkage(GD);
5705   } else {
5706     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5707                                     /*D=*/nullptr);
5708     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5709       LT = getLLVMLinkageVarDefinition(VD);
5710     else
5711       LT = getFunctionLinkage(GD);
5712   }
5713 
5714   // Create the new alias itself, but don't set a name yet.
5715   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5716   auto *GA =
5717       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5718 
5719   if (Entry) {
5720     if (GA->getAliasee() == Entry) {
5721       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5722       return;
5723     }
5724 
5725     assert(Entry->isDeclaration());
5726 
5727     // If there is a declaration in the module, then we had an extern followed
5728     // by the alias, as in:
5729     //   extern int test6();
5730     //   ...
5731     //   int test6() __attribute__((alias("test7")));
5732     //
5733     // Remove it and replace uses of it with the alias.
5734     GA->takeName(Entry);
5735 
5736     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5737                                                           Entry->getType()));
5738     Entry->eraseFromParent();
5739   } else {
5740     GA->setName(MangledName);
5741   }
5742 
5743   // Set attributes which are particular to an alias; this is a
5744   // specialization of the attributes which may be set on a global
5745   // variable/function.
5746   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5747       D->isWeakImported()) {
5748     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5749   }
5750 
5751   if (const auto *VD = dyn_cast<VarDecl>(D))
5752     if (VD->getTLSKind())
5753       setTLSMode(GA, *VD);
5754 
5755   SetCommonAttributes(GD, GA);
5756 
5757   // Emit global alias debug information.
5758   if (isa<VarDecl>(D))
5759     if (CGDebugInfo *DI = getModuleDebugInfo())
5760       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
5761 }
5762 
5763 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5764   const auto *D = cast<ValueDecl>(GD.getDecl());
5765   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5766   assert(IFA && "Not an ifunc?");
5767 
5768   StringRef MangledName = getMangledName(GD);
5769 
5770   if (IFA->getResolver() == MangledName) {
5771     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5772     return;
5773   }
5774 
5775   // Report an error if some definition overrides ifunc.
5776   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5777   if (Entry && !Entry->isDeclaration()) {
5778     GlobalDecl OtherGD;
5779     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5780         DiagnosedConflictingDefinitions.insert(GD).second) {
5781       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5782           << MangledName;
5783       Diags.Report(OtherGD.getDecl()->getLocation(),
5784                    diag::note_previous_definition);
5785     }
5786     return;
5787   }
5788 
5789   Aliases.push_back(GD);
5790 
5791   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5792   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5793   llvm::Constant *Resolver =
5794       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5795                               /*ForVTable=*/false);
5796   llvm::GlobalIFunc *GIF =
5797       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5798                                 "", Resolver, &getModule());
5799   if (Entry) {
5800     if (GIF->getResolver() == Entry) {
5801       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5802       return;
5803     }
5804     assert(Entry->isDeclaration());
5805 
5806     // If there is a declaration in the module, then we had an extern followed
5807     // by the ifunc, as in:
5808     //   extern int test();
5809     //   ...
5810     //   int test() __attribute__((ifunc("resolver")));
5811     //
5812     // Remove it and replace uses of it with the ifunc.
5813     GIF->takeName(Entry);
5814 
5815     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5816                                                           Entry->getType()));
5817     Entry->eraseFromParent();
5818   } else
5819     GIF->setName(MangledName);
5820 
5821   SetCommonAttributes(GD, GIF);
5822 }
5823 
5824 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5825                                             ArrayRef<llvm::Type*> Tys) {
5826   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5827                                          Tys);
5828 }
5829 
5830 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5831 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5832                          const StringLiteral *Literal, bool TargetIsLSB,
5833                          bool &IsUTF16, unsigned &StringLength) {
5834   StringRef String = Literal->getString();
5835   unsigned NumBytes = String.size();
5836 
5837   // Check for simple case.
5838   if (!Literal->containsNonAsciiOrNull()) {
5839     StringLength = NumBytes;
5840     return *Map.insert(std::make_pair(String, nullptr)).first;
5841   }
5842 
5843   // Otherwise, convert the UTF8 literals into a string of shorts.
5844   IsUTF16 = true;
5845 
5846   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5847   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5848   llvm::UTF16 *ToPtr = &ToBuf[0];
5849 
5850   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5851                                  ToPtr + NumBytes, llvm::strictConversion);
5852 
5853   // ConvertUTF8toUTF16 returns the length in ToPtr.
5854   StringLength = ToPtr - &ToBuf[0];
5855 
5856   // Add an explicit null.
5857   *ToPtr = 0;
5858   return *Map.insert(std::make_pair(
5859                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5860                                    (StringLength + 1) * 2),
5861                          nullptr)).first;
5862 }
5863 
5864 ConstantAddress
5865 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5866   unsigned StringLength = 0;
5867   bool isUTF16 = false;
5868   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5869       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5870                                getDataLayout().isLittleEndian(), isUTF16,
5871                                StringLength);
5872 
5873   if (auto *C = Entry.second)
5874     return ConstantAddress(
5875         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5876 
5877   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5878   llvm::Constant *Zeros[] = { Zero, Zero };
5879 
5880   const ASTContext &Context = getContext();
5881   const llvm::Triple &Triple = getTriple();
5882 
5883   const auto CFRuntime = getLangOpts().CFRuntime;
5884   const bool IsSwiftABI =
5885       static_cast<unsigned>(CFRuntime) >=
5886       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5887   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5888 
5889   // If we don't already have it, get __CFConstantStringClassReference.
5890   if (!CFConstantStringClassRef) {
5891     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5892     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5893     Ty = llvm::ArrayType::get(Ty, 0);
5894 
5895     switch (CFRuntime) {
5896     default: break;
5897     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
5898     case LangOptions::CoreFoundationABI::Swift5_0:
5899       CFConstantStringClassName =
5900           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5901                               : "$s10Foundation19_NSCFConstantStringCN";
5902       Ty = IntPtrTy;
5903       break;
5904     case LangOptions::CoreFoundationABI::Swift4_2:
5905       CFConstantStringClassName =
5906           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5907                               : "$S10Foundation19_NSCFConstantStringCN";
5908       Ty = IntPtrTy;
5909       break;
5910     case LangOptions::CoreFoundationABI::Swift4_1:
5911       CFConstantStringClassName =
5912           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5913                               : "__T010Foundation19_NSCFConstantStringCN";
5914       Ty = IntPtrTy;
5915       break;
5916     }
5917 
5918     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5919 
5920     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5921       llvm::GlobalValue *GV = nullptr;
5922 
5923       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5924         IdentifierInfo &II = Context.Idents.get(GV->getName());
5925         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5926         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5927 
5928         const VarDecl *VD = nullptr;
5929         for (const auto *Result : DC->lookup(&II))
5930           if ((VD = dyn_cast<VarDecl>(Result)))
5931             break;
5932 
5933         if (Triple.isOSBinFormatELF()) {
5934           if (!VD)
5935             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5936         } else {
5937           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5938           if (!VD || !VD->hasAttr<DLLExportAttr>())
5939             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5940           else
5941             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5942         }
5943 
5944         setDSOLocal(GV);
5945       }
5946     }
5947 
5948     // Decay array -> ptr
5949     CFConstantStringClassRef =
5950         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5951                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5952   }
5953 
5954   QualType CFTy = Context.getCFConstantStringType();
5955 
5956   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5957 
5958   ConstantInitBuilder Builder(*this);
5959   auto Fields = Builder.beginStruct(STy);
5960 
5961   // Class pointer.
5962   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5963 
5964   // Flags.
5965   if (IsSwiftABI) {
5966     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5967     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5968   } else {
5969     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5970   }
5971 
5972   // String pointer.
5973   llvm::Constant *C = nullptr;
5974   if (isUTF16) {
5975     auto Arr = llvm::ArrayRef(
5976         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5977         Entry.first().size() / 2);
5978     C = llvm::ConstantDataArray::get(VMContext, Arr);
5979   } else {
5980     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5981   }
5982 
5983   // Note: -fwritable-strings doesn't make the backing store strings of
5984   // CFStrings writable. (See <rdar://problem/10657500>)
5985   auto *GV =
5986       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5987                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5988   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5989   // Don't enforce the target's minimum global alignment, since the only use
5990   // of the string is via this class initializer.
5991   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5992                             : Context.getTypeAlignInChars(Context.CharTy);
5993   GV->setAlignment(Align.getAsAlign());
5994 
5995   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5996   // Without it LLVM can merge the string with a non unnamed_addr one during
5997   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5998   if (Triple.isOSBinFormatMachO())
5999     GV->setSection(isUTF16 ? "__TEXT,__ustring"
6000                            : "__TEXT,__cstring,cstring_literals");
6001   // Make sure the literal ends up in .rodata to allow for safe ICF and for
6002   // the static linker to adjust permissions to read-only later on.
6003   else if (Triple.isOSBinFormatELF())
6004     GV->setSection(".rodata");
6005 
6006   // String.
6007   llvm::Constant *Str =
6008       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
6009 
6010   if (isUTF16)
6011     // Cast the UTF16 string to the correct type.
6012     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
6013   Fields.add(Str);
6014 
6015   // String length.
6016   llvm::IntegerType *LengthTy =
6017       llvm::IntegerType::get(getModule().getContext(),
6018                              Context.getTargetInfo().getLongWidth());
6019   if (IsSwiftABI) {
6020     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6021         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6022       LengthTy = Int32Ty;
6023     else
6024       LengthTy = IntPtrTy;
6025   }
6026   Fields.addInt(LengthTy, StringLength);
6027 
6028   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6029   // properly aligned on 32-bit platforms.
6030   CharUnits Alignment =
6031       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6032 
6033   // The struct.
6034   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6035                                     /*isConstant=*/false,
6036                                     llvm::GlobalVariable::PrivateLinkage);
6037   GV->addAttribute("objc_arc_inert");
6038   switch (Triple.getObjectFormat()) {
6039   case llvm::Triple::UnknownObjectFormat:
6040     llvm_unreachable("unknown file format");
6041   case llvm::Triple::DXContainer:
6042   case llvm::Triple::GOFF:
6043   case llvm::Triple::SPIRV:
6044   case llvm::Triple::XCOFF:
6045     llvm_unreachable("unimplemented");
6046   case llvm::Triple::COFF:
6047   case llvm::Triple::ELF:
6048   case llvm::Triple::Wasm:
6049     GV->setSection("cfstring");
6050     break;
6051   case llvm::Triple::MachO:
6052     GV->setSection("__DATA,__cfstring");
6053     break;
6054   }
6055   Entry.second = GV;
6056 
6057   return ConstantAddress(GV, GV->getValueType(), Alignment);
6058 }
6059 
6060 bool CodeGenModule::getExpressionLocationsEnabled() const {
6061   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6062 }
6063 
6064 QualType CodeGenModule::getObjCFastEnumerationStateType() {
6065   if (ObjCFastEnumerationStateType.isNull()) {
6066     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6067     D->startDefinition();
6068 
6069     QualType FieldTypes[] = {
6070       Context.UnsignedLongTy,
6071       Context.getPointerType(Context.getObjCIdType()),
6072       Context.getPointerType(Context.UnsignedLongTy),
6073       Context.getConstantArrayType(Context.UnsignedLongTy,
6074                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
6075     };
6076 
6077     for (size_t i = 0; i < 4; ++i) {
6078       FieldDecl *Field = FieldDecl::Create(Context,
6079                                            D,
6080                                            SourceLocation(),
6081                                            SourceLocation(), nullptr,
6082                                            FieldTypes[i], /*TInfo=*/nullptr,
6083                                            /*BitWidth=*/nullptr,
6084                                            /*Mutable=*/false,
6085                                            ICIS_NoInit);
6086       Field->setAccess(AS_public);
6087       D->addDecl(Field);
6088     }
6089 
6090     D->completeDefinition();
6091     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6092   }
6093 
6094   return ObjCFastEnumerationStateType;
6095 }
6096 
6097 llvm::Constant *
6098 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6099   assert(!E->getType()->isPointerType() && "Strings are always arrays");
6100 
6101   // Don't emit it as the address of the string, emit the string data itself
6102   // as an inline array.
6103   if (E->getCharByteWidth() == 1) {
6104     SmallString<64> Str(E->getString());
6105 
6106     // Resize the string to the right size, which is indicated by its type.
6107     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6108     assert(CAT && "String literal not of constant array type!");
6109     Str.resize(CAT->getSize().getZExtValue());
6110     return llvm::ConstantDataArray::getString(VMContext, Str, false);
6111   }
6112 
6113   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6114   llvm::Type *ElemTy = AType->getElementType();
6115   unsigned NumElements = AType->getNumElements();
6116 
6117   // Wide strings have either 2-byte or 4-byte elements.
6118   if (ElemTy->getPrimitiveSizeInBits() == 16) {
6119     SmallVector<uint16_t, 32> Elements;
6120     Elements.reserve(NumElements);
6121 
6122     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6123       Elements.push_back(E->getCodeUnit(i));
6124     Elements.resize(NumElements);
6125     return llvm::ConstantDataArray::get(VMContext, Elements);
6126   }
6127 
6128   assert(ElemTy->getPrimitiveSizeInBits() == 32);
6129   SmallVector<uint32_t, 32> Elements;
6130   Elements.reserve(NumElements);
6131 
6132   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6133     Elements.push_back(E->getCodeUnit(i));
6134   Elements.resize(NumElements);
6135   return llvm::ConstantDataArray::get(VMContext, Elements);
6136 }
6137 
6138 static llvm::GlobalVariable *
6139 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6140                       CodeGenModule &CGM, StringRef GlobalName,
6141                       CharUnits Alignment) {
6142   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6143       CGM.GetGlobalConstantAddressSpace());
6144 
6145   llvm::Module &M = CGM.getModule();
6146   // Create a global variable for this string
6147   auto *GV = new llvm::GlobalVariable(
6148       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6149       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6150   GV->setAlignment(Alignment.getAsAlign());
6151   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6152   if (GV->isWeakForLinker()) {
6153     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6154     GV->setComdat(M.getOrInsertComdat(GV->getName()));
6155   }
6156   CGM.setDSOLocal(GV);
6157 
6158   return GV;
6159 }
6160 
6161 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6162 /// constant array for the given string literal.
6163 ConstantAddress
6164 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6165                                                   StringRef Name) {
6166   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
6167 
6168   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6169   llvm::GlobalVariable **Entry = nullptr;
6170   if (!LangOpts.WritableStrings) {
6171     Entry = &ConstantStringMap[C];
6172     if (auto GV = *Entry) {
6173       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6174         GV->setAlignment(Alignment.getAsAlign());
6175       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6176                              GV->getValueType(), Alignment);
6177     }
6178   }
6179 
6180   SmallString<256> MangledNameBuffer;
6181   StringRef GlobalVariableName;
6182   llvm::GlobalValue::LinkageTypes LT;
6183 
6184   // Mangle the string literal if that's how the ABI merges duplicate strings.
6185   // Don't do it if they are writable, since we don't want writes in one TU to
6186   // affect strings in another.
6187   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6188       !LangOpts.WritableStrings) {
6189     llvm::raw_svector_ostream Out(MangledNameBuffer);
6190     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6191     LT = llvm::GlobalValue::LinkOnceODRLinkage;
6192     GlobalVariableName = MangledNameBuffer;
6193   } else {
6194     LT = llvm::GlobalValue::PrivateLinkage;
6195     GlobalVariableName = Name;
6196   }
6197 
6198   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6199 
6200   CGDebugInfo *DI = getModuleDebugInfo();
6201   if (DI && getCodeGenOpts().hasReducedDebugInfo())
6202     DI->AddStringLiteralDebugInfo(GV, S);
6203 
6204   if (Entry)
6205     *Entry = GV;
6206 
6207   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6208 
6209   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6210                          GV->getValueType(), Alignment);
6211 }
6212 
6213 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6214 /// array for the given ObjCEncodeExpr node.
6215 ConstantAddress
6216 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6217   std::string Str;
6218   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6219 
6220   return GetAddrOfConstantCString(Str);
6221 }
6222 
6223 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6224 /// the literal and a terminating '\0' character.
6225 /// The result has pointer to array type.
6226 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6227     const std::string &Str, const char *GlobalName) {
6228   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6229   CharUnits Alignment =
6230     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
6231 
6232   llvm::Constant *C =
6233       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6234 
6235   // Don't share any string literals if strings aren't constant.
6236   llvm::GlobalVariable **Entry = nullptr;
6237   if (!LangOpts.WritableStrings) {
6238     Entry = &ConstantStringMap[C];
6239     if (auto GV = *Entry) {
6240       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6241         GV->setAlignment(Alignment.getAsAlign());
6242       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6243                              GV->getValueType(), Alignment);
6244     }
6245   }
6246 
6247   // Get the default prefix if a name wasn't specified.
6248   if (!GlobalName)
6249     GlobalName = ".str";
6250   // Create a global variable for this.
6251   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6252                                   GlobalName, Alignment);
6253   if (Entry)
6254     *Entry = GV;
6255 
6256   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6257                          GV->getValueType(), Alignment);
6258 }
6259 
6260 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6261     const MaterializeTemporaryExpr *E, const Expr *Init) {
6262   assert((E->getStorageDuration() == SD_Static ||
6263           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6264   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6265 
6266   // If we're not materializing a subobject of the temporary, keep the
6267   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6268   QualType MaterializedType = Init->getType();
6269   if (Init == E->getSubExpr())
6270     MaterializedType = E->getType();
6271 
6272   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6273 
6274   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6275   if (!InsertResult.second) {
6276     // We've seen this before: either we already created it or we're in the
6277     // process of doing so.
6278     if (!InsertResult.first->second) {
6279       // We recursively re-entered this function, probably during emission of
6280       // the initializer. Create a placeholder. We'll clean this up in the
6281       // outer call, at the end of this function.
6282       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6283       InsertResult.first->second = new llvm::GlobalVariable(
6284           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6285           nullptr);
6286     }
6287     return ConstantAddress(InsertResult.first->second,
6288                            llvm::cast<llvm::GlobalVariable>(
6289                                InsertResult.first->second->stripPointerCasts())
6290                                ->getValueType(),
6291                            Align);
6292   }
6293 
6294   // FIXME: If an externally-visible declaration extends multiple temporaries,
6295   // we need to give each temporary the same name in every translation unit (and
6296   // we also need to make the temporaries externally-visible).
6297   SmallString<256> Name;
6298   llvm::raw_svector_ostream Out(Name);
6299   getCXXABI().getMangleContext().mangleReferenceTemporary(
6300       VD, E->getManglingNumber(), Out);
6301 
6302   APValue *Value = nullptr;
6303   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
6304     // If the initializer of the extending declaration is a constant
6305     // initializer, we should have a cached constant initializer for this
6306     // temporary. Note that this might have a different value from the value
6307     // computed by evaluating the initializer if the surrounding constant
6308     // expression modifies the temporary.
6309     Value = E->getOrCreateValue(false);
6310   }
6311 
6312   // Try evaluating it now, it might have a constant initializer.
6313   Expr::EvalResult EvalResult;
6314   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6315       !EvalResult.hasSideEffects())
6316     Value = &EvalResult.Val;
6317 
6318   LangAS AddrSpace =
6319       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
6320 
6321   std::optional<ConstantEmitter> emitter;
6322   llvm::Constant *InitialValue = nullptr;
6323   bool Constant = false;
6324   llvm::Type *Type;
6325   if (Value) {
6326     // The temporary has a constant initializer, use it.
6327     emitter.emplace(*this);
6328     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6329                                                MaterializedType);
6330     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/ Value,
6331                               /*ExcludeDtor*/ false);
6332     Type = InitialValue->getType();
6333   } else {
6334     // No initializer, the initialization will be provided when we
6335     // initialize the declaration which performed lifetime extension.
6336     Type = getTypes().ConvertTypeForMem(MaterializedType);
6337   }
6338 
6339   // Create a global variable for this lifetime-extended temporary.
6340   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6341   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6342     const VarDecl *InitVD;
6343     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6344         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6345       // Temporaries defined inside a class get linkonce_odr linkage because the
6346       // class can be defined in multiple translation units.
6347       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6348     } else {
6349       // There is no need for this temporary to have external linkage if the
6350       // VarDecl has external linkage.
6351       Linkage = llvm::GlobalVariable::InternalLinkage;
6352     }
6353   }
6354   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6355   auto *GV = new llvm::GlobalVariable(
6356       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6357       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6358   if (emitter) emitter->finalize(GV);
6359   // Don't assign dllimport or dllexport to local linkage globals.
6360   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6361     setGVProperties(GV, VD);
6362     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6363       // The reference temporary should never be dllexport.
6364       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6365   }
6366   GV->setAlignment(Align.getAsAlign());
6367   if (supportsCOMDAT() && GV->isWeakForLinker())
6368     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6369   if (VD->getTLSKind())
6370     setTLSMode(GV, *VD);
6371   llvm::Constant *CV = GV;
6372   if (AddrSpace != LangAS::Default)
6373     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6374         *this, GV, AddrSpace, LangAS::Default,
6375         Type->getPointerTo(
6376             getContext().getTargetAddressSpace(LangAS::Default)));
6377 
6378   // Update the map with the new temporary. If we created a placeholder above,
6379   // replace it with the new global now.
6380   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6381   if (Entry) {
6382     Entry->replaceAllUsesWith(
6383         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
6384     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6385   }
6386   Entry = CV;
6387 
6388   return ConstantAddress(CV, Type, Align);
6389 }
6390 
6391 /// EmitObjCPropertyImplementations - Emit information for synthesized
6392 /// properties for an implementation.
6393 void CodeGenModule::EmitObjCPropertyImplementations(const
6394                                                     ObjCImplementationDecl *D) {
6395   for (const auto *PID : D->property_impls()) {
6396     // Dynamic is just for type-checking.
6397     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6398       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6399 
6400       // Determine which methods need to be implemented, some may have
6401       // been overridden. Note that ::isPropertyAccessor is not the method
6402       // we want, that just indicates if the decl came from a
6403       // property. What we want to know is if the method is defined in
6404       // this implementation.
6405       auto *Getter = PID->getGetterMethodDecl();
6406       if (!Getter || Getter->isSynthesizedAccessorStub())
6407         CodeGenFunction(*this).GenerateObjCGetter(
6408             const_cast<ObjCImplementationDecl *>(D), PID);
6409       auto *Setter = PID->getSetterMethodDecl();
6410       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6411         CodeGenFunction(*this).GenerateObjCSetter(
6412                                  const_cast<ObjCImplementationDecl *>(D), PID);
6413     }
6414   }
6415 }
6416 
6417 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6418   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6419   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6420        ivar; ivar = ivar->getNextIvar())
6421     if (ivar->getType().isDestructedType())
6422       return true;
6423 
6424   return false;
6425 }
6426 
6427 static bool AllTrivialInitializers(CodeGenModule &CGM,
6428                                    ObjCImplementationDecl *D) {
6429   CodeGenFunction CGF(CGM);
6430   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6431        E = D->init_end(); B != E; ++B) {
6432     CXXCtorInitializer *CtorInitExp = *B;
6433     Expr *Init = CtorInitExp->getInit();
6434     if (!CGF.isTrivialInitializer(Init))
6435       return false;
6436   }
6437   return true;
6438 }
6439 
6440 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6441 /// for an implementation.
6442 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6443   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6444   if (needsDestructMethod(D)) {
6445     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6446     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6447     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6448         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6449         getContext().VoidTy, nullptr, D,
6450         /*isInstance=*/true, /*isVariadic=*/false,
6451         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6452         /*isImplicitlyDeclared=*/true,
6453         /*isDefined=*/false, ObjCMethodDecl::Required);
6454     D->addInstanceMethod(DTORMethod);
6455     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6456     D->setHasDestructors(true);
6457   }
6458 
6459   // If the implementation doesn't have any ivar initializers, we don't need
6460   // a .cxx_construct.
6461   if (D->getNumIvarInitializers() == 0 ||
6462       AllTrivialInitializers(*this, D))
6463     return;
6464 
6465   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6466   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6467   // The constructor returns 'self'.
6468   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6469       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6470       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6471       /*isVariadic=*/false,
6472       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6473       /*isImplicitlyDeclared=*/true,
6474       /*isDefined=*/false, ObjCMethodDecl::Required);
6475   D->addInstanceMethod(CTORMethod);
6476   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6477   D->setHasNonZeroConstructors(true);
6478 }
6479 
6480 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6481 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6482   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
6483       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
6484     ErrorUnsupported(LSD, "linkage spec");
6485     return;
6486   }
6487 
6488   EmitDeclContext(LSD);
6489 }
6490 
6491 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6492   // Device code should not be at top level.
6493   if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6494     return;
6495 
6496   std::unique_ptr<CodeGenFunction> &CurCGF =
6497       GlobalTopLevelStmtBlockInFlight.first;
6498 
6499   // We emitted a top-level stmt but after it there is initialization.
6500   // Stop squashing the top-level stmts into a single function.
6501   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6502     CurCGF->FinishFunction(D->getEndLoc());
6503     CurCGF = nullptr;
6504   }
6505 
6506   if (!CurCGF) {
6507     // void __stmts__N(void)
6508     // FIXME: Ask the ABI name mangler to pick a name.
6509     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6510     FunctionArgList Args;
6511     QualType RetTy = getContext().VoidTy;
6512     const CGFunctionInfo &FnInfo =
6513         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6514     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6515     llvm::Function *Fn = llvm::Function::Create(
6516         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6517 
6518     CurCGF.reset(new CodeGenFunction(*this));
6519     GlobalTopLevelStmtBlockInFlight.second = D;
6520     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6521                           D->getBeginLoc(), D->getBeginLoc());
6522     CXXGlobalInits.push_back(Fn);
6523   }
6524 
6525   CurCGF->EmitStmt(D->getStmt());
6526 }
6527 
6528 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6529   for (auto *I : DC->decls()) {
6530     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6531     // are themselves considered "top-level", so EmitTopLevelDecl on an
6532     // ObjCImplDecl does not recursively visit them. We need to do that in
6533     // case they're nested inside another construct (LinkageSpecDecl /
6534     // ExportDecl) that does stop them from being considered "top-level".
6535     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6536       for (auto *M : OID->methods())
6537         EmitTopLevelDecl(M);
6538     }
6539 
6540     EmitTopLevelDecl(I);
6541   }
6542 }
6543 
6544 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6545 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6546   // Ignore dependent declarations.
6547   if (D->isTemplated())
6548     return;
6549 
6550   // Consteval function shouldn't be emitted.
6551   if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6552     return;
6553 
6554   switch (D->getKind()) {
6555   case Decl::CXXConversion:
6556   case Decl::CXXMethod:
6557   case Decl::Function:
6558     EmitGlobal(cast<FunctionDecl>(D));
6559     // Always provide some coverage mapping
6560     // even for the functions that aren't emitted.
6561     AddDeferredUnusedCoverageMapping(D);
6562     break;
6563 
6564   case Decl::CXXDeductionGuide:
6565     // Function-like, but does not result in code emission.
6566     break;
6567 
6568   case Decl::Var:
6569   case Decl::Decomposition:
6570   case Decl::VarTemplateSpecialization:
6571     EmitGlobal(cast<VarDecl>(D));
6572     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6573       for (auto *B : DD->bindings())
6574         if (auto *HD = B->getHoldingVar())
6575           EmitGlobal(HD);
6576     break;
6577 
6578   // Indirect fields from global anonymous structs and unions can be
6579   // ignored; only the actual variable requires IR gen support.
6580   case Decl::IndirectField:
6581     break;
6582 
6583   // C++ Decls
6584   case Decl::Namespace:
6585     EmitDeclContext(cast<NamespaceDecl>(D));
6586     break;
6587   case Decl::ClassTemplateSpecialization: {
6588     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6589     if (CGDebugInfo *DI = getModuleDebugInfo())
6590       if (Spec->getSpecializationKind() ==
6591               TSK_ExplicitInstantiationDefinition &&
6592           Spec->hasDefinition())
6593         DI->completeTemplateDefinition(*Spec);
6594   } [[fallthrough]];
6595   case Decl::CXXRecord: {
6596     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6597     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6598       if (CRD->hasDefinition())
6599         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6600       if (auto *ES = D->getASTContext().getExternalSource())
6601         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6602           DI->completeUnusedClass(*CRD);
6603     }
6604     // Emit any static data members, they may be definitions.
6605     for (auto *I : CRD->decls())
6606       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6607         EmitTopLevelDecl(I);
6608     break;
6609   }
6610     // No code generation needed.
6611   case Decl::UsingShadow:
6612   case Decl::ClassTemplate:
6613   case Decl::VarTemplate:
6614   case Decl::Concept:
6615   case Decl::VarTemplatePartialSpecialization:
6616   case Decl::FunctionTemplate:
6617   case Decl::TypeAliasTemplate:
6618   case Decl::Block:
6619   case Decl::Empty:
6620   case Decl::Binding:
6621     break;
6622   case Decl::Using:          // using X; [C++]
6623     if (CGDebugInfo *DI = getModuleDebugInfo())
6624         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6625     break;
6626   case Decl::UsingEnum: // using enum X; [C++]
6627     if (CGDebugInfo *DI = getModuleDebugInfo())
6628       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6629     break;
6630   case Decl::NamespaceAlias:
6631     if (CGDebugInfo *DI = getModuleDebugInfo())
6632         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6633     break;
6634   case Decl::UsingDirective: // using namespace X; [C++]
6635     if (CGDebugInfo *DI = getModuleDebugInfo())
6636       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6637     break;
6638   case Decl::CXXConstructor:
6639     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6640     break;
6641   case Decl::CXXDestructor:
6642     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6643     break;
6644 
6645   case Decl::StaticAssert:
6646     // Nothing to do.
6647     break;
6648 
6649   // Objective-C Decls
6650 
6651   // Forward declarations, no (immediate) code generation.
6652   case Decl::ObjCInterface:
6653   case Decl::ObjCCategory:
6654     break;
6655 
6656   case Decl::ObjCProtocol: {
6657     auto *Proto = cast<ObjCProtocolDecl>(D);
6658     if (Proto->isThisDeclarationADefinition())
6659       ObjCRuntime->GenerateProtocol(Proto);
6660     break;
6661   }
6662 
6663   case Decl::ObjCCategoryImpl:
6664     // Categories have properties but don't support synthesize so we
6665     // can ignore them here.
6666     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6667     break;
6668 
6669   case Decl::ObjCImplementation: {
6670     auto *OMD = cast<ObjCImplementationDecl>(D);
6671     EmitObjCPropertyImplementations(OMD);
6672     EmitObjCIvarInitializations(OMD);
6673     ObjCRuntime->GenerateClass(OMD);
6674     // Emit global variable debug information.
6675     if (CGDebugInfo *DI = getModuleDebugInfo())
6676       if (getCodeGenOpts().hasReducedDebugInfo())
6677         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6678             OMD->getClassInterface()), OMD->getLocation());
6679     break;
6680   }
6681   case Decl::ObjCMethod: {
6682     auto *OMD = cast<ObjCMethodDecl>(D);
6683     // If this is not a prototype, emit the body.
6684     if (OMD->getBody())
6685       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6686     break;
6687   }
6688   case Decl::ObjCCompatibleAlias:
6689     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6690     break;
6691 
6692   case Decl::PragmaComment: {
6693     const auto *PCD = cast<PragmaCommentDecl>(D);
6694     switch (PCD->getCommentKind()) {
6695     case PCK_Unknown:
6696       llvm_unreachable("unexpected pragma comment kind");
6697     case PCK_Linker:
6698       AppendLinkerOptions(PCD->getArg());
6699       break;
6700     case PCK_Lib:
6701         AddDependentLib(PCD->getArg());
6702       break;
6703     case PCK_Compiler:
6704     case PCK_ExeStr:
6705     case PCK_User:
6706       break; // We ignore all of these.
6707     }
6708     break;
6709   }
6710 
6711   case Decl::PragmaDetectMismatch: {
6712     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6713     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6714     break;
6715   }
6716 
6717   case Decl::LinkageSpec:
6718     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6719     break;
6720 
6721   case Decl::FileScopeAsm: {
6722     // File-scope asm is ignored during device-side CUDA compilation.
6723     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6724       break;
6725     // File-scope asm is ignored during device-side OpenMP compilation.
6726     if (LangOpts.OpenMPIsTargetDevice)
6727       break;
6728     // File-scope asm is ignored during device-side SYCL compilation.
6729     if (LangOpts.SYCLIsDevice)
6730       break;
6731     auto *AD = cast<FileScopeAsmDecl>(D);
6732     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6733     break;
6734   }
6735 
6736   case Decl::TopLevelStmt:
6737     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
6738     break;
6739 
6740   case Decl::Import: {
6741     auto *Import = cast<ImportDecl>(D);
6742 
6743     // If we've already imported this module, we're done.
6744     if (!ImportedModules.insert(Import->getImportedModule()))
6745       break;
6746 
6747     // Emit debug information for direct imports.
6748     if (!Import->getImportedOwningModule()) {
6749       if (CGDebugInfo *DI = getModuleDebugInfo())
6750         DI->EmitImportDecl(*Import);
6751     }
6752 
6753     // For C++ standard modules we are done - we will call the module
6754     // initializer for imported modules, and that will likewise call those for
6755     // any imports it has.
6756     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
6757         !Import->getImportedOwningModule()->isModuleMapModule())
6758       break;
6759 
6760     // For clang C++ module map modules the initializers for sub-modules are
6761     // emitted here.
6762 
6763     // Find all of the submodules and emit the module initializers.
6764     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6765     SmallVector<clang::Module *, 16> Stack;
6766     Visited.insert(Import->getImportedModule());
6767     Stack.push_back(Import->getImportedModule());
6768 
6769     while (!Stack.empty()) {
6770       clang::Module *Mod = Stack.pop_back_val();
6771       if (!EmittedModuleInitializers.insert(Mod).second)
6772         continue;
6773 
6774       for (auto *D : Context.getModuleInitializers(Mod))
6775         EmitTopLevelDecl(D);
6776 
6777       // Visit the submodules of this module.
6778       for (auto *Submodule : Mod->submodules()) {
6779         // Skip explicit children; they need to be explicitly imported to emit
6780         // the initializers.
6781         if (Submodule->IsExplicit)
6782           continue;
6783 
6784         if (Visited.insert(Submodule).second)
6785           Stack.push_back(Submodule);
6786       }
6787     }
6788     break;
6789   }
6790 
6791   case Decl::Export:
6792     EmitDeclContext(cast<ExportDecl>(D));
6793     break;
6794 
6795   case Decl::OMPThreadPrivate:
6796     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6797     break;
6798 
6799   case Decl::OMPAllocate:
6800     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6801     break;
6802 
6803   case Decl::OMPDeclareReduction:
6804     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6805     break;
6806 
6807   case Decl::OMPDeclareMapper:
6808     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6809     break;
6810 
6811   case Decl::OMPRequires:
6812     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6813     break;
6814 
6815   case Decl::Typedef:
6816   case Decl::TypeAlias: // using foo = bar; [C++11]
6817     if (CGDebugInfo *DI = getModuleDebugInfo())
6818       DI->EmitAndRetainType(
6819           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6820     break;
6821 
6822   case Decl::Record:
6823     if (CGDebugInfo *DI = getModuleDebugInfo())
6824       if (cast<RecordDecl>(D)->getDefinition())
6825         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6826     break;
6827 
6828   case Decl::Enum:
6829     if (CGDebugInfo *DI = getModuleDebugInfo())
6830       if (cast<EnumDecl>(D)->getDefinition())
6831         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6832     break;
6833 
6834   case Decl::HLSLBuffer:
6835     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
6836     break;
6837 
6838   default:
6839     // Make sure we handled everything we should, every other kind is a
6840     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6841     // function. Need to recode Decl::Kind to do that easily.
6842     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6843     break;
6844   }
6845 }
6846 
6847 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6848   // Do we need to generate coverage mapping?
6849   if (!CodeGenOpts.CoverageMapping)
6850     return;
6851   switch (D->getKind()) {
6852   case Decl::CXXConversion:
6853   case Decl::CXXMethod:
6854   case Decl::Function:
6855   case Decl::ObjCMethod:
6856   case Decl::CXXConstructor:
6857   case Decl::CXXDestructor: {
6858     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6859       break;
6860     SourceManager &SM = getContext().getSourceManager();
6861     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6862       break;
6863     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6864     if (I == DeferredEmptyCoverageMappingDecls.end())
6865       DeferredEmptyCoverageMappingDecls[D] = true;
6866     break;
6867   }
6868   default:
6869     break;
6870   };
6871 }
6872 
6873 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6874   // Do we need to generate coverage mapping?
6875   if (!CodeGenOpts.CoverageMapping)
6876     return;
6877   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6878     if (Fn->isTemplateInstantiation())
6879       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6880   }
6881   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6882   if (I == DeferredEmptyCoverageMappingDecls.end())
6883     DeferredEmptyCoverageMappingDecls[D] = false;
6884   else
6885     I->second = false;
6886 }
6887 
6888 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6889   // We call takeVector() here to avoid use-after-free.
6890   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6891   // we deserialize function bodies to emit coverage info for them, and that
6892   // deserializes more declarations. How should we handle that case?
6893   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6894     if (!Entry.second)
6895       continue;
6896     const Decl *D = Entry.first;
6897     switch (D->getKind()) {
6898     case Decl::CXXConversion:
6899     case Decl::CXXMethod:
6900     case Decl::Function:
6901     case Decl::ObjCMethod: {
6902       CodeGenPGO PGO(*this);
6903       GlobalDecl GD(cast<FunctionDecl>(D));
6904       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6905                                   getFunctionLinkage(GD));
6906       break;
6907     }
6908     case Decl::CXXConstructor: {
6909       CodeGenPGO PGO(*this);
6910       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6911       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6912                                   getFunctionLinkage(GD));
6913       break;
6914     }
6915     case Decl::CXXDestructor: {
6916       CodeGenPGO PGO(*this);
6917       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6918       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6919                                   getFunctionLinkage(GD));
6920       break;
6921     }
6922     default:
6923       break;
6924     };
6925   }
6926 }
6927 
6928 void CodeGenModule::EmitMainVoidAlias() {
6929   // In order to transition away from "__original_main" gracefully, emit an
6930   // alias for "main" in the no-argument case so that libc can detect when
6931   // new-style no-argument main is in used.
6932   if (llvm::Function *F = getModule().getFunction("main")) {
6933     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6934         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
6935       auto *GA = llvm::GlobalAlias::create("__main_void", F);
6936       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
6937     }
6938   }
6939 }
6940 
6941 /// Turns the given pointer into a constant.
6942 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6943                                           const void *Ptr) {
6944   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6945   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6946   return llvm::ConstantInt::get(i64, PtrInt);
6947 }
6948 
6949 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6950                                    llvm::NamedMDNode *&GlobalMetadata,
6951                                    GlobalDecl D,
6952                                    llvm::GlobalValue *Addr) {
6953   if (!GlobalMetadata)
6954     GlobalMetadata =
6955       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6956 
6957   // TODO: should we report variant information for ctors/dtors?
6958   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6959                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6960                                CGM.getLLVMContext(), D.getDecl()))};
6961   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6962 }
6963 
6964 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
6965                                                  llvm::GlobalValue *CppFunc) {
6966   // Store the list of ifuncs we need to replace uses in.
6967   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
6968   // List of ConstantExprs that we should be able to delete when we're done
6969   // here.
6970   llvm::SmallVector<llvm::ConstantExpr *> CEs;
6971 
6972   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
6973   if (Elem == CppFunc)
6974     return false;
6975 
6976   // First make sure that all users of this are ifuncs (or ifuncs via a
6977   // bitcast), and collect the list of ifuncs and CEs so we can work on them
6978   // later.
6979   for (llvm::User *User : Elem->users()) {
6980     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6981     // ifunc directly. In any other case, just give up, as we don't know what we
6982     // could break by changing those.
6983     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
6984       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
6985         return false;
6986 
6987       for (llvm::User *CEUser : ConstExpr->users()) {
6988         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
6989           IFuncs.push_back(IFunc);
6990         } else {
6991           return false;
6992         }
6993       }
6994       CEs.push_back(ConstExpr);
6995     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
6996       IFuncs.push_back(IFunc);
6997     } else {
6998       // This user is one we don't know how to handle, so fail redirection. This
6999       // will result in an ifunc retaining a resolver name that will ultimately
7000       // fail to be resolved to a defined function.
7001       return false;
7002     }
7003   }
7004 
7005   // Now we know this is a valid case where we can do this alias replacement, we
7006   // need to remove all of the references to Elem (and the bitcasts!) so we can
7007   // delete it.
7008   for (llvm::GlobalIFunc *IFunc : IFuncs)
7009     IFunc->setResolver(nullptr);
7010   for (llvm::ConstantExpr *ConstExpr : CEs)
7011     ConstExpr->destroyConstant();
7012 
7013   // We should now be out of uses for the 'old' version of this function, so we
7014   // can erase it as well.
7015   Elem->eraseFromParent();
7016 
7017   for (llvm::GlobalIFunc *IFunc : IFuncs) {
7018     // The type of the resolver is always just a function-type that returns the
7019     // type of the IFunc, so create that here. If the type of the actual
7020     // resolver doesn't match, it just gets bitcast to the right thing.
7021     auto *ResolverTy =
7022         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7023     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7024         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7025     IFunc->setResolver(Resolver);
7026   }
7027   return true;
7028 }
7029 
7030 /// For each function which is declared within an extern "C" region and marked
7031 /// as 'used', but has internal linkage, create an alias from the unmangled
7032 /// name to the mangled name if possible. People expect to be able to refer
7033 /// to such functions with an unmangled name from inline assembly within the
7034 /// same translation unit.
7035 void CodeGenModule::EmitStaticExternCAliases() {
7036   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7037     return;
7038   for (auto &I : StaticExternCValues) {
7039     IdentifierInfo *Name = I.first;
7040     llvm::GlobalValue *Val = I.second;
7041 
7042     // If Val is null, that implies there were multiple declarations that each
7043     // had a claim to the unmangled name. In this case, generation of the alias
7044     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7045     if (!Val)
7046       break;
7047 
7048     llvm::GlobalValue *ExistingElem =
7049         getModule().getNamedValue(Name->getName());
7050 
7051     // If there is either not something already by this name, or we were able to
7052     // replace all uses from IFuncs, create the alias.
7053     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7054       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7055   }
7056 }
7057 
7058 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7059                                              GlobalDecl &Result) const {
7060   auto Res = Manglings.find(MangledName);
7061   if (Res == Manglings.end())
7062     return false;
7063   Result = Res->getValue();
7064   return true;
7065 }
7066 
7067 /// Emits metadata nodes associating all the global values in the
7068 /// current module with the Decls they came from.  This is useful for
7069 /// projects using IR gen as a subroutine.
7070 ///
7071 /// Since there's currently no way to associate an MDNode directly
7072 /// with an llvm::GlobalValue, we create a global named metadata
7073 /// with the name 'clang.global.decl.ptrs'.
7074 void CodeGenModule::EmitDeclMetadata() {
7075   llvm::NamedMDNode *GlobalMetadata = nullptr;
7076 
7077   for (auto &I : MangledDeclNames) {
7078     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7079     // Some mangled names don't necessarily have an associated GlobalValue
7080     // in this module, e.g. if we mangled it for DebugInfo.
7081     if (Addr)
7082       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7083   }
7084 }
7085 
7086 /// Emits metadata nodes for all the local variables in the current
7087 /// function.
7088 void CodeGenFunction::EmitDeclMetadata() {
7089   if (LocalDeclMap.empty()) return;
7090 
7091   llvm::LLVMContext &Context = getLLVMContext();
7092 
7093   // Find the unique metadata ID for this name.
7094   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7095 
7096   llvm::NamedMDNode *GlobalMetadata = nullptr;
7097 
7098   for (auto &I : LocalDeclMap) {
7099     const Decl *D = I.first;
7100     llvm::Value *Addr = I.second.getPointer();
7101     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7102       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7103       Alloca->setMetadata(
7104           DeclPtrKind, llvm::MDNode::get(
7105                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7106     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7107       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7108       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7109     }
7110   }
7111 }
7112 
7113 void CodeGenModule::EmitVersionIdentMetadata() {
7114   llvm::NamedMDNode *IdentMetadata =
7115     TheModule.getOrInsertNamedMetadata("llvm.ident");
7116   std::string Version = getClangFullVersion();
7117   llvm::LLVMContext &Ctx = TheModule.getContext();
7118 
7119   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7120   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7121 }
7122 
7123 void CodeGenModule::EmitCommandLineMetadata() {
7124   llvm::NamedMDNode *CommandLineMetadata =
7125     TheModule.getOrInsertNamedMetadata("llvm.commandline");
7126   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7127   llvm::LLVMContext &Ctx = TheModule.getContext();
7128 
7129   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7130   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7131 }
7132 
7133 void CodeGenModule::EmitCoverageFile() {
7134   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7135   if (!CUNode)
7136     return;
7137 
7138   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7139   llvm::LLVMContext &Ctx = TheModule.getContext();
7140   auto *CoverageDataFile =
7141       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7142   auto *CoverageNotesFile =
7143       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7144   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7145     llvm::MDNode *CU = CUNode->getOperand(i);
7146     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7147     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7148   }
7149 }
7150 
7151 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7152                                                        bool ForEH) {
7153   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7154   // FIXME: should we even be calling this method if RTTI is disabled
7155   // and it's not for EH?
7156   if (!shouldEmitRTTI(ForEH))
7157     return llvm::Constant::getNullValue(GlobalsInt8PtrTy);
7158 
7159   if (ForEH && Ty->isObjCObjectPointerType() &&
7160       LangOpts.ObjCRuntime.isGNUFamily())
7161     return ObjCRuntime->GetEHType(Ty);
7162 
7163   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7164 }
7165 
7166 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7167   // Do not emit threadprivates in simd-only mode.
7168   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7169     return;
7170   for (auto RefExpr : D->varlists()) {
7171     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7172     bool PerformInit =
7173         VD->getAnyInitializer() &&
7174         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7175                                                         /*ForRef=*/false);
7176 
7177     Address Addr(GetAddrOfGlobalVar(VD),
7178                  getTypes().ConvertTypeForMem(VD->getType()),
7179                  getContext().getDeclAlign(VD));
7180     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7181             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7182       CXXGlobalInits.push_back(InitFunction);
7183   }
7184 }
7185 
7186 llvm::Metadata *
7187 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7188                                             StringRef Suffix) {
7189   if (auto *FnType = T->getAs<FunctionProtoType>())
7190     T = getContext().getFunctionType(
7191         FnType->getReturnType(), FnType->getParamTypes(),
7192         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7193 
7194   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7195   if (InternalId)
7196     return InternalId;
7197 
7198   if (isExternallyVisible(T->getLinkage())) {
7199     std::string OutName;
7200     llvm::raw_string_ostream Out(OutName);
7201     getCXXABI().getMangleContext().mangleTypeName(
7202         T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7203 
7204     if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7205       Out << ".normalized";
7206 
7207     Out << Suffix;
7208 
7209     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7210   } else {
7211     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7212                                            llvm::ArrayRef<llvm::Metadata *>());
7213   }
7214 
7215   return InternalId;
7216 }
7217 
7218 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7219   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7220 }
7221 
7222 llvm::Metadata *
7223 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7224   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7225 }
7226 
7227 // Generalize pointer types to a void pointer with the qualifiers of the
7228 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7229 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7230 // 'void *'.
7231 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7232   if (!Ty->isPointerType())
7233     return Ty;
7234 
7235   return Ctx.getPointerType(
7236       QualType(Ctx.VoidTy).withCVRQualifiers(
7237           Ty->getPointeeType().getCVRQualifiers()));
7238 }
7239 
7240 // Apply type generalization to a FunctionType's return and argument types
7241 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7242   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7243     SmallVector<QualType, 8> GeneralizedParams;
7244     for (auto &Param : FnType->param_types())
7245       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7246 
7247     return Ctx.getFunctionType(
7248         GeneralizeType(Ctx, FnType->getReturnType()),
7249         GeneralizedParams, FnType->getExtProtoInfo());
7250   }
7251 
7252   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7253     return Ctx.getFunctionNoProtoType(
7254         GeneralizeType(Ctx, FnType->getReturnType()));
7255 
7256   llvm_unreachable("Encountered unknown FunctionType");
7257 }
7258 
7259 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7260   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7261                                       GeneralizedMetadataIdMap, ".generalized");
7262 }
7263 
7264 /// Returns whether this module needs the "all-vtables" type identifier.
7265 bool CodeGenModule::NeedAllVtablesTypeId() const {
7266   // Returns true if at least one of vtable-based CFI checkers is enabled and
7267   // is not in the trapping mode.
7268   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7269            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7270           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7271            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7272           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7273            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7274           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7275            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7276 }
7277 
7278 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7279                                           CharUnits Offset,
7280                                           const CXXRecordDecl *RD) {
7281   llvm::Metadata *MD =
7282       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7283   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7284 
7285   if (CodeGenOpts.SanitizeCfiCrossDso)
7286     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7287       VTable->addTypeMetadata(Offset.getQuantity(),
7288                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7289 
7290   if (NeedAllVtablesTypeId()) {
7291     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7292     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7293   }
7294 }
7295 
7296 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7297   if (!SanStats)
7298     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7299 
7300   return *SanStats;
7301 }
7302 
7303 llvm::Value *
7304 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7305                                                   CodeGenFunction &CGF) {
7306   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7307   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7308   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7309   auto *Call = CGF.EmitRuntimeCall(
7310       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7311   return Call;
7312 }
7313 
7314 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7315     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7316   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7317                                  /* forPointeeType= */ true);
7318 }
7319 
7320 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7321                                                  LValueBaseInfo *BaseInfo,
7322                                                  TBAAAccessInfo *TBAAInfo,
7323                                                  bool forPointeeType) {
7324   if (TBAAInfo)
7325     *TBAAInfo = getTBAAAccessInfo(T);
7326 
7327   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7328   // that doesn't return the information we need to compute BaseInfo.
7329 
7330   // Honor alignment typedef attributes even on incomplete types.
7331   // We also honor them straight for C++ class types, even as pointees;
7332   // there's an expressivity gap here.
7333   if (auto TT = T->getAs<TypedefType>()) {
7334     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7335       if (BaseInfo)
7336         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7337       return getContext().toCharUnitsFromBits(Align);
7338     }
7339   }
7340 
7341   bool AlignForArray = T->isArrayType();
7342 
7343   // Analyze the base element type, so we don't get confused by incomplete
7344   // array types.
7345   T = getContext().getBaseElementType(T);
7346 
7347   if (T->isIncompleteType()) {
7348     // We could try to replicate the logic from
7349     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7350     // type is incomplete, so it's impossible to test. We could try to reuse
7351     // getTypeAlignIfKnown, but that doesn't return the information we need
7352     // to set BaseInfo.  So just ignore the possibility that the alignment is
7353     // greater than one.
7354     if (BaseInfo)
7355       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7356     return CharUnits::One();
7357   }
7358 
7359   if (BaseInfo)
7360     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7361 
7362   CharUnits Alignment;
7363   const CXXRecordDecl *RD;
7364   if (T.getQualifiers().hasUnaligned()) {
7365     Alignment = CharUnits::One();
7366   } else if (forPointeeType && !AlignForArray &&
7367              (RD = T->getAsCXXRecordDecl())) {
7368     // For C++ class pointees, we don't know whether we're pointing at a
7369     // base or a complete object, so we generally need to use the
7370     // non-virtual alignment.
7371     Alignment = getClassPointerAlignment(RD);
7372   } else {
7373     Alignment = getContext().getTypeAlignInChars(T);
7374   }
7375 
7376   // Cap to the global maximum type alignment unless the alignment
7377   // was somehow explicit on the type.
7378   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7379     if (Alignment.getQuantity() > MaxAlign &&
7380         !getContext().isAlignmentRequired(T))
7381       Alignment = CharUnits::fromQuantity(MaxAlign);
7382   }
7383   return Alignment;
7384 }
7385 
7386 bool CodeGenModule::stopAutoInit() {
7387   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7388   if (StopAfter) {
7389     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7390     // used
7391     if (NumAutoVarInit >= StopAfter) {
7392       return true;
7393     }
7394     if (!NumAutoVarInit) {
7395       unsigned DiagID = getDiags().getCustomDiagID(
7396           DiagnosticsEngine::Warning,
7397           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7398           "number of times ftrivial-auto-var-init=%1 gets applied.");
7399       getDiags().Report(DiagID)
7400           << StopAfter
7401           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7402                       LangOptions::TrivialAutoVarInitKind::Zero
7403                   ? "zero"
7404                   : "pattern");
7405     }
7406     ++NumAutoVarInit;
7407   }
7408   return false;
7409 }
7410 
7411 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7412                                                     const Decl *D) const {
7413   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7414   // postfix beginning with '.' since the symbol name can be demangled.
7415   if (LangOpts.HIP)
7416     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7417   else
7418     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7419 
7420   // If the CUID is not specified we try to generate a unique postfix.
7421   if (getLangOpts().CUID.empty()) {
7422     SourceManager &SM = getContext().getSourceManager();
7423     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7424     assert(PLoc.isValid() && "Source location is expected to be valid.");
7425 
7426     // Get the hash of the user defined macros.
7427     llvm::MD5 Hash;
7428     llvm::MD5::MD5Result Result;
7429     for (const auto &Arg : PreprocessorOpts.Macros)
7430       Hash.update(Arg.first);
7431     Hash.final(Result);
7432 
7433     // Get the UniqueID for the file containing the decl.
7434     llvm::sys::fs::UniqueID ID;
7435     if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7436       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7437       assert(PLoc.isValid() && "Source location is expected to be valid.");
7438       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7439         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7440             << PLoc.getFilename() << EC.message();
7441     }
7442     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7443        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7444   } else {
7445     OS << getContext().getCUIDHash();
7446   }
7447 }
7448 
7449 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7450   assert(DeferredDeclsToEmit.empty() &&
7451          "Should have emitted all decls deferred to emit.");
7452   assert(NewBuilder->DeferredDecls.empty() &&
7453          "Newly created module should not have deferred decls");
7454   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7455 
7456   assert(NewBuilder->DeferredVTables.empty() &&
7457          "Newly created module should not have deferred vtables");
7458   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7459 
7460   assert(NewBuilder->MangledDeclNames.empty() &&
7461          "Newly created module should not have mangled decl names");
7462   assert(NewBuilder->Manglings.empty() &&
7463          "Newly created module should not have manglings");
7464   NewBuilder->Manglings = std::move(Manglings);
7465 
7466   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7467 
7468   NewBuilder->TBAA = std::move(TBAA);
7469 
7470   assert(NewBuilder->EmittedDeferredDecls.empty() &&
7471          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7472 
7473   NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls);
7474 
7475   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7476 }
7477