1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the code that handles AST -> LLVM type lowering.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenTypes.h"
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGOpenCLRuntime.h"
17 #include "CGRecordLayout.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Module.h"
28 
29 using namespace clang;
30 using namespace CodeGen;
31 
32 CodeGenTypes::CodeGenTypes(CodeGenModule &cgm)
33   : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()),
34     Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()),
35     TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) {
36   SkippedLayout = false;
37 }
38 
39 CodeGenTypes::~CodeGenTypes() {
40   for (llvm::FoldingSet<CGFunctionInfo>::iterator
41        I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
42     delete &*I++;
43 }
44 
45 const CodeGenOptions &CodeGenTypes::getCodeGenOpts() const {
46   return CGM.getCodeGenOpts();
47 }
48 
49 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
50                                      llvm::StructType *Ty,
51                                      StringRef suffix) {
52   SmallString<256> TypeName;
53   llvm::raw_svector_ostream OS(TypeName);
54   OS << RD->getKindName() << '.';
55 
56   // FIXME: We probably want to make more tweaks to the printing policy. For
57   // example, we should probably enable PrintCanonicalTypes and
58   // FullyQualifiedNames.
59   PrintingPolicy Policy = RD->getASTContext().getPrintingPolicy();
60   Policy.SuppressInlineNamespace = false;
61 
62   // Name the codegen type after the typedef name
63   // if there is no tag type name available
64   if (RD->getIdentifier()) {
65     // FIXME: We should not have to check for a null decl context here.
66     // Right now we do it because the implicit Obj-C decls don't have one.
67     if (RD->getDeclContext())
68       RD->printQualifiedName(OS, Policy);
69     else
70       RD->printName(OS);
71   } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
72     // FIXME: We should not have to check for a null decl context here.
73     // Right now we do it because the implicit Obj-C decls don't have one.
74     if (TDD->getDeclContext())
75       TDD->printQualifiedName(OS, Policy);
76     else
77       TDD->printName(OS);
78   } else
79     OS << "anon";
80 
81   if (!suffix.empty())
82     OS << suffix;
83 
84   Ty->setName(OS.str());
85 }
86 
87 /// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
88 /// ConvertType in that it is used to convert to the memory representation for
89 /// a type.  For example, the scalar representation for _Bool is i1, but the
90 /// memory representation is usually i8 or i32, depending on the target.
91 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T, bool ForBitField) {
92   if (T->isConstantMatrixType()) {
93     const Type *Ty = Context.getCanonicalType(T).getTypePtr();
94     const ConstantMatrixType *MT = cast<ConstantMatrixType>(Ty);
95     return llvm::ArrayType::get(ConvertType(MT->getElementType()),
96                                 MT->getNumRows() * MT->getNumColumns());
97   }
98 
99   llvm::Type *R = ConvertType(T);
100 
101   // Check for the boolean vector case.
102   if (T->isExtVectorBoolType()) {
103     auto *FixedVT = cast<llvm::FixedVectorType>(R);
104     // Pad to at least one byte.
105     uint64_t BytePadded = std::max<uint64_t>(FixedVT->getNumElements(), 8);
106     return llvm::IntegerType::get(FixedVT->getContext(), BytePadded);
107   }
108 
109   // If this is a bool type, or a bit-precise integer type in a bitfield
110   // representation, map this integer to the target-specified size.
111   if ((ForBitField && T->isBitIntType()) ||
112       (!T->isBitIntType() && R->isIntegerTy(1)))
113     return llvm::IntegerType::get(getLLVMContext(),
114                                   (unsigned)Context.getTypeSize(T));
115 
116   // Else, don't map it.
117   return R;
118 }
119 
120 /// isRecordLayoutComplete - Return true if the specified type is already
121 /// completely laid out.
122 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
123   llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
124   RecordDeclTypes.find(Ty);
125   return I != RecordDeclTypes.end() && !I->second->isOpaque();
126 }
127 
128 static bool
129 isSafeToConvert(QualType T, CodeGenTypes &CGT,
130                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
131 
132 
133 /// isSafeToConvert - Return true if it is safe to convert the specified record
134 /// decl to IR and lay it out, false if doing so would cause us to get into a
135 /// recursive compilation mess.
136 static bool
137 isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
138                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
139   // If we have already checked this type (maybe the same type is used by-value
140   // multiple times in multiple structure fields, don't check again.
141   if (!AlreadyChecked.insert(RD).second)
142     return true;
143 
144   const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
145 
146   // If this type is already laid out, converting it is a noop.
147   if (CGT.isRecordLayoutComplete(Key)) return true;
148 
149   // If this type is currently being laid out, we can't recursively compile it.
150   if (CGT.isRecordBeingLaidOut(Key))
151     return false;
152 
153   // If this type would require laying out bases that are currently being laid
154   // out, don't do it.  This includes virtual base classes which get laid out
155   // when a class is translated, even though they aren't embedded by-value into
156   // the class.
157   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
158     for (const auto &I : CRD->bases())
159       if (!isSafeToConvert(I.getType()->castAs<RecordType>()->getDecl(), CGT,
160                            AlreadyChecked))
161         return false;
162   }
163 
164   // If this type would require laying out members that are currently being laid
165   // out, don't do it.
166   for (const auto *I : RD->fields())
167     if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
168       return false;
169 
170   // If there are no problems, lets do it.
171   return true;
172 }
173 
174 /// isSafeToConvert - Return true if it is safe to convert this field type,
175 /// which requires the structure elements contained by-value to all be
176 /// recursively safe to convert.
177 static bool
178 isSafeToConvert(QualType T, CodeGenTypes &CGT,
179                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
180   // Strip off atomic type sugar.
181   if (const auto *AT = T->getAs<AtomicType>())
182     T = AT->getValueType();
183 
184   // If this is a record, check it.
185   if (const auto *RT = T->getAs<RecordType>())
186     return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
187 
188   // If this is an array, check the elements, which are embedded inline.
189   if (const auto *AT = CGT.getContext().getAsArrayType(T))
190     return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
191 
192   // Otherwise, there is no concern about transforming this.  We only care about
193   // things that are contained by-value in a structure that can have another
194   // structure as a member.
195   return true;
196 }
197 
198 
199 /// isSafeToConvert - Return true if it is safe to convert the specified record
200 /// decl to IR and lay it out, false if doing so would cause us to get into a
201 /// recursive compilation mess.
202 static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
203   // If no structs are being laid out, we can certainly do this one.
204   if (CGT.noRecordsBeingLaidOut()) return true;
205 
206   llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
207   return isSafeToConvert(RD, CGT, AlreadyChecked);
208 }
209 
210 /// isFuncParamTypeConvertible - Return true if the specified type in a
211 /// function parameter or result position can be converted to an IR type at this
212 /// point.  This boils down to being whether it is complete, as well as whether
213 /// we've temporarily deferred expanding the type because we're in a recursive
214 /// context.
215 bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty) {
216   // Some ABIs cannot have their member pointers represented in IR unless
217   // certain circumstances have been reached.
218   if (const auto *MPT = Ty->getAs<MemberPointerType>())
219     return getCXXABI().isMemberPointerConvertible(MPT);
220 
221   // If this isn't a tagged type, we can convert it!
222   const TagType *TT = Ty->getAs<TagType>();
223   if (!TT) return true;
224 
225   // Incomplete types cannot be converted.
226   if (TT->isIncompleteType())
227     return false;
228 
229   // If this is an enum, then it is always safe to convert.
230   const RecordType *RT = dyn_cast<RecordType>(TT);
231   if (!RT) return true;
232 
233   // Otherwise, we have to be careful.  If it is a struct that we're in the
234   // process of expanding, then we can't convert the function type.  That's ok
235   // though because we must be in a pointer context under the struct, so we can
236   // just convert it to a dummy type.
237   //
238   // We decide this by checking whether ConvertRecordDeclType returns us an
239   // opaque type for a struct that we know is defined.
240   return isSafeToConvert(RT->getDecl(), *this);
241 }
242 
243 
244 /// Code to verify a given function type is complete, i.e. the return type
245 /// and all of the parameter types are complete.  Also check to see if we are in
246 /// a RS_StructPointer context, and if so whether any struct types have been
247 /// pended.  If so, we don't want to ask the ABI lowering code to handle a type
248 /// that cannot be converted to an IR type.
249 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
250   if (!isFuncParamTypeConvertible(FT->getReturnType()))
251     return false;
252 
253   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
254     for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
255       if (!isFuncParamTypeConvertible(FPT->getParamType(i)))
256         return false;
257 
258   return true;
259 }
260 
261 /// UpdateCompletedType - When we find the full definition for a TagDecl,
262 /// replace the 'opaque' type we previously made for it if applicable.
263 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
264   // If this is an enum being completed, then we flush all non-struct types from
265   // the cache.  This allows function types and other things that may be derived
266   // from the enum to be recomputed.
267   if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
268     // Only flush the cache if we've actually already converted this type.
269     if (TypeCache.count(ED->getTypeForDecl())) {
270       // Okay, we formed some types based on this.  We speculated that the enum
271       // would be lowered to i32, so we only need to flush the cache if this
272       // didn't happen.
273       if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
274         TypeCache.clear();
275     }
276     // If necessary, provide the full definition of a type only used with a
277     // declaration so far.
278     if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
279       DI->completeType(ED);
280     return;
281   }
282 
283   // If we completed a RecordDecl that we previously used and converted to an
284   // anonymous type, then go ahead and complete it now.
285   const RecordDecl *RD = cast<RecordDecl>(TD);
286   if (RD->isDependentType()) return;
287 
288   // Only complete it if we converted it already.  If we haven't converted it
289   // yet, we'll just do it lazily.
290   if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
291     ConvertRecordDeclType(RD);
292 
293   // If necessary, provide the full definition of a type only used with a
294   // declaration so far.
295   if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
296     DI->completeType(RD);
297 }
298 
299 void CodeGenTypes::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
300   QualType T = Context.getRecordType(RD);
301   T = Context.getCanonicalType(T);
302 
303   const Type *Ty = T.getTypePtr();
304   if (RecordsWithOpaqueMemberPointers.count(Ty)) {
305     TypeCache.clear();
306     RecordsWithOpaqueMemberPointers.clear();
307   }
308 }
309 
310 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
311                                     const llvm::fltSemantics &format,
312                                     bool UseNativeHalf = false) {
313   if (&format == &llvm::APFloat::IEEEhalf()) {
314     if (UseNativeHalf)
315       return llvm::Type::getHalfTy(VMContext);
316     else
317       return llvm::Type::getInt16Ty(VMContext);
318   }
319   if (&format == &llvm::APFloat::BFloat())
320     return llvm::Type::getBFloatTy(VMContext);
321   if (&format == &llvm::APFloat::IEEEsingle())
322     return llvm::Type::getFloatTy(VMContext);
323   if (&format == &llvm::APFloat::IEEEdouble())
324     return llvm::Type::getDoubleTy(VMContext);
325   if (&format == &llvm::APFloat::IEEEquad())
326     return llvm::Type::getFP128Ty(VMContext);
327   if (&format == &llvm::APFloat::PPCDoubleDouble())
328     return llvm::Type::getPPC_FP128Ty(VMContext);
329   if (&format == &llvm::APFloat::x87DoubleExtended())
330     return llvm::Type::getX86_FP80Ty(VMContext);
331   llvm_unreachable("Unknown float format!");
332 }
333 
334 llvm::Type *CodeGenTypes::ConvertFunctionTypeInternal(QualType QFT) {
335   assert(QFT.isCanonical());
336   const Type *Ty = QFT.getTypePtr();
337   const FunctionType *FT = cast<FunctionType>(QFT.getTypePtr());
338   // First, check whether we can build the full function type.  If the
339   // function type depends on an incomplete type (e.g. a struct or enum), we
340   // cannot lower the function type.
341   if (!isFuncTypeConvertible(FT)) {
342     // This function's type depends on an incomplete tag type.
343 
344     // Force conversion of all the relevant record types, to make sure
345     // we re-convert the FunctionType when appropriate.
346     if (const RecordType *RT = FT->getReturnType()->getAs<RecordType>())
347       ConvertRecordDeclType(RT->getDecl());
348     if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
349       for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
350         if (const RecordType *RT = FPT->getParamType(i)->getAs<RecordType>())
351           ConvertRecordDeclType(RT->getDecl());
352 
353     SkippedLayout = true;
354 
355     // Return a placeholder type.
356     return llvm::StructType::get(getLLVMContext());
357   }
358 
359   // While we're converting the parameter types for a function, we don't want
360   // to recursively convert any pointed-to structs.  Converting directly-used
361   // structs is ok though.
362   if (!RecordsBeingLaidOut.insert(Ty).second) {
363     SkippedLayout = true;
364     return llvm::StructType::get(getLLVMContext());
365   }
366 
367   // The function type can be built; call the appropriate routines to
368   // build it.
369   const CGFunctionInfo *FI;
370   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
371     FI = &arrangeFreeFunctionType(
372         CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
373   } else {
374     const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
375     FI = &arrangeFreeFunctionType(
376         CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
377   }
378 
379   llvm::Type *ResultType = nullptr;
380   // If there is something higher level prodding our CGFunctionInfo, then
381   // don't recurse into it again.
382   if (FunctionsBeingProcessed.count(FI)) {
383 
384     ResultType = llvm::StructType::get(getLLVMContext());
385     SkippedLayout = true;
386   } else {
387 
388     // Otherwise, we're good to go, go ahead and convert it.
389     ResultType = GetFunctionType(*FI);
390   }
391 
392   RecordsBeingLaidOut.erase(Ty);
393 
394   if (RecordsBeingLaidOut.empty())
395     while (!DeferredRecords.empty())
396       ConvertRecordDeclType(DeferredRecords.pop_back_val());
397   return ResultType;
398 }
399 
400 /// ConvertType - Convert the specified type to its LLVM form.
401 llvm::Type *CodeGenTypes::ConvertType(QualType T) {
402   T = Context.getCanonicalType(T);
403 
404   const Type *Ty = T.getTypePtr();
405 
406   // For the device-side compilation, CUDA device builtin surface/texture types
407   // may be represented in different types.
408   if (Context.getLangOpts().CUDAIsDevice) {
409     if (T->isCUDADeviceBuiltinSurfaceType()) {
410       if (auto *Ty = CGM.getTargetCodeGenInfo()
411                          .getCUDADeviceBuiltinSurfaceDeviceType())
412         return Ty;
413     } else if (T->isCUDADeviceBuiltinTextureType()) {
414       if (auto *Ty = CGM.getTargetCodeGenInfo()
415                          .getCUDADeviceBuiltinTextureDeviceType())
416         return Ty;
417     }
418   }
419 
420   // RecordTypes are cached and processed specially.
421   if (const RecordType *RT = dyn_cast<RecordType>(Ty))
422     return ConvertRecordDeclType(RT->getDecl());
423 
424   // The LLVM type we return for a given Clang type may not always be the same,
425   // most notably when dealing with recursive structs. We mark these potential
426   // cases with ShouldUseCache below. Builtin types cannot be recursive.
427   // TODO: when clang uses LLVM opaque pointers we won't be able to represent
428   // recursive types with LLVM types, making this logic much simpler.
429   llvm::Type *CachedType = nullptr;
430   bool ShouldUseCache =
431       Ty->isBuiltinType() ||
432       (noRecordsBeingLaidOut() && FunctionsBeingProcessed.empty());
433   if (ShouldUseCache) {
434     llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI =
435         TypeCache.find(Ty);
436     if (TCI != TypeCache.end())
437       CachedType = TCI->second;
438       // With expensive checks, check that the type we compute matches the
439       // cached type.
440 #ifndef EXPENSIVE_CHECKS
441     if (CachedType)
442       return CachedType;
443 #endif
444   }
445 
446   // If we don't have it in the cache, convert it now.
447   llvm::Type *ResultType = nullptr;
448   switch (Ty->getTypeClass()) {
449   case Type::Record: // Handled above.
450 #define TYPE(Class, Base)
451 #define ABSTRACT_TYPE(Class, Base)
452 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
453 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
454 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
455 #include "clang/AST/TypeNodes.inc"
456     llvm_unreachable("Non-canonical or dependent types aren't possible.");
457 
458   case Type::Builtin: {
459     switch (cast<BuiltinType>(Ty)->getKind()) {
460     case BuiltinType::Void:
461     case BuiltinType::ObjCId:
462     case BuiltinType::ObjCClass:
463     case BuiltinType::ObjCSel:
464       // LLVM void type can only be used as the result of a function call.  Just
465       // map to the same as char.
466       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
467       break;
468 
469     case BuiltinType::Bool:
470       // Note that we always return bool as i1 for use as a scalar type.
471       ResultType = llvm::Type::getInt1Ty(getLLVMContext());
472       break;
473 
474     case BuiltinType::Char_S:
475     case BuiltinType::Char_U:
476     case BuiltinType::SChar:
477     case BuiltinType::UChar:
478     case BuiltinType::Short:
479     case BuiltinType::UShort:
480     case BuiltinType::Int:
481     case BuiltinType::UInt:
482     case BuiltinType::Long:
483     case BuiltinType::ULong:
484     case BuiltinType::LongLong:
485     case BuiltinType::ULongLong:
486     case BuiltinType::WChar_S:
487     case BuiltinType::WChar_U:
488     case BuiltinType::Char8:
489     case BuiltinType::Char16:
490     case BuiltinType::Char32:
491     case BuiltinType::ShortAccum:
492     case BuiltinType::Accum:
493     case BuiltinType::LongAccum:
494     case BuiltinType::UShortAccum:
495     case BuiltinType::UAccum:
496     case BuiltinType::ULongAccum:
497     case BuiltinType::ShortFract:
498     case BuiltinType::Fract:
499     case BuiltinType::LongFract:
500     case BuiltinType::UShortFract:
501     case BuiltinType::UFract:
502     case BuiltinType::ULongFract:
503     case BuiltinType::SatShortAccum:
504     case BuiltinType::SatAccum:
505     case BuiltinType::SatLongAccum:
506     case BuiltinType::SatUShortAccum:
507     case BuiltinType::SatUAccum:
508     case BuiltinType::SatULongAccum:
509     case BuiltinType::SatShortFract:
510     case BuiltinType::SatFract:
511     case BuiltinType::SatLongFract:
512     case BuiltinType::SatUShortFract:
513     case BuiltinType::SatUFract:
514     case BuiltinType::SatULongFract:
515       ResultType = llvm::IntegerType::get(getLLVMContext(),
516                                  static_cast<unsigned>(Context.getTypeSize(T)));
517       break;
518 
519     case BuiltinType::Float16:
520       ResultType =
521           getTypeForFormat(getLLVMContext(), Context.getFloatTypeSemantics(T),
522                            /* UseNativeHalf = */ true);
523       break;
524 
525     case BuiltinType::Half:
526       // Half FP can either be storage-only (lowered to i16) or native.
527       ResultType = getTypeForFormat(
528           getLLVMContext(), Context.getFloatTypeSemantics(T),
529           Context.getLangOpts().NativeHalfType ||
530               !Context.getTargetInfo().useFP16ConversionIntrinsics());
531       break;
532     case BuiltinType::BFloat16:
533     case BuiltinType::Float:
534     case BuiltinType::Double:
535     case BuiltinType::LongDouble:
536     case BuiltinType::Float128:
537     case BuiltinType::Ibm128:
538       ResultType = getTypeForFormat(getLLVMContext(),
539                                     Context.getFloatTypeSemantics(T),
540                                     /* UseNativeHalf = */ false);
541       break;
542 
543     case BuiltinType::NullPtr:
544       // Model std::nullptr_t as i8*
545       ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
546       break;
547 
548     case BuiltinType::UInt128:
549     case BuiltinType::Int128:
550       ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
551       break;
552 
553 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
554     case BuiltinType::Id:
555 #include "clang/Basic/OpenCLImageTypes.def"
556 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
557     case BuiltinType::Id:
558 #include "clang/Basic/OpenCLExtensionTypes.def"
559     case BuiltinType::OCLSampler:
560     case BuiltinType::OCLEvent:
561     case BuiltinType::OCLClkEvent:
562     case BuiltinType::OCLQueue:
563     case BuiltinType::OCLReserveID:
564       ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty);
565       break;
566     case BuiltinType::SveInt8:
567     case BuiltinType::SveUint8:
568     case BuiltinType::SveInt8x2:
569     case BuiltinType::SveUint8x2:
570     case BuiltinType::SveInt8x3:
571     case BuiltinType::SveUint8x3:
572     case BuiltinType::SveInt8x4:
573     case BuiltinType::SveUint8x4:
574     case BuiltinType::SveInt16:
575     case BuiltinType::SveUint16:
576     case BuiltinType::SveInt16x2:
577     case BuiltinType::SveUint16x2:
578     case BuiltinType::SveInt16x3:
579     case BuiltinType::SveUint16x3:
580     case BuiltinType::SveInt16x4:
581     case BuiltinType::SveUint16x4:
582     case BuiltinType::SveInt32:
583     case BuiltinType::SveUint32:
584     case BuiltinType::SveInt32x2:
585     case BuiltinType::SveUint32x2:
586     case BuiltinType::SveInt32x3:
587     case BuiltinType::SveUint32x3:
588     case BuiltinType::SveInt32x4:
589     case BuiltinType::SveUint32x4:
590     case BuiltinType::SveInt64:
591     case BuiltinType::SveUint64:
592     case BuiltinType::SveInt64x2:
593     case BuiltinType::SveUint64x2:
594     case BuiltinType::SveInt64x3:
595     case BuiltinType::SveUint64x3:
596     case BuiltinType::SveInt64x4:
597     case BuiltinType::SveUint64x4:
598     case BuiltinType::SveBool:
599     case BuiltinType::SveFloat16:
600     case BuiltinType::SveFloat16x2:
601     case BuiltinType::SveFloat16x3:
602     case BuiltinType::SveFloat16x4:
603     case BuiltinType::SveFloat32:
604     case BuiltinType::SveFloat32x2:
605     case BuiltinType::SveFloat32x3:
606     case BuiltinType::SveFloat32x4:
607     case BuiltinType::SveFloat64:
608     case BuiltinType::SveFloat64x2:
609     case BuiltinType::SveFloat64x3:
610     case BuiltinType::SveFloat64x4:
611     case BuiltinType::SveBFloat16:
612     case BuiltinType::SveBFloat16x2:
613     case BuiltinType::SveBFloat16x3:
614     case BuiltinType::SveBFloat16x4: {
615       ASTContext::BuiltinVectorTypeInfo Info =
616           Context.getBuiltinVectorTypeInfo(cast<BuiltinType>(Ty));
617       return llvm::ScalableVectorType::get(ConvertType(Info.ElementType),
618                                            Info.EC.getKnownMinValue() *
619                                                Info.NumVectors);
620     }
621 #define PPC_VECTOR_TYPE(Name, Id, Size) \
622     case BuiltinType::Id: \
623       ResultType = \
624         llvm::FixedVectorType::get(ConvertType(Context.BoolTy), Size); \
625       break;
626 #include "clang/Basic/PPCTypes.def"
627 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
628 #include "clang/Basic/RISCVVTypes.def"
629     {
630       ASTContext::BuiltinVectorTypeInfo Info =
631           Context.getBuiltinVectorTypeInfo(cast<BuiltinType>(Ty));
632       return llvm::ScalableVectorType::get(ConvertType(Info.ElementType),
633                                            Info.EC.getKnownMinValue() *
634                                            Info.NumVectors);
635     }
636    case BuiltinType::Dependent:
637 #define BUILTIN_TYPE(Id, SingletonId)
638 #define PLACEHOLDER_TYPE(Id, SingletonId) \
639     case BuiltinType::Id:
640 #include "clang/AST/BuiltinTypes.def"
641       llvm_unreachable("Unexpected placeholder builtin type!");
642     }
643     break;
644   }
645   case Type::Auto:
646   case Type::DeducedTemplateSpecialization:
647     llvm_unreachable("Unexpected undeduced type!");
648   case Type::Complex: {
649     llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
650     ResultType = llvm::StructType::get(EltTy, EltTy);
651     break;
652   }
653   case Type::LValueReference:
654   case Type::RValueReference: {
655     const ReferenceType *RTy = cast<ReferenceType>(Ty);
656     QualType ETy = RTy->getPointeeType();
657     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
658     unsigned AS = Context.getTargetAddressSpace(ETy);
659     ResultType = llvm::PointerType::get(PointeeType, AS);
660     break;
661   }
662   case Type::Pointer: {
663     const PointerType *PTy = cast<PointerType>(Ty);
664     QualType ETy = PTy->getPointeeType();
665     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
666     if (PointeeType->isVoidTy())
667       PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
668     unsigned AS = Context.getTargetAddressSpace(ETy);
669     ResultType = llvm::PointerType::get(PointeeType, AS);
670     break;
671   }
672 
673   case Type::VariableArray: {
674     const VariableArrayType *A = cast<VariableArrayType>(Ty);
675     assert(A->getIndexTypeCVRQualifiers() == 0 &&
676            "FIXME: We only handle trivial array types so far!");
677     // VLAs resolve to the innermost element type; this matches
678     // the return of alloca, and there isn't any obviously better choice.
679     ResultType = ConvertTypeForMem(A->getElementType());
680     break;
681   }
682   case Type::IncompleteArray: {
683     const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
684     assert(A->getIndexTypeCVRQualifiers() == 0 &&
685            "FIXME: We only handle trivial array types so far!");
686     // int X[] -> [0 x int], unless the element type is not sized.  If it is
687     // unsized (e.g. an incomplete struct) just use [0 x i8].
688     ResultType = ConvertTypeForMem(A->getElementType());
689     if (!ResultType->isSized()) {
690       SkippedLayout = true;
691       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
692     }
693     ResultType = llvm::ArrayType::get(ResultType, 0);
694     break;
695   }
696   case Type::ConstantArray: {
697     const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
698     llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
699 
700     // Lower arrays of undefined struct type to arrays of i8 just to have a
701     // concrete type.
702     if (!EltTy->isSized()) {
703       SkippedLayout = true;
704       EltTy = llvm::Type::getInt8Ty(getLLVMContext());
705     }
706 
707     ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
708     break;
709   }
710   case Type::ExtVector:
711   case Type::Vector: {
712     const auto *VT = cast<VectorType>(Ty);
713     // An ext_vector_type of Bool is really a vector of bits.
714     llvm::Type *IRElemTy = VT->isExtVectorBoolType()
715                                ? llvm::Type::getInt1Ty(getLLVMContext())
716                                : ConvertType(VT->getElementType());
717     ResultType = llvm::FixedVectorType::get(IRElemTy, VT->getNumElements());
718     break;
719   }
720   case Type::ConstantMatrix: {
721     const ConstantMatrixType *MT = cast<ConstantMatrixType>(Ty);
722     ResultType =
723         llvm::FixedVectorType::get(ConvertType(MT->getElementType()),
724                                    MT->getNumRows() * MT->getNumColumns());
725     break;
726   }
727   case Type::FunctionNoProto:
728   case Type::FunctionProto:
729     ResultType = ConvertFunctionTypeInternal(T);
730     break;
731   case Type::ObjCObject:
732     ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
733     break;
734 
735   case Type::ObjCInterface: {
736     // Objective-C interfaces are always opaque (outside of the
737     // runtime, which can do whatever it likes); we never refine
738     // these.
739     llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
740     if (!T)
741       T = llvm::StructType::create(getLLVMContext());
742     ResultType = T;
743     break;
744   }
745 
746   case Type::ObjCObjectPointer: {
747     // Protocol qualifications do not influence the LLVM type, we just return a
748     // pointer to the underlying interface type. We don't need to worry about
749     // recursive conversion.
750     llvm::Type *T =
751       ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
752     ResultType = T->getPointerTo();
753     break;
754   }
755 
756   case Type::Enum: {
757     const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
758     if (ED->isCompleteDefinition() || ED->isFixed())
759       return ConvertType(ED->getIntegerType());
760     // Return a placeholder 'i32' type.  This can be changed later when the
761     // type is defined (see UpdateCompletedType), but is likely to be the
762     // "right" answer.
763     ResultType = llvm::Type::getInt32Ty(getLLVMContext());
764     break;
765   }
766 
767   case Type::BlockPointer: {
768     const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
769     llvm::Type *PointeeType = CGM.getLangOpts().OpenCL
770                                   ? CGM.getGenericBlockLiteralType()
771                                   : ConvertTypeForMem(FTy);
772     // Block pointers lower to function type. For function type,
773     // getTargetAddressSpace() returns default address space for
774     // function pointer i.e. program address space. Therefore, for block
775     // pointers, it is important to pass qualifiers when calling
776     // getTargetAddressSpace(), to ensure that we get the address space
777     // for data pointers and not function pointers.
778     unsigned AS = Context.getTargetAddressSpace(FTy.getQualifiers());
779     ResultType = llvm::PointerType::get(PointeeType, AS);
780     break;
781   }
782 
783   case Type::MemberPointer: {
784     auto *MPTy = cast<MemberPointerType>(Ty);
785     if (!getCXXABI().isMemberPointerConvertible(MPTy)) {
786       auto *C = MPTy->getClass();
787       auto Insertion = RecordsWithOpaqueMemberPointers.insert({C, nullptr});
788       if (Insertion.second)
789         Insertion.first->second = llvm::StructType::create(getLLVMContext());
790       ResultType = Insertion.first->second;
791     } else {
792       ResultType = getCXXABI().ConvertMemberPointerType(MPTy);
793     }
794     break;
795   }
796 
797   case Type::Atomic: {
798     QualType valueType = cast<AtomicType>(Ty)->getValueType();
799     ResultType = ConvertTypeForMem(valueType);
800 
801     // Pad out to the inflated size if necessary.
802     uint64_t valueSize = Context.getTypeSize(valueType);
803     uint64_t atomicSize = Context.getTypeSize(Ty);
804     if (valueSize != atomicSize) {
805       assert(valueSize < atomicSize);
806       llvm::Type *elts[] = {
807         ResultType,
808         llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8)
809       };
810       ResultType = llvm::StructType::get(getLLVMContext(),
811                                          llvm::makeArrayRef(elts));
812     }
813     break;
814   }
815   case Type::Pipe: {
816     ResultType = CGM.getOpenCLRuntime().getPipeType(cast<PipeType>(Ty));
817     break;
818   }
819   case Type::BitInt: {
820     const auto &EIT = cast<BitIntType>(Ty);
821     ResultType = llvm::Type::getIntNTy(getLLVMContext(), EIT->getNumBits());
822     break;
823   }
824   }
825 
826   assert(ResultType && "Didn't convert a type?");
827   assert((!CachedType || CachedType == ResultType) &&
828          "Cached type doesn't match computed type");
829 
830   if (ShouldUseCache)
831     TypeCache[Ty] = ResultType;
832   return ResultType;
833 }
834 
835 bool CodeGenModule::isPaddedAtomicType(QualType type) {
836   return isPaddedAtomicType(type->castAs<AtomicType>());
837 }
838 
839 bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) {
840   return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType());
841 }
842 
843 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
844 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
845   // TagDecl's are not necessarily unique, instead use the (clang)
846   // type connected to the decl.
847   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
848 
849   llvm::StructType *&Entry = RecordDeclTypes[Key];
850 
851   // If we don't have a StructType at all yet, create the forward declaration.
852   if (!Entry) {
853     Entry = llvm::StructType::create(getLLVMContext());
854     addRecordTypeName(RD, Entry, "");
855   }
856   llvm::StructType *Ty = Entry;
857 
858   // If this is still a forward declaration, or the LLVM type is already
859   // complete, there's nothing more to do.
860   RD = RD->getDefinition();
861   if (!RD || !RD->isCompleteDefinition() || !Ty->isOpaque())
862     return Ty;
863 
864   // If converting this type would cause us to infinitely loop, don't do it!
865   if (!isSafeToConvert(RD, *this)) {
866     DeferredRecords.push_back(RD);
867     return Ty;
868   }
869 
870   // Okay, this is a definition of a type.  Compile the implementation now.
871   bool InsertResult = RecordsBeingLaidOut.insert(Key).second;
872   (void)InsertResult;
873   assert(InsertResult && "Recursively compiling a struct?");
874 
875   // Force conversion of non-virtual base classes recursively.
876   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
877     for (const auto &I : CRD->bases()) {
878       if (I.isVirtual()) continue;
879       ConvertRecordDeclType(I.getType()->castAs<RecordType>()->getDecl());
880     }
881   }
882 
883   // Layout fields.
884   std::unique_ptr<CGRecordLayout> Layout = ComputeRecordLayout(RD, Ty);
885   CGRecordLayouts[Key] = std::move(Layout);
886 
887   // We're done laying out this struct.
888   bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
889   assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
890 
891   // If this struct blocked a FunctionType conversion, then recompute whatever
892   // was derived from that.
893   // FIXME: This is hugely overconservative.
894   if (SkippedLayout)
895     TypeCache.clear();
896 
897   // If we're done converting the outer-most record, then convert any deferred
898   // structs as well.
899   if (RecordsBeingLaidOut.empty())
900     while (!DeferredRecords.empty())
901       ConvertRecordDeclType(DeferredRecords.pop_back_val());
902 
903   return Ty;
904 }
905 
906 /// getCGRecordLayout - Return record layout info for the given record decl.
907 const CGRecordLayout &
908 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
909   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
910 
911   auto I = CGRecordLayouts.find(Key);
912   if (I != CGRecordLayouts.end())
913     return *I->second;
914   // Compute the type information.
915   ConvertRecordDeclType(RD);
916 
917   // Now try again.
918   I = CGRecordLayouts.find(Key);
919 
920   assert(I != CGRecordLayouts.end() &&
921          "Unable to find record layout information for type");
922   return *I->second;
923 }
924 
925 bool CodeGenTypes::isPointerZeroInitializable(QualType T) {
926   assert((T->isAnyPointerType() || T->isBlockPointerType()) && "Invalid type");
927   return isZeroInitializable(T);
928 }
929 
930 bool CodeGenTypes::isZeroInitializable(QualType T) {
931   if (T->getAs<PointerType>())
932     return Context.getTargetNullPointerValue(T) == 0;
933 
934   if (const auto *AT = Context.getAsArrayType(T)) {
935     if (isa<IncompleteArrayType>(AT))
936       return true;
937     if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
938       if (Context.getConstantArrayElementCount(CAT) == 0)
939         return true;
940     T = Context.getBaseElementType(T);
941   }
942 
943   // Records are non-zero-initializable if they contain any
944   // non-zero-initializable subobjects.
945   if (const RecordType *RT = T->getAs<RecordType>()) {
946     const RecordDecl *RD = RT->getDecl();
947     return isZeroInitializable(RD);
948   }
949 
950   // We have to ask the ABI about member pointers.
951   if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
952     return getCXXABI().isZeroInitializable(MPT);
953 
954   // Everything else is okay.
955   return true;
956 }
957 
958 bool CodeGenTypes::isZeroInitializable(const RecordDecl *RD) {
959   return getCGRecordLayout(RD).isZeroInitializable();
960 }
961