1 //===--- CodeGenTypes.h - Type translation for LLVM CodeGen -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the code that handles AST -> LLVM type lowering.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H
14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H
15 
16 #include "CGCall.h"
17 #include "clang/Basic/ABI.h"
18 #include "clang/CodeGen/CGFunctionInfo.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/IR/Module.h"
21 
22 namespace llvm {
23 class FunctionType;
24 class DataLayout;
25 class Type;
26 class LLVMContext;
27 class StructType;
28 }
29 
30 namespace clang {
31 class ASTContext;
32 template <typename> class CanQual;
33 class CXXConstructorDecl;
34 class CXXMethodDecl;
35 class CodeGenOptions;
36 class FunctionProtoType;
37 class QualType;
38 class RecordDecl;
39 class TagDecl;
40 class TargetInfo;
41 class Type;
42 typedef CanQual<Type> CanQualType;
43 class GlobalDecl;
44 
45 namespace CodeGen {
46 class ABIInfo;
47 class CGCXXABI;
48 class CGRecordLayout;
49 class CodeGenModule;
50 class RequiredArgs;
51 
52 /// This class organizes the cross-module state that is used while lowering
53 /// AST types to LLVM types.
54 class CodeGenTypes {
55   CodeGenModule &CGM;
56   // Some of this stuff should probably be left on the CGM.
57   ASTContext &Context;
58   llvm::Module &TheModule;
59   const TargetInfo &Target;
60   CGCXXABI &TheCXXABI;
61 
62   // This should not be moved earlier, since its initialization depends on some
63   // of the previous reference members being already initialized
64   const ABIInfo &TheABIInfo;
65 
66   /// The opaque type map for Objective-C interfaces. All direct
67   /// manipulation is done by the runtime interfaces, which are
68   /// responsible for coercing to the appropriate type; these opaque
69   /// types are never refined.
70   llvm::DenseMap<const ObjCInterfaceType*, llvm::Type *> InterfaceTypes;
71 
72   /// Maps clang struct type with corresponding record layout info.
73   llvm::DenseMap<const Type*, std::unique_ptr<CGRecordLayout>> CGRecordLayouts;
74 
75   /// Contains the LLVM IR type for any converted RecordDecl.
76   llvm::DenseMap<const Type*, llvm::StructType *> RecordDeclTypes;
77 
78   /// Hold memoized CGFunctionInfo results.
79   llvm::FoldingSet<CGFunctionInfo> FunctionInfos{FunctionInfosLog2InitSize};
80 
81   llvm::SmallPtrSet<const CGFunctionInfo*, 4> FunctionsBeingProcessed;
82 
83   /// True if we didn't layout a function due to a being inside
84   /// a recursive struct conversion, set this to true.
85   bool SkippedLayout;
86 
87   /// This map keeps cache of llvm::Types and maps clang::Type to
88   /// corresponding llvm::Type.
89   llvm::DenseMap<const Type *, llvm::Type *> TypeCache;
90 
91   llvm::DenseMap<const Type *, llvm::Type *> RecordsWithOpaqueMemberPointers;
92 
93   static constexpr unsigned FunctionInfosLog2InitSize = 9;
94   /// Helper for ConvertType.
95   llvm::Type *ConvertFunctionTypeInternal(QualType FT);
96 
97 public:
98   CodeGenTypes(CodeGenModule &cgm);
99   ~CodeGenTypes();
100 
101   const llvm::DataLayout &getDataLayout() const {
102     return TheModule.getDataLayout();
103   }
104   CodeGenModule &getCGM() const { return CGM; }
105   ASTContext &getContext() const { return Context; }
106   const ABIInfo &getABIInfo() const { return TheABIInfo; }
107   const TargetInfo &getTarget() const { return Target; }
108   CGCXXABI &getCXXABI() const { return TheCXXABI; }
109   llvm::LLVMContext &getLLVMContext() { return TheModule.getContext(); }
110   const CodeGenOptions &getCodeGenOpts() const;
111 
112   /// Convert clang calling convention to LLVM callilng convention.
113   unsigned ClangCallConvToLLVMCallConv(CallingConv CC);
114 
115   /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
116   /// qualification.
117   CanQualType DeriveThisType(const CXXRecordDecl *RD, const CXXMethodDecl *MD);
118 
119   /// ConvertType - Convert type T into a llvm::Type.
120   llvm::Type *ConvertType(QualType T);
121 
122   /// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
123   /// ConvertType in that it is used to convert to the memory representation for
124   /// a type.  For example, the scalar representation for _Bool is i1, but the
125   /// memory representation is usually i8 or i32, depending on the target.
126   llvm::Type *ConvertTypeForMem(QualType T, bool ForBitField = false);
127 
128   /// GetFunctionType - Get the LLVM function type for \arg Info.
129   llvm::FunctionType *GetFunctionType(const CGFunctionInfo &Info);
130 
131   llvm::FunctionType *GetFunctionType(GlobalDecl GD);
132 
133   /// isFuncTypeConvertible - Utility to check whether a function type can
134   /// be converted to an LLVM type (i.e. doesn't depend on an incomplete tag
135   /// type).
136   bool isFuncTypeConvertible(const FunctionType *FT);
137   bool isFuncParamTypeConvertible(QualType Ty);
138 
139   /// Determine if a C++ inheriting constructor should have parameters matching
140   /// those of its inherited constructor.
141   bool inheritingCtorHasParams(const InheritedConstructor &Inherited,
142                                CXXCtorType Type);
143 
144   /// GetFunctionTypeForVTable - Get the LLVM function type for use in a vtable,
145   /// given a CXXMethodDecl. If the method to has an incomplete return type,
146   /// and/or incomplete argument types, this will return the opaque type.
147   llvm::Type *GetFunctionTypeForVTable(GlobalDecl GD);
148 
149   const CGRecordLayout &getCGRecordLayout(const RecordDecl*);
150 
151   /// UpdateCompletedType - When we find the full definition for a TagDecl,
152   /// replace the 'opaque' type we previously made for it if applicable.
153   void UpdateCompletedType(const TagDecl *TD);
154 
155   /// Remove stale types from the type cache when an inheritance model
156   /// gets assigned to a class.
157   void RefreshTypeCacheForClass(const CXXRecordDecl *RD);
158 
159   // The arrangement methods are split into three families:
160   //   - those meant to drive the signature and prologue/epilogue
161   //     of a function declaration or definition,
162   //   - those meant for the computation of the LLVM type for an abstract
163   //     appearance of a function, and
164   //   - those meant for performing the IR-generation of a call.
165   // They differ mainly in how they deal with optional (i.e. variadic)
166   // arguments, as well as unprototyped functions.
167   //
168   // Key points:
169   // - The CGFunctionInfo for emitting a specific call site must include
170   //   entries for the optional arguments.
171   // - The function type used at the call site must reflect the formal
172   //   signature of the declaration being called, or else the call will
173   //   go awry.
174   // - For the most part, unprototyped functions are called by casting to
175   //   a formal signature inferred from the specific argument types used
176   //   at the call-site.  However, some targets (e.g. x86-64) screw with
177   //   this for compatibility reasons.
178 
179   const CGFunctionInfo &arrangeGlobalDeclaration(GlobalDecl GD);
180 
181   /// Given a function info for a declaration, return the function info
182   /// for a call with the given arguments.
183   ///
184   /// Often this will be able to simply return the declaration info.
185   const CGFunctionInfo &arrangeCall(const CGFunctionInfo &declFI,
186                                     const CallArgList &args);
187 
188   /// Free functions are functions that are compatible with an ordinary
189   /// C function pointer type.
190   const CGFunctionInfo &arrangeFunctionDeclaration(const FunctionDecl *FD);
191   const CGFunctionInfo &arrangeFreeFunctionCall(const CallArgList &Args,
192                                                 const FunctionType *Ty,
193                                                 bool ChainCall);
194   const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionProtoType> Ty);
195   const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionNoProtoType> Ty);
196 
197   /// A nullary function is a freestanding function of type 'void ()'.
198   /// This method works for both calls and declarations.
199   const CGFunctionInfo &arrangeNullaryFunction();
200 
201   /// A builtin function is a freestanding function using the default
202   /// C conventions.
203   const CGFunctionInfo &
204   arrangeBuiltinFunctionDeclaration(QualType resultType,
205                                     const FunctionArgList &args);
206   const CGFunctionInfo &
207   arrangeBuiltinFunctionDeclaration(CanQualType resultType,
208                                     ArrayRef<CanQualType> argTypes);
209   const CGFunctionInfo &arrangeBuiltinFunctionCall(QualType resultType,
210                                                    const CallArgList &args);
211 
212   /// Objective-C methods are C functions with some implicit parameters.
213   const CGFunctionInfo &arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD);
214   const CGFunctionInfo &arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
215                                                         QualType receiverType);
216   const CGFunctionInfo &arrangeUnprototypedObjCMessageSend(
217                                                      QualType returnType,
218                                                      const CallArgList &args);
219 
220   /// Block invocation functions are C functions with an implicit parameter.
221   const CGFunctionInfo &arrangeBlockFunctionDeclaration(
222                                                  const FunctionProtoType *type,
223                                                  const FunctionArgList &args);
224   const CGFunctionInfo &arrangeBlockFunctionCall(const CallArgList &args,
225                                                  const FunctionType *type);
226 
227   /// C++ methods have some special rules and also have implicit parameters.
228   const CGFunctionInfo &arrangeCXXMethodDeclaration(const CXXMethodDecl *MD);
229   const CGFunctionInfo &arrangeCXXStructorDeclaration(GlobalDecl GD);
230   const CGFunctionInfo &arrangeCXXConstructorCall(const CallArgList &Args,
231                                                   const CXXConstructorDecl *D,
232                                                   CXXCtorType CtorKind,
233                                                   unsigned ExtraPrefixArgs,
234                                                   unsigned ExtraSuffixArgs,
235                                                   bool PassProtoArgs = true);
236 
237   const CGFunctionInfo &arrangeCXXMethodCall(const CallArgList &args,
238                                              const FunctionProtoType *type,
239                                              RequiredArgs required,
240                                              unsigned numPrefixArgs);
241   const CGFunctionInfo &
242   arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD);
243   const CGFunctionInfo &arrangeMSCtorClosure(const CXXConstructorDecl *CD,
244                                                  CXXCtorType CT);
245   const CGFunctionInfo &arrangeCXXMethodType(const CXXRecordDecl *RD,
246                                              const FunctionProtoType *FTP,
247                                              const CXXMethodDecl *MD);
248 
249   /// "Arrange" the LLVM information for a call or type with the given
250   /// signature.  This is largely an internal method; other clients
251   /// should use one of the above routines, which ultimately defer to
252   /// this.
253   ///
254   /// \param argTypes - must all actually be canonical as params
255   const CGFunctionInfo &arrangeLLVMFunctionInfo(
256       CanQualType returnType, FnInfoOpts opts, ArrayRef<CanQualType> argTypes,
257       FunctionType::ExtInfo info,
258       ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
259       RequiredArgs args);
260 
261   /// Compute a new LLVM record layout object for the given record.
262   std::unique_ptr<CGRecordLayout> ComputeRecordLayout(const RecordDecl *D,
263                                                       llvm::StructType *Ty);
264 
265   /// addRecordTypeName - Compute a name from the given record decl with an
266   /// optional suffix and name the given LLVM type using it.
267   void addRecordTypeName(const RecordDecl *RD, llvm::StructType *Ty,
268                          StringRef suffix);
269 
270 
271 public:  // These are internal details of CGT that shouldn't be used externally.
272   /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
273   llvm::StructType *ConvertRecordDeclType(const RecordDecl *TD);
274 
275   /// getExpandedTypes - Expand the type \arg Ty into the LLVM
276   /// argument types it would be passed as. See ABIArgInfo::Expand.
277   void getExpandedTypes(QualType Ty,
278                         SmallVectorImpl<llvm::Type *>::iterator &TI);
279 
280   /// IsZeroInitializable - Return whether a type can be
281   /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer.
282   bool isZeroInitializable(QualType T);
283 
284   /// Check if the pointer type can be zero-initialized (in the C++ sense)
285   /// with an LLVM zeroinitializer.
286   bool isPointerZeroInitializable(QualType T);
287 
288   /// IsZeroInitializable - Return whether a record type can be
289   /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer.
290   bool isZeroInitializable(const RecordDecl *RD);
291 
292   bool isRecordLayoutComplete(const Type *Ty) const;
293   unsigned getTargetAddressSpace(QualType T) const;
294 };
295 
296 }  // end namespace CodeGen
297 }  // end namespace clang
298 
299 #endif
300