1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TargetInfo.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/Builtins.h"
23 #include "clang/Basic/CodeGenOptions.h"
24 #include "clang/Basic/DiagnosticFrontend.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/CodeGen/SwiftCallingConv.h"
27 #include "llvm/ADT/SmallBitVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringSwitch.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/IntrinsicsNVPTX.h"
34 #include "llvm/IR/IntrinsicsS390.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 
40 using namespace clang;
41 using namespace CodeGen;
42 
43 // Helper for coercing an aggregate argument or return value into an integer
44 // array of the same size (including padding) and alignment.  This alternate
45 // coercion happens only for the RenderScript ABI and can be removed after
46 // runtimes that rely on it are no longer supported.
47 //
48 // RenderScript assumes that the size of the argument / return value in the IR
49 // is the same as the size of the corresponding qualified type. This helper
50 // coerces the aggregate type into an array of the same size (including
51 // padding).  This coercion is used in lieu of expansion of struct members or
52 // other canonical coercions that return a coerced-type of larger size.
53 //
54 // Ty          - The argument / return value type
55 // Context     - The associated ASTContext
56 // LLVMContext - The associated LLVMContext
57 static ABIArgInfo coerceToIntArray(QualType Ty,
58                                    ASTContext &Context,
59                                    llvm::LLVMContext &LLVMContext) {
60   // Alignment and Size are measured in bits.
61   const uint64_t Size = Context.getTypeSize(Ty);
62   const uint64_t Alignment = Context.getTypeAlign(Ty);
63   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
64   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
65   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
66 }
67 
68 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
69                                llvm::Value *Array,
70                                llvm::Value *Value,
71                                unsigned FirstIndex,
72                                unsigned LastIndex) {
73   // Alternatively, we could emit this as a loop in the source.
74   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
75     llvm::Value *Cell =
76         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
77     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
78   }
79 }
80 
81 static bool isAggregateTypeForABI(QualType T) {
82   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
83          T->isMemberFunctionPointerType();
84 }
85 
86 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal,
87                                             bool Realign,
88                                             llvm::Type *Padding) const {
89   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal,
90                                  Realign, Padding);
91 }
92 
93 ABIArgInfo
94 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
95   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
96                                       /*ByVal*/ false, Realign);
97 }
98 
99 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
100                              QualType Ty) const {
101   return Address::invalid();
102 }
103 
104 static llvm::Type *getVAListElementType(CodeGenFunction &CGF) {
105   return CGF.ConvertTypeForMem(
106       CGF.getContext().getBuiltinVaListType()->getPointeeType());
107 }
108 
109 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
110   if (Ty->isPromotableIntegerType())
111     return true;
112 
113   if (const auto *EIT = Ty->getAs<BitIntType>())
114     if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy))
115       return true;
116 
117   return false;
118 }
119 
120 ABIInfo::~ABIInfo() {}
121 
122 /// Does the given lowering require more than the given number of
123 /// registers when expanded?
124 ///
125 /// This is intended to be the basis of a reasonable basic implementation
126 /// of should{Pass,Return}IndirectlyForSwift.
127 ///
128 /// For most targets, a limit of four total registers is reasonable; this
129 /// limits the amount of code required in order to move around the value
130 /// in case it wasn't produced immediately prior to the call by the caller
131 /// (or wasn't produced in exactly the right registers) or isn't used
132 /// immediately within the callee.  But some targets may need to further
133 /// limit the register count due to an inability to support that many
134 /// return registers.
135 static bool occupiesMoreThan(CodeGenTypes &cgt,
136                              ArrayRef<llvm::Type*> scalarTypes,
137                              unsigned maxAllRegisters) {
138   unsigned intCount = 0, fpCount = 0;
139   for (llvm::Type *type : scalarTypes) {
140     if (type->isPointerTy()) {
141       intCount++;
142     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
143       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
144       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
145     } else {
146       assert(type->isVectorTy() || type->isFloatingPointTy());
147       fpCount++;
148     }
149   }
150 
151   return (intCount + fpCount > maxAllRegisters);
152 }
153 
154 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
155                                              llvm::Type *eltTy,
156                                              unsigned numElts) const {
157   // The default implementation of this assumes that the target guarantees
158   // 128-bit SIMD support but nothing more.
159   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
160 }
161 
162 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
163                                               CGCXXABI &CXXABI) {
164   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
165   if (!RD) {
166     if (!RT->getDecl()->canPassInRegisters())
167       return CGCXXABI::RAA_Indirect;
168     return CGCXXABI::RAA_Default;
169   }
170   return CXXABI.getRecordArgABI(RD);
171 }
172 
173 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
174                                               CGCXXABI &CXXABI) {
175   const RecordType *RT = T->getAs<RecordType>();
176   if (!RT)
177     return CGCXXABI::RAA_Default;
178   return getRecordArgABI(RT, CXXABI);
179 }
180 
181 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
182                                const ABIInfo &Info) {
183   QualType Ty = FI.getReturnType();
184 
185   if (const auto *RT = Ty->getAs<RecordType>())
186     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
187         !RT->getDecl()->canPassInRegisters()) {
188       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
189       return true;
190     }
191 
192   return CXXABI.classifyReturnType(FI);
193 }
194 
195 /// Pass transparent unions as if they were the type of the first element. Sema
196 /// should ensure that all elements of the union have the same "machine type".
197 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
198   if (const RecordType *UT = Ty->getAsUnionType()) {
199     const RecordDecl *UD = UT->getDecl();
200     if (UD->hasAttr<TransparentUnionAttr>()) {
201       assert(!UD->field_empty() && "sema created an empty transparent union");
202       return UD->field_begin()->getType();
203     }
204   }
205   return Ty;
206 }
207 
208 CGCXXABI &ABIInfo::getCXXABI() const {
209   return CGT.getCXXABI();
210 }
211 
212 ASTContext &ABIInfo::getContext() const {
213   return CGT.getContext();
214 }
215 
216 llvm::LLVMContext &ABIInfo::getVMContext() const {
217   return CGT.getLLVMContext();
218 }
219 
220 const llvm::DataLayout &ABIInfo::getDataLayout() const {
221   return CGT.getDataLayout();
222 }
223 
224 const TargetInfo &ABIInfo::getTarget() const {
225   return CGT.getTarget();
226 }
227 
228 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
229   return CGT.getCodeGenOpts();
230 }
231 
232 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
233 
234 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
235   return false;
236 }
237 
238 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
239                                                 uint64_t Members) const {
240   return false;
241 }
242 
243 bool ABIInfo::isZeroLengthBitfieldPermittedInHomogeneousAggregate() const {
244   // For compatibility with GCC, ignore empty bitfields in C++ mode.
245   return getContext().getLangOpts().CPlusPlus;
246 }
247 
248 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
249   raw_ostream &OS = llvm::errs();
250   OS << "(ABIArgInfo Kind=";
251   switch (TheKind) {
252   case Direct:
253     OS << "Direct Type=";
254     if (llvm::Type *Ty = getCoerceToType())
255       Ty->print(OS);
256     else
257       OS << "null";
258     break;
259   case Extend:
260     OS << "Extend";
261     break;
262   case Ignore:
263     OS << "Ignore";
264     break;
265   case InAlloca:
266     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
267     break;
268   case Indirect:
269     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
270        << " ByVal=" << getIndirectByVal()
271        << " Realign=" << getIndirectRealign();
272     break;
273   case IndirectAliased:
274     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
275        << " AadrSpace=" << getIndirectAddrSpace()
276        << " Realign=" << getIndirectRealign();
277     break;
278   case Expand:
279     OS << "Expand";
280     break;
281   case CoerceAndExpand:
282     OS << "CoerceAndExpand Type=";
283     getCoerceAndExpandType()->print(OS);
284     break;
285   }
286   OS << ")\n";
287 }
288 
289 // Dynamically round a pointer up to a multiple of the given alignment.
290 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
291                                                   llvm::Value *Ptr,
292                                                   CharUnits Align) {
293   llvm::Value *PtrAsInt = Ptr;
294   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
295   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
296   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
297         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
298   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
299            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
300   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
301                                         Ptr->getType(),
302                                         Ptr->getName() + ".aligned");
303   return PtrAsInt;
304 }
305 
306 /// Emit va_arg for a platform using the common void* representation,
307 /// where arguments are simply emitted in an array of slots on the stack.
308 ///
309 /// This version implements the core direct-value passing rules.
310 ///
311 /// \param SlotSize - The size and alignment of a stack slot.
312 ///   Each argument will be allocated to a multiple of this number of
313 ///   slots, and all the slots will be aligned to this value.
314 /// \param AllowHigherAlign - The slot alignment is not a cap;
315 ///   an argument type with an alignment greater than the slot size
316 ///   will be emitted on a higher-alignment address, potentially
317 ///   leaving one or more empty slots behind as padding.  If this
318 ///   is false, the returned address might be less-aligned than
319 ///   DirectAlign.
320 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
321                                       Address VAListAddr,
322                                       llvm::Type *DirectTy,
323                                       CharUnits DirectSize,
324                                       CharUnits DirectAlign,
325                                       CharUnits SlotSize,
326                                       bool AllowHigherAlign) {
327   // Cast the element type to i8* if necessary.  Some platforms define
328   // va_list as a struct containing an i8* instead of just an i8*.
329   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
330     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
331 
332   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
333 
334   // If the CC aligns values higher than the slot size, do so if needed.
335   Address Addr = Address::invalid();
336   if (AllowHigherAlign && DirectAlign > SlotSize) {
337     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
338                    CGF.Int8Ty, DirectAlign);
339   } else {
340     Addr = Address(Ptr, CGF.Int8Ty, SlotSize);
341   }
342 
343   // Advance the pointer past the argument, then store that back.
344   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
345   Address NextPtr =
346       CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
347   CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
348 
349   // If the argument is smaller than a slot, and this is a big-endian
350   // target, the argument will be right-adjusted in its slot.
351   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
352       !DirectTy->isStructTy()) {
353     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
354   }
355 
356   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
357   return Addr;
358 }
359 
360 /// Emit va_arg for a platform using the common void* representation,
361 /// where arguments are simply emitted in an array of slots on the stack.
362 ///
363 /// \param IsIndirect - Values of this type are passed indirectly.
364 /// \param ValueInfo - The size and alignment of this type, generally
365 ///   computed with getContext().getTypeInfoInChars(ValueTy).
366 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
367 ///   Each argument will be allocated to a multiple of this number of
368 ///   slots, and all the slots will be aligned to this value.
369 /// \param AllowHigherAlign - The slot alignment is not a cap;
370 ///   an argument type with an alignment greater than the slot size
371 ///   will be emitted on a higher-alignment address, potentially
372 ///   leaving one or more empty slots behind as padding.
373 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
374                                 QualType ValueTy, bool IsIndirect,
375                                 TypeInfoChars ValueInfo,
376                                 CharUnits SlotSizeAndAlign,
377                                 bool AllowHigherAlign) {
378   // The size and alignment of the value that was passed directly.
379   CharUnits DirectSize, DirectAlign;
380   if (IsIndirect) {
381     DirectSize = CGF.getPointerSize();
382     DirectAlign = CGF.getPointerAlign();
383   } else {
384     DirectSize = ValueInfo.Width;
385     DirectAlign = ValueInfo.Align;
386   }
387 
388   // Cast the address we've calculated to the right type.
389   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy), *ElementTy = DirectTy;
390   if (IsIndirect)
391     DirectTy = DirectTy->getPointerTo(0);
392 
393   Address Addr =
394       emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, DirectSize, DirectAlign,
395                              SlotSizeAndAlign, AllowHigherAlign);
396 
397   if (IsIndirect) {
398     Addr = Address(CGF.Builder.CreateLoad(Addr), ElementTy, ValueInfo.Align);
399   }
400 
401   return Addr;
402 }
403 
404 static Address complexTempStructure(CodeGenFunction &CGF, Address VAListAddr,
405                                     QualType Ty, CharUnits SlotSize,
406                                     CharUnits EltSize, const ComplexType *CTy) {
407   Address Addr =
408       emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, SlotSize * 2,
409                              SlotSize, SlotSize, /*AllowHigher*/ true);
410 
411   Address RealAddr = Addr;
412   Address ImagAddr = RealAddr;
413   if (CGF.CGM.getDataLayout().isBigEndian()) {
414     RealAddr =
415         CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize - EltSize);
416     ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
417                                                       2 * SlotSize - EltSize);
418   } else {
419     ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
420   }
421 
422   llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
423   RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
424   ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
425   llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
426   llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
427 
428   Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
429   CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
430                          /*init*/ true);
431   return Temp;
432 }
433 
434 static Address emitMergePHI(CodeGenFunction &CGF,
435                             Address Addr1, llvm::BasicBlock *Block1,
436                             Address Addr2, llvm::BasicBlock *Block2,
437                             const llvm::Twine &Name = "") {
438   assert(Addr1.getType() == Addr2.getType());
439   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
440   PHI->addIncoming(Addr1.getPointer(), Block1);
441   PHI->addIncoming(Addr2.getPointer(), Block2);
442   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
443   return Address(PHI, Addr1.getElementType(), Align);
444 }
445 
446 TargetCodeGenInfo::TargetCodeGenInfo(std::unique_ptr<ABIInfo> Info)
447     : Info(std::move(Info)) {}
448 
449 TargetCodeGenInfo::~TargetCodeGenInfo() = default;
450 
451 // If someone can figure out a general rule for this, that would be great.
452 // It's probably just doomed to be platform-dependent, though.
453 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
454   // Verified for:
455   //   x86-64     FreeBSD, Linux, Darwin
456   //   x86-32     FreeBSD, Linux, Darwin
457   //   PowerPC    Linux, Darwin
458   //   ARM        Darwin (*not* EABI)
459   //   AArch64    Linux
460   return 32;
461 }
462 
463 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
464                                      const FunctionNoProtoType *fnType) const {
465   // The following conventions are known to require this to be false:
466   //   x86_stdcall
467   //   MIPS
468   // For everything else, we just prefer false unless we opt out.
469   return false;
470 }
471 
472 void
473 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
474                                              llvm::SmallString<24> &Opt) const {
475   // This assumes the user is passing a library name like "rt" instead of a
476   // filename like "librt.a/so", and that they don't care whether it's static or
477   // dynamic.
478   Opt = "-l";
479   Opt += Lib;
480 }
481 
482 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
483   // OpenCL kernels are called via an explicit runtime API with arguments
484   // set with clSetKernelArg(), not as normal sub-functions.
485   // Return SPIR_KERNEL by default as the kernel calling convention to
486   // ensure the fingerprint is fixed such way that each OpenCL argument
487   // gets one matching argument in the produced kernel function argument
488   // list to enable feasible implementation of clSetKernelArg() with
489   // aggregates etc. In case we would use the default C calling conv here,
490   // clSetKernelArg() might break depending on the target-specific
491   // conventions; different targets might split structs passed as values
492   // to multiple function arguments etc.
493   return llvm::CallingConv::SPIR_KERNEL;
494 }
495 
496 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
497     llvm::PointerType *T, QualType QT) const {
498   return llvm::ConstantPointerNull::get(T);
499 }
500 
501 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
502                                                    const VarDecl *D) const {
503   assert(!CGM.getLangOpts().OpenCL &&
504          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
505          "Address space agnostic languages only");
506   return D ? D->getType().getAddressSpace() : LangAS::Default;
507 }
508 
509 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
510     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
511     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
512   // Since target may map different address spaces in AST to the same address
513   // space, an address space conversion may end up as a bitcast.
514   if (auto *C = dyn_cast<llvm::Constant>(Src))
515     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
516   // Try to preserve the source's name to make IR more readable.
517   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
518       Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : "");
519 }
520 
521 llvm::Constant *
522 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
523                                         LangAS SrcAddr, LangAS DestAddr,
524                                         llvm::Type *DestTy) const {
525   // Since target may map different address spaces in AST to the same address
526   // space, an address space conversion may end up as a bitcast.
527   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
528 }
529 
530 llvm::SyncScope::ID
531 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
532                                       SyncScope Scope,
533                                       llvm::AtomicOrdering Ordering,
534                                       llvm::LLVMContext &Ctx) const {
535   return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
536 }
537 
538 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
539 
540 /// isEmptyField - Return true iff a the field is "empty", that is it
541 /// is an unnamed bit-field or an (array of) empty record(s).
542 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
543                          bool AllowArrays) {
544   if (FD->isUnnamedBitfield())
545     return true;
546 
547   QualType FT = FD->getType();
548 
549   // Constant arrays of empty records count as empty, strip them off.
550   // Constant arrays of zero length always count as empty.
551   bool WasArray = false;
552   if (AllowArrays)
553     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
554       if (AT->getSize() == 0)
555         return true;
556       FT = AT->getElementType();
557       // The [[no_unique_address]] special case below does not apply to
558       // arrays of C++ empty records, so we need to remember this fact.
559       WasArray = true;
560     }
561 
562   const RecordType *RT = FT->getAs<RecordType>();
563   if (!RT)
564     return false;
565 
566   // C++ record fields are never empty, at least in the Itanium ABI.
567   //
568   // FIXME: We should use a predicate for whether this behavior is true in the
569   // current ABI.
570   //
571   // The exception to the above rule are fields marked with the
572   // [[no_unique_address]] attribute (since C++20).  Those do count as empty
573   // according to the Itanium ABI.  The exception applies only to records,
574   // not arrays of records, so we must also check whether we stripped off an
575   // array type above.
576   if (isa<CXXRecordDecl>(RT->getDecl()) &&
577       (WasArray || !FD->hasAttr<NoUniqueAddressAttr>()))
578     return false;
579 
580   return isEmptyRecord(Context, FT, AllowArrays);
581 }
582 
583 /// isEmptyRecord - Return true iff a structure contains only empty
584 /// fields. Note that a structure with a flexible array member is not
585 /// considered empty.
586 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
587   const RecordType *RT = T->getAs<RecordType>();
588   if (!RT)
589     return false;
590   const RecordDecl *RD = RT->getDecl();
591   if (RD->hasFlexibleArrayMember())
592     return false;
593 
594   // If this is a C++ record, check the bases first.
595   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
596     for (const auto &I : CXXRD->bases())
597       if (!isEmptyRecord(Context, I.getType(), true))
598         return false;
599 
600   for (const auto *I : RD->fields())
601     if (!isEmptyField(Context, I, AllowArrays))
602       return false;
603   return true;
604 }
605 
606 /// isSingleElementStruct - Determine if a structure is a "single
607 /// element struct", i.e. it has exactly one non-empty field or
608 /// exactly one field which is itself a single element
609 /// struct. Structures with flexible array members are never
610 /// considered single element structs.
611 ///
612 /// \return The field declaration for the single non-empty field, if
613 /// it exists.
614 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
615   const RecordType *RT = T->getAs<RecordType>();
616   if (!RT)
617     return nullptr;
618 
619   const RecordDecl *RD = RT->getDecl();
620   if (RD->hasFlexibleArrayMember())
621     return nullptr;
622 
623   const Type *Found = nullptr;
624 
625   // If this is a C++ record, check the bases first.
626   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
627     for (const auto &I : CXXRD->bases()) {
628       // Ignore empty records.
629       if (isEmptyRecord(Context, I.getType(), true))
630         continue;
631 
632       // If we already found an element then this isn't a single-element struct.
633       if (Found)
634         return nullptr;
635 
636       // If this is non-empty and not a single element struct, the composite
637       // cannot be a single element struct.
638       Found = isSingleElementStruct(I.getType(), Context);
639       if (!Found)
640         return nullptr;
641     }
642   }
643 
644   // Check for single element.
645   for (const auto *FD : RD->fields()) {
646     QualType FT = FD->getType();
647 
648     // Ignore empty fields.
649     if (isEmptyField(Context, FD, true))
650       continue;
651 
652     // If we already found an element then this isn't a single-element
653     // struct.
654     if (Found)
655       return nullptr;
656 
657     // Treat single element arrays as the element.
658     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
659       if (AT->getSize().getZExtValue() != 1)
660         break;
661       FT = AT->getElementType();
662     }
663 
664     if (!isAggregateTypeForABI(FT)) {
665       Found = FT.getTypePtr();
666     } else {
667       Found = isSingleElementStruct(FT, Context);
668       if (!Found)
669         return nullptr;
670     }
671   }
672 
673   // We don't consider a struct a single-element struct if it has
674   // padding beyond the element type.
675   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
676     return nullptr;
677 
678   return Found;
679 }
680 
681 namespace {
682 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
683                        const ABIArgInfo &AI) {
684   // This default implementation defers to the llvm backend's va_arg
685   // instruction. It can handle only passing arguments directly
686   // (typically only handled in the backend for primitive types), or
687   // aggregates passed indirectly by pointer (NOTE: if the "byval"
688   // flag has ABI impact in the callee, this implementation cannot
689   // work.)
690 
691   // Only a few cases are covered here at the moment -- those needed
692   // by the default abi.
693   llvm::Value *Val;
694 
695   if (AI.isIndirect()) {
696     assert(!AI.getPaddingType() &&
697            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
698     assert(
699         !AI.getIndirectRealign() &&
700         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
701 
702     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
703     CharUnits TyAlignForABI = TyInfo.Align;
704 
705     llvm::Type *ElementTy = CGF.ConvertTypeForMem(Ty);
706     llvm::Type *BaseTy = llvm::PointerType::getUnqual(ElementTy);
707     llvm::Value *Addr =
708         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
709     return Address(Addr, ElementTy, TyAlignForABI);
710   } else {
711     assert((AI.isDirect() || AI.isExtend()) &&
712            "Unexpected ArgInfo Kind in generic VAArg emitter!");
713 
714     assert(!AI.getInReg() &&
715            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
716     assert(!AI.getPaddingType() &&
717            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
718     assert(!AI.getDirectOffset() &&
719            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
720     assert(!AI.getCoerceToType() &&
721            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
722 
723     Address Temp = CGF.CreateMemTemp(Ty, "varet");
724     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(),
725                                   CGF.ConvertTypeForMem(Ty));
726     CGF.Builder.CreateStore(Val, Temp);
727     return Temp;
728   }
729 }
730 
731 /// DefaultABIInfo - The default implementation for ABI specific
732 /// details. This implementation provides information which results in
733 /// self-consistent and sensible LLVM IR generation, but does not
734 /// conform to any particular ABI.
735 class DefaultABIInfo : public ABIInfo {
736 public:
737   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
738 
739   ABIArgInfo classifyReturnType(QualType RetTy) const;
740   ABIArgInfo classifyArgumentType(QualType RetTy) const;
741 
742   void computeInfo(CGFunctionInfo &FI) const override {
743     if (!getCXXABI().classifyReturnType(FI))
744       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
745     for (auto &I : FI.arguments())
746       I.info = classifyArgumentType(I.type);
747   }
748 
749   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
750                     QualType Ty) const override {
751     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
752   }
753 };
754 
755 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
756 public:
757   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
758       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
759 };
760 
761 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
762   Ty = useFirstFieldIfTransparentUnion(Ty);
763 
764   if (isAggregateTypeForABI(Ty)) {
765     // Records with non-trivial destructors/copy-constructors should not be
766     // passed by value.
767     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
768       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
769 
770     return getNaturalAlignIndirect(Ty);
771   }
772 
773   // Treat an enum type as its underlying type.
774   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
775     Ty = EnumTy->getDecl()->getIntegerType();
776 
777   ASTContext &Context = getContext();
778   if (const auto *EIT = Ty->getAs<BitIntType>())
779     if (EIT->getNumBits() >
780         Context.getTypeSize(Context.getTargetInfo().hasInt128Type()
781                                 ? Context.Int128Ty
782                                 : Context.LongLongTy))
783       return getNaturalAlignIndirect(Ty);
784 
785   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
786                                             : ABIArgInfo::getDirect());
787 }
788 
789 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
790   if (RetTy->isVoidType())
791     return ABIArgInfo::getIgnore();
792 
793   if (isAggregateTypeForABI(RetTy))
794     return getNaturalAlignIndirect(RetTy);
795 
796   // Treat an enum type as its underlying type.
797   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
798     RetTy = EnumTy->getDecl()->getIntegerType();
799 
800   if (const auto *EIT = RetTy->getAs<BitIntType>())
801     if (EIT->getNumBits() >
802         getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type()
803                                      ? getContext().Int128Ty
804                                      : getContext().LongLongTy))
805       return getNaturalAlignIndirect(RetTy);
806 
807   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
808                                                : ABIArgInfo::getDirect());
809 }
810 
811 //===----------------------------------------------------------------------===//
812 // WebAssembly ABI Implementation
813 //
814 // This is a very simple ABI that relies a lot on DefaultABIInfo.
815 //===----------------------------------------------------------------------===//
816 
817 class WebAssemblyABIInfo final : public SwiftABIInfo {
818 public:
819   enum ABIKind {
820     MVP = 0,
821     ExperimentalMV = 1,
822   };
823 
824 private:
825   DefaultABIInfo defaultInfo;
826   ABIKind Kind;
827 
828 public:
829   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind)
830       : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {}
831 
832 private:
833   ABIArgInfo classifyReturnType(QualType RetTy) const;
834   ABIArgInfo classifyArgumentType(QualType Ty) const;
835 
836   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
837   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
838   // overload them.
839   void computeInfo(CGFunctionInfo &FI) const override {
840     if (!getCXXABI().classifyReturnType(FI))
841       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
842     for (auto &Arg : FI.arguments())
843       Arg.info = classifyArgumentType(Arg.type);
844   }
845 
846   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
847                     QualType Ty) const override;
848 
849   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
850                                     bool asReturnValue) const override {
851     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
852   }
853 
854   bool isSwiftErrorInRegister() const override {
855     return false;
856   }
857 };
858 
859 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
860 public:
861   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
862                                         WebAssemblyABIInfo::ABIKind K)
863       : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {}
864 
865   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
866                            CodeGen::CodeGenModule &CGM) const override {
867     TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
868     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
869       if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
870         llvm::Function *Fn = cast<llvm::Function>(GV);
871         llvm::AttrBuilder B(GV->getContext());
872         B.addAttribute("wasm-import-module", Attr->getImportModule());
873         Fn->addFnAttrs(B);
874       }
875       if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
876         llvm::Function *Fn = cast<llvm::Function>(GV);
877         llvm::AttrBuilder B(GV->getContext());
878         B.addAttribute("wasm-import-name", Attr->getImportName());
879         Fn->addFnAttrs(B);
880       }
881       if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) {
882         llvm::Function *Fn = cast<llvm::Function>(GV);
883         llvm::AttrBuilder B(GV->getContext());
884         B.addAttribute("wasm-export-name", Attr->getExportName());
885         Fn->addFnAttrs(B);
886       }
887     }
888 
889     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
890       llvm::Function *Fn = cast<llvm::Function>(GV);
891       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
892         Fn->addFnAttr("no-prototype");
893     }
894   }
895 };
896 
897 /// Classify argument of given type \p Ty.
898 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
899   Ty = useFirstFieldIfTransparentUnion(Ty);
900 
901   if (isAggregateTypeForABI(Ty)) {
902     // Records with non-trivial destructors/copy-constructors should not be
903     // passed by value.
904     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
905       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
906     // Ignore empty structs/unions.
907     if (isEmptyRecord(getContext(), Ty, true))
908       return ABIArgInfo::getIgnore();
909     // Lower single-element structs to just pass a regular value. TODO: We
910     // could do reasonable-size multiple-element structs too, using getExpand(),
911     // though watch out for things like bitfields.
912     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
913       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
914     // For the experimental multivalue ABI, fully expand all other aggregates
915     if (Kind == ABIKind::ExperimentalMV) {
916       const RecordType *RT = Ty->getAs<RecordType>();
917       assert(RT);
918       bool HasBitField = false;
919       for (auto *Field : RT->getDecl()->fields()) {
920         if (Field->isBitField()) {
921           HasBitField = true;
922           break;
923         }
924       }
925       if (!HasBitField)
926         return ABIArgInfo::getExpand();
927     }
928   }
929 
930   // Otherwise just do the default thing.
931   return defaultInfo.classifyArgumentType(Ty);
932 }
933 
934 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
935   if (isAggregateTypeForABI(RetTy)) {
936     // Records with non-trivial destructors/copy-constructors should not be
937     // returned by value.
938     if (!getRecordArgABI(RetTy, getCXXABI())) {
939       // Ignore empty structs/unions.
940       if (isEmptyRecord(getContext(), RetTy, true))
941         return ABIArgInfo::getIgnore();
942       // Lower single-element structs to just return a regular value. TODO: We
943       // could do reasonable-size multiple-element structs too, using
944       // ABIArgInfo::getDirect().
945       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
946         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
947       // For the experimental multivalue ABI, return all other aggregates
948       if (Kind == ABIKind::ExperimentalMV)
949         return ABIArgInfo::getDirect();
950     }
951   }
952 
953   // Otherwise just do the default thing.
954   return defaultInfo.classifyReturnType(RetTy);
955 }
956 
957 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
958                                       QualType Ty) const {
959   bool IsIndirect = isAggregateTypeForABI(Ty) &&
960                     !isEmptyRecord(getContext(), Ty, true) &&
961                     !isSingleElementStruct(Ty, getContext());
962   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
963                           getContext().getTypeInfoInChars(Ty),
964                           CharUnits::fromQuantity(4),
965                           /*AllowHigherAlign=*/true);
966 }
967 
968 //===----------------------------------------------------------------------===//
969 // le32/PNaCl bitcode ABI Implementation
970 //
971 // This is a simplified version of the x86_32 ABI.  Arguments and return values
972 // are always passed on the stack.
973 //===----------------------------------------------------------------------===//
974 
975 class PNaClABIInfo : public ABIInfo {
976  public:
977   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
978 
979   ABIArgInfo classifyReturnType(QualType RetTy) const;
980   ABIArgInfo classifyArgumentType(QualType RetTy) const;
981 
982   void computeInfo(CGFunctionInfo &FI) const override;
983   Address EmitVAArg(CodeGenFunction &CGF,
984                     Address VAListAddr, QualType Ty) const override;
985 };
986 
987 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
988  public:
989    PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
990        : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {}
991 };
992 
993 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
994   if (!getCXXABI().classifyReturnType(FI))
995     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
996 
997   for (auto &I : FI.arguments())
998     I.info = classifyArgumentType(I.type);
999 }
1000 
1001 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1002                                 QualType Ty) const {
1003   // The PNaCL ABI is a bit odd, in that varargs don't use normal
1004   // function classification. Structs get passed directly for varargs
1005   // functions, through a rewriting transform in
1006   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
1007   // this target to actually support a va_arg instructions with an
1008   // aggregate type, unlike other targets.
1009   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
1010 }
1011 
1012 /// Classify argument of given type \p Ty.
1013 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
1014   if (isAggregateTypeForABI(Ty)) {
1015     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
1016       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
1017     return getNaturalAlignIndirect(Ty);
1018   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
1019     // Treat an enum type as its underlying type.
1020     Ty = EnumTy->getDecl()->getIntegerType();
1021   } else if (Ty->isFloatingType()) {
1022     // Floating-point types don't go inreg.
1023     return ABIArgInfo::getDirect();
1024   } else if (const auto *EIT = Ty->getAs<BitIntType>()) {
1025     // Treat bit-precise integers as integers if <= 64, otherwise pass
1026     // indirectly.
1027     if (EIT->getNumBits() > 64)
1028       return getNaturalAlignIndirect(Ty);
1029     return ABIArgInfo::getDirect();
1030   }
1031 
1032   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
1033                                             : ABIArgInfo::getDirect());
1034 }
1035 
1036 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
1037   if (RetTy->isVoidType())
1038     return ABIArgInfo::getIgnore();
1039 
1040   // In the PNaCl ABI we always return records/structures on the stack.
1041   if (isAggregateTypeForABI(RetTy))
1042     return getNaturalAlignIndirect(RetTy);
1043 
1044   // Treat bit-precise integers as integers if <= 64, otherwise pass indirectly.
1045   if (const auto *EIT = RetTy->getAs<BitIntType>()) {
1046     if (EIT->getNumBits() > 64)
1047       return getNaturalAlignIndirect(RetTy);
1048     return ABIArgInfo::getDirect();
1049   }
1050 
1051   // Treat an enum type as its underlying type.
1052   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1053     RetTy = EnumTy->getDecl()->getIntegerType();
1054 
1055   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1056                                                : ABIArgInfo::getDirect());
1057 }
1058 
1059 /// IsX86_MMXType - Return true if this is an MMX type.
1060 bool IsX86_MMXType(llvm::Type *IRType) {
1061   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
1062   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
1063     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
1064     IRType->getScalarSizeInBits() != 64;
1065 }
1066 
1067 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1068                                           StringRef Constraint,
1069                                           llvm::Type* Ty) {
1070   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
1071                      .Cases("y", "&y", "^Ym", true)
1072                      .Default(false);
1073   if (IsMMXCons && Ty->isVectorTy()) {
1074     if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() !=
1075         64) {
1076       // Invalid MMX constraint
1077       return nullptr;
1078     }
1079 
1080     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
1081   }
1082 
1083   // No operation needed
1084   return Ty;
1085 }
1086 
1087 /// Returns true if this type can be passed in SSE registers with the
1088 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1089 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
1090   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1091     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
1092       if (BT->getKind() == BuiltinType::LongDouble) {
1093         if (&Context.getTargetInfo().getLongDoubleFormat() ==
1094             &llvm::APFloat::x87DoubleExtended())
1095           return false;
1096       }
1097       return true;
1098     }
1099   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
1100     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
1101     // registers specially.
1102     unsigned VecSize = Context.getTypeSize(VT);
1103     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
1104       return true;
1105   }
1106   return false;
1107 }
1108 
1109 /// Returns true if this aggregate is small enough to be passed in SSE registers
1110 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1111 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
1112   return NumMembers <= 4;
1113 }
1114 
1115 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
1116 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
1117   auto AI = ABIArgInfo::getDirect(T);
1118   AI.setInReg(true);
1119   AI.setCanBeFlattened(false);
1120   return AI;
1121 }
1122 
1123 //===----------------------------------------------------------------------===//
1124 // X86-32 ABI Implementation
1125 //===----------------------------------------------------------------------===//
1126 
1127 /// Similar to llvm::CCState, but for Clang.
1128 struct CCState {
1129   CCState(CGFunctionInfo &FI)
1130       : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {}
1131 
1132   llvm::SmallBitVector IsPreassigned;
1133   unsigned CC = CallingConv::CC_C;
1134   unsigned FreeRegs = 0;
1135   unsigned FreeSSERegs = 0;
1136 };
1137 
1138 /// X86_32ABIInfo - The X86-32 ABI information.
1139 class X86_32ABIInfo : public SwiftABIInfo {
1140   enum Class {
1141     Integer,
1142     Float
1143   };
1144 
1145   static const unsigned MinABIStackAlignInBytes = 4;
1146 
1147   bool IsDarwinVectorABI;
1148   bool IsRetSmallStructInRegABI;
1149   bool IsWin32StructABI;
1150   bool IsSoftFloatABI;
1151   bool IsMCUABI;
1152   bool IsLinuxABI;
1153   unsigned DefaultNumRegisterParameters;
1154 
1155   static bool isRegisterSize(unsigned Size) {
1156     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
1157   }
1158 
1159   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1160     // FIXME: Assumes vectorcall is in use.
1161     return isX86VectorTypeForVectorCall(getContext(), Ty);
1162   }
1163 
1164   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1165                                          uint64_t NumMembers) const override {
1166     // FIXME: Assumes vectorcall is in use.
1167     return isX86VectorCallAggregateSmallEnough(NumMembers);
1168   }
1169 
1170   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1171 
1172   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1173   /// such that the argument will be passed in memory.
1174   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1175 
1176   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1177 
1178   /// Return the alignment to use for the given type on the stack.
1179   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1180 
1181   Class classify(QualType Ty) const;
1182   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1183   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1184 
1185   /// Updates the number of available free registers, returns
1186   /// true if any registers were allocated.
1187   bool updateFreeRegs(QualType Ty, CCState &State) const;
1188 
1189   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1190                                 bool &NeedsPadding) const;
1191   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1192 
1193   bool canExpandIndirectArgument(QualType Ty) const;
1194 
1195   /// Rewrite the function info so that all memory arguments use
1196   /// inalloca.
1197   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1198 
1199   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1200                            CharUnits &StackOffset, ABIArgInfo &Info,
1201                            QualType Type) const;
1202   void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
1203 
1204 public:
1205 
1206   void computeInfo(CGFunctionInfo &FI) const override;
1207   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1208                     QualType Ty) const override;
1209 
1210   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1211                 bool RetSmallStructInRegABI, bool Win32StructABI,
1212                 unsigned NumRegisterParameters, bool SoftFloatABI)
1213     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1214       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1215       IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI),
1216       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1217       IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() ||
1218                  CGT.getTarget().getTriple().isOSCygMing()),
1219       DefaultNumRegisterParameters(NumRegisterParameters) {}
1220 
1221   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1222                                     bool asReturnValue) const override {
1223     // LLVM's x86-32 lowering currently only assigns up to three
1224     // integer registers and three fp registers.  Oddly, it'll use up to
1225     // four vector registers for vectors, but those can overlap with the
1226     // scalar registers.
1227     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1228   }
1229 
1230   bool isSwiftErrorInRegister() const override {
1231     // x86-32 lowering does not support passing swifterror in a register.
1232     return false;
1233   }
1234 };
1235 
1236 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1237 public:
1238   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1239                           bool RetSmallStructInRegABI, bool Win32StructABI,
1240                           unsigned NumRegisterParameters, bool SoftFloatABI)
1241       : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>(
1242             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1243             NumRegisterParameters, SoftFloatABI)) {}
1244 
1245   static bool isStructReturnInRegABI(
1246       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1247 
1248   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1249                            CodeGen::CodeGenModule &CGM) const override;
1250 
1251   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1252     // Darwin uses different dwarf register numbers for EH.
1253     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1254     return 4;
1255   }
1256 
1257   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1258                                llvm::Value *Address) const override;
1259 
1260   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1261                                   StringRef Constraint,
1262                                   llvm::Type* Ty) const override {
1263     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1264   }
1265 
1266   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1267                                 std::string &Constraints,
1268                                 std::vector<llvm::Type *> &ResultRegTypes,
1269                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1270                                 std::vector<LValue> &ResultRegDests,
1271                                 std::string &AsmString,
1272                                 unsigned NumOutputs) const override;
1273 
1274   llvm::Constant *
1275   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1276     unsigned Sig = (0xeb << 0) |  // jmp rel8
1277                    (0x06 << 8) |  //           .+0x08
1278                    ('v' << 16) |
1279                    ('2' << 24);
1280     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1281   }
1282 
1283   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1284     return "movl\t%ebp, %ebp"
1285            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1286   }
1287 };
1288 
1289 }
1290 
1291 /// Rewrite input constraint references after adding some output constraints.
1292 /// In the case where there is one output and one input and we add one output,
1293 /// we need to replace all operand references greater than or equal to 1:
1294 ///     mov $0, $1
1295 ///     mov eax, $1
1296 /// The result will be:
1297 ///     mov $0, $2
1298 ///     mov eax, $2
1299 static void rewriteInputConstraintReferences(unsigned FirstIn,
1300                                              unsigned NumNewOuts,
1301                                              std::string &AsmString) {
1302   std::string Buf;
1303   llvm::raw_string_ostream OS(Buf);
1304   size_t Pos = 0;
1305   while (Pos < AsmString.size()) {
1306     size_t DollarStart = AsmString.find('$', Pos);
1307     if (DollarStart == std::string::npos)
1308       DollarStart = AsmString.size();
1309     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1310     if (DollarEnd == std::string::npos)
1311       DollarEnd = AsmString.size();
1312     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1313     Pos = DollarEnd;
1314     size_t NumDollars = DollarEnd - DollarStart;
1315     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1316       // We have an operand reference.
1317       size_t DigitStart = Pos;
1318       if (AsmString[DigitStart] == '{') {
1319         OS << '{';
1320         ++DigitStart;
1321       }
1322       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1323       if (DigitEnd == std::string::npos)
1324         DigitEnd = AsmString.size();
1325       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1326       unsigned OperandIndex;
1327       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1328         if (OperandIndex >= FirstIn)
1329           OperandIndex += NumNewOuts;
1330         OS << OperandIndex;
1331       } else {
1332         OS << OperandStr;
1333       }
1334       Pos = DigitEnd;
1335     }
1336   }
1337   AsmString = std::move(OS.str());
1338 }
1339 
1340 /// Add output constraints for EAX:EDX because they are return registers.
1341 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1342     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1343     std::vector<llvm::Type *> &ResultRegTypes,
1344     std::vector<llvm::Type *> &ResultTruncRegTypes,
1345     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1346     unsigned NumOutputs) const {
1347   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1348 
1349   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1350   // larger.
1351   if (!Constraints.empty())
1352     Constraints += ',';
1353   if (RetWidth <= 32) {
1354     Constraints += "={eax}";
1355     ResultRegTypes.push_back(CGF.Int32Ty);
1356   } else {
1357     // Use the 'A' constraint for EAX:EDX.
1358     Constraints += "=A";
1359     ResultRegTypes.push_back(CGF.Int64Ty);
1360   }
1361 
1362   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1363   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1364   ResultTruncRegTypes.push_back(CoerceTy);
1365 
1366   // Coerce the integer by bitcasting the return slot pointer.
1367   ReturnSlot.setAddress(
1368       CGF.Builder.CreateElementBitCast(ReturnSlot.getAddress(CGF), CoerceTy));
1369   ResultRegDests.push_back(ReturnSlot);
1370 
1371   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1372 }
1373 
1374 /// shouldReturnTypeInRegister - Determine if the given type should be
1375 /// returned in a register (for the Darwin and MCU ABI).
1376 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1377                                                ASTContext &Context) const {
1378   uint64_t Size = Context.getTypeSize(Ty);
1379 
1380   // For i386, type must be register sized.
1381   // For the MCU ABI, it only needs to be <= 8-byte
1382   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1383    return false;
1384 
1385   if (Ty->isVectorType()) {
1386     // 64- and 128- bit vectors inside structures are not returned in
1387     // registers.
1388     if (Size == 64 || Size == 128)
1389       return false;
1390 
1391     return true;
1392   }
1393 
1394   // If this is a builtin, pointer, enum, complex type, member pointer, or
1395   // member function pointer it is ok.
1396   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1397       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1398       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1399     return true;
1400 
1401   // Arrays are treated like records.
1402   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1403     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1404 
1405   // Otherwise, it must be a record type.
1406   const RecordType *RT = Ty->getAs<RecordType>();
1407   if (!RT) return false;
1408 
1409   // FIXME: Traverse bases here too.
1410 
1411   // Structure types are passed in register if all fields would be
1412   // passed in a register.
1413   for (const auto *FD : RT->getDecl()->fields()) {
1414     // Empty fields are ignored.
1415     if (isEmptyField(Context, FD, true))
1416       continue;
1417 
1418     // Check fields recursively.
1419     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1420       return false;
1421   }
1422   return true;
1423 }
1424 
1425 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1426   // Treat complex types as the element type.
1427   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1428     Ty = CTy->getElementType();
1429 
1430   // Check for a type which we know has a simple scalar argument-passing
1431   // convention without any padding.  (We're specifically looking for 32
1432   // and 64-bit integer and integer-equivalents, float, and double.)
1433   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1434       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1435     return false;
1436 
1437   uint64_t Size = Context.getTypeSize(Ty);
1438   return Size == 32 || Size == 64;
1439 }
1440 
1441 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1442                           uint64_t &Size) {
1443   for (const auto *FD : RD->fields()) {
1444     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1445     // argument is smaller than 32-bits, expanding the struct will create
1446     // alignment padding.
1447     if (!is32Or64BitBasicType(FD->getType(), Context))
1448       return false;
1449 
1450     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1451     // how to expand them yet, and the predicate for telling if a bitfield still
1452     // counts as "basic" is more complicated than what we were doing previously.
1453     if (FD->isBitField())
1454       return false;
1455 
1456     Size += Context.getTypeSize(FD->getType());
1457   }
1458   return true;
1459 }
1460 
1461 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1462                                  uint64_t &Size) {
1463   // Don't do this if there are any non-empty bases.
1464   for (const CXXBaseSpecifier &Base : RD->bases()) {
1465     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1466                               Size))
1467       return false;
1468   }
1469   if (!addFieldSizes(Context, RD, Size))
1470     return false;
1471   return true;
1472 }
1473 
1474 /// Test whether an argument type which is to be passed indirectly (on the
1475 /// stack) would have the equivalent layout if it was expanded into separate
1476 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1477 /// optimizations.
1478 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1479   // We can only expand structure types.
1480   const RecordType *RT = Ty->getAs<RecordType>();
1481   if (!RT)
1482     return false;
1483   const RecordDecl *RD = RT->getDecl();
1484   uint64_t Size = 0;
1485   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1486     if (!IsWin32StructABI) {
1487       // On non-Windows, we have to conservatively match our old bitcode
1488       // prototypes in order to be ABI-compatible at the bitcode level.
1489       if (!CXXRD->isCLike())
1490         return false;
1491     } else {
1492       // Don't do this for dynamic classes.
1493       if (CXXRD->isDynamicClass())
1494         return false;
1495     }
1496     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1497       return false;
1498   } else {
1499     if (!addFieldSizes(getContext(), RD, Size))
1500       return false;
1501   }
1502 
1503   // We can do this if there was no alignment padding.
1504   return Size == getContext().getTypeSize(Ty);
1505 }
1506 
1507 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1508   // If the return value is indirect, then the hidden argument is consuming one
1509   // integer register.
1510   if (State.FreeRegs) {
1511     --State.FreeRegs;
1512     if (!IsMCUABI)
1513       return getNaturalAlignIndirectInReg(RetTy);
1514   }
1515   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1516 }
1517 
1518 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1519                                              CCState &State) const {
1520   if (RetTy->isVoidType())
1521     return ABIArgInfo::getIgnore();
1522 
1523   const Type *Base = nullptr;
1524   uint64_t NumElts = 0;
1525   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1526        State.CC == llvm::CallingConv::X86_RegCall) &&
1527       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1528     // The LLVM struct type for such an aggregate should lower properly.
1529     return ABIArgInfo::getDirect();
1530   }
1531 
1532   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1533     // On Darwin, some vectors are returned in registers.
1534     if (IsDarwinVectorABI) {
1535       uint64_t Size = getContext().getTypeSize(RetTy);
1536 
1537       // 128-bit vectors are a special case; they are returned in
1538       // registers and we need to make sure to pick a type the LLVM
1539       // backend will like.
1540       if (Size == 128)
1541         return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
1542             llvm::Type::getInt64Ty(getVMContext()), 2));
1543 
1544       // Always return in register if it fits in a general purpose
1545       // register, or if it is 64 bits and has a single element.
1546       if ((Size == 8 || Size == 16 || Size == 32) ||
1547           (Size == 64 && VT->getNumElements() == 1))
1548         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1549                                                             Size));
1550 
1551       return getIndirectReturnResult(RetTy, State);
1552     }
1553 
1554     return ABIArgInfo::getDirect();
1555   }
1556 
1557   if (isAggregateTypeForABI(RetTy)) {
1558     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1559       // Structures with flexible arrays are always indirect.
1560       if (RT->getDecl()->hasFlexibleArrayMember())
1561         return getIndirectReturnResult(RetTy, State);
1562     }
1563 
1564     // If specified, structs and unions are always indirect.
1565     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1566       return getIndirectReturnResult(RetTy, State);
1567 
1568     // Ignore empty structs/unions.
1569     if (isEmptyRecord(getContext(), RetTy, true))
1570       return ABIArgInfo::getIgnore();
1571 
1572     // Return complex of _Float16 as <2 x half> so the backend will use xmm0.
1573     if (const ComplexType *CT = RetTy->getAs<ComplexType>()) {
1574       QualType ET = getContext().getCanonicalType(CT->getElementType());
1575       if (ET->isFloat16Type())
1576         return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
1577             llvm::Type::getHalfTy(getVMContext()), 2));
1578     }
1579 
1580     // Small structures which are register sized are generally returned
1581     // in a register.
1582     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1583       uint64_t Size = getContext().getTypeSize(RetTy);
1584 
1585       // As a special-case, if the struct is a "single-element" struct, and
1586       // the field is of type "float" or "double", return it in a
1587       // floating-point register. (MSVC does not apply this special case.)
1588       // We apply a similar transformation for pointer types to improve the
1589       // quality of the generated IR.
1590       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1591         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1592             || SeltTy->hasPointerRepresentation())
1593           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1594 
1595       // FIXME: We should be able to narrow this integer in cases with dead
1596       // padding.
1597       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1598     }
1599 
1600     return getIndirectReturnResult(RetTy, State);
1601   }
1602 
1603   // Treat an enum type as its underlying type.
1604   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1605     RetTy = EnumTy->getDecl()->getIntegerType();
1606 
1607   if (const auto *EIT = RetTy->getAs<BitIntType>())
1608     if (EIT->getNumBits() > 64)
1609       return getIndirectReturnResult(RetTy, State);
1610 
1611   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1612                                                : ABIArgInfo::getDirect());
1613 }
1614 
1615 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) {
1616   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1617 }
1618 
1619 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) {
1620   const RecordType *RT = Ty->getAs<RecordType>();
1621   if (!RT)
1622     return false;
1623   const RecordDecl *RD = RT->getDecl();
1624 
1625   // If this is a C++ record, check the bases first.
1626   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1627     for (const auto &I : CXXRD->bases())
1628       if (!isRecordWithSIMDVectorType(Context, I.getType()))
1629         return false;
1630 
1631   for (const auto *i : RD->fields()) {
1632     QualType FT = i->getType();
1633 
1634     if (isSIMDVectorType(Context, FT))
1635       return true;
1636 
1637     if (isRecordWithSIMDVectorType(Context, FT))
1638       return true;
1639   }
1640 
1641   return false;
1642 }
1643 
1644 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1645                                                  unsigned Align) const {
1646   // Otherwise, if the alignment is less than or equal to the minimum ABI
1647   // alignment, just use the default; the backend will handle this.
1648   if (Align <= MinABIStackAlignInBytes)
1649     return 0; // Use default alignment.
1650 
1651   if (IsLinuxABI) {
1652     // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't
1653     // want to spend any effort dealing with the ramifications of ABI breaks.
1654     //
1655     // If the vector type is __m128/__m256/__m512, return the default alignment.
1656     if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64))
1657       return Align;
1658   }
1659   // On non-Darwin, the stack type alignment is always 4.
1660   if (!IsDarwinVectorABI) {
1661     // Set explicit alignment, since we may need to realign the top.
1662     return MinABIStackAlignInBytes;
1663   }
1664 
1665   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1666   if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) ||
1667                       isRecordWithSIMDVectorType(getContext(), Ty)))
1668     return 16;
1669 
1670   return MinABIStackAlignInBytes;
1671 }
1672 
1673 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1674                                             CCState &State) const {
1675   if (!ByVal) {
1676     if (State.FreeRegs) {
1677       --State.FreeRegs; // Non-byval indirects just use one pointer.
1678       if (!IsMCUABI)
1679         return getNaturalAlignIndirectInReg(Ty);
1680     }
1681     return getNaturalAlignIndirect(Ty, false);
1682   }
1683 
1684   // Compute the byval alignment.
1685   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1686   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1687   if (StackAlign == 0)
1688     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1689 
1690   // If the stack alignment is less than the type alignment, realign the
1691   // argument.
1692   bool Realign = TypeAlign > StackAlign;
1693   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1694                                  /*ByVal=*/true, Realign);
1695 }
1696 
1697 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1698   const Type *T = isSingleElementStruct(Ty, getContext());
1699   if (!T)
1700     T = Ty.getTypePtr();
1701 
1702   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1703     BuiltinType::Kind K = BT->getKind();
1704     if (K == BuiltinType::Float || K == BuiltinType::Double)
1705       return Float;
1706   }
1707   return Integer;
1708 }
1709 
1710 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1711   if (!IsSoftFloatABI) {
1712     Class C = classify(Ty);
1713     if (C == Float)
1714       return false;
1715   }
1716 
1717   unsigned Size = getContext().getTypeSize(Ty);
1718   unsigned SizeInRegs = (Size + 31) / 32;
1719 
1720   if (SizeInRegs == 0)
1721     return false;
1722 
1723   if (!IsMCUABI) {
1724     if (SizeInRegs > State.FreeRegs) {
1725       State.FreeRegs = 0;
1726       return false;
1727     }
1728   } else {
1729     // The MCU psABI allows passing parameters in-reg even if there are
1730     // earlier parameters that are passed on the stack. Also,
1731     // it does not allow passing >8-byte structs in-register,
1732     // even if there are 3 free registers available.
1733     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1734       return false;
1735   }
1736 
1737   State.FreeRegs -= SizeInRegs;
1738   return true;
1739 }
1740 
1741 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1742                                              bool &InReg,
1743                                              bool &NeedsPadding) const {
1744   // On Windows, aggregates other than HFAs are never passed in registers, and
1745   // they do not consume register slots. Homogenous floating-point aggregates
1746   // (HFAs) have already been dealt with at this point.
1747   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1748     return false;
1749 
1750   NeedsPadding = false;
1751   InReg = !IsMCUABI;
1752 
1753   if (!updateFreeRegs(Ty, State))
1754     return false;
1755 
1756   if (IsMCUABI)
1757     return true;
1758 
1759   if (State.CC == llvm::CallingConv::X86_FastCall ||
1760       State.CC == llvm::CallingConv::X86_VectorCall ||
1761       State.CC == llvm::CallingConv::X86_RegCall) {
1762     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1763       NeedsPadding = true;
1764 
1765     return false;
1766   }
1767 
1768   return true;
1769 }
1770 
1771 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1772   if (!updateFreeRegs(Ty, State))
1773     return false;
1774 
1775   if (IsMCUABI)
1776     return false;
1777 
1778   if (State.CC == llvm::CallingConv::X86_FastCall ||
1779       State.CC == llvm::CallingConv::X86_VectorCall ||
1780       State.CC == llvm::CallingConv::X86_RegCall) {
1781     if (getContext().getTypeSize(Ty) > 32)
1782       return false;
1783 
1784     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1785         Ty->isReferenceType());
1786   }
1787 
1788   return true;
1789 }
1790 
1791 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
1792   // Vectorcall x86 works subtly different than in x64, so the format is
1793   // a bit different than the x64 version.  First, all vector types (not HVAs)
1794   // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
1795   // This differs from the x64 implementation, where the first 6 by INDEX get
1796   // registers.
1797   // In the second pass over the arguments, HVAs are passed in the remaining
1798   // vector registers if possible, or indirectly by address. The address will be
1799   // passed in ECX/EDX if available. Any other arguments are passed according to
1800   // the usual fastcall rules.
1801   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1802   for (int I = 0, E = Args.size(); I < E; ++I) {
1803     const Type *Base = nullptr;
1804     uint64_t NumElts = 0;
1805     const QualType &Ty = Args[I].type;
1806     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1807         isHomogeneousAggregate(Ty, Base, NumElts)) {
1808       if (State.FreeSSERegs >= NumElts) {
1809         State.FreeSSERegs -= NumElts;
1810         Args[I].info = ABIArgInfo::getDirectInReg();
1811         State.IsPreassigned.set(I);
1812       }
1813     }
1814   }
1815 }
1816 
1817 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1818                                                CCState &State) const {
1819   // FIXME: Set alignment on indirect arguments.
1820   bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
1821   bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
1822   bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
1823 
1824   Ty = useFirstFieldIfTransparentUnion(Ty);
1825   TypeInfo TI = getContext().getTypeInfo(Ty);
1826 
1827   // Check with the C++ ABI first.
1828   const RecordType *RT = Ty->getAs<RecordType>();
1829   if (RT) {
1830     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1831     if (RAA == CGCXXABI::RAA_Indirect) {
1832       return getIndirectResult(Ty, false, State);
1833     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1834       // The field index doesn't matter, we'll fix it up later.
1835       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1836     }
1837   }
1838 
1839   // Regcall uses the concept of a homogenous vector aggregate, similar
1840   // to other targets.
1841   const Type *Base = nullptr;
1842   uint64_t NumElts = 0;
1843   if ((IsRegCall || IsVectorCall) &&
1844       isHomogeneousAggregate(Ty, Base, NumElts)) {
1845     if (State.FreeSSERegs >= NumElts) {
1846       State.FreeSSERegs -= NumElts;
1847 
1848       // Vectorcall passes HVAs directly and does not flatten them, but regcall
1849       // does.
1850       if (IsVectorCall)
1851         return getDirectX86Hva();
1852 
1853       if (Ty->isBuiltinType() || Ty->isVectorType())
1854         return ABIArgInfo::getDirect();
1855       return ABIArgInfo::getExpand();
1856     }
1857     return getIndirectResult(Ty, /*ByVal=*/false, State);
1858   }
1859 
1860   if (isAggregateTypeForABI(Ty)) {
1861     // Structures with flexible arrays are always indirect.
1862     // FIXME: This should not be byval!
1863     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1864       return getIndirectResult(Ty, true, State);
1865 
1866     // Ignore empty structs/unions on non-Windows.
1867     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1868       return ABIArgInfo::getIgnore();
1869 
1870     llvm::LLVMContext &LLVMContext = getVMContext();
1871     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1872     bool NeedsPadding = false;
1873     bool InReg;
1874     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1875       unsigned SizeInRegs = (TI.Width + 31) / 32;
1876       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1877       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1878       if (InReg)
1879         return ABIArgInfo::getDirectInReg(Result);
1880       else
1881         return ABIArgInfo::getDirect(Result);
1882     }
1883     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1884 
1885     // Pass over-aligned aggregates on Windows indirectly. This behavior was
1886     // added in MSVC 2015.
1887     if (IsWin32StructABI && TI.isAlignRequired() && TI.Align > 32)
1888       return getIndirectResult(Ty, /*ByVal=*/false, State);
1889 
1890     // Expand small (<= 128-bit) record types when we know that the stack layout
1891     // of those arguments will match the struct. This is important because the
1892     // LLVM backend isn't smart enough to remove byval, which inhibits many
1893     // optimizations.
1894     // Don't do this for the MCU if there are still free integer registers
1895     // (see X86_64 ABI for full explanation).
1896     if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
1897         canExpandIndirectArgument(Ty))
1898       return ABIArgInfo::getExpandWithPadding(
1899           IsFastCall || IsVectorCall || IsRegCall, PaddingType);
1900 
1901     return getIndirectResult(Ty, true, State);
1902   }
1903 
1904   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1905     // On Windows, vectors are passed directly if registers are available, or
1906     // indirectly if not. This avoids the need to align argument memory. Pass
1907     // user-defined vector types larger than 512 bits indirectly for simplicity.
1908     if (IsWin32StructABI) {
1909       if (TI.Width <= 512 && State.FreeSSERegs > 0) {
1910         --State.FreeSSERegs;
1911         return ABIArgInfo::getDirectInReg();
1912       }
1913       return getIndirectResult(Ty, /*ByVal=*/false, State);
1914     }
1915 
1916     // On Darwin, some vectors are passed in memory, we handle this by passing
1917     // it as an i8/i16/i32/i64.
1918     if (IsDarwinVectorABI) {
1919       if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
1920           (TI.Width == 64 && VT->getNumElements() == 1))
1921         return ABIArgInfo::getDirect(
1922             llvm::IntegerType::get(getVMContext(), TI.Width));
1923     }
1924 
1925     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1926       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1927 
1928     return ABIArgInfo::getDirect();
1929   }
1930 
1931 
1932   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1933     Ty = EnumTy->getDecl()->getIntegerType();
1934 
1935   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1936 
1937   if (isPromotableIntegerTypeForABI(Ty)) {
1938     if (InReg)
1939       return ABIArgInfo::getExtendInReg(Ty);
1940     return ABIArgInfo::getExtend(Ty);
1941   }
1942 
1943   if (const auto *EIT = Ty->getAs<BitIntType>()) {
1944     if (EIT->getNumBits() <= 64) {
1945       if (InReg)
1946         return ABIArgInfo::getDirectInReg();
1947       return ABIArgInfo::getDirect();
1948     }
1949     return getIndirectResult(Ty, /*ByVal=*/false, State);
1950   }
1951 
1952   if (InReg)
1953     return ABIArgInfo::getDirectInReg();
1954   return ABIArgInfo::getDirect();
1955 }
1956 
1957 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1958   CCState State(FI);
1959   if (IsMCUABI)
1960     State.FreeRegs = 3;
1961   else if (State.CC == llvm::CallingConv::X86_FastCall) {
1962     State.FreeRegs = 2;
1963     State.FreeSSERegs = 3;
1964   } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1965     State.FreeRegs = 2;
1966     State.FreeSSERegs = 6;
1967   } else if (FI.getHasRegParm())
1968     State.FreeRegs = FI.getRegParm();
1969   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1970     State.FreeRegs = 5;
1971     State.FreeSSERegs = 8;
1972   } else if (IsWin32StructABI) {
1973     // Since MSVC 2015, the first three SSE vectors have been passed in
1974     // registers. The rest are passed indirectly.
1975     State.FreeRegs = DefaultNumRegisterParameters;
1976     State.FreeSSERegs = 3;
1977   } else
1978     State.FreeRegs = DefaultNumRegisterParameters;
1979 
1980   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1981     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1982   } else if (FI.getReturnInfo().isIndirect()) {
1983     // The C++ ABI is not aware of register usage, so we have to check if the
1984     // return value was sret and put it in a register ourselves if appropriate.
1985     if (State.FreeRegs) {
1986       --State.FreeRegs;  // The sret parameter consumes a register.
1987       if (!IsMCUABI)
1988         FI.getReturnInfo().setInReg(true);
1989     }
1990   }
1991 
1992   // The chain argument effectively gives us another free register.
1993   if (FI.isChainCall())
1994     ++State.FreeRegs;
1995 
1996   // For vectorcall, do a first pass over the arguments, assigning FP and vector
1997   // arguments to XMM registers as available.
1998   if (State.CC == llvm::CallingConv::X86_VectorCall)
1999     runVectorCallFirstPass(FI, State);
2000 
2001   bool UsedInAlloca = false;
2002   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
2003   for (int I = 0, E = Args.size(); I < E; ++I) {
2004     // Skip arguments that have already been assigned.
2005     if (State.IsPreassigned.test(I))
2006       continue;
2007 
2008     Args[I].info = classifyArgumentType(Args[I].type, State);
2009     UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
2010   }
2011 
2012   // If we needed to use inalloca for any argument, do a second pass and rewrite
2013   // all the memory arguments to use inalloca.
2014   if (UsedInAlloca)
2015     rewriteWithInAlloca(FI);
2016 }
2017 
2018 void
2019 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
2020                                    CharUnits &StackOffset, ABIArgInfo &Info,
2021                                    QualType Type) const {
2022   // Arguments are always 4-byte-aligned.
2023   CharUnits WordSize = CharUnits::fromQuantity(4);
2024   assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
2025 
2026   // sret pointers and indirect things will require an extra pointer
2027   // indirection, unless they are byval. Most things are byval, and will not
2028   // require this indirection.
2029   bool IsIndirect = false;
2030   if (Info.isIndirect() && !Info.getIndirectByVal())
2031     IsIndirect = true;
2032   Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
2033   llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
2034   if (IsIndirect)
2035     LLTy = LLTy->getPointerTo(0);
2036   FrameFields.push_back(LLTy);
2037   StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
2038 
2039   // Insert padding bytes to respect alignment.
2040   CharUnits FieldEnd = StackOffset;
2041   StackOffset = FieldEnd.alignTo(WordSize);
2042   if (StackOffset != FieldEnd) {
2043     CharUnits NumBytes = StackOffset - FieldEnd;
2044     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
2045     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
2046     FrameFields.push_back(Ty);
2047   }
2048 }
2049 
2050 static bool isArgInAlloca(const ABIArgInfo &Info) {
2051   // Leave ignored and inreg arguments alone.
2052   switch (Info.getKind()) {
2053   case ABIArgInfo::InAlloca:
2054     return true;
2055   case ABIArgInfo::Ignore:
2056   case ABIArgInfo::IndirectAliased:
2057     return false;
2058   case ABIArgInfo::Indirect:
2059   case ABIArgInfo::Direct:
2060   case ABIArgInfo::Extend:
2061     return !Info.getInReg();
2062   case ABIArgInfo::Expand:
2063   case ABIArgInfo::CoerceAndExpand:
2064     // These are aggregate types which are never passed in registers when
2065     // inalloca is involved.
2066     return true;
2067   }
2068   llvm_unreachable("invalid enum");
2069 }
2070 
2071 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
2072   assert(IsWin32StructABI && "inalloca only supported on win32");
2073 
2074   // Build a packed struct type for all of the arguments in memory.
2075   SmallVector<llvm::Type *, 6> FrameFields;
2076 
2077   // The stack alignment is always 4.
2078   CharUnits StackAlign = CharUnits::fromQuantity(4);
2079 
2080   CharUnits StackOffset;
2081   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
2082 
2083   // Put 'this' into the struct before 'sret', if necessary.
2084   bool IsThisCall =
2085       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
2086   ABIArgInfo &Ret = FI.getReturnInfo();
2087   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
2088       isArgInAlloca(I->info)) {
2089     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2090     ++I;
2091   }
2092 
2093   // Put the sret parameter into the inalloca struct if it's in memory.
2094   if (Ret.isIndirect() && !Ret.getInReg()) {
2095     addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
2096     // On Windows, the hidden sret parameter is always returned in eax.
2097     Ret.setInAllocaSRet(IsWin32StructABI);
2098   }
2099 
2100   // Skip the 'this' parameter in ecx.
2101   if (IsThisCall)
2102     ++I;
2103 
2104   // Put arguments passed in memory into the struct.
2105   for (; I != E; ++I) {
2106     if (isArgInAlloca(I->info))
2107       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2108   }
2109 
2110   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
2111                                         /*isPacked=*/true),
2112                   StackAlign);
2113 }
2114 
2115 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
2116                                  Address VAListAddr, QualType Ty) const {
2117 
2118   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
2119 
2120   // x86-32 changes the alignment of certain arguments on the stack.
2121   //
2122   // Just messing with TypeInfo like this works because we never pass
2123   // anything indirectly.
2124   TypeInfo.Align = CharUnits::fromQuantity(
2125                 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity()));
2126 
2127   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
2128                           TypeInfo, CharUnits::fromQuantity(4),
2129                           /*AllowHigherAlign*/ true);
2130 }
2131 
2132 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
2133     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
2134   assert(Triple.getArch() == llvm::Triple::x86);
2135 
2136   switch (Opts.getStructReturnConvention()) {
2137   case CodeGenOptions::SRCK_Default:
2138     break;
2139   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
2140     return false;
2141   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
2142     return true;
2143   }
2144 
2145   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
2146     return true;
2147 
2148   switch (Triple.getOS()) {
2149   case llvm::Triple::DragonFly:
2150   case llvm::Triple::FreeBSD:
2151   case llvm::Triple::OpenBSD:
2152   case llvm::Triple::Win32:
2153     return true;
2154   default:
2155     return false;
2156   }
2157 }
2158 
2159 static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV,
2160                                  CodeGen::CodeGenModule &CGM) {
2161   if (!FD->hasAttr<AnyX86InterruptAttr>())
2162     return;
2163 
2164   llvm::Function *Fn = cast<llvm::Function>(GV);
2165   Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2166   if (FD->getNumParams() == 0)
2167     return;
2168 
2169   auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType());
2170   llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType());
2171   llvm::Attribute NewAttr = llvm::Attribute::getWithByValType(
2172     Fn->getContext(), ByValTy);
2173   Fn->addParamAttr(0, NewAttr);
2174 }
2175 
2176 void X86_32TargetCodeGenInfo::setTargetAttributes(
2177     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2178   if (GV->isDeclaration())
2179     return;
2180   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2181     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2182       llvm::Function *Fn = cast<llvm::Function>(GV);
2183       Fn->addFnAttr("stackrealign");
2184     }
2185 
2186     addX86InterruptAttrs(FD, GV, CGM);
2187   }
2188 }
2189 
2190 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
2191                                                CodeGen::CodeGenFunction &CGF,
2192                                                llvm::Value *Address) const {
2193   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2194 
2195   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2196 
2197   // 0-7 are the eight integer registers;  the order is different
2198   //   on Darwin (for EH), but the range is the same.
2199   // 8 is %eip.
2200   AssignToArrayRange(Builder, Address, Four8, 0, 8);
2201 
2202   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
2203     // 12-16 are st(0..4).  Not sure why we stop at 4.
2204     // These have size 16, which is sizeof(long double) on
2205     // platforms with 8-byte alignment for that type.
2206     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
2207     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
2208 
2209   } else {
2210     // 9 is %eflags, which doesn't get a size on Darwin for some
2211     // reason.
2212     Builder.CreateAlignedStore(
2213         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
2214                                CharUnits::One());
2215 
2216     // 11-16 are st(0..5).  Not sure why we stop at 5.
2217     // These have size 12, which is sizeof(long double) on
2218     // platforms with 4-byte alignment for that type.
2219     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
2220     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
2221   }
2222 
2223   return false;
2224 }
2225 
2226 //===----------------------------------------------------------------------===//
2227 // X86-64 ABI Implementation
2228 //===----------------------------------------------------------------------===//
2229 
2230 
2231 namespace {
2232 /// The AVX ABI level for X86 targets.
2233 enum class X86AVXABILevel {
2234   None,
2235   AVX,
2236   AVX512
2237 };
2238 
2239 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
2240 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2241   switch (AVXLevel) {
2242   case X86AVXABILevel::AVX512:
2243     return 512;
2244   case X86AVXABILevel::AVX:
2245     return 256;
2246   case X86AVXABILevel::None:
2247     return 128;
2248   }
2249   llvm_unreachable("Unknown AVXLevel");
2250 }
2251 
2252 /// X86_64ABIInfo - The X86_64 ABI information.
2253 class X86_64ABIInfo : public SwiftABIInfo {
2254   enum Class {
2255     Integer = 0,
2256     SSE,
2257     SSEUp,
2258     X87,
2259     X87Up,
2260     ComplexX87,
2261     NoClass,
2262     Memory
2263   };
2264 
2265   /// merge - Implement the X86_64 ABI merging algorithm.
2266   ///
2267   /// Merge an accumulating classification \arg Accum with a field
2268   /// classification \arg Field.
2269   ///
2270   /// \param Accum - The accumulating classification. This should
2271   /// always be either NoClass or the result of a previous merge
2272   /// call. In addition, this should never be Memory (the caller
2273   /// should just return Memory for the aggregate).
2274   static Class merge(Class Accum, Class Field);
2275 
2276   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2277   ///
2278   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2279   /// final MEMORY or SSE classes when necessary.
2280   ///
2281   /// \param AggregateSize - The size of the current aggregate in
2282   /// the classification process.
2283   ///
2284   /// \param Lo - The classification for the parts of the type
2285   /// residing in the low word of the containing object.
2286   ///
2287   /// \param Hi - The classification for the parts of the type
2288   /// residing in the higher words of the containing object.
2289   ///
2290   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2291 
2292   /// classify - Determine the x86_64 register classes in which the
2293   /// given type T should be passed.
2294   ///
2295   /// \param Lo - The classification for the parts of the type
2296   /// residing in the low word of the containing object.
2297   ///
2298   /// \param Hi - The classification for the parts of the type
2299   /// residing in the high word of the containing object.
2300   ///
2301   /// \param OffsetBase - The bit offset of this type in the
2302   /// containing object.  Some parameters are classified different
2303   /// depending on whether they straddle an eightbyte boundary.
2304   ///
2305   /// \param isNamedArg - Whether the argument in question is a "named"
2306   /// argument, as used in AMD64-ABI 3.5.7.
2307   ///
2308   /// \param IsRegCall - Whether the calling conversion is regcall.
2309   ///
2310   /// If a word is unused its result will be NoClass; if a type should
2311   /// be passed in Memory then at least the classification of \arg Lo
2312   /// will be Memory.
2313   ///
2314   /// The \arg Lo class will be NoClass iff the argument is ignored.
2315   ///
2316   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2317   /// also be ComplexX87.
2318   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2319                 bool isNamedArg, bool IsRegCall = false) const;
2320 
2321   llvm::Type *GetByteVectorType(QualType Ty) const;
2322   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2323                                  unsigned IROffset, QualType SourceTy,
2324                                  unsigned SourceOffset) const;
2325   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2326                                      unsigned IROffset, QualType SourceTy,
2327                                      unsigned SourceOffset) const;
2328 
2329   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2330   /// such that the argument will be returned in memory.
2331   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2332 
2333   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2334   /// such that the argument will be passed in memory.
2335   ///
2336   /// \param freeIntRegs - The number of free integer registers remaining
2337   /// available.
2338   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2339 
2340   ABIArgInfo classifyReturnType(QualType RetTy) const;
2341 
2342   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2343                                   unsigned &neededInt, unsigned &neededSSE,
2344                                   bool isNamedArg,
2345                                   bool IsRegCall = false) const;
2346 
2347   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2348                                        unsigned &NeededSSE,
2349                                        unsigned &MaxVectorWidth) const;
2350 
2351   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2352                                            unsigned &NeededSSE,
2353                                            unsigned &MaxVectorWidth) const;
2354 
2355   bool IsIllegalVectorType(QualType Ty) const;
2356 
2357   /// The 0.98 ABI revision clarified a lot of ambiguities,
2358   /// unfortunately in ways that were not always consistent with
2359   /// certain previous compilers.  In particular, platforms which
2360   /// required strict binary compatibility with older versions of GCC
2361   /// may need to exempt themselves.
2362   bool honorsRevision0_98() const {
2363     return !getTarget().getTriple().isOSDarwin();
2364   }
2365 
2366   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2367   /// classify it as INTEGER (for compatibility with older clang compilers).
2368   bool classifyIntegerMMXAsSSE() const {
2369     // Clang <= 3.8 did not do this.
2370     if (getContext().getLangOpts().getClangABICompat() <=
2371         LangOptions::ClangABI::Ver3_8)
2372       return false;
2373 
2374     const llvm::Triple &Triple = getTarget().getTriple();
2375     if (Triple.isOSDarwin() || Triple.isPS())
2376       return false;
2377     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2378       return false;
2379     return true;
2380   }
2381 
2382   // GCC classifies vectors of __int128 as memory.
2383   bool passInt128VectorsInMem() const {
2384     // Clang <= 9.0 did not do this.
2385     if (getContext().getLangOpts().getClangABICompat() <=
2386         LangOptions::ClangABI::Ver9)
2387       return false;
2388 
2389     const llvm::Triple &T = getTarget().getTriple();
2390     return T.isOSLinux() || T.isOSNetBSD();
2391   }
2392 
2393   X86AVXABILevel AVXLevel;
2394   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2395   // 64-bit hardware.
2396   bool Has64BitPointers;
2397 
2398 public:
2399   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2400       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2401       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2402   }
2403 
2404   bool isPassedUsingAVXType(QualType type) const {
2405     unsigned neededInt, neededSSE;
2406     // The freeIntRegs argument doesn't matter here.
2407     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2408                                            /*isNamedArg*/true);
2409     if (info.isDirect()) {
2410       llvm::Type *ty = info.getCoerceToType();
2411       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2412         return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128;
2413     }
2414     return false;
2415   }
2416 
2417   void computeInfo(CGFunctionInfo &FI) const override;
2418 
2419   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2420                     QualType Ty) const override;
2421   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2422                       QualType Ty) const override;
2423 
2424   bool has64BitPointers() const {
2425     return Has64BitPointers;
2426   }
2427 
2428   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2429                                     bool asReturnValue) const override {
2430     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2431   }
2432   bool isSwiftErrorInRegister() const override {
2433     return true;
2434   }
2435 };
2436 
2437 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2438 class WinX86_64ABIInfo : public SwiftABIInfo {
2439 public:
2440   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2441       : SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2442         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2443 
2444   void computeInfo(CGFunctionInfo &FI) const override;
2445 
2446   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2447                     QualType Ty) const override;
2448 
2449   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2450     // FIXME: Assumes vectorcall is in use.
2451     return isX86VectorTypeForVectorCall(getContext(), Ty);
2452   }
2453 
2454   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2455                                          uint64_t NumMembers) const override {
2456     // FIXME: Assumes vectorcall is in use.
2457     return isX86VectorCallAggregateSmallEnough(NumMembers);
2458   }
2459 
2460   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2461                                     bool asReturnValue) const override {
2462     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2463   }
2464 
2465   bool isSwiftErrorInRegister() const override {
2466     return true;
2467   }
2468 
2469 private:
2470   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2471                       bool IsVectorCall, bool IsRegCall) const;
2472   ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs,
2473                                            const ABIArgInfo &current) const;
2474 
2475   X86AVXABILevel AVXLevel;
2476 
2477   bool IsMingw64;
2478 };
2479 
2480 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2481 public:
2482   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2483       : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {}
2484 
2485   const X86_64ABIInfo &getABIInfo() const {
2486     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2487   }
2488 
2489   /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
2490   /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations.
2491   bool markARCOptimizedReturnCallsAsNoTail() const override { return true; }
2492 
2493   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2494     return 7;
2495   }
2496 
2497   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2498                                llvm::Value *Address) const override {
2499     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2500 
2501     // 0-15 are the 16 integer registers.
2502     // 16 is %rip.
2503     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2504     return false;
2505   }
2506 
2507   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2508                                   StringRef Constraint,
2509                                   llvm::Type* Ty) const override {
2510     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2511   }
2512 
2513   bool isNoProtoCallVariadic(const CallArgList &args,
2514                              const FunctionNoProtoType *fnType) const override {
2515     // The default CC on x86-64 sets %al to the number of SSA
2516     // registers used, and GCC sets this when calling an unprototyped
2517     // function, so we override the default behavior.  However, don't do
2518     // that when AVX types are involved: the ABI explicitly states it is
2519     // undefined, and it doesn't work in practice because of how the ABI
2520     // defines varargs anyway.
2521     if (fnType->getCallConv() == CC_C) {
2522       bool HasAVXType = false;
2523       for (CallArgList::const_iterator
2524              it = args.begin(), ie = args.end(); it != ie; ++it) {
2525         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2526           HasAVXType = true;
2527           break;
2528         }
2529       }
2530 
2531       if (!HasAVXType)
2532         return true;
2533     }
2534 
2535     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2536   }
2537 
2538   llvm::Constant *
2539   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2540     unsigned Sig = (0xeb << 0) | // jmp rel8
2541                    (0x06 << 8) | //           .+0x08
2542                    ('v' << 16) |
2543                    ('2' << 24);
2544     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2545   }
2546 
2547   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2548                            CodeGen::CodeGenModule &CGM) const override {
2549     if (GV->isDeclaration())
2550       return;
2551     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2552       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2553         llvm::Function *Fn = cast<llvm::Function>(GV);
2554         Fn->addFnAttr("stackrealign");
2555       }
2556 
2557       addX86InterruptAttrs(FD, GV, CGM);
2558     }
2559   }
2560 
2561   void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
2562                             const FunctionDecl *Caller,
2563                             const FunctionDecl *Callee,
2564                             const CallArgList &Args) const override;
2565 };
2566 
2567 static void initFeatureMaps(const ASTContext &Ctx,
2568                             llvm::StringMap<bool> &CallerMap,
2569                             const FunctionDecl *Caller,
2570                             llvm::StringMap<bool> &CalleeMap,
2571                             const FunctionDecl *Callee) {
2572   if (CalleeMap.empty() && CallerMap.empty()) {
2573     // The caller is potentially nullptr in the case where the call isn't in a
2574     // function.  In this case, the getFunctionFeatureMap ensures we just get
2575     // the TU level setting (since it cannot be modified by 'target'..
2576     Ctx.getFunctionFeatureMap(CallerMap, Caller);
2577     Ctx.getFunctionFeatureMap(CalleeMap, Callee);
2578   }
2579 }
2580 
2581 static bool checkAVXParamFeature(DiagnosticsEngine &Diag,
2582                                  SourceLocation CallLoc,
2583                                  const llvm::StringMap<bool> &CallerMap,
2584                                  const llvm::StringMap<bool> &CalleeMap,
2585                                  QualType Ty, StringRef Feature,
2586                                  bool IsArgument) {
2587   bool CallerHasFeat = CallerMap.lookup(Feature);
2588   bool CalleeHasFeat = CalleeMap.lookup(Feature);
2589   if (!CallerHasFeat && !CalleeHasFeat)
2590     return Diag.Report(CallLoc, diag::warn_avx_calling_convention)
2591            << IsArgument << Ty << Feature;
2592 
2593   // Mixing calling conventions here is very clearly an error.
2594   if (!CallerHasFeat || !CalleeHasFeat)
2595     return Diag.Report(CallLoc, diag::err_avx_calling_convention)
2596            << IsArgument << Ty << Feature;
2597 
2598   // Else, both caller and callee have the required feature, so there is no need
2599   // to diagnose.
2600   return false;
2601 }
2602 
2603 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx,
2604                           SourceLocation CallLoc,
2605                           const llvm::StringMap<bool> &CallerMap,
2606                           const llvm::StringMap<bool> &CalleeMap, QualType Ty,
2607                           bool IsArgument) {
2608   uint64_t Size = Ctx.getTypeSize(Ty);
2609   if (Size > 256)
2610     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
2611                                 "avx512f", IsArgument);
2612 
2613   if (Size > 128)
2614     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx",
2615                                 IsArgument);
2616 
2617   return false;
2618 }
2619 
2620 void X86_64TargetCodeGenInfo::checkFunctionCallABI(
2621     CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller,
2622     const FunctionDecl *Callee, const CallArgList &Args) const {
2623   llvm::StringMap<bool> CallerMap;
2624   llvm::StringMap<bool> CalleeMap;
2625   unsigned ArgIndex = 0;
2626 
2627   // We need to loop through the actual call arguments rather than the the
2628   // function's parameters, in case this variadic.
2629   for (const CallArg &Arg : Args) {
2630     // The "avx" feature changes how vectors >128 in size are passed. "avx512f"
2631     // additionally changes how vectors >256 in size are passed. Like GCC, we
2632     // warn when a function is called with an argument where this will change.
2633     // Unlike GCC, we also error when it is an obvious ABI mismatch, that is,
2634     // the caller and callee features are mismatched.
2635     // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can
2636     // change its ABI with attribute-target after this call.
2637     if (Arg.getType()->isVectorType() &&
2638         CGM.getContext().getTypeSize(Arg.getType()) > 128) {
2639       initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2640       QualType Ty = Arg.getType();
2641       // The CallArg seems to have desugared the type already, so for clearer
2642       // diagnostics, replace it with the type in the FunctionDecl if possible.
2643       if (ArgIndex < Callee->getNumParams())
2644         Ty = Callee->getParamDecl(ArgIndex)->getType();
2645 
2646       if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2647                         CalleeMap, Ty, /*IsArgument*/ true))
2648         return;
2649     }
2650     ++ArgIndex;
2651   }
2652 
2653   // Check return always, as we don't have a good way of knowing in codegen
2654   // whether this value is used, tail-called, etc.
2655   if (Callee->getReturnType()->isVectorType() &&
2656       CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) {
2657     initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2658     checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2659                   CalleeMap, Callee->getReturnType(),
2660                   /*IsArgument*/ false);
2661   }
2662 }
2663 
2664 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2665   // If the argument does not end in .lib, automatically add the suffix.
2666   // If the argument contains a space, enclose it in quotes.
2667   // This matches the behavior of MSVC.
2668   bool Quote = Lib.contains(' ');
2669   std::string ArgStr = Quote ? "\"" : "";
2670   ArgStr += Lib;
2671   if (!Lib.endswith_insensitive(".lib") && !Lib.endswith_insensitive(".a"))
2672     ArgStr += ".lib";
2673   ArgStr += Quote ? "\"" : "";
2674   return ArgStr;
2675 }
2676 
2677 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2678 public:
2679   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2680         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2681         unsigned NumRegisterParameters)
2682     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2683         Win32StructABI, NumRegisterParameters, false) {}
2684 
2685   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2686                            CodeGen::CodeGenModule &CGM) const override;
2687 
2688   void getDependentLibraryOption(llvm::StringRef Lib,
2689                                  llvm::SmallString<24> &Opt) const override {
2690     Opt = "/DEFAULTLIB:";
2691     Opt += qualifyWindowsLibrary(Lib);
2692   }
2693 
2694   void getDetectMismatchOption(llvm::StringRef Name,
2695                                llvm::StringRef Value,
2696                                llvm::SmallString<32> &Opt) const override {
2697     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2698   }
2699 };
2700 
2701 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2702                                           CodeGen::CodeGenModule &CGM) {
2703   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2704 
2705     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2706       Fn->addFnAttr("stack-probe-size",
2707                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2708     if (CGM.getCodeGenOpts().NoStackArgProbe)
2709       Fn->addFnAttr("no-stack-arg-probe");
2710   }
2711 }
2712 
2713 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2714     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2715   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2716   if (GV->isDeclaration())
2717     return;
2718   addStackProbeTargetAttributes(D, GV, CGM);
2719 }
2720 
2721 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2722 public:
2723   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2724                              X86AVXABILevel AVXLevel)
2725       : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {}
2726 
2727   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2728                            CodeGen::CodeGenModule &CGM) const override;
2729 
2730   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2731     return 7;
2732   }
2733 
2734   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2735                                llvm::Value *Address) const override {
2736     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2737 
2738     // 0-15 are the 16 integer registers.
2739     // 16 is %rip.
2740     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2741     return false;
2742   }
2743 
2744   void getDependentLibraryOption(llvm::StringRef Lib,
2745                                  llvm::SmallString<24> &Opt) const override {
2746     Opt = "/DEFAULTLIB:";
2747     Opt += qualifyWindowsLibrary(Lib);
2748   }
2749 
2750   void getDetectMismatchOption(llvm::StringRef Name,
2751                                llvm::StringRef Value,
2752                                llvm::SmallString<32> &Opt) const override {
2753     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2754   }
2755 };
2756 
2757 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2758     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2759   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2760   if (GV->isDeclaration())
2761     return;
2762   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2763     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2764       llvm::Function *Fn = cast<llvm::Function>(GV);
2765       Fn->addFnAttr("stackrealign");
2766     }
2767 
2768     addX86InterruptAttrs(FD, GV, CGM);
2769   }
2770 
2771   addStackProbeTargetAttributes(D, GV, CGM);
2772 }
2773 }
2774 
2775 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2776                               Class &Hi) const {
2777   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2778   //
2779   // (a) If one of the classes is Memory, the whole argument is passed in
2780   //     memory.
2781   //
2782   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2783   //     memory.
2784   //
2785   // (c) If the size of the aggregate exceeds two eightbytes and the first
2786   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2787   //     argument is passed in memory. NOTE: This is necessary to keep the
2788   //     ABI working for processors that don't support the __m256 type.
2789   //
2790   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2791   //
2792   // Some of these are enforced by the merging logic.  Others can arise
2793   // only with unions; for example:
2794   //   union { _Complex double; unsigned; }
2795   //
2796   // Note that clauses (b) and (c) were added in 0.98.
2797   //
2798   if (Hi == Memory)
2799     Lo = Memory;
2800   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2801     Lo = Memory;
2802   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2803     Lo = Memory;
2804   if (Hi == SSEUp && Lo != SSE)
2805     Hi = SSE;
2806 }
2807 
2808 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2809   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2810   // classified recursively so that always two fields are
2811   // considered. The resulting class is calculated according to
2812   // the classes of the fields in the eightbyte:
2813   //
2814   // (a) If both classes are equal, this is the resulting class.
2815   //
2816   // (b) If one of the classes is NO_CLASS, the resulting class is
2817   // the other class.
2818   //
2819   // (c) If one of the classes is MEMORY, the result is the MEMORY
2820   // class.
2821   //
2822   // (d) If one of the classes is INTEGER, the result is the
2823   // INTEGER.
2824   //
2825   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2826   // MEMORY is used as class.
2827   //
2828   // (f) Otherwise class SSE is used.
2829 
2830   // Accum should never be memory (we should have returned) or
2831   // ComplexX87 (because this cannot be passed in a structure).
2832   assert((Accum != Memory && Accum != ComplexX87) &&
2833          "Invalid accumulated classification during merge.");
2834   if (Accum == Field || Field == NoClass)
2835     return Accum;
2836   if (Field == Memory)
2837     return Memory;
2838   if (Accum == NoClass)
2839     return Field;
2840   if (Accum == Integer || Field == Integer)
2841     return Integer;
2842   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2843       Accum == X87 || Accum == X87Up)
2844     return Memory;
2845   return SSE;
2846 }
2847 
2848 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, Class &Lo,
2849                              Class &Hi, bool isNamedArg, bool IsRegCall) const {
2850   // FIXME: This code can be simplified by introducing a simple value class for
2851   // Class pairs with appropriate constructor methods for the various
2852   // situations.
2853 
2854   // FIXME: Some of the split computations are wrong; unaligned vectors
2855   // shouldn't be passed in registers for example, so there is no chance they
2856   // can straddle an eightbyte. Verify & simplify.
2857 
2858   Lo = Hi = NoClass;
2859 
2860   Class &Current = OffsetBase < 64 ? Lo : Hi;
2861   Current = Memory;
2862 
2863   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2864     BuiltinType::Kind k = BT->getKind();
2865 
2866     if (k == BuiltinType::Void) {
2867       Current = NoClass;
2868     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2869       Lo = Integer;
2870       Hi = Integer;
2871     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2872       Current = Integer;
2873     } else if (k == BuiltinType::Float || k == BuiltinType::Double ||
2874                k == BuiltinType::Float16) {
2875       Current = SSE;
2876     } else if (k == BuiltinType::LongDouble) {
2877       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2878       if (LDF == &llvm::APFloat::IEEEquad()) {
2879         Lo = SSE;
2880         Hi = SSEUp;
2881       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2882         Lo = X87;
2883         Hi = X87Up;
2884       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2885         Current = SSE;
2886       } else
2887         llvm_unreachable("unexpected long double representation!");
2888     }
2889     // FIXME: _Decimal32 and _Decimal64 are SSE.
2890     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2891     return;
2892   }
2893 
2894   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2895     // Classify the underlying integer type.
2896     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2897     return;
2898   }
2899 
2900   if (Ty->hasPointerRepresentation()) {
2901     Current = Integer;
2902     return;
2903   }
2904 
2905   if (Ty->isMemberPointerType()) {
2906     if (Ty->isMemberFunctionPointerType()) {
2907       if (Has64BitPointers) {
2908         // If Has64BitPointers, this is an {i64, i64}, so classify both
2909         // Lo and Hi now.
2910         Lo = Hi = Integer;
2911       } else {
2912         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2913         // straddles an eightbyte boundary, Hi should be classified as well.
2914         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2915         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2916         if (EB_FuncPtr != EB_ThisAdj) {
2917           Lo = Hi = Integer;
2918         } else {
2919           Current = Integer;
2920         }
2921       }
2922     } else {
2923       Current = Integer;
2924     }
2925     return;
2926   }
2927 
2928   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2929     uint64_t Size = getContext().getTypeSize(VT);
2930     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2931       // gcc passes the following as integer:
2932       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2933       // 2 bytes - <2 x char>, <1 x short>
2934       // 1 byte  - <1 x char>
2935       Current = Integer;
2936 
2937       // If this type crosses an eightbyte boundary, it should be
2938       // split.
2939       uint64_t EB_Lo = (OffsetBase) / 64;
2940       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2941       if (EB_Lo != EB_Hi)
2942         Hi = Lo;
2943     } else if (Size == 64) {
2944       QualType ElementType = VT->getElementType();
2945 
2946       // gcc passes <1 x double> in memory. :(
2947       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2948         return;
2949 
2950       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2951       // pass them as integer.  For platforms where clang is the de facto
2952       // platform compiler, we must continue to use integer.
2953       if (!classifyIntegerMMXAsSSE() &&
2954           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2955            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2956            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2957            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2958         Current = Integer;
2959       else
2960         Current = SSE;
2961 
2962       // If this type crosses an eightbyte boundary, it should be
2963       // split.
2964       if (OffsetBase && OffsetBase != 64)
2965         Hi = Lo;
2966     } else if (Size == 128 ||
2967                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2968       QualType ElementType = VT->getElementType();
2969 
2970       // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
2971       if (passInt128VectorsInMem() && Size != 128 &&
2972           (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
2973            ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
2974         return;
2975 
2976       // Arguments of 256-bits are split into four eightbyte chunks. The
2977       // least significant one belongs to class SSE and all the others to class
2978       // SSEUP. The original Lo and Hi design considers that types can't be
2979       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2980       // This design isn't correct for 256-bits, but since there're no cases
2981       // where the upper parts would need to be inspected, avoid adding
2982       // complexity and just consider Hi to match the 64-256 part.
2983       //
2984       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2985       // registers if they are "named", i.e. not part of the "..." of a
2986       // variadic function.
2987       //
2988       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2989       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2990       Lo = SSE;
2991       Hi = SSEUp;
2992     }
2993     return;
2994   }
2995 
2996   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2997     QualType ET = getContext().getCanonicalType(CT->getElementType());
2998 
2999     uint64_t Size = getContext().getTypeSize(Ty);
3000     if (ET->isIntegralOrEnumerationType()) {
3001       if (Size <= 64)
3002         Current = Integer;
3003       else if (Size <= 128)
3004         Lo = Hi = Integer;
3005     } else if (ET->isFloat16Type() || ET == getContext().FloatTy) {
3006       Current = SSE;
3007     } else if (ET == getContext().DoubleTy) {
3008       Lo = Hi = SSE;
3009     } else if (ET == getContext().LongDoubleTy) {
3010       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3011       if (LDF == &llvm::APFloat::IEEEquad())
3012         Current = Memory;
3013       else if (LDF == &llvm::APFloat::x87DoubleExtended())
3014         Current = ComplexX87;
3015       else if (LDF == &llvm::APFloat::IEEEdouble())
3016         Lo = Hi = SSE;
3017       else
3018         llvm_unreachable("unexpected long double representation!");
3019     }
3020 
3021     // If this complex type crosses an eightbyte boundary then it
3022     // should be split.
3023     uint64_t EB_Real = (OffsetBase) / 64;
3024     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
3025     if (Hi == NoClass && EB_Real != EB_Imag)
3026       Hi = Lo;
3027 
3028     return;
3029   }
3030 
3031   if (const auto *EITy = Ty->getAs<BitIntType>()) {
3032     if (EITy->getNumBits() <= 64)
3033       Current = Integer;
3034     else if (EITy->getNumBits() <= 128)
3035       Lo = Hi = Integer;
3036     // Larger values need to get passed in memory.
3037     return;
3038   }
3039 
3040   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
3041     // Arrays are treated like structures.
3042 
3043     uint64_t Size = getContext().getTypeSize(Ty);
3044 
3045     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
3046     // than eight eightbytes, ..., it has class MEMORY.
3047     // regcall ABI doesn't have limitation to an object. The only limitation
3048     // is the free registers, which will be checked in computeInfo.
3049     if (!IsRegCall && Size > 512)
3050       return;
3051 
3052     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
3053     // fields, it has class MEMORY.
3054     //
3055     // Only need to check alignment of array base.
3056     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
3057       return;
3058 
3059     // Otherwise implement simplified merge. We could be smarter about
3060     // this, but it isn't worth it and would be harder to verify.
3061     Current = NoClass;
3062     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
3063     uint64_t ArraySize = AT->getSize().getZExtValue();
3064 
3065     // The only case a 256-bit wide vector could be used is when the array
3066     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
3067     // to work for sizes wider than 128, early check and fallback to memory.
3068     //
3069     if (Size > 128 &&
3070         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
3071       return;
3072 
3073     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
3074       Class FieldLo, FieldHi;
3075       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
3076       Lo = merge(Lo, FieldLo);
3077       Hi = merge(Hi, FieldHi);
3078       if (Lo == Memory || Hi == Memory)
3079         break;
3080     }
3081 
3082     postMerge(Size, Lo, Hi);
3083     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
3084     return;
3085   }
3086 
3087   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3088     uint64_t Size = getContext().getTypeSize(Ty);
3089 
3090     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
3091     // than eight eightbytes, ..., it has class MEMORY.
3092     if (Size > 512)
3093       return;
3094 
3095     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
3096     // copy constructor or a non-trivial destructor, it is passed by invisible
3097     // reference.
3098     if (getRecordArgABI(RT, getCXXABI()))
3099       return;
3100 
3101     const RecordDecl *RD = RT->getDecl();
3102 
3103     // Assume variable sized types are passed in memory.
3104     if (RD->hasFlexibleArrayMember())
3105       return;
3106 
3107     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3108 
3109     // Reset Lo class, this will be recomputed.
3110     Current = NoClass;
3111 
3112     // If this is a C++ record, classify the bases first.
3113     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3114       for (const auto &I : CXXRD->bases()) {
3115         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3116                "Unexpected base class!");
3117         const auto *Base =
3118             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3119 
3120         // Classify this field.
3121         //
3122         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
3123         // single eightbyte, each is classified separately. Each eightbyte gets
3124         // initialized to class NO_CLASS.
3125         Class FieldLo, FieldHi;
3126         uint64_t Offset =
3127           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
3128         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
3129         Lo = merge(Lo, FieldLo);
3130         Hi = merge(Hi, FieldHi);
3131         if (Lo == Memory || Hi == Memory) {
3132           postMerge(Size, Lo, Hi);
3133           return;
3134         }
3135       }
3136     }
3137 
3138     // Classify the fields one at a time, merging the results.
3139     unsigned idx = 0;
3140     bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <=
3141                                 LangOptions::ClangABI::Ver11 ||
3142                             getContext().getTargetInfo().getTriple().isPS();
3143     bool IsUnion = RT->isUnionType() && !UseClang11Compat;
3144 
3145     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3146            i != e; ++i, ++idx) {
3147       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3148       bool BitField = i->isBitField();
3149 
3150       // Ignore padding bit-fields.
3151       if (BitField && i->isUnnamedBitfield())
3152         continue;
3153 
3154       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
3155       // eight eightbytes, or it contains unaligned fields, it has class MEMORY.
3156       //
3157       // The only case a 256-bit or a 512-bit wide vector could be used is when
3158       // the struct contains a single 256-bit or 512-bit element. Early check
3159       // and fallback to memory.
3160       //
3161       // FIXME: Extended the Lo and Hi logic properly to work for size wider
3162       // than 128.
3163       if (Size > 128 &&
3164           ((!IsUnion && Size != getContext().getTypeSize(i->getType())) ||
3165            Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
3166         Lo = Memory;
3167         postMerge(Size, Lo, Hi);
3168         return;
3169       }
3170       // Note, skip this test for bit-fields, see below.
3171       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
3172         Lo = Memory;
3173         postMerge(Size, Lo, Hi);
3174         return;
3175       }
3176 
3177       // Classify this field.
3178       //
3179       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
3180       // exceeds a single eightbyte, each is classified
3181       // separately. Each eightbyte gets initialized to class
3182       // NO_CLASS.
3183       Class FieldLo, FieldHi;
3184 
3185       // Bit-fields require special handling, they do not force the
3186       // structure to be passed in memory even if unaligned, and
3187       // therefore they can straddle an eightbyte.
3188       if (BitField) {
3189         assert(!i->isUnnamedBitfield());
3190         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3191         uint64_t Size = i->getBitWidthValue(getContext());
3192 
3193         uint64_t EB_Lo = Offset / 64;
3194         uint64_t EB_Hi = (Offset + Size - 1) / 64;
3195 
3196         if (EB_Lo) {
3197           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
3198           FieldLo = NoClass;
3199           FieldHi = Integer;
3200         } else {
3201           FieldLo = Integer;
3202           FieldHi = EB_Hi ? Integer : NoClass;
3203         }
3204       } else
3205         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
3206       Lo = merge(Lo, FieldLo);
3207       Hi = merge(Hi, FieldHi);
3208       if (Lo == Memory || Hi == Memory)
3209         break;
3210     }
3211 
3212     postMerge(Size, Lo, Hi);
3213   }
3214 }
3215 
3216 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
3217   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3218   // place naturally.
3219   if (!isAggregateTypeForABI(Ty)) {
3220     // Treat an enum type as its underlying type.
3221     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3222       Ty = EnumTy->getDecl()->getIntegerType();
3223 
3224     if (Ty->isBitIntType())
3225       return getNaturalAlignIndirect(Ty);
3226 
3227     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3228                                               : ABIArgInfo::getDirect());
3229   }
3230 
3231   return getNaturalAlignIndirect(Ty);
3232 }
3233 
3234 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
3235   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
3236     uint64_t Size = getContext().getTypeSize(VecTy);
3237     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
3238     if (Size <= 64 || Size > LargestVector)
3239       return true;
3240     QualType EltTy = VecTy->getElementType();
3241     if (passInt128VectorsInMem() &&
3242         (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
3243          EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
3244       return true;
3245   }
3246 
3247   return false;
3248 }
3249 
3250 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
3251                                             unsigned freeIntRegs) const {
3252   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3253   // place naturally.
3254   //
3255   // This assumption is optimistic, as there could be free registers available
3256   // when we need to pass this argument in memory, and LLVM could try to pass
3257   // the argument in the free register. This does not seem to happen currently,
3258   // but this code would be much safer if we could mark the argument with
3259   // 'onstack'. See PR12193.
3260   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) &&
3261       !Ty->isBitIntType()) {
3262     // Treat an enum type as its underlying type.
3263     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3264       Ty = EnumTy->getDecl()->getIntegerType();
3265 
3266     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3267                                               : ABIArgInfo::getDirect());
3268   }
3269 
3270   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3271     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3272 
3273   // Compute the byval alignment. We specify the alignment of the byval in all
3274   // cases so that the mid-level optimizer knows the alignment of the byval.
3275   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
3276 
3277   // Attempt to avoid passing indirect results using byval when possible. This
3278   // is important for good codegen.
3279   //
3280   // We do this by coercing the value into a scalar type which the backend can
3281   // handle naturally (i.e., without using byval).
3282   //
3283   // For simplicity, we currently only do this when we have exhausted all of the
3284   // free integer registers. Doing this when there are free integer registers
3285   // would require more care, as we would have to ensure that the coerced value
3286   // did not claim the unused register. That would require either reording the
3287   // arguments to the function (so that any subsequent inreg values came first),
3288   // or only doing this optimization when there were no following arguments that
3289   // might be inreg.
3290   //
3291   // We currently expect it to be rare (particularly in well written code) for
3292   // arguments to be passed on the stack when there are still free integer
3293   // registers available (this would typically imply large structs being passed
3294   // by value), so this seems like a fair tradeoff for now.
3295   //
3296   // We can revisit this if the backend grows support for 'onstack' parameter
3297   // attributes. See PR12193.
3298   if (freeIntRegs == 0) {
3299     uint64_t Size = getContext().getTypeSize(Ty);
3300 
3301     // If this type fits in an eightbyte, coerce it into the matching integral
3302     // type, which will end up on the stack (with alignment 8).
3303     if (Align == 8 && Size <= 64)
3304       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3305                                                           Size));
3306   }
3307 
3308   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
3309 }
3310 
3311 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
3312 /// register. Pick an LLVM IR type that will be passed as a vector register.
3313 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
3314   // Wrapper structs/arrays that only contain vectors are passed just like
3315   // vectors; strip them off if present.
3316   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
3317     Ty = QualType(InnerTy, 0);
3318 
3319   llvm::Type *IRType = CGT.ConvertType(Ty);
3320   if (isa<llvm::VectorType>(IRType)) {
3321     // Don't pass vXi128 vectors in their native type, the backend can't
3322     // legalize them.
3323     if (passInt128VectorsInMem() &&
3324         cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) {
3325       // Use a vXi64 vector.
3326       uint64_t Size = getContext().getTypeSize(Ty);
3327       return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()),
3328                                         Size / 64);
3329     }
3330 
3331     return IRType;
3332   }
3333 
3334   if (IRType->getTypeID() == llvm::Type::FP128TyID)
3335     return IRType;
3336 
3337   // We couldn't find the preferred IR vector type for 'Ty'.
3338   uint64_t Size = getContext().getTypeSize(Ty);
3339   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
3340 
3341 
3342   // Return a LLVM IR vector type based on the size of 'Ty'.
3343   return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()),
3344                                     Size / 64);
3345 }
3346 
3347 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
3348 /// is known to either be off the end of the specified type or being in
3349 /// alignment padding.  The user type specified is known to be at most 128 bits
3350 /// in size, and have passed through X86_64ABIInfo::classify with a successful
3351 /// classification that put one of the two halves in the INTEGER class.
3352 ///
3353 /// It is conservatively correct to return false.
3354 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
3355                                   unsigned EndBit, ASTContext &Context) {
3356   // If the bytes being queried are off the end of the type, there is no user
3357   // data hiding here.  This handles analysis of builtins, vectors and other
3358   // types that don't contain interesting padding.
3359   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
3360   if (TySize <= StartBit)
3361     return true;
3362 
3363   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3364     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
3365     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
3366 
3367     // Check each element to see if the element overlaps with the queried range.
3368     for (unsigned i = 0; i != NumElts; ++i) {
3369       // If the element is after the span we care about, then we're done..
3370       unsigned EltOffset = i*EltSize;
3371       if (EltOffset >= EndBit) break;
3372 
3373       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
3374       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
3375                                  EndBit-EltOffset, Context))
3376         return false;
3377     }
3378     // If it overlaps no elements, then it is safe to process as padding.
3379     return true;
3380   }
3381 
3382   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3383     const RecordDecl *RD = RT->getDecl();
3384     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3385 
3386     // If this is a C++ record, check the bases first.
3387     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3388       for (const auto &I : CXXRD->bases()) {
3389         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3390                "Unexpected base class!");
3391         const auto *Base =
3392             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3393 
3394         // If the base is after the span we care about, ignore it.
3395         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3396         if (BaseOffset >= EndBit) continue;
3397 
3398         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3399         if (!BitsContainNoUserData(I.getType(), BaseStart,
3400                                    EndBit-BaseOffset, Context))
3401           return false;
3402       }
3403     }
3404 
3405     // Verify that no field has data that overlaps the region of interest.  Yes
3406     // this could be sped up a lot by being smarter about queried fields,
3407     // however we're only looking at structs up to 16 bytes, so we don't care
3408     // much.
3409     unsigned idx = 0;
3410     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3411          i != e; ++i, ++idx) {
3412       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3413 
3414       // If we found a field after the region we care about, then we're done.
3415       if (FieldOffset >= EndBit) break;
3416 
3417       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3418       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3419                                  Context))
3420         return false;
3421     }
3422 
3423     // If nothing in this record overlapped the area of interest, then we're
3424     // clean.
3425     return true;
3426   }
3427 
3428   return false;
3429 }
3430 
3431 /// getFPTypeAtOffset - Return a floating point type at the specified offset.
3432 static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3433                                      const llvm::DataLayout &TD) {
3434   if (IROffset == 0 && IRType->isFloatingPointTy())
3435     return IRType;
3436 
3437   // If this is a struct, recurse into the field at the specified offset.
3438   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3439     if (!STy->getNumContainedTypes())
3440       return nullptr;
3441 
3442     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3443     unsigned Elt = SL->getElementContainingOffset(IROffset);
3444     IROffset -= SL->getElementOffset(Elt);
3445     return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD);
3446   }
3447 
3448   // If this is an array, recurse into the field at the specified offset.
3449   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3450     llvm::Type *EltTy = ATy->getElementType();
3451     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3452     IROffset -= IROffset / EltSize * EltSize;
3453     return getFPTypeAtOffset(EltTy, IROffset, TD);
3454   }
3455 
3456   return nullptr;
3457 }
3458 
3459 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3460 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3461 llvm::Type *X86_64ABIInfo::
3462 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3463                    QualType SourceTy, unsigned SourceOffset) const {
3464   const llvm::DataLayout &TD = getDataLayout();
3465   unsigned SourceSize =
3466       (unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset;
3467   llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD);
3468   if (!T0 || T0->isDoubleTy())
3469     return llvm::Type::getDoubleTy(getVMContext());
3470 
3471   // Get the adjacent FP type.
3472   llvm::Type *T1 = nullptr;
3473   unsigned T0Size = TD.getTypeAllocSize(T0);
3474   if (SourceSize > T0Size)
3475       T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD);
3476   if (T1 == nullptr) {
3477     // Check if IRType is a half + float. float type will be in IROffset+4 due
3478     // to its alignment.
3479     if (T0->isHalfTy() && SourceSize > 4)
3480       T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
3481     // If we can't get a second FP type, return a simple half or float.
3482     // avx512fp16-abi.c:pr51813_2 shows it works to return float for
3483     // {float, i8} too.
3484     if (T1 == nullptr)
3485       return T0;
3486   }
3487 
3488   if (T0->isFloatTy() && T1->isFloatTy())
3489     return llvm::FixedVectorType::get(T0, 2);
3490 
3491   if (T0->isHalfTy() && T1->isHalfTy()) {
3492     llvm::Type *T2 = nullptr;
3493     if (SourceSize > 4)
3494       T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
3495     if (T2 == nullptr)
3496       return llvm::FixedVectorType::get(T0, 2);
3497     return llvm::FixedVectorType::get(T0, 4);
3498   }
3499 
3500   if (T0->isHalfTy() || T1->isHalfTy())
3501     return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4);
3502 
3503   return llvm::Type::getDoubleTy(getVMContext());
3504 }
3505 
3506 
3507 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3508 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3509 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3510 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3511 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3512 /// etc).
3513 ///
3514 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3515 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3516 /// the 8-byte value references.  PrefType may be null.
3517 ///
3518 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3519 /// an offset into this that we're processing (which is always either 0 or 8).
3520 ///
3521 llvm::Type *X86_64ABIInfo::
3522 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3523                        QualType SourceTy, unsigned SourceOffset) const {
3524   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3525   // returning an 8-byte unit starting with it.  See if we can safely use it.
3526   if (IROffset == 0) {
3527     // Pointers and int64's always fill the 8-byte unit.
3528     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3529         IRType->isIntegerTy(64))
3530       return IRType;
3531 
3532     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3533     // goodness in the source type is just tail padding.  This is allowed to
3534     // kick in for struct {double,int} on the int, but not on
3535     // struct{double,int,int} because we wouldn't return the second int.  We
3536     // have to do this analysis on the source type because we can't depend on
3537     // unions being lowered a specific way etc.
3538     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3539         IRType->isIntegerTy(32) ||
3540         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3541       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3542           cast<llvm::IntegerType>(IRType)->getBitWidth();
3543 
3544       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3545                                 SourceOffset*8+64, getContext()))
3546         return IRType;
3547     }
3548   }
3549 
3550   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3551     // If this is a struct, recurse into the field at the specified offset.
3552     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3553     if (IROffset < SL->getSizeInBytes()) {
3554       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3555       IROffset -= SL->getElementOffset(FieldIdx);
3556 
3557       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3558                                     SourceTy, SourceOffset);
3559     }
3560   }
3561 
3562   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3563     llvm::Type *EltTy = ATy->getElementType();
3564     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3565     unsigned EltOffset = IROffset/EltSize*EltSize;
3566     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3567                                   SourceOffset);
3568   }
3569 
3570   // Okay, we don't have any better idea of what to pass, so we pass this in an
3571   // integer register that isn't too big to fit the rest of the struct.
3572   unsigned TySizeInBytes =
3573     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3574 
3575   assert(TySizeInBytes != SourceOffset && "Empty field?");
3576 
3577   // It is always safe to classify this as an integer type up to i64 that
3578   // isn't larger than the structure.
3579   return llvm::IntegerType::get(getVMContext(),
3580                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3581 }
3582 
3583 
3584 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3585 /// be used as elements of a two register pair to pass or return, return a
3586 /// first class aggregate to represent them.  For example, if the low part of
3587 /// a by-value argument should be passed as i32* and the high part as float,
3588 /// return {i32*, float}.
3589 static llvm::Type *
3590 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3591                            const llvm::DataLayout &TD) {
3592   // In order to correctly satisfy the ABI, we need to the high part to start
3593   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3594   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3595   // the second element at offset 8.  Check for this:
3596   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3597   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3598   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3599   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3600 
3601   // To handle this, we have to increase the size of the low part so that the
3602   // second element will start at an 8 byte offset.  We can't increase the size
3603   // of the second element because it might make us access off the end of the
3604   // struct.
3605   if (HiStart != 8) {
3606     // There are usually two sorts of types the ABI generation code can produce
3607     // for the low part of a pair that aren't 8 bytes in size: half, float or
3608     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3609     // NaCl).
3610     // Promote these to a larger type.
3611     if (Lo->isHalfTy() || Lo->isFloatTy())
3612       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3613     else {
3614       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3615              && "Invalid/unknown lo type");
3616       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3617     }
3618   }
3619 
3620   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3621 
3622   // Verify that the second element is at an 8-byte offset.
3623   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3624          "Invalid x86-64 argument pair!");
3625   return Result;
3626 }
3627 
3628 ABIArgInfo X86_64ABIInfo::
3629 classifyReturnType(QualType RetTy) const {
3630   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3631   // classification algorithm.
3632   X86_64ABIInfo::Class Lo, Hi;
3633   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3634 
3635   // Check some invariants.
3636   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3637   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3638 
3639   llvm::Type *ResType = nullptr;
3640   switch (Lo) {
3641   case NoClass:
3642     if (Hi == NoClass)
3643       return ABIArgInfo::getIgnore();
3644     // If the low part is just padding, it takes no register, leave ResType
3645     // null.
3646     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3647            "Unknown missing lo part");
3648     break;
3649 
3650   case SSEUp:
3651   case X87Up:
3652     llvm_unreachable("Invalid classification for lo word.");
3653 
3654     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3655     // hidden argument.
3656   case Memory:
3657     return getIndirectReturnResult(RetTy);
3658 
3659     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3660     // available register of the sequence %rax, %rdx is used.
3661   case Integer:
3662     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3663 
3664     // If we have a sign or zero extended integer, make sure to return Extend
3665     // so that the parameter gets the right LLVM IR attributes.
3666     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3667       // Treat an enum type as its underlying type.
3668       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3669         RetTy = EnumTy->getDecl()->getIntegerType();
3670 
3671       if (RetTy->isIntegralOrEnumerationType() &&
3672           isPromotableIntegerTypeForABI(RetTy))
3673         return ABIArgInfo::getExtend(RetTy);
3674     }
3675     break;
3676 
3677     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3678     // available SSE register of the sequence %xmm0, %xmm1 is used.
3679   case SSE:
3680     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3681     break;
3682 
3683     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3684     // returned on the X87 stack in %st0 as 80-bit x87 number.
3685   case X87:
3686     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3687     break;
3688 
3689     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3690     // part of the value is returned in %st0 and the imaginary part in
3691     // %st1.
3692   case ComplexX87:
3693     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3694     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3695                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3696     break;
3697   }
3698 
3699   llvm::Type *HighPart = nullptr;
3700   switch (Hi) {
3701     // Memory was handled previously and X87 should
3702     // never occur as a hi class.
3703   case Memory:
3704   case X87:
3705     llvm_unreachable("Invalid classification for hi word.");
3706 
3707   case ComplexX87: // Previously handled.
3708   case NoClass:
3709     break;
3710 
3711   case Integer:
3712     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3713     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3714       return ABIArgInfo::getDirect(HighPart, 8);
3715     break;
3716   case SSE:
3717     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3718     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3719       return ABIArgInfo::getDirect(HighPart, 8);
3720     break;
3721 
3722     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3723     // is passed in the next available eightbyte chunk if the last used
3724     // vector register.
3725     //
3726     // SSEUP should always be preceded by SSE, just widen.
3727   case SSEUp:
3728     assert(Lo == SSE && "Unexpected SSEUp classification.");
3729     ResType = GetByteVectorType(RetTy);
3730     break;
3731 
3732     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3733     // returned together with the previous X87 value in %st0.
3734   case X87Up:
3735     // If X87Up is preceded by X87, we don't need to do
3736     // anything. However, in some cases with unions it may not be
3737     // preceded by X87. In such situations we follow gcc and pass the
3738     // extra bits in an SSE reg.
3739     if (Lo != X87) {
3740       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3741       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3742         return ABIArgInfo::getDirect(HighPart, 8);
3743     }
3744     break;
3745   }
3746 
3747   // If a high part was specified, merge it together with the low part.  It is
3748   // known to pass in the high eightbyte of the result.  We do this by forming a
3749   // first class struct aggregate with the high and low part: {low, high}
3750   if (HighPart)
3751     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3752 
3753   return ABIArgInfo::getDirect(ResType);
3754 }
3755 
3756 ABIArgInfo
3757 X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned freeIntRegs,
3758                                     unsigned &neededInt, unsigned &neededSSE,
3759                                     bool isNamedArg, bool IsRegCall) const {
3760   Ty = useFirstFieldIfTransparentUnion(Ty);
3761 
3762   X86_64ABIInfo::Class Lo, Hi;
3763   classify(Ty, 0, Lo, Hi, isNamedArg, IsRegCall);
3764 
3765   // Check some invariants.
3766   // FIXME: Enforce these by construction.
3767   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3768   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3769 
3770   neededInt = 0;
3771   neededSSE = 0;
3772   llvm::Type *ResType = nullptr;
3773   switch (Lo) {
3774   case NoClass:
3775     if (Hi == NoClass)
3776       return ABIArgInfo::getIgnore();
3777     // If the low part is just padding, it takes no register, leave ResType
3778     // null.
3779     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3780            "Unknown missing lo part");
3781     break;
3782 
3783     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3784     // on the stack.
3785   case Memory:
3786 
3787     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3788     // COMPLEX_X87, it is passed in memory.
3789   case X87:
3790   case ComplexX87:
3791     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3792       ++neededInt;
3793     return getIndirectResult(Ty, freeIntRegs);
3794 
3795   case SSEUp:
3796   case X87Up:
3797     llvm_unreachable("Invalid classification for lo word.");
3798 
3799     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3800     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3801     // and %r9 is used.
3802   case Integer:
3803     ++neededInt;
3804 
3805     // Pick an 8-byte type based on the preferred type.
3806     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3807 
3808     // If we have a sign or zero extended integer, make sure to return Extend
3809     // so that the parameter gets the right LLVM IR attributes.
3810     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3811       // Treat an enum type as its underlying type.
3812       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3813         Ty = EnumTy->getDecl()->getIntegerType();
3814 
3815       if (Ty->isIntegralOrEnumerationType() &&
3816           isPromotableIntegerTypeForABI(Ty))
3817         return ABIArgInfo::getExtend(Ty);
3818     }
3819 
3820     break;
3821 
3822     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3823     // available SSE register is used, the registers are taken in the
3824     // order from %xmm0 to %xmm7.
3825   case SSE: {
3826     llvm::Type *IRType = CGT.ConvertType(Ty);
3827     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3828     ++neededSSE;
3829     break;
3830   }
3831   }
3832 
3833   llvm::Type *HighPart = nullptr;
3834   switch (Hi) {
3835     // Memory was handled previously, ComplexX87 and X87 should
3836     // never occur as hi classes, and X87Up must be preceded by X87,
3837     // which is passed in memory.
3838   case Memory:
3839   case X87:
3840   case ComplexX87:
3841     llvm_unreachable("Invalid classification for hi word.");
3842 
3843   case NoClass: break;
3844 
3845   case Integer:
3846     ++neededInt;
3847     // Pick an 8-byte type based on the preferred type.
3848     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3849 
3850     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3851       return ABIArgInfo::getDirect(HighPart, 8);
3852     break;
3853 
3854     // X87Up generally doesn't occur here (long double is passed in
3855     // memory), except in situations involving unions.
3856   case X87Up:
3857   case SSE:
3858     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3859 
3860     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3861       return ABIArgInfo::getDirect(HighPart, 8);
3862 
3863     ++neededSSE;
3864     break;
3865 
3866     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3867     // eightbyte is passed in the upper half of the last used SSE
3868     // register.  This only happens when 128-bit vectors are passed.
3869   case SSEUp:
3870     assert(Lo == SSE && "Unexpected SSEUp classification");
3871     ResType = GetByteVectorType(Ty);
3872     break;
3873   }
3874 
3875   // If a high part was specified, merge it together with the low part.  It is
3876   // known to pass in the high eightbyte of the result.  We do this by forming a
3877   // first class struct aggregate with the high and low part: {low, high}
3878   if (HighPart)
3879     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3880 
3881   return ABIArgInfo::getDirect(ResType);
3882 }
3883 
3884 ABIArgInfo
3885 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3886                                              unsigned &NeededSSE,
3887                                              unsigned &MaxVectorWidth) const {
3888   auto RT = Ty->getAs<RecordType>();
3889   assert(RT && "classifyRegCallStructType only valid with struct types");
3890 
3891   if (RT->getDecl()->hasFlexibleArrayMember())
3892     return getIndirectReturnResult(Ty);
3893 
3894   // Sum up bases
3895   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3896     if (CXXRD->isDynamicClass()) {
3897       NeededInt = NeededSSE = 0;
3898       return getIndirectReturnResult(Ty);
3899     }
3900 
3901     for (const auto &I : CXXRD->bases())
3902       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE,
3903                                         MaxVectorWidth)
3904               .isIndirect()) {
3905         NeededInt = NeededSSE = 0;
3906         return getIndirectReturnResult(Ty);
3907       }
3908   }
3909 
3910   // Sum up members
3911   for (const auto *FD : RT->getDecl()->fields()) {
3912     QualType MTy = FD->getType();
3913     if (MTy->isRecordType() && !MTy->isUnionType()) {
3914       if (classifyRegCallStructTypeImpl(MTy, NeededInt, NeededSSE,
3915                                         MaxVectorWidth)
3916               .isIndirect()) {
3917         NeededInt = NeededSSE = 0;
3918         return getIndirectReturnResult(Ty);
3919       }
3920     } else {
3921       unsigned LocalNeededInt, LocalNeededSSE;
3922       if (classifyArgumentType(MTy, UINT_MAX, LocalNeededInt, LocalNeededSSE,
3923                                true, true)
3924               .isIndirect()) {
3925         NeededInt = NeededSSE = 0;
3926         return getIndirectReturnResult(Ty);
3927       }
3928       if (const auto *AT = getContext().getAsConstantArrayType(MTy))
3929         MTy = AT->getElementType();
3930       if (const auto *VT = MTy->getAs<VectorType>())
3931         if (getContext().getTypeSize(VT) > MaxVectorWidth)
3932           MaxVectorWidth = getContext().getTypeSize(VT);
3933       NeededInt += LocalNeededInt;
3934       NeededSSE += LocalNeededSSE;
3935     }
3936   }
3937 
3938   return ABIArgInfo::getDirect();
3939 }
3940 
3941 ABIArgInfo
3942 X86_64ABIInfo::classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
3943                                          unsigned &NeededSSE,
3944                                          unsigned &MaxVectorWidth) const {
3945 
3946   NeededInt = 0;
3947   NeededSSE = 0;
3948   MaxVectorWidth = 0;
3949 
3950   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE,
3951                                        MaxVectorWidth);
3952 }
3953 
3954 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3955 
3956   const unsigned CallingConv = FI.getCallingConvention();
3957   // It is possible to force Win64 calling convention on any x86_64 target by
3958   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3959   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3960   if (CallingConv == llvm::CallingConv::Win64) {
3961     WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
3962     Win64ABIInfo.computeInfo(FI);
3963     return;
3964   }
3965 
3966   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3967 
3968   // Keep track of the number of assigned registers.
3969   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3970   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3971   unsigned NeededInt = 0, NeededSSE = 0, MaxVectorWidth = 0;
3972 
3973   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3974     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3975         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3976       FI.getReturnInfo() = classifyRegCallStructType(
3977           FI.getReturnType(), NeededInt, NeededSSE, MaxVectorWidth);
3978       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3979         FreeIntRegs -= NeededInt;
3980         FreeSSERegs -= NeededSSE;
3981       } else {
3982         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3983       }
3984     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() &&
3985                getContext().getCanonicalType(FI.getReturnType()
3986                                                  ->getAs<ComplexType>()
3987                                                  ->getElementType()) ==
3988                    getContext().LongDoubleTy)
3989       // Complex Long Double Type is passed in Memory when Regcall
3990       // calling convention is used.
3991       FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3992     else
3993       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3994   }
3995 
3996   // If the return value is indirect, then the hidden argument is consuming one
3997   // integer register.
3998   if (FI.getReturnInfo().isIndirect())
3999     --FreeIntRegs;
4000   else if (NeededSSE && MaxVectorWidth > 0)
4001     FI.setMaxVectorWidth(MaxVectorWidth);
4002 
4003   // The chain argument effectively gives us another free register.
4004   if (FI.isChainCall())
4005     ++FreeIntRegs;
4006 
4007   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
4008   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
4009   // get assigned (in left-to-right order) for passing as follows...
4010   unsigned ArgNo = 0;
4011   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4012        it != ie; ++it, ++ArgNo) {
4013     bool IsNamedArg = ArgNo < NumRequiredArgs;
4014 
4015     if (IsRegCall && it->type->isStructureOrClassType())
4016       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE,
4017                                            MaxVectorWidth);
4018     else
4019       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
4020                                       NeededSSE, IsNamedArg);
4021 
4022     // AMD64-ABI 3.2.3p3: If there are no registers available for any
4023     // eightbyte of an argument, the whole argument is passed on the
4024     // stack. If registers have already been assigned for some
4025     // eightbytes of such an argument, the assignments get reverted.
4026     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
4027       FreeIntRegs -= NeededInt;
4028       FreeSSERegs -= NeededSSE;
4029       if (MaxVectorWidth > FI.getMaxVectorWidth())
4030         FI.setMaxVectorWidth(MaxVectorWidth);
4031     } else {
4032       it->info = getIndirectResult(it->type, FreeIntRegs);
4033     }
4034   }
4035 }
4036 
4037 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
4038                                          Address VAListAddr, QualType Ty) {
4039   Address overflow_arg_area_p =
4040       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
4041   llvm::Value *overflow_arg_area =
4042     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
4043 
4044   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
4045   // byte boundary if alignment needed by type exceeds 8 byte boundary.
4046   // It isn't stated explicitly in the standard, but in practice we use
4047   // alignment greater than 16 where necessary.
4048   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4049   if (Align > CharUnits::fromQuantity(8)) {
4050     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
4051                                                       Align);
4052   }
4053 
4054   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
4055   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
4056   llvm::Value *Res =
4057     CGF.Builder.CreateBitCast(overflow_arg_area,
4058                               llvm::PointerType::getUnqual(LTy));
4059 
4060   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
4061   // l->overflow_arg_area + sizeof(type).
4062   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
4063   // an 8 byte boundary.
4064 
4065   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
4066   llvm::Value *Offset =
4067       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
4068   overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area,
4069                                             Offset, "overflow_arg_area.next");
4070   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
4071 
4072   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
4073   return Address(Res, LTy, Align);
4074 }
4075 
4076 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4077                                  QualType Ty) const {
4078   // Assume that va_list type is correct; should be pointer to LLVM type:
4079   // struct {
4080   //   i32 gp_offset;
4081   //   i32 fp_offset;
4082   //   i8* overflow_arg_area;
4083   //   i8* reg_save_area;
4084   // };
4085   unsigned neededInt, neededSSE;
4086 
4087   Ty = getContext().getCanonicalType(Ty);
4088   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
4089                                        /*isNamedArg*/false);
4090 
4091   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
4092   // in the registers. If not go to step 7.
4093   if (!neededInt && !neededSSE)
4094     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
4095 
4096   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
4097   // general purpose registers needed to pass type and num_fp to hold
4098   // the number of floating point registers needed.
4099 
4100   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
4101   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
4102   // l->fp_offset > 304 - num_fp * 16 go to step 7.
4103   //
4104   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
4105   // register save space).
4106 
4107   llvm::Value *InRegs = nullptr;
4108   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
4109   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
4110   if (neededInt) {
4111     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
4112     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
4113     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
4114     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
4115   }
4116 
4117   if (neededSSE) {
4118     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
4119     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
4120     llvm::Value *FitsInFP =
4121       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
4122     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
4123     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
4124   }
4125 
4126   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4127   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
4128   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4129   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
4130 
4131   // Emit code to load the value if it was passed in registers.
4132 
4133   CGF.EmitBlock(InRegBlock);
4134 
4135   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
4136   // an offset of l->gp_offset and/or l->fp_offset. This may require
4137   // copying to a temporary location in case the parameter is passed
4138   // in different register classes or requires an alignment greater
4139   // than 8 for general purpose registers and 16 for XMM registers.
4140   //
4141   // FIXME: This really results in shameful code when we end up needing to
4142   // collect arguments from different places; often what should result in a
4143   // simple assembling of a structure from scattered addresses has many more
4144   // loads than necessary. Can we clean this up?
4145   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
4146   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
4147       CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
4148 
4149   Address RegAddr = Address::invalid();
4150   if (neededInt && neededSSE) {
4151     // FIXME: Cleanup.
4152     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
4153     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
4154     Address Tmp = CGF.CreateMemTemp(Ty);
4155     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4156     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
4157     llvm::Type *TyLo = ST->getElementType(0);
4158     llvm::Type *TyHi = ST->getElementType(1);
4159     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
4160            "Unexpected ABI info for mixed regs");
4161     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
4162     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
4163     llvm::Value *GPAddr =
4164         CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset);
4165     llvm::Value *FPAddr =
4166         CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset);
4167     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
4168     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
4169 
4170     // Copy the first element.
4171     // FIXME: Our choice of alignment here and below is probably pessimistic.
4172     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
4173         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
4174         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
4175     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4176 
4177     // Copy the second element.
4178     V = CGF.Builder.CreateAlignedLoad(
4179         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
4180         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
4181     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4182 
4183     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4184   } else if (neededInt) {
4185     RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset),
4186                       CGF.Int8Ty, CharUnits::fromQuantity(8));
4187     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4188 
4189     // Copy to a temporary if necessary to ensure the appropriate alignment.
4190     auto TInfo = getContext().getTypeInfoInChars(Ty);
4191     uint64_t TySize = TInfo.Width.getQuantity();
4192     CharUnits TyAlign = TInfo.Align;
4193 
4194     // Copy into a temporary if the type is more aligned than the
4195     // register save area.
4196     if (TyAlign.getQuantity() > 8) {
4197       Address Tmp = CGF.CreateMemTemp(Ty);
4198       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
4199       RegAddr = Tmp;
4200     }
4201 
4202   } else if (neededSSE == 1) {
4203     RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset),
4204                       CGF.Int8Ty, CharUnits::fromQuantity(16));
4205     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4206   } else {
4207     assert(neededSSE == 2 && "Invalid number of needed registers!");
4208     // SSE registers are spaced 16 bytes apart in the register save
4209     // area, we need to collect the two eightbytes together.
4210     // The ABI isn't explicit about this, but it seems reasonable
4211     // to assume that the slots are 16-byte aligned, since the stack is
4212     // naturally 16-byte aligned and the prologue is expected to store
4213     // all the SSE registers to the RSA.
4214     Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea,
4215                                                       fp_offset),
4216                                 CGF.Int8Ty, CharUnits::fromQuantity(16));
4217     Address RegAddrHi =
4218       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
4219                                              CharUnits::fromQuantity(16));
4220     llvm::Type *ST = AI.canHaveCoerceToType()
4221                          ? AI.getCoerceToType()
4222                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
4223     llvm::Value *V;
4224     Address Tmp = CGF.CreateMemTemp(Ty);
4225     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4226     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4227         RegAddrLo, ST->getStructElementType(0)));
4228     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4229     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4230         RegAddrHi, ST->getStructElementType(1)));
4231     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4232 
4233     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4234   }
4235 
4236   // AMD64-ABI 3.5.7p5: Step 5. Set:
4237   // l->gp_offset = l->gp_offset + num_gp * 8
4238   // l->fp_offset = l->fp_offset + num_fp * 16.
4239   if (neededInt) {
4240     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
4241     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
4242                             gp_offset_p);
4243   }
4244   if (neededSSE) {
4245     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
4246     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
4247                             fp_offset_p);
4248   }
4249   CGF.EmitBranch(ContBlock);
4250 
4251   // Emit code to load the value if it was passed in memory.
4252 
4253   CGF.EmitBlock(InMemBlock);
4254   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
4255 
4256   // Return the appropriate result.
4257 
4258   CGF.EmitBlock(ContBlock);
4259   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
4260                                  "vaarg.addr");
4261   return ResAddr;
4262 }
4263 
4264 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4265                                    QualType Ty) const {
4266   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4267   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4268   uint64_t Width = getContext().getTypeSize(Ty);
4269   bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4270 
4271   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4272                           CGF.getContext().getTypeInfoInChars(Ty),
4273                           CharUnits::fromQuantity(8),
4274                           /*allowHigherAlign*/ false);
4275 }
4276 
4277 ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall(
4278     QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo &current) const {
4279   const Type *Base = nullptr;
4280   uint64_t NumElts = 0;
4281 
4282   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
4283       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
4284     FreeSSERegs -= NumElts;
4285     return getDirectX86Hva();
4286   }
4287   return current;
4288 }
4289 
4290 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
4291                                       bool IsReturnType, bool IsVectorCall,
4292                                       bool IsRegCall) const {
4293 
4294   if (Ty->isVoidType())
4295     return ABIArgInfo::getIgnore();
4296 
4297   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4298     Ty = EnumTy->getDecl()->getIntegerType();
4299 
4300   TypeInfo Info = getContext().getTypeInfo(Ty);
4301   uint64_t Width = Info.Width;
4302   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
4303 
4304   const RecordType *RT = Ty->getAs<RecordType>();
4305   if (RT) {
4306     if (!IsReturnType) {
4307       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
4308         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4309     }
4310 
4311     if (RT->getDecl()->hasFlexibleArrayMember())
4312       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4313 
4314   }
4315 
4316   const Type *Base = nullptr;
4317   uint64_t NumElts = 0;
4318   // vectorcall adds the concept of a homogenous vector aggregate, similar to
4319   // other targets.
4320   if ((IsVectorCall || IsRegCall) &&
4321       isHomogeneousAggregate(Ty, Base, NumElts)) {
4322     if (IsRegCall) {
4323       if (FreeSSERegs >= NumElts) {
4324         FreeSSERegs -= NumElts;
4325         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
4326           return ABIArgInfo::getDirect();
4327         return ABIArgInfo::getExpand();
4328       }
4329       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4330     } else if (IsVectorCall) {
4331       if (FreeSSERegs >= NumElts &&
4332           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
4333         FreeSSERegs -= NumElts;
4334         return ABIArgInfo::getDirect();
4335       } else if (IsReturnType) {
4336         return ABIArgInfo::getExpand();
4337       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
4338         // HVAs are delayed and reclassified in the 2nd step.
4339         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4340       }
4341     }
4342   }
4343 
4344   if (Ty->isMemberPointerType()) {
4345     // If the member pointer is represented by an LLVM int or ptr, pass it
4346     // directly.
4347     llvm::Type *LLTy = CGT.ConvertType(Ty);
4348     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
4349       return ABIArgInfo::getDirect();
4350   }
4351 
4352   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
4353     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4354     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4355     if (Width > 64 || !llvm::isPowerOf2_64(Width))
4356       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4357 
4358     // Otherwise, coerce it to a small integer.
4359     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
4360   }
4361 
4362   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4363     switch (BT->getKind()) {
4364     case BuiltinType::Bool:
4365       // Bool type is always extended to the ABI, other builtin types are not
4366       // extended.
4367       return ABIArgInfo::getExtend(Ty);
4368 
4369     case BuiltinType::LongDouble:
4370       // Mingw64 GCC uses the old 80 bit extended precision floating point
4371       // unit. It passes them indirectly through memory.
4372       if (IsMingw64) {
4373         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
4374         if (LDF == &llvm::APFloat::x87DoubleExtended())
4375           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4376       }
4377       break;
4378 
4379     case BuiltinType::Int128:
4380     case BuiltinType::UInt128:
4381       // If it's a parameter type, the normal ABI rule is that arguments larger
4382       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
4383       // even though it isn't particularly efficient.
4384       if (!IsReturnType)
4385         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4386 
4387       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
4388       // Clang matches them for compatibility.
4389       return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
4390           llvm::Type::getInt64Ty(getVMContext()), 2));
4391 
4392     default:
4393       break;
4394     }
4395   }
4396 
4397   if (Ty->isBitIntType()) {
4398     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4399     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4400     // However, non-power-of-two bit-precise integers will be passed as 1, 2, 4,
4401     // or 8 bytes anyway as long is it fits in them, so we don't have to check
4402     // the power of 2.
4403     if (Width <= 64)
4404       return ABIArgInfo::getDirect();
4405     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4406   }
4407 
4408   return ABIArgInfo::getDirect();
4409 }
4410 
4411 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4412   const unsigned CC = FI.getCallingConvention();
4413   bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
4414   bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
4415 
4416   // If __attribute__((sysv_abi)) is in use, use the SysV argument
4417   // classification rules.
4418   if (CC == llvm::CallingConv::X86_64_SysV) {
4419     X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
4420     SysVABIInfo.computeInfo(FI);
4421     return;
4422   }
4423 
4424   unsigned FreeSSERegs = 0;
4425   if (IsVectorCall) {
4426     // We can use up to 4 SSE return registers with vectorcall.
4427     FreeSSERegs = 4;
4428   } else if (IsRegCall) {
4429     // RegCall gives us 16 SSE registers.
4430     FreeSSERegs = 16;
4431   }
4432 
4433   if (!getCXXABI().classifyReturnType(FI))
4434     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4435                                   IsVectorCall, IsRegCall);
4436 
4437   if (IsVectorCall) {
4438     // We can use up to 6 SSE register parameters with vectorcall.
4439     FreeSSERegs = 6;
4440   } else if (IsRegCall) {
4441     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4442     FreeSSERegs = 16;
4443   }
4444 
4445   unsigned ArgNum = 0;
4446   unsigned ZeroSSERegs = 0;
4447   for (auto &I : FI.arguments()) {
4448     // Vectorcall in x64 only permits the first 6 arguments to be passed as
4449     // XMM/YMM registers. After the sixth argument, pretend no vector
4450     // registers are left.
4451     unsigned *MaybeFreeSSERegs =
4452         (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs;
4453     I.info =
4454         classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall);
4455     ++ArgNum;
4456   }
4457 
4458   if (IsVectorCall) {
4459     // For vectorcall, assign aggregate HVAs to any free vector registers in a
4460     // second pass.
4461     for (auto &I : FI.arguments())
4462       I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info);
4463   }
4464 }
4465 
4466 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4467                                     QualType Ty) const {
4468   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4469   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4470   uint64_t Width = getContext().getTypeSize(Ty);
4471   bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4472 
4473   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4474                           CGF.getContext().getTypeInfoInChars(Ty),
4475                           CharUnits::fromQuantity(8),
4476                           /*allowHigherAlign*/ false);
4477 }
4478 
4479 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4480                                         llvm::Value *Address, bool Is64Bit,
4481                                         bool IsAIX) {
4482   // This is calculated from the LLVM and GCC tables and verified
4483   // against gcc output.  AFAIK all PPC ABIs use the same encoding.
4484 
4485   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4486 
4487   llvm::IntegerType *i8 = CGF.Int8Ty;
4488   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4489   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4490   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4491 
4492   // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers
4493   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31);
4494 
4495   // 32-63: fp0-31, the 8-byte floating-point registers
4496   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4497 
4498   // 64-67 are various 4-byte or 8-byte special-purpose registers:
4499   // 64: mq
4500   // 65: lr
4501   // 66: ctr
4502   // 67: ap
4503   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67);
4504 
4505   // 68-76 are various 4-byte special-purpose registers:
4506   // 68-75 cr0-7
4507   // 76: xer
4508   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4509 
4510   // 77-108: v0-31, the 16-byte vector registers
4511   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4512 
4513   // 109: vrsave
4514   // 110: vscr
4515   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110);
4516 
4517   // AIX does not utilize the rest of the registers.
4518   if (IsAIX)
4519     return false;
4520 
4521   // 111: spe_acc
4522   // 112: spefscr
4523   // 113: sfp
4524   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113);
4525 
4526   if (!Is64Bit)
4527     return false;
4528 
4529   // TODO: Need to verify if these registers are used on 64 bit AIX with Power8
4530   // or above CPU.
4531   // 64-bit only registers:
4532   // 114: tfhar
4533   // 115: tfiar
4534   // 116: texasr
4535   AssignToArrayRange(Builder, Address, Eight8, 114, 116);
4536 
4537   return false;
4538 }
4539 
4540 // AIX
4541 namespace {
4542 /// AIXABIInfo - The AIX XCOFF ABI information.
4543 class AIXABIInfo : public ABIInfo {
4544   const bool Is64Bit;
4545   const unsigned PtrByteSize;
4546   CharUnits getParamTypeAlignment(QualType Ty) const;
4547 
4548 public:
4549   AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4550       : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {}
4551 
4552   bool isPromotableTypeForABI(QualType Ty) const;
4553 
4554   ABIArgInfo classifyReturnType(QualType RetTy) const;
4555   ABIArgInfo classifyArgumentType(QualType Ty) const;
4556 
4557   void computeInfo(CGFunctionInfo &FI) const override {
4558     if (!getCXXABI().classifyReturnType(FI))
4559       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4560 
4561     for (auto &I : FI.arguments())
4562       I.info = classifyArgumentType(I.type);
4563   }
4564 
4565   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4566                     QualType Ty) const override;
4567 };
4568 
4569 class AIXTargetCodeGenInfo : public TargetCodeGenInfo {
4570   const bool Is64Bit;
4571 
4572 public:
4573   AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4574       : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)),
4575         Is64Bit(Is64Bit) {}
4576   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4577     return 1; // r1 is the dedicated stack pointer
4578   }
4579 
4580   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4581                                llvm::Value *Address) const override;
4582 };
4583 } // namespace
4584 
4585 // Return true if the ABI requires Ty to be passed sign- or zero-
4586 // extended to 32/64 bits.
4587 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const {
4588   // Treat an enum type as its underlying type.
4589   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4590     Ty = EnumTy->getDecl()->getIntegerType();
4591 
4592   // Promotable integer types are required to be promoted by the ABI.
4593   if (Ty->isPromotableIntegerType())
4594     return true;
4595 
4596   if (!Is64Bit)
4597     return false;
4598 
4599   // For 64 bit mode, in addition to the usual promotable integer types, we also
4600   // need to extend all 32-bit types, since the ABI requires promotion to 64
4601   // bits.
4602   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4603     switch (BT->getKind()) {
4604     case BuiltinType::Int:
4605     case BuiltinType::UInt:
4606       return true;
4607     default:
4608       break;
4609     }
4610 
4611   return false;
4612 }
4613 
4614 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const {
4615   if (RetTy->isAnyComplexType())
4616     return ABIArgInfo::getDirect();
4617 
4618   if (RetTy->isVectorType())
4619     return ABIArgInfo::getDirect();
4620 
4621   if (RetTy->isVoidType())
4622     return ABIArgInfo::getIgnore();
4623 
4624   if (isAggregateTypeForABI(RetTy))
4625     return getNaturalAlignIndirect(RetTy);
4626 
4627   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4628                                         : ABIArgInfo::getDirect());
4629 }
4630 
4631 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const {
4632   Ty = useFirstFieldIfTransparentUnion(Ty);
4633 
4634   if (Ty->isAnyComplexType())
4635     return ABIArgInfo::getDirect();
4636 
4637   if (Ty->isVectorType())
4638     return ABIArgInfo::getDirect();
4639 
4640   if (isAggregateTypeForABI(Ty)) {
4641     // Records with non-trivial destructors/copy-constructors should not be
4642     // passed by value.
4643     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4644       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4645 
4646     CharUnits CCAlign = getParamTypeAlignment(Ty);
4647     CharUnits TyAlign = getContext().getTypeAlignInChars(Ty);
4648 
4649     return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true,
4650                                    /*Realign*/ TyAlign > CCAlign);
4651   }
4652 
4653   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4654                                      : ABIArgInfo::getDirect());
4655 }
4656 
4657 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const {
4658   // Complex types are passed just like their elements.
4659   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4660     Ty = CTy->getElementType();
4661 
4662   if (Ty->isVectorType())
4663     return CharUnits::fromQuantity(16);
4664 
4665   // If the structure contains a vector type, the alignment is 16.
4666   if (isRecordWithSIMDVectorType(getContext(), Ty))
4667     return CharUnits::fromQuantity(16);
4668 
4669   return CharUnits::fromQuantity(PtrByteSize);
4670 }
4671 
4672 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4673                               QualType Ty) const {
4674 
4675   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4676   TypeInfo.Align = getParamTypeAlignment(Ty);
4677 
4678   CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize);
4679 
4680   // If we have a complex type and the base type is smaller than the register
4681   // size, the ABI calls for the real and imaginary parts to be right-adjusted
4682   // in separate words in 32bit mode or doublewords in 64bit mode. However,
4683   // Clang expects us to produce a pointer to a structure with the two parts
4684   // packed tightly. So generate loads of the real and imaginary parts relative
4685   // to the va_list pointer, and store them to a temporary structure. We do the
4686   // same as the PPC64ABI here.
4687   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4688     CharUnits EltSize = TypeInfo.Width / 2;
4689     if (EltSize < SlotSize)
4690       return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy);
4691   }
4692 
4693   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo,
4694                           SlotSize, /*AllowHigher*/ true);
4695 }
4696 
4697 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable(
4698     CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const {
4699   return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true);
4700 }
4701 
4702 // PowerPC-32
4703 namespace {
4704 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4705 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4706   bool IsSoftFloatABI;
4707   bool IsRetSmallStructInRegABI;
4708 
4709   CharUnits getParamTypeAlignment(QualType Ty) const;
4710 
4711 public:
4712   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI,
4713                      bool RetSmallStructInRegABI)
4714       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI),
4715         IsRetSmallStructInRegABI(RetSmallStructInRegABI) {}
4716 
4717   ABIArgInfo classifyReturnType(QualType RetTy) const;
4718 
4719   void computeInfo(CGFunctionInfo &FI) const override {
4720     if (!getCXXABI().classifyReturnType(FI))
4721       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4722     for (auto &I : FI.arguments())
4723       I.info = classifyArgumentType(I.type);
4724   }
4725 
4726   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4727                     QualType Ty) const override;
4728 };
4729 
4730 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4731 public:
4732   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI,
4733                          bool RetSmallStructInRegABI)
4734       : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>(
4735             CGT, SoftFloatABI, RetSmallStructInRegABI)) {}
4736 
4737   static bool isStructReturnInRegABI(const llvm::Triple &Triple,
4738                                      const CodeGenOptions &Opts);
4739 
4740   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4741     // This is recovered from gcc output.
4742     return 1; // r1 is the dedicated stack pointer
4743   }
4744 
4745   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4746                                llvm::Value *Address) const override;
4747 };
4748 }
4749 
4750 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4751   // Complex types are passed just like their elements.
4752   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4753     Ty = CTy->getElementType();
4754 
4755   if (Ty->isVectorType())
4756     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4757                                                                        : 4);
4758 
4759   // For single-element float/vector structs, we consider the whole type
4760   // to have the same alignment requirements as its single element.
4761   const Type *AlignTy = nullptr;
4762   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4763     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4764     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4765         (BT && BT->isFloatingPoint()))
4766       AlignTy = EltType;
4767   }
4768 
4769   if (AlignTy)
4770     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4771   return CharUnits::fromQuantity(4);
4772 }
4773 
4774 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4775   uint64_t Size;
4776 
4777   // -msvr4-struct-return puts small aggregates in GPR3 and GPR4.
4778   if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI &&
4779       (Size = getContext().getTypeSize(RetTy)) <= 64) {
4780     // System V ABI (1995), page 3-22, specified:
4781     // > A structure or union whose size is less than or equal to 8 bytes
4782     // > shall be returned in r3 and r4, as if it were first stored in the
4783     // > 8-byte aligned memory area and then the low addressed word were
4784     // > loaded into r3 and the high-addressed word into r4.  Bits beyond
4785     // > the last member of the structure or union are not defined.
4786     //
4787     // GCC for big-endian PPC32 inserts the pad before the first member,
4788     // not "beyond the last member" of the struct.  To stay compatible
4789     // with GCC, we coerce the struct to an integer of the same size.
4790     // LLVM will extend it and return i32 in r3, or i64 in r3:r4.
4791     if (Size == 0)
4792       return ABIArgInfo::getIgnore();
4793     else {
4794       llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size);
4795       return ABIArgInfo::getDirect(CoerceTy);
4796     }
4797   }
4798 
4799   return DefaultABIInfo::classifyReturnType(RetTy);
4800 }
4801 
4802 // TODO: this implementation is now likely redundant with
4803 // DefaultABIInfo::EmitVAArg.
4804 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4805                                       QualType Ty) const {
4806   if (getTarget().getTriple().isOSDarwin()) {
4807     auto TI = getContext().getTypeInfoInChars(Ty);
4808     TI.Align = getParamTypeAlignment(Ty);
4809 
4810     CharUnits SlotSize = CharUnits::fromQuantity(4);
4811     return emitVoidPtrVAArg(CGF, VAList, Ty,
4812                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4813                             /*AllowHigherAlign=*/true);
4814   }
4815 
4816   const unsigned OverflowLimit = 8;
4817   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4818     // TODO: Implement this. For now ignore.
4819     (void)CTy;
4820     return Address::invalid(); // FIXME?
4821   }
4822 
4823   // struct __va_list_tag {
4824   //   unsigned char gpr;
4825   //   unsigned char fpr;
4826   //   unsigned short reserved;
4827   //   void *overflow_arg_area;
4828   //   void *reg_save_area;
4829   // };
4830 
4831   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4832   bool isInt = !Ty->isFloatingType();
4833   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4834 
4835   // All aggregates are passed indirectly?  That doesn't seem consistent
4836   // with the argument-lowering code.
4837   bool isIndirect = isAggregateTypeForABI(Ty);
4838 
4839   CGBuilderTy &Builder = CGF.Builder;
4840 
4841   // The calling convention either uses 1-2 GPRs or 1 FPR.
4842   Address NumRegsAddr = Address::invalid();
4843   if (isInt || IsSoftFloatABI) {
4844     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
4845   } else {
4846     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
4847   }
4848 
4849   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4850 
4851   // "Align" the register count when TY is i64.
4852   if (isI64 || (isF64 && IsSoftFloatABI)) {
4853     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4854     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4855   }
4856 
4857   llvm::Value *CC =
4858       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4859 
4860   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4861   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4862   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4863 
4864   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4865 
4866   llvm::Type *DirectTy = CGF.ConvertType(Ty), *ElementTy = DirectTy;
4867   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4868 
4869   // Case 1: consume registers.
4870   Address RegAddr = Address::invalid();
4871   {
4872     CGF.EmitBlock(UsingRegs);
4873 
4874     Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
4875     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), CGF.Int8Ty,
4876                       CharUnits::fromQuantity(8));
4877     assert(RegAddr.getElementType() == CGF.Int8Ty);
4878 
4879     // Floating-point registers start after the general-purpose registers.
4880     if (!(isInt || IsSoftFloatABI)) {
4881       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4882                                                    CharUnits::fromQuantity(32));
4883     }
4884 
4885     // Get the address of the saved value by scaling the number of
4886     // registers we've used by the number of
4887     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4888     llvm::Value *RegOffset =
4889         Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4890     RegAddr = Address(
4891         Builder.CreateInBoundsGEP(CGF.Int8Ty, RegAddr.getPointer(), RegOffset),
4892         CGF.Int8Ty, RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4893     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4894 
4895     // Increase the used-register count.
4896     NumRegs =
4897       Builder.CreateAdd(NumRegs,
4898                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4899     Builder.CreateStore(NumRegs, NumRegsAddr);
4900 
4901     CGF.EmitBranch(Cont);
4902   }
4903 
4904   // Case 2: consume space in the overflow area.
4905   Address MemAddr = Address::invalid();
4906   {
4907     CGF.EmitBlock(UsingOverflow);
4908 
4909     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4910 
4911     // Everything in the overflow area is rounded up to a size of at least 4.
4912     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4913 
4914     CharUnits Size;
4915     if (!isIndirect) {
4916       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4917       Size = TypeInfo.Width.alignTo(OverflowAreaAlign);
4918     } else {
4919       Size = CGF.getPointerSize();
4920     }
4921 
4922     Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
4923     Address OverflowArea =
4924         Address(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), CGF.Int8Ty,
4925                 OverflowAreaAlign);
4926     // Round up address of argument to alignment
4927     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4928     if (Align > OverflowAreaAlign) {
4929       llvm::Value *Ptr = OverflowArea.getPointer();
4930       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4931                              OverflowArea.getElementType(), Align);
4932     }
4933 
4934     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4935 
4936     // Increase the overflow area.
4937     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4938     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4939     CGF.EmitBranch(Cont);
4940   }
4941 
4942   CGF.EmitBlock(Cont);
4943 
4944   // Merge the cases with a phi.
4945   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4946                                 "vaarg.addr");
4947 
4948   // Load the pointer if the argument was passed indirectly.
4949   if (isIndirect) {
4950     Result = Address(Builder.CreateLoad(Result, "aggr"), ElementTy,
4951                      getContext().getTypeAlignInChars(Ty));
4952   }
4953 
4954   return Result;
4955 }
4956 
4957 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI(
4958     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
4959   assert(Triple.isPPC32());
4960 
4961   switch (Opts.getStructReturnConvention()) {
4962   case CodeGenOptions::SRCK_Default:
4963     break;
4964   case CodeGenOptions::SRCK_OnStack: // -maix-struct-return
4965     return false;
4966   case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return
4967     return true;
4968   }
4969 
4970   if (Triple.isOSBinFormatELF() && !Triple.isOSLinux())
4971     return true;
4972 
4973   return false;
4974 }
4975 
4976 bool
4977 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4978                                                 llvm::Value *Address) const {
4979   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false,
4980                                      /*IsAIX*/ false);
4981 }
4982 
4983 // PowerPC-64
4984 
4985 namespace {
4986 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4987 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4988 public:
4989   enum ABIKind {
4990     ELFv1 = 0,
4991     ELFv2
4992   };
4993 
4994 private:
4995   static const unsigned GPRBits = 64;
4996   ABIKind Kind;
4997   bool IsSoftFloatABI;
4998 
4999 public:
5000   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind,
5001                      bool SoftFloatABI)
5002       : SwiftABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {}
5003 
5004   bool isPromotableTypeForABI(QualType Ty) const;
5005   CharUnits getParamTypeAlignment(QualType Ty) const;
5006 
5007   ABIArgInfo classifyReturnType(QualType RetTy) const;
5008   ABIArgInfo classifyArgumentType(QualType Ty) const;
5009 
5010   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5011   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5012                                          uint64_t Members) const override;
5013 
5014   // TODO: We can add more logic to computeInfo to improve performance.
5015   // Example: For aggregate arguments that fit in a register, we could
5016   // use getDirectInReg (as is done below for structs containing a single
5017   // floating-point value) to avoid pushing them to memory on function
5018   // entry.  This would require changing the logic in PPCISelLowering
5019   // when lowering the parameters in the caller and args in the callee.
5020   void computeInfo(CGFunctionInfo &FI) const override {
5021     if (!getCXXABI().classifyReturnType(FI))
5022       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5023     for (auto &I : FI.arguments()) {
5024       // We rely on the default argument classification for the most part.
5025       // One exception:  An aggregate containing a single floating-point
5026       // or vector item must be passed in a register if one is available.
5027       const Type *T = isSingleElementStruct(I.type, getContext());
5028       if (T) {
5029         const BuiltinType *BT = T->getAs<BuiltinType>();
5030         if ((T->isVectorType() && getContext().getTypeSize(T) == 128) ||
5031             (BT && BT->isFloatingPoint())) {
5032           QualType QT(T, 0);
5033           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
5034           continue;
5035         }
5036       }
5037       I.info = classifyArgumentType(I.type);
5038     }
5039   }
5040 
5041   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5042                     QualType Ty) const override;
5043 
5044   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5045                                     bool asReturnValue) const override {
5046     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5047   }
5048 
5049   bool isSwiftErrorInRegister() const override {
5050     return false;
5051   }
5052 };
5053 
5054 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
5055 
5056 public:
5057   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
5058                                PPC64_SVR4_ABIInfo::ABIKind Kind,
5059                                bool SoftFloatABI)
5060       : TargetCodeGenInfo(
5061             std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) {}
5062 
5063   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5064     // This is recovered from gcc output.
5065     return 1; // r1 is the dedicated stack pointer
5066   }
5067 
5068   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5069                                llvm::Value *Address) const override;
5070 };
5071 
5072 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
5073 public:
5074   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
5075 
5076   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5077     // This is recovered from gcc output.
5078     return 1; // r1 is the dedicated stack pointer
5079   }
5080 
5081   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5082                                llvm::Value *Address) const override;
5083 };
5084 
5085 }
5086 
5087 // Return true if the ABI requires Ty to be passed sign- or zero-
5088 // extended to 64 bits.
5089 bool
5090 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
5091   // Treat an enum type as its underlying type.
5092   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5093     Ty = EnumTy->getDecl()->getIntegerType();
5094 
5095   // Promotable integer types are required to be promoted by the ABI.
5096   if (isPromotableIntegerTypeForABI(Ty))
5097     return true;
5098 
5099   // In addition to the usual promotable integer types, we also need to
5100   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
5101   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5102     switch (BT->getKind()) {
5103     case BuiltinType::Int:
5104     case BuiltinType::UInt:
5105       return true;
5106     default:
5107       break;
5108     }
5109 
5110   if (const auto *EIT = Ty->getAs<BitIntType>())
5111     if (EIT->getNumBits() < 64)
5112       return true;
5113 
5114   return false;
5115 }
5116 
5117 /// isAlignedParamType - Determine whether a type requires 16-byte or
5118 /// higher alignment in the parameter area.  Always returns at least 8.
5119 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
5120   // Complex types are passed just like their elements.
5121   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
5122     Ty = CTy->getElementType();
5123 
5124   auto FloatUsesVector = [this](QualType Ty){
5125     return Ty->isRealFloatingType() && &getContext().getFloatTypeSemantics(
5126                                            Ty) == &llvm::APFloat::IEEEquad();
5127   };
5128 
5129   // Only vector types of size 16 bytes need alignment (larger types are
5130   // passed via reference, smaller types are not aligned).
5131   if (Ty->isVectorType()) {
5132     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
5133   } else if (FloatUsesVector(Ty)) {
5134     // According to ABI document section 'Optional Save Areas': If extended
5135     // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION
5136     // format are supported, map them to a single quadword, quadword aligned.
5137     return CharUnits::fromQuantity(16);
5138   }
5139 
5140   // For single-element float/vector structs, we consider the whole type
5141   // to have the same alignment requirements as its single element.
5142   const Type *AlignAsType = nullptr;
5143   const Type *EltType = isSingleElementStruct(Ty, getContext());
5144   if (EltType) {
5145     const BuiltinType *BT = EltType->getAs<BuiltinType>();
5146     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
5147         (BT && BT->isFloatingPoint()))
5148       AlignAsType = EltType;
5149   }
5150 
5151   // Likewise for ELFv2 homogeneous aggregates.
5152   const Type *Base = nullptr;
5153   uint64_t Members = 0;
5154   if (!AlignAsType && Kind == ELFv2 &&
5155       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
5156     AlignAsType = Base;
5157 
5158   // With special case aggregates, only vector base types need alignment.
5159   if (AlignAsType) {
5160     bool UsesVector = AlignAsType->isVectorType() ||
5161                       FloatUsesVector(QualType(AlignAsType, 0));
5162     return CharUnits::fromQuantity(UsesVector ? 16 : 8);
5163   }
5164 
5165   // Otherwise, we only need alignment for any aggregate type that
5166   // has an alignment requirement of >= 16 bytes.
5167   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
5168     return CharUnits::fromQuantity(16);
5169   }
5170 
5171   return CharUnits::fromQuantity(8);
5172 }
5173 
5174 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
5175 /// aggregate.  Base is set to the base element type, and Members is set
5176 /// to the number of base elements.
5177 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
5178                                      uint64_t &Members) const {
5179   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
5180     uint64_t NElements = AT->getSize().getZExtValue();
5181     if (NElements == 0)
5182       return false;
5183     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
5184       return false;
5185     Members *= NElements;
5186   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
5187     const RecordDecl *RD = RT->getDecl();
5188     if (RD->hasFlexibleArrayMember())
5189       return false;
5190 
5191     Members = 0;
5192 
5193     // If this is a C++ record, check the properties of the record such as
5194     // bases and ABI specific restrictions
5195     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
5196       if (!getCXXABI().isPermittedToBeHomogeneousAggregate(CXXRD))
5197         return false;
5198 
5199       for (const auto &I : CXXRD->bases()) {
5200         // Ignore empty records.
5201         if (isEmptyRecord(getContext(), I.getType(), true))
5202           continue;
5203 
5204         uint64_t FldMembers;
5205         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
5206           return false;
5207 
5208         Members += FldMembers;
5209       }
5210     }
5211 
5212     for (const auto *FD : RD->fields()) {
5213       // Ignore (non-zero arrays of) empty records.
5214       QualType FT = FD->getType();
5215       while (const ConstantArrayType *AT =
5216              getContext().getAsConstantArrayType(FT)) {
5217         if (AT->getSize().getZExtValue() == 0)
5218           return false;
5219         FT = AT->getElementType();
5220       }
5221       if (isEmptyRecord(getContext(), FT, true))
5222         continue;
5223 
5224       if (isZeroLengthBitfieldPermittedInHomogeneousAggregate() &&
5225           FD->isZeroLengthBitField(getContext()))
5226         continue;
5227 
5228       uint64_t FldMembers;
5229       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
5230         return false;
5231 
5232       Members = (RD->isUnion() ?
5233                  std::max(Members, FldMembers) : Members + FldMembers);
5234     }
5235 
5236     if (!Base)
5237       return false;
5238 
5239     // Ensure there is no padding.
5240     if (getContext().getTypeSize(Base) * Members !=
5241         getContext().getTypeSize(Ty))
5242       return false;
5243   } else {
5244     Members = 1;
5245     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
5246       Members = 2;
5247       Ty = CT->getElementType();
5248     }
5249 
5250     // Most ABIs only support float, double, and some vector type widths.
5251     if (!isHomogeneousAggregateBaseType(Ty))
5252       return false;
5253 
5254     // The base type must be the same for all members.  Types that
5255     // agree in both total size and mode (float vs. vector) are
5256     // treated as being equivalent here.
5257     const Type *TyPtr = Ty.getTypePtr();
5258     if (!Base) {
5259       Base = TyPtr;
5260       // If it's a non-power-of-2 vector, its size is already a power-of-2,
5261       // so make sure to widen it explicitly.
5262       if (const VectorType *VT = Base->getAs<VectorType>()) {
5263         QualType EltTy = VT->getElementType();
5264         unsigned NumElements =
5265             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
5266         Base = getContext()
5267                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
5268                    .getTypePtr();
5269       }
5270     }
5271 
5272     if (Base->isVectorType() != TyPtr->isVectorType() ||
5273         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
5274       return false;
5275   }
5276   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
5277 }
5278 
5279 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5280   // Homogeneous aggregates for ELFv2 must have base types of float,
5281   // double, long double, or 128-bit vectors.
5282   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5283     if (BT->getKind() == BuiltinType::Float ||
5284         BT->getKind() == BuiltinType::Double ||
5285         BT->getKind() == BuiltinType::LongDouble ||
5286         BT->getKind() == BuiltinType::Ibm128 ||
5287         (getContext().getTargetInfo().hasFloat128Type() &&
5288          (BT->getKind() == BuiltinType::Float128))) {
5289       if (IsSoftFloatABI)
5290         return false;
5291       return true;
5292     }
5293   }
5294   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5295     if (getContext().getTypeSize(VT) == 128)
5296       return true;
5297   }
5298   return false;
5299 }
5300 
5301 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
5302     const Type *Base, uint64_t Members) const {
5303   // Vector and fp128 types require one register, other floating point types
5304   // require one or two registers depending on their size.
5305   uint32_t NumRegs =
5306       ((getContext().getTargetInfo().hasFloat128Type() &&
5307           Base->isFloat128Type()) ||
5308         Base->isVectorType()) ? 1
5309                               : (getContext().getTypeSize(Base) + 63) / 64;
5310 
5311   // Homogeneous Aggregates may occupy at most 8 registers.
5312   return Members * NumRegs <= 8;
5313 }
5314 
5315 ABIArgInfo
5316 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
5317   Ty = useFirstFieldIfTransparentUnion(Ty);
5318 
5319   if (Ty->isAnyComplexType())
5320     return ABIArgInfo::getDirect();
5321 
5322   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
5323   // or via reference (larger than 16 bytes).
5324   if (Ty->isVectorType()) {
5325     uint64_t Size = getContext().getTypeSize(Ty);
5326     if (Size > 128)
5327       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5328     else if (Size < 128) {
5329       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5330       return ABIArgInfo::getDirect(CoerceTy);
5331     }
5332   }
5333 
5334   if (const auto *EIT = Ty->getAs<BitIntType>())
5335     if (EIT->getNumBits() > 128)
5336       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
5337 
5338   if (isAggregateTypeForABI(Ty)) {
5339     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5340       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5341 
5342     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
5343     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
5344 
5345     // ELFv2 homogeneous aggregates are passed as array types.
5346     const Type *Base = nullptr;
5347     uint64_t Members = 0;
5348     if (Kind == ELFv2 &&
5349         isHomogeneousAggregate(Ty, Base, Members)) {
5350       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5351       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5352       return ABIArgInfo::getDirect(CoerceTy);
5353     }
5354 
5355     // If an aggregate may end up fully in registers, we do not
5356     // use the ByVal method, but pass the aggregate as array.
5357     // This is usually beneficial since we avoid forcing the
5358     // back-end to store the argument to memory.
5359     uint64_t Bits = getContext().getTypeSize(Ty);
5360     if (Bits > 0 && Bits <= 8 * GPRBits) {
5361       llvm::Type *CoerceTy;
5362 
5363       // Types up to 8 bytes are passed as integer type (which will be
5364       // properly aligned in the argument save area doubleword).
5365       if (Bits <= GPRBits)
5366         CoerceTy =
5367             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5368       // Larger types are passed as arrays, with the base type selected
5369       // according to the required alignment in the save area.
5370       else {
5371         uint64_t RegBits = ABIAlign * 8;
5372         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
5373         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
5374         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
5375       }
5376 
5377       return ABIArgInfo::getDirect(CoerceTy);
5378     }
5379 
5380     // All other aggregates are passed ByVal.
5381     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5382                                    /*ByVal=*/true,
5383                                    /*Realign=*/TyAlign > ABIAlign);
5384   }
5385 
5386   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
5387                                      : ABIArgInfo::getDirect());
5388 }
5389 
5390 ABIArgInfo
5391 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
5392   if (RetTy->isVoidType())
5393     return ABIArgInfo::getIgnore();
5394 
5395   if (RetTy->isAnyComplexType())
5396     return ABIArgInfo::getDirect();
5397 
5398   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
5399   // or via reference (larger than 16 bytes).
5400   if (RetTy->isVectorType()) {
5401     uint64_t Size = getContext().getTypeSize(RetTy);
5402     if (Size > 128)
5403       return getNaturalAlignIndirect(RetTy);
5404     else if (Size < 128) {
5405       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5406       return ABIArgInfo::getDirect(CoerceTy);
5407     }
5408   }
5409 
5410   if (const auto *EIT = RetTy->getAs<BitIntType>())
5411     if (EIT->getNumBits() > 128)
5412       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
5413 
5414   if (isAggregateTypeForABI(RetTy)) {
5415     // ELFv2 homogeneous aggregates are returned as array types.
5416     const Type *Base = nullptr;
5417     uint64_t Members = 0;
5418     if (Kind == ELFv2 &&
5419         isHomogeneousAggregate(RetTy, Base, Members)) {
5420       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5421       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5422       return ABIArgInfo::getDirect(CoerceTy);
5423     }
5424 
5425     // ELFv2 small aggregates are returned in up to two registers.
5426     uint64_t Bits = getContext().getTypeSize(RetTy);
5427     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
5428       if (Bits == 0)
5429         return ABIArgInfo::getIgnore();
5430 
5431       llvm::Type *CoerceTy;
5432       if (Bits > GPRBits) {
5433         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
5434         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
5435       } else
5436         CoerceTy =
5437             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5438       return ABIArgInfo::getDirect(CoerceTy);
5439     }
5440 
5441     // All other aggregates are returned indirectly.
5442     return getNaturalAlignIndirect(RetTy);
5443   }
5444 
5445   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
5446                                         : ABIArgInfo::getDirect());
5447 }
5448 
5449 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
5450 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5451                                       QualType Ty) const {
5452   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
5453   TypeInfo.Align = getParamTypeAlignment(Ty);
5454 
5455   CharUnits SlotSize = CharUnits::fromQuantity(8);
5456 
5457   // If we have a complex type and the base type is smaller than 8 bytes,
5458   // the ABI calls for the real and imaginary parts to be right-adjusted
5459   // in separate doublewords.  However, Clang expects us to produce a
5460   // pointer to a structure with the two parts packed tightly.  So generate
5461   // loads of the real and imaginary parts relative to the va_list pointer,
5462   // and store them to a temporary structure.
5463   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
5464     CharUnits EltSize = TypeInfo.Width / 2;
5465     if (EltSize < SlotSize)
5466       return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy);
5467   }
5468 
5469   // Otherwise, just use the general rule.
5470   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
5471                           TypeInfo, SlotSize, /*AllowHigher*/ true);
5472 }
5473 
5474 bool
5475 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
5476   CodeGen::CodeGenFunction &CGF,
5477   llvm::Value *Address) const {
5478   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5479                                      /*IsAIX*/ false);
5480 }
5481 
5482 bool
5483 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5484                                                 llvm::Value *Address) const {
5485   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5486                                      /*IsAIX*/ false);
5487 }
5488 
5489 //===----------------------------------------------------------------------===//
5490 // AArch64 ABI Implementation
5491 //===----------------------------------------------------------------------===//
5492 
5493 namespace {
5494 
5495 class AArch64ABIInfo : public SwiftABIInfo {
5496 public:
5497   enum ABIKind {
5498     AAPCS = 0,
5499     DarwinPCS,
5500     Win64
5501   };
5502 
5503 private:
5504   ABIKind Kind;
5505 
5506 public:
5507   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
5508     : SwiftABIInfo(CGT), Kind(Kind) {}
5509 
5510 private:
5511   ABIKind getABIKind() const { return Kind; }
5512   bool isDarwinPCS() const { return Kind == DarwinPCS; }
5513 
5514   ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const;
5515   ABIArgInfo classifyArgumentType(QualType RetTy, bool IsVariadic,
5516                                   unsigned CallingConvention) const;
5517   ABIArgInfo coerceIllegalVector(QualType Ty) const;
5518   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5519   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5520                                          uint64_t Members) const override;
5521   bool isZeroLengthBitfieldPermittedInHomogeneousAggregate() const override;
5522 
5523   bool isIllegalVectorType(QualType Ty) const;
5524 
5525   void computeInfo(CGFunctionInfo &FI) const override {
5526     if (!::classifyReturnType(getCXXABI(), FI, *this))
5527       FI.getReturnInfo() =
5528           classifyReturnType(FI.getReturnType(), FI.isVariadic());
5529 
5530     for (auto &it : FI.arguments())
5531       it.info = classifyArgumentType(it.type, FI.isVariadic(),
5532                                      FI.getCallingConvention());
5533   }
5534 
5535   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5536                           CodeGenFunction &CGF) const;
5537 
5538   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
5539                          CodeGenFunction &CGF) const;
5540 
5541   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5542                     QualType Ty) const override {
5543     llvm::Type *BaseTy = CGF.ConvertType(Ty);
5544     if (isa<llvm::ScalableVectorType>(BaseTy))
5545       llvm::report_fatal_error("Passing SVE types to variadic functions is "
5546                                "currently not supported");
5547 
5548     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
5549                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
5550                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
5551   }
5552 
5553   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5554                       QualType Ty) const override;
5555 
5556   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5557                                     bool asReturnValue) const override {
5558     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5559   }
5560   bool isSwiftErrorInRegister() const override {
5561     return true;
5562   }
5563 
5564   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5565                                  unsigned elts) const override;
5566 
5567   bool allowBFloatArgsAndRet() const override {
5568     return getTarget().hasBFloat16Type();
5569   }
5570 };
5571 
5572 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
5573 public:
5574   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
5575       : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {}
5576 
5577   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5578     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
5579   }
5580 
5581   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5582     return 31;
5583   }
5584 
5585   bool doesReturnSlotInterfereWithArgs() const override { return false; }
5586 
5587   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5588                            CodeGen::CodeGenModule &CGM) const override {
5589     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5590     if (!FD)
5591       return;
5592 
5593     const auto *TA = FD->getAttr<TargetAttr>();
5594     if (TA == nullptr)
5595       return;
5596 
5597     ParsedTargetAttr Attr = TA->parse();
5598     if (Attr.BranchProtection.empty())
5599       return;
5600 
5601     TargetInfo::BranchProtectionInfo BPI;
5602     StringRef Error;
5603     (void)CGM.getTarget().validateBranchProtection(
5604         Attr.BranchProtection, Attr.Architecture, BPI, Error);
5605     assert(Error.empty());
5606 
5607     auto *Fn = cast<llvm::Function>(GV);
5608     static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"};
5609     Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]);
5610 
5611     if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) {
5612       Fn->addFnAttr("sign-return-address-key",
5613                     BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey
5614                         ? "a_key"
5615                         : "b_key");
5616     }
5617 
5618     Fn->addFnAttr("branch-target-enforcement",
5619                   BPI.BranchTargetEnforcement ? "true" : "false");
5620   }
5621 
5622   bool isScalarizableAsmOperand(CodeGen::CodeGenFunction &CGF,
5623                                 llvm::Type *Ty) const override {
5624     if (CGF.getTarget().hasFeature("ls64")) {
5625       auto *ST = dyn_cast<llvm::StructType>(Ty);
5626       if (ST && ST->getNumElements() == 1) {
5627         auto *AT = dyn_cast<llvm::ArrayType>(ST->getElementType(0));
5628         if (AT && AT->getNumElements() == 8 &&
5629             AT->getElementType()->isIntegerTy(64))
5630           return true;
5631       }
5632     }
5633     return TargetCodeGenInfo::isScalarizableAsmOperand(CGF, Ty);
5634   }
5635 };
5636 
5637 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
5638 public:
5639   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
5640       : AArch64TargetCodeGenInfo(CGT, K) {}
5641 
5642   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5643                            CodeGen::CodeGenModule &CGM) const override;
5644 
5645   void getDependentLibraryOption(llvm::StringRef Lib,
5646                                  llvm::SmallString<24> &Opt) const override {
5647     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5648   }
5649 
5650   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5651                                llvm::SmallString<32> &Opt) const override {
5652     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5653   }
5654 };
5655 
5656 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
5657     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5658   AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5659   if (GV->isDeclaration())
5660     return;
5661   addStackProbeTargetAttributes(D, GV, CGM);
5662 }
5663 }
5664 
5665 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const {
5666   assert(Ty->isVectorType() && "expected vector type!");
5667 
5668   const auto *VT = Ty->castAs<VectorType>();
5669   if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
5670     assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
5671     assert(VT->getElementType()->castAs<BuiltinType>()->getKind() ==
5672                BuiltinType::UChar &&
5673            "unexpected builtin type for SVE predicate!");
5674     return ABIArgInfo::getDirect(llvm::ScalableVectorType::get(
5675         llvm::Type::getInt1Ty(getVMContext()), 16));
5676   }
5677 
5678   if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) {
5679     assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
5680 
5681     const auto *BT = VT->getElementType()->castAs<BuiltinType>();
5682     llvm::ScalableVectorType *ResType = nullptr;
5683     switch (BT->getKind()) {
5684     default:
5685       llvm_unreachable("unexpected builtin type for SVE vector!");
5686     case BuiltinType::SChar:
5687     case BuiltinType::UChar:
5688       ResType = llvm::ScalableVectorType::get(
5689           llvm::Type::getInt8Ty(getVMContext()), 16);
5690       break;
5691     case BuiltinType::Short:
5692     case BuiltinType::UShort:
5693       ResType = llvm::ScalableVectorType::get(
5694           llvm::Type::getInt16Ty(getVMContext()), 8);
5695       break;
5696     case BuiltinType::Int:
5697     case BuiltinType::UInt:
5698       ResType = llvm::ScalableVectorType::get(
5699           llvm::Type::getInt32Ty(getVMContext()), 4);
5700       break;
5701     case BuiltinType::Long:
5702     case BuiltinType::ULong:
5703       ResType = llvm::ScalableVectorType::get(
5704           llvm::Type::getInt64Ty(getVMContext()), 2);
5705       break;
5706     case BuiltinType::Half:
5707       ResType = llvm::ScalableVectorType::get(
5708           llvm::Type::getHalfTy(getVMContext()), 8);
5709       break;
5710     case BuiltinType::Float:
5711       ResType = llvm::ScalableVectorType::get(
5712           llvm::Type::getFloatTy(getVMContext()), 4);
5713       break;
5714     case BuiltinType::Double:
5715       ResType = llvm::ScalableVectorType::get(
5716           llvm::Type::getDoubleTy(getVMContext()), 2);
5717       break;
5718     case BuiltinType::BFloat16:
5719       ResType = llvm::ScalableVectorType::get(
5720           llvm::Type::getBFloatTy(getVMContext()), 8);
5721       break;
5722     }
5723     return ABIArgInfo::getDirect(ResType);
5724   }
5725 
5726   uint64_t Size = getContext().getTypeSize(Ty);
5727   // Android promotes <2 x i8> to i16, not i32
5728   if (isAndroid() && (Size <= 16)) {
5729     llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
5730     return ABIArgInfo::getDirect(ResType);
5731   }
5732   if (Size <= 32) {
5733     llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
5734     return ABIArgInfo::getDirect(ResType);
5735   }
5736   if (Size == 64) {
5737     auto *ResType =
5738         llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5739     return ABIArgInfo::getDirect(ResType);
5740   }
5741   if (Size == 128) {
5742     auto *ResType =
5743         llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5744     return ABIArgInfo::getDirect(ResType);
5745   }
5746   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5747 }
5748 
5749 ABIArgInfo
5750 AArch64ABIInfo::classifyArgumentType(QualType Ty, bool IsVariadic,
5751                                      unsigned CallingConvention) const {
5752   Ty = useFirstFieldIfTransparentUnion(Ty);
5753 
5754   // Handle illegal vector types here.
5755   if (isIllegalVectorType(Ty))
5756     return coerceIllegalVector(Ty);
5757 
5758   if (!isAggregateTypeForABI(Ty)) {
5759     // Treat an enum type as its underlying type.
5760     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5761       Ty = EnumTy->getDecl()->getIntegerType();
5762 
5763     if (const auto *EIT = Ty->getAs<BitIntType>())
5764       if (EIT->getNumBits() > 128)
5765         return getNaturalAlignIndirect(Ty);
5766 
5767     return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS()
5768                 ? ABIArgInfo::getExtend(Ty)
5769                 : ABIArgInfo::getDirect());
5770   }
5771 
5772   // Structures with either a non-trivial destructor or a non-trivial
5773   // copy constructor are always indirect.
5774   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5775     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5776                                      CGCXXABI::RAA_DirectInMemory);
5777   }
5778 
5779   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5780   // elsewhere for GNU compatibility.
5781   uint64_t Size = getContext().getTypeSize(Ty);
5782   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5783   if (IsEmpty || Size == 0) {
5784     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5785       return ABIArgInfo::getIgnore();
5786 
5787     // GNU C mode. The only argument that gets ignored is an empty one with size
5788     // 0.
5789     if (IsEmpty && Size == 0)
5790       return ABIArgInfo::getIgnore();
5791     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5792   }
5793 
5794   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5795   const Type *Base = nullptr;
5796   uint64_t Members = 0;
5797   bool IsWin64 = Kind == Win64 || CallingConvention == llvm::CallingConv::Win64;
5798   bool IsWinVariadic = IsWin64 && IsVariadic;
5799   // In variadic functions on Windows, all composite types are treated alike,
5800   // no special handling of HFAs/HVAs.
5801   if (!IsWinVariadic && isHomogeneousAggregate(Ty, Base, Members)) {
5802     if (Kind != AArch64ABIInfo::AAPCS)
5803       return ABIArgInfo::getDirect(
5804           llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5805 
5806     // For alignment adjusted HFAs, cap the argument alignment to 16, leave it
5807     // default otherwise.
5808     unsigned Align =
5809         getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
5810     unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity();
5811     Align = (Align > BaseAlign && Align >= 16) ? 16 : 0;
5812     return ABIArgInfo::getDirect(
5813         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members), 0,
5814         nullptr, true, Align);
5815   }
5816 
5817   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5818   if (Size <= 128) {
5819     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5820     // same size and alignment.
5821     if (getTarget().isRenderScriptTarget()) {
5822       return coerceToIntArray(Ty, getContext(), getVMContext());
5823     }
5824     unsigned Alignment;
5825     if (Kind == AArch64ABIInfo::AAPCS) {
5826       Alignment = getContext().getTypeUnadjustedAlign(Ty);
5827       Alignment = Alignment < 128 ? 64 : 128;
5828     } else {
5829       Alignment = std::max(getContext().getTypeAlign(Ty),
5830                            (unsigned)getTarget().getPointerWidth(0));
5831     }
5832     Size = llvm::alignTo(Size, Alignment);
5833 
5834     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5835     // For aggregates with 16-byte alignment, we use i128.
5836     llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment);
5837     return ABIArgInfo::getDirect(
5838         Size == Alignment ? BaseTy
5839                           : llvm::ArrayType::get(BaseTy, Size / Alignment));
5840   }
5841 
5842   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5843 }
5844 
5845 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy,
5846                                               bool IsVariadic) const {
5847   if (RetTy->isVoidType())
5848     return ABIArgInfo::getIgnore();
5849 
5850   if (const auto *VT = RetTy->getAs<VectorType>()) {
5851     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
5852         VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
5853       return coerceIllegalVector(RetTy);
5854   }
5855 
5856   // Large vector types should be returned via memory.
5857   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5858     return getNaturalAlignIndirect(RetTy);
5859 
5860   if (!isAggregateTypeForABI(RetTy)) {
5861     // Treat an enum type as its underlying type.
5862     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5863       RetTy = EnumTy->getDecl()->getIntegerType();
5864 
5865     if (const auto *EIT = RetTy->getAs<BitIntType>())
5866       if (EIT->getNumBits() > 128)
5867         return getNaturalAlignIndirect(RetTy);
5868 
5869     return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS()
5870                 ? ABIArgInfo::getExtend(RetTy)
5871                 : ABIArgInfo::getDirect());
5872   }
5873 
5874   uint64_t Size = getContext().getTypeSize(RetTy);
5875   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5876     return ABIArgInfo::getIgnore();
5877 
5878   const Type *Base = nullptr;
5879   uint64_t Members = 0;
5880   if (isHomogeneousAggregate(RetTy, Base, Members) &&
5881       !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 &&
5882         IsVariadic))
5883     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5884     return ABIArgInfo::getDirect();
5885 
5886   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5887   if (Size <= 128) {
5888     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5889     // same size and alignment.
5890     if (getTarget().isRenderScriptTarget()) {
5891       return coerceToIntArray(RetTy, getContext(), getVMContext());
5892     }
5893 
5894     if (Size <= 64 && getDataLayout().isLittleEndian()) {
5895       // Composite types are returned in lower bits of a 64-bit register for LE,
5896       // and in higher bits for BE. However, integer types are always returned
5897       // in lower bits for both LE and BE, and they are not rounded up to
5898       // 64-bits. We can skip rounding up of composite types for LE, but not for
5899       // BE, otherwise composite types will be indistinguishable from integer
5900       // types.
5901       return ABIArgInfo::getDirect(
5902           llvm::IntegerType::get(getVMContext(), Size));
5903     }
5904 
5905     unsigned Alignment = getContext().getTypeAlign(RetTy);
5906     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5907 
5908     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5909     // For aggregates with 16-byte alignment, we use i128.
5910     if (Alignment < 128 && Size == 128) {
5911       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5912       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5913     }
5914     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5915   }
5916 
5917   return getNaturalAlignIndirect(RetTy);
5918 }
5919 
5920 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5921 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5922   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5923     // Check whether VT is a fixed-length SVE vector. These types are
5924     // represented as scalable vectors in function args/return and must be
5925     // coerced from fixed vectors.
5926     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
5927         VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
5928       return true;
5929 
5930     // Check whether VT is legal.
5931     unsigned NumElements = VT->getNumElements();
5932     uint64_t Size = getContext().getTypeSize(VT);
5933     // NumElements should be power of 2.
5934     if (!llvm::isPowerOf2_32(NumElements))
5935       return true;
5936 
5937     // arm64_32 has to be compatible with the ARM logic here, which allows huge
5938     // vectors for some reason.
5939     llvm::Triple Triple = getTarget().getTriple();
5940     if (Triple.getArch() == llvm::Triple::aarch64_32 &&
5941         Triple.isOSBinFormatMachO())
5942       return Size <= 32;
5943 
5944     return Size != 64 && (Size != 128 || NumElements == 1);
5945   }
5946   return false;
5947 }
5948 
5949 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5950                                                llvm::Type *eltTy,
5951                                                unsigned elts) const {
5952   if (!llvm::isPowerOf2_32(elts))
5953     return false;
5954   if (totalSize.getQuantity() != 8 &&
5955       (totalSize.getQuantity() != 16 || elts == 1))
5956     return false;
5957   return true;
5958 }
5959 
5960 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5961   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5962   // point type or a short-vector type. This is the same as the 32-bit ABI,
5963   // but with the difference that any floating-point type is allowed,
5964   // including __fp16.
5965   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5966     if (BT->isFloatingPoint())
5967       return true;
5968   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5969     unsigned VecSize = getContext().getTypeSize(VT);
5970     if (VecSize == 64 || VecSize == 128)
5971       return true;
5972   }
5973   return false;
5974 }
5975 
5976 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5977                                                        uint64_t Members) const {
5978   return Members <= 4;
5979 }
5980 
5981 bool AArch64ABIInfo::isZeroLengthBitfieldPermittedInHomogeneousAggregate()
5982     const {
5983   // AAPCS64 says that the rule for whether something is a homogeneous
5984   // aggregate is applied to the output of the data layout decision. So
5985   // anything that doesn't affect the data layout also does not affect
5986   // homogeneity. In particular, zero-length bitfields don't stop a struct
5987   // being homogeneous.
5988   return true;
5989 }
5990 
5991 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
5992                                        CodeGenFunction &CGF) const {
5993   ABIArgInfo AI = classifyArgumentType(Ty, /*IsVariadic=*/true,
5994                                        CGF.CurFnInfo->getCallingConvention());
5995   bool IsIndirect = AI.isIndirect();
5996 
5997   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5998   if (IsIndirect)
5999     BaseTy = llvm::PointerType::getUnqual(BaseTy);
6000   else if (AI.getCoerceToType())
6001     BaseTy = AI.getCoerceToType();
6002 
6003   unsigned NumRegs = 1;
6004   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
6005     BaseTy = ArrTy->getElementType();
6006     NumRegs = ArrTy->getNumElements();
6007   }
6008   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
6009 
6010   // The AArch64 va_list type and handling is specified in the Procedure Call
6011   // Standard, section B.4:
6012   //
6013   // struct {
6014   //   void *__stack;
6015   //   void *__gr_top;
6016   //   void *__vr_top;
6017   //   int __gr_offs;
6018   //   int __vr_offs;
6019   // };
6020 
6021   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
6022   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
6023   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
6024   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
6025 
6026   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
6027   CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
6028 
6029   Address reg_offs_p = Address::invalid();
6030   llvm::Value *reg_offs = nullptr;
6031   int reg_top_index;
6032   int RegSize = IsIndirect ? 8 : TySize.getQuantity();
6033   if (!IsFPR) {
6034     // 3 is the field number of __gr_offs
6035     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
6036     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
6037     reg_top_index = 1; // field number for __gr_top
6038     RegSize = llvm::alignTo(RegSize, 8);
6039   } else {
6040     // 4 is the field number of __vr_offs.
6041     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
6042     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
6043     reg_top_index = 2; // field number for __vr_top
6044     RegSize = 16 * NumRegs;
6045   }
6046 
6047   //=======================================
6048   // Find out where argument was passed
6049   //=======================================
6050 
6051   // If reg_offs >= 0 we're already using the stack for this type of
6052   // argument. We don't want to keep updating reg_offs (in case it overflows,
6053   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
6054   // whatever they get).
6055   llvm::Value *UsingStack = nullptr;
6056   UsingStack = CGF.Builder.CreateICmpSGE(
6057       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
6058 
6059   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
6060 
6061   // Otherwise, at least some kind of argument could go in these registers, the
6062   // question is whether this particular type is too big.
6063   CGF.EmitBlock(MaybeRegBlock);
6064 
6065   // Integer arguments may need to correct register alignment (for example a
6066   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
6067   // align __gr_offs to calculate the potential address.
6068   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
6069     int Align = TyAlign.getQuantity();
6070 
6071     reg_offs = CGF.Builder.CreateAdd(
6072         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
6073         "align_regoffs");
6074     reg_offs = CGF.Builder.CreateAnd(
6075         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
6076         "aligned_regoffs");
6077   }
6078 
6079   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
6080   // The fact that this is done unconditionally reflects the fact that
6081   // allocating an argument to the stack also uses up all the remaining
6082   // registers of the appropriate kind.
6083   llvm::Value *NewOffset = nullptr;
6084   NewOffset = CGF.Builder.CreateAdd(
6085       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
6086   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
6087 
6088   // Now we're in a position to decide whether this argument really was in
6089   // registers or not.
6090   llvm::Value *InRegs = nullptr;
6091   InRegs = CGF.Builder.CreateICmpSLE(
6092       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
6093 
6094   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
6095 
6096   //=======================================
6097   // Argument was in registers
6098   //=======================================
6099 
6100   // Now we emit the code for if the argument was originally passed in
6101   // registers. First start the appropriate block:
6102   CGF.EmitBlock(InRegBlock);
6103 
6104   llvm::Value *reg_top = nullptr;
6105   Address reg_top_p =
6106       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
6107   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
6108   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, reg_top, reg_offs),
6109                    CGF.Int8Ty, CharUnits::fromQuantity(IsFPR ? 16 : 8));
6110   Address RegAddr = Address::invalid();
6111   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty), *ElementTy = MemTy;
6112 
6113   if (IsIndirect) {
6114     // If it's been passed indirectly (actually a struct), whatever we find from
6115     // stored registers or on the stack will actually be a struct **.
6116     MemTy = llvm::PointerType::getUnqual(MemTy);
6117   }
6118 
6119   const Type *Base = nullptr;
6120   uint64_t NumMembers = 0;
6121   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
6122   if (IsHFA && NumMembers > 1) {
6123     // Homogeneous aggregates passed in registers will have their elements split
6124     // and stored 16-bytes apart regardless of size (they're notionally in qN,
6125     // qN+1, ...). We reload and store into a temporary local variable
6126     // contiguously.
6127     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
6128     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
6129     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
6130     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
6131     Address Tmp = CGF.CreateTempAlloca(HFATy,
6132                                        std::max(TyAlign, BaseTyInfo.Align));
6133 
6134     // On big-endian platforms, the value will be right-aligned in its slot.
6135     int Offset = 0;
6136     if (CGF.CGM.getDataLayout().isBigEndian() &&
6137         BaseTyInfo.Width.getQuantity() < 16)
6138       Offset = 16 - BaseTyInfo.Width.getQuantity();
6139 
6140     for (unsigned i = 0; i < NumMembers; ++i) {
6141       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
6142       Address LoadAddr =
6143         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
6144       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
6145 
6146       Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
6147 
6148       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
6149       CGF.Builder.CreateStore(Elem, StoreAddr);
6150     }
6151 
6152     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
6153   } else {
6154     // Otherwise the object is contiguous in memory.
6155 
6156     // It might be right-aligned in its slot.
6157     CharUnits SlotSize = BaseAddr.getAlignment();
6158     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
6159         (IsHFA || !isAggregateTypeForABI(Ty)) &&
6160         TySize < SlotSize) {
6161       CharUnits Offset = SlotSize - TySize;
6162       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
6163     }
6164 
6165     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
6166   }
6167 
6168   CGF.EmitBranch(ContBlock);
6169 
6170   //=======================================
6171   // Argument was on the stack
6172   //=======================================
6173   CGF.EmitBlock(OnStackBlock);
6174 
6175   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
6176   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
6177 
6178   // Again, stack arguments may need realignment. In this case both integer and
6179   // floating-point ones might be affected.
6180   if (!IsIndirect && TyAlign.getQuantity() > 8) {
6181     int Align = TyAlign.getQuantity();
6182 
6183     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
6184 
6185     OnStackPtr = CGF.Builder.CreateAdd(
6186         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
6187         "align_stack");
6188     OnStackPtr = CGF.Builder.CreateAnd(
6189         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
6190         "align_stack");
6191 
6192     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
6193   }
6194   Address OnStackAddr = Address(OnStackPtr, CGF.Int8Ty,
6195                                 std::max(CharUnits::fromQuantity(8), TyAlign));
6196 
6197   // All stack slots are multiples of 8 bytes.
6198   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
6199   CharUnits StackSize;
6200   if (IsIndirect)
6201     StackSize = StackSlotSize;
6202   else
6203     StackSize = TySize.alignTo(StackSlotSize);
6204 
6205   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
6206   llvm::Value *NewStack = CGF.Builder.CreateInBoundsGEP(
6207       CGF.Int8Ty, OnStackPtr, StackSizeC, "new_stack");
6208 
6209   // Write the new value of __stack for the next call to va_arg
6210   CGF.Builder.CreateStore(NewStack, stack_p);
6211 
6212   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
6213       TySize < StackSlotSize) {
6214     CharUnits Offset = StackSlotSize - TySize;
6215     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
6216   }
6217 
6218   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
6219 
6220   CGF.EmitBranch(ContBlock);
6221 
6222   //=======================================
6223   // Tidy up
6224   //=======================================
6225   CGF.EmitBlock(ContBlock);
6226 
6227   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, OnStackAddr,
6228                                  OnStackBlock, "vaargs.addr");
6229 
6230   if (IsIndirect)
6231     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), ElementTy,
6232                    TyAlign);
6233 
6234   return ResAddr;
6235 }
6236 
6237 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
6238                                         CodeGenFunction &CGF) const {
6239   // The backend's lowering doesn't support va_arg for aggregates or
6240   // illegal vector types.  Lower VAArg here for these cases and use
6241   // the LLVM va_arg instruction for everything else.
6242   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
6243     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
6244 
6245   uint64_t PointerSize = getTarget().getPointerWidth(0) / 8;
6246   CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);
6247 
6248   // Empty records are ignored for parameter passing purposes.
6249   if (isEmptyRecord(getContext(), Ty, true)) {
6250     Address Addr = Address(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"),
6251                            getVAListElementType(CGF), SlotSize);
6252     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6253     return Addr;
6254   }
6255 
6256   // The size of the actual thing passed, which might end up just
6257   // being a pointer for indirect types.
6258   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6259 
6260   // Arguments bigger than 16 bytes which aren't homogeneous
6261   // aggregates should be passed indirectly.
6262   bool IsIndirect = false;
6263   if (TyInfo.Width.getQuantity() > 16) {
6264     const Type *Base = nullptr;
6265     uint64_t Members = 0;
6266     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
6267   }
6268 
6269   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
6270                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
6271 }
6272 
6273 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
6274                                     QualType Ty) const {
6275   bool IsIndirect = false;
6276 
6277   // Composites larger than 16 bytes are passed by reference.
6278   if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) > 128)
6279     IsIndirect = true;
6280 
6281   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
6282                           CGF.getContext().getTypeInfoInChars(Ty),
6283                           CharUnits::fromQuantity(8),
6284                           /*allowHigherAlign*/ false);
6285 }
6286 
6287 //===----------------------------------------------------------------------===//
6288 // ARM ABI Implementation
6289 //===----------------------------------------------------------------------===//
6290 
6291 namespace {
6292 
6293 class ARMABIInfo : public SwiftABIInfo {
6294 public:
6295   enum ABIKind {
6296     APCS = 0,
6297     AAPCS = 1,
6298     AAPCS_VFP = 2,
6299     AAPCS16_VFP = 3,
6300   };
6301 
6302 private:
6303   ABIKind Kind;
6304   bool IsFloatABISoftFP;
6305 
6306 public:
6307   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
6308       : SwiftABIInfo(CGT), Kind(_Kind) {
6309     setCCs();
6310     IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" ||
6311         CGT.getCodeGenOpts().FloatABI == ""; // default
6312   }
6313 
6314   bool isEABI() const {
6315     switch (getTarget().getTriple().getEnvironment()) {
6316     case llvm::Triple::Android:
6317     case llvm::Triple::EABI:
6318     case llvm::Triple::EABIHF:
6319     case llvm::Triple::GNUEABI:
6320     case llvm::Triple::GNUEABIHF:
6321     case llvm::Triple::MuslEABI:
6322     case llvm::Triple::MuslEABIHF:
6323       return true;
6324     default:
6325       return false;
6326     }
6327   }
6328 
6329   bool isEABIHF() const {
6330     switch (getTarget().getTriple().getEnvironment()) {
6331     case llvm::Triple::EABIHF:
6332     case llvm::Triple::GNUEABIHF:
6333     case llvm::Triple::MuslEABIHF:
6334       return true;
6335     default:
6336       return false;
6337     }
6338   }
6339 
6340   ABIKind getABIKind() const { return Kind; }
6341 
6342   bool allowBFloatArgsAndRet() const override {
6343     return !IsFloatABISoftFP && getTarget().hasBFloat16Type();
6344   }
6345 
6346 private:
6347   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
6348                                 unsigned functionCallConv) const;
6349   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
6350                                   unsigned functionCallConv) const;
6351   ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
6352                                           uint64_t Members) const;
6353   ABIArgInfo coerceIllegalVector(QualType Ty) const;
6354   bool isIllegalVectorType(QualType Ty) const;
6355   bool containsAnyFP16Vectors(QualType Ty) const;
6356 
6357   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
6358   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
6359                                          uint64_t Members) const override;
6360   bool isZeroLengthBitfieldPermittedInHomogeneousAggregate() const override;
6361 
6362   bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
6363 
6364   void computeInfo(CGFunctionInfo &FI) const override;
6365 
6366   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6367                     QualType Ty) const override;
6368 
6369   llvm::CallingConv::ID getLLVMDefaultCC() const;
6370   llvm::CallingConv::ID getABIDefaultCC() const;
6371   void setCCs();
6372 
6373   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6374                                     bool asReturnValue) const override {
6375     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6376   }
6377   bool isSwiftErrorInRegister() const override {
6378     return true;
6379   }
6380   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
6381                                  unsigned elts) const override;
6382 };
6383 
6384 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
6385 public:
6386   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6387       : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {}
6388 
6389   const ARMABIInfo &getABIInfo() const {
6390     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
6391   }
6392 
6393   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6394     return 13;
6395   }
6396 
6397   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
6398     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
6399   }
6400 
6401   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6402                                llvm::Value *Address) const override {
6403     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
6404 
6405     // 0-15 are the 16 integer registers.
6406     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
6407     return false;
6408   }
6409 
6410   unsigned getSizeOfUnwindException() const override {
6411     if (getABIInfo().isEABI()) return 88;
6412     return TargetCodeGenInfo::getSizeOfUnwindException();
6413   }
6414 
6415   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6416                            CodeGen::CodeGenModule &CGM) const override {
6417     if (GV->isDeclaration())
6418       return;
6419     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6420     if (!FD)
6421       return;
6422     auto *Fn = cast<llvm::Function>(GV);
6423 
6424     if (const auto *TA = FD->getAttr<TargetAttr>()) {
6425       ParsedTargetAttr Attr = TA->parse();
6426       if (!Attr.BranchProtection.empty()) {
6427         TargetInfo::BranchProtectionInfo BPI;
6428         StringRef DiagMsg;
6429         StringRef Arch = Attr.Architecture.empty()
6430                              ? CGM.getTarget().getTargetOpts().CPU
6431                              : Attr.Architecture;
6432         if (!CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
6433                                                       Arch, BPI, DiagMsg)) {
6434           CGM.getDiags().Report(
6435               D->getLocation(),
6436               diag::warn_target_unsupported_branch_protection_attribute)
6437               << Arch;
6438         } else {
6439           static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"};
6440           assert(static_cast<unsigned>(BPI.SignReturnAddr) <= 2 &&
6441                  "Unexpected SignReturnAddressScopeKind");
6442           Fn->addFnAttr(
6443               "sign-return-address",
6444               SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]);
6445 
6446           Fn->addFnAttr("branch-target-enforcement",
6447                         BPI.BranchTargetEnforcement ? "true" : "false");
6448         }
6449       } else if (CGM.getLangOpts().BranchTargetEnforcement ||
6450                  CGM.getLangOpts().hasSignReturnAddress()) {
6451         // If the Branch Protection attribute is missing, validate the target
6452         // Architecture attribute against Branch Protection command line
6453         // settings.
6454         if (!CGM.getTarget().isBranchProtectionSupportedArch(Attr.Architecture))
6455           CGM.getDiags().Report(
6456               D->getLocation(),
6457               diag::warn_target_unsupported_branch_protection_attribute)
6458               << Attr.Architecture;
6459       }
6460     }
6461 
6462     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
6463     if (!Attr)
6464       return;
6465 
6466     const char *Kind;
6467     switch (Attr->getInterrupt()) {
6468     case ARMInterruptAttr::Generic: Kind = ""; break;
6469     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
6470     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
6471     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
6472     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
6473     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
6474     }
6475 
6476     Fn->addFnAttr("interrupt", Kind);
6477 
6478     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
6479     if (ABI == ARMABIInfo::APCS)
6480       return;
6481 
6482     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
6483     // however this is not necessarily true on taking any interrupt. Instruct
6484     // the backend to perform a realignment as part of the function prologue.
6485     llvm::AttrBuilder B(Fn->getContext());
6486     B.addStackAlignmentAttr(8);
6487     Fn->addFnAttrs(B);
6488   }
6489 };
6490 
6491 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
6492 public:
6493   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6494       : ARMTargetCodeGenInfo(CGT, K) {}
6495 
6496   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6497                            CodeGen::CodeGenModule &CGM) const override;
6498 
6499   void getDependentLibraryOption(llvm::StringRef Lib,
6500                                  llvm::SmallString<24> &Opt) const override {
6501     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
6502   }
6503 
6504   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
6505                                llvm::SmallString<32> &Opt) const override {
6506     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
6507   }
6508 };
6509 
6510 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
6511     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
6512   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
6513   if (GV->isDeclaration())
6514     return;
6515   addStackProbeTargetAttributes(D, GV, CGM);
6516 }
6517 }
6518 
6519 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
6520   if (!::classifyReturnType(getCXXABI(), FI, *this))
6521     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
6522                                             FI.getCallingConvention());
6523 
6524   for (auto &I : FI.arguments())
6525     I.info = classifyArgumentType(I.type, FI.isVariadic(),
6526                                   FI.getCallingConvention());
6527 
6528 
6529   // Always honor user-specified calling convention.
6530   if (FI.getCallingConvention() != llvm::CallingConv::C)
6531     return;
6532 
6533   llvm::CallingConv::ID cc = getRuntimeCC();
6534   if (cc != llvm::CallingConv::C)
6535     FI.setEffectiveCallingConvention(cc);
6536 }
6537 
6538 /// Return the default calling convention that LLVM will use.
6539 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
6540   // The default calling convention that LLVM will infer.
6541   if (isEABIHF() || getTarget().getTriple().isWatchABI())
6542     return llvm::CallingConv::ARM_AAPCS_VFP;
6543   else if (isEABI())
6544     return llvm::CallingConv::ARM_AAPCS;
6545   else
6546     return llvm::CallingConv::ARM_APCS;
6547 }
6548 
6549 /// Return the calling convention that our ABI would like us to use
6550 /// as the C calling convention.
6551 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
6552   switch (getABIKind()) {
6553   case APCS: return llvm::CallingConv::ARM_APCS;
6554   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
6555   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6556   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6557   }
6558   llvm_unreachable("bad ABI kind");
6559 }
6560 
6561 void ARMABIInfo::setCCs() {
6562   assert(getRuntimeCC() == llvm::CallingConv::C);
6563 
6564   // Don't muddy up the IR with a ton of explicit annotations if
6565   // they'd just match what LLVM will infer from the triple.
6566   llvm::CallingConv::ID abiCC = getABIDefaultCC();
6567   if (abiCC != getLLVMDefaultCC())
6568     RuntimeCC = abiCC;
6569 }
6570 
6571 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
6572   uint64_t Size = getContext().getTypeSize(Ty);
6573   if (Size <= 32) {
6574     llvm::Type *ResType =
6575         llvm::Type::getInt32Ty(getVMContext());
6576     return ABIArgInfo::getDirect(ResType);
6577   }
6578   if (Size == 64 || Size == 128) {
6579     auto *ResType = llvm::FixedVectorType::get(
6580         llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6581     return ABIArgInfo::getDirect(ResType);
6582   }
6583   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6584 }
6585 
6586 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
6587                                                     const Type *Base,
6588                                                     uint64_t Members) const {
6589   assert(Base && "Base class should be set for homogeneous aggregate");
6590   // Base can be a floating-point or a vector.
6591   if (const VectorType *VT = Base->getAs<VectorType>()) {
6592     // FP16 vectors should be converted to integer vectors
6593     if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) {
6594       uint64_t Size = getContext().getTypeSize(VT);
6595       auto *NewVecTy = llvm::FixedVectorType::get(
6596           llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6597       llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
6598       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6599     }
6600   }
6601   unsigned Align = 0;
6602   if (getABIKind() == ARMABIInfo::AAPCS ||
6603       getABIKind() == ARMABIInfo::AAPCS_VFP) {
6604     // For alignment adjusted HFAs, cap the argument alignment to 8, leave it
6605     // default otherwise.
6606     Align = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
6607     unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity();
6608     Align = (Align > BaseAlign && Align >= 8) ? 8 : 0;
6609   }
6610   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false, Align);
6611 }
6612 
6613 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
6614                                             unsigned functionCallConv) const {
6615   // 6.1.2.1 The following argument types are VFP CPRCs:
6616   //   A single-precision floating-point type (including promoted
6617   //   half-precision types); A double-precision floating-point type;
6618   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
6619   //   with a Base Type of a single- or double-precision floating-point type,
6620   //   64-bit containerized vectors or 128-bit containerized vectors with one
6621   //   to four Elements.
6622   // Variadic functions should always marshal to the base standard.
6623   bool IsAAPCS_VFP =
6624       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
6625 
6626   Ty = useFirstFieldIfTransparentUnion(Ty);
6627 
6628   // Handle illegal vector types here.
6629   if (isIllegalVectorType(Ty))
6630     return coerceIllegalVector(Ty);
6631 
6632   if (!isAggregateTypeForABI(Ty)) {
6633     // Treat an enum type as its underlying type.
6634     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
6635       Ty = EnumTy->getDecl()->getIntegerType();
6636     }
6637 
6638     if (const auto *EIT = Ty->getAs<BitIntType>())
6639       if (EIT->getNumBits() > 64)
6640         return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
6641 
6642     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
6643                                               : ABIArgInfo::getDirect());
6644   }
6645 
6646   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6647     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6648   }
6649 
6650   // Ignore empty records.
6651   if (isEmptyRecord(getContext(), Ty, true))
6652     return ABIArgInfo::getIgnore();
6653 
6654   if (IsAAPCS_VFP) {
6655     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
6656     // into VFP registers.
6657     const Type *Base = nullptr;
6658     uint64_t Members = 0;
6659     if (isHomogeneousAggregate(Ty, Base, Members))
6660       return classifyHomogeneousAggregate(Ty, Base, Members);
6661   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6662     // WatchOS does have homogeneous aggregates. Note that we intentionally use
6663     // this convention even for a variadic function: the backend will use GPRs
6664     // if needed.
6665     const Type *Base = nullptr;
6666     uint64_t Members = 0;
6667     if (isHomogeneousAggregate(Ty, Base, Members)) {
6668       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
6669       llvm::Type *Ty =
6670         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
6671       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6672     }
6673   }
6674 
6675   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6676       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
6677     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
6678     // bigger than 128-bits, they get placed in space allocated by the caller,
6679     // and a pointer is passed.
6680     return ABIArgInfo::getIndirect(
6681         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
6682   }
6683 
6684   // Support byval for ARM.
6685   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
6686   // most 8-byte. We realign the indirect argument if type alignment is bigger
6687   // than ABI alignment.
6688   uint64_t ABIAlign = 4;
6689   uint64_t TyAlign;
6690   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6691       getABIKind() == ARMABIInfo::AAPCS) {
6692     TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
6693     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
6694   } else {
6695     TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
6696   }
6697   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
6698     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
6699     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
6700                                    /*ByVal=*/true,
6701                                    /*Realign=*/TyAlign > ABIAlign);
6702   }
6703 
6704   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
6705   // same size and alignment.
6706   if (getTarget().isRenderScriptTarget()) {
6707     return coerceToIntArray(Ty, getContext(), getVMContext());
6708   }
6709 
6710   // Otherwise, pass by coercing to a structure of the appropriate size.
6711   llvm::Type* ElemTy;
6712   unsigned SizeRegs;
6713   // FIXME: Try to match the types of the arguments more accurately where
6714   // we can.
6715   if (TyAlign <= 4) {
6716     ElemTy = llvm::Type::getInt32Ty(getVMContext());
6717     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
6718   } else {
6719     ElemTy = llvm::Type::getInt64Ty(getVMContext());
6720     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
6721   }
6722 
6723   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
6724 }
6725 
6726 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
6727                               llvm::LLVMContext &VMContext) {
6728   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
6729   // is called integer-like if its size is less than or equal to one word, and
6730   // the offset of each of its addressable sub-fields is zero.
6731 
6732   uint64_t Size = Context.getTypeSize(Ty);
6733 
6734   // Check that the type fits in a word.
6735   if (Size > 32)
6736     return false;
6737 
6738   // FIXME: Handle vector types!
6739   if (Ty->isVectorType())
6740     return false;
6741 
6742   // Float types are never treated as "integer like".
6743   if (Ty->isRealFloatingType())
6744     return false;
6745 
6746   // If this is a builtin or pointer type then it is ok.
6747   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
6748     return true;
6749 
6750   // Small complex integer types are "integer like".
6751   if (const ComplexType *CT = Ty->getAs<ComplexType>())
6752     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
6753 
6754   // Single element and zero sized arrays should be allowed, by the definition
6755   // above, but they are not.
6756 
6757   // Otherwise, it must be a record type.
6758   const RecordType *RT = Ty->getAs<RecordType>();
6759   if (!RT) return false;
6760 
6761   // Ignore records with flexible arrays.
6762   const RecordDecl *RD = RT->getDecl();
6763   if (RD->hasFlexibleArrayMember())
6764     return false;
6765 
6766   // Check that all sub-fields are at offset 0, and are themselves "integer
6767   // like".
6768   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
6769 
6770   bool HadField = false;
6771   unsigned idx = 0;
6772   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6773        i != e; ++i, ++idx) {
6774     const FieldDecl *FD = *i;
6775 
6776     // Bit-fields are not addressable, we only need to verify they are "integer
6777     // like". We still have to disallow a subsequent non-bitfield, for example:
6778     //   struct { int : 0; int x }
6779     // is non-integer like according to gcc.
6780     if (FD->isBitField()) {
6781       if (!RD->isUnion())
6782         HadField = true;
6783 
6784       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6785         return false;
6786 
6787       continue;
6788     }
6789 
6790     // Check if this field is at offset 0.
6791     if (Layout.getFieldOffset(idx) != 0)
6792       return false;
6793 
6794     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6795       return false;
6796 
6797     // Only allow at most one field in a structure. This doesn't match the
6798     // wording above, but follows gcc in situations with a field following an
6799     // empty structure.
6800     if (!RD->isUnion()) {
6801       if (HadField)
6802         return false;
6803 
6804       HadField = true;
6805     }
6806   }
6807 
6808   return true;
6809 }
6810 
6811 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
6812                                           unsigned functionCallConv) const {
6813 
6814   // Variadic functions should always marshal to the base standard.
6815   bool IsAAPCS_VFP =
6816       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
6817 
6818   if (RetTy->isVoidType())
6819     return ABIArgInfo::getIgnore();
6820 
6821   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
6822     // Large vector types should be returned via memory.
6823     if (getContext().getTypeSize(RetTy) > 128)
6824       return getNaturalAlignIndirect(RetTy);
6825     // TODO: FP16/BF16 vectors should be converted to integer vectors
6826     // This check is similar  to isIllegalVectorType - refactor?
6827     if ((!getTarget().hasLegalHalfType() &&
6828         (VT->getElementType()->isFloat16Type() ||
6829          VT->getElementType()->isHalfType())) ||
6830         (IsFloatABISoftFP &&
6831          VT->getElementType()->isBFloat16Type()))
6832       return coerceIllegalVector(RetTy);
6833   }
6834 
6835   if (!isAggregateTypeForABI(RetTy)) {
6836     // Treat an enum type as its underlying type.
6837     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6838       RetTy = EnumTy->getDecl()->getIntegerType();
6839 
6840     if (const auto *EIT = RetTy->getAs<BitIntType>())
6841       if (EIT->getNumBits() > 64)
6842         return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
6843 
6844     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
6845                                                 : ABIArgInfo::getDirect();
6846   }
6847 
6848   // Are we following APCS?
6849   if (getABIKind() == APCS) {
6850     if (isEmptyRecord(getContext(), RetTy, false))
6851       return ABIArgInfo::getIgnore();
6852 
6853     // Complex types are all returned as packed integers.
6854     //
6855     // FIXME: Consider using 2 x vector types if the back end handles them
6856     // correctly.
6857     if (RetTy->isAnyComplexType())
6858       return ABIArgInfo::getDirect(llvm::IntegerType::get(
6859           getVMContext(), getContext().getTypeSize(RetTy)));
6860 
6861     // Integer like structures are returned in r0.
6862     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
6863       // Return in the smallest viable integer type.
6864       uint64_t Size = getContext().getTypeSize(RetTy);
6865       if (Size <= 8)
6866         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6867       if (Size <= 16)
6868         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6869       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6870     }
6871 
6872     // Otherwise return in memory.
6873     return getNaturalAlignIndirect(RetTy);
6874   }
6875 
6876   // Otherwise this is an AAPCS variant.
6877 
6878   if (isEmptyRecord(getContext(), RetTy, true))
6879     return ABIArgInfo::getIgnore();
6880 
6881   // Check for homogeneous aggregates with AAPCS-VFP.
6882   if (IsAAPCS_VFP) {
6883     const Type *Base = nullptr;
6884     uint64_t Members = 0;
6885     if (isHomogeneousAggregate(RetTy, Base, Members))
6886       return classifyHomogeneousAggregate(RetTy, Base, Members);
6887   }
6888 
6889   // Aggregates <= 4 bytes are returned in r0; other aggregates
6890   // are returned indirectly.
6891   uint64_t Size = getContext().getTypeSize(RetTy);
6892   if (Size <= 32) {
6893     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6894     // same size and alignment.
6895     if (getTarget().isRenderScriptTarget()) {
6896       return coerceToIntArray(RetTy, getContext(), getVMContext());
6897     }
6898     if (getDataLayout().isBigEndian())
6899       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6900       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6901 
6902     // Return in the smallest viable integer type.
6903     if (Size <= 8)
6904       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6905     if (Size <= 16)
6906       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6907     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6908   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6909     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6910     llvm::Type *CoerceTy =
6911         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6912     return ABIArgInfo::getDirect(CoerceTy);
6913   }
6914 
6915   return getNaturalAlignIndirect(RetTy);
6916 }
6917 
6918 /// isIllegalVector - check whether Ty is an illegal vector type.
6919 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6920   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6921     // On targets that don't support half, fp16 or bfloat, they are expanded
6922     // into float, and we don't want the ABI to depend on whether or not they
6923     // are supported in hardware. Thus return false to coerce vectors of these
6924     // types into integer vectors.
6925     // We do not depend on hasLegalHalfType for bfloat as it is a
6926     // separate IR type.
6927     if ((!getTarget().hasLegalHalfType() &&
6928         (VT->getElementType()->isFloat16Type() ||
6929          VT->getElementType()->isHalfType())) ||
6930         (IsFloatABISoftFP &&
6931          VT->getElementType()->isBFloat16Type()))
6932       return true;
6933     if (isAndroid()) {
6934       // Android shipped using Clang 3.1, which supported a slightly different
6935       // vector ABI. The primary differences were that 3-element vector types
6936       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6937       // accepts that legacy behavior for Android only.
6938       // Check whether VT is legal.
6939       unsigned NumElements = VT->getNumElements();
6940       // NumElements should be power of 2 or equal to 3.
6941       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6942         return true;
6943     } else {
6944       // Check whether VT is legal.
6945       unsigned NumElements = VT->getNumElements();
6946       uint64_t Size = getContext().getTypeSize(VT);
6947       // NumElements should be power of 2.
6948       if (!llvm::isPowerOf2_32(NumElements))
6949         return true;
6950       // Size should be greater than 32 bits.
6951       return Size <= 32;
6952     }
6953   }
6954   return false;
6955 }
6956 
6957 /// Return true if a type contains any 16-bit floating point vectors
6958 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const {
6959   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
6960     uint64_t NElements = AT->getSize().getZExtValue();
6961     if (NElements == 0)
6962       return false;
6963     return containsAnyFP16Vectors(AT->getElementType());
6964   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
6965     const RecordDecl *RD = RT->getDecl();
6966 
6967     // If this is a C++ record, check the bases first.
6968     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6969       if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) {
6970             return containsAnyFP16Vectors(B.getType());
6971           }))
6972         return true;
6973 
6974     if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) {
6975           return FD && containsAnyFP16Vectors(FD->getType());
6976         }))
6977       return true;
6978 
6979     return false;
6980   } else {
6981     if (const VectorType *VT = Ty->getAs<VectorType>())
6982       return (VT->getElementType()->isFloat16Type() ||
6983               VT->getElementType()->isBFloat16Type() ||
6984               VT->getElementType()->isHalfType());
6985     return false;
6986   }
6987 }
6988 
6989 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6990                                            llvm::Type *eltTy,
6991                                            unsigned numElts) const {
6992   if (!llvm::isPowerOf2_32(numElts))
6993     return false;
6994   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6995   if (size > 64)
6996     return false;
6997   if (vectorSize.getQuantity() != 8 &&
6998       (vectorSize.getQuantity() != 16 || numElts == 1))
6999     return false;
7000   return true;
7001 }
7002 
7003 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
7004   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
7005   // double, or 64-bit or 128-bit vectors.
7006   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
7007     if (BT->getKind() == BuiltinType::Float ||
7008         BT->getKind() == BuiltinType::Double ||
7009         BT->getKind() == BuiltinType::LongDouble)
7010       return true;
7011   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
7012     unsigned VecSize = getContext().getTypeSize(VT);
7013     if (VecSize == 64 || VecSize == 128)
7014       return true;
7015   }
7016   return false;
7017 }
7018 
7019 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
7020                                                    uint64_t Members) const {
7021   return Members <= 4;
7022 }
7023 
7024 bool ARMABIInfo::isZeroLengthBitfieldPermittedInHomogeneousAggregate() const {
7025   // AAPCS32 says that the rule for whether something is a homogeneous
7026   // aggregate is applied to the output of the data layout decision. So
7027   // anything that doesn't affect the data layout also does not affect
7028   // homogeneity. In particular, zero-length bitfields don't stop a struct
7029   // being homogeneous.
7030   return true;
7031 }
7032 
7033 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
7034                                         bool acceptHalf) const {
7035   // Give precedence to user-specified calling conventions.
7036   if (callConvention != llvm::CallingConv::C)
7037     return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
7038   else
7039     return (getABIKind() == AAPCS_VFP) ||
7040            (acceptHalf && (getABIKind() == AAPCS16_VFP));
7041 }
7042 
7043 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7044                               QualType Ty) const {
7045   CharUnits SlotSize = CharUnits::fromQuantity(4);
7046 
7047   // Empty records are ignored for parameter passing purposes.
7048   if (isEmptyRecord(getContext(), Ty, true)) {
7049     Address Addr = Address(CGF.Builder.CreateLoad(VAListAddr),
7050                            getVAListElementType(CGF), SlotSize);
7051     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
7052     return Addr;
7053   }
7054 
7055   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
7056   CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
7057 
7058   // Use indirect if size of the illegal vector is bigger than 16 bytes.
7059   bool IsIndirect = false;
7060   const Type *Base = nullptr;
7061   uint64_t Members = 0;
7062   if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
7063     IsIndirect = true;
7064 
7065   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
7066   // allocated by the caller.
7067   } else if (TySize > CharUnits::fromQuantity(16) &&
7068              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
7069              !isHomogeneousAggregate(Ty, Base, Members)) {
7070     IsIndirect = true;
7071 
7072   // Otherwise, bound the type's ABI alignment.
7073   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
7074   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
7075   // Our callers should be prepared to handle an under-aligned address.
7076   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
7077              getABIKind() == ARMABIInfo::AAPCS) {
7078     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
7079     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
7080   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
7081     // ARMv7k allows type alignment up to 16 bytes.
7082     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
7083     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
7084   } else {
7085     TyAlignForABI = CharUnits::fromQuantity(4);
7086   }
7087 
7088   TypeInfoChars TyInfo(TySize, TyAlignForABI, AlignRequirementKind::None);
7089   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
7090                           SlotSize, /*AllowHigherAlign*/ true);
7091 }
7092 
7093 //===----------------------------------------------------------------------===//
7094 // NVPTX ABI Implementation
7095 //===----------------------------------------------------------------------===//
7096 
7097 namespace {
7098 
7099 class NVPTXTargetCodeGenInfo;
7100 
7101 class NVPTXABIInfo : public ABIInfo {
7102   NVPTXTargetCodeGenInfo &CGInfo;
7103 
7104 public:
7105   NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info)
7106       : ABIInfo(CGT), CGInfo(Info) {}
7107 
7108   ABIArgInfo classifyReturnType(QualType RetTy) const;
7109   ABIArgInfo classifyArgumentType(QualType Ty) const;
7110 
7111   void computeInfo(CGFunctionInfo &FI) const override;
7112   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7113                     QualType Ty) const override;
7114   bool isUnsupportedType(QualType T) const;
7115   ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const;
7116 };
7117 
7118 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
7119 public:
7120   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
7121       : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {}
7122 
7123   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7124                            CodeGen::CodeGenModule &M) const override;
7125   bool shouldEmitStaticExternCAliases() const override;
7126 
7127   llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override {
7128     // On the device side, surface reference is represented as an object handle
7129     // in 64-bit integer.
7130     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
7131   }
7132 
7133   llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override {
7134     // On the device side, texture reference is represented as an object handle
7135     // in 64-bit integer.
7136     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
7137   }
7138 
7139   bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst,
7140                                               LValue Src) const override {
7141     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
7142     return true;
7143   }
7144 
7145   bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst,
7146                                               LValue Src) const override {
7147     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
7148     return true;
7149   }
7150 
7151 private:
7152   // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the
7153   // resulting MDNode to the nvvm.annotations MDNode.
7154   static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name,
7155                               int Operand);
7156 
7157   static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst,
7158                                            LValue Src) {
7159     llvm::Value *Handle = nullptr;
7160     llvm::Constant *C =
7161         llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer());
7162     // Lookup `addrspacecast` through the constant pointer if any.
7163     if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C))
7164       C = llvm::cast<llvm::Constant>(ASC->getPointerOperand());
7165     if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) {
7166       // Load the handle from the specific global variable using
7167       // `nvvm.texsurf.handle.internal` intrinsic.
7168       Handle = CGF.EmitRuntimeCall(
7169           CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal,
7170                                {GV->getType()}),
7171           {GV}, "texsurf_handle");
7172     } else
7173       Handle = CGF.EmitLoadOfScalar(Src, SourceLocation());
7174     CGF.EmitStoreOfScalar(Handle, Dst);
7175   }
7176 };
7177 
7178 /// Checks if the type is unsupported directly by the current target.
7179 bool NVPTXABIInfo::isUnsupportedType(QualType T) const {
7180   ASTContext &Context = getContext();
7181   if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
7182     return true;
7183   if (!Context.getTargetInfo().hasFloat128Type() &&
7184       (T->isFloat128Type() ||
7185        (T->isRealFloatingType() && Context.getTypeSize(T) == 128)))
7186     return true;
7187   if (const auto *EIT = T->getAs<BitIntType>())
7188     return EIT->getNumBits() >
7189            (Context.getTargetInfo().hasInt128Type() ? 128U : 64U);
7190   if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
7191       Context.getTypeSize(T) > 64U)
7192     return true;
7193   if (const auto *AT = T->getAsArrayTypeUnsafe())
7194     return isUnsupportedType(AT->getElementType());
7195   const auto *RT = T->getAs<RecordType>();
7196   if (!RT)
7197     return false;
7198   const RecordDecl *RD = RT->getDecl();
7199 
7200   // If this is a C++ record, check the bases first.
7201   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7202     for (const CXXBaseSpecifier &I : CXXRD->bases())
7203       if (isUnsupportedType(I.getType()))
7204         return true;
7205 
7206   for (const FieldDecl *I : RD->fields())
7207     if (isUnsupportedType(I->getType()))
7208       return true;
7209   return false;
7210 }
7211 
7212 /// Coerce the given type into an array with maximum allowed size of elements.
7213 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty,
7214                                                    unsigned MaxSize) const {
7215   // Alignment and Size are measured in bits.
7216   const uint64_t Size = getContext().getTypeSize(Ty);
7217   const uint64_t Alignment = getContext().getTypeAlign(Ty);
7218   const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
7219   llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div);
7220   const uint64_t NumElements = (Size + Div - 1) / Div;
7221   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
7222 }
7223 
7224 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
7225   if (RetTy->isVoidType())
7226     return ABIArgInfo::getIgnore();
7227 
7228   if (getContext().getLangOpts().OpenMP &&
7229       getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy))
7230     return coerceToIntArrayWithLimit(RetTy, 64);
7231 
7232   // note: this is different from default ABI
7233   if (!RetTy->isScalarType())
7234     return ABIArgInfo::getDirect();
7235 
7236   // Treat an enum type as its underlying type.
7237   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7238     RetTy = EnumTy->getDecl()->getIntegerType();
7239 
7240   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
7241                                                : ABIArgInfo::getDirect());
7242 }
7243 
7244 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
7245   // Treat an enum type as its underlying type.
7246   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7247     Ty = EnumTy->getDecl()->getIntegerType();
7248 
7249   // Return aggregates type as indirect by value
7250   if (isAggregateTypeForABI(Ty)) {
7251     // Under CUDA device compilation, tex/surf builtin types are replaced with
7252     // object types and passed directly.
7253     if (getContext().getLangOpts().CUDAIsDevice) {
7254       if (Ty->isCUDADeviceBuiltinSurfaceType())
7255         return ABIArgInfo::getDirect(
7256             CGInfo.getCUDADeviceBuiltinSurfaceDeviceType());
7257       if (Ty->isCUDADeviceBuiltinTextureType())
7258         return ABIArgInfo::getDirect(
7259             CGInfo.getCUDADeviceBuiltinTextureDeviceType());
7260     }
7261     return getNaturalAlignIndirect(Ty, /* byval */ true);
7262   }
7263 
7264   if (const auto *EIT = Ty->getAs<BitIntType>()) {
7265     if ((EIT->getNumBits() > 128) ||
7266         (!getContext().getTargetInfo().hasInt128Type() &&
7267          EIT->getNumBits() > 64))
7268       return getNaturalAlignIndirect(Ty, /* byval */ true);
7269   }
7270 
7271   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
7272                                             : ABIArgInfo::getDirect());
7273 }
7274 
7275 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
7276   if (!getCXXABI().classifyReturnType(FI))
7277     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7278   for (auto &I : FI.arguments())
7279     I.info = classifyArgumentType(I.type);
7280 
7281   // Always honor user-specified calling convention.
7282   if (FI.getCallingConvention() != llvm::CallingConv::C)
7283     return;
7284 
7285   FI.setEffectiveCallingConvention(getRuntimeCC());
7286 }
7287 
7288 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7289                                 QualType Ty) const {
7290   llvm_unreachable("NVPTX does not support varargs");
7291 }
7292 
7293 void NVPTXTargetCodeGenInfo::setTargetAttributes(
7294     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7295   if (GV->isDeclaration())
7296     return;
7297   const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
7298   if (VD) {
7299     if (M.getLangOpts().CUDA) {
7300       if (VD->getType()->isCUDADeviceBuiltinSurfaceType())
7301         addNVVMMetadata(GV, "surface", 1);
7302       else if (VD->getType()->isCUDADeviceBuiltinTextureType())
7303         addNVVMMetadata(GV, "texture", 1);
7304       return;
7305     }
7306   }
7307 
7308   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7309   if (!FD) return;
7310 
7311   llvm::Function *F = cast<llvm::Function>(GV);
7312 
7313   // Perform special handling in OpenCL mode
7314   if (M.getLangOpts().OpenCL) {
7315     // Use OpenCL function attributes to check for kernel functions
7316     // By default, all functions are device functions
7317     if (FD->hasAttr<OpenCLKernelAttr>()) {
7318       // OpenCL __kernel functions get kernel metadata
7319       // Create !{<func-ref>, metadata !"kernel", i32 1} node
7320       addNVVMMetadata(F, "kernel", 1);
7321       // And kernel functions are not subject to inlining
7322       F->addFnAttr(llvm::Attribute::NoInline);
7323     }
7324   }
7325 
7326   // Perform special handling in CUDA mode.
7327   if (M.getLangOpts().CUDA) {
7328     // CUDA __global__ functions get a kernel metadata entry.  Since
7329     // __global__ functions cannot be called from the device, we do not
7330     // need to set the noinline attribute.
7331     if (FD->hasAttr<CUDAGlobalAttr>()) {
7332       // Create !{<func-ref>, metadata !"kernel", i32 1} node
7333       addNVVMMetadata(F, "kernel", 1);
7334     }
7335     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
7336       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
7337       llvm::APSInt MaxThreads(32);
7338       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
7339       if (MaxThreads > 0)
7340         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
7341 
7342       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
7343       // not specified in __launch_bounds__ or if the user specified a 0 value,
7344       // we don't have to add a PTX directive.
7345       if (Attr->getMinBlocks()) {
7346         llvm::APSInt MinBlocks(32);
7347         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
7348         if (MinBlocks > 0)
7349           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
7350           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
7351       }
7352     }
7353   }
7354 }
7355 
7356 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV,
7357                                              StringRef Name, int Operand) {
7358   llvm::Module *M = GV->getParent();
7359   llvm::LLVMContext &Ctx = M->getContext();
7360 
7361   // Get "nvvm.annotations" metadata node
7362   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
7363 
7364   llvm::Metadata *MDVals[] = {
7365       llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name),
7366       llvm::ConstantAsMetadata::get(
7367           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
7368   // Append metadata to nvvm.annotations
7369   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
7370 }
7371 
7372 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
7373   return false;
7374 }
7375 }
7376 
7377 //===----------------------------------------------------------------------===//
7378 // SystemZ ABI Implementation
7379 //===----------------------------------------------------------------------===//
7380 
7381 namespace {
7382 
7383 class SystemZABIInfo : public SwiftABIInfo {
7384   bool HasVector;
7385   bool IsSoftFloatABI;
7386 
7387 public:
7388   SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF)
7389     : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {}
7390 
7391   bool isPromotableIntegerTypeForABI(QualType Ty) const;
7392   bool isCompoundType(QualType Ty) const;
7393   bool isVectorArgumentType(QualType Ty) const;
7394   bool isFPArgumentType(QualType Ty) const;
7395   QualType GetSingleElementType(QualType Ty) const;
7396 
7397   ABIArgInfo classifyReturnType(QualType RetTy) const;
7398   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
7399 
7400   void computeInfo(CGFunctionInfo &FI) const override {
7401     if (!getCXXABI().classifyReturnType(FI))
7402       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7403     for (auto &I : FI.arguments())
7404       I.info = classifyArgumentType(I.type);
7405   }
7406 
7407   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7408                     QualType Ty) const override;
7409 
7410   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
7411                                     bool asReturnValue) const override {
7412     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
7413   }
7414   bool isSwiftErrorInRegister() const override {
7415     return false;
7416   }
7417 };
7418 
7419 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
7420 public:
7421   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI)
7422       : TargetCodeGenInfo(
7423             std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {}
7424 
7425   llvm::Value *testFPKind(llvm::Value *V, unsigned BuiltinID,
7426                           CGBuilderTy &Builder,
7427                           CodeGenModule &CGM) const override {
7428     assert(V->getType()->isFloatingPointTy() && "V should have an FP type.");
7429     // Only use TDC in constrained FP mode.
7430     if (!Builder.getIsFPConstrained())
7431       return nullptr;
7432 
7433     llvm::Type *Ty = V->getType();
7434     if (Ty->isFloatTy() || Ty->isDoubleTy() || Ty->isFP128Ty()) {
7435       llvm::Module &M = CGM.getModule();
7436       auto &Ctx = M.getContext();
7437       llvm::Function *TDCFunc =
7438           llvm::Intrinsic::getDeclaration(&M, llvm::Intrinsic::s390_tdc, Ty);
7439       unsigned TDCBits = 0;
7440       switch (BuiltinID) {
7441       case Builtin::BI__builtin_isnan:
7442         TDCBits = 0xf;
7443         break;
7444       case Builtin::BIfinite:
7445       case Builtin::BI__finite:
7446       case Builtin::BIfinitef:
7447       case Builtin::BI__finitef:
7448       case Builtin::BIfinitel:
7449       case Builtin::BI__finitel:
7450       case Builtin::BI__builtin_isfinite:
7451         TDCBits = 0xfc0;
7452         break;
7453       case Builtin::BI__builtin_isinf:
7454         TDCBits = 0x30;
7455         break;
7456       default:
7457         break;
7458       }
7459       if (TDCBits)
7460         return Builder.CreateCall(
7461             TDCFunc,
7462             {V, llvm::ConstantInt::get(llvm::Type::getInt64Ty(Ctx), TDCBits)});
7463     }
7464     return nullptr;
7465   }
7466 };
7467 }
7468 
7469 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
7470   // Treat an enum type as its underlying type.
7471   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7472     Ty = EnumTy->getDecl()->getIntegerType();
7473 
7474   // Promotable integer types are required to be promoted by the ABI.
7475   if (ABIInfo::isPromotableIntegerTypeForABI(Ty))
7476     return true;
7477 
7478   if (const auto *EIT = Ty->getAs<BitIntType>())
7479     if (EIT->getNumBits() < 64)
7480       return true;
7481 
7482   // 32-bit values must also be promoted.
7483   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7484     switch (BT->getKind()) {
7485     case BuiltinType::Int:
7486     case BuiltinType::UInt:
7487       return true;
7488     default:
7489       return false;
7490     }
7491   return false;
7492 }
7493 
7494 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
7495   return (Ty->isAnyComplexType() ||
7496           Ty->isVectorType() ||
7497           isAggregateTypeForABI(Ty));
7498 }
7499 
7500 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
7501   return (HasVector &&
7502           Ty->isVectorType() &&
7503           getContext().getTypeSize(Ty) <= 128);
7504 }
7505 
7506 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
7507   if (IsSoftFloatABI)
7508     return false;
7509 
7510   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7511     switch (BT->getKind()) {
7512     case BuiltinType::Float:
7513     case BuiltinType::Double:
7514       return true;
7515     default:
7516       return false;
7517     }
7518 
7519   return false;
7520 }
7521 
7522 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
7523   const RecordType *RT = Ty->getAs<RecordType>();
7524 
7525   if (RT && RT->isStructureOrClassType()) {
7526     const RecordDecl *RD = RT->getDecl();
7527     QualType Found;
7528 
7529     // If this is a C++ record, check the bases first.
7530     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7531       for (const auto &I : CXXRD->bases()) {
7532         QualType Base = I.getType();
7533 
7534         // Empty bases don't affect things either way.
7535         if (isEmptyRecord(getContext(), Base, true))
7536           continue;
7537 
7538         if (!Found.isNull())
7539           return Ty;
7540         Found = GetSingleElementType(Base);
7541       }
7542 
7543     // Check the fields.
7544     for (const auto *FD : RD->fields()) {
7545       // Unlike isSingleElementStruct(), empty structure and array fields
7546       // do count.  So do anonymous bitfields that aren't zero-sized.
7547 
7548       // Like isSingleElementStruct(), ignore C++20 empty data members.
7549       if (FD->hasAttr<NoUniqueAddressAttr>() &&
7550           isEmptyRecord(getContext(), FD->getType(), true))
7551         continue;
7552 
7553       // Unlike isSingleElementStruct(), arrays do not count.
7554       // Nested structures still do though.
7555       if (!Found.isNull())
7556         return Ty;
7557       Found = GetSingleElementType(FD->getType());
7558     }
7559 
7560     // Unlike isSingleElementStruct(), trailing padding is allowed.
7561     // An 8-byte aligned struct s { float f; } is passed as a double.
7562     if (!Found.isNull())
7563       return Found;
7564   }
7565 
7566   return Ty;
7567 }
7568 
7569 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7570                                   QualType Ty) const {
7571   // Assume that va_list type is correct; should be pointer to LLVM type:
7572   // struct {
7573   //   i64 __gpr;
7574   //   i64 __fpr;
7575   //   i8 *__overflow_arg_area;
7576   //   i8 *__reg_save_area;
7577   // };
7578 
7579   // Every non-vector argument occupies 8 bytes and is passed by preference
7580   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
7581   // always passed on the stack.
7582   Ty = getContext().getCanonicalType(Ty);
7583   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7584   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
7585   llvm::Type *DirectTy = ArgTy;
7586   ABIArgInfo AI = classifyArgumentType(Ty);
7587   bool IsIndirect = AI.isIndirect();
7588   bool InFPRs = false;
7589   bool IsVector = false;
7590   CharUnits UnpaddedSize;
7591   CharUnits DirectAlign;
7592   if (IsIndirect) {
7593     DirectTy = llvm::PointerType::getUnqual(DirectTy);
7594     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
7595   } else {
7596     if (AI.getCoerceToType())
7597       ArgTy = AI.getCoerceToType();
7598     InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy()));
7599     IsVector = ArgTy->isVectorTy();
7600     UnpaddedSize = TyInfo.Width;
7601     DirectAlign = TyInfo.Align;
7602   }
7603   CharUnits PaddedSize = CharUnits::fromQuantity(8);
7604   if (IsVector && UnpaddedSize > PaddedSize)
7605     PaddedSize = CharUnits::fromQuantity(16);
7606   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
7607 
7608   CharUnits Padding = (PaddedSize - UnpaddedSize);
7609 
7610   llvm::Type *IndexTy = CGF.Int64Ty;
7611   llvm::Value *PaddedSizeV =
7612     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
7613 
7614   if (IsVector) {
7615     // Work out the address of a vector argument on the stack.
7616     // Vector arguments are always passed in the high bits of a
7617     // single (8 byte) or double (16 byte) stack slot.
7618     Address OverflowArgAreaPtr =
7619         CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7620     Address OverflowArgArea =
7621         Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7622                 CGF.Int8Ty, TyInfo.Align);
7623     Address MemAddr =
7624         CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
7625 
7626     // Update overflow_arg_area_ptr pointer
7627     llvm::Value *NewOverflowArgArea = CGF.Builder.CreateGEP(
7628         OverflowArgArea.getElementType(), OverflowArgArea.getPointer(),
7629         PaddedSizeV, "overflow_arg_area");
7630     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7631 
7632     return MemAddr;
7633   }
7634 
7635   assert(PaddedSize.getQuantity() == 8);
7636 
7637   unsigned MaxRegs, RegCountField, RegSaveIndex;
7638   CharUnits RegPadding;
7639   if (InFPRs) {
7640     MaxRegs = 4; // Maximum of 4 FPR arguments
7641     RegCountField = 1; // __fpr
7642     RegSaveIndex = 16; // save offset for f0
7643     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
7644   } else {
7645     MaxRegs = 5; // Maximum of 5 GPR arguments
7646     RegCountField = 0; // __gpr
7647     RegSaveIndex = 2; // save offset for r2
7648     RegPadding = Padding; // values are passed in the low bits of a GPR
7649   }
7650 
7651   Address RegCountPtr =
7652       CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
7653   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
7654   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
7655   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
7656                                                  "fits_in_regs");
7657 
7658   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
7659   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
7660   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
7661   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
7662 
7663   // Emit code to load the value if it was passed in registers.
7664   CGF.EmitBlock(InRegBlock);
7665 
7666   // Work out the address of an argument register.
7667   llvm::Value *ScaledRegCount =
7668     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
7669   llvm::Value *RegBase =
7670     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
7671                                       + RegPadding.getQuantity());
7672   llvm::Value *RegOffset =
7673     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
7674   Address RegSaveAreaPtr =
7675       CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
7676   llvm::Value *RegSaveArea =
7677       CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
7678   Address RawRegAddr(
7679       CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, RegOffset, "raw_reg_addr"),
7680       CGF.Int8Ty, PaddedSize);
7681   Address RegAddr =
7682       CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
7683 
7684   // Update the register count
7685   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
7686   llvm::Value *NewRegCount =
7687     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
7688   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
7689   CGF.EmitBranch(ContBlock);
7690 
7691   // Emit code to load the value if it was passed in memory.
7692   CGF.EmitBlock(InMemBlock);
7693 
7694   // Work out the address of a stack argument.
7695   Address OverflowArgAreaPtr =
7696       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7697   Address OverflowArgArea =
7698       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7699               CGF.Int8Ty, PaddedSize);
7700   Address RawMemAddr =
7701       CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
7702   Address MemAddr =
7703     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
7704 
7705   // Update overflow_arg_area_ptr pointer
7706   llvm::Value *NewOverflowArgArea =
7707     CGF.Builder.CreateGEP(OverflowArgArea.getElementType(),
7708                           OverflowArgArea.getPointer(), PaddedSizeV,
7709                           "overflow_arg_area");
7710   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7711   CGF.EmitBranch(ContBlock);
7712 
7713   // Return the appropriate result.
7714   CGF.EmitBlock(ContBlock);
7715   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
7716                                  "va_arg.addr");
7717 
7718   if (IsIndirect)
7719     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), ArgTy,
7720                       TyInfo.Align);
7721 
7722   return ResAddr;
7723 }
7724 
7725 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
7726   if (RetTy->isVoidType())
7727     return ABIArgInfo::getIgnore();
7728   if (isVectorArgumentType(RetTy))
7729     return ABIArgInfo::getDirect();
7730   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
7731     return getNaturalAlignIndirect(RetTy);
7732   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
7733                                                : ABIArgInfo::getDirect());
7734 }
7735 
7736 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
7737   // Handle the generic C++ ABI.
7738   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7739     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7740 
7741   // Integers and enums are extended to full register width.
7742   if (isPromotableIntegerTypeForABI(Ty))
7743     return ABIArgInfo::getExtend(Ty);
7744 
7745   // Handle vector types and vector-like structure types.  Note that
7746   // as opposed to float-like structure types, we do not allow any
7747   // padding for vector-like structures, so verify the sizes match.
7748   uint64_t Size = getContext().getTypeSize(Ty);
7749   QualType SingleElementTy = GetSingleElementType(Ty);
7750   if (isVectorArgumentType(SingleElementTy) &&
7751       getContext().getTypeSize(SingleElementTy) == Size)
7752     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
7753 
7754   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
7755   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
7756     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7757 
7758   // Handle small structures.
7759   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7760     // Structures with flexible arrays have variable length, so really
7761     // fail the size test above.
7762     const RecordDecl *RD = RT->getDecl();
7763     if (RD->hasFlexibleArrayMember())
7764       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7765 
7766     // The structure is passed as an unextended integer, a float, or a double.
7767     llvm::Type *PassTy;
7768     if (isFPArgumentType(SingleElementTy)) {
7769       assert(Size == 32 || Size == 64);
7770       if (Size == 32)
7771         PassTy = llvm::Type::getFloatTy(getVMContext());
7772       else
7773         PassTy = llvm::Type::getDoubleTy(getVMContext());
7774     } else
7775       PassTy = llvm::IntegerType::get(getVMContext(), Size);
7776     return ABIArgInfo::getDirect(PassTy);
7777   }
7778 
7779   // Non-structure compounds are passed indirectly.
7780   if (isCompoundType(Ty))
7781     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7782 
7783   return ABIArgInfo::getDirect(nullptr);
7784 }
7785 
7786 //===----------------------------------------------------------------------===//
7787 // MSP430 ABI Implementation
7788 //===----------------------------------------------------------------------===//
7789 
7790 namespace {
7791 
7792 class MSP430ABIInfo : public DefaultABIInfo {
7793   static ABIArgInfo complexArgInfo() {
7794     ABIArgInfo Info = ABIArgInfo::getDirect();
7795     Info.setCanBeFlattened(false);
7796     return Info;
7797   }
7798 
7799 public:
7800   MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7801 
7802   ABIArgInfo classifyReturnType(QualType RetTy) const {
7803     if (RetTy->isAnyComplexType())
7804       return complexArgInfo();
7805 
7806     return DefaultABIInfo::classifyReturnType(RetTy);
7807   }
7808 
7809   ABIArgInfo classifyArgumentType(QualType RetTy) const {
7810     if (RetTy->isAnyComplexType())
7811       return complexArgInfo();
7812 
7813     return DefaultABIInfo::classifyArgumentType(RetTy);
7814   }
7815 
7816   // Just copy the original implementations because
7817   // DefaultABIInfo::classify{Return,Argument}Type() are not virtual
7818   void computeInfo(CGFunctionInfo &FI) const override {
7819     if (!getCXXABI().classifyReturnType(FI))
7820       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7821     for (auto &I : FI.arguments())
7822       I.info = classifyArgumentType(I.type);
7823   }
7824 
7825   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7826                     QualType Ty) const override {
7827     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
7828   }
7829 };
7830 
7831 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
7832 public:
7833   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
7834       : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {}
7835   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7836                            CodeGen::CodeGenModule &M) const override;
7837 };
7838 
7839 }
7840 
7841 void MSP430TargetCodeGenInfo::setTargetAttributes(
7842     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7843   if (GV->isDeclaration())
7844     return;
7845   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
7846     const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
7847     if (!InterruptAttr)
7848       return;
7849 
7850     // Handle 'interrupt' attribute:
7851     llvm::Function *F = cast<llvm::Function>(GV);
7852 
7853     // Step 1: Set ISR calling convention.
7854     F->setCallingConv(llvm::CallingConv::MSP430_INTR);
7855 
7856     // Step 2: Add attributes goodness.
7857     F->addFnAttr(llvm::Attribute::NoInline);
7858     F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
7859   }
7860 }
7861 
7862 //===----------------------------------------------------------------------===//
7863 // MIPS ABI Implementation.  This works for both little-endian and
7864 // big-endian variants.
7865 //===----------------------------------------------------------------------===//
7866 
7867 namespace {
7868 class MipsABIInfo : public ABIInfo {
7869   bool IsO32;
7870   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
7871   void CoerceToIntArgs(uint64_t TySize,
7872                        SmallVectorImpl<llvm::Type *> &ArgList) const;
7873   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
7874   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
7875   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
7876 public:
7877   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
7878     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
7879     StackAlignInBytes(IsO32 ? 8 : 16) {}
7880 
7881   ABIArgInfo classifyReturnType(QualType RetTy) const;
7882   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
7883   void computeInfo(CGFunctionInfo &FI) const override;
7884   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7885                     QualType Ty) const override;
7886   ABIArgInfo extendType(QualType Ty) const;
7887 };
7888 
7889 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
7890   unsigned SizeOfUnwindException;
7891 public:
7892   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
7893       : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)),
7894         SizeOfUnwindException(IsO32 ? 24 : 32) {}
7895 
7896   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
7897     return 29;
7898   }
7899 
7900   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7901                            CodeGen::CodeGenModule &CGM) const override {
7902     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7903     if (!FD) return;
7904     llvm::Function *Fn = cast<llvm::Function>(GV);
7905 
7906     if (FD->hasAttr<MipsLongCallAttr>())
7907       Fn->addFnAttr("long-call");
7908     else if (FD->hasAttr<MipsShortCallAttr>())
7909       Fn->addFnAttr("short-call");
7910 
7911     // Other attributes do not have a meaning for declarations.
7912     if (GV->isDeclaration())
7913       return;
7914 
7915     if (FD->hasAttr<Mips16Attr>()) {
7916       Fn->addFnAttr("mips16");
7917     }
7918     else if (FD->hasAttr<NoMips16Attr>()) {
7919       Fn->addFnAttr("nomips16");
7920     }
7921 
7922     if (FD->hasAttr<MicroMipsAttr>())
7923       Fn->addFnAttr("micromips");
7924     else if (FD->hasAttr<NoMicroMipsAttr>())
7925       Fn->addFnAttr("nomicromips");
7926 
7927     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
7928     if (!Attr)
7929       return;
7930 
7931     const char *Kind;
7932     switch (Attr->getInterrupt()) {
7933     case MipsInterruptAttr::eic:     Kind = "eic"; break;
7934     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
7935     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
7936     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
7937     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
7938     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
7939     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
7940     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
7941     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
7942     }
7943 
7944     Fn->addFnAttr("interrupt", Kind);
7945 
7946   }
7947 
7948   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7949                                llvm::Value *Address) const override;
7950 
7951   unsigned getSizeOfUnwindException() const override {
7952     return SizeOfUnwindException;
7953   }
7954 };
7955 }
7956 
7957 void MipsABIInfo::CoerceToIntArgs(
7958     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
7959   llvm::IntegerType *IntTy =
7960     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
7961 
7962   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
7963   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
7964     ArgList.push_back(IntTy);
7965 
7966   // If necessary, add one more integer type to ArgList.
7967   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
7968 
7969   if (R)
7970     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
7971 }
7972 
7973 // In N32/64, an aligned double precision floating point field is passed in
7974 // a register.
7975 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
7976   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
7977 
7978   if (IsO32) {
7979     CoerceToIntArgs(TySize, ArgList);
7980     return llvm::StructType::get(getVMContext(), ArgList);
7981   }
7982 
7983   if (Ty->isComplexType())
7984     return CGT.ConvertType(Ty);
7985 
7986   const RecordType *RT = Ty->getAs<RecordType>();
7987 
7988   // Unions/vectors are passed in integer registers.
7989   if (!RT || !RT->isStructureOrClassType()) {
7990     CoerceToIntArgs(TySize, ArgList);
7991     return llvm::StructType::get(getVMContext(), ArgList);
7992   }
7993 
7994   const RecordDecl *RD = RT->getDecl();
7995   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7996   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
7997 
7998   uint64_t LastOffset = 0;
7999   unsigned idx = 0;
8000   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
8001 
8002   // Iterate over fields in the struct/class and check if there are any aligned
8003   // double fields.
8004   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
8005        i != e; ++i, ++idx) {
8006     const QualType Ty = i->getType();
8007     const BuiltinType *BT = Ty->getAs<BuiltinType>();
8008 
8009     if (!BT || BT->getKind() != BuiltinType::Double)
8010       continue;
8011 
8012     uint64_t Offset = Layout.getFieldOffset(idx);
8013     if (Offset % 64) // Ignore doubles that are not aligned.
8014       continue;
8015 
8016     // Add ((Offset - LastOffset) / 64) args of type i64.
8017     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
8018       ArgList.push_back(I64);
8019 
8020     // Add double type.
8021     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
8022     LastOffset = Offset + 64;
8023   }
8024 
8025   CoerceToIntArgs(TySize - LastOffset, IntArgList);
8026   ArgList.append(IntArgList.begin(), IntArgList.end());
8027 
8028   return llvm::StructType::get(getVMContext(), ArgList);
8029 }
8030 
8031 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
8032                                         uint64_t Offset) const {
8033   if (OrigOffset + MinABIStackAlignInBytes > Offset)
8034     return nullptr;
8035 
8036   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
8037 }
8038 
8039 ABIArgInfo
8040 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
8041   Ty = useFirstFieldIfTransparentUnion(Ty);
8042 
8043   uint64_t OrigOffset = Offset;
8044   uint64_t TySize = getContext().getTypeSize(Ty);
8045   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
8046 
8047   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
8048                    (uint64_t)StackAlignInBytes);
8049   unsigned CurrOffset = llvm::alignTo(Offset, Align);
8050   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
8051 
8052   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
8053     // Ignore empty aggregates.
8054     if (TySize == 0)
8055       return ABIArgInfo::getIgnore();
8056 
8057     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
8058       Offset = OrigOffset + MinABIStackAlignInBytes;
8059       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8060     }
8061 
8062     // If we have reached here, aggregates are passed directly by coercing to
8063     // another structure type. Padding is inserted if the offset of the
8064     // aggregate is unaligned.
8065     ABIArgInfo ArgInfo =
8066         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
8067                               getPaddingType(OrigOffset, CurrOffset));
8068     ArgInfo.setInReg(true);
8069     return ArgInfo;
8070   }
8071 
8072   // Treat an enum type as its underlying type.
8073   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8074     Ty = EnumTy->getDecl()->getIntegerType();
8075 
8076   // Make sure we pass indirectly things that are too large.
8077   if (const auto *EIT = Ty->getAs<BitIntType>())
8078     if (EIT->getNumBits() > 128 ||
8079         (EIT->getNumBits() > 64 &&
8080          !getContext().getTargetInfo().hasInt128Type()))
8081       return getNaturalAlignIndirect(Ty);
8082 
8083   // All integral types are promoted to the GPR width.
8084   if (Ty->isIntegralOrEnumerationType())
8085     return extendType(Ty);
8086 
8087   return ABIArgInfo::getDirect(
8088       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
8089 }
8090 
8091 llvm::Type*
8092 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
8093   const RecordType *RT = RetTy->getAs<RecordType>();
8094   SmallVector<llvm::Type*, 8> RTList;
8095 
8096   if (RT && RT->isStructureOrClassType()) {
8097     const RecordDecl *RD = RT->getDecl();
8098     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
8099     unsigned FieldCnt = Layout.getFieldCount();
8100 
8101     // N32/64 returns struct/classes in floating point registers if the
8102     // following conditions are met:
8103     // 1. The size of the struct/class is no larger than 128-bit.
8104     // 2. The struct/class has one or two fields all of which are floating
8105     //    point types.
8106     // 3. The offset of the first field is zero (this follows what gcc does).
8107     //
8108     // Any other composite results are returned in integer registers.
8109     //
8110     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
8111       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
8112       for (; b != e; ++b) {
8113         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
8114 
8115         if (!BT || !BT->isFloatingPoint())
8116           break;
8117 
8118         RTList.push_back(CGT.ConvertType(b->getType()));
8119       }
8120 
8121       if (b == e)
8122         return llvm::StructType::get(getVMContext(), RTList,
8123                                      RD->hasAttr<PackedAttr>());
8124 
8125       RTList.clear();
8126     }
8127   }
8128 
8129   CoerceToIntArgs(Size, RTList);
8130   return llvm::StructType::get(getVMContext(), RTList);
8131 }
8132 
8133 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
8134   uint64_t Size = getContext().getTypeSize(RetTy);
8135 
8136   if (RetTy->isVoidType())
8137     return ABIArgInfo::getIgnore();
8138 
8139   // O32 doesn't treat zero-sized structs differently from other structs.
8140   // However, N32/N64 ignores zero sized return values.
8141   if (!IsO32 && Size == 0)
8142     return ABIArgInfo::getIgnore();
8143 
8144   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
8145     if (Size <= 128) {
8146       if (RetTy->isAnyComplexType())
8147         return ABIArgInfo::getDirect();
8148 
8149       // O32 returns integer vectors in registers and N32/N64 returns all small
8150       // aggregates in registers.
8151       if (!IsO32 ||
8152           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
8153         ABIArgInfo ArgInfo =
8154             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
8155         ArgInfo.setInReg(true);
8156         return ArgInfo;
8157       }
8158     }
8159 
8160     return getNaturalAlignIndirect(RetTy);
8161   }
8162 
8163   // Treat an enum type as its underlying type.
8164   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
8165     RetTy = EnumTy->getDecl()->getIntegerType();
8166 
8167   // Make sure we pass indirectly things that are too large.
8168   if (const auto *EIT = RetTy->getAs<BitIntType>())
8169     if (EIT->getNumBits() > 128 ||
8170         (EIT->getNumBits() > 64 &&
8171          !getContext().getTargetInfo().hasInt128Type()))
8172       return getNaturalAlignIndirect(RetTy);
8173 
8174   if (isPromotableIntegerTypeForABI(RetTy))
8175     return ABIArgInfo::getExtend(RetTy);
8176 
8177   if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
8178       RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
8179     return ABIArgInfo::getSignExtend(RetTy);
8180 
8181   return ABIArgInfo::getDirect();
8182 }
8183 
8184 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
8185   ABIArgInfo &RetInfo = FI.getReturnInfo();
8186   if (!getCXXABI().classifyReturnType(FI))
8187     RetInfo = classifyReturnType(FI.getReturnType());
8188 
8189   // Check if a pointer to an aggregate is passed as a hidden argument.
8190   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
8191 
8192   for (auto &I : FI.arguments())
8193     I.info = classifyArgumentType(I.type, Offset);
8194 }
8195 
8196 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8197                                QualType OrigTy) const {
8198   QualType Ty = OrigTy;
8199 
8200   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
8201   // Pointers are also promoted in the same way but this only matters for N32.
8202   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
8203   unsigned PtrWidth = getTarget().getPointerWidth(0);
8204   bool DidPromote = false;
8205   if ((Ty->isIntegerType() &&
8206           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
8207       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
8208     DidPromote = true;
8209     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
8210                                             Ty->isSignedIntegerType());
8211   }
8212 
8213   auto TyInfo = getContext().getTypeInfoInChars(Ty);
8214 
8215   // The alignment of things in the argument area is never larger than
8216   // StackAlignInBytes.
8217   TyInfo.Align =
8218     std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes));
8219 
8220   // MinABIStackAlignInBytes is the size of argument slots on the stack.
8221   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
8222 
8223   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
8224                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
8225 
8226 
8227   // If there was a promotion, "unpromote" into a temporary.
8228   // TODO: can we just use a pointer into a subset of the original slot?
8229   if (DidPromote) {
8230     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
8231     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
8232 
8233     // Truncate down to the right width.
8234     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
8235                                                  : CGF.IntPtrTy);
8236     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
8237     if (OrigTy->isPointerType())
8238       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
8239 
8240     CGF.Builder.CreateStore(V, Temp);
8241     Addr = Temp;
8242   }
8243 
8244   return Addr;
8245 }
8246 
8247 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
8248   int TySize = getContext().getTypeSize(Ty);
8249 
8250   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
8251   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
8252     return ABIArgInfo::getSignExtend(Ty);
8253 
8254   return ABIArgInfo::getExtend(Ty);
8255 }
8256 
8257 bool
8258 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8259                                                llvm::Value *Address) const {
8260   // This information comes from gcc's implementation, which seems to
8261   // as canonical as it gets.
8262 
8263   // Everything on MIPS is 4 bytes.  Double-precision FP registers
8264   // are aliased to pairs of single-precision FP registers.
8265   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
8266 
8267   // 0-31 are the general purpose registers, $0 - $31.
8268   // 32-63 are the floating-point registers, $f0 - $f31.
8269   // 64 and 65 are the multiply/divide registers, $hi and $lo.
8270   // 66 is the (notional, I think) register for signal-handler return.
8271   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
8272 
8273   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
8274   // They are one bit wide and ignored here.
8275 
8276   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
8277   // (coprocessor 1 is the FP unit)
8278   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
8279   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
8280   // 176-181 are the DSP accumulator registers.
8281   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
8282   return false;
8283 }
8284 
8285 //===----------------------------------------------------------------------===//
8286 // M68k ABI Implementation
8287 //===----------------------------------------------------------------------===//
8288 
8289 namespace {
8290 
8291 class M68kTargetCodeGenInfo : public TargetCodeGenInfo {
8292 public:
8293   M68kTargetCodeGenInfo(CodeGenTypes &CGT)
8294       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
8295   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8296                            CodeGen::CodeGenModule &M) const override;
8297 };
8298 
8299 } // namespace
8300 
8301 void M68kTargetCodeGenInfo::setTargetAttributes(
8302     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8303   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
8304     if (const auto *attr = FD->getAttr<M68kInterruptAttr>()) {
8305       // Handle 'interrupt' attribute:
8306       llvm::Function *F = cast<llvm::Function>(GV);
8307 
8308       // Step 1: Set ISR calling convention.
8309       F->setCallingConv(llvm::CallingConv::M68k_INTR);
8310 
8311       // Step 2: Add attributes goodness.
8312       F->addFnAttr(llvm::Attribute::NoInline);
8313 
8314       // Step 3: Emit ISR vector alias.
8315       unsigned Num = attr->getNumber() / 2;
8316       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
8317                                 "__isr_" + Twine(Num), F);
8318     }
8319   }
8320 }
8321 
8322 //===----------------------------------------------------------------------===//
8323 // AVR ABI Implementation. Documented at
8324 // https://gcc.gnu.org/wiki/avr-gcc#Calling_Convention
8325 // https://gcc.gnu.org/wiki/avr-gcc#Reduced_Tiny
8326 //===----------------------------------------------------------------------===//
8327 
8328 namespace {
8329 class AVRABIInfo : public DefaultABIInfo {
8330 private:
8331   // The total amount of registers can be used to pass parameters. It is 18 on
8332   // AVR, or 6 on AVRTiny.
8333   const unsigned ParamRegs;
8334   // The total amount of registers can be used to pass return value. It is 8 on
8335   // AVR, or 4 on AVRTiny.
8336   const unsigned RetRegs;
8337 
8338 public:
8339   AVRABIInfo(CodeGenTypes &CGT, unsigned NPR, unsigned NRR)
8340       : DefaultABIInfo(CGT), ParamRegs(NPR), RetRegs(NRR) {}
8341 
8342   ABIArgInfo classifyReturnType(QualType Ty, bool &LargeRet) const {
8343     if (isAggregateTypeForABI(Ty)) {
8344       // On AVR, a return struct with size less than or equals to 8 bytes is
8345       // returned directly via registers R18-R25. On AVRTiny, a return struct
8346       // with size less than or equals to 4 bytes is returned directly via
8347       // registers R22-R25.
8348       if (getContext().getTypeSize(Ty) <= RetRegs * 8)
8349         return ABIArgInfo::getDirect();
8350       // A return struct with larger size is returned via a stack
8351       // slot, along with a pointer to it as the function's implicit argument.
8352       LargeRet = true;
8353       return getNaturalAlignIndirect(Ty);
8354     }
8355     // Otherwise we follow the default way which is compatible.
8356     return DefaultABIInfo::classifyReturnType(Ty);
8357   }
8358 
8359   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegs) const {
8360     unsigned TySize = getContext().getTypeSize(Ty);
8361 
8362     // An int8 type argument always costs two registers like an int16.
8363     if (TySize == 8 && NumRegs >= 2) {
8364       NumRegs -= 2;
8365       return ABIArgInfo::getExtend(Ty);
8366     }
8367 
8368     // If the argument size is an odd number of bytes, round up the size
8369     // to the next even number.
8370     TySize = llvm::alignTo(TySize, 16);
8371 
8372     // Any type including an array/struct type can be passed in rgisters,
8373     // if there are enough registers left.
8374     if (TySize <= NumRegs * 8) {
8375       NumRegs -= TySize / 8;
8376       return ABIArgInfo::getDirect();
8377     }
8378 
8379     // An argument is passed either completely in registers or completely in
8380     // memory. Since there are not enough registers left, current argument
8381     // and all other unprocessed arguments should be passed in memory.
8382     // However we still need to return `ABIArgInfo::getDirect()` other than
8383     // `ABIInfo::getNaturalAlignIndirect(Ty)`, otherwise an extra stack slot
8384     // will be allocated, so the stack frame layout will be incompatible with
8385     // avr-gcc.
8386     NumRegs = 0;
8387     return ABIArgInfo::getDirect();
8388   }
8389 
8390   void computeInfo(CGFunctionInfo &FI) const override {
8391     // Decide the return type.
8392     bool LargeRet = false;
8393     if (!getCXXABI().classifyReturnType(FI))
8394       FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), LargeRet);
8395 
8396     // Decide each argument type. The total number of registers can be used for
8397     // arguments depends on several factors:
8398     // 1. Arguments of varargs functions are passed on the stack. This applies
8399     //    even to the named arguments. So no register can be used.
8400     // 2. Total 18 registers can be used on avr and 6 ones on avrtiny.
8401     // 3. If the return type is a struct with too large size, two registers
8402     //    (out of 18/6) will be cost as an implicit pointer argument.
8403     unsigned NumRegs = ParamRegs;
8404     if (FI.isVariadic())
8405       NumRegs = 0;
8406     else if (LargeRet)
8407       NumRegs -= 2;
8408     for (auto &I : FI.arguments())
8409       I.info = classifyArgumentType(I.type, NumRegs);
8410   }
8411 };
8412 
8413 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
8414 public:
8415   AVRTargetCodeGenInfo(CodeGenTypes &CGT, unsigned NPR, unsigned NRR)
8416       : TargetCodeGenInfo(std::make_unique<AVRABIInfo>(CGT, NPR, NRR)) {}
8417 
8418   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
8419                                   const VarDecl *D) const override {
8420     // Check if global/static variable is defined in address space
8421     // 1~6 (__flash, __flash1, __flash2, __flash3, __flash4, __flash5)
8422     // but not constant.
8423     if (D) {
8424       LangAS AS = D->getType().getAddressSpace();
8425       if (isTargetAddressSpace(AS) && 1 <= toTargetAddressSpace(AS) &&
8426           toTargetAddressSpace(AS) <= 6 && !D->getType().isConstQualified())
8427         CGM.getDiags().Report(D->getLocation(),
8428                               diag::err_verify_nonconst_addrspace)
8429             << "__flash*";
8430     }
8431     return TargetCodeGenInfo::getGlobalVarAddressSpace(CGM, D);
8432   }
8433 
8434   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8435                            CodeGen::CodeGenModule &CGM) const override {
8436     if (GV->isDeclaration())
8437       return;
8438     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
8439     if (!FD) return;
8440     auto *Fn = cast<llvm::Function>(GV);
8441 
8442     if (FD->getAttr<AVRInterruptAttr>())
8443       Fn->addFnAttr("interrupt");
8444 
8445     if (FD->getAttr<AVRSignalAttr>())
8446       Fn->addFnAttr("signal");
8447   }
8448 };
8449 }
8450 
8451 //===----------------------------------------------------------------------===//
8452 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
8453 // Currently subclassed only to implement custom OpenCL C function attribute
8454 // handling.
8455 //===----------------------------------------------------------------------===//
8456 
8457 namespace {
8458 
8459 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
8460 public:
8461   TCETargetCodeGenInfo(CodeGenTypes &CGT)
8462     : DefaultTargetCodeGenInfo(CGT) {}
8463 
8464   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8465                            CodeGen::CodeGenModule &M) const override;
8466 };
8467 
8468 void TCETargetCodeGenInfo::setTargetAttributes(
8469     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8470   if (GV->isDeclaration())
8471     return;
8472   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8473   if (!FD) return;
8474 
8475   llvm::Function *F = cast<llvm::Function>(GV);
8476 
8477   if (M.getLangOpts().OpenCL) {
8478     if (FD->hasAttr<OpenCLKernelAttr>()) {
8479       // OpenCL C Kernel functions are not subject to inlining
8480       F->addFnAttr(llvm::Attribute::NoInline);
8481       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
8482       if (Attr) {
8483         // Convert the reqd_work_group_size() attributes to metadata.
8484         llvm::LLVMContext &Context = F->getContext();
8485         llvm::NamedMDNode *OpenCLMetadata =
8486             M.getModule().getOrInsertNamedMetadata(
8487                 "opencl.kernel_wg_size_info");
8488 
8489         SmallVector<llvm::Metadata *, 5> Operands;
8490         Operands.push_back(llvm::ConstantAsMetadata::get(F));
8491 
8492         Operands.push_back(
8493             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8494                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
8495         Operands.push_back(
8496             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8497                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
8498         Operands.push_back(
8499             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8500                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
8501 
8502         // Add a boolean constant operand for "required" (true) or "hint"
8503         // (false) for implementing the work_group_size_hint attr later.
8504         // Currently always true as the hint is not yet implemented.
8505         Operands.push_back(
8506             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
8507         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
8508       }
8509     }
8510   }
8511 }
8512 
8513 }
8514 
8515 //===----------------------------------------------------------------------===//
8516 // Hexagon ABI Implementation
8517 //===----------------------------------------------------------------------===//
8518 
8519 namespace {
8520 
8521 class HexagonABIInfo : public DefaultABIInfo {
8522 public:
8523   HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8524 
8525 private:
8526   ABIArgInfo classifyReturnType(QualType RetTy) const;
8527   ABIArgInfo classifyArgumentType(QualType RetTy) const;
8528   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const;
8529 
8530   void computeInfo(CGFunctionInfo &FI) const override;
8531 
8532   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8533                     QualType Ty) const override;
8534   Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr,
8535                               QualType Ty) const;
8536   Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr,
8537                               QualType Ty) const;
8538   Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr,
8539                                    QualType Ty) const;
8540 };
8541 
8542 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
8543 public:
8544   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
8545       : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {}
8546 
8547   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8548     return 29;
8549   }
8550 
8551   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8552                            CodeGen::CodeGenModule &GCM) const override {
8553     if (GV->isDeclaration())
8554       return;
8555     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8556     if (!FD)
8557       return;
8558   }
8559 };
8560 
8561 } // namespace
8562 
8563 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
8564   unsigned RegsLeft = 6;
8565   if (!getCXXABI().classifyReturnType(FI))
8566     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8567   for (auto &I : FI.arguments())
8568     I.info = classifyArgumentType(I.type, &RegsLeft);
8569 }
8570 
8571 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) {
8572   assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits"
8573                        " through registers");
8574 
8575   if (*RegsLeft == 0)
8576     return false;
8577 
8578   if (Size <= 32) {
8579     (*RegsLeft)--;
8580     return true;
8581   }
8582 
8583   if (2 <= (*RegsLeft & (~1U))) {
8584     *RegsLeft = (*RegsLeft & (~1U)) - 2;
8585     return true;
8586   }
8587 
8588   // Next available register was r5 but candidate was greater than 32-bits so it
8589   // has to go on the stack. However we still consume r5
8590   if (*RegsLeft == 1)
8591     *RegsLeft = 0;
8592 
8593   return false;
8594 }
8595 
8596 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty,
8597                                                 unsigned *RegsLeft) const {
8598   if (!isAggregateTypeForABI(Ty)) {
8599     // Treat an enum type as its underlying type.
8600     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8601       Ty = EnumTy->getDecl()->getIntegerType();
8602 
8603     uint64_t Size = getContext().getTypeSize(Ty);
8604     if (Size <= 64)
8605       HexagonAdjustRegsLeft(Size, RegsLeft);
8606 
8607     if (Size > 64 && Ty->isBitIntType())
8608       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8609 
8610     return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
8611                                              : ABIArgInfo::getDirect();
8612   }
8613 
8614   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8615     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8616 
8617   // Ignore empty records.
8618   if (isEmptyRecord(getContext(), Ty, true))
8619     return ABIArgInfo::getIgnore();
8620 
8621   uint64_t Size = getContext().getTypeSize(Ty);
8622   unsigned Align = getContext().getTypeAlign(Ty);
8623 
8624   if (Size > 64)
8625     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8626 
8627   if (HexagonAdjustRegsLeft(Size, RegsLeft))
8628     Align = Size <= 32 ? 32 : 64;
8629   if (Size <= Align) {
8630     // Pass in the smallest viable integer type.
8631     if (!llvm::isPowerOf2_64(Size))
8632       Size = llvm::NextPowerOf2(Size);
8633     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8634   }
8635   return DefaultABIInfo::classifyArgumentType(Ty);
8636 }
8637 
8638 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
8639   if (RetTy->isVoidType())
8640     return ABIArgInfo::getIgnore();
8641 
8642   const TargetInfo &T = CGT.getTarget();
8643   uint64_t Size = getContext().getTypeSize(RetTy);
8644 
8645   if (RetTy->getAs<VectorType>()) {
8646     // HVX vectors are returned in vector registers or register pairs.
8647     if (T.hasFeature("hvx")) {
8648       assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b"));
8649       uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8;
8650       if (Size == VecSize || Size == 2*VecSize)
8651         return ABIArgInfo::getDirectInReg();
8652     }
8653     // Large vector types should be returned via memory.
8654     if (Size > 64)
8655       return getNaturalAlignIndirect(RetTy);
8656   }
8657 
8658   if (!isAggregateTypeForABI(RetTy)) {
8659     // Treat an enum type as its underlying type.
8660     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
8661       RetTy = EnumTy->getDecl()->getIntegerType();
8662 
8663     if (Size > 64 && RetTy->isBitIntType())
8664       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
8665 
8666     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
8667                                                 : ABIArgInfo::getDirect();
8668   }
8669 
8670   if (isEmptyRecord(getContext(), RetTy, true))
8671     return ABIArgInfo::getIgnore();
8672 
8673   // Aggregates <= 8 bytes are returned in registers, other aggregates
8674   // are returned indirectly.
8675   if (Size <= 64) {
8676     // Return in the smallest viable integer type.
8677     if (!llvm::isPowerOf2_64(Size))
8678       Size = llvm::NextPowerOf2(Size);
8679     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8680   }
8681   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
8682 }
8683 
8684 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF,
8685                                             Address VAListAddr,
8686                                             QualType Ty) const {
8687   // Load the overflow area pointer.
8688   Address __overflow_area_pointer_p =
8689       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8690   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8691       __overflow_area_pointer_p, "__overflow_area_pointer");
8692 
8693   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
8694   if (Align > 4) {
8695     // Alignment should be a power of 2.
8696     assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!");
8697 
8698     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
8699     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
8700 
8701     // Add offset to the current pointer to access the argument.
8702     __overflow_area_pointer =
8703         CGF.Builder.CreateGEP(CGF.Int8Ty, __overflow_area_pointer, Offset);
8704     llvm::Value *AsInt =
8705         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8706 
8707     // Create a mask which should be "AND"ed
8708     // with (overflow_arg_area + align - 1)
8709     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align);
8710     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8711         CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(),
8712         "__overflow_area_pointer.align");
8713   }
8714 
8715   // Get the type of the argument from memory and bitcast
8716   // overflow area pointer to the argument type.
8717   llvm::Type *PTy = CGF.ConvertTypeForMem(Ty);
8718   Address AddrTyped = CGF.Builder.CreateElementBitCast(
8719       Address(__overflow_area_pointer, CGF.Int8Ty,
8720               CharUnits::fromQuantity(Align)),
8721       PTy);
8722 
8723   // Round up to the minimum stack alignment for varargs which is 4 bytes.
8724   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8725 
8726   __overflow_area_pointer = CGF.Builder.CreateGEP(
8727       CGF.Int8Ty, __overflow_area_pointer,
8728       llvm::ConstantInt::get(CGF.Int32Ty, Offset),
8729       "__overflow_area_pointer.next");
8730   CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p);
8731 
8732   return AddrTyped;
8733 }
8734 
8735 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF,
8736                                             Address VAListAddr,
8737                                             QualType Ty) const {
8738   // FIXME: Need to handle alignment
8739   llvm::Type *BP = CGF.Int8PtrTy;
8740   CGBuilderTy &Builder = CGF.Builder;
8741   Address VAListAddrAsBPP = Builder.CreateElementBitCast(VAListAddr, BP, "ap");
8742   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
8743   // Handle address alignment for type alignment > 32 bits
8744   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
8745   if (TyAlign > 4) {
8746     assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!");
8747     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
8748     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
8749     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
8750     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
8751   }
8752   Address AddrTyped = Builder.CreateElementBitCast(
8753       Address(Addr, CGF.Int8Ty, CharUnits::fromQuantity(TyAlign)),
8754       CGF.ConvertType(Ty));
8755 
8756   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8757   llvm::Value *NextAddr = Builder.CreateGEP(
8758       CGF.Int8Ty, Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
8759   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
8760 
8761   return AddrTyped;
8762 }
8763 
8764 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF,
8765                                                  Address VAListAddr,
8766                                                  QualType Ty) const {
8767   int ArgSize = CGF.getContext().getTypeSize(Ty) / 8;
8768 
8769   if (ArgSize > 8)
8770     return EmitVAArgFromMemory(CGF, VAListAddr, Ty);
8771 
8772   // Here we have check if the argument is in register area or
8773   // in overflow area.
8774   // If the saved register area pointer + argsize rounded up to alignment >
8775   // saved register area end pointer, argument is in overflow area.
8776   unsigned RegsLeft = 6;
8777   Ty = CGF.getContext().getCanonicalType(Ty);
8778   (void)classifyArgumentType(Ty, &RegsLeft);
8779 
8780   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
8781   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
8782   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
8783   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
8784 
8785   // Get rounded size of the argument.GCC does not allow vararg of
8786   // size < 4 bytes. We follow the same logic here.
8787   ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8788   int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8789 
8790   // Argument may be in saved register area
8791   CGF.EmitBlock(MaybeRegBlock);
8792 
8793   // Load the current saved register area pointer.
8794   Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP(
8795       VAListAddr, 0, "__current_saved_reg_area_pointer_p");
8796   llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad(
8797       __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer");
8798 
8799   // Load the saved register area end pointer.
8800   Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP(
8801       VAListAddr, 1, "__saved_reg_area_end_pointer_p");
8802   llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad(
8803       __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer");
8804 
8805   // If the size of argument is > 4 bytes, check if the stack
8806   // location is aligned to 8 bytes
8807   if (ArgAlign > 4) {
8808 
8809     llvm::Value *__current_saved_reg_area_pointer_int =
8810         CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer,
8811                                    CGF.Int32Ty);
8812 
8813     __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd(
8814         __current_saved_reg_area_pointer_int,
8815         llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)),
8816         "align_current_saved_reg_area_pointer");
8817 
8818     __current_saved_reg_area_pointer_int =
8819         CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int,
8820                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8821                               "align_current_saved_reg_area_pointer");
8822 
8823     __current_saved_reg_area_pointer =
8824         CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int,
8825                                    __current_saved_reg_area_pointer->getType(),
8826                                    "align_current_saved_reg_area_pointer");
8827   }
8828 
8829   llvm::Value *__new_saved_reg_area_pointer =
8830       CGF.Builder.CreateGEP(CGF.Int8Ty, __current_saved_reg_area_pointer,
8831                             llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8832                             "__new_saved_reg_area_pointer");
8833 
8834   llvm::Value *UsingStack = nullptr;
8835   UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer,
8836                                          __saved_reg_area_end_pointer);
8837 
8838   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock);
8839 
8840   // Argument in saved register area
8841   // Implement the block where argument is in register saved area
8842   CGF.EmitBlock(InRegBlock);
8843 
8844   llvm::Type *PTy = CGF.ConvertType(Ty);
8845   llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast(
8846       __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy));
8847 
8848   CGF.Builder.CreateStore(__new_saved_reg_area_pointer,
8849                           __current_saved_reg_area_pointer_p);
8850 
8851   CGF.EmitBranch(ContBlock);
8852 
8853   // Argument in overflow area
8854   // Implement the block where the argument is in overflow area.
8855   CGF.EmitBlock(OnStackBlock);
8856 
8857   // Load the overflow area pointer
8858   Address __overflow_area_pointer_p =
8859       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8860   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8861       __overflow_area_pointer_p, "__overflow_area_pointer");
8862 
8863   // Align the overflow area pointer according to the alignment of the argument
8864   if (ArgAlign > 4) {
8865     llvm::Value *__overflow_area_pointer_int =
8866         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8867 
8868     __overflow_area_pointer_int =
8869         CGF.Builder.CreateAdd(__overflow_area_pointer_int,
8870                               llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1),
8871                               "align_overflow_area_pointer");
8872 
8873     __overflow_area_pointer_int =
8874         CGF.Builder.CreateAnd(__overflow_area_pointer_int,
8875                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8876                               "align_overflow_area_pointer");
8877 
8878     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8879         __overflow_area_pointer_int, __overflow_area_pointer->getType(),
8880         "align_overflow_area_pointer");
8881   }
8882 
8883   // Get the pointer for next argument in overflow area and store it
8884   // to overflow area pointer.
8885   llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP(
8886       CGF.Int8Ty, __overflow_area_pointer,
8887       llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8888       "__overflow_area_pointer.next");
8889 
8890   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8891                           __overflow_area_pointer_p);
8892 
8893   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8894                           __current_saved_reg_area_pointer_p);
8895 
8896   // Bitcast the overflow area pointer to the type of argument.
8897   llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty);
8898   llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast(
8899       __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy));
8900 
8901   CGF.EmitBranch(ContBlock);
8902 
8903   // Get the correct pointer to load the variable argument
8904   // Implement the ContBlock
8905   CGF.EmitBlock(ContBlock);
8906 
8907   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
8908   llvm::Type *MemPTy = llvm::PointerType::getUnqual(MemTy);
8909   llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr");
8910   ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock);
8911   ArgAddr->addIncoming(__overflow_area_p, OnStackBlock);
8912 
8913   return Address(ArgAddr, MemTy, CharUnits::fromQuantity(ArgAlign));
8914 }
8915 
8916 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8917                                   QualType Ty) const {
8918 
8919   if (getTarget().getTriple().isMusl())
8920     return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty);
8921 
8922   return EmitVAArgForHexagon(CGF, VAListAddr, Ty);
8923 }
8924 
8925 //===----------------------------------------------------------------------===//
8926 // Lanai ABI Implementation
8927 //===----------------------------------------------------------------------===//
8928 
8929 namespace {
8930 class LanaiABIInfo : public DefaultABIInfo {
8931 public:
8932   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8933 
8934   bool shouldUseInReg(QualType Ty, CCState &State) const;
8935 
8936   void computeInfo(CGFunctionInfo &FI) const override {
8937     CCState State(FI);
8938     // Lanai uses 4 registers to pass arguments unless the function has the
8939     // regparm attribute set.
8940     if (FI.getHasRegParm()) {
8941       State.FreeRegs = FI.getRegParm();
8942     } else {
8943       State.FreeRegs = 4;
8944     }
8945 
8946     if (!getCXXABI().classifyReturnType(FI))
8947       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8948     for (auto &I : FI.arguments())
8949       I.info = classifyArgumentType(I.type, State);
8950   }
8951 
8952   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
8953   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
8954 };
8955 } // end anonymous namespace
8956 
8957 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
8958   unsigned Size = getContext().getTypeSize(Ty);
8959   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
8960 
8961   if (SizeInRegs == 0)
8962     return false;
8963 
8964   if (SizeInRegs > State.FreeRegs) {
8965     State.FreeRegs = 0;
8966     return false;
8967   }
8968 
8969   State.FreeRegs -= SizeInRegs;
8970 
8971   return true;
8972 }
8973 
8974 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
8975                                            CCState &State) const {
8976   if (!ByVal) {
8977     if (State.FreeRegs) {
8978       --State.FreeRegs; // Non-byval indirects just use one pointer.
8979       return getNaturalAlignIndirectInReg(Ty);
8980     }
8981     return getNaturalAlignIndirect(Ty, false);
8982   }
8983 
8984   // Compute the byval alignment.
8985   const unsigned MinABIStackAlignInBytes = 4;
8986   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
8987   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
8988                                  /*Realign=*/TypeAlign >
8989                                      MinABIStackAlignInBytes);
8990 }
8991 
8992 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
8993                                               CCState &State) const {
8994   // Check with the C++ ABI first.
8995   const RecordType *RT = Ty->getAs<RecordType>();
8996   if (RT) {
8997     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
8998     if (RAA == CGCXXABI::RAA_Indirect) {
8999       return getIndirectResult(Ty, /*ByVal=*/false, State);
9000     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
9001       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
9002     }
9003   }
9004 
9005   if (isAggregateTypeForABI(Ty)) {
9006     // Structures with flexible arrays are always indirect.
9007     if (RT && RT->getDecl()->hasFlexibleArrayMember())
9008       return getIndirectResult(Ty, /*ByVal=*/true, State);
9009 
9010     // Ignore empty structs/unions.
9011     if (isEmptyRecord(getContext(), Ty, true))
9012       return ABIArgInfo::getIgnore();
9013 
9014     llvm::LLVMContext &LLVMContext = getVMContext();
9015     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
9016     if (SizeInRegs <= State.FreeRegs) {
9017       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
9018       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
9019       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
9020       State.FreeRegs -= SizeInRegs;
9021       return ABIArgInfo::getDirectInReg(Result);
9022     } else {
9023       State.FreeRegs = 0;
9024     }
9025     return getIndirectResult(Ty, true, State);
9026   }
9027 
9028   // Treat an enum type as its underlying type.
9029   if (const auto *EnumTy = Ty->getAs<EnumType>())
9030     Ty = EnumTy->getDecl()->getIntegerType();
9031 
9032   bool InReg = shouldUseInReg(Ty, State);
9033 
9034   // Don't pass >64 bit integers in registers.
9035   if (const auto *EIT = Ty->getAs<BitIntType>())
9036     if (EIT->getNumBits() > 64)
9037       return getIndirectResult(Ty, /*ByVal=*/true, State);
9038 
9039   if (isPromotableIntegerTypeForABI(Ty)) {
9040     if (InReg)
9041       return ABIArgInfo::getDirectInReg();
9042     return ABIArgInfo::getExtend(Ty);
9043   }
9044   if (InReg)
9045     return ABIArgInfo::getDirectInReg();
9046   return ABIArgInfo::getDirect();
9047 }
9048 
9049 namespace {
9050 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
9051 public:
9052   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
9053       : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {}
9054 };
9055 }
9056 
9057 //===----------------------------------------------------------------------===//
9058 // AMDGPU ABI Implementation
9059 //===----------------------------------------------------------------------===//
9060 
9061 namespace {
9062 
9063 class AMDGPUABIInfo final : public DefaultABIInfo {
9064 private:
9065   static const unsigned MaxNumRegsForArgsRet = 16;
9066 
9067   unsigned numRegsForType(QualType Ty) const;
9068 
9069   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
9070   bool isHomogeneousAggregateSmallEnough(const Type *Base,
9071                                          uint64_t Members) const override;
9072 
9073   // Coerce HIP scalar pointer arguments from generic pointers to global ones.
9074   llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS,
9075                                        unsigned ToAS) const {
9076     // Single value types.
9077     auto *PtrTy = llvm::dyn_cast<llvm::PointerType>(Ty);
9078     if (PtrTy && PtrTy->getAddressSpace() == FromAS)
9079       return llvm::PointerType::getWithSamePointeeType(PtrTy, ToAS);
9080     return Ty;
9081   }
9082 
9083 public:
9084   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
9085     DefaultABIInfo(CGT) {}
9086 
9087   ABIArgInfo classifyReturnType(QualType RetTy) const;
9088   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
9089   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
9090 
9091   void computeInfo(CGFunctionInfo &FI) const override;
9092   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9093                     QualType Ty) const override;
9094 };
9095 
9096 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
9097   return true;
9098 }
9099 
9100 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
9101   const Type *Base, uint64_t Members) const {
9102   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
9103 
9104   // Homogeneous Aggregates may occupy at most 16 registers.
9105   return Members * NumRegs <= MaxNumRegsForArgsRet;
9106 }
9107 
9108 /// Estimate number of registers the type will use when passed in registers.
9109 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
9110   unsigned NumRegs = 0;
9111 
9112   if (const VectorType *VT = Ty->getAs<VectorType>()) {
9113     // Compute from the number of elements. The reported size is based on the
9114     // in-memory size, which includes the padding 4th element for 3-vectors.
9115     QualType EltTy = VT->getElementType();
9116     unsigned EltSize = getContext().getTypeSize(EltTy);
9117 
9118     // 16-bit element vectors should be passed as packed.
9119     if (EltSize == 16)
9120       return (VT->getNumElements() + 1) / 2;
9121 
9122     unsigned EltNumRegs = (EltSize + 31) / 32;
9123     return EltNumRegs * VT->getNumElements();
9124   }
9125 
9126   if (const RecordType *RT = Ty->getAs<RecordType>()) {
9127     const RecordDecl *RD = RT->getDecl();
9128     assert(!RD->hasFlexibleArrayMember());
9129 
9130     for (const FieldDecl *Field : RD->fields()) {
9131       QualType FieldTy = Field->getType();
9132       NumRegs += numRegsForType(FieldTy);
9133     }
9134 
9135     return NumRegs;
9136   }
9137 
9138   return (getContext().getTypeSize(Ty) + 31) / 32;
9139 }
9140 
9141 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
9142   llvm::CallingConv::ID CC = FI.getCallingConvention();
9143 
9144   if (!getCXXABI().classifyReturnType(FI))
9145     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9146 
9147   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
9148   for (auto &Arg : FI.arguments()) {
9149     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
9150       Arg.info = classifyKernelArgumentType(Arg.type);
9151     } else {
9152       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
9153     }
9154   }
9155 }
9156 
9157 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9158                                  QualType Ty) const {
9159   llvm_unreachable("AMDGPU does not support varargs");
9160 }
9161 
9162 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
9163   if (isAggregateTypeForABI(RetTy)) {
9164     // Records with non-trivial destructors/copy-constructors should not be
9165     // returned by value.
9166     if (!getRecordArgABI(RetTy, getCXXABI())) {
9167       // Ignore empty structs/unions.
9168       if (isEmptyRecord(getContext(), RetTy, true))
9169         return ABIArgInfo::getIgnore();
9170 
9171       // Lower single-element structs to just return a regular value.
9172       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
9173         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
9174 
9175       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
9176         const RecordDecl *RD = RT->getDecl();
9177         if (RD->hasFlexibleArrayMember())
9178           return DefaultABIInfo::classifyReturnType(RetTy);
9179       }
9180 
9181       // Pack aggregates <= 4 bytes into single VGPR or pair.
9182       uint64_t Size = getContext().getTypeSize(RetTy);
9183       if (Size <= 16)
9184         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
9185 
9186       if (Size <= 32)
9187         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
9188 
9189       if (Size <= 64) {
9190         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
9191         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
9192       }
9193 
9194       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
9195         return ABIArgInfo::getDirect();
9196     }
9197   }
9198 
9199   // Otherwise just do the default thing.
9200   return DefaultABIInfo::classifyReturnType(RetTy);
9201 }
9202 
9203 /// For kernels all parameters are really passed in a special buffer. It doesn't
9204 /// make sense to pass anything byval, so everything must be direct.
9205 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
9206   Ty = useFirstFieldIfTransparentUnion(Ty);
9207 
9208   // TODO: Can we omit empty structs?
9209 
9210   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
9211     Ty = QualType(SeltTy, 0);
9212 
9213   llvm::Type *OrigLTy = CGT.ConvertType(Ty);
9214   llvm::Type *LTy = OrigLTy;
9215   if (getContext().getLangOpts().HIP) {
9216     LTy = coerceKernelArgumentType(
9217         OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default),
9218         /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device));
9219   }
9220 
9221   // FIXME: Should also use this for OpenCL, but it requires addressing the
9222   // problem of kernels being called.
9223   //
9224   // FIXME: This doesn't apply the optimization of coercing pointers in structs
9225   // to global address space when using byref. This would require implementing a
9226   // new kind of coercion of the in-memory type when for indirect arguments.
9227   if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy &&
9228       isAggregateTypeForABI(Ty)) {
9229     return ABIArgInfo::getIndirectAliased(
9230         getContext().getTypeAlignInChars(Ty),
9231         getContext().getTargetAddressSpace(LangAS::opencl_constant),
9232         false /*Realign*/, nullptr /*Padding*/);
9233   }
9234 
9235   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
9236   // individual elements, which confuses the Clover OpenCL backend; therefore we
9237   // have to set it to false here. Other args of getDirect() are just defaults.
9238   return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
9239 }
9240 
9241 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
9242                                                unsigned &NumRegsLeft) const {
9243   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
9244 
9245   Ty = useFirstFieldIfTransparentUnion(Ty);
9246 
9247   if (isAggregateTypeForABI(Ty)) {
9248     // Records with non-trivial destructors/copy-constructors should not be
9249     // passed by value.
9250     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
9251       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
9252 
9253     // Ignore empty structs/unions.
9254     if (isEmptyRecord(getContext(), Ty, true))
9255       return ABIArgInfo::getIgnore();
9256 
9257     // Lower single-element structs to just pass a regular value. TODO: We
9258     // could do reasonable-size multiple-element structs too, using getExpand(),
9259     // though watch out for things like bitfields.
9260     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
9261       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
9262 
9263     if (const RecordType *RT = Ty->getAs<RecordType>()) {
9264       const RecordDecl *RD = RT->getDecl();
9265       if (RD->hasFlexibleArrayMember())
9266         return DefaultABIInfo::classifyArgumentType(Ty);
9267     }
9268 
9269     // Pack aggregates <= 8 bytes into single VGPR or pair.
9270     uint64_t Size = getContext().getTypeSize(Ty);
9271     if (Size <= 64) {
9272       unsigned NumRegs = (Size + 31) / 32;
9273       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
9274 
9275       if (Size <= 16)
9276         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
9277 
9278       if (Size <= 32)
9279         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
9280 
9281       // XXX: Should this be i64 instead, and should the limit increase?
9282       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
9283       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
9284     }
9285 
9286     if (NumRegsLeft > 0) {
9287       unsigned NumRegs = numRegsForType(Ty);
9288       if (NumRegsLeft >= NumRegs) {
9289         NumRegsLeft -= NumRegs;
9290         return ABIArgInfo::getDirect();
9291       }
9292     }
9293   }
9294 
9295   // Otherwise just do the default thing.
9296   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
9297   if (!ArgInfo.isIndirect()) {
9298     unsigned NumRegs = numRegsForType(Ty);
9299     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
9300   }
9301 
9302   return ArgInfo;
9303 }
9304 
9305 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
9306 public:
9307   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
9308       : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {}
9309 
9310   void setFunctionDeclAttributes(const FunctionDecl *FD, llvm::Function *F,
9311                                  CodeGenModule &CGM) const;
9312 
9313   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
9314                            CodeGen::CodeGenModule &M) const override;
9315   unsigned getOpenCLKernelCallingConv() const override;
9316 
9317   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
9318       llvm::PointerType *T, QualType QT) const override;
9319 
9320   LangAS getASTAllocaAddressSpace() const override {
9321     return getLangASFromTargetAS(
9322         getABIInfo().getDataLayout().getAllocaAddrSpace());
9323   }
9324   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
9325                                   const VarDecl *D) const override;
9326   llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
9327                                          SyncScope Scope,
9328                                          llvm::AtomicOrdering Ordering,
9329                                          llvm::LLVMContext &Ctx) const override;
9330   llvm::Function *
9331   createEnqueuedBlockKernel(CodeGenFunction &CGF,
9332                             llvm::Function *BlockInvokeFunc,
9333                             llvm::Type *BlockTy) const override;
9334   bool shouldEmitStaticExternCAliases() const override;
9335   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
9336 };
9337 }
9338 
9339 static bool requiresAMDGPUProtectedVisibility(const Decl *D,
9340                                               llvm::GlobalValue *GV) {
9341   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
9342     return false;
9343 
9344   return D->hasAttr<OpenCLKernelAttr>() ||
9345          (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
9346          (isa<VarDecl>(D) &&
9347           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
9348            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() ||
9349            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType()));
9350 }
9351 
9352 void AMDGPUTargetCodeGenInfo::setFunctionDeclAttributes(
9353     const FunctionDecl *FD, llvm::Function *F, CodeGenModule &M) const {
9354   const auto *ReqdWGS =
9355       M.getLangOpts().OpenCL ? FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
9356   const bool IsOpenCLKernel =
9357       M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>();
9358   const bool IsHIPKernel = M.getLangOpts().HIP && FD->hasAttr<CUDAGlobalAttr>();
9359 
9360   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
9361   if (ReqdWGS || FlatWGS) {
9362     unsigned Min = 0;
9363     unsigned Max = 0;
9364     if (FlatWGS) {
9365       Min = FlatWGS->getMin()
9366                 ->EvaluateKnownConstInt(M.getContext())
9367                 .getExtValue();
9368       Max = FlatWGS->getMax()
9369                 ->EvaluateKnownConstInt(M.getContext())
9370                 .getExtValue();
9371     }
9372     if (ReqdWGS && Min == 0 && Max == 0)
9373       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
9374 
9375     if (Min != 0) {
9376       assert(Min <= Max && "Min must be less than or equal Max");
9377 
9378       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
9379       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
9380     } else
9381       assert(Max == 0 && "Max must be zero");
9382   } else if (IsOpenCLKernel || IsHIPKernel) {
9383     // By default, restrict the maximum size to a value specified by
9384     // --gpu-max-threads-per-block=n or its default value for HIP.
9385     const unsigned OpenCLDefaultMaxWorkGroupSize = 256;
9386     const unsigned DefaultMaxWorkGroupSize =
9387         IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize
9388                        : M.getLangOpts().GPUMaxThreadsPerBlock;
9389     std::string AttrVal =
9390         std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize);
9391     F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
9392   }
9393 
9394   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
9395     unsigned Min =
9396         Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
9397     unsigned Max = Attr->getMax() ? Attr->getMax()
9398                                         ->EvaluateKnownConstInt(M.getContext())
9399                                         .getExtValue()
9400                                   : 0;
9401 
9402     if (Min != 0) {
9403       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
9404 
9405       std::string AttrVal = llvm::utostr(Min);
9406       if (Max != 0)
9407         AttrVal = AttrVal + "," + llvm::utostr(Max);
9408       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
9409     } else
9410       assert(Max == 0 && "Max must be zero");
9411   }
9412 
9413   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
9414     unsigned NumSGPR = Attr->getNumSGPR();
9415 
9416     if (NumSGPR != 0)
9417       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
9418   }
9419 
9420   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
9421     uint32_t NumVGPR = Attr->getNumVGPR();
9422 
9423     if (NumVGPR != 0)
9424       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
9425   }
9426 }
9427 
9428 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
9429     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
9430   if (requiresAMDGPUProtectedVisibility(D, GV)) {
9431     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
9432     GV->setDSOLocal(true);
9433   }
9434 
9435   if (GV->isDeclaration())
9436     return;
9437 
9438   llvm::Function *F = dyn_cast<llvm::Function>(GV);
9439   if (!F)
9440     return;
9441 
9442   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
9443   if (FD)
9444     setFunctionDeclAttributes(FD, F, M);
9445 
9446   const bool IsHIPKernel =
9447       M.getLangOpts().HIP && FD && FD->hasAttr<CUDAGlobalAttr>();
9448 
9449   if (IsHIPKernel)
9450     F->addFnAttr("uniform-work-group-size", "true");
9451 
9452   if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics())
9453     F->addFnAttr("amdgpu-unsafe-fp-atomics", "true");
9454 
9455   if (!getABIInfo().getCodeGenOpts().EmitIEEENaNCompliantInsts)
9456     F->addFnAttr("amdgpu-ieee", "false");
9457 }
9458 
9459 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
9460   return llvm::CallingConv::AMDGPU_KERNEL;
9461 }
9462 
9463 // Currently LLVM assumes null pointers always have value 0,
9464 // which results in incorrectly transformed IR. Therefore, instead of
9465 // emitting null pointers in private and local address spaces, a null
9466 // pointer in generic address space is emitted which is casted to a
9467 // pointer in local or private address space.
9468 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
9469     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
9470     QualType QT) const {
9471   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
9472     return llvm::ConstantPointerNull::get(PT);
9473 
9474   auto &Ctx = CGM.getContext();
9475   auto NPT = llvm::PointerType::getWithSamePointeeType(
9476       PT, Ctx.getTargetAddressSpace(LangAS::opencl_generic));
9477   return llvm::ConstantExpr::getAddrSpaceCast(
9478       llvm::ConstantPointerNull::get(NPT), PT);
9479 }
9480 
9481 LangAS
9482 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
9483                                                   const VarDecl *D) const {
9484   assert(!CGM.getLangOpts().OpenCL &&
9485          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
9486          "Address space agnostic languages only");
9487   LangAS DefaultGlobalAS = getLangASFromTargetAS(
9488       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
9489   if (!D)
9490     return DefaultGlobalAS;
9491 
9492   LangAS AddrSpace = D->getType().getAddressSpace();
9493   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
9494   if (AddrSpace != LangAS::Default)
9495     return AddrSpace;
9496 
9497   // Only promote to address space 4 if VarDecl has constant initialization.
9498   if (CGM.isTypeConstant(D->getType(), false) &&
9499       D->hasConstantInitialization()) {
9500     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
9501       return *ConstAS;
9502   }
9503   return DefaultGlobalAS;
9504 }
9505 
9506 llvm::SyncScope::ID
9507 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
9508                                             SyncScope Scope,
9509                                             llvm::AtomicOrdering Ordering,
9510                                             llvm::LLVMContext &Ctx) const {
9511   std::string Name;
9512   switch (Scope) {
9513   case SyncScope::HIPSingleThread:
9514     Name = "singlethread";
9515     break;
9516   case SyncScope::HIPWavefront:
9517   case SyncScope::OpenCLSubGroup:
9518     Name = "wavefront";
9519     break;
9520   case SyncScope::HIPWorkgroup:
9521   case SyncScope::OpenCLWorkGroup:
9522     Name = "workgroup";
9523     break;
9524   case SyncScope::HIPAgent:
9525   case SyncScope::OpenCLDevice:
9526     Name = "agent";
9527     break;
9528   case SyncScope::HIPSystem:
9529   case SyncScope::OpenCLAllSVMDevices:
9530     Name = "";
9531     break;
9532   }
9533 
9534   if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
9535     if (!Name.empty())
9536       Name = Twine(Twine(Name) + Twine("-")).str();
9537 
9538     Name = Twine(Twine(Name) + Twine("one-as")).str();
9539   }
9540 
9541   return Ctx.getOrInsertSyncScopeID(Name);
9542 }
9543 
9544 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
9545   return false;
9546 }
9547 
9548 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
9549     const FunctionType *&FT) const {
9550   FT = getABIInfo().getContext().adjustFunctionType(
9551       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
9552 }
9553 
9554 //===----------------------------------------------------------------------===//
9555 // SPARC v8 ABI Implementation.
9556 // Based on the SPARC Compliance Definition version 2.4.1.
9557 //
9558 // Ensures that complex values are passed in registers.
9559 //
9560 namespace {
9561 class SparcV8ABIInfo : public DefaultABIInfo {
9562 public:
9563   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9564 
9565 private:
9566   ABIArgInfo classifyReturnType(QualType RetTy) const;
9567   void computeInfo(CGFunctionInfo &FI) const override;
9568 };
9569 } // end anonymous namespace
9570 
9571 
9572 ABIArgInfo
9573 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
9574   if (Ty->isAnyComplexType()) {
9575     return ABIArgInfo::getDirect();
9576   }
9577   else {
9578     return DefaultABIInfo::classifyReturnType(Ty);
9579   }
9580 }
9581 
9582 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9583 
9584   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9585   for (auto &Arg : FI.arguments())
9586     Arg.info = classifyArgumentType(Arg.type);
9587 }
9588 
9589 namespace {
9590 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
9591 public:
9592   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
9593       : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {}
9594 
9595   llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF,
9596                                    llvm::Value *Address) const override {
9597     int Offset;
9598     if (isAggregateTypeForABI(CGF.CurFnInfo->getReturnType()))
9599       Offset = 12;
9600     else
9601       Offset = 8;
9602     return CGF.Builder.CreateGEP(CGF.Int8Ty, Address,
9603                                  llvm::ConstantInt::get(CGF.Int32Ty, Offset));
9604   }
9605 
9606   llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF,
9607                                    llvm::Value *Address) const override {
9608     int Offset;
9609     if (isAggregateTypeForABI(CGF.CurFnInfo->getReturnType()))
9610       Offset = -12;
9611     else
9612       Offset = -8;
9613     return CGF.Builder.CreateGEP(CGF.Int8Ty, Address,
9614                                  llvm::ConstantInt::get(CGF.Int32Ty, Offset));
9615   }
9616 };
9617 } // end anonymous namespace
9618 
9619 //===----------------------------------------------------------------------===//
9620 // SPARC v9 ABI Implementation.
9621 // Based on the SPARC Compliance Definition version 2.4.1.
9622 //
9623 // Function arguments a mapped to a nominal "parameter array" and promoted to
9624 // registers depending on their type. Each argument occupies 8 or 16 bytes in
9625 // the array, structs larger than 16 bytes are passed indirectly.
9626 //
9627 // One case requires special care:
9628 //
9629 //   struct mixed {
9630 //     int i;
9631 //     float f;
9632 //   };
9633 //
9634 // When a struct mixed is passed by value, it only occupies 8 bytes in the
9635 // parameter array, but the int is passed in an integer register, and the float
9636 // is passed in a floating point register. This is represented as two arguments
9637 // with the LLVM IR inreg attribute:
9638 //
9639 //   declare void f(i32 inreg %i, float inreg %f)
9640 //
9641 // The code generator will only allocate 4 bytes from the parameter array for
9642 // the inreg arguments. All other arguments are allocated a multiple of 8
9643 // bytes.
9644 //
9645 namespace {
9646 class SparcV9ABIInfo : public ABIInfo {
9647 public:
9648   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
9649 
9650 private:
9651   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
9652   void computeInfo(CGFunctionInfo &FI) const override;
9653   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9654                     QualType Ty) const override;
9655 
9656   // Coercion type builder for structs passed in registers. The coercion type
9657   // serves two purposes:
9658   //
9659   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
9660   //    in registers.
9661   // 2. Expose aligned floating point elements as first-level elements, so the
9662   //    code generator knows to pass them in floating point registers.
9663   //
9664   // We also compute the InReg flag which indicates that the struct contains
9665   // aligned 32-bit floats.
9666   //
9667   struct CoerceBuilder {
9668     llvm::LLVMContext &Context;
9669     const llvm::DataLayout &DL;
9670     SmallVector<llvm::Type*, 8> Elems;
9671     uint64_t Size;
9672     bool InReg;
9673 
9674     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
9675       : Context(c), DL(dl), Size(0), InReg(false) {}
9676 
9677     // Pad Elems with integers until Size is ToSize.
9678     void pad(uint64_t ToSize) {
9679       assert(ToSize >= Size && "Cannot remove elements");
9680       if (ToSize == Size)
9681         return;
9682 
9683       // Finish the current 64-bit word.
9684       uint64_t Aligned = llvm::alignTo(Size, 64);
9685       if (Aligned > Size && Aligned <= ToSize) {
9686         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
9687         Size = Aligned;
9688       }
9689 
9690       // Add whole 64-bit words.
9691       while (Size + 64 <= ToSize) {
9692         Elems.push_back(llvm::Type::getInt64Ty(Context));
9693         Size += 64;
9694       }
9695 
9696       // Final in-word padding.
9697       if (Size < ToSize) {
9698         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
9699         Size = ToSize;
9700       }
9701     }
9702 
9703     // Add a floating point element at Offset.
9704     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
9705       // Unaligned floats are treated as integers.
9706       if (Offset % Bits)
9707         return;
9708       // The InReg flag is only required if there are any floats < 64 bits.
9709       if (Bits < 64)
9710         InReg = true;
9711       pad(Offset);
9712       Elems.push_back(Ty);
9713       Size = Offset + Bits;
9714     }
9715 
9716     // Add a struct type to the coercion type, starting at Offset (in bits).
9717     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
9718       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
9719       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
9720         llvm::Type *ElemTy = StrTy->getElementType(i);
9721         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
9722         switch (ElemTy->getTypeID()) {
9723         case llvm::Type::StructTyID:
9724           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
9725           break;
9726         case llvm::Type::FloatTyID:
9727           addFloat(ElemOffset, ElemTy, 32);
9728           break;
9729         case llvm::Type::DoubleTyID:
9730           addFloat(ElemOffset, ElemTy, 64);
9731           break;
9732         case llvm::Type::FP128TyID:
9733           addFloat(ElemOffset, ElemTy, 128);
9734           break;
9735         case llvm::Type::PointerTyID:
9736           if (ElemOffset % 64 == 0) {
9737             pad(ElemOffset);
9738             Elems.push_back(ElemTy);
9739             Size += 64;
9740           }
9741           break;
9742         default:
9743           break;
9744         }
9745       }
9746     }
9747 
9748     // Check if Ty is a usable substitute for the coercion type.
9749     bool isUsableType(llvm::StructType *Ty) const {
9750       return llvm::makeArrayRef(Elems) == Ty->elements();
9751     }
9752 
9753     // Get the coercion type as a literal struct type.
9754     llvm::Type *getType() const {
9755       if (Elems.size() == 1)
9756         return Elems.front();
9757       else
9758         return llvm::StructType::get(Context, Elems);
9759     }
9760   };
9761 };
9762 } // end anonymous namespace
9763 
9764 ABIArgInfo
9765 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
9766   if (Ty->isVoidType())
9767     return ABIArgInfo::getIgnore();
9768 
9769   uint64_t Size = getContext().getTypeSize(Ty);
9770 
9771   // Anything too big to fit in registers is passed with an explicit indirect
9772   // pointer / sret pointer.
9773   if (Size > SizeLimit)
9774     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
9775 
9776   // Treat an enum type as its underlying type.
9777   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9778     Ty = EnumTy->getDecl()->getIntegerType();
9779 
9780   // Integer types smaller than a register are extended.
9781   if (Size < 64 && Ty->isIntegerType())
9782     return ABIArgInfo::getExtend(Ty);
9783 
9784   if (const auto *EIT = Ty->getAs<BitIntType>())
9785     if (EIT->getNumBits() < 64)
9786       return ABIArgInfo::getExtend(Ty);
9787 
9788   // Other non-aggregates go in registers.
9789   if (!isAggregateTypeForABI(Ty))
9790     return ABIArgInfo::getDirect();
9791 
9792   // If a C++ object has either a non-trivial copy constructor or a non-trivial
9793   // destructor, it is passed with an explicit indirect pointer / sret pointer.
9794   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
9795     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
9796 
9797   // This is a small aggregate type that should be passed in registers.
9798   // Build a coercion type from the LLVM struct type.
9799   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
9800   if (!StrTy)
9801     return ABIArgInfo::getDirect();
9802 
9803   CoerceBuilder CB(getVMContext(), getDataLayout());
9804   CB.addStruct(0, StrTy);
9805   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
9806 
9807   // Try to use the original type for coercion.
9808   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
9809 
9810   if (CB.InReg)
9811     return ABIArgInfo::getDirectInReg(CoerceTy);
9812   else
9813     return ABIArgInfo::getDirect(CoerceTy);
9814 }
9815 
9816 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9817                                   QualType Ty) const {
9818   ABIArgInfo AI = classifyType(Ty, 16 * 8);
9819   llvm::Type *ArgTy = CGT.ConvertType(Ty);
9820   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9821     AI.setCoerceToType(ArgTy);
9822 
9823   CharUnits SlotSize = CharUnits::fromQuantity(8);
9824 
9825   CGBuilderTy &Builder = CGF.Builder;
9826   Address Addr = Address(Builder.CreateLoad(VAListAddr, "ap.cur"),
9827                          getVAListElementType(CGF), SlotSize);
9828   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9829 
9830   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
9831 
9832   Address ArgAddr = Address::invalid();
9833   CharUnits Stride;
9834   switch (AI.getKind()) {
9835   case ABIArgInfo::Expand:
9836   case ABIArgInfo::CoerceAndExpand:
9837   case ABIArgInfo::InAlloca:
9838     llvm_unreachable("Unsupported ABI kind for va_arg");
9839 
9840   case ABIArgInfo::Extend: {
9841     Stride = SlotSize;
9842     CharUnits Offset = SlotSize - TypeInfo.Width;
9843     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
9844     break;
9845   }
9846 
9847   case ABIArgInfo::Direct: {
9848     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
9849     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
9850     ArgAddr = Addr;
9851     break;
9852   }
9853 
9854   case ABIArgInfo::Indirect:
9855   case ABIArgInfo::IndirectAliased:
9856     Stride = SlotSize;
9857     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
9858     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), ArgTy,
9859                       TypeInfo.Align);
9860     break;
9861 
9862   case ABIArgInfo::Ignore:
9863     return Address(llvm::UndefValue::get(ArgPtrTy), ArgTy, TypeInfo.Align);
9864   }
9865 
9866   // Update VAList.
9867   Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
9868   Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
9869 
9870   return Builder.CreateElementBitCast(ArgAddr, ArgTy, "arg.addr");
9871 }
9872 
9873 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9874   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
9875   for (auto &I : FI.arguments())
9876     I.info = classifyType(I.type, 16 * 8);
9877 }
9878 
9879 namespace {
9880 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
9881 public:
9882   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
9883       : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {}
9884 
9885   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
9886     return 14;
9887   }
9888 
9889   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9890                                llvm::Value *Address) const override;
9891 
9892   llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF,
9893                                    llvm::Value *Address) const override {
9894     return CGF.Builder.CreateGEP(CGF.Int8Ty, Address,
9895                                  llvm::ConstantInt::get(CGF.Int32Ty, 8));
9896   }
9897 
9898   llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF,
9899                                    llvm::Value *Address) const override {
9900     return CGF.Builder.CreateGEP(CGF.Int8Ty, Address,
9901                                  llvm::ConstantInt::get(CGF.Int32Ty, -8));
9902   }
9903 };
9904 } // end anonymous namespace
9905 
9906 bool
9907 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9908                                                 llvm::Value *Address) const {
9909   // This is calculated from the LLVM and GCC tables and verified
9910   // against gcc output.  AFAIK all ABIs use the same encoding.
9911 
9912   CodeGen::CGBuilderTy &Builder = CGF.Builder;
9913 
9914   llvm::IntegerType *i8 = CGF.Int8Ty;
9915   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
9916   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
9917 
9918   // 0-31: the 8-byte general-purpose registers
9919   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
9920 
9921   // 32-63: f0-31, the 4-byte floating-point registers
9922   AssignToArrayRange(Builder, Address, Four8, 32, 63);
9923 
9924   //   Y   = 64
9925   //   PSR = 65
9926   //   WIM = 66
9927   //   TBR = 67
9928   //   PC  = 68
9929   //   NPC = 69
9930   //   FSR = 70
9931   //   CSR = 71
9932   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
9933 
9934   // 72-87: d0-15, the 8-byte floating-point registers
9935   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
9936 
9937   return false;
9938 }
9939 
9940 // ARC ABI implementation.
9941 namespace {
9942 
9943 class ARCABIInfo : public DefaultABIInfo {
9944 public:
9945   using DefaultABIInfo::DefaultABIInfo;
9946 
9947 private:
9948   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9949                     QualType Ty) const override;
9950 
9951   void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
9952     if (!State.FreeRegs)
9953       return;
9954     if (Info.isIndirect() && Info.getInReg())
9955       State.FreeRegs--;
9956     else if (Info.isDirect() && Info.getInReg()) {
9957       unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
9958       if (sz < State.FreeRegs)
9959         State.FreeRegs -= sz;
9960       else
9961         State.FreeRegs = 0;
9962     }
9963   }
9964 
9965   void computeInfo(CGFunctionInfo &FI) const override {
9966     CCState State(FI);
9967     // ARC uses 8 registers to pass arguments.
9968     State.FreeRegs = 8;
9969 
9970     if (!getCXXABI().classifyReturnType(FI))
9971       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9972     updateState(FI.getReturnInfo(), FI.getReturnType(), State);
9973     for (auto &I : FI.arguments()) {
9974       I.info = classifyArgumentType(I.type, State.FreeRegs);
9975       updateState(I.info, I.type, State);
9976     }
9977   }
9978 
9979   ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
9980   ABIArgInfo getIndirectByValue(QualType Ty) const;
9981   ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
9982   ABIArgInfo classifyReturnType(QualType RetTy) const;
9983 };
9984 
9985 class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
9986 public:
9987   ARCTargetCodeGenInfo(CodeGenTypes &CGT)
9988       : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {}
9989 };
9990 
9991 
9992 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
9993   return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
9994                        getNaturalAlignIndirect(Ty, false);
9995 }
9996 
9997 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
9998   // Compute the byval alignment.
9999   const unsigned MinABIStackAlignInBytes = 4;
10000   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
10001   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
10002                                  TypeAlign > MinABIStackAlignInBytes);
10003 }
10004 
10005 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10006                               QualType Ty) const {
10007   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
10008                           getContext().getTypeInfoInChars(Ty),
10009                           CharUnits::fromQuantity(4), true);
10010 }
10011 
10012 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
10013                                             uint8_t FreeRegs) const {
10014   // Handle the generic C++ ABI.
10015   const RecordType *RT = Ty->getAs<RecordType>();
10016   if (RT) {
10017     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
10018     if (RAA == CGCXXABI::RAA_Indirect)
10019       return getIndirectByRef(Ty, FreeRegs > 0);
10020 
10021     if (RAA == CGCXXABI::RAA_DirectInMemory)
10022       return getIndirectByValue(Ty);
10023   }
10024 
10025   // Treat an enum type as its underlying type.
10026   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
10027     Ty = EnumTy->getDecl()->getIntegerType();
10028 
10029   auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
10030 
10031   if (isAggregateTypeForABI(Ty)) {
10032     // Structures with flexible arrays are always indirect.
10033     if (RT && RT->getDecl()->hasFlexibleArrayMember())
10034       return getIndirectByValue(Ty);
10035 
10036     // Ignore empty structs/unions.
10037     if (isEmptyRecord(getContext(), Ty, true))
10038       return ABIArgInfo::getIgnore();
10039 
10040     llvm::LLVMContext &LLVMContext = getVMContext();
10041 
10042     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
10043     SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
10044     llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
10045 
10046     return FreeRegs >= SizeInRegs ?
10047         ABIArgInfo::getDirectInReg(Result) :
10048         ABIArgInfo::getDirect(Result, 0, nullptr, false);
10049   }
10050 
10051   if (const auto *EIT = Ty->getAs<BitIntType>())
10052     if (EIT->getNumBits() > 64)
10053       return getIndirectByValue(Ty);
10054 
10055   return isPromotableIntegerTypeForABI(Ty)
10056              ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty)
10057                                        : ABIArgInfo::getExtend(Ty))
10058              : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg()
10059                                        : ABIArgInfo::getDirect());
10060 }
10061 
10062 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
10063   if (RetTy->isAnyComplexType())
10064     return ABIArgInfo::getDirectInReg();
10065 
10066   // Arguments of size > 4 registers are indirect.
10067   auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
10068   if (RetSize > 4)
10069     return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
10070 
10071   return DefaultABIInfo::classifyReturnType(RetTy);
10072 }
10073 
10074 } // End anonymous namespace.
10075 
10076 //===----------------------------------------------------------------------===//
10077 // XCore ABI Implementation
10078 //===----------------------------------------------------------------------===//
10079 
10080 namespace {
10081 
10082 /// A SmallStringEnc instance is used to build up the TypeString by passing
10083 /// it by reference between functions that append to it.
10084 typedef llvm::SmallString<128> SmallStringEnc;
10085 
10086 /// TypeStringCache caches the meta encodings of Types.
10087 ///
10088 /// The reason for caching TypeStrings is two fold:
10089 ///   1. To cache a type's encoding for later uses;
10090 ///   2. As a means to break recursive member type inclusion.
10091 ///
10092 /// A cache Entry can have a Status of:
10093 ///   NonRecursive:   The type encoding is not recursive;
10094 ///   Recursive:      The type encoding is recursive;
10095 ///   Incomplete:     An incomplete TypeString;
10096 ///   IncompleteUsed: An incomplete TypeString that has been used in a
10097 ///                   Recursive type encoding.
10098 ///
10099 /// A NonRecursive entry will have all of its sub-members expanded as fully
10100 /// as possible. Whilst it may contain types which are recursive, the type
10101 /// itself is not recursive and thus its encoding may be safely used whenever
10102 /// the type is encountered.
10103 ///
10104 /// A Recursive entry will have all of its sub-members expanded as fully as
10105 /// possible. The type itself is recursive and it may contain other types which
10106 /// are recursive. The Recursive encoding must not be used during the expansion
10107 /// of a recursive type's recursive branch. For simplicity the code uses
10108 /// IncompleteCount to reject all usage of Recursive encodings for member types.
10109 ///
10110 /// An Incomplete entry is always a RecordType and only encodes its
10111 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
10112 /// are placed into the cache during type expansion as a means to identify and
10113 /// handle recursive inclusion of types as sub-members. If there is recursion
10114 /// the entry becomes IncompleteUsed.
10115 ///
10116 /// During the expansion of a RecordType's members:
10117 ///
10118 ///   If the cache contains a NonRecursive encoding for the member type, the
10119 ///   cached encoding is used;
10120 ///
10121 ///   If the cache contains a Recursive encoding for the member type, the
10122 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
10123 ///
10124 ///   If the member is a RecordType, an Incomplete encoding is placed into the
10125 ///   cache to break potential recursive inclusion of itself as a sub-member;
10126 ///
10127 ///   Once a member RecordType has been expanded, its temporary incomplete
10128 ///   entry is removed from the cache. If a Recursive encoding was swapped out
10129 ///   it is swapped back in;
10130 ///
10131 ///   If an incomplete entry is used to expand a sub-member, the incomplete
10132 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
10133 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
10134 ///
10135 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
10136 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
10137 ///   Else the member is part of a recursive type and thus the recursion has
10138 ///   been exited too soon for the encoding to be correct for the member.
10139 ///
10140 class TypeStringCache {
10141   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
10142   struct Entry {
10143     std::string Str;     // The encoded TypeString for the type.
10144     enum Status State;   // Information about the encoding in 'Str'.
10145     std::string Swapped; // A temporary place holder for a Recursive encoding
10146                          // during the expansion of RecordType's members.
10147   };
10148   std::map<const IdentifierInfo *, struct Entry> Map;
10149   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
10150   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
10151 public:
10152   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
10153   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
10154   bool removeIncomplete(const IdentifierInfo *ID);
10155   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
10156                      bool IsRecursive);
10157   StringRef lookupStr(const IdentifierInfo *ID);
10158 };
10159 
10160 /// TypeString encodings for enum & union fields must be order.
10161 /// FieldEncoding is a helper for this ordering process.
10162 class FieldEncoding {
10163   bool HasName;
10164   std::string Enc;
10165 public:
10166   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
10167   StringRef str() { return Enc; }
10168   bool operator<(const FieldEncoding &rhs) const {
10169     if (HasName != rhs.HasName) return HasName;
10170     return Enc < rhs.Enc;
10171   }
10172 };
10173 
10174 class XCoreABIInfo : public DefaultABIInfo {
10175 public:
10176   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
10177   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10178                     QualType Ty) const override;
10179 };
10180 
10181 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
10182   mutable TypeStringCache TSC;
10183   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
10184                     const CodeGen::CodeGenModule &M) const;
10185 
10186 public:
10187   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
10188       : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {}
10189   void emitTargetMetadata(CodeGen::CodeGenModule &CGM,
10190                           const llvm::MapVector<GlobalDecl, StringRef>
10191                               &MangledDeclNames) const override;
10192 };
10193 
10194 } // End anonymous namespace.
10195 
10196 // TODO: this implementation is likely now redundant with the default
10197 // EmitVAArg.
10198 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10199                                 QualType Ty) const {
10200   CGBuilderTy &Builder = CGF.Builder;
10201 
10202   // Get the VAList.
10203   CharUnits SlotSize = CharUnits::fromQuantity(4);
10204   Address AP = Address(Builder.CreateLoad(VAListAddr),
10205                        getVAListElementType(CGF), SlotSize);
10206 
10207   // Handle the argument.
10208   ABIArgInfo AI = classifyArgumentType(Ty);
10209   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
10210   llvm::Type *ArgTy = CGT.ConvertType(Ty);
10211   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
10212     AI.setCoerceToType(ArgTy);
10213   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
10214 
10215   Address Val = Address::invalid();
10216   CharUnits ArgSize = CharUnits::Zero();
10217   switch (AI.getKind()) {
10218   case ABIArgInfo::Expand:
10219   case ABIArgInfo::CoerceAndExpand:
10220   case ABIArgInfo::InAlloca:
10221     llvm_unreachable("Unsupported ABI kind for va_arg");
10222   case ABIArgInfo::Ignore:
10223     Val = Address(llvm::UndefValue::get(ArgPtrTy), ArgTy, TypeAlign);
10224     ArgSize = CharUnits::Zero();
10225     break;
10226   case ABIArgInfo::Extend:
10227   case ABIArgInfo::Direct:
10228     Val = Builder.CreateElementBitCast(AP, ArgTy);
10229     ArgSize = CharUnits::fromQuantity(
10230         getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
10231     ArgSize = ArgSize.alignTo(SlotSize);
10232     break;
10233   case ABIArgInfo::Indirect:
10234   case ABIArgInfo::IndirectAliased:
10235     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
10236     Val = Address(Builder.CreateLoad(Val), ArgTy, TypeAlign);
10237     ArgSize = SlotSize;
10238     break;
10239   }
10240 
10241   // Increment the VAList.
10242   if (!ArgSize.isZero()) {
10243     Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
10244     Builder.CreateStore(APN.getPointer(), VAListAddr);
10245   }
10246 
10247   return Val;
10248 }
10249 
10250 /// During the expansion of a RecordType, an incomplete TypeString is placed
10251 /// into the cache as a means to identify and break recursion.
10252 /// If there is a Recursive encoding in the cache, it is swapped out and will
10253 /// be reinserted by removeIncomplete().
10254 /// All other types of encoding should have been used rather than arriving here.
10255 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
10256                                     std::string StubEnc) {
10257   if (!ID)
10258     return;
10259   Entry &E = Map[ID];
10260   assert( (E.Str.empty() || E.State == Recursive) &&
10261          "Incorrectly use of addIncomplete");
10262   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
10263   E.Swapped.swap(E.Str); // swap out the Recursive
10264   E.Str.swap(StubEnc);
10265   E.State = Incomplete;
10266   ++IncompleteCount;
10267 }
10268 
10269 /// Once the RecordType has been expanded, the temporary incomplete TypeString
10270 /// must be removed from the cache.
10271 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
10272 /// Returns true if the RecordType was defined recursively.
10273 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
10274   if (!ID)
10275     return false;
10276   auto I = Map.find(ID);
10277   assert(I != Map.end() && "Entry not present");
10278   Entry &E = I->second;
10279   assert( (E.State == Incomplete ||
10280            E.State == IncompleteUsed) &&
10281          "Entry must be an incomplete type");
10282   bool IsRecursive = false;
10283   if (E.State == IncompleteUsed) {
10284     // We made use of our Incomplete encoding, thus we are recursive.
10285     IsRecursive = true;
10286     --IncompleteUsedCount;
10287   }
10288   if (E.Swapped.empty())
10289     Map.erase(I);
10290   else {
10291     // Swap the Recursive back.
10292     E.Swapped.swap(E.Str);
10293     E.Swapped.clear();
10294     E.State = Recursive;
10295   }
10296   --IncompleteCount;
10297   return IsRecursive;
10298 }
10299 
10300 /// Add the encoded TypeString to the cache only if it is NonRecursive or
10301 /// Recursive (viz: all sub-members were expanded as fully as possible).
10302 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
10303                                     bool IsRecursive) {
10304   if (!ID || IncompleteUsedCount)
10305     return; // No key or it is is an incomplete sub-type so don't add.
10306   Entry &E = Map[ID];
10307   if (IsRecursive && !E.Str.empty()) {
10308     assert(E.State==Recursive && E.Str.size() == Str.size() &&
10309            "This is not the same Recursive entry");
10310     // The parent container was not recursive after all, so we could have used
10311     // this Recursive sub-member entry after all, but we assumed the worse when
10312     // we started viz: IncompleteCount!=0.
10313     return;
10314   }
10315   assert(E.Str.empty() && "Entry already present");
10316   E.Str = Str.str();
10317   E.State = IsRecursive? Recursive : NonRecursive;
10318 }
10319 
10320 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
10321 /// are recursively expanding a type (IncompleteCount != 0) and the cached
10322 /// encoding is Recursive, return an empty StringRef.
10323 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
10324   if (!ID)
10325     return StringRef();   // We have no key.
10326   auto I = Map.find(ID);
10327   if (I == Map.end())
10328     return StringRef();   // We have no encoding.
10329   Entry &E = I->second;
10330   if (E.State == Recursive && IncompleteCount)
10331     return StringRef();   // We don't use Recursive encodings for member types.
10332 
10333   if (E.State == Incomplete) {
10334     // The incomplete type is being used to break out of recursion.
10335     E.State = IncompleteUsed;
10336     ++IncompleteUsedCount;
10337   }
10338   return E.Str;
10339 }
10340 
10341 /// The XCore ABI includes a type information section that communicates symbol
10342 /// type information to the linker. The linker uses this information to verify
10343 /// safety/correctness of things such as array bound and pointers et al.
10344 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
10345 /// This type information (TypeString) is emitted into meta data for all global
10346 /// symbols: definitions, declarations, functions & variables.
10347 ///
10348 /// The TypeString carries type, qualifier, name, size & value details.
10349 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
10350 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
10351 /// The output is tested by test/CodeGen/xcore-stringtype.c.
10352 ///
10353 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
10354                           const CodeGen::CodeGenModule &CGM,
10355                           TypeStringCache &TSC);
10356 
10357 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
10358 void XCoreTargetCodeGenInfo::emitTargetMD(
10359     const Decl *D, llvm::GlobalValue *GV,
10360     const CodeGen::CodeGenModule &CGM) const {
10361   SmallStringEnc Enc;
10362   if (getTypeString(Enc, D, CGM, TSC)) {
10363     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
10364     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
10365                                 llvm::MDString::get(Ctx, Enc.str())};
10366     llvm::NamedMDNode *MD =
10367       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
10368     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
10369   }
10370 }
10371 
10372 void XCoreTargetCodeGenInfo::emitTargetMetadata(
10373     CodeGen::CodeGenModule &CGM,
10374     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const {
10375   // Warning, new MangledDeclNames may be appended within this loop.
10376   // We rely on MapVector insertions adding new elements to the end
10377   // of the container.
10378   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
10379     auto Val = *(MangledDeclNames.begin() + I);
10380     llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second);
10381     if (GV) {
10382       const Decl *D = Val.first.getDecl()->getMostRecentDecl();
10383       emitTargetMD(D, GV, CGM);
10384     }
10385   }
10386 }
10387 
10388 //===----------------------------------------------------------------------===//
10389 // Base ABI and target codegen info implementation common between SPIR and
10390 // SPIR-V.
10391 //===----------------------------------------------------------------------===//
10392 
10393 namespace {
10394 class CommonSPIRABIInfo : public DefaultABIInfo {
10395 public:
10396   CommonSPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); }
10397 
10398 private:
10399   void setCCs();
10400 };
10401 
10402 class SPIRVABIInfo : public CommonSPIRABIInfo {
10403 public:
10404   SPIRVABIInfo(CodeGenTypes &CGT) : CommonSPIRABIInfo(CGT) {}
10405   void computeInfo(CGFunctionInfo &FI) const override;
10406 
10407 private:
10408   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
10409 };
10410 } // end anonymous namespace
10411 namespace {
10412 class CommonSPIRTargetCodeGenInfo : public TargetCodeGenInfo {
10413 public:
10414   CommonSPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
10415       : TargetCodeGenInfo(std::make_unique<CommonSPIRABIInfo>(CGT)) {}
10416   CommonSPIRTargetCodeGenInfo(std::unique_ptr<ABIInfo> ABIInfo)
10417       : TargetCodeGenInfo(std::move(ABIInfo)) {}
10418 
10419   LangAS getASTAllocaAddressSpace() const override {
10420     return getLangASFromTargetAS(
10421         getABIInfo().getDataLayout().getAllocaAddrSpace());
10422   }
10423 
10424   unsigned getOpenCLKernelCallingConv() const override;
10425 };
10426 class SPIRVTargetCodeGenInfo : public CommonSPIRTargetCodeGenInfo {
10427 public:
10428   SPIRVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
10429       : CommonSPIRTargetCodeGenInfo(std::make_unique<SPIRVABIInfo>(CGT)) {}
10430   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
10431 };
10432 } // End anonymous namespace.
10433 
10434 void CommonSPIRABIInfo::setCCs() {
10435   assert(getRuntimeCC() == llvm::CallingConv::C);
10436   RuntimeCC = llvm::CallingConv::SPIR_FUNC;
10437 }
10438 
10439 ABIArgInfo SPIRVABIInfo::classifyKernelArgumentType(QualType Ty) const {
10440   if (getContext().getLangOpts().CUDAIsDevice) {
10441     // Coerce pointer arguments with default address space to CrossWorkGroup
10442     // pointers for HIPSPV/CUDASPV. When the language mode is HIP/CUDA, the
10443     // SPIRTargetInfo maps cuda_device to SPIR-V's CrossWorkGroup address space.
10444     llvm::Type *LTy = CGT.ConvertType(Ty);
10445     auto DefaultAS = getContext().getTargetAddressSpace(LangAS::Default);
10446     auto GlobalAS = getContext().getTargetAddressSpace(LangAS::cuda_device);
10447     auto *PtrTy = llvm::dyn_cast<llvm::PointerType>(LTy);
10448     if (PtrTy && PtrTy->getAddressSpace() == DefaultAS) {
10449       LTy = llvm::PointerType::getWithSamePointeeType(PtrTy, GlobalAS);
10450       return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
10451     }
10452 
10453     // Force copying aggregate type in kernel arguments by value when
10454     // compiling CUDA targeting SPIR-V. This is required for the object
10455     // copied to be valid on the device.
10456     // This behavior follows the CUDA spec
10457     // https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#global-function-argument-processing,
10458     // and matches the NVPTX implementation.
10459     if (isAggregateTypeForABI(Ty))
10460       return getNaturalAlignIndirect(Ty, /* byval */ true);
10461   }
10462   return classifyArgumentType(Ty);
10463 }
10464 
10465 void SPIRVABIInfo::computeInfo(CGFunctionInfo &FI) const {
10466   // The logic is same as in DefaultABIInfo with an exception on the kernel
10467   // arguments handling.
10468   llvm::CallingConv::ID CC = FI.getCallingConvention();
10469 
10470   if (!getCXXABI().classifyReturnType(FI))
10471     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
10472 
10473   for (auto &I : FI.arguments()) {
10474     if (CC == llvm::CallingConv::SPIR_KERNEL) {
10475       I.info = classifyKernelArgumentType(I.type);
10476     } else {
10477       I.info = classifyArgumentType(I.type);
10478     }
10479   }
10480 }
10481 
10482 namespace clang {
10483 namespace CodeGen {
10484 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
10485   if (CGM.getTarget().getTriple().isSPIRV())
10486     SPIRVABIInfo(CGM.getTypes()).computeInfo(FI);
10487   else
10488     CommonSPIRABIInfo(CGM.getTypes()).computeInfo(FI);
10489 }
10490 }
10491 }
10492 
10493 unsigned CommonSPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
10494   return llvm::CallingConv::SPIR_KERNEL;
10495 }
10496 
10497 void SPIRVTargetCodeGenInfo::setCUDAKernelCallingConvention(
10498     const FunctionType *&FT) const {
10499   // Convert HIP kernels to SPIR-V kernels.
10500   if (getABIInfo().getContext().getLangOpts().HIP) {
10501     FT = getABIInfo().getContext().adjustFunctionType(
10502         FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
10503     return;
10504   }
10505 }
10506 
10507 static bool appendType(SmallStringEnc &Enc, QualType QType,
10508                        const CodeGen::CodeGenModule &CGM,
10509                        TypeStringCache &TSC);
10510 
10511 /// Helper function for appendRecordType().
10512 /// Builds a SmallVector containing the encoded field types in declaration
10513 /// order.
10514 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
10515                              const RecordDecl *RD,
10516                              const CodeGen::CodeGenModule &CGM,
10517                              TypeStringCache &TSC) {
10518   for (const auto *Field : RD->fields()) {
10519     SmallStringEnc Enc;
10520     Enc += "m(";
10521     Enc += Field->getName();
10522     Enc += "){";
10523     if (Field->isBitField()) {
10524       Enc += "b(";
10525       llvm::raw_svector_ostream OS(Enc);
10526       OS << Field->getBitWidthValue(CGM.getContext());
10527       Enc += ':';
10528     }
10529     if (!appendType(Enc, Field->getType(), CGM, TSC))
10530       return false;
10531     if (Field->isBitField())
10532       Enc += ')';
10533     Enc += '}';
10534     FE.emplace_back(!Field->getName().empty(), Enc);
10535   }
10536   return true;
10537 }
10538 
10539 /// Appends structure and union types to Enc and adds encoding to cache.
10540 /// Recursively calls appendType (via extractFieldType) for each field.
10541 /// Union types have their fields ordered according to the ABI.
10542 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
10543                              const CodeGen::CodeGenModule &CGM,
10544                              TypeStringCache &TSC, const IdentifierInfo *ID) {
10545   // Append the cached TypeString if we have one.
10546   StringRef TypeString = TSC.lookupStr(ID);
10547   if (!TypeString.empty()) {
10548     Enc += TypeString;
10549     return true;
10550   }
10551 
10552   // Start to emit an incomplete TypeString.
10553   size_t Start = Enc.size();
10554   Enc += (RT->isUnionType()? 'u' : 's');
10555   Enc += '(';
10556   if (ID)
10557     Enc += ID->getName();
10558   Enc += "){";
10559 
10560   // We collect all encoded fields and order as necessary.
10561   bool IsRecursive = false;
10562   const RecordDecl *RD = RT->getDecl()->getDefinition();
10563   if (RD && !RD->field_empty()) {
10564     // An incomplete TypeString stub is placed in the cache for this RecordType
10565     // so that recursive calls to this RecordType will use it whilst building a
10566     // complete TypeString for this RecordType.
10567     SmallVector<FieldEncoding, 16> FE;
10568     std::string StubEnc(Enc.substr(Start).str());
10569     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
10570     TSC.addIncomplete(ID, std::move(StubEnc));
10571     if (!extractFieldType(FE, RD, CGM, TSC)) {
10572       (void) TSC.removeIncomplete(ID);
10573       return false;
10574     }
10575     IsRecursive = TSC.removeIncomplete(ID);
10576     // The ABI requires unions to be sorted but not structures.
10577     // See FieldEncoding::operator< for sort algorithm.
10578     if (RT->isUnionType())
10579       llvm::sort(FE);
10580     // We can now complete the TypeString.
10581     unsigned E = FE.size();
10582     for (unsigned I = 0; I != E; ++I) {
10583       if (I)
10584         Enc += ',';
10585       Enc += FE[I].str();
10586     }
10587   }
10588   Enc += '}';
10589   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
10590   return true;
10591 }
10592 
10593 /// Appends enum types to Enc and adds the encoding to the cache.
10594 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
10595                            TypeStringCache &TSC,
10596                            const IdentifierInfo *ID) {
10597   // Append the cached TypeString if we have one.
10598   StringRef TypeString = TSC.lookupStr(ID);
10599   if (!TypeString.empty()) {
10600     Enc += TypeString;
10601     return true;
10602   }
10603 
10604   size_t Start = Enc.size();
10605   Enc += "e(";
10606   if (ID)
10607     Enc += ID->getName();
10608   Enc += "){";
10609 
10610   // We collect all encoded enumerations and order them alphanumerically.
10611   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
10612     SmallVector<FieldEncoding, 16> FE;
10613     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
10614          ++I) {
10615       SmallStringEnc EnumEnc;
10616       EnumEnc += "m(";
10617       EnumEnc += I->getName();
10618       EnumEnc += "){";
10619       I->getInitVal().toString(EnumEnc);
10620       EnumEnc += '}';
10621       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
10622     }
10623     llvm::sort(FE);
10624     unsigned E = FE.size();
10625     for (unsigned I = 0; I != E; ++I) {
10626       if (I)
10627         Enc += ',';
10628       Enc += FE[I].str();
10629     }
10630   }
10631   Enc += '}';
10632   TSC.addIfComplete(ID, Enc.substr(Start), false);
10633   return true;
10634 }
10635 
10636 /// Appends type's qualifier to Enc.
10637 /// This is done prior to appending the type's encoding.
10638 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
10639   // Qualifiers are emitted in alphabetical order.
10640   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
10641   int Lookup = 0;
10642   if (QT.isConstQualified())
10643     Lookup += 1<<0;
10644   if (QT.isRestrictQualified())
10645     Lookup += 1<<1;
10646   if (QT.isVolatileQualified())
10647     Lookup += 1<<2;
10648   Enc += Table[Lookup];
10649 }
10650 
10651 /// Appends built-in types to Enc.
10652 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
10653   const char *EncType;
10654   switch (BT->getKind()) {
10655     case BuiltinType::Void:
10656       EncType = "0";
10657       break;
10658     case BuiltinType::Bool:
10659       EncType = "b";
10660       break;
10661     case BuiltinType::Char_U:
10662       EncType = "uc";
10663       break;
10664     case BuiltinType::UChar:
10665       EncType = "uc";
10666       break;
10667     case BuiltinType::SChar:
10668       EncType = "sc";
10669       break;
10670     case BuiltinType::UShort:
10671       EncType = "us";
10672       break;
10673     case BuiltinType::Short:
10674       EncType = "ss";
10675       break;
10676     case BuiltinType::UInt:
10677       EncType = "ui";
10678       break;
10679     case BuiltinType::Int:
10680       EncType = "si";
10681       break;
10682     case BuiltinType::ULong:
10683       EncType = "ul";
10684       break;
10685     case BuiltinType::Long:
10686       EncType = "sl";
10687       break;
10688     case BuiltinType::ULongLong:
10689       EncType = "ull";
10690       break;
10691     case BuiltinType::LongLong:
10692       EncType = "sll";
10693       break;
10694     case BuiltinType::Float:
10695       EncType = "ft";
10696       break;
10697     case BuiltinType::Double:
10698       EncType = "d";
10699       break;
10700     case BuiltinType::LongDouble:
10701       EncType = "ld";
10702       break;
10703     default:
10704       return false;
10705   }
10706   Enc += EncType;
10707   return true;
10708 }
10709 
10710 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
10711 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
10712                               const CodeGen::CodeGenModule &CGM,
10713                               TypeStringCache &TSC) {
10714   Enc += "p(";
10715   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
10716     return false;
10717   Enc += ')';
10718   return true;
10719 }
10720 
10721 /// Appends array encoding to Enc before calling appendType for the element.
10722 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
10723                             const ArrayType *AT,
10724                             const CodeGen::CodeGenModule &CGM,
10725                             TypeStringCache &TSC, StringRef NoSizeEnc) {
10726   if (AT->getSizeModifier() != ArrayType::Normal)
10727     return false;
10728   Enc += "a(";
10729   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
10730     CAT->getSize().toStringUnsigned(Enc);
10731   else
10732     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
10733   Enc += ':';
10734   // The Qualifiers should be attached to the type rather than the array.
10735   appendQualifier(Enc, QT);
10736   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
10737     return false;
10738   Enc += ')';
10739   return true;
10740 }
10741 
10742 /// Appends a function encoding to Enc, calling appendType for the return type
10743 /// and the arguments.
10744 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
10745                              const CodeGen::CodeGenModule &CGM,
10746                              TypeStringCache &TSC) {
10747   Enc += "f{";
10748   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
10749     return false;
10750   Enc += "}(";
10751   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
10752     // N.B. we are only interested in the adjusted param types.
10753     auto I = FPT->param_type_begin();
10754     auto E = FPT->param_type_end();
10755     if (I != E) {
10756       do {
10757         if (!appendType(Enc, *I, CGM, TSC))
10758           return false;
10759         ++I;
10760         if (I != E)
10761           Enc += ',';
10762       } while (I != E);
10763       if (FPT->isVariadic())
10764         Enc += ",va";
10765     } else {
10766       if (FPT->isVariadic())
10767         Enc += "va";
10768       else
10769         Enc += '0';
10770     }
10771   }
10772   Enc += ')';
10773   return true;
10774 }
10775 
10776 /// Handles the type's qualifier before dispatching a call to handle specific
10777 /// type encodings.
10778 static bool appendType(SmallStringEnc &Enc, QualType QType,
10779                        const CodeGen::CodeGenModule &CGM,
10780                        TypeStringCache &TSC) {
10781 
10782   QualType QT = QType.getCanonicalType();
10783 
10784   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
10785     // The Qualifiers should be attached to the type rather than the array.
10786     // Thus we don't call appendQualifier() here.
10787     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
10788 
10789   appendQualifier(Enc, QT);
10790 
10791   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
10792     return appendBuiltinType(Enc, BT);
10793 
10794   if (const PointerType *PT = QT->getAs<PointerType>())
10795     return appendPointerType(Enc, PT, CGM, TSC);
10796 
10797   if (const EnumType *ET = QT->getAs<EnumType>())
10798     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
10799 
10800   if (const RecordType *RT = QT->getAsStructureType())
10801     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10802 
10803   if (const RecordType *RT = QT->getAsUnionType())
10804     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10805 
10806   if (const FunctionType *FT = QT->getAs<FunctionType>())
10807     return appendFunctionType(Enc, FT, CGM, TSC);
10808 
10809   return false;
10810 }
10811 
10812 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
10813                           const CodeGen::CodeGenModule &CGM,
10814                           TypeStringCache &TSC) {
10815   if (!D)
10816     return false;
10817 
10818   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
10819     if (FD->getLanguageLinkage() != CLanguageLinkage)
10820       return false;
10821     return appendType(Enc, FD->getType(), CGM, TSC);
10822   }
10823 
10824   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
10825     if (VD->getLanguageLinkage() != CLanguageLinkage)
10826       return false;
10827     QualType QT = VD->getType().getCanonicalType();
10828     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
10829       // Global ArrayTypes are given a size of '*' if the size is unknown.
10830       // The Qualifiers should be attached to the type rather than the array.
10831       // Thus we don't call appendQualifier() here.
10832       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
10833     }
10834     return appendType(Enc, QT, CGM, TSC);
10835   }
10836   return false;
10837 }
10838 
10839 //===----------------------------------------------------------------------===//
10840 // RISCV ABI Implementation
10841 //===----------------------------------------------------------------------===//
10842 
10843 namespace {
10844 class RISCVABIInfo : public DefaultABIInfo {
10845 private:
10846   // Size of the integer ('x') registers in bits.
10847   unsigned XLen;
10848   // Size of the floating point ('f') registers in bits. Note that the target
10849   // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target
10850   // with soft float ABI has FLen==0).
10851   unsigned FLen;
10852   static const int NumArgGPRs = 8;
10853   static const int NumArgFPRs = 8;
10854   bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10855                                       llvm::Type *&Field1Ty,
10856                                       CharUnits &Field1Off,
10857                                       llvm::Type *&Field2Ty,
10858                                       CharUnits &Field2Off) const;
10859 
10860 public:
10861   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen)
10862       : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {}
10863 
10864   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
10865   // non-virtual, but computeInfo is virtual, so we overload it.
10866   void computeInfo(CGFunctionInfo &FI) const override;
10867 
10868   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft,
10869                                   int &ArgFPRsLeft) const;
10870   ABIArgInfo classifyReturnType(QualType RetTy) const;
10871 
10872   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10873                     QualType Ty) const override;
10874 
10875   ABIArgInfo extendType(QualType Ty) const;
10876 
10877   bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10878                                 CharUnits &Field1Off, llvm::Type *&Field2Ty,
10879                                 CharUnits &Field2Off, int &NeededArgGPRs,
10880                                 int &NeededArgFPRs) const;
10881   ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
10882                                                CharUnits Field1Off,
10883                                                llvm::Type *Field2Ty,
10884                                                CharUnits Field2Off) const;
10885 };
10886 } // end anonymous namespace
10887 
10888 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
10889   QualType RetTy = FI.getReturnType();
10890   if (!getCXXABI().classifyReturnType(FI))
10891     FI.getReturnInfo() = classifyReturnType(RetTy);
10892 
10893   // IsRetIndirect is true if classifyArgumentType indicated the value should
10894   // be passed indirect, or if the type size is a scalar greater than 2*XLen
10895   // and not a complex type with elements <= FLen. e.g. fp128 is passed direct
10896   // in LLVM IR, relying on the backend lowering code to rewrite the argument
10897   // list and pass indirectly on RV32.
10898   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
10899   if (!IsRetIndirect && RetTy->isScalarType() &&
10900       getContext().getTypeSize(RetTy) > (2 * XLen)) {
10901     if (RetTy->isComplexType() && FLen) {
10902       QualType EltTy = RetTy->castAs<ComplexType>()->getElementType();
10903       IsRetIndirect = getContext().getTypeSize(EltTy) > FLen;
10904     } else {
10905       // This is a normal scalar > 2*XLen, such as fp128 on RV32.
10906       IsRetIndirect = true;
10907     }
10908   }
10909 
10910   // We must track the number of GPRs used in order to conform to the RISC-V
10911   // ABI, as integer scalars passed in registers should have signext/zeroext
10912   // when promoted, but are anyext if passed on the stack. As GPR usage is
10913   // different for variadic arguments, we must also track whether we are
10914   // examining a vararg or not.
10915   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
10916   int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
10917   int NumFixedArgs = FI.getNumRequiredArgs();
10918 
10919   int ArgNum = 0;
10920   for (auto &ArgInfo : FI.arguments()) {
10921     bool IsFixed = ArgNum < NumFixedArgs;
10922     ArgInfo.info =
10923         classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft);
10924     ArgNum++;
10925   }
10926 }
10927 
10928 // Returns true if the struct is a potential candidate for the floating point
10929 // calling convention. If this function returns true, the caller is
10930 // responsible for checking that if there is only a single field then that
10931 // field is a float.
10932 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10933                                                   llvm::Type *&Field1Ty,
10934                                                   CharUnits &Field1Off,
10935                                                   llvm::Type *&Field2Ty,
10936                                                   CharUnits &Field2Off) const {
10937   bool IsInt = Ty->isIntegralOrEnumerationType();
10938   bool IsFloat = Ty->isRealFloatingType();
10939 
10940   if (IsInt || IsFloat) {
10941     uint64_t Size = getContext().getTypeSize(Ty);
10942     if (IsInt && Size > XLen)
10943       return false;
10944     // Can't be eligible if larger than the FP registers. Half precision isn't
10945     // currently supported on RISC-V and the ABI hasn't been confirmed, so
10946     // default to the integer ABI in that case.
10947     if (IsFloat && (Size > FLen || Size < 32))
10948       return false;
10949     // Can't be eligible if an integer type was already found (int+int pairs
10950     // are not eligible).
10951     if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
10952       return false;
10953     if (!Field1Ty) {
10954       Field1Ty = CGT.ConvertType(Ty);
10955       Field1Off = CurOff;
10956       return true;
10957     }
10958     if (!Field2Ty) {
10959       Field2Ty = CGT.ConvertType(Ty);
10960       Field2Off = CurOff;
10961       return true;
10962     }
10963     return false;
10964   }
10965 
10966   if (auto CTy = Ty->getAs<ComplexType>()) {
10967     if (Field1Ty)
10968       return false;
10969     QualType EltTy = CTy->getElementType();
10970     if (getContext().getTypeSize(EltTy) > FLen)
10971       return false;
10972     Field1Ty = CGT.ConvertType(EltTy);
10973     Field1Off = CurOff;
10974     Field2Ty = Field1Ty;
10975     Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
10976     return true;
10977   }
10978 
10979   if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
10980     uint64_t ArraySize = ATy->getSize().getZExtValue();
10981     QualType EltTy = ATy->getElementType();
10982     CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
10983     for (uint64_t i = 0; i < ArraySize; ++i) {
10984       bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty,
10985                                                 Field1Off, Field2Ty, Field2Off);
10986       if (!Ret)
10987         return false;
10988       CurOff += EltSize;
10989     }
10990     return true;
10991   }
10992 
10993   if (const auto *RTy = Ty->getAs<RecordType>()) {
10994     // Structures with either a non-trivial destructor or a non-trivial
10995     // copy constructor are not eligible for the FP calling convention.
10996     if (getRecordArgABI(Ty, CGT.getCXXABI()))
10997       return false;
10998     if (isEmptyRecord(getContext(), Ty, true))
10999       return true;
11000     const RecordDecl *RD = RTy->getDecl();
11001     // Unions aren't eligible unless they're empty (which is caught above).
11002     if (RD->isUnion())
11003       return false;
11004     int ZeroWidthBitFieldCount = 0;
11005     for (const FieldDecl *FD : RD->fields()) {
11006       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
11007       uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex());
11008       QualType QTy = FD->getType();
11009       if (FD->isBitField()) {
11010         unsigned BitWidth = FD->getBitWidthValue(getContext());
11011         // Allow a bitfield with a type greater than XLen as long as the
11012         // bitwidth is XLen or less.
11013         if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
11014           QTy = getContext().getIntTypeForBitwidth(XLen, false);
11015         if (BitWidth == 0) {
11016           ZeroWidthBitFieldCount++;
11017           continue;
11018         }
11019       }
11020 
11021       bool Ret = detectFPCCEligibleStructHelper(
11022           QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
11023           Field1Ty, Field1Off, Field2Ty, Field2Off);
11024       if (!Ret)
11025         return false;
11026 
11027       // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp
11028       // or int+fp structs, but are ignored for a struct with an fp field and
11029       // any number of zero-width bitfields.
11030       if (Field2Ty && ZeroWidthBitFieldCount > 0)
11031         return false;
11032     }
11033     return Field1Ty != nullptr;
11034   }
11035 
11036   return false;
11037 }
11038 
11039 // Determine if a struct is eligible for passing according to the floating
11040 // point calling convention (i.e., when flattened it contains a single fp
11041 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
11042 // NeededArgGPRs are incremented appropriately.
11043 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
11044                                             CharUnits &Field1Off,
11045                                             llvm::Type *&Field2Ty,
11046                                             CharUnits &Field2Off,
11047                                             int &NeededArgGPRs,
11048                                             int &NeededArgFPRs) const {
11049   Field1Ty = nullptr;
11050   Field2Ty = nullptr;
11051   NeededArgGPRs = 0;
11052   NeededArgFPRs = 0;
11053   bool IsCandidate = detectFPCCEligibleStructHelper(
11054       Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
11055   // Not really a candidate if we have a single int but no float.
11056   if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
11057     return false;
11058   if (!IsCandidate)
11059     return false;
11060   if (Field1Ty && Field1Ty->isFloatingPointTy())
11061     NeededArgFPRs++;
11062   else if (Field1Ty)
11063     NeededArgGPRs++;
11064   if (Field2Ty && Field2Ty->isFloatingPointTy())
11065     NeededArgFPRs++;
11066   else if (Field2Ty)
11067     NeededArgGPRs++;
11068   return true;
11069 }
11070 
11071 // Call getCoerceAndExpand for the two-element flattened struct described by
11072 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
11073 // appropriate coerceToType and unpaddedCoerceToType.
11074 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
11075     llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
11076     CharUnits Field2Off) const {
11077   SmallVector<llvm::Type *, 3> CoerceElts;
11078   SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
11079   if (!Field1Off.isZero())
11080     CoerceElts.push_back(llvm::ArrayType::get(
11081         llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
11082 
11083   CoerceElts.push_back(Field1Ty);
11084   UnpaddedCoerceElts.push_back(Field1Ty);
11085 
11086   if (!Field2Ty) {
11087     return ABIArgInfo::getCoerceAndExpand(
11088         llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
11089         UnpaddedCoerceElts[0]);
11090   }
11091 
11092   CharUnits Field2Align =
11093       CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty));
11094   CharUnits Field1End = Field1Off +
11095       CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
11096   CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align);
11097 
11098   CharUnits Padding = CharUnits::Zero();
11099   if (Field2Off > Field2OffNoPadNoPack)
11100     Padding = Field2Off - Field2OffNoPadNoPack;
11101   else if (Field2Off != Field2Align && Field2Off > Field1End)
11102     Padding = Field2Off - Field1End;
11103 
11104   bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
11105 
11106   if (!Padding.isZero())
11107     CoerceElts.push_back(llvm::ArrayType::get(
11108         llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
11109 
11110   CoerceElts.push_back(Field2Ty);
11111   UnpaddedCoerceElts.push_back(Field2Ty);
11112 
11113   auto CoerceToType =
11114       llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
11115   auto UnpaddedCoerceToType =
11116       llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);
11117 
11118   return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
11119 }
11120 
11121 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
11122                                               int &ArgGPRsLeft,
11123                                               int &ArgFPRsLeft) const {
11124   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
11125   Ty = useFirstFieldIfTransparentUnion(Ty);
11126 
11127   // Structures with either a non-trivial destructor or a non-trivial
11128   // copy constructor are always passed indirectly.
11129   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
11130     if (ArgGPRsLeft)
11131       ArgGPRsLeft -= 1;
11132     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
11133                                            CGCXXABI::RAA_DirectInMemory);
11134   }
11135 
11136   // Ignore empty structs/unions.
11137   if (isEmptyRecord(getContext(), Ty, true))
11138     return ABIArgInfo::getIgnore();
11139 
11140   uint64_t Size = getContext().getTypeSize(Ty);
11141 
11142   // Pass floating point values via FPRs if possible.
11143   if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() &&
11144       FLen >= Size && ArgFPRsLeft) {
11145     ArgFPRsLeft--;
11146     return ABIArgInfo::getDirect();
11147   }
11148 
11149   // Complex types for the hard float ABI must be passed direct rather than
11150   // using CoerceAndExpand.
11151   if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
11152     QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
11153     if (getContext().getTypeSize(EltTy) <= FLen) {
11154       ArgFPRsLeft -= 2;
11155       return ABIArgInfo::getDirect();
11156     }
11157   }
11158 
11159   if (IsFixed && FLen && Ty->isStructureOrClassType()) {
11160     llvm::Type *Field1Ty = nullptr;
11161     llvm::Type *Field2Ty = nullptr;
11162     CharUnits Field1Off = CharUnits::Zero();
11163     CharUnits Field2Off = CharUnits::Zero();
11164     int NeededArgGPRs = 0;
11165     int NeededArgFPRs = 0;
11166     bool IsCandidate =
11167         detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off,
11168                                  NeededArgGPRs, NeededArgFPRs);
11169     if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
11170         NeededArgFPRs <= ArgFPRsLeft) {
11171       ArgGPRsLeft -= NeededArgGPRs;
11172       ArgFPRsLeft -= NeededArgFPRs;
11173       return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty,
11174                                                Field2Off);
11175     }
11176   }
11177 
11178   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
11179   bool MustUseStack = false;
11180   // Determine the number of GPRs needed to pass the current argument
11181   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
11182   // register pairs, so may consume 3 registers.
11183   int NeededArgGPRs = 1;
11184   if (!IsFixed && NeededAlign == 2 * XLen)
11185     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
11186   else if (Size > XLen && Size <= 2 * XLen)
11187     NeededArgGPRs = 2;
11188 
11189   if (NeededArgGPRs > ArgGPRsLeft) {
11190     MustUseStack = true;
11191     NeededArgGPRs = ArgGPRsLeft;
11192   }
11193 
11194   ArgGPRsLeft -= NeededArgGPRs;
11195 
11196   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
11197     // Treat an enum type as its underlying type.
11198     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
11199       Ty = EnumTy->getDecl()->getIntegerType();
11200 
11201     // All integral types are promoted to XLen width, unless passed on the
11202     // stack.
11203     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
11204       return extendType(Ty);
11205     }
11206 
11207     if (const auto *EIT = Ty->getAs<BitIntType>()) {
11208       if (EIT->getNumBits() < XLen && !MustUseStack)
11209         return extendType(Ty);
11210       if (EIT->getNumBits() > 128 ||
11211           (!getContext().getTargetInfo().hasInt128Type() &&
11212            EIT->getNumBits() > 64))
11213         return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
11214     }
11215 
11216     return ABIArgInfo::getDirect();
11217   }
11218 
11219   // Aggregates which are <= 2*XLen will be passed in registers if possible,
11220   // so coerce to integers.
11221   if (Size <= 2 * XLen) {
11222     unsigned Alignment = getContext().getTypeAlign(Ty);
11223 
11224     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
11225     // required, and a 2-element XLen array if only XLen alignment is required.
11226     if (Size <= XLen) {
11227       return ABIArgInfo::getDirect(
11228           llvm::IntegerType::get(getVMContext(), XLen));
11229     } else if (Alignment == 2 * XLen) {
11230       return ABIArgInfo::getDirect(
11231           llvm::IntegerType::get(getVMContext(), 2 * XLen));
11232     } else {
11233       return ABIArgInfo::getDirect(llvm::ArrayType::get(
11234           llvm::IntegerType::get(getVMContext(), XLen), 2));
11235     }
11236   }
11237   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
11238 }
11239 
11240 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
11241   if (RetTy->isVoidType())
11242     return ABIArgInfo::getIgnore();
11243 
11244   int ArgGPRsLeft = 2;
11245   int ArgFPRsLeft = FLen ? 2 : 0;
11246 
11247   // The rules for return and argument types are the same, so defer to
11248   // classifyArgumentType.
11249   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
11250                               ArgFPRsLeft);
11251 }
11252 
11253 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
11254                                 QualType Ty) const {
11255   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
11256 
11257   // Empty records are ignored for parameter passing purposes.
11258   if (isEmptyRecord(getContext(), Ty, true)) {
11259     Address Addr = Address(CGF.Builder.CreateLoad(VAListAddr),
11260                            getVAListElementType(CGF), SlotSize);
11261     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
11262     return Addr;
11263   }
11264 
11265   auto TInfo = getContext().getTypeInfoInChars(Ty);
11266 
11267   // Arguments bigger than 2*Xlen bytes are passed indirectly.
11268   bool IsIndirect = TInfo.Width > 2 * SlotSize;
11269 
11270   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo,
11271                           SlotSize, /*AllowHigherAlign=*/true);
11272 }
11273 
11274 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
11275   int TySize = getContext().getTypeSize(Ty);
11276   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
11277   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
11278     return ABIArgInfo::getSignExtend(Ty);
11279   return ABIArgInfo::getExtend(Ty);
11280 }
11281 
11282 namespace {
11283 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
11284 public:
11285   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
11286                          unsigned FLen)
11287       : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {}
11288 
11289   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
11290                            CodeGen::CodeGenModule &CGM) const override {
11291     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
11292     if (!FD) return;
11293 
11294     const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
11295     if (!Attr)
11296       return;
11297 
11298     const char *Kind;
11299     switch (Attr->getInterrupt()) {
11300     case RISCVInterruptAttr::user: Kind = "user"; break;
11301     case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
11302     case RISCVInterruptAttr::machine: Kind = "machine"; break;
11303     }
11304 
11305     auto *Fn = cast<llvm::Function>(GV);
11306 
11307     Fn->addFnAttr("interrupt", Kind);
11308   }
11309 };
11310 } // namespace
11311 
11312 //===----------------------------------------------------------------------===//
11313 // VE ABI Implementation.
11314 //
11315 namespace {
11316 class VEABIInfo : public DefaultABIInfo {
11317 public:
11318   VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
11319 
11320 private:
11321   ABIArgInfo classifyReturnType(QualType RetTy) const;
11322   ABIArgInfo classifyArgumentType(QualType RetTy) const;
11323   void computeInfo(CGFunctionInfo &FI) const override;
11324 };
11325 } // end anonymous namespace
11326 
11327 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const {
11328   if (Ty->isAnyComplexType())
11329     return ABIArgInfo::getDirect();
11330   uint64_t Size = getContext().getTypeSize(Ty);
11331   if (Size < 64 && Ty->isIntegerType())
11332     return ABIArgInfo::getExtend(Ty);
11333   return DefaultABIInfo::classifyReturnType(Ty);
11334 }
11335 
11336 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const {
11337   if (Ty->isAnyComplexType())
11338     return ABIArgInfo::getDirect();
11339   uint64_t Size = getContext().getTypeSize(Ty);
11340   if (Size < 64 && Ty->isIntegerType())
11341     return ABIArgInfo::getExtend(Ty);
11342   return DefaultABIInfo::classifyArgumentType(Ty);
11343 }
11344 
11345 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const {
11346   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
11347   for (auto &Arg : FI.arguments())
11348     Arg.info = classifyArgumentType(Arg.type);
11349 }
11350 
11351 namespace {
11352 class VETargetCodeGenInfo : public TargetCodeGenInfo {
11353 public:
11354   VETargetCodeGenInfo(CodeGenTypes &CGT)
11355       : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {}
11356   // VE ABI requires the arguments of variadic and prototype-less functions
11357   // are passed in both registers and memory.
11358   bool isNoProtoCallVariadic(const CallArgList &args,
11359                              const FunctionNoProtoType *fnType) const override {
11360     return true;
11361   }
11362 };
11363 } // end anonymous namespace
11364 
11365 //===----------------------------------------------------------------------===//
11366 // CSKY ABI Implementation
11367 //===----------------------------------------------------------------------===//
11368 namespace {
11369 class CSKYABIInfo : public DefaultABIInfo {
11370   static const int NumArgGPRs = 4;
11371   static const int NumArgFPRs = 4;
11372 
11373   static const unsigned XLen = 32;
11374   unsigned FLen;
11375 
11376 public:
11377   CSKYABIInfo(CodeGen::CodeGenTypes &CGT, unsigned FLen)
11378       : DefaultABIInfo(CGT), FLen(FLen) {}
11379 
11380   void computeInfo(CGFunctionInfo &FI) const override;
11381   ABIArgInfo classifyArgumentType(QualType Ty, int &ArgGPRsLeft,
11382                                   int &ArgFPRsLeft,
11383                                   bool isReturnType = false) const;
11384   ABIArgInfo classifyReturnType(QualType RetTy) const;
11385 
11386   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
11387                     QualType Ty) const override;
11388 };
11389 
11390 } // end anonymous namespace
11391 
11392 void CSKYABIInfo::computeInfo(CGFunctionInfo &FI) const {
11393   QualType RetTy = FI.getReturnType();
11394   if (!getCXXABI().classifyReturnType(FI))
11395     FI.getReturnInfo() = classifyReturnType(RetTy);
11396 
11397   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
11398 
11399   // We must track the number of GPRs used in order to conform to the CSKY
11400   // ABI, as integer scalars passed in registers should have signext/zeroext
11401   // when promoted.
11402   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
11403   int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
11404 
11405   for (auto &ArgInfo : FI.arguments()) {
11406     ArgInfo.info = classifyArgumentType(ArgInfo.type, ArgGPRsLeft, ArgFPRsLeft);
11407   }
11408 }
11409 
11410 Address CSKYABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
11411                                QualType Ty) const {
11412   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
11413 
11414   // Empty records are ignored for parameter passing purposes.
11415   if (isEmptyRecord(getContext(), Ty, true)) {
11416     Address Addr = Address(CGF.Builder.CreateLoad(VAListAddr),
11417                            getVAListElementType(CGF), SlotSize);
11418     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
11419     return Addr;
11420   }
11421 
11422   auto TInfo = getContext().getTypeInfoInChars(Ty);
11423 
11424   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, false, TInfo, SlotSize,
11425                           /*AllowHigherAlign=*/true);
11426 }
11427 
11428 ABIArgInfo CSKYABIInfo::classifyArgumentType(QualType Ty, int &ArgGPRsLeft,
11429                                              int &ArgFPRsLeft,
11430                                              bool isReturnType) const {
11431   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
11432   Ty = useFirstFieldIfTransparentUnion(Ty);
11433 
11434   // Structures with either a non-trivial destructor or a non-trivial
11435   // copy constructor are always passed indirectly.
11436   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
11437     if (ArgGPRsLeft)
11438       ArgGPRsLeft -= 1;
11439     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
11440                                            CGCXXABI::RAA_DirectInMemory);
11441   }
11442 
11443   // Ignore empty structs/unions.
11444   if (isEmptyRecord(getContext(), Ty, true))
11445     return ABIArgInfo::getIgnore();
11446 
11447   if (!Ty->getAsUnionType())
11448     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
11449       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
11450 
11451   uint64_t Size = getContext().getTypeSize(Ty);
11452   // Pass floating point values via FPRs if possible.
11453   if (Ty->isFloatingType() && !Ty->isComplexType() && FLen >= Size &&
11454       ArgFPRsLeft) {
11455     ArgFPRsLeft--;
11456     return ABIArgInfo::getDirect();
11457   }
11458 
11459   // Complex types for the hard float ABI must be passed direct rather than
11460   // using CoerceAndExpand.
11461   if (Ty->isComplexType() && FLen && !isReturnType) {
11462     QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
11463     if (getContext().getTypeSize(EltTy) <= FLen) {
11464       ArgFPRsLeft -= 2;
11465       return ABIArgInfo::getDirect();
11466     }
11467   }
11468 
11469   if (!isAggregateTypeForABI(Ty)) {
11470     // Treat an enum type as its underlying type.
11471     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
11472       Ty = EnumTy->getDecl()->getIntegerType();
11473 
11474     // All integral types are promoted to XLen width, unless passed on the
11475     // stack.
11476     if (Size < XLen && Ty->isIntegralOrEnumerationType())
11477       return ABIArgInfo::getExtend(Ty);
11478 
11479     if (const auto *EIT = Ty->getAs<BitIntType>()) {
11480       if (EIT->getNumBits() < XLen)
11481         return ABIArgInfo::getExtend(Ty);
11482     }
11483 
11484     return ABIArgInfo::getDirect();
11485   }
11486 
11487   // For argument type, the first 4*XLen parts of aggregate will be passed
11488   // in registers, and the rest will be passed in stack.
11489   // So we can coerce to integers directly and let backend handle it correctly.
11490   // For return type, aggregate which <= 2*XLen will be returned in registers.
11491   // Otherwise, aggregate will be returned indirectly.
11492   if (!isReturnType || (isReturnType && Size <= 2 * XLen)) {
11493     if (Size <= XLen) {
11494       return ABIArgInfo::getDirect(
11495           llvm::IntegerType::get(getVMContext(), XLen));
11496     } else {
11497       return ABIArgInfo::getDirect(llvm::ArrayType::get(
11498           llvm::IntegerType::get(getVMContext(), XLen), (Size + 31) / XLen));
11499     }
11500   }
11501   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
11502 }
11503 
11504 ABIArgInfo CSKYABIInfo::classifyReturnType(QualType RetTy) const {
11505   if (RetTy->isVoidType())
11506     return ABIArgInfo::getIgnore();
11507 
11508   int ArgGPRsLeft = 2;
11509   int ArgFPRsLeft = FLen ? 1 : 0;
11510 
11511   // The rules for return and argument types are the same, so defer to
11512   // classifyArgumentType.
11513   return classifyArgumentType(RetTy, ArgGPRsLeft, ArgFPRsLeft, true);
11514 }
11515 
11516 namespace {
11517 class CSKYTargetCodeGenInfo : public TargetCodeGenInfo {
11518 public:
11519   CSKYTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned FLen)
11520       : TargetCodeGenInfo(std::make_unique<CSKYABIInfo>(CGT, FLen)) {}
11521 };
11522 } // end anonymous namespace
11523 
11524 //===----------------------------------------------------------------------===//
11525 // Driver code
11526 //===----------------------------------------------------------------------===//
11527 
11528 bool CodeGenModule::supportsCOMDAT() const {
11529   return getTriple().supportsCOMDAT();
11530 }
11531 
11532 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
11533   if (TheTargetCodeGenInfo)
11534     return *TheTargetCodeGenInfo;
11535 
11536   // Helper to set the unique_ptr while still keeping the return value.
11537   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
11538     this->TheTargetCodeGenInfo.reset(P);
11539     return *P;
11540   };
11541 
11542   const llvm::Triple &Triple = getTarget().getTriple();
11543   switch (Triple.getArch()) {
11544   default:
11545     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
11546 
11547   case llvm::Triple::le32:
11548     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
11549   case llvm::Triple::m68k:
11550     return SetCGInfo(new M68kTargetCodeGenInfo(Types));
11551   case llvm::Triple::mips:
11552   case llvm::Triple::mipsel:
11553     if (Triple.getOS() == llvm::Triple::NaCl)
11554       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
11555     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
11556 
11557   case llvm::Triple::mips64:
11558   case llvm::Triple::mips64el:
11559     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
11560 
11561   case llvm::Triple::avr: {
11562     // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
11563     // on avrtiny. For passing return value, R18~R25 are used on avr, and
11564     // R22~R25 are used on avrtiny.
11565     unsigned NPR = getTarget().getABI() == "avrtiny" ? 6 : 18;
11566     unsigned NRR = getTarget().getABI() == "avrtiny" ? 4 : 8;
11567     return SetCGInfo(new AVRTargetCodeGenInfo(Types, NPR, NRR));
11568   }
11569 
11570   case llvm::Triple::aarch64:
11571   case llvm::Triple::aarch64_32:
11572   case llvm::Triple::aarch64_be: {
11573     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
11574     if (getTarget().getABI() == "darwinpcs")
11575       Kind = AArch64ABIInfo::DarwinPCS;
11576     else if (Triple.isOSWindows())
11577       return SetCGInfo(
11578           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
11579 
11580     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
11581   }
11582 
11583   case llvm::Triple::wasm32:
11584   case llvm::Triple::wasm64: {
11585     WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP;
11586     if (getTarget().getABI() == "experimental-mv")
11587       Kind = WebAssemblyABIInfo::ExperimentalMV;
11588     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind));
11589   }
11590 
11591   case llvm::Triple::arm:
11592   case llvm::Triple::armeb:
11593   case llvm::Triple::thumb:
11594   case llvm::Triple::thumbeb: {
11595     if (Triple.getOS() == llvm::Triple::Win32) {
11596       return SetCGInfo(
11597           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
11598     }
11599 
11600     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
11601     StringRef ABIStr = getTarget().getABI();
11602     if (ABIStr == "apcs-gnu")
11603       Kind = ARMABIInfo::APCS;
11604     else if (ABIStr == "aapcs16")
11605       Kind = ARMABIInfo::AAPCS16_VFP;
11606     else if (CodeGenOpts.FloatABI == "hard" ||
11607              (CodeGenOpts.FloatABI != "soft" &&
11608               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
11609                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
11610                Triple.getEnvironment() == llvm::Triple::EABIHF)))
11611       Kind = ARMABIInfo::AAPCS_VFP;
11612 
11613     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
11614   }
11615 
11616   case llvm::Triple::ppc: {
11617     if (Triple.isOSAIX())
11618       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false));
11619 
11620     bool IsSoftFloat =
11621         CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe");
11622     bool RetSmallStructInRegABI =
11623         PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
11624     return SetCGInfo(
11625         new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI));
11626   }
11627   case llvm::Triple::ppcle: {
11628     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
11629     bool RetSmallStructInRegABI =
11630         PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
11631     return SetCGInfo(
11632         new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI));
11633   }
11634   case llvm::Triple::ppc64:
11635     if (Triple.isOSAIX())
11636       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true));
11637 
11638     if (Triple.isOSBinFormatELF()) {
11639       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
11640       if (getTarget().getABI() == "elfv2")
11641         Kind = PPC64_SVR4_ABIInfo::ELFv2;
11642       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
11643 
11644       return SetCGInfo(
11645           new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat));
11646     }
11647     return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
11648   case llvm::Triple::ppc64le: {
11649     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
11650     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
11651     if (getTarget().getABI() == "elfv1")
11652       Kind = PPC64_SVR4_ABIInfo::ELFv1;
11653     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
11654 
11655     return SetCGInfo(
11656         new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat));
11657   }
11658 
11659   case llvm::Triple::nvptx:
11660   case llvm::Triple::nvptx64:
11661     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
11662 
11663   case llvm::Triple::msp430:
11664     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
11665 
11666   case llvm::Triple::riscv32:
11667   case llvm::Triple::riscv64: {
11668     StringRef ABIStr = getTarget().getABI();
11669     unsigned XLen = getTarget().getPointerWidth(0);
11670     unsigned ABIFLen = 0;
11671     if (ABIStr.endswith("f"))
11672       ABIFLen = 32;
11673     else if (ABIStr.endswith("d"))
11674       ABIFLen = 64;
11675     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen));
11676   }
11677 
11678   case llvm::Triple::systemz: {
11679     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
11680     bool HasVector = !SoftFloat && getTarget().getABI() == "vector";
11681     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat));
11682   }
11683 
11684   case llvm::Triple::tce:
11685   case llvm::Triple::tcele:
11686     return SetCGInfo(new TCETargetCodeGenInfo(Types));
11687 
11688   case llvm::Triple::x86: {
11689     bool IsDarwinVectorABI = Triple.isOSDarwin();
11690     bool RetSmallStructInRegABI =
11691         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
11692     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
11693 
11694     if (Triple.getOS() == llvm::Triple::Win32) {
11695       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
11696           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
11697           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
11698     } else {
11699       return SetCGInfo(new X86_32TargetCodeGenInfo(
11700           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
11701           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
11702           CodeGenOpts.FloatABI == "soft"));
11703     }
11704   }
11705 
11706   case llvm::Triple::x86_64: {
11707     StringRef ABI = getTarget().getABI();
11708     X86AVXABILevel AVXLevel =
11709         (ABI == "avx512"
11710              ? X86AVXABILevel::AVX512
11711              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
11712 
11713     switch (Triple.getOS()) {
11714     case llvm::Triple::Win32:
11715       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
11716     default:
11717       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
11718     }
11719   }
11720   case llvm::Triple::hexagon:
11721     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
11722   case llvm::Triple::lanai:
11723     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
11724   case llvm::Triple::r600:
11725     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
11726   case llvm::Triple::amdgcn:
11727     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
11728   case llvm::Triple::sparc:
11729     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
11730   case llvm::Triple::sparcv9:
11731     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
11732   case llvm::Triple::xcore:
11733     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
11734   case llvm::Triple::arc:
11735     return SetCGInfo(new ARCTargetCodeGenInfo(Types));
11736   case llvm::Triple::spir:
11737   case llvm::Triple::spir64:
11738     return SetCGInfo(new CommonSPIRTargetCodeGenInfo(Types));
11739   case llvm::Triple::spirv32:
11740   case llvm::Triple::spirv64:
11741     return SetCGInfo(new SPIRVTargetCodeGenInfo(Types));
11742   case llvm::Triple::ve:
11743     return SetCGInfo(new VETargetCodeGenInfo(Types));
11744   case llvm::Triple::csky: {
11745     bool IsSoftFloat = !getTarget().hasFeature("hard-float-abi");
11746     bool hasFP64 = getTarget().hasFeature("fpuv2_df") ||
11747                    getTarget().hasFeature("fpuv3_df");
11748     return SetCGInfo(new CSKYTargetCodeGenInfo(Types, IsSoftFloat ? 0
11749                                                       : hasFP64   ? 64
11750                                                                   : 32));
11751   }
11752   }
11753 }
11754 
11755 /// Create an OpenCL kernel for an enqueued block.
11756 ///
11757 /// The kernel has the same function type as the block invoke function. Its
11758 /// name is the name of the block invoke function postfixed with "_kernel".
11759 /// It simply calls the block invoke function then returns.
11760 llvm::Function *
11761 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
11762                                              llvm::Function *Invoke,
11763                                              llvm::Type *BlockTy) const {
11764   auto *InvokeFT = Invoke->getFunctionType();
11765   auto &C = CGF.getLLVMContext();
11766   std::string Name = Invoke->getName().str() + "_kernel";
11767   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C),
11768                                      InvokeFT->params(), false);
11769   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::ExternalLinkage, Name,
11770                                    &CGF.CGM.getModule());
11771   auto IP = CGF.Builder.saveIP();
11772   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11773   auto &Builder = CGF.Builder;
11774   Builder.SetInsertPoint(BB);
11775   llvm::SmallVector<llvm::Value *, 2> Args(llvm::make_pointer_range(F->args()));
11776   llvm::CallInst *call = Builder.CreateCall(Invoke, Args);
11777   call->setCallingConv(Invoke->getCallingConv());
11778   Builder.CreateRetVoid();
11779   Builder.restoreIP(IP);
11780   return F;
11781 }
11782 
11783 /// Create an OpenCL kernel for an enqueued block.
11784 ///
11785 /// The type of the first argument (the block literal) is the struct type
11786 /// of the block literal instead of a pointer type. The first argument
11787 /// (block literal) is passed directly by value to the kernel. The kernel
11788 /// allocates the same type of struct on stack and stores the block literal
11789 /// to it and passes its pointer to the block invoke function. The kernel
11790 /// has "enqueued-block" function attribute and kernel argument metadata.
11791 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
11792     CodeGenFunction &CGF, llvm::Function *Invoke,
11793     llvm::Type *BlockTy) const {
11794   auto &Builder = CGF.Builder;
11795   auto &C = CGF.getLLVMContext();
11796 
11797   auto *InvokeFT = Invoke->getFunctionType();
11798   llvm::SmallVector<llvm::Type *, 2> ArgTys;
11799   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
11800   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
11801   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
11802   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
11803   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
11804   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
11805 
11806   ArgTys.push_back(BlockTy);
11807   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11808   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
11809   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11810   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11811   AccessQuals.push_back(llvm::MDString::get(C, "none"));
11812   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
11813   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
11814     ArgTys.push_back(InvokeFT->getParamType(I));
11815     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
11816     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
11817     AccessQuals.push_back(llvm::MDString::get(C, "none"));
11818     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
11819     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11820     ArgNames.push_back(
11821         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
11822   }
11823   std::string Name = Invoke->getName().str() + "_kernel";
11824   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
11825   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
11826                                    &CGF.CGM.getModule());
11827   F->addFnAttr("enqueued-block");
11828   auto IP = CGF.Builder.saveIP();
11829   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11830   Builder.SetInsertPoint(BB);
11831   const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy);
11832   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
11833   BlockPtr->setAlignment(BlockAlign);
11834   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
11835   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
11836   llvm::SmallVector<llvm::Value *, 2> Args;
11837   Args.push_back(Cast);
11838   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
11839     Args.push_back(I);
11840   llvm::CallInst *call = Builder.CreateCall(Invoke, Args);
11841   call->setCallingConv(Invoke->getCallingConv());
11842   Builder.CreateRetVoid();
11843   Builder.restoreIP(IP);
11844 
11845   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
11846   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
11847   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
11848   F->setMetadata("kernel_arg_base_type",
11849                  llvm::MDNode::get(C, ArgBaseTypeNames));
11850   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
11851   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
11852     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
11853 
11854   return F;
11855 }
11856