1 //===---- TargetInfo.h - Encapsulate target details -------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_TARGETINFO_H
15 #define LLVM_CLANG_LIB_CODEGEN_TARGETINFO_H
16 
17 #include "CGBuilder.h"
18 #include "CodeGenModule.h"
19 #include "CGValue.h"
20 #include "clang/AST/Type.h"
21 #include "clang/Basic/LLVM.h"
22 #include "clang/Basic/SyncScope.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/StringRef.h"
25 
26 namespace llvm {
27 class Constant;
28 class GlobalValue;
29 class Type;
30 class Value;
31 }
32 
33 namespace clang {
34 class Decl;
35 
36 namespace CodeGen {
37 class ABIInfo;
38 class CallArgList;
39 class CodeGenFunction;
40 class CGBlockInfo;
41 class SwiftABIInfo;
42 
43 /// TargetCodeGenInfo - This class organizes various target-specific
44 /// codegeneration issues, like target-specific attributes, builtins and so
45 /// on.
46 class TargetCodeGenInfo {
47   std::unique_ptr<ABIInfo> Info;
48 
49 protected:
50   // Target hooks supporting Swift calling conventions. The target must
51   // initialize this field if it claims to support these calling conventions
52   // by returning true from TargetInfo::checkCallingConvention for them.
53   std::unique_ptr<SwiftABIInfo> SwiftInfo;
54 
55   // Returns ABI info helper for the target. This is for use by derived classes.
56   template <typename T> const T &getABIInfo() const {
57     return static_cast<const T &>(*Info);
58   }
59 
60 public:
61   TargetCodeGenInfo(std::unique_ptr<ABIInfo> Info);
62   virtual ~TargetCodeGenInfo();
63 
64   /// getABIInfo() - Returns ABI info helper for the target.
65   const ABIInfo &getABIInfo() const { return *Info; }
66 
67   /// Returns Swift ABI info helper for the target.
68   const SwiftABIInfo &getSwiftABIInfo() const {
69     assert(SwiftInfo && "Swift ABI info has not been initialized");
70     return *SwiftInfo;
71   }
72 
73   /// setTargetAttributes - Provides a convenient hook to handle extra
74   /// target-specific attributes for the given global.
75   virtual void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
76                                    CodeGen::CodeGenModule &M) const {}
77 
78   /// emitTargetMetadata - Provides a convenient hook to handle extra
79   /// target-specific metadata for the given globals.
80   virtual void emitTargetMetadata(
81       CodeGen::CodeGenModule &CGM,
82       const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const {}
83 
84   /// Any further codegen related checks that need to be done on a function call
85   /// in a target specific manner.
86   virtual void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
87                                     const FunctionDecl *Caller,
88                                     const FunctionDecl *Callee,
89                                     const CallArgList &Args) const {}
90 
91   /// Determines the size of struct _Unwind_Exception on this platform,
92   /// in 8-bit units.  The Itanium ABI defines this as:
93   ///   struct _Unwind_Exception {
94   ///     uint64 exception_class;
95   ///     _Unwind_Exception_Cleanup_Fn exception_cleanup;
96   ///     uint64 private_1;
97   ///     uint64 private_2;
98   ///   };
99   virtual unsigned getSizeOfUnwindException() const;
100 
101   /// Controls whether __builtin_extend_pointer should sign-extend
102   /// pointers to uint64_t or zero-extend them (the default).  Has
103   /// no effect for targets:
104   ///   - that have 64-bit pointers, or
105   ///   - that cannot address through registers larger than pointers, or
106   ///   - that implicitly ignore/truncate the top bits when addressing
107   ///     through such registers.
108   virtual bool extendPointerWithSExt() const { return false; }
109 
110   /// Determines the DWARF register number for the stack pointer, for
111   /// exception-handling purposes.  Implements __builtin_dwarf_sp_column.
112   ///
113   /// Returns -1 if the operation is unsupported by this target.
114   virtual int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
115     return -1;
116   }
117 
118   /// Initializes the given DWARF EH register-size table, a char*.
119   /// Implements __builtin_init_dwarf_reg_size_table.
120   ///
121   /// Returns true if the operation is unsupported by this target.
122   virtual bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
123                                        llvm::Value *Address) const {
124     return true;
125   }
126 
127   /// Performs the code-generation required to convert a return
128   /// address as stored by the system into the actual address of the
129   /// next instruction that will be executed.
130   ///
131   /// Used by __builtin_extract_return_addr().
132   virtual llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF,
133                                            llvm::Value *Address) const {
134     return Address;
135   }
136 
137   /// Performs the code-generation required to convert the address
138   /// of an instruction into a return address suitable for storage
139   /// by the system in a return slot.
140   ///
141   /// Used by __builtin_frob_return_addr().
142   virtual llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF,
143                                            llvm::Value *Address) const {
144     return Address;
145   }
146 
147   /// Performs a target specific test of a floating point value for things
148   /// like IsNaN, Infinity, ... Nullptr is returned if no implementation
149   /// exists.
150   virtual llvm::Value *
151   testFPKind(llvm::Value *V, unsigned BuiltinID, CGBuilderTy &Builder,
152              CodeGenModule &CGM) const {
153     assert(V->getType()->isFloatingPointTy() && "V should have an FP type.");
154     return nullptr;
155   }
156 
157   /// Corrects the low-level LLVM type for a given constraint and "usual"
158   /// type.
159   ///
160   /// \returns A pointer to a new LLVM type, possibly the same as the original
161   /// on success; 0 on failure.
162   virtual llvm::Type *adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
163                                           StringRef Constraint,
164                                           llvm::Type *Ty) const {
165     return Ty;
166   }
167 
168   /// Target hook to decide whether an inline asm operand can be passed
169   /// by value.
170   virtual bool isScalarizableAsmOperand(CodeGen::CodeGenFunction &CGF,
171                                         llvm::Type *Ty) const {
172     return false;
173   }
174 
175   /// Adds constraints and types for result registers.
176   virtual void addReturnRegisterOutputs(
177       CodeGen::CodeGenFunction &CGF, CodeGen::LValue ReturnValue,
178       std::string &Constraints, std::vector<llvm::Type *> &ResultRegTypes,
179       std::vector<llvm::Type *> &ResultTruncRegTypes,
180       std::vector<CodeGen::LValue> &ResultRegDests, std::string &AsmString,
181       unsigned NumOutputs) const {}
182 
183   /// doesReturnSlotInterfereWithArgs - Return true if the target uses an
184   /// argument slot for an 'sret' type.
185   virtual bool doesReturnSlotInterfereWithArgs() const { return true; }
186 
187   /// Retrieve the address of a function to call immediately before
188   /// calling objc_retainAutoreleasedReturnValue.  The
189   /// implementation of objc_autoreleaseReturnValue sniffs the
190   /// instruction stream following its return address to decide
191   /// whether it's a call to objc_retainAutoreleasedReturnValue.
192   /// This can be prohibitively expensive, depending on the
193   /// relocation model, and so on some targets it instead sniffs for
194   /// a particular instruction sequence.  This functions returns
195   /// that instruction sequence in inline assembly, which will be
196   /// empty if none is required.
197   virtual StringRef getARCRetainAutoreleasedReturnValueMarker() const {
198     return "";
199   }
200 
201   /// Determine whether a call to objc_retainAutoreleasedReturnValue or
202   /// objc_unsafeClaimAutoreleasedReturnValue should be marked as 'notail'.
203   virtual bool markARCOptimizedReturnCallsAsNoTail() const { return false; }
204 
205   /// Return a constant used by UBSan as a signature to identify functions
206   /// possessing type information, or 0 if the platform is unsupported.
207   /// This magic number is invalid instruction encoding in many targets.
208   virtual llvm::Constant *
209   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const {
210     return llvm::ConstantInt::get(CGM.Int32Ty, 0xc105cafe);
211   }
212 
213   /// Determine whether a call to an unprototyped functions under
214   /// the given calling convention should use the variadic
215   /// convention or the non-variadic convention.
216   ///
217   /// There's a good reason to make a platform's variadic calling
218   /// convention be different from its non-variadic calling
219   /// convention: the non-variadic arguments can be passed in
220   /// registers (better for performance), and the variadic arguments
221   /// can be passed on the stack (also better for performance).  If
222   /// this is done, however, unprototyped functions *must* use the
223   /// non-variadic convention, because C99 states that a call
224   /// through an unprototyped function type must succeed if the
225   /// function was defined with a non-variadic prototype with
226   /// compatible parameters.  Therefore, splitting the conventions
227   /// makes it impossible to call a variadic function through an
228   /// unprototyped type.  Since function prototypes came out in the
229   /// late 1970s, this is probably an acceptable trade-off.
230   /// Nonetheless, not all platforms are willing to make it, and in
231   /// particularly x86-64 bends over backwards to make the
232   /// conventions compatible.
233   ///
234   /// The default is false.  This is correct whenever:
235   ///   - the conventions are exactly the same, because it does not
236   ///     matter and the resulting IR will be somewhat prettier in
237   ///     certain cases; or
238   ///   - the conventions are substantively different in how they pass
239   ///     arguments, because in this case using the variadic convention
240   ///     will lead to C99 violations.
241   ///
242   /// However, some platforms make the conventions identical except
243   /// for passing additional out-of-band information to a variadic
244   /// function: for example, x86-64 passes the number of SSE
245   /// arguments in %al.  On these platforms, it is desirable to
246   /// call unprototyped functions using the variadic convention so
247   /// that unprototyped calls to varargs functions still succeed.
248   ///
249   /// Relatedly, platforms which pass the fixed arguments to this:
250   ///   A foo(B, C, D);
251   /// differently than they would pass them to this:
252   ///   A foo(B, C, D, ...);
253   /// may need to adjust the debugger-support code in Sema to do the
254   /// right thing when calling a function with no know signature.
255   virtual bool isNoProtoCallVariadic(const CodeGen::CallArgList &args,
256                                      const FunctionNoProtoType *fnType) const;
257 
258   /// Gets the linker options necessary to link a dependent library on this
259   /// platform.
260   virtual void getDependentLibraryOption(llvm::StringRef Lib,
261                                          llvm::SmallString<24> &Opt) const;
262 
263   /// Gets the linker options necessary to detect object file mismatches on
264   /// this platform.
265   virtual void getDetectMismatchOption(llvm::StringRef Name,
266                                        llvm::StringRef Value,
267                                        llvm::SmallString<32> &Opt) const {}
268 
269   /// Get LLVM calling convention for OpenCL kernel.
270   virtual unsigned getOpenCLKernelCallingConv() const;
271 
272   /// Get target specific null pointer.
273   /// \param T is the LLVM type of the null pointer.
274   /// \param QT is the clang QualType of the null pointer.
275   /// \return ConstantPointerNull with the given type \p T.
276   /// Each target can override it to return its own desired constant value.
277   virtual llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
278       llvm::PointerType *T, QualType QT) const;
279 
280   /// Get target favored AST address space of a global variable for languages
281   /// other than OpenCL and CUDA.
282   /// If \p D is nullptr, returns the default target favored address space
283   /// for global variable.
284   virtual LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
285                                           const VarDecl *D) const;
286 
287   /// Get the AST address space for alloca.
288   virtual LangAS getASTAllocaAddressSpace() const { return LangAS::Default; }
289 
290   /// Perform address space cast of an expression of pointer type.
291   /// \param V is the LLVM value to be casted to another address space.
292   /// \param SrcAddr is the language address space of \p V.
293   /// \param DestAddr is the targeted language address space.
294   /// \param DestTy is the destination LLVM pointer type.
295   /// \param IsNonNull is the flag indicating \p V is known to be non null.
296   virtual llvm::Value *performAddrSpaceCast(CodeGen::CodeGenFunction &CGF,
297                                             llvm::Value *V, LangAS SrcAddr,
298                                             LangAS DestAddr, llvm::Type *DestTy,
299                                             bool IsNonNull = false) const;
300 
301   /// Perform address space cast of a constant expression of pointer type.
302   /// \param V is the LLVM constant to be casted to another address space.
303   /// \param SrcAddr is the language address space of \p V.
304   /// \param DestAddr is the targeted language address space.
305   /// \param DestTy is the destination LLVM pointer type.
306   virtual llvm::Constant *performAddrSpaceCast(CodeGenModule &CGM,
307                                                llvm::Constant *V,
308                                                LangAS SrcAddr, LangAS DestAddr,
309                                                llvm::Type *DestTy) const;
310 
311   /// Get address space of pointer parameter for __cxa_atexit.
312   virtual LangAS getAddrSpaceOfCxaAtexitPtrParam() const {
313     return LangAS::Default;
314   }
315 
316   /// Get the syncscope used in LLVM IR.
317   virtual llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
318                                                  SyncScope Scope,
319                                                  llvm::AtomicOrdering Ordering,
320                                                  llvm::LLVMContext &Ctx) const;
321 
322   /// Interface class for filling custom fields of a block literal for OpenCL.
323   class TargetOpenCLBlockHelper {
324   public:
325     typedef std::pair<llvm::Value *, StringRef> ValueTy;
326     TargetOpenCLBlockHelper() {}
327     virtual ~TargetOpenCLBlockHelper() {}
328     /// Get the custom field types for OpenCL blocks.
329     virtual llvm::SmallVector<llvm::Type *, 1> getCustomFieldTypes() = 0;
330     /// Get the custom field values for OpenCL blocks.
331     virtual llvm::SmallVector<ValueTy, 1>
332     getCustomFieldValues(CodeGenFunction &CGF, const CGBlockInfo &Info) = 0;
333     virtual bool areAllCustomFieldValuesConstant(const CGBlockInfo &Info) = 0;
334     /// Get the custom field values for OpenCL blocks if all values are LLVM
335     /// constants.
336     virtual llvm::SmallVector<llvm::Constant *, 1>
337     getCustomFieldValues(CodeGenModule &CGM, const CGBlockInfo &Info) = 0;
338   };
339   virtual TargetOpenCLBlockHelper *getTargetOpenCLBlockHelper() const {
340     return nullptr;
341   }
342 
343   /// Create an OpenCL kernel for an enqueued block. The kernel function is
344   /// a wrapper for the block invoke function with target-specific calling
345   /// convention and ABI as an OpenCL kernel. The wrapper function accepts
346   /// block context and block arguments in target-specific way and calls
347   /// the original block invoke function.
348   virtual llvm::Value *
349   createEnqueuedBlockKernel(CodeGenFunction &CGF,
350                             llvm::Function *BlockInvokeFunc,
351                             llvm::Type *BlockTy) const;
352 
353   /// \return true if the target supports alias from the unmangled name to the
354   /// mangled name of functions declared within an extern "C" region and marked
355   /// as 'used', and having internal linkage.
356   virtual bool shouldEmitStaticExternCAliases() const { return true; }
357 
358   /// \return true if annonymous zero-sized bitfields should be emitted to
359   /// correctly distinguish between struct types whose memory layout is the
360   /// same, but whose layout may differ when used as argument passed by value
361   virtual bool shouldEmitDWARFBitFieldSeparators() const { return false; }
362 
363   virtual void setCUDAKernelCallingConvention(const FunctionType *&FT) const {}
364 
365   /// Return the device-side type for the CUDA device builtin surface type.
366   virtual llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const {
367     // By default, no change from the original one.
368     return nullptr;
369   }
370   /// Return the device-side type for the CUDA device builtin texture type.
371   virtual llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const {
372     // By default, no change from the original one.
373     return nullptr;
374   }
375 
376   /// Return the WebAssembly externref reference type.
377   virtual llvm::Type *getWasmExternrefReferenceType() const { return nullptr; }
378 
379   /// Return the WebAssembly funcref reference type.
380   virtual llvm::Type *getWasmFuncrefReferenceType() const { return nullptr; }
381 
382   /// Emit the device-side copy of the builtin surface type.
383   virtual bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF,
384                                                       LValue Dst,
385                                                       LValue Src) const {
386     // DO NOTHING by default.
387     return false;
388   }
389   /// Emit the device-side copy of the builtin texture type.
390   virtual bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF,
391                                                       LValue Dst,
392                                                       LValue Src) const {
393     // DO NOTHING by default.
394     return false;
395   }
396 
397   /// Return an LLVM type that corresponds to an OpenCL type.
398   virtual llvm::Type *getOpenCLType(CodeGenModule &CGM, const Type *T) const {
399     return nullptr;
400   }
401 
402 protected:
403   static std::string qualifyWindowsLibrary(StringRef Lib);
404 
405   void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
406                                      CodeGen::CodeGenModule &CGM) const;
407 };
408 
409 std::unique_ptr<TargetCodeGenInfo>
410 createDefaultTargetCodeGenInfo(CodeGenModule &CGM);
411 
412 enum class AArch64ABIKind {
413   AAPCS = 0,
414   DarwinPCS,
415   Win64,
416 };
417 
418 std::unique_ptr<TargetCodeGenInfo>
419 createAArch64TargetCodeGenInfo(CodeGenModule &CGM, AArch64ABIKind Kind);
420 
421 std::unique_ptr<TargetCodeGenInfo>
422 createWindowsAArch64TargetCodeGenInfo(CodeGenModule &CGM, AArch64ABIKind K);
423 
424 std::unique_ptr<TargetCodeGenInfo>
425 createAMDGPUTargetCodeGenInfo(CodeGenModule &CGM);
426 
427 std::unique_ptr<TargetCodeGenInfo>
428 createARCTargetCodeGenInfo(CodeGenModule &CGM);
429 
430 enum class ARMABIKind {
431   APCS = 0,
432   AAPCS = 1,
433   AAPCS_VFP = 2,
434   AAPCS16_VFP = 3,
435 };
436 
437 std::unique_ptr<TargetCodeGenInfo>
438 createARMTargetCodeGenInfo(CodeGenModule &CGM, ARMABIKind Kind);
439 
440 std::unique_ptr<TargetCodeGenInfo>
441 createWindowsARMTargetCodeGenInfo(CodeGenModule &CGM, ARMABIKind K);
442 
443 std::unique_ptr<TargetCodeGenInfo>
444 createAVRTargetCodeGenInfo(CodeGenModule &CGM, unsigned NPR, unsigned NRR);
445 
446 std::unique_ptr<TargetCodeGenInfo>
447 createBPFTargetCodeGenInfo(CodeGenModule &CGM);
448 
449 std::unique_ptr<TargetCodeGenInfo>
450 createCSKYTargetCodeGenInfo(CodeGenModule &CGM, unsigned FLen);
451 
452 std::unique_ptr<TargetCodeGenInfo>
453 createHexagonTargetCodeGenInfo(CodeGenModule &CGM);
454 
455 std::unique_ptr<TargetCodeGenInfo>
456 createLanaiTargetCodeGenInfo(CodeGenModule &CGM);
457 
458 std::unique_ptr<TargetCodeGenInfo>
459 createLoongArchTargetCodeGenInfo(CodeGenModule &CGM, unsigned GRLen,
460                                  unsigned FLen);
461 
462 std::unique_ptr<TargetCodeGenInfo>
463 createM68kTargetCodeGenInfo(CodeGenModule &CGM);
464 
465 std::unique_ptr<TargetCodeGenInfo>
466 createMIPSTargetCodeGenInfo(CodeGenModule &CGM, bool IsOS32);
467 
468 std::unique_ptr<TargetCodeGenInfo>
469 createMSP430TargetCodeGenInfo(CodeGenModule &CGM);
470 
471 std::unique_ptr<TargetCodeGenInfo>
472 createNVPTXTargetCodeGenInfo(CodeGenModule &CGM);
473 
474 std::unique_ptr<TargetCodeGenInfo>
475 createPNaClTargetCodeGenInfo(CodeGenModule &CGM);
476 
477 enum class PPC64_SVR4_ABIKind {
478   ELFv1 = 0,
479   ELFv2,
480 };
481 
482 std::unique_ptr<TargetCodeGenInfo>
483 createAIXTargetCodeGenInfo(CodeGenModule &CGM, bool Is64Bit);
484 
485 std::unique_ptr<TargetCodeGenInfo>
486 createPPC32TargetCodeGenInfo(CodeGenModule &CGM, bool SoftFloatABI);
487 
488 std::unique_ptr<TargetCodeGenInfo>
489 createPPC64TargetCodeGenInfo(CodeGenModule &CGM);
490 
491 std::unique_ptr<TargetCodeGenInfo>
492 createPPC64_SVR4_TargetCodeGenInfo(CodeGenModule &CGM, PPC64_SVR4_ABIKind Kind,
493                                    bool SoftFloatABI);
494 
495 std::unique_ptr<TargetCodeGenInfo>
496 createRISCVTargetCodeGenInfo(CodeGenModule &CGM, unsigned XLen, unsigned FLen);
497 
498 std::unique_ptr<TargetCodeGenInfo>
499 createCommonSPIRTargetCodeGenInfo(CodeGenModule &CGM);
500 
501 std::unique_ptr<TargetCodeGenInfo>
502 createSPIRVTargetCodeGenInfo(CodeGenModule &CGM);
503 
504 std::unique_ptr<TargetCodeGenInfo>
505 createSparcV8TargetCodeGenInfo(CodeGenModule &CGM);
506 
507 std::unique_ptr<TargetCodeGenInfo>
508 createSparcV9TargetCodeGenInfo(CodeGenModule &CGM);
509 
510 std::unique_ptr<TargetCodeGenInfo>
511 createSystemZTargetCodeGenInfo(CodeGenModule &CGM, bool HasVector,
512                                bool SoftFloatABI);
513 
514 std::unique_ptr<TargetCodeGenInfo>
515 createTCETargetCodeGenInfo(CodeGenModule &CGM);
516 
517 std::unique_ptr<TargetCodeGenInfo>
518 createVETargetCodeGenInfo(CodeGenModule &CGM);
519 
520 enum class WebAssemblyABIKind {
521   MVP = 0,
522   ExperimentalMV = 1,
523 };
524 
525 std::unique_ptr<TargetCodeGenInfo>
526 createWebAssemblyTargetCodeGenInfo(CodeGenModule &CGM, WebAssemblyABIKind K);
527 
528 /// The AVX ABI level for X86 targets.
529 enum class X86AVXABILevel {
530   None,
531   AVX,
532   AVX512,
533 };
534 
535 std::unique_ptr<TargetCodeGenInfo> createX86_32TargetCodeGenInfo(
536     CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI,
537     unsigned NumRegisterParameters, bool SoftFloatABI);
538 
539 std::unique_ptr<TargetCodeGenInfo>
540 createWinX86_32TargetCodeGenInfo(CodeGenModule &CGM, bool DarwinVectorABI,
541                                  bool Win32StructABI,
542                                  unsigned NumRegisterParameters);
543 
544 std::unique_ptr<TargetCodeGenInfo>
545 createX86_64TargetCodeGenInfo(CodeGenModule &CGM, X86AVXABILevel AVXLevel);
546 
547 std::unique_ptr<TargetCodeGenInfo>
548 createWinX86_64TargetCodeGenInfo(CodeGenModule &CGM, X86AVXABILevel AVXLevel);
549 
550 std::unique_ptr<TargetCodeGenInfo>
551 createXCoreTargetCodeGenInfo(CodeGenModule &CGM);
552 
553 } // namespace CodeGen
554 } // namespace clang
555 
556 #endif // LLVM_CLANG_LIB_CODEGEN_TARGETINFO_H
557