1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "clang/Driver/Driver.h"
10 #include "InputInfo.h"
11 #include "ToolChains/AIX.h"
12 #include "ToolChains/AMDGPU.h"
13 #include "ToolChains/AVR.h"
14 #include "ToolChains/Ananas.h"
15 #include "ToolChains/BareMetal.h"
16 #include "ToolChains/Clang.h"
17 #include "ToolChains/CloudABI.h"
18 #include "ToolChains/Contiki.h"
19 #include "ToolChains/CrossWindows.h"
20 #include "ToolChains/Cuda.h"
21 #include "ToolChains/Darwin.h"
22 #include "ToolChains/DragonFly.h"
23 #include "ToolChains/FreeBSD.h"
24 #include "ToolChains/Fuchsia.h"
25 #include "ToolChains/Gnu.h"
26 #include "ToolChains/HIP.h"
27 #include "ToolChains/Haiku.h"
28 #include "ToolChains/Hexagon.h"
29 #include "ToolChains/Hurd.h"
30 #include "ToolChains/Lanai.h"
31 #include "ToolChains/Linux.h"
32 #include "ToolChains/MSP430.h"
33 #include "ToolChains/MSVC.h"
34 #include "ToolChains/MinGW.h"
35 #include "ToolChains/Minix.h"
36 #include "ToolChains/MipsLinux.h"
37 #include "ToolChains/Myriad.h"
38 #include "ToolChains/NaCl.h"
39 #include "ToolChains/NetBSD.h"
40 #include "ToolChains/OpenBSD.h"
41 #include "ToolChains/PS4CPU.h"
42 #include "ToolChains/PPCLinux.h"
43 #include "ToolChains/RISCVToolchain.h"
44 #include "ToolChains/Solaris.h"
45 #include "ToolChains/TCE.h"
46 #include "ToolChains/WebAssembly.h"
47 #include "ToolChains/XCore.h"
48 #include "clang/Basic/Version.h"
49 #include "clang/Config/config.h"
50 #include "clang/Driver/Action.h"
51 #include "clang/Driver/Compilation.h"
52 #include "clang/Driver/DriverDiagnostic.h"
53 #include "clang/Driver/Job.h"
54 #include "clang/Driver/Options.h"
55 #include "clang/Driver/SanitizerArgs.h"
56 #include "clang/Driver/Tool.h"
57 #include "clang/Driver/ToolChain.h"
58 #include "llvm/ADT/ArrayRef.h"
59 #include "llvm/ADT/STLExtras.h"
60 #include "llvm/ADT/SmallSet.h"
61 #include "llvm/ADT/StringExtras.h"
62 #include "llvm/ADT/StringSet.h"
63 #include "llvm/ADT/StringSwitch.h"
64 #include "llvm/Config/llvm-config.h"
65 #include "llvm/Option/Arg.h"
66 #include "llvm/Option/ArgList.h"
67 #include "llvm/Option/OptSpecifier.h"
68 #include "llvm/Option/OptTable.h"
69 #include "llvm/Option/Option.h"
70 #include "llvm/Support/CommandLine.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/FileSystem.h"
73 #include "llvm/Support/FormatVariadic.h"
74 #include "llvm/Support/Path.h"
75 #include "llvm/Support/PrettyStackTrace.h"
76 #include "llvm/Support/Process.h"
77 #include "llvm/Support/Program.h"
78 #include "llvm/Support/StringSaver.h"
79 #include "llvm/Support/TargetRegistry.h"
80 #include "llvm/Support/VirtualFileSystem.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include <map>
83 #include <memory>
84 #include <utility>
85 #if LLVM_ON_UNIX
86 #include <unistd.h> // getpid
87 #include <sysexits.h> // EX_IOERR
88 #endif
89 
90 using namespace clang::driver;
91 using namespace clang;
92 using namespace llvm::opt;
93 
94 // static
95 std::string Driver::GetResourcesPath(StringRef BinaryPath,
96                                      StringRef CustomResourceDir) {
97   // Since the resource directory is embedded in the module hash, it's important
98   // that all places that need it call this function, so that they get the
99   // exact same string ("a/../b/" and "b/" get different hashes, for example).
100 
101   // Dir is bin/ or lib/, depending on where BinaryPath is.
102   std::string Dir = llvm::sys::path::parent_path(BinaryPath);
103 
104   SmallString<128> P(Dir);
105   if (CustomResourceDir != "") {
106     llvm::sys::path::append(P, CustomResourceDir);
107   } else {
108     // On Windows, libclang.dll is in bin/.
109     // On non-Windows, libclang.so/.dylib is in lib/.
110     // With a static-library build of libclang, LibClangPath will contain the
111     // path of the embedding binary, which for LLVM binaries will be in bin/.
112     // ../lib gets us to lib/ in both cases.
113     P = llvm::sys::path::parent_path(Dir);
114     llvm::sys::path::append(P, Twine("lib") + CLANG_LIBDIR_SUFFIX, "clang",
115                             CLANG_VERSION_STRING);
116   }
117 
118   return P.str();
119 }
120 
121 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
122                DiagnosticsEngine &Diags,
123                IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)
124     : Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode),
125       SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone), LTOMode(LTOK_None),
126       ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT),
127       DriverTitle("clang LLVM compiler"), CCPrintOptionsFilename(nullptr),
128       CCPrintHeadersFilename(nullptr), CCLogDiagnosticsFilename(nullptr),
129       CCCPrintBindings(false), CCPrintOptions(false), CCPrintHeaders(false),
130       CCLogDiagnostics(false), CCGenDiagnostics(false),
131       TargetTriple(TargetTriple), CCCGenericGCCName(""), Saver(Alloc),
132       CheckInputsExist(true), GenReproducer(false),
133       SuppressMissingInputWarning(false) {
134 
135   // Provide a sane fallback if no VFS is specified.
136   if (!this->VFS)
137     this->VFS = llvm::vfs::getRealFileSystem();
138 
139   Name = llvm::sys::path::filename(ClangExecutable);
140   Dir = llvm::sys::path::parent_path(ClangExecutable);
141   InstalledDir = Dir; // Provide a sensible default installed dir.
142 
143 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
144   SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
145 #endif
146 #if defined(CLANG_CONFIG_FILE_USER_DIR)
147   UserConfigDir = CLANG_CONFIG_FILE_USER_DIR;
148 #endif
149 
150   // Compute the path to the resource directory.
151   ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR);
152 }
153 
154 void Driver::ParseDriverMode(StringRef ProgramName,
155                              ArrayRef<const char *> Args) {
156   if (ClangNameParts.isEmpty())
157     ClangNameParts = ToolChain::getTargetAndModeFromProgramName(ProgramName);
158   setDriverModeFromOption(ClangNameParts.DriverMode);
159 
160   for (const char *ArgPtr : Args) {
161     // Ignore nullptrs, they are the response file's EOL markers.
162     if (ArgPtr == nullptr)
163       continue;
164     const StringRef Arg = ArgPtr;
165     setDriverModeFromOption(Arg);
166   }
167 }
168 
169 void Driver::setDriverModeFromOption(StringRef Opt) {
170   const std::string OptName =
171       getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
172   if (!Opt.startswith(OptName))
173     return;
174   StringRef Value = Opt.drop_front(OptName.size());
175 
176   if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value)
177                    .Case("gcc", GCCMode)
178                    .Case("g++", GXXMode)
179                    .Case("cpp", CPPMode)
180                    .Case("cl", CLMode)
181                    .Case("flang", FlangMode)
182                    .Default(None))
183     Mode = *M;
184   else
185     Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
186 }
187 
188 InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings,
189                                      bool IsClCompatMode,
190                                      bool &ContainsError) {
191   llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
192   ContainsError = false;
193 
194   unsigned IncludedFlagsBitmask;
195   unsigned ExcludedFlagsBitmask;
196   std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
197       getIncludeExcludeOptionFlagMasks(IsClCompatMode);
198 
199   unsigned MissingArgIndex, MissingArgCount;
200   InputArgList Args =
201       getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount,
202                           IncludedFlagsBitmask, ExcludedFlagsBitmask);
203 
204   // Check for missing argument error.
205   if (MissingArgCount) {
206     Diag(diag::err_drv_missing_argument)
207         << Args.getArgString(MissingArgIndex) << MissingArgCount;
208     ContainsError |=
209         Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
210                                  SourceLocation()) > DiagnosticsEngine::Warning;
211   }
212 
213   // Check for unsupported options.
214   for (const Arg *A : Args) {
215     if (A->getOption().hasFlag(options::Unsupported)) {
216       unsigned DiagID;
217       auto ArgString = A->getAsString(Args);
218       std::string Nearest;
219       if (getOpts().findNearest(
220             ArgString, Nearest, IncludedFlagsBitmask,
221             ExcludedFlagsBitmask | options::Unsupported) > 1) {
222         DiagID = diag::err_drv_unsupported_opt;
223         Diag(DiagID) << ArgString;
224       } else {
225         DiagID = diag::err_drv_unsupported_opt_with_suggestion;
226         Diag(DiagID) << ArgString << Nearest;
227       }
228       ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
229                        DiagnosticsEngine::Warning;
230       continue;
231     }
232 
233     // Warn about -mcpu= without an argument.
234     if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
235       Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
236       ContainsError |= Diags.getDiagnosticLevel(
237                            diag::warn_drv_empty_joined_argument,
238                            SourceLocation()) > DiagnosticsEngine::Warning;
239     }
240   }
241 
242   for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
243     unsigned DiagID;
244     auto ArgString = A->getAsString(Args);
245     std::string Nearest;
246     if (getOpts().findNearest(
247           ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) {
248       DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
249                           : diag::err_drv_unknown_argument;
250       Diags.Report(DiagID) << ArgString;
251     } else {
252       DiagID = IsCLMode()
253                    ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
254                    : diag::err_drv_unknown_argument_with_suggestion;
255       Diags.Report(DiagID) << ArgString << Nearest;
256     }
257     ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
258                      DiagnosticsEngine::Warning;
259   }
260 
261   return Args;
262 }
263 
264 // Determine which compilation mode we are in. We look for options which
265 // affect the phase, starting with the earliest phases, and record which
266 // option we used to determine the final phase.
267 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
268                                  Arg **FinalPhaseArg) const {
269   Arg *PhaseArg = nullptr;
270   phases::ID FinalPhase;
271 
272   // -{E,EP,P,M,MM} only run the preprocessor.
273   if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
274       (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
275       (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
276       (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) {
277     FinalPhase = phases::Preprocess;
278 
279   // --precompile only runs up to precompilation.
280   } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) {
281     FinalPhase = phases::Precompile;
282 
283   // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
284   } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
285              (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) ||
286              (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
287              (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
288              (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
289              (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
290              (PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
291              (PhaseArg = DAL.getLastArg(options::OPT__analyze)) ||
292              (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
293     FinalPhase = phases::Compile;
294 
295   // -S only runs up to the backend.
296   } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
297     FinalPhase = phases::Backend;
298 
299   // -c compilation only runs up to the assembler.
300   } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
301     FinalPhase = phases::Assemble;
302 
303   // Otherwise do everything.
304   } else
305     FinalPhase = phases::Link;
306 
307   if (FinalPhaseArg)
308     *FinalPhaseArg = PhaseArg;
309 
310   return FinalPhase;
311 }
312 
313 static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts,
314                          StringRef Value, bool Claim = true) {
315   Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
316                    Args.getBaseArgs().MakeIndex(Value), Value.data());
317   Args.AddSynthesizedArg(A);
318   if (Claim)
319     A->claim();
320   return A;
321 }
322 
323 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
324   const llvm::opt::OptTable &Opts = getOpts();
325   DerivedArgList *DAL = new DerivedArgList(Args);
326 
327   bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
328   bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx);
329   bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
330   for (Arg *A : Args) {
331     // Unfortunately, we have to parse some forwarding options (-Xassembler,
332     // -Xlinker, -Xpreprocessor) because we either integrate their functionality
333     // (assembler and preprocessor), or bypass a previous driver ('collect2').
334 
335     // Rewrite linker options, to replace --no-demangle with a custom internal
336     // option.
337     if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
338          A->getOption().matches(options::OPT_Xlinker)) &&
339         A->containsValue("--no-demangle")) {
340       // Add the rewritten no-demangle argument.
341       DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle));
342 
343       // Add the remaining values as Xlinker arguments.
344       for (StringRef Val : A->getValues())
345         if (Val != "--no-demangle")
346           DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val);
347 
348       continue;
349     }
350 
351     // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
352     // some build systems. We don't try to be complete here because we don't
353     // care to encourage this usage model.
354     if (A->getOption().matches(options::OPT_Wp_COMMA) &&
355         (A->getValue(0) == StringRef("-MD") ||
356          A->getValue(0) == StringRef("-MMD"))) {
357       // Rewrite to -MD/-MMD along with -MF.
358       if (A->getValue(0) == StringRef("-MD"))
359         DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD));
360       else
361         DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD));
362       if (A->getNumValues() == 2)
363         DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1));
364       continue;
365     }
366 
367     // Rewrite reserved library names.
368     if (A->getOption().matches(options::OPT_l)) {
369       StringRef Value = A->getValue();
370 
371       // Rewrite unless -nostdlib is present.
372       if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx &&
373           Value == "stdc++") {
374         DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx));
375         continue;
376       }
377 
378       // Rewrite unconditionally.
379       if (Value == "cc_kext") {
380         DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext));
381         continue;
382       }
383     }
384 
385     // Pick up inputs via the -- option.
386     if (A->getOption().matches(options::OPT__DASH_DASH)) {
387       A->claim();
388       for (StringRef Val : A->getValues())
389         DAL->append(MakeInputArg(*DAL, Opts, Val, false));
390       continue;
391     }
392 
393     DAL->append(A);
394   }
395 
396   // Enforce -static if -miamcu is present.
397   if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
398     DAL->AddFlagArg(0, Opts.getOption(options::OPT_static));
399 
400 // Add a default value of -mlinker-version=, if one was given and the user
401 // didn't specify one.
402 #if defined(HOST_LINK_VERSION)
403   if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
404       strlen(HOST_LINK_VERSION) > 0) {
405     DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ),
406                       HOST_LINK_VERSION);
407     DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
408   }
409 #endif
410 
411   return DAL;
412 }
413 
414 /// Compute target triple from args.
415 ///
416 /// This routine provides the logic to compute a target triple from various
417 /// args passed to the driver and the default triple string.
418 static llvm::Triple computeTargetTriple(const Driver &D,
419                                         StringRef TargetTriple,
420                                         const ArgList &Args,
421                                         StringRef DarwinArchName = "") {
422   // FIXME: Already done in Compilation *Driver::BuildCompilation
423   if (const Arg *A = Args.getLastArg(options::OPT_target))
424     TargetTriple = A->getValue();
425 
426   llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
427 
428   // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made
429   // -gnu* only, and we can not change this, so we have to detect that case as
430   // being the Hurd OS.
431   if (TargetTriple.find("-unknown-gnu") != StringRef::npos ||
432       TargetTriple.find("-pc-gnu") != StringRef::npos)
433     Target.setOSName("hurd");
434 
435   // Handle Apple-specific options available here.
436   if (Target.isOSBinFormatMachO()) {
437     // If an explicit Darwin arch name is given, that trumps all.
438     if (!DarwinArchName.empty()) {
439       tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName);
440       return Target;
441     }
442 
443     // Handle the Darwin '-arch' flag.
444     if (Arg *A = Args.getLastArg(options::OPT_arch)) {
445       StringRef ArchName = A->getValue();
446       tools::darwin::setTripleTypeForMachOArchName(Target, ArchName);
447     }
448   }
449 
450   // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
451   // '-mbig-endian'/'-EB'.
452   if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian,
453                                options::OPT_mbig_endian)) {
454     if (A->getOption().matches(options::OPT_mlittle_endian)) {
455       llvm::Triple LE = Target.getLittleEndianArchVariant();
456       if (LE.getArch() != llvm::Triple::UnknownArch)
457         Target = std::move(LE);
458     } else {
459       llvm::Triple BE = Target.getBigEndianArchVariant();
460       if (BE.getArch() != llvm::Triple::UnknownArch)
461         Target = std::move(BE);
462     }
463   }
464 
465   // Skip further flag support on OSes which don't support '-m32' or '-m64'.
466   if (Target.getArch() == llvm::Triple::tce ||
467       Target.getOS() == llvm::Triple::Minix)
468     return Target;
469 
470   // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
471   Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
472                            options::OPT_m32, options::OPT_m16);
473   if (A) {
474     llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
475 
476     if (A->getOption().matches(options::OPT_m64)) {
477       AT = Target.get64BitArchVariant().getArch();
478       if (Target.getEnvironment() == llvm::Triple::GNUX32)
479         Target.setEnvironment(llvm::Triple::GNU);
480     } else if (A->getOption().matches(options::OPT_mx32) &&
481                Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
482       AT = llvm::Triple::x86_64;
483       Target.setEnvironment(llvm::Triple::GNUX32);
484     } else if (A->getOption().matches(options::OPT_m32)) {
485       AT = Target.get32BitArchVariant().getArch();
486       if (Target.getEnvironment() == llvm::Triple::GNUX32)
487         Target.setEnvironment(llvm::Triple::GNU);
488     } else if (A->getOption().matches(options::OPT_m16) &&
489                Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
490       AT = llvm::Triple::x86;
491       Target.setEnvironment(llvm::Triple::CODE16);
492     }
493 
494     if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
495       Target.setArch(AT);
496   }
497 
498   // Handle -miamcu flag.
499   if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
500     if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
501       D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
502                                                        << Target.str();
503 
504     if (A && !A->getOption().matches(options::OPT_m32))
505       D.Diag(diag::err_drv_argument_not_allowed_with)
506           << "-miamcu" << A->getBaseArg().getAsString(Args);
507 
508     Target.setArch(llvm::Triple::x86);
509     Target.setArchName("i586");
510     Target.setEnvironment(llvm::Triple::UnknownEnvironment);
511     Target.setEnvironmentName("");
512     Target.setOS(llvm::Triple::ELFIAMCU);
513     Target.setVendor(llvm::Triple::UnknownVendor);
514     Target.setVendorName("intel");
515   }
516 
517   // If target is MIPS adjust the target triple
518   // accordingly to provided ABI name.
519   A = Args.getLastArg(options::OPT_mabi_EQ);
520   if (A && Target.isMIPS()) {
521     StringRef ABIName = A->getValue();
522     if (ABIName == "32") {
523       Target = Target.get32BitArchVariant();
524       if (Target.getEnvironment() == llvm::Triple::GNUABI64 ||
525           Target.getEnvironment() == llvm::Triple::GNUABIN32)
526         Target.setEnvironment(llvm::Triple::GNU);
527     } else if (ABIName == "n32") {
528       Target = Target.get64BitArchVariant();
529       if (Target.getEnvironment() == llvm::Triple::GNU ||
530           Target.getEnvironment() == llvm::Triple::GNUABI64)
531         Target.setEnvironment(llvm::Triple::GNUABIN32);
532     } else if (ABIName == "64") {
533       Target = Target.get64BitArchVariant();
534       if (Target.getEnvironment() == llvm::Triple::GNU ||
535           Target.getEnvironment() == llvm::Triple::GNUABIN32)
536         Target.setEnvironment(llvm::Triple::GNUABI64);
537     }
538   }
539 
540   // If target is RISC-V adjust the target triple according to
541   // provided architecture name
542   A = Args.getLastArg(options::OPT_march_EQ);
543   if (A && Target.isRISCV()) {
544     StringRef ArchName = A->getValue();
545     if (ArchName.startswith_lower("rv32"))
546       Target.setArch(llvm::Triple::riscv32);
547     else if (ArchName.startswith_lower("rv64"))
548       Target.setArch(llvm::Triple::riscv64);
549   }
550 
551   return Target;
552 }
553 
554 // Parse the LTO options and record the type of LTO compilation
555 // based on which -f(no-)?lto(=.*)? option occurs last.
556 void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
557   LTOMode = LTOK_None;
558   if (!Args.hasFlag(options::OPT_flto, options::OPT_flto_EQ,
559                     options::OPT_fno_lto, false))
560     return;
561 
562   StringRef LTOName("full");
563 
564   const Arg *A = Args.getLastArg(options::OPT_flto_EQ);
565   if (A)
566     LTOName = A->getValue();
567 
568   LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
569                 .Case("full", LTOK_Full)
570                 .Case("thin", LTOK_Thin)
571                 .Default(LTOK_Unknown);
572 
573   if (LTOMode == LTOK_Unknown) {
574     assert(A);
575     Diag(diag::err_drv_unsupported_option_argument) << A->getOption().getName()
576                                                     << A->getValue();
577   }
578 }
579 
580 /// Compute the desired OpenMP runtime from the flags provided.
581 Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const {
582   StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
583 
584   const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
585   if (A)
586     RuntimeName = A->getValue();
587 
588   auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
589                 .Case("libomp", OMPRT_OMP)
590                 .Case("libgomp", OMPRT_GOMP)
591                 .Case("libiomp5", OMPRT_IOMP5)
592                 .Default(OMPRT_Unknown);
593 
594   if (RT == OMPRT_Unknown) {
595     if (A)
596       Diag(diag::err_drv_unsupported_option_argument)
597           << A->getOption().getName() << A->getValue();
598     else
599       // FIXME: We could use a nicer diagnostic here.
600       Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
601   }
602 
603   return RT;
604 }
605 
606 void Driver::CreateOffloadingDeviceToolChains(Compilation &C,
607                                               InputList &Inputs) {
608 
609   //
610   // CUDA/HIP
611   //
612   // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
613   // or HIP type. However, mixed CUDA/HIP compilation is not supported.
614   bool IsCuda =
615       llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
616         return types::isCuda(I.first);
617       });
618   bool IsHIP =
619       llvm::any_of(Inputs,
620                    [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
621                      return types::isHIP(I.first);
622                    }) ||
623       C.getInputArgs().hasArg(options::OPT_hip_link);
624   if (IsCuda && IsHIP) {
625     Diag(clang::diag::err_drv_mix_cuda_hip);
626     return;
627   }
628   if (IsCuda) {
629     const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
630     const llvm::Triple &HostTriple = HostTC->getTriple();
631     StringRef DeviceTripleStr;
632     auto OFK = Action::OFK_Cuda;
633     DeviceTripleStr =
634         HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" : "nvptx-nvidia-cuda";
635     llvm::Triple CudaTriple(DeviceTripleStr);
636     // Use the CUDA and host triples as the key into the ToolChains map,
637     // because the device toolchain we create depends on both.
638     auto &CudaTC = ToolChains[CudaTriple.str() + "/" + HostTriple.str()];
639     if (!CudaTC) {
640       CudaTC = std::make_unique<toolchains::CudaToolChain>(
641           *this, CudaTriple, *HostTC, C.getInputArgs(), OFK);
642     }
643     C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
644   } else if (IsHIP) {
645     const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
646     const llvm::Triple &HostTriple = HostTC->getTriple();
647     StringRef DeviceTripleStr;
648     auto OFK = Action::OFK_HIP;
649     DeviceTripleStr = "amdgcn-amd-amdhsa";
650     llvm::Triple HIPTriple(DeviceTripleStr);
651     // Use the HIP and host triples as the key into the ToolChains map,
652     // because the device toolchain we create depends on both.
653     auto &HIPTC = ToolChains[HIPTriple.str() + "/" + HostTriple.str()];
654     if (!HIPTC) {
655       HIPTC = std::make_unique<toolchains::HIPToolChain>(
656           *this, HIPTriple, *HostTC, C.getInputArgs());
657     }
658     C.addOffloadDeviceToolChain(HIPTC.get(), OFK);
659   }
660 
661   //
662   // OpenMP
663   //
664   // We need to generate an OpenMP toolchain if the user specified targets with
665   // the -fopenmp-targets option.
666   if (Arg *OpenMPTargets =
667           C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
668     if (OpenMPTargets->getNumValues()) {
669       // We expect that -fopenmp-targets is always used in conjunction with the
670       // option -fopenmp specifying a valid runtime with offloading support,
671       // i.e. libomp or libiomp.
672       bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag(
673           options::OPT_fopenmp, options::OPT_fopenmp_EQ,
674           options::OPT_fno_openmp, false);
675       if (HasValidOpenMPRuntime) {
676         OpenMPRuntimeKind OpenMPKind = getOpenMPRuntime(C.getInputArgs());
677         HasValidOpenMPRuntime =
678             OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5;
679       }
680 
681       if (HasValidOpenMPRuntime) {
682         llvm::StringMap<const char *> FoundNormalizedTriples;
683         for (const char *Val : OpenMPTargets->getValues()) {
684           llvm::Triple TT(Val);
685           std::string NormalizedName = TT.normalize();
686 
687           // Make sure we don't have a duplicate triple.
688           auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
689           if (Duplicate != FoundNormalizedTriples.end()) {
690             Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
691                 << Val << Duplicate->second;
692             continue;
693           }
694 
695           // Store the current triple so that we can check for duplicates in the
696           // following iterations.
697           FoundNormalizedTriples[NormalizedName] = Val;
698 
699           // If the specified target is invalid, emit a diagnostic.
700           if (TT.getArch() == llvm::Triple::UnknownArch)
701             Diag(clang::diag::err_drv_invalid_omp_target) << Val;
702           else {
703             const ToolChain *TC;
704             // CUDA toolchains have to be selected differently. They pair host
705             // and device in their implementation.
706             if (TT.isNVPTX()) {
707               const ToolChain *HostTC =
708                   C.getSingleOffloadToolChain<Action::OFK_Host>();
709               assert(HostTC && "Host toolchain should be always defined.");
710               auto &CudaTC =
711                   ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
712               if (!CudaTC)
713                 CudaTC = std::make_unique<toolchains::CudaToolChain>(
714                     *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP);
715               TC = CudaTC.get();
716             } else
717               TC = &getToolChain(C.getInputArgs(), TT);
718             C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP);
719           }
720         }
721       } else
722         Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
723     } else
724       Diag(clang::diag::warn_drv_empty_joined_argument)
725           << OpenMPTargets->getAsString(C.getInputArgs());
726   }
727 
728   //
729   // TODO: Add support for other offloading programming models here.
730   //
731 }
732 
733 /// Looks the given directories for the specified file.
734 ///
735 /// \param[out] FilePath File path, if the file was found.
736 /// \param[in]  Dirs Directories used for the search.
737 /// \param[in]  FileName Name of the file to search for.
738 /// \return True if file was found.
739 ///
740 /// Looks for file specified by FileName sequentially in directories specified
741 /// by Dirs.
742 ///
743 static bool searchForFile(SmallVectorImpl<char> &FilePath,
744                           ArrayRef<std::string> Dirs,
745                           StringRef FileName) {
746   SmallString<128> WPath;
747   for (const std::string &Dir : Dirs) {
748     if (Dir.empty())
749       continue;
750     WPath.clear();
751     llvm::sys::path::append(WPath, Dir, FileName);
752     llvm::sys::path::native(WPath);
753     if (llvm::sys::fs::is_regular_file(WPath)) {
754       FilePath = std::move(WPath);
755       return true;
756     }
757   }
758   return false;
759 }
760 
761 bool Driver::readConfigFile(StringRef FileName) {
762   // Try reading the given file.
763   SmallVector<const char *, 32> NewCfgArgs;
764   if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) {
765     Diag(diag::err_drv_cannot_read_config_file) << FileName;
766     return true;
767   }
768 
769   // Read options from config file.
770   llvm::SmallString<128> CfgFileName(FileName);
771   llvm::sys::path::native(CfgFileName);
772   ConfigFile = CfgFileName.str();
773   bool ContainErrors;
774   CfgOptions = std::make_unique<InputArgList>(
775       ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors));
776   if (ContainErrors) {
777     CfgOptions.reset();
778     return true;
779   }
780 
781   if (CfgOptions->hasArg(options::OPT_config)) {
782     CfgOptions.reset();
783     Diag(diag::err_drv_nested_config_file);
784     return true;
785   }
786 
787   // Claim all arguments that come from a configuration file so that the driver
788   // does not warn on any that is unused.
789   for (Arg *A : *CfgOptions)
790     A->claim();
791   return false;
792 }
793 
794 bool Driver::loadConfigFile() {
795   std::string CfgFileName;
796   bool FileSpecifiedExplicitly = false;
797 
798   // Process options that change search path for config files.
799   if (CLOptions) {
800     if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
801       SmallString<128> CfgDir;
802       CfgDir.append(
803           CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
804       if (!CfgDir.empty()) {
805         if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
806           SystemConfigDir.clear();
807         else
808           SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end());
809       }
810     }
811     if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
812       SmallString<128> CfgDir;
813       CfgDir.append(
814           CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ));
815       if (!CfgDir.empty()) {
816         if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
817           UserConfigDir.clear();
818         else
819           UserConfigDir = std::string(CfgDir.begin(), CfgDir.end());
820       }
821     }
822   }
823 
824   // First try to find config file specified in command line.
825   if (CLOptions) {
826     std::vector<std::string> ConfigFiles =
827         CLOptions->getAllArgValues(options::OPT_config);
828     if (ConfigFiles.size() > 1) {
829       Diag(diag::err_drv_duplicate_config);
830       return true;
831     }
832 
833     if (!ConfigFiles.empty()) {
834       CfgFileName = ConfigFiles.front();
835       assert(!CfgFileName.empty());
836 
837       // If argument contains directory separator, treat it as a path to
838       // configuration file.
839       if (llvm::sys::path::has_parent_path(CfgFileName)) {
840         SmallString<128> CfgFilePath;
841         if (llvm::sys::path::is_relative(CfgFileName))
842           llvm::sys::fs::current_path(CfgFilePath);
843         llvm::sys::path::append(CfgFilePath, CfgFileName);
844         if (!llvm::sys::fs::is_regular_file(CfgFilePath)) {
845           Diag(diag::err_drv_config_file_not_exist) << CfgFilePath;
846           return true;
847         }
848         return readConfigFile(CfgFilePath);
849       }
850 
851       FileSpecifiedExplicitly = true;
852     }
853   }
854 
855   // If config file is not specified explicitly, try to deduce configuration
856   // from executable name. For instance, an executable 'armv7l-clang' will
857   // search for config file 'armv7l-clang.cfg'.
858   if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty())
859     CfgFileName = ClangNameParts.TargetPrefix + '-' + ClangNameParts.ModeSuffix;
860 
861   if (CfgFileName.empty())
862     return false;
863 
864   // Determine architecture part of the file name, if it is present.
865   StringRef CfgFileArch = CfgFileName;
866   size_t ArchPrefixLen = CfgFileArch.find('-');
867   if (ArchPrefixLen == StringRef::npos)
868     ArchPrefixLen = CfgFileArch.size();
869   llvm::Triple CfgTriple;
870   CfgFileArch = CfgFileArch.take_front(ArchPrefixLen);
871   CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch));
872   if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch)
873     ArchPrefixLen = 0;
874 
875   if (!StringRef(CfgFileName).endswith(".cfg"))
876     CfgFileName += ".cfg";
877 
878   // If config file starts with architecture name and command line options
879   // redefine architecture (with options like -m32 -LE etc), try finding new
880   // config file with that architecture.
881   SmallString<128> FixedConfigFile;
882   size_t FixedArchPrefixLen = 0;
883   if (ArchPrefixLen) {
884     // Get architecture name from config file name like 'i386.cfg' or
885     // 'armv7l-clang.cfg'.
886     // Check if command line options changes effective triple.
887     llvm::Triple EffectiveTriple = computeTargetTriple(*this,
888                                              CfgTriple.getTriple(), *CLOptions);
889     if (CfgTriple.getArch() != EffectiveTriple.getArch()) {
890       FixedConfigFile = EffectiveTriple.getArchName();
891       FixedArchPrefixLen = FixedConfigFile.size();
892       // Append the rest of original file name so that file name transforms
893       // like: i386-clang.cfg -> x86_64-clang.cfg.
894       if (ArchPrefixLen < CfgFileName.size())
895         FixedConfigFile += CfgFileName.substr(ArchPrefixLen);
896     }
897   }
898 
899   // Prepare list of directories where config file is searched for.
900   SmallVector<std::string, 3> CfgFileSearchDirs;
901   CfgFileSearchDirs.push_back(UserConfigDir);
902   CfgFileSearchDirs.push_back(SystemConfigDir);
903   CfgFileSearchDirs.push_back(Dir);
904 
905   // Try to find config file. First try file with corrected architecture.
906   llvm::SmallString<128> CfgFilePath;
907   if (!FixedConfigFile.empty()) {
908     if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
909       return readConfigFile(CfgFilePath);
910     // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'.
911     FixedConfigFile.resize(FixedArchPrefixLen);
912     FixedConfigFile.append(".cfg");
913     if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
914       return readConfigFile(CfgFilePath);
915   }
916 
917   // Then try original file name.
918   if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
919     return readConfigFile(CfgFilePath);
920 
921   // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'.
922   if (!ClangNameParts.ModeSuffix.empty() &&
923       !ClangNameParts.TargetPrefix.empty()) {
924     CfgFileName.assign(ClangNameParts.TargetPrefix);
925     CfgFileName.append(".cfg");
926     if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
927       return readConfigFile(CfgFilePath);
928   }
929 
930   // Report error but only if config file was specified explicitly, by option
931   // --config. If it was deduced from executable name, it is not an error.
932   if (FileSpecifiedExplicitly) {
933     Diag(diag::err_drv_config_file_not_found) << CfgFileName;
934     for (const std::string &SearchDir : CfgFileSearchDirs)
935       if (!SearchDir.empty())
936         Diag(diag::note_drv_config_file_searched_in) << SearchDir;
937     return true;
938   }
939 
940   return false;
941 }
942 
943 Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) {
944   llvm::PrettyStackTraceString CrashInfo("Compilation construction");
945 
946   // FIXME: Handle environment options which affect driver behavior, somewhere
947   // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
948 
949   if (Optional<std::string> CompilerPathValue =
950           llvm::sys::Process::GetEnv("COMPILER_PATH")) {
951     StringRef CompilerPath = *CompilerPathValue;
952     while (!CompilerPath.empty()) {
953       std::pair<StringRef, StringRef> Split =
954           CompilerPath.split(llvm::sys::EnvPathSeparator);
955       PrefixDirs.push_back(Split.first);
956       CompilerPath = Split.second;
957     }
958   }
959 
960   // We look for the driver mode option early, because the mode can affect
961   // how other options are parsed.
962   ParseDriverMode(ClangExecutable, ArgList.slice(1));
963 
964   // FIXME: What are we going to do with -V and -b?
965 
966   // Arguments specified in command line.
967   bool ContainsError;
968   CLOptions = std::make_unique<InputArgList>(
969       ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError));
970 
971   // Try parsing configuration file.
972   if (!ContainsError)
973     ContainsError = loadConfigFile();
974   bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
975 
976   // All arguments, from both config file and command line.
977   InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
978                                               : std::move(*CLOptions));
979 
980   // The args for config files or /clang: flags belong to different InputArgList
981   // objects than Args. This copies an Arg from one of those other InputArgLists
982   // to the ownership of Args.
983   auto appendOneArg = [&Args](const Arg *Opt, const Arg *BaseArg) {
984       unsigned Index = Args.MakeIndex(Opt->getSpelling());
985       Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Opt->getSpelling(),
986                                      Index, BaseArg);
987       Copy->getValues() = Opt->getValues();
988       if (Opt->isClaimed())
989         Copy->claim();
990       Args.append(Copy);
991   };
992 
993   if (HasConfigFile)
994     for (auto *Opt : *CLOptions) {
995       if (Opt->getOption().matches(options::OPT_config))
996         continue;
997       const Arg *BaseArg = &Opt->getBaseArg();
998       if (BaseArg == Opt)
999         BaseArg = nullptr;
1000       appendOneArg(Opt, BaseArg);
1001     }
1002 
1003   // In CL mode, look for any pass-through arguments
1004   if (IsCLMode() && !ContainsError) {
1005     SmallVector<const char *, 16> CLModePassThroughArgList;
1006     for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) {
1007       A->claim();
1008       CLModePassThroughArgList.push_back(A->getValue());
1009     }
1010 
1011     if (!CLModePassThroughArgList.empty()) {
1012       // Parse any pass through args using default clang processing rather
1013       // than clang-cl processing.
1014       auto CLModePassThroughOptions = std::make_unique<InputArgList>(
1015           ParseArgStrings(CLModePassThroughArgList, false, ContainsError));
1016 
1017       if (!ContainsError)
1018         for (auto *Opt : *CLModePassThroughOptions) {
1019           appendOneArg(Opt, nullptr);
1020         }
1021     }
1022   }
1023 
1024   // Check for working directory option before accessing any files
1025   if (Arg *WD = Args.getLastArg(options::OPT_working_directory))
1026     if (VFS->setCurrentWorkingDirectory(WD->getValue()))
1027       Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue();
1028 
1029   // FIXME: This stuff needs to go into the Compilation, not the driver.
1030   bool CCCPrintPhases;
1031 
1032   // Silence driver warnings if requested
1033   Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w));
1034 
1035   // -no-canonical-prefixes is used very early in main.
1036   Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
1037 
1038   // f(no-)integated-cc1 is also used very early in main.
1039   Args.ClaimAllArgs(options::OPT_fintegrated_cc1);
1040   Args.ClaimAllArgs(options::OPT_fno_integrated_cc1);
1041 
1042   // Ignore -pipe.
1043   Args.ClaimAllArgs(options::OPT_pipe);
1044 
1045   // Extract -ccc args.
1046   //
1047   // FIXME: We need to figure out where this behavior should live. Most of it
1048   // should be outside in the client; the parts that aren't should have proper
1049   // options, either by introducing new ones or by overloading gcc ones like -V
1050   // or -b.
1051   CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
1052   CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
1053   if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
1054     CCCGenericGCCName = A->getValue();
1055   GenReproducer = Args.hasFlag(options::OPT_gen_reproducer,
1056                                options::OPT_fno_crash_diagnostics,
1057                                !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH"));
1058   // FIXME: TargetTriple is used by the target-prefixed calls to as/ld
1059   // and getToolChain is const.
1060   if (IsCLMode()) {
1061     // clang-cl targets MSVC-style Win32.
1062     llvm::Triple T(TargetTriple);
1063     T.setOS(llvm::Triple::Win32);
1064     T.setVendor(llvm::Triple::PC);
1065     T.setEnvironment(llvm::Triple::MSVC);
1066     T.setObjectFormat(llvm::Triple::COFF);
1067     TargetTriple = T.str();
1068   }
1069   if (const Arg *A = Args.getLastArg(options::OPT_target))
1070     TargetTriple = A->getValue();
1071   if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
1072     Dir = InstalledDir = A->getValue();
1073   for (const Arg *A : Args.filtered(options::OPT_B)) {
1074     A->claim();
1075     PrefixDirs.push_back(A->getValue(0));
1076   }
1077   if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
1078     SysRoot = A->getValue();
1079   if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
1080     DyldPrefix = A->getValue();
1081 
1082   if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
1083     ResourceDir = A->getValue();
1084 
1085   if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
1086     SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
1087                     .Case("cwd", SaveTempsCwd)
1088                     .Case("obj", SaveTempsObj)
1089                     .Default(SaveTempsCwd);
1090   }
1091 
1092   setLTOMode(Args);
1093 
1094   // Process -fembed-bitcode= flags.
1095   if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
1096     StringRef Name = A->getValue();
1097     unsigned Model = llvm::StringSwitch<unsigned>(Name)
1098         .Case("off", EmbedNone)
1099         .Case("all", EmbedBitcode)
1100         .Case("bitcode", EmbedBitcode)
1101         .Case("marker", EmbedMarker)
1102         .Default(~0U);
1103     if (Model == ~0U) {
1104       Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
1105                                                 << Name;
1106     } else
1107       BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
1108   }
1109 
1110   std::unique_ptr<llvm::opt::InputArgList> UArgs =
1111       std::make_unique<InputArgList>(std::move(Args));
1112 
1113   // Perform the default argument translations.
1114   DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
1115 
1116   // Owned by the host.
1117   const ToolChain &TC = getToolChain(
1118       *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
1119 
1120   // The compilation takes ownership of Args.
1121   Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
1122                                    ContainsError);
1123 
1124   if (!HandleImmediateArgs(*C))
1125     return C;
1126 
1127   // Construct the list of inputs.
1128   InputList Inputs;
1129   BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
1130 
1131   // Populate the tool chains for the offloading devices, if any.
1132   CreateOffloadingDeviceToolChains(*C, Inputs);
1133 
1134   // Construct the list of abstract actions to perform for this compilation. On
1135   // MachO targets this uses the driver-driver and universal actions.
1136   if (TC.getTriple().isOSBinFormatMachO())
1137     BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
1138   else
1139     BuildActions(*C, C->getArgs(), Inputs, C->getActions());
1140 
1141   if (CCCPrintPhases) {
1142     PrintActions(*C);
1143     return C;
1144   }
1145 
1146   BuildJobs(*C);
1147 
1148   return C;
1149 }
1150 
1151 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
1152   llvm::opt::ArgStringList ASL;
1153   for (const auto *A : Args)
1154     A->render(Args, ASL);
1155 
1156   for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
1157     if (I != ASL.begin())
1158       OS << ' ';
1159     Command::printArg(OS, *I, true);
1160   }
1161   OS << '\n';
1162 }
1163 
1164 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
1165                                     SmallString<128> &CrashDiagDir) {
1166   using namespace llvm::sys;
1167   assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
1168          "Only knows about .crash files on Darwin");
1169 
1170   // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
1171   // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
1172   // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
1173   path::home_directory(CrashDiagDir);
1174   if (CrashDiagDir.startswith("/var/root"))
1175     CrashDiagDir = "/";
1176   path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
1177   int PID =
1178 #if LLVM_ON_UNIX
1179       getpid();
1180 #else
1181       0;
1182 #endif
1183   std::error_code EC;
1184   fs::file_status FileStatus;
1185   TimePoint<> LastAccessTime;
1186   SmallString<128> CrashFilePath;
1187   // Lookup the .crash files and get the one generated by a subprocess spawned
1188   // by this driver invocation.
1189   for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
1190        File != FileEnd && !EC; File.increment(EC)) {
1191     StringRef FileName = path::filename(File->path());
1192     if (!FileName.startswith(Name))
1193       continue;
1194     if (fs::status(File->path(), FileStatus))
1195       continue;
1196     llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
1197         llvm::MemoryBuffer::getFile(File->path());
1198     if (!CrashFile)
1199       continue;
1200     // The first line should start with "Process:", otherwise this isn't a real
1201     // .crash file.
1202     StringRef Data = CrashFile.get()->getBuffer();
1203     if (!Data.startswith("Process:"))
1204       continue;
1205     // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
1206     size_t ParentProcPos = Data.find("Parent Process:");
1207     if (ParentProcPos == StringRef::npos)
1208       continue;
1209     size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
1210     if (LineEnd == StringRef::npos)
1211       continue;
1212     StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
1213     int OpenBracket = -1, CloseBracket = -1;
1214     for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
1215       if (ParentProcess[i] == '[')
1216         OpenBracket = i;
1217       if (ParentProcess[i] == ']')
1218         CloseBracket = i;
1219     }
1220     // Extract the parent process PID from the .crash file and check whether
1221     // it matches this driver invocation pid.
1222     int CrashPID;
1223     if (OpenBracket < 0 || CloseBracket < 0 ||
1224         ParentProcess.slice(OpenBracket + 1, CloseBracket)
1225             .getAsInteger(10, CrashPID) || CrashPID != PID) {
1226       continue;
1227     }
1228 
1229     // Found a .crash file matching the driver pid. To avoid getting an older
1230     // and misleading crash file, continue looking for the most recent.
1231     // FIXME: the driver can dispatch multiple cc1 invocations, leading to
1232     // multiple crashes poiting to the same parent process. Since the driver
1233     // does not collect pid information for the dispatched invocation there's
1234     // currently no way to distinguish among them.
1235     const auto FileAccessTime = FileStatus.getLastModificationTime();
1236     if (FileAccessTime > LastAccessTime) {
1237       CrashFilePath.assign(File->path());
1238       LastAccessTime = FileAccessTime;
1239     }
1240   }
1241 
1242   // If found, copy it over to the location of other reproducer files.
1243   if (!CrashFilePath.empty()) {
1244     EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
1245     if (EC)
1246       return false;
1247     return true;
1248   }
1249 
1250   return false;
1251 }
1252 
1253 // When clang crashes, produce diagnostic information including the fully
1254 // preprocessed source file(s).  Request that the developer attach the
1255 // diagnostic information to a bug report.
1256 void Driver::generateCompilationDiagnostics(
1257     Compilation &C, const Command &FailingCommand,
1258     StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
1259   if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
1260     return;
1261 
1262   // Don't try to generate diagnostics for link or dsymutil jobs.
1263   if (FailingCommand.getCreator().isLinkJob() ||
1264       FailingCommand.getCreator().isDsymutilJob())
1265     return;
1266 
1267   // Print the version of the compiler.
1268   PrintVersion(C, llvm::errs());
1269 
1270   Diag(clang::diag::note_drv_command_failed_diag_msg)
1271       << "PLEASE submit a bug report to " BUG_REPORT_URL " and include the "
1272          "crash backtrace, preprocessed source, and associated run script.";
1273 
1274   // Suppress driver output and emit preprocessor output to temp file.
1275   Mode = CPPMode;
1276   CCGenDiagnostics = true;
1277 
1278   // Save the original job command(s).
1279   Command Cmd = FailingCommand;
1280 
1281   // Keep track of whether we produce any errors while trying to produce
1282   // preprocessed sources.
1283   DiagnosticErrorTrap Trap(Diags);
1284 
1285   // Suppress tool output.
1286   C.initCompilationForDiagnostics();
1287 
1288   // Construct the list of inputs.
1289   InputList Inputs;
1290   BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
1291 
1292   for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
1293     bool IgnoreInput = false;
1294 
1295     // Ignore input from stdin or any inputs that cannot be preprocessed.
1296     // Check type first as not all linker inputs have a value.
1297     if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
1298       IgnoreInput = true;
1299     } else if (!strcmp(it->second->getValue(), "-")) {
1300       Diag(clang::diag::note_drv_command_failed_diag_msg)
1301           << "Error generating preprocessed source(s) - "
1302              "ignoring input from stdin.";
1303       IgnoreInput = true;
1304     }
1305 
1306     if (IgnoreInput) {
1307       it = Inputs.erase(it);
1308       ie = Inputs.end();
1309     } else {
1310       ++it;
1311     }
1312   }
1313 
1314   if (Inputs.empty()) {
1315     Diag(clang::diag::note_drv_command_failed_diag_msg)
1316         << "Error generating preprocessed source(s) - "
1317            "no preprocessable inputs.";
1318     return;
1319   }
1320 
1321   // Don't attempt to generate preprocessed files if multiple -arch options are
1322   // used, unless they're all duplicates.
1323   llvm::StringSet<> ArchNames;
1324   for (const Arg *A : C.getArgs()) {
1325     if (A->getOption().matches(options::OPT_arch)) {
1326       StringRef ArchName = A->getValue();
1327       ArchNames.insert(ArchName);
1328     }
1329   }
1330   if (ArchNames.size() > 1) {
1331     Diag(clang::diag::note_drv_command_failed_diag_msg)
1332         << "Error generating preprocessed source(s) - cannot generate "
1333            "preprocessed source with multiple -arch options.";
1334     return;
1335   }
1336 
1337   // Construct the list of abstract actions to perform for this compilation. On
1338   // Darwin OSes this uses the driver-driver and builds universal actions.
1339   const ToolChain &TC = C.getDefaultToolChain();
1340   if (TC.getTriple().isOSBinFormatMachO())
1341     BuildUniversalActions(C, TC, Inputs);
1342   else
1343     BuildActions(C, C.getArgs(), Inputs, C.getActions());
1344 
1345   BuildJobs(C);
1346 
1347   // If there were errors building the compilation, quit now.
1348   if (Trap.hasErrorOccurred()) {
1349     Diag(clang::diag::note_drv_command_failed_diag_msg)
1350         << "Error generating preprocessed source(s).";
1351     return;
1352   }
1353 
1354   // Generate preprocessed output.
1355   SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
1356   C.ExecuteJobs(C.getJobs(), FailingCommands);
1357 
1358   // If any of the preprocessing commands failed, clean up and exit.
1359   if (!FailingCommands.empty()) {
1360     Diag(clang::diag::note_drv_command_failed_diag_msg)
1361         << "Error generating preprocessed source(s).";
1362     return;
1363   }
1364 
1365   const ArgStringList &TempFiles = C.getTempFiles();
1366   if (TempFiles.empty()) {
1367     Diag(clang::diag::note_drv_command_failed_diag_msg)
1368         << "Error generating preprocessed source(s).";
1369     return;
1370   }
1371 
1372   Diag(clang::diag::note_drv_command_failed_diag_msg)
1373       << "\n********************\n\n"
1374          "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
1375          "Preprocessed source(s) and associated run script(s) are located at:";
1376 
1377   SmallString<128> VFS;
1378   SmallString<128> ReproCrashFilename;
1379   for (const char *TempFile : TempFiles) {
1380     Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
1381     if (Report)
1382       Report->TemporaryFiles.push_back(TempFile);
1383     if (ReproCrashFilename.empty()) {
1384       ReproCrashFilename = TempFile;
1385       llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
1386     }
1387     if (StringRef(TempFile).endswith(".cache")) {
1388       // In some cases (modules) we'll dump extra data to help with reproducing
1389       // the crash into a directory next to the output.
1390       VFS = llvm::sys::path::filename(TempFile);
1391       llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
1392     }
1393   }
1394 
1395   // Assume associated files are based off of the first temporary file.
1396   CrashReportInfo CrashInfo(TempFiles[0], VFS);
1397 
1398   llvm::SmallString<128> Script(CrashInfo.Filename);
1399   llvm::sys::path::replace_extension(Script, "sh");
1400   std::error_code EC;
1401   llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew);
1402   if (EC) {
1403     Diag(clang::diag::note_drv_command_failed_diag_msg)
1404         << "Error generating run script: " << Script << " " << EC.message();
1405   } else {
1406     ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
1407              << "# Driver args: ";
1408     printArgList(ScriptOS, C.getInputArgs());
1409     ScriptOS << "# Original command: ";
1410     Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
1411     Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
1412     if (!AdditionalInformation.empty())
1413       ScriptOS << "\n# Additional information: " << AdditionalInformation
1414                << "\n";
1415     if (Report)
1416       Report->TemporaryFiles.push_back(Script.str());
1417     Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
1418   }
1419 
1420   // On darwin, provide information about the .crash diagnostic report.
1421   if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
1422     SmallString<128> CrashDiagDir;
1423     if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
1424       Diag(clang::diag::note_drv_command_failed_diag_msg)
1425           << ReproCrashFilename.str();
1426     } else { // Suggest a directory for the user to look for .crash files.
1427       llvm::sys::path::append(CrashDiagDir, Name);
1428       CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
1429       Diag(clang::diag::note_drv_command_failed_diag_msg)
1430           << "Crash backtrace is located in";
1431       Diag(clang::diag::note_drv_command_failed_diag_msg)
1432           << CrashDiagDir.str();
1433       Diag(clang::diag::note_drv_command_failed_diag_msg)
1434           << "(choose the .crash file that corresponds to your crash)";
1435     }
1436   }
1437 
1438   for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file,
1439                                             options::OPT_frewrite_map_file_EQ))
1440     Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue();
1441 
1442   Diag(clang::diag::note_drv_command_failed_diag_msg)
1443       << "\n\n********************";
1444 }
1445 
1446 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
1447   // Since commandLineFitsWithinSystemLimits() may underestimate system's
1448   // capacity if the tool does not support response files, there is a chance/
1449   // that things will just work without a response file, so we silently just
1450   // skip it.
1451   if (Cmd.getCreator().getResponseFilesSupport() == Tool::RF_None ||
1452       llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(),
1453                                                    Cmd.getArguments()))
1454     return;
1455 
1456   std::string TmpName = GetTemporaryPath("response", "txt");
1457   Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
1458 }
1459 
1460 int Driver::ExecuteCompilation(
1461     Compilation &C,
1462     SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
1463   // Just print if -### was present.
1464   if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1465     C.getJobs().Print(llvm::errs(), "\n", true);
1466     return 0;
1467   }
1468 
1469   // If there were errors building the compilation, quit now.
1470   if (Diags.hasErrorOccurred())
1471     return 1;
1472 
1473   // Set up response file names for each command, if necessary
1474   for (auto &Job : C.getJobs())
1475     setUpResponseFiles(C, Job);
1476 
1477   C.ExecuteJobs(C.getJobs(), FailingCommands);
1478 
1479   // If the command succeeded, we are done.
1480   if (FailingCommands.empty())
1481     return 0;
1482 
1483   // Otherwise, remove result files and print extra information about abnormal
1484   // failures.
1485   int Res = 0;
1486   for (const auto &CmdPair : FailingCommands) {
1487     int CommandRes = CmdPair.first;
1488     const Command *FailingCommand = CmdPair.second;
1489 
1490     // Remove result files if we're not saving temps.
1491     if (!isSaveTempsEnabled()) {
1492       const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
1493       C.CleanupFileMap(C.getResultFiles(), JA, true);
1494 
1495       // Failure result files are valid unless we crashed.
1496       if (CommandRes < 0)
1497         C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
1498     }
1499 
1500 #if LLVM_ON_UNIX
1501     // llvm/lib/Support/Unix/Signals.inc will exit with a special return code
1502     // for SIGPIPE. Do not print diagnostics for this case.
1503     if (CommandRes == EX_IOERR) {
1504       Res = CommandRes;
1505       continue;
1506     }
1507 #endif
1508 
1509     // Print extra information about abnormal failures, if possible.
1510     //
1511     // This is ad-hoc, but we don't want to be excessively noisy. If the result
1512     // status was 1, assume the command failed normally. In particular, if it
1513     // was the compiler then assume it gave a reasonable error code. Failures
1514     // in other tools are less common, and they generally have worse
1515     // diagnostics, so always print the diagnostic there.
1516     const Tool &FailingTool = FailingCommand->getCreator();
1517 
1518     if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) {
1519       // FIXME: See FIXME above regarding result code interpretation.
1520       if (CommandRes < 0)
1521         Diag(clang::diag::err_drv_command_signalled)
1522             << FailingTool.getShortName();
1523       else
1524         Diag(clang::diag::err_drv_command_failed)
1525             << FailingTool.getShortName() << CommandRes;
1526     }
1527   }
1528   return Res;
1529 }
1530 
1531 void Driver::PrintHelp(bool ShowHidden) const {
1532   unsigned IncludedFlagsBitmask;
1533   unsigned ExcludedFlagsBitmask;
1534   std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
1535       getIncludeExcludeOptionFlagMasks(IsCLMode());
1536 
1537   ExcludedFlagsBitmask |= options::NoDriverOption;
1538   if (!ShowHidden)
1539     ExcludedFlagsBitmask |= HelpHidden;
1540 
1541   std::string Usage = llvm::formatv("{0} [options] file...", Name).str();
1542   getOpts().PrintHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(),
1543                       IncludedFlagsBitmask, ExcludedFlagsBitmask,
1544                       /*ShowAllAliases=*/false);
1545 }
1546 
1547 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
1548   // FIXME: The following handlers should use a callback mechanism, we don't
1549   // know what the client would like to do.
1550   OS << getClangFullVersion() << '\n';
1551   const ToolChain &TC = C.getDefaultToolChain();
1552   OS << "Target: " << TC.getTripleString() << '\n';
1553 
1554   // Print the threading model.
1555   if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
1556     // Don't print if the ToolChain would have barfed on it already
1557     if (TC.isThreadModelSupported(A->getValue()))
1558       OS << "Thread model: " << A->getValue();
1559   } else
1560     OS << "Thread model: " << TC.getThreadModel();
1561   OS << '\n';
1562 
1563   // Print out the install directory.
1564   OS << "InstalledDir: " << InstalledDir << '\n';
1565 
1566   // If configuration file was used, print its path.
1567   if (!ConfigFile.empty())
1568     OS << "Configuration file: " << ConfigFile << '\n';
1569 }
1570 
1571 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
1572 /// option.
1573 static void PrintDiagnosticCategories(raw_ostream &OS) {
1574   // Skip the empty category.
1575   for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
1576        ++i)
1577     OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
1578 }
1579 
1580 void Driver::HandleAutocompletions(StringRef PassedFlags) const {
1581   if (PassedFlags == "")
1582     return;
1583   // Print out all options that start with a given argument. This is used for
1584   // shell autocompletion.
1585   std::vector<std::string> SuggestedCompletions;
1586   std::vector<std::string> Flags;
1587 
1588   unsigned short DisableFlags =
1589       options::NoDriverOption | options::Unsupported | options::Ignored;
1590 
1591   // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag,"
1592   // because the latter indicates that the user put space before pushing tab
1593   // which should end up in a file completion.
1594   const bool HasSpace = PassedFlags.endswith(",");
1595 
1596   // Parse PassedFlags by "," as all the command-line flags are passed to this
1597   // function separated by ","
1598   StringRef TargetFlags = PassedFlags;
1599   while (TargetFlags != "") {
1600     StringRef CurFlag;
1601     std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
1602     Flags.push_back(std::string(CurFlag));
1603   }
1604 
1605   // We want to show cc1-only options only when clang is invoked with -cc1 or
1606   // -Xclang.
1607   if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1"))
1608     DisableFlags &= ~options::NoDriverOption;
1609 
1610   const llvm::opt::OptTable &Opts = getOpts();
1611   StringRef Cur;
1612   Cur = Flags.at(Flags.size() - 1);
1613   StringRef Prev;
1614   if (Flags.size() >= 2) {
1615     Prev = Flags.at(Flags.size() - 2);
1616     SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur);
1617   }
1618 
1619   if (SuggestedCompletions.empty())
1620     SuggestedCompletions = Opts.suggestValueCompletions(Cur, "");
1621 
1622   // If Flags were empty, it means the user typed `clang [tab]` where we should
1623   // list all possible flags. If there was no value completion and the user
1624   // pressed tab after a space, we should fall back to a file completion.
1625   // We're printing a newline to be consistent with what we print at the end of
1626   // this function.
1627   if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) {
1628     llvm::outs() << '\n';
1629     return;
1630   }
1631 
1632   // When flag ends with '=' and there was no value completion, return empty
1633   // string and fall back to the file autocompletion.
1634   if (SuggestedCompletions.empty() && !Cur.endswith("=")) {
1635     // If the flag is in the form of "--autocomplete=-foo",
1636     // we were requested to print out all option names that start with "-foo".
1637     // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
1638     SuggestedCompletions = Opts.findByPrefix(Cur, DisableFlags);
1639 
1640     // We have to query the -W flags manually as they're not in the OptTable.
1641     // TODO: Find a good way to add them to OptTable instead and them remove
1642     // this code.
1643     for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
1644       if (S.startswith(Cur))
1645         SuggestedCompletions.push_back(S);
1646   }
1647 
1648   // Sort the autocomplete candidates so that shells print them out in a
1649   // deterministic order. We could sort in any way, but we chose
1650   // case-insensitive sorting for consistency with the -help option
1651   // which prints out options in the case-insensitive alphabetical order.
1652   llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) {
1653     if (int X = A.compare_lower(B))
1654       return X < 0;
1655     return A.compare(B) > 0;
1656   });
1657 
1658   llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
1659 }
1660 
1661 bool Driver::HandleImmediateArgs(const Compilation &C) {
1662   // The order these options are handled in gcc is all over the place, but we
1663   // don't expect inconsistencies w.r.t. that to matter in practice.
1664 
1665   if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
1666     llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
1667     return false;
1668   }
1669 
1670   if (C.getArgs().hasArg(options::OPT_dumpversion)) {
1671     // Since -dumpversion is only implemented for pedantic GCC compatibility, we
1672     // return an answer which matches our definition of __VERSION__.
1673     llvm::outs() << CLANG_VERSION_STRING << "\n";
1674     return false;
1675   }
1676 
1677   if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
1678     PrintDiagnosticCategories(llvm::outs());
1679     return false;
1680   }
1681 
1682   if (C.getArgs().hasArg(options::OPT_help) ||
1683       C.getArgs().hasArg(options::OPT__help_hidden)) {
1684     PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
1685     return false;
1686   }
1687 
1688   if (C.getArgs().hasArg(options::OPT__version)) {
1689     // Follow gcc behavior and use stdout for --version and stderr for -v.
1690     PrintVersion(C, llvm::outs());
1691     return false;
1692   }
1693 
1694   if (C.getArgs().hasArg(options::OPT_v) ||
1695       C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) ||
1696       C.getArgs().hasArg(options::OPT_print_supported_cpus)) {
1697     PrintVersion(C, llvm::errs());
1698     SuppressMissingInputWarning = true;
1699   }
1700 
1701   if (C.getArgs().hasArg(options::OPT_v)) {
1702     if (!SystemConfigDir.empty())
1703       llvm::errs() << "System configuration file directory: "
1704                    << SystemConfigDir << "\n";
1705     if (!UserConfigDir.empty())
1706       llvm::errs() << "User configuration file directory: "
1707                    << UserConfigDir << "\n";
1708   }
1709 
1710   const ToolChain &TC = C.getDefaultToolChain();
1711 
1712   if (C.getArgs().hasArg(options::OPT_v))
1713     TC.printVerboseInfo(llvm::errs());
1714 
1715   if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
1716     llvm::outs() << ResourceDir << '\n';
1717     return false;
1718   }
1719 
1720   if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
1721     llvm::outs() << "programs: =";
1722     bool separator = false;
1723     for (const std::string &Path : TC.getProgramPaths()) {
1724       if (separator)
1725         llvm::outs() << llvm::sys::EnvPathSeparator;
1726       llvm::outs() << Path;
1727       separator = true;
1728     }
1729     llvm::outs() << "\n";
1730     llvm::outs() << "libraries: =" << ResourceDir;
1731 
1732     StringRef sysroot = C.getSysRoot();
1733 
1734     for (const std::string &Path : TC.getFilePaths()) {
1735       // Always print a separator. ResourceDir was the first item shown.
1736       llvm::outs() << llvm::sys::EnvPathSeparator;
1737       // Interpretation of leading '=' is needed only for NetBSD.
1738       if (Path[0] == '=')
1739         llvm::outs() << sysroot << Path.substr(1);
1740       else
1741         llvm::outs() << Path;
1742     }
1743     llvm::outs() << "\n";
1744     return false;
1745   }
1746 
1747   // FIXME: The following handlers should use a callback mechanism, we don't
1748   // know what the client would like to do.
1749   if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
1750     llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
1751     return false;
1752   }
1753 
1754   if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
1755     StringRef ProgName = A->getValue();
1756 
1757     // Null program name cannot have a path.
1758     if (! ProgName.empty())
1759       llvm::outs() << GetProgramPath(ProgName, TC);
1760 
1761     llvm::outs() << "\n";
1762     return false;
1763   }
1764 
1765   if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
1766     StringRef PassedFlags = A->getValue();
1767     HandleAutocompletions(PassedFlags);
1768     return false;
1769   }
1770 
1771   if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
1772     ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs());
1773     const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1774     RegisterEffectiveTriple TripleRAII(TC, Triple);
1775     switch (RLT) {
1776     case ToolChain::RLT_CompilerRT:
1777       llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
1778       break;
1779     case ToolChain::RLT_Libgcc:
1780       llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
1781       break;
1782     }
1783     return false;
1784   }
1785 
1786   if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
1787     for (const Multilib &Multilib : TC.getMultilibs())
1788       llvm::outs() << Multilib << "\n";
1789     return false;
1790   }
1791 
1792   if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
1793     const Multilib &Multilib = TC.getMultilib();
1794     if (Multilib.gccSuffix().empty())
1795       llvm::outs() << ".\n";
1796     else {
1797       StringRef Suffix(Multilib.gccSuffix());
1798       assert(Suffix.front() == '/');
1799       llvm::outs() << Suffix.substr(1) << "\n";
1800     }
1801     return false;
1802   }
1803 
1804   if (C.getArgs().hasArg(options::OPT_print_target_triple)) {
1805     llvm::outs() << TC.getTripleString() << "\n";
1806     return false;
1807   }
1808 
1809   if (C.getArgs().hasArg(options::OPT_print_effective_triple)) {
1810     const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1811     llvm::outs() << Triple.getTriple() << "\n";
1812     return false;
1813   }
1814 
1815   return true;
1816 }
1817 
1818 enum {
1819   TopLevelAction = 0,
1820   HeadSibAction = 1,
1821   OtherSibAction = 2,
1822 };
1823 
1824 // Display an action graph human-readably.  Action A is the "sink" node
1825 // and latest-occuring action. Traversal is in pre-order, visiting the
1826 // inputs to each action before printing the action itself.
1827 static unsigned PrintActions1(const Compilation &C, Action *A,
1828                               std::map<Action *, unsigned> &Ids,
1829                               Twine Indent = {}, int Kind = TopLevelAction) {
1830   if (Ids.count(A)) // A was already visited.
1831     return Ids[A];
1832 
1833   std::string str;
1834   llvm::raw_string_ostream os(str);
1835 
1836   auto getSibIndent = [](int K) -> Twine {
1837     return (K == HeadSibAction) ? "   " : (K == OtherSibAction) ? "|  " : "";
1838   };
1839 
1840   Twine SibIndent = Indent + getSibIndent(Kind);
1841   int SibKind = HeadSibAction;
1842   os << Action::getClassName(A->getKind()) << ", ";
1843   if (InputAction *IA = dyn_cast<InputAction>(A)) {
1844     os << "\"" << IA->getInputArg().getValue() << "\"";
1845   } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
1846     os << '"' << BIA->getArchName() << '"' << ", {"
1847        << PrintActions1(C, *BIA->input_begin(), Ids, SibIndent, SibKind) << "}";
1848   } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
1849     bool IsFirst = true;
1850     OA->doOnEachDependence(
1851         [&](Action *A, const ToolChain *TC, const char *BoundArch) {
1852           // E.g. for two CUDA device dependences whose bound arch is sm_20 and
1853           // sm_35 this will generate:
1854           // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
1855           // (nvptx64-nvidia-cuda:sm_35) {#ID}
1856           if (!IsFirst)
1857             os << ", ";
1858           os << '"';
1859           if (TC)
1860             os << A->getOffloadingKindPrefix();
1861           else
1862             os << "host";
1863           os << " (";
1864           os << TC->getTriple().normalize();
1865 
1866           if (BoundArch)
1867             os << ":" << BoundArch;
1868           os << ")";
1869           os << '"';
1870           os << " {" << PrintActions1(C, A, Ids, SibIndent, SibKind) << "}";
1871           IsFirst = false;
1872           SibKind = OtherSibAction;
1873         });
1874   } else {
1875     const ActionList *AL = &A->getInputs();
1876 
1877     if (AL->size()) {
1878       const char *Prefix = "{";
1879       for (Action *PreRequisite : *AL) {
1880         os << Prefix << PrintActions1(C, PreRequisite, Ids, SibIndent, SibKind);
1881         Prefix = ", ";
1882         SibKind = OtherSibAction;
1883       }
1884       os << "}";
1885     } else
1886       os << "{}";
1887   }
1888 
1889   // Append offload info for all options other than the offloading action
1890   // itself (e.g. (cuda-device, sm_20) or (cuda-host)).
1891   std::string offload_str;
1892   llvm::raw_string_ostream offload_os(offload_str);
1893   if (!isa<OffloadAction>(A)) {
1894     auto S = A->getOffloadingKindPrefix();
1895     if (!S.empty()) {
1896       offload_os << ", (" << S;
1897       if (A->getOffloadingArch())
1898         offload_os << ", " << A->getOffloadingArch();
1899       offload_os << ")";
1900     }
1901   }
1902 
1903   auto getSelfIndent = [](int K) -> Twine {
1904     return (K == HeadSibAction) ? "+- " : (K == OtherSibAction) ? "|- " : "";
1905   };
1906 
1907   unsigned Id = Ids.size();
1908   Ids[A] = Id;
1909   llvm::errs() << Indent + getSelfIndent(Kind) << Id << ": " << os.str() << ", "
1910                << types::getTypeName(A->getType()) << offload_os.str() << "\n";
1911 
1912   return Id;
1913 }
1914 
1915 // Print the action graphs in a compilation C.
1916 // For example "clang -c file1.c file2.c" is composed of two subgraphs.
1917 void Driver::PrintActions(const Compilation &C) const {
1918   std::map<Action *, unsigned> Ids;
1919   for (Action *A : C.getActions())
1920     PrintActions1(C, A, Ids);
1921 }
1922 
1923 /// Check whether the given input tree contains any compilation or
1924 /// assembly actions.
1925 static bool ContainsCompileOrAssembleAction(const Action *A) {
1926   if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
1927       isa<AssembleJobAction>(A))
1928     return true;
1929 
1930   for (const Action *Input : A->inputs())
1931     if (ContainsCompileOrAssembleAction(Input))
1932       return true;
1933 
1934   return false;
1935 }
1936 
1937 void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC,
1938                                    const InputList &BAInputs) const {
1939   DerivedArgList &Args = C.getArgs();
1940   ActionList &Actions = C.getActions();
1941   llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
1942   // Collect the list of architectures. Duplicates are allowed, but should only
1943   // be handled once (in the order seen).
1944   llvm::StringSet<> ArchNames;
1945   SmallVector<const char *, 4> Archs;
1946   for (Arg *A : Args) {
1947     if (A->getOption().matches(options::OPT_arch)) {
1948       // Validate the option here; we don't save the type here because its
1949       // particular spelling may participate in other driver choices.
1950       llvm::Triple::ArchType Arch =
1951           tools::darwin::getArchTypeForMachOArchName(A->getValue());
1952       if (Arch == llvm::Triple::UnknownArch) {
1953         Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
1954         continue;
1955       }
1956 
1957       A->claim();
1958       if (ArchNames.insert(A->getValue()).second)
1959         Archs.push_back(A->getValue());
1960     }
1961   }
1962 
1963   // When there is no explicit arch for this platform, make sure we still bind
1964   // the architecture (to the default) so that -Xarch_ is handled correctly.
1965   if (!Archs.size())
1966     Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
1967 
1968   ActionList SingleActions;
1969   BuildActions(C, Args, BAInputs, SingleActions);
1970 
1971   // Add in arch bindings for every top level action, as well as lipo and
1972   // dsymutil steps if needed.
1973   for (Action* Act : SingleActions) {
1974     // Make sure we can lipo this kind of output. If not (and it is an actual
1975     // output) then we disallow, since we can't create an output file with the
1976     // right name without overwriting it. We could remove this oddity by just
1977     // changing the output names to include the arch, which would also fix
1978     // -save-temps. Compatibility wins for now.
1979 
1980     if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
1981       Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
1982           << types::getTypeName(Act->getType());
1983 
1984     ActionList Inputs;
1985     for (unsigned i = 0, e = Archs.size(); i != e; ++i)
1986       Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
1987 
1988     // Lipo if necessary, we do it this way because we need to set the arch flag
1989     // so that -Xarch_ gets overwritten.
1990     if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
1991       Actions.append(Inputs.begin(), Inputs.end());
1992     else
1993       Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
1994 
1995     // Handle debug info queries.
1996     Arg *A = Args.getLastArg(options::OPT_g_Group);
1997     bool enablesDebugInfo = A && !A->getOption().matches(options::OPT_g0) &&
1998                             !A->getOption().matches(options::OPT_gstabs);
1999     if ((enablesDebugInfo || willEmitRemarks(Args)) &&
2000         ContainsCompileOrAssembleAction(Actions.back())) {
2001 
2002       // Add a 'dsymutil' step if necessary, when debug info is enabled and we
2003       // have a compile input. We need to run 'dsymutil' ourselves in such cases
2004       // because the debug info will refer to a temporary object file which
2005       // will be removed at the end of the compilation process.
2006       if (Act->getType() == types::TY_Image) {
2007         ActionList Inputs;
2008         Inputs.push_back(Actions.back());
2009         Actions.pop_back();
2010         Actions.push_back(
2011             C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
2012       }
2013 
2014       // Verify the debug info output.
2015       if (Args.hasArg(options::OPT_verify_debug_info)) {
2016         Action* LastAction = Actions.back();
2017         Actions.pop_back();
2018         Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
2019             LastAction, types::TY_Nothing));
2020       }
2021     }
2022   }
2023 }
2024 
2025 bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value,
2026                                     types::ID Ty, bool TypoCorrect) const {
2027   if (!getCheckInputsExist())
2028     return true;
2029 
2030   // stdin always exists.
2031   if (Value == "-")
2032     return true;
2033 
2034   if (getVFS().exists(Value))
2035     return true;
2036 
2037   if (IsCLMode()) {
2038     if (!llvm::sys::path::is_absolute(Twine(Value)) &&
2039         llvm::sys::Process::FindInEnvPath("LIB", Value))
2040       return true;
2041 
2042     if (Args.hasArg(options::OPT__SLASH_link) && Ty == types::TY_Object) {
2043       // Arguments to the /link flag might cause the linker to search for object
2044       // and library files in paths we don't know about. Don't error in such
2045       // cases.
2046       return true;
2047     }
2048   }
2049 
2050   if (TypoCorrect) {
2051     // Check if the filename is a typo for an option flag. OptTable thinks
2052     // that all args that are not known options and that start with / are
2053     // filenames, but e.g. `/diagnostic:caret` is more likely a typo for
2054     // the option `/diagnostics:caret` than a reference to a file in the root
2055     // directory.
2056     unsigned IncludedFlagsBitmask;
2057     unsigned ExcludedFlagsBitmask;
2058     std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
2059         getIncludeExcludeOptionFlagMasks(IsCLMode());
2060     std::string Nearest;
2061     if (getOpts().findNearest(Value, Nearest, IncludedFlagsBitmask,
2062                               ExcludedFlagsBitmask) <= 1) {
2063       Diag(clang::diag::err_drv_no_such_file_with_suggestion)
2064           << Value << Nearest;
2065       return false;
2066     }
2067   }
2068 
2069   Diag(clang::diag::err_drv_no_such_file) << Value;
2070   return false;
2071 }
2072 
2073 // Construct a the list of inputs and their types.
2074 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
2075                          InputList &Inputs) const {
2076   const llvm::opt::OptTable &Opts = getOpts();
2077   // Track the current user specified (-x) input. We also explicitly track the
2078   // argument used to set the type; we only want to claim the type when we
2079   // actually use it, so we warn about unused -x arguments.
2080   types::ID InputType = types::TY_Nothing;
2081   Arg *InputTypeArg = nullptr;
2082 
2083   // The last /TC or /TP option sets the input type to C or C++ globally.
2084   if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
2085                                          options::OPT__SLASH_TP)) {
2086     InputTypeArg = TCTP;
2087     InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
2088                     ? types::TY_C
2089                     : types::TY_CXX;
2090 
2091     Arg *Previous = nullptr;
2092     bool ShowNote = false;
2093     for (Arg *A :
2094          Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
2095       if (Previous) {
2096         Diag(clang::diag::warn_drv_overriding_flag_option)
2097           << Previous->getSpelling() << A->getSpelling();
2098         ShowNote = true;
2099       }
2100       Previous = A;
2101     }
2102     if (ShowNote)
2103       Diag(clang::diag::note_drv_t_option_is_global);
2104 
2105     // No driver mode exposes -x and /TC or /TP; we don't support mixing them.
2106     assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed");
2107   }
2108 
2109   for (Arg *A : Args) {
2110     if (A->getOption().getKind() == Option::InputClass) {
2111       const char *Value = A->getValue();
2112       types::ID Ty = types::TY_INVALID;
2113 
2114       // Infer the input type if necessary.
2115       if (InputType == types::TY_Nothing) {
2116         // If there was an explicit arg for this, claim it.
2117         if (InputTypeArg)
2118           InputTypeArg->claim();
2119 
2120         // stdin must be handled specially.
2121         if (memcmp(Value, "-", 2) == 0) {
2122           // If running with -E, treat as a C input (this changes the builtin
2123           // macros, for example). This may be overridden by -ObjC below.
2124           //
2125           // Otherwise emit an error but still use a valid type to avoid
2126           // spurious errors (e.g., no inputs).
2127           if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
2128             Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
2129                             : clang::diag::err_drv_unknown_stdin_type);
2130           Ty = types::TY_C;
2131         } else {
2132           // Otherwise lookup by extension.
2133           // Fallback is C if invoked as C preprocessor, C++ if invoked with
2134           // clang-cl /E, or Object otherwise.
2135           // We use a host hook here because Darwin at least has its own
2136           // idea of what .s is.
2137           if (const char *Ext = strrchr(Value, '.'))
2138             Ty = TC.LookupTypeForExtension(Ext + 1);
2139 
2140           if (Ty == types::TY_INVALID) {
2141             if (CCCIsCPP())
2142               Ty = types::TY_C;
2143             else if (IsCLMode() && Args.hasArgNoClaim(options::OPT_E))
2144               Ty = types::TY_CXX;
2145             else
2146               Ty = types::TY_Object;
2147           }
2148 
2149           // If the driver is invoked as C++ compiler (like clang++ or c++) it
2150           // should autodetect some input files as C++ for g++ compatibility.
2151           if (CCCIsCXX()) {
2152             types::ID OldTy = Ty;
2153             Ty = types::lookupCXXTypeForCType(Ty);
2154 
2155             if (Ty != OldTy)
2156               Diag(clang::diag::warn_drv_treating_input_as_cxx)
2157                   << getTypeName(OldTy) << getTypeName(Ty);
2158           }
2159 
2160           // If running with -fthinlto-index=, extensions that normally identify
2161           // native object files actually identify LLVM bitcode files.
2162           if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) &&
2163               Ty == types::TY_Object)
2164             Ty = types::TY_LLVM_BC;
2165         }
2166 
2167         // -ObjC and -ObjC++ override the default language, but only for "source
2168         // files". We just treat everything that isn't a linker input as a
2169         // source file.
2170         //
2171         // FIXME: Clean this up if we move the phase sequence into the type.
2172         if (Ty != types::TY_Object) {
2173           if (Args.hasArg(options::OPT_ObjC))
2174             Ty = types::TY_ObjC;
2175           else if (Args.hasArg(options::OPT_ObjCXX))
2176             Ty = types::TY_ObjCXX;
2177         }
2178       } else {
2179         assert(InputTypeArg && "InputType set w/o InputTypeArg");
2180         if (!InputTypeArg->getOption().matches(options::OPT_x)) {
2181           // If emulating cl.exe, make sure that /TC and /TP don't affect input
2182           // object files.
2183           const char *Ext = strrchr(Value, '.');
2184           if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
2185             Ty = types::TY_Object;
2186         }
2187         if (Ty == types::TY_INVALID) {
2188           Ty = InputType;
2189           InputTypeArg->claim();
2190         }
2191       }
2192 
2193       if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true))
2194         Inputs.push_back(std::make_pair(Ty, A));
2195 
2196     } else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
2197       StringRef Value = A->getValue();
2198       if (DiagnoseInputExistence(Args, Value, types::TY_C,
2199                                  /*TypoCorrect=*/false)) {
2200         Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2201         Inputs.push_back(std::make_pair(types::TY_C, InputArg));
2202       }
2203       A->claim();
2204     } else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
2205       StringRef Value = A->getValue();
2206       if (DiagnoseInputExistence(Args, Value, types::TY_CXX,
2207                                  /*TypoCorrect=*/false)) {
2208         Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2209         Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
2210       }
2211       A->claim();
2212     } else if (A->getOption().hasFlag(options::LinkerInput)) {
2213       // Just treat as object type, we could make a special type for this if
2214       // necessary.
2215       Inputs.push_back(std::make_pair(types::TY_Object, A));
2216 
2217     } else if (A->getOption().matches(options::OPT_x)) {
2218       InputTypeArg = A;
2219       InputType = types::lookupTypeForTypeSpecifier(A->getValue());
2220       A->claim();
2221 
2222       // Follow gcc behavior and treat as linker input for invalid -x
2223       // options. Its not clear why we shouldn't just revert to unknown; but
2224       // this isn't very important, we might as well be bug compatible.
2225       if (!InputType) {
2226         Diag(clang::diag::err_drv_unknown_language) << A->getValue();
2227         InputType = types::TY_Object;
2228       }
2229     } else if (A->getOption().getID() == options::OPT_U) {
2230       assert(A->getNumValues() == 1 && "The /U option has one value.");
2231       StringRef Val = A->getValue(0);
2232       if (Val.find_first_of("/\\") != StringRef::npos) {
2233         // Warn about e.g. "/Users/me/myfile.c".
2234         Diag(diag::warn_slash_u_filename) << Val;
2235         Diag(diag::note_use_dashdash);
2236       }
2237     }
2238   }
2239   if (CCCIsCPP() && Inputs.empty()) {
2240     // If called as standalone preprocessor, stdin is processed
2241     // if no other input is present.
2242     Arg *A = MakeInputArg(Args, Opts, "-");
2243     Inputs.push_back(std::make_pair(types::TY_C, A));
2244   }
2245 }
2246 
2247 namespace {
2248 /// Provides a convenient interface for different programming models to generate
2249 /// the required device actions.
2250 class OffloadingActionBuilder final {
2251   /// Flag used to trace errors in the builder.
2252   bool IsValid = false;
2253 
2254   /// The compilation that is using this builder.
2255   Compilation &C;
2256 
2257   /// Map between an input argument and the offload kinds used to process it.
2258   std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
2259 
2260   /// Builder interface. It doesn't build anything or keep any state.
2261   class DeviceActionBuilder {
2262   public:
2263     typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy;
2264 
2265     enum ActionBuilderReturnCode {
2266       // The builder acted successfully on the current action.
2267       ABRT_Success,
2268       // The builder didn't have to act on the current action.
2269       ABRT_Inactive,
2270       // The builder was successful and requested the host action to not be
2271       // generated.
2272       ABRT_Ignore_Host,
2273     };
2274 
2275   protected:
2276     /// Compilation associated with this builder.
2277     Compilation &C;
2278 
2279     /// Tool chains associated with this builder. The same programming
2280     /// model may have associated one or more tool chains.
2281     SmallVector<const ToolChain *, 2> ToolChains;
2282 
2283     /// The derived arguments associated with this builder.
2284     DerivedArgList &Args;
2285 
2286     /// The inputs associated with this builder.
2287     const Driver::InputList &Inputs;
2288 
2289     /// The associated offload kind.
2290     Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
2291 
2292   public:
2293     DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
2294                         const Driver::InputList &Inputs,
2295                         Action::OffloadKind AssociatedOffloadKind)
2296         : C(C), Args(Args), Inputs(Inputs),
2297           AssociatedOffloadKind(AssociatedOffloadKind) {}
2298     virtual ~DeviceActionBuilder() {}
2299 
2300     /// Fill up the array \a DA with all the device dependences that should be
2301     /// added to the provided host action \a HostAction. By default it is
2302     /// inactive.
2303     virtual ActionBuilderReturnCode
2304     getDeviceDependences(OffloadAction::DeviceDependences &DA,
2305                          phases::ID CurPhase, phases::ID FinalPhase,
2306                          PhasesTy &Phases) {
2307       return ABRT_Inactive;
2308     }
2309 
2310     /// Update the state to include the provided host action \a HostAction as a
2311     /// dependency of the current device action. By default it is inactive.
2312     virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) {
2313       return ABRT_Inactive;
2314     }
2315 
2316     /// Append top level actions generated by the builder.
2317     virtual void appendTopLevelActions(ActionList &AL) {}
2318 
2319     /// Append linker actions generated by the builder.
2320     virtual void appendLinkActions(ActionList &AL) {}
2321 
2322     /// Append linker actions generated by the builder.
2323     virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
2324 
2325     /// Initialize the builder. Return true if any initialization errors are
2326     /// found.
2327     virtual bool initialize() { return false; }
2328 
2329     /// Return true if the builder can use bundling/unbundling.
2330     virtual bool canUseBundlerUnbundler() const { return false; }
2331 
2332     /// Return true if this builder is valid. We have a valid builder if we have
2333     /// associated device tool chains.
2334     bool isValid() { return !ToolChains.empty(); }
2335 
2336     /// Return the associated offload kind.
2337     Action::OffloadKind getAssociatedOffloadKind() {
2338       return AssociatedOffloadKind;
2339     }
2340   };
2341 
2342   /// Base class for CUDA/HIP action builder. It injects device code in
2343   /// the host backend action.
2344   class CudaActionBuilderBase : public DeviceActionBuilder {
2345   protected:
2346     /// Flags to signal if the user requested host-only or device-only
2347     /// compilation.
2348     bool CompileHostOnly = false;
2349     bool CompileDeviceOnly = false;
2350     bool EmitLLVM = false;
2351     bool EmitAsm = false;
2352 
2353     /// List of GPU architectures to use in this compilation.
2354     SmallVector<CudaArch, 4> GpuArchList;
2355 
2356     /// The CUDA actions for the current input.
2357     ActionList CudaDeviceActions;
2358 
2359     /// The CUDA fat binary if it was generated for the current input.
2360     Action *CudaFatBinary = nullptr;
2361 
2362     /// Flag that is set to true if this builder acted on the current input.
2363     bool IsActive = false;
2364 
2365     /// Flag for -fgpu-rdc.
2366     bool Relocatable = false;
2367 
2368     /// Default GPU architecture if there's no one specified.
2369     CudaArch DefaultCudaArch = CudaArch::UNKNOWN;
2370 
2371   public:
2372     CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
2373                           const Driver::InputList &Inputs,
2374                           Action::OffloadKind OFKind)
2375         : DeviceActionBuilder(C, Args, Inputs, OFKind) {}
2376 
2377     ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2378       // While generating code for CUDA, we only depend on the host input action
2379       // to trigger the creation of all the CUDA device actions.
2380 
2381       // If we are dealing with an input action, replicate it for each GPU
2382       // architecture. If we are in host-only mode we return 'success' so that
2383       // the host uses the CUDA offload kind.
2384       if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2385         assert(!GpuArchList.empty() &&
2386                "We should have at least one GPU architecture.");
2387 
2388         // If the host input is not CUDA or HIP, we don't need to bother about
2389         // this input.
2390         if (IA->getType() != types::TY_CUDA &&
2391             IA->getType() != types::TY_HIP) {
2392           // The builder will ignore this input.
2393           IsActive = false;
2394           return ABRT_Inactive;
2395         }
2396 
2397         // Set the flag to true, so that the builder acts on the current input.
2398         IsActive = true;
2399 
2400         if (CompileHostOnly)
2401           return ABRT_Success;
2402 
2403         // Replicate inputs for each GPU architecture.
2404         auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
2405                                                  : types::TY_CUDA_DEVICE;
2406         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2407           CudaDeviceActions.push_back(
2408               C.MakeAction<InputAction>(IA->getInputArg(), Ty));
2409         }
2410 
2411         return ABRT_Success;
2412       }
2413 
2414       // If this is an unbundling action use it as is for each CUDA toolchain.
2415       if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2416 
2417         // If -fgpu-rdc is disabled, should not unbundle since there is no
2418         // device code to link.
2419         if (!Relocatable)
2420           return ABRT_Inactive;
2421 
2422         CudaDeviceActions.clear();
2423         auto *IA = cast<InputAction>(UA->getInputs().back());
2424         std::string FileName = IA->getInputArg().getAsString(Args);
2425         // Check if the type of the file is the same as the action. Do not
2426         // unbundle it if it is not. Do not unbundle .so files, for example,
2427         // which are not object files.
2428         if (IA->getType() == types::TY_Object &&
2429             (!llvm::sys::path::has_extension(FileName) ||
2430              types::lookupTypeForExtension(
2431                  llvm::sys::path::extension(FileName).drop_front()) !=
2432                  types::TY_Object))
2433           return ABRT_Inactive;
2434 
2435         for (auto Arch : GpuArchList) {
2436           CudaDeviceActions.push_back(UA);
2437           UA->registerDependentActionInfo(ToolChains[0], CudaArchToString(Arch),
2438                                           AssociatedOffloadKind);
2439         }
2440         return ABRT_Success;
2441       }
2442 
2443       return IsActive ? ABRT_Success : ABRT_Inactive;
2444     }
2445 
2446     void appendTopLevelActions(ActionList &AL) override {
2447       // Utility to append actions to the top level list.
2448       auto AddTopLevel = [&](Action *A, CudaArch BoundArch) {
2449         OffloadAction::DeviceDependences Dep;
2450         Dep.add(*A, *ToolChains.front(), CudaArchToString(BoundArch),
2451                 AssociatedOffloadKind);
2452         AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2453       };
2454 
2455       // If we have a fat binary, add it to the list.
2456       if (CudaFatBinary) {
2457         AddTopLevel(CudaFatBinary, CudaArch::UNKNOWN);
2458         CudaDeviceActions.clear();
2459         CudaFatBinary = nullptr;
2460         return;
2461       }
2462 
2463       if (CudaDeviceActions.empty())
2464         return;
2465 
2466       // If we have CUDA actions at this point, that's because we have a have
2467       // partial compilation, so we should have an action for each GPU
2468       // architecture.
2469       assert(CudaDeviceActions.size() == GpuArchList.size() &&
2470              "Expecting one action per GPU architecture.");
2471       assert(ToolChains.size() == 1 &&
2472              "Expecting to have a sing CUDA toolchain.");
2473       for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
2474         AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
2475 
2476       CudaDeviceActions.clear();
2477     }
2478 
2479     bool initialize() override {
2480       assert(AssociatedOffloadKind == Action::OFK_Cuda ||
2481              AssociatedOffloadKind == Action::OFK_HIP);
2482 
2483       // We don't need to support CUDA.
2484       if (AssociatedOffloadKind == Action::OFK_Cuda &&
2485           !C.hasOffloadToolChain<Action::OFK_Cuda>())
2486         return false;
2487 
2488       // We don't need to support HIP.
2489       if (AssociatedOffloadKind == Action::OFK_HIP &&
2490           !C.hasOffloadToolChain<Action::OFK_HIP>())
2491         return false;
2492 
2493       Relocatable = Args.hasFlag(options::OPT_fgpu_rdc,
2494           options::OPT_fno_gpu_rdc, /*Default=*/false);
2495 
2496       const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
2497       assert(HostTC && "No toolchain for host compilation.");
2498       if (HostTC->getTriple().isNVPTX() ||
2499           HostTC->getTriple().getArch() == llvm::Triple::amdgcn) {
2500         // We do not support targeting NVPTX/AMDGCN for host compilation. Throw
2501         // an error and abort pipeline construction early so we don't trip
2502         // asserts that assume device-side compilation.
2503         C.getDriver().Diag(diag::err_drv_cuda_host_arch)
2504             << HostTC->getTriple().getArchName();
2505         return true;
2506       }
2507 
2508       ToolChains.push_back(
2509           AssociatedOffloadKind == Action::OFK_Cuda
2510               ? C.getSingleOffloadToolChain<Action::OFK_Cuda>()
2511               : C.getSingleOffloadToolChain<Action::OFK_HIP>());
2512 
2513       Arg *PartialCompilationArg = Args.getLastArg(
2514           options::OPT_cuda_host_only, options::OPT_cuda_device_only,
2515           options::OPT_cuda_compile_host_device);
2516       CompileHostOnly = PartialCompilationArg &&
2517                         PartialCompilationArg->getOption().matches(
2518                             options::OPT_cuda_host_only);
2519       CompileDeviceOnly = PartialCompilationArg &&
2520                           PartialCompilationArg->getOption().matches(
2521                               options::OPT_cuda_device_only);
2522       EmitLLVM = Args.getLastArg(options::OPT_emit_llvm);
2523       EmitAsm = Args.getLastArg(options::OPT_S);
2524 
2525       // Collect all cuda_gpu_arch parameters, removing duplicates.
2526       std::set<CudaArch> GpuArchs;
2527       bool Error = false;
2528       for (Arg *A : Args) {
2529         if (!(A->getOption().matches(options::OPT_cuda_gpu_arch_EQ) ||
2530               A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ)))
2531           continue;
2532         A->claim();
2533 
2534         const StringRef ArchStr = A->getValue();
2535         if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ) &&
2536             ArchStr == "all") {
2537           GpuArchs.clear();
2538           continue;
2539         }
2540         CudaArch Arch = StringToCudaArch(ArchStr);
2541         if (Arch == CudaArch::UNKNOWN) {
2542           C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
2543           Error = true;
2544         } else if (A->getOption().matches(options::OPT_cuda_gpu_arch_EQ))
2545           GpuArchs.insert(Arch);
2546         else if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ))
2547           GpuArchs.erase(Arch);
2548         else
2549           llvm_unreachable("Unexpected option.");
2550       }
2551 
2552       // Collect list of GPUs remaining in the set.
2553       for (CudaArch Arch : GpuArchs)
2554         GpuArchList.push_back(Arch);
2555 
2556       // Default to sm_20 which is the lowest common denominator for
2557       // supported GPUs.  sm_20 code should work correctly, if
2558       // suboptimally, on all newer GPUs.
2559       if (GpuArchList.empty())
2560         GpuArchList.push_back(DefaultCudaArch);
2561 
2562       return Error;
2563     }
2564   };
2565 
2566   /// \brief CUDA action builder. It injects device code in the host backend
2567   /// action.
2568   class CudaActionBuilder final : public CudaActionBuilderBase {
2569   public:
2570     CudaActionBuilder(Compilation &C, DerivedArgList &Args,
2571                       const Driver::InputList &Inputs)
2572         : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {
2573       DefaultCudaArch = CudaArch::SM_20;
2574     }
2575 
2576     ActionBuilderReturnCode
2577     getDeviceDependences(OffloadAction::DeviceDependences &DA,
2578                          phases::ID CurPhase, phases::ID FinalPhase,
2579                          PhasesTy &Phases) override {
2580       if (!IsActive)
2581         return ABRT_Inactive;
2582 
2583       // If we don't have more CUDA actions, we don't have any dependences to
2584       // create for the host.
2585       if (CudaDeviceActions.empty())
2586         return ABRT_Success;
2587 
2588       assert(CudaDeviceActions.size() == GpuArchList.size() &&
2589              "Expecting one action per GPU architecture.");
2590       assert(!CompileHostOnly &&
2591              "Not expecting CUDA actions in host-only compilation.");
2592 
2593       // If we are generating code for the device or we are in a backend phase,
2594       // we attempt to generate the fat binary. We compile each arch to ptx and
2595       // assemble to cubin, then feed the cubin *and* the ptx into a device
2596       // "link" action, which uses fatbinary to combine these cubins into one
2597       // fatbin.  The fatbin is then an input to the host action if not in
2598       // device-only mode.
2599       if (CompileDeviceOnly || CurPhase == phases::Backend) {
2600         ActionList DeviceActions;
2601         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2602           // Produce the device action from the current phase up to the assemble
2603           // phase.
2604           for (auto Ph : Phases) {
2605             // Skip the phases that were already dealt with.
2606             if (Ph < CurPhase)
2607               continue;
2608             // We have to be consistent with the host final phase.
2609             if (Ph > FinalPhase)
2610               break;
2611 
2612             CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
2613                 C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda);
2614 
2615             if (Ph == phases::Assemble)
2616               break;
2617           }
2618 
2619           // If we didn't reach the assemble phase, we can't generate the fat
2620           // binary. We don't need to generate the fat binary if we are not in
2621           // device-only mode.
2622           if (!isa<AssembleJobAction>(CudaDeviceActions[I]) ||
2623               CompileDeviceOnly)
2624             continue;
2625 
2626           Action *AssembleAction = CudaDeviceActions[I];
2627           assert(AssembleAction->getType() == types::TY_Object);
2628           assert(AssembleAction->getInputs().size() == 1);
2629 
2630           Action *BackendAction = AssembleAction->getInputs()[0];
2631           assert(BackendAction->getType() == types::TY_PP_Asm);
2632 
2633           for (auto &A : {AssembleAction, BackendAction}) {
2634             OffloadAction::DeviceDependences DDep;
2635             DDep.add(*A, *ToolChains.front(), CudaArchToString(GpuArchList[I]),
2636                      Action::OFK_Cuda);
2637             DeviceActions.push_back(
2638                 C.MakeAction<OffloadAction>(DDep, A->getType()));
2639           }
2640         }
2641 
2642         // We generate the fat binary if we have device input actions.
2643         if (!DeviceActions.empty()) {
2644           CudaFatBinary =
2645               C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN);
2646 
2647           if (!CompileDeviceOnly) {
2648             DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
2649                    Action::OFK_Cuda);
2650             // Clear the fat binary, it is already a dependence to an host
2651             // action.
2652             CudaFatBinary = nullptr;
2653           }
2654 
2655           // Remove the CUDA actions as they are already connected to an host
2656           // action or fat binary.
2657           CudaDeviceActions.clear();
2658         }
2659 
2660         // We avoid creating host action in device-only mode.
2661         return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
2662       } else if (CurPhase > phases::Backend) {
2663         // If we are past the backend phase and still have a device action, we
2664         // don't have to do anything as this action is already a device
2665         // top-level action.
2666         return ABRT_Success;
2667       }
2668 
2669       assert(CurPhase < phases::Backend && "Generating single CUDA "
2670                                            "instructions should only occur "
2671                                            "before the backend phase!");
2672 
2673       // By default, we produce an action for each device arch.
2674       for (Action *&A : CudaDeviceActions)
2675         A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2676 
2677       return ABRT_Success;
2678     }
2679   };
2680   /// \brief HIP action builder. It injects device code in the host backend
2681   /// action.
2682   class HIPActionBuilder final : public CudaActionBuilderBase {
2683     /// The linker inputs obtained for each device arch.
2684     SmallVector<ActionList, 8> DeviceLinkerInputs;
2685 
2686   public:
2687     HIPActionBuilder(Compilation &C, DerivedArgList &Args,
2688                      const Driver::InputList &Inputs)
2689         : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {
2690       DefaultCudaArch = CudaArch::GFX803;
2691     }
2692 
2693     bool canUseBundlerUnbundler() const override { return true; }
2694 
2695     ActionBuilderReturnCode
2696     getDeviceDependences(OffloadAction::DeviceDependences &DA,
2697                          phases::ID CurPhase, phases::ID FinalPhase,
2698                          PhasesTy &Phases) override {
2699       // amdgcn does not support linking of object files, therefore we skip
2700       // backend and assemble phases to output LLVM IR. Except for generating
2701       // non-relocatable device coee, where we generate fat binary for device
2702       // code and pass to host in Backend phase.
2703       if (CudaDeviceActions.empty() ||
2704           (CurPhase == phases::Backend && Relocatable) ||
2705           CurPhase == phases::Assemble)
2706         return ABRT_Success;
2707 
2708       assert(((CurPhase == phases::Link && Relocatable) ||
2709               CudaDeviceActions.size() == GpuArchList.size()) &&
2710              "Expecting one action per GPU architecture.");
2711       assert(!CompileHostOnly &&
2712              "Not expecting CUDA actions in host-only compilation.");
2713 
2714       if (!Relocatable && CurPhase == phases::Backend && !EmitLLVM &&
2715           !EmitAsm) {
2716         // If we are in backend phase, we attempt to generate the fat binary.
2717         // We compile each arch to IR and use a link action to generate code
2718         // object containing ISA. Then we use a special "link" action to create
2719         // a fat binary containing all the code objects for different GPU's.
2720         // The fat binary is then an input to the host action.
2721         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2722           // Create a link action to link device IR with device library
2723           // and generate ISA.
2724           ActionList AL;
2725           AL.push_back(CudaDeviceActions[I]);
2726           CudaDeviceActions[I] =
2727               C.MakeAction<LinkJobAction>(AL, types::TY_Image);
2728 
2729           // OffloadingActionBuilder propagates device arch until an offload
2730           // action. Since the next action for creating fatbin does
2731           // not have device arch, whereas the above link action and its input
2732           // have device arch, an offload action is needed to stop the null
2733           // device arch of the next action being propagated to the above link
2734           // action.
2735           OffloadAction::DeviceDependences DDep;
2736           DDep.add(*CudaDeviceActions[I], *ToolChains.front(),
2737                    CudaArchToString(GpuArchList[I]), AssociatedOffloadKind);
2738           CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
2739               DDep, CudaDeviceActions[I]->getType());
2740         }
2741         // Create HIP fat binary with a special "link" action.
2742         CudaFatBinary =
2743             C.MakeAction<LinkJobAction>(CudaDeviceActions,
2744                 types::TY_HIP_FATBIN);
2745 
2746         if (!CompileDeviceOnly) {
2747           DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
2748                  AssociatedOffloadKind);
2749           // Clear the fat binary, it is already a dependence to an host
2750           // action.
2751           CudaFatBinary = nullptr;
2752         }
2753 
2754         // Remove the CUDA actions as they are already connected to an host
2755         // action or fat binary.
2756         CudaDeviceActions.clear();
2757 
2758         return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
2759       } else if (CurPhase == phases::Link) {
2760         // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
2761         // This happens to each device action originated from each input file.
2762         // Later on, device actions in DeviceLinkerInputs are used to create
2763         // device link actions in appendLinkDependences and the created device
2764         // link actions are passed to the offload action as device dependence.
2765         DeviceLinkerInputs.resize(CudaDeviceActions.size());
2766         auto LI = DeviceLinkerInputs.begin();
2767         for (auto *A : CudaDeviceActions) {
2768           LI->push_back(A);
2769           ++LI;
2770         }
2771 
2772         // We will pass the device action as a host dependence, so we don't
2773         // need to do anything else with them.
2774         CudaDeviceActions.clear();
2775         return ABRT_Success;
2776       }
2777 
2778       // By default, we produce an action for each device arch.
2779       for (Action *&A : CudaDeviceActions)
2780         A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A,
2781                                                AssociatedOffloadKind);
2782 
2783       return (CompileDeviceOnly && CurPhase == FinalPhase) ? ABRT_Ignore_Host
2784                                                            : ABRT_Success;
2785     }
2786 
2787     void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {
2788       // Append a new link action for each device.
2789       unsigned I = 0;
2790       for (auto &LI : DeviceLinkerInputs) {
2791         auto *DeviceLinkAction =
2792             C.MakeAction<LinkJobAction>(LI, types::TY_Image);
2793         DA.add(*DeviceLinkAction, *ToolChains[0],
2794                CudaArchToString(GpuArchList[I]), AssociatedOffloadKind);
2795         ++I;
2796       }
2797     }
2798   };
2799 
2800   /// OpenMP action builder. The host bitcode is passed to the device frontend
2801   /// and all the device linked images are passed to the host link phase.
2802   class OpenMPActionBuilder final : public DeviceActionBuilder {
2803     /// The OpenMP actions for the current input.
2804     ActionList OpenMPDeviceActions;
2805 
2806     /// The linker inputs obtained for each toolchain.
2807     SmallVector<ActionList, 8> DeviceLinkerInputs;
2808 
2809   public:
2810     OpenMPActionBuilder(Compilation &C, DerivedArgList &Args,
2811                         const Driver::InputList &Inputs)
2812         : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {}
2813 
2814     ActionBuilderReturnCode
2815     getDeviceDependences(OffloadAction::DeviceDependences &DA,
2816                          phases::ID CurPhase, phases::ID FinalPhase,
2817                          PhasesTy &Phases) override {
2818       if (OpenMPDeviceActions.empty())
2819         return ABRT_Inactive;
2820 
2821       // We should always have an action for each input.
2822       assert(OpenMPDeviceActions.size() == ToolChains.size() &&
2823              "Number of OpenMP actions and toolchains do not match.");
2824 
2825       // The host only depends on device action in the linking phase, when all
2826       // the device images have to be embedded in the host image.
2827       if (CurPhase == phases::Link) {
2828         assert(ToolChains.size() == DeviceLinkerInputs.size() &&
2829                "Toolchains and linker inputs sizes do not match.");
2830         auto LI = DeviceLinkerInputs.begin();
2831         for (auto *A : OpenMPDeviceActions) {
2832           LI->push_back(A);
2833           ++LI;
2834         }
2835 
2836         // We passed the device action as a host dependence, so we don't need to
2837         // do anything else with them.
2838         OpenMPDeviceActions.clear();
2839         return ABRT_Success;
2840       }
2841 
2842       // By default, we produce an action for each device arch.
2843       for (Action *&A : OpenMPDeviceActions)
2844         A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2845 
2846       return ABRT_Success;
2847     }
2848 
2849     ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2850 
2851       // If this is an input action replicate it for each OpenMP toolchain.
2852       if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2853         OpenMPDeviceActions.clear();
2854         for (unsigned I = 0; I < ToolChains.size(); ++I)
2855           OpenMPDeviceActions.push_back(
2856               C.MakeAction<InputAction>(IA->getInputArg(), IA->getType()));
2857         return ABRT_Success;
2858       }
2859 
2860       // If this is an unbundling action use it as is for each OpenMP toolchain.
2861       if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2862         OpenMPDeviceActions.clear();
2863         auto *IA = cast<InputAction>(UA->getInputs().back());
2864         std::string FileName = IA->getInputArg().getAsString(Args);
2865         // Check if the type of the file is the same as the action. Do not
2866         // unbundle it if it is not. Do not unbundle .so files, for example,
2867         // which are not object files.
2868         if (IA->getType() == types::TY_Object &&
2869             (!llvm::sys::path::has_extension(FileName) ||
2870              types::lookupTypeForExtension(
2871                  llvm::sys::path::extension(FileName).drop_front()) !=
2872                  types::TY_Object))
2873           return ABRT_Inactive;
2874         for (unsigned I = 0; I < ToolChains.size(); ++I) {
2875           OpenMPDeviceActions.push_back(UA);
2876           UA->registerDependentActionInfo(
2877               ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP);
2878         }
2879         return ABRT_Success;
2880       }
2881 
2882       // When generating code for OpenMP we use the host compile phase result as
2883       // a dependence to the device compile phase so that it can learn what
2884       // declarations should be emitted. However, this is not the only use for
2885       // the host action, so we prevent it from being collapsed.
2886       if (isa<CompileJobAction>(HostAction)) {
2887         HostAction->setCannotBeCollapsedWithNextDependentAction();
2888         assert(ToolChains.size() == OpenMPDeviceActions.size() &&
2889                "Toolchains and device action sizes do not match.");
2890         OffloadAction::HostDependence HDep(
2891             *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
2892             /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2893         auto TC = ToolChains.begin();
2894         for (Action *&A : OpenMPDeviceActions) {
2895           assert(isa<CompileJobAction>(A));
2896           OffloadAction::DeviceDependences DDep;
2897           DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2898           A = C.MakeAction<OffloadAction>(HDep, DDep);
2899           ++TC;
2900         }
2901       }
2902       return ABRT_Success;
2903     }
2904 
2905     void appendTopLevelActions(ActionList &AL) override {
2906       if (OpenMPDeviceActions.empty())
2907         return;
2908 
2909       // We should always have an action for each input.
2910       assert(OpenMPDeviceActions.size() == ToolChains.size() &&
2911              "Number of OpenMP actions and toolchains do not match.");
2912 
2913       // Append all device actions followed by the proper offload action.
2914       auto TI = ToolChains.begin();
2915       for (auto *A : OpenMPDeviceActions) {
2916         OffloadAction::DeviceDependences Dep;
2917         Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2918         AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2919         ++TI;
2920       }
2921       // We no longer need the action stored in this builder.
2922       OpenMPDeviceActions.clear();
2923     }
2924 
2925     void appendLinkActions(ActionList &AL) override {
2926       assert(ToolChains.size() == DeviceLinkerInputs.size() &&
2927              "Toolchains and linker inputs sizes do not match.");
2928 
2929       // Append a new link action for each device.
2930       auto TC = ToolChains.begin();
2931       for (auto &LI : DeviceLinkerInputs) {
2932         auto *DeviceLinkAction =
2933             C.MakeAction<LinkJobAction>(LI, types::TY_Image);
2934         OffloadAction::DeviceDependences DeviceLinkDeps;
2935         DeviceLinkDeps.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr,
2936 		        Action::OFK_OpenMP);
2937         AL.push_back(C.MakeAction<OffloadAction>(DeviceLinkDeps,
2938             DeviceLinkAction->getType()));
2939         ++TC;
2940       }
2941       DeviceLinkerInputs.clear();
2942     }
2943 
2944     void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {}
2945 
2946     bool initialize() override {
2947       // Get the OpenMP toolchains. If we don't get any, the action builder will
2948       // know there is nothing to do related to OpenMP offloading.
2949       auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>();
2950       for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE;
2951            ++TI)
2952         ToolChains.push_back(TI->second);
2953 
2954       DeviceLinkerInputs.resize(ToolChains.size());
2955       return false;
2956     }
2957 
2958     bool canUseBundlerUnbundler() const override {
2959       // OpenMP should use bundled files whenever possible.
2960       return true;
2961     }
2962   };
2963 
2964   ///
2965   /// TODO: Add the implementation for other specialized builders here.
2966   ///
2967 
2968   /// Specialized builders being used by this offloading action builder.
2969   SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
2970 
2971   /// Flag set to true if all valid builders allow file bundling/unbundling.
2972   bool CanUseBundler;
2973 
2974 public:
2975   OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
2976                           const Driver::InputList &Inputs)
2977       : C(C) {
2978     // Create a specialized builder for each device toolchain.
2979 
2980     IsValid = true;
2981 
2982     // Create a specialized builder for CUDA.
2983     SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs));
2984 
2985     // Create a specialized builder for HIP.
2986     SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs));
2987 
2988     // Create a specialized builder for OpenMP.
2989     SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs));
2990 
2991     //
2992     // TODO: Build other specialized builders here.
2993     //
2994 
2995     // Initialize all the builders, keeping track of errors. If all valid
2996     // builders agree that we can use bundling, set the flag to true.
2997     unsigned ValidBuilders = 0u;
2998     unsigned ValidBuildersSupportingBundling = 0u;
2999     for (auto *SB : SpecializedBuilders) {
3000       IsValid = IsValid && !SB->initialize();
3001 
3002       // Update the counters if the builder is valid.
3003       if (SB->isValid()) {
3004         ++ValidBuilders;
3005         if (SB->canUseBundlerUnbundler())
3006           ++ValidBuildersSupportingBundling;
3007       }
3008     }
3009     CanUseBundler =
3010         ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
3011   }
3012 
3013   ~OffloadingActionBuilder() {
3014     for (auto *SB : SpecializedBuilders)
3015       delete SB;
3016   }
3017 
3018   /// Generate an action that adds device dependences (if any) to a host action.
3019   /// If no device dependence actions exist, just return the host action \a
3020   /// HostAction. If an error is found or if no builder requires the host action
3021   /// to be generated, return nullptr.
3022   Action *
3023   addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
3024                                    phases::ID CurPhase, phases::ID FinalPhase,
3025                                    DeviceActionBuilder::PhasesTy &Phases) {
3026     if (!IsValid)
3027       return nullptr;
3028 
3029     if (SpecializedBuilders.empty())
3030       return HostAction;
3031 
3032     assert(HostAction && "Invalid host action!");
3033 
3034     OffloadAction::DeviceDependences DDeps;
3035     // Check if all the programming models agree we should not emit the host
3036     // action. Also, keep track of the offloading kinds employed.
3037     auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3038     unsigned InactiveBuilders = 0u;
3039     unsigned IgnoringBuilders = 0u;
3040     for (auto *SB : SpecializedBuilders) {
3041       if (!SB->isValid()) {
3042         ++InactiveBuilders;
3043         continue;
3044       }
3045 
3046       auto RetCode =
3047           SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases);
3048 
3049       // If the builder explicitly says the host action should be ignored,
3050       // we need to increment the variable that tracks the builders that request
3051       // the host object to be ignored.
3052       if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
3053         ++IgnoringBuilders;
3054 
3055       // Unless the builder was inactive for this action, we have to record the
3056       // offload kind because the host will have to use it.
3057       if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3058         OffloadKind |= SB->getAssociatedOffloadKind();
3059     }
3060 
3061     // If all builders agree that the host object should be ignored, just return
3062     // nullptr.
3063     if (IgnoringBuilders &&
3064         SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
3065       return nullptr;
3066 
3067     if (DDeps.getActions().empty())
3068       return HostAction;
3069 
3070     // We have dependences we need to bundle together. We use an offload action
3071     // for that.
3072     OffloadAction::HostDependence HDep(
3073         *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3074         /*BoundArch=*/nullptr, DDeps);
3075     return C.MakeAction<OffloadAction>(HDep, DDeps);
3076   }
3077 
3078   /// Generate an action that adds a host dependence to a device action. The
3079   /// results will be kept in this action builder. Return true if an error was
3080   /// found.
3081   bool addHostDependenceToDeviceActions(Action *&HostAction,
3082                                         const Arg *InputArg) {
3083     if (!IsValid)
3084       return true;
3085 
3086     // If we are supporting bundling/unbundling and the current action is an
3087     // input action of non-source file, we replace the host action by the
3088     // unbundling action. The bundler tool has the logic to detect if an input
3089     // is a bundle or not and if the input is not a bundle it assumes it is a
3090     // host file. Therefore it is safe to create an unbundling action even if
3091     // the input is not a bundle.
3092     if (CanUseBundler && isa<InputAction>(HostAction) &&
3093         InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
3094         !types::isSrcFile(HostAction->getType())) {
3095       auto UnbundlingHostAction =
3096           C.MakeAction<OffloadUnbundlingJobAction>(HostAction);
3097       UnbundlingHostAction->registerDependentActionInfo(
3098           C.getSingleOffloadToolChain<Action::OFK_Host>(),
3099           /*BoundArch=*/StringRef(), Action::OFK_Host);
3100       HostAction = UnbundlingHostAction;
3101     }
3102 
3103     assert(HostAction && "Invalid host action!");
3104 
3105     // Register the offload kinds that are used.
3106     auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3107     for (auto *SB : SpecializedBuilders) {
3108       if (!SB->isValid())
3109         continue;
3110 
3111       auto RetCode = SB->addDeviceDepences(HostAction);
3112 
3113       // Host dependences for device actions are not compatible with that same
3114       // action being ignored.
3115       assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&
3116              "Host dependence not expected to be ignored.!");
3117 
3118       // Unless the builder was inactive for this action, we have to record the
3119       // offload kind because the host will have to use it.
3120       if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3121         OffloadKind |= SB->getAssociatedOffloadKind();
3122     }
3123 
3124     // Do not use unbundler if the Host does not depend on device action.
3125     if (OffloadKind == Action::OFK_None && CanUseBundler)
3126       if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction))
3127         HostAction = UA->getInputs().back();
3128 
3129     return false;
3130   }
3131 
3132   /// Add the offloading top level actions to the provided action list. This
3133   /// function can replace the host action by a bundling action if the
3134   /// programming models allow it.
3135   bool appendTopLevelActions(ActionList &AL, Action *HostAction,
3136                              const Arg *InputArg) {
3137     // Get the device actions to be appended.
3138     ActionList OffloadAL;
3139     for (auto *SB : SpecializedBuilders) {
3140       if (!SB->isValid())
3141         continue;
3142       SB->appendTopLevelActions(OffloadAL);
3143     }
3144 
3145     // If we can use the bundler, replace the host action by the bundling one in
3146     // the resulting list. Otherwise, just append the device actions. For
3147     // device only compilation, HostAction is a null pointer, therefore only do
3148     // this when HostAction is not a null pointer.
3149     if (CanUseBundler && HostAction &&
3150         HostAction->getType() != types::TY_Nothing && !OffloadAL.empty()) {
3151       // Add the host action to the list in order to create the bundling action.
3152       OffloadAL.push_back(HostAction);
3153 
3154       // We expect that the host action was just appended to the action list
3155       // before this method was called.
3156       assert(HostAction == AL.back() && "Host action not in the list??");
3157       HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL);
3158       AL.back() = HostAction;
3159     } else
3160       AL.append(OffloadAL.begin(), OffloadAL.end());
3161 
3162     // Propagate to the current host action (if any) the offload information
3163     // associated with the current input.
3164     if (HostAction)
3165       HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg],
3166                                            /*BoundArch=*/nullptr);
3167     return false;
3168   }
3169 
3170   Action* makeHostLinkAction() {
3171     // Build a list of device linking actions.
3172     ActionList DeviceAL;
3173     for (DeviceActionBuilder *SB : SpecializedBuilders) {
3174       if (!SB->isValid())
3175         continue;
3176       SB->appendLinkActions(DeviceAL);
3177     }
3178 
3179     if (DeviceAL.empty())
3180       return nullptr;
3181 
3182     // Create wrapper bitcode from the result of device link actions and compile
3183     // it to an object which will be added to the host link command.
3184     auto *BC = C.MakeAction<OffloadWrapperJobAction>(DeviceAL, types::TY_LLVM_BC);
3185     auto *ASM = C.MakeAction<BackendJobAction>(BC, types::TY_PP_Asm);
3186     return C.MakeAction<AssembleJobAction>(ASM, types::TY_Object);
3187   }
3188 
3189   /// Processes the host linker action. This currently consists of replacing it
3190   /// with an offload action if there are device link objects and propagate to
3191   /// the host action all the offload kinds used in the current compilation. The
3192   /// resulting action is returned.
3193   Action *processHostLinkAction(Action *HostAction) {
3194     // Add all the dependences from the device linking actions.
3195     OffloadAction::DeviceDependences DDeps;
3196     for (auto *SB : SpecializedBuilders) {
3197       if (!SB->isValid())
3198         continue;
3199 
3200       SB->appendLinkDependences(DDeps);
3201     }
3202 
3203     // Calculate all the offload kinds used in the current compilation.
3204     unsigned ActiveOffloadKinds = 0u;
3205     for (auto &I : InputArgToOffloadKindMap)
3206       ActiveOffloadKinds |= I.second;
3207 
3208     // If we don't have device dependencies, we don't have to create an offload
3209     // action.
3210     if (DDeps.getActions().empty()) {
3211       // Propagate all the active kinds to host action. Given that it is a link
3212       // action it is assumed to depend on all actions generated so far.
3213       HostAction->propagateHostOffloadInfo(ActiveOffloadKinds,
3214                                            /*BoundArch=*/nullptr);
3215       return HostAction;
3216     }
3217 
3218     // Create the offload action with all dependences. When an offload action
3219     // is created the kinds are propagated to the host action, so we don't have
3220     // to do that explicitly here.
3221     OffloadAction::HostDependence HDep(
3222         *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3223         /*BoundArch*/ nullptr, ActiveOffloadKinds);
3224     return C.MakeAction<OffloadAction>(HDep, DDeps);
3225   }
3226 };
3227 } // anonymous namespace.
3228 
3229 void Driver::handleArguments(Compilation &C, DerivedArgList &Args,
3230                              const InputList &Inputs,
3231                              ActionList &Actions) const {
3232 
3233   // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames.
3234   Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
3235   Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
3236   if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
3237     Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
3238     Args.eraseArg(options::OPT__SLASH_Yc);
3239     Args.eraseArg(options::OPT__SLASH_Yu);
3240     YcArg = YuArg = nullptr;
3241   }
3242   if (YcArg && Inputs.size() > 1) {
3243     Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
3244     Args.eraseArg(options::OPT__SLASH_Yc);
3245     YcArg = nullptr;
3246   }
3247 
3248   Arg *FinalPhaseArg;
3249   phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
3250 
3251   if (FinalPhase == phases::Link) {
3252     if (Args.hasArg(options::OPT_emit_llvm))
3253       Diag(clang::diag::err_drv_emit_llvm_link);
3254     if (IsCLMode() && LTOMode != LTOK_None &&
3255         !Args.getLastArgValue(options::OPT_fuse_ld_EQ).equals_lower("lld"))
3256       Diag(clang::diag::err_drv_lto_without_lld);
3257   }
3258 
3259   if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) {
3260     // If only preprocessing or /Y- is used, all pch handling is disabled.
3261     // Rather than check for it everywhere, just remove clang-cl pch-related
3262     // flags here.
3263     Args.eraseArg(options::OPT__SLASH_Fp);
3264     Args.eraseArg(options::OPT__SLASH_Yc);
3265     Args.eraseArg(options::OPT__SLASH_Yu);
3266     YcArg = YuArg = nullptr;
3267   }
3268 
3269   unsigned LastPLSize = 0;
3270   for (auto &I : Inputs) {
3271     types::ID InputType = I.first;
3272     const Arg *InputArg = I.second;
3273 
3274     llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PL;
3275     types::getCompilationPhases(InputType, PL);
3276     LastPLSize = PL.size();
3277 
3278     // If the first step comes after the final phase we are doing as part of
3279     // this compilation, warn the user about it.
3280     phases::ID InitialPhase = PL[0];
3281     if (InitialPhase > FinalPhase) {
3282       if (InputArg->isClaimed())
3283         continue;
3284 
3285       // Claim here to avoid the more general unused warning.
3286       InputArg->claim();
3287 
3288       // Suppress all unused style warnings with -Qunused-arguments
3289       if (Args.hasArg(options::OPT_Qunused_arguments))
3290         continue;
3291 
3292       // Special case when final phase determined by binary name, rather than
3293       // by a command-line argument with a corresponding Arg.
3294       if (CCCIsCPP())
3295         Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
3296             << InputArg->getAsString(Args) << getPhaseName(InitialPhase);
3297       // Special case '-E' warning on a previously preprocessed file to make
3298       // more sense.
3299       else if (InitialPhase == phases::Compile &&
3300                (Args.getLastArg(options::OPT__SLASH_EP,
3301                                 options::OPT__SLASH_P) ||
3302                 Args.getLastArg(options::OPT_E) ||
3303                 Args.getLastArg(options::OPT_M, options::OPT_MM)) &&
3304                getPreprocessedType(InputType) == types::TY_INVALID)
3305         Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
3306             << InputArg->getAsString(Args) << !!FinalPhaseArg
3307             << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3308       else
3309         Diag(clang::diag::warn_drv_input_file_unused)
3310             << InputArg->getAsString(Args) << getPhaseName(InitialPhase)
3311             << !!FinalPhaseArg
3312             << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3313       continue;
3314     }
3315 
3316     if (YcArg) {
3317       // Add a separate precompile phase for the compile phase.
3318       if (FinalPhase >= phases::Compile) {
3319         const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType);
3320         llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PCHPL;
3321         types::getCompilationPhases(HeaderType, PCHPL);
3322         // Build the pipeline for the pch file.
3323         Action *ClangClPch = C.MakeAction<InputAction>(*InputArg, HeaderType);
3324         for (phases::ID Phase : PCHPL)
3325           ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
3326         assert(ClangClPch);
3327         Actions.push_back(ClangClPch);
3328         // The driver currently exits after the first failed command.  This
3329         // relies on that behavior, to make sure if the pch generation fails,
3330         // the main compilation won't run.
3331         // FIXME: If the main compilation fails, the PCH generation should
3332         // probably not be considered successful either.
3333       }
3334     }
3335   }
3336 
3337   // If we are linking, claim any options which are obviously only used for
3338   // compilation.
3339   // FIXME: Understand why the last Phase List length is used here.
3340   if (FinalPhase == phases::Link && LastPLSize == 1) {
3341     Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
3342     Args.ClaimAllArgs(options::OPT_cl_compile_Group);
3343   }
3344 }
3345 
3346 void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
3347                           const InputList &Inputs, ActionList &Actions) const {
3348   llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
3349 
3350   if (!SuppressMissingInputWarning && Inputs.empty()) {
3351     Diag(clang::diag::err_drv_no_input_files);
3352     return;
3353   }
3354 
3355   // Reject -Z* at the top level, these options should never have been exposed
3356   // by gcc.
3357   if (Arg *A = Args.getLastArg(options::OPT_Z_Joined))
3358     Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args);
3359 
3360   // Diagnose misuse of /Fo.
3361   if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
3362     StringRef V = A->getValue();
3363     if (Inputs.size() > 1 && !V.empty() &&
3364         !llvm::sys::path::is_separator(V.back())) {
3365       // Check whether /Fo tries to name an output file for multiple inputs.
3366       Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3367           << A->getSpelling() << V;
3368       Args.eraseArg(options::OPT__SLASH_Fo);
3369     }
3370   }
3371 
3372   // Diagnose misuse of /Fa.
3373   if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
3374     StringRef V = A->getValue();
3375     if (Inputs.size() > 1 && !V.empty() &&
3376         !llvm::sys::path::is_separator(V.back())) {
3377       // Check whether /Fa tries to name an asm file for multiple inputs.
3378       Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3379           << A->getSpelling() << V;
3380       Args.eraseArg(options::OPT__SLASH_Fa);
3381     }
3382   }
3383 
3384   // Diagnose misuse of /o.
3385   if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
3386     if (A->getValue()[0] == '\0') {
3387       // It has to have a value.
3388       Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
3389       Args.eraseArg(options::OPT__SLASH_o);
3390     }
3391   }
3392 
3393   handleArguments(C, Args, Inputs, Actions);
3394 
3395   // Builder to be used to build offloading actions.
3396   OffloadingActionBuilder OffloadBuilder(C, Args, Inputs);
3397 
3398   // Construct the actions to perform.
3399   HeaderModulePrecompileJobAction *HeaderModuleAction = nullptr;
3400   ActionList LinkerInputs;
3401   ActionList MergerInputs;
3402 
3403   for (auto &I : Inputs) {
3404     types::ID InputType = I.first;
3405     const Arg *InputArg = I.second;
3406 
3407     llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PL;
3408     types::getCompilationPhases(*this, Args, InputType, PL);
3409     if (PL.empty())
3410       continue;
3411 
3412     llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> FullPL;
3413     types::getCompilationPhases(InputType, FullPL);
3414 
3415     // Build the pipeline for this file.
3416     Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
3417 
3418     // Use the current host action in any of the offloading actions, if
3419     // required.
3420     if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3421       break;
3422 
3423     for (phases::ID Phase : PL) {
3424 
3425       // Add any offload action the host action depends on.
3426       Current = OffloadBuilder.addDeviceDependencesToHostAction(
3427           Current, InputArg, Phase, PL.back(), FullPL);
3428       if (!Current)
3429         break;
3430 
3431       // Queue linker inputs.
3432       if (Phase == phases::Link) {
3433         assert(Phase == PL.back() && "linking must be final compilation step.");
3434         LinkerInputs.push_back(Current);
3435         Current = nullptr;
3436         break;
3437       }
3438 
3439       // TODO: Consider removing this because the merged may not end up being
3440       // the final Phase in the pipeline. Perhaps the merged could just merge
3441       // and then pass an artifact of some sort to the Link Phase.
3442       // Queue merger inputs.
3443       if (Phase == phases::IfsMerge) {
3444         assert(Phase == PL.back() && "merging must be final compilation step.");
3445         MergerInputs.push_back(Current);
3446         Current = nullptr;
3447         break;
3448       }
3449 
3450       // Each precompiled header file after a module file action is a module
3451       // header of that same module file, rather than being compiled to a
3452       // separate PCH.
3453       if (Phase == phases::Precompile && HeaderModuleAction &&
3454           getPrecompiledType(InputType) == types::TY_PCH) {
3455         HeaderModuleAction->addModuleHeaderInput(Current);
3456         Current = nullptr;
3457         break;
3458       }
3459 
3460       // FIXME: Should we include any prior module file outputs as inputs of
3461       // later actions in the same command line?
3462 
3463       // Otherwise construct the appropriate action.
3464       Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current);
3465 
3466       // We didn't create a new action, so we will just move to the next phase.
3467       if (NewCurrent == Current)
3468         continue;
3469 
3470       if (auto *HMA = dyn_cast<HeaderModulePrecompileJobAction>(NewCurrent))
3471         HeaderModuleAction = HMA;
3472 
3473       Current = NewCurrent;
3474 
3475       // Use the current host action in any of the offloading actions, if
3476       // required.
3477       if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3478         break;
3479 
3480       if (Current->getType() == types::TY_Nothing)
3481         break;
3482     }
3483 
3484     // If we ended with something, add to the output list.
3485     if (Current)
3486       Actions.push_back(Current);
3487 
3488     // Add any top level actions generated for offloading.
3489     OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg);
3490   }
3491 
3492   // Add a link action if necessary.
3493   if (!LinkerInputs.empty()) {
3494     if (Action *Wrapper = OffloadBuilder.makeHostLinkAction())
3495       LinkerInputs.push_back(Wrapper);
3496     Action *LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image);
3497     LA = OffloadBuilder.processHostLinkAction(LA);
3498     Actions.push_back(LA);
3499   }
3500 
3501   // Add an interface stubs merge action if necessary.
3502   if (!MergerInputs.empty())
3503     Actions.push_back(
3504         C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
3505 
3506   if (Args.hasArg(options::OPT_emit_interface_stubs)) {
3507     llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PhaseList;
3508     if (Args.hasArg(options::OPT_c)) {
3509       llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> CompilePhaseList;
3510       types::getCompilationPhases(types::TY_IFS_CPP, CompilePhaseList);
3511       llvm::copy_if(CompilePhaseList, std::back_inserter(PhaseList),
3512                     [&](phases::ID Phase) { return Phase <= phases::Compile; });
3513     } else {
3514       types::getCompilationPhases(types::TY_IFS_CPP, PhaseList);
3515     }
3516 
3517     ActionList MergerInputs;
3518 
3519     for (auto &I : Inputs) {
3520       types::ID InputType = I.first;
3521       const Arg *InputArg = I.second;
3522 
3523       // Currently clang and the llvm assembler do not support generating symbol
3524       // stubs from assembly, so we skip the input on asm files. For ifs files
3525       // we rely on the normal pipeline setup in the pipeline setup code above.
3526       if (InputType == types::TY_IFS || InputType == types::TY_PP_Asm ||
3527           InputType == types::TY_Asm)
3528         continue;
3529 
3530       Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
3531 
3532       for (auto Phase : PhaseList) {
3533         switch (Phase) {
3534         default:
3535           llvm_unreachable(
3536               "IFS Pipeline can only consist of Compile followed by IfsMerge.");
3537         case phases::Compile: {
3538           // Only IfsMerge (llvm-ifs) can handle .o files by looking for ifs
3539           // files where the .o file is located. The compile action can not
3540           // handle this.
3541           if (InputType == types::TY_Object)
3542             break;
3543 
3544           Current = C.MakeAction<CompileJobAction>(Current, types::TY_IFS_CPP);
3545           break;
3546         }
3547         case phases::IfsMerge: {
3548           assert(Phase == PhaseList.back() &&
3549                  "merging must be final compilation step.");
3550           MergerInputs.push_back(Current);
3551           Current = nullptr;
3552           break;
3553         }
3554         }
3555       }
3556 
3557       // If we ended with something, add to the output list.
3558       if (Current)
3559         Actions.push_back(Current);
3560     }
3561 
3562     // Add an interface stubs merge action if necessary.
3563     if (!MergerInputs.empty())
3564       Actions.push_back(
3565           C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
3566   }
3567 
3568   // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a custom
3569   // Compile phase that prints out supported cpu models and quits.
3570   if (Arg *A = Args.getLastArg(options::OPT_print_supported_cpus)) {
3571     // Use the -mcpu=? flag as the dummy input to cc1.
3572     Actions.clear();
3573     Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C);
3574     Actions.push_back(
3575         C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing));
3576     for (auto &I : Inputs)
3577       I.second->claim();
3578   }
3579 
3580   // Claim ignored clang-cl options.
3581   Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
3582 
3583   // Claim --cuda-host-only and --cuda-compile-host-device, which may be passed
3584   // to non-CUDA compilations and should not trigger warnings there.
3585   Args.ClaimAllArgs(options::OPT_cuda_host_only);
3586   Args.ClaimAllArgs(options::OPT_cuda_compile_host_device);
3587 }
3588 
3589 Action *Driver::ConstructPhaseAction(
3590     Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
3591     Action::OffloadKind TargetDeviceOffloadKind) const {
3592   llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
3593 
3594   // Some types skip the assembler phase (e.g., llvm-bc), but we can't
3595   // encode this in the steps because the intermediate type depends on
3596   // arguments. Just special case here.
3597   if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
3598     return Input;
3599 
3600   // Build the appropriate action.
3601   switch (Phase) {
3602   case phases::Link:
3603     llvm_unreachable("link action invalid here.");
3604   case phases::IfsMerge:
3605     llvm_unreachable("ifsmerge action invalid here.");
3606   case phases::Preprocess: {
3607     types::ID OutputTy;
3608     // -M and -MM specify the dependency file name by altering the output type,
3609     // -if -MD and -MMD are not specified.
3610     if (Args.hasArg(options::OPT_M, options::OPT_MM) &&
3611         !Args.hasArg(options::OPT_MD, options::OPT_MMD)) {
3612       OutputTy = types::TY_Dependencies;
3613     } else {
3614       OutputTy = Input->getType();
3615       if (!Args.hasFlag(options::OPT_frewrite_includes,
3616                         options::OPT_fno_rewrite_includes, false) &&
3617           !Args.hasFlag(options::OPT_frewrite_imports,
3618                         options::OPT_fno_rewrite_imports, false) &&
3619           !CCGenDiagnostics)
3620         OutputTy = types::getPreprocessedType(OutputTy);
3621       assert(OutputTy != types::TY_INVALID &&
3622              "Cannot preprocess this input type!");
3623     }
3624     return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
3625   }
3626   case phases::Precompile: {
3627     types::ID OutputTy = getPrecompiledType(Input->getType());
3628     assert(OutputTy != types::TY_INVALID &&
3629            "Cannot precompile this input type!");
3630 
3631     // If we're given a module name, precompile header file inputs as a
3632     // module, not as a precompiled header.
3633     const char *ModName = nullptr;
3634     if (OutputTy == types::TY_PCH) {
3635       if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ))
3636         ModName = A->getValue();
3637       if (ModName)
3638         OutputTy = types::TY_ModuleFile;
3639     }
3640 
3641     if (Args.hasArg(options::OPT_fsyntax_only)) {
3642       // Syntax checks should not emit a PCH file
3643       OutputTy = types::TY_Nothing;
3644     }
3645 
3646     if (ModName)
3647       return C.MakeAction<HeaderModulePrecompileJobAction>(Input, OutputTy,
3648                                                            ModName);
3649     return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
3650   }
3651   case phases::Compile: {
3652     if (Args.hasArg(options::OPT_fsyntax_only))
3653       return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
3654     if (Args.hasArg(options::OPT_rewrite_objc))
3655       return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
3656     if (Args.hasArg(options::OPT_rewrite_legacy_objc))
3657       return C.MakeAction<CompileJobAction>(Input,
3658                                             types::TY_RewrittenLegacyObjC);
3659     if (Args.hasArg(options::OPT__analyze))
3660       return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
3661     if (Args.hasArg(options::OPT__migrate))
3662       return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
3663     if (Args.hasArg(options::OPT_emit_ast))
3664       return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
3665     if (Args.hasArg(options::OPT_module_file_info))
3666       return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
3667     if (Args.hasArg(options::OPT_verify_pch))
3668       return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
3669     return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
3670   }
3671   case phases::Backend: {
3672     if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
3673       types::ID Output =
3674           Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
3675       return C.MakeAction<BackendJobAction>(Input, Output);
3676     }
3677     if (Args.hasArg(options::OPT_emit_llvm)) {
3678       types::ID Output =
3679           Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC;
3680       return C.MakeAction<BackendJobAction>(Input, Output);
3681     }
3682     return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
3683   }
3684   case phases::Assemble:
3685     return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
3686   }
3687 
3688   llvm_unreachable("invalid phase in ConstructPhaseAction");
3689 }
3690 
3691 void Driver::BuildJobs(Compilation &C) const {
3692   llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
3693 
3694   Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
3695 
3696   // It is an error to provide a -o option if we are making multiple output
3697   // files. There are exceptions:
3698   //
3699   // IfsMergeJob: when generating interface stubs enabled we want to be able to
3700   // generate the stub file at the same time that we generate the real
3701   // library/a.out. So when a .o, .so, etc are the output, with clang interface
3702   // stubs there will also be a .ifs and .ifso at the same location.
3703   //
3704   // CompileJob of type TY_IFS_CPP: when generating interface stubs is enabled
3705   // and -c is passed, we still want to be able to generate a .ifs file while
3706   // we are also generating .o files. So we allow more than one output file in
3707   // this case as well.
3708   //
3709   if (FinalOutput) {
3710     unsigned NumOutputs = 0;
3711     unsigned NumIfsOutputs = 0;
3712     for (const Action *A : C.getActions())
3713       if (A->getType() != types::TY_Nothing &&
3714           !(A->getKind() == Action::IfsMergeJobClass ||
3715             (A->getType() == clang::driver::types::TY_IFS_CPP &&
3716              A->getKind() == clang::driver::Action::CompileJobClass &&
3717              0 == NumIfsOutputs++) ||
3718             (A->getKind() == Action::BindArchClass && A->getInputs().size() &&
3719              A->getInputs().front()->getKind() == Action::IfsMergeJobClass)))
3720         ++NumOutputs;
3721 
3722     if (NumOutputs > 1) {
3723       Diag(clang::diag::err_drv_output_argument_with_multiple_files);
3724       FinalOutput = nullptr;
3725     }
3726   }
3727 
3728   // Collect the list of architectures.
3729   llvm::StringSet<> ArchNames;
3730   if (C.getDefaultToolChain().getTriple().isOSBinFormatMachO())
3731     for (const Arg *A : C.getArgs())
3732       if (A->getOption().matches(options::OPT_arch))
3733         ArchNames.insert(A->getValue());
3734 
3735   // Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
3736   std::map<std::pair<const Action *, std::string>, InputInfo> CachedResults;
3737   for (Action *A : C.getActions()) {
3738     // If we are linking an image for multiple archs then the linker wants
3739     // -arch_multiple and -final_output <final image name>. Unfortunately, this
3740     // doesn't fit in cleanly because we have to pass this information down.
3741     //
3742     // FIXME: This is a hack; find a cleaner way to integrate this into the
3743     // process.
3744     const char *LinkingOutput = nullptr;
3745     if (isa<LipoJobAction>(A)) {
3746       if (FinalOutput)
3747         LinkingOutput = FinalOutput->getValue();
3748       else
3749         LinkingOutput = getDefaultImageName();
3750     }
3751 
3752     BuildJobsForAction(C, A, &C.getDefaultToolChain(),
3753                        /*BoundArch*/ StringRef(),
3754                        /*AtTopLevel*/ true,
3755                        /*MultipleArchs*/ ArchNames.size() > 1,
3756                        /*LinkingOutput*/ LinkingOutput, CachedResults,
3757                        /*TargetDeviceOffloadKind*/ Action::OFK_None);
3758   }
3759 
3760   // If we have more than one job, then disable integrated-cc1 for now.
3761   if (C.getJobs().size() > 1)
3762     for (auto &J : C.getJobs())
3763       J.InProcess = false;
3764 
3765   // If the user passed -Qunused-arguments or there were errors, don't warn
3766   // about any unused arguments.
3767   if (Diags.hasErrorOccurred() ||
3768       C.getArgs().hasArg(options::OPT_Qunused_arguments))
3769     return;
3770 
3771   // Claim -### here.
3772   (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
3773 
3774   // Claim --driver-mode, --rsp-quoting, it was handled earlier.
3775   (void)C.getArgs().hasArg(options::OPT_driver_mode);
3776   (void)C.getArgs().hasArg(options::OPT_rsp_quoting);
3777 
3778   for (Arg *A : C.getArgs()) {
3779     // FIXME: It would be nice to be able to send the argument to the
3780     // DiagnosticsEngine, so that extra values, position, and so on could be
3781     // printed.
3782     if (!A->isClaimed()) {
3783       if (A->getOption().hasFlag(options::NoArgumentUnused))
3784         continue;
3785 
3786       // Suppress the warning automatically if this is just a flag, and it is an
3787       // instance of an argument we already claimed.
3788       const Option &Opt = A->getOption();
3789       if (Opt.getKind() == Option::FlagClass) {
3790         bool DuplicateClaimed = false;
3791 
3792         for (const Arg *AA : C.getArgs().filtered(&Opt)) {
3793           if (AA->isClaimed()) {
3794             DuplicateClaimed = true;
3795             break;
3796           }
3797         }
3798 
3799         if (DuplicateClaimed)
3800           continue;
3801       }
3802 
3803       // In clang-cl, don't mention unknown arguments here since they have
3804       // already been warned about.
3805       if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN))
3806         Diag(clang::diag::warn_drv_unused_argument)
3807             << A->getAsString(C.getArgs());
3808     }
3809   }
3810 }
3811 
3812 namespace {
3813 /// Utility class to control the collapse of dependent actions and select the
3814 /// tools accordingly.
3815 class ToolSelector final {
3816   /// The tool chain this selector refers to.
3817   const ToolChain &TC;
3818 
3819   /// The compilation this selector refers to.
3820   const Compilation &C;
3821 
3822   /// The base action this selector refers to.
3823   const JobAction *BaseAction;
3824 
3825   /// Set to true if the current toolchain refers to host actions.
3826   bool IsHostSelector;
3827 
3828   /// Set to true if save-temps and embed-bitcode functionalities are active.
3829   bool SaveTemps;
3830   bool EmbedBitcode;
3831 
3832   /// Get previous dependent action or null if that does not exist. If
3833   /// \a CanBeCollapsed is false, that action must be legal to collapse or
3834   /// null will be returned.
3835   const JobAction *getPrevDependentAction(const ActionList &Inputs,
3836                                           ActionList &SavedOffloadAction,
3837                                           bool CanBeCollapsed = true) {
3838     // An option can be collapsed only if it has a single input.
3839     if (Inputs.size() != 1)
3840       return nullptr;
3841 
3842     Action *CurAction = *Inputs.begin();
3843     if (CanBeCollapsed &&
3844         !CurAction->isCollapsingWithNextDependentActionLegal())
3845       return nullptr;
3846 
3847     // If the input action is an offload action. Look through it and save any
3848     // offload action that can be dropped in the event of a collapse.
3849     if (auto *OA = dyn_cast<OffloadAction>(CurAction)) {
3850       // If the dependent action is a device action, we will attempt to collapse
3851       // only with other device actions. Otherwise, we would do the same but
3852       // with host actions only.
3853       if (!IsHostSelector) {
3854         if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
3855           CurAction =
3856               OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
3857           if (CanBeCollapsed &&
3858               !CurAction->isCollapsingWithNextDependentActionLegal())
3859             return nullptr;
3860           SavedOffloadAction.push_back(OA);
3861           return dyn_cast<JobAction>(CurAction);
3862         }
3863       } else if (OA->hasHostDependence()) {
3864         CurAction = OA->getHostDependence();
3865         if (CanBeCollapsed &&
3866             !CurAction->isCollapsingWithNextDependentActionLegal())
3867           return nullptr;
3868         SavedOffloadAction.push_back(OA);
3869         return dyn_cast<JobAction>(CurAction);
3870       }
3871       return nullptr;
3872     }
3873 
3874     return dyn_cast<JobAction>(CurAction);
3875   }
3876 
3877   /// Return true if an assemble action can be collapsed.
3878   bool canCollapseAssembleAction() const {
3879     return TC.useIntegratedAs() && !SaveTemps &&
3880            !C.getArgs().hasArg(options::OPT_via_file_asm) &&
3881            !C.getArgs().hasArg(options::OPT__SLASH_FA) &&
3882            !C.getArgs().hasArg(options::OPT__SLASH_Fa);
3883   }
3884 
3885   /// Return true if a preprocessor action can be collapsed.
3886   bool canCollapsePreprocessorAction() const {
3887     return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
3888            !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
3889            !C.getArgs().hasArg(options::OPT_rewrite_objc);
3890   }
3891 
3892   /// Struct that relates an action with the offload actions that would be
3893   /// collapsed with it.
3894   struct JobActionInfo final {
3895     /// The action this info refers to.
3896     const JobAction *JA = nullptr;
3897     /// The offload actions we need to take care off if this action is
3898     /// collapsed.
3899     ActionList SavedOffloadAction;
3900   };
3901 
3902   /// Append collapsed offload actions from the give nnumber of elements in the
3903   /// action info array.
3904   static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
3905                                            ArrayRef<JobActionInfo> &ActionInfo,
3906                                            unsigned ElementNum) {
3907     assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.");
3908     for (unsigned I = 0; I < ElementNum; ++I)
3909       CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(),
3910                                     ActionInfo[I].SavedOffloadAction.end());
3911   }
3912 
3913   /// Functions that attempt to perform the combining. They detect if that is
3914   /// legal, and if so they update the inputs \a Inputs and the offload action
3915   /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
3916   /// the combined action is returned. If the combining is not legal or if the
3917   /// tool does not exist, null is returned.
3918   /// Currently three kinds of collapsing are supported:
3919   ///  - Assemble + Backend + Compile;
3920   ///  - Assemble + Backend ;
3921   ///  - Backend + Compile.
3922   const Tool *
3923   combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
3924                                 ActionList &Inputs,
3925                                 ActionList &CollapsedOffloadAction) {
3926     if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
3927       return nullptr;
3928     auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
3929     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
3930     auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA);
3931     if (!AJ || !BJ || !CJ)
3932       return nullptr;
3933 
3934     // Get compiler tool.
3935     const Tool *T = TC.SelectTool(*CJ);
3936     if (!T)
3937       return nullptr;
3938 
3939     // When using -fembed-bitcode, it is required to have the same tool (clang)
3940     // for both CompilerJA and BackendJA. Otherwise, combine two stages.
3941     if (EmbedBitcode) {
3942       const Tool *BT = TC.SelectTool(*BJ);
3943       if (BT == T)
3944         return nullptr;
3945     }
3946 
3947     if (!T->hasIntegratedAssembler())
3948       return nullptr;
3949 
3950     Inputs = CJ->getInputs();
3951     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3952                                  /*NumElements=*/3);
3953     return T;
3954   }
3955   const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
3956                                      ActionList &Inputs,
3957                                      ActionList &CollapsedOffloadAction) {
3958     if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
3959       return nullptr;
3960     auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
3961     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
3962     if (!AJ || !BJ)
3963       return nullptr;
3964 
3965     // Get backend tool.
3966     const Tool *T = TC.SelectTool(*BJ);
3967     if (!T)
3968       return nullptr;
3969 
3970     if (!T->hasIntegratedAssembler())
3971       return nullptr;
3972 
3973     Inputs = BJ->getInputs();
3974     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3975                                  /*NumElements=*/2);
3976     return T;
3977   }
3978   const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
3979                                     ActionList &Inputs,
3980                                     ActionList &CollapsedOffloadAction) {
3981     if (ActionInfo.size() < 2)
3982       return nullptr;
3983     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA);
3984     auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA);
3985     if (!BJ || !CJ)
3986       return nullptr;
3987 
3988     // Check if the initial input (to the compile job or its predessor if one
3989     // exists) is LLVM bitcode. In that case, no preprocessor step is required
3990     // and we can still collapse the compile and backend jobs when we have
3991     // -save-temps. I.e. there is no need for a separate compile job just to
3992     // emit unoptimized bitcode.
3993     bool InputIsBitcode = true;
3994     for (size_t i = 1; i < ActionInfo.size(); i++)
3995       if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC &&
3996           ActionInfo[i].JA->getType() != types::TY_LTO_BC) {
3997         InputIsBitcode = false;
3998         break;
3999       }
4000     if (!InputIsBitcode && !canCollapsePreprocessorAction())
4001       return nullptr;
4002 
4003     // Get compiler tool.
4004     const Tool *T = TC.SelectTool(*CJ);
4005     if (!T)
4006       return nullptr;
4007 
4008     if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode))
4009       return nullptr;
4010 
4011     Inputs = CJ->getInputs();
4012     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
4013                                  /*NumElements=*/2);
4014     return T;
4015   }
4016 
4017   /// Updates the inputs if the obtained tool supports combining with
4018   /// preprocessor action, and the current input is indeed a preprocessor
4019   /// action. If combining results in the collapse of offloading actions, those
4020   /// are appended to \a CollapsedOffloadAction.
4021   void combineWithPreprocessor(const Tool *T, ActionList &Inputs,
4022                                ActionList &CollapsedOffloadAction) {
4023     if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
4024       return;
4025 
4026     // Attempt to get a preprocessor action dependence.
4027     ActionList PreprocessJobOffloadActions;
4028     ActionList NewInputs;
4029     for (Action *A : Inputs) {
4030       auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions);
4031       if (!PJ || !isa<PreprocessJobAction>(PJ)) {
4032         NewInputs.push_back(A);
4033         continue;
4034       }
4035 
4036       // This is legal to combine. Append any offload action we found and add the
4037       // current input to preprocessor inputs.
4038       CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(),
4039                                     PreprocessJobOffloadActions.end());
4040       NewInputs.append(PJ->input_begin(), PJ->input_end());
4041     }
4042     Inputs = NewInputs;
4043   }
4044 
4045 public:
4046   ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
4047                const Compilation &C, bool SaveTemps, bool EmbedBitcode)
4048       : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
4049         EmbedBitcode(EmbedBitcode) {
4050     assert(BaseAction && "Invalid base action.");
4051     IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
4052   }
4053 
4054   /// Check if a chain of actions can be combined and return the tool that can
4055   /// handle the combination of actions. The pointer to the current inputs \a
4056   /// Inputs and the list of offload actions \a CollapsedOffloadActions
4057   /// connected to collapsed actions are updated accordingly. The latter enables
4058   /// the caller of the selector to process them afterwards instead of just
4059   /// dropping them. If no suitable tool is found, null will be returned.
4060   const Tool *getTool(ActionList &Inputs,
4061                       ActionList &CollapsedOffloadAction) {
4062     //
4063     // Get the largest chain of actions that we could combine.
4064     //
4065 
4066     SmallVector<JobActionInfo, 5> ActionChain(1);
4067     ActionChain.back().JA = BaseAction;
4068     while (ActionChain.back().JA) {
4069       const Action *CurAction = ActionChain.back().JA;
4070 
4071       // Grow the chain by one element.
4072       ActionChain.resize(ActionChain.size() + 1);
4073       JobActionInfo &AI = ActionChain.back();
4074 
4075       // Attempt to fill it with the
4076       AI.JA =
4077           getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction);
4078     }
4079 
4080     // Pop the last action info as it could not be filled.
4081     ActionChain.pop_back();
4082 
4083     //
4084     // Attempt to combine actions. If all combining attempts failed, just return
4085     // the tool of the provided action. At the end we attempt to combine the
4086     // action with any preprocessor action it may depend on.
4087     //
4088 
4089     const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs,
4090                                                   CollapsedOffloadAction);
4091     if (!T)
4092       T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction);
4093     if (!T)
4094       T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction);
4095     if (!T) {
4096       Inputs = BaseAction->getInputs();
4097       T = TC.SelectTool(*BaseAction);
4098     }
4099 
4100     combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
4101     return T;
4102   }
4103 };
4104 }
4105 
4106 /// Return a string that uniquely identifies the result of a job. The bound arch
4107 /// is not necessarily represented in the toolchain's triple -- for example,
4108 /// armv7 and armv7s both map to the same triple -- so we need both in our map.
4109 /// Also, we need to add the offloading device kind, as the same tool chain can
4110 /// be used for host and device for some programming models, e.g. OpenMP.
4111 static std::string GetTriplePlusArchString(const ToolChain *TC,
4112                                            StringRef BoundArch,
4113                                            Action::OffloadKind OffloadKind) {
4114   std::string TriplePlusArch = TC->getTriple().normalize();
4115   if (!BoundArch.empty()) {
4116     TriplePlusArch += "-";
4117     TriplePlusArch += BoundArch;
4118   }
4119   TriplePlusArch += "-";
4120   TriplePlusArch += Action::GetOffloadKindName(OffloadKind);
4121   return TriplePlusArch;
4122 }
4123 
4124 InputInfo Driver::BuildJobsForAction(
4125     Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
4126     bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
4127     std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
4128     Action::OffloadKind TargetDeviceOffloadKind) const {
4129   std::pair<const Action *, std::string> ActionTC = {
4130       A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
4131   auto CachedResult = CachedResults.find(ActionTC);
4132   if (CachedResult != CachedResults.end()) {
4133     return CachedResult->second;
4134   }
4135   InputInfo Result = BuildJobsForActionNoCache(
4136       C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
4137       CachedResults, TargetDeviceOffloadKind);
4138   CachedResults[ActionTC] = Result;
4139   return Result;
4140 }
4141 
4142 InputInfo Driver::BuildJobsForActionNoCache(
4143     Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
4144     bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
4145     std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
4146     Action::OffloadKind TargetDeviceOffloadKind) const {
4147   llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
4148 
4149   InputInfoList OffloadDependencesInputInfo;
4150   bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
4151   if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
4152     // The 'Darwin' toolchain is initialized only when its arguments are
4153     // computed. Get the default arguments for OFK_None to ensure that
4154     // initialization is performed before processing the offload action.
4155     // FIXME: Remove when darwin's toolchain is initialized during construction.
4156     C.getArgsForToolChain(TC, BoundArch, Action::OFK_None);
4157 
4158     // The offload action is expected to be used in four different situations.
4159     //
4160     // a) Set a toolchain/architecture/kind for a host action:
4161     //    Host Action 1 -> OffloadAction -> Host Action 2
4162     //
4163     // b) Set a toolchain/architecture/kind for a device action;
4164     //    Device Action 1 -> OffloadAction -> Device Action 2
4165     //
4166     // c) Specify a device dependence to a host action;
4167     //    Device Action 1  _
4168     //                      \
4169     //      Host Action 1  ---> OffloadAction -> Host Action 2
4170     //
4171     // d) Specify a host dependence to a device action.
4172     //      Host Action 1  _
4173     //                      \
4174     //    Device Action 1  ---> OffloadAction -> Device Action 2
4175     //
4176     // For a) and b), we just return the job generated for the dependence. For
4177     // c) and d) we override the current action with the host/device dependence
4178     // if the current toolchain is host/device and set the offload dependences
4179     // info with the jobs obtained from the device/host dependence(s).
4180 
4181     // If there is a single device option, just generate the job for it.
4182     if (OA->hasSingleDeviceDependence()) {
4183       InputInfo DevA;
4184       OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC,
4185                                        const char *DepBoundArch) {
4186         DevA =
4187             BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel,
4188                                /*MultipleArchs*/ !!DepBoundArch, LinkingOutput,
4189                                CachedResults, DepA->getOffloadingDeviceKind());
4190       });
4191       return DevA;
4192     }
4193 
4194     // If 'Action 2' is host, we generate jobs for the device dependences and
4195     // override the current action with the host dependence. Otherwise, we
4196     // generate the host dependences and override the action with the device
4197     // dependence. The dependences can't therefore be a top-level action.
4198     OA->doOnEachDependence(
4199         /*IsHostDependence=*/BuildingForOffloadDevice,
4200         [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
4201           OffloadDependencesInputInfo.push_back(BuildJobsForAction(
4202               C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false,
4203               /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
4204               DepA->getOffloadingDeviceKind()));
4205         });
4206 
4207     A = BuildingForOffloadDevice
4208             ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
4209             : OA->getHostDependence();
4210   }
4211 
4212   if (const InputAction *IA = dyn_cast<InputAction>(A)) {
4213     // FIXME: It would be nice to not claim this here; maybe the old scheme of
4214     // just using Args was better?
4215     const Arg &Input = IA->getInputArg();
4216     Input.claim();
4217     if (Input.getOption().matches(options::OPT_INPUT)) {
4218       const char *Name = Input.getValue();
4219       return InputInfo(A, Name, /* _BaseInput = */ Name);
4220     }
4221     return InputInfo(A, &Input, /* _BaseInput = */ "");
4222   }
4223 
4224   if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
4225     const ToolChain *TC;
4226     StringRef ArchName = BAA->getArchName();
4227 
4228     if (!ArchName.empty())
4229       TC = &getToolChain(C.getArgs(),
4230                          computeTargetTriple(*this, TargetTriple,
4231                                              C.getArgs(), ArchName));
4232     else
4233       TC = &C.getDefaultToolChain();
4234 
4235     return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
4236                               MultipleArchs, LinkingOutput, CachedResults,
4237                               TargetDeviceOffloadKind);
4238   }
4239 
4240 
4241   ActionList Inputs = A->getInputs();
4242 
4243   const JobAction *JA = cast<JobAction>(A);
4244   ActionList CollapsedOffloadActions;
4245 
4246   ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
4247                   embedBitcodeInObject() && !isUsingLTO());
4248   const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions);
4249 
4250   if (!T)
4251     return InputInfo();
4252 
4253   // If we've collapsed action list that contained OffloadAction we
4254   // need to build jobs for host/device-side inputs it may have held.
4255   for (const auto *OA : CollapsedOffloadActions)
4256     cast<OffloadAction>(OA)->doOnEachDependence(
4257         /*IsHostDependence=*/BuildingForOffloadDevice,
4258         [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
4259           OffloadDependencesInputInfo.push_back(BuildJobsForAction(
4260               C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false,
4261               /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
4262               DepA->getOffloadingDeviceKind()));
4263         });
4264 
4265   // Only use pipes when there is exactly one input.
4266   InputInfoList InputInfos;
4267   for (const Action *Input : Inputs) {
4268     // Treat dsymutil and verify sub-jobs as being at the top-level too, they
4269     // shouldn't get temporary output names.
4270     // FIXME: Clean this up.
4271     bool SubJobAtTopLevel =
4272         AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
4273     InputInfos.push_back(BuildJobsForAction(
4274         C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput,
4275         CachedResults, A->getOffloadingDeviceKind()));
4276   }
4277 
4278   // Always use the first input as the base input.
4279   const char *BaseInput = InputInfos[0].getBaseInput();
4280 
4281   // ... except dsymutil actions, which use their actual input as the base
4282   // input.
4283   if (JA->getType() == types::TY_dSYM)
4284     BaseInput = InputInfos[0].getFilename();
4285 
4286   // ... and in header module compilations, which use the module name.
4287   if (auto *ModuleJA = dyn_cast<HeaderModulePrecompileJobAction>(JA))
4288     BaseInput = ModuleJA->getModuleName();
4289 
4290   // Append outputs of offload device jobs to the input list
4291   if (!OffloadDependencesInputInfo.empty())
4292     InputInfos.append(OffloadDependencesInputInfo.begin(),
4293                       OffloadDependencesInputInfo.end());
4294 
4295   // Set the effective triple of the toolchain for the duration of this job.
4296   llvm::Triple EffectiveTriple;
4297   const ToolChain &ToolTC = T->getToolChain();
4298   const ArgList &Args =
4299       C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind());
4300   if (InputInfos.size() != 1) {
4301     EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
4302   } else {
4303     // Pass along the input type if it can be unambiguously determined.
4304     EffectiveTriple = llvm::Triple(
4305         ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType()));
4306   }
4307   RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
4308 
4309   // Determine the place to write output to, if any.
4310   InputInfo Result;
4311   InputInfoList UnbundlingResults;
4312   if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) {
4313     // If we have an unbundling job, we need to create results for all the
4314     // outputs. We also update the results cache so that other actions using
4315     // this unbundling action can get the right results.
4316     for (auto &UI : UA->getDependentActionsInfo()) {
4317       assert(UI.DependentOffloadKind != Action::OFK_None &&
4318              "Unbundling with no offloading??");
4319 
4320       // Unbundling actions are never at the top level. When we generate the
4321       // offloading prefix, we also do that for the host file because the
4322       // unbundling action does not change the type of the output which can
4323       // cause a overwrite.
4324       std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
4325           UI.DependentOffloadKind,
4326           UI.DependentToolChain->getTriple().normalize(),
4327           /*CreatePrefixForHost=*/true);
4328       auto CurI = InputInfo(
4329           UA,
4330           GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch,
4331                              /*AtTopLevel=*/false,
4332                              MultipleArchs ||
4333                                  UI.DependentOffloadKind == Action::OFK_HIP,
4334                              OffloadingPrefix),
4335           BaseInput);
4336       // Save the unbundling result.
4337       UnbundlingResults.push_back(CurI);
4338 
4339       // Get the unique string identifier for this dependence and cache the
4340       // result.
4341       StringRef Arch;
4342       if (TargetDeviceOffloadKind == Action::OFK_HIP) {
4343         if (UI.DependentOffloadKind == Action::OFK_Host)
4344           Arch = StringRef();
4345         else
4346           Arch = UI.DependentBoundArch;
4347       } else
4348         Arch = BoundArch;
4349 
4350       CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch,
4351                                                 UI.DependentOffloadKind)}] =
4352           CurI;
4353     }
4354 
4355     // Now that we have all the results generated, select the one that should be
4356     // returned for the current depending action.
4357     std::pair<const Action *, std::string> ActionTC = {
4358         A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
4359     assert(CachedResults.find(ActionTC) != CachedResults.end() &&
4360            "Result does not exist??");
4361     Result = CachedResults[ActionTC];
4362   } else if (JA->getType() == types::TY_Nothing)
4363     Result = InputInfo(A, BaseInput);
4364   else {
4365     // We only have to generate a prefix for the host if this is not a top-level
4366     // action.
4367     std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
4368         A->getOffloadingDeviceKind(), TC->getTriple().normalize(),
4369         /*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() &&
4370             !AtTopLevel);
4371     if (isa<OffloadWrapperJobAction>(JA)) {
4372       OffloadingPrefix += "-wrapper";
4373       if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
4374         BaseInput = FinalOutput->getValue();
4375       else
4376         BaseInput = getDefaultImageName();
4377     }
4378     Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
4379                                              AtTopLevel, MultipleArchs,
4380                                              OffloadingPrefix),
4381                        BaseInput);
4382   }
4383 
4384   if (CCCPrintBindings && !CCGenDiagnostics) {
4385     llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
4386                  << " - \"" << T->getName() << "\", inputs: [";
4387     for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
4388       llvm::errs() << InputInfos[i].getAsString();
4389       if (i + 1 != e)
4390         llvm::errs() << ", ";
4391     }
4392     if (UnbundlingResults.empty())
4393       llvm::errs() << "], output: " << Result.getAsString() << "\n";
4394     else {
4395       llvm::errs() << "], outputs: [";
4396       for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
4397         llvm::errs() << UnbundlingResults[i].getAsString();
4398         if (i + 1 != e)
4399           llvm::errs() << ", ";
4400       }
4401       llvm::errs() << "] \n";
4402     }
4403   } else {
4404     if (UnbundlingResults.empty())
4405       T->ConstructJob(
4406           C, *JA, Result, InputInfos,
4407           C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
4408           LinkingOutput);
4409     else
4410       T->ConstructJobMultipleOutputs(
4411           C, *JA, UnbundlingResults, InputInfos,
4412           C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
4413           LinkingOutput);
4414   }
4415   return Result;
4416 }
4417 
4418 const char *Driver::getDefaultImageName() const {
4419   llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
4420   return Target.isOSWindows() ? "a.exe" : "a.out";
4421 }
4422 
4423 /// Create output filename based on ArgValue, which could either be a
4424 /// full filename, filename without extension, or a directory. If ArgValue
4425 /// does not provide a filename, then use BaseName, and use the extension
4426 /// suitable for FileType.
4427 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
4428                                         StringRef BaseName,
4429                                         types::ID FileType) {
4430   SmallString<128> Filename = ArgValue;
4431 
4432   if (ArgValue.empty()) {
4433     // If the argument is empty, output to BaseName in the current dir.
4434     Filename = BaseName;
4435   } else if (llvm::sys::path::is_separator(Filename.back())) {
4436     // If the argument is a directory, output to BaseName in that dir.
4437     llvm::sys::path::append(Filename, BaseName);
4438   }
4439 
4440   if (!llvm::sys::path::has_extension(ArgValue)) {
4441     // If the argument didn't provide an extension, then set it.
4442     const char *Extension = types::getTypeTempSuffix(FileType, true);
4443 
4444     if (FileType == types::TY_Image &&
4445         Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
4446       // The output file is a dll.
4447       Extension = "dll";
4448     }
4449 
4450     llvm::sys::path::replace_extension(Filename, Extension);
4451   }
4452 
4453   return Args.MakeArgString(Filename.c_str());
4454 }
4455 
4456 const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA,
4457                                        const char *BaseInput,
4458                                        StringRef BoundArch, bool AtTopLevel,
4459                                        bool MultipleArchs,
4460                                        StringRef OffloadingPrefix) const {
4461   llvm::PrettyStackTraceString CrashInfo("Computing output path");
4462   // Output to a user requested destination?
4463   if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
4464     if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
4465       return C.addResultFile(FinalOutput->getValue(), &JA);
4466   }
4467 
4468   // For /P, preprocess to file named after BaseInput.
4469   if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
4470     assert(AtTopLevel && isa<PreprocessJobAction>(JA));
4471     StringRef BaseName = llvm::sys::path::filename(BaseInput);
4472     StringRef NameArg;
4473     if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
4474       NameArg = A->getValue();
4475     return C.addResultFile(
4476         MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
4477         &JA);
4478   }
4479 
4480   // Default to writing to stdout?
4481   if (AtTopLevel && !CCGenDiagnostics && isa<PreprocessJobAction>(JA))
4482     return "-";
4483 
4484   // Is this the assembly listing for /FA?
4485   if (JA.getType() == types::TY_PP_Asm &&
4486       (C.getArgs().hasArg(options::OPT__SLASH_FA) ||
4487        C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
4488     // Use /Fa and the input filename to determine the asm file name.
4489     StringRef BaseName = llvm::sys::path::filename(BaseInput);
4490     StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
4491     return C.addResultFile(
4492         MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
4493         &JA);
4494   }
4495 
4496   // Output to a temporary file?
4497   if ((!AtTopLevel && !isSaveTempsEnabled() &&
4498        !C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
4499       CCGenDiagnostics) {
4500     StringRef Name = llvm::sys::path::filename(BaseInput);
4501     std::pair<StringRef, StringRef> Split = Name.split('.');
4502     SmallString<128> TmpName;
4503     const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4504     Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir);
4505     if (CCGenDiagnostics && A) {
4506       SmallString<128> CrashDirectory(A->getValue());
4507       if (!getVFS().exists(CrashDirectory))
4508         llvm::sys::fs::create_directories(CrashDirectory);
4509       llvm::sys::path::append(CrashDirectory, Split.first);
4510       const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%";
4511       std::error_code EC = llvm::sys::fs::createUniqueFile(
4512           CrashDirectory + Middle + Suffix, TmpName);
4513       if (EC) {
4514         Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4515         return "";
4516       }
4517     } else {
4518       TmpName = GetTemporaryPath(Split.first, Suffix);
4519     }
4520     return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4521   }
4522 
4523   SmallString<128> BasePath(BaseInput);
4524   StringRef BaseName;
4525 
4526   // Dsymutil actions should use the full path.
4527   if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
4528     BaseName = BasePath;
4529   else
4530     BaseName = llvm::sys::path::filename(BasePath);
4531 
4532   // Determine what the derived output name should be.
4533   const char *NamedOutput;
4534 
4535   if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
4536       C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
4537     // The /Fo or /o flag decides the object filename.
4538     StringRef Val =
4539         C.getArgs()
4540             .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
4541             ->getValue();
4542     NamedOutput =
4543         MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
4544   } else if (JA.getType() == types::TY_Image &&
4545              C.getArgs().hasArg(options::OPT__SLASH_Fe,
4546                                 options::OPT__SLASH_o)) {
4547     // The /Fe or /o flag names the linked file.
4548     StringRef Val =
4549         C.getArgs()
4550             .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
4551             ->getValue();
4552     NamedOutput =
4553         MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
4554   } else if (JA.getType() == types::TY_Image) {
4555     if (IsCLMode()) {
4556       // clang-cl uses BaseName for the executable name.
4557       NamedOutput =
4558           MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
4559     } else {
4560       SmallString<128> Output(getDefaultImageName());
4561       // HIP image for device compilation with -fno-gpu-rdc is per compilation
4562       // unit.
4563       bool IsHIPNoRDC = JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
4564                         !C.getArgs().hasFlag(options::OPT_fgpu_rdc,
4565                                              options::OPT_fno_gpu_rdc, false);
4566       if (IsHIPNoRDC) {
4567         Output = BaseName;
4568         llvm::sys::path::replace_extension(Output, "");
4569       }
4570       Output += OffloadingPrefix;
4571       if (MultipleArchs && !BoundArch.empty()) {
4572         Output += "-";
4573         Output.append(BoundArch);
4574       }
4575       if (IsHIPNoRDC)
4576         Output += ".out";
4577       NamedOutput = C.getArgs().MakeArgString(Output.c_str());
4578     }
4579   } else if (JA.getType() == types::TY_PCH && IsCLMode()) {
4580     NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName));
4581   } else {
4582     const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4583     assert(Suffix && "All types used for output should have a suffix.");
4584 
4585     std::string::size_type End = std::string::npos;
4586     if (!types::appendSuffixForType(JA.getType()))
4587       End = BaseName.rfind('.');
4588     SmallString<128> Suffixed(BaseName.substr(0, End));
4589     Suffixed += OffloadingPrefix;
4590     if (MultipleArchs && !BoundArch.empty()) {
4591       Suffixed += "-";
4592       Suffixed.append(BoundArch);
4593     }
4594     // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
4595     // the unoptimized bitcode so that it does not get overwritten by the ".bc"
4596     // optimized bitcode output.
4597     if (!AtTopLevel && C.getArgs().hasArg(options::OPT_emit_llvm) &&
4598         JA.getType() == types::TY_LLVM_BC)
4599       Suffixed += ".tmp";
4600     Suffixed += '.';
4601     Suffixed += Suffix;
4602     NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
4603   }
4604 
4605   // Prepend object file path if -save-temps=obj
4606   if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
4607       JA.getType() != types::TY_PCH) {
4608     Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
4609     SmallString<128> TempPath(FinalOutput->getValue());
4610     llvm::sys::path::remove_filename(TempPath);
4611     StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
4612     llvm::sys::path::append(TempPath, OutputFileName);
4613     NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
4614   }
4615 
4616   // If we're saving temps and the temp file conflicts with the input file,
4617   // then avoid overwriting input file.
4618   if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
4619     bool SameFile = false;
4620     SmallString<256> Result;
4621     llvm::sys::fs::current_path(Result);
4622     llvm::sys::path::append(Result, BaseName);
4623     llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
4624     // Must share the same path to conflict.
4625     if (SameFile) {
4626       StringRef Name = llvm::sys::path::filename(BaseInput);
4627       std::pair<StringRef, StringRef> Split = Name.split('.');
4628       std::string TmpName = GetTemporaryPath(
4629           Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode()));
4630       return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4631     }
4632   }
4633 
4634   // As an annoying special case, PCH generation doesn't strip the pathname.
4635   if (JA.getType() == types::TY_PCH && !IsCLMode()) {
4636     llvm::sys::path::remove_filename(BasePath);
4637     if (BasePath.empty())
4638       BasePath = NamedOutput;
4639     else
4640       llvm::sys::path::append(BasePath, NamedOutput);
4641     return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
4642   } else {
4643     return C.addResultFile(NamedOutput, &JA);
4644   }
4645 }
4646 
4647 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
4648   // Search for Name in a list of paths.
4649   auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P)
4650       -> llvm::Optional<std::string> {
4651     // Respect a limited subset of the '-Bprefix' functionality in GCC by
4652     // attempting to use this prefix when looking for file paths.
4653     for (const auto &Dir : P) {
4654       if (Dir.empty())
4655         continue;
4656       SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
4657       llvm::sys::path::append(P, Name);
4658       if (llvm::sys::fs::exists(Twine(P)))
4659         return P.str().str();
4660     }
4661     return None;
4662   };
4663 
4664   if (auto P = SearchPaths(PrefixDirs))
4665     return *P;
4666 
4667   SmallString<128> R(ResourceDir);
4668   llvm::sys::path::append(R, Name);
4669   if (llvm::sys::fs::exists(Twine(R)))
4670     return R.str();
4671 
4672   SmallString<128> P(TC.getCompilerRTPath());
4673   llvm::sys::path::append(P, Name);
4674   if (llvm::sys::fs::exists(Twine(P)))
4675     return P.str();
4676 
4677   SmallString<128> D(Dir);
4678   llvm::sys::path::append(D, "..", Name);
4679   if (llvm::sys::fs::exists(Twine(D)))
4680     return D.str();
4681 
4682   if (auto P = SearchPaths(TC.getLibraryPaths()))
4683     return *P;
4684 
4685   if (auto P = SearchPaths(TC.getFilePaths()))
4686     return *P;
4687 
4688   return Name;
4689 }
4690 
4691 void Driver::generatePrefixedToolNames(
4692     StringRef Tool, const ToolChain &TC,
4693     SmallVectorImpl<std::string> &Names) const {
4694   // FIXME: Needs a better variable than TargetTriple
4695   Names.emplace_back((TargetTriple + "-" + Tool).str());
4696   Names.emplace_back(Tool);
4697 
4698   // Allow the discovery of tools prefixed with LLVM's default target triple.
4699   std::string DefaultTargetTriple = llvm::sys::getDefaultTargetTriple();
4700   if (DefaultTargetTriple != TargetTriple)
4701     Names.emplace_back((DefaultTargetTriple + "-" + Tool).str());
4702 }
4703 
4704 static bool ScanDirForExecutable(SmallString<128> &Dir,
4705                                  ArrayRef<std::string> Names) {
4706   for (const auto &Name : Names) {
4707     llvm::sys::path::append(Dir, Name);
4708     if (llvm::sys::fs::can_execute(Twine(Dir)))
4709       return true;
4710     llvm::sys::path::remove_filename(Dir);
4711   }
4712   return false;
4713 }
4714 
4715 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
4716   SmallVector<std::string, 2> TargetSpecificExecutables;
4717   generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
4718 
4719   // Respect a limited subset of the '-Bprefix' functionality in GCC by
4720   // attempting to use this prefix when looking for program paths.
4721   for (const auto &PrefixDir : PrefixDirs) {
4722     if (llvm::sys::fs::is_directory(PrefixDir)) {
4723       SmallString<128> P(PrefixDir);
4724       if (ScanDirForExecutable(P, TargetSpecificExecutables))
4725         return P.str();
4726     } else {
4727       SmallString<128> P((PrefixDir + Name).str());
4728       if (llvm::sys::fs::can_execute(Twine(P)))
4729         return P.str();
4730     }
4731   }
4732 
4733   const ToolChain::path_list &List = TC.getProgramPaths();
4734   for (const auto &Path : List) {
4735     SmallString<128> P(Path);
4736     if (ScanDirForExecutable(P, TargetSpecificExecutables))
4737       return P.str();
4738   }
4739 
4740   // If all else failed, search the path.
4741   for (const auto &TargetSpecificExecutable : TargetSpecificExecutables)
4742     if (llvm::ErrorOr<std::string> P =
4743             llvm::sys::findProgramByName(TargetSpecificExecutable))
4744       return *P;
4745 
4746   return Name;
4747 }
4748 
4749 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
4750   SmallString<128> Path;
4751   std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
4752   if (EC) {
4753     Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4754     return "";
4755   }
4756 
4757   return Path.str();
4758 }
4759 
4760 std::string Driver::GetTemporaryDirectory(StringRef Prefix) const {
4761   SmallString<128> Path;
4762   std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path);
4763   if (EC) {
4764     Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4765     return "";
4766   }
4767 
4768   return Path.str();
4769 }
4770 
4771 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
4772   SmallString<128> Output;
4773   if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
4774     // FIXME: If anybody needs it, implement this obscure rule:
4775     // "If you specify a directory without a file name, the default file name
4776     // is VCx0.pch., where x is the major version of Visual C++ in use."
4777     Output = FpArg->getValue();
4778 
4779     // "If you do not specify an extension as part of the path name, an
4780     // extension of .pch is assumed. "
4781     if (!llvm::sys::path::has_extension(Output))
4782       Output += ".pch";
4783   } else {
4784     if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc))
4785       Output = YcArg->getValue();
4786     if (Output.empty())
4787       Output = BaseName;
4788     llvm::sys::path::replace_extension(Output, ".pch");
4789   }
4790   return Output.str();
4791 }
4792 
4793 const ToolChain &Driver::getToolChain(const ArgList &Args,
4794                                       const llvm::Triple &Target) const {
4795 
4796   auto &TC = ToolChains[Target.str()];
4797   if (!TC) {
4798     switch (Target.getOS()) {
4799     case llvm::Triple::AIX:
4800       TC = std::make_unique<toolchains::AIX>(*this, Target, Args);
4801       break;
4802     case llvm::Triple::Haiku:
4803       TC = std::make_unique<toolchains::Haiku>(*this, Target, Args);
4804       break;
4805     case llvm::Triple::Ananas:
4806       TC = std::make_unique<toolchains::Ananas>(*this, Target, Args);
4807       break;
4808     case llvm::Triple::CloudABI:
4809       TC = std::make_unique<toolchains::CloudABI>(*this, Target, Args);
4810       break;
4811     case llvm::Triple::Darwin:
4812     case llvm::Triple::MacOSX:
4813     case llvm::Triple::IOS:
4814     case llvm::Triple::TvOS:
4815     case llvm::Triple::WatchOS:
4816       TC = std::make_unique<toolchains::DarwinClang>(*this, Target, Args);
4817       break;
4818     case llvm::Triple::DragonFly:
4819       TC = std::make_unique<toolchains::DragonFly>(*this, Target, Args);
4820       break;
4821     case llvm::Triple::OpenBSD:
4822       TC = std::make_unique<toolchains::OpenBSD>(*this, Target, Args);
4823       break;
4824     case llvm::Triple::NetBSD:
4825       TC = std::make_unique<toolchains::NetBSD>(*this, Target, Args);
4826       break;
4827     case llvm::Triple::FreeBSD:
4828       TC = std::make_unique<toolchains::FreeBSD>(*this, Target, Args);
4829       break;
4830     case llvm::Triple::Minix:
4831       TC = std::make_unique<toolchains::Minix>(*this, Target, Args);
4832       break;
4833     case llvm::Triple::Linux:
4834     case llvm::Triple::ELFIAMCU:
4835       if (Target.getArch() == llvm::Triple::hexagon)
4836         TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
4837                                                              Args);
4838       else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
4839                !Target.hasEnvironment())
4840         TC = std::make_unique<toolchains::MipsLLVMToolChain>(*this, Target,
4841                                                               Args);
4842       else if (Target.getArch() == llvm::Triple::ppc ||
4843                Target.getArch() == llvm::Triple::ppc64 ||
4844                Target.getArch() == llvm::Triple::ppc64le)
4845         TC = std::make_unique<toolchains::PPCLinuxToolChain>(*this, Target,
4846                                                               Args);
4847       else
4848         TC = std::make_unique<toolchains::Linux>(*this, Target, Args);
4849       break;
4850     case llvm::Triple::NaCl:
4851       TC = std::make_unique<toolchains::NaClToolChain>(*this, Target, Args);
4852       break;
4853     case llvm::Triple::Fuchsia:
4854       TC = std::make_unique<toolchains::Fuchsia>(*this, Target, Args);
4855       break;
4856     case llvm::Triple::Solaris:
4857       TC = std::make_unique<toolchains::Solaris>(*this, Target, Args);
4858       break;
4859     case llvm::Triple::AMDHSA:
4860     case llvm::Triple::AMDPAL:
4861     case llvm::Triple::Mesa3D:
4862       TC = std::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args);
4863       break;
4864     case llvm::Triple::Win32:
4865       switch (Target.getEnvironment()) {
4866       default:
4867         if (Target.isOSBinFormatELF())
4868           TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
4869         else if (Target.isOSBinFormatMachO())
4870           TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
4871         else
4872           TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
4873         break;
4874       case llvm::Triple::GNU:
4875         TC = std::make_unique<toolchains::MinGW>(*this, Target, Args);
4876         break;
4877       case llvm::Triple::Itanium:
4878         TC = std::make_unique<toolchains::CrossWindowsToolChain>(*this, Target,
4879                                                                   Args);
4880         break;
4881       case llvm::Triple::MSVC:
4882       case llvm::Triple::UnknownEnvironment:
4883         if (Args.getLastArgValue(options::OPT_fuse_ld_EQ)
4884                 .startswith_lower("bfd"))
4885           TC = std::make_unique<toolchains::CrossWindowsToolChain>(
4886               *this, Target, Args);
4887         else
4888           TC =
4889               std::make_unique<toolchains::MSVCToolChain>(*this, Target, Args);
4890         break;
4891       }
4892       break;
4893     case llvm::Triple::PS4:
4894       TC = std::make_unique<toolchains::PS4CPU>(*this, Target, Args);
4895       break;
4896     case llvm::Triple::Contiki:
4897       TC = std::make_unique<toolchains::Contiki>(*this, Target, Args);
4898       break;
4899     case llvm::Triple::Hurd:
4900       TC = std::make_unique<toolchains::Hurd>(*this, Target, Args);
4901       break;
4902     default:
4903       // Of these targets, Hexagon is the only one that might have
4904       // an OS of Linux, in which case it got handled above already.
4905       switch (Target.getArch()) {
4906       case llvm::Triple::tce:
4907         TC = std::make_unique<toolchains::TCEToolChain>(*this, Target, Args);
4908         break;
4909       case llvm::Triple::tcele:
4910         TC = std::make_unique<toolchains::TCELEToolChain>(*this, Target, Args);
4911         break;
4912       case llvm::Triple::hexagon:
4913         TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
4914                                                              Args);
4915         break;
4916       case llvm::Triple::lanai:
4917         TC = std::make_unique<toolchains::LanaiToolChain>(*this, Target, Args);
4918         break;
4919       case llvm::Triple::xcore:
4920         TC = std::make_unique<toolchains::XCoreToolChain>(*this, Target, Args);
4921         break;
4922       case llvm::Triple::wasm32:
4923       case llvm::Triple::wasm64:
4924         TC = std::make_unique<toolchains::WebAssembly>(*this, Target, Args);
4925         break;
4926       case llvm::Triple::avr:
4927         TC = std::make_unique<toolchains::AVRToolChain>(*this, Target, Args);
4928         break;
4929       case llvm::Triple::msp430:
4930         TC =
4931             std::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args);
4932         break;
4933       case llvm::Triple::riscv32:
4934       case llvm::Triple::riscv64:
4935         TC = std::make_unique<toolchains::RISCVToolChain>(*this, Target, Args);
4936         break;
4937       default:
4938         if (Target.getVendor() == llvm::Triple::Myriad)
4939           TC = std::make_unique<toolchains::MyriadToolChain>(*this, Target,
4940                                                               Args);
4941         else if (toolchains::BareMetal::handlesTarget(Target))
4942           TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
4943         else if (Target.isOSBinFormatELF())
4944           TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
4945         else if (Target.isOSBinFormatMachO())
4946           TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
4947         else
4948           TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
4949       }
4950     }
4951   }
4952 
4953   // Intentionally omitted from the switch above: llvm::Triple::CUDA.  CUDA
4954   // compiles always need two toolchains, the CUDA toolchain and the host
4955   // toolchain.  So the only valid way to create a CUDA toolchain is via
4956   // CreateOffloadingDeviceToolChains.
4957 
4958   return *TC;
4959 }
4960 
4961 bool Driver::ShouldUseClangCompiler(const JobAction &JA) const {
4962   // Say "no" if there is not exactly one input of a type clang understands.
4963   if (JA.size() != 1 ||
4964       !types::isAcceptedByClang((*JA.input_begin())->getType()))
4965     return false;
4966 
4967   // And say "no" if this is not a kind of action clang understands.
4968   if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
4969       !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
4970     return false;
4971 
4972   return true;
4973 }
4974 
4975 bool Driver::ShouldUseFlangCompiler(const JobAction &JA) const {
4976   // Say "no" if there is not exactly one input of a type flang understands.
4977   if (JA.size() != 1 ||
4978       !types::isFortran((*JA.input_begin())->getType()))
4979     return false;
4980 
4981   // And say "no" if this is not a kind of action flang understands.
4982   if (!isa<PreprocessJobAction>(JA) && !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
4983     return false;
4984 
4985   return true;
4986 }
4987 
4988 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
4989 /// grouped values as integers. Numbers which are not provided are set to 0.
4990 ///
4991 /// \return True if the entire string was parsed (9.2), or all groups were
4992 /// parsed (10.3.5extrastuff).
4993 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor,
4994                                unsigned &Micro, bool &HadExtra) {
4995   HadExtra = false;
4996 
4997   Major = Minor = Micro = 0;
4998   if (Str.empty())
4999     return false;
5000 
5001   if (Str.consumeInteger(10, Major))
5002     return false;
5003   if (Str.empty())
5004     return true;
5005   if (Str[0] != '.')
5006     return false;
5007 
5008   Str = Str.drop_front(1);
5009 
5010   if (Str.consumeInteger(10, Minor))
5011     return false;
5012   if (Str.empty())
5013     return true;
5014   if (Str[0] != '.')
5015     return false;
5016   Str = Str.drop_front(1);
5017 
5018   if (Str.consumeInteger(10, Micro))
5019     return false;
5020   if (!Str.empty())
5021     HadExtra = true;
5022   return true;
5023 }
5024 
5025 /// Parse digits from a string \p Str and fulfill \p Digits with
5026 /// the parsed numbers. This method assumes that the max number of
5027 /// digits to look for is equal to Digits.size().
5028 ///
5029 /// \return True if the entire string was parsed and there are
5030 /// no extra characters remaining at the end.
5031 bool Driver::GetReleaseVersion(StringRef Str,
5032                                MutableArrayRef<unsigned> Digits) {
5033   if (Str.empty())
5034     return false;
5035 
5036   unsigned CurDigit = 0;
5037   while (CurDigit < Digits.size()) {
5038     unsigned Digit;
5039     if (Str.consumeInteger(10, Digit))
5040       return false;
5041     Digits[CurDigit] = Digit;
5042     if (Str.empty())
5043       return true;
5044     if (Str[0] != '.')
5045       return false;
5046     Str = Str.drop_front(1);
5047     CurDigit++;
5048   }
5049 
5050   // More digits than requested, bail out...
5051   return false;
5052 }
5053 
5054 std::pair<unsigned, unsigned>
5055 Driver::getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const {
5056   unsigned IncludedFlagsBitmask = 0;
5057   unsigned ExcludedFlagsBitmask = options::NoDriverOption;
5058 
5059   if (IsClCompatMode) {
5060     // Include CL and Core options.
5061     IncludedFlagsBitmask |= options::CLOption;
5062     IncludedFlagsBitmask |= options::CoreOption;
5063   } else {
5064     ExcludedFlagsBitmask |= options::CLOption;
5065   }
5066 
5067   return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask);
5068 }
5069 
5070 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
5071   return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
5072 }
5073 
5074 bool clang::driver::willEmitRemarks(const ArgList &Args) {
5075   // -fsave-optimization-record enables it.
5076   if (Args.hasFlag(options::OPT_fsave_optimization_record,
5077                    options::OPT_fno_save_optimization_record, false))
5078     return true;
5079 
5080   // -fsave-optimization-record=<format> enables it as well.
5081   if (Args.hasFlag(options::OPT_fsave_optimization_record_EQ,
5082                    options::OPT_fno_save_optimization_record, false))
5083     return true;
5084 
5085   // -foptimization-record-file alone enables it too.
5086   if (Args.hasFlag(options::OPT_foptimization_record_file_EQ,
5087                    options::OPT_fno_save_optimization_record, false))
5088     return true;
5089 
5090   // -foptimization-record-passes alone enables it too.
5091   if (Args.hasFlag(options::OPT_foptimization_record_passes_EQ,
5092                    options::OPT_fno_save_optimization_record, false))
5093     return true;
5094   return false;
5095 }
5096